

Dominic Selly
Andrew Troelsen
Tom Barnaby

Expert ASP.NET 2.0
Advanced Application Design

522xFM.qxd 8/31/05 3:54 PM Page i

Expert ASP.NET 2.0 Advanced Application Design

Copyright © 2006 by Dominic Selly, Andrew Troelsen, and Tom Barnaby

Lead Editor: Ewan Buckingham
Technical Reviewers: Robert Lair, Rakesh Rajan, Victor Garcia Aprea, Fernando Simonazzi,

Hernan De Lahitte
Contributors: Dave Zimmerman, David Schueck, George Politis
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Beckie Stones
Copy Edit Manager: Nicole LeClerc
Copy Editor: Lauren Kennedy
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Dina Quan
Proofreader: Nancy Sixsmith
Indexer: Broccoli Information Management
Artist: Wordstop
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

522xFM.qxd 8/31/05 3:54 PM Page ii

Patty made Lucy
while I made this book, and so

I give it to them.
—dws

522xFM.qxd 8/31/05 3:54 PM Page iii

522xFM.qxd 8/31/05 3:54 PM Page iv

Contents at a Glance

About the Authors . xiii

About the Technical Reviewers . xv

Acknowledgments . xvii

Introduction . xix

PART 1 ■ ■ ■ ASP.NET 2.0 Internals
■CHAPTER 1 Overview of .NET Application Architecture . 3

■CHAPTER 2 The ASP.NET Request Pipeline . 29

■CHAPTER 3 Page Object Internals . 65

■CHAPTER 4 ViewState and Scripting . 101

PART 2 ■ ■ ■ .NET Middle Tier Solutions
■CHAPTER 5 .NET 2.0 Security . 147

■CHAPTER 6 SOA in .NET: Web Services . 197

■CHAPTER 7 Enterprise Services . 247

■CHAPTER 8 Hosting and Communications . 271

■CHAPTER 9 Windows Communication Foundation . 297

PART 3 ■ ■ ■ Data Access Layer
■CHAPTER 10 Managed Providers of Data Access . 321

■CHAPTER 11 Data Access Layer Services . 373

■CHAPTER 12 Transactions . 423

■INDEX . 439

v

522xFM.qxd 8/31/05 3:54 PM Page v

522xFM.qxd 8/31/05 3:54 PM Page vi

Contents

About the Authors . xiii

About the Technical Reviewers . xv

Acknowledgments . xvii

Introduction . xix

PART 1 ■ ■ ■ ASP.NET 2.0 Internals

■CHAPTER 1 Overview of .NET Application Architecture 3

Nonfunctional Requirements . 5
Availability . 5
Performance . 7
Scalability . 9
Vertical Scaling . 9
Horizontal Scaling . 9
Security . 10
Maintainability . 11
Connectivity . 13
Other Nonfunctional Requirements . 13

Service Oriented Architecture/Service Orientation 15
.NET Application Architectures . 17

A Simple Managed Application . 19
Using Serviced Components . 20
A Widely Distributed Service Application . 23
An Asynchronous Messaging Architecture . 26

Summary . 28

■CHAPTER 2 The ASP.NET Request Pipeline . 29

Application and Context . 29
The HttpApplication Life Cycle . 32

Built-in Framework Extensions to the Pipeline 40
Extending the Request Pipeline . 42

Inheriting from HttpApplication . 43
Implementing an HttpModule . 51

vii

522xFM.qxd 8/31/05 3:54 PM Page vii

HTTP Handlers . 54
Handlers Built into the Framework . 55
Creating an Http Handler . 57

Summary . 62

■CHAPTER 3 Page Object Internals . 65

Structure of a Web Form . 65
Options for Building Web Forms . 66
Code Generation of ASPX Pages . 70
Code Generation of ASPX Files . 71
Compilation and Deployment . 75

Dynamic Compilation . 76
Precompilation . 81

Basics of the Control Type . 82
Control Tree Essentials . 84
Web Form Event Model . 87
Control Events vs. Page Events . 89
The Special Role of the PreRender Event . 90

Resource Consumption when Data Binding . 93
Capturing the Rendered Output Stream . 96
Summary . 99

■CHAPTER 4 ViewState and Scripting . 101

The Role of ViewState in ASP.NET . 102
The ViewState Value . 108
2.0 ViewState Enhancements . 109
Replacing ViewState Persistence . 119
Post-Cache Substitution . 122

Scripting . 125
Page Support for Scripting . 133
Out-of-Band Callbacks . 136

Summary . 143

PART 2 ■ ■ ■ .NET Middle Tier Solutions

■CHAPTER 5 .NET 2.0 Security . 147

A Survey of Core Security Services . 147
The Role of Strongly Named Assemblies . 148

An Example of Round Tripping . 149
Preventing Roundtrip Engineering via Strong Naming 150

■CONTENTSviii

522xFM.qxd 8/31/05 3:54 PM Page viii

Encryption Services . 152
Understanding Hash Codes . 153
Hashing a File . 154

Role-Based Security (RBS) . 155
Restricting Access Based On User Identity . 157

Securing ASP.NET Web Applications . 158
Understanding Configuration Inheritance . 159

Understanding ASP.NET Authentication Options . 160
Windows-Based Authentication . 161
Passport-Based Authentication . 161
Forms-Based Authentication . 162

Leveraging the Forms Authentication Model . 163
Details behind the <authentication> Element . 165

Details behind the <forms> Element . 166
Cookieless Authentication Support under ASP.NET 2.0 167

Details behind the <authorization> Element . 168
Details behind the FormsAuthentication Type . 169

Working with the <credentials> Element . 170
Forms Authentication Improvements under ASP.NET 2.0 171
Understanding the Membership Type . 172

Specifying a Membership Provider for your Website 173
Adding New Members . 175
The MembershipUser Type . 176
Updating a User’s Properties . 177
Deleting a User . 177

Working with the Security Server Controls . 178
The Login Control . 178
The LoginStatus Control . 180
The LoginName Control . 181
The PasswordRecovery Control . 182
The ChangePassword Control . 184
The CreateUserWizard Control . 184

Understanding ASP.NET 2.0 Role Membership . 186
Enabling Role Membership Services . 187
Understanding the Roles Type . 188
Creating, Obtaining, and Deleting Roles . 189
Assigning Users to Roles . 190
Determining Role Membership . 190

ASP.NET Web Application Administration Tool . 191
Summary . 195

■CONTENTS ix

522xFM.qxd 8/31/05 3:54 PM Page ix

■CHAPTER 6 SOA in .NET: Web Services . 197

SO What? . 197
SO What Are the Themes? . 199
Web Services as an SO Implementation . 202

ASMX and the Web Service Handler . 206
2.0 ASMX Enhancements . 210
Other Enhancements . 234

WS-I and WSE . 234
Operational Requirements . 235
WS-Security . 241

Summary . 245

■CHAPTER 7 Enterprise Services . 247

Component Services . 247
COM+ in .NET . 249

COM+ Applications . 252
Just-In-Time Activation . 253
Object Pooling . 255
Transactions . 257
Queued Components . 261
Role-Based Security . 265
Configuration . 267
Some Practices Worth Observing . 268

Summary . 270

■CHAPTER 8 Hosting and Communications . 271

Processes and Marshaling . 271
Internet Information Server . 275

ASP.NET Framework . 275
Component Service SOAP . 278
Stored Procedure SOAP . 281

DLLHost and DCOM . 281
Message Queuing . 283
Custom Listeners . 289
Permutations . 294
Summary . 294

■CONTENTSx

522xFM.qxd 8/31/05 3:54 PM Page x

■CHAPTER 9 Windows Communication Foundation 297

Introducing Windows Communication Foundation 297
What Is Windows Communication Foundation? 297
Understanding the WCF Motivations . 298

YASOE: Yet Another Service Orientation Explanation 300
SO/A: Revolution, Evolution, or Neither? . 300
Objects vs. Services: The Metaphor Matters 301
The Four Tenets of Service Orientation . 301
Service Orientation vs. Service Oriented Architecture 303

Programming with WCF . 303
The ABCs of WCF: Address, Binding, and Contract 304
Hosting the Service . 307
Calling the Service . 307
Revisiting WCF Contracts . 310
Instancing, Transactions, and Much, Much More 312

Preparing for WCF . 312
Will WCF Break My Current Application? . 313
Will My Implementation Interoperate with WCF? 313
How Easily Will my Application Migrate to WCF? 314
Interoperability and Migration Summary . 316
Overall Guidance for Choosing the Best Technology 317

Summary . 318

PART 3 ■ ■ ■ Data Access Layer

■CHAPTER 10 Managed Providers of Data Access . 321

Managed Providers . 322
System.Data Namespace . 324

Connections . 326
Data Readers . 331
DataSets . 339
Managed Provider Factories . 356
Concurrency . 361

Summary . 372

■CONTENTS xi

522xFM.qxd 8/31/05 3:54 PM Page xi

■CHAPTER 11 Data Access Layer Services . 373

Declarative Data Access . 373
SQL Data Source Control . 375
Object Data Source . 381

Dependent Cache Entries . 388
SQL Cache Dependency Configuration . 389
Programming with SQL Cache Dependencies 391
Automating SQL Cache Dependency Administration 392

Data Access Application Block . 398
Configuration and the Database Object . 399
Data Access Methods . 402
The Command Wrapper Object . 404
Parameters and the Parameter Cache . 405
Using the Data Access Block for Transaction Management 407

A Developer’s Survey of SQL Server 2005 . 408
CLR Integration in SQL Server 2005 . 409
SQL Server 2005 Service Broker . 415
Native XML Support . 417

Summary . 422

■CHAPTER 12 Transactions . 423

Transactions in 1.x . 423
Transactions in 2.0 . 426

Lightweight Transaction Manager . 427
Programming Transactions . 427
Transacted Types . 434

Summary . 438

■INDEX . 439

■CONTENTSxii

522xFM.qxd 8/31/05 3:54 PM Page xii

About the Authors

■DOMINIC SELLY is an Intertech trainer and consultant. Dominic is a fre-
quent presenter at developer conferences. He is also a coauthor of Visual
Basic .NET at Work (Wiley, 2002). Dominic has been creating software for
more than a dozen years.

Dominic has also been teaching developers for many years, in topics
including ASP.NET, VB.NET, C#, XML, Visual Basic, ASP, and SQL Server.
He is the author of several of Intertech Training’s courses, including Com-

plete ASP.NET, .NET for Architects, and much of their Web Services curriculum. Dominic also
co-created the Web Application Development Certificate program offered at George Washing-
ton University in Washington D.C.

Dominic spends his spare time trying to master the perfect determinism of the game of
pocket billiards.

■ANDREW TROELSEN is a Microsoft C# MVP and partner/vice president of
Training and Technology at Intertech Training, where he has worked for
more than eight years. He teaches and mentors America’s leading organi-
zations (including NASA, Microsoft Corporation, Honeywell, Lockheed
Martin, Wells Fargo, and the Mayo Clinics) regarding the ways of .NET,
and if duty calls, the Component Object Model (COM).

He is also the author of Visual Basic .NET and the .NET Platform: An
Advanced Guide (Apress, 2001), COM and .NET Interoperability (Apress, 2002), and Developer's
Workshop to COM and ATL 3.0 (Wordware Publishing, 2002).

When he has a spare moment, he enjoys re-creating the games he once programmed for
his Atari 400 using C# and the BCL, spending too much time with his XBox; cheering for the
Timberwolves, Wild, and Vikings; and doing whatever possible to return to the Gunflint Trail.

■TOM BARNABY is a Microsoft Consultant, C# MVP, national speaker, and
author of several .NET books including Distributed .NET Programming
in C# and Applied .NET Attributes (Apress, 2002). In his spare time, Tom
enjoys playing with his two sons, watching movies in the family home
theater room, and banging out power chords on his electric guitar with
the volume turned to 11.

xiii

522xFM.qxd 8/31/05 3:54 PM Page xiii

522xFM.qxd 8/31/05 3:54 PM Page xiv

About the Technical
Reviewers

■ROBERT LAIR is the president and CEO of Intensity Software, Inc. (www.intensitysoftware.com),
which specializes in offering Microsoft .NET solutions, including legacy migrations to
ASP.NET. In addition to consulting services, Intensity offering .Kicks for .NET, a CICS
to ASP.NET migration utility that automates the migration process while maintaining existing
business-logic source code. Bob was one of the developers who created the original IBuySpy
Store and WebPortal demo application as well as the NetCOBOL for .NET version of IBuySpy
and the QuickStart samples. Bob has been a participating author in a number of books and
has written numerous articles on topics related to Microsoft .NET. Bob’s personal website is
located at www.robertlair.com and his blog is located at www.robertlair.com/blogs/lair.

■RAKESH RAJAN Rakesh Rajan is a software engineer from India working at Technopark, Trivan-
drum in Kerala. He is a Microsoft MVP in C# and an MCSD in .NET. He has been working in
.NET for the past three years. You can find him posting at newsgroups, writing articles, work-
ing on his own projects, or speaking about .NET. Visit his blog at http://www.msmvps.com/
rakeshrajan/ or drop him an e-mail at rakeshrajan@mvps.org.

■VICTOR GARCIA APREA is founder of Clarius Consulting S.A., providing training, consulting,
and development in Microsoft .NET technologies.

Victor has been involved with ASP.NET since its very early bits and has been awarded
each year as a Microsoft MVP for ASP.NET since 2002. He has written books and articles and
done lots of reviewing for Wrox Press, Apress, and Microsoft Press, and he is also a regular
speaker at Microsoft Argentina (MSDN DevDays, Ask the Experts panel, etc), .NET Local User
Groups, and international conferences like VSLive!.

You can read Victor’s blog at http://clariusconsulting.net/vga.

■FERNANDO SIMMONAZZI lives in Buenos Aires, Argentina, and is an associate of Clarius Con-
sulting S.A. He has more than 10 years of experience in object-oriented technology projects.
These projects involved both academic research at LIFIA (http://lifia.info.unlp.edu.ar)
and industry projects for application domains such as financial trading support, sales sup-
port, and consumer behavior analysis, where he performed development, architecture, and
project leading tasks. He complements a strong background in object-oriented theory with
extensive in-the-field experience on applied object technologies in Smalltalk, Java, and
lately .NET.

He’s currently working as a consultant for the Patterns & Practices group in Microsoft
Corporation as part of the team building the next version of the Enterprise Library.

xv

522xFM.qxd 8/31/05 3:54 PM Page xv

■HERNAN DE LAHITTE is an engineer and development consultant based in Argentina. He has
more than 15 years of experience and has been helping enterprise customers build scalable
component frameworks based on the .NET Framework since 2001.

He is a frequent speaker at several Microsoft events and MSDN talks where he usually
presents topics such as .NET Security and other .NET architecture related themes.

He currently spends much of his time working for Microsoft Corporation helping the
Patterns & Practices group in building useful stuff such as tools, guidelines, and Application
Blocks for the worldwide community of developers. He shares most of this experience with
other developers through his weblog.

■ABOUT THE TECHNICAL REVIEWERSxvi

522xFM.qxd 8/31/05 3:54 PM Page xvi

Acknowledgments

There are many people without whose support and influence writing a book like this would
not be possible. First is my wife, Patty. Without Patty’s support I would never have been able to
see this project through. This time in our lives was met by many more challenges than pen-
ning an esoteric technical manual, including her pregnancy with our first child (a source of
great joy), a herniated disc in my neck, and three broken bones in her foot (sources of great
pain). Luckily, we have each of us to care for the other, and many friends and family who were
there to help us through a trying and difficult time; many thanks to all of them.

There are many people who have mentored me and provided opportunities for me
through my career. Without the combination of their patience and guidance, as well as their
faith in my ability to meet the challenges they’ve presented me, I would still be waiting tables
in Minneapolis. These people include Peter Black, Eric Bowen, Himanshu Palsule, Nancy
Carpenter, Ashrom Rofail, Anthony Martin, Tom Salonek, and Yasser Shouhoud. I can only
hope that they have received a fraction of the positive influence in their own lives through
knowing me that I have through my experiences with each of them.

It takes many people to build a book. Thanks to everyone on the team from Apress,
including Beckie Stones, Ewan Buckingham, Lauren Kennedy, Nancy Sixsmith, and the army
of technical reviewers it took to render this tome cogent. Being, at heart, nothing more than
a prolific code monkey, having a team of accomplished and experienced professionals was
indispensable and made the process fun. Many thanks also to my colleagues Dave Zimmerman,
David Schueck, and George Politis for the benefits of their insights and experience, and to my
veteran coauthors Andrew Troelsen and Tom Barnaby.

And finally, thanks to my father Wayne for bringing home a TRS-80 when I was nine. The
machine did next to nothing on its own, and so I took it upon myself to make it do something,
unwittingly laying the foundation for a fun, challenging, and entirely unusual career.

Dominic Selly

xvii

522xFM.qxd 8/31/05 3:54 PM Page xvii

522xFM.qxd 8/31/05 3:54 PM Page xviii

Introduction

Microsoft has been working on version 2.0 of the.NET Framework and Visual Studio 2005
for a number of years now. Between the bits that were handed out at the PDC in 2003 and the
release candidate handed out at the PDC in 2005, there’s been an unusually long period of
time for curious developers to play around with the new functionality, picking out their
favorites, and pining for the day they can be used in a production application. Over that same
period of time the features have changed quite a bit. It was also an unusually long period of
time for Microsoft’s customers to provide feedback about what worked and what didn’t, and
what should be changed or preserved before putting the bits into production. What has
resulted is an impressive set of functionality that should be a boon to any development effort.

Because of the long period of time that some version of “Whidbey” (as it was code-named
during the development process) has been available, many folks have been able to play with
the features of this new version, and even more have seen demonstrations of these features at
conferences, in magazines, and online. At its time of release, the development environment
provided by the .NET Framework version 2.0 and Visual Studio .NET 2005 might be the most
broadly familiar “new” product ever released.

Many features of the .NET Framework version 2.0 will be very important as we move for-
ward into the new platform provided by Windows Vista and its tangential technologies. These
features go much deeper than the wizards and “configurators” that have been added to Visual
Studio .NET; they even go deeper than many of the flashy new controls that have been shown
to awestruck crowds at conferences and developer events over the last couple of years.

And so in designing this book we decided that we did not want to do the standard “new
feature march.” This book is not a general introduction to version 2.0 of the ASP.NET Frame-
work. Instead, this book focuses on designing distributed applications using the .NET
Framework as your platform. With this as our focus, we treat ASP.NET not as an environment
for the generation of HTML, but rather as an application hosting environment, one capable
of servicing requests not just for Web Forms, but also for Web Services, for distributed objects
via Remoting, even for your own custom application hosting needs. By treating ASP.NET as an
application server instead of as a web application development environment, our field of view
is dramatically increased. Web Forms become just a single piece of a larger, more complex
puzzle, the puzzle of distributed application design. This book does not cover the presentation
tier of an application. While there is some discussion of maintaining state and communication
between a web browser and a web server, a detailed discussion of the presentation tier is con-
spicuously absent. Instead, we focus on the middle and data tiers of a layered application, and
the communication that occurs between these tiers.

In writing this book, we assume you have used a 1.x version of ASP.NET. We assume you
are versed in ADO.NET, at least enough to use data readers, create DataSets, and use a data
adapter to update your database data. This book is designed to expand on that base of knowl-
edge, by simultaneously introducing you to the full range of servers and technologies available
for you to leverage in distributed application design while showing you the enhancements in

xix

522xFM.qxd 8/31/05 3:54 PM Page xix

version 2.0 of the .NET Framework in each of the different layers and tiers of these applica-
tions. This combination is designed to give you a broader understanding of your choices of
technologies during application design, while at the same time show you how version 2.0
improves upon the existing technologies in these tiers. By taking this approach, this book
might not be your first choice as an introduction to the flashiest of features in ASP.NET 2.0, but
the depth of detail and range of technologies covered will make this book continue to be rele-
vant long after you’ve forgotten a time when you didn’t know the subtle nuances of the Smart
Tag of the GridView control.

There are many “moving parts” in a distributed application, and many different technolo-
gies can come to bear on the different pieces of a solution. We wanted to write a book that
addressed this complexity, a book on application design—not a blow-by-blow iteration of
Framework features, but a discussion of how you can put the different packages and servers
available together across different tiers of a distributed application and how they can meet
your real-world requirements. The timing was such that it made no sense to write it on
version 1.x of the Framework, as it was soon-to-no-longer-be the latest-greatest. Instead of
getting swept up in the rush of feature-enumerating titles that have hit the scene with the
fanfare of a parade, we just went ahead and wrote a book on application design. We simply
incorporated the features of 2.0 while doing so.

You may have already built a full-blown n-tiered application using ASP.NET. If this is the
case, then chances are you can glance through the table of contents and pick out a few tech-
nologies that you’ve used in the past. This book will round that knowledge out, and enable you
to make more informed decisions about how to design distributed applications, using the fea-
tures currently available in .NET 2.0, and anticipating the infrastructure that will be available
when Windows Vista arrives. Throughout the entire treatment of the topics that follow, we
keep an eye on the coming release of Windows Vista and Windows Communication Founda-
tion. Our guidance and advice on how to build applications today will prepare you for many
of the technologies and strategies that will be ubiquitous in these new environments. This
way you can expand your application design toolset today, while at the same time get ready
to create the applications of tomorrow.

■INTRODUCTIONxx

522xFM.qxd 8/31/05 3:54 PM Page xx

ASP.NET 2.0 Internals

This is a book about distributed application design. Here ASP.NET pertains not just to Web Forms

and the generation of HTML, but also more broadly to its use as an application server.

We start by covering some of the things that you must consider when you design a distributed

application, and provide some sample distributed application solutions. Then we delve into the

ASP.NET request-processing pipeline. In these chapters you’ll come to understand the lifetime of a

request, how to extend the request-processing pipeline, and some internals of Web Form process-

ing and communication between the web server and web browser across requests.

Chapter 1

The book starts by examining the forces that come to bear on the design of a distributed applica-

tion. This chapter is high level, but it sets the stage for the specific technical discussions that follow

by taking a look at what influences the decisions you need to make about the technology choices

available for a distributed application. There are many resources available to help you with specific

technologies, in isolation from the rest of your application. In this chapter, we look at how the spe-

cific requirements in your environment get mapped to the selection of specific technical

infrastructures. We follow up by examining some sample solutions and discussing how they meet

specific requirements.

Chapter 2

Here we step out of the world of ASP.NET Web Form processing and examine the larger infrastruc-

ture that this request processing exists within. This is the same pipeline used by Web Services, and

it is the same pipeline that will be used by Windows Communication Foundation (WCF). It is also

built for extensibility, meaning you can do your own type of request processing by customizing this

pipeline.

P A R T 1

■ ■ ■

522xCH01.qxd 8/31/05 3:19 PM Page 1

Understanding this request-processing pipeline is the key to understanding many important

aspects of distributed application development, both now and for future applications.

In this chapter, you’ll see how requests are moved from IIS to a specific handler, how this

pipeline can be extended, and how you can add your own handlers for custom request processing.

Chapter 3

This chapter focuses solely on the System.Web.UI.Page class, the fundamental type for Web

Form programming. Here we peel the covers back on this type, and examine its internal structure:

the control tree, which is fundamental to all ASPX request processing.

We’ll also show you some changes that have been made to this model in ASP.NET 2.0, including

a new compilation model, new deployment options, and some new events available in the lifetime

of the page-request processing.

Chapter 4

This chapter focuses on some of the more subtle communication that occurs between the web

server and the web browser in ASP.NET request processing. We’ll look specifically at the ViewState,

enhancements to the scripting model that ease the generation of client-side JavaScript, and an

amazing new feature that allows for out-of-band asynchronous callbacks from a web browser to

the web server.

This set of features focuses on how to maximize the power and flexibility you have when

creating applications within the confines of a web browser. The capabilities afforded by this set of

features are seldom fully utilized.

The callback feature is especially important, as it is cross-browser-compatible and has the

potential to take web application development to the next level by giving the developer the ability to

do a partial page refresh, creating a more responsive and usable interface for the user.

522xCH01.qxd 8/31/05 3:19 PM Page 2

Overview of .NET Application
Architecture

.NET is complex. Not so much in the same way that COM is complex. Not in the way that
makes you want to cry as you realize you’re going to have to scrub the registry for references to
an old version of a COM server again. Not in the way that gives you nightmares about ghoulish
GUIDs taunting you from a misplaced type library. No, .NET’s complexity is based more on
its sheer size and scale. There are more than 3,000 types in the Framework class library, and
these types are designed to do just about anything. The major learning curve to becoming
productive in the .NET Framework is not the language, regardless of your language of choice
(although moving from VBScript to VB .NET Web Forms has been challenging for more than a
few); it’s the Framework class library. It calls to question, What’s out there? When do I use it?
How does it work?

Distributed applications are also complex. A layered architecture results in an application
with a lot of moving parts. Simply displaying a data point within a web browser can involve
using an object graph with dozens of instances, a call stack that’s easily five layers deep, code
involving markup, one or more managed languages, Structured Query Language (SQL), and
maybe even a proprietary database language such as Transact SQL (TSQL). The path of this
stack may span processes, machines within a LAN, platforms and operating systems, and
maybe even several LANs. As the architect, you have the task of designing the path of these
requests and the rules of interaction for each step of the way.

You’ll need to consider more than the business-based, functional requirements. When
you’re designing the architecture, functional requirements may be relevant, but they’re usually
secondary to other application requirements, which aren’t captured in the “Use Cases.” You’ll
also need to address a multitude of questions:

• What are the scalability requirements for the application?

• How available must the application be, and how will someone know when it’s “down”?

• Is it customizable, and if so, when and by whom?

• Is it easy to deploy, upgrade, and maintain over time?

• Are there development cost constraints?

• What connectivity mechanisms will it employ (i.e., will users be fully connected, be
partially connected/mobile, use PDAs, etc.)?

3

C H A P T E R 1

■ ■ ■

522xCH01.qxd 8/31/05 3:19 PM Page 3

These are the questions that keep you awake at night, at your desk, going over your solu-
tion one more time.

After you’ve established the technical requirements of the application, you must map
these requirements to the technologies at your disposal, have them drive the adoption of logi-
cal tiers in the design, and then decide how to physically deploy these logical tiers. You’ll need
to address many questions in this process:

• What servers and services will be used at what tiers of the application?

• How will the data be accessed?

• How will requests be marshaled between the logical layers of the application?

• What about when those layers span processes—or span machines?

In this book, we provide a complete traversal of this call stack in the context of a .NET
application. Each step of the way, we examine the options and services available to meet dif-
ferent nonfunctional requirements at each tier and between adjoining tiers. This is not to say
it’s a blueprint for a specific application architecture. You have many choices, and many more
possibilities when you consider the number of ways you can combine those choices. The
architecture you design depends on the requirements of your application. And believe it or
not, all applications are unique.

The answer to any question when it comes to the architecture is, “It depends.” This is why
you make the big bucks. This is why your job seems so hard. And it is. In this book, we give you
the background to make it easier when the .NET Framework is your primary toolset. In the
chapters that follow, we offer you a road map that enables you to navigate the application layers,
choose what to use with each layer, and move information between layers.

Part 1 starts with this chapter, which provides you with an overview of .NET architectural
problems and some examples of solutions. This gives you some concrete endpoints that show
what your journey may look like. Then, we’ll move the focus to the point where a request comes
into a web server. This may be a request for a Web Form (an ASPX page), but it may also be a
request for a Web Service, a Remoted component, or some custom processor specific to your
application. We take broad view of ASP.NET in this book, looking at its full features rather than
focusing just on Web Forms.

Regardless of what’s being requested, web server requests travel a common pathway. How
do these requests travel from Internet Information Services (IIS) to ASP.NET, and what are the
points of extensibility along the way? We’ll examine this process in Chapter 2. In Chapter 3 and
Chapter 4, we’ll focus on ASP.NET as a presentation tier. We’ll look at how you can maximize
code reuse at the presentation tier, as well as discuss the internals for how an instance of a
Page object becomes a stream of HTML. We’ll show you how the full features of the browser
can be leveraged for the presentation tier, and will cover some of the improvements and new
features of version 2.0 of the Framework.

In Part 2, we begin by discussing security in the .NET Framework, as security is the “verti-
cal slice” that passes across all the layers in the stack. We’ll then look at Microsoft’s options and
solutions for the middle tier of a distributed app, examining both those in the present and in
the not-so-distant future. In this part of the book, we’ll also examine your options for marshal-
ing calls for services and data between layers. Here, we’ll consider the options and the tech-
nologies in their different permutations. This is the most precarious balancing you’ll under-
take during application design. Even after you’ve decided on the technologies to use for the

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE4

522xCH01.qxd 8/31/05 3:19 PM Page 4

individual tiers and the individual layers, the wrong choices for marshaling can impair your
scalability on the one hand, and/or impair your dependability and availability on the other.
The perils and importance of these decisions provide a fine segue into Microsoft’s next gener-
ation messaging stack: Windows Communication Foundation (formerly known as Indigo).
Windows Communication Foundation’s design goal is to unify the call stack that’s used when-
ever out-of-process communication occurs, be it across application domains, inter-process,
across machine boundaries, or across the world.

In Part 3, we move to the final critical tier of our application: the data access layer. This
is where all the real action resides, where all the bits people actually want to see are housed,
where even the nontechnical business users in your enterprise know the heart of the business
lies. This is your critical resource in a distributed application, as it is the transactional nerve
center of the enterprise. This is also the layer of a distributed application that tends to get the
most reuse. Once you write something down, people tend to want to get to it. The decisions
you make in this part of your architecture will make or break your suite of applications.

ADO.NET exposes the data access object model in .NET. We’ll examine the ins and outs of
using these managed providers of data access, how to pick the right tool for the job, and how
to employ best practices when using them. We’ll also survey other data access services in .NET,
and get a sneak peak at the next generation database server: SQL Server 2005.

Nonfunctional Requirements
Architectural requirements are defined by nonfunctional requirements, or quality attributes.
These are the requirements of the application the business or functional requirements do not
describe. It is your job to capture these, and to define a technical infrastructure that meets the
captured requirements. A key deliverable you need to provide is a definition of the different
atomic pieces of the application that will be used, and justification for using them by explain-
ing how they meet different nonfunctional requirements.

You also need to define how these elements will interact. You need to address how type
information will be discovered by a calling processes; how the information will be marshaled
to and from the service; the constraints of this interaction; the platforms that must be sup-
ported in this communication; as well as which pieces are public knowledge (part of the
interface) and which are internal (hidden details of the implementation). You’ll need to
answer all of these questions in order to design the technical infrastructure.

Many things can fall into the realm of nonfunctional requirements. While these require-
ments can be considered separately, it’s their interactions that become the critical influence
on the design: Many of them work against one another, creating a tension between them, and
a balance must be struck. Let’s look at a few.

Availability
Availability concerns system failure. This brings to question: What are the points of failure in
the system? How often do they become unavailable? And how does someone know when a
system is unavailable? Further, when there’s a failure, how much time passes before the sys-
tem becomes available again? Also, what percentage of the time does the application need to
be available? In an environment where availability is a high priority, this is usually expressed
in the “ninety nine and n nines” form. In these environments, it’s usually a given that a system
has to be available more than 99 percent of the time. A system that’s down for three minutes

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 5

522xCH01.qxd 8/31/05 3:19 PM Page 5

every five hours will likely be problematic. That’s almost fifteen minutes per day. This measure
doesn’t usually include planned downtime, for backups and routine maintenance, for example.
On the other hand, some environments don’t need to be highly available. In many environ-
ments, as long as an application is available during business hours, folks are happy. However,
as applications become more connected, more global, and more automated, requirements for
availability will increase.

Failure is inevitable. Hardware fails. Disk drives crash. Networks go down. Accepting this
is a given; you provide for availability by adding redundancy to the system. You must add
redundancy at each point of failure. Having redundancy at every point of failure is frequently
called n+1 reliability. N is a measure of the amount of resources needed to do the job. The plus
one provides the availability when failure occurs. Given n+1 reliability isn’t cheap; it’s only put
in place for mission-critical applications. If a company’s entire revenue stream is web based,
an unavailable website means zero dollars in the revenue stream. Suddenly the expense of n+1
reliability doesn’t seem like so much money, after all. ISPs that host the big websites typically
have four T4 lines running to the building, one from each direction on the compass. They may
have several diesel generators in case the power fails, and then in case a generator (or two)
fails. They may also be fortified, to guard against sabotage, like a bank. The company adds
capacity for the servers automatically when a spike in traffic occurs. All of this redundancy
allows them to guarantee the sites they host will be available.

Availability of static pieces of the system can be attained by scaling out, which is a fancy
term for throwing more servers at the problem. Since one web server can go down, another is
added to the mix, and a load balancer is put in front of them. A single IP now maps to more
than one machine. Failover is provided by the load balancer, which will send all traffic to the
live machine when one dies. If these machines are not physically colocated, some type of per-
sistent connection needs to be maintained between them. This can be a factor when a failover
strategy also needs to account for a disaster recovery scenario.

These requirements and the decisions made to meet them can affect the design of the
software systems that will be hosted on this physical infrastructure. The introduction of a load
balancer means anything stored in the memory of the web server can be in the memory of
more than one physical machine. This may be fine for read-only information, where more
than one copy is acceptable. But for mutable, or user-specific, information, this situation
introduces a definite problem. The web server’s memory becomes an unsuitable location to
store this information. It must be marshaled out-of-process, and stored in a central location.
Failure to account for this means failure of the application when a web server blows a gasket.
This problem is accounted for with out-of-process session state available in ASP.NET. State
information can be stored either in an out-of-process state server (no redundancy), or SQL
Server, which can be made redundant with clustering. This introduces a definite performance
hit, but architecture is frequently about trade-offs. You must find a balance. Maybe this hit is
not acceptable, and the application will be designed not to use session information at all.
It depends.

Clustering will actually need to be present in a highly available system, regardless of how
session state is being dealt with. Scaling out will not work on the database tier of the applica-
tion for the same reason it doesn’t work with user-specific session information. It changes.
There can’t be n copies of it, because these copies would start to deviate from one another.
Clustering maintains a hot backup of a single server and a mirrored copy of the information
written to disk that the system is dependent upon. Drive crashes? Switch over to the mirror.
Server crashes? Switch to the backup. This is also called scaling up. “We can scale out at the

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE6

522xCH01.qxd 8/31/05 3:19 PM Page 6

application tier and scale up at the data tier,” says the architect who has done his homework
(and has a big budget).

Clustering works great when you’re working with a single physical location. In a disaster
recovery scenario with multiple geographic locations, it gets a lot harder and may not even be
possible depending on the situation and budget. In such instances, you may still be able to
consider clustering, but you’ll need to explicitly define the following:

• A geographically shared RAID or SAN, using a hardware- or software-centric approach
to data synchronization

• The interaction between Windows clustering and SQL Server clustering

• The size of the “pipe” between two or more locations

• Failover vs. failback

There are other exceptions to these points as well. For example, you may be able to have
more than one copy of a database if it’s a reporting server whose data is updated nightly with
data from the previous day’s transactions and it doesn’t change during the course of the day.
Scaling out is also possible in the data tier by horizontally partitioning your data. Application
architecture is all about your enterprise’s exceptions to the rules. And exceptions to those
exceptions. And repeat.

Scaling out and scaling up are used for more than availability. They’ll make another
appearance when we discuss (oddly enough) scalability.

Performance
Performance is frequently the most difficult metric to ensure, as it is often ill-defined, and
many development shops don’t have the skill set, experience, time, and/or motivation to
design and run performance tests. Consequently, performance problems often first rear their
ugly heads after an application is deployed. Further, these problems tend not to show up right
away—only after sufficient data storage thresholds have been met. “Of course the system
should respond in less than seven seconds. That’s a given,” says the consternated manager
whose direct reports have been complaining about system performance.

Performance strategies can often work directly against other system design decisions
implemented to solve other requirements. You can use the layered software architecture to
increase maintainability and reuse, though introducing new layers of abstraction does not
necessarily increase performance. An overly deep call stack can actually impede it. However,
other driving factors may actually increase performance. It depends.

Performance is closely related to other aspects of the system, like availability, scalability,
and robustness. Often a problem in one of these other areas first shows up as a performance
problem. A bad memory chip is an availability issue, but it may first be reported as a perform-
ance problem. Similarly, for availability or scalability reasons, you may choose to persist data
via asynchronous mechanisms. This decision may actually be perceived by the user as a
“performance” issue. For example: “I made an update to this widget record, but my changes
weren’t immediate. I had to wait 4.3422 seconds for my changes to take effect.” While maybe
it’s not ideal for the user, an asynchronous mechanism like Message Queuing (MSMQ) allows
for peak load balancing, guaranteed message delivery, and a looser coupling between the
presentation tier and service availability. Weighing these against users’ experiences and their

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 7

522xCH01.qxd 8/31/05 3:19 PM Page 7

tendency to crave immediate validation of their work is another architectural trade-off you
must sometimes make.

Measurable requirements are necessary in order to test the performance of the system
before putting it into production. These measures have to be more concrete than “It has to be
as fast as possible,” or “There must be no noticeable delay.” There are many measures you can
use, and you must design a load test that accurately reflects the expected use of the applica-
tion in the real world. If you’re expecting peaks in traffic, you must test a load representing
these peaks. You can measure the number of expected concurrent users, the transactions that
are processed per second, or the raw throughput of the web server’s response stream. Ideally,
you should test the system in its less-than-optimum states as well. If you have the website bal-
anced between two web servers, what happens when one of them goes down? Can a single
box deal with the entire load? If not, you may need to add a third server to the mix, two to
deal with the expected load, and a third for availability (n+1).

There are many tools available from Microsoft that can help you with this process (see
Table 1-1).

Table 1-1. Tools for Measuring Performance

Tool Role in Life

ASP.NET Tracing This tool can be used to measure the amount of time consumed
by atomic pieces of the application: It automatically reports on
the amount of time spent on each step of the page-rendering
process. It can easily be extended to include metrics around
different steps in your call stack, such as how long it’s taking to
execute a stored procedure. You can use it to aggregate reports,
which can be sent to custom data stores.

Application Center Test This is an easy-to-use tool that generates a basic script to send
traffic to your application. It watches the requests you make to
the web server during a “script recording” session. A Visual Basic
script is generated that reproduces the session, and the tool
plays back the script, mocking up any number of users and any
number of instances of the web browser. The tool then reports on
the server’s performance. You can modify the script to provide
further customization during the test.

Perfmon This is the standard Windows tool for gathering system metrics.
It has dozens of counters added to it when the .NET Framework
is installed. You can use these to watch application counts, the
number of loaded assemblies, or the average response time of
the server, to name a few.

SQL Profiler This is an invaluable tool for watching what’s occurring on SQL
Server. It captures all traffic coming into the server, counts
connections, and provides execution times of individual queries.

Enterprise Instrumentation This is a more advanced API for adding instrumentation to your
Framework .NET applications. The package leverages several facilities built

into the operating system, such as Windows Management
Instrumentation (WMI), the event log, and event tracing.

Logging and Instrumentation Part of the Enterprise Library, this package standardizes many
Application Block common tasks required to instrument code. It leverages the

Enterprise Instrumentation Framework and an event-based
logging infrastructure so the persistent store of the log can be
controlled via configuration.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE8

522xCH01.qxd 8/31/05 3:19 PM Page 8

These are but a few of the tools available from Microsoft, and there is, of course, a rich
third-party market for more advanced testing in this area.

Remember, if you don’t calibrate the performance of your application before putting it
into production, you can make no claims about how it will perform once it’s deployed. A simple
failure to adhere to a best practice, hidden deep in the call stack, could impede the perform-
ance of the entire system. This won’t show up as developers sit at their workstations and press
F5 within IE as fast as they can. It must be put under load. This load should approximate the
traffic you expect when the application goes into production.

While performance measures how fast the current system is, scalability is a measure of
how much performance improves as resources are added to the system.

Scalability
Scalability describes the system’s capability to deal with additional load. You may have only a
dozen hits a day when your application goes into production, but as it generates a buzz, you
may shortly find yourself with hundreds or thousands of concurrent users. Will your applica-
tion be able to handle this additional load? Have you designed it to scale up and/or scale out,
and given it the capability to add capacity?

Scalability is closely related to performance, but they aren’t the same thing. Performance
is a measure of a static deployment of the system. Scalability is the measure of how well adding
resources to the infrastructure of the system improves its capability to service additional
requests. As you add resources, do you get a corresponding bump in the throughput of the
application? Or are you losing bang for the bucks that go into these resources?

There are two types of scaling: scaling up, which is also called vertical scaling, and scaling
out, also known as horizontal scaling.

Vertical Scaling
This is used for the mutable portions of a system, or those that change over time. The data-
base is a tier of the application that must usually be scaled up to deal with additional load, as
scaling out at the database tier is difficult and complex. When the database reaches its capac-
ity, you can add more memory, pop another CPU into the box, or purchase a more powerful
box. A clustering solution can be introduced for failover, but this won’t help with the current
load on the system. Scaling up is also used for the middle layer of an application when it hasn’t
been designed to scale out. This is not a happy situation to find your system in.

Horizontal Scaling
This involves adding servers to the system, and balancing the load of traffic on the system
between them. It’s sometimes called a Web Farm when it’s used for web servers, but scaling
out can also be used for an application server. When more than one machine is performing
work identical to other machines, the IP representing the farm is “virtualized.” That is, a load
balancer is the first to receive all requests into the system, and that load balancer doles out the
request to the servers configured in the Farm. Load balancers can be hardware- or software-
based. How the load is distributed depends on the algorithm used by load balancer in use.
Some take a “round robin” approach, and just rotate between the servers. Some will “poll” all
of the servers in the Farm, and those responding quickly get hit with more traffic (the idea is
to approach equilibrium between the servers over time).

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 9

522xCH01.qxd 8/31/05 3:19 PM Page 9

Any state information maintained on these servers must be centralized when you’re using
a Web Farm. Since requests can be sent to any machine in the mix, a change in the memory of
one machine won’t show up in the memory of another. Session state, a feature of both classic
ASP and ASP.NET, is an example of this type of user-specific, volatile information that’s stored
per browser instance. The canonical example of what goes in the Session is the user’s shop-
ping cart. This information must be maintained across different requests that the user makes.
It must survive for the entire “session” that the user maintains with the application.

While no solution was built into ASP for out-of-process sessions, it’s accounted for in
ASP.NET. Session information can be stored on a centralized state server, or it can be stored in
SQL Server. When deciding to use out-of-process session state, keep in mind that only SQL
Server provides a solution for n+1 reliability. If you’re using the NT State Server and that box
goes down, your session information is unavailable, which will, in all likelihood, severely
impair (or take down) an application that’s dependent on this information. Also be aware that
session state in ASP.NET is application specific. ASP.NET provides no solution “out of the box”
for sharing session information across IIS applications, which is unfortunate, because this is
a common need. If you find yourself needing this type of information sharing, you’ll have to
code your own solution.

If it’s entirely untenable to move session information out of process, there is one other
option. Load balancers support an option called client affinity, or sticky sessions. This means
that once a load balancer sends a given user to a specific server, it continues to send that user
to that server for the duration of the user’s session (it sticks the user to that server). While this
allows you to use in-process session information and still have an application that can scale
out, it’s not the most efficient load balancing algorithm you can employ. It’s possible that some
servers in the Farm will be under significantly more load than others. It depends on how long
users “stuck” to a particular server use the application. If more users stuck to server A stick
around, and those stuck to server B leave the application, server A could be under much more
load than server B.

This solution also doesn’t provide for redundant availability of the application. If a server
that a user is “stuck” to goes down, the user’s session information goes down with it. While a
good load balancer sends those users to a server that’s still available, their session information
will be lost, and depending on what’s being stored there, their experience with the application
will likely be somewhat less than ideal. Once again, storing session state in SQL Server is the
only way to provide for redundancy when using this feature.

Security
Security attempts to prevent nefarious persons from performing nefarious acts, and simple-
minded fools from the tools they shouldn’t use. This runs a wide range of activities, from
detecting and preventing a denial of service attack on a public web server, to keeping a known
user from accessing a function he’s not meant to. You’ll also need to establish what happens
once a security breach does occur. Do you have enough information to detect what happens?
Do you have enough to recover? Can you restore your data to a previously known, good state?

There are three main steps to security: authentication, authorization, and auditing.
Authentication involves identifying the users of your system, and denying access to function-
ality to those users who cannot identify themselves. Authorization concerns making sure
authenticated users have permissions to run the function or see the data they’re attempting to
access. Auditing ensures your ability to investigate and recover if something goes wrong with

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE10

522xCH01.qxd 8/31/05 3:19 PM Page 10

the first two. Can you tell there was unauthorized access or use of the system? Can you undo
what was done?

Data must also be secured. You can secure data by encrypting it, or by keeping it in an
otherwise secure data store. An opportune time for encryption is when you’re moving data
around on the network, or sharing data with partners. Typically, when you’re done moving
it around, you write it down in a source of persistence that keeps it safe for you, like within
a relational database that requires credentials for access.

In Table 1-2, we’ve outlined security concerns and their solutions in .NET.

Table 1-2. Security Concerns and .NET Solutions

Concern Solution Windows/.NET Solution

Do we know who you are? Authentication Windows (Kerberos/ NTLM)
ASP.NET Forms-based security
Active Directory
IIS
Passport

Do we know you have Authorization Windows role-based security
permission to do what custom roles in ASP.NET
you’re doing? code access security

Can we get the data to you Encryption Secure Sockets Layer (SSL)
in a secure manner? Certificate Server,

Encryption library in the
Framework class library

Can we recover from Auditing IIS logs
an attack? SQL Server logs and backups

NT application logs
traceability
E2E instrumentation (future)

Will this security infrastructure Integrated security as Security Policy Groups
be manageable as we grow? opposed to a silo-based NT application logs

approach Windows integrated security
Impersonation
Active Directory
others.

In Chapter 5, we take a close look at the .NET specific security atoms.

Maintainability
Maintainability is concerned with the evolution of your system over time. It’s highly unusual
to ship an application and have all business stakeholders and users simultaneously proclaim
“Yes! Yes! This is exactly what we needed! It does the job perfectly!” It’s more likely that they’ll
start requesting changes right away. Sometimes they’ll wait a day while your team recovers
from pulling an all-nighter to get the thing working in production in the first place, but when
they do make requests, what type of changes to the system can you expect?

Your initial requirements may be quite a bit more ambitious than what you’ve committed
to ship on the application’s first iteration. Office was not built in a day. However, knowing the
requirements that will be present in future iterations can be of great benefit during the archi-
tectural design phase, as you can take some of these features into account in the solution.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 11

522xCH01.qxd 8/31/05 3:19 PM Page 11

The application may also have a subset of features that are so volatile that it may be worth
the investment to create some user interfaces that are entirely polymorphic in their behavior,
and create a tool for end users (or power users) to control how this portion of the interface
gets rendered. There may even be a vendor-supplied tool that meets these requirements for
you. Content management systems and Web portal packages are just a couple of examples of
generalized solutions that let qualified users affect the application at a higher level of abstrac-
tion than cranking out and compiling code.

Your application may have requirements that can be met by network or application
administrators via configuration files or Microsoft Management Console (MMC) snap-ins.
These are tasks technical people need to perform, but they don’t necessarily require a devel-
oper to change code that then needs to be compiled and shipped.

Checking a code file out of source control and having a developer make changes to it is
the most expensive kind of change that can be made to a system. It requires a developer (not
cheap). It requires the recompilation of binaries. It requires regression testing of all areas of
the application that are affected by a change to that binary (testers, automation, and time:
aka more money). And then it takes a deployment and all of the requisite worry, heartache,
and long hours that can accompany that.

“Customizability” frequently comes up when discussing these types of features. A fully
customizable solution is a totally nontrivial undertaking that can doom a project to never
even ship a decent V1 (think of how long it took Microsoft to get Access right … oh wait … that
hasn’t happened yet …). But there may be key features of your application that you can move
into configuration, or you can create an administrative applet to tweak, or for which a vendor-
supplied solution nicely fits the bill.

The other type of change anticipation involves minimizing how many components of a
system will be affected when the inevitable change is requested. Even if the anticipated change
does require developer involvement, isolating that change from other functional areas of the
system minimizes the number of binaries affected and, therefore, the complexity of the
regression testing that must be done. This may be a choice as simple as making some set of
functionality interface based, so that a developer can create new implementations of the
interface, and the production system can use late-binding and Reflection to pick up and exe-
cute an assembly with the new implementation. Intertech Software has an ingenious shell
application that can have entirely new applications added to it just by dropping an assembly
that implements a predefined set of interfaces into a directory that the shell is “watching.”
XCopy and you’re done; everything else flows from there.

This leads to an important tenet of service design, that of not creating tight couplings
between service components in the system. You don’t want to be in a situation where a change
to a single class causes a cascade effect of changes to other components. This atomic design is
the thrust behind “loosely coupled” services. Not only does this increase maintainability, but it
also increases the reuse of your services, as the more atomic and independent they are in the
work that they do, the more ways they’ll be able to be combined with other services.

We discuss the design of loosely coupled components when we look at Web Services in
the .NET Framework in Chapter 6.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE12

522xCH01.qxd 8/31/05 3:19 PM Page 12

Connectivity
Connectivity describes the types and speeds of connection mechanisms that will be used to
operate the system. It’s often assumed that the user will have a persistent connection to your
application, and that a broken connection is the explicit result of some action, such as closing
the browser. But what if the user is connected via a cell-phone frequency and loses the con-
nection because he traveled through a bad coverage area? What if the user was in the midst of
typing a large amount of data and then loses the connection? Have you considered any facili-
ties for retrieving that data (i.e., Auto Save for the Web)?

Your application may need to function effectively through various types of connections,
including dial-up, low-speed wireless (cell-phone frequency), high-speed wireless (WiFi,
WiMax), broadband, Digital Subscriber Line (DSL), etc. Thus, the system design must explic-
itly consider how each scenario will be handled technically, and how the user is impacted by
loss of connectivity.

Other Nonfunctional Requirements
There are many other requirements that may be relevant to your system. We summarize some
of the others that may come up in Table 1-3.

Table 1-3. Summary of Other Quality Attributes

Requirement Meaning In Life

Usability Often not thought of as an architecture requirement, as it pertains more to
the user interface design than to the nonfunctional requirements. However,
requirements of usability can definitely affect your system architecture. For
example, if the user makes a long running request for data, and there’s a
usability requirement that any operation taking more than two seconds
should be cancelable by the user, you must account for this (asynchrony)
in your architecture.

Manageability This metric has really come into its own over the last couple of years. More
and more IT departments are drawing a line in the sand, saying if we can’t
maintain it, you can’t put it into production. Some of the pain of DLL Hell
and Distributed Component Object Model (DCOM) account for this metric’s
meteoric rise. Chances are you’ll need to consider this metric for any
substantial enterprise development. Products such as Microsoft’s MOM
and Team System offerings attempt to address this specifically.

Recoverability This metric is usually considered a subset of availability. It describes the
system’s capability to recover from fault or failure, which could threaten the
system’s availability. Tactics include automatic failover (clustering and load
balancing), having a spare on hand, and systems that implement the ACID
rules of transactions. In addition to deployment issues, this attribute can also
pertain to tracing and auditing. When something goes wrong for a user, can
the app re-create the data? If there’s an attack, can the app recover and
restore the data?

Repeatability This is the attribute that captures whether or not you can repeat processes
from one environment to another. Database scripts are a good example of
this metric. If the database has been created using a high-level GUI tool, you
have no guarantee that the database will look the same in development,
testing, staging, and production. Component installation is another process
that should be designed for repeatability as well.

Continued

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 13

522xCH01.qxd 8/31/05 3:19 PM Page 13

Table 1-3. Continued

Requirement Meaning In Life

Interoperability This attribute is constantly increasing in importance as Enterprises come
to realize the time, money, and churn they spend on integrating existing
systems, packages, platforms, and technologies. The new buzzword around
these technologies is Service Oriented Architecture (SOA). SOAP, WSDL,
and XML Schema have been combined to offer a platform, language, and
transport-neutral protocol solution to this problem, called Web Services.
This provides a platform for SOA, although it’s not the only one. Within .NET,
you have interoperability considerations if you need to use legacy COM
applications, be it an existing code base, a vendor-supplied package, or
leveraging Office or other current COM products. Data access is another
example where there’s a common need for interop. .NET provides managed
providers of ODBC and OLE DB, and the Data Access Application Block can
use these providers seamlessly.

Reliability * This pertains to the system’s maturity, fault tolerance, recoverability, and
duration of product relevance.

Testability This important metric pertains to the system’s capability to have engineers
verify that it’s working correctly. To do this, first and foremost, the system
must be defined with a requirements document. Without requirements,
testers have no way to verify the system is working correctly. When a
developer is finished with a component, she hands it off to the tester and
tells him what she programmed it to do. Depending on the developer’s
understanding of the requirements, this may or may not be what it’s
supposed to do. There are strategies you can employ to test the functionality
of components in isolation from one another, as well. These include
record/playback, separating the interface from the implementation, and
creating specialized test harnesses to fully exercise all of the dynamics of a
component. Stubs and feeds of domains of data can also be used. These
stubs are also sometimes called Mock Objects.

Stability This is a facet of performance, availability, and, also very likely, maintain-
ability. This is a description of the state of an application over time, or how
static its state is over time. An example of where stability measurements
are important is an application that queries a database table that’s poorly
indexed. During testing, the row count is low, so load tests perform swim-
mingly. Over time in production, however, the row count increases, causing
the query’s performance to degrade, resulting in an unstable system. A
memory leak is an example of another possible stability problem.

Functionality * This attribute pertains not just to functional requirements, but also to the
intersection of those requirements with the nonfunctional requirements
that have been identified as relevant and important to the system.

Portability This pertains to the system’s adaptability, installability, capability to play
nicely with others, ease of replacement, and platform independence. This
requirement can become important if you’re working for an independent
software vendor (ISV) who wants to sell their product to run on several
platforms. You can see this metric come into play in the application or the
database space. Programming to the interfaces of ADO.NET is a way to
achieve database portability within .NET. The Java Virtual Machine (JVM)
and the Common Language Runtime (CLR) are examples of achieving
platform portability for your application code.

Dependability * This is a superset of other quality attributes, including availability, reliability,
maintainability, recoverability, security, and usability. Aspects of all of these
attributes can be aggregated to describe the architectural solution for system
dependability.

* These are generally more useful for managers and project stakeholders than for the solution design or

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE14

522xCH01.qxd 8/31/05 3:19 PM Page 14

■Note Table 1-3 captures, perhaps, some of the most common nonfunctional requirements. This list is
not exhaustive. Many others may come to bear on your own applications. There’s accessibility, adaptability,
affordability, compatibility, configurability, controllability, extensibility, flexibility, interoperability, learnability,
reusability, versatility, and so on.

Nonfunctional requirements will definitely influence the design of any architecture.
Some of these requirements don’t affect the software architecture; others do so indirectly;
while some have a direct influence. Over the course of the book, as we examine different
servers, services, and packages available within and provided for the .NET Framework, we’ll
revisit these requirements in-as-much as how the features a solution provides are relevant.

Some are far more important than others. Performance is always a critical consideration
when you design a system. If it does not perform, it will not be adopted. We’ll address this
throughout the text in discussions of extensibility, how to know what services to use when,
and applied best practices in different areas.

Security is another critically important feature of any system. Not only because it spans
all of the tiers of a distributed application, but also because it’s the mechanism for protecting
critical enterprise data. The reputation or even the continued existence of an enterprise can
depend on it. We dedicate Chapter 5 to a discussion of security and how it works in the .NET
Framework, and subsequent topics address it specifically as well. You have many different
considerations for keeping an application secure as you move across the tiers.

Service Oriented Architecture/Service Orientation
Enterprises have come to realize that integration is expensive, and homogeneity is an ideal
that’s not practically attainable. A large enterprise with many disparate databases, vendor sup-
plied applications, platforms, operating systems, and languages may come to think that life
would actually be better in a totally homogenous environment.

A mission-critical application is purchased from a vendor and rolled out into the enter-
prise, and soon a business unit decides it would be great to put a web front end on it to expose
a subset of the functions to a subset of the users. Much work and coding ensues to integrate
the web application with the vendor’s back-end database. The web application, of course,
adds some of its own requirements to the mix, which drives the creation of another database,
hosted on another platform. The web application ships with much fanfare, almost on time,
grossly over budget, and is met with accolades from corporate users far and wide.

This success, and the subsequent wide adoption of the processes, fosters a need for
another business unit to leverage some of the data and some of the functionality, but again, of
course, with some esoteric deviation in the business rules that only an MBA can understand.
At this point, it would be nice to leverage the integration work that the original business unit
did, extending the functionality and reach of this vendor application. Unfortunately, that
group was working with technology flavor of the week “A,” and this new groups is using tech-
nology flavor of the week “B.”

So the new group goes back to the drawing board, designing a new integration strategy
with the vendor-supplied application, in addition to integrating with the web application’s
own data store, and in the process ends up adding its own data store to meet their specific

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 15

522xCH01.qxd 8/31/05 3:19 PM Page 15

This process is iterative. Each subsequent iteration is more difficult, and each iteration
becomes more expensive than the last. The applications suffer on account of one business
unit’s success, and related business units compulsively reinvent the wheel.

But what if this did not need to be the state of affairs? What if IT found the “Holy Grail” of
software reuse, and each business unit could leverage the work of the last, reusing the code
that accesses data in the disparate systems—the transactional logic that makes updates to
those systems—all the while passing the enterprise-wide security tokens along so that all this
work could be authenticated, authorized, and audited? Yeah, right, you might say, maybe in
a perfect world. Well, this is just what service orientation purports to provide. And with the
success of the World Wide Web across all platforms and operating systems, the latest imple-
mentation of service orientation, called Web Services, has a real chance of succeeding in this
seemingly mythical quest.

In the late nineties, a really smart geek took a look at XML. “This is markup,” she said to
herself. The Web came to mind. “The Web is a global network for passing markup around.
Hmmm … .” The problem with HTML is that it’s a specific form of markup, designed for
describing how to display data. This is great if you’re a web browser, and your goal in life is
to render an interface that, while somewhat less functional than a Windows Forms interface,
is by all accounts, very pretty. But what if, instead of looking at a stock price displayed on
NASDAQ.com, you want to get a stock price as a double and interact with it programmati-
cally? “But markup could be used to describe the data, instead of describing how to display
the data!” this clever geek thought to herself. “And if it can describe data, it can describe a
request for data. Actually, it could describe a service request, and could be used like an RPC
mechanism … except … it would be a standards-based way to request services! It could
interoperate!”

