

Advanced DBMS

2

Advanced DBMS

Dr. Radványi Tibor

Kiadó

© Dr. Radványi Tibor, 2011

3

Kézirat lezárva: 2011. január 31.

ISBN
KIADÓ

A kiadásért felel a:

Felelős szerkesztő:

Műszaki szerkesztő:

Terjedelem: 105 oldal

4

Tartalom

PREFACE .. 6

THE RUDIMENTS AND BASIC PRINCIPLES OF DATABASE ADMINISTRATION AND DESIGN ... 8

DATA AND INFORMATION ... 8

THE DATABASE .. 8

THE DATABASE MANAGEMENT SYSTEM .. 10

THE THREE LEVELS OF THE DATABASE ... 10

FUNDAMENTAL STRUCTURES .. 13

DATA MODELS ... 13

THE THREE FACTORS OF THE DATA MODEL .. 14

THE ROLE OF THE PROPERTIES .. 14

TYPES OF RELATIONS .. 15

NORMALISATION ... 15

Normal Forms .. 16

HOMOGENEOUS STRUCTURES ... 19

The Family Tree and the Spouse Relation ... 20

The Spouse Relation ... 21

DATABASE ADMINISTRATION .. 22

THE ESSENCE OF THE DATABASE .. 23

THE DESIGNING OF THE DATABASE .. 23

THE MAIN STEPS OF DATABASE DESIGNING .. 23

DATAMODEL ERRORS ... 25

FIRST STEPS IN DATABASE ADMINISTRATION ... 26

NOVELTIES IN MICROSOFT ACCESS 2007 ... 26

FORMS .. 51

a) Types of Queries .. 57

USING SQL ... 62

PRINT OPTIONS ... 71

SETTING PRINT PARAMETERS .. 71

PRINTER LAYOUT .. 73

PRINTING ... 74

MSSQL SERVER .. 75

Commands ... 75

CREATING FILEGROUPS ... 77

Managing Databases ... 78

Expanding a Transaction Log .. 80

Shrinking a Database or File ... 80

Dropping Databases .. 81

DATABASE MANAGEMENT OPERATIONS .. 81

CREATING TABLES ... 82

Adding and Dropping a Column .. 83

Generating Column Values .. 84

Using the NEWID Function and the uniqueidentifier Data Type... 85

GENERATING SCRIPTS .. 86

Data is based on applying the following syntax: ... 86

TYPES OF DATA INTEGRITY ... 88

Defining Constraints .. 88

Types of Constraints .. 90

DEFAULT Constraints .. 91

CHECK Constraints .. 91

PRIMARY KEY Constraints ... 91

UNIQUE Constraints ... 93

FOREIGN KEY Constraints .. 93

Cascading Referential Integrity ... 93

5

Disabling Constraint Checking on Existing Data .. 94

INDEXES IN THE DATABASE ... 95

Creating Indexes .. 95

Creating Unique Indexes ... 97

MAINTAINING INDEXES .. 97

DBCC INDEXDEFRAG Statement .. 97

TRIGGERS .. 98

Defining Triggers .. 98

Altering and Dropping Triggers ... 99

SOME USEFUL SYSTEM FUNCTIONS .. 101

Cursors .. 102

STORED PROCEDURES ... 103

Modify the stored procedure .. 104

Parameters ... 104

6

PREFACE
When we are talking about computers, we instantly think about the speed that allows us

to execute complex operations. This speed is mainly used during searches. This means the

extraction of a datum from an archive or database. This requires a database, which stores

the data. The operation system ‘Windows XP’ lacks the programme required for such

issues. However, there are many database handlers on the market. I will introduce the

usage and way of acquisition of a member of the Microsoft Office XP Professional suite’s

office section. This program is the MS-Access. Excel is also a member of the Office suite.

The latter one is capable of making calculations in the table- structure based on the formula

of our choice. Access was exclusively made for the storage and managing of the data.

The aim of my lecture notes is to set forth the usage of the programme – Microsoft

Access– as well as displaying the way it should be taught to the public, paying special

attention to the requirements of high-school, although some elements of the treated

chapters might indicate something extra. Therefore, I tried to work this topic up in a way

that allows the most extensive use possible.

In order to understand what we are saying, and not just learn it, we need to clarify the

rudiments. The most precision and attention is required by the construction and planning of

a database. Choosing the most suitable model, shaping the structure of our database is the

basis of our work. It is easy to build on good foundations, that is why the first chapter - in

which we will clarify the rudiments of database administration - has a key importance.

In the second part we will discuss the first steps of database administration. The

structure and usage of the Access itself is not so complicated. Adding and searching for

information is not a challenge either, since Microsoft designed its product to be handled as

easily as possible, as well as making it quick-to-be-acquired. All this add up to the fact,

that it is the most widely used database handler today. This also played a part in my choice

of database handlers.

The third and biggest part of the essay will be dedicated to the possibilities that are

offered by the Access. This field is concerned with the all the possible objects that can be

created with the help of Access, such as reports, forms, queries, etc.

The last section of the essay contains a collection of exercises - designed solely for the

practice of the acquired knowledge – in connection with database administration.

7

 I will illustrate the usage of the MS Access mainly through practical examples and

images to model the process. Since the chapters build on each other, it is important that no

part should be omitted, otherwise information gaps may emerge. The course material is

also fit for a possible revision.

8

 THE RUDIMENTS AND BASIC PRINCIPLES OF
DATABASE ADMINISTRATION AND DESIGN

It is essential for the acquisition of the usage of the MS Access to be familiar with the

key notions, and terms. Therefore, in this chapter we will examine the above mentioned

questions in more detail.

DATA AND INFORMATION

Information is not the same as data, but rather a kind of meaning of the data. Data is, in

contrast to information, objective. Database administration is used for storing facts in

databases, and to present information in such form that carry information for the user.

Therefore, data is understood here as a series of signs that become information during the

processing of the data.

The data file is a coherent mass of facts, which includes all the date that are required for

the realization of a given goal.

 “The datum is a piece of knowledge that can be interpreted (it is perceptible, sensible,

comprehensible, and understandable).” (Halassy 1994, p. 8)

 “Information is a datum that becomes a newly interpreted knowledge.” (Halassy

1994, p. 9)

 THE DATABASE

Under the term database we usually mean a group of data that is stored on the basis of a

system, which data do not necessarily get stored on a computer. In order to define what a

database precisely is we need to get familiar with a few notions.

 The Types of Information Handling

First method: we can store our data in different stocks, and establish a connection between

them with the help of a programme. For instance, Dbase or Clipper.

Another method is when we store our data in text mode. This is the formulation of

knowledge in a text-like way, instead of a data-like form. We call the tool itself a text

manager, and the text managing system is a database.

 The third option is the database administration.

9

 A database is a collection of the different phenomena that we are interested in, in an

organised unit. The point is that a database is neither a data bank, nor the unorganised unit

of files.

 Steps of a mode-based database administration:

 We create the entities along with their properties.

 We establish the relationship between them.

 The rest is dealt with by the database handler.

The database is a collection of data, which stores the data required for a given task in an

organised way, grants access to them, and at the same time safeguards the integrity of the

units, and protects them from any harm.

Base Concept

“We call the thing-that-something that we want to describe with the help of our knowledge

an entity.” (Halassy 1994, 24)

 The specific entities are known as entity occurrences.

 “We call the thing-that-something that we use to describe the phenomena, which we are

interested in a property.” (Halassy 1994, 28)

 The concrete value of a property is the property value. The property value set is the

term used for all the values present in a specific time.

 Both entity and property are relative terms. A thing can be both an entity and a property at

the same time. It is up to us to decide, which properties should be treated as individual

entities.

 Primary key: the property of an entity, which takes up a different value for every entity

occurrence, is known as the atom or identifier of the entity. It is also known as primary

key.

We call the relation between the entities a relationship. When it comes to practice, it is not

self-evident what kind of relationship we crate between the entities, and it is a difficult task

at the same time. This is the core of both database designing and its hardships.

10

 THE DATABASE MANAGEMENT SYSTEM

The systems designed to make easier the management of the databases is called database

management systems. The database management systems are used for recording, storage,

and management of the data in a database.

 Access is also a database management system. We can use it to make new databases, or

add, delete, modify, or search for data in the already existing bases.

 THE MAIN FUNCTIONS OF THE DATABASE MANAGEMENT

SYSTEMS

 Make new databases

 Define the content of the DBs (databases)

 Store data

 Query data

 Protect data

 Encrypt data

 Handling of access rights

 Synchronise accesses

 Organisation of physical data structures

As we can see, the database management system is software, which grants us access to a

database and takes care of the maintenance functions.

 THE THREE LEVELS OF THE DATABASE

 ‘DESIGNER’S BLINDNESS’

Both computing designers and users are tool oriented. That means, they think in the data

structure that is supported by their currently used database manager. The problem occurs

when they change to a new system. Then they have to start everything over. However, the

database has a device-independent approach. We differentiate between the notional,

logical and physical level of the DB. The structure of the DB needs to be formed in three

steps.

 THE NOTIONAL AND LOGICAL STRUCTURE OF THE DB

11

 Designing and modifying the DB should always occur on the required level. During the

designing phase there are two possible attitudes:

 There are some, who use the file manager type of systems, like dBase, Paradox,

or FoxPro. These can be accessed through a file-server structure in a network

system. They have, primarily, historical importance.

 There are others, who design more complex systems, and the aim is to achieve a

multi-user network environment. They use client-server architecture; in

addition, they may further develop it to produce multilayer applications. Such

systems are, for example, Oracle, MSSQL, IBM DB2, PostgreSQL, MySQL.

“We call the data structure conceptual, when they reflect the phenomena, its characteristics

and its relations according to reality, and at the same time reflecting the natural concepts.”

(Halassy 1994, 45)

 There are many factors that can influence what the structure of the database should look

like:

 Technical factor: it is often the case that you have to get accustomed to the

possibilities of the database manager. The designed data model may not be true to

nature.

 Accessibility: it may happen that we need to modify a good structure, because of

the privacy of the data.

 Efficiency: we may need to choose a data structure with a single report instead of

one with multi-report, because our database manager supports this structure

much better.

Therefore, we call those data structures that meet the technical, accessibility and efficiency

criteria logical structures. The best solution of realization is when the principal planning

follows the conceptual database designing.

 THE PHYSICAL STRUCTURE OF THE DB

A database is only acceptable when the physical manifestation matches reality. However,

there are some problems that may emerge:

12

 Assertion: the input data must be valid. For instance, if we add a date, its

structure and value must be valid.

 Data presentation: when we give the type and size of a datum it is called data

presentation. There are types like textual, imagery, logical, numerical, etc.

These should be handled separately for each has its own executable operation.

 Organisation of data and way of storage: the more modern a database

manager is, the less attention is required for the way the files are stored.

 THE NAMES OF THE PHYSICAL DATA STRUCTURE

 “We call the conscious order of storage, access and presentation of knowledge on a store

physical data structure.” (Halassy 1994, 49)

 Data table, file: it matches the definition of the entity. The system handles the data in a

table form, and thus we need to think in tables.

 Field, column: this is the same as property. We refer to the name of the given property

with field name, and to the property occurrence with field value. Field is also referred to

as column.

 Record, row: same as entity occurrence. Record is the value that can be found in a row

of a report. These are only concerning one entity.

 Elementary item: values appearing in the cells of a table

 Entity: that of which we store the data about. We consider a person, for instance, an

entity.

 Attribute: a property, characteristic feature of the entity. A person’s characteristic feat

could be its height.

 Entity type: all the properties of the entity as a whole.

 Entity occurrence: the concrete properties of the entity. For example, Opel Astra, 10

years old, 1400 cm
3
, blue coloured

13

 FUNDAMENTAL STRUCTURES

 It happens in many cases that an individual data file, or a table does not have enough data

to identify certain information. In such cases it may become necessary to handle the data

files as a whole, according to a database structure, also known as data model. There are

many data models existing. However, only three of them are widely known..

 DATA MODELS

 Hierarchic data model: it stores the data in a hierarchic structure, which is similar to a

tree. All the nodes of the tree represent one record-type. There is a so called ‘parent-child’

relation between the data. Each datum has as many ‘descendants’ as you wish, but can

have only one ‘ancestor’. Its main advantage is being easily describable and easy to make.

Today this database is out-of-date.

 Network data model: the further development of the hierarchic model. In this model it is

possible to establish a system of relations between the data as one please. A datum can

have many ancestors. The model’s main disadvantages are it’s complicated relations and great

demand for storage place. It appears in the environment of computers with a great capacity.

 Relational data model: we store the data-sets with different types, yet with some

common feature in individual tables. Such tables have a field, which contains the same

datum that serves as a link between the tables. Currently this is the most widespread data

model. This data model is supported by the most widely known database manager

programs, like dBase, Clipper, FoxPro, Access, Oracle, MSSQL, MySQL.

 Object-oriented data model: a reliable database can be designed and produced with

object-oriented technology. This model is not so widespread at the moment.

 The Access is based on a relational data model; therefore we should examine this model in

more detail.

 We call those programs that store, organise, and search for data in tables (relations) on the

computer relational database managers.

 A relational database is a type of database which consists of more than one interconnected

tables. The relational database manager system is capable of interconnecting data tables

with each other on a logical basis, and search for the common information inside these

tables.

14

 In order to call a table a relation it needs to meet the following criteria:

 It cannot have two identical rows.

 Each and every column has its own name.

 The sequence of the rows and columns is optional.

 The relational databases usually contain more than one logically interconnected table.

There is a set relation between the tables. It is very important during the design stage of the

process that we construct these relations carefully.

 The basis of the structure of the relational database is the normalisation (see later), which

refers to the method used for determining the optimal place of the data.

 THE THREE FACTORS OF THE DATA MODEL

 The data model has three factors: entity, property, relation. These are all equal members

of the data model; therefore none of them is superior to the other.

 The properties of the entity are known as its internal structure.

 The relations of the entity are the entities external structure.

THE ROLE OF THE PROPERTIES

The properties have four roles:

 Atom/identifier or primary key: the given property clearly identifies the entity

occurrence.

 Descriptive: those properties that, considering the entity occurrence, are not

unique. Most of the properties of an entity are like this.

 Switcher or foreign key: a property that is being identifier in one entity and

descriptive in another. It could ensure the relation between the two entities.

 Super key: if the relation has one column, which clearly identifies every single

record.

 The roles of the properties are not of the same importance. “We call the function of the

property within the entity its relative role, and the most important relative role its absolute

role.” (Halassy, 1994, 75)

15

 Relative means that the task of the property depends on, which entity contains it. Another

thing is, a property can have the same relative and absolute role.

 “Two entities only have a relationship with each other, if one of them as a switcher

property contains the others identifier property.” (Halassy 1994, 76)

 Requirements a primary key must meet:

 All entities must have an identifier.

 The identifier’s value cannot be empty or unknown in any entity occurrence.

 Every entity can have only one identifier property.

 “The same property can only be used by one entity.” (Halassy 1994, 74)

TYPES OF RELATIONS

1 to 1 relation: in this relation an item of table A has exactly one item from table B

that it has a connection with. This relation is quite rare, simply because two entities

can be easily merged. It is generally used to fix temporary problems. Also known as

mutual relation.

1 to more relation: if to an entity’s 1 occurrence the other entity’s more than one

(N) occurrence can be connected then we call these type of relationships 1:N or 1 to

more relation. We call the entity with a linking property that has an identifier role a

superior, and the one with a switcher role an inferior. We also call this a hierarchic

or inhomogeneous relation.

More to more relation: when two entities have a relation in which, to entity A’s 1

occurrence there are more than one entity connected from entity B’s 1 occurrence

then we refer to this situation as N:M, or more to more relation. We also refer to

these situations as network relations. If there is an existing N:M relation between two

entities we can dissolve it by introducing a third entity, which will lead to two 1:N

relations.

 NORMALISATION

 Dependencies

16

 Functional dependency: if we can dedicate to a property’s any kind of

value, which exists in one system to another property type only one

value. For example: to one identity number there can be only one name

associated, but to the same name there can be many identity numbers

related. 1 to more relation.

 Mutual functional dependency: if the above mentioned requirement is

true in both ‘directions’. For instance: registration number – engine

number. 1 to 1 relation.

 Functionally independents: if the previous relation between the two

property types does not exist. An example: the hair colour of an

employee and the company’s premise.

 Transitive functional dependency: if within an entity type one

descriptive property type’s concrete values determine other descriptive

property values.

Normal Forms

INF (Initial Normal Form): if all rows of the columns within one relation have one, and

only one value, and the sequence of the values within each row is the same then all rows

are different. There are at least one or two properties, which can clearly differentiate

between the rows.

2NF (Second Normal Form): if the relation is in 1NF, and all the values that are not keys

are functionally completely depend on the primary key.

3NF (Third Normal Form): if the relation is in 2NF, and the attributes only depend on a

primary or alternative key. If attribute “Bs” value depend on attribute “As” value,

furthermore attribute “Cs” value transitively depend on “As” value. It is the indispensable

requirement of the third normal form to remove such transitive dependencies. If the table

of the database is not in a 3NF format, then it should be separated into two tables in a way

that the individual tables will be in the form of 3NF.

For instance: a shop that is renting tools can summarize its trade in an exercise book in the

following way:

17

Data Name Address Tool Category Price

05.02.1997 Géza Nagy

Nóra Kós

Eper street 5.

Nap street 3.

polisher

welding-

machine

small

medium

500

1000

06.02.1997 Géza Nagy

Pál Szabó

Nóra Kós

Eper street 5.

Fő street 1.

Nap street 3.

paint-sprayer

lawnmower

chainsaw

medium

big

big

1000

2000

2000

This is not a relation yet, since it does not meet the requirement of having one column

value in one row.

It will become INF-like if we fill in the date in every row. In this case the table will contain

too much redundancy, because the same dates appear more than once. This leads to the

following anomalies:

 Deletion anomaly: with the deletion of an unwanted date a useful data will

also disappear.

 Modification anomaly: because of the modification of a datum we need to

modify the content of many fields.

 Inscription anomaly: when adding a new datum to the table we cannot fill

in all the fields

 In this form the primary key can be the name, tool, and the category, because the name

determines the address, the tool the category, and category the price.

Date

Name

Address

Tool

18

Category

Price

 2NF, if we make multiple individual tables that are partially dependent on the primary

keys.

1. Table

2. Table

3. Table

There is still a deletion anomaly, because if we delete one of the Tools then it will also

delete Category and Price.

3NF, this requires handling the second table as two separate tables.

2. a. Table

2. b. Table

In the above given example the field ‘Serial Number’ clearly determines all the rows of the

relation, that is why it can be used as a super key.

Serial number Date Name Tool

Tool Category Price

Name Address

Tool Category

Category Price

19

 Of course, all the four tables must be used together, because in most cases it is only

possible to read out information of a database by using multiple tables at once. The

common use of the tables is made possible by a single field that can be found in all other

tables. This field is the relationship field.

HOMOGENEOUS STRUCTURES

In the previous subchapter we spoke about inhomogeneous structures. In case of

inhomogeneous structures we can talk about a relation between two different entity types.

There are relationships when the entity’s occurrence is in relation with themselves.

The backward pointer entity relation (employees, bosses)

Let us imagine, that we want to record who is whose boss at our company.

Solutions:

In the same entity (Person) we record the Bosses’ property right next to the Names

property. We call this backward pointer relation.

A problem occurs if, for example Pista quits...everywhere where the deletion appeared the

name of the new boss must be written in. We can solve this problem with the use of two

tables, which have multiple one-to-many relationships. Let us introduce an entity with the

name Hierarchy, which is a similar person-to-person linkage. What will be put into pairs is

not the names, but the person’s identifiers, and these will have a relation with the modified

PERSON entity.

PERSON

Personal Name Boss Name

Feri Pista

Józsi Pista

Laci Ottó

Pista Ottó

Ottó Peti

20

Why is the second solution

better ?

 The database managers are supporting the one-to-many relation, because it fits their

logic better. If a person quits, then the database manager will automatically cease

the boss-employee relation, due to this one-to-many relation.

 This structure allows more general relationships to be established, because it lets us

make an employee and more than one boss relation.

 The Family Tree and the Spouse Relation

 Let us examine the following task: at our company, we have decided to take everything

we produce into an inventory. The aim of this inventory is to let us know what kind of

parts were used for the construction of a machine, and that the given component was used

for which machines.

 One of the tables will contain what type of machine or part we have. This will be the

PARTS entity. The other entity – STRUCTURE – always contains the relationship of two

things. For instance, we write in the WhatIsIt column “car” and next to this in the OfWhat

column the type of part used for the construction. We continue this process until all the

components of the car are enlisted.

PEOPLE

Person ID Person

Name

1 Feri

2 Józsi

3 Laci

4 Pista

5 Ottó

HIERARCHY

Boss ID Employee

ID

4 1

4 2

5 3

5 4

24 5

21

The above given

relationship system is called family tree, or homogeneous

network system. The PARTS entity is being connected to the

STRUCTURE entity by the Part property through the WhatIsIT and the OfWhat

properties.

The Spouse Relation

Our objective is to record who is with whom in a marital relation. Let us introduce a

SPOUSE entity right next to the already existing PERSON entity.

PARTS

Part Name of

part

1 Car

2 Engine

3 Bodywork

4 Frame

5 Piston

6 Spark plug

STRUCTURE

WhatIsIt OfWhat Piece

1 2 1

1 2 1

1 2 1

2 5 4

2 6 4

PERSON

Person ID Person

Name

1 Feri

2 Józsi

22

There is no superfluous repetition in our solution. The date of marriage can be recorded. Its

advantage is that the relationships can be transparently handled. The most important thing

to see is that we solved the problem with the use of a double one-to-many relation.

 In conclusion, we can say that all of the homogeneous structures can be realized with a

family tree structure.

 DATABASE ADMINISTRATION

 Data management: the recording, modification, deletion, display on the monitor, and in a

list, save, etc. of the data. No new knowledge arises.

“We call those activities that are performed on data (by a computer), during which no new

knowledge arises, data management operation.” (Halassy 1994, 117)

 Data processing: new data, knowledge arises with the help of the already existing data.

 “We call those activities performed on data (by a computer), during which new datum

arises, data processing operation”. (Halassy 1994, 118)

Data management is possible without data processing; however, it is not true the other way

around. If a database is carefully and well designed, then anything can be found, and

worked out from it.

3 Manci

4 Juci

5 Ottó

Spouse

Husband

Code

Wife

Code

When

1 2 1997

2 4 1998

5 23 1996

23

 Derived data: datum, which can be calculated from the basic data. These data are not

stored in the database.

 THE ESSENCE OF THE DATABASE

 IPO approach: once, users believed that data processing by a computer works along the

following pattern: you have an input, a processing, and finally the output. This approach is

considered out-of-date nowadays.

 Database approach: the processing of data has an optimal chain. This is based on the

relationships between data. Database means a basic database, where everything is

recorded. According to the approach we have an early input, and delayed output. The early

input means that every datum is stored. This way they will become useful during the

delayed output as results.

 “The ‘engine’ of the information systems is not the data processing, but the carefully

determined data management based on the database structure.” (Halassy 1994, 126)

 THE DESIGNING OF THE DATABASE
 If we want to make a well functioning database, then we need to think through the

problem that needs to be solved carefully. It is important to determine which property of an

entity we want to store. According to the decision taken will we define the entity type and

the structure of the database.

 THE MAIN STEPS OF DATABASE DESIGNING

 There are seven suggested steps in designing a database:

1. Requirement handling: here is where we determine the aim of the database.

Consider what kind of information would we like to get from the database. We

need to know which data will be stored of an entity.

2. Determination of entities, and reports: after sorting out the collected data we

need to organise them into an information system. The information system is

dealing with entities. The physical storage of the entities happens in one table. The

entity instances are recorded in the rows of the table (the records), while the

attributes get into the fields of the records (the columns). We should store all data

in one table. This is required because when it comes to later modifications we only

need to refresh the data at one place. The data considering one theme should be

stored in one table.

24

3. Determination of field, and attributes: this is where we design the details of the

table. Our objective is to determine the fields that build up the table. We can

classify the attributes in different ways:

a. simple, i.e. it cannot be dismantled any further, and complex.

b. The complex attribute consists of many simple attributes.

c. one-valued: it can only take one value at every occurrence.

d. The many-valued can take more than one value at every occurrence.

e. the database stores the values of the stored attribute. The derived value can

be determined on the basis of other attributes.

4. Determination of identifiers: the data stored in the tables needs to be

unambiguously identified. All the tables, which require the identification of each of

their records, need a primary key. The primary key is a type of identifier of which

values cannot be repeated in the given table. The primary key has an important role

in the relational databases. With it we can increase the efficiency, speed up search

and the collection of data.

In Access we can use three types of primary keys:

1. counter type: this is the most frequently used. During this process we

need to create a Counter type field. Access will generate a unique serial

number for each new record.

2. primary key consisting of one field: the key is not a counter type, if it

does not contain a single value that repeats itself; for instance tax

number.

3. primary key consisting of many fields: we make this type of key with

the use of many fields. This occurs when we cannot maintain the

uniqueness of a single field.

5. Determination of relationships: we connect the records of the tables with the help

of the primary key. Relation means the connection of two entities. The quantity of

relations can be divided into three groups, but since we have already discussed

entity relations in one of the previous chapters, we will only give a list of the

possibilities here:

1. One-to-one relation

2. One-to-many relation

3. Many-to-many relation

25

6. Testing: After the designing of the fields, tables and relations we need to check

whether there is an error remaining. During the initial phase it is easier to modify

the design of the database, then after it is uploaded with data.

7. Data input: after finishing with the necessary repairs we can finally upload the data

into the existing tables. Furthermore, we can form the other objectives as well.

There is a possibility to make forms, reports, and queries (see in detail later).

DATAMODEL ERRORS

 Open logical overlapping: if we add a property, for example, Address to

multiple entities, and it means the same thing in all of them then we need to

record this datum many times. This is open logical overlapping. This can

cause a lot of problems subsequently. On the one hand, It occupies too much

way space; on the other hand, it leads to maintenance problems. The open

logical overlapping causes data repetition; therefore, it is a redundancy.

 Seeming logical overlapping: if the Address property can be found in

multiple entities, but means a different address in all of them then we are

talking about seeming logical overlapping. The problem here is that the

unanimity is disturbed. Such overlapping must be repaired. A simple way to

do this is to modify the names of the properties so they will become more

expressive. We call the seeming logical overlapping homonymy, since this

leads to mistake information.

 Hidden logical overlapping: if a property in two entities expresses the same,

but their names are different. These kinds of errors can make things very

difficult, when it comes to reviewing the data model, since they create a

small chaos. This type of overlapping means the existence of two similar

things with different names, therefore they are also called synonymy.