This idea started circulating amongst the folks that get excited about these types of things,
and since these folks happen to be in positions of power and influence, it generated a definite
“buzz.” Soon, everyone who worked in IT knew that XML was a marvelous, wonderful thing,
that would radically transform the way software works. The problem is, very few folks really
understood how it would do this, and a lot of folks couldn’t even really see what it was for.
“What’s this do? What’s the point of markup that you can’t display in a browser?” Alas, most
folks are just not visionaries.

Meanwhile, the people that got it started writing code. Large enterprises created their own
definitions of what this XML should look like and how it was to be used to request services.
Any group that knew how to use an implementation of the Document Object Model (DOM)
could expose these services, or prepare requests for them and leverage the functionality. In
1999, a sharp young engineer read an obscure specification put out by an XML working group
called SOAP. He thought it could be useful in the application he was working on that was using
ActiveX controls from IE and requesting services of a business tier written as COM Servers in
VB6 and hosted in MTS. He implemented a messaging stack that allowed UI developers to use
a client-side COM component to prepare requests and submit them. The component would
transform them into XML and post them to the server. The server had another process listening
for these requests coming into the server, and would turn around and call the corresponding
method on the object described by the XML document. The results would be returned to the
client as XML. This was a grand boon to the project, as it standardized how information was
marshaled between the UI and the business tier. This was a custom implementation of what
today is called an XML Protocol Messaging Stack, or a SOAP Stack.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE16

522xCH01.qxd 8/31/05 3:19 PM Page 16

However, this did not solve the problem of interoperability. With everyone writing their
own SOAP stacks, interoperability could only be achieved between groups that had direct
buy-in to the design. What was needed was an industry-wide specification that could provide
a standards-based approach of how to attain platform interoperability.

The standards bodies went to work. And work. And work. And work. It took so long for the
W3C to come up with the standard for XML Schemas that Microsoft invented their own, called
XML Schema Reduced (XDR). “We’ll ditch this when the W3C is done, and we’ll support the
standard, we swear! Right now, we just need to ship some product!” When XML Schema was
finally complete, Microsoft did adopt it. They even provided migration tools to move from
XDR to XML Schema, but as with all things that get adopted (think ODBC), XDR lingers.
Microsoft currently supports them both.

The standards bodies worked on the specs for XML Messaging for so long that the rank-
and-file IT masses wrote it off. “Yeah, yeah, yeah. It’s another flash-in-the-pan technology.
Remember Microsoft Bob? Remember My Services?” Eventually the W3C adopted SOAP
(and renamed it the “XML Protocol”). It finalized the spec for the Web Service Description
Language (WSDL). The OASIS group created a specification for discovery it dubbed the
Universal Description, Discovery, and Integration protocol (read: search engine for services:
UDDI).

The funny thing is, in the last couple of years the standards have become ready for prime
time. Designs for new things require time and iterations. The first iteration is done and over
with. The specs have been adopted and vendors have done a couple of implementations.
They’ve realized what doesn’t work and created stacks that do. Folks are adopting parts of the
SOAP spec in favor of others because they’ve tried them both and know from experience what
works. The enterprises that wrote their own stacks years ago now have vendor-supplied tools
that provide a standards-based SOAP Stack implementation. It works. And it is going to trans-
form the way applications are created, deployed, and consumed. It just took awhile.

Today implementing your own SOAP Stack would be like implementing your own data-
base transaction processing. You’d be reinventing the wheel, as there’s already a stack available
for your platform (regardless of what that is). When you’re using .NET, there’s a SOAP stack
built into the ASP.NET Framework. Remember that engineer who wrote the custom SOAP
stack for the product he was working on in the late nineties? Today he’s the program manager
for XML Web Services at a little company out west, in Redmond, Washington, I believe. Guess
that vision thing works out sometimes. It just doesn’t always happen right away.

.NET Application Architectures
The following diagram is a fairly complete picture of the common options available to the
system architect for .NET applications (see Figure 1-1). This diagram captures some of the
technologies you can employ on the individual tiers, as well as some of the different technolo-
gies you can use to marshal messages across these tiers. For example, the data access layer
(DAL) may be on the client for a Windows application deployed to two physical tiers. At the
data access layer of the system, if you’re using SQL Server, or some other native relational
database management system (RDBMS) communication protocol from other vendors, com-
munication can occur with the RDBMS via Tabular Data Stream (TDS).

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 17

522xCH01.qxd 8/31/05 3:19 PM Page 17

Figure 1-1. .NET solutions

While not any .NET application will make use of all of the choices, all of them will make
use of some. This book has ASP.NET 2.0 in the title, but we’re going to examine ASP.NET in a
broader scope than that of its role in the presentation tier. ASP.NET is an application server. IIS
listens for incoming HTTP requests and maps them to processes that do all manner of work,
and are not limited to generating HTML. To consider ASP.NET as being synonymous with Web
Forms is severely limiting. Web Forms (ASPX pages) are but a small part of the functionality
that ships with the Framework, and a narrow means of extending the functionality. ASP.NET
acts as a host for Web Services, for remoted components, and for Component Services, and
when Windows Communication Foundation ships there will be a host of choices there as well.
We’ve dedicated chapters to each of these topics.

Figure 1-1 does not attempt to capture the role of Windows Communication Foundation
or SQL Server 2005. For details on how these technologies fit into the picture, see the chapters
on these topics specifically (Chapter 9 and the latter part of Chapter 11).

Let’s take a look at how a few different architectures might look in production. There are
a lot of different services, a lot of different requirements, and lot of ways to put it all together.
A few fictitious architectures are created here for discussion, based on solutions that have
proven to be effective in production environments.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE18

522xCH01.qxd 8/31/05 3:19 PM Page 18

A Simple Managed Application
Here is a typical simple architecture for a smaller application with a single data store that’s not
expecting hundreds of concurrent users (see Figure 1-2). All of the components are managed
types. The ASP.NET pages use standard controls built into the Framework that generate
W3C-compliant HTML. This allows the application to be deployed to any platform or
operating system that supports a web browser. The pages use what could be a stateful busi-
ness object layer, but the application is simple enough that only a few of these stateful types
are actually needed. The business object layer, in turn, leverages a data access layer written
using the Data Access Application Block and calling SQL Server stored procedures.

Figure 1-2. A simple architecture for a managed web application

In some cases, the UI layer calls the data access layer directly. Although this is a violation
of the guidance provided by the layering pattern, in this case, it’s acceptable as the business
rules aren’t that complex and, in many cases, would be nothing more than a “pass-thru” layer,
providing nothing but an additional level to the call stack and bloating your code base, assem-
bly sizes, and heap allocations unnecessarily.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 19

522xCH01.qxd 8/31/05 3:19 PM Page 19

Even with this simple design, this application could scale out to handle additional load in
the future. The requirements for what needs to be managed in state are minimal enough that
they’re easily implemented using cookies (good only for small amounts of data), and the data-
base (more coding, but it’s persistent, scalable, and available).

Access to the database is synchronous, so any long-running queries would incur a delay
in the responsiveness of the application for the user, as there’s nothing in this design to
address asynchronous operations. The recovery plan, should the server go down, is to drive to
the office as fast as possible and repair or replace the machine. This results in a low availability
guarantee, which is acceptable because the application isn’t mission critical. Any requests
in-process during a system crash would be lost.

Deployment of new versions and fixes for this application are worry free. State informa-
tion is tracked in the database, and correlated to users with a cookie value. Both of these stores
survive the reboot of a web server.

This architecture would obviously not work for all applications. There are a number of
serious limitations. However, when the requirements are met by this solution, it’s an excellent
choice, because developing applications like these are extremely fast and very easy to learn,
compared to a lot of n-tiered applications.

We discuss strategies for reuse of code in the web presentation tier in Chapter 3. We cover
using ADO.NET effectively in Chapter 10. And we examine the Data Access Layer Application
block, a part of the Enterprise Library, in Chapter 11.

Using Serviced Components
Component Services, or COM+, provides a rich set of features in a component-hosting envi-
ronment, such as distributed transactions, just-in-time activation, object pooling, and
asynchronously queued components. In Chapter 7, we examine these features in detail.

Even though Component Services is a COM-based technology, Microsoft has added facili-
ties to the .NET Framework that allow managed types to be easily configured for use within
this environment. When you create .NET types that can be hosted under Component Services,
they are called Serviced Components.

Here’s a logical view of an architecture that uses Serviced Components (see Figure 1-3).
The critical feature of Component Services being leveraged from this architecture is its

ability to automatically roll back transactions that span several data sources. Even if the data
isn’t hosted on the same server or on the same vendor platform, the Distributed Transaction
Coordinator will automatically manage and then commit or roll back work that spans differ-
ent data stores.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE20

522xCH01.qxd 8/31/05 3:19 PM Page 20

Since it’s a web-based application, it’s possible to deploy all of the logical tiers of this
system to a single physical tier. Here’s a physical view of the deployment of this system into
production (see Figure 1-4).

Deployment to a single physical tier means that all layers of the application execute in-
process with one another. This is a great boon to performance. An extra hop across a process
boundary, or especially a hop across machine boundaries, can make an application perform
many times slower than when all components are created in-process.

The other thing to notice about this application is that sticky sessions are in use at the
load balancer layer in order to support the use of in-process sessions. The session data is left
in-process for the performance benefit gained by avoiding the extra network hop to retrieve
and retain the state information.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 21

Figure 1-3. Logical view of an architecture leveraging Component Services

522xCH01.qxd 8/31/05 3:19 PM Page 21

Figure 1-4. Physical view of the deployed system leveraging Component Services

One of the trade-offs of this approach is the decreased efficiency of the load balancing
algorithm. However, the load of this site is easily handled by the two web servers, and there
could be a third in the mix, for failover support, should one of the servers crash. So under
normal operations, with three servers handling the traffic, they don’t even break a sweat. The
loss in efficiency of the load balancing algorithm doesn’t sacrifice acceptable application
performance.

The other trade-off with this approach is that it makes the user-specific session informa-
tion prone to being lost when there’s a failure. Obviously if a server crashes, the session
information from that machine will be lost. It will also be lost when the process hosting the
application is recycled. This is done automatically by the ASP.NET Framework when the
memory consumed by an application exceeds a predefined threshold. This threshold can be
controlled via configuration. Session information will also be lost when a new version of the
application is deployed, even if it’s just a configuration file change or a hotfix to an ASPX page.
The design of the application has to anticipate this, and it must be accounted for in the design
of how session information will be used. Managing this without introducing the possibility of
your users losing work (even if it’s a shopping cart) can be very difficult.

Keep in mind that within the logical layers of the application tiers, it’s still a good idea to
design as if the layers are going to be deployed to separate physical tiers. This allows the sys-
tem to be distributed across physical tiers if it becomes desirable to do so at a later date. For
example, a Windows Form interface could be added to the application we just described, and
leverage the business service layer of the application using Web Services, while the web inter-
face could leverage the same services in-process (see Figure 1-5).

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE22

522xCH01.qxd 8/31/05 3:19 PM Page 22

Figure 1-5. A Win32 interface added to the mix

Using Component Services does come at a price. While it does not use the same COM
Interop layer that’s commonly used from .NET to communicate with COM servers, there’s still
some overhead incurred by hosting managed components in a COM environment. The inte-
gration is highly optimized in the design of Serviced Components, but it’s still an additional
layer of abstraction, and as such, won’t make anything faster. The decision to create Serviced
Components should be driven by a compelling need for one of the services provided by the
hosting environment. In this case, the services of the Distributed Transaction Coordinator
clearly fit the bill.

We provide a detailed discussion of the features of COM+ in Chapter 7. In Chapter 8, we
look at some of the options for calling services (like SOAP) once they’re configured within
COM+.

A Widely Distributed Service Application
Web Services can be used to provide a service layer to widely distributed clients. This applica-
tion deploys a data access layer to the IIS box running Web Services, and uses ASP.NET session
state to manage logins and state information (see Figure 1-6). This service layer is then

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 23

522xCH01.qxd 8/31/05 3:19 PM Page 23

leveraged by Windows Forms and Web applications distributed across several North American
locations. Web Service extensions are leveraged to encrypt authentication and sensitive data
on the wire.

Figure 1-6. A service application deployed to the World Wide Web

The data access layer leverages the Data Access Application Block, which is part of a
downloadable package called Enterprise Services. This set of services ships with all the source
code, and so can be customized. The Data Access Application Block ships with support for
SQL Server, Oracle, and DB2. DB2 requires the managed provider available from IBM. There is
also a stateful business object layer used within the Windows Forms user interfaces and dur-
ing the processing of a request for an ASP.NET page. It’s good to use stateful objects within a
process boundary; you need stateless objects when services could possibly be deployed to
different machines, processes, or even app domains.

Web Services are designed as a stateless service layer. This is considered to belong to the
middle tier of a distributed application, but has a very different design than a typical stateful
type designed with the principles described by OOAD.

The funny thing about SOAP, the “Simple Object Access Protocol,” is that it is not at all
object oriented. Services designed to be exposed using SOAP messages actually look a lot
more like traditional procedure function calls might: atomic methods that accept large
parameter lists that perform their work based entirely upon the information passed to them,
and when finished, are destroyed completely (see Figure 1-7, the class on the right).

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE24

522xCH01.qxd 8/31/05 3:19 PM Page 24

Figure 1-7. Chunky vs. chatty design in logical application layer designs

This is what it means to be stateless. There are no “fields” in the object sense. A service
class has no variables declared that have class level scope. There’d be no point to it, as instances
of a service type don’t necessarily survive across requests, even if they’re two requests from
the same client. If object pooling, or especially if just-in-time activation, is used, then objects
must be stateless. If they’re not, then state information could be passed from one user to
another as instances are grabbed out of the pool. This would yield unpredictable results at
best, behavior that could only fairly be described as a bug. This is what it means for an inter-
face to be chunky. Chatty interfaces are also sometimes called fine grained, while chunky can
also be called coarse grained (see Figure 1-7).

SOAP is also not necessarily “simple.” This has proven to be such a poor acronym that the
W3C has started saying it’s not an acronym at all. It’s just SOAP. They’ve renamed it the “XML
Protocol” (as if they can unacronymize something. That’d be like verbing the word acronym).
They should have gone with the “Service Oriented Architecture Protocol.” That works, doesn’t it?

This service layer sits in front of another generalized stateless layer that acts as the entry
point to the data access layer. This layer exposes types, whose methods each map directly to a
stored procedure living within DB2. The service layer may aggregate calls to different methods
on this data access layer. It may even create several different types from the data access layer,
and aggregate the results to prepare an entire result set to send back to the client. This is called
service aggregation, and it’s a common pattern at this public level of a service layer, as it’s
designed to minimize round trips from the client to the server. The service layer aggregates
data that meets the requirements of a specific user interface. Reuse is gained at the data access

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 25

522xCH01.qxd 8/31/05 3:19 PM Page 25

layer, whose services aren’t so tightly coupled to the requirements of a specific application,
but instead more generally map to different entities stored in the database.

The data access layer is what accepts a list of method arguments and transforms them
into the parameter objects and types defined at the database level. This creates a layer of
abstraction between the service consumer, who deals only in types defined in the .NET
Framework’s Common Type System, and the relational database, whose types depend on the
database vendor. This is the layer that calls the Data Access Application Block. This layer may
be so generalized as to lend itself to code generation in many cases. Given the definition of a
stored procedure, the method to wrap that stored procedure could be generated using types
from the CodeDom namespace and schema information from the relational database.

We cover Web Services in Chapter 6, with more on SOAP in Chapter 8. We discuss the Data
Access Layer Application Block, part of the Enterprise Library, in Chapter 11.

An Asynchronous Messaging Architecture
Durability and reliability are the main concerns of the architecture presented in Figure 1-8.
MSMQ and COM+ Queued Components are used to accomplish this. Clustering was not an
option considering the budget on this example project, and so to provide for “availability” of
the data access layer, MSMQ and database triggers are leveraged to programmatically syn-
chronize the data in these redundant servers.

This architecture is based entirely on XML. All of the controls in the user interface repre-
sent their state as XML documents, and it’s XML that gets packed into the body of the MSMQ
messages.

Users of this application don’t have a very fast connection, so page sizes are kept to a min-
imum. This means page developers will likely favor caching data on the web server to rebind a
control like a grid across postbacks, rather than rely on ViewState to maintain this information
on the client (see Chapter 4).

The data access layer on the web server needs to support asynchronous operations.
Commands that modify the data are sent to the data access abstraction layer, which doesn’t
actually execute the command, but packs the XML representing the request into the body
of an MSMQ message. This message is then placed in a queue, and execution continues in
the call stack on the web server. This means that the web server responses don’t wait for the
database work to be done before sending a result to the user. Users see a message that their
requests were sent and to check back later for results. See Chapter 8 for MSMQ examples.

Of course, sometimes synchronous access to the database is critical. When users want to
see data, you cannot tell them that a request for the data they want to see has been submitted,
and to come back later to see it. For synchronous requests for data, you use a simple timeout
listener loop within the data access abstraction layer. This monitors an incoming MSMQ
for a correlated result message, sent back from the queue listener when the work has been
completed. This architecture makes it very easy to put in a timeout should the request take
too long. This timeout period can (and should) be controlled by a configuration file. With a
10-second timeout specified in the configuration file, users get an error or warning message
if they wait any longer for a message to appear in the response queue.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE26

522xCH01.qxd 8/31/05 3:19 PM Page 26

Figure 1-8. A highly available MSMQ architecture

Once the message has been placed in the outgoing queue, a listener picks it up and
processes it from there. In this architecture, the queue listener extracts the body of the mes-
sage and posts it to SQLXML as a SOAP request for a Web Service. This facility is built into
SQLXML. Any stored procedure can easily be exposed with SQLXML listening for incoming
SOAP requests and automatically mapping them to the database stored procedure.

After the database work is complete, a response message may be prepared, depending on
whether the request was synchronous or not. For asynchronous requests, a “fire and forget”
model is used, and so no response message is necessary.

One major benefit of this architecture is that other non-web applications could leverage
the same MSMQ infrastructure (i.e., Windows Services, BizTalk Orchestration). The initiating
application need only know how to generate the transaction XML, and then throw it in the
queue. The listener takes over from there.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE 27

522xCH01.qxd 8/31/05 3:19 PM Page 27

Summary
The architectures presented here are by no means exhaustive of the choices available to you
when inventing your own technical infrastructure. We’ve put forth these to demonstrate some
of the various ways the pieces and parts of these services can be put together. The chapters
that follow present detailed examinations of each of the disparate services available. Mapping
these solutions to the nonfunctional requirements that are specific to your application and
enterprise will yield a solution that may be similar, but most likely not identical, to those we’ve
presented here.

CHAPTER 1 ■ OVERVIEW OF .NET APPLICATION ARCHITECTURE28

522xCH01.qxd 8/31/05 3:19 PM Page 28

The ASP.NET Request
Pipeline

The ASP.NET Framework is the entry point for much of the processing that occurs in the
different application architectures we examined in Chapter 1. When many people think of
ASP.NET, they think specifically of the Web Forms functionality built into the Framework,
which uses an instance of System.Web.UI.Page to generate HTML. This is, of course, the core
functionality of web application programming in .NET, and the task that many consider syn-
onymous with ASP.NET development. However, ASP.NET is an entire application hosting
framework, of which Web Forms are just a small part. In this chapter, we’re going to step into
the ASP.NET Worker Process and examine the work that goes on between the time that a
request comes in over a named pipe and a response gets marshaled back to Internet Informa-
tion Services (IIS). The process that occurs during this time is called the request processing
pipeline. This is because there’s a deterministic path that the request flows through, and pro-
cessing the Page object is just a small part of it. As we move through this pipeline, we’ll pay
special attention to the points of extensibility along the way, and where you can customize
how the request is processed. You’ll see that the Page handler, which handles requests for Web
Forms (resources with an ASPX extension), is just one of many types of handlers wired into the
Framework. We’ll also examine how we can create our own handlers to handle specific types
of requests.

Application and Context
When a request enters the pipeline, it’s handled by an instance of the HttpApplication class.
One of the first things HttpApplication does is create an instance of HttpContext and popu-
late it. This context object is available throughout the request processing pipeline, and
exposes many familiar types. Table 2-1 provides you with a quick look at some of the members
of HttpContext. Keep in mind that while many of these properties will be familiar in the con-
text of HttpContext, they’re not properties of the Page object, but properties of HttpContext.

29

C H A P T E R 2

■ ■ ■

522xCH02.qxd 8/31/05 3:21 PM Page 29

Table 2-1. A Sample of Members from System.Web.HttpContext

Member Name Type Meaning in Life

Application HttpApplicationState An instance of the Application object. This
type is a holdover from classic ASP, sticking
around for backwards compatibility. There’s
nothing this object can do that the cache
can’t do better.

ApplicationInstance HttpApplication This property points back to the instance
of HttpApplication that’s processing the
request.

Cache Cache The ASP.NET cache object. Another
instance that’s familiar within Page
processing, but is also available outside
of handler processing.

PreviousHandler HttpHandler An instance of the handler that rendered
the previous page. This is used in cross-
page postbacks to expose information
about the page that rendered the HTML
that caused the postback. This is exposed at
the page level as the PreviousPage property.

Profile HttpProfileBase Used by the personalization infrastructure.
It’s an instance of the current user’s profile
object.

Request HttpRequest The old familiar request object. Use this to
examine the details of the request that has
come into the server.

Response HttpResponse Another holdover from classic ASP. While
Response.Write should not be used
anymore, there are actually many useful
things that can be done with the type, such
as setting the content type of the response,
serializing binary data to the client, or
creating cookies.

Server HttpServerUtility A few useful methods are available on this
type that weren’t available in classic ASP.
For example, there’s a Transfer method
exposed by this type that moves execution
to a different page as Response.Redirect did
in classic ASP. Unlike redirection, however,
Transfer moves execution to another page
without causing another round-trip to the
client.

Session HttpSessionState Stores user specific session information.
This object is actually not available through
much of the pipeline, as part of the work
done during pipeline processing is the
restoration of session state. We’ll take a look
at the earliest point you can do some pre-
processing on the values that may be stored
in here.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE30

522xCH02.qxd 8/31/05 3:21 PM Page 30

Most of the process of establishing the HttpContext is just a matter of de-serializing
request details as they come in off the wire. The Request object’s QueryString collection is
nothing more than a convenient way to get to details about the URL of the request. The
ServerVariables and Cookies collections are a programmatic convenience that saves you from
manually parsing the raw HTTP text of the request. Other parts of the context, such as Session
and Cache, are restored from the memory space of the worker process. The ViewState, if pres-
ent, is restored from the hidden input whose value was posted as part of the request.

All HttpContext properties are available throughout the processing of the request. There’s
even an Item method that acts as a state bag (like Session, Cache, and Application), so you can
pass your own information along through the pipeline. You can use this to pass information
from a preprocessor into a Page handler. You’ll see an example of this as we move through our
examination of HttpApplication.

You can also acquire a reference to the context from any assembly, as long as it has a
reference to the System.Web assembly. The HttpContext type has a static member named
Current, which returns a reference to an HttpContext instance. In this code, a property named
CurrentWebAppFilter of type WebAppFilter is exposed. This is a custom type created for this
sample application that exposes properties any page can use to establish a user context. The
instance is stored in the Session, but no pages need be aware of this, as they just use this static
property to get to it. Because it’s in a shared assembly, the reference to the Context must be
programmatically established. This is how the helper class gets to the Session:

public static WebAppFilter CurrentWebAppFilter
{

get
{

HttpContext Context = HttpContext.Current;
if (Context.Session["WebAppFilter"] == null)

Context.Session["WebAppFilter"] = new WebAppFilter();
return (WebAppFilter)Context.Session["WebAppFilter"];

}
set
{

HttpContext Context = HttpContext.Current;
Context.Session["WebAppFilter"] = value;

}
}

Also keep in mind that this assembly has a reference to the System.Web.dll assembly, and
has a using System.Web statement at the top of the code file. You’ll need both to resolve the
references to the HttpContext type.

HttpApplication is perhaps the most important type in the ASP.NET Framework. It runs
the show. It receives the request from IIS, creates the HttpContext, and creates the instance of
the handler the request is for. Before it hands the request off to the handler, it authenticates
the request, checks the output cache to see if the response has been previously cached, and
deals with gathering the response generated by the handler and sending that back to IIS.

The entire pipeline looks something like Figure 2-1.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 31

522xCH02.qxd 8/31/05 3:21 PM Page 31

Figure 2-1. The ASP.NET request processing pipeline

In the next section we’ll take a closer look at the specific events that fire throughout
this pipeline. These events are important because extensions to this pipeline are how many
ASP.NET features have been implemented. They include Forms-based authentication and
HTTP output caching. Many features of the ASP.NET Framework that allow you to use IIS as a
host for different types of requests are implemented as HttpHandlers. These include not only
Web Form requests, but also requests for Web Services and requests for Remoted or Serviced
components.

The HttpApplication Life Cycle
The HttpApplication type raises a number of events as the request moves through the
pipeline (see Table 2-2). We’ll take a look at a couple of strategies for trapping these events and
extending the pipeline a bit later. First, let’s examine these events and the order they fire in.
Remember that these events fire with every request that’s handled by the Framework, so don’t
do anything really computationally intense, or you’ll create a hotspot and impair the applica-
tion’s performance.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE32

522xCH02.qxd 8/31/05 3:21 PM Page 32

Table 2-2. Summary of Events that Occur in the HTTP Request Processing Pipeline

Event Meaning in Life

BeginRequest First event in pipeline.

PreAuthenticateRequest Leveraged for authentication by Forms-based, Windows-based,
AuthenticateRequest and Passport authentication.
PostAuthenticateRequest

PreAuthorizeRequest Used for authorization by the ASP.NET Role Manager.
AuthorizeRequest Also taken advantage of by file authorization and URL
PostAuthorizeRequest authorization modules.

PreResolveRequestCache Used by the Output Cache module.
ResolveRequestCache
PostResolveRequestCache

PreMapRequestHandler New events to exert programmatic influence over the handler
PostMapRequestHandler to be used for the request.

PreAcquireRequestState Session state restored for persistence (memory, state server,
AcquireRequestState or SQL Server).
PostAcquireRequestState

PreRequestHandlerExecute Last event before and after execution of actual handler for
Page handler Fired request. After PreRequestHandlerExecute is finished, the
PostRequestHandlerExecute ProcessRequest method of the handler is called. This is where

the real nuts and bolts of the request processing actually
occurs.

PreReleaseRequestState Session state returned to persistence.
ReleaseRequestState
PostReleaseRequestState

PreUpdateRequestCache Used by the Output Cache module for moving return value of
UpdateRequestCache handler into the web server or client cache.
PostUpdateRequestCache

EndRequest Last chance to affect the output stream before it’s sent back
to IIS.

PreSendRequestHeaders Headers streamed out, and then content streamed out.
PreSendRequestContent

After the context of the request is established, the BeginRequest event is fired. Any Session
variables that exist are not yet available, but Request and Response, having been established as
part of the context, can be examined and exercised. You can check details of the request, such
as the protocol the request came in on (Http or Https), details of the URL such as the file type
being requested, or incoming cookies.

BeginRequest is the first opportunity you have to extend the processing done in the
pipeline. Afterward the security events, AuthenticateRequest and AuthorizeRequest, fire.
These are the events that the ASP.NET programmers catch to implement the security models
that ship with the Framework. For example, when the AuthenticateRequest fires and Forms-
based authorization is set up in the web.config, a check is made to see if the authorization
ticket cookie is part of the request. If it’s not, the request is redirected to the URL specified in
the configuration file for Forms-based authentication. In the authorization event, the users’
roles are checked against their allowed roles and the resource they’re attempting to access
(see Chapter 5 for details of these features).

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 33

522xCH02.qxd 8/31/05 3:21 PM Page 33

The number of events in the lifetime of the HttpApplication object has significantly
increased for ASP.NET 2.0. This is because for many events, a Pre and a Post event has been
added to the pipeline. At first glance it may seem odd to have an event occur after the original
event occurs. For example, AuthenticateRequest fires after the Framework has completed an
authentication check. So what do you need PostAuthenticateRequest for? The answer to that
lies in environments where many traps may be set up for the AuthenticateRequest event.
In these environments, you can ensure your event fires after all other processing has occurred
by trapping the PostAuthenticateRequest event.

The other consideration is backwards compatibility. The ASP.NET team couldn’t just
replace all of the events with a Pre and Post event pair, because that would break all existing
global.asax files and HttpModule implementations.

In any case, the flexibility developers have at their disposal has increased dramatically.
Most events in the pipeline now have a sister event that occurs before any processing has been
done for this step in the pipeline (the Pre event), and another that occurs after all processing is
complete (the Post event).

The built-in Role Manager, a feature new to ASP.NET 2.0, uses the PreAuthorizeRequest
event as its entry point for processing. This is where the Role Manager checks to see if role
management is on. If it is, the manager checks to see if a user object exists; and if it’s not, the
manager creates a generic user. This is also where the roles cookie is managed. (We’ll examine
the Role Manager specifically in Chapter 5.)

Next up after the security events is ResolveRequestCache. Pre and Post events have been
added for this event as well.

In ASP.NET 1.x, this event is the last chance for you to extend the pipeline before an
instance of the HttpHandler is created for the request. With the addition of the Pre and Post
MapRequestHandler events (below), this is no longer the case, and this event is now properly
the domain of the request cache.

This is the entry point for the Cache module. The Cache module is the extension to the
runtime that manages sending and retrieving pages from the cache. You may already be
familiar with the OutputCache directive.

<%@ OutputCache duration="5" VaryByParam="*" %>

After the first time the page is requested, the actual markup produced during page pro-
cessing is put into the Output Cache. In this event trap, the ASP.NET runtime examines the
details of the request, and sees if there’s a corresponding entry in the cache. When it finds a
matching entry, the runtime retrieves that pregenerated HTML from the cache, and sends it
down the output stream.

An instance of the Page object that would normally handle the request is never even cre-
ated. This can improve the performance of your application by many orders of magnitude.
Output caching can be declared at the UserControl level as well, allowing you to cache static
portions of your page, while dynamically generating the parts that are unique across users
and requests.

The VaryByParam attribute, when used with the value of *, results in a different entry in the
cache for each unique value carried in the URL as a query string, and for each different form
value in an HTTP Post. This powerful facility can be used to cache each unique version of a
page, even if its content is dynamically generated based on input variables such as these.
While output caching is highly recommended, as it can vastly improve the performance of
your site, this event is not a common one to trap and extend the pipeline with.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE34

522xCH02.qxd 8/31/05 3:21 PM Page 34

The next events, PreMapRequestHandler and PostMapRequestHandler, are new to
ASP.NET 2.0, and follow a different pattern in that there’s no MapRequestHandler event. In
ASP.NET 1.x, however, MapRequestHandler was a well-known occurrence in the request pro-
cessing pipeline. For someone trying to dynamically map handlers based on the context of the
request (user, path info, and so forth.), it was a problem that no hook existed to intercept this
event. Other events further up or down the pipeline had to be leveraged for this purpose, even
if they were designed for other types of processing. To address this problem, the ASP.NET team
added this new pair of events. You can use them to affect how the pipeline selects a handler, or
to override the Framework’s choice and select one programmatically yourself. When the Post
event fires, an instance of your handler has been created; so by examining the extension of the
URL being requested, you can actually cast the generic Handler property of the Context (typed
as IHttpHandler) into a concrete class. We’ll take a close look at these handy methods later in
the chapter in the “HTTP Handlers” section.

The next event is AcquireRequestState. This event exposes your first opportunity to use or
create any Session variables. It’s also a hook you can use to implement custom session man-
agement, but the need for this is rare, since ASP.NET exposes three options (in process, state
server, and SQL Server) out of the box, and version 2.0 exposes a provider model for customiz-
ing that behavior of the session server. You can check Session variables in this event for user-
specific settings, or create a Session variable to use when your handler executes.

For example, let’s assume that there’s a requirement to log how many Session variables
are created on a given request. It’s possible that they can be created in a Page Load event, in a
control-specific event trap on a page, or in a preprocessor like PreRequestHandlerExecute. To
know how many have been created, you’ll need to know how many existed at the beginning of
the request. You can use AcquireRequestState to count them and squirrel this count away:

private void HttpAppBase_AcquireRequestState(object sender, EventArgs e)
{
HttpContext ctx = HttpContext.Current;
if (ctx.Handler is ISessionCounter)
((ISessionCounter)ctx.Handler).SessionVarCount = ctx.Session.Keys.Count;

}

First you acquire a reference to the request context. You’ll use this to acquire references
to both the Session and the Handler. Next you check to see if the Handler implements the
ISessionCounter interface. This is how you can be sure the requested page is one you should
track to see how many session variables have been created for it. Let’s take a look at the defini-
tion of this sample interface.

■Note All of the code for the Session Counter demo can be found within the Code05 project in
Global.asax.cs and CreateSessionVars.aspx.

public interface ISessionCounter
{
int SessionVarCount { get; set; }

}

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 35

522xCH02.qxd 8/31/05 3:21 PM Page 35

This is a very simple interface, which exposes an integer for you to use to report the count
of session variables at the moment session state is restored.

This code allows you to move custom information from a preprocessor into an instance of
a request handler. To pass this information to any handler, the implementation needs only to
inherit from this interface:

public class CreateSessionVars : System.Web.UI.Page, ISessionCounter
{
private int _SessionVarCount;
public int SessionVarCount
{
get { return _SessionVarCount; }
set { _SessionVarCount = value; }

}
//Snip…

This page uses implementation inheritance with System.Web.UI.Page as its base class, as
is the usual case for ASPX code-behinds, but then takes the additional step of implementing
the ISessionCounter interface. The page will now be instructed by the request preprocessor
as to how many session variables existed when the session state was first restored. It can do
whatever it needs to with this information. In this case, you’ll use it to expose a button to cre-
ate a user-selected number of session variables, and then track the deltas as postbacks occur.

Leveraging this interface-based approach to polymorphic handler types is a common
method to check type information on the handler in a preprocessor, and pass information
from the preprocessor pipeline into a handler. You can use custom attributes this way as well,
for an aspect-based approach yielding similar polymorphic behavior.

Figure 2-2 shows the page as it appears when it’s first rendered.

Figure 2-2. The CreateSessionVars page on its first rendering

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE36

522xCH02.qxd 8/31/05 3:21 PM Page 36

Here is the markup from CreateSessionVars.aspx.

<%@ Page language="c#"
CodeFile="CreateSessionVars.aspx.cs"
Inherits="CreateSessionVars" %>

<HTML>
<HEAD>
<title>CreateSessionVars</title>

</HEAD>
<body>
<form id="Form1" method="post" runat="server">

How many variables? <asp:TextBox Runat=server id=txtCount text=0 />
<asp:CompareValidator runat=server ControlToValidate=txtCount

Operator=DataTypeCheck
Type=Integer
ErrorMessage='Must be an integer'
Display=Dynamic />

<asp:Button Runat=server ID=btnSubmit Text='Create them' />

<asp:Label Runat=server ID=lblOutput />

</form>
</body>

</HTML>

And here are the Button Click and PreRender events from the code-behind of
CreateSessionVars.aspx.cs.

private void btnSubmit_Click(object sender, System.EventArgs e)
{

int Count = int.Parse(txtCount.Text) + Session.Keys.Count;

for (int i = Session.Keys.Count; i < Count; i++)
{

Session[string.Format("sessionvar{0}",i)] = i;
}

}

private void CreateSessionVars_PreRender(object sender, EventArgs e)
{

lblOutput.Text = string.Format(
"Session count at start of request: {0}
" +
"Session count at end of request: {1}
",
this.SessionVarCount, Session.Keys.Count);

}

Since the preprocessor passes the session variable count into the Page property each time
the page is requested, here’s how the page renders after a 1 is posted back to the server (see
Figure 2-3).

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 37

522xCH02.qxd 8/31/05 3:21 PM Page 37

Figure 2-3. The CreateSessionVars page on its second rendering

And then, after the first postback, here’s the same page after a 3 is posted back (see
Figure 2-4).

Figure 2-4. The CreateSessionVars page on its third rendering

By trapping the AcquireRequestState while preprocessing the page, you can keep track of
how many Session variables are created during the lifetime of the request, regardless of where
they’re created. In this simple example you’re only creating them in the Button Click event
trap, but this pattern works even if you’re creating or destroying Session variables in other
preprocessors.

The next event is PreRequestHandlerExecute. As you’ll see in just a bit, any piece of
code can process requests that come into the ASP.NET Framework by implementing the
IHttpHandler interface. The main task in implementing this interface is to provide code

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE38

522xCH02.qxd 8/31/05 3:21 PM Page 38

for the ProcessRequest method. This is the last preprocessing event that fires before the
ProcessRequest method is called on the handler. It’s your last chance to do any pre-processing,
before the code from your Page object starts executing.

Almost everything is available to you from this event. The context has been long established,
so the Request, Response, Cache, and Cookies are all available. Session state has been restored
and is available. Plus, the context handler has been created and the HttpContext.Handler
property has exposed an instance of it. In the case of Page processing, the only thing not
available at this point are the values ViewState restores, as those don’t move from the Post
variables to the protected instance variables until the page is initialized. So you couldn’t, for
example, check the value of a textbox on a well-known Page type that had the textbox declared
as public. You could, of course, still retrieve this value from the Post using Request.Form. (We’ll
examine more of ViewState in Chapter 4.)

You’re able to replace the handler at this point with one of your choosing:

private void Global_PreRequestHandlerExecute
(object sender, EventArgs e)
{
this.Context.Handler = new Dummy();
}

This actually swaps out the handler just before ProcessRequest is called on it. The Dummy
type in this example has to use the Page or another type that implements IHttpHandler as its
base class, or explicitly provide an implementation of the IHttpHandler interface. In ASP.NET
2.0 you can also do this in the PostMapRequestHandler event. There are a lot of things you can
break by doing this, but with careful planning, dynamically choosing a handler at runtime can
be a powerful means to provide context- or user-specific handling of requests that are com-
pletely in your control.

Another example is to create instances of User Controls depending on user preferences or
authorizations, cast the handler into a known page type that exposes those User Controls as
properties, and dynamically create instances of the appropriate controls and assign them to
the properties. Keep in mind that this all occurs before any Page specific code is ever executed.
The exception, of course, is the constructor, which has to be fired when the handler is first
instantiated. Move initialization code from your constructor to the Page Init method override,
and you can avoid issues that might otherwise arise.

At this point the HttpApplication code calls ProcessRequest on the handler. We’ll talk
about custom handlers shortly. The Page handler has a well-known life cycle. Init is called.
The Load event is fired. Control-specific events are fired, the Pre-Render event fires, and then
the Unload event fires. (We examine this life cycle very closely in Chapter 3.)

After the Page handler executes and renders, processing returns to the HttpApplication
pipeline. The next event in this pipeline is PostRequestHandlerExecute. You can use
PreRequestHandlerExecute and PostRequestHandlerExecute in pairs to “box in” the lifetime of
a resource over the lifetime of the Page object. When communicating with the Page object,
remember to use interfaces to avoid tight couplings between specific instances of Page objects
and your more general pre- and post-processing code. As you’ll see in the next section, the
processors can be used not only across pages in a single application, but also, by implement-
ing HttpModules, they can be reused across applications. Avoiding tight couplings between
these processors and Page objects will make it easier to reuse them as your project grows to
encompass more than one IIS application.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 39

522xCH02.qxd 8/31/05 3:21 PM Page 39

Built-in Framework Extensions to the Pipeline
One of the best ways to understand how to use the request processing pipeline is to examine
the examples that ship with the Framework. Much of the functionality that ships with ASP.NET
is implemented by extending this pipeline. We’ll examine these extensions in this section.

Each of the events in the pipeline can actually be captured by n different implementa-
tions of traps for these methods. Table 2-3 provides a summary of the traps implemented for
canned Framework functionality.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE40

Table 2-3. Summary of Built-in Framework Modules and Events They Trap

Module Enters Leaves Notes

Windows AuthenticateRequest None If the configuration is set
Authentication to use Windows security

within the ASP.NET
Framework (and anonymous
access is off at the IIS level),
this method loads the user
name out of the server
variables and creates an
instance of the Windows
Principal to populate the User
property of the context.

Forms AuthenticateRequest EndRequest If the configuration is set
Authentication to use Forms-based

authentication, this module
verifies the existence of the
authentication ticket and
redirects the user to the login
page if it’s not present. The
EndRequest trap deals with
a redirect to the originally
requested URL after the
user first logs in.

Passport AuthenticateRequest EndRequest You can leverage Passport
Authentication authentication using the

Passport SDK. (See Chapter 5
for details.)

Role Manager PreAuthorizeRequest EndRequest The Role Manager allows
the membership provider
to store a role-based
resource authorization.
PreAuthorizeRequest
populates the user object with
the roles by loading the roles
for the user through the
membership API. EndRequest
saves this information as a
cookie, so it doesn’t have to be
reloaded with each request.

522xCH02.qxd 8/31/05 3:21 PM Page 40

Module Enters Leaves Notes

URL Authorization AuthorizeRequest None This trap checks with the
configuration file to make
sure users have access to the
resource. It sets the status
code to a security violation
if they don’t. If this is the case,
it terminates the processing
of the request with a call to
HttpApplication.➥
CompleteRequest.

File Authorization AuthorizeRequest None Makes sure the requesting
users have NT permissions
to access the file. Returns a
security exception status and
terminates processing of the
request if they don’t.

Anonymous
Identification PostAuthenticateRequest None This module creates the

anonymous identification
cookie in PostAuthenticate
request if it doesn’t already
exist (and anonymous
identification is enabled).
This module also uses
PostAcquireRequestState to
alter the URL when cookieless
anonymous identification is
being used.

Profile AcquireRequestState EndRequest The Profile module uses
these traps to communicate
with the personalization
provider to load and store
personalization data from
persistence.

Output Cache ResolveRequestCache UpdateRequestCache These events were added
specifically to implement
output caching. This is where,
upon entering, the Output
Cache module checks
incoming requests to see if
they match an entry in the
cache, and then when it’s
leaving, it updates the cache
with the output if the
OutputCache directive
directs it to do so.

Continued

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 41

522xCH02.qxd 8/31/05 3:21 PM Page 41

Table 2-3. Continued

Module Enters Leaves Notes

Session AcqureRequestState ReleaseRequestState The Session module uses
these events to retrieve and
return state variables from
persistence, as selected in
configuration. EndRequest is
also trapped to be sure the
ReleaseRequestState was
successfully called (relevant
when request processing is
terminated programmati-
cally). There is also a Session
ID module that is used to
manage cookieless session
IDs.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE42

You can see from Table 2-3 that much of the functionality the Framework provides is
implemented as request processing pipeline extensions. This architecture is similar to the
“out-of-band” processing in Web Services that so many WS-* specifications describe. Notice
how many security-related modules are implemented for the Framework. Security is a natural
candidate for out-of-band processing because it’s functionality you want applied to every
request. It’s code you want to keep out of page-specific code files because it applies to all
requests and you don’t want to have to repeat some logic on a page-by-page basis to enforce it.

There are also many modules for ASP.NET 2.0 that leverage the new, built-in provider pat-
tern. This pattern is a layer of abstraction that allows you to store information in a manner
that the consuming code neither knows nor cares about. There are two implementations of
the pattern that ship with ASP.NET 2.0: one for Active Directory and one for SQL Server. You
can also do your own implementation of the provider pattern if you want to use your own,
pre-existing, underlying data stores for persistence. These providers are leveraged by these
APIs: membership, personalization, and roles.

■Note See the SDK docs for more information on these new functional areas in ASP.NET 2.0.

Extending the Request Pipeline
There are two primary ways to write code to extend the pipeline. The one you choose depends
on the scope of the extension you’d like to do, as one way is IIS application specific, while the
other can be applied to any number of IIS applications.

The first way is to add a global.asax file to a Web project. The code behind for the
global.asax defines a class that inherits from the HttpApplication class. Instances of this class
then become the objects that handle all requests for that IIS application. Because of the use of
the global.asax, which is deployed to a specific IIS application root, it’s not a method that’s
best suited for reuse across applications and servers. To get reuse out of extensions to the

522xCH02.qxd 8/31/05 3:21 PM Page 42

pipeline, you create an HttpModule. You can leverage it from any IIS application via a config-
uration file. We provide a detailed discussion of modules in a bit, but first: a look at the
global.asax.

Inheriting from HttpApplication
The code template for the code behind the global.asax has stubs of traps for a few events in
the request pipeline. Also present are Application_Start and Application_End, as well as
Session_Start and Session_End. These are holdovers from classic ASP. The application start
event is fired when the first instance of HttpApplication is created within an application
domain. Requests are processed within an IIS application from a pool of HttpApplication
objects.

Session start and end are fired as sessions are created and torn down. You can do your
own user-specific allocation and disposal of resources in traps of these events.

The events of the HttpApplication pipeline can be trapped by using a method naming
convention:

Public void Application_OnEventName(Object sender, EventArgs e)

The ASP.NET runtime gives global.asax special treatment. Even though there’s no code
creating the delegate and passing it to this event definition, code is generated behind the
scenes that sinks the event. This is a very VB-like strategy, telling the developer to “pay no
attention to the code generator behind the curtain.”

You also cannot override the default constructor and provide your own code to sink these
events, as the code generation that occurs at runtime also generates a default constructor for
the same class, resulting in a compile error when you provide your own default constructor.

There’s also no way to reference any public field defined at the class level with the inline
script model. Adding a public static field to this class definition is the recommended alterna-
tive to using the Application object. Accessing a static field is much quicker than doing a
lookup from the Application state bag. If any modifications are made to these fields, access
must be synchronized, of course. But this is the case with the Application object as well (it
provides the Lock and Unlock methods to do this), and it’s best to use these fields for read-only
information you want to make available to your entire application.

However, with the inline script model, the class doesn’t exist until the code generation
step at runtime, and unlike most of the dynamically created classes in the ASP.NET 2.0 envi-
ronment, you cannot reference it within the integrated development environment (IDE) at
design time. This is true even when you add the ClassName attribute to the Application
directive.

For these reasons, as well as the other many benefits of the code-behind model, there are
benefits you can gain from using the ASP.NET 1.x model for the global.asax, instead of relying
on the template in ASP.NET 2.0.

When a global.asax is added to a Web project, the default template uses on inline script
block:

<%@ Application Language="C#" %>

<script runat="server">
...
</script>

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 43

522xCH02.qxd 8/31/05 3:21 PM Page 43

To revert to the code-behind model, remove the script block and add the Inherits attrib-
ute to the Application directive:

<%@ Application Language="C#" Inherits='MyImpl' %>

Now add a class file to the App_Code directory of your project and name it MyImpl (or what-
ever class you named with the Inherits attribute). Have this class use HttpApplication as its
base class:

public class MyImpl : HttpApplication
{
…
}

This will leverage the ASP.NET 1.x model for the global.asax, with the exception that, by
default, the class isn’t compiled until runtime (as is the case for any class in the code direc-
tory). The type will still show up via IntelliSense in the IDE, and you can still code against it in
a strongly typed manner.

To trap HttpApplicaiton events, you now have two options. The aforementioned naming
convention will work. Or you can add delegates to the base class events from the constructor.
The following class traps both the BeginRequest and PreRequestHandlerExecute events: one by
explicitly creating the trap; the other by using the naming convention. It also declares a static
field that will be available throughout the application:

using System;
using System.Web;

public class MyImpl : HttpApplication
{

public static string SomeStaic = "This is a static variable";

public MyImpl()
{

this.PreRequestHandlerExecute += new
EventHandler(MyImpl_PreRequestHandlerExecute);

}

void Application_OnBeginRequest(object sender, EventArgs e)
{

Response.Write("Entering BeginRequest
");
}

void MyImpl_PreRequestHandlerExecute(object sender, EventArgs e)
{

Response.Write("Entering PreRequestHandlerExecute
");
}

}

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE44

522xCH02.qxd 8/31/05 3:21 PM Page 44

There’s no runtime difference between these techniques: one relies on a naming conven-
tion and “magic” behind the scenes, and the other clearly documents the existence of the
event trap and allows you to use method names of your own choosing.

You can use the following Web Form to exercise your HttpApplication derived class.
Here’s the markup for Default.aspx:

<%@ Page Language="C#"
CodeFile="Default.aspx.cs"
Inherits="_Default" %>

And here’s the code from Default.aspx.cs:

public partial class Default_aspx
{

protected override void OnInit(EventArgs e)
{

this.Load +=new EventHandler(Default_aspx_Load);
this.PreRender +=new EventHandler(Default_aspx_PreRender);

}

void Default_aspx_Load(object sender, EventArgs e)
{
Response.Write(MyImpl.SomeStaic + "
");
}

void Default_aspx_PreRender(object sender, EventArgs e)
{
Response.Write("Page Handler Fired
");
}

}

Notice in the ASPX file that all of the markup has been removed. You should do this when-
ever you use Response.Write, because using this method pre-empts the page-rendering
process. Requesting the page produces the results shown in Figure 2-5.

The first two lines are output during preprocessing, before the Default_aspx type has
executed. The last two lines are output by the page processing, and the first of the two here
accesses and outputs the static field declared on your HttpApplication class. Note that this
value is shared across pages and across users. A change made for one user will be reflected for
all users. Any modifications to it must be synchronized to be thread safe. If the type requires
more complex construction semantics, you can add a static constructor to your derived type,
as in this example:

public static DataSet StateList;

static MyImpl()
{

StateList = new DataSet();
StateList.ReadXml("http://www.IntertechTraining.com/StateList.xml");

}

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 45

522xCH02.qxd 8/31/05 3:21 PM Page 45

Figure 2-5. Output of the Default.aspx page in an application with our custom global.asax

One final note about inheriting from HttpApplication: Using the strategies outlined here,
the actual global.asax is nothing more than an Application directive. In Visual Studio .NET
2003, the IDE won’t actually show the contents of this file; it has to be opened from the file sys-
tem with another editor to see the directive. Now in Visual Studio .NET 2005, it won’t give you
a code-behind. Fickle. Figure 2-6 displays your options when you add a new Global Applica-
tion Class.

Figure 2-6. The Visual Studio .NET 2005 dialog for adding a Global Application Class. Notice the
option to Place code in separate file is disabled.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE46

522xCH02.qxd 8/31/05 3:21 PM Page 46

The code file the global.asax inherits from doesn’t have to be in the App_Code directory.
In ASP.NET 1.x, it was compiled into the assembly containing all the compiled code behind for
the pages. You could place a standalone assembly into the bin directory (and add a reference
to it to have the IDE copy it in), and reference the fully qualified name of a type in that assem-
bly that inherits from HttpApplication.

This is an easy strategy for reusing your global.asax implementation across different IIS
applications. Just add a reference to the assembly within whatever application you want to use
it from. Of course, you’ll need to add a reference to the System.Web assembly in the project
where you create the assembly, as this is where HttpApplication is defined. You can even
create the class as an abstract base class and have functionality that’s customizable from
application to application.

Let’s take at look reusing a definition of HttpApplication across different IIS Applications
by creating a new class library project as shown in Figure 2-7.

Figure 2-7. Add the project dialog. Select the Visual C# project type and the Class Library
template.

Add a reference to the System.Web assembly by right-clicking the References folder and
choosing Add Reference, as shown in Figure 2-8.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 47

522xCH02.qxd 8/31/05 3:21 PM Page 47

Figure 2-8. The Add Reference dialog. Select the .NET tab and the System.Web.dll assembly.

Add a class file to the project and name it GenericAbstractHttpApp. Here’s the code you
can provide for this new abstract base class:

using System;
using System.Web;
using System.Web.Mail;

namespace HttpAppReuse
{

public abstract class GenericAbstractHttpApp : HttpApplication
{

public GenericAbstractHttpApp()
{

this.Error +=
new EventHandler(GenericAbstractHttpApp_Error);

this.BeginRequest +=
new EventHandler(GenericAbstractHttpApp_BeginRequest);

}

public abstract bool RequiresSSL { get; }

private void GenericAbstractHttpApp_Error(object sender, EventArgs e)
{

HttpContext ctx = HttpContext.Current;
Exception ex = this.Server.GetLastError();
MailMessage m = new MailMessage();
string sBody;

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE48

522xCH02.qxd 8/31/05 3:21 PM Page 48

sBody = ex.Message + "\n";
sBody += ex.StackTrace;

Exception ie = ex.InnerException;
Exception last = ex;
while (ie != null)
{

sBody += "\n\n--------------------------";
sBody += "\n" + ie.Message;
sBody += "\n" + ie.StackTrace;
last = ie;
ie = ie.InnerException;

}

m.To = "YourEmail@YourDomain.com";
m.Subject = "Intertech Training Exception";
m.Body = sBody;
m.From = "Exception@IntertechTraining.com";

SmtpMail.Send(m);
Response.Redirect(String.Format

("/ErrorOccurred.aspx?Message={0}",
Server.UrlEncode(last.Message)));

}

void GenericAbstractHttpApp_BeginRequest(object sender, EventArgs e)
{

HttpContext ctx = HttpContext.Current;

if (this.RequiresSSL)
if (!ctx.Request.IsSecureConnection)

ctx.Response.Redirect(
Request.Url.ToString().Replace("http:", "https:"));

}
}

}

This class provides two pieces of functionality. The first is in the application’s Error event.
Any IIS application that uses this class as its base class for the global.asax e-mails any error
that occurs to the recipient specified in the “To” line of the mail message. This includes the
entire call stack of the error and the type and line number where the error occurred. The Error
event trap then redirects to a generic error page.

The second piece of functionality enforces that a site must be served over Secure Sockets
Layer (SSL). This is where the abstract member becomes relevant. This is functionality you
don’t want to leverage from any site, only those that need to be served over a secure channel.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 49

522xCH02.qxd 8/31/05 3:21 PM Page 49

E-mailing the error message is functionality that can be used from any application, so the
abstract Boolean RequiresSSL allows consumers of our type to choose to run this functionality
or not.

You can leverage this functionality from your existing website. From the Web project, add
a reference to the assembly you’ve just created, as shown in Figure 2-9.

Figure 2-9. The Add Reference dialog. Select the Browse tab and the assembly created in the
last step.

Now change the MyImpl class to inherit from your new base class instead of directly from
HttpApplication:

public class MyImpl : HttpAppReuse.GenericAbstractHttpApp

Since the new base class is abstract, you must also override its abstract member.

public override bool RequiresSSL
{

get { return true; }
}

Now all requests to .NET resources in your application will be forced to SLL. You could set
the property to false and continue to leverage the error handling mechanism without forcing
pages to be served over a secure channel. Notice also that your existing event traps continue
to work. You’re now extending the functionality of your standalone base class instead of
HttpApplication.

If you don’t need to vary functionality across applications, you can create your class as a
concrete base class instead of an abstract one. Then you can reference the class name directly
from the Inherits attribute of the Application directive in your global.asax.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE50

522xCH02.qxd 8/31/05 3:21 PM Page 50

Implementing an HttpModule
The second method of extending the pipeline is to implement an HttpModule. Modules are
Microsoft’s intentional design for reusing pre- and post-processors across IIS applications.
The last technique you looked at (that of inheriting from HttpApplication in a standalone
assembly and reusing across IIS applications) has a serious limitation that modules don’t
have: You can only use one class per application (even though you can reuse that same class
across several applications).

HttpModules are designed so that several can be plugged into a single IIS application. The
extensions that Microsoft adds to the pipeline that you examined previously are implemented
as HttpModules. So by default, any IIS application has about a dozen modules plugged in and
extending the pipeline.

Modules are designed to be “plugged into” the pipeline using the web.config file. You can
add a module to all IIS applications by adding it to the web.config at the root of a web server,
or you can add modules to specific applications by adding them to the web.config at the
virtual root of an application.

Under the system.web element of the web.config is an HttpModules element. Any number
of modules can be added using child Add elements under the HttpModules element. Here’s a
configuration snippet that adds the module SomeModule.

<httpModules>
<add name="SomeModule" type="ModuleDoc.SomeModule,ModuleDoc"/>

</httpModules>

The type attribute is of the format TypeName, AssemblyName. The assembly containing
this type should be present in the bin directory of the application using the module.

Creating a module is merely a matter of implementing the IHttpModule interface. When
you add a type implementing this interface to the request processing pipeline, the Framework
calls two methods on this interface: Init and Dispose. These are the hooks to use for setting
up and tearing down your module.

Here’s the definition of the IHttpModule interface:

public interface IHttpModule
{

public void Init(HttpApplication context);
public void Dispose();

}

Notice the argument passed to the Init method. It’s an instance of HttpApplication. With
this, the implementation of the module has access to all the details of the current request, and
it can act on them in the same way a type derived from HttpApplication can. It’s usually a
good idea to squirrel away a reference to this context argument in a class level variable so you
have access to it from your event traps.

Which events you trap depends on what the module is intended to do. All HttpApplication
class events are available. From the Init method, these events can be sunk using the instance
passed in as an argument.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 51

522xCH02.qxd 8/31/05 3:21 PM Page 51

In the same project where you created the reusable HttpApplication derived type, add a
class file named MyHttpModule, add a using System.Web declaration, and declare it as imple-
menting the IHttpModule interface. In Visual Studio .NET 2005, there’s a handy shortcut for
implementing the interface. Hover around the name of the interface until you see a bar under
the “I.” This is called a Smart Tag. These are peppered throughout Visual Studio .NET 2005,
and can be handy in a number of contexts. Click this and some choices appear, as shown in
Figure 2-10.

Figure 2-10. The interface implementation Smart Tag

Choose to “Implement interface 'IHttpModule'” and your class will look something
like this:

public class MyHttpModule : IHttpModule
{

public MyHttpModule()
{

}

#region IHttpModule Members

public void Dispose()
{

throw new NotImplementedException();
}

public void Init(HttpApplication context)
{

throw new NotImplementedException();
}

#endregion
}

Implementation is then pretty simple. Let’s implement this module to intercept any
request for a page with a CFM extension and rewrite the path to a like-named ASPX page.