 The lack of logical overlapping: if two entities cannot be connected,

because we have not created switcher fields then we are talking about the

lack of logical overlapping. The lack of the realization of a relationship is

called inconnectivity.

 Physical overlapping: if there is a property within an entity in which these

are repeated in the occurrences. It is called ‘physical’, because it concerns the

repetition of concrete data. The repetition of the values of the switcher role

property is not a physical overlapping.

26

FIRST STEPS IN DATABASE ADMINISTRATION

NOVELTIES IN MICROSOFT ACCESS 2007
Similarly to the rest of the programs of Microsoft Office 2007 Access got a brand new

look, too. The menus are replaced by strips here as well.

 The launch screen is entirely new, now we are facing a simplified, transparent user

interface, where we can choose between different templates, get to know the novelties of

the program, or load already existing databases. Here we can find the list of all the

previously opened files, too, thus enabling us to load them in faster without searching

through the hard disk.

 It is easily noticeable from the start screen that the Microsoft Office Online site plays a

greater role than before, since we can download different materials from there. Therefore,

those users, who have an internet connection are in advantage, for the templates and most

of the hint files can be downloaded from there.

 The previously known very helpful application - Northwind.mdb - is also available in the

2007 version in a brand new format. It uses .accdb extension.

II) Survey

1) Templates

 database templates

 field and column templates

a) Database templates

 Each template is a whole data account application with its pre-determined tables, forms,

reports, macros, and relationships. The templates were developed in a way that allows

immediate usage, so we can easily start to use the database. If a template does not fit our

taste we can reconfigure and reshape it to our needs. The program comes with a built-in

database template collection in stores, and we can download extra templates from the

Microsoft Office Online webpage.

b) Field and column templates

27

The field templates are field plans already provided with name, data type, duration, and

pre-set properties. We can simply drag the selected fields from the Field templates job

window to the data sheet. These are based on XML scheme definitions files, so we can

create our own standard definitions.

Furthermore, the program has table templates as well, which help you with the tables most

frequently used by the database manager. One such template is the Business card album,

which already contains the most often used fields, like Surname, First name, and Address.

The field properties are pre-set, too so that using the table can begin immediately. Other

table templates: Jobs, Problems, Events, and Tools.

2) User Interface

The user interface is built up by several items, many of which are determining the relation

with the product. The aim of the new design was to help with the effective handling of

Access, and to help find the most necessary orders in a quicker way.

 The most significant novelty of the user interface is the menu strip, which is part of the

Microsoft Office Fluent user interface. The menu strip is the strip reaching through the

upper part of the application window, which contains the orders organised into groups. The

different pages of the strip organise the orders in a rational way. The main pages of the

menu strip: Start page, New, Exterior data, Database tools. On each of the pages there are

groups of orders associated with different functions, among which are the other novelties

of the user interface.

 The most significant new items of the Office Access 2007’s user interface:

 Microsoft Office Access – the first steps: this page appears first, when we launch

the application.

 Office Fluent interface’s menu strip: the section above the program window,

where we can choose the orders.

 Order page: orders grouped by rationality

 Context-sensitive order page: the order page appearing on the screen depending

on the object in use, or the task being undertaken.

 Collection: a control that displays the possible options in a visual form, which is

used for displaying the predictable result.

28

 Quick access toolkit: a uniform and general toolkit, which appears on the menu

strip and gives you the necessary orders with only one click.

 Navigation window: found on the left side of the window it displays the database

objects. It replaces the Database window of the previous versions.

 Document pages: the tables, enquiries, forms, reports, and macros appear as

document pages in the program.

 Status bar: a strip found in the lowest part of the program window, which displays

buttons for changing the view, or giving state information.

 Mini window: an item above an object, which appears in a transparent form above

the text selected, and helps with the formatting of the text.

a) First steps:

This is the screen that appears at every start-up. From here, we can create new

databases, create a database with the help of a template, or open an existing database,

too. From here, we can directly visit the Microsoft Office Online webpage from where

we can download new templates and such.

Opening of a new database:

 Launch the application. The first steps page will appear.

 Select the New database item in the New database group.

 Write a file name into the File name field of the New database.

 Click on the Create button.

 This will create the new database, and a new table will open up in Data sheet

view.

Creation of new database on the basis of recommended template:

 Launch the program

 Choose a template in the online templates group on the First steps page

 Write in the desired name into the File name field

29

 If we want to connect to the Windows SharePoint Services website then put a tick

in the box next to “Create and attach database to Windows SharePoint Services

website”.

 Click on the Create button, or the Upload button.

Creation of new database on the basis of Microsoft Office Online template:

 Launch the program

 On the First steps page choose a category in the Template categories

window, and when the templates of the category appear, choose one.

 Write in the desired name into the File name field.

 Click on the Download button.

 Access automatically downloads the template, creates the database based on

the template, stores it in our Documents folder, and opens the database.

b) Menu strip:

The menu strip is the primary replacer of the menus and toolkits, and the main command

interface of Access 2007. Its great advantage is that it collects into one place those tasks

and entrance points, which earlier required menus and toolkits to display.

The menu strip consists of pages, which contain orders. These are the following:

Homepage, Create, Exterior data, Database tools. The orders of the menu strip consider the

currently active objective.

We can also use keyboard shortcuts with the menu strip. The keyboard shortcuts of the

previous version can still be used. On the other hand, the menu accelerator of the previous

versions is replaced by the key access system. This is a small size system, which uses

either a letter or a tag made of a combination of letters, which appear on the menu strip,

and indicate which keyboard shortcut activates the control item below them.

We can execute orders in many ways. The quickest and most direct way of doing so is by

using the keyboard shortcut associated with the order.

30

Order page Common operations

Homepage Choosing another view

 Copy and paste from clipboard

 The properties of the actual font type

 Setting the actual font alignment

 Use of Rich Text formatting for Recording type fields

 Operations related to records (Refreshing, New, Save, Delete,

Summary, Spell checking, Others)

 Sorting and filtering of records

 Search of records

Creation Creation of a new table

 Creation of a new table on the basis of a table template

 Creation of a list on a SharePoint website, and create a table,

which is in relation with the new list in the actual database

 Creation of a new table in Designer view

 Creation of a new form on the basis of an active table or

enquiry

 Creation of a new report or diagram

 Creation of a new report on the basis of an active table or

enquiry

 Creation of a new enquiry, macro, module, or class module

External data Importing and switching of external data

 Exporting of data

 Collecting and refreshing data with e-mail

 Operations with offline SharePoint lists

Database tools Launching Visual Basic Editor or running a macro

 Creation and examining of table relationships

 View/hide object dependency on the property page

 Running and examining performance of the database

documentator

 Transffering data to a Microsoft SQL Server or into an

Access database (only tables)

31

 Running attached table manager

 Handling of Access piggyback files

c) Context-sensitive order pages:

Beside the usual order pages, the Access 2007 program has a new interface item, which is

called context-sensitive order page. It contains orders and services, which are needed in a

particular situation.

d) Collections:

Another novelty of the Office 2007’s user interface is the controller item, known as the

collection. The collection controller item works together with the menu strip due to its

design. It does not display the orders, but the results of the usage. Its essence is to give a

visual overview.

e) Quick access toolkit:

By default, it is the small area next to the menu strip, which makes it possible to get access

to the orders with one click. By default, those orders can be found there, which are the

most frequently used, for example Save, Undo. It can be customised with those orders that

we use the most often.

f) Navigation window:

When we open a database, or create a new one then the names of the database object will

appear on the navigation window. Database objects are: tables, forms, reports, macros, and

modules.

g) Document pages:

In the 2007 version of Access the database objects can be displayed not only in windows,

but also in document pages. The document pages can be turned on and off with the

program’s settings.

h) Status bar:

It appears on the bottom of the window and gives space to the status messages, to the

description of properties, to the process markers, etc. There are two extra functions in the

status bar of Office Access 2007. These are the View and Zooming buttons.

32

With the help of the controller items of the status bar we can quickly switch between the

different views of the active window.

i) Mini window:

In the previous versions of Access, when it came to text formatting, using the menu or

displaying the Formatting toolkit was often required. In 2007 the text can be formatted

more quickly with the help of the mini window. If we select a text section for formatting

the mini window will automatically appear above the text.

3) New safety functions

The Office Access 2007 will simplify the securing and opening of safe databases with a

new security model.

Security novelties in Access 2007:

The data still can be viewed, even if we do not allow the frozen Microsoft Visual Basic for

Applications (or VBA) program codes and components. In Office Access 2003, if we have

changed the security level to a high value then we had to sign the program codes, and had

to mark the data as reliable, for viewing the data of the databases.

Easier usage. If we place a database file in a reliable place, for instance, a folder marked as

safe, or a network place then these can be opened without warning messages and enabling

frozen content. The same happens if we want to open a file that was created in a previous

version. Of course, this happens only if the given file is signed digitally, and marked as

reliable.

The Security Centre. All the security settings of Access can be found in one place. We can

create and modify reliable place, and change the security settings. Furthermore, it is

capable of evaluating the components of the database, and decide whether the given

database can be safely opened, or should it freeze it, and leave it to the user.

 Less warning messages. By default, in 2007 if we open a database from a not safe place

then the only tool we will see is the Message strip. If we consider the given file to be

reliable then we can allow the frozen components, like modified queries, macros, ActiveX

controllers, terms and VBA program codes, with the Message strip.

33

New possibilities for signing and dissemining files. In the previous versions we could do

this with the help of the Visual Basic Editor for some components of the database. In

Access 2007 we can pack up a database then sign and disseminate the pack. If we unpack

the database from a signed pack to a reliable place then the message strip will not appear.

The same happens if we unpack the database to an unreliable place. However, in that case

if we had packed in and signed a database that contained an unreliable or invalid digital

signature, then we have to mark it as reliable on the Message strip on every occasion we open it.

The Office Access 2007 protects the databases in file format with a stronger algorithm, by

using the database password. We can encrypt our data by encrypting our database. By

doing so, we can prevent unwanted users from accessing our data. The range of macro

operations has extended as well, with operations at the freezing of the database. These

macros have an error flagging ability; moreover, we can embed macros into forms, reports

or controller properties, which worked in the previous versions of Access with VBA

program modules.

1. Security structure

The Access is a collection of database objects, like tables, forms, reports, enquiries and

macros, which often require the presence of each other to function. To make sure that the

data are secure, the Access 2007 and the Data Security Centre perform more safety testing

when we open the database.

 The process:

If we open an .accdb or an .accde file, Access will hand over its position to the Data

Security Centre. If the place is secure the database will open with all functions working. If

we open a database from a previous version then the program hands over the position of

the database, and if there is, the details of the digital signature used on the database as well.

 Based on these data, the Data Security Centre analyses the reliability of the database then

gives order to Access to open the database.

If the Data Security Centre freezes a content during the opening of the database, the

Message strip will appear.

 If we open a database from a previous version and the database is not signed, or it is

unreliable then by default, Access will freeze the executable contents.

34

2. The restricted operating mode:

 If the Data Security Centre marks a database as unreliable then Access 2007 will open it in

restricted operating mode.

 The following content is frozen by the program:

 VBA program codes and the references found in them.

 The unsafe operations found in the macros. All operations are classified as “unsafe”

that allow a user to modify the database or get access to resources outside the

database.

 Different types of enquiries:

o Modified enquiries: With these, data can be uploaded, refreshed, or deleted.

o Data Definition Language (DDL) enquiries: these can be used to create and

modify database objects.

o SQL transmitter enquiries

 ActiveX controller items

During the opening of the given database Access may try to load piggyback files. When a

piggyback files has loaded, or the wizard starts, Access will notify the Data Security

Centre, which makes further security decisions, and allows the given object or operation.

In most cases the content can be allowed with the help of the Message strip. The piggyback

files are exceptions to this rule. We can give permission for them at the Data Security

Centre/Piggyback files page, if we tick the “All application piggyback files must be signed

by a reliable publisher” square.

3. Packing, signing and disseminating databases:

Access 2007 makes it easier to sign and disseminate the databases. An .accdb or an .accde

file can be packed in, authenticated by a digital signature, and published for other users.

Creation of signed pack:

 Open the database you want to pack and sign.

 Click on the Microsoft Office button/Publish button/Preparation and signing order.

 Then the “Choose Certificate” dialog box will appear.

 Choose a digital certificate.

35

 Then the “Create signed Microsoft Office Access pack” dialog box will appear.

 In the “List of place” select the place of the signed database pack.

 Give the pack’s name in the “File name” filed then click on the “Create” button.

 Unpack and use of signed pack:

 Click on the Microsoft Office button/Open order.

 Choose Microsoft Office Access signed packs (.accde) in the list of File types.

 To search for the folder containing the .accdc file use the Place list.

 We can choose between the following possibilities:

o We trust in the digital certificate of the installation pack.

o Click on the Open button/”All contents from the publisher are reliable”

item.

o The “Unpack Location of the Database” dialog box will appear.

o Select the location where you want to unpack the database. We can give a

New Name to the unpacked database in the “File Name” field.

4. Encryption of database with password:

The encryption tool of Access 2007 is the combination and development of two former

tools: the encryption and database password. If we encrypt the database with the help of

database password then it will become illegible for other tools.

 Open the database you want to encrypt in Exclusive mode.

 Database tools page/Database tools group/click on the “Encryption with password”

button

 “Set Database Password” dialog box will appear.

 Write the password in the Password field then write it in again into the Testing

field.

Decryption and opening of database:

 Open the encrypted database.

 “Password must be given” dialog box will appear.

 Write in the password into the Database Password field then press the OK button.

Remove password:

 Database Tools page/Database Tools group/click on the Database Decryption

button.

 “Delete Database Password” dialog box will appear.

 Write the password in the Password field then press the OK button.

36

Presentation of Microsoft Access 2007

The presentation of the program can be demonstrated the best and in the easiest way

through a specific exercise. The task is a movie rental system, where the storage of data is

the following:

MEMBERS (M_AZ, name, address, beginning date of membership)

MOVIES (MOV_AZ, title, distributor, type, genre, language, duration, length of making)

RENT (M_AZ, MOV_AZ, date of rental)

GENRE (G_AZ, genre)

TYPE (T_AZ, type)

DETAILES OF THE MOVIE (Director, stars and guest stars)

1. First steps

At first, run Access 2007 that can be done in three ways. You either choose it from Start

menu/ programs/ Microsoft office, or a double click on the icon on the desk. It is also

possible to run it from our existing database, by finding extensions .accdb or.mdb.

After opening, the first window is “Getting started with Microsoft Office”. Here we may

create an empty database or a new database, which is suggested to follow either the online

model or the provided pattern. We can also open previous database.

37

Illustration #1 – “Getting started with Microsoft Office “ sheet

To create a new database, at first click on the ‘Blank database’ icon on the upper left

corner of the ‘getting started’ sheet, then state the name of the database in the empty place

that appears on the right side of the screen and labeled as Filename. Finally press the create

button. (In our case the name of the Database is going to be ‘Catalogue’).

Views of the Object

We may open the chosen object in to different views. With ‘design view’ we can check

and modify the structure of the documents and the features of the elements. By clicking on

the Open command the entries of the document become revealed. In this case we can

operate with the records.

Type of Object Views

Table Design view, PivotTable view, PivotChart view, Datasheet

view

38

Query Design view, PivotTable view, PivotChart view, Datasheet

view, SQL view

Form Design view, PivotTable view, PivotChart view, Datasheet

view, Formview

Report Design view, PivotTable view, PivotChart view, Datasheet

view

2. Tables

The most important parts of the database are the tables as the data is stored in them. The

construction of the tables follows the well-known pattern, the columns represents the

categories, or fields, while the rows gives place to the units or records.

There are several ways to create a new table. If our database had come from a pattern,

some tables had already been created. The creation can take place in design view, by using

a pattern or adding the documents manually. The icons that are necessary for creating a

new table can be found in the row ‘Create’ under the field ‘Table’.

 Using the design view is a manual way of creation. It is a rather long and complicated

method. To create, we use the table design icon, under the row ‘Create’ and then define the

table.

The fields can be listed in the upper left part of the given window in design view under the

label: ‘field name’.

We can define the field name by clicking in the empty place of the ‘Field name’ row and

write the appropriate name. After that we can set the format from the other row’s list which

is called ‘data type’. The third row may be used for short notes or descriptions. At the

39

bottom of the window under the label ‘Field Properties’ we define the remaining features

of the field:

- Filed size: In case of ‘Number’ we determine the type of it and in case of text we can

specify the number of characters that can be written in the given field.

- Decimal places: by ‘number’ formats it provides the number of decimals.

- Format: In case of number it applies for the appearance i.e. general, currency, percent

etc.

- Caption: The label for the field when used on a form in datasheet view.

- Default value: A value that is automatically entered in a field for new records.

- Validation rule: An expression that limits the values that can be entered in a field.

- Validation text: The error message that appears when you enter a value prohibited by

the validation rule.

- Required: we can set whether the data entry is required or not in this field.

- Allow zero length: whether zero-length strings in the field are allowed

Indexed: here we have three possibilities. If we choose ’no’, then the field will not be

indexed. If we choose ’yes’ (duplicates OK), we will prohibit duplicate values in the field.

If we choose ’yes’ (no duplicates), then the field will be indexed, and duplicate values are

allowed that enables the possibility of unambiguous mapping within the units.

-

If we are done with filling in the fields close the table. The program offers us to save it,

then click yes and label the table. Create the tables of the database. During this process we

40

have to set the primary key. We may do it by placing the mouse on the appropriate field

and choose the Primary key icon by clicking with the right button.

3. Creating a table

We can also use patterns to create tables. The only problem is that in most cases we may

not get the table which suits our requirements the best therefore it might be necessary to

modify some parts of it in design view later.

41

 4. Table templates

The new-made tables can be formatted and the appearance can be modified. Choose the

table from the navigation window and open it. From the ‘home’ icon, we can set the

character type, size, color and also the height and width of the field.

42

6. set row height and column width 5. Font and formatting

The easiest way of data inputs into the database is direct typing. In order to do this we have

to display the chosen table. A simple way of moving between the fields and records is to

click on the chosen unit of the table or we use the arrows. It is also possible to change the

structure of the tables, if we recognize subsequently that any field had been created wrong.

However, the modifications must be handled carefully as they may affect the already

stored data. Logically deleting a field means the delete of its contents. Changing the

43

formats can also result in the loss of data. We can transform numbers to text, but it is not

true the other way around. For modification choose the wanted table of the database then

chose the ‘design view’ option.

a, Handling records

If we are operating such functions that may affect more records at the same time, hence the

records have to be marked. We can do it by clicking on the square on the left side of the

record. In case of marking more than one record, place the mouse to the first record then

hold the button and move the cursor until the last one. If we want to modify the content of

a specific record just move the mouse to the wanted cell and retype the data. When

deleting a record, at first mark the record and press the ‘del’ button. There are further

possibilities in handling the record, by clicking with right mouse button on the square

before the record we can open the local menu and learn about additional functions.

b, Tasks with the fields

 If we would like to copy a field, click on the square on the left side of the field in design

view in order to mark the row of the field. Then choose ‘copy’ from local menu, click at

the new place then choose ‘paste’ from the menu and finally rename the given field. On the

other hand, if we just want to move it, select the ‘cut’ option from local menu and insert

the content to the right place.

 It is quite easy to insert a new field in design view. If we would need an extra field at the

end, just fill in the empty field after the last filled one. In case we would like one in the

middle, move the mouse before the field where we would like to insert the new one, then

select the ‘insert rows’ option from local menu. Field can also be added in datasheet view.

In this case click on the chosen place in the row of the fieldname with right mouse button,

then choose the ‘insert column’ option from the local menu.

 You may also use Design view to erase a field. Place the mouse on the row to delete and

choose the Delete row option from local menu after pressing right mouse button. A field

44

can also be deleted by clicking on the square on the left side of it and pressing delete

button. In datasheet view the process is the following we click on the chosen field and

open the local menu by pressing the right mouse, then choose the delete columns option.

We can choose the field name in both datasheet view and design view. In case of the first

one, click on the name and rewrite it. In the second case click on the name by right button

and choose the rename option from local menu. Changing the data type of the field is only

available in design view. Click on that specific unit scroll down the list in the data type

column and choose a new one. In case of a change in data type other changes may become

necessary.

Importing external data

Using importation we can copy data from another database.

The range of importable data is wide as it can be seen above. In some cases it is done

automatically (access, dbase, paradox), while in other cases some few additional steps are

required to import the data successfully.

Indexes, defining keys

45

After filling the fields and defining their features the next step is to set the indexes and the

primary key of the table. Using indexes makes the arrangement and the search easier, but it

slows down the data input and modification. Using indexes requires foresight. An index

can be made on the basis of one or two fields. The most common method is to connect one

field to one index. the process of indexing may be done in design view. After choosing the

field we can set the index by scrolling down the list.

III. Relationships

There are three different parts of relationships. These are the one – one type, the one –

many type and the many – many type. In case of one – one connections exactly one unit’s

belongs to each instance of another unit. For example: marital status. With one - many

relationships to each instance of one specific unit may belong more than one instances of

another. The most general type is the many – many relationship where both units can be

linked to more instances of each other’s.

If we would like to determine which records should be included in the query we have to

define the features of join. Access supports three types of it:

The first option is when only those lines are included where the joint fields are the same in

all tables.

The second possibility is when all the records of the original table are implied but in case

of joint tables, only those count where the joint fields are identical.

46

The third way is the reverse of the previous one that is only those record are included from

the original table where the joint fields are the same, but every record is included from

joint tables.

To create relationships we must choose the relationships icon of Microsoft Access from

Database Tools menu. If we have not established any relationship yet add the table to the

panels. To do this we have to choose those tables that possess relationship and press add

button.

7. illustration

We may add tables to our relationships if we choose the table design option from local

menu. After seeing all the tables on the relationship panel we can begin to build up our

relationships. Before that the open tables have to be closed. For new relationship draw the

related field of the table to refer to the related table of the referred field, therefore a

window appears where we can set the properties of the relationship.

47

Illustration #8.

When setting the properties the following ones have to be included:

- Preserving the integrity of the query: the related data could not be deleted

accidentally and independently from each other.

- Cascading refresh of the related fields: On the primary table in case of a change in

the primary key the Access automatically refresh the primary key to the new values on

all related tables.

- Cascade delete of related fields: On the primary table in case of the delete of records

the related records are also deleted on the related fields.

The properties of a relationship can be changed subsequently. In this case press twice on

the related line and modify the properties on the panel. Obviously we may also delete our

relationships by choosing the ‘del’ option on the related line. The local menu can also be

used to modify or delete relationships.

If our relationships are set in case of opening a table every record gets an extra + before it.

here we can develop the data belonging to the given record but localized on another table.

48

#9. Relationships.

IV. Operations in the database

We can execute easy operations in our database like searching, replacing, filtering,

screening, and refreshing.

a, Find

It can be used to find a record in a field. First place the mouse on top of the field in which

we would like to search then choose the Find icon from the main page.

49

#10. Find

Type the wanted data to the Find What field then set the appropriate options that can be the

following: Look in, Match, Search. By pressing the Find Next button the Access looks for

the first record that contains the wanted word.

b, Replace

With this option we may replace every frequently appeared, identical record with another

data. Again place the mouse onto the field where we would like to replace and choose the

replace icon.

#11 replace

50

Type the data to replace and also the new data and set the different options. By clicking on

the Find Next button the program search for the next record that contains the preset

conditions. Then we can choose the replace option to replace the specific one but if we

choose the replace all button, then all the records containing the given data are replaced.

c, Sorting

Sorting can be done in two different ways, one option is to choose Sorter from home page

either the ‘sort smallest to largest’ or ‘sort largest to smallest’. Another possibility is to

click on the little triangle next to the name of the field and from the list we choose the

appropriate filter.

#12 Filter

d, Filter

We have the possibility to see only those records that fulfills the criteria. We can do it from

the Sort and Filter option also from the main page. We may also start screening by using

the little arrow next to the field name. Then we can choose one or more of the database,

give further conditions or even delete the filtering process. By using specific filters for

numbers, texts we can set unique conditions, so essentially we can create any kinds of

assumptions. There is also a way to screen according to Form, hereby a screen-form is

51

opened where all screening information can be applied. Turning on and off screening mode

can be done from the ‘sort and filter’ option of main page.

e, refresh

After certain operations it may happen that not the supposed data appears on the table.

Then we need a refresh which can be done by clicking on the ‘refresh all’ icon.

Forms

a. Creating forms automatically

This is the most practical way of creating forms. It can be done by using the Form icon on

the main page.

52

#13 Creating forms

If the given form is appropriate save it. We may create a similar form with the ‘split form’

icon but then the table also appears at the bottom of the form.

53

#14 Split form

We can create Forms containing even more units, pivot tables, pivot charts, empty forms or

by scrolling down the More Forms option, also datasheets.

b) Creating form by using wizard

We can do this choosing the Create tab, scrolling the More forms button and clicking on

the Form Wizard button. In the appearing window we choose the data source we want to

use as the base for our form and add the fields. We are using the Members table here.

Click on the Next button to set the layout, which can be Columnar, Tabular, Datasheet and

Justified. Click on Next again.

54

In the next window we can choose the style of the form, then we can give it a name and

choose whether we want to open the form to view, to enter information, or to modify the

form’s design.

55

c) Creating form in Design View

We can create forms from the beginning, building it up ourselves. On the Create tab

choose the Form Design button then add the fields to the form by clicking on the Existing

Field button in the right hand corner and dragging the field onto the list. Then set their

properties and parameters, save and close. In this view many elements for adding and

viewing can be used. These are the following:

1. Logo: Insert a picture into your form or report to be used as a logo.

2. Title: Display a title in a form.

3. Page numbers

4. Date and time

5. Text Box: Add general data

6. Label

7. Button: Form Control

8. Combo Box:

9. Option Group

10. Toggle Button

56

11. Insert Chart

12. Insert or Remove Page Break

13. List Box

14. Rectangle

15. Check Box: Choose yes or no

16. Tab Control: Create subforms with tabs

17. Unbound Object Frame

18. Insert Hyperlink

19. Subform

20. Bound Object Frame:

21. Option Button:

22. Insert Page

23. Insert picture

24. Attachment

We can modify our existing forms by changing to Design View in the opened form. In

Design View we can see the ruler, the gridlines, and the icons of the Form Elements.

d) Form styles

Access gives us the opportunity to design the forms automatically using styles. We can do

this on the Arrange Tab choosing the AutoFormat button.

e) Changing the properties of an element

We can do it by right-clicking on the element we want to modify then choosing the

Properties from the appearing list or by switching on the Property Sheet icon. The

appearing Property Sheet panel offers many setup opportunities that can be divided into

57

four groups. These groups can be defined by choosing the appropriate tabs. The All tab

shows all properties at the same time. If we change the Visible field to 'No' on the Format

tab then the given element will not appear in normal form view only in Design View. The

Allow fields on the Data tab do not allow data entry for the element if ’No’ is chosen.

f) Creating a diagram

We can create special forms that view diagrams based on data from the database. This can

be done by clicking on the Diagram button on the Design tab. In the first step the table on

which the diagram will be based on has to be chosen. Then we need to choose the fields

and the type of the diagram. Finally, the field names and the title of the diagram have to be

given.