First add a private field to the class to squirrel away the reference to the application
instance. Then set up a trap for the BeginRequest. That’s when the check of the extension is
made, and a corresponding rewrite of the path occurs. The finished class looks like this:

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE52

522xCH02.qxd 8/31/05 3:21 PM Page 52

public class MyHttpModule : IHttpModule
{

private HttpApplication app;

public MyHttpModule()
{ }

public void Dispose()
{ }

public void Init(HttpApplication context)
{

app = context;
app.BeginRequest += new EventHandler(app_BeginRequest);

}

void app_BeginRequest(object sender, EventArgs e)
{

string s = app.Request.Path;
if (s.IndexOf(".aspx") == -1)

if (s.Substring(s.LastIndexOf(".") + 1, 3) == "cfm")
app.Context.RewritePath(s.Substring(0,s.Length-3) + "aspx");

}
}

To use this module from a web application, add a reference to the assembly where it’s
defined, and add an add element as a child of the HttpModules element.

<httpModules>
<add name="CFMRedir"
type="HttpAppReuse.MyHttpModule,HttpAppReuse"/>

</httpModules>

The last step is to map the CFM extension to the .NET Framework. You can do this in the
Application Configuration section of the IIS properties for the web directory, as shown in
Figure 2-11.

Figure 2-11. Mapping the CFM extension to the ASP.NET Internet Server Application Program

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 53

522xCH02.qxd 8/31/05 3:21 PM Page 53

Now request any page from the site. Change the extension in the address bar of the
browser to .cfm and resubmit the request. The server redirects to the like-named ASPX page
and sends the response down without batting an eye. You can use a similar strategy to ease
migration for your users from a website built on an older technology to one built using
ASP.NET.

HTTP Handlers
HttpApplication is the type that manages the request as it moves through the pipeline. Up to
now we’ve examined the events along that pipeline and the mechanisms at your disposal for
extending its functionality. A critical step of that process is creating and executing the request
handler. The Page handler, which is an instance of System.Web.UI.Page (or any type derived
from that type), deals with ASPX pages. In this section we’re going to take a look at what it
takes to be a handler that the Framework recognizes, some of the other handlers that are built
into the Framework, and how to create your own handlers to custom process specialized
requests.

So what does it take to be a handler? How does the Framework know how deal with an
instance of the Page class, a derived type that didn’t exist at the time the Framework was
compiled? Via polymorphism, of course.

The only thing the pipeline cares about is a simple interface named IHttpHandler. Any
type that implements this interface qualifies to receive requests from the ASP.NET Framework
and process them however it sees fit. Once a type implements this interface, it’s associated
with requests via any combination of file name, file extension, or request type.

For example, the extension ASPX is mapped to the Page handler factory. The pipeline
hands the request off to this type by calling a method on the IHttpHandler interface. This class
looks at the request, creates an instance of the corresponding page object, and hands the
request off to it via the same interface method, as shown in Figure 2-12.

Figure 2-12. HttpApplication leaves it to the Page Factory to create the correct instance of the

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE54

522xCH02.qxd 8/31/05 3:21 PM Page 54

Handlers Built into the Framework
A few handlers are built into the ASP.NET 1.x versions of the Framework, and ASP.NET 2.0 adds
quite a few more. Handlers can be used for any type of specialized request processing. They
can be mapped to a specific URL (as is the case with trace.axd), or the can be mapped to a
specific extension (as is the case with *.aspx).

Handlers can also respond to specific HTTP request types (GET, POST, HEAD, and oth-
ers). There actually is a handler that rejects outright any request type that is not a GET, POST,
or HEAD (the HttpMethodNotAllowed handler).

Table 2-4 is a list of the handlers built into the Framework and a brief description of the
work that they do. A detailed discussion of some of the more prominent handlers follows.

Table 2-4. Handlers Built into the ASP.NET Framework

Http Handler Type File Name/Extension Description

System.Web.Handlers. trace.axd Responsible for rendering the trace
TraceHandler report when tracing is enabled at the

application level.

System.Web.Handlers. WebAdmin.axd Renders an interface for
WebAdminHandler administration of a web application.

This handler actually redirects the
request to the Web Admin
application, passing along the name
of the application where the request
was made as a query string
parameter. (see Chapter 5 for details
on this tool). This admin tool then
acts as an editor for the web.config
of the requesting application.

System.Web.Handlers. WebResource.axd A handler for extracting resources
AssemblyResourceLoader from assemblies and returning them

to clients. The resource is described
using query string parameters. This
handler can be used from the src
attribute of a script or image
element, and can also be used from
a link element to return a Cascading
Style Sheet.

System.Web.Handlers. precompile.axd Used to compile all pages and code
PrecompHandler in an application after it has been

deployed. This handler finds all
pages in the site and types in the
App_Code directory and proactively
compiles them; this way users don’t
experience any lag when they
request a page for the first time.

System.Web.Handlers. WebPartExport.axd Support for Web Part layouts for use
WebPartExportHandler in portal applications.

Continued

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 55

522xCH02.qxd 8/31/05 3:21 PM Page 55

Table 2-4. Continued

Http Handler Type File Name/Extension Description

System.Web.UI. *.aspx The old “tried and true.” This
PageHandlerFactory handler is responsible for mapping

the URL of the request for an ASPX
page to the type that services the
request.

System.Web.UI. *.ashx Provides a page directive
SimpleHandlerFactory infrastructure to simplify the

mapping of a requested URL to a
custom handler (see the “Creating an
Http Handler” section that follows).

System.Web. Any (you choose) This handler simply streams the file
StaticFileHandler requested to the client. It’s what IIS

would do by default. The advantage
to this handler is that requests for
static content (HTM, JPG, GIF, and
so forth) can be mapped to the
Framework; therefore, requests for
these files go through the entire Http
pipeline. This strategy can be used to
secure static content when using
Forms-based security.

System.Web.Services.Protocols. *.asmx The Web Services handler.
WebServiceHandlerFactory Depending on the request type and

URL, this handler generates the
testing interface, generates Web
Services Description Language
(WSDL) documents, and takes
Simple Object Access Protocol
(SOAP) messages off the wire and
invokes the appropriate method on
an instance of the type described in
the request.

System.Runtime.Remoting. *.rem The remoting handler. Takes SOAP
Channels.Http.HttpRemoting *.soap or binary streams off the wire,
HandlerFactory invokes the method, and serializes

the .NET type back to the caller.

System.Web.HttpForbiddenHandler Dozens of extensions, This handler simply returns an HTTP
including ASCX, VB, status of 403, causing a “Forbidden
CS, and others file type” extension to be raised on

the client. It’s a simple way to secure
files of certain types on the server.
Do you have an XML architecture
where all eXtensible Stylesheet Lan-
guage Transformation (XSLT) is done
on the server? Map *.xml to this han-
dler and no one can pull down the
raw XML that lives on your server.

As you can tell from Table 2-4, the Page handler is really just the tip of the iceberg of func-
tionality that ships with the Framework and is implemented as an HTTP handler. Next we’ll
take a look at how you can further extend the pipeline by creating your own handlers.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE56

522xCH02.qxd 8/31/05 3:21 PM Page 56

Creating an Http Handler
It’s possible to create a type that implements the IHttpHandler interface and have it respond
to any pattern of URL. The advantage is you have full control over the URL, and the URL of the
request doesn’t need to correspond to a physical file. The downside is that IIS configuration is
required to map the URL into the framework, and ASP.NET configuration is required to map
the URL to your specific handler.

The alternative is to use the built-in, simple handler factory. This handler is mapped to
files with an ASHX extension. The WebHandler directive is used to point an ASHX page at a type
that implements the IHttpHandler interface. Visual Studio adds a file with this directive to
your project via the Generic Handler option in the Add New Item dialog window.

Figure 2-13. The simple handler project item in the Add New Item dialog window

The code template included for this file is a complete implementation of a handler, albeit
not a very dramatic one. This code gets an image from the database and returns it as a binary
stream. It also caches the images for 60 seconds, instead of going to the database for them on
each request.

<%@ WebHandler Language="C#" Class="MyHandler" %>

using System;
using System.Web;
using System.Web.Caching;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;

public class MyHandler : IHttpHandler {

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 57

522xCH02.qxd 8/31/05 3:21 PM Page 57

public void ProcessRequest (HttpContext context) {

byte[] b;
object id = context.Request.QueryString["BookId"];
b = (byte[])context.Cache[string.Format("Book{0}",id)];
if (b == null)
{

SqlConnection cn = new SqlConnection(ConfigurationManager.
ConnectionStrings["Library_local"].ConnectionString);

string sql = "select CoverImage from BookCoverImage";
sql += " where bookid = @BookID";
SqlCommand cm = new SqlCommand(sql, cn);

cm.Parameters.Add("@BookId", SqlDbType.Int).Value = id;

cn.Open();
SqlDataReader dr = cm.ExecuteReader();
if (!dr.Read())

context.Response.End();
b = (byte[])dr[0];
context.Cache.Insert(string.Format("Book{0}", id),

b,
null,
DateTime.Now.AddSeconds(60),
Cache.NoSlidingExpiration);

dr.Close();
cn.Close();

}
context.Response.OutputStream.Write(b, 0, b.Length - 1);

}

public bool IsReusable {
get { return true; }

}
}

The heart of the IHttpHandler interface is the ProcessRequest method. This is where the
main work of a handler implementation goes. The only other method on the interface is the
IsReusable method, which simply returns a Boolean indicating whether instances of the han-
dler can be pooled or not. Handlers that can be pooled will perform better under load than
ones that cannot, as a new instance of a nonpooled handler will need to be created for each
request. To make a handler poolable, do not maintain any field level variables that need to be
re-initialized with construction semantics, and return true from the IsReusable method.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE58

522xCH02.qxd 8/31/05 3:21 PM Page 58

Notice that the ProcessRequest method gets an instance of HttpContext passed in as an
argument. This is where all details of the request are revealed to the handler, where Session
and Cache can be used, and where the response is streamed back to IIS.

This handler can now be used from the src attribute of an image element. The advantage
here is a much lighter-weight implementation, as none of the overhead of the page’s life cycle
is incurred. You’ll also realize greater performance by using the Cache.

The last option we’ll examine is creating a handler from scratch. This can be done by any
type that implements the IHttpHandler interface. Without the ASHX factory to decide at run-
time what type to create, some configuration entries will be necessary.

For the final example, we’ll show you how to handle all requests coming in for resources
with the DOM extension. Because you’re relying on configuration to map requests to your
handler, and not on a physical resource, the filename can actually be used to some other ends.
In this example, the filename is used as text that will be painted onto an image. It will be built
so the resource can be used as the src attribute of an img element.

<p>This handler can be embedded into a page</p>

And this static markup dynamically generates the image in Figure 2-14.

Figure 2-14. A page using an image-generating handler

The class that generates the image implements the IHttpHandler interface but it has no
WebHandler directive. It’s often a class file that lives in the App_Code directory, but it can also be
a class in a standalone assembly that a project adds a reference to.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 59

522xCH02.qxd 8/31/05 3:21 PM Page 59

using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Web;

public class DomHandler : IHttpHandler
{

public DomHandler()
{}

public bool IsReusable
{

get { return true; }
}

public void ProcessRequest(HttpContext context)
{

string s;
Bitmap bm;

s = context.Request.Url.AbsolutePath;
int iPos = s.LastIndexOf("/");
s = s.Substring(iPos + 1, s.Length - 5 - iPos);
bm = new Bitmap(30 + s.Length * 13, 50);

Graphics g = Graphics.FromImage(bm);

g.FillRectangle(Brushes.Goldenrod, 0, 0, bm.Width, bm.Height);
s = context.Server.UrlDecode(s);
g.DrawString(s,

new Font("Verdana", 18, FontStyle.Bold),
Brushes.Blue, 20, 10);

bm.Save(context.Response.OutputStream, ImageFormat.Jpeg);
}

}

Notice there are no dependencies within the code that this handler be mapped to *.dom.
At this point, it could be mapped to any URL pattern.

To associate the handler with all DOM extensions, you must use the Microsoft Manage-
ment Console (MMC) snap-in for IIS. Go to the Properties dialog box for the web application.
On the Virtual Directory tab, click the Configuration button in the Application Settings sec-
tion. A list of the mappings for all extensions appears, as shown in Figure 2-15.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE60

522xCH02.qxd 8/31/05 3:21 PM Page 60

Figure 2-15. The Application Configuration dialog box from the MMC IIS snap-in

From here the DOM extension must be mapped to the ISAPI extension for the ASP.NET
Framework. It’s easiest to copy the entire path to the DLL from an existing entry, then choose
Add and paste it into the new entry, as shown in Figure 2-16.

Figure 2-16. Configuring a new extension for a web application

Now IIS knows to hand off requests arriving at the Web Server to the ASP.NET Framework.
The last step to take is on the ASP.NET tab of the web application properties dialog. From here
click the Edit Configuration button, then choose the Advanced tab on the dialog that appears,
and the Http Handlers entry from the Section list. Choose the Add button to map *.dom to the
DomHandler type, as shown in Figure 2-17.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 61

522xCH02.qxd 8/31/05 3:21 PM Page 61

Figure 2-17. The Http Handlers section of ASP.NET configuration within the MMC IIS snap-in

This tool, when used in the context of a specific IIS application, generates an entry in the
web.config file of that application. From within Visual Studio .NET, open the web.config and
you can see the entry the configuration tool has made:

<httpHandlers>
<add path="*.dom" verb="*" type="DomHandler" />

</httpHandlers>

Now make a request for any file with a DOM extension from within the IIS application.
The dynamically generated image using the filename should appear. This handler can now be
used from within any application as the src attribute of an image tag.

Summary
The ASP.NET Framework is a completely extensible application hosting architecture that is
hosted by Internet Information Server (IIS). The main points of extensibility are pre- and
post-processors in the request pipeline, and the capability to associate HTTP handlers with
different URL patterns.

Dozens of hooks are provided to extend the pipeline. These hooks can be trapped using
either a type that inherits from HttpApplication or by implementing the IHttpModule
interface.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE62

522xCH02.qxd 8/31/05 3:21 PM Page 62

The global.asax is the most common way to inherit from HttpApplication, and this file is
given special treatment by the Framework. Namely, its events are automatically “wired.”

HTTP modules are set up within a specific application via the web.config file. The advan-
tage with HTTP modules is that any number can be set up to extend the pipeline at the server
level or within a specific application. The ASP.NET Framework uses dozens of these to provide
a lot of built-in functionality.

Finally, request processing can be customized using HttpHandlers. Again, dozens of these
are used within the shipping version of the Framework to process different types of requests.
Doing custom request processing is as easy as creating a type that implements the IHttpHan-
dler interface, and there are several options for configuring a handler within an application.

In the next section, we’ll shift the focus from the pipeline down to the Page handler. This
complex handler processes all requests for ASPX files. We’ll also take a look under the hood at
how the type that inherits from System.Web.UI.Page is transformed into a stream of HTML.

CHAPTER 2 ■ THE ASP.NET REQUEST PIPELINE 63

522xCH02.qxd 8/31/05 3:21 PM Page 63

522xCH02.qxd 8/31/05 3:21 PM Page 64

Page Object Internals

You already know from your work with ASP.NET that the Page object is your base class for all
ASP.NET pages. You’re probably familiar with the event life cycle of the Page object, at least the
Load event and control-specific events that execute when a postback occurs. In this chapter
we’re going to pull back the covers on System.Web.UI.Page. We’ll examine the pieces and parts
of its infrastructure that allow you to interact programmatically with control objects, while still
sending a stream of HTML back to the client.

Sometimes the layer of abstraction between you and the stream of HTML going to the
client can be frustrating. There are times you’ll want to have specific control over the HTML
that you’re generating, and the Web Control just won’t be generating the HTML quite the way
you’d like it to.

The good news is there’s nothing stopping you from exercising exactly as much control
over the generated HTML as you need. With a thorough understanding of the work that the
Page object does, the structure and touch-points of its control tree, and how the rendering
process accomplishes its work, you have a toolset to help you greatly increase your control
over the generated HTML.

The Page object orchestrates the entire construction of the web page. It houses the
process life cycle, the event infrastructure, and the hierarchical control tree that generates
the page’s HTML. In this chapter, we’ll drill into these internal components of the page-
processing infrastructure.

Structure of a Web Form
The Page object’s fully qualified name is System.Web.UI.Page. In the last chapter you saw how
this type is an implementation of the IHttpHandler interface, and it simply plugs into the
ASP.NET request processing pipeline. Now take a closer look at the object graph of this partic-
ular handler, which is shown in Figure 3-1.

This object graph applies to Web Forms, as long as you leverage the code-behind model.
When no code-behind is used, the “code-behind page” object is removed from the graph; in
this case, the markup contains the code in server-side script blocks.

In version 2.0 of the .NET Framework, a new Web Form model that supports a partial
classes feature is baked into both C# and VB .NET. Partial classes introduce a number of sub-
tleties into the structure of a Web Form that warrant a closer examination.

65

C H A P T E R 3

■ ■ ■

522xCH03.qxd 8/31/05 3:23 PM Page 65

Figure 3-1. The Page object’s ancestors and descendants (when you’re using the code-behind
model)

Options for Building Web Forms
With partial classes, you have a new approach to building Web Forms that involves a partial
class inheriting from the Page base class. One file for the partial class is the code you’d nor-
mally add to the code-behind. The other file for the partial class isn’t created until a run-time
compilation step occurs. This is where all of the code that the designer would normally gener-
ate during development gets added to the mix.

Let’s take a look at an example of a page in version 1.x and the changes required to use it
in version 2.0. Consider the following markup:

<%@ Page language="c#"
Codebehind="WebForm1.aspx.cs"
Inherits="WebDemo.WebForm1" %>

<HTML>
<HEAD>

<title>WebForm1</title>
</HEAD>
<body>

<form id="Form1" method="post" runat="server">
<asp:Label id="Label3" runat="server">User Name</asp:Label>

<asp:TextBox id="TextBox1" runat="server" />

<asp:Label id="Label2" runat="server">Password</asp:Label>

CHAPTER 3 ■ PAGE OBJECT INTERNALS66

522xCH03.qxd 8/31/05 3:23 PM Page 66

<asp:TextBox id="TextBox3" runat="server" />

<asp:Button id="Button1" runat="server" Text="Login" />

<asp:Label id="lblOutput" runat="server" />

</form>
</body>

</HTML>

In version 2.0, Microsoft has dropped support for the CodeBehind attribute, and, instead,
substitutes the new CodeFile attribute. Here’s functionally equivalent markup in 2.0. The only
difference is CodeFile replaces CodeBehind.

<%@ Page language="c#"
CodeFile="WebForm1.aspx.cs"
Inherits="WebDemo.WebForm1" %>

<HTML><HEAD><title>WebForm1</title></HEAD>
<body>
<form id="Form1" method="post" runat="server">

<asp:Label id="Label3" runat="server">User Name</asp:Label>
<asp:TextBox id="TextBox1" runat="server" />
<asp:Label id="Label2" runat="server">Password</asp:Label>
<asp:TextBox id="TextBox3" runat="server" />
<asp:Button id="Button1" runat="server" Text="Login" />
<asp:Label id="lblOutput" runat="server" />

</form>
</body>

</HTML>

Realize that version 2.0 does not support the CodeBehind attribute. This is a code breaking
change that requires a conversion to move Web Forms from 1.x to 2.0. Considering that most
of the changes for 2.0 are backwards compatible and require no changes to work in 2.0, this is
worth noting.

The code-behind file contains much more significant differences. Here is the 1.x version
of the code-behind for the markup we just examined.

public class WebForm1 : System.Web.UI.Page
{

protected System.Web.UI.WebControls.Label Label3;
protected System.Web.UI.WebControls.Label Label2;
protected System.Web.UI.WebControls.TextBox TextBox3;
protected System.Web.UI.WebControls.Button Button1;
protected System.Web.UI.WebControls.Label lblOutput;
protected System.Web.UI.WebControls.TextBox TextBox1;

private void Page_Load(object sender, System.EventArgs e)
{

// Put user code to initialize the page here
}

CHAPTER 3 ■ PAGE OBJECT INTERNALS 67

522xCH03.qxd 8/31/05 3:23 PM Page 67

#region Web Form Designer generated code
override protected void OnInit(EventArgs e)
{

//
// CODEGEN: This call is required by the ASP.NET Web Form Designer.
//
InitializeComponent();
base.OnInit(e);

}

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{

this.Load +=new EventHandler(Page_Load);
}
#endregion

}

Not only is there an entire region of generated code for this very simple Web Form but
also the designer generates all of the control declarations that immediately follow the class
declaration. This region of generated code, along with the requisite control declarations (as
determined by your markup), are what is left out of the version 2.0 code-behind and then
added with the second partial class file at runtime (see Figure 3-2). Here’s the same code
“converted” to work in 2.0:

public partial class WebForm1 : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
}

That’s it. Really. “Well, this code does nothing!” you might say. True, it does nothing. But if
you look closely at the version 1.x block of code above, you’ll realize that it also does nothing.
That’s a lot of code to do nothing, isn’t it? This is the main benefit of using partial classes. It
removes a lot of the internal “goo code” that adds no value to your development experience.

■Note This model changed from Beta 1 to Beta 2. If you’ve played around with, or have read up on, the
Framework changes with the PDC Bits, or Beta 1, you’ll have a different story for the changes to the page
model than the one we present here. People hated the PDC Bits model, so Microsoft changed it with the
release of Beta 2. It reverted the model to look much more like the one in version 1.x.

CHAPTER 3 ■ PAGE OBJECT INTERNALS68

522xCH03.qxd 8/31/05 3:23 PM Page 68

You may have already heard about partial classes. This feature gives you the capability to
split a single class file across more than one physical file. Version 1.x provided support for
including more than one class in a single file, but there was no way to tell the compiler that a
single class spans several files. Partial classes do just this.

Figure 3-2. The Page object’s ancestors and descendants (with version 2.0 partial classes)

While some folks talk about partial classes supporting “really big classes,” this is not the
real driving force behind adding the feature. It’s true that a large class could be split among
several physical files, but the true benefits come into the picture when you start to consider
code generators. The .NET Framework is constantly generating code: code for COM Interop,
code for proxies, code based on markup. The Framework team realized during version 1.0
development that they were going to be doing so much code generation that they decided to
create a set of types to help them do this programmatically: System.CodeDom.

The problem with generated code has always been that it can step on your toes. If you’ve
spent any amount of time coding traditional ASP, you’ve likely experienced an HTML-generating
tool squashing your server-side script blocks. Or maybe you’ve added some code to the
InitializeComponent method of the Page class, only to have the VS .NET Designer strip it
out later.

With partial classes, code generation can occur in the code generator’s own file. This file is
declared as being a partial definition of the class the code is being generated for, and when it
comes time to compile, the compiler simply merges the files to create a single class definition
in the resulting Intermediate Language (IL) that’s generated. This removes any possibility of
having your own code squashed. The Page object orchestrates the entire construction of the
web page. It houses the process life cycle, the event infrastructure, and the hierarchical control
tree that results in the generation of the web page’s HTML.

CHAPTER 3 ■ PAGE OBJECT INTERNALS 69

522xCH03.qxd 8/31/05 3:23 PM Page 69

When an ASP.NET page is created using the code-behind model, two derived classes are
actually created. The first is the code-behind, which uses the Page class as its base class. The
second is the ASPX file itself, which is actually a type that inherits from the class that’s defined
in the code-behind (as shown in Figure 3-1).

Code Generation of ASPX Pages
How does the markup in your ASPX file become an instance of a binary executable at runtime?
How does the work that’s done in the code-behind page manifest in that markup? What does
it really mean when an attribute of the page directive is named “Inherits” and its value is the
fully qualified name of the class in your code-behind?

The code generator answers all of these questions The ASP.NET Framework actually puts
off a lot of the code generation that used to be done at design time until code is generated for
the ASPX file’s markup.

You have a few options for the structure of a Web Form. You can choose to use inline cod-
ing or the code-behind model. If you choose code inline, your code will be encapsulated in the
ASPX page within a server-side script block. If you choose code-behind, you use partial classes
(the 2.0 model); one class to contain your code and another to contain markup code the
Framework auto-generates.

Visual Studio 2005 provides much better support for IntelliSense in the markup than
Visual Studio 2003 did. You get IntelliSense in directives, User Control declarations, and yes,
in inline code (code within a script element that has the runat=server attribute).

The Add Web Form dialog has been modified to accommodate this new structure, as
shown in Figure 3-3.

Figure 3-3. The Add Web Form dialog in Visual Studio .NET 2005

CHAPTER 3 ■ PAGE OBJECT INTERNALS70

522xCH03.qxd 8/31/05 3:23 PM Page 70

The Place code in separate file check box lets you choose between the code-behind model
and putting code inline with your markup within server-side script elements.

Probably the single biggest improvement in this whole arena is the addition of IntelliSense
support to script blocks within the integrated development environment (IDE), shown in
Figure 3-4.

Figure 3-4. IntelliSense using inline code with Visual Studio .NET 2005

The inline coding model (and Web Matrix) is severely limiting with its lack of support
for IntelliSense, especially once you become used to this feature. In Visual Studio .NET 2005,
using inline code is now a viable option. There still are some real benefits to separating code
from content, especially in a team development environment where there are web designers
and a source control system present. But the inline code model is certainly easier to use in
VS .NET 2K5.

So how does the markup in the ASPX file become a class at runtime? And how does the
work that is done in the code-behind the page manifest in that markup?

Code Generation of ASPX Files
In ASP.NET, the aspx file containing your markup is transformed into a class definition at
runtime. This happens the first time a request is made for the page after it’s deployed. The
generated class is defined as inheriting from the class defined in your page’s code-behind file.
This class is then compiled, and the compiled class is used to respond to requests for your
aspx page from there on. This happens once: the first time a request is made for a page. Subse-
quent requests reuse the compiled class. A change to the aspx file or an assembly it depends
on causes this process to repeat.

This means that the markup in an aspx file is actually just an abstraction created for you
as a programming convenience! Web developers are familiar with the model of adding server-
side tags to markup. It’s the model in several web development environments, and since that’s
what web developers are accustomed to, it’s one Microsoft provides with the ASP.NET Frame-
work. However, at runtime, no markup is involved; it’s pure binary executable code.

CHAPTER 3 ■ PAGE OBJECT INTERNALS 71

522xCH03.qxd 8/31/05 3:23 PM Page 71

Consider the following, now familiar, markup:

<HTML>
<HEAD><title>WebForm1</title></HEAD>
<body>
<form id="Form1" method="post" runat="server">
<asp:Label id="Label3“ runat="server">User Name</asp:Label>
<asp:TextBox id="TextBox1" runat="server" />
<asp:Label id="Label2" runat="server">Password</asp:Label>
<asp:TextBox id="TextBox3" runat="server" />
<asp:Button id="Button1" runat="server" Text="Login" />
<asp:Label id="lblOutput" runat="server" />

/form>
</body>
</HTML>

The first time the page is requested at runtime, several things occur.

• The markup is transformed into a class file. This class file is named after the aspx file.
For example, markup in WebForm.aspx becomes a class named WebForm_aspx under the
namespace ASP. If you’re using code-behind, a partial class is also generated to accom-
pany it. This generated class is declared as being a partial definition of the class defined
in the page’s code-behind.

• The class file is compiled with the rest of the class definition from the code-behind file.
References are dynamically added to any other assemblies the Web Project depends
on. This results in an assembly, but it’s a Dynamic Link Library (DLL) and not an EXE.
Remember that the Page class is an implementation of the IHttpHandler interface, and,
therefore, it plugs into the request processing pipeline of the ASP.NET infrastructure
(see Chapter 2). Another generated type, named FastObjectFactory (under a namespace
called __ASP), creates and serves instances of this type to the Framework as requests
come in.

• This DLL is just-in-time (JIT) compiled (meaning the IL is transformed to binary exe-
cutable code) and written to disk. This is called a shadow copy DLL (oooh). This shadow
copying is the reason you can XCopy a new version of your application to a server while
your application is under a production load. Dependencies are set up (using file system
events) between the shadow DLL, the ASPX containing the markup used to generate
the class file, the Web Project Assembly, and any other dependant assemblies. If any of
these dependencies change, the shadow DLL is deleted, and the next time your ASPX
page is requested, the whole process starts from scratch to account for the new version.

• In the meantime, as long as no dependencies are changed, this precompiled, shadow
DLL services subsequent requests. No file parsing, no interpretation, no code genera-
tion—not even a JIT compilation needs to occur. This shadow copy survives reboots of
the web server. If any dependencies change, the compilation will be redone using the
previously generated class file. The only time the generated code for the class needs to
be created again is when the aspx file or code-behind files change. This is why there’s
a noticeable delay for the first request of a Web Form after you deploy a new version.
There’s a lot going on out there!

CHAPTER 3 ■ PAGE OBJECT INTERNALS72

522xCH03.qxd 8/31/05 3:23 PM Page 72

The runtime keeps the shadow assemblies in a directory where you can examine them.
For the markup we’ve listed above, let’s put it in a project named Web03 and a file named
WebForm1.aspx that uses a code-behind class named WebForm1. When we compile the project
and request the page, we can navigate out to the following directory.

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50215\Temporary ASP.NET
Files\web03\EightRandomDigits\AnotherEightRandomDigits

In there you’ll find any number of randomly named files with variously odd extensions.
One of them is your generated shadow DLL from WebForm1.aspx. You can open this DLL using
ILDASM. A snippet of what it will look like is displayed in Figure 3-5.

Figure 3-5. An inside look at a shadow DLL generated by the ASP.NET Framework

A quick glance through the structure of this assembly reveals how the markup is trans-
formed into a code file. In the ASP namespace lives the class that’s generated when the
Framework transforms your markup into a class. Notice that it extends the class named
WebForm1, which you partially defined in your code-behind, and partially provided by code
generation of the Framework. That class exists in the WebDemo namespace (a namespace of our
choosing from the code-behind) and it extends System.Web.UI.Page. Refer to Figure 3-2 for a

CHAPTER 3 ■ PAGE OBJECT INTERNALS 73

522xCH03.qxd 8/31/05 3:23 PM Page 73

picture of this inheritance chain. What you’re looking at in ILDASM (Figure 3-5) is the mani-
festation of that object graph within the Framework at runtime (where the proverbial rubber
meets the road).

■Note There’s actually a set of services in the Framework Class Library specifically designed to write code
that generates code. Microsoft is doing this all over the place in the .NET Framework. Obviously it’s doing it
for ASP.NET; it’s generating code for Web Service proxies and for COM Interop assemblies, just to name a
few. This functionality lives in the System.CodeDom namespace. Check it out if you find yourself in a situa-
tion where you need to dynamically generate code!

DECLARATIVE VS. IMPERATIVE CODING

The markup in an ASP.NET page is an example of what’s called declarative coding. It’s a different coding
model from the one most developers have become used to over the years, which is called imperative coding.
Declarative coding is a technology that Microsoft is totally gung-ho about. In the 2.0 version of ASP.NET, the
declarative model has been dramatically extended, so that it’s now possible to create applications with very
rich features, without writing a single line of code. It can all be done in the markup. One of the design goals
of ASP.NET 2.0 was to dramatically reduce the amount of code you need to write for common tasks. Microsoft
has accomplished this using declarative coding in the markup. By also adding high-powered graphical tools
that generate this markup into the IDE, it’s added some real productivity enhancement. Markup is very easy
to generate programmatically, whereas source code is not.

As we look forward to the next generation of the Windows operating system (named Windows Vista),
Microsoft plans on creating a new model for Windows development as well, called XAML, or XML Application
Markup Language. This subsystem, named Windows Presentation Foundation, will be available for Windows
2003 and Window XP, and is a declarative model for Windows-based application development.

The real power in XAML lies in the fact that code is relatively static. It’s like taking all of the declarations
and initializations of variables out of your imperative code and moving them into a document of their own.
In XAML, there will be a code-behind model as well, so the more complex, dynamic code will still be written
there. Microsoft plans to couple a page-based development model with the richness in functionality of the
Windows development model. Go to http://msdn.microsoft.com/Longhorn to see some concept videos of the
type of application that will be produced with this new paradigm.

If there are any trends in computer science to be paying attention to today, it’s this declarative model of
programming coupled with Aspect Oriented Programming, or AOP. You first saw AOP on the Windows platform
in Microsoft Transaction Server. In this application-hosting environment you could set properties on objects
specifying, for example, their transactional requirements and behavior. This would affect the run-time charac-
teristics of the type without requiring any modification to the imperative source code.

.NET attributes extend this model by promoting attributes to first-class citizens within the Common
Language Runtime (CLR) and .NET languages themselves. Anytime you add the [Serialization] or
[WebMethod] attributes to a class definition, you’re using AOP. And again, you’re affecting the runtime
behavior of your type without touching the imperative code.

Declarative coding and AOP are worth knowing about. Realize what they are and pay attention to the
tools (.NET 2.0, Windows Communication Foundation, Windows Presentation Foundation, Windows Vista)
coming out over the next few years, because these models are really going to come to the fore.

CHAPTER 3 ■ PAGE OBJECT INTERNALS74

522xCH03.qxd 8/31/05 3:23 PM Page 74

Another new piece of the ASP.NET 2.0 infrastructure is when and how this code genera-
tion and compilation happens. There are important differences between the compilation
model in version 1.x that give you more choices for building and deploying projects.

Compilation and Deployment
There are a lot of complaints with version 1.x about the lack of support for deployment activi-
ties. You can copy files to a remote web server via FrontPage extensions, or deploy to a network
share. However, this rudimentary support is generally not sufficient for most real-world
deployment scenarios. Once deployed, the one-time performance hit that occurs for the first
request for a Web Form (while it performs the code generation and compilation steps we
just examined) is also unacceptable in sites with thousands of pages. A single change to the
Assembly containing the compiled images of the site’s code-behind classes causes every Web
Form to be delayed by several seconds on its next request.

Microsoft has listened and responded to their customers’ cries of despair. Let’s look first
at the improvements it made to deployment. Then we’ll examine the new compilation model.

When you select a Web Project and choose the Copy Web Site button from the Solution
Explorer within Visual Studio, an entirely new interface appears, as shown in Figure 3-6.

Figure 3-6. The Copy Web Site interface in Visual Studio .NET 2005

CHAPTER 3 ■ PAGE OBJECT INTERNALS 75

522xCH03.qxd 8/31/05 3:23 PM Page 75

All your project files appear in the list on the left. This interface clearly allows you to
deploy whatever set of files you need to at a given time. The list on the right is the really excit-
ing piece. You can click the Connect button to see the rich array of deployment target choices
(see Figure 3-7).

Figure 3-7. The Connect dialog of the Copy Web Site feature in Visual Studio .NET 2005

You can see from icons on the left that you can choose from the File System (a network
share), a local instance of IIS, an FTP site, or a Remote Site running FrontPage Extensions.
Here we’ve configured the dialog for connecting to a server via FTP. You even have an option to
pick a particular directory on the target server; in this case, we’re using it to drill into the root
of this web server. Dispatching this dialog with the Open button populates the right-hand side
list of files with an inventory from the destination server (see Figure 3-8).

From here you can choose to copy files in either direction, overwrite existing files, or rec-
oncile differences between the sites. Files with differences are also flagged with the ? icon.
Overall, a much richer palette of deployment options is available in the new IDE.

Dynamic Compilation
In version 1.x of the Framework, code-behind files are compiled into an assembly and pack-
aged into the bin directory. For each class defined in a code-behind file, a corresponding type
definition in this Web Project Assembly in the bin directory exists. Deployment then means
copying aspx files and the Assembly in the bin directory onto a production server. Any other
assemblies the project depends on—images, CSS, script files, etc.—need, of course, to be
copied out as well.

CHAPTER 3 ■ PAGE OBJECT INTERNALS76

522xCH03.qxd 8/31/05 3:23 PM Page 76

Figure 3-8. A source and target selected in the Copy Web Site interface of Visual Studio .NET 2005

The problem with this model came into the picture during the maintenance stage that
always follows a deployment. Any change to any code behind the page has to be recompiled
into the Assembly in the bin directory. When a new version of that Assembly gets copied to the
production server, each and every Web Form in the site regens and recompiles upon its next
request. Considering the extensive overhead involved in this process, multiplied by the num-
ber of pages in the application, you’re looking at a serious cost to incur for what often is just a
minor change to a class.

Well, no more. Because the code-behind is now a partial class, and because that class isn’t
generated until runtime, there is no “Web Project Assembly” that needs to be deployed any-
more. This means that you can create and deploy a Web Project without a compilation step.
You can leave it until runtime. Just code it, copy it out, and you’re done.

Sounds great, no? No? No you say? You like to compile your application before deploying
it? What kind of nonsense is that? You never had to compile classic ASP!

Of course you like to compile. Compiling is a beautiful thing. Compiling finds typos,
enforces type safety, validates references, and generally makes our lives much easier. The good
news is Visual Studio .NET allows you to compile before deploying, even though it’s not tech-
nically required to compile before deploying. Compilation is actually more powerful in Visual
Studio .NET 2005 than it is in Visual Studio .NET 2003. In 2003, for example, there is no compi-
lation for markup (aka your aspx files). An error in an aspx page is not caught until the page is
actually requested, when the runtime code-gen and compilation occurs. VS .NET 2K5 com-
piles aspx files, which means you catch more problems earlier in the process—a good thing,
to be sure. This is just one of a handful of features that fall under an umbrella called Dynamic
Compilation.

CHAPTER 3 ■ PAGE OBJECT INTERNALS 77

522xCH03.qxd 8/31/05 3:23 PM Page 77

The Dynamic Compilation Model
Visual Studio .NET 2005 compiles markup. Consider this line of code in an aspx file, a simple
TextBox declaration, but we have forgotten a closing tag:

<asp:TextBox ID=txtFirstName Text='Bob' runat=server>

Compiling produces the errors shown in Figure 3-9, pulled from the Error List window.

Figure 3-9. A compilation error caused by an aspx file

This is nice, but there are other interesting behaviors you get out of web applications
because you don’t need to compile. For example, consider an application with two pages, one
that works great (Default.aspx) and one that won’t compile (Default3.aspx). Before you fix
Default3.aspx, you want to make a change to Default.aspx and test it. For example, you may
add the following code to the page load of the Default page:

protected void Page_Load(object sender, EventArgs e)
{

FindControl("form1").Controls.Add(new LiteralControl("Hello"));
}

This code works fine. When you compile, however, you still get the error previously listed
(see Figure 3-9) because of the error in Default3.aspx. In VS .NET 2K3, this means the Web
Project Assembly failed to get created when compiling, and the completely unrelated change
you made to your code-behind in Default.aspx is not baked into a new version of the Assem-
bly.

In this environment, though, compilation is optional. The fact that the compile failed is
irrelevant. You can right-click on Default.aspx in Solution Explorer and tell the IDE to display
it in the browser. The IDE fires up a browser instance and, voila! the page appears just fine, as
demonstrated in Figure 3-10.

This demonstrates a couple of interesting things. First, when you make a change to a
code-behind file, you don’t have to recompile. If you just request the page anew, your change
shows up. In VS .NET 2K3 this is true if you make a change to an aspx file. Without recompil-
ing, the change shows up on the next request to the page. Now, since all compilation is put off
until runtime, the same is true of code-behind changes.

The other interesting thing this demonstrates is that not everything in the site has to be
working in order to request pages in the site. With version 1.x of the Framework, this is not
true, because if there are any problems in the code-behind you cannot successfully build the
Web Project Assembly.

CHAPTER 3 ■ PAGE OBJECT INTERNALS78

522xCH03.qxd 8/31/05 3:23 PM Page 78

Figure 3-10. A page displayed from a project that works even with a compilation error in
another page

Now none of this is relevant for production systems, you realize. These are subtleties that
are, however, very nice changes while doing development. You can make and exercise changes
with much less overhead.

In addition to the features we’ve looked at so far, the Dynamic Compilation model also
provides some very handy functionality via the App_Code directory. Adding the App_Code folder
is a special choice from within Solution Explorer, as shown in Figure 3-11.

You can place any source file into this directory, and it’s immediately available to the rest
of the code in your application. For example, here’s a simple helper function for loading and
caching XML documents.

public class WebStatic
{

public static DataSet GetXmlDoc(string fileName)
{

HttpContext ctx = HttpContext.Current;
DataSet ds;

ds = ctx.Cache[fileName];
if (ds == null)
{

ds = new DataSet();
ds.ReadXml(fileName);
ctx.Cache.Insert(fileName, ds, new CacheDependency(fileName));

}
return ds;

}
}

CHAPTER 3 ■ PAGE OBJECT INTERNALS 79

522xCH03.qxd 8/31/05 3:23 PM Page 79

Figure 3-11. Adding the App_Code directory

By placing this cs file into the App_Code directory, it’s instantly available from all the pages
in your site. It even shows up via IntelliSense (see Figure 3-12), again without even compiling.

Figure 3-12. IntelliSense for type in the App_Code directory

CHAPTER 3 ■ PAGE OBJECT INTERNALS80

522xCH03.qxd 8/31/05 3:23 PM Page 80

Similar facilities exist for WSDL documents, which are made available as Web Service
proxies; XML Schema Definition (XSD) documents, which become exposed as strongly-typed
datasets; and resources.

Of course, this whole dynamic compilation model requires you to deploy your code to
your production server, which not everyone is going to be thrilled about. It also does nothing
to address the problem of run-time compilation causing a huge performance hit for the first
request of every page in the site. These problems have not gone unchecked, though. They’re
addressed by precompilation (a feature so cool they made up a new word for it).

Precompilation
There are a couple of different ways to precompile your site. One does an in-place compila-
tion, which basically has the effect of making the first request for each page and leaves the
application ready for live requests. This is done on the production server after deployment.
The other option precompiles before deployment, which creates a copy of your website suit-
able for deployment. This copy compiles all code-behind and classes in the App_Code folder
into assemblies that it places in the bin directory. Only files needed at runtime are copied into
this folder. Using this option reduces the flexibility you have in deploying changes, but it keeps
your source code off the production servers and improves the performance of the first request
of the pages.

For both options, you use the aspnet_compiler command line tool. To precompile in
place, simply pass the tool the –v switch and the virtual directory of the application you want
compiled:

aspnet_compiler –v /Web03

Precompilation for deployment works the same way: You simply need to further specify a
target location where the precompiler will place the compiled image ready for deployment:

aspnet_compiler –v /Web03 c:\ProductionImage

This site is all packed up and ready to go now (see Figure 3-13). You can open the direc-
tory with VS .NET 2K5 to use the deployment tool, XCopy the files, or FTP them to the
production box.

Figure 3-13. The production ready, precompiled image of the Web03 application

CHAPTER 3 ■ PAGE OBJECT INTERNALS 81

522xCH03.qxd 8/31/05 3:23 PM Page 81

Basics of the Control Type
In examining the ASPX markup, the class that gets generated from it, and the code-behind
that it compiles with, we’ve looked at all of the types that have the Page object in their inheri-
tance trees. This is where code for the least general functionality goes. The code of the Page
object itself is then the first class in the object graph that contains general functionality. This
is familiar territory, as it’s leveraged to create every ASP.NET page. We’re talking about the Init
and Load events of the Page type, the various server-side event traps, like Button.Click or
TextBox.TextChanged, you can set up to trap events as they occur on the client.

The Page level events, however, aren’t specific to the Page type. If you follow the inheritance
chain of the Page class up, you’ll find the old familiar Control type. System.Web.UI.Control is
the base type for every element you put on a web page. It’s a base type for HTML Controls, for
Web Controls, for User Controls, and for Custom Controls. It’s very interesting to note that it’s
also a base type for the Page class itself.

This means that the properties and methods of this type are exposed on practically every-
thing you interact with programmatically on your page and on your Page object as well. Thus,
understanding what’s housed within this type is learning you can leverage everywhere in
your development of Web Forms.

Table 3-1. A Sample of Members from System.Web.UI.Control

Member Name Type Meaning in Life

Controls ControlCollection This is a strong-typed collection of Control objects.
The Page type’s Control collection is what stores the
base elements of your web page. Elements that are
children of other elements then become instances
of the Control type in their parent element’s control
collection. Together these aggregated
ControlCollections create an in-memory tree of
Control objects that models the hierarchy of the
resulting web page. We’ll be examining the
ControlCollection in greater detail as we move
forward.

ControlState ControlState This new feature of ASP.NET 2.0 separates
information critical to the functionality of the
control from content-based ViewState information.
This allows you to turn off ViewState without losing
the ability to store some state on the client. This is a
big problem with version 1.x Web Forms, which
ControlState fixes in the new version. (See
Chapter 4 for details on ControlState.)

EnableViewState Boolean Using this Boolean, you can turn off the ViewState
of any control. This is the data that gets squirreled
away by individual controls in the hidden input that
goes to the client. By persisting data to a hidden
input on the client, the information gets POSTed
back to the server, and so it becomes possible to
restore that state on postbacks. The downside is this
hidden input can get extremely large extremely fast,
and performance suffers as you start moving all that
data across the connection to your client and back
to the server with a post. (We’ll examine some best
practices for minimizing the ViewState size in

CHAPTER 3 ■ PAGE OBJECT INTERNALS82

522xCH03.qxd 8/31/05 3:23 PM Page 82

Member Name Type Meaning in Life

ID String This is the unique ID that identifies any element
on the page with the runat=server attribute on it.
This should also be the same as the name of the
variable you plan to use in your code-behind.
The code-generation step automatically declares
a variable with this name that overrides the
declaration from your code-behind base class.
This means that at runtime, the element in your
markup and the variable declared in your code-
behind are the same instance of the same class.
This is why everything you do to a Web Control
from code-behind shows up in the resulting page.
This dual-declaration infrastructure is eliminated
in version 2.0 via partial classes.

Page System.Web.UI.Page This is an instance of the Page object. For
controls, this value will point to the instance of
the Page that the control is living on. For a Page
object, this value will point to itself. So
(this.Page == this) is necessarily true in a type
that inherits from the Page object.

Parent System.Web.UI.Control This is the instance of the Control that has this
Control in its control collection. For a Page
object, this value is null, as the Page is the root of
the tree. For a Form object living on a Page, this
value will point to the Page. So for a Form, it’s true
that (this.Page == this.Parent). However, for a
Control living on the Form, the Parent is the Form
object.

Visible Boolean Every control can have its visibility set to false.
This is a nice feature, because while the control
will squirrel away its state in the ViewState
hidden input, it won’t render any HTML to
represent itself at all. This is very different than
using Cascading Style Sheets (CSS) or script to
make an element hidden once it gets to the
client. This makes it possible to code a Wizard-
style interface using Panel controls, where only
one Panel is visible at a time. All of the children of
the panel will store their state in the ViewState,
but their markup will be generated only when the
Panel is visible, keeping the response stream as
short as possible. Of course, this also means you
can set the visibility of the Page itself to false, but
we’ve yet to find any usefulness in a page you
can’t see.

HasControls() Boolean This will return true if there are any controls in
the ControlCollection of the Control you’ve
called the method on. It’s useful for quickly
checking if a Control has any children of its own.

Init Event This event occurs when the server control is
initialized, which is the first step in its life cycle.

Continued

CHAPTER 3 ■ PAGE OBJECT INTERNALS 83

522xCH03.qxd 8/31/05 3:23 PM Page 83

Table 3-1. Continued

Member Name Type Meaning in Life

Load Event This is the first event to fire after the control tree
and ViewState of the page have been created and
restored. Generally you use this event for page
initialization, wrapping your code in a clause that
causes it not to fire on postbacks, as postback
logic usually lives in an event handler of a
specific control.

PreRender Event This event occurs just before the page does a
recursive descent of its control tree and calls the
render method to assemble to output stream.
More on this event later.

Unload Event This event fires after the output stream has been
rendered and sent back to IIS. You cannot modify
the output stream from this event. The only thing
to be done from this event is to “clean up” any
resources you’ve held onto over the lifetime of
the Page object instance.

■Note The Page object has some new events in version 2.0 that we’ll look at a bit later. Table 3-1 displays
properties and events specific to the Control class, which the Page object (and all Web Controls) inherits.

Control Tree Essentials
Since all controls expose their own control collection, it follows that any control can contain
its own child controls. This correlates to what you’d expect in HTML, where many of the ele-
ments on a page contain child elements.

Since the Page object also inherits from the Control collection, it acts as the root of this
whole coil. While there is not a one-to-one correlation between the in-memory structure of
the control tree and the hierarchy of the elements in the generated HTML, there is a definite
relationship. Later, we’ll examine the places where the hierarchy of the HTML gets flattened
in the control tree and why.

After the PreRender event fires, the Page enters its rendering behavior. If you’ve ever writ-
ten a Custom Control, you know that the critical piece of work that needs to be done is to
override the Render method of the Control base class. The Page starts by calling the Render
method of the first control in its control tree. That control renders (which is just a fancy way to
say it generates some HTML based on its current state), and checks to see if it has any controls
in its own ControlCollection. If it does, it calls Render on the first of those, which is where you
meet the recursion of your algorithm. This is done for every control in every control collection
in the entire tree. The Page object happily aggregates all the rendered HTML as this recursive
descent of the control tree transpires, and when all of the controls have made their contribu-
tions, the Page returns the rendered HTML to IIS as the response stream.

Along the way, any state information that controls might need when a postback occurs is
squirreled away in the ViewState (unless, of course, ViewState is turned off for that control).

CHAPTER 3 ■ PAGE OBJECT INTERNALS84

522xCH03.qxd 8/31/05 3:23 PM Page 84

The rendered size and contribution to the ViewState can be seen on the Trace output report.
You can see this report simply by adding trace=true to the Page directive at the top of your
ASPX file, as shown in Figure 3-14.

Figure 3-14. An excerpt from the Trace output report showing the relative rendered and view state
sizes of the controls on the page

Any element in the markup that doesn’t have the runat=server attribute added to its
declaration will be flattened in the control tree. That is to say, not all elements in the markup
become objects in the control tree. To create an object for each element would be horribly
wasteful and inefficient. The whole point of having an element represented as an object in
the control tree is to interact with it programmatically. If there’s no need to deal with it pro-
grammatically, then there’s no need to incur the overhead of allocating on object to the
managed heap to represent the element. Consider the previous example of our markup
(see WebForm1.aspx in the Web03 project):

<HTML>
<HEAD><title>WebForm1</title></HEAD>
<body>
<form id="Form1" method="post" runat="server">
<asp:Label id="Label3“ runat="server">User Name</asp:Label>
<asp:TextBox id="TextBox1" runat="server" />
<asp:Label id="Label2" runat="server">Password</asp:Label>
<asp:TextBox id="TextBox3" runat="server" />
<asp:Button id="Button1" runat="server" Text="Login" />
<asp:Label id="lblOutput" runat="server" />j

</form>
</body>
</HTML>

CHAPTER 3 ■ PAGE OBJECT INTERNALS 85

522xCH03.qxd 8/31/05 3:23 PM Page 85

For this markup, how many objects would be in the Page’s collection of controls? The
answer, which may surprise you, is three, as shown in Figure 3-15.

To see why, let’s scan the markup for the first element that has the runat=server attribute.
We find that it’s the form element. So this element is definitely represented in the Page object’s
control tree. All of the other elements with the runat=server attribute are children of the form
element. This means that the instance of the Control object representing the Form element has
six children in its control collection, as shown in Figure 3-15.

Figure 3-15. The control tree of our simple markup, where the controls in the Page’s control
collection are numbered, and the controls in the Forms collection are lettered.

That leaves the other two objects in the Page’s control collection to identify. If you look at
everything preceding the Form declaration, you can see that it’s all static markup. These are
hierarchical elements as far as the web browser is concerned, but to the ASP.NET engine on
the server, it’s a meaningless arbitrary string. Since there are no runat=server attributes, there
will be no code interacting with this markup; and so the text is all flattened and represented in
the control tree as a single LiteralControl.

CHAPTER 3 ■ PAGE OBJECT INTERNALS86

522xCH03.qxd 8/31/05 3:23 PM Page 86

A LiteralControl, in case you’re not familiar with it, is just that. Whatever you set to its
Text property is literally what it will render. The LiteralControl’s constructor accepts a string
to use as its Text, so using the LiteralControl is very easy.

this.Page.Controls.Add(
new LiteralControl("<p>Here is some static markup I want on my page</p>");

So in the case of our markup above, the first control in the control collection is a literal
control, whose text contains all of the static markup preceding the form declaration. The third
literal control just carries the end body and end html elements as its text.

Because the other controls appear between the form’s begin tag and the form’s end tag,
they are all children of the form, and are, therefore, housed in its control collection.

Web Form Event Model
In ASP.NET 1.x, the Page type inherits its event model from System.Web.UI.Control. This is

nice, because it means all controls placed on a Web Form share an event model with the Page
object. This simplifies responding to events on User Controls, and is especially nice while
you’re developing custom Web Controls, because there’s only one event model you need to
become familiar with.

Ironically, this event model is lacking when it comes to developing User Controls and
custom controls. Sometimes there’s an action that needs to be taken at the page level after all
instances of a specific event have fired on controls, or before any instances fire on controls,
and there’s no hook to do this. This is one of the driving forces behind some new events on the
Page type in version 2.0 of the Framework.

The other driver is some of the new functionality exposed in 2.0. Some of this functional-
ity is wired before the Init event fires at the Page level (that is, Master Pages and Themes). To
facilitate making changes to these features from code, an event has been added that fires
before the Init event does.

Keep in mind that the purpose of a lot of these events may not be obvious when
thinking about a single ASPX page using canned Web Controls. A lot of these events become
relevant when you’re coding User Controls, when custom control development is part of the
project, when you’re using Master Pages, or when an application is using generic types derived
from the Page type as base classes for ASPX pages, instead of just inheriting directly from
System.Web.UI.Page. Then, rather than a single Init event firing, for example, there are Init
events that fire for controls up and down the control tree—for User Controls, for Master Page
classes, and for any classes extending the inheritance chain between the ASPX and the Page
class. If there’s some code that you need to run after everything is initialized, this can be tricky
to accomplish in version 1.x. The PreXXX and XXXComplete events have been added to the
page to reduce the complexity of timing the code in applications with all of these moving
parts. Let’s examine these events in the order that they occur.

CHAPTER 3 ■ PAGE OBJECT INTERNALS 87

522xCH03.qxd 8/31/05 3:23 PM Page 87

PreInit
This is a new page-level event. This event gives the developer a chance to run some code
before control and page initialization occurs. This is a good place to programmatically set the
Master Page that a Page object is going to consume. It’s also a good spot to programmatically
determine the Theme that a page is going to use. Since both of these features are implemented
in page initialization, this is your last chance in the pipeline to exert programmatic influence
on them.

This is also a good place to put any code that needs to be executed before controls get ini-
tialized. If a page is programmatically adding controls to the control collection, this is the ideal
place for that code to execute, as it precedes control initialization.

Init
This is a control-level event that also exists in version 1.x. An important detail to be aware of is
that control initialization fires before page initialization. This means that when the Init event
fires at the Page level, all of the controls for the page are already initialized. This is why if, for
example, you need to set the Theme for the page, you must do this from the PreInit event
trap, as it fires before the controls of the page are initialized.

InitComplete
This is a new page-level event. It fires after everything has been initialized. This includes all
controls in the control trees (recursively), any Master Page code (even when you’re using
nested Master Pages), and all types in the inheritance chain of the Page object. Because all
controls should be initialized at this point in the page-processing life cycle, any dynamic con-
trol generation should be done prior to this event firing, either during preinitialization or
initialization. While this won’t always be possible, it should be done whenever at all possible,
to avoid bugs and improve to predictability of the Page’s behavior.

PreLoad
This is a new page-level event. It fires before any Load event fires anywhere in the control tree
or Page object graph. It provides a place from the page to do any setup needed in loading of
controls on the page. It’s also guaranteed to fire after everything in the control tree is initialized.

Load
This is a control-level event that also exists in version 1.x. This is the classic entry point into
page processing. At this moment in the request processing cycle, control state is initialized,
View State has been restored on a postback, and any editing that a user has done has been
moved from the HTTP headers into the corresponding property values. Types in the Page
object graph have their Load events fire, and then the controls in the control tree have their
Load events fire.

CHAPTER 3 ■ PAGE OBJECT INTERNALS88

522xCH03.qxd 8/31/05 3:23 PM Page 88

Control-Level Postback Events
Any number of events can fire during this time during a postback. If there are seven textboxes
on a page, and each of them has a TextChanged event trap set up, and there’s also a submit but-
ton on the page to cause a postback, then you could have up to eight events fire during this
part of the page’s life cycle. For controls created dynamically, their event traps will be properly
sunk and fired, as long as you create the controls somewhere in the tree before the end of the
Page Load event.

LoadComplete
This is a new page-level event. It fires just after all Load events from the entire control tree and
object graph finish. It’s an ideal time to respond to work done during loading of the page and
controls, and work done during any event traps that occurred at any level of the control tree
hierarchy. It’s also guaranteed to fire before any PreRender events fire, ensuring that the pro-
cessing here gets done before, for example, any prerendering work gets done in a page’s base
classes.

PreRender
This is a control-level event that also exists in version 1.x. It fires on the types in the page’s
object graph, and then does a recursive descent of the controls in the tree, firing for each of
those.

PreRenderComplete
This is a new page-level event. This is your last chance to make changes to the output stream
that gets sent back to IIS. See the following section for a detailed discussion of this event.

SaveStateComplete
This is a new page-level event. After PreRenderComplete is fired, state information for all con-
trols is committed to view state. This event fires after that work is complete. (See Chapter 4 for
an example of how to make use of this event during control state persistence.)

Control Events vs. Page Events
Some of these events are part of the definition of System.Web.UI.Control. Some are defined by
System.Web.UI.Page. Since the Page type inherits from the Control type, they’re all exposed at
the Page level. Whether these events are defined at the Control or Page level only starts to make
a difference in the context of custom control development. Events defined by Control are
available during control development. Events defined by the Page are only available during
Web Form development.

Even if you’re not doing custom control development, this distinction can be important
when you’re using User Controls during Web Form development. Only events defined by the
Control base class are available from the code-behind of your User Controls.