2. Queries

With queries we can link tables, filter records and list our data. With the help of queries we

can filter our data, even if they are in different linked tables. This can be done in a graphic

way or by using SQL language. The result is given in tables which can work as bases for

reports and forms. In queries we can use mathematical procedures, functions or we can

give various conditions.

Queries in Access 2007 can be created in two views and visualized in a different one.

Design View: the tables used by the query, their fields and relationships and the QBE grid

appears

SQL View: we can view the query’s definition in SQL language

Datasheet View: we can view and modify the resulting data of the query

a) Types of Queries

58

 Select Query: this is the most common query used as a base for the rest of the

queries. This query creates a select query from the fields you pick, sorts and filters

data, composes summaries and groups.

 Crosstab Query: displays data in a compact, spreadsheet-like format. It creates

separate columns from repeated values of a field. If a chosen column contains more

than one identical element then the identical elements form separate columns by

using the repeated values as headers of the columns and the corresponding data will

form rows. By the meeting points of the columns and rows will be those values that

come from a third field. The disadvantage of this query is that the data cannot be

modified.

 Make-Table Query: Executes a predetermined procedure on the data. The new table

contains the resulting data of the query.

 Update Query: We use it to modify records when we only want to modify a certain

group of records.

 Append Query: We can use it to add records to existing tables. We are able to

archive and extend existing tables with this query.

 Delete Query: This query enables us to delete complete records using given

parameters.

 SQL Query: Every previously mentioned query is a SQL query but there are special

cases when unique queries written in SQL language are needed.

 Join Query: It displays data queried from several tables jointly.

 Aggregate Query: We can execute commands for ODBC databases in order to

access these directly in SQL language. The ODBC is a standard database accessing

method that makes it possible to access any data from any database irrespectively

of which system handles them.

 Parameter Query: We can create modify or delete tables.

b) Defining conditions

If we do not want to see every item as the result of a query, but only certain parts, we have

to use conditions. These can be operators and relationships.

59

Comparison Operators:

We execute comparison with the help of these operators. We can do these with relation

symbols: =, <, >, <=, >=. These can be used with numbers and texts.

Logical Operators:

These can be used for True/False type data. Like the AND, OR and NOT.

AND: „expression1 AND expression2”, it is true if both conditions are true.

OR: „expression1 OR expression2”, it is true if any condition is true.

NOT: „NOT expression, it is true if the given condition is false in the expression.

Arithmetic Operators:

To execute common mathematical operations.

Special Operators:

LIKE: this operator can be used as a filter.

BETWEEN … AND: determines whether a numeric or date value is found within a range.

IN: substitutes many OR operators. IN (expression 1, expression2, … expressionn)

ISNULL: selects the records where the given field is empty.

ISNOTNULL: selects the records where the given field is not empty.

c) Creating Queries

We can create Queries in Design View but it easier to use the Query Wizard. We can find

it on the Create Tab by clicking on the Query Wizard. The first step when creating a query

is to determine the type of the Query.

60

The next step is to choose the tables and their fields.

The last step is to define the type and the name of the Query.

61

d) Modifying Queries:

If the complete query is not like the one we desired to create it is possible to modify it. We

can do this by changing the view of the running query to Design View or by selecting the

query and clicking the Design button on the Home tab. In this case the tables forming the

query appear in the upper half and below appears the QBE grid which can be designed.

e) Adding or deleting tables:

If we want to add a table to our query go to the Create tab and choose the Display Table

icon and click on the desired table we want to add to the query.

62

It is easy to delete a table, just click on the table and hit Del.

f) Adding and deleting fields:

We can add a field by choosing the field of the desired table and dragging it into the

appropriate place of the QBE grid. Another option is to click on an empty item’s Field or

Table item and choose the desired field or table from the drop-down menu.

To delete a field click on the check box above the QBE grid and hit Del.

SQL Query

A SQL (Structured Query Language) Query is a query which is created using SQL

commands. As a result of the spread of database management software a standard language

needed to be created which enables to execute the different operations in the different

programs.

Using SQL

To execute more complex queries sometimes it is essential to write a SQL command into

the Condition row of the QBE grid. The SQL does not contain control commands therefore

it is not suitable for programming.

Every query can be viewed in SQL View. Execute the SQL View command in the View

Menu.

63

If we want to create a query using SQL command without using the QBE grid, we need to

choose the New Query in Design View on the Create tab without adding tables. Then

change into SQL View. A window appears where we can edit the SQL commands.

The SQL commands always start with a keyword and are continued with parameters and

finished with clauses. Add a semicolon at the end of the commands.

So, the command is introduced by the Select which can be followed by an optional

Predicate.

Predicates:

 ALL: as a result every record that meets the conditions appears.

 DISTINCT: only one appears in case of identical rows.

 DISTINCTROW: a record which is identical to another one does not appear again.

 TOP: the number of records that appears is identical to the number which we write

after TOP. It does not differentiate between two equal values. With the PERCENT

option we can display percentage.

After the predicate the tables and fields displayed in the query are listed. All fields marked

with an asterisk * appears in the query. With Table name* every query of the particular

table appears in the query. If we want a name for our column other than the name of the

field we need to add the name after AS.

After listing the field names we list the names of the used tables in a new row introduced

by the FROM keyword. Separate these with commas. If the table we intend to use is in a

different database we have to supply its name and access path within quotation marks.

64

Clauses

 WHERE: We list the criteria after the keyword. e.g. WHERE Irányár>10000

 ORDER BY: Specifies how to sort the resuls. In descending order provide the

DESC keyword after the field name. e.g. ORDER BY AVG(Irányár) DESC

 HAVING: we use this clause when we make conditions on records grouped in a

query

Most important functions:

 SUM: Returns the sum of a set of values contained in a specified field on a query.

 MIN, MAX: Return the minimum or maximum of a set of values contained in a

specified field on a query.

 AVG: Calculates the arithmetic mean of a set of values contained in a specified

field on a query.

 COUNT: Calculates the number of records returned by a query.

In the case of a multi table query we have to define through which fields the tables are

connected. The connecting fields are linked with an equal sign, for more relationships we

use the AND operator.

Statements:

 UPDATE: we modify the values of the existing fields of a table. We specify the

name of the table we want to modify after the UPDATE statement. This is followed

by the SET keyword, then write the formula into the next row which is the basis of

the modification

 SELECT INTO: we can create a make-table query with it. Here we have to specify

the fields which we want to copy into the new table. This has to be followed by the

INTO statement and the name of the new table.

 DELETE: we use it to create a delete query. After the statement the name of the

table that we want to be deleted preceded by FROM has to be given. WHERE is

followed by the criteria of the records to be deleted.

65

 INSERT INTO: we can add a new record into an existing table. After INSERT

INTO the name of the table to which we want to add records is given. Then

SELECT followed by the name of the field, after FROM comes the connection of

the tables and after WHERE the conditions.

I finish presenting the SQL language here. To get to know it better I suggest that you view

in SQL view the queries either on the QBE grid or created by the wizard as many times as

possible. After studying these try to understand what you have seen.

Types of SQL queries

Join Query: It collects the fields of several tables or queries into one field. After creating

the query go to the Query menu from there to the SQL-specific submenu and click on Join.

Aggregate query: it sends commands that the server accepts directly to ODBC databases.

We can query records and modify data for instance. After creating the query go to the

Query menu from there to the SQL-specific submenu and click on Aggregate. The ODBC

is a database whose data can be attached, exported and imported with the relating driver.

Parameter query: it is for creating or modifying objects like the MS Access and MS SQL

Server tables. After creating the query go to the Query menu from there to the SQL-

specific submenu and click on Parameter.

Subquery: this type of query consists of a SQL SELECT statement within a select or

update query. So, it is embedded into a SELECT, SELECT…INTO, INSERT…INTO,

DELETE or UPDATE statement. These statements are written into the Field row of the

gridlines of the query. If we want to add a criterion to a field we write it into the Criteria

row. We use the sub-query to check whether certain elements of sub-query exist or not.

Words we use: EXISTS, NOT EXISTS, ANY, IN, ALL.

Its syntax: comparison[ANY|ALL|SOME] (SQL statement)

66

 expression[NOT] IN (SQL statement)

 [NOT] EXISTS (SQL statement)

Parts of a sub-query:

Item Explanation

Comparison It compares the expression with the result of

the sub-query.

Expression We search the set of the result of the sub-

query with it.

SQL statement A SELECT statement that follows the

format and rules of other SELECT

statements.

3. Reports

The bases of the reports are the queries. We can create Reports in three ways: using the

Report tool, by using the Report Wizard and by using the Blank Report tool.

a) Creating a report by the Report tool

Choose the table or query on which you want to base the report then on the Create tab, in

the Reports group, click Report. In the appearing design view we only have to do the

formatting and modifying.

b) Creating a report using the Report Wizard

On the Create tab, in the Reports group, click Report Wizard. In the first step we have

to add the table or query on which we want to base the report or the fields we want to

display in the report. The second step is to define how we want the data to be

displayed. On the following panel we can set the group levels then the order of

appearance, the orientation, the layout, and the style. Finally, on the last panel we can

give a name to our report.

67

Figure 24: Report Generation 2nd step

Figure 25: Report Generation 3rd step

68

 Figure 26: Report Generation 4th step

Figure 27: Report Generation 5th step

69

 Figure 28: Report Generation 6th step

a) Report generation with unique designing:

It is easier to generate a report with a wizard or automatically, however, we

have the possibility to generate a report using unique designing. To do this,

click on the Blank Report icon on the Creation strip then drag the fields you

want to use, into the blank report from the field list on the right side.

b) Modification of a report:

If we want to modify our report then select the report you want to modify

then switch to the Editor view.

The easiest way of adding a new field is switching in the Add Fields button

then dragging the field you want to use from the list on the right to the

panel.

We can create special reports, which will display diagrams on the basis of

the data in the database. To do this, click on the Diagram button on the

Designing strip.

70

We can move the items of the report as easily as dragging the edge. We can

modify the size of the items by dragging the squares on their edges and

corners. We can also change the properties of the items by bringing up the

local menu and selecting the option we want to use.

If we want to give a different frame to the report elements then we can do so

by using the Special Effects button on the Design strip. Here is where we

can change the line thickness, line type and line colour of the items. There is

a possibility to automatically format the reports on the basis of styles. We

can do this with the Automatic Formatting icon of the Layout strip.

We can also use unique fonts and highlighting. We find this in the Font field

of the Designing strip.

We can use different formatting for those records that meet certain

requirements by clicking on the Conditional icon in the Designing strip.

a) Macros:

A macro is basically a pre-defined sequence of events, which allow more

complex and multiple staged sequences of activities to be done with a single

click or with the press of a button. The editing of macros under Access is

significantly different from the macro recording technique of Word or

Excel.

a) Creating a new macro:

We can create macros by clicking on the Macro button on the Creation strip.

During the definition the macro we will see three columns on the panel. The

first column is the operation, the second its argument, and the third is a note

connected to it. What is important for us is the area in the lower part of the

window, which contains settings for the property. This is where we can

determinate the environmental parameters of each operation. We can also

create conditional structures for the macros by clicking on the Criteria icon

on the Designing strip.

b) Modification of macros:

71

Open the macro in the Designing view. All rows can be modified in the

macro code, if we select a specific row then select the new order or

parameter from the pull-down menu. We can also insert a new row, if we

select the place where we want to do this, and click on the Insert Rows icon

on the Designing strip. To delete a row, click on the empty square at the

beginning of a row then press the Del button, or choose the Delete Row icon

from the Designing strip.

c) Running a macro:

To run a macro, click on its name twice in the navigation window. This

could happen automatically, since if we switch a macro to an event then

with the occurrence of the event, the macro will start.

d) Switching a macro to an event:

Click the right mouse button on the suitable item in the designing view then

select the Properties option from the local menu. Click on the white field on

the Event page’s suitable item then choose the written macro from the pull-

down menu, or if it is not ready yet, click on the three dots. This will start

the macro editing.

PRINT OPTIONS

 We can also put our data stored in the database on paper. All objects

can printed in the same way. This can be a simple table or a report with

summating operations.

 We can print the objects in the Designing, Form or Data Sheet view.

We can run printing by clicking on the Printing icon in the toolkit, or

launch it from File menu by clicking on the Printing order. We can bring

forth the print options window with the Ctrl+P letter combination.

SETTING PRINT PARAMETERS

There are a few settings that need to be done before starting printing. For

example: number of copies, quality, orientation, margins, layout.

After opening the object give the Page Setup order from the File menu.

72

On the Margins panel the margins. Only choose the Print File option if you

want to omit the gridlines, graphics, etc. during the printing of a form or a

report.

On the Side page the orientation, paper size and the attributes of the printer

can be given. There is a possibility to select a different printer, which is not

the default one. Choose the Use Specific Printer Radio button.

73

On the Columns page it only appears when it comes to forms, reports and macros. We can

modify the number of columns, their sizes, the layout and the printing sequence.

PRINTER LAYOUT

Before starting printing it is a good idea to check the settings. We can do this with the

Printer Layout order in File menu. This operating mode has its own toolkit. This is where

zooming, shrinking, sorting, etc. takes place.

74

PRINTING

We can display the Print panel with the Print order from the File menu, or with the Ctrl+P

letter combination. By clicking on the Properties button we can modify the printing

setting based on the printer’s type. By pressing the Settings button a panel will appear in

accordance with the page setup.

75

MSSQL Server

Commands

You can define a database by using SQL Server Enterprise Manager or the CREATE

DATABASE statement in SQL Query Analyzer. The process of defining a database also

creates a transaction log for that database.

Information about each database in SQL Server is stored in the sysdatabases table in the

master database. Therefore, you must use the master database to define a database when

you use Transact-SQL.

Defining a database is a process of specifying the name of the database and designating the

size and location of the database files. When the new database is created, it is a duplicate

of the model database. Any options or settings in the model database are copied into the

new database.

When creating a database, it is important to understand how SQL Server stores data so that

you can calculate and specify the amount of disk space to allocate for the database.

Consider the following facts and guidelines about data storage:

All databases have a primary data file, identified by the .mdf file name extension, and one

or more transaction log files, identified by the .ldf file name extension. A database also

may have secondary data files, which are identified by the .ndf file name extension. These

76

physical files have both operating system file names and logical file names that you can

use in Transact-SQL statements.

A database creation of the syntax:

CREATE DATABASE database_name

[ON

 { [PRIMARY] (NAME = logical_file_name,

 FILENAME = 'os_file_name'

 [, SIZE = size]

 [, MAXSIZE = {max_sizeUNLIMITED}]

 [, FILEGROWTH = growth_increment])

 } [,...n]

]

[LOG ON

 { (NAME = logical_file_name,

 FILENAME = 'os_file_name'

 [, SIZE = size]

 [, MAXSIZE = {max_sizeUNLIMITED}]

 [, FILEGROWTH = growth_increment])

 } [,...n]

]

[COLLATE collation_name]

Here's an example:

The name of the database: Sample, 10MB datafile and 3 MB log file.

CREATE DATABASE Sample

ON

 PRIMARY (NAME=SampleData,

 FILENAME='c:\Program Files\

 Microsoft SQL Server\MSSQL\Data\Sample.mdf',

 SIZE=10MB,

 MAXSIZE=15MB,

 FILEGROWTH=20%)

LOG ON

 (NAME=SampleLog,

 FILENAME='c:\Program Files\

 Microsoft SQL Server\MSSQL\Data\Sample.ldf',

 SIZE=3MB,

 MAXSIZE=5MB,

 FILEGROWTH=1MB)

COLLATE SQL_Latin1_General_Cp1_CI_AS

When you create a database, you can set the following parameters:

PRIMARY

77

This parameter specifies the files in the primary filegroup. The primary filegroup contains

all of the database system tables. It also contains all objects not assigned to user filegroups.

Every database has one primary data file.

FILENAME

This parameter specifies the operating system file name and path for the file. The path in

the os_file_name must specify a folder on the server on which SQL Server is installed.

SIZE

This parameter specifies the size of the data or log file. You can specify sizes in megabytes

(MB)—the default value—or kilobytes (KB). The minimum size is 512 KB for both the

data and log file. The size specified for the primary data file must be at least as large as the

primary file of the model database. When adding a data file or log file, the default value is

1 MB.

MAXSIZE

This parameter specifies the maximum size to which the file can grow. You can specify

sizes in megabytes—the default value—or kilobytes. If you do not specify a size, the file

grows until the disk is full.

FILEGROWTH

This parameter specifies the growth increment of the file. The FILEGROWTH setting for a

file cannot exceed the MAXSIZE setting. A value of 0 indicates no growth. The value can

be specified in megabytes—the default—in kilobytes, or as a percentage (%). The default

value if FILEGROWTH is not specified is 10 percent, and the minimum value is 64 KB

(one extent). The specified size is rounded to the nearest 64 KB.

Creating Filegroups

If your hardware setup includes multiple disk drives, you can locate specific objects and

files on individual disks, grouping your database files into filegroups. Filegroups are

named collections of files. SQL Server includes one filegroup as a default. You can create

additional filegroups by using either the CREATE DATABASE or ALTER DATABASE

statement.

78

With filegroups, you can locate specific objects on a specific file. In the illustration, the

OrdHist1.ndf and OrdHist2.ndf files are placed on separate disk to separate files that are

heavily queried from those that are heavily modified and to reduce disk drive contention.

System administrators also can back up and restore individual files or filegroups instead of

backing up or restoring an entire database. Backing up files or filegroups is necessary on

large databases to have an effective backup and restore strategy.

The following example creates a user-defined filegroup in the Northwind database and

adds a secondary data file to the user-defined filegroup.

ALTER DATABASE Northwind

ADD FILEGROUP OrderHistoryGroup

GO

ALTER DATABASE Northwind

ADD FILE

 (NAME = 'OrdHistYear1',

 FILENAME = 'c:\ Program Files\

 Microsoft SQL Server\MSSQL\Data\OrdHist1.ndf,

 SIZE = 5MB),

TO FILEGROUP OrderHistoryGroup

Managing Databases

79

When data files grow, or when data modification activity increases, you may need to

expand the size of the data or log files. You can manage database growth by using

SQL Server Enterprise Manager or the ALTER DATABASE statement. You must be in

the master database to use the ALTER DATABASE statement.

You can control the size of the database by:

 Configuring the database and log files to grow automatically.

 Manually increasing or decreasing the current or maximum size of existing

database and log files.

 Manually adding secondary database and log files.

You can create secondary database files to expand the size of a database. Use secondary

database files to place data files on separate physical disks when you do not use the disk-

striping capabilities of RAID systems.

ALTER DATABASE database

{ ADD FILE < filespec > [,...n] [TO FILEGROUP filegroup_name]

| ADD LOG FILE < filespec > [,...n]

| REMOVE FILE logical_file_name [WITH DELETE]

| ADD FILEGROUP filegroup_name

| REMOVE FILEGROUP filegroup_name

| MODIFY FILE < filespec >

| MODIFY NAME = new_dbname

| MODIFY FILEGROUP filegroup_name

 {filegroup_property | NAME = new_filegroup_name }

| SET < optionspec > [,...n] [WITH < termination >]

| COLLATE < collation_name >

}

The following example increases the current log size and adds a secondary data file to the

Sample database.

ALTER DATABASE Sample

 MODIFY FILE (NAME = 'SampleLog',

 SIZE = 15MB)

GO

ALTER DATABASE Sample

ADD FILE

(NAME = 'SampleData2' ,

FILENAME='c:\Program Files\

 Microsoft SQL Server\MSSQL\Data\Sample2.ndf',

SIZE=15MB ,

MAXSIZE=20MB)

80

Expanding a Transaction Log

When a database grows, or when data modification activity increases, you may need to

expand the transaction log.

If your transaction log runs out of space, SQL Server cannot record transactions and does

not allow changes to your database.

You can monitor the transaction log with SQL Server Enterprise Manager, the DBCC

SQLPERF (LOGSPACE) statement, or Microsoft Windows® 2000 System Monitor.

You can monitor the transaction logs of individual databases by using

SQL Server:Database object counters in System Monitor. These counters include ones

listed in the following table.

Shrinking a Database or File

When too much space is allocated, or when space requirements decrease, you can shrink an

entire database or specific data files in a database.

You can shrink an entire database by using SQL Server Enterprise Manager or by

executing the Database Consistency Checker (DBCC) statement SHRINKDATABASE.

This shrinks the size of all data files in the database.

SQL Server shrinks log files by using a deferred shrink operation, and does so as if all of

the log files existed in one contiguous log pool. Log files are reset when the log is

truncated; SQL Server attempts to shrink the truncated log files to as close to the targeted

size as possible.

DBCC SHRINKDATABASE (database_name [, target_percent] [, {NOTRUNCATE |

TRUNCATEONLY}])

This example shrinks the size of the SampleData so that the file will have free space of 30

percent.

DBCC SHRINKDATABASE (SampleData, 30)

You can shrink a data file in a database by using SQL Server Enterprise Manager or by

executing the DBCC statement SHRINKFILE.

81

DBCC SHRINKFILE ({file_name | file_id} [, target_size] [,

{ EMPTYFILE | NOTRUNCATE | TRUNCATEONLY}])

This example shrinks the size of the sample data file to 10 MB.

DBCC SHRINKFILE (Sample, 10)

Autoshrink is not enabled by default. By setting the autoshrink database option to true, you

can set a database option to recover unused space automatically. You can also change this

option with SQL Server Enterprise Manager.

Dropping Databases

You can drop a database when you no longer need it. Dropping a database deletes the

database and the disk files that the database uses.

You can drop databases by using SQL Server Enterprise Manager or by executing the

DROP DATABASE statement.

DROP DATABASE database_name [,…n]

This example drops multiple databases by using one statement.

DROP DATABASE Northwind, pubs

When you drop a database, consider the following facts and guidelines:

With SQL Server Enterprise Manager, you can drop only one database at a time. With

Transact-SQL, you can drop several databases at once. After you drop a database, every

login ID that used that particular database as its default database will not have a default

database.

Database management operations

Before you can create a table, you must define the data types for the table. Data types

specify the type of information (characters, numbers, or dates) that a column can hold, as

well as how the data is stored. Microsoft® SQL Server™ 2000 supplies various system

data types. SQL Server also allows user-defined data types that are based on system data

types.

82

Common

data types

SQL Server

system-supplied

data types

ANSI synonym

Number of bytes

Integer int

bigint

smallint, tinyint

integer

4

8

2, 1

Exact

numeric

decimal[(p[, s])]

numeric[(p[, s])]

dec

2–17

Approximate

numeric

float[(n)]

real

double precision,

float[(n)] for n=8-15

float[(n)] for n=1-7

8

4

Monetary money,

smallmoney

 8, 4

Date and time Datetime,

smalldatetime

 8

4

Character char[(n)]

varchar[(n)]

text

character[(n)]

char VARYING[(n)]

character

VARYING[(n)]

0–8000

0–2 GB

Unicode

character

nchar[(n)]

nvarchar[(n)]

ntext

 0–8000

(4000 karakter)

0–2 GB

Binary binary[(n)]

varbinary[(n)]

binary

VARYING[(n)]

0–8000

Image image 0–2 GB

Global

identifier

uniqueidentifier 16

Special bit, cursor,

uniqueidentifier

timestamp

sysname

table

sql_variant

rowversion

1, 0–8

8

256

0–8016

Creating tables

After you define all of the data types for your table, you can create tables, add and drop

columns, and generate column values.

When you create a table, you must specify the table name, column names, and column data

types. Column names must be unique to a specific table, but you can use the same column

83

name in different tables within the same database. You must specify a data type for each

column.

Syntax:

CREATE TABLE table_name

 column_name data type [COLLATE<collation_name>]

 [NULL | NOT NULL]

 | column_name AS computed_column_expression

 [,….n]

The following example creates the dbo.CategoriesNew table, specifying the columns of the

table, a data type for each column, and whether that column allows null values.

CREATE TABLE dbo.CategoriesNew

(CategoryID int IDENTITY (1,

1)

NOT NULL,

CategoryName nvarchar(15) NOT NULL,

Description ntext NULL,

Picture image NULL)

Dropping a table removes the table definition and all data, as well as the permission

specifications for that table.

Before you can drop a table, you should remove any dependencies between the table and

other objects. To view existing dependencies, execute the sp_depends system stored

procedure.

Syntax:

DROP TABLE table_name [,…n]

Adding and Dropping a Column

Adding and dropping columns are two ways to modify tables.

84

Syntax:

ALTER TABLE table

 {| [ALTER COLUMN column_name]

 |{ ADD

 { <column_definition> ::=

 column_name data_type

 { [NULL | NOT NULL]

 | DROP column column_name} [,…n]

The type of information that you specify when you add a column is similar to that which

you supply when you create a table.

This example adds a column that allows null values.

ALTER TABLE CategoriesNew

 ADD Commission money null

Dropped columns are unrecoverable. Therefore, be certain that you want to remove a

column before doing so.

This example drops a column from a table.

ALTER TABLE CategoriesNew

 DROP COLUMN Sales_date

All indexes and constraints that are based on a column must be removed before you drop

the column.

Generating Column Values

85

Several features allow you to generate column values: the Identity property, the NEWID

function, and the uniqueidentifier data type.

You can use the Identity property to create columns (referred to as identity columns) that

contain system-generated sequential values identifying each row inserted into a table. An

identity column is often used for primary key values.

Having SQL Server automatically provide key values can reduce costs and improve

performance. It simplifies programming, keeps primary key values short, and reduces user-

transaction bottlenecks.

CREATE TABLE table

(column_name data_type

 [IDENTITY [(seed, increment)]] NOT NULL)

Consider the following requirements for using the Identity property:

 Only one identity column is allowed per table.

 It must be used with integer (int, bigint, smallint, or tinyint), numeric, or decimal

data types. The numeric and decimal data types must be specified with a scale of 0.

 It cannot be updated.

 You can use the IDENTITYCOL keyword in place of the column name in a query.

This allows you to reference the column in the table having the Identity property

without having to know the column name.

 It does not allow null values.

You can retrieve data from identity columns using the @@identity global variable, which

determines the value of the last row inserted into an identity column during a session.

This example creates a table with two columns, StudentId and Name. The Identity property

is used to increment the value automatically in each row added to the StudentId column.

The seed is set to 100, and the increment value is 5. The values in the column would be

100, 105, 110, 115, and so on. Using 5 as an increment value allows you to insert records

between the values at a later time.