CHAPTER 3 ■ PAGE OBJECT INTERNALS 89

522xCH03.qxd 8/31/05 3:23 PM Page 89

These differences can be seen in the SDK docs on MSDN, the Visual Studio .NET object
browser, or other reflection-based documentation systems. They’re shown here in Figure 3-16.

Figure 3-16. Page class events are distinct from Control class events

The Special Role of the PreRender Event
The PreRender event is fired just before the Render method is called on the Page object. It is,
therefore, your last chance to make changes to the Page’s output stream.

This is frequently a very useful event to trap. When you’re using User Controls on your
page, the event model is sequenced such that the Load event of the Page fires, the Load event of
the User Control fires, control specific events of the Page object fire, and then control specific
events of the User Control fire.

So what do you do if you want to respond at the Page level to the work that the User Con-
trol has done? A common pattern is to raise an event from the User Control back to the Page.
This is a very good model and you should use it whenever appropriate. Sometimes, however,
that just won’t do the trick. For instance, you may want to be sure that the User Control has
done all of its work before your processing fires at the Page level. When this is the requirement
you face, the PreRender method is the place to be. Consider the following code, which is
markup from PreRenderIE.aspx:

<%@ Page Language="C#"
AutoEventWireup="true"
CodeFile="PreRenderIE.aspx.cs"
Inherits="PreRenderIE" %>

<%@ Register TagPrefix="uc1"
TagName="RenderTextboxes"
Src="RenderTextboxes.ascx" %>

<HTML>
<HEAD>

<title>PreRenderIE</title>
</HEAD>
<body>

<form id="Form1" method="post" runat="server">
<asp:Label Runat=server ID=lblOutput>

CHAPTER 3 ■ PAGE OBJECT INTERNALS90

522xCH03.qxd 8/31/05 3:23 PM Page 90

Change some fields and press the button
</asp:Label>

<uc1:RenderTextboxes id="RenderTextboxes1" runat="server" />

<asp:Button Runat=server ID=btn Text='Postback' />

</form>
</body>

</HTML>

And here’s the code from the corresponding code-behind, PreRenderIE.aspx.cs:

public partial class PreRenderIE : System.Web.UI.Page
{

private int ChangeCount = 0;

override protected void OnInit(EventArgs e)
{

RenderTextboxes1.FieldChanged +=
new EventHandler(RenderTextboxes1_FieldChanged);

base.OnInit(e);
this.PreRender += new EventHandler(PreRenderIE_PreRender);

}

private void RenderTextboxes1_FieldChanged(object sender, EventArgs e)
{

ChangeCount++;
}

private void PreRenderIE_PreRender(object sender, EventArgs e)
{

if (this.IsPostBack)
{

lblOutput.Text = string.Format(
"You changed {0} fields on the User Control",
ChangeCount);

this.Controls.Remove(this.Controls[0]);
this.Controls.AddAt(0, new LiteralControl(string.Format(

"<html><head><title>{0} Changes</title></head><body>",
ChangeCount)));

}
}

}

CHAPTER 3 ■ PAGE OBJECT INTERNALS 91

522xCH03.qxd 8/31/05 3:23 PM Page 91

Here you’re using a User Control event to count the number of controls whose values
have changed. All of the TextBoxes on the User Control raise this event when their TextChanged
event fires. Here is the code from the User Control:

public partial class RenderTextBoxes : System.Web.UI.UserControl
{

public event System.EventHandler FieldChanged;

override protected void OnInit(EventArgs e)
{

for (int i = 0; i < 10; i++)
{

TextBox t = new TextBox();
this.Controls.Add(t);
t.TextChanged += new EventHandler(t_TextChanged);

} }
base.OnInit(e);

}
}

private void t_TextChanged(object sender, EventArgs e)
{

if (FieldChanged != null)
{

FieldChanged(this, new EventArgs());
}

}
}

In any given execution of the event trap at the Page level, you can’t be sure that it’s the last
time the event will fire. So you wait until the PreRender event fires to act on the data you’re cre-
ating as you trap events from the User Control. You could do this work from the FieldChanged
event trap of the User Control (relying on the fact that it would be correct the last time it fired),
but this is less efficient and won’t work for all types of processing. Imagine if you were updat-
ing the database or doing a redirect as a result of the work being done on the User Control.
Clearly the PreRender event is a better option.

As an improvement over version 1.x, even if the Page code needs to respond to work done
in the User Control’s PreRender event trap, you have the page-level PreRenderComplete event
that fires after all PreRender events fire for all controls in the tree.

Also in the PreRender event trap, you’re replacing the first control in the page’s control
collection with an instance of a new User Control (see Figure 3-17). This example (setting the
title of the page) is pretty trivial, but it’s there to illustrate that you still have full random access
to the entire control tree when this event fires. You can do anything to any part of the Page
because nothing has been committed to the output stream (see Figure 3-18). Later on we’ll
show you how you can capture the rendered output and send it somewhere else (like to a file
or a database, or as the body of an e-mail) from this trap.

CHAPTER 3 ■ PAGE OBJECT INTERNALS92

522xCH03.qxd 8/31/05 3:23 PM Page 92

Figure 3-17. The initial rendering of the User Control that raises an event

Figure 3-18. The same page after making modifications to textboxes and posting back

Resource Consumption when Data Binding
We’ve examined how all of the work you do while an ASP.NET page is processing is stored as
state of control objects in the control tree. We’ve also examined how no markup is committed
to the output stream until after all of your code has executed, most specifically, after the
PreRenderComplete event fires.

But what about data binding? Surely when the DataBind method is called, the bound con-
trol generates HTML that’s committed to the output stream right away, doesn’t it? The answer
is most definitely no. Data binding is no exception to the rule.

When DataBind is called, the control doing the binding generates any number of
instances of objects that it stores in its own collection. List controls generate ListItem objects.
The DataGrid generates DataGridItem objects. Each data bound control has its own type that it
uses to represent an individual row in what eventually will become the HTML output stream.
Because these collections of items are a contained collection of the bound control, the bind-
ing operation is really state information stored in the control tree.

When Render is called on the bound control, the control iterates over the objects in its
particular item collection, transforming each into HTML. The DropDownList generates option
tags. The DataGrid generates table rows, and so on.

CHAPTER 3 ■ PAGE OBJECT INTERNALS 93

522xCH03.qxd 8/31/05 3:23 PM Page 93

If this comes as a surprise to you, it’s going to come as an absolute shock what happens
with memory consumption during this process (see Figure 3-19). Carefully consider the
resources you’re consuming when you’re binding a DataGrid to a DataSet with the following
code:

private void Page_Load (object sender, System.EventArgs e)
{

SqlConnection cn = new SqlConnection("server=.;database=pubs;uid=sa;pwd=");
SqlCommand cm = new SqlCommand("select * from authors", cn);
SqlDataAdapter da = new SqlDataAdapter(cm);

DataSet ds = new DataSet();

da.Fill(ds);
DataGrid1.DataSource = ds.Tables[0];
DataGrid1.DataBind();

}
//Page Rendering…

Figure 3-19. Consumption of resources while data binding

The first hit you take on the web server’s memory is when you call Fill on the DataAdpater.
This marshals your entire result set from the database into the process space of the web
server. The DataSet carries not only the current values as read from the database, but also the
original values as the data was read out of the database, as well as metadata about the struc-
ture of the DataTable objects contained in its TablesCollection. The DataSet is a very powerful
object, but it’s also a very fat object. You take a hit whenever you load one into memory. If
you’re doing this on your home page, you’re taking this hit not once, but once for each user
that comes to your site. But wait, it gets worse.

The next thing you do is set the DataSource of the DataGrid and call DataBind. As we just
went over, this creates an in-memory collection of DataGridItems. This collection is probably
just as large as your DataSet. If you’re only outputting a couple of columns, maybe it won’t
be as large. If you’re using a complex column template with a lot of markup, the size of this

CHAPTER 3 ■ PAGE OBJECT INTERNALS94

522xCH03.qxd 8/31/05 3:23 PM Page 94

collection could exceed the size of the DataSet. So at this point you’ve got about a 2X hit on the
web server memory (X being the size of your result set).

After that, your code is done executing. Your DataSet goes out of scope, but the DataGrid
won’t go out of scope until you’re done rendering. Furthermore, the DataSet hangs around on
the managed heap until the garbage collector does a couple of sweeps, which probably won’t
happen until after your rendering is complete. So as you enter the rendering stage of your Page
object, we’re still holding onto memory resources of the web server equal to approximately
twice the size of the result set.

When the DataGrid renders, it does a couple of things. First, it transforms its DataGridItem
collection into HTML. This is, again, probably as big as your initial result set, so you’re at
3X memory consumption. Then the grid squirrels away all of the DataGridItems into the
ViewState of the page. After all, it will need these to restore its state when a postback occurs.
If it didn’t hold onto these, the grid would need to be rebound on every postback. 4X the size
of your result set in web server memory resources is consumed. Swap out X for a 250K result
set and multiply that by your number of concurrent users. You can see this rather innocuous
operation gets very expensive very quickly.

So what do you do? You have a number of options. Which one you employ depends upon
your requirements.

The first option is to use a DataReader instead of a DataSet. A DataSet is an in-memory
representation of your result set. Having this in memory is very nice for a number of things,
such as sorting, filtering, caching, modifying, and marshaling. However, in this case, you’re
doing none of those things. In fact, a DataReader is ideal for binding operations when you’re
generating markup. You don’t need all that data in memory at once! A DataReader reads a row
at a time from the database, and then discards it. So as you move through the result set, you
maintain a nice low memory footprint, equal to the size of one row of your result set.

The DataReader is not suited for all purposes. You can only read forward through the
DataReader once. You cannot modify data. You cannot cache a pointer to the DataReader or
marshal it across processes. When you have the need to do these things, by all means use a
DataSet. Just don’t go to the DataSet unless you have a specific requirement that drives you
there.

The next thing you can do is disable the ViewState on the DataGrid. ViewState is nice, but
for a DataGrid it’s generally too expensive, especially if you have dial-up users. Not only does
it bloat the size of the response stream, but also the whole thing gets sent back to the server
when a postback occurs, so it bloats the size of any subsequent HTTP request on a postback
as well. Your page is generally going to get better performance by rebinding the grid when the
page posts back. This won’t work for editable grids, but for most of the rest of the functionality,
this pattern should serve you fine. Of course, if you’re writing an Intranet application and it’s
only ever going to run on a 100-mbps connection, ViewState bloat might not be a big deal,
and you may get better performance using it than re-binding on every postback. These options
should be put under a load that approximates the conditions in your production environment
as closely as possible, and then you can see which one is faster. (See Chapter 4 for further dis-
cussion of ViewState, and the new 2.0 feature, ControlState, which helps to manage this
problem in many circumstances.)

You can also mitigate the impact of both the DataSet size and the resources the DataGrid
consumes by binding to smaller result sets. If this isn’t an option because you have large result
sets, then use the custom paging feature of the DataGrid, and implement paging at the data-
base level. The automatic paging feature of the DataGrid is not a good solution to the problems

CHAPTER 3 ■ PAGE OBJECT INTERNALS 95

522xCH03.qxd 8/31/05 3:23 PM Page 95

we’re speaking of, as it requires binding to the entire result set on every postback, and then
just whittles down the visible rows to the selected page. (However, default paging can work
alright with a cached DataSet, as we show in a bit). With custom paging, you can have the
database return a single page of data at a time, and display only that page to the user. This
saves on the network traffic between the database server and the web server, minimizes the
size of the DataSet, and reduces the DataGrid’s consumption of resources for its DataGridItem
collection, the rendered HTML, and the ViewState. (In Chapter 11 we’ll take a look at the new
Data Source Controls and the Web Controls that bind to them [like the GridView], and examine
their behavior and interaction with ViewState across postbacks.)

And finally, if there’s high contention for a single resource, get it out of the database at
once and programmatically put it into the Cache. This significantly reduces the footprint,
because all users will now share a single copy of the DataSet. The DataSet can still be filtered
in-memory if different users require seeing different subsets of the data. Put the superset into
the memory, and then filter it down on a per-user or per- page basis.

You should also test this strategy by putting it under load, given in-memory filtering of the
DataSet doesn’t perform as well as querying the database, even when you factor in the network
round-trip. This is especially true for large result sets (DataTables with more than 50,000 rows).
(See Chapter 11 for details on the new Cache dependency types, which allow the Cache to auto-
matically purge entries as changes are made to the database data.)

Capturing the Rendered Output Stream
The Page object renders and sends the generated HTML down the IIS output stream. However,
the rendering behavior is publicly exposed, and that stream can be captured and sent to other
output formats.

This may be useful if you’re pregenerating a website: You can render all permutations and
combinations of the output of the site and write them to disk or send them to the database.
You can have specialized pages that dynamically generate output once, and then store it in a
static ASCX file for use as a User Control on another page.

■Tip The author of this chapter originally discovered the capturing of the rendered output stream capability
when he had a digital signature requirement. When users selected a check box and filled in their names,
their digital signatures were to be treated legally as their real signatures. In order to audit the “signing” of
the page, the HTML needed to be captured “exactly as the user was seeing it” and put it into the database.
He scratched his head on this for a while, but then realized that because of the ViewState maintenance, he
could call Render on the page when the postback occurred and the output would look just as it had to the
users when they submitted it. He created a file with this markup, sent it into the document management
system, and redirected the users to a page thanking them for signing away their first born.

But perhaps the most useful thing to do with the captured rendered output is to pack the
HTML into the body of an e-mail message and send the web page to somebody via Simple
Mail Transfer Protocol (SMTP). This is what we’re doing on Intertech Training’s website.
Figure 3-20 shows a page displaying a course outline.

CHAPTER 3 ■ PAGE OBJECT INTERNALS96

522xCH03.qxd 8/31/05 3:23 PM Page 96

Figure 3-20. Course outline from www.IntertechTraining.com

Users can click the E-mail button, type their e-mail addresses into a text box on a pop-up
dialog, and get the same course outline delivered to their inboxes, shown in Figure 3-21.

This is amazingly easy to do. The same User Control generates the outline whether the
output is going to the Web or getting packed into the body of a mail message. Here’s the code
that captures the Page rendering and sends it off via SMTP.

StringBuilder sb = new StringBuilder();
HtmlTextWriter t = new HtmlTextWriter(new StringWriter(sb));
this.Render(t);

string s = sb.ToString();
MailMessage m =new MailMessage();

m.BodyFormat = MailFormat.Html;
m.From = "Enrollment@IntertechTraining.com";
m.To = txtEmail.Text;
m.Subject = "Course Description";
m.Body = s;
SmtpMail.SendEmail(m);

Response.Write("<body onload='window.close();'>");
Response.End();

CHAPTER 3 ■ PAGE OBJECT INTERNALS 97

522xCH03.qxd 8/31/05 3:23 PM Page 97

Figure 3-21. Course outline as delivered via e-mail

If you’ve ever created a Custom Control, you know that the Render method expects an
instance of an HtmlTextWriter. This type is handy for easing the programmatic generation of
HTML. In this case, it’s the key to capturing the output stream. The first couple of lines of code
create an instance of the HtmlTextWriter, but instead of using the IIS output stream, it uses a
StringBuilder and a StringWriter. This effectively has all of the controls send their output
into the character buffer of the string builder instead of down the output stream.

The next line simply calls Render and passes the HtmlTextWriter. The next few lines create
and configure the mail message that will contain the rendered output. Notice the BodyFormat
property is being set to MailFormat.Html. Failure to do this will send raw markup as the body
of your mail message (although your users will see this anyway if their mail clients do not sup-
port HTML e-mail, but that’s sooo 20th century). The body of the message is created by
converting the StringBuilder’s buffer into a string.

The last very important point to notice is that the processing is then terminated by calling
Response.End, but not before a little JavaScript gets sent down the pipe instructing the dialog
to close itself. You can also terminate the process by redirecting the user to another page. You
cannot allow the Page to enter its rendering process again, as the Page has already rendered
and will throw an exception if asked to do so a second time.

CHAPTER 3 ■ PAGE OBJECT INTERNALS98

522xCH03.qxd 8/31/05 3:23 PM Page 98

Summary
You’ve seen in this chapter how the core structure of the Page object is the control tree. The
control tree is exposed by the System.Web.UI.Control type, so all controls you use expose their
own control collection. This is how the control tree models the hierarchy of your HTML docu-
ment. Markup without the runat=server attribute gets flattened into a LiteralControl in this
control tree. So the Page object is nothing but a big state machine, and the code you write
alters the state of this control tree, so that when the page finally renders, you get the HTML
you need.

Deployment and compilation are problematic in version 1.x. Microsoft has added
several features to the environment to address these issues, including a new deployment
tool, dynamic compilation, and the ability to precompile an application in place or before
deployment.

When you’re working with all of the Web Controls, User Controls, and custom controls
that may be in the control tree, on top of base types sitting between your pages and the
Page type, the timing of processing can become very complex. Several PreEventName and
EventNameComplete events have been added to the Framework to help you manage this
complexity.

Nothing is committed to the output stream until the page renders, so you can make any
changes to the control tree that you need until the page does render. The PreRenderComplete
event is your last chance to affect the output stream. Because of this control tree infrastruc-
ture, data binding can be a memory intensive operation. You have a number a ways to control
this rampant consumption, including turning off the ViewState of the bound control.

Finally, instead of sending the output stream back to IIS, you saw how you can capture it,
and compel it to do your bidding.

CHAPTER 3 ■ PAGE OBJECT INTERNALS 99

522xCH03.qxd 8/31/05 3:23 PM Page 99

522xCH03.qxd 8/31/05 3:23 PM Page 100

ViewState and Scripting

ASP.NET is intrinsically a server-side technology. All of the code that goes into creating a
Web Form executes on the web server. The entire .NET Framework is geared toward generat-
ing markup compliant with the HTML 4.0 specification (www.w3.org). There’s no facility for
spawning a .NET process on the client. With ASP and COM there are ActiveX controls. With
Java there are applets. With .NET—nada.

While this may strike some as an omission, it’s actually by design. ASP.NET is designed for
creating web applications that cast the widest possible net for supporting the browsing public.
The presupposition is that the .NET Framework is not installed on the client. If the Framework
is installed on your entire client base, and you want to leverage the power of .NET in that
process space, then smart clients—a hybrid model that combines the advantages of a web-
based deployment model with the richness of a Win32 application interface—is the
development model you need to be looking at.

This does not leave you, however, without options for dynamic behavior on the client.
The HTTP 4.0 specification defines many advanced features of the protocol (think of the rich-
ness of HTML Forms), and JavaScript (an Ecma standard with broad cross-browser support) is
at your disposal, as well as the rich feature set that’s exposed via Cascading Style Sheets (CSS).

The ASP.NET Framework leverages and supports these features extensively. All page
postbacks actually occur via a JavaScript function that the page-rendering process generates
whenever there’s a form element with the runat=server element present on a Web Form. And
the state maintenance done across postbacks that cannot be accomplished with standard
HTTP Post elements uses an HTML hidden input named ViewState.

So while there’s no support for executing .NET code within the browser, nothing from
your browser bag of tricks is taken away from you when you’re using the Framework. Addi-
tionally, there’s generally some .NET code you can leverage server side that supports using
standard browser features.

In this chapter we’ll first examine ViewState closely. Most Web Form developers are
familiar with this hidden input, and almost all love and take advantage of the state mainte-
nance features it affords them. Here, we’ll take a closer look at exactly how ViewState works,
some performance impacts to be aware of, enhancements that have been added in version
2.0, and advanced strategies for leveraging and managing it.

In the latter half of the chapter, we’ll take a look at using JavaScript in your ASP.NET appli-
cation. Whether you’re shipping static script files to the browser or dynamically generating
script code from your Web Forms, we’ll show you how the Framework supports and aids these
efforts. We’ll also take a look at the new capability of ASP.NET 2.0 to do asynchronous “out-of-
band” callbacks to the server via script, making the highly coveted “partial page refresh” easily
attainable in a variety of contexts.

101

C H A P T E R 4

■ ■ ■

522xCH04.qxd 8/31/05 3:25 PM Page 101

The Role of ViewState in ASP.NET
Creating rich functionality using ASP.NET requires much less code than it does using ASP
and other web development environments. You realize a large portion of this savings through
the “state maintenance” the Framework provides. This accounts for, among other things, a
drop-down list’s capability to maintain the entries in the list across postbacks, all HTML input
controls being able to maintain their values across postbacks, and, in more advanced cases,
the capability of the DataGrid to maintain its entire HTML table when one of its events causes
a postback.

The magic of ViewState is accomplished with the aid of a hidden input named
__VIEWSTATE.

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDwUJNzgzNDMwNTMzZGTp0BWhvZM7mmZGfhpcnI4aNOFFbw==" />

All controls on a page can put whatever values they want into this hidden input. The
Framework manages these values, basically as a collection of named value pairs. The Frame-
work also manages delimiting values put into ViewState through different controls on the
page. It also manages encrypting and decrypting the values before they go to the client and
when they’re posted back to the server. This means that the Framework provides a complete
layer of abstraction between the consumer of ViewState and the details of its actual imple-
mentation. This makes using ViewState very easy from custom controls or from the code for
a Web Form.

Let’s start by examining how one of the built-in Web Controls uses ViewState. We’ll take a
look at the DropDownList control. It maintains the entries in its list across postbacks using
ViewState. For each list item that’s in the collection of list item objects, the display name, its
underlying value, and whether or not it’s visible is added to ViewState. ViewState is nothing
more than a simple state bag, or collection of tuples. So the DropDownList has an entry in
ViewState for its ListItemCollection value, and that value is a collection of tuples, one for
each ListItem in the collection. Each of those values, in turn, is a triplet, containing the name,
value, and whether or not the field is visible.

This organization scheme results in a hierarchical tree of tuple collections, where each
control gets its own node of the tree to squirrel away its own values. When the state of the con-
trol tree is being saved, each control in the page’s control tree has its SaveViewState method
called. This is a virtual method of the Control class, and so any control developer can write an
override for it.

Understand that the Microsoft engineer who wrote the code for the DropDownList did so
exactly the same way someone creating a custom Web Control for her own application would,
by interacting with the property bag interface.

You can see the impact the DropDownList has on the resulting HTML in a couple of differ-
ent ways. First, there’s the trace output report that shows you a control-by-control report of
the size each control adds to ViewState (see Figure 4-1).

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING102

522xCH04.qxd 8/31/05 3:25 PM Page 102

Figure 4-1. ViewState on the trace output report

This provides a good breakdown of the relative sizes, but unfortunately there’s no total for
the ViewState value. The easiest way to measure this is to use the built-in functionality of your
web browser. While viewing any ASP.NET page from the browser, choose View ➤ Source. From
the instance of Notepad displaying the markup, choose File ➤ Save As… and write the file out
anywhere on your file system (i.e., c:\tmp.htm). Now add EnableViewState=false to the page
directive:

<%@ Page language="c#"
CodeFile="ViewStateIE.aspx.cs"
Inherits="APressWebWork.ViewStateIE"
EnableViewState=false %>

Go back to the browser, refresh the page, view the source again, and write the markup
out to another file. The difference in the sizes of these files lets you know the total size of
ViewState for the page.

Let’s look a little more closely at exactly what’s stored in ViewState. You’ll start by adding
a textbox control to a Web Form, and setting its EnableViewState property to false. You’ll also
add some simple code to the Load event trap, to show whether the request is a postback or a
first request.

<%@ Page Language="C#"
CompileWith="ViewStateIE.aspx.cs"
ClassName="ViewStateIE_aspx"
Trace="true" %>

<html>
<head runat="server">

<title>ViewStateIE</title>
</head>
<body>

<form id="form1" runat="server">

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 103

522xCH04.qxd 8/31/05 3:25 PM Page 103

<asp:TextBox Runat=server ID=txtDemo EnableViewState=false />
</form>

</body>
</html>

And here are the contents of the code-behind:

public partial class ViewStateIE_aspx : System.Web.UI.Page
{

void Page_Load(object sender, EventArgs e)
{

if (this.IsPostBack)
{

lblOutput.Text = "Postback";
}
else
{

lblOutput.Text = "First Request";
}

}
}

When you request the page, type something into the input and hit return. A postback
occurs and you can see that the TextBox has maintained its value (see Figure 4-2).

Figure 4-2. The test page after a postback

This is what comes to mind for a lot of folks when state maintenance is mentioned. But
for this control, you’ve disabled ViewState (by setting EnableViewState=false). You can verify
this on the trace report, where it’s reported that the textbox has contributed zero bytes to
ViewState. So how was the value maintained across postbacks? An input of type text sends its
value to the server whenever an HTML Form is submitted. This is, of course, the underlying
architecture of a Web Form postback. The ASP.NET Framework will leverage this whenever it
can in the service of state maintenance. Aside from input values, text area input, and select
elements, not much more state information is naturally included in a post. You can easily
modify the demo code to demonstrate this. In this code, you’ll set a CSS attribute only on
the first rendering of the page:

void Page_Load(object sender, EventArgs e)
{

if (this.IsPostBack)
{

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING104

522xCH04.qxd 8/31/05 3:25 PM Page 104

lblOutput.Text = "Postback";
}
else
{

txtDemo.BackColor = System.Drawing.Color.LightSkyBlue;
lblOutput.Text = "First Request";

}
}

So on the first rendering of the page, the back color of the TextBox is set to light blue (see
Figure 4-3).

Figure 4-3. First rendering of the page setting a CSS attribute programmatically

On postbacks, the back color will not be set. The line of code setting the back color will
not execute, and the TextBox will render with its default background color (see Figure 4-4).

Figure 4-4. The test page after a postback

Now let’s turn ViewState on and rerun the tests. The page looks the same on the first
request. Notice now that some bytes are being consumed by the control in ViewState (see
Figure 4-5).

Now when you enter a value and do a postback, the back color of the TextBox is main-
tained, in addition to the field value. The field value is still maintained using information in
the HTTP Post, whereas you’ve used ViewState to maintain the CSS value.

Web Control properties that render as an inline CSS Style attribute in the resulting HTML
are but one example of control state information that must be tracked in ViewState. The col-
lection of list items for a list control is another good example, as you saw earlier. Since the only
piece of information about a list that automatically gets sent to the server when a post occurs
is the value of the control; anything else that needs to be tracked across postbacks must be put
into ViewState.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 105

522xCH04.qxd 8/31/05 3:25 PM Page 105

Figure 4-5. Our test page with ViewState enabled for the textbox

It doesn’t follow, however, that in order to use Web Controls properties you must leave
ViewState enabled. Properties that are set from markup (that is, attributes set on the Web Con-
trol in the actual ASPX page) don’t need ViewState to maintain these values across postbacks.
As you saw in Chapter 3, the markup actually becomes a piece of code that gets executed at
runtime. Each attribute set from control declarations in the markup becomes a line of code
calling a property set method in the generated code. This code gets executed with each page
request, postback or not.

So you need ViewState when you interact with controls programmatically from a branch
of code that executes only on the first request for a page, but you want those changes to per-
sist across postbacks. It follows, then, that your choices are to leverage ViewState or to place
code in a branch of logic that executes with every request of the page. In the example of set-
ting the back color of the textbox, it doesn’t make much difference if you send an additional
36 bytes to the client or execute one additional line of code with each postback. Where it does
start to matter more is with operations that are more computationally intense or (perhaps
more commonly) when an extra network hop is involved, such as when you go to the database
to get a set of values to use in a data-binding operation.

Once you peel back the layers of abstraction that exist between the developer and the
actual implementation of ViewState functionality, how and when to use ViewState becomes
a question of resource consumption and bandwidth that’s familiar whenever state must be
maintained in a web application. When maintaining state in a web application, you basically
have three choices: the client, the web server, or (to accommodate a Web Farm) a server-side
location out-of-process to the web server. We list the pros and cons for each location in
Table 4-1.

A lot of these choices are driven by the type of state information being maintained and
the requirements of your specific application. You must make different choices for state infor-
mation shared across all users vs. state information that’s user specific. Some choices are
eliminated when a single point of failure isn’t an option. If you must accommodate users with
cookies disabled, your choices become seriously constrained. In Table 4-1, you can see where
ViewState firmly lands in the scheme of things. It’s a page-specific, user-specific, client-side
state maintenance mechanism.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING106

522xCH04.qxd 8/31/05 3:25 PM Page 106

When evaluating your use of ViewState and the resources it’s consuming, be sure to take a
balanced approach. There are many people who view the source for a page with a significant
amount of ViewState, and based on the number of rows it takes Notepad to display it, become
shocked and immediately assume it’s totally unacceptable. However, you may want to con-
sider that 4K, for example, isn’t that much data. This increases the payload of data being sent
in a connection that’s already established to the web server for a request it’s already processing.
Contrast that with an image. An image frequently is greater than 4K in size. How many images
are included on your home page? Amazon.com has more than 50. Each of these images is
an additional round trip to the server, not just a few K more for a request that’s already being
serviced.

So the point is that ViewState isn’t that expensive in regard to resource consumption
when you consider the typical way web sites are built today. The big difference is that ViewState
increases not just the response payload, but the request payload as well (when a postback
occurs). This makes it more like a cookie than an image. However, cookies are sent to the
server with every request (including image requests), whereas ViewState is sent only as part of
the HTTP Post that makes up the submission of a form (aka a postback). As a matter of fact,
Amazon.com hosts their images on a different domain than the one the server markup comes
from, in part to lose cookie transmission on image requests.

As a final corollary, don’t misconstrue this point as an argument that you should ignore
all of the warnings about ViewState. When it’s 40K instead of 4K, you have much more cause
for concern. When a control isn’t using or doesn’t need the feature, then it should, of course,
be turned off. Just be sure to take a balanced approach with your evaluation of the feature as
a resource consumer. As you’ll see in the sections that follow, version 2.0 of the Framework
addresses some large drawbacks that came to light in 1.1 applications, making the feature
useful in even more contexts.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 107

Table 4-1. Pros and Cons of State Maintenance Locations in a Web-Based Application

State Location Pros Cons Examples

Client Not consuming any Increases request and Cookie
server-side resources response sizes Hidden inputs
State information “pinned” Page specific (hidden ASP.NET ViewState (layer
to client that the inputs only) of abstraction on top of a
information is about hidden input)

Web server Lives closest to process Consumes web server ASP session
servicing request resources ASP.NET session (with
Does not increase request Can be problematic mode set to InProc)
or response sizes in a Web Farm

Must still have client-
side mechanism to
tie state to requestor

Server side, Does not consume web Process hop can cause Database
out-of-process server resources a performance hit ASP.NET session (with

Does not increase request Network hop can cause mode set to StateServer
or response size a performance hit or SQLServer)
Can be configured to work Must still have client-
in a Web Farm side mechanism to tie

state to requestor

522xCH04.qxd 8/31/05 3:25 PM Page 107

The ViewState Value
The actual value of the __VIEWSTATE hidden input is hashed and then encrypted by the Frame-
work before it is sent to the browser. The Framework does the encryption for you to secure
the value and to prevent a malicious user from posting a spoofed value to the server, possibly
tricking an application into performing work it would not normally do.

The algorithm for hashing the value has changed from version 1.1 to version 2.0 of the
Framework. We’ll take a look at that in the next section. The new algorithm produces a smaller
string for encryption, resulting in a smaller ViewState size overall.

There are a few different types of encryption you can use. You can choose from SHA1,
MD5, or Triple-DES.

The key used for the encryption and decryption of the data exists on the web server.
The Framework does the encryption not only for ViewState data, but also for the value of an
authentication ticket cookie when using Forms-based authentication—as well as to protect
session data when it’s out of process. Since there’s no facility to change or add items to
ViewState from the client, there’s no need for the client to ever be able to read the value. The
key’s sole purpose is to restore state when it’s posted back to the server. So the server uses a
key to encrypt the value, it’s sent to the client (where it’s truly meaningless) and then it’s
posted back to the server, where it’s unencrypted and used to restore the state of any controls
that put values into ViewState when first rendering.

The default behavior is for the Framework to automatically generate the 128-character
key value used for encryption. This can become a problem in a Web Farm. Consider a request
that server A services that uses its own generated key to encrypt ViewState data. The user
posts the page back to the server, and the load-balancing algorithm routes the request to
server B. This server uses its own auto-generated key to try and decrypt ViewState, it fails,
and a run-time error is thrown.

To avoid this, when you’re using a Web Farm, the load balancer must use sticky sessions
(so each user is routed back to the same server once he or she has made an initial request),
or you must manually specify the key value to use for encryption and decryption within the
Machine.config file for each server in the Farm. You do this using the <machineKey> element.
This configuration element is also where the encryption type is specified. Here we see a
sample machine key element, with the key values truncated for brevity.

<machineKey
validationKey="F1213F81D…AD2D58F8FB0D9096F"
decryptionKey="E177A93C…0A608553FA73FDD99"
validation="SHA1"

/>

This element is then added to the <system.web> section of the Machine.config or the
Web.config file at the root of the web server. While you can add it to the configuration file of
an individual IIS application, this would only make sense in an environment where different
encryption is being used for different applications in the same Web Farm.

■Note See the SDK article http://support.microsoft.com/default.aspx?scid=kb;en-us;313091 for a detailed
explanation and nifty piece of code that randomly generates this entire declaration for you.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING108

522xCH04.qxd 8/31/05 3:25 PM Page 108

2.0 ViewState Enhancements
As developers write applications and put them into production, many things about ViewState
that were not known or realized during the original design of ASP.NET come to light. Real-
world applications always do this. By talking with and listening to developers, Microsoft has
been able to identify some of these biggest problems in version 1.x, and then address them
in version 2.0 of the Framework.

1.x Problem: Action Attribute Constraints
The HTML specification states that when an HTML Form is submitted, the browser automati-
cally navigates to the URL the Action attribute specifies on the form declaration. The values
for any inputs contained on the form are sent along as part of the request. If the method attrib-
ute is set to GET, the values will be appended to the URL as query string values. If the method
attribute is set to POST, the values will be packed into the header of the request (as named-
value pairs).

In ASP.NET version 1.x, the architecture is designed so that the action attribute is always
set to the rendering page, causing the web browser to navigate back to the page that originally
generated the response. This is the ASP.NET definition of a postback. A form is submitted to the
page that originally rendered the output stream. Many of the best features of ASP.NET (like
state maintenance and server-side event traps) depend upon this one presupposition.

This is a big change from traditional ASP, where the coding model made such a mess of
things so quickly that you frequently had to dedicate a page to each stage of processing a
transaction with the user. The first page might render the interface for a user to provide infor-
mation for the transaction. That page would post to another page that would validate and
process the transaction. Depending on how things went, that page might redirect to a success
page or render an error message when something went wrong. In some application patterns,
an ASP page was nearly analogous to a function call in a procedural program.

In ASP.NET it’s much easier to put a lot of functionality into a single page. The separation
of code from content is a large part of this reason. This leaves the page with the markup con-
taining only markup, and isolates the code in another physical file. Server-side event traps
also greatly increase the readability and maintainability of a page, making it very easy to find
where particular events are processed and easy to read much of the code and understand
what may invoke it. Add to this the fact that you can actually use types (as opposed to VBScript
Variants), that the page can be compiled before it’s executed (as opposed to interpreted at
runtime), better reuse mechanisms, and the fact that you have to declare variables (what a
radical notion!), it’s easy to see why many developers quickly made the adjustment to having
to post to the same page that rendered the content in the first place.

But sometimes it’s nice to use a form’s action to navigate to another page. Having HTML
inputs on a page is a great way to maintain state, and the layer of abstraction created for the
ViewState mechanism makes this a great programming convenience. But because of this par-
ticular architectural constraint, it’s impossible to put a value into ViewState on one page and
retrieve it from another. If you specify the action attribute on a Form element (or programmat-
ically alter it using script on the client before submitting the form), the new target page cannot
read the ViewState value that gets posted to it.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 109

522xCH04.qxd 8/31/05 3:25 PM Page 109

2.0 Solution: Cross-Page Postbacks
In ASP.NET 2.0, the ability to post to a different Web Form has been added. However, rather
than having ViewState restored by the new target page, there’s a new property of the Page type
named PreviousPage. This property is also an instance of the Page class, and is an instance of
the Page that did the cross-page postback (see Figure 4-6).

Figure 4-6. Cross-page postback object reference

Typically, you can set the action attribute of a Form element in your markup. In ASP.NET,
however, the action attribute is always set to the page that’s rendering the form. You accom-
plish cross-page postbacks with a bit of client-side script that’s rendered by the Framework. To
generate this script you need to set the PostBackUrl attribute of a ButtonWeb Control. Here’s a
simple example of a page with a Button that posts to a different Web Form:

<%@ Page Language="VB"
CodeFile="CrossPage.aspx.vb"
Inherits="CrossPage" %>

<html>
<head id="Head1" runat="server">

<title>Cross Poster</title>
</head>
<body>

<form id="form1" runat="server">
Make a page that has:

Background: <asp:TextBox Runat=server ID=txtBgcolor />

And displays: <asp:TextBox Runat=server ID=txtText />

In the color of:<asp:TextBox Runat=server ID=txtTextColor />

<asp:Button Runat=server ID=btn1

Text=Submit
PostBackUrl="~/CrossPage2.aspx" />

</form>
</body>
</html>

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING110

522xCH04.qxd 8/31/05 3:25 PM Page 110

You must give types careful consideration when one page does a postback to another. The
biggest reason for this is that the page that does the posting is exposed on the target page via
the PreviousPage attribute. This is an instance of a Page object, which is all well and good, but
when it comes time to do something with the information on the Page that did the posting,
you must make some assumptions about the that page. You may even find yourself casting the
PreviousPage property into the type of the posting page. In doing so, you’re creating a tight
coupling between these pages, which may minimize reuse of the page that gets posted to,
something you should be aware of during design.

Let’s take a look at a few ways you can get to the information from the posted page. Per-
haps the easiest is to use the FindControl method of the Page type. Here’s some code you can
use from the page that gets posted to (CrossPage2.aspx):

string bodyColor = ((TextBox)this.PreviousPage.FindControl("txtBgcolor")).Text;

Here a string is declared and set equal to the Text property of a TextBox. To obtain the
reference to the TextBox, you pass its ID (as declared on CrossPage.aspx) to the FindControl
method. Since FindControl returns a reference to a System.Web.UI.Control object (the base
class of TextBox), you must explicitly cast it to the TextBox type in order to drill into the Text
property.

This coupling doesn’t mean that only CrossPage.aspx can use CrossPage2.aspx. The
coupling it creates is this: Any page posting to CrossPage2 must contain a TextBox named
txtBgcolor. This isn’t necessarily a problem, and it doesn’t mean CrossPage2 cannot be
reused; it’s just something you need to take into account during design.

This method of accessing the previous page is very “late bound.” If txtBgcolor doesn’t
exist, this will not show up as a problem until runtime. To create a much looser coupling, you
could check the return value of FindControl for nulls (the value returned when the control
isn’t found) and deal with this case is a separate branch of code:

TextBox txt = (TextBox)this.PreviousPage.FindControl("txtBgcolor");
string bodyColor;
if (txt == null)

bodyColor = "Lime";
else

bodyColor = txt.Text;

FindControl does a recursive descent of the page’s control tree, which can be expensive if
there are a lot of controls to search through and/or you’re seeking references to many different
controls. You’re also doing a run-time type coercion, which could also fail if someone gives a
control (like an input of type text) an ID of txtBgcolor.

When a stronger-typed reference to the previous page is required, you can use the
PreviousPageType directive. Let’s take a look at the markup for CrossPage2.aspx:

<%@ Page Language="C#"
CompileWith="CrossPage2.aspx.cs"
ClassName="CrossPage2_aspx" %>

<%@ PreviousPageType VirtualPath="~/CrossPage.aspx" %>

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 111

522xCH04.qxd 8/31/05 3:25 PM Page 111

<html>
<head runat="server">

<title> Cross-Posted To (CrossPage2) </title>
</head>
<body runat=server id=body>

<form id="form1" runat="server">
<asp:Label Runat=server id=lblOutput />

</form>
</body>
</html>

In this markup, after the page directive, you’re declaring that CrossPage.aspx is going to
post to you. This doesn’t just cause run-time coercion on the type of the PreviousPage attrib-
ute; it actually changes the type of the property. It even shows up during design time, giving
you IntelliSense on the property while coding, and the Watch window and other coding con-
veniences while debugging.

Let’s add a public property to CrossPage, which will return the color the user wants the
text displayed as.

public System.Drawing.Color outputColor
{ get { return System.Drawing.Color.FromName(txtTextColor.Text); } }

This is a read-only property named outputColor. It’s strongly typed as a Color. From
CrossPage2, it’s now possible to use a line of code to reference it.

lblOutput.ForeColor = PreviousPage.outputColor;

This is really interesting because you’re not casting to an instance of CrossPage at run-
time. The PreviousPage property is now of type CrossPage_aspx. There are many advantages
to this over the FindControl strategy we looked at first. The property is strongly typed, giving
you compile time checking and more run-time safety. The property provides better encapsula-
tion of this value. The consuming page is concerned with neither the name of the control
this property is gathered from, nor even that it gets gathered from a control at all. You could
change CrossPage to use a DrowDownList of colors and the code on the consuming side would-
n’t have to change at all. And obviously, you could add some safety code to the get method of
the property, returning a default color when nothing is in the textbox or the value entered is
not a valid color.

This polymorphism of the PreviousPage property is wired by the run-time engine during
code generation. Visual Studio .NET is smart enough to pick it up in the IDE and give you
some design-time productivity gains to boot.

You may also want access to values in ViewState of the posting page from the page you’re
posting to. With a reference to the PreviousPage, this may seem relatively straightforward at
first. A line of code like this on CrossPage2.aspx may seem to be just the thing you need.

//This reference does not work because ViewState is a protected property
string s = PreviousPage.ViewState["SomeValue"].ToString();

This, however, will not compile. ViewState is a protected member of the Page class. This
means it’s only accessible from types using the Page type as a base class. When you’re writing
code in a code-behind file, you’re creating a type that inherits from the Page class, and so the

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING112

522xCH04.qxd 8/31/05 3:25 PM Page 112

protected ViewState is in scope and is inherited for free from the base class. From a cross-page
postback, however, you need to expose this ViewState value explicitly. Here’s another property
you’ll add to the CrossPage code:

public string SomeValue
{ get

{
if (ViewState["SomeValue"] == null)

return "SomeValue not set. ";
else

return ViewState["SomeValue"].ToString();
}

}

This allows CrossPage2 to obtain a strongly typed reference to this value, again with better
encapsulation, as CrossPage2 doesn’t need to be concerned with where this value comes from.

If the ViewState entries are dynamic, and, therefore, cannot be known in advance, the
entire state bag could be explicitly exposed to the consuming page.

public object GetViewStateValue(string ViewStateEntryName)
{ return ViewState[ViewStateEntryName]; }

Let’s continue with the example, which demonstrates pulling information from the post-
ing page using each of these techniques. You’ve seen the markup and most of the code for the
posting page, which is named CrossPage.aspx. You’ll add this code, which populates the
SomeValue property you’ve exposed by pulling in a value from the query string:

//This is the page load of CrossPage, not CrossPage2
void Page_Load(object sender, EventArgs e)
{

if (!this.IsCrossPagePostBack
&& Request.QueryString["SomeValue"] != null)
this.ViewState["SomeValue"] =

Request.QueryString["SomeValue"].ToString();
}

This code brings up some very interesting things to note about the lifetime of a Page
object used in a cross-page postback. The first thing that this code checks is a new Boolean
property of the page named IsCrossPagePostBack. This value is false when CrossPage is first
created and true when CrossPage2 is first created after CrossPage posts to it.

Using this Boolean on the page being posted to (like CrossPage2) is very straightforward.
You can design a page to accept cross-page postbacks, but have a default rendering behavior if
it’s requested with a fresh “get.” The property can be used to calibrate which way to render. On
a cross-page postback, realize also that IsCrossPagePostback is true, while IsPostBack is false,
so you can also design a page to accept a cross-page postback, as well as process postbacks of
its own.

The page originating the post warrants a closer examination (CrossPage in this example).
You can also design this page to postback to itself, and then, after completing a process, or
some other precipitating event, do a post to a different page (a game could do a cross-page
postback when the game is over to the high-score board and pass along the score, for example).

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 113

522xCH04.qxd 8/31/05 3:25 PM Page 113

This makes the need for possibly checking the IsPostback property in the page load obvi-
ous enough, but when will the other Boolean, IsCrossPagePostback, ever be true? In order to
see the answer, you have to think about what happens on CrossPage2 when CrossPage posts to
it. Under the hood, a new instance of CrossPage is created. Even though there has not been a
request for this page, and even though the page won’t be expected to render any output, the
page’s life cycle is still kicked off; and so the page Load event still fires.

You can clearly see this behavior by putting a break point in the page Load trap of
CrossPage. The debugger stops there the first time the page is requested, and stops there
again when the user clicks the button, even though you’re requesting a different page.

This is important to realize for a couple of reasons. Here you’re short-circuiting logic
that you would rather not see get executed on the postback. In this case, there would be no
harm in letting the code execute, but if you were doing a read from the database, this would
be a much bigger deal. You could also take some specific action to prepare for CrossPage2’s
processing.

Here’s the complete code-behind for CrossPage2.aspx, which references CrossPage using
the different techniques we’ve discussed:

protected void Page_Load(object sender, EventArgs e)
{

//Straight reference to textbox that would break if
//posting page does not have a textbox named txtText
string output =
string.Format("<h1>{0}</h1>",
((TextBox)this.PreviousPage.FindControl
("txtText")).Text);

//This is safer code, that accounts for txtBgcolor
//not being present and sets a default value
TextBox txt = (TextBox)this.PreviousPage.FindControl("txtBgcolor");
string bodyColor;
if (txt == null)

bodyColor = "Lime";
else

bodyColor = txt.Text;
body.Attributes.Add("bgcolor", bodyColor);

//Strong typed reference to previous page type
//can leverage a public property
lblOutput.ForeColor = PreviousPage.outputColor;
lblOutput.Text = output;

//ViewState is exposed via strong type property as well
lblOutput.Text +=

"
Value from ViewState: "
+ this.PreviousPage.SomeValue;

}

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING114

522xCH04.qxd 8/31/05 3:25 PM Page 114

In summary, this code is using the late-bound FindControl method to access a couple of
field values, and then using the early-bound, property-based method to access a couple of
others. The late-bound method creates a looser coupling between the page types, but could
lead to more run-time errors and will perform more slowly. The early-bound method creates a
tight coupling between the pages, but provides compile-time type checking, better encapsula-
tion (and so a better object-oriented design), and improved performance.

1.x Problem: Fat Serialization
The Framework Machine.config file encodes and encrypts the ViewState value before packing
it away as the value of the hidden input and sending it to the client. This is nice because it
keeps the value secure, but the Base64 encoding can really cause the size of the field to bloat.

Let’s examine a simple example of binding the authors table to a DataGrid using version
1.1 of ASP.NET. The authors table contains about 4K of data. You can see this opening a con-
nection to the pubs database with Query Analyzer, selecting star from the authors table, and
viewing the results as text (see Figure 4-7). When you write the results out to disk, the resulting
file is 4K in size. In order to avoid any overhead of metadata for the report file, copy the data
from the Query Analyzer window and paste it into Notepad. Write this out to disk as a file
named au_data.txt.

Figure 4-7. The data from the authors table in Query Analyzer

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 115

522xCH04.qxd 8/31/05 3:25 PM Page 115

You’ll marshal all of this data to the web server and transform it into HTML using the fol-
lowing code from the Page_Load of a Web Form:

private void Page_Load(object sender, System.EventArgs e)
{

SqlConnection cn = new
SqlCnnection("server=.;database=pubs;uid=sa;pwd=");
SqlCommand cm = new SqlCommand("select * from authors", cn);

DataGrid DataGrid1 = new DataGrid();
this.FindControl("form1").Controls.Add(DataGrid1);
cn.Open();
DataGrid1.DataSource = cm.ExecuteReader();
DataGrid1.DataBind();
cn.Close();

}

■Note In Version 2.0 of the Framework, Microsoft has shipped the GridView control. This Web Control is
the replacement for and enhancement of the existing DataGrid. Because GridView has non-backwards
compatible changes, and because Microsoft is making an effort to maintain backwards compatibility, it
created a new control rather than enhancing the functionality of DataGrid. We use DataGrid here, since
this example demonstrates the ViewState size in version 1.x. GridView would, however, work exactly the
same for this example in 2.0.

You’ll now compare the relative sizes of the pieces and parts of the output you’ve gener-
ated. Choose View ➤ Source from the browser. Choose File ➤ Save As from Notepad and write
the entire page out to disk as a file named au_page.

Highlight all of the markup for the authors table, starting with <table> and ending with
</table>. Open a new text document and copy and paste the table markup into it. Write this
out to disk as a file named au_markup.txt.

Repeat the process, this time copying the value of the hidden input named __VIEWSTATE.
Write this out to disk as a file named au_viewstate.txt.

Then, just for fun, add this line of code to the method above:

DataGrid1.EnableViewState = false;

Refresh the browser, view the source again, and save this one as au_page_noviewstate.txt.
What should the relative sizes of these files be? You have a result set from the database

saved as au_data.txt. You’ve transformed it into markup, saved as au_markup.txt. This has
also been squirreled away in ViewState by DataGrid, so it can restore its DataGridItem collec-
tion should a postback occur. This is saved as au_ViewState.txt.

Since you’re dealing with three representations (data, markup, hashed values) of the same
basic data, they should be about the same size, right? Not quite (see Figure 4-8).

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING116

522xCH04.qxd 8/31/05 3:25 PM Page 116

Figure 4-8. Sizes of different parts of your output, side-by-side for comparison

Actually, they’re not even close. While the data and the markup are about the same size,
the ViewState data is more than twice as large. It’s three times the size as the raw data! You
can really see the effects of this on the resulting page size when you compare the total size of
the output streams with ViewState on and off. ViewState more than triples the entire size
of the output stream.

Now this example must be taken in context. This is a small page, with no other content.
It isn’t normally true that ViewState triples the size of the entire page, as, normally, there is
markup on the page not related to DataGrid. Also, ViewState is data that’s sent down with an
existing connection (the connection for the markup of the page request). Many designers and
web developers think nothing of adding a 12K image to a page, which is just as much data
being sent and an additional network round trip.

No, the intended take-away from this is a concrete demonstration is how hashing and
encoding the ViewState value causes its size to bloat.

2.0 Solution: Optimized Serialization
This is obviously a problem you’ll need to address. In the previous example, ViewState would-
n’t be so bad if it would constrain itself to 4K or 5K. But an additional 13K? What would be
worth it? In 1.x implementations, it’s frequently a better option to rebind the grid on each and
every postback instead of incurring the hit of sending the ViewState value down the pipe with
each response and lugging it back with every postback.

So in 2.0, Microsoft fixed it. By optimizing the hashing and using less verbose encoding,
the size of ViewState is dramatically reduced. You can repeat your experiment in 2.0 using the
following page:

<%@ Page language="c#" %>
<%@ Import Namespace='System.Data.SqlClient' %>

<script runat=server>
private void Page_Load(object sender, System.EventArgs e)
{

SqlConnection cn = new SqlConnection
("server=.;database=pubs;uid=sa;pwd=");

SqlCommand cm = new SqlCommand("select * from authors", cn);

//DataGrid DataGrid1 = new DataGrid();
GridView DataGrid1 = new GridView();
//DataGrid1.EnableViewState = false;
this.FindControl("form1").Controls.Add(DataGrid1);
cn.Open();
DataGrid1.DataSource = cm.ExecuteReader();

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 117

522xCH04.qxd 8/31/05 3:25 PM Page 117

DataGrid1.DataBind();
cn.Close();

}
</script>

<HTML>
<HEAD>

<title>ViewStateSize</title>
</HEAD>
<body>

<form id="Form1" method="post" runat="server">
</form>

</body>
</HTML>

■Note This optimization is dependant on the use of the new GridView instead of the old DataGrid, an
important difference in functionality to be aware of!

Repeat the process of viewing the source and copying ViewState to a new instance of
Notepad, and save a new file named au_ViewState_20.txt. You can see now that ViewState for
exactly the same process has been reduced from 13K to 7K, almost a 50-percent reduction.
The size is still larger than the raw data, because some metadata has to be present to map the
raw data back to DataGrid and its internal structures.

1.x Problem: Losing All Properties When ViewState Is Off
During custom control development, to have your control correctly do its work, you may
have a critical property that you need to put into ViewState that you pull out when a postback
occurs. Problem is, ViewState can be turned off for any control. When this happens, your criti-
cal information doesn’t get serialized into the ViewState and isn’t present for you to process
when the postback occurs.

2.0 Solution: Control State
Version 2.0 of the .NET Framework fixes this by separating state information for a control into
two categories. ViewState still exists, and for GridView, the collection of items stored in the
grid is still squirreled away here. There’s a new “state bag” called ControlState. This is a place
to put properties that are critical to the functioning of your custom control. The information is
all put into the same hidden input. The big difference is when ViewState is turned off, Con-
trolState is still tracked, and so the critical property you need to be present in order to
correctly process a postback works just as you intended.

So ViewState is now just that, state information used to maintain what the user is viewing.
ControlState is a separate dedicated state bag designed for information critical to the behav-
ior of the control.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING118

522xCH04.qxd 8/31/05 3:25 PM Page 118

Although a few properties of existing controls are now stored in ControlState instead of
ViewState, this feature will be most useful when you’re doing custom control development.
Some examples of existing properties moved into ControlState are the selected index of the
list controls, and the edit, selected, and page index of GridView. DataGrid has not been
upgraded to utilize ControlState.

Replacing ViewState Persistence
Sometimes the functionality of ViewState is sorely needed, though the performance hit from
increasing the request and response size causes unacceptable performance degradation.
When you find yourself needing the functionality, you have another option. You can replace
the persistent location of the ViewState data.

In the shipping implementation of the Framework, an HTML hidden input is used as the
persistent location for state information, as you’ve seen. This causes the information to be
marshaled to the client, and when a postback occurs, it gets marshaled back.

To replace the ViewState persistence location, you’ll use an abstract base class that inher-
its from the Page class. Any page where you need an alternate persistence location will then
inherit from this class instead of directly from the Page class. In this new base class, you have
then only to override two virtual members of the Page class:

protected override void SavePageStateToPersistenceMedium(object state)
protected override object LoadPageStateFromPersistenceMedium()

The first method is called toward the end of a page request. At this point in time, view
state data has been gathered from all of the controls on the page. The default implementation
of this method transforms the object passed in as an argument named state into a Base64
encoded string, encrypts it, and populates the value of the __VIEWSTATE hidden input in the
output stream.

The second method is then called early in the processing of a postback. The default
implementation of this method pulls the value from the hidden input, decrypts it, and
deserializes it back into the object instance.

You’ll replace this functionality by serializing the object into SQL Server instead of into
the hidden input. The database you’ll use will have a single table to store the object instance.
You need to identify the user and the page where the data came from. To do this you’ll use the
full name of the page requested and create a hidden input of your own to store a key for the
page. You’ll use two values as a composite primary key for your state table. The definition of
the table is shown in Figure 4-9.

Figure 4-9. The definition of the table to store ViewState information

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 119

522xCH04.qxd 8/31/05 3:25 PM Page 119

The database also has two stored procedures, one to save the state and one to retrieve it.
These procedures do some management of these rows, but the table in Figure 4-9 would
steadily grow over time and require a periodic task to purge rows that are no longer relevant.
You could add a data column to record the last update and to delete older rows.

■Note Find PersistDB.sql in the Web04 project directory and execute it in Query Analyzer to create
these database objects.

With your persistence medium in place, you only need to provide overrides of the base
class methods. Here’s the complete class (from DB_ViewState.cs):

using System;
using System.Web.UI.HtmlControls;
using System.IO;
using System.Web.UI;
using System.Data.SqlClient;
using System.Data;

public abstract class DB_ViewState : System.Web.UI.Page
{

//Replace this with a connection string to your database
private string connStr = "server=.;database=VS_Persist;uid=sa;pwd=";

protected override void SavePageStateToPersistenceMedium(object state)
{

HtmlInputHidden vsk =
(HtmlInputHidden)this.FindControl
("__VIEWSTATE_KEY");

if (vsk == null)
{

vsk = new HtmlInputHidden();
vsk.ID = "__VIEWSTATE_KEY";
vsk.Value = Guid.NewGuid().ToString();
this.Page.FindControl("Form1").Controls.AddAt(0, vsk);

}
//Use the limited object formatter to serialize
//the instance into the memory stream
LosFormatter bf = new LosFormatter();
MemoryStream ms = new MemoryStream();
bf.Serialize(ms, state);

SqlConnection cn = new SqlConnection(connStr);
SqlCommand cm = new SqlCommand("usp_SaveState", cn);

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING120

522xCH04.qxd 8/31/05 3:25 PM Page 120

cm.CommandType = CommandType.StoredProcedure;

cm.Parameters.Add(
"@PageName",
SqlDbType.VarChar, 400).Value =
Request.Url.AbsoluteUri;

cm.Parameters.Add(
"@SessionID",
SqlDbType.VarChar, 50).Value = vsk.Value;

cm.Parameters.Add(
"@StateData",
SqlDbType.Image).Value = ms.ToArray();

cn.Open();
cm.ExecuteNonQuery();
cn.Close();

}

protected override object LoadPageStateFromPersistenceMedium()
{

if (Request.Params["__VIEWSTATE_KEY"] == null)
return null;

string viewstatekey =
Request.Params["__VIEWSTATE_KEY"].ToString();

SqlConnection cn = new SqlConnection(connStr);
SqlCommand cm = new SqlCommand("usp_LoadState", cn);
SqlDataReader dr = null;

cm.CommandType = CommandType.StoredProcedure;

cm.Parameters.Add(
"@PageName",
SqlDbType.VarChar, 400).Value =
Request.Url.AbsoluteUri;

cm.Parameters.Add(
"@SessionID",
SqlDbType.VarChar, 50).Value = viewstatekey;

try
{

cn.Open();
dr = cm.ExecuteReader();

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 121

522xCH04.qxd 8/31/05 3:25 PM Page 121

if (dr.Read())
{

LosFormatter bf = new LosFormatter();
object data = bf.Deserialize

(new MemoryStream((byte[])dr[0]));
return data;

}
else

return null;
}
finally
{

if (dr != null) dr.Close();
cn.Close();

}
}

}

■Note Notice that you’re using the LosFormatter to serialize your data into the database. This is the
“limited object serializer” formatter. It’s like the BinaryFormatter, but is highly optimized for strings,
arrays, and hashtables.

Realize that there are only specific circumstances where this type of solution benefits your
application. The first is, obviously, a thin client pipe. If you’re writing an intranet application
on a 100mbps LAN, you really don’t need to worry about the size of ViewState. It’s just not
going to make that big of a difference.

Even with a thin client pipe, the extra round trip to the database must be taken into
account. If you’re not using a Web Farm, you can put a dedicated instance of SQL Server on
the web server to act as an exclusive ViewState server. This saves you a network round trip,
but still introduces a process hop.

If you’re binding a grid, it may be just as expensive to marshal this state data to the data-
base and back as it would be to rebind the grid with the original data. As with all things in
application architecture, the solution that makes the most sense depends on your specific
requirements and circumstance.

The class above will work in both 1.x and 2.0. It will be useful more often in 1.x implemen-
tations, as the introduction of ControlState in 2.0 provides a solution for many situations
where ViewState was previously imperative but can now be disabled.

Post-Cache Substitution
Post-cache substitution is a handy feature that is designed for performance optimization.
It dovetails with output caching. The functionality is exposed via a web control named
Substitution, but you can think of this feature as a modification to the output caching infra-
structure present in version 1.x of ASP.NET.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING122

522xCH04.qxd 8/31/05 3:25 PM Page 122

Output caching allows you to take the markup generated by a page object or user control
and squirrel it away in the memory of the web server. You do this very simply by adding a
directive to the top of the markup file.

<%@ OutputCache Duration=15 VaryByParam=None %>

The Duration attribute expresses the number of seconds the output should be cached.
The VaryByParam attribute allows you to make different cache entries for different requests,
creating a unique entry per query string value, for example.

When a page is output cached, the next time a request comes in for the page, the pregen-
erated markup is pulled from the cache and sent as the response to the request. This saves the
time and expense of creating an instance of the page object and executing all of the code it
contains, and can even save network hops to the database.

Output caching is screaming fast, as the results are in memory and the Framework doesn’t
even have to read a file from the disk (as it would for a static HTML document). The results are
returned right from memory.

■Note Output caching has been a feature of the ASP.NET Framework since version 1.0. If you’re not famil-
iar with it, please see the SDK documentation on it. We don’t give it full coverage in this section, as this is
about the new feature of ASP.NET 2.0, post-cache substitution.

So let’s suppose you have a page that is mostly static, with just a small bit of markup that
needs to be dynamically generated with each request. That is, all of the markup for this page
could be cached using the output caching feature, but a little remaining bit of the page needs
to be dynamically generated with each incoming request.

Post-cache substitution accommodates this situation by allowing you to cache the entire
page, but leave a certain part left out for regeneration with each incoming request.

The part of the page that shouldn’t be cached is marked with a Substitution element.
The content for this element is returned as a string from a static method you add to the code-
behind of your page.

Let’s take a look at a simple example. The page shown in Figure 4-10 displays the time that
the code for the page was last executed on the left and the last time it was requested on the
right.

Figure 4-10. Using post-cache substitution with output caching

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 123

522xCH04.qxd 8/31/05 3:25 PM Page 123

Here’s the markup that generates this page:

<%@ Page CodeFile="SimpleSub.aspx.cs" Inherits="SimpleSub" %>
<%@ outputcache duration="15" varybyparam="none" %>
<html>
<head runat="server">

<title>Simple Substitution</title>
</head>
<body>

<form id="form1" runat="server">
<table border=1>

<tr>
<td colspan=2><h1>Header</h1></td>

</tr>
<tr>

<td width=30%>
<h3>Left Nav</h3>
This page executed at:
<asp:Label runat=server ID=lblRendered />
</td>
<td>
<h4>Main content area</h4>
The current time is:
<asp:Substitution runat=server ID=subTimestamp

MethodName='GetStamp' />
</td>

</tr>
</table>

</form>
</body>
</html>

Because of the OutputCache directive at the top of the page, the markup generated
by this page will be cached for 15 seconds at a time. This means when a request comes in for
this page, the code will run only once, and thereafter the same markup will be cached and
returned for 15 seconds, during which time the page will not be executed again.

For the markup where the Substitution element is declared, however, the Framework will
call the static method named by the MethodName attribute in the control declaration. The name
of this method is up to you. There must be a method with this name in your code-behind, it
must be declared as accepting an instance of HttpContext as an argument, and it must return
a string. Here’s the code behind for this sample page:

public partial class SimpleSub : System.Web.UI.Page
{

public static string GetStamp(HttpContext context)
{

return DateTime.Now.ToLongTimeString();
}
protected void Page_Load(object sender, EventArgs e)

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING124

522xCH04.qxd 8/31/05 3:25 PM Page 124

{
lblRendered.Text = DateTime.Now.ToLongTimeString();

}
}

This means that even though most of the markup for this page is pregenerated and
cached in the memory of the web server, each request will have the most current date and
time inserted where the Substitution element is declared.

The extension to the output caching functionality provided by the post-cache substitu-
tion feature is a powerful facility that allows you to take a very fine grain of control over the
performance of your pages. There’s no reason you need to limit yourself to small pieces of
markup when using this feature. Larger blocks of markup could be generated by the static
method doing this work. Here’s a sample method that’s programmatically binding GridView
and returning its rendered markup as a string.

public static string GetData(HttpContext context)
{

GridView gv = new GridView();
DataTable dt = getAuthorsDataTable();
gv.DataSource = dt;
gv.DataBind();
cn.Close();
StringBuilder sb = new StringBuilder();
HtmlTextWriter t = new HtmlTextWriter(new StringWriter(sb));
gv.RenderControl(t);
return sb.ToString();

}

Creatively combining output caching a post-cache substitution will be a technique you
can leverage to super-charge the performance of your ASP.NET 2.0 web applications.

Scripting
With ASP.NET, you don’t generally write code that executes in the process space of the client.
More often when you’re using script, what you create using a managed language runs on the
web server and dynamically generates client-side script. Oftentimes you’ll use a control that
generates client-side script based on how you’ve declared it; and as a developer you may not
even be aware that it’s leveraging client-side script to do its work.

Client-side script is very good at a number of things. It executes in the process space of
the client, without requiring a trip across the network to talk to the server. This means it’s fast.
The work it does can happen instantly, with no delay for the user whatsoever. Combined with
the object model exposed by DHTML and the power of CSS, you can create very rich function-
ality using script. Some common tasks you do with script are early validation of data entry;
expanding, hovering, or moving ads and dialogs; pull-down menus; rollover highlights; and
swapping out images.

Even if you’ve never learned how to code JavaScript, you can still leverage its power from
your Web Forms. Every time you lay down a validation control on a page, it generates script on
your behalf. There is a rich and broad set of canned, publicly available script that you can use

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 125

522xCH04.qxd 8/31/05 3:25 PM Page 125

(just choose View ➤ Source from your browser to see what we mean!). Many times we’ve writ-
ten managed code to dynamically generate client-side script using an existing set of script
libraries as a base, and added custom data as we generate the code. As an example, you can
have interdependent drop-down lists, where the entries in list B depend on the choice users
make in list A. Using JavaScript, you can dynamically populate list B when a choice is made in
list A, without doing a round trip back to the server. The server-side code can dynamically
generate the arrays that are used by the script, driven by a back-end data store.

This type of work is very easy to do in a postback, but for users with slow connections, a
postback for this type of event (based on focus leaving a control) is very unnatural and inter-
rupts the flow of their work. It’s borderline unusable.

Generating Client-Side Script
Let’s start with an interdependent drop-down list example. This page displays two drop-down
lists. The first is a list of cities. When the user makes a selection from the list of cities, the sec-
ond list is populated with a list of pool halls in that city. This is an example of something you
can easily do with a postback. For the sake of performance and usability, we’ll show you how
do it with client-side script instead, eliminating the need for a round trip to the server.

This shows how, starting with some static script code that embodies the functionality you
want, underlying data can be dynamically generated on the server. You’ll start with this simple
script, which represents an example of what you want to produce. You’ll write code to write
this code. You’ll use this as a starting point, the same way you’d use a “wire frame” screen shot
as a starting point for presentation tier development. You may also want to review the finished
product, scripting1.aspx, in the Web04 project, to get an idea of where you’re headed.

<html>
<head>
<SCRIPT LANGUAGE="JavaScript">
listsB = new Array;
valuesB = new Array;

listsB[0] = new Array;
listsB[0][0] = "A J Billiard Parlor";
listsB[0][1] = "Campus Room";
listsB[0][2] = "Champion Billiards";

valuesB[0] = new Array;
valuesB[0][0] = "33";
valuesB[0][1] = "34";
valuesB[0][2] = "35";

listsB[1] = new Array;
listsB[1][0] = "Amsterdam Billiard Club";
listsB[1][1] = "Bernardos Billar and Cafeteria";
listsB[1][2] = "Billiard Club";
listsB[1][3] = "Broadway Billiard Cafe";

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING126

522xCH04.qxd 8/31/05 3:25 PM Page 126

valuesB[1] = new Array;
valuesB[1][0] = "0";
valuesB[1][1] = "1";
valuesB[1][2] = "2";
valuesB[1][3] = "3";
valuesB[1][3] = "4";

listsB[2] = new Array;
listsB[2][0] = "Ballbusters";
listsB[2][1] = "Broad Street Billiards";
listsB[2][2] = "Country Club Billiards";
listsB[2][3] = "Pablo's Billiards";
listsB[2][4] = "River City Billiards";

valuesB[2] = new Array;
valuesB[2][0] = "106";
valuesB[2][1] = "107";
valuesB[2][2] = "108";
valuesB[2][3] = "109";
valuesB[2][4] = "110";

function populateListB()
{
ctlListB =
document.Form1.ddlListB;

itemarray =
listsB[document.Form1.ddlListA.selectedIndex];

valuearray =
valuesB[document.Form1.ddlListA.selectedIndex];

for (i=ctlListB.options.length; i>0; i--)
{ctlListB.options[i] = null;}

for (i=0; i<itemarray.length; i++)
{ctlListB.options[i] = new Option(itemarray[i],valuearray[i]);}

}
</SCRIPT>
</head>
<body onload='populateListB()'>
<FORM name="Form1">
<h4>Pool Halls</h4>
<SELECT NAME="ddlListA" onChange="populateListB()">

<OPTION>Chicago</OPTION>
<OPTION>New York</OPTION>
<option>Philadelphia</OPTION>

</SELECT>

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 127

522xCH04.qxd 8/31/05 3:25 PM Page 127

<SELECT NAME="ddlListB"

onchange='alert(document.Form1.ddlListB.value);'>
</body>
</html>

This presents two drop-down lists. The choices in the second list are determined by
what’s selected in the first list. You do this with simple JavaScript arrays. For now, the second
list simply displays the underlying value of the option tag when it’s selected. You’re going to
transform this static piece of code into a dynamically generated script function. It may not
seem static, but it is to the server. As far as the server is concerned, this is flat text. It has no life
until it gets to the client.

Starting with a working set of client code makes it easier to add the abstractions necessary
to dynamically generate it on the server. For each step, you’ll take a piece of the previous
HTML document and transform it into server-side code that generates it. Let’s start with the
markup. Here’s the markup you want to generate:

<SELECT NAME="ddlListA" onChange="populateListB()">
<OPTION>Chicago</OPTION>
<OPTION>New York</OPTION>
<option>Philadelphia</OPTION>

</SELECT>

<SELECT NAME="ddlListB"

onchange='alert(document.Form1.ddlListB.value);'>

And here’s the server-side code that generates it:

<asp:DropDownList
Runat=server
ID=ddlListA
onchange='populateListB();' />

<asp:DropDownList

Runat=server
ID=ddlListB
onchange='alert(this.value);' />

Each of the HTML Select elements become DropDownList controls. Since the whole point
of this exercise is to use data to drive the list entries, you’ll strip out the static option elements.
Later you’ll add page load code to bind these lists. You usually set property values of server
controls with attributes in the markup. That is, there is usually a one-to-one correspondence
between an attribute in the markup and a property on the Control type. However, there is no
onchange property of the DropDownList. This is a client-side event trap (for a server-side event
you’d use OnSelectedIndexChanged, which fires during a postback). Since there is no mapping
of the attribute back to a property of the class, the rendering engine is smart enough just to
pass the attribute into the output stream. You could also do this from the code-behind with a

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING128

522xCH04.qxd 8/31/05 3:25 PM Page 128

ddlListA.Attributes.Add("onchange", "populateListB();");

The other part of the static page you need to modify is the script code in the head of the
page. The JavaScript function can stay as is. You’ll need to generate the data structures that
precede this function in the HTML. You’ll dynamically generate this in the code-behind, and
then use a PlaceHolder to inject it into the output stream. Here’s the entire server-side block
of markup for the head element:

<head runat="server">
<title>Pool Halls</title>
<asp:PlaceHolder Runat=server ID=plScript />
<script language=javascript>

function populateListB()
{

itemarray =
listsB[document.all.ddlListA.selectedIndex];

valuearray =
valuesB[document.all.ddlListA.selectedIndex];

ctlListB =
document.all.ddlListB;

for (i=ctlListB.options.length; i>0; i--)
{ctlListB.options[i] = null;}

for (i=0; i<itemarray.length; i++)
{ctlListB.options[i] = new Option(itemarray[i],valuearray[i]);}

}
</script>

</head>

Notice that your PlaceHolder is declared outside of the client-side script block. An ele-
ment declared with the runat=server attribute within a client-side script block will not be
recognized during server-side page processing. Not only is it unavailable during server-side
processing, but it also will get left in the script block, causing a JavaScript error on the client.

For this reason, when you generate JavaScript on the server, you’ll wrap it in your own
script element and inject the entire block into the output using your PlaceHolder.

You’ll bind your lists to XML. The cities will be bound to a simple list:

<Cities>
<City>New York</City>
<City>Los Angeles</City>
<City>Chicago</City>
<City>Houston</City>
<City>Philadelphia</City>
<City>Minneapolis</City>

</Cities>

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 129

522xCH04.qxd 8/31/05 3:25 PM Page 129

The second list will be “bound” by client-side script. The XML structure you’ll use to gen-
erate this client-side script code contains simple pool hall name and address information:

<PoolHall>
<Name>Amsterdam Billiard Club</Name>
<Address>210 E 86th St</Address>
<City>New York</City>
<State>NY</State>
<Phone>212-570-4545</Phone>
<id>1</id>

</PoolHall>

You’ll bind the list and generate the code by trapping the page’s Load event. First you pop
open the XML doc and bind the list of cities:

DataSet ds = new DataSet();
ds.ReadXml(Server.MapPath("PoolHalls.xml"));

ddlListA.DataTextField = "City_text";
ddlListA.DataSource = ds.Tables[1];
ddlListA.DataBind();

Next comes the dynamic generation of the client script code. Specifically, you’re generat-
ing the arrays that are used from within the populateListB method. The client-side script
needs to look like this:

listsB = new Array;
valuesB = new Array;

listsB[0] = new Array;
listsB[0][0] = "A J Billiard Parlor";
listsB[0][1] = "Campus Room";
listsB[0][2] = "Champion Billiards";

valuesB[0] = new Array;
valuesB[0][0] = "33";
valuesB[0][1] = "34";
valuesB[0][2] = "35";

listsB[1] = new Array;
listsB[1][0] = "Amsterdam Billiard Club";
listsB[1][1] = "Bernardos Billar and Cafeteria";
listsB[1][2] = "Billiard Club";
listsB[1][3] = "Broadway Billiard Cafe";

valuesB[1] = new Array;
valuesB[1][0] = "0";
valuesB[1][1] = "1";

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING130

522xCH04.qxd 8/31/05 3:25 PM Page 130

valuesB[1][2] = "2";
valuesB[1][3] = "3";
valuesB[1][3] = "4";
//etc...

The two initial arrays are both arrays of arrays. There will be an array containing a list of
display items and an array of values for each item in the first list.

You’ll get going with the initial first few lines of code, which are static. Remember that you
need to wrap your array declarations in their own script block.

StringBuilder sb = new StringBuilder();
sb.Append("<SCRIPT LANGUAGE='JavaScript'>\n");
sb.Append("listsB = new Array;\n");
sb.Append("valuesB = new Array;\n");

Then, for each row in the table the first list is bound to, you’ll add an array of display items
and an array of item values. You’ll use a DataView to find all of the pool halls in that city.

int i = 0;
foreach (DataRow dr in ds.Tables[1].Rows)
{

sb.Append(
string.Format(
"listsB[{0}] = new Array;\n",i));

sb.Append(
string.Format(
"valuesB[{0}] = new Array;\n", i));

DataView dv = new DataView(
ds.Tables[2],
string.Format("City = '{0}'", dr[0]),
"", DataViewRowState.CurrentRows);

Then, for each matching pool hall, you’ll generate an entry in each of the two nested
arrays:

int j = 0;
foreach (DataRowView drv in dv)
{

sb.Append(
string.Format(
"listsB[{0}][{1}] = \"{2}\";",
i, j, drv["Name"]));

sb.Append(
string.Format(
"valuesB[{0}][{1}] = \"{2}\";",
i, j, drv["id"]));

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 131

522xCH04.qxd 8/31/05 3:25 PM Page 131

j++;
}
i++;

Finally, you’ll close the script tag and inject the JavaScript into the control tree by adding
it as a child of the PlaceHolder in the head.

sb.Append("</script>");
plScript.Controls.Add(new LiteralControl(sb.ToString()));

The output for both the static example and the dynamically generated version is the
same, as shown in Figure 4-11. The page behaves exactly the same way as the static example,
except now the lists are data driven (the complete code for this demo is in Scripting1.aspx of
the Web04 project).

Figure 4-11. The interdependent drop-down lists

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING132

522xCH04.qxd 8/31/05 3:25 PM Page 132

The last thing you need is to populate the list upon first arriving at the client. We’ll save this
for the next section, where we discuss some built-in support the Page type has for scripting.

There are a number of improvements you can make to the sample. This code looks noth-
ing like the script code you started with. Maintenance may be difficult. It’s good to keep the
original static script around; you can use it to troubleshoot and change the behavior of the
page, and then you can map those changes into the script-generating code.

The biggest downside shows up when your page does a postback. ddlListB won’t
behave as you’d expect it to. On a postback, you’d probably write some code to access
ddlListB.SelectedValue to do some processing. This would not be populated. The
DropDownList relies on a collection of list items and view state. You never populated the
list server side, and so no ViewState exists for it. To retrieve this value, you have to resort
to the old-fashioned ASP-style syntax of Request.Form["ddlListB"].

For this reason you’ll probably want to pull the code for these lists out into their own
control. Even a User Control would suffice (if you did not plan to use it in more than a single
application). This way you could add a public property to the control to expose the second
list’s value, and not have to burden consumers of your control with details of its implementa-
tion. While you’re at it, you may as well generalize its functionality to create two lists against
any data source, instead of just the XML file in this example.

Page Support for Scripting
As you descend into the details of moving your interdependent lists into a control of their
own, more issues will arise. What if someone uses two instances of your control on a page of
her own? You’d have duplicate populateListB methods injected into the page, which would
not make the browser happy. What if you wanted the static parts of your code in their own file
(.js)? How can you be sure to inject this only once?

The Page object has a number of types and methods designed to help with just such
problems.

Client Script Manager
Version 1.x of the Framework has a handful of methods hanging off of the Page object to help
with client-side scripting. One of these, for example, is RegisterClientScriptBlock. This
handy method accepts two strings. The first one names the script block; the second is the
actual script you want to inject into the page.

You use this from controls to inject script into the page while avoiding duplicate script
blocks. If more than one instance of a control attempts to inject the same script block, the
runtime is smart enough to inject it only once. From the previous example, you could pull the
populateListB method out into a file named Interdepends.js. From the implementation of
the interdependent lists control, you could add a line of code to include it:

this.RegisterClientScriptBlock(
"Interdepends",
"<script language='JavaScript1.2' src='/Interdepends.js'>");

This is a two-fold improvement over the previous example. It gets the script out into its
own file (for easier maintenance and versioning), and it guarantees that the block will be
included in the page only once.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 133

522xCH04.qxd 8/31/05 3:25 PM Page 133

All of the RegisterXYZ methods (see Table 4-2) have been deprecated in version 2.0 of the
Framework. Instead, the page object now carries an instance of the new ClientScriptManager
type, named ClientScript. This centralizes the functionality for managing scripts; you no
longer have a handful of random methods hanging off the page object.

Table 4-2. Methods of the Page Object That Are Officially Depreacted in Version 2.0

Deprecated Script Methods

RegisterArrayDeclaration

RegisterClientScriptBlock

RegisterHiddenField

RegisterOnSubmitStatement

RegisterStartupScript

Of course, you must realize that 2.0 attempts to be backwards compatible, so just because
these are deprecated doesn’t mean they go away. They will survive in-perpetuity in the name
of backwards compatibility (or until Microsoft ships a non-backwards compatible version of
ASP.NET), so your existing code will continue to work.

With new development, however, you should use the methods of the client script man-
ager. Let’s take a look at these. The point of a lot of these register methods is first and foremost
to avoid duplicating the code that’s being sent to your page, which can happen easily when a
control is generating code and more than one instance of the control is placed on a single Web
Form. Some of these methods also do a bit of code generation for you, but it’s nothing sub-
stantial.

Table 4-3. Methods of the ClientScript Object That Help Manage JavaScript

Method Role in Life

RegisterArrayDeclaration Helper method to declare a page-level array. Accepts two
strings, the array name, and the array declaration. When
the page renders, these strings do a little bit of code
generation to wrap the array in a script block and
initialize it.

RegisterCallbackEventReference Generates a client-side script function call to do an out-of-
band asynchronous callback to the server on a background
thread of the browser. See the “Out-of-Band Callbacks”
section that follows for details.

RegisterClientScriptBlock Accepts two strings, the first being a name for the script
block, and the second being a string containing the script
you want added to the page. Dynamically generate this
string, load it from the database, or load it from some other
source of persistence.

RegisterClientScriptInclude Accepts two strings, a name for the registration, and the
name of the JavaScript file to include. Script includes give
you a clean separation of the script from your markup, and
allows the browser to cache a script file used from several
pages, reducing total page size.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING134

522xCH04.qxd 8/31/05 3:25 PM Page 134

Method Role in Life

RegisterClientScriptResource Used by the resource manager to retrieve resources from
assemblies with a dedicated handler (see the MSDN SDK
docs for details).

RegisterHiddenField Allows you to add a hidden input to your form simply by
providing a name and a value. Rendering generates the
input element for you.

RegisterOnSubmitStatement An easy way to interject some client-side code that will
execute before a postback occurs. A very common example
of this is when you have a delete button on a page, and
want to verify with the user that he’s serious before doing
a round trip to the server.

RegisterStartupScript Places code inline within a script block—yet outside of a
function—so it executes as soon as the browser loads the
page. Similiar to adding code to the onload event of the
body element.

IsClientScriptBlockRegistered Checks to see if a named script block has already been
registered using RegisterClientScriptBlock.

IsClientScriptIncludeRegistered Checks to see if a named script include has already been
registered using RegisterClientScriptInclude.

IsOnSubmitStatementRegistered Checks to see if a named script block has already been
registered using RegisterOnSubmitStatement

IsStartupScriptRegistered Checks to see if a named script block has already been
registered using RegisterStartupScript.

Let’s refactor the interdependent lists example to leverage some of the features of the
client script manager. First you’ll get the second list populated with the correct entries for the
default selection in the first list by calling RegisterStartupScript (see ClientManagerIE.aspx
in Web04 for the complete sample).

this.ClientScript.RegisterStartupScript
(this.GetType(),
"PopList",
"populateListB();",
true);

The first argument associates the registration with a specific type. This is designed to be
used from custom controls, so each type can do its own registrations. Since you’re writing
page code, you’ll pass an instance of the Type object associated with the Page type. The second
argument is the name of the registration, which keeps it unique. The third argument is the
code you want to execute, which matches the call you make from the onchange of list A. The
fourth argument is a Boolean telling the rendering engine to wrap your function call in a script
tag for you.

Next let’s break the static script (the part not being generated) out into a file named
Interdepends.js. This includes nothing more than the populateListB method, and it allows
the client to cache this script, reducing your page size. To include it on the page, you have only
to call the new RegisterScriptInclude method:

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 135

522xCH04.qxd 8/31/05 3:25 PM Page 135

this.ClientScript.RegisterClientScriptInclude
("Interdepends",
"Interdepends.js");

The first parameter is a name, or a key really, that prevents the same include from being
added to a single page multiple times. The second is the URL of the script file. This simplified
call automatically generates the script include element for us.

The last change you’ll make is to use the RegisterClientScriptBlock method of the script
manager to inject the dynamically generated array declarations onto the page, instead of
using the PlaceHolder. You’ll replace this line of code:

plScript.Controls.Add(new LiteralControl(sb.ToString()));

with this one:

this.ClientScript.RegisterClientScriptBlock
(this.GetType(),
"InterArrays",
sb.ToString());

This simple change prevents the same block of script from being loaded more than once.
If you broke these lists out into their own control (UserControl or custom control), you’d actu-
ally want more than one of these sets of array declarations, as you would need a unique set for
each instance of the control on the page. This would require you to incorporate the ClientID
attribute of the control into the array names, in order to avoid naming conflicts on the client.

The client script manager is a nice improvement over the disjointed state of affairs for
scripting in 1.x. While existing code will continue to work, the new features and methods of
the script manager will be nice to leverage as you move forward into 2.0 development.

Focus
Another common problem has been resolved in 2.0 using client-side script. This is the prob-
lem of control focus. It’s very common to need to programmatically determine the focus of a
control. When using custom validation on the server, it’s nice to set the focus to the first con-
trol that’s found to be in an invalid state. This way the user is ready to correct the problem as
soon as the postback completes and the browser refreshes. Doing this in 1.x was possible, but
it required awkward, and sometimes arbitrary, code generation.

In 2.0, the Control type exposes the Focus method. This can be called on any control on
the page. The control automatically generates the appropriate client-side script to ensure the
focus is placed there when the page is displayed in the browser.

Out-of-Band Callbacks
One of the biggest complaints about ASP.NET is the postback infrastructure, which is ironic,
because it’s also one of things people like the most. But there are some situations where a
postback is just overkill. The previous example of interdependent drop-down lists is a good
one. You need to affect the second list programmatically, but it just doesn’t seem to warrant
an entire round trip back to the server. In that example, you do the processing on the client
instead, but you do so by shipping all values for all choices from list one. This increases your

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING136

522xCH04.qxd 8/31/05 3:25 PM Page 136

page size with the array script you generate, and chances are you won’t use most of that data
each time the page is sent to a user.

For some operations, shipping data for all possible user selections is just not an option.
A TreeView control is a good example. There may be hundreds or thousands of nodes in a large
TreeView. You definitely don’t want to ship all of the data for all of those nodes to the client
when the client first requests the page. This would cause a huge up-front performance hit,
and negatively impact the usability of the application. A postback for each click on the node
is annoying too. The page renders quickly but its performance thereafter is kludgey and slow
(and probably just plain unusable).

So it would be nice, in many circumstances, if another option existed. Can you go back
to the server and get just a little more data without having to rerender and resend all of the
markup for the entire page? This facility has been built into ASP.NET 2.0, and it’s the last
scripting feature we’ll examine.

The feature is called out-of-band callbacks, because it executes asynchronously on a
worker thread of the web browser. This is good, because the user interface stays responsive
while the browser makes a request to the server in the background.

The callback is kicked off by an event on the client. A user action can cause it—button
clicks, change events, mouse events, whatever. The client-side script to launch the call to the
server is automatically generated by a call to a method of the ClientScript object. Values
from the web page can be gathered and passed back to the server as a string. Two values are
passed, an argument and a context (more values could easily be passed using a delimited
string). The argument can be used from the server-side processing, but the context cannot. It
is actually passed to the callback method to establish, client-side, how the event originated.
Another critical parameter that you specify is the name of the JavaScript function that should
be called when the work is done and a response is sent back. You can also, optionally, specify
the name of a client-side function to call if an error occurs.

The server-side processing can do any work, but can only return a string. Again, if you
desire a more complex structure, you can build a delimited string on the server and split it
when it gets to the client. You can also have the server return HTML, which can be displayed
on the client from the callback method using DHTML.

Let’s modify the interdependent drop-down list example to display the pool hall’s address
when the user makes a selection out of the second list. This is a good example of not wanting
to make a full round trip back to the server, but also not wanting to totally bloat your page size
by returning all of these addresses proactively when your user is only seeking a single address.

The process of establishing a callback is fairly complex compared to the ease with which
you can accomplish most tasks in ASP.NET. The steps are as follows:

1. You must create a page that not only inherits from the Page base class, but also imple-
ments the ICallBackEventHandler interface.

2. This interface exposes one method, RaiseCallbackEvent. This is the method that will
fire when the callback occurs. It’s a lot like any other server-side event trap, except the
browser makes the request on a background thread instead of doing a full page refresh.
The other big difference is that instead of generating an HTML document (as a normal
postback would), this method simply returns a string, which is received by script code
on the client.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 137

522xCH04.qxd 8/31/05 3:25 PM Page 137

3. The callback is fired by client-side code. The script code that causes the callback is gen-
erated server-side by a call to GetCallbackEventReference. You must write server-side
code to generate this callback invocation, and also to generate client-side script that
will trap some event that causes the callback.

4. Once the callback invocation is wired, the server-side RaiseCallbackEvent method is
executed and generates a string. This string is returned to another function in client-
side script. You must write this function, and this function must process the string
returned from the server (by setting the InnerHtml property of a div element, for
example).

The big picture involves the process and code displayed in Figure 4-12. You may also want
to examine the code from the Callback.aspxWeb Form in the Web04 project before reading
through this section. You’re dealing with code-generating code, server-side code, and client-
side code, so as you come to understand this infrastructure, “There’s a lot of threads in old
dooder’s head,” as Jeffrey Lebowski would say.

Figure 4-12. Process and code for establishing a callback

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING138

522xCH04.qxd 8/31/05 3:25 PM Page 138

Figure 4-12. Process and code for establishing a callback (continued)

Let’s start by adding the client-side pieces of functionality. First you’ll need to alter the
onChange event of the second list to call a helper method instead of just popping its value in a
message box:

<select id=ddlListB onchange='GetAddress();'></select>

The GetAddress method will be dynamically generated from your code-behind. This is
generated by a call to GetCallbackEventReference, and the behavior of the callback is deter-
mined entirely by the parameters that are passed to this method (see Table 4-4).

Table 4-4. Arguments of the GetCallbackEventReference Method

Argument Type Meaning

control Control The control that implements ICallbackEventHandler.
This interface defines a single method that will be
invoked when the callback occurs. It accepts a string as
a parameter. This is the only information that can be
passed from the client to the server. You can implement
this interface at the Page level, or a user control or
custom control can implement and accept the callback
event.

Continued

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 139

522xCH04.qxd 8/31/05 3:25 PM Page 139

Table 4-4. Continued

Argument Type Meaning

argument String This is the data that gets passed from the client to the
server. Any client-side script can be executed to generate
this value before the callback is executed. If an atomic
value will not provide for your functionality, pass a
delimited string and split it when it gets to the server. You
can pass a string expression as a value (i.e., a client-side
variable or ControlName.value), and it will be evaluated
on the client, as it’s baked into the output stream as
client-side script.

clientCallback String This is the name of the function that gets executed when
the callback completes. This argument is typed as a
string, but acts more like a function pointer, pointing to
the callback function. The callback function accepts two
arguments. The first is the return value from the server-
side processing, and the second is the context string that
was passed as second argument with the original call.

context String This can be used to establish where the event occurred.
For example, you could bind a GridView, and have each
row provide a link that would fire a callback. In order to
establish which row the click originated on, you could
pass the ID of the row as the context. When the call
returned to the client, this information is passed back
as the second argument of your callback function.

clientErrorCallback String The name of the client-side function that should be
executed if an error occurs. This argument is optional.
(There is another argument list that accepts only four
values.)

Let’s take a look at the code you’ll use from the page’s Load event to generate the code for
the callback. Remember that earlier you programmed list B to call a function named GetAddress
when the list entry changes. Here’s the server-side code to programmatically generate that
client-side function:

this.ClientScript.RegisterClientScriptBlock
(this.GetType(),
"Callback",
"function GetAddress() { " + GetAddressInvocation() + " }",
true);

And here’s the code for GetAddressInvocation, called from the fourth argument in the pre-
ceding line of code:

private string GetAddressInvocation()
{

return Page.GetCallbackEventReference
(this,
"document.all.ddlListB.value",
"DisplayAddress",
"\"context\"");

}

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING140

522xCH04.qxd 8/31/05 3:25 PM Page 140

This code yields a client-side function that acts as a simple wrapper method for the invo-
cation of the callback. Here’s the code that gets generated and registered in the output stream:

<script type="text/javascript">
<!--

function GetAddress()
{

WebForm_DoCallback
('__Page',
document.all.ddlListB.value,
DisplayAddress,
"context",
null)

}
// -->
</script>

You’re wrapping it in the GetAddress function so that you can fire the callback at will from
a number of places on your form. Let’s examine the call to WebForm_DoCallback for a moment,
and see how your call to GetCallbackEventReference created it. The first parameter you
passed, this, resulted in the reference to __Page as the first parameter. If you were using a con-
trol, this parameter would be the ID of that control. Next, your string expression resulted in a
line of code that pulls the current value of list B from the interface via DHTML. This is the
value you’re passing back to the server. DisplayAddress is the name of the client-side function
to be called when the server is done with its work. It’s passed as a function pointer. And finally,
your literal “context” is passed as the literal string “context.” A null value is passed for your
error callback, since you specified none.

In the same way that __doPostback causes a postback to occur, WebForm_DoCallback fires
the out-of-band callback to the server in the background. When the server returns, the
DisplayAddress function pointer is invoked, and the value from the server is passed to it.

Let’s hop over to the server-side callback event trap. This is determined by the reference to
the type you passed as argument one to GetCallbackEventReference. It must be an instance of
a type that implements ICallbackEventHandler. Let’s examine your implementation of this
interface.

First, of course, you must modify the page object to declare its intent to provide an imple-
mentation of this interface:

public partial class Callback : System.Web.UI.Page, ICallbackEventHandler

There’s a single method on the contract of this interface, RaiseCallbackEvent.

public string RaiseCallbackEvent(string eventArgument)
{

DataSet ds = GetPoolHallDoc();
string result = "";
try
{

DataRow dr =

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 141

522xCH04.qxd 8/31/05 3:25 PM Page 141

ds.Tables[2].Select(
string.Format("id = '{0}'", eventArgument))[0];

result += dr["Address"].ToString() + "
";
result += dr["Phone"].ToString() + "
";

}
catch
{

result = "Address not found.";
}
return result;

}

The argument is what your client-side function that launched the callback passed.
Because of how you built your expression, this is the ID of the current selection in list B. You
will use this ID to look up the address information for the corresponding pool hall, build that
into an HTML string, and send it back to the client.

When this string is returned to the client, the DisplayAddress function will be invoked.
Here’s the code for that function. Note that this is client-side JavaScript.

function DisplayAddress(address, context) {
document.all.dAddress.innerHTML = address;

}

Address is the string you built on the server, and context is the literal string “context” that
gets passed to the callback method, but not to the server. Again, it’s designed to be used to
track where the callback originated on the client. dAddress is a div element at the bottom of
the page:

<div id=dAddress style="font-family:Verdana;color:Navy;"></div>

Now you only have to tie up loose ends. The address will be displayed when the user
makes a selection out of list B, but this list has a default selection when the page first renders.
You’ll modify the page load script to populate it then:

this.ClientScript.RegisterStartupScript
(this.GetType(),
"PopList",
"populateListB();GetAddress();",
true);

List B also gets a default selection when a choice is made from list A. You’ll make a similar
change there:

<asp:DropDownList
Runat=server
ID=ddlListA
onchange='populateListB();GetAddress();' />

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING142

522xCH04.qxd 8/31/05 3:25 PM Page 142

This page is now ready to go. The results are quite different from similar functionality pro-
vided by postbacks. The lists populate quickly, the UI remains responsive while the address is
looked up in the background, and the browser is not “clicking” and running its status bar for
refreshes. Even on a LAN, this interface is more responsive and usable than it would be using
postbacks.

One of the greatest things about this feature is that it’s cross-browser compatible. In
Figure 4-13 you see the Pool Hall Address Lookup page running in the Firefox browser.

Figure 4-13. A page leveraging out-of-band callbacks running in Firefox

Even though all of the features you’ve looked at in this chapter are cross-browser compat-
ible, this feature is worthy of note: In the past, it would have been safe to assume it was IE
only. The new TreeViewWeb Form control also makes use of this callback infrastructure,
meaning that this new control is also cross-browser compatible.

Summary
The ASP.NET Framework provides a rich set of features for leveraging client-side functionality,
including JavaScript. The ViewState and ControlState features use HTML hidden input to
store state information on the client, which saves you from writing a lot of redundant boiler-
plate code. However, you must carefully monitor ViewState because it can quickly bloat your
requests and responses. Version 2.0 increases the efficiency of the hashing algorithms in use to
generate the ViewState value, decreasing the size of the value stored in the hidden input. In
some situations, the ViewState size will still cause an unacceptable performance hit; in these
cases, you have the option of replacing the location where the ViewState value is stored with
one of your choosing (like Session, Cache, or a database).

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING 143

522xCH04.qxd 8/31/05 3:25 PM Page 143

ASP.NET script-generation features have been aggregated and extended via the services
the new ClientScript object provides. This object, a property of the Page object, exposes
many methods you can use to generate JavaScript, and to avoid sending duplicate blocks of
JavaScript to the client.

There is a powerful new facility for doing out-of-band callbacks from the client to the
server, which allows you to do partial page refreshes and avoid the overhead of a full postback
to the server.

CHAPTER 4 ■ VIEWSTATE AND SCRIPTING144

522xCH04.qxd 8/31/05 3:25 PM Page 144

.NET Middle Tier
Solutions

The middle tier is frequently the heart of a distributed application. All the information moves

through this layer: data on its way from the database to the user interface and user information

posted from a form that kicks off a transaction. This is where the brains and the rules of the appli-

cation reside.

More than the concept of “business objects,” the functionality of this tier of the application can

fall within many categories. As service orientation continues to gain momentum, it becomes more

important to understand and leverage messaging infrastructures. For Web-based applications, the

application is intrinsically stateless, so frequently the work you need to do does not involve stateful

business objects, but rather stateless services processing and preparing messages.

There are also many permutations and combinations of layers and tiers in a distributed appli-

cation. How the layers of an application are deployed across physical tiers will affect the options

you have for communicating across these layers. Making the correct choices among these options

is critical for the success of any distributed application, as they make up the “plumbing” of your

application.

Chapter 5

This chapter focuses on security, the “vertical slice” of any distributed application. Here you’ll see

how to keep assemblies secure and how you can leverage encryption in the .NET Framework, as

well as some new security features in ASP.NET 2.0.

P A R T 2

■ ■ ■

522xCH05.qxd 8/31/05 3:27 PM Page 145

Chapter 6

This chapter is on Web Services in the .NET Framework. We’ll take a look at why you would want to

use Web Services, we’ll examine them from a vendor-neutral perspective to see how they provide

for excellent cross-platform interoperability, and then we’ll delve into some of the new features for

Web Services that are built into version 2.0 of the .NET Framework.

We’ll wrap this chapter up with a quick look at Web Service Enhancements, an add-on pack-

age of functionality available from Microsoft.

Chapter 7

This chapter is about COM+. We enumerate its features and look specifically at what steps you

must take with .NET types for them to function in the COM+ environment.

Chapter 8

This chapter focuses on processes, hosts, and marshaling. These topics are seldom discussed

under a single banner, and the decisions you make regarding them affect every distributed appli-

cation.

We’ll examine some of the options available for hosting applications and also some of the

options for communicating across the different processes. Through the course of this discussion,

we’ll examine Message Queuing in some detail, as well.

Chapter 9

This chapter provides a brief introduction of Windows Communication Foundation, Microsoft’s

next-generation messaging stack that sets out to unify (or at least unite) MSMQ, COM+, Remoting,

and Web Services.

522xCH05.qxd 8/31/05 3:27 PM Page 146

.NET 2.0 Security

The goal of this chapter is twofold. The first order of business is to provide you with a high-
level overview of various security technologies the .NET base class libraries offer. You’ll learn
the role of strongly named assemblies, hash codes and role-based security (RBS) systems.
Do understand, however, that we will not be diving into each and every detail regarding these
topics. Rather, this information will give you a context for the major mission of this chapter,
which we outline under the second order of business.

Our second (major) task with this chapter is to address the details of securing ASP.NET
web applications using Windows-based and Forms-based authentication. Once you under-
stand the basics behind each model, you will learn how to implement Forms-based authen-
tication under ASP.NET 2.0. As you will see, developers can use numerous new techniques
(including the Membership and Roles classes, server-side security controls, and cookieless
authentication) that simplify the process. We’ll then wrap up the chapter by examining a
(much welcomed) Web-based UI editor for web.config files.

A Survey of Core Security Services
Historically speaking, security is often perceived by many in the Windows programming com-
munity as someone else’s problem. Because security programming using the raw Win32 APIs is
so complex and tedious, few developers relish the idea of diving into the gory details. Rather,
these same (often well-intentioned) individuals attempted to pass the buck to “the security
guy/gal.”

To make matters worse, many (again, well-intentioned) software companies often view
security as an afterthought that is bolted onto an almost-completed product. Unless you hap-
pen to be a security-savvy individual who works at a security-savvy company, it is too often
the case that the security is not factored into the initial design of a system. As you would
guess, this approach seldom results in truly secure or extendable software.

Thankfully, the .NET platform has greatly simplified the process of building secure appli-
cations. Not only can .NET developers utilize a well-designed set of namespaces, they can also
leverage design time support provided by the Visual Studio 2005 integrated development envi-
ronment (IDE).

Since the initial release of the .NET platform, Microsoft has made it quite clear that secu-
rity is a critical topic that must be addressed during an application’s initial design. Not only
has Microsoft designed a whole set of security best practices, it has also integrated security
into the very fabric of the base class libraries. To better understand the reach of .NET security,
consider the .NET 2.0 security-centric namespaces shown in Table 5-1.

147

C H A P T E R 5

■ ■ ■

522xCH05.qxd 8/31/05 3:27 PM Page 147

Table 5-1. The .NET 2.0 Security Namespaces

Security-centric Namespace Meaning in Life

System.Security This is the core security-centric namespace that defines
common types used by the run-time security model.

System.Security.AccessControl This new .NET 2.0 namespace provides types that enable you
to interact with access control lists (ACLs) and other related
security descriptors programmatically.

System.Security.Authentication This new .NET 2.0 namespace provides types that enable you
to determine the state of secure connections (such as SSL).

System.Security.Cryptography The .NET platform provides numerous cryptographic
namespaces that cover hash code, symmetric, and
asymmetric cryptography.

System.Security.Permissions Defines core types used when programming with the role-
based and code access security models.

System.Security.Policy Defines numerous types that are used specifically with code
access security.

System.Security.Principal Defines numerous types that are used specifically with role-
based security.

System.Web.Security Defines numerous types that are used to secure ASP.NET web
applications.

In addition to these specific namespaces, security atoms can be found lurking within
XML configuration files, assembly metadata, and various development and configuration
tools. While space doesn’t permit a complete discussion of these aspects, we’ll begin this
chapter by briefly examining the following topics:

• The role of strongly named assemblies

• Encryption services

• Role-based security

After we provide an initial overview of common .NET security technologies, in the
remaining bulk of the chapter we address the details of securing ASP.NET 2.0 web applications
using the types within the System.Web.Security namespace.

■Note Again, the initial part of this chapter is only intended to provide an overview of select core .NET
security technologies. If you require a full treatment of the topics we’ve just outlined (including Code Access
Security), consult .NET Security by Bock et al (Apress, 2002).

The Role of Strongly Named Assemblies
Many .NET developers assume that the only reason to assign a strong name to a .NET assem-
bly is to deploy it to the Global Assembly Cache (GAC) as a shared assembly. While this is one

CHAPTER 5 ■ .NET 2.0 SECURITY148

522xCH05.qxd 8/31/05 3:27 PM Page 148

important aspect of strong names, it is, in fact, considered a .NET best practice to provide
every assembly with a strong name given the intrinsic security boundary it provides.

To understand how a strong name can provide a level of security, you must understand
the concept of round trip engineering. Simply put, this term explains the process of disassem-
bling a compiled .NET assembly into Common Intermediate Language (CIL), modifying the
contents, and compiling the modified CIL into a new (identically named) binary. This process
is not as esoteric as you may think. In fact, the .NET Framework 2.0 SDK ships with the very
tools you need to perform a round trip: ildasm.exe (the CIL disassembler) and ilasm.exe (the
CIL assembler).

An Example of Round Tripping
Assume you have authored the following type using C# contained in a file named
MyCriticalClass.cs:

using System;

public class MyCriticalClass
{
public string GetSensitiveInformation()
{
return "The magic value is 9";

}
}

If you were to compile this code file into a .NET code library at the command line using
the following command:

csc /t:library *.cs

you could now view the generated CIL code, type metadata, and manifest information by
issuing the following command to the ildasm.exe utility (see Figure 5-1):

ildasm MyCriticalClass.dll

Figure 5-1. Viewing the internal composition of a .NET assembly using ildasm.exe

CHAPTER 5 ■ .NET 2.0 SECURITY 149

522xCH05.qxd 8/31/05 3:27 PM Page 149

Given that ildasm.exe is a free tool that ships with the .NET Platform 2.0 SDK, this, obvi-
ously, means any individual is able to view the internal composition of your code libraries.
Worse, using the File ➤ Dump menu option of ildasm.exe, it is possible to dump an assem-
bly’s CIL code to a local file. If you were to do so, you could open the resulting *.il file using
any text editor.

If an evildoer has some basic knowledge of the syntax of CIL, he or she could now alter
any member to perform any evil task (scan the local hard drive for sensitive information,
inject viruses, etc). Just for illustrative purposes, assume that you have updated the CIL code
to change the string literal within GetSensitiveInformation to return "The magic value is
FOO!" rather than the intended "The magic value is 9" (see Figure 5-2):

Figure 5-2. Modifying CIL code using notepad.exe

Once an *.il file has been edited, the evildoer can recompile the CIL code into an identi-
cally named *.dll using the CIL assembler, ilasm.exe:

ilasm /dll /out:MyCriticalClass.dll MyCriticalClass.il

Clearly the potential of round trip engineering is unnerving if you ship your *.dll or
*.exe files to an end user’s machine. If an evildoer alters, recompiles, and redeploys your code
base, you’re the one to blame as far as the end user is concerned. Do understand that not all
round trips are dangerous. This same technique can be very helpful when you need to modify
an assembly you no longer have source code for, or happen to be building a sophisticated
assembly for the purposes of communicating between COM and .NET. Nevertheless, the
chances are good that you would like to prevent others from tampering with your compiled
binaries.

Preventing Roundtrip Engineering via Strong Naming
As you may know, a strong name is based in part on two mathematically related keys (the pub-
lic key and the private key), which are generated using a command line utility named sn.exe
(strong name). Like most command line tools, sn.exe has a great number of options; however,
if you’re simply interested in generating a new key pair, the –k flag is all you require:

sn –k mykeypair.snk

CHAPTER 5 ■ .NET 2.0 SECURITY150

522xCH05.qxd 8/31/05 3:27 PM Page 150

Once you have generated a *.snk file, you should regard its contents as extremely sensitive.
Given that the whole point of a strong name is to establish your identity in the .NET universe,
if another (possibly evil) individual were to gain access to your key information, they could
pretend to “be you.” Assuming this is not the case, you are now able to inform the C# compiler
where to find your *.snk file via the /keyfile option.

csc /keyfile:mykeypair.snk /t:library *.cs

By doing so, your assembly will now be assigned a strong name. Formally speaking, the C#
compiler will use data within the supplied *.snk file as so:

• The full public key is recorded in the assembly’s manifest.

• A digital signature is created based on the private key and a hash code generated using
the assembly contents (CIL code / metadata).

• This digital signature is encrypted into the assembly.

Figure 5-3 illustrates the process. (Do recall that a single *snk file contains both the public
key and private key data.)

Figure 5-3. Key pairs are used to generate a digitial signature for a given assembly

Now, assume you have deployed your strongly named assembly to an end user’s machine.
If an evildoer were to attempt a round trip, she would not have access to your key pair data.
Even if this individual specified a new *.snk during compilation process, an entirely new digi-
tal signature is produced. In fact, the .NET runtime automatically verifies an assembly’s digital
signature (provided it has been strongly named) using the following sequence of events:

1. The embedded digital signature is decrypted using the public key.

2. The current assembly’s hash is recomputed.

CHAPTER 5 ■ .NET 2.0 SECURITY 151

522xCH05.qxd 8/31/05 3:27 PM Page 151

3. If the hash values match, the CLR knows the assembly has not been tampered with
after deployment.

4. If the hash codes do not match, the CLR refuses to load the binary and throws a File-
LoadException.

Figure 5-4 illustrates the process.

Figure 5-4. The validity of a digitial signature is recomputed at load time

Finally, it’s important to note that strong names do not prevent evildoers from loading
your assembly into ildasm.exe for the purposes of viewing proprietary code. If you wish to
limit an evildoer’s ability to do so, you’ll want to make use of obfuscation software. As you
may know, obfuscators essentially “scramble” the contents of a .NET assembly in such a way
that while its intended operation is persevered, the internal CIL code is rendered essentially
unreadable.

■Note Visual Studio 2005 ships with a community edition of Dotfuscator, which as the name implies, is an
obfuscator for .NET assemblies.

Encryption Services
The next security topic we’ll discuss is encryption. Simply put, encryption is the process of
keeping sensitive information safe and sound. More formally, encryption is used to ensure
that message data (such as a social security number, bank account ID, or user password) can-
not be altered and/or understood by evildoers. From a high level, encryption addresses the
following security issues:

CHAPTER 5 ■ .NET 2.0 SECURITY152

522xCH05.qxd 8/31/05 3:27 PM Page 152

• Integrity: If the message has been intercepted and modified during transport, the
receiver should detect it. You ensure this using a cryptographic hash code.

• Confidentiality: The message data shouldn’t be directly readable if it’s intercepted by
prying eyes. You accomplish this using encryption and decryption techniques.

• Authentication: The receiver of the message should be able to ensure the message came
from the anticipated sender. You achieve this using digital signatures.

Although each flavor of encryption addresses a specific need (integrity, confidentially, and
authentication), the programming model used to work with hash codes, encryption services,
and digital signatures is more or less identical. Given this fact, we’ll limit this part of our secu-
rity overview to the role of hash codes.

Understanding Hash Codes
To address the issue of integrity, it is common to make use of hash codes. In a nutshell, a hash
code is a numerical value that is tied to a fixed input. One interesting aspect of hash code
values is the fact that they provide a form of one-way encryption, given that the generated
numeric value contains no trace of the original message data.

For example, in the previous section, we examined how a strongly named assembly is
assigned a digital signature based (in part) on a hash code value obtained from the assembly
contents. Clearly a numerical value such as 79BB0DA9D45C6AE29F8 has no trace of the origi-
nal assembly contents (types, methods, etc).

To further illustrate the nature of hash codes, consider the method
System.Object.GetHashCode. This virtual method may be overridden by derived types to gen-
erate a hash value based on its internal state data. The System.String class has overridden this
method to return a unique hash value for the current character data. Thus, if you have two
identical strings (in the same case), System.String.GetHashCode will return the same value. If
even one character differs by case or content, you receive a unique numerical value. Ponder
the following class definition:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Hash Codes *****");
Console.WriteLine("Hash of 'Hello': {0}", "Hello".GetHashCode());
Console.WriteLine("Hash of 'Hello': {0}", "Hello".GetHashCode());
Console.WriteLine("Hash of 'HellO': {0}", "HellO".GetHashCode());
Console.ReadLine();

}
}

Notice that the first two string objects have identical content and case, while the final
string has a capitalized letter O. Now ponder the output (see Figure 5-5).

CHAPTER 5 ■ .NET 2.0 SECURITY 153

522xCH05.qxd 8/31/05 3:27 PM Page 153

Figure 5-5. Hash codes are unique based on their input.

Of course, when you’re interested in generating hash codes for large blocks of data or
sensitive user information, you won’t leverage GetHashCode. Truth be told, overriding this vir-
tual method is only useful when you’re designing types that may be placed in a Hashtable
collection.

Luckily, the .NET platform ships with types that provide implementations of many well-
known hash code algorithms. Each type is capable of operating on different input blocks and
may differ based on the size of the message data and/or the size of the generated hash code.
Table 5-2 documents your choices.

Table 5-2. The .NET Hashing Algorithms

.NET Hash Algorithm Input Block Message Limit Hash Code Size
Size (In Bits) (In Bits)

MD5 (MD = Message Digest) 512 264 128

SHA1 (SHA = Secure Hash Algorithm) 512 264 160

SHA256 512 264 256

SHA384 1024 2128 384

SHA512 1024 2128 512

Hashing a File
Once you’ve determined the hash code algorithm you wish to use, you can create an instance
of the algorithm using the static HashAlgorithm.Create method. Simply pass in a string name
of the algorithm you require (MD5, SHA1, SHA256, SHA384, or SHA512). Assume you wish to
generate a hash code for a file on your local machine:

static void Main(string[] args)
{

// Open a local file on the C drive.
FileStream fs = new FileStream(@"C:\MyData.txt", FileMode.Open);

// Now generate a hash code for this file using MD5.
HashAlgorithm alg = HashAlgorithm.Create("MD5");
byte[] fileHashValue = alg.ComputeHash(fs);

CHAPTER 5 ■ .NET 2.0 SECURITY154

522xCH05.qxd 8/31/05 3:27 PM Page 154

// Print out the generated hash code.
Console.WriteLine("Hash code of MyData.txt");
foreach (byte x in fileHashValue)

Console.Write("{0:X2} ", x);
fs.Close();
Console.ReadLine();

}

Notice how hash values are represented using a simple array of bytes. Therefore, if
MyData.txt contained thousands of lines of text, the entire contents might be represented as:

79 DC DA F4 5B F6 5C 0B B0 DA 9D 45 C6 AE 29 F8

If you were to change even a single character within MyData.txt, the new hash code will
be entirely unique:

B3 E3 DD 14 96 2D D2 EB 0E C3 68 BF 08 04 D5 80

Again, using hash codes you’re able to represent sensitive data as a unique byte array that
contains no trace of the original message data. In a distributed system, one of the most com-
mon uses of this technology is for the purposes of storing password information. By storing a
user’s password in a hash code format, you increase the security of your system given that this
numerical value has no trace of the original password. When the end user attempts to log into
your system again, you simply rehash the message and perform a comparison against the per-
sisted value.

■Note Many hash code algorithms also enable you to specify a “salt” value. Simply put, salting is the
process of incorporating a random value to the input of the hash algorithm, in order to further ensure a
strong hash.

Role-Based Security (RBS)
Many applications, especially intranet or other such localized applications, require the capa-
bility to restrict access to resources based on the “role” of the currently logged-on user. For
example, assume you have a set of known users (such as members on an NT domain) who
have been placed into specific groups named “Sales People,” “Managers,” and “Developers”.
Using role-based security (or simply RBS), it is possible to programmatically determine the
role of the current user interacting with a given type or type member.

■Note The process of creating users and assigning them to their respective roles, which we won’t cover
here, is typically the job of your friendly network administrator.

CHAPTER 5 ■ .NET 2.0 SECURITY 155

522xCH05.qxd 8/31/05 3:27 PM Page 155

When you wish to programmatically obtain the identity of the current user via the role-
based security model, you must obtain a principal object from the current thread of execution
via Thread.CurrentPrincipal. Simply put, a principal object represents the identity of the cur-
rent user and each role to which he belongs. Technically speaking, a principal object is some
type implementing the System.Security.Principal.IPrincipal interface:

public interface IPrincipal
{

IIdentity Identity { get; }
bool IsInRole(string role);

}

As you can see, the read-only IPrincipal.Identity property returns an object imple-
menting System.Security.Principal.IIdentity, which is defined as so:

public interface IIdentity
{

string AuthenticationType { get; }
bool IsAuthenticated { get; }
string Name { get; }

}

Before obtaining a principal object via Thread.CurrentPrincipal, the calling assembly
needs to inform the CLR of the principal policy it’s interested in leveraging. As of .NET 2.0,
there are four possible principal policies:

• Forms: A RBS implementation for ASP.NET.

• Generic: Enables you to define your own custom RBS system.

• Passport: A RBS implementation for MS .NET Passport.

• Windows: A RBS implementation for Win32 user account systems.

As you’ll see in just a bit, the Forms-based principal policy is used extensively when
securing ASP.NET web applications. Until then, you’ll assume a Windows-based principal pol-
icy that is fitting for known users on an internal NT network. Establishing a principal policy
requires a call to SetPrincipalPolicy on the current application domain. These things being
said, the following code illustrates how to obtain various statistics regarding the current caller
via the members defined by the IPrincipal and IIdentiy interfaces:

private DisplayUserInformation()
{

// Set the default principal policy for threads in this AppDomain.
AppDomain myDomain = AppDomain.CurrentDomain;
myDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal);

// Get the current principal.
WindowsPrincipal wp = (WindowsPrincipal)Thread.CurrentPrincipal;

// Print out some stats.

CHAPTER 5 ■ .NET 2.0 SECURITY156

522xCH05.qxd 8/31/05 3:27 PM Page 156

string wpInfo = string.Format("Name is: {0}", wp.Identity.Name);
wpInfo += string.Format("\nIs authenticated?: {0}",
wp.Identity.IsAuthenticated);

wpInfo += string.Format("\nAuth type: {0}",
wp.Identity.AuthenticationType);

wpInfo += string.Format("\nIs user a guest?: {0}",
wp.IsInRole(@"Developers"));

MessageBox.Show(wpInfo, "Current Principal Info");
}

Restricting Access Based On User Identity
Now that you have seen how to obtain details regarding the current caller, the next logical step
is to understand how to constrain what the current caller may do based on her identity. The
.NET role-based security model enables to you restrict access to type allocation and type
member invocation using one or two approaches:

• Imperative RBS: Use RBS types directly in your code, making run-time demands and
decisions where needed.