CREATE TABLE Class

 (StudentID int IDENTITY(100, 5) NOT NULL,

 Name varchar(16))

Using the NEWID Function and the uniqueidentifier Data Type

The uniqueidentifier data type and the NEWID function are two features that are used

together. Use these features when data is collated from many tables into a larger table and

when uniqueness among all records must be maintained:

86

 The uniqueidentifier data type stores a unique identification number as a 16-byte

binary string. This data type is used for storing a globally unique identifier (GUID).

 The NEWID function creates a unique identifier number that can store a GUID by

using the uniqueidentifier data type.

 The uniqueidentifier data type does not automatically generate new IDs for inserted

rows the way the Identity property does. To get new uniqueidentifier values, you

must define a table with a DEFAULT constraint that specifies the NEWID

function. When you use an INSERT statement, you must also specify the NEWID

function.

In this example, the Customer table customer ID column is created with a uniqueidentifier

data type, with a default value generated by the NEWID function. A unique value for the

CustID column will be generated for each new and existing row.

CREATE TABLE Customer

(CustID uniqueidentifier NOT NULL DEFAULT NEWID(),

 CustName char(30) NOT NULL)

Generating Scripts

When you create objects in a database, it is important to save all object definitions in a

script file.

You can use SQL Server Enterprise Manager to document an existing database structure

(schema) by generating it as one or more Transact-SQL scripts. These Transact-SQL

scripts contain descriptions of the statements that were used to create a database and its

objects.

You can generate:

 An entire database into a single script file.

 Table-only schema for one, some, or all tables in a database into one or more script

files.

 Table and index schema into one script file, stored procedures into another script

file, and defaults and rules into yet another script file.

Data is based on applying the following syntax:

A new record into table:

INSERT INTO table_name

87

VALUES [<values>]

In the following example we write a new record into the Categories table.

INSERT INTO Categories

VALUES („Smith”,”$500”,”ID520444”,”none”)

We must also make sure that we are referring to an existing table. Volume and sequence of

the data in () must same as in the table. Only if you want to add some values we must give

name of the columns.

INSERT INTO Categories (‘Customer_name’, ‘CustomerID’)

VALUES („Smith”,”ID520444”)

Of course, it is possible to delete data.

Synax:

DELETE FROM <table_name> WHERE <condition>

The WHERE clause must specify the conditions under which the deletion of rows you

want to achieve.

DELETE FROM Categories WHERE ’Customer_name’ = ’Smith’

Finally, let's see how to modify data.

Syntax:

UPDATE <table_name> SET column_name=’values’

[, column_name=’values’,…]

In the following example we modify the Customer_name. The new name will be ‘Bush’,

and the value of primary key is 17.

UPDATE Categories SET Customer_name = ‘Bush’

 WHERE CatID = 17

88

Types of Data Integrity

An important step in database planning is deciding the best way to enforce the integrity of

the data. Data integrity refers to the consistency and accuracy of data that is stored in a

database. The different types of data integrity are as follows.

Domain Integrity

Domain (or column) integrity specifies a set of data values that are valid for a column and

determines whether null values are allowed. Domain integrity is often enforced through the

use of validity checking and can also be enforced by restricting the data type, format, or

range of possible values allowed in a column.

Entity Integrity

Entity (or table) integrity requires that all rows in a table have a unique identifier, known

as the primary key value. Whether the primary key value can be changed, or whether the

whole row can be deleted, depends on the level of integrity required between the primary

key and any other tables.

Referential Integrity

Referential integrity ensures that the relationships among the primary keys (in the

referenced table) and foreign keys (in the referencing tables) are always maintained. A row

in a referenced table cannot be deleted, nor the primary key changed, if a foreign key refers

to the row, unless the cascade action is permitted. You can define referential integrity

relationships within the same table or between separate tables.

Defining Constraints

89

Constraints are the preferred method of enforcing data integrity. This section discusses

how to determine the type of constraint to use, what type of data integrity that each type of

constraint enforces, and how to define constraints.

Constraints are an ANSI-standard method of enforcing data integrity. Each type of data

integrity domain, entity, and referential is enforced with separate types of

constraints. Constraints ensure that valid data values are entered in columns and that

relationships are maintained between tables. The following table describes the different

types of constraints.

You create constraints by using the CREATE TABLE or ALTER TABLE statement.

You can add constraints to a table with existing data, and you can place constraints on

single or multiple columns:

 If the constraint applies to a single column, it is called a column-level constraint.

 If a constraint references multiple columns, it is called a table-level constraint, even

if it does not reference all columns in the table.

CREATE TABLE table_name

 ({ < column_definition >

 | < table_constraint > } [,...n])

< column_definition > ::= { column_name data_type }

 [[DEFAULT constant_expression]

 [< column_constraint >] [,..n]

< column_constraint > ::=

[CONSTRAINT constraint_name]

 | [{ PRIMARY KEY | UNIQUE }

 [CLUSTERED | NONCLUSTERED]]

 | [[FOREIGN KEY]

 REFERENCES ref_table [(ref_column)]

Determining Which Type of Constraint to Use

Type of integrityType of integrityType of integrity Constraint typeConstraint typeConstraint type

DomainDomain

DEFAULTDEFAULT

CHECKCHECK

REFERENTIALREFERENTIAL

EntityEntity PRIMARY KEYPRIMARY KEY

UNIQUEUNIQUE

ReferentialReferential FOREIGN KEYFOREIGN KEY

CHECKCHECK

90

 [ON DELETE { CASCADE | NO ACTION }]

 [ON UPDATE { CASCADE | NO ACTION }]]

 | CHECK (logical_expression) }

< table_constraint > ::=

 [CONSTRAINT constraint_name]

 { [{ PRIMARY KEY | UNIQUE }

 [CLUSTERED | NONCLUSTERED]

 { (column [ASC | DESC] [,...n]) }]

 | FOREIGN KEY

 [(column [,...n])]

 REFERENCES ref_table [(ref_column [,...n])]

 [ON DELETE { CASCADE | NO ACTION }]

 [ON UPDATE { CASCADE | NO ACTION }]

 | CHECK (search_conditions) }

This example creates the Products table, defines columns, and defines constraints at both

the column and table level.

USE Northwind

CREATE TABLE dbo.Products

(

 ProductID int IDENTITY (1,1) NOT NULL,

 ProductName nvarchar (40) NOT NULL,

 SupplierID int NULL,

 CategoryID int NULL,

 QuantityPerUnit nvarchar (20) NULL,

 UnitPrice money NULL CONSTRAINT DF_Products_UnitPrice DEFAULT(0),

 UnitsInStock smallint NULL CONSTRAINT DF_Products_UnitsInStock

DEFAULT(0),

 UnitsOnOrder smallint NULL CONSTRAINT DF_Products_UnitsOnOrder

DEFAULT(0),

 ReorderLevel smallint NULL CONSTRAINT DF_Products_ReorderLevel

DEFAULT(0),

 Discontinued bit NOT NULL CONSTRAINT DF_Products_Discontinued

DEFAULT(0),

 CONSTRAINT PK_Products PRIMARY KEY CLUSTERED (ProductID),

 CONSTRAINT FK_Products_Categories FOREIGN KEY (CategoryID)

 REFERENCES dbo.Categories (CategoryID) ON UPDATE CASCADE,

 CONSTRAINT FK_Products_Suppliers FOREIGN KEY (SupplierID)

 REFERENCES dbo.Suppliers (SupplierID) ON DELETE CASCADE,

 CONSTRAINT CK_Products_UnitPrice CHECK (UnitPrice >= 0),

 CONSTRAINT CK_ReorderLevel CHECK (ReorderLevel >= 0),

 CONSTRAINT CK_UnitsInStock CHECK (UnitsInStock >= 0),

 CONSTRAINT CK_UnitsOnOrder CHECK (UnitsOnOrder >= 0)

)

Types of Constraints

91

DEFAULT Constraints

A DEFAULT constraint enters a value in a column when one is not specified in an

INSERT statement. DEFAULT constraints enforce domain integrity.

[CONSTRAINT constraint_name]

 DEFAULT constant_expression

This example adds a DEFAULT constraint that inserts the UNKNOWN value in the

dbo.Customers table if a contact name is not provided.

USE Northwind

ALTER TABLE dbo.Customers

ADD

CONSTRAINT DF_contactname DEFAULT 'UNKNOWN' FOR ContactName

CHECK Constraints

A CHECK constraint restricts the data that users can enter into a particular column to

specific values. CHECK constraints are similar to WHERE clauses in that you can specify

the conditions under which data will be accepted.

[CONSTRAINT constraint_name]

CHECK (logical_expression)

This example adds a CHECK constraint to ensure that a birth date conforms to an

acceptable range of dates.

USE Northwind

ALTER TABLE dbo.Employees

ADD

CONSTRAINT CK_birthdate

CHECK (BirthDate > '01-01-1900' AND BirthDate < getdate())

PRIMARY KEY Constraints

A PRIMARY KEY constraint defines a primary key on a table that uniquely identifies a

row. It enforces entity integrity.

[CONSTRAINT constraint_name]

 PRIMARY KEY [CLUSTERED | NONCLUSTERED]

 { (column[,...n]) }

This example adds a constraint that specifies that the primary key value of the

dbo.Customers table is the customer identification and indicates that a nonclustered index

will be created to enforce the constraint.

92

USE Northwind

ALTER TABLE dbo.Customers

ADD

CONSTRAINT PK_Customers

PRIMARY KEY NONCLUSTERED (CustomerID)

93

UNIQUE Constraints

A UNIQUE constraint specifies that two rows in a column cannot have the same value.

This constraint enforces entity integrity with a unique index.

A UNIQUE constraint is helpful when you already have a primary key, such as an

employee number, but you want to guarantee that other identifiers, such as an employee’s

driver’s license number, are also unique.

[CONSTRAINT constraint_name]

 UNIQUE [CLUSTERED | NONCLUSTERED]

 { (column[,...n]) }

This example creates a UNIQUE constraint on the company name in the dbo.Suppliers

table.

USE Northwind

ALTER TABLE dbo.Suppliers

ADD

CONSTRAINT U_CompanyName

UNIQUE NONCLUSTERED (CompanyName)

FOREIGN KEY Constraints

A FOREIGN KEY constraint enforces referential integrity. The FOREIGN KEY constraint

defines a reference to a column with a PRIMARY KEY or UNIQUE constraint in the

same, or another table.

[CONSTRAINT constraint_name]

 [FOREIGN KEY] [(column[,…n])]

 REFERENCES ref_table [(ref_column [,…n])].

This example uses a FOREIGN KEY constraint to ensure that customer identification in

the dbo.Orders table is associated with a valid identification in the dbo.Customers table.

USE Northwind

ALTER TABLE dbo.Orders

ADD CONSTRAINT FK_Orders_Customers

FOREIGN KEY (CustomerID)

REFERENCES dbo.Customers(CustomerID)

Cascading Referential Integrity

94

The FOREIGN KEY constraint includes a CASCADE option that allows any change to a

column value that defines a UNIQUE or PRIMARY KEY constraint to automatically

propagate the change to the foreign key value. This action is referred to as cascading

referential integrity.

The REFERENCES clauses of the CREATE TABLE and ALTER TABLE statements

support ON DELETE and ON UPDATE clauses. These clauses allow you to specify the

CASCADE or NO ACTION option.

[CONSTRAINT constraint_name]

 [FOREIGN KEY] [(column[,…n])]

 REFERENCES ref_table [(ref_column [,…n])].

 [ON DELETE { CASCADE | NO ACTION }]

 [ON UPDATE { CASCADE | NO ACTION }]

NO ACTION specifies that any attempt to delete or update a key referenced by foreign

keys in other tables raises an error and the change is rolled back. NO ACTION is the

default.

If CASCADE is defined and a row is changed in the parent table, the corresponding row is

then changed in the referencing table.

Disabling Constraint Checking on Existing Data

When you define a constraint on a table that already contains data, SQL Server checks the

data automatically to verify that it meets the constraint requirements. However, you can

disable constraint checking on existing data when you add a constraint to the table.

95

ALTER TABLE table

[WITH CHECKWITH NOCHECK]

ADD CONSTRAINT constraint

 [FOREIGN KEY] [(column[,…n])]

 REFERENCES ref_table [(ref_col [,…n])]

 [CHECK (search_conditions)]

In this example, you add a FOREIGN KEY constraint that verifies that all employees are

associated with a valid manager. The constraint is not enforced on existing data at the time

that the constraint is added.

USE Northwind

ALTER TABLE dbo.Employees

WITH NOCHECK

ADD CONSTRAINT FK_Employees_Employees

FOREIGN KEY (ReportsTo)

REFERENCES dbo.Employees(EmployeeID)

Indexes in the Database

Using indexes can greatly improve database performance. This section introduces basic

index concepts and discusses when and why indexes are used.

How Data Is Accessed
SQL Server accesses data in one of two ways:

 Scanning all of the data pages of tables—called a table scan. When SQL Server

performs a table scan, it:

o Starts at the beginning of the table.

o Scans from page-to-page through all of the rows in the table.

o Extracts the rows that meet the criteria of the query.

 Using indexes. When SQL Server uses an index, it:

o Traverses the index tree structure to find rows that the query requests.

o Extracts only the needed rows that meet the criteria of the query.

SQL Server first determines whether an index exists or not. Then, the query optimizer, the

component responsible for generating the optimum execution plan for a query, determines

whether scanning a table or using the index is more efficient for accessing data.

Creating Indexes

Now that you are familiar with the different index architectures, we will discuss creating

and dropping indexes and obtaining information on existing indexes.