• Declarative RBS: Use .NET attributes to require demands.

When you use declarative RBS, you are able to apply numerous attributes that inform the
.NET runtime to ensure the current caller is within a specified role before creating a given type
or invoking a given member. This approach results in hard-coded assembly metadata, and,
therefore, you have fewer ways to customize the process of handling run-time exceptions.

For example, assume you have authored a class method that should never be successfully
invoked by any user who is not within the built-in NT Administrators role. Using a declarative
approach, you would apply the PrincipalPermission attribute to the method as so:

[PrincipalPermission(SecurityAction.Demand,
Role = @"BUILTIN\Administrators")]
private void SomeMethod()
{

// If we got this far, the user is in the correct role.
DoAdminStuff();

}

If you would rather take an imperative approach, you gain the capability to monitor
access violations gracefully in code via try/catch constructs or simply deny a given course of
action. Ponder the following related code example:

private void SomeMethod()
{

// Set the default principal for threads in this appdomain.
AppDomain myDomain = AppDomain.CurrentDomain;
myDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal);

CHAPTER 5 ■ .NET 2.0 SECURITY 157

522xCH05.qxd 8/31/05 3:27 PM Page 157

// Get the current principal.
WindowsPrincipal wp = (WindowsPrincipal)Thread.CurrentPrincipal;

// Do 'admin stuff' if caller is in role.
if(wp.IsInRole(WindowsBuiltInRole.Administrator))
DoAdminStuff();

}

Now, be very aware that ASP.NET web applications also provide an RBS implementation,
which is similar (but not identical to) the RBS model you just examined.

■Note It should be mentioned that the .NET platform also provides a manner to assign a run-time identity
to the assembly itself. Once this identity has been established, the Code Access security (CAS) model
enables a system administrator to restrict what the assembly may (or may not) do via a set of configurable
(and very flexible) rules.

Securing ASP.NET Web Applications
Now that you have seen the role of various .NET security atoms, you can turn your attention
to the specifics of securing ASP.NET web applications. Do recall, however, that an ASP.NET
web application is ultimately just another valid .NET assembly. Like any assembly, your
ASP.NET web applications contain CIL code, type metadata, and manifest information. Given
this point, many of the previous security-centric topics apply directly to Web development
under the .NET platform (storing passwords as hash codes, strongly naming external assem-
blies, and so forth).

In addition to the general .NET security options, ASP.NET does provide Web-specific
services that address the issues of authentication and authorization. Under ASP.NET, these
two security needs are addressed in part by tweaking various settings within a server side
web.config file. Like other XML-based files, web.config files can contain any number of
subelements under the root <configuration> node, each of which can contain various attrib-
utes and possibly further subelements. At a very high level, a web.config file can be broken
into the following skeleton:

<configuration>
<system.web>

<authentication/>
<authorization/>
<browserCaps/>
<clientTarget/>
<compilation/>
<customErrors/>
<globalization/>
<httpHandlers/>
<httpModules/>
<httpRuntime/>

CHAPTER 5 ■ .NET 2.0 SECURITY158

522xCH05.qxd 8/31/05 3:27 PM Page 158

<identity/>
<machineKey/>
<pages/>
<processModel/>
<securityPolicy/>
<serviceDescriptionFormatExtensionTypes/>
<sessionState/>
<trace/>
<trust/>
<webServices/>

</system.web>
</configuration>

■Note The purpose of this chapter is not to detail each and every option within a web.config file (that
would require a small book on its own). Rather we focus on select security-specific elements. If you wish to
see each and every option, look up the “ASP.NET Settings Schema” topic using the .NET 2.0 Framework
SDK Documentation.

While it’s not mandatory to include a web.config file as far as the ASP.NET runtime is con-
cerned, they are downright mandatory when securing an ASP.NET web application. So much
so that it’s not uncommon for a single ASP.NET web application to make use of multiple
web.config files. By doing so, you’re able to leverage configuration inheritance.

Understanding Configuration Inheritance
Most ASP.NET web applications contain, at the very least, a single web.config file that sits in
the root directory. When you insert a new web.config file using Visual Studio 2005 (via the
Website ➤ Add New Item… menu option), the default XML looks something like the following
(comments have been removed for clarity):

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

<appSettings/>
<connectionStrings/>
<system.web>

<compilation debug="false"/>
<authentication mode="Windows"/>

</system.web>
</configuration>

Note that the scope defined by <system.web> is where all of your ASP.NET security settings
end up. The optional <appSettings> and <connectionStrings> elements provide a handy loca-
tion to enter application-specific data and ADO.NET connections string values that may be
obtained programmatically (see Chapter 10 for a close look at using and encrypting the new
connectionStrings element).

CHAPTER 5 ■ .NET 2.0 SECURITY 159

522xCH05.qxd 8/31/05 3:27 PM Page 159

In any case, when you have a web.config file located within the root directory, each subdi-
rectory “inherits” the settings it defines. However, if you require, you may include specific
web.config files that can effectively “override” the settings found in the parent web.config files
higher up in the directory structure. Figure 5-6 illustrates one possible use of configuration
inheritance.

Figure 5-6. Configuration inheritance under ASP.NET

Notice that this site has a subdirectory named SiteAdmin that contains its own unique
configuration file, while the site as a whole is configured using the settings found within the
root level web.config file. The idea (as you may suspect) is that access to SiteAdmin is more
restrictive than the than of the root directory’s content, and is, therefore, constrained using
custom configuration settings.

■Note If your websites do not contain a specific web.config file, they will inherit all of the default settings
found within the machine-wide machine.config file. Given this, understand that a root level web.config
file is actually overriding various settings in machine.config.

Understanding ASP.NET Authentication Options
As we briefly mentioned in Chapter 1, authentication is often the first step in securing a sys-
tem (Web-based or otherwise). Simply put, authentication services provide a way to validate
the identity of the current user. Assume you’re building an ASP.NET website that demands any
and all unauthenticated users supply login credentials before proceeding. Using ASP.NET, you
may choose between three possible flavors of authentication (which happen to map to the
various principal policies examined during our discussion of role-based security):

• Windows Authentication: Supplied credentials are validated against the WinNT Security
Accounts Manager (SAM) or alternatively by using Active Directory.

• Passport: Supplied credentials are validated against a Microsoft centralized authentica-
tion service.

• Forms-Based Authentication: Supplied credentials are validated against an application-

CHAPTER 5 ■ .NET 2.0 SECURITY160

522xCH05.qxd 8/31/05 3:27 PM Page 160

■Note You may also specify an authentication setting of “None” to build a website that requires no
authentication (e.g., you only expect unauthenticated users) or to build a website that is providing custom
authentication techniques.

While you may be familiar with these options, here’s a brief walkthrough for the uninitiated.

Windows-Based Authentication
Windows-based authentication services (which is the default behavior for new ASP.NET web
applications) is perhaps the simplest approach from a programmer’s point of view, given that
there is no need to design a UI that prompts the user for his username/password and no need
to author extensive boilerplate code. Using Windows authentication, the operating system
provides the necessary infrastructure. To enable this behavior, simply define the following
<authentication> element within your project’s web.config file:

<configuration>
<system.web>

<authentication mode="Windows"/>
</system.web>

</configuration>

One obvious downfall to Windows-based authentication services is the fact that all
users must be “known individuals” on the SAM or an established Active Directory. Given this
restriction, Windows-based authentication only works when anonymous access is turned off
within IIS.

Passport-Based Authentication
As an alternative, developers may choose to use a specific Microsoft API termed Passport.
Passport services enable developers to design their websites in such a way that Microsoft per-
sists and validates user-supplied credentials. The major benefit of Microsoft Passport services
(as far as the end user is concerned) is the fact that the same username/password can be used
for any website participating in the Passport initiative (this approach is termed single sign-in
or SSI). This is the security model sites such as Hotmail and MSN.com use. The downside (as
far as the developer is concerned) is she must now learn a new object model.

Assuming your web application has been injected with the necessary Passport API calls,
your web.config file will now be designed using a nested <passport> element that specifies the
name of the page to redirect to if the current user has not supplied valid passport credentials:

<configuration>
<system.web>

<authentication mode="Passport"/>
<passport redirectUrl="Login.aspx"/>

</authentication>
</system.web>

</configuration>

CHAPTER 5 ■ .NET 2.0 SECURITY 161

522xCH05.qxd 8/31/05 3:27 PM Page 161

■Note We don’t examine the details of the Microsoft Passport API in this chapter. If you require further
details, consult the official Passport home page at www.passport.com.

Forms-Based Authentication
The fact of the matter is that Windows-based and Passport-based authentication is typically
not a valid solution for large-scale public websites. For applications of this type, the most
common authentication option will be Forms-based, which splits the workload between the
.NET framework itself and the web developer. The developer is required to build a logon page
and author the necessary code to compare the values of the supplied credentials and the per-
sisted credentials. The framework responds by automatically redirecting the user to the
requested page upon successful validation. If the validation is successful, the framework
attaches an authentication ticket (issued by default as a cookie) to the current request.
Figure 5-7 illustrates the Forms-based authentication model.

Figure 5-7. The ASP.NET Forms authentication model

■Note The authentication ticket is automatically encrypted (using Triple-DES) and protected via data vali-
dation to prevent any across the wire tampering.

CHAPTER 5 ■ .NET 2.0 SECURITY162

522xCH05.qxd 8/31/05 3:27 PM Page 162

Leveraging the Forms Authentication Model
If you have previous experience working with Forms authentication under .NET 1.x, you will
be happy to know that your existing code is 100 percent backwards compatible (as are most
other aspects of ASP.NET 2.0). As you would suspect, ASP.NET 2.0 provides a number of new
types to simplify Forms-based authentication. However, before examining these new items,
let’s review the core model.

To leverage Forms-based authentication under ASP.NET, the first step is to author a cus-
tom aspx file that will provide the necessary UI to prompt for user credentials, such as a
username and password. Figure 5-8 illustrates a typical logon.aspx page consisting of two
TextBoxes, a handful of Labels and RequiredFieldValidators, and a Button type used to post
back to the web server.

Figure 5-8. Building a Logon.aspx page

The Button’s server-side Click event handler is responsible for extracting the supplied
username and password values and validating them against the previously persisted values,
which again may be located in a server-side XML file or, more commonly, in a table in a given
database. Once you determine that the credentials are valid, the final step is to call the static
FormsAuthentication.RedirectFromLoginPage method to attach the authentication cookie and
redirect the user to the requested page. Consider the following logic:

public class Logon : System.Web.UI.Page
{

protected void btnSubmit_Click(object sender, EventArgs e)
{

// Scrape out uid and pwd.
string uid = txtUserName.Text;
string pwd = txtPassword.Text;

// Call a helper function to determine valid user.
if (UserIsValid(uid, pwd))

// Success! Redirect user to requested page.
FormsAuthentication.RedirectFromLoginPage(uid, false);

else
// Oops! User not found. Display error message.

CHAPTER 5 ■ .NET 2.0 SECURITY 163

522xCH05.qxd 8/31/05 3:27 PM Page 163

lblValidationStatus.Text =
"Invalid login. Please try again.";

}

private bool UserIsValid(string uid, string pwd)
{

// TODO: Generate hashcode of
// incoming password if necessary.

// TODO: Add ADO.NET logic to validate user.

// Assume successful validation.
return true;

}
}

The final step is to update the project’s web.config file to make use of Forms-based
authentication. Notice that the <authentication> element now defines a nested <forms>
subelement, which specifies the aspx file in the project that should be displayed by the
framework.

<configuration>
<system.web>

<authentication mode="Forms">
<forms loginUrl ="Logon.aspx"/>

</authentication>
<authorization>

<deny users = "?"/>
</authorization>

</system.web>
</configuration>

Also note that this web.config file also defines an <authorization> subelement. This
element is used in conjunction with <authentication> to inform the runtime when the auto-
matic redirection should take place. By specifying <deny users = "?"/>, you are blocking all
anonymous users (via the “?” token).

With this, your Forms-based authentication model is complete. As a simple test, run the
web application. Because you haven’t yet supplied valid credentials, your request doesn’t have
an attached authentication ticket and, therefore, you’re automatically redirected to Logon.aspx
(see Figure 5-9)

For this example, the IsUserValid helper method has been hard-coded to always return
true; therefore, you’re able to enter any sequence of characters into the TextBox controls. How-
ever, when IsUserValid returns false, the user is presented with your custom error message
(see Figure 5-10).

CHAPTER 5 ■ .NET 2.0 SECURITY164

522xCH05.qxd 8/31/05 3:27 PM Page 164

Figure 5-9. Automatic redirection to Logon.aspx

Figure 5-10. Invalid credentials do not result in redirection from the logon page.

Details behind the <authentication> Element
As you’ve already seen, the opening tag of the <authentication> element supports a mode
attribute that is used to establish the level of authentication for your web application. This
element may include an optional <forms> or <passport> subelement based on your authenti-
cation choice. Given this, the basic skeleton of the <authentication> section of a web.config
file is as so (where the pipe notation (|) represents selecting a single member of the set):

<authentication mode="Windows | Forms | Passport | None">
<forms/>
<passport/>

</authentication>

CHAPTER 5 ■ .NET 2.0 SECURITY 165

522xCH05.qxd 8/31/05 3:27 PM Page 165

Details behind the <forms> Element
The <forms> element is where a majority of the authentication action can be found. The previ-
ous example was quite simple, as you only specified the loginUrl attribute on the opening
element. As you might be suspecting, the <forms> element may be adorned with various attrib-
utes and subelements. As of .NET 2.0, the skeleton of the <forms> element is realized as so:

<forms name="name"
cookieless=UseCookie | UseUri | AutoDetect | UseDeviceProfile
defaultUrl=[Url]
domain=domain name
loginUrl="url"
protection="All | None | Encryption | Validation"
timeout="30"
path="/"
requireSSL="true | false"
slidingExpiration="true | false">

<credentials passwordFormat="Clear | SHA1 | MD5">
<user name="username" password="password"/>

</credentials>
</forms>

While full details for each value can be found using the .NET 2.0 Framework SDK Docu-
mentation, Table 5-3 describes some (but not all) of the optional attributes of interest.

Table 5-3. Attributes of the <forms> Section

<forms> Attribute Meaning in Life

name This attribute specifies the name of the authorization cookie. If you do not
specify a name value, .ASPXAUTH will be used as the default.

cookieless Under .NET 2.0, it is now possible to make use of “cookieless
authentication tokens.” See the next section for full details.

protection Specifies the type of encryption, if any, to use for cookies.

timeout Specifies the amount in minutes before an authentication cookie expires.
If unspecified, the default is set to 30.

requireSSL Specifies whether an SSL connection is required to transmit the authenti-
cation cookie.

The first point of interest is the name attribute. When you’re running multiple ASP.NET
web applications on a single Web server that each require their own login, you should specify
a unique name for the authentication cookie. Conversely, if several applications need to share
logins, you can set this name the same across those applications and the authentication ticket
will only need to be created once, giving you single sign-in for Forms-based authentication.
This value can be any sequence of characters; however, you’ll obviously want to provide a
meaningful value for the task at hand. For example:

<authentication mode="Forms">
<forms loginUrl ="Logon.aspx" name ="WebEntryPoint"/>

</authentication>

CHAPTER 5 ■ .NET 2.0 SECURITY166

522xCH05.qxd 8/31/05 3:27 PM Page 166

Cookieless Authentication Support under ASP.NET 2.0
The next attribute of interest is cookieless. To understand the impact of this attribute, realize
that ASP.NET 1.x’s implementation of forms authentication was dependant upon cookies (in
fact, the second parameter supplied to FormsAuthentication.RedirectFromLoginPage is a
Boolean used to enable or disable a persistent cookie). The obvious limitation is that you
cannot guarantee that the target browser will support cookies.

To address this issue, ASP.NET 2.0 now supports a cookieless manner to handle the
authentication ticket, which is consistent with the frameworks support for cookieless sessions.
Specifically, the cookieless attribute may be assigned to any of the following values (see
Table 5-4).

Table 5-4. Settings of the cookieless Attribute

Cookieless Attribute Setting Meaning in Life

UseCookies Specifies that your Web program will always use cookies to
represent the authentication ticket (e.g., you are emulating
ASP.NET 1.1).

UseUri Specifies that your Web program will never use cookies to
represent the authentication ticket.

AutoDetect Enables or disables cookie support based on dynamically
discovering the settings of the client browser.

UseProfileDevice This is the default setting. If the browser has the capability to
support cookies (regardless of if the user has disabled cookies)
a cookie will be used. Unlike AutoDetect, no dynamic discover
step is taken.

For most ASP.NET web applications, the default value of UseProfileDevice will be suffi-
cient. If you’re required to support users who disable their cookies, AutoDetect is a nice option
because it will use cookies for those that have them enabled, and only those users with sup-
port disabled will have their URLs modified. This feature is also cross browser-compatible.
Also realize that the difference between UseProfileDevice and AutoDetect is this: UseProfile
device determines if the browser supports cookies, which browsers mostly have for the last
eight years or so. However, a user can have a browser that supports cookies, but the user still
chooses to turn off support for cookies. AutoDetect must be used to detect this user specific
setting within the browser.

For the sake of illustration, here is a web.config file that explicitly prevents the use of
cookies to represent the authentication ticket:

<authentication mode="Forms">
<forms loginUrl ="Logon.aspx" name ="WebEntryPoint"

cookieless ="UseUri"/>
</authentication>

Now that you know how to disable (or enable) cookies for purposes of user authentica-
tion, you may be wondering how ASP.NET 2.0 will maintain the authentication ticket when
cookies are not used. Again, given that cookieless authentication mimics the model used for

CHAPTER 5 ■ .NET 2.0 SECURITY 167

522xCH05.qxd 8/31/05 3:27 PM Page 167

cookieless sessions, the answer is that the encrypted ticket is packed into the URL. Thus, if you
updated your web.config file as shown previously, you would find a URL something like the
following upon successful validation (the embedded ticket is shown in bold):

http://localhost:1096/Asp_Authentication/(F(xWbfAoTTWrBjxrBTqlZdIxO45S-
ikcm2AFdU3mOa5N76bpAkpDxNVsb5vspUzUzkd-
t0e3xrw5Q4up5F0VpHUA2))/default.aspx

Details behind the <authorization> Element
As you see in the current web.config file, the <authorization> element may contain an
<allow> subelement to control who can access a particular resource. Additionally, the
<authorization> element can contain a <deny> subelement to explicitly deny access to a
particular resource. The <allow> and <deny> subelements each support a users attribute
that can be assigned to the “?” token (to specify anonymous users) as well as “*” (to specify
all users). In its simplest form, the <authorization> element has the following skeleton:

<authorization>
<allow users="? | *"/>
<deny users="? | *"/>

</authorization>

If you so choose, the users attribute can contain a comma-delimited set of known users
and/or roles recognized by the Win32 SAM or Active Directory. While specifying a set of indi-
vidual users or groups for a publicly accessible site may seem odd, we are sure you can
imagine a subset of your website that should only be accessed by a known set of users. For
example, assume you have a subdirectory of your site that contains a number of configuration
utilities for your site. If you were to include a new web.config file for that directory, you could
enable Windows authentication and specify that nobody outside the role of "Admins" should
be able to access the contained content. (Notice that the <allow> element is now making use
of the roles attribute rather than the more specific users attribute.)

<configuration>
<system.web>

<authorization>
<allow roles="Admins"/>
<deny users="*"/>

</authorization>
</system.web>

</configuration>

In addition to supporting roles and users, the <allow> and <deny> elements can be further
qualified using a set of verbs. Simply put, the optional verbs attribute enables you to specify
which form(s) of HTTP transmission are allowed to access the specified resource. ASP.NET 2.0
honors the following verb values:

CHAPTER 5 ■ .NET 2.0 SECURITY168

522xCH05.qxd 8/31/05 3:27 PM Page 168

• GET

• HEAD

• POST

• DEBUG

This being said, the complete set of options supported by the <authorization> element
can be understood as so:

<authorization>
<allow users="comma-separated list of users"

roles="comma-separated list of roles"
verbs="comma-separated list of verbs"/>

<deny users="comma-separated list of users"
roles="comma-separated list of roles"
verbs="comma-separated list of verbs"/>

</authorization>

Details behind the FormsAuthentication Type
Regardless of how you author your web.config file, the values assigned to the <authentication>
and <authorization> elements will typically be consumed programmatically via the static
members of FormsAuthentication. You have already seen one member from this type in use:
RedirectFromLoginPage. FormsAuthentication defines other members of interest. First up, this
type defines a number of read-only properties, which extract the values assigned to various
attributes in the open tag of the <forms> element:

public sealed class FormsAuthentication
{

public static string CookieDomain { get; }
public static HttpCookieMode CookieMode { get; }
public static bool CookiesSupported { get; }
public static string DefaultUrl { get; }
public static bool EnableCrossAppRedirects { get; }
public static string FormsCookieName { get; }
public static string FormsCookiePath { get; }
public static string LoginUrl { get; }
public static bool RequireSSL { get; }
public static bool SlidingExpiration { get; }

…
}

Further, FormsAuthentication defines additional static members beyond RedirectFrom-
LoginPage, a subset of which are shown in Table 5-5.

CHAPTER 5 ■ .NET 2.0 SECURITY 169

522xCH05.qxd 8/31/05 3:27 PM Page 169

Table 5-5. Select Members of FormsAuthentication

FormsAuthentication Member Meaning in Life

Authenticate() Validates a username and password against
credentials stored in application’s *.config file.

GetRedirectUrl() Returns the redirect URL for the original request
that caused the redirect to the logon page.

HashPasswordForStoringInConfigFile() Produces a hash password which can be stored in a
*.config file.

RedirectFromLoginPage() Redirects the user to or from the specified login
RedirectToLoginPage() page.

SignOut() Removes the Forms authentication ticket from the
browser.

Working with the <credentials> Element
Recall that when you’re making use of Forms authentication, you have some flexibility as to
where you wish to store persisted user credentials. In our first example, the assumption was
made that the username and password values were stored within a given table in a specific
database. However, in some cases you may wish to define valid users directly within a *.config
file. Again, it’s not likely you’d use this approach in a large-scale public web application; how-
ever, if you had a region of your site that was to be accessed by a small group of known
individuals, you might mark them using a <credentials> segment.

The opening element of the <credentials> section enables you to specify how passwords
are represented within the *.config file (plaintext, or via MD5/SHA1 hash algorithms). Within
a <credentials> scope can then be any number of <user> elements, each of which defines a
name and password element. Consider the following update to our web.config file:

<configuration>
<system.web>
<authentication mode="Forms">
<forms loginUrl ="Logon.aspx" name ="WebEntryPoint"
cookieless ="UseUri">

<credentials passwordFormat="SHA1">
<user name="atroelsen"
password="27CE4CA7FBF00685AF2F617E3F5BBCAFF7B7403C" />

<user name="dselly"
password="D108F80936F78DFDD333141EBC985B0233A30C7A" />

<user name="tbarnaby"
password="7BDB09781A3F23885CD43177C0508B375CB1B7E9"/>

</credentials>
</forms>
</authentication>
<authorization>

<deny users = "?"/>
</authorization>

</system.web>
</configuration>

CHAPTER 5 ■ .NET 2.0 SECURITY170

522xCH05.qxd 8/31/05 3:27 PM Page 170

With this, the Button Click event handler now makes a call to FormsAuthentication.
Authenticate, rather than performing custom ADO.NET database retrieval logic. For example

protected void btnSubmit_Click(object sender, EventArgs e)
{

// Scrape out uid and pwd.
string uid = txtUserName.Text;
string pwd = txtPassword.Text;

// Rehash password via helper function.
string hashedPwd = GetHash(pwd);

// See if we have a match in the web.config file.
if (FormsAuthentication.Authenticate(uid, hashedPwd))

FormsAuthentication.RedirectFromLoginPage(uid, false);
else

lblValidationStatus.Text = "Invalid login. Please try again.";
}

So, at this point you have either (a) become enlightened as to how the ASP.NET runtime
performs Forms-based authentication or (b) skipped over this entire section given that you
have been doing Forms authentication since the early betas of .NET 1.0. In either case, we
hope the core model is solid in your mind. With this, let’s now examine how ASP.NET 2.0
extends and simplifies the core architecture.

Forms Authentication Improvements under
ASP.NET 2.0
While establishing Forms authentication under ASP.NET 1.1 was certainly not rocket science,
you may agree that there is room for improvement. First and foremost, the Web-based UI that
defines a typical logon.aspx page is more or less identical across web applications (add Labels,
TextBoxes, Buttons, etc). As well, the validation code found within the code-behind files of an
ASP.NET 1.1 logon.aspx page is also more or less identical (open a database connection, for-
mat the SQL, submit the SQL, and so forth).

While you could encapsulate these details using a custom UserControl, this approach to
UI reuse presents a new set of snags. ASP.NET 2.0 simplifies authentication/authorization
tasks with the following new security-centric techniques:

• The Membership class

• The Role Manager class

• Authentication-centric ASP.NET Web Controls

As an added bonus, ASP.NET 2.0 also offers a Web-based UI editor for web.config files.
Not only does this help prevent the developer from indirectly introducing malformed XML,
this Web-based editor also facilitates remote website administration. You’ll come to know the
ASP.NET Web Site Administration Tool at the conclusion of this chapter.

CHAPTER 5 ■ .NET 2.0 SECURITY 171

522xCH05.qxd 8/31/05 3:27 PM Page 171

Understanding the Membership Type
Recall that the first example of Forms authentication that we showed you in this chapter
required the developer to author ADO.NET code in order to retrieve previously stored creden-
tials. While this approach is still perfectly valid under ASP.NET 2.0, you can now leverage a new
type within the System.Web.Security namespace that will do so automatically.

The Membership class can be configured to perform user validation with various membership
providers. To date, ASP.NET provides membership provider implementations for Microsoft
SQL Server or Active Directory. The providers that ship with the Framework provide a “canned”
implementation of data storage for user information. If you have your own data store of user
information, then you will need to implement your own provider to talk to your own database.
One very nice benefit of the membership programming model is that your presentation layer
code will not need to be altered regardless of the underlying membership provider.

For example, assuming your web application has been configured correctly, the following
Button Click event handler validates the supplied user credentials against “some” member-
ship provider. As before, if the supplied and stored credentials match, the user is redirected via
FormsAuthentication.RedirectFromLoginPage to the requested page:

protected void btnSubmit_Click(object sender, EventArgs e)
{

// Scrape out uid and pwd.
string uid = txtUserName.Text;
string pwd = txtPassword.Text;

// Let the Membership type do the dirty work.
if (Membership.ValidateUser(uid, pwd))

FormsAuthentication.RedirectFromLoginPage(uid, false);
else

lblValidationStatus.Text =
"Invalid login. Please try again.";

}

■Note Like most aspects of the .NET platform, you are able to extend the Membership framework to
fit your liking. If you wish to develop a custom membership provider, you are able to extend the abstract
MembershipProvider base class. Interested readers are invited to lookup the topic “Implementing a
Membership Provider” using the .NET 2.0 Framework SDK Documentation.

Despite the usefulness of this type, the Membership class exposes only a small number of
static members. Using these members you are able to programmatically

• Create new users

• Store and update membership data

• Authenticate users

CHAPTER 5 ■ .NET 2.0 SECURITY172

522xCH05.qxd 8/31/05 3:27 PM Page 172

Table 5-6 documents some (but not all) of the members of the Membership type.

Table 5-6. Select methods of the Membership Type

Membership Member Meaning in Life

CreateUser Adds a new user to the membership store.

DeleteUser Removes a specific user from the membership store.

FindUsersByEmail These members return a strongly typed MembershipUserCollection
FileUsersByName object, which represents a set of users based on specific search criteria.

GetUser Obtains a specific user from the membership store.

UpdateUser Updates the underlying membership store with new user information.

Another interesting aspect of the Membership type is that if you choose to make use of
any of the new ASP.NET 2.0 Login controls (Login, LoginView, LoginStatus, LoginName, and
PasswordRecovery), authentication can be achieved “code-free,” as these new server-side con-
trols manipulate the Membership type behind the scenes. You’ll get to know the role of these
new controls in just a bit. However for now let’s see how to make use of the Membership type
directly.

Specifying a Membership Provider for your Website
ASP.NET membership is enabled for all new ASP.NET applications automatically. The default
membership provider is the local instance of Microsoft SQL Server. This out-of-the-box
behavior is catalogued within the <membership> element in the machine.config file. If you
were to locate and open this file (located by default under C:\WINDOWS\Microsoft.NET\
Framework\v2.0.50215\CONFIG), you would find the following:

<membership>
<providers>

<add name="AspNetSqlMembershipProvider"
type="System.Web.Security.SqlMembershipProvider,
System.Web, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"
connectionStringName="LocalSqlServer"
enablePasswordRetrieval="false"
enablePasswordReset="true"
requiresQuestionAndAnswer="true"
applicationName="/"
requiresUniqueEmail="false"
passwordFormat="Hashed"
maxInvalidPasswordAttempts="5"
passwordAttemptWindow="10"
passwordStrengthRegularExpression="" />

</providers>
</membership>

CHAPTER 5 ■ .NET 2.0 SECURITY 173

522xCH05.qxd 8/31/05 3:27 PM Page 173

Notice that the <provider> element documents the known providers using the <add>
subelement, each of which are qualified by numerous attributes. Given the intended purpose
of XML, many of these attributes are thankfully self-describing. However, do note that the
requiresQuestionAndAnswer attribute has been set to true. Keeping these default settings in
your mind will demystify the process of adding new users.

Once your web application has specified which membership provider it wishes to make
use of (including the act of doing nothing and accepting the default settings), you are able to
interact with the System.Web.Security.Membership type programmatically. In fact, there is
one interesting behavior that might surprise you. If you author code that interacts with the
Membership type and then run the web application, the ASP.NET runtime automatically creates
a new mdf data file under the App_Data folder of your project if one does not currently exist
(see Figure 5-11).

Figure 5-11. The generated mdf file used by the Membership type

If you examine the Solution Explorer perspective in Visual Studio 2005, you will also find
that a data connection has been added to your project. Here you can view the database objects
that are being manipulated in the background by the Membership type (see Figure 5-12).

Figure 5-12. The generated data connection

CHAPTER 5 ■ .NET 2.0 SECURITY174

522xCH05.qxd 8/31/05 3:27 PM Page 174

Adding New Members
The first aspect of the Membership type we’ll examine is the ability to add members to the data
store maintained by the membership provider via Membership.CreateUser. This method has
been overloaded a number of times; however, do note that each version returns an instance
of the MembershipUser class type, which of course, represents the currently created user. (If the
call to CreateUser fails, the return value is null.)

public static class Membership
{
…

public static MembershipUser CreateUser
(string username, string password);

public static MembershipUser CreateUser
(string username, string password, string email);

public static MembershipUser CreateUser
(string username, string password,
string email, string passwordQuestion,
string passwordAnswer, bool isApproved,
out MembershipCreateStatus status);

public static MembershipUser CreateUser
(string username, string password,
string email, string passwordQuestion,
string passwordAnswer, bool isApproved,
object providerUserKey,
out MembershipCreateStatus status);

…
}

To illustrate the process of adding new users via code, assume you have authored a page
named NewUser.aspx, which provides a series of TextBox widgets to account for the following
points of data:

• Username

• Password

• E-mail

• Password retrieval question

• Answer to password retrieval question

Why so many input fields you ask? Recall that the machine.config file sets the
requiresQuestionAndAnswer attribute to true. Furthermore, to provide this information, you
must use of an overloaded version of CreateUser, which requires a string parameter represent-
ing the user’s e-mail. This being said, ponder the following Button Click event handler:

CHAPTER 5 ■ .NET 2.0 SECURITY 175

522xCH05.qxd 8/31/05 3:27 PM Page 175

protected void btnSubmit_Click(object sender, EventArgs e)
{

// Initialize variable…
MembershipCreateStatus status =

MembershipCreateStatus.UserRejected;
try
{

Membership.CreateUser(txtUserName.Text,
txtPassword.Text, txtEmail.Text,
txtPassword.Text, txtAnswer.Text,
true, out status);

}
catch (Exception ex)
{

lblValidationStatus.Text = ex.Message;
}
lblValidationStatus.Text = status.ToString();

}

Once you scrape out the required data from the TextBox input fields, the call to
CreateUser automatically updates the aspnet_Membership table within your project’s mdf
file. Again notice that you have authored no ADO.NET logic to do so. Also note that you pass
in an output parameter of type MembershipCreateStatus. This enumeration describes the
possible error conditions that may occur. Assuming all is well, this argument is set to
MembershipCreateStatus.Success.

The MembershipUser Type
When a call to CreateUser completes successfully, you are returned an instance of the
MembershipUser type:

MembershipUser newUser = Membership.CreateUser(…);

As you would guess, this type represents a single user stored in the membership system.
Using this type, you are able to call various user-specific operations, including obtaining the
same pieces of data that were submitted at the time of creation using properties such as Email,
PasswordQuestion, UserName, and so on. As well, MembershipUser provides additional points of
interest, some (but not all) of which are documented in Table 5-7.

Table 5-7. Select Members of MembershipUser

MembershipUser Member Meaning in Life

CreationTime Returns a DateTime representing when this user was added
to the membership data store.

IsOnLine Returns a Boolean that represents if the current user is in
session.

ChangePassword Enables you to change the stored password for the current
user.

CHAPTER 5 ■ .NET 2.0 SECURITY176

522xCH05.qxd 8/31/05 3:27 PM Page 176

MembershipUser Member Meaning in Life

ChangePasswordQuestionAndAnswer Enables you to change the stored password
question/answer for the current user.

GetPassword Retrieves the currently stored password for the current
user.

LastActivityDate Several methods of MembershipUser return DateTime
LastLoginDate objects that represent various timestamps regarding
LastPasswordChangeDate their activity.

Updating a User’s Properties
Now assume you’ve designed a specific segment of your Web UI to allow the user to change
his stored credentials (password, password question/answer and so on). The first task is
to obtain a MembershipUser object that maps to the currently logged-on user via a call to
Membership.GetUser. Next, simply feed in the new data using any of the members of
MembershipUser and call Membership.UpdateUser to complete the update:

protected void btnChangeUserPasswordQandA_Click(object sender, EventArgs e)
{

// Get currently logged on user.
MembershipUser currUser = Membership.GetUser();

// Change select aspects of MembershipUser object.
currUser.ChangePasswordQuestionAndAnswer(txtPassword.Text,

txtQuestion.Text, txtAnswer.Text);

// Update membership.
Membership.UpdateUser(currUser);

}

Deleting a User
Removing a user from the underlying membership data store is as simple as creating or
updating one. Simply obtain the stored username for the current user and call
Membership.DeleteUser:

protected void btnDeleteCurrentUser(object sender, EventArgs e)
{

// Get currently logged on user.
MembershipUser currUser = Membership.GetUser();

// Delete based on username.
Membership.DeleteUser(currUser.UserName);

}

At this point you have seen how the Membership and MembershipUser types can be used to
automatically maintain the underlying data store used by a specific membership provider.

CHAPTER 5 ■ .NET 2.0 SECURITY 177

522xCH05.qxd 8/31/05 3:27 PM Page 177

Remember that the core purpose of these types is to encapsulate the required SQL goo on
your behalf. As you might agree, this is a large improvement from ASP.NET 1.1; however, at this
point the examples still demand that you author the necessary Web UI to add users, update
user accounts, validate credentials, and whatnot. Using ASP.NET 2.0, you can rectify this issue
as well.

Working with the Security Server Controls
To alleviate the pain of building repeatable and redundant security-related Web UIs,
ASP.NET 2.0 provides the server controls we describe in Table 5-8.

Table 5-8. The .NET 2.0 Security-centric Server Controls

Security-centric Server Control Meaning in Life

Login Provides a standard UI to enable the user to supply
credentials.

LoginStatus Toggles between two messages based on the login status of
the current user.

LoginName Provides simplified access to the name of the currently
logged-on user.

PasswordRecovery Provides a Web-based Wizard that allows the user to obtain
her password based on a stored password question and
answer.

ChangePassword Provides a consistent UI that allows the end user to change
her stored password.

CreateUserWizard Provides a Wizard-based model to add new users to your site.

As you read over the next several pages, do be very aware that each of these new security-
centric controls leverages the membership architecture you previously examined. Given this
fact, you may find that by using these controls, you are able to provide full and complete
authentication services without authoring a single line of code.

■Note Like any ASP.NET Web Control, the new security controls define numerous properties, methods, and
events. Given that full details of each member can be found within the .NET Framework 2.0 SDK Documen-
tation, we’ll stay focused on the core behavior of each type.

The Login Control
The Login control provides an out-of-the-box Web UI for the purposes of credential validation.
Beyond offering the traditional UI, the Login control makes use of the specified membership
provider to perform validation. Given all of this intrinsic functionality, you are able to build a
Login.aspx file with no code whatsoever. Figure 5-13 illustrates an unmodified Login control:

CHAPTER 5 ■ .NET 2.0 SECURITY178

522xCH05.qxd 8/31/05 3:27 PM Page 178

Figure 5-13. The default Login control UI in the Visual Studio .NET Designer

If the default look and feel does not suit your needs, you are most certainly able to alter
the UI using the Visual Studio 2005 Properties window or manually update the opening
<asp:Login> tag and the nested subelements that map to the contained controls. By way of
example, the following <asp:Login> definition results in the UI shown in Figure 5-14.

<asp:Login ID="Login1" runat="server"
BackColor="#EFF3FB" BorderColor="#B5C7DE" BorderPadding="4"
BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana" Font-Size="0.8em"
ForeColor="#333333" TitleText="Please Log in to the Site">
<LoginButtonStyle BackColor="White" BorderColor="#507CD1"
BorderStyle="Solid" BorderWidth="1px"
Font-Names="Verdana" Font-Size="0.8em" ForeColor="#284E98" />

<TextBoxStyle Font-Size="0.8em" />
<TitleTextStyle BackColor="#507CD1" Font-Bold="True"

Font-Size="0.9em" ForeColor="White" />
<InstructionTextStyle Font-Italic="True" ForeColor="Black" />

</asp:Login>

Figure 5-14. A modified Login control

CHAPTER 5 ■ .NET 2.0 SECURITY 179

522xCH05.qxd 8/31/05 3:27 PM Page 179

Now, assuming you have enabled Forms authentication via a standard web.config and
added some users to your generated mdf file, your work is done. Literally. When the end user
clicks on the LogIn button, the Login control automatically tests each field for content (via
RequiredFieldValidators) and validates the supplied username and password against the
registered membership provider. If the login is unsuccessful, the result is an expected error
message (which, of course, is also configurable) as seen in Figure 5-15.

Figure 5-15. An unsuccessful login attempt

On the other hand, if the supplied and stored credentials match up, the user is automati-
cally redirected from the login page to the requested resource.

The LoginStatus Control
LoginStatus is a simple security-centric control that (as the name suggests) displays the cur-
rent logon status for the current user. When the user is logged on to the site, the UI takes the
form of a hyperlink whose caption is controlled by the LogoutText property. Conversely, if the
user is currently logged out, the hyperlink caption is controlled by the LoginText property.
Consider the following LoginStatus declaration:

<asp:LoginStatus ID="LoginStatus1" runat="server"
LoginText="Please Log in"
LogoutText="Please Log out when finished!" />

Figure 5-16 illustrates the UI when the user is currently logged on:
Now assume you wish to have the LoginStatus control automatically redirect to the appli-

cations’ logon.aspx page (e.g., the *.aspx file specified within the <forms> element of the
web.config file). To do so, you can set the LogoutAction property as so:

<asp:LoginStatus ID="LoginStatus1" runat="server"
LoginText="Please Log in"
LogoutText="Please Log out when finished!"
LogoutAction="RedirectToLoginPage" />

CHAPTER 5 ■ .NET 2.0 SECURITY180

522xCH05.qxd 8/31/05 3:27 PM Page 180

Figure 5-16. If you are currently logged in, you are asked to log out.

With this, when the user clicks on the logout link, he is, indeed, returned to your logon
page. In fact, if you were to update the logon.aspx file with its own LoginStatus as so:

<asp:LoginStatus ID="LoginStatus1" runat="server"
LoginText="Please Log in"
LogoutText="Please Log out when finished!" />

you would find the control automatically displays the LoginText value (see Figure 5-17).

Figure 5-17. If you are currently logged out, you are asked to log in.

The LoginName Control
The LoginName control enables you to quickly obtain the name of the currently logged-on user
and is perfect for presenting a friendly salutation. Of course, you are always able to obtain this
same information using the following ASP.NET logic:

CHAPTER 5 ■ .NET 2.0 SECURITY 181

522xCH05.qxd 8/31/05 3:27 PM Page 181

string currUser = HttpContext.Current.User.Identity.Name;
lblGreetingsMsg.Text = currUser;

If you were to instead make use of the LoginName control, you can save yourself a few lines
of code. This is perhaps the simplest of all security-centric controls, given the small number
of configurable properties. In fact, beyond the expected UI properties (BackColor, CssClass,
etc) the only property of interest is FormatString. By default, the value is nothing more than
a curly-bracket placeholder used with .NET string formatting ({0}). However, this can be
updated with additional textual content:

<asp:LoginName ID="LoginName1" runat="server"
FormatString="Hello, {0}! Welcome!" />

Of course, the placeholder value is updated on the fly based on the username of the
currently logged-on user.

The PasswordRecovery Control
When you establish a membership provider to work in conjunction with your ASP.NET 2.0
web application, one option you have is to enable password recovery (which is the case if
you are using the default membership provider). Assuming this is the case, you can use the
PasswordRecovery control to allow the user to obtain her stored password based on her user-
name, password question, and password answer. To illustrate assume you have a user stored
in the project’s mdf file that matches the credentials in Table 5-9:

Table 5-9. Properties of the PasswordRecovery control

Control Property Assigned Value

Username Chucky

Password chu@k123!!

Email chucky@myprovider.com

Password Question What is your favorite NBA team?

Password Answer Timberwolves

Now assume your default.aspx file has been updated with a PasswordRecovery control.
Beyond updating the initial UI with a desired look and feel, the only additional requirement is
to set the details of the MailDefinition element. This segment of the <asp:PasswordRecovery>
scope enables you to configure the properties of the e-mail that will be sent upon successful
recovery.

This brings up a very important point: By default the PasswordRecovery control will use
the SMTP mail server on the local Web server (using the default SMTP port of 25). This infor-
mation is recorded within the <smtpMail> element of the machine.config file. If these default
settings do not fit the bill, you are free to add a custom <smtpMail> element within a
web.config file; for example:

CHAPTER 5 ■ .NET 2.0 SECURITY182

522xCH05.qxd 8/31/05 3:27 PM Page 182

<system.web>
<smtpMail
serverName="MySmtpServer"
serverPort="15"
from="me@here.com">
<fields>

<add name="smtpauthenticate" value="2">
</fields>

</smtpMail>
</system.web>

All this being said, here is one possible PasswordRecovery declaration:

<asp:PasswordRecovery ID="PasswordRecovery1" runat="server"
BackColor="#F7F6F3" BorderColor="#E6E2D8"
BorderPadding="4" BorderStyle="Solid" BorderWidth="1px"
Font-Names="Verdana" Font-Size="0.8em">

<MailDefinition From="admin@mySite.com" Subject="Here is your e-mail">
</MailDefinition>
<InstructionTextStyle Font-Italic="True" ForeColor="Black" />
<SuccessTextStyle Font-Bold="True" ForeColor="#5D7B9D" />
<TextBoxStyle Font-Size="0.8em" />
<TitleTextStyle BackColor="#5D7B9D" Font-Bold="True"

Font-Size="0.9em" ForeColor="White" />
<SubmitButtonStyle BackColor="#FFFBFF" BorderColor="#CCCCCC"
BorderStyle="Solid" BorderWidth="1px"
Font-Names="Verdana" Font-Size="0.8em"
ForeColor="#284775" />

</asp:PasswordRecovery>

Now, when the user first encounters the PasswordRecovery control, he is prompted for his
current username (see Figure 5-18).

Figure 5-18. Providing the username to the PasswordRecovery control

CHAPTER 5 ■ .NET 2.0 SECURITY 183

522xCH05.qxd 8/31/05 3:27 PM Page 183

Once the user clicks on the Submit button, the membership provider retrieves the stored
password question, which is rendered back into the HTTP response stream (see Figure 5-19).

Figure 5-19. Requesting an answer . . .

If you supply the correct answer (which is to say, the supplied answer matches what is
currently maintained in the mdf file), the current user will be e-mailed his current password. If
not, an expected error message is displayed within the PasswordRecovery control.

The ChangePassword Control
Changing a password is also extremely simple to do via the ChangePassword control. As you
might guess by this point, this widget will perform all of the heavy lifting of updating the
underlying data store maintained by the membership provider. Assume the following
<asp:ChangePassword> declaration using the default UI:

<asp:ChangePassword ID="ChangePassword1" runat="server">
</asp:ChangePassword>

With this, the end user would find the following page (see Figure 5-20).
Of course, if the supplied and stored passwords match, the underlying data source is

updated with the new password value.

The CreateUserWizard Control
Earlier in this chapter you learned how to programmatically create a new user via the
CreateUser method of the Membership type. As you have seen, a MembershipUser instance con-
sists of numerous possible points of data beyond a simple username/password (e-mail,
password retrieval question/answer, etc). If you were to add a new CreateUserWizard control
onto a page designer, you would find that the initial UI addresses each of these core issues. As
expected, this out-of-the-box implementation will automatically insert a new user into the
data store maintained by the designated membership provider.

CHAPTER 5 ■ .NET 2.0 SECURITY184

522xCH05.qxd 8/31/05 3:27 PM Page 184

Figure 5-20. The ChangePassword control

Like other Web-centric Wizards provided by ASP.NET 2.0, the CreateUserWizard control
can be updated with additional steps that address any application-specific user data. We’ll
allow the interested reader to dig into the details if you so choose; however, as you can see in
Figure 5-21, the page designer provides hyperlinks that launch the process of adding addi-
tional pages (via Add/Remove WizardSteps…).

Figure 5-21. The CreateUserWizard control

CHAPTER 5 ■ .NET 2.0 SECURITY 185

522xCH05.qxd 8/31/05 3:27 PM Page 185

Sweet! As you have just seen, the new security-centric server controls encapsulate virtu-
ally every detail regarding the creation, maintenance, and authentication of your users. Next
up, let’s examine how ASP.NET 2.0 simplifies the process of programmatically working with
user roles.

Understanding ASP.NET 2.0 Role Membership
Once users have been authenticated, the ASP.NET runtime may optionally attempt to assign
users to a known role. Recall from earlier in the chapter that role-based security models
enable you to restrict what a given individual may (or may not) do based on the role to which
they belong.

Under ASP.NET 1.x, roles were configured using the <authorization> segment of a
web.config file. For example, the following web.config file denies access to all contained
resources for unauthenticated users and ensures that only authenticated users that are
assigned to a role named DeluxeUser can access the DeluxeContent.aspx file (via the
<location> element):

<configuration>
<system.web>

<authentication mode="Forms">
<forms loginUrl ="Logon.aspx"/>

</authentication>
<authorization>

<deny users = "?"/>
</authorization>

</system.web>
<location path ="DeluxeContent.aspx">

<system.web>
<authorization>

<allow roles ="DeluxeUser"/>
<deny users ="*"/>

</authorization>
</system.web>

</location>
</configuration>

While the previous web.config file would function perfectly under ASP.NET 2.0, creating
roles such as DeluxeUser (as well as assigning users to roles) can be automated using the Role
Manager. Much like the membership provider examined earlier in the chapter, the role man-
agement system relies on a specific provider to store the role-based data, which by default is
AspNetSqlRoleProvider; therefore, role data is stored within a local mdf file under your
App_Data folder. This time, however, the data will be stored in the “role-centric” tables, such
as aspnet_Roles (see Figure 5-22).

CHAPTER 5 ■ .NET 2.0 SECURITY186

522xCH05.qxd 8/31/05 3:27 PM Page 186

Figure 5-22. Role data is stored in various role-centric tables of the ASPNETDB.mdf file.

Enabling Role Membership Services
Unlike the membership provider, the Role Manager is not automatically enabled in the
machine.config file. To enable role services for your web application, simply update your
web.config file with the following <roleManager> element:

<configuration>
<system.web>

<roleManager enabled="true" />
<authentication mode="Forms" />

</system.web>
</configuration>

As you would guess, the <roleManager> element can be decorated with additional attrib-
utes that fine-tune how the Role Manager operates. The .NET Framework 2.0 SDK Documen-
tation provides all the gory details; however, the possible attributes are as follows:

<roleManager
enabled="true | false"
defaultProvider="provider name"
cacheRolesInCookie="true | false"
maxCachedResults="maximum number of role names cached"
cookieName="name"
cookiePath="/"
cookieProtection="All | Encryption | Validation | None"
cookieRequireSSL="true | false "
cookieSlidingExpiration="true | false "

CHAPTER 5 ■ .NET 2.0 SECURITY 187

522xCH05.qxd 8/31/05 3:27 PM Page 187

cookieTimeout="number of minutes"
createPersistentCookie="true | false"
domain="cookie domain"/>

At this point, you are able to add and configure user roles using the Roles type.

Understanding the Roles Type
When you wish to create, delete, or manage roles in code, you’ll make use of the Roles class.
Beyond a number of read-only properties that allow you to obtain the values assigned to the
attributes within the <roleManger> element, Roles provides a number of interesting methods:

public static class Roles
{
…

// Methods to add new users to existing roles.
public static void AddUsersToRole(string[] usernames, string roleName);
public static void AddUsersToRoles(string[] usernames,

string[] roleNames);
public static void AddUserToRole(string username, string roleName);
public static void AddUserToRoles(string username, string[] roleNames);

// Create / validate roles.
public static void CreateRole(string roleName);
public static bool RoleExists(string roleName);

// Methods to delete existing roles.
public static bool DeleteRole(string roleName);
public static bool DeleteRole(string roleName, bool throwOnPopulatedRole);

// Various methods to determine role membership.
public static string[] FindUsersInRole(string roleName,

string usernameToMatch);
public static string[] GetAllRoles();
public static string[] GetRolesForUser();
public static string[] GetRolesForUser(string username);
public static string[] GetUsersInRole(string roleName);
public static bool IsUserInRole(string roleName);
public static bool IsUserInRole(string username, string roleName);

// Methods to remove users from roles.
public static void RemoveUserFromRole(string username, string roleName);
public static void RemoveUserFromRoles(string username,

string[] roleNames);
public static void RemoveUsersFromRole(string[] usernames,

string roleName);
public static void RemoveUsersFromRoles(string[] usernames,

string[] roleNames);

CHAPTER 5 ■ .NET 2.0 SECURITY188

522xCH05.qxd 8/31/05 3:27 PM Page 188

While these members are quite self-explanatory, here’s a brief walkthrough of working
with the Roles type in code.

■Note Although the Roles type does enable you to manage roles and their users programmatically, most
ASP.NET web applications will do so using the ASP.NET Web Application Administration Tool.

Creating, Obtaining, and Deleting Roles
If you wish to programmatically add a set of roles to your web application’s mdf database, sim-
ply call the static Roles.CreateRole method. On a related note, if you wish to obtain the names
of each role stored in the aspnet_Roles table, Roles.GetRoles will do so by returning an array
of strings. Consider the following Button Click event hander:

protected void btnCreateAndDisplayRoles_Click(object sender, EventArgs e)
{

try
{

Roles.CreateRole("DeluxeUser");
Roles.CreateRole("Managers");

}
catch { }
gridCurrentRoles.DataSource = Roles.GetAllRoles();
gridCurrentRoles.DataBind();

}

Figure 5-23 shows the expected output.

Figure 5-23. Programmatically creating and obtaining roles

CHAPTER 5 ■ .NET 2.0 SECURITY 189

522xCH05.qxd 8/31/05 3:27 PM Page 189

If you should need to programmatically remove a role from the underlying data store,
simply call Roles.DeleteRole by passing in the name of the role to be removed:

Roles.DeleteRole("Managers");

Assigning Users to Roles
Once you have established the roles to be used by your web application, the next logical step
is to assign users to their respective role (or set of roles). Again, this can be automated via the
ASP.NET Web Application Administration Tool; however, you may also do so in code using
the AddUserToRole, AddUsersToRole, AddUserToRoles, or AddUsersToRoles methods:

protected void btnAddUsersToRoles_Click(object sender, EventArgs e)
{

string[] theUsers = {"Fred", "Mary"};
string[] theRoles = {"DeluxeUser", "Managers"};

// Add a single user (or set of users) to a role
// (or set of roles).
Roles.AddUsersToRole(theUsers, "Managers");
Roles.AddUsersToRoles(theUsers, theRoles);
Roles.AddUserToRole("Joe", "DeluxeUser");
Roles.AddUserToRoles("Mitch", theRoles);

}

On a related note, if you wish to determine the set of roles to which a user has been assigned,
simply call Roles.GetRolesForUser:

string[] userRoles = Roles.GetRolesForUser("Fred");

Determining Role Membership
Once you have established roles and role membership, the Roles.IsUserInRole method
enables you to make run-time decisions based the role membership of the current user. For
example, assume you have a method that can be called by any user on your system; however,
within the scope of said method, you wish to ensure a specific set of statements will only exe-
cute if the current caller is a member of the Managers role:

private void InsertRecord(DataSet ds)
{

// Insert any updated rows
// to general database…

if(Roles.IsUserInRole("Managers"))
{

// Update manager-centric database
// with rows marked for deletion…

}
}

CHAPTER 5 ■ .NET 2.0 SECURITY190

522xCH05.qxd 8/31/05 3:27 PM Page 190

Here, the assumption is that the “manager-centric” database should only be updated if
the current user is indeed in the Managers role. If this is not the case, the entire set of state-
ments within the if scope will be skipped.

ASP.NET Web Application Administration Tool
As we’ve shown during much of this chapter, establishing security settings for your ASP.NET
web applications involves considerable updates to your web.config file. While the end result is
quite spectacular (major changes in behavior with minimal fuss and bother), few of us enjoy
manually authoring the necessary XML data. Not only is the process error prone and tedious,
but also remotely updating these files requires modifying and uploading a local file.

As of ASP.NET 2.0, you now have a GUI-based Web front end to edit the web.config files
for a given website. You’re able to load the ASP.NET admin tool directly by specifying the
WebAdmin.axd suffix to your site’s URL:

http://MyWebSite/WebAdmin.axd

While this approach is ideal for remote administration, you are also able to leverage the
ASP.NET admin tool at the time you are developing your web applications by activating the
Website ➤ ASP.NET Configuration menu option of Visual Studio 2005. Either way, you are
greeted with the following web page (see Figure 5-24).

Figure 5-24. The ASP.NET Web Application Administration Tool

CHAPTER 5 ■ .NET 2.0 SECURITY 191

522xCH05.qxd 8/31/05 3:27 PM Page 191

As you can see, you are able to configure core security settings, user data (including the
roles of known users), as well as application-specific settings (such as SMTP settings and
default error pages) using the provided tabs and/or hyperlinks found on the home page. As
you explore the tool, you’ll find that the UI is quite easy to understand (especially if you
understand the coding concepts we’ve presented over the course of this chapter).

To take this new tool out for a spin however, assume you have created a brand new
ASP.NET web application using the File ➤ New ➤ WebSite… menu option in Visual Studio
2005. Once you have done so, load the ASP.NET admin tool and select the Provider link. Here
you can verify that your web application is indeed making use of the default membership
provider found in your machine.config file.

Now, select the Application tab. Here you are able to create and manage various appli-
cation-specific settings—the most notable, the name/value pairs contained within an
<appSettings> element. As you may know, these elements can be programmatically obtained
using the System.Diagnostics.AppSettingsReader type. You can now also get to these settings
by using the new System.Configuration.ConfigurationManager.AppSettings method. By way
of a simple test, click on the Create Application Settings link on the Application page and enter
a sample name/value pair (see Figure 5-25).

Figure 5-25. Establishing an AppSettings segment

CHAPTER 5 ■ .NET 2.0 SECURITY192

522xCH05.qxd 8/31/05 3:27 PM Page 192

Now, save your application settings and navigate to the Security tab. Here is where you
are (obviously) able to edit the various security settings you’ve seen in the chapter. You should
be able to verify that that default authentication level (Windows) is enabled, as this is the
value found established within machine.config. To set your site’s authentication level to Forms,
simply click on the Select authentication type link on the leftmost Users column. From the
resulting page, select the From the Internet radio button and click the Done button.

You should now be back at the main Security page, and at this point, you can specify the
initial set of users who can access your site by clicking on the Create User link. Once you do,
you are presented with a page that enables you to enter the expected new user credentials. For
testing purposes, enter yourself as a new user (see Figure 5-26).

Figure 5-26. Adding new users via the ASP.NET admin tool

Finally, you are able to enable role support from the Security tab via the Enable Roles link.
Once you do, you are able to create new roles via the same Security page via the Create or
Manage roles link (see Figure 5-27).

CHAPTER 5 ■ .NET 2.0 SECURITY 193

522xCH05.qxd 8/31/05 3:27 PM Page 193

Figure 5-27. Creating roles via the ASP.NET admin tool

When you have finished establishing your site’s configuration options, close the tool and
return to Visual Studio 2005. If you now look within the Solution Explorer perspective, you
should see that a new web.config file has been automatically added to your current project.
If you open the file for editing, you’ll find your configuration choices are represented by the
required XML; for example:

<?xml version="1.0" encoding="utf-8"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

<appSettings>
<add key="MyTestData" value="This is my value" />

</appSettings>
<system.web>

<roleManager enabled="true" />
<authentication mode="Forms" />

</system.web>
</configuration>

CHAPTER 5 ■ .NET 2.0 SECURITY194

522xCH05.qxd 8/31/05 3:27 PM Page 194

Summary
The first goal of this chapter was to introduce you to the various security components supplied
by the .NET 2.0 base class libraries. As you have seen, there are numerous security-centric
namespaces, most of which have a direct impact on ASP.NET web applications. Recall that the
framework provides numerous types to work with standard encryption atoms (hash codes,
asymmetric/symmetric encryption) and traditional role-based security.

The remainder of this chapter focused exclusively upon the ASP.NET security framework.
We began by reviewing the core Forms authentication model, which has been present since
the inception of the .NET platform. Once we established the basics, we examined how the
Membership type and various server controls can be used to simplify the authentication process.
Next, we revisited the notion of role-based security within the context of the Roles API.

Last but not least, this chapter introduced you to a new Web-based interface, which you
can use to edit web.config files: the ASP.NET Web Application Administration Tool. While a
single chapter cannot cover all possible aspects of the .NET security model, we believe this
puts you are in a very good position for further exploration.

CHAPTER 5 ■ .NET 2.0 SECURITY 195

522xCH05.qxd 8/31/05 3:27 PM Page 195

522xCH05.qxd 8/31/05 3:27 PM Page 196

SOA in .NET: Web Services

In this chapter, we’ll examine Service Oriented Architecture (SOA) and Web Services. You’ll
see what SOA is, or at least what a lot of people in the industry are saying it is. Then we’ll
examine Web Services as an implementation of SOA. Web Services in version 2.0 of the .NET
Framework has many new features, so we’ll take a look at them, including how to use them
and exactly how they’re improvements over Web Services version 1.x. We’ll wrap it up with
a brief look at Web Services Enhancements (WSE), which is an add-on package of functional-
ity from Microsoft that extends Web Services with many industry-standard areas of function-
ality based on specifications.

SO What?
What exactly is service orientation (SO)? Any time there’s so much hype and buzz about a
term, it invariably starts to mean different things to different people. Let’s start by dissecting
some of the definitions being kicked around out there.

A set of components which can be invoked, and whose interface descriptions can be

published and discovered.

World Wide Web Consortium
Standards body for the World Wide Web

The statement a “set of components” is rather vague, as a service may be a set with only a
single operation. This definition is very general, almost too general to really capture what serv-
ice orientation is. Distributed Component Object Model (DCOM) and .NET remoting both
seem to meet this definition, even though they’re not generally considered implementations
of SOA. The final part, stating that the components’ “descriptions can be published and dis-
covered” is an important element, one which is common to all of the definitions we’ll look at.

SOA is an architectural style whose goal is to achieve loose coupling among interacting

software agents.

Hao He
Architect, Thomson Corporation

197

C H A P T E R 6

■ ■ ■

522xCH06.qxd 8/31/05 3:29 PM Page 197

Here, Hao He introduces the second thread, that of “loose coupling.” However, his defini-
tion doesn’t speak to discovery at all. Discovery and loose coupling are two elements that are
very important in service orientation. They both facilitate reuse.

This is called out more sharply by the next definition, which likens the level of interoper-
ability to the Holy Grail.

SOA is kind of an IT manager’s Holy Grail, in which software components can be

exposed as services on the network, and, so, can be reused time and time again for

different applications and purposes.

Preston Gralla
Technology Journalist

In some larger enterprises, reuse is the “Holy Grail” of IT, as system integration can be
costly and cause a lot of churn. Integration strategies have to be reinvented time and again as
a system is integrated with others that may be on disparate platforms. Service orientation
allows you to write integration code once and reuse it over and over again, regardless of plat-
form, operating system, or language. Another definition of service orientation is

The policies, practices, frameworks that enable application functionality to be provided

and consumed as sets of services published at a granularity relevant to the service con-

sumer. Services can be invoked, published and discovered, and are abstracted away from

the implementation using a single, standards-based form of interface.

David Sprott and Lawrence Wilkes
Principal Analysts, Computers by Design, Inc.

This definition takes on the W3C (World Wide Web Consortium) definition specifically in
the fact that it calls out a “set” of components. The “granularity” of the service is independent
of the fact that it’s a service-oriented implementation. While we can still speak of “coarse-
grained” or “fine-grained” services, what’s important is that the design is relevant to the
service consumer. Separating the implementation from interface is first called out here, but
it’s really just a more concrete invocation of “loose coupling.” Consumers of a service need a
description of that service; they do not need the libraries containing the implementation. In
fact, consumers don’t even need to be aware of how the implementation is done. It may be
.NET; it may be Java; it may be a hundred hamsters on exercise wheels. Consumers care not,
just so long as they get SOAP formatted messages back as a response. Finally, the “single, stan-
dards-based from of interface” is a more concrete way of saying “interoperable.”

Rather than explicitly declaring how systems will interact through low-level protocols and

object-oriented architectures, SOA provides an abstract interface through which a service

can interact with other services or applications through a loosely coupled (often asynchro-

nous), message-based communication model. It can be imagined as an interconnected

process-based enterprise that exposes a set of loosely coupled, coarse-grained services.

Soumen Chatterjee
Senior Consultant, Cap Gemini Ernst & Young

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES198

522xCH06.qxd 8/31/05 3:29 PM Page 198

This definition goes on to call out a little about how SOA is different from Remote Proce-
dure Call (RPC). It’s an important distinction, and one that’s easy to miss when you’re first
coming to an understanding of service orientation. This is a message-passing infrastructure,
and not an RPC mechanism. In this definition, we see our invocation of a “message-based”
approach, a distinction that’s more metaphorical than anything else, and one we’ll carry
through our entire discussion. It changes how you think about services, changes that should
influence how they’re designed. This distinction is lost on many, however, because it doesn’t
change how services are consumed. At the end of the day, you create an instance of a type, call
a method, and get a value returned. It looks like RPC. It acts like RPC. But it is not RPC.

The message is the medium.

Don Box
Architect, Microsoft Corporation

These definitions seemingly land all over the board. SOA really seems to mean a lot of dif-
ferent things to different people. There are some common themes here, though, and pulling
out these threads should give you a more vivid idea of what the SOA tapestry reveals.

SO What Are the Themes?
The first theme is that a service provider needs a way to publish its service. Since the infra-
structure is intended to facilitate reuse, publishing the service is a critical step to “get the word
out,” so others can make use of the service. A company may have a central repository for all
of the services available within the enterprise. When a team has a new set of requirements
they’re planning to meet, they can query the repository and see if any piece of their function-
ality is already available from another department. When that team, in the process of meeting
these requirements, creates new services, they publish them in the repository as well, so that
others can find and use them moving forward.

With Web Services, this publishing is done using a Universal Description Discovery
Integration (UDDI) repository. We’ll examine UDDI in a bit.

The second theme is that the providers and consumers are loosely coupled. What does it
mean to be loosely coupled? Let’s contrast it to tight coupling. DCOM is tightly coupled. The
server and the client both need to be using COM. An instance of a Customer object on the
server is represented as an instance of the same COM type on the client. The client and server
have COM-type fidelity. This is about more than the definition of that type; it’s about how that
type is actually allocated and represented in the memory of the process consuming the type.
Both parties understand Interface Definition Language (IDL); both parties leverage the COM
infrastructure; and both parties must have the same version of the binaries installed, creating
administrative havoc at times, especially during updates. If a party shows up without COM,
then there’s no party at all, as the system is coupled to COM.

With the .NET Framework, you can get tight coupling of .NET types on both tiers of a dis-
tributed system by using remoting. This is the RPC mechanism built into .NET, and it creates a
system that’s tightly coupled to the .NET Framework. .NET must be on the server, and it must
be on the client.

A loosely coupled system exposes no such constraint. In a loosely coupled system, the
parties agree on the interface, but not on physical details for how a type is represented in

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 199

522xCH06.qxd 8/31/05 3:29 PM Page 199

memory. Types in Web Services are actually described using XML Schema. So with Web Ser-
vices, the client and server have fidelity with XML Schema types. Since XML Schema is an
open, public standard, schema types can be consumed from any platform that has an imple-
mentation of these standards. Today, there are SOAP Stacks implemented for many different
platforms.

This combination of loose coupling and XML Schema type affinity is a subtle, yet impor-
tant, point. It’s somewhat obfuscated in .NET Web Services (and typically on other platforms
as well) because a service is consumed via a proxy, which exposes types that may look just like
the types on the server. When a Web Service client and server are both .NET, these proxies can
create the illusion of type fidelity.

For example, a GetCustomer method is defined as returning an instance of a Customer
object. The client creates an instance of this service and calls GetCustomer. They obtain a refer-
ence to a Customer type. These types, however, are not the same physical type on the client
and the server. They don’t live in the same assembly, and they don’t have the same underlying
Intermediate Language (IL) and metadata defining them. They’re both consistent with the
XML Schema type that’s used to describe what’s actually on the wire, which is XML packed
into a SOAP message. The structure of this message is defined using XML Schema; thus, the
only fidelity to type that you have in this system is to XML Schema (see Figure 6-1).

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES200

Figure 6-1. Schema type fidelity displaying a real .NET Business Object on the server, XML for SOAP mes-
sage on the wire, and a proxy type generated by Visual Studio .NET 2003 on the client.

It’s easy for confusion to ensue because there’s a complete layer of abstraction between
you (the developer) and the message-based communication that’s actually occurring on the
wire. That’s why we’re going to examine these details over the course of the chapter. We’ll peel
back some of the abstraction between you and the messages on the wire, and you’ll gain a
better understanding of the primacy of XML Schema in this messaging infrastructure.

522xCH06.qxd 8/31/05 3:29 PM Page 200

The next theme that emerges from these definitions is the importance of the interface. An
interface is a contract between software components. It’s what enables you to write a library
of functionality and use it from a different program after the library has been compiled. The
interface is separated from the implementation. This means that the interface is all a service
consumer needs to use the service. No details of how the work behind the interface is done
should be exposed to the consumer. None at all. In this highly interoperable environment, this
abstraction goes so far as to hide the operating system, platform, and language that’s being
used to implement the service from the consumer. This is possible because the interface is
standards based. It’s described using Web Service Description Language, or WSDL. We’ll take
a closer look at WSDL in a bit.

The last theme is that services are coarse-grained (compared to objects designed using
traditional OOAD and that they are aggregated in a way that makes sense to the consumer.
These facets are not so different from other RPC environments, where interfaces are always
chunky, as opposed to chatty, and methods are logically grouped within types.

So why adopt this type of architecture? The first three biggest reasons are reuse, reuse,
and reuse. If you have several platforms and languages within your Enterprise, this infra-
structure is definitely the way to go. You can start the move to service orientation by simply
wrapping entry points to different systems of records (usually databases) with Web Services.
This creates independence and reuse across different data access technologies, and it makes
the data in the Enterprise available to all. You can also wrap the functionality of packaged
applications with Web Services. You may have a document management system that exposes
its functionality programmatically as a COM library. Wrap it with Web Services, and the folks
writing Java on Linux will be able to get documents out of it. Then, as adoption increases,
business logic can start to be designed in a manner that facilities exposing that business logic
as services. The more buy-in you can get across the groups involved, the more effective this
strategy becomes. The goal is to eventually have software assets discovered, bound to, and
executed in a technology-neutral, standards-based way across the Enterprise.

Throw up a UDDI registry and you also have a technology-neutral, standards-based
approach to service publishing and discovery.

Now we’re really illuminating some of the major differences of service orientation from
traditional RPC infrastructures. Loose coupling between components facilitates platform-
neutral reuse of software assets. Standards-based publishing simplifies discovery and binding.
The fact is, traditional RPC mechanisms are not a good solution for reuse in an environment
with heterogeneous technologies.

RPC does provide type fidelity between systems. With services, your type fidelity is to
XML Schema, and this can be a big sacrifice. We’ll examine some ways to design around and
manage this as we move through the chapter.

The other major difference between service orientation and RPC is method invocation
versus message passing. Again, this difference is more important when you’re doing design
than it is when you’re writing code that uses services. In RPC you invoke a method and receive
a return value. The types passed as arguments and the return values are all native to your plat-
form and language of choice. With services, you pass messages. The messages are formatted as
XML within SOAP envelopes. The XML is described with XML Schema. The server receives the
message and may respond with a message of its own creation, although this is not required (it
is possible to have one-way, fire and forget service operation). What happens on the server to
service the request is completely abstracted away from and independent from the consumer
of the service. The fact that what does actually happen is that a method is invoked on a type is

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 201

522xCH06.qxd 8/31/05 3:29 PM Page 201

irrelevant. What should be considered when the service is designed (and sometimes when the
service is consumed) are the messages on the wire; how they are formed, what they contain,
and how the information is described using XML Schema.

Web Services as an SO Implementation
Web Services are not the only way of providing an implementation of service orientation.
They’re just all the rage at the moment. The academics of service orientation actually predate
Web Services by a long shot. The resurgence of service orientation as a viable architectural
option has occurred on account of Web Services, and Web Services have surged in relevance
on account of the World Wide Web. Everything is finally in place to do a proper implementa-
tion of SOA that’s truly interoperable. This has been attempted before, but these attempts have
been met with limited success. By piggybacking on the success of the Web, Web Services have
a real chance of success. There’s a lot of support for this technology from standards bodies and
industry heavies, including Microsoft, Sun Microsystems, BEA, IBM, and Oracle. There’s also a
lot of effort going into solving the thorny problems of really making this solution interoperable.
These efforts can be described under the umbrella of “the WS-* initiatives.” We’ll take a look at
some of these standards (see Table 6-1), and the .NET implementations of them.

Many technologies provide the underpinnings of the infrastructure for Web Services.

Table 6-1. Specifications and How They Play a Role in Web Services

Specification Role in Web Services

XML This specification for the flexible creation of markup is the underpinning of
all the structures in use in Web Services.

XML Schema This is used for message format definitions, providing the common type
system used by service provider and consumer. Different platforms will then
employ their own methods of translating the information described by the
schema into native types to work with programmatically.

WSDL The XML document used for service description. This description defines the
interface of the service. Given this description, service consumers have all of
the information they need to call operations on the service.

SOAP The XML Protocol specification defines the SOAP envelope as the
fundamental structure used for passing messages at runtime.

UDDI The specification describes the repository of XML used for publishing and
discovery.

SOAP Stacks This is an actual platform-specific implementation of a Web Service
infrastructure. .NET has a SOAP Stack implemented within the ASP.NET
Framework, based on ASMX pages (commonly called the “As-Em-Ex” stack).

Many of the WS-* initiatives are owned by the WS-I (www.ws-i.org; the Web Services Inter-
operability Organization). The WS-I works to develop guidelines that facilitate interoperability
between Web Services. Even if they adopt all of the standards listed in the Table 6-1, different
organizations might adopt different versions of the different specifications, and this can intro-
duce problems in interoperability. To further standardize the adoption of these standards, the
WS-I has created the Basic Profile. By adhering to the Basic Profile, different parties (be they
companies or different departments within an Enterprise) vastly increase their chances of
successfully using one another’s services. The Basic Profile employs the Web Service stack

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES202

522xCH06.qxd 8/31/05 3:29 PM Page 202

(see Figure 6-2), which determines the version of each specification in use at every level of the
Web Service infrastructure, from discovery down to the format of the message on the wire at
runtime.

Figure 6-2. The WS-I Basic Profile service stack

You can see this profile just adds a version qualifier to each level of the stack. This
“service stack” is different from a SOAP Stack because it provides another layer of specifica-
tion, whereas a SOAP Stack is an actual implementation of the specifications, and generally
involves tools and processes that are used during design and at runtime.

Because more developers are more familiar with traditional OOAD concepts than with
service orientation, it can help to liken the two, albeit analogously, as we do in Table 6-2.

Table 6-2. Service Orientation Analogies to Traditional OOAD

Service Orientation OOAD Meaning in Life

Message Method Invocation Instead of calling a method, a service con-
sumer passes a message to the server. Instead
of getting a return value from a method call,
the service consumer receives another mes-
sage from the server. A method that would be
called “void” in object oriented (OO) is simply
a “one-way message” in SO.

Operation Method In OO, a method defines a typed argument list
and a return type. In SO, a message describes
the schema of a snippet of XML that’s used to
describe a service request. The return value
of an operation is described by a second
message, also conforming to a structure
defined by an XML Schema.

Port Type Interface A Port Type is a logical aggregation of opera-
tions, and specifies a protocol that will be
used to communicate with the service,
usually HTTP.

Service Class The Service is a logical aggregation of Port
Types, like a class implementing interfaces.
A Service can have only one Port Type, like a
class with a single interface (as is common in
COM).

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 203

522xCH06.qxd 8/31/05 3:29 PM Page 203

Different parts of the service stack are used at different stages during service design, dur-
ing development, and at runtime. When someone has defined and created a service, she will
deploy it to a server running a SOAP Stack, deploy a WSDL document to describe the service,
and create an entry in the Enterprise UDDI registry describing the service (and pointing to the
WSDL document).

Along comes a developer looking to meet some requirements, and he queries the UDDI
registry to see if there are services that can help him meet his requirements (see Figure 6-3).

Figure 6-3. A developer uses a UDDI registry to find a service and retrieve the WSDL describing
the service.

Typically the UDDI registry contains the URL of a WSDL document describing the service.
With the WSDL document in hand, the developer has all of the information he needs to pre-
pare SOAP messages and post them to the service, and knows what SOAP messages to expect
back. WSDL uses XML Schema and the XML Protocol specification (SOAP) to create this
description.

Instead of manually writing code to prepare these messages and post them to the server,
SOAP Stacks include tools that generate client-side proxies. The proxies expose types and
members that mirror the schema the WSDL describes. To consume the service, the developer
then has only to add a reference to the proxy type, create an instance of it, and call a method
on it (see Figure 6-4). The proxy translates the values from the native type system into SOAP
messages, puts them on the wire, receives the messages off the wire, and translates that back
into a native type. This largely explains why Web Service programming looks so much like
(and so often gets confused with) RPC programming.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES204

522xCH06.qxd 8/31/05 3:29 PM Page 204

Figure 6-4. The developer uses a tool to create a proxy based on the WSDL document and creates
a process that invokes the generated client-side proxy.

So far you’ve seen how UDDI and WSDL are used in concert during development to discover
the service and generate a client-side proxy for calling the service. At runtime, SOAP messages are
prepared, put on the wire, and taken off the wire by the proxy. XML and XML Schema are used
throughout the process, as are different pieces of the SOAP Stack (see Figure 6-5).

Figure 6-5. At runtime, the proxy and the SOAP Stack process on the server collaborate to create
and move the SOAP messages across the wire.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 205

522xCH06.qxd 8/31/05 3:29 PM Page 205

You can see here that at runtime you’re just creating and passing SOAP messages on the
wire. This isn’t entirely dissimilar from the request/response paradigm in use between a
browser and web server. This process actually has a lot more in common with this model
than with a traditional RPC model.

The SOAP Stack provides a complete layer of abstraction between the developer and the
messaging on both the client and the server. The server-side process and the client proxy
make the entire infrastructure look like RPC. This is merely a convenience mechanism for you
to keep you in your comfort zone by making things look like traditional OO. You can see here
that your type system and your messages are all based not on types from your platform of
choice, but rather on XML Schema. Let’s see how simple it can be to use Web Services in the
.NET Framework 2.0.

ASMX and the Web Service Handler
The .NET Framework SOAP Stack is a part of ASP.NET and is called ASMX (as-em-ex). In
Chapter 2 you saw how you can extend the ASP.NET request processing pipeline with an
implementation of the IHttpHandler interface. The Web Service handler is just such an
extension, and is mapped to requests with an extension of asmx.

An ASMX page is a very simple file. It points to a type in an assembly. The simplicity of this
is obfuscated by Visual Studio .NET 2003. With Visual Studio .NET 2005, the model has been
simplified quite a bit.

First of all, just as with Web Forms, an Internet Information Services (IIS) Application is
not required for a Web Service project. When you choose File ➤ New ➤ Web Site, the dialog
displayed in Figure 6-6 appears.

Notice you have a choice of location type. You can choose from the file system, HTTP, or
File Transfer Protocol (FTP). While HTTP gives you the old tried and true IIS Virtual Directory
to do development in, file system and FTP are new. With the file system, you can point to any
directory on the system, and the IDE uses a development Web Server instead of an IIS Virtual
Directory. An IIS application isn’t required. In fact, IIS isn’t required on the development
machine at all. FTP allows you to connect to a project via FTP instead of using IIS and Front-
Page Server Extensions.

■Note The code for this project is in the Web06 directory, a subdirectory of Code06. The Code06 solution
opens all projects used throughout the chapter.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES206

522xCH06.qxd 8/31/05 3:29 PM Page 206

Figure 6-6. The New Web Site dialog in Visual Studio .Net 2005

After you create your file system-based project, you can see that the ASMX development
model is different by default, as well. The ASMX template is much simpler. There’s no hidden
region of code, just a class with a single Web Method in it:

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{

public Service () {

}

[WebMethod]
public string HelloWorld() {

return "Hello World";
}

}

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 207

522xCH06.qxd 8/31/05 3:29 PM Page 207

The IDE also now shows you the ASMX document itself. This was something that was
always hidden behind a Design View in Visual Studio .NET 2003, even though there was noth-
ing to design. Now the simple contents of this file, the WebService directive, are displayed (see
Service.asmx in Web06).

<%@ WebService CodeBehind="~/App_Code/Service.cs" Class="Service" %>

The only thing about this directive that’s relevant at runtime is the Class attribute. It
names the class where the service implementation lives. Any methods of this named class
with the WebMethod attribute applied will be exposed as operations on the service. Even this
has been simplified. In Visual Studio .NET 2K3, it needed to be a fully qualified class name.
Now even though there’s just a local class name carried as the value, it will still be found and
invoked at runtime.

The CodeBehind attribute is especially interesting. This points to a file contained in the
App_Code directory. This directory gets special treatment from ASP.NET 2.0. Any files placed in
this directory get compiled automatically and are available to use from within the project they
live in. This includes both C# and VB.NET code files. WSDL documents placed in this directory
get automatically exposed as Web Service proxies. XSD documents get exposed as strongly
typed DataSets. The IDE does a design-time compilation of these resources as well, so you
can reference them from other code in the project, and you even get Intellisense.

When you start this project, the development Web Server starts automatically on a ran-
domly selected port (see Figure 6-7).

Figure 6-7. The ASP.NET Development Server information window

The ASMX handler then renders the old familiar Web Service testing interface, shown in
Figure 6-8.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES208

522xCH06.qxd 8/31/05 3:29 PM Page 208

Figure 6-8. The test harness rendered when an ASMX page is requested via an HTTP GET

Notice that the test harness is unhappy about the namespace. This is something you
should always change from the template code. In Visual Studio .NET 2003, the WebService
attribute isn’t added to the class declaration by default. In the 2005 template, it’s there with
the tempuri namespace as the default:

[WebService(Namespace = "http://tempuri.org/")]

You need only to change it to something more meaningful within your own organization;
for example:

[WebService(Namespace = "http://www.IntertechTraining.com/Hello")]

You can now refresh your view in the browser, and the test harness is much happier (see
Figure 6-9).

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 209

522xCH06.qxd 8/31/05 3:29 PM Page 209

Figure 6-9. The happy test harness does not complain about the namespace.

2.0 ASMX Enhancements
The changes to the project model and the default template within Visual Studio .NET are
just scratching the surface of the changes made to the ASMX call stack for version 2.0 of the
Framework. Many more modifications have been made to the ASMX infrastructure. Since Web
Services intrinsically lack a user interface, they don’t lend themselves well to flashy demos of
new code-generating wizards. For this reason, these significant enhancements have been
slipped in with little fanfare (while all the accolades go to the architecturally questionable
data source controls; see Chapter 11).

However, these enhancements are worth noting in some detail, as they address real issues
people encounter using 1.1 of ASMX in production systems and pave the road to the Windows
Messaging Framework for those considering adopting Web Services today.

■Note Windows Messaging Framework is Microsoft’s next generation out-of-process call stack. It’s a uni-
fied way to use Web Services, COM+, remoting, and Message Queuing (MSMQ). This technology is not part
of .NET 2.0, but will be available for Windows XP and Windows 2003; and in the future, it will be built right
into the operating system. See Chapter 9 for a preview of this exciting new technology.

1.x Problem: No Type Sharing Across Proxies
Given when you’re using Web Services, types are determined by schema and not managed
classes, whenever a method returns a class type, the client-side proxy generates code to repre-
sent it. This can be a problem when two services return the same type: they can become
represented on the client as different types in different proxies. Consider this simple type
(which you’ll find in the SchemaImp project in the Code06 solution):

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES210

522xCH06.qxd 8/31/05 3:29 PM Page 210

public class PhoneNumber
{

public PhoneNumber() { }

public PhoneNumber(
string AreaCode,
string Number,
PhoneType NumberType)

{
this.AreaCode = AreaCode;
this.Number = Number;
this.NumberType = NumberType;

}

private string m_AreaCode;
public string AreaCode
{

get { return m_AreaCode; }
set { m_AreaCode = value; }

}

private string m_Number;
public string Number
{

get { return m_Number; }
set
{

value = value.Replace("-", "");
value = value.Replace(" ", "");
if (value.Length != 7)

throw new System.Exception
("Number must be seven digits");

m_Number = value;
}

}

private PhoneType m_NumberType;
public PhoneType NumberType
{

get { return m_NumberType; }
set { m_NumberType = value; }

}

public string FormattedNumber()
{

return string.Format("({0}){1}-{2}({3})",

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 211

522xCH06.qxd 8/31/05 3:29 PM Page 211

this.AreaCode,
this.Number.Substring(0, 3),
this.Number.Substring(3, 4),
this.NumberType.ToString().Substring(0, 1));

}
}

public enum PhoneType
{

Home,
Work,
Office,
Fax,
Cell

}

Now we’ll mock up two services that use the PhoneNumber type. The first one will return an
instance. (This code is in PhoneNumberLib.cs in the App_Code directory of the Web06 project.)

public class PhoneNumberLib
{

[WebMethod]
public PhoneNumber GetNumber()
{

return new PhoneNumber("612", "555-3434", PhoneType.Home);
}

}

And the other will accept an instance as an argument:

public class Dialer
{

[WebMethod]
public bool SendSMS(PhoneNumber Number, string Message)
{

//Code to use Number and send message
return true;

}
}

These are exposed with a couple of asmx files named NumberLib.asmx and Dialer.asmx
(also found in the Web06 project). These files are nothing more than WebService directives
pointing at these types.

As you’d expect, a usage pattern of these services is likely to involve retrieving a number
from the NumberLib service, and sending a Short Message Service (SMS) message to it using
the SendSMS operation of the Dialer service.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES212

522xCH06.qxd 8/31/05 3:29 PM Page 212

■Note The following client project can be found in the Code06 folder under Web06_2K3. All demonstrations
using 1.x of the Framework for this chapter use this project. You’ll need to set up the Web06_2K3 directory
as an IIS application using the Microsoft Management Console (MMC) configuration snap-in for IIS.

To understand the enhancement in the .NET Framework 2.0, you have to understand the
behavior in 1.x. To demonstrate the problematic behavior, you’ll need to add a Web Reference
to both services from a Visual Studio .NET 2003 client project, using the respective ASMX doc-
uments (see Figure 6-10).

Figure 6-10. The Add Web Reference Wizard at work

Notice we’ve changed the Web Reference name from the default (localhost, in this case)
to something more meaningful. This becomes the namespace that the proxy gets created
within. After the wizard runs and generates the proxy, you have some types available in the
Proxies.Web06 namespace; NumberLib (your service class) and PhoneNumber (the proxy type
the GetNumber operation returns).

Remember that PhoneNumber is the same type across the services on the server side of the
equation. Its fully qualified name is WSDemo.PhoneNumber. On the proxy side, the PhoneNumber
class is not the same type as on the server (see Figure 6-11). This is what it means to lose .NET
type affinity and have schema type affinity instead. Only data is represented in schema (aka
state information). The PhoneNumber types reflect this in their structure.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 213

522xCH06.qxd 8/31/05 3:29 PM Page 213

Figure 6-11. The PhoneNumber server and proxy types compared

The server type has the custom constructor and the FormattedNumber method, which are
behaviors. It also has three properties, which are special case methods, and can, therefore,
also be considered behaviors. Notice the only thing carried into the proxy type is the proper-
ties. Not only are the other members dropped, but the properties are transformed to fields (a
problem for other reasons, which is also remedied in 2.0; see the “Proxies Generate Fields and
Not Properties” section that follows).

However, it still would be nice to use GetNumber on one service to get an instance of
PhoneNumber to send to the SendSMS operation on the other service (even if they’re only proxy
types). Let’s proceed with the plan to do this by adding another Web Reference to the service
exposed by the Dialer.asmx file (see Figure 6-12).

Figure 6-12. Adding another Web Reference to the same namespace from within Visual Studio
.NET 2003

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES214

522xCH06.qxd 8/31/05 3:29 PM Page 214

Again, we’ve changed the Web reference name from the default to Proxies.WSDemo. This
creates the proxy types needed for the second service in the same namespace, where you can
hopefully share the definition of the PhoneNumber proxy type.

However, as you’ve probably anticipated (due to our subtle literary foreshadowing), your
expectations will be met only with agony. Let’s take a peek at the Web References in Solution
Explorer (see Figure 6-13).

Figure 6-13. The namespaces that actually get created in the project

At this point your hopes are dashed. Each of these namespaces has a definition of the
PhoneNumber proxy type. They’re basically identical, as they’re based on the same type informa-
tion on the server, but they’re completely different types as far as the CLR is concerned. One is
named Proxies.Web06.PhoneNumber, the other Proxies.Web061.PhoneNumber. This means that
no matter how hard you try, code like this won’t work.

Proxies.Web06.NumberLib l = new Proxies.Web06.NumberLib();
Proxies.Web061.Dialer d= new Proxies.Web061.Dialer();
Proxies.Web06.PhoneNumber p = l.GetNumber();
d.SendSMS(p,"wuzgoinon?");

To fix this you could modify the generated proxy code. This is a valid technique, but the
downside is that if you ever have to regenerate your proxy (should the service definition ever
change), you’d then have to reapply your proxy modifications. This can be a pain, especially
during development, when the service might still be evolving via iterative design.

The .NET Framework 2.0 addresses this problem. In the next example, doing everything
the same, you’ll only get a single proxy type on the client. The proxy generator is smart enough
to see that the PhoneNumber type comes from the same namespace in both instances and only
generate the type once.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 215

522xCH06.qxd 8/31/05 3:29 PM Page 215

Figure 6-14. The namespaces that get created in VS .NET 2K5 when you create proxies for the
same service

The code using the PhoneNumber proxy type works in a 2.0 client, because the type has
been defined only once in the generated proxy code. (This sample client can be found in the
Web06Client project.)

Proxies.Web06.PhoneNumber number;
Proxies.Web06.PhoneNumberLib proxy1 = new Proxies.Web06.PhoneNumberLib();
Proxies.Web06.Dialer proxy2 = new Proxies.Web06.Dialer();

number = proxy1.GetNumber();
proxy2.SendSMS(number,”wuzgoinon?”);

1.x Problem: Program to a Class, not an Interface
One of the major tenets of service orientation is to separate the implementation from the
interface, but in version 1.x of the .NET Framework, the only way to create a Web Service is to
decorate a class (a piece of implementation code) with attributes.

It would be nice to formalize this separation by defining the service contract with an
interface, and then having any type come along and implement the interface. This is not only
a cleaner model conceptually but it is also cleaner at the code level, since the attributes deter-
mining the structure of the contract are on the interface, and are not cluttering up the code for
the implementing class. At the physical level, this allows you to literally separate the interface
from the implementation, enabling you to move the contract definition (and the metadata of
the interface in the compiled assembly) around independently from the implementation (the
CIL in the implementing type’s assembly).

Let’s consider the following interface, which you’ll use as the starting point for your serv-
ice contract. (This interface definition can be found in App_Code\IPhoneLib.cs of the Web06
project).

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES216

522xCH06.qxd 8/31/05 3:29 PM Page 216

[WebServiceBinding(Namespace =
"http://www.IntertechTraining.com/WSDemo/PhoneNumberLib")]

public interface IPhoneNumberLib
{

[WebMethod()]
PhoneNumber GetNumber();
[WebMethod()]
bool SaveNumber(PhoneNumber number);
[WebMethod()]
[XmlInclude(typeof(PhoneNumber))]
ArrayList PhoneNumberList(string criteria);

}

Notice that this interface definition contains all of the Web Service specific information.
When a type implements the interface, it automatically gets its methods exposed as Web Ser-
vices via the attributes applied to the underlying interface. This completely separates the
definition of the WSDL interface from the implementation of the service. (You’ll find this
code in App_Code\NumberService.cs of the Web06 project.)

public class NumberService : System.Web.Services.WebService , IPhoneNumberLib
{

public PhoneNumber GetNumber()
{

return new PhoneNumber("612", "555-3434", PhoneType.Home);
}

public bool SaveNumber(PhoneNumber number)
{

return true;
}

public System.Collections.ArrayList PhoneNumberList(string criteria)
{

ArrayList al = new ArrayList();
al.Add(new PhoneNumber("612","5551212",PhoneType.Cell));
al.Add(new PhoneNumber("612","5551213",PhoneType.Fax));
al.Add(new PhoneNumber("612","5551214",PhoneType.Home));
al.Add(new PhoneNumber("612", "5551215", PhoneType.Office));
return al;

}
}

Wsdl.exe has also been updated with the ability to generate the server-side stub of an
interface to describe the WSDL document. You accomplish this with the /serverInterface
switch.

wsdl.exe /serverInterface SomeWsdlDoc.wsdl

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 217

522xCH06.qxd 8/31/05 3:29 PM Page 217

This generates a C# source file containing a definition of the interface described by the
WSDL document. For example, a WSDL document containing a single operation (SomeMethod)
that accepted a string element (SomeArgument) and returned a string element generates the
following interface:

[System.Web.Services.WebServiceBindingAttribute(
Name="sampleBinding",
Namespace="SoapInterop")]

public partial interface ISampleBinding {

/// <remarks/>
[System.Web.Services.WebMethodAttribute()]
[System.Web.Services.Protocols.SoapRpcMethodAttribute("#Sample",

RequestNamespace="SoapInterop",
ResponseNamespace="SoapInterop")]

[return: System.Xml.Serialization.SoapElementAttribute("Sample")]
string SomeMethod(string SomeArgument);

}

The only thing left for you to do at this point is to define a type that implements this
interface and write the implementation. Pointing an ASMX document at this implementing
type automatically uses the attributes defined at the interface level to appropriately expose
your type as a Web Service. This is also a great way to get reuse out of your XML Schema files
by taking a WSDL first approach. In this scenario, you start with your WSDL and XML Schema,
and use this tool to generate the interface as a starting point, as opposed to starting with your
implementation and generating the schema and WSDL.

The other important thing about using an interface to describe a service contract is
that it provides a cleaner migration path into WCF, where this will be the default approach (see
Chapter 9 for more on Windows Communication Foundation).

1.x Problem: Proxies Generate Fields and Not Properties
The proxy types generated to represent the state information of complex elements coming in
off the wire use fields to expose this information. For example, let’s take a look at the proxy
type generated for the PhoneNumber class in Visual Studio .NET 2003:

[System.Xml.Serialization.XmlTypeAttribute(Namespace="http://phoneNumber/")]
public class PhoneNumber {

/// <remarks/>
public string AreaCode;

/// <remarks/>
public string Number;

/// <remarks/>
public PhoneType NumberType;

}

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES218

522xCH06.qxd 8/31/05 3:29 PM Page 218

This class definition isn’t suitable for a data binding operation. Consider the following
simple code that should result in a list of numbers (see TryToBind.aspx in Web06_11):

private void btn1_Click(object sender, System.EventArgs e)
{

Proxy.PhoneNumberLib p = new Proxy.PhoneNumberLib();

ddl.DataSource = p.PhoneNumberList("");
ddl.DataTextField = "Number";
ddl.DataBind();

}

Instead of a fine drop-down list, this code produces the following travesty (see Figure 6-15).

Figure 6-15. Exception that occurs when you try to bind to fields instead of properties

This exception occurs because the data-binding engine is using reflection to find the
properties named by DataTextField. It doesn’t use reflection to look for fields, only properties.
Your choices in this situation are to rewrite the proxy type manually, or create a different
PhoneNumber type on the client that exposes this state information as properties instead of
fields, and then accept an instance of the proxy type in a custom constructor and map
the fields to the properties.

The 2.0 proxy generator solves this problem by using properties. Adding a reference to
exactly the same service using Visual Studio .NET 2005 results in the following type declared
in the generated proxy:

[System.SerializableAttribute()]
[System.Xml.Serialization.XmlTypeAttribute(Namespace="http://phoneNumber/")]
public partial class PhoneNumber {

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 219

522xCH06.qxd 8/31/05 3:29 PM Page 219

private string areaCodeField;

private string numberField;

private PhoneType numberTypeField;

public string AreaCode {
get { return this.areaCodeField; }
set { this.areaCodeField = value; }

}

public string Number {
get { return this.numberField; }
set { this.numberField = value; }

}

public PhoneType NumberType {
get { return this.numberTypeField; }
set { this.numberTypeField = value; }

}
}

The differences here are so subtle that you wouldn’t notice them in most contexts. They
do, however, appease the data-binding engine nicely.

1.x Problem: Type Fidelity Available Only for Datasets
Consider what you looked at earlier with the PhoneNumber and its proxy type. You established
that the type on the server isn’t at all the same as the type generated for the proxy. Where the
type on the server had properties and behaviors, the proxy type had only fields (see Figure 6-11).
Given this, how can the following service possibly work?

[WebMethod]
public DataSet getPubsData()
{

string sql = "select * from authors "
+ "select * from titles "
+ "select * from publishers "
+ "select * from titleauthor";

SqlConnection cn = new SqlConnection(WebStatic.ConnectionString);
SqlCommand cm = new SqlCommand(sql,cn);
DataSet ds = new DataSet();

new SqlDataAdapter(cm).Fill(ds);

ds.Relations.Add(
ds.Tables[1].Columns["title_id"],
ds.Tables[3].Columns["title_id"]);

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES220

522xCH06.qxd 8/31/05 3:29 PM Page 220

ds.Relations.Add(
ds.Tables[0].Columns["au_id"],
ds.Tables[3].Columns["au_id"]);

ds.Relations.Add(
ds.Tables[2].Columns["pub_id"],
ds.Tables[1].Columns["pub_id"]);

return ds;
}

Here’s the some code consuming this method using a Web Service proxy.

void Page_Load(object sender, EventArgs e)
{

Proxies.TypedService ts = new Proxies.TypedService();
DataSet ds = ts.getPubsData();
foreach (DataTable dt in ds.Tables)
{

DataGrid dg = new DataGrid();
dg.DataSource = dt;
dg.DataBind();
this.FindControl("form1").Controls.Add(dg);

}
}

What’s going on here? Is this .NET type fidelity for a Web Service? This is accomplished
with smarts that are built into the proxy generating code. This DataSet is still XML described
by XML Schema on the wire. It’s still interoperable. Another platform won’t see this data as a
DataSet, but as a complex hierarchal document described by XML Schema from the WSDL.
The .NET proxy, however, has been taught to recognize this as a DataSet, and so when it comes
in off the wire, the proxy creates a new instance of a real DataSet and merges this data into it
from the SOAP body of the message.

In version 1.x of the Framework, the DataSet was the only type that supported this func-
tionality. In version 2.0, Microsoft has added a point of extensibility so you can modify the
proxy generator and affect the code it produces.

Understand that this is a modification to the design time behavior of a developer’s envi-
ronment and not a way to change the run-time behavior of Web Services. In cases where the
assemblies contain types that are needed on both the client and server, it can be very tempt-
ing to long for the type affinity that the client and server share in an RPC environment. This
isn’t really even considered a Best Practice (or a good idea, depending on who you’re listening
to) in a service-oriented environment. It’s a throwback to the tight coupling between client
and server that service orientation is supposed to liberate us from. All these considerations
aside, sometimes this is the behavior you need. Today, the only choice is to manually modify
the generated client-side proxies. This is not a lot of fun, because you must apply whatever
changes are made anew every time the service changes and the proxy needs to be regenerated.

So the new feature in 2.0 extends the pipeline that’s generating the client-side proxy. This
pipeline extension executes when your users choose to Add a Web Reference from within the
IDE, or when they run the wsdl.exe command-line tool. Typically the proxy generator is going

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 221

522xCH06.qxd 8/31/05 3:29 PM Page 221

to look at each type as it’s described by the schema in the WSDL and generate a proxy type
to represent it. Now, before it does that, it gives you a chance to override that behavior and
check what the proxy generating code is about to do. If you recognize the type represented in
schema as one you already know, you can generate your own code instead of relying on the
proxy generator to do this for you.

So in your case, when the proxy generator alerts you that it’s about to generate a proxy
type to represent the PhoneNumber, you’ll intercede and say “No, no, I know this guy, here, here,
use this type instead … .” Piece of cake.

The steps to affect this change are as follows:

1. Create a type that inherits from the SchemaImporterExtension type.

2. Override ImportSchemaType, a method that fires every time the proxy code generator is
processing a type from the WSDL document.

3. Write code to check the name and namespace of the type described in the schema of
the WSDL document, and when it’s a type you know, generate the proxy code yourself
instead of relying on the generated code.

4. Give your type a strong name and put it in the Global Assembly Cache (GAC).

5. Register the extension to the proxy generation process in the machine.config of the
developer workstation where you’re generating the client side proxy.

6. Use Add Web Reference or wsdl.exe to generate the proxy.

7. Stand back and marvel at your ingenuity.

In the example we’ve created, you’re going to generate a proxy that uses the real
NumberLib.PhoneNumber type instead of the generated proxy type. This allows you to call cus-
tom constructors and the methods available on this type, instead of just having the state of an
instance represented within the proxy type. Keep in mind that the assembly containing the
type you’re substituting must get to the client via some means other than the Web Service. On
the wire you’re still passing plain old XML. You’re modifying what the client proxy does with
the XML once the SOAP message containing the response is pulled off the wire by customizing
the process that generates the client-side proxy code.

First, let’s take a closer look at the type definition you’ll be replacing the proxy code for.
You control the namespace of the type on the wire using the XmlRoot attribute on the type def-
inition. You’ll search for the same namespace used here in your proxy generator extension.

[XmlRoot("phoneNumber", Namespace = "http://phoneNumber/", IsNullable = true)]
public class PhoneNumber
{
…

Next, you create a type that inherits from SchemaImporterExtension. This type lives in
the System.Xml.Serialization.Advanced namespace. You’re searching in this code for the
PhoneNumber type as it’s represented on the wire.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES222

522xCH06.qxd 8/31/05 3:29 PM Page 222

public class PhoneNumberSchemaImporterExtension : SchemaImporterExtension
{

public override string ImportSchemaType(string name,
string ns,
XmlSchemaObject context,
XmlSchemas schemas,
XmlSchemaImporter importer,
CodeCompileUnit compileUnit,
CodeNamespace mainNamespace,
CodeGenerationOptions options,
CodeDomProvider codeProvider)

{
//Searching for the type name and the namespace we set with XmlRoot
if (name.Equals("PhoneNumber") && ns.Equals("http://phoneNumber/"))
{

compileUnit.ReferencedAssemblies.Add("SchemaImp.dll");
mainNamespace.Imports.Add(new CodeNamespaceImport("NumberLib"));
return "NumberLib.PhoneNumber";

}
else

return null;
}

}

The ImportSchemaType method will be called for every type processed by the proxy gener-
ator. Only when you find your type do you take action by adding a reference to the assembly
where the PhoneNumber type lives, adding an imports for the namespace, and returning the
fully qualified name of the type to the proxy generator. For all other types you return null,
which causes the generator to continue with its default behavior.

Assign a license file so your type gets a strong name, compile the code, and put the result-
ing assembly in the GAC. It has to be in the GAC, because you’re not modifying behavior
within the context of a project, you’re modifying it on the entire machine. The type has to be
in the GAC so that wsdl.exe or Visual Studio .NET can find it from wherever the developer is
generating proxy code.

Because it’s a machine-wide behavior you’re changing, you also have to make an entry
in the machine.config. Make this entry as a child of the configuration element, but after
configsections.

<system.xml.serialization>
<schemaImporterExtensions>

<add name="PhoneNumber"
type="SchemaImp.PhoneNumberSchemaImporterExtension, SchemaImp, Version=...

</schemaImporterExtensions>
</system.xml.serialization>

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 223

522xCH06.qxd 8/31/05 3:29 PM Page 223

The type attribute is truncated, but it must include a full description of your type, includ-
ing its version, culture, and public key token. In our case, the string looks like this, but your
public key token (and maybe your version) will be different:

SchemaImp.PhoneNumberSchemaImporterExtension, SchemaImp,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=caebdbe3a168b171

You can copy some of this information from the assembly’s property page in the GAC.

Figure 6-16. Assembly property page from the GAC

Now you can add a reference to a WSDL document that’s using an instance of the
PhoneNumber type. The code that you just wrote executes while this proxy code is being gener-
ated. When the proxy is created (named localhost.Dialer in this case), you can call a
method that accepts an instance of the PhoneNumber type. Instead of being a proxy type (which
would be named localhost.PhoneNumber in this example), it’s a fully qualified instance of
NumberLib.PhoneNumber, shown via IntelliSense in Figure 6-17.

Figure 6-17. IntelliSense reveals the type built into the proxy code by your extension

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES224

522xCH06.qxd 8/31/05 3:29 PM Page 224

Keep in mind that the assembly containing NumberLib.PhoneNumber must be present on
the developer’s workstation. The Web Service won’t send it to you; it deals only in XML. You
could make these changes on a single development box and generate all of the proxies on that
box. Any time a service changes, you’d then have to regen the proxies using the specially con-
figured workstation and get the new proxies out to all of the developers on the team using the
proxies. You could also make these configuration changes on each developer’s workstation,
which is only feasible if you have a relatively small team. This introduces a tight coupling
between the Web Service server and the consuming process, because the same assembly must
be present on both machines. The Web Service is simply your mechanism for marshaling state
information across the wire. Also keep in mind that other platforms could still use the service
with their SOAP Stack of choice. This doesn’t modify the server-side implementation of the
service in any way. The coupling is limited to the developer’s workstation and other machines
using the custom-generated proxy.

1.x Problem: Custom Serialization Lacks Adequate Extensibility
You’ve seen how type fidelity is provided between client and server for DataSets, and how you
can use schema importer extensions to provide similar behavior for your own types. The other
facet of the DataSet that makes this possible is the format it uses to represent itself within XML.
The DataSet object actually provides its own XML Schema format to pass in the SOAP message,
one that better facilitates rehydrating an instance of the DataSet when it arrives at the client as
a SOAP message. The DataSet accomplishes this by implementing the IXmlSerializable inter-
face, the methods of which the ASMX infrastructure calls when putting the document onto the
wire. Using this custom extension of the XML serializer, the DataSet is able to add metadata to
the XML representing it on the wire. The proxy uses this additional information to re-create
the DataSet when taking messages off the wire.

There is no support for implementing this interface on your own types in version 1.x of
the Framework. This isn’t to say it hasn’t been done, but it hasn’t been a sanctioned activity,
and is more difficult than it needs to be due to some hard-coded dependencies on the DataSet
object. This changes in version 2.0 of the Framework. This interface is exposed and there’s full
support for implementing it with your own types. When you do so, the ASMX infrastructure
calls a method of your type to get the XML Schema for how your type should be represented in
the SOAP message, and calls a method on the interface to actually get the XML stream repre-
senting your type. This gives you very precise control over how your type is represented on the
wire. By implementing a schema importer extension, you can also control how an instance
of the type is created by the proxy, and how the XML is used to restore the state information of
the type on the client.

Microsoft has added an implementation of this interface for a number of types in the
Framework. They include the DataTable, the XPathDocument, and the types from the System.
Data.SqlTypes namespace. This means that .NET clients get type affinity for instances of these
types returned from a service, although the DataTable does get wrapped in a DataSet.

In some cases you’ll want to take control of the XML on the wire for your own types. Let’s
examine the definition of our own custom type, BookDetails (see Figure 6-18).

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 225

522xCH06.qxd 8/31/05 3:29 PM Page 225

Figure 6-18. The BookDetails type as viewed in the Object Browser

The property named BookImage is an instance of type Bitmap, which holds an image of the
book cover. The Bitmap type is not serializable, and has no default constructor. This means
the following simple Web Service is invalid:

[WebMethod]
public BookDetails getABook(int BookID)
{

return new BookDetails(BookID);
}

An attempt to invoke this operation results in the following error displayed in Figure 6-19.
You could work around this problem by making the following code change to the definition of
the BookDetails type:

[XmlIgnore()]
public Bitmap BookImage
{

get { return m_BookImage; }
set { m_BookImage= value; }

}

This causes the default serializer to ignore this property. Now you can use the type as a
return value and invoke the Web Method that was failing above. The BookDetails type now
produces the following XML on the wire (see Figure 6-20).

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES226

522xCH06.qxd 8/31/05 3:29 PM Page 226

Figure 6-19. BookDetails cannot be returned by a Web Service because it contains a bitmap

Figure 6-20. BookDetails with the bitmap excluded by applying the XmlIgnore attribute

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 227

522xCH06.qxd 8/31/05 3:29 PM Page 227

This works, but only at the expense of excluding your image! What if you need that image?
There’s nothing preventing you from encoding the binary information into the result message;
it’s just not supported “out of the can” by the tools. You’ll have to take matters into your own
hands.

To take full control of the XML and schema used to represent your own types on the wire,
you need to add the XmlSchemaProvider attribute to your class declaration and implement the
two methods required of you by the IXmlSerializable interface. You’ll create a type that uses
this custom SOAP serialization pattern to put a collection of BookDetails on the wire.

You’re also going to need to control how the client takes instances of the type off the wire.
To do this you’ll create another XmlSchemaImporter and register it in the machine configura-
tion file on the client. Your steps for this solution will be to

1. Create a type that builds a collection of BookDetails objects.

2. Have this type implement the IXmlSerializable interface.

3. Invent your own schema describing BookDetails on the wire.

4. Add a static method that emits this XmlSchema for the type on the wire.

5. Generate markup consistent with this schema in the WriteXml method of
IXmlSerializable.

6. Create instances of the BookDetails types based on this markup in the ReadXml
method.

7. Create a SchemaImporterExtension that maps the collection type on the wire back to
your implementation of IXmlSerializable.

8. Register this type in the machine configuration file on the client.

9. Generate a proxy and code against it.

Let’s start by looking at the code to implement IXmlSerializable. First, we’ll take a peek at
the code that provides its base functionality. (This code can be found in BookCollection.cs of
the Library project.)

public class BookCollection : IEnumerable, IXmlSerializable
{

public Hashtable ht = new Hashtable();
private static string ns =

"http://www.intertechtraining.com/Library/BookCollection";

public int Add(BookDetails book)
{

ht.Add(book.BookID, book);
return ht.Count - 1;

}

public int Count
{

get { return ht.Count; }

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES228

522xCH06.qxd 8/31/05 3:29 PM Page 228

}
public void Remove(int BookID)
{

ht.Remove(BookID);
}
public void Remove(BookDetails book)
{

ht.Remove(book.BookID);
}
public IEnumerator GetEnumerator()
{

return ht.GetEnumerator();
}

...

As you can see, this type just provides a simple wrapper around a Hashtable, accepting
only instances of the BookDetails type, and keying the entries with the book IDs.

To implement IXmlSerializable, you must provide code for three methods. The first of
these is GetSchema, but GetSchema has been deprecated, and so you need only to simply return
a null:

public System.Xml.Schema.XmlSchema GetSchema()
{

return null;
}

This method stays on the interface for backwards compatibility. The actual schema that
describes your type as it will appear on the wire is provided via another method, one of your
choosing. This needs to be a static method on your type that accepts a single argument of
type XmlSchemaSet and returns an XmlQualifiedName. You can choose any name for this static
method. You tell the serializer the name you’ve chosen using an attribute on your type. You’ll
modify the class to name this method with the XmlSchemaProvider attribute, and then add this
static method to the type. Given the name of the method, it gets invoked using Reflection.
Here we do this with a method we’ve chosen to name BookCollectionXsd:

[XmlSchemaProvider("BookCollectionXsd")]
public class BookCollection : IEnumerable, IXmlSerializable
{

public static XmlQualifiedName BookCollectionXsd(XmlSchemaSet xss)
{

string xsdPath = HttpContext.Current.Server.MapPath("BookCollection.xsd");
XmlSchema xs = XmlSchema.Read(new XmlTextReader(xsdPath), null);

xss.XmlResolver = new XmlUrlResolver();
xss.Add(xs);
return new XmlQualifiedName("BookCollection_Type", ns);

}
...

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 229

522xCH06.qxd 8/31/05 3:29 PM Page 229

The static method named with the XmlSchemaProvider attribute must accept an instance
of the XmlSchemaSet class as an argument. The XmlSchemaProvider attribute names the method
in the class that the serializer will call when serializing an instance of the class. This is the
change that breaks compatibility with the interface and introduces the need to use an attrib-
ute to name the method the serializer will call to get the schema. Here the method is named
BookCollectionXsd. This method loads the schema from the file system, adds it to the schema
set, and returns a qualified name of the complex type in the schema that provides the defini-
tion of what goes into the SOAP message.

The next method on IXmlSerializable is WriteXml. This code must create an XML stream
based on the object instance that matches the schema returned by the XML Schema provider.
It gets handed an XmlWriter as an argument that you can use to generate this stream:

public void WriteXml(System.Xml.XmlWriter writer)
{

BinaryFormatter b = new BinaryFormatter();
MemoryStream ms;
BookDetails book;
ASCIIEncoding ascEnc = new ASCIIEncoding();

writer.WriteStartElement("books", ns);
foreach (int i in ht.Keys)
{

writer.WriteStartElement("book", ns);
book = (BookDetails)ht[i];

writer.WriteElementString
("bookID", ns, book.BookID.ToString());

writer.WriteElementString
("binding", ns, book.Binding);

writer.WriteElementString
("isbn", ns, book.ISBN);

writer.WriteElementString
("listPrice", ns, book.ListPrice.ToString());

writer.WriteElementString
("lowestPrice", ns, book.LowestPrice.ToString());

writer.WriteElementString
("pageCount", ns, book.PageCount.ToString());

writer.WriteElementString
("publicationDate", ns, book.PublicationDate.ToString());

writer.WriteElementString
("publisher", ns, book.Publisher);

writer.WriteElementString
("review", ns, book.Review);

writer.WriteElementString
("scanDate", ns, book.ScanDate.ToString());

writer.WriteElementString
("title", ns, book.Title);

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES230

522xCH06.qxd 8/31/05 3:29 PM Page 230

writer.WriteElementString
("weight", ns, book.Weight.ToString());

writer.WriteStartElement
("authors", ns);

foreach (string s in book.Authors)
writer.WriteElementString("author", ns, s);

writer.WriteEndElement();
writer.WriteStartElement("subjects", ns);
foreach (string s in book.Subjects)

writer.WriteElementString("subject", ns, s);
writer.WriteEndElement();

writer.WriteStartElement("image", ns);
ms = new MemoryStream();
book.BookImage.Save(ms, ImageFormat.Jpeg);
int size = Convert.ToInt32(ms.Length);
writer.WriteAttributeString("size", "", size.ToString());

ms.Position = 0;
writer.WriteBase64(ms.ToArray(), 0, size);
writer.WriteEndElement();

writer.WriteEndElement();
}
writer.WriteEndElement();

}

The code in bold is where the real customization to how this type will appear on the wire
has been added. This is where you create an image element, add the image size as an attrib-
ute, and then use Base 64 encoding to pack the binary data for the image into the XML as text
content of the element.

The last method is the ReadXml method, which, of course, must take the stream off the
wire and rehydrate a proper instance of BookCollection:

public void ReadXml(System.Xml.XmlReader reader)
{

BookCollection bc = new BookCollection();
BookDetails book;
BinaryFormatter bf = new BinaryFormatter();
string val;

reader.Read();
reader.ReadStartElement("books");
while (reader.NodeType != XmlNodeType.EndElement)
{

book = new BookDetails();
reader.ReadStartElement("book", ns);

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 231

522xCH06.qxd 8/31/05 3:29 PM Page 231

book.BookID =
Convert.ToInt32(reader.ReadElementContentAsInt("bookID", ns));

book.Binding =
reader.ReadElementString("binding", ns);

book.ISBN =
reader.ReadElementString("isbn", ns);

book.ListPrice =
reader.ReadElementContentAsDouble("listPrice", ns);

book.LowestPrice =
reader.ReadElementContentAsDouble("lowestPrice", ns);

book.PageCount =
reader.ReadElementContentAsInt("pageCount", ns);

val =
reader.ReadElementContentAsString("publicationDate", ns);

book.PublicationDate =
DateTime.Parse(val);

book.Publisher =
reader.ReadElementString("publisher", ns);

book.Review =
reader.ReadElementString("review", ns);

val =
reader.ReadElementContentAsString("scanDate", ns);

book.ScanDate =
DateTime.Parse(val);

book.Title =
reader.ReadElementString("title", ns);

book.Weight =
reader.ReadElementContentAsDouble("weight", ns);

reader.ReadStartElement("authors");
while (reader.NodeType != XmlNodeType.EndElement)
{

book.Authors.Add
(reader.ReadElementContentAsString("author", ns));

reader.MoveToContent();
}
reader.Read();
reader.ReadStartElement("subjects");
while (reader.NodeType != XmlNodeType.EndElement)
{

book.Subjects.Add
(reader.ReadElementContentAsString("subject", ns));

reader.MoveToContent();
}
reader.Read();

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES232

522xCH06.qxd 8/31/05 3:29 PM Page 232

int size = Convert.ToInt32(reader.GetAttribute("size"));
byte[] bytes = new byte[size];
reader.ReadElementContentAsBase64(bytes, 0, size);
book.BookImage = new Bitmap(new MemoryStream(bytes));
reader.Read();
reader.MoveToContent();
bc.Add(book);

}
}

Once again, the customization is in bold. The bold code is where you pull the Base 64
encoded string out of the element, and reconstitute the Bitmap, assigning it back to the
BookImage property for the current instance. The rest of the code, while still custom, performs
work that any generated proxy would do by default with the type.