96

You create indexes by using the CREATE INDEX statement and can remove them by

using the DROP INDEX statement.

Using the CREATE INDEX Statement

Use the CREATE INDEX statement to create indexes. You also can use the Create Index

Wizard in SQL Server Enterprise Manager. When you create an index on one or more

columns in a table, consider the following facts and guidelines:

 SQL Server automatically creates indexes when a PRIMARY KEY or UNIQUE

constraint is created on a table. Defining a PRIMARY KEY or UNIQUE constraint

is preferred over creating standard indexes.

 You must be the table owner to execute the CREATE INDEX statement.

 Indexes can be created on views.

 SQL Server stores index information in the sysindexes system table.

 Before you create an index on a column, determine whether indexes already exist

on that column.

 Keep your indexes small by defining them on columns that are small in size.

Typically, smaller indexes are more efficient than indexes with larger key values.

 Select columns on the basis of uniqueness so that each key value identifies a small

number of rows.

 When you create a clustered index, all existing nonclustered indexes are rebuilt.

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED]

INDEX index_name ON { table | view } (column [ASC | DESC] [,...n])

[WITH

[PAD_INDEX]

[[,] FILLFACTOR = fillfactor]

[[,] IGNORE_DUP_KEY]

[[,] DROP_EXISTING]

[[,] STATISTICS_NORECOMPUTE]

[[,] SORT_IN_TEMPDB]

]

[ON filegroup]

This example creates a clustered index on the LastName column in the Employees table.

CREATE CLUSTERED INDEX CL_lastname

 ON employees(lastname)

Use the DROP INDEX statement to remove an index on a table.

DROP INDEX 'table.index | view.index' [, ...n]

This example drops the cl_lastname index from the Member table.

USE Northwind

DROP INDEX employees.CL_lastname

97

Creating Unique Indexes

A unique index ensures that all data in an indexed column is unique and does not contain

duplicate values.

Unique indexes ensure that data in indexed columns is unique. If the table has a

PRIMARY KEY or UNIQUE constraint, SQL Server automatically creates a unique index

when you execute the CREATE TABLE or ALTER TABLE statement.

This example creates a unique, nonclustered index named U_CustID on the Customers

table. The index is built on the CustomerID column. The value in the CustomerID column

must be a unique value for each row of the table.

USE Northwind

CREATE UNIQUE NONCLUSTERED INDEX U_CustID

 ON customers(CustomerID)

Maintaining Indexes

You must maintain indexes after you create them to ensure optimal performance. Over

time, data becomes fragmented. You manage data fragmentation according to your

organization’s environment.

SQL Server provides an Index Tuning Wizard that tracks the usage of your indexes

automatically and assists with maintaining and creating indexes that perform optimally.

You also can use various options and tools to help you rebuild indexes and verify index

optimization.

DBCC INDEXDEFRAG Statement

As data in a table changes, the indexes on the table sometimes become fragmented. The

DBCC INDEXDEFRAG statement can defragment the leaf level of clustered and

nonclustered indexes on tables and views. Defragmenting arranges the pages so that the

physical order of the pages matches the left-to-right logical order of the leaf nodes. This

rearrangement improves index-scanning performance.

Index Defragmenting vs. Index Rebuilding

The time required to defragment is related to the amount of fragmentation. A very

fragmented index might require more time to defragment than to rebuild. A relatively

unfragmented index defragments faster than rebuilding a new index.

Using the DBCC INDEXDEFRAG statement does not improve performance when indexes

are physically defragmented on disk. To physically defragment an index, rebuild the index.

98

DBCC INDEXDEFRAG

 ({ database_name | database_id | 0 }

 , { table_name | table_id | 'view_name' | view_id }

 , { index_name | index_id }

) [WITH NO_INFOMSGS]

This example executes the DBCC INDEXDEFRAG statement on the mem_no_CL index

of the Member table in the credit database.

DBCC INDEXDEFRAG(credit, member, mem_no_CL)

Triggers

A trigger is a special kind of stored procedure that executes whenever an attempt is made

to modify data in a table that the trigger protects. Triggers are tied to specific tables.

Triggers are best used to maintain low-level data integrity, not to return query results. The

primary benefit of triggers is that they can contain complex processing logic. Triggers can

cascade changes through related tables in a database, enforce more complex data integrity

than a CHECK constraint, define custom error messages, maintain denormalized data, and

compare before and after states of data under modification.

Defining Triggers

Create triggers by using the CREATE TRIGGER statement. The statement specifies the

table on which a trigger is defined, the events for which the trigger executes, and the

particular instructions for the trigger.

CREATE TRIGGER [owner.] trigger_name

ON [owner.] table_name

[WITH ENCRYPTION]

{FOR | AFTER | INSTEAD OF} {INSERT | UPDATE | DELETE}

AS

[IF UPDATE (column_name)...]

 [{AND | OR} UPDATE (column_name)...]

 sql_statements}

When a FOR UPDATE action is specified, the IF UPDATE (column_name) clause can be

used to focus action on a specific column that is updated.

Both FOR and AFTER are equivalent syntax creating the same type of trigger, which fires

after the initiating (INSERT, UPDATE, or DELETE) action.

INSTEAD OF triggers cancel the triggering action and perform a new function instead.

99

When you create a trigger, information about the trigger is inserted into the sysobjects and

syscomments system tables. If a trigger is created with the same name as an existing

trigger, the new trigger will overwrite the original one.

The following example creates a trigger on the Employees table that prevents users from

deleting more than one employee at a time. The trigger fires every time a record or group

of records are deleted from the table. The trigger checks the number of records being

deleted by querying the Deleted table. If more than one record is being deleted, the trigger

returns a custom error message and rolls back the transaction.

Use Northwind

GO

CREATE TRIGGER Empl_Delete ON NewEmployees

FOR DELETE

AS

IF (SELECT COUNT(*) FROM Deleted) > 1

BEGIN

 RAISERROR(

 'You cannot delete more than one employee at a time.',

 16, 1)

 ROLLBACK TRANSACTION

END

The following DELETE statement fires the trigger and prevents the transaction.

DELETE FROM Employees WHERE EmployeeID > 6

The following DELETE statement fires the trigger and allows the transaction.

DELETE FROM Employees WHERE EmployeeID = 6

Altering and Dropping Triggers

If you must change the definition of an existing trigger, you can alter it without having to

drop it.

ALTER TRIGGER trigger_name

ON table

[WITH ENCRYPTION]

{{FOR {[,] [DELETE] [,] [UPDATE] [,][INSERT]}

[NOT FOR REPLICATION]

AS

sql_statement [...n] }

|

{FOR {[,] [INSERT] [,] [UPDATE]}

[NOT FOR REPLICATION]

AS

IF UPDATE (column)

[{AND | OR} UPDATE (column) [,...n]]

sql_statement [...n] }

}

100

This example alters the delete trigger created in the previous example. New trigger content

is provided, which changes the delete limit from one record to six records.

Use Northwind

GO

CREATE TRIGGER Empl_Delete ON Employees

FOR DELETE

AS

IF (SELECT COUNT(*) FROM Deleted) > 6

BEGIN

 RAISERROR(

 'You cannot delete more than six employees at a time.',

 16, 1)

 ROLLBACK TRANSACTION

END

You can disable or enable a specific trigger, or all triggers on a table. When a trigger is

disabled, it is still defined for the table; however, when an INSERT, UPDATE, or

DELETE statement is executed against the table, the actions in the trigger are not

performed until the trigger is re-enabled.

You can enable or disable triggers in the ALTER TABLE statement.

ALTER TABLE table

 {ENABLE | DISABLE} TRIGGER

 {ALL | trigger_name[,…n]}

Dropping a Trigger

You can remove a trigger by dropping it. Triggers are dropped automatically whenever

their associated tables are dropped.

Permission to drop a trigger defaults to the table owner and is non-transferable. However,

members of the system administrators (sysadmin) and database owner (db_owner) roles

can drop any object by specifying the owner in the DROP TRIGGER statement.

DROP TRIGGER trigger_name

The trigger in this example was created to update a column (UnitsInStock) in the Products

table whenever a product is ordered (whenever a record is inserted into the Order Details

table). The new value is set to the previous value minus the ordered amount.

USE Northwind

CREATE TRIGGER OrdDet_Insert

ON [Order Details]

FOR INSERT

AS

101

UPDATE P SET

UnitsInStock = (P.UnitsInStock – I.Quantity)

FROM Products AS P INNER JOIN Inserted AS I

ON P.ProductID = I.ProductID

The trigger in this example was created to update the Discontinued column in the Products

table whenever a category is deleted (whenever a record is deleted from the Categories

table). All affected products are marked as 1, indicating they are discontinued.

USE Northwind

CREATE TRIGGER Category_Delete

 ON Categories

 FOR DELETE

AS

 UPDATE P SET Discontinued = 1

 FROM Products AS P INNER JOIN deleted AS d

 ON P.CategoryID = d.CategoryID

This example prevents a user from modifying the EmployeeID column in the Employees

table.

USE Northwind

GO

CREATE TRIGGER Employee_Update

 ON Employees

 FOR UPDATE

AS

IF UPDATE (EmployeeID)

BEGIN TRANSACTION

 RAISERROR ('Transaction cannot be processed.\

 ***** Employee ID number cannot be modified.', 10, 1)

 ROLLBACK TRANSACTION

END

Some useful system functions

@@identity

The system functions, system data can be provided, without select. We can ask back the

value of identity filed with the @@identity function. This function give me the last value,

which the system generated in the table. There is the best if we use it in the stored

procedure.

Create table test (id int identity primary key)

DECLARE @ident int

INSERT INTO test DEFAULT VALUES

Set @ident = @@identity

102

@@rowcount

This system function returns the last query affected rows number.

Declare @rc int

Select * from test

Select @rc = @@rowcount

Print ‘the rows count: ‘+cast(@rc as varchar(10))

Cursors

The cursor is used to a query we can go through the line. Cursors within the stored procedure

are used for query processing.

DECLARE @keycol AS INT, @filler AS CHAR(200);

DECLARE C CURSOR

 FOR SELECT keycol, filler FROM dbo.T1;

OPEN C

FETCH NEXT FROM C INTO @keycol, @filler;

WHILE @@fetch_status = 0

BEGIN

-- Process data here FETCH NEXT FROM C INTO @keycol, @filler;

END

CLOSE C;

DEALLOCATE C;

create procedure getSales

as

declare @location varchar(120)

declare @sale_name varchar(120)

declare saleCursor cursor for

select Name, Location

from Sale

open saleCursor -- most hajtódik csak végre a SELECT utasítás

fetch next from saleCursor -- a FETCH utasítással tudjuk kiolvasni a sorokat

into @sale_name, @location

print 'SaleName = ' + convert(nvarchar,@sale_name)

print 'Location = ' + convert(nvarchar,@location)

while @@fetch_status = 0

begin

fetch next from saleCursor

into @sale_name, @location

print 'SaleName = ' + convert(nvarchar,@sale_name)

print 'Location = ' + convert(nvarchar,@location)

end

close saleCursor

deallocate saleCursor

103

Stored Procedures

We can create stored procedures much the same way as any other object in a database. The syntax

for creating the following:

Create procedure|proc name

[Params name data type] [= default value]

[OUT Params name data type [= default value]]

AS

<code>

For example, a very basic level of stored procedure:

Create proc spShip

AS

 select * from Ship

The created stored procedures are stored in the database compiled. Running:

exec spShip

The stored procedure name is followed by a list of parameters, which can be omitted. The

parameters make flexible the using of stored procedures. We can create the procedures

simply in SQL Server Management Studio.

104

Modify the stored procedure

It’s possible with the ALTER PROCEDURE command. The procedure must exist.

Alter procedure|proc name

[Params name data type] [= default value]

[OUT Params name data type [= default value]]

AS

<code>

For example:

Alter proc spShip

AS

 select * from Ship order by 1

Existing procedure can be deleted from the database with this command:

DROP PROCEDURE <name of procedure>

Parameters

The parameters increase the usability of stored procedures. Stored procedures accept data

in the form of input parameters. The result – calculated data, search results etc − is returned

by output parameters.

The parameters declaration is needed the name and the data type. It’s possible default

value and direction. IN or OUT.

Syntax:

@name of parameter [AS] data type [= default|NULL] [VARYING] [OUTPUT|OUT]

The first character of the name of parameter must be ‘@’ and the name can’t contain

spaces.

Create procedure spInsertShipper

 @CompanyName nvarchar(40),

 @Phone nvarchar(24)

AS

INSERT INTO Shippers VALUES

 (@CompanyName, @Phone)

This procedure inserts a new record into the Shippers table. The table is in our sample

database, Northwind.

105

Running:

exec spInsertShipper ‘Apple Trading Co.’, ’0655/555-555’

It is necessary that the number, type and order of the actual parameters comply with the

characteristics of formal parameters. A lot of errors can be avoided by using Default

values.

Create Proc spIns

@custom int = 1,

@nev varchar(30),

@kapott_id int OUT

AS

Insert into ord values (@custom, @nev)

Select @kapott_id = @@identity

CREATE PROCEDURE [dbo].[sp_get_TermekOntvenyId]

(

 @TermekId int,

@OntvenyId int,

 @TeOnId int OUTPUT

)

AS

BEGIN

 Select @TeOnId = TOId from tzsTermekOntveny

 where (TermekId = @TermekId) and (OntvenyId = @OntvenyId)

 if (@TeOnId is null)

 BEGIN

 set @TeOnId = -1

 return

 END

END