This obviously requires type affinity on the server and client, necessitating the need for
another SchemaImporterExtension. It will be very similar to the one you looked at in the last
section. As a Web Service proxy is generated, you’ll swap out the proxy type information with
a full-blown instance of BookCollection:

class LibraryImporterExtension : SchemaImporterExtension
{

public override string ImportSchemaType(string name,
string ns,
XmlSchemaObject context,
XmlSchemas schemas,
XmlSchemaImporter importer,
CodeCompileUnit compileUnit,
CodeNamespace mainNamespace,
CodeGenerationOptions options,
CodeDomProvider codeProvider)

{
System.Diagnostics.EventLog.CreateEventSource("Library", "Application");
System.Diagnostics.EventLog.WriteEntry("Library", "Fired:" + name);
if (name.Equals("BookCollection"))
{

compileUnit.ReferencedAssemblies.Add("Library.dll");
mainNamespace.Imports.Add(new CodeNamespaceImport("Library"));
return "Library.BookCollection";

}
else

return null;
}

}

The assembly containing the definition of BookDetails, BookCollection, and LibraryIm-
porterExtension must be installed on the client machine. You must also modify the machine
configuration file to create the strong type affinity during the proxy generation:

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 233

522xCH06.qxd 8/31/05 3:29 PM Page 233

<system.xml.serialization>
<schemaImporterExtensions>
<add name="Library" type="Library.LibraryImporterExtension, Library, Version=...

</schemaImporterExtensions>
</system.xml.serialization>

Now, when the client adds a Web Reference to a service returning an instance of
BookCollection, you use your own type to control the collection’s markup on the wire, and
have type affinity at the client, with a fully restored instance of the book cover stored in the
BookImage property.

Other Enhancements
There are a handful of other enhancements to the ASMX infrastructure in ASP.NET 2.0. These
include an attribute-based approach to enforcing conformance with the WS-I Basic Profile, a
simplification of the asynchronous invocation model, and the ability to use a Windows Forms
application as a host for receiving Web Service requests, which is convenient when you need a
call back infrastructure, or for an event-based one-way messaging scenario. Consult the SDK
docs for more details on these features.

WS-I and WSE
The need to solve problems of interoperability across platforms doesn’t stop once you agree
on public specifications and create them. Even with industry-wide adoption of the WS-I
group’s Basic Profile (as we’ve discussed), major hurdles need to be overcome to facilitate
compatibility across languages, platforms, and Enterprises. Many common business prob-
lems still loom. The obvious ones are security and transaction management. But there are
many other problems. How can binary information be packed away into an XML document in
a standard format? How can a message be routed across several network endpoints? Do you
always need to write code to determine Web Service behavior?

The WS-* specifications solve these requirements in a standard manner. These specifica-
tions dictate common SOAP headers you can use to address these different concerns. By
standardizing on the structure of the SOAP header for a given problem, different companies
can exchange security information in a common wire format, while also processing these
credentials against their back-end user data stores in proprietary ways. In a secure system,
someone is always going to have to send you credentials for access to your system. The ques-
tion becomes how does that information get sent? What exactly do you expect it to look like?
Without a specification for this and other common problems, you’d have “interoperability,”
in theory, but everyone would have to reinvent the wheel (and do some custom coding) to
accommodate the security descriptors of different partners, or divisions, or departments.

Another benefit of a standards-based approach to solving these problems is that you can
leverage a vendor-supplied implementation of the specification. This saves you from writing
any custom code at all. You can just extend your SOAP Stack with a package from a vendor
that provides the code for the requirements you need. This is where Microsoft’s Web Service
Enhancements (WSE) package comes into the picture.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES234

522xCH06.qxd 8/31/05 3:29 PM Page 234

WSE is an add-on package for the Windows operating system. It’s available as a free down-
load from Microsoft. The group that provides WSE isn’t tied to any product or release schedule,
so, for example, it doesn’t have to wait until the next version of Visual Studio ships to provide a
new version of its functionality. This is intentional, so that the group can respond to and pro-
vide implementations of new specifications as they become available from the various
standards bodies involved in inventing these things. WSE 3.0 will contain features specifically
designed to leverage version 2.0 of the .NET Framework. See http://msdn.microsoft.com/
webservices/building/wse for the most current version information.

Operational Requirements
We’ll take a quick look at some of the WS-* specifications that are met by the current version of
WSE, and examine a little bit about how it fits into the ASMX SOAP Stack. Keep in mind that as
these standards evolve, WSE will provide new and current implementations.

Most of the implementations of these specifications are provided as Pre and Post request
processors that extend the default ASMX pipeline. This concept is very similar to the concepts
we discussed in Chapter 2 about the ASP.NET pipeline. The big difference in the case of Web
Services (see Figure 6-21) is that request processing needs to be extended on both the server
(similar to ASP.NET) and on the client (no equivalent in ASP.NET). Requests for Web Forms
come in from web browsers. Requests for services come in from Web Service proxies.

Figure 6-21. Extensions to the Web Service processing pipeline

This doesn’t mean that the implementations provided by WSE are .NET-specific. On the
contrary, they’re more interoperable than any custom solution would be, as they’re based on
public specifications that other vendors can implement for other platforms. This means that
WS-Security can be used from a .NET client to a J2EE server, or it can be used from a J2EE
client and a .NET Server (see Figure 6-22).

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 235

522xCH06.qxd 8/31/05 3:29 PM Page 235

Figure 6-22. WS-* Interoperability

We’ve listed some of the specifications implemented by WSE 3 in Table 6-3.

Table 6-3. Specifications Implemented by the Microsoft Web Service Enhancements

Specification Meaning in Life

WS-Security Allows you to encrypt and sign SOAP messages as well as bind
security tokens to the message.

WS-SecureConnection Extends WS-Security with the capability for a caller and service to
establish a secure connection using keys.

WS-Trust Extends WS-Security with the capability to verify trust between the
caller and service.

WS-Policy Provides a way for the caller and service to agree upon how SOAP
messages must be crafted to be accepted.

WS-Addressing Provides a way to forward and intercept SOAP messages.

WS-Referral Provides a way to forward to a new XML Web service while
preserving the current message.

WS-Attachment/DIME A new message encoding format that allows SOAP messages to
(Direct Internet Message include additional attachments (for example, binary files).
Encapsulation)

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES236

522xCH06.qxd 8/31/05 3:29 PM Page 236

A discussion of all of these is beyond the scope of this chapter. Here, we present a high-
level overview, summarizing where WSE fits into the “Big Picture.” We’ll also take a look at an
implementation of WS-Security in action.

Once WSE 3.0 is installed, from within Visual Studio .NET 2005, you can configure a
project to leverage the functionality by right-clicking on the project and choosing WSE
Settings 3.0… (see Figure 6-23).

Figure 6-23. Configuring WSE support from within Visual Studio .NET 2005

Selecting this option brings up a dialog with many tabs. Support for WSE is enabled when
you select the check boxes (see Figure 6-24).

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 237

522xCH06.qxd 8/31/05 3:29 PM Page 237

Figure 6-24. Enabling WSE within a project

When this dialog is dispatched, Visual Studio adds a reference to the WSE 3.0 assembly,
Microsoft.Web.Services3. Modifications will also be made to your Web.Config file to enable
support for the SOAP Extensions where the WS-* specifications are implemented:

<configSections>
<section name="microsoft.web.services3"

type="Microsoft.Web.Services3.Configuration.WebServicesConfiguration,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</configSections>
<system.web>
<webServices>
<soapExtensionImporterTypes>
<add type="WseSettings.WseExtensionImporter, WseSettings3, Version=3.0.0.0,

Culture=neutral, PublicKeyToken=97707682dce9a66b" />
</soapExtensionImporterTypes>
<soapServerProtocolFactory type="Microsoft.Web.Services3.WseProtocolFactory,

Microsoft.Web.Services3, Version=3.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

</webServices>

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES238

522xCH06.qxd 8/31/05 3:29 PM Page 238

<compilation>
<assemblies>
<add assembly="Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,

PublicKeyToken=31BF3856AD364E35" />
</assemblies>

</compilation>
</system.web>
<microsoft.web.services3>
<tokenIssuer>
<statefulSecurityContextToken enabled="true" />

</tokenIssuer>
</microsoft.web.services3>

Each specification that’s supported by WSE 3.0 has corresponding types exposed in the
Microsoft.Web.Services3 namespace that allow you to control the implementation program-
matically. Table 6-4 provides a summary of some of the types found in the assembly.

Table 6-4. Summary of Namespaces in the Microsoft.Web.Services3 Assembly

Namespace Meaning in Life

Microsoft.Web.Service3 This root namespace defines core types to interact
with the incoming and outgoing WSE-enabled
request/response and SOAP payload.

Microsoft.Web.Service3.Addressing Types that implement the WS-Addressing
specification.

Microsoft.Web.Service3.Dime Types that implement the DIME specification.

Microsoft.Web.Service3.Messaging Types that implement the WS-Referral specification.

Microsoft.Web.Service3.Security Types that define the core WS-Security types. There
are several subnamespaces here that cover specific
security models.

Table 6-4 is just a summary of the namespaces in the assembly. There are others that
relate to other parts of the WSE 3.0 implementation.

WSE 3.0 actually contains an implementation of a complete SOAP Stack. This stack can
be used in concert with the ASMX SOAP Stack exposed by the ASP.NET Framework, or it
can be used on its own. The WSE SOAP Stack has an option to listen to a TCP/IP port for
incoming SOAP messages. When you use this option, IIS isn’t even required. With WSE 3.0,
it’s also much easier to host the ASMX stack in your own process, removing the need to rely
on IIS.

When used in concert with the ASMX SOAP Stack running under IIS, WSE intercepts all
incoming and outgoing SOAP messages. This is where the SOAP extensions added in the
configuration file step in and create or examine the SOAP headers that are needed for the
specification’s required functionality (see Figure 6-25). There’s also a client component to the
WSE functionality. When WSE support is enabled in a project, all Web Service proxies that are
generated when you add a Web Reference will be modified and extended to account for the
WSE functionality.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 239

522xCH06.qxd 8/31/05 3:29 PM Page 239

Figure 6-25. Message interception as provided by the WSE infrastructure

As incoming messages are intercepted on the server, WSE moves the SOAP headers off
the wire and creates instances of corresponding objects as defined in the WSE name-spaces.
These objects are added to, and made available to, the rest of the request processing via
the SoapContext object. A reference to the current SOAP context can be obtained from
anywhere in the request processing pipeline by referencing the Current property of the
RequestSoapContext:

SoapContext myCtx = RequestSoapContext.Current;

This concept is very similar to the HttpContext available in the ASP.NET request process-
ing pipeline. Details of the request (SOAP headers in this case) are made available as instances
of managed types. Another similarity to ASP.NET is the notion of a request and a response.
Again, the big difference is that this can be used from both the client and the server, instead of
just the server. Request context can be used to modify requests on the client and to examine
details of the request on the server. It can be used to modify the results that are going back in a
message to the client.

On the client-side of the equation, you must also enable support for WSE 3.0 via the same
dialog available from the context menu of the project. Once it’s enabled, adding a Web Refer-
ence results in the generation of two proxies: the standard .NET proxy and a WSE-enabled
proxy. The WSE-enabled proxy will be named after the .NET proxy, but will have a wse suffix
tacked on. Using this proxy, clients will be able to obtain a reference to the SOAP context:

using System;
using WSEWebServiceClient.localhost;
using Microsoft.Web.Services3;

namespace WSEWebServiceClient
{
class ClientApp
{
static void Main(string[] args)
{

SampleWebServiceWse wsWSE = new SampleWebServiceWse();

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES240

522xCH06.qxd 8/31/05 3:29 PM Page 240

// Get current SOAP context to augment the response.
SoapContext ctx = wsWSE.RequestSoapContext;

}
}

}

SOAP context is central to processing of the WSE functionality. This context contains
properties that reference the different objects providing the implementation of a WSE specifi-
cation. This context is leveraged from both the client and the server when the SOAP Stack
extensions are processing WSE-specific headers. Each specification implemented by WSE has
a corresponding object model available and is exposed by this context. The client uses this
context to create the SOAP headers to send to the server with the request message, and the
server uses this object model to process the headers once they arrive at the server.

Let’s take a look at how this is done, specifically by examining the WS-Security imple-
mentation.

WS-Security
The WS-Security specification provides a number of standard ways to use SOAP headers to
pass authentication and authorization information. These range from simple user name and
password tokens to X-509 certificates. The specification also spells out how messages can be
signed using digital signatures, and how portions of a SOAP message can be encrypted on
the wire.

The header of a SOAP message leveraging WS-Security may include any of a number of
elements to describe details of the specification’s functionality that it’s leveraging. The root
element of a WS-Security header is named <Security>. It has a number of allowable child
elements, listed in Table 6-5.

Table 6-5. SOAP Headers Defined in the WS-Security Specification as Children of the Security
Element

WS-Security SOAP Header Element Meaning in Life

<UsernameToken> Contains user name/password data for authentication
purposes.

<BinarySecurityToken> Contains binary security data such as X-509 certificates.

<KeyInfo> Contains key data derived from an XML signature.

<Signature> Contains signing details of a SOAP message.

<ReferenceList> Contains data that references the encrypted elements of a
SOAP message.

<EncryptedKey> Contains data for any encrypted keys.

<EncryptedData> Contains any additional encrypted data.

<Timestamp> Contains timestamp data. This can help prevent a hacker
from attempting to reuse outdated messages for evil-
doings.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 241

522xCH06.qxd 8/31/05 3:29 PM Page 241

Using WS-Security requires coding on both the client and the server. The server is expect-
ing authentication information to be packed into the SOAP header. The client has to take steps
to create this header with the user’s credentials. The server needs to validate these credentials
against a user data store before executing the service request.

On the server, a SOAP extension runs to process the SOAP header when the message
arrives with the authentication information packed into the Security element. This is done
by an instance of a class deriving from SecurityTokenManager. There is an implementation of
this class that ships with WSE for authenticating the user information against the Windows
domain the service is running within. To use your own user data store, you’ll need to create
an instance of a type that inherits from UsernameTokenManager and looks the credentials up
against your own user database. UserNameTokenManager derives from SecurityTokenManager.

You can do the work of authentication by overriding the virtual AuthenticateToken
method on the base class. This method gets passed the user name that the client sent, and
your job in implementing this method is to look up the user’s password and send it back as a
return value of the method call. The WSE code then compares the passwords and decides if
the caller should be authenticated or not:

using System;
using System.Data;
using System.Data.SqlClient;
using Microsoft.Web.Services3;
using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Security.Tokens;

public class CustomAuthManager : UsernameTokenManager
{
private string ConnStr = "server=.;database=...";
protected override string AuthenticateToken(UsernameToken token)
{
string password = "";

// Extract user name from the token.
string username = token.Username;
SqlCommand cm = new SqlCommand

("select Password from UserTable WHERE UserName = @UserName",
new SqlConnection(ConnStr));

cm.Parameters.Add("@UserName", SqlDbType.VarChar, 30).Value = username;
cm.Connection.Open();
Object o = cm.ExecuteScalar();
cm.Connection.Close();

if (o != null)
password = o.ToString();

return password;
}

}

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES242

522xCH06.qxd 8/31/05 3:29 PM Page 242

Once this class is created and compiled, it must be registered as a security token manager
using the WSE configuration utility. Let’s say, for example, that your CustomAuthManager class is
defined in the WSECode namespace, and lives in an assembly named WSECode. You would deploy
this assembly into the bin directory of your web application and fill out the Security tab in the
WSE configuration dialog to point to your custom CustomAuthManager type (see Figure 6-26).

Figure 6-26. The Security tab on the WSE configuration dialog

As you may have already suspected, this dialog is nothing more than a friendly editor that
makes entries in the Web.Config (or app.config) file of the project you’re using it from. Here’s
the entry in the Web.Config made by the dialog displayed in Figure 6-26.

<microsoft.web.services3>
<tokenIssuer>
<statefulSecurityContextToken enabled="true" />

</tokenIssuer>
<security>
<securityTokenManager>
<add type="WSECode.CustomAuthManager, WSECode"

namespace="http://docs.oasis-open.org/wss/2004/01/..."
localName="wsse:UsernameToken" />

</securityTokenManager>
</security>

</microsoft.web.services3>

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 243

522xCH06.qxd 8/31/05 3:29 PM Page 243

The type attribute lists your fully qualified type name, followed by the assembly name.
The namespace declaration and the qname attribute must be listed exactly as shown.

The server is now correctly wired to authenticate requests coming into this application
using a WS-Security-compliant implementation that leverages your own custom user data
store. Any request for Web Services coming into this application must now include the appro-
priate SOAP security header. You can do this on the client using the custom WSE proxy that’s
generated when a Web Reference is added to your service:

static void Main(string[] args)
{
SampleWebServiceWse w = new SampleWebServiceWse();

// Create a UsernameToken
UsernameToken token = new UsernameToken("atroelsen", "abc",

PasswordOption.SendPlainText);

// Add the SecurityToken to the Request Context
w.RequestSoapContext.Security.Tokens.Add(token);

try
{
BookDetails book = w.GetBook(101);
Console.WriteLine(book.Title);

}
catch(Exception ex)
{
Console.WriteLine(ex.Message);

}
}

After creating an instance of your WSE proxy, you use the UsernameToken object provided
by the WSE object model. Its constructor accepts a user name, a password, and an encryption
option for the password as arguments. After creating this instance, you instruct the proxy to
create a SOAP security header and add it to the request by adding the instance of UsernameToken
to the collection of tokens exposed by the SOAP security context.

Everything else flows from here. When you invoke the service, the security token is added
to the SOAP header as a WS-Security-compliant element. When the request arrives at the
server, the user name is handed off to your custom authentication type, and you return the
password for the user name passed to you. If someone passes you invalid credentials, the
service operation never executes, and the caller receives a SOAP Fault instead.

In this example you instructed the proxy to send the password as plain text. You could
also have it encrypted on the wire by using the SendHashed value of the PasswordOption enum.

You can see in this example that by leveraging the SOAP extensions on the server and the
custom WSE proxy on the client, you can easily pass WS-* compliant headers and process
them when servicing requests. The other WSE features are exposed via similar models of the
other objects in the WSE library. While we’re out of bandwidth for examining them here, you
can consult the WSE documentation for details on using them.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES244

522xCH06.qxd 8/31/05 3:29 PM Page 244

Summary
Service orientation in the .NET Framework as exposed via the ASMX call stack lends a lot of
power and flexibility to your application design and development process. Web Services, as
they ship with the .NET Framework, create a seamless, attribute-based model for exposing
methods on your classes as service operations. You can use the WSDL generation features
of ASMX, or you can take control of our WSDL and its underlying XML Schema and have a
server-side interface defining the service generated for you, and then simply create a class
that implements the interface.

Version 2.0 adds many new features to the ASMX call stack, including the ability to control
the XML used to represent your types in a SOAP message, and customize the types created
during proxy generation.

When you need greater interoperability you can extend the features added to the ASMX
stack using Web Services enhancements, which provide implementations of many specifica-
tions in the WS-* family of Web Service architecture. This add-on package of technology
affects the behavior of both the server-side processing pipeline and the client-side proxy
generation.

CHAPTER 6 ■ SOA IN .NET: WEB SERVICES 245

522xCH06.qxd 8/31/05 3:29 PM Page 245

522xCH06.qxd 8/31/05 3:29 PM Page 246

Enterprise Services

The hosting environment that was originally shipped as Microsoft Transaction Server (MTS)
has a lot of names nowadays. Some call it Component Services. Some call it Enterprise Ser-
vices. Some prefer the brevity of just COM+.

Whatever you call it, Component Services is the original aspect-oriented application
server for Windows. Support for Component Services has been extended into the .NET Frame-
work, so even though it’s still a COM-based technology, you can create types in .NET that can
be configured and hosted in the COM+ environment.

In this chapter we’ll take a look at the features provided by this hosting environment, and
then examine what you do exactly to create .NET types that can benefit from this feature set.

Component Services
Component Services provides a hosting environment and configuration registry for exposing
software assets as services. Originally called Microsoft Transaction Server, these services were
designed to be exposed in an RPC manner via DCOM. Over time, it became as common (if not
more common) to leverage configured components from Internet Information Server (IIS).
This was the standard architecture for ASP-based applications. Creating COM types and host-
ing them as configured services in COM+ provided many benefits, including compiled code
(as opposed to interpreted script) and a type system (as opposed to one type: the VBScript
Variant). Figure 7-1 shows the original common architectures.

Many powerful features of Component Services worth leveraging from managed code still
exist. Support for running managed code within the COM environment of COM+ is accom-
plished via highly specialized interoperability code that has been added to the Component
Services infrastructure. Because of this, not just any .NET type can be configured and hosted
in this environment. Not only do you need to make special considerations for the design of
these types, but the types must also inherit from a special base class and adhere to special
run-time behaviors.

247

C H A P T E R 7

■ ■ ■

522xCH07.qxd 8/31/05 3:30 PM Page 247

Figure 7-1. The original common architectures for Component Services

We’ll take a look at how support for Component Services is grafted onto the .NET Frame-
work over the course of the chapter. First, let’s take a quick look at why you would be tempted
to create configured components in the first place. Table 7-1 lists some of the features of
COM+.

Table 7-1. Features You Can Leverage from the Components Services Hosting Environment

COM+ Feature Meaning in Life

Thread Management COM+ allocates thread pools to manage higher loads and service
many requests concurrently. Combined with Just-in-Time
Activation (JITA) and object pools, COM+ can greatly reduce the
overhead of object instantiation and destruction, and can effectively
manage object lifetimes in a highly scalable environment.

Transaction Management Leveraging the features of the Microsoft Distributed Transaction
Coordinator (MSDTC), types can be made to have their work
participate in transactions declaratively. That is, transactional
behavior becomes an aspect of the type, in many cases eliminating
the need for special considerations while coding. Transactions can
also be managed across disparate servers, even across different
database vendors.

Queued Components This feature set creates a perfect layer of abstraction between a
developer and Message Queuing (MSMQ). Method calls become
messages, benefiting your code by making your method calls
asynchronous, which provides peak load balancing and guaranteed
delivery. All of the details of creating a message, putting it in a
queue, and processing it on the receiver are managed by the hosting
environment.

Security Applications, classes, and even methods can be declared as requir-
ing the executing user be in a predefined role. This is declarative
security, eliminating the need to modify imperative code to meet
your authorization requirements.

CHAPTER 7 ■ ENTERPRISE SERVICES248

522xCH07.qxd 8/31/05 3:30 PM Page 248

These services are all provided with the concept of a call context. Objects that share run-
time requirements will share context; objects with different run-time requirements will be
created in different contexts. Contexts provide an interception boundary for the hosting envi-
ronment. As code from a method in type A calls into code of a method in type B, execution
does not immediately move from A to B. COM+ code intercepts the call, and additional work is
done before execution moves to the code in type B. This interception boundary does things
like enable COM+ to retrieve an object of type B from the pool to service the request. When the
method call is done, the context interception code is fired again before control returns to the
instance of A. COM+ can, at this point, put the object back into the pool, as would be the case
with JITA, for example.

While contexts are invisible to the developer consuming these services, the presence of
contexts in COM+ is ubiquitous; they are the mechanism via which all of its services are
implemented. They also provide an additional layer of overhead, which you should always
consider before you make the decision to move to COM+. We’ll discuss some of these consid-
erations in detail later in the chapter. First, let’s take a look at what you have to do specifically
to your managed code so that it will play nicely within the Component Services environment.

COM+ in .NET
Before we dig into the .NET-specific bits, let’s take a minute to look at some terms listed in
Table 7-2.

Table 7-2. Names and Titles Used to Talk about COM+

Term Meaning in Life

Microsoft Transaction An application hosting environment that provides services to
Server (MTS) components via aspects, determining the behavior of the components

with declarations rather than requiring imperative code. This is the
predecessor to COM+.

COM+ The name given to the environment for hosting configured
components. COM+ has some new features that were not present in
MTS. It could have been called “MTS version 2.0”, but Microsoft
renamed it COM+ instead.

Component Another name for COM+. This is the name given to the Microsoft
Services Management Console (MMC) snap-in used for creating and configuring

COM+ applications, and so has become another name for COM+.

Configured When you register a class into COM+, it is said to be a configured
Component component. The act of installing it into COM+ is the act of configuring

it. This is true for COM types as well as .NET types, although you use
different means to configure each of these types of components.

Enterprise Services The set of features baked into the .NET Framework that enable you to
create managed types that can live in COM+ (aka that can be
configured). The namespace of the types supporting these features is
System.EnterpriseServices, and so the term is frequently used to
describe managed COM+ components.

Serviced Component This is the name of a type built into the .NET Framework Class Library
(the full name is System.EnterpriseServices.ServicedComponent). It is,
therefore, used frequently to refer to a specific managed type designed
to be hosted under Component Services (aka “Is the CustomerService
object a Serviced Component?”).

CHAPTER 7 ■ ENTERPRISE SERVICES 249

522xCH07.qxd 8/31/05 3:30 PM Page 249

The managed functionality of COM+ is exposed in the .NET Framework via the assembly
named System.EnterprisesServices (which lives in System.EnterprisesServices.dll). This
assembly is part of the Framework class library, but you still have to explicitly add a reference
to it from the project you’ll be creating configured components in (see Figure 7-2).

Figure 7-2. Adding a reference to System.EnterpriseServices

This will make the ServicedComponent class available to your class library project. All man-
aged components that you want to configure to run under COM+ must use this type as their
base class. Here’s a simple implementation of a Serviced Component. (You can find this type
in the Serviced project of the Code07 solution.)

// All the important enterprise service types are contained here.
using System.EnterpriseServices;

namespace CarLibrary
{

// Set the transaction mode to "supported"
[Transaction(TransactionOption.Supported)]
public class CarService : ServicedComponent
{

// If method raises exception, tx is automatically aborted.
[AutoComplete(true)]
public void InsertCar(DataSet carData)
{

// Insert the car data into the database
}

}
}

CHAPTER 7 ■ ENTERPRISE SERVICES250

522xCH07.qxd 8/31/05 3:30 PM Page 250

This type will now be hosted in Component Services, by virtue of the fact that it inherits
from the ServicedComponent base class. It’s configured to leverage transactions within Compo-
nent Services. This is done via attributes applied to the type at the class and method level:
Transaction and AutoComplete. These attributes determine the default configuration of the
component when it’s registered into COM+. We’ll cover these attributes in detail as we examine
specific functional areas of Component Services, for now just realize the default configured
behavior of Serviced Components is always determined declaratively by .NET attributes (see
Figure 7-3).

Figure 7-3. The configuration of the CarService type as determined by its attributes

The ServicedComponent base class deals with the underlying details of hosting a managed
component in a COM environment. This is interoperability between .NET and COM, but it is
not the same type of “COM Interop” you’re used to when, for example, you use the Office
interop assemblies or your own COM proxy created with tlbimp.exe. This is more specialized
interop code, designed and optimized specifically for interacting with Component Services.
While its performance is better than standard COM Interop, it’s still a layer of abstraction,
which will invariably cause a performance hit you must consider before you decide to adopt
Enterprise Services. Keep in mind that when your Serviced Component is registered in COM+,
a type library will be generated and the registry will be populated with information about it.
Although this happens automatically behind the scenes, it’s important to realize you have
these dependencies on traditional COM infrastructure.

Usually, the features that are needed from Component Services will offset the perform-
ance hit your application will incur by leveraging Enterprise Services. Perhaps you have
scalability concerns as traffic increases to your application, and you know object pooling will
help address it. Remember, many of the nonfunctional requirements you have to meet in your
applications need to be done at the expense of performance. For scalability, moving your code

CHAPTER 7 ■ ENTERPRISE SERVICES 251

522xCH07.qxd 8/31/05 3:30 PM Page 251

into Component Services by adopting Enterprise Services will make the application more
scalable so it can deal with a higher number of concurrent users, but the experience of a single
user will not be as fast.

Frequently it’s the distributed transaction features that drive the adoption of Enterprise
Services. If your application has complex transactional requirements, the management and
services provided by COM+ will certainly justify the loss in performance incurred by using this
COM environment. There’s likely no way you could code this yourself and have it perform any
better, much less be as reliable (or even work, for that matter).

You can determine most of the details of configuration under COM+ using .NET attrib-
utes to decorate your Serviced Components. There are some instances, though, when you
need write code to interact with the hosting environment. For this interaction, there is the
ContextUtil class, and its stable of static members. A partial list of them is shown in Table 7-3.

Table 7-3. Static Members of the ContextUtil Type Used for Interacting with the COM+ Hosting
Environment

Static Member of ContextUtil Meaning in Life

DeactivateOnReturn Set to true when using JITA to return the instance to the pool
at the end of a method call.

EnableCommit, DisableCommit Enables your component to vote on the outcome of a
transaction.

MyTransactionVote Another way to vote on the outcome of a transaction.

GetNamedProperty Access to the Shared Property Manager.
SetNamedProperty

IsSecurityEnabled Boolean indicated if security is in use for the current call
context.

IsCallerInRole Checks to see if a user is in a specified COM+ role.

IsInTransaction Boolean indicating whether the work being done is transac-
tional or not.

We’ll take a look at more details of these ContextUtil members as they’re relevant in the
discussion of COM+ features that follows. Serviced Components must also always be strongly
named.

COM+ Applications
Classes are deployed into COM+ using the abstraction of an application. A COM+ application
can be thought of as simply an aggregation of configured classes that share run-time require-
ments. Once configured within COM+, these classes are also called components.

Components are aggregations of interfaces, and interfaces are aggregations of methods.
Aspects of the run-time behavior that can be controlled at the application level will be shared
across all components, all the way down to the method level. Some aspects can be added or
overridden at each level in the hierarchy.

The most important configuration aspects at the application level are security and activa-
tion. Security controls what identity the components run under. When deciding what compo-
nents should be grouped in an application, consider that cross-application calls can cross a
security boundary, so you should logically group them for optimum performance.

CHAPTER 7 ■ ENTERPRISE SERVICES252

522xCH07.qxd 8/31/05 3:30 PM Page 252

Activation is the other prominent aspect. This aspect controls whether components are
created in their own process, or whether they are created in the process of their caller.
Applications created in their own process are called server applications, and while calling
these components incurs the performance hit of crossing a boundary, you also gain the bene-
fits of isolation. This can affect pool allocation and the identity of the process.

Applications created in the process of the caller are called library applications. They lose
the capability to specify their run-time identity, as they will run under the identity of their
caller. They will also have pools created for each application from which they’re invoked (see
Chapter 8 for more details of library versus server applications).

When you’re creating Serviced Components, you can control these aspects of a COM+
application using assembly level attributes (these attributes can be found in AssemblyInfo.cs
in the Serviced project).

[assembly: ApplicationName("Serviced")]
[assembly: ApplicationAccessControl(false)]
[assembly: ApplicationActivation(ActivationOption.Library)]

These attributes are then read via reflection and applied when the component is being
configured. We’ll examine configuration more closely after we look at the specific features you
can leverage from within Component Services.

Just-In-Time Activation
This feature (abbreviated as JITA), enables an instance of an object to survive for the span of
only a single method call. Even if a consumer of this type holds a reference to an instance of it
for a long period of time, instances will only be created when the consumer actually calls a
method.

JITA is configured on a class using the JustInTimeActivation attribute, as in the following
class declaration.

[JustInTimeActivation(true)]
public class JITA : ServicedComponent
{

//Class Implementation
}

The only other thing necessary to have COM+ destroy the object after a call is to apply the
DeactivateOnReturn attribute. To illustrate the effect JITA has on object lifetimes, examine it
via this simple service method. (This class can be found in the Serviced project of the Code07
solution.)

//[JustInTimeActivation(true)]
public class JITA : ServicedComponent
{

private DateTime m_CreateStamp;
public JITA()
{

m_CreateStamp = DateTime.Now();
}

CHAPTER 7 ■ ENTERPRISE SERVICES 253

522xCH07.qxd 8/31/05 3:30 PM Page 253

public DateTime GetCreateStamp()
{

//ContextUtil.DeactivateOnReturn = true;
return m_CreateStamp;

}
}

Notice the JITA specific code is commented out. Now exercise this code with the following
loop, and examine the output it generates. (You can find test code in the TestHarness project
of the Code07 solution.)

static void Main(string[] args)
{

JITA j = new JITA();

for (int i = 0; i < 5; i++)
{

Console.WriteLine(j.GetCreateStamp());
Thread.Sleep(3000);

}
Console.ReadLine();

}

With the JITA attribute commented out, the dates on the output all match (see Figure 7-4).
This makes sense, because the consumer is holding a reference to the same instance across all
calls, and so the object is only created a single time.

Figure 7-4. The timestamp matches across all method calls without JITA.

Look at what happens if you remove the comments around the JITA-specific code and
rerun the client (see Figure 7-5).

Now, obviously the churn involved in object creation and destruction will, in most cases,
consume the benefit gained by not keeping extraneous instances around between a client’s
method calls. For this reason, JITA usually makes the most sense when it’s combined with
object pooling. We’ll take a look at object pooling in the next section.

CHAPTER 7 ■ ENTERPRISE SERVICES254

522xCH07.qxd 8/31/05 3:30 PM Page 254

Figure 7-5. With JITA, each iteration of the loop is actually calling a new instance of the
service object.

The goal of JITA is to optimize the efficiency of stateless components. Since classes
designed to be used within COM+ should generally be stateless, JITA has broad applicability in
this environment. Enabling this feature removes control of the object lifetime from the client,
and puts the server component in control of its own lifetime. This is going to increase scalabil-
ity if you have clients that are holding references to your components, even when they should
be creating instances late and releasing them as soon as possible (a best practice in distrib-
uted, stateless programming environments).

It could be argued then, that if your client is stateless (like it is when the “client” is an
ASP.NET web application), JITA is not needed because the lifetime will only ever last as long as
the lifetime of the Web Form holding the reference. This is theoretically true, but even if your
client is stateless, enabling JITA can guard against bad coding practices, like putting a refer-
ence to a COM+ component into the ASP.NET web cache. In larger environments where you
may not necessarily be in a position to review the code that’s consuming your components,
JITA can still be worthwhile.

The only time JITA should not be considered is when your component is maintaining
state information across method calls. When this is necessary, the lifetime of the component
must be managed by the client, and JITA-enabling this component will cause the state infor-
mation to be lost.

We’ll be looking at COM+ transactions in a following section. It’s worth noting that
enabling transactions on your type automatically causes it to be JITA-enabled.

Object Pooling
A pool of objects increases the scalability of an application by avoiding expensive object
instantiation and destruction overhead, and it is able to service the requests of many times
more clients than can be served with an instance per client. Coupling pools with JITA can dra-
matically increase the load your application can withstand.

A pool is nothing more than a number of active instances of a type that COM+ maintains
in memory, and then dynamically allocates as clients request instances of the type. With JITA
configured, these allocations occur on a per method call basis. When the method is finished
executing, the instance is returned to the pool to service the next request. Not only are
instances of the type more readily available, but also precious resources are saved by not
instantiating an instance per client reference, and by avoiding the expensive process of
allocating additional blocks of memory to hold the instance.

CHAPTER 7 ■ ENTERPRISE SERVICES 255

522xCH07.qxd 8/31/05 3:30 PM Page 255

For this to work, the object must be stateless. Any field-level information designed to be
maintained across method calls will not necessarily be maintained. These types must be
entirely autonomous at the method level. They need to accept all of the parameters required
to do their work, do the work within the method call, and release any resources used to do the
work before returning results to the caller.

Pooling behavior is controlled with the ObjectPooling attribute, seen as follows. (You can
find this class in the Serviced project of the Code07 solution.)

[ObjectPooling(5, 500)]
public class Poolable : ServicedComponent
{

public DataSet GetSomeData(string sql)
{

SqlConnection cn = new SqlConnection(ConnStr);
SqlCommand cm = new SqlCommand(sql, cn);
DataSet ds = new DataSet();

new SqlDataAdapter(cm).Fill(ds);
return ds;

}
protected override CanBePooled()
{

return true;
}

}

The ObjectPooling attribute controls the default configuration of the component when
it’s registered with COM+ (see Figure 7-6). As objects are deactivated, the COM+ runtime calls
the CanBePooled method to verify that it has permission to return the instance to the pool. This
method returns false from the base class, so you need to override it and return true in order
to get instances into the pool.

Pooling should always be used in combination with JITA, for highly available instances
that are returned to the pool after each method completes.

[ObjectPooling(5, 500)]
[JustInTimeActivation(true)]
public class Poolable : ServicedComponent
{

public DataSet GetSomeData(string sql)
{

SqlConnection cn = new SqlConnection(ConnStr);
SqlCommand cm = new SqlCommand(sql, cn);
DataSet ds = new DataSet();

cn.Open();
new SqlDataAdapter(cm).Fill(ds);
cn.Close();

CHAPTER 7 ■ ENTERPRISE SERVICES256

522xCH07.qxd 8/31/05 3:30 PM Page 256

ContextUtil.DeactivateOnReturn = true;
return ds;

}
}

Notice that in this case, we’ve added not only the JustInTimeActivation attribute back
on to the class definition, but also added a call to DeactivateOnReturn into the method body,
to ensure COM+ knows the instance can be returned to the pool when the method call is
complete.

Finally, you can use object pooling to throttle access to a limited resource. By minimizing
the maximum pool size, you can control the number of concurrent requests that can be
processed by the pooled object. For example, you might have a document management
system with a ten-connection license. In order to avoid having more than ten concurrent
connections, you can pool the object with a maximum pool size of ten, and a peak in load
will be serialized after the tenth instance is served from the pool.

Figure 7-6. An object configured for pooling within Component Services

Transactions
COM+ can also manage transactions. Transactions can span methods, components, data-
bases, and even servers running database products from different vendors. All code enlisted
in the transaction gets to “vote” on the outcome of the transaction. It’s more like veto power
though, because any vote of “no” causes the entire transaction to be rolled back.

Each class configured in COM+ sets an attribute determining its transactional behavior.
This attribute is designed so that a transaction can be dynamically composed of many differ-
ent components, in a way that may not be known when the autonomous components are
designed. Table 7-4 is a summary of the options for transactional behavior.

CHAPTER 7 ■ ENTERPRISE SERVICES 257

522xCH07.qxd 8/31/05 3:30 PM Page 257

Table 7-4. Options for Configuring the Transactional Behavior of COM+ Components

Transaction Option Meaning In Life

Requires COM+ will create a new transaction if none exists, or the object will be
enlisted in the transaction of the object that created it.

Requires New COM+ will create a brand new transaction. The object will not participate
in the transaction of its creator, if one exists.

Supports The object will be enlisted in the transactional support of the creating
object (if it has any) or else will run without a transaction.

Does Not Support This is the default. The object does not care about, and does not
participate in, any transactions.

Disabled This is like Does Not Support, but it requires no COM+ context. This
choice is nearly equivalent to a nonconfigured component.

Transactions are always kicked off by a root object, which is a component flagged as either
requiring a transaction or requiring a new transaction. This root object acts as the manager
of the transaction, enlisting the appropriate set of autonomous methods to accomplish the
transactional work. If any single method enlisted in the transaction votes “no,” the entire
transaction is doomed to fail. All of the other objects enlisted in the transaction are called
secondary objects. They need to be flagged with the Supports or Requires option. If they are
flagged with Requires New, they become a new root object in a new transaction that will suc-
ceed or fail independently from the transaction that created it. This allows for a very flexible
design of the transactions to reflect complex business processes (see Figure 7-7).

Figure 7-7. A complex set of transactions, where one transaction failed and another succeeded,
while a third component did its work outside of the context of any transaction

CHAPTER 7 ■ ENTERPRISE SERVICES258

522xCH07.qxd 8/31/05 3:30 PM Page 258

There are a couple of options for a component to vote on the outcome of a transaction
from code. One is declarative and the other imperative. The declarative method is very easy.
A method can be flagged with the AutoComplete attribute, and as long as the method body
does not throw an exception, the method’s vote will be to commit the transaction. The method
must be coded such that if something goes wrong, an exception is thrown. If an exception
is thrown by the database, it must be left to ascend the call stack, or be trapped, wrapped,
and rethrown. Any violation of business rules that results in the method being unable to com-
plete its work must also be handled by throwing an exception. (You can find this code
in XActional.cs in the Serviced project.)

[Transaction(TransactionOption.Required)]
public class CustomerService
{

[AutoComplete(true)]
public void IncreaseCreditLimit(

int customerNum,
double increaseAmount)

{
try
{

Customer cust = new Customer(customerNum);
double max = cust.MaxAllowableCredit;
double current = cust.CreditLimit;

if (max < current + increaseAmount)
{

throw new Exception("Max Credit Limit Exceeded");
}
cust.CreditLimit += increaseAmount;
cust.Save();

}
catch (Exception ex)
{

throw new Exception(
"Attempt to increase limit failed", ex);

}
}

}

Notice the explicitly thrown exception captures the violation of a business rule. The try/
catch block traps and wraps the explicitly thrown exception, or any other exception that bub-
bles up the call stack from your calls into the Customer object.

The other option is to explicitly vote on the transaction outcome from within the body of
your method. In this case, you would omit the AutoComplete attribute, and use the ContextUtil
properties to indicate the success or failure of the work that’s been done.

CHAPTER 7 ■ ENTERPRISE SERVICES 259

522xCH07.qxd 8/31/05 3:31 PM Page 259

[Transaction(TransactionOption.Required)]
public class CustomerService
{

public void IncreaseCreditLimit(
int customerNum,
double increaseAmount)

{
try
{

Customer cust = new Customer(customerNum);
double max = cust.MaxAllowableCredit;
double current = cust.CreditLimit;

if (max < current + increaseAmount)
{

ContextUtil.MyTransactionVote = TransactionVote.Abort;
}
else
{

cust.CreditLimit += increaseAmount;
cust.Save();
ContextUtil.MyTransactionVote = TransactionVote.Commit;

}
}
catch (Exception ex)
{

ContextUtil.MyTransactionVote = TransactionVote.Abort;
throw new Exception(

"Attempt to increase limit failed", ex);

}
}

}

It’s only necessary to use this option when you do not want to throw exceptions when a
component is unable to finish its work. Generally, unless it interferes with a larger error-
handling strategy, you should use the AutoComplete attribute, as this results in much cleaner
code overall.

Transactions are managed under the hood of COM+ by the Distributed Transaction Coor-
dinator, a separate Windows Service. This service must be running for COM+ transactions to
work. It is an expensive resource, and you must make considerations for the overhead your
application will incur when you decide to use it. MSDTC is not the only technology available
to manage transactions; you should consider other less-expensive options before deciding to
go into COM+. A few bars for entry into COM+ for transactional management exist.

CHAPTER 7 ■ ENTERPRISE SERVICES260

522xCH07.qxd 8/31/05 3:31 PM Page 260

• Your transaction spans data sources, especially if it spans different relational databases.
For example, if your transaction is moving information from Microsoft SQL Server into
an Oracle database, MSDTC is an excellent option for managing the transaction.

• Your application has complex requirements around transactional composition. In this
case, your services are designed to do different, autonomous pieces of work. Transac-
tion coordinators are written that call these different services to accomplish a specific
business process. The number of ways these services can be combined is high, or the
requirements change and evolve often, and you anticipate introducing new transaction
coordinators as newer versions of the product are introduced.

• Your application has customizable functionality, such that an end user, power user, or
administrator has a tool that can affect how services are combined to do transactional
work.

As a corollary to these guidelines, if you can meet your transactional requirements with
another resource manager, your solution will probably perform better. One option may be
using transactions within SQL Server Transact-SQL (TSQL). This limits the transaction to a
single command execution from your data access code. A stored procedure can call other
stored procedures to enlist in the work of the transaction. Another option is to use ADO.NET
transactions. These transactions are tied to a connection so that many commands can be
executed against a single data store and enlisted in a single transaction. You can use this to
dynamically generate SQL or to combine multiple stored procedure calls. These options are
not nearly as flexible as COM+ transactions, but they are much better performers; thus, you
should leverage them when they can do the job.

See Chapter 12 for information on the transactional infrastructure built into the .NET
Framework 2.0, which gives you options for “upgrading” transactions dynamically; this way,
only the resource managers needed get enrolled on an as-needed basis.

Queued Components
Queued Components (QC) provide a layer of abstraction between the COM+ developer and
MSMQ. Configuring a component as queued gives you all of the benefits of message queuing,
including asynchronous method invocation, without having to worry about the underlying
details of preparing MSMQ messages and placing them in queues.

When a component is configured as queued, a call to the message prompts COM+ to
prepare a MSMQ message and place it in a private queue. Another COM+ process acts as a lis-
tener to that queue, pulls the message out when it arrives, and invokes the method described
by the message (see Figure 7-8).

QC provides a fire-and-forget model of service invocation. For this reason, methods that
are configured as queued cannot have a return value. The caller does not wait for a return
value; instead, the caller continues execution as soon as COM+ prepares the message and gets
it into the queue. The actual work the method does occurs asynchronously with whatever
code path the caller continues with after the method call.

CHAPTER 7 ■ ENTERPRISE SERVICES 261

522xCH07.qxd 8/31/05 3:31 PM Page 261

Figure 7-8. The process of a method call to queued component

Creating queued components is a little more involved than some of the other features of
COM+. You’ll need to do specific configurations on the server and on the client. You must add
an assembly-level attribute to the assembly containing your components to queue. Finally,
you must define an interface with all the methods you’re planning to queue for a component,
and then your Serviced Component must implement the interface.

When a client creates an instance of the component, it won’t automatically call it using
queuing. The good part about this is that the client has the flexibility to call the component in
a queued manner or not. The downside is the need to write some specific code to leverage the
queuing functionality. (You can find this queuing code in the Client and Server projects in
the QCDemo directory of the Code07 solution.)

Let’s start by taking a look at the assembly-level attribute that must be present.

[assembly: ApplicationQueuing(Enabled = true, QueueListenerEnabled = true)]

This sets up the application containing the component so that it can be queued. You can
control the maximum number of listener threads with the attribute as well. The default is
16 per processor on the hosting machine.

CHAPTER 7 ■ ENTERPRISE SERVICES262

522xCH07.qxd 8/31/05 3:31 PM Page 262

Next you need to define an interface that you’ll bind your queued messages to. An
interface is necessary because you’re using a COM-based technology, and all COM objects
implement at least one interface. Queuing is, therefore, exposed on an interface-specific level
of scope. So your Serviced Component must explicitly implement an interface, which your
client will use to bind to and leverage the queued behavior.

You’ll define an interface containing a single method. Remember that methods on this
interface will not be able to return values; therefore, any method used with queuing must be
declared as returning void.

public interface IQueuable
{

void executeSQL(string sql);
}

Now you’ll create a Serviced Component that implements this interface:

[InterfaceQueuing(Interface = "IQueuable")]
public class QCDemo : ServicedComponent, IQueuable
{

public QCDemo() {}

public void executeSQL(string sql)
{

try
{

SqlCommand cm = new SqlCommand(sql, new SqlConnection(ConnStr));
cm.Connection.Open();
cm.ExecuteNonQuery();

}
finally
{

cm.Connection.Close();
}

}
}

Notice you have decorated the type with the InterfaceQueuing attribute. With this attrib-
ute you’re declaring your intent to use the named interface with in a queued manner. This will
affect how the component gets configured (see Figure 7-9).

CHAPTER 7 ■ ENTERPRISE SERVICES 263

522xCH07.qxd 8/31/05 3:31 PM Page 263

Figure 7-9. An interface configured for queuing

Your class is then declared as inheriting from ServicedComponent and implementing
IQueuing. Clients will now have the choice of invoking this type via queuing or not. Here’s a
simple application to test your component:

static void Main(string[] args)
{

string sql = "insert into jobs (job_desc, min_lvl, max_lvl) "
+ "values ('Some job',10,250)";

QCDemo o = new QCDemo();
o.Dispose();
Console.Write("Component registered. Press enter to invoke");
Console.ReadLine();
IQueuable qable;
try
{
qable = (IQueuable)Marshal.BindToMoniker

("queue:/new:Server.QCDemo");

for(int i = 0; i < 100; i++)
qable.executeSQL(sql);

}
finally
{

Marshal.ReleaseComObject(qable);
}

}

CHAPTER 7 ■ ENTERPRISE SERVICES264

522xCH07.qxd 8/31/05 3:31 PM Page 264

Configuration of a queued component can take a long time. Since you’re relying on
lazy registration (see the “Configuration” section a bit later in this chapter), your first block
of code creates an instance of the type specifically for the purpose of registering it in COM+.
You then declare an instance of the IQueuable interface and instantiate by using the
Marshal.BindToMoniker method. This method lives in the System.Runtime.InteropServices
namespace, which must be imported with a using statement. The string passed to it has the
fully qualified name of the type built into the tail end of it, which is how the BindToMoniker
method knows the proper type to create. The Serviced Component infrastructure takes care
of the rest. Your code proceeds to call the executeSQL method 99 times. These method calls
do not wait for the work of the insert statements to get done. Execution continues (and in our
case, the application terminates) while the database work is picked up off the queue by the
COM+ listener and executes asynchronously independently from our application. The last
thing you do is explicitly destroy the COM object by calling ReleaseComObject (another static
method on the Marshal type).

Role-Based Security
COM+ has its own infrastructure for enforcing role-based security. You can apply roles at the
component, interface, or method level.

From Serviced Components, the .NET developer has two main tasks: creating COM+ roles
and enforcing security at the appropriate level to make sure a caller is in the required role for
the service it’s attempting to call. Role creation is done with an assembly-level attribute:

[assembly: SecurityRole("Executive")]
[assembly: SecurityRole("Director")]
[assembly: SecurityRole("Manager")]
[assembly: SecurityRole("Grunt")]

These attributes result in the corresponding COM+ roles that are created (see Figure 7-10).

Figure 7-10. Roles created in COM+ with .NET assembly-level attributes

Role membership can now be enforced via either declarative aspects or imperative code.
The declarative option is attractive, as it saves you from pushing complex conditional logic

CHAPTER 7 ■ ENTERPRISE SERVICES 265

522xCH07.qxd 8/31/05 3:31 PM Page 265

into the code, and enables you to simply decorate your types with declarations of their secu-
rity requirements. You use the SecurityRole attribute for this purpose as well. (This code is in
the Serviced project of the Code07 solution.)

[SecurityRole("Manager")]
public class RBDemo
{

public RBDemo() {}

public DataSet GetManagerData()
{

//implementation
return new DataSet();

}

[SecurityRole("Executuve")]
public DataSet GetExecutiveData()
{

//implementation
return new DataSet();

}
}

In this class, callers to any method must be in the Manager role. You’ve further restrained
access to the GetExecutiveData method, requiring that callers to that method are in the
Executive role. You could also apply the attribute to an interface declaration.

Sometimes you need a finer grain of control over your role-based security implementa-
tion. For example, you may want to render a list of reports, and user roles determine access to
the reports. In these cases, you’ll need programmatic access to the roles information. This is
exposed to use via the SecurityCallContext type. While this may at first appear to be similar
to ContextUtil, security context is different, so using SecurityCallContext is required in
this case.

public void GetReportData(DataSet reportCriteriaData)
{

// Get the current security call context
SecurityCallContext callCtx = SecurityCallContext.CurrentCall;

// Verify role based security is enabled (optional)
if (callCtx.IsSecurityEnabled)
{

// Only allow managers to generate reports
if (callCtx.IsCallerInRole("Manager"))
{

// proceed with report generation
}
else
{

CHAPTER 7 ■ ENTERPRISE SERVICES266

522xCH07.qxd 8/31/05 3:31 PM Page 266

// security error
}

}
}

Using imperative coding enables you to introduce different flow-of-control scenarios into
your code based on the role of your calling users.

Configuration
Once you get your classes inheriting from the Serviced Component base class written and
compiled, you’ll need to configure them within the Component Services environment. You
can be lazy or proactive about this.

The lazy approach enables the runtime to do this the first time someone creates an
instance of the type. Seriously, it’s called lazy loading. The nice thing about this approach is
that there’s no additional setup or installation step that needs to occur. The first time the com-
ponent is requested, the runtime makes sure the COM+ application exists and checks all of
the other assembly-level attributes (such as role declarations) to make sure they’re present as
well. Anything that doesn’t exist will be created. If the application already exists, it will be shut
down and the changes applied. Components and their interfaces then get registered and
configured with COM+. The best reason to use this type of registration is right in its name:
laziness. This approach should be avoided if at all possible.

The downside to lazy registration is that there’s a significant performance hit on the first
request to your application. Especially if your app is using queued components, this delay can
last as long as a few seconds. The other, probably more serious, drawback is that the user run-
ning the process has to be an administrator to have the appropriate permissions to do this.
So when you’re running Serviced Components from ASP.NET, the user running the ASP.NET
Framework must be configured as an administrator. This is usually a show stopper for folks,
and leads them to your second option: registering the components yourself using a command
line tool (seen with its options displayed in Figure 7-11).

vices) command line utility

CHAPTER 7 ■ ENTERPRISE SERVICES 267

522xCH07.qxd 8/31/05 3:31 PM Page 267

To use this utility, you simply feed the tool the name of the assembly containing classes
you need to configure with the /c switch for “configure.” You can also use /fc if there’s a possi-
bility that the application already exists, and you just want to add your types to it.

After registration with COM+, the .NET attributes applied to your types will determine the
default configuration of the components. You (or an administrator) can always go in and use
the MMC snap-in for Component Services to change and further refine them.

Some Practices Worth Observing
There are a lot of details to keep in mind when you’re using component services. While a com-
prehensive discussion of the details of contexts, COM Interop, and an exhaustive list of best
practices is out of scope for the summary we present in this chapter, we advise you keep some
simple things in mind as you move into development in this space.

Component Design
First and foremost, create your applications with a stateless design. Don’t use field-level
information that creates a dependency across method calls. Have each method be truly
autonomous and isolated. If and when you need to maintain state, do so in the database, and
pass a session ID to the user that he can use to later retain the state information. Don’t initial-
ize connections in the constructor of your type to use it from the different methods of your
type. Don’t assume your user is going to be responsible in the use of your type by creating late,
and destroying early; use JITA-enabled components instead.

To more explicitly separate the interface of your component from the implementation,
you should always create an interface for your Serviced Component to implement.

An interface will be created under the hood to represent your class. By default, it will have
the name _ClassName. You might as well create your own interfaces, and have your Serviced
Component implement them. This means the interfaces listed within COM+ will be known
types you’ve intentionally created; this will also ease the deployment of metadata if you’re
using COM+ in a distributed architecture.

Do not use static methods on types that inherit from ServicedComponent. These are not
designed to work within COM+.

Also, always use the ContextUtil and SecurityCallContext to get to the underlying COM+
functionality. Do not call directly into the native COM+ libraries, as the behavior here will be
volatile or perhaps merely unpredictable at best. The Enterprise Services assembly has been
created with a layer of interoperability specifically designed and optimized for Serviced Com-
ponents. Use it.

Security Contexts
You generally want to avoid using impersonation. This is true for Component Services, but is
more generally true for the middle tier. Impersonation means that a unique user is used to
execute the code for each session of the application. There is a security context involved here,
and so pooled objects will not be shared across users. This can largely defeat the whole pur-
pose of pooling in the first place. It can actually make things worse, as a pool per user may
create far more instances than are actually needed.

CHAPTER 7 ■ ENTERPRISE SERVICES268

522xCH07.qxd 8/31/05 3:31 PM Page 268

Object Lifetime
As a consumer of Serviced Components, always call Dispose on an instance when you’re fin-
ished with it. The easiest way to do this is to use the using statement. This guarantees Dispose
gets called on the type, regardless of your error-handling semantics.

private static void ExPool()
{

string[] tables =
{ "authors", "employee", "titles", "publishers","sales" };

Random r = new Random();
using (Poolable p = new Poolable())
{

for (int i = 1; i < 10; i++)
{

string s = string.Format(
"select * from {0}", tables[r.Next(tables.Length - 1)]);

DataSet ds = p.GetSomeData(s);
}

}
//Dispose called automatically when 'using' goes out of scope

}

If you’re creating Serviced Components you can control instance lifetimes by using JITA
(see previous section on JITA). Instead of explicitly calling DeactivateOnReturn from each
method implementation, you also have the option of simply flagging your class with the
AutoComplete attribute. This attribute will guarantee instances are disposed of after a method
completes. If your type is not JITA-enabled, the AutoComplete attribute will be ignored.

Configuration and Deployment
Only use the attributes from the Enterprise Services assembly that you really need. Each of the
features we’ve looked at is configured with attributes. Each incurs some overhead. Leaving a
component unconfigured for a given feature means no overhead will be incurred for leverag-
ing that feature. Be conscious and deliberate about which of these you need.

For production deployments, you should always use Regsvcs.exe to register your Serviced
Components in COM+. Lazy registration is a convenient feature, but one that should only be
enjoyed during development.

Regsvcs.exe will automatically put your Serviced Components into the Global Assembly
Cache (GAC). While this is convenient, any assemblies your Serviced Component is depen-
dant upon will not enjoy the same convenience. This could cause a problem at runtime. For
this reason, your deployment should also explicitly register your components and their
dependencies in the GAC.

CHAPTER 7 ■ ENTERPRISE SERVICES 269

522xCH07.qxd 8/31/05 3:31 PM Page 269

Summary
Component Services exposes a rich set of features that you can consume from .NET by having
your types inherit from ServicedComponent and decorating your types with attributes that
determine how they’ll be configured when they’re registered with COM+.

Because this is still a COM-based technology, a layer of interop is used; therefore, you
must be sure the benefits of the features you’re leveraging outweigh the performance hit you’ll
incur by using the environment. Many of the features of COM+, when needed, will be worth
this performance hit.

Once your components are created and configured within COM+, calling processes will
need to get to them. This may happen in process from IIS, it may happen via DCOM from a
Windows Forms application, or it may happen via Web Services. In the next chapter, we’ll
examine some of the different options that are available for invoking Serviced Components
from within different application architectures.

CHAPTER 7 ■ ENTERPRISE SERVICES270

522xCH07.qxd 8/31/05 3:31 PM Page 270

Hosting and Communications

You use a lot of the services, available at different tiers, to define autonomous pieces of your
application. How you build them determines the public interface exposed by those services.
You may use interface types to describe these services, or you may use a public standard such
as Web Service Description Language (WSDL). Once services are written, deciding how to
expose those services to other layers, which may or may not span different physical tiers of
your application, is another, somewhat separate, set of decisions.

Some of the technologies we’ve looked at in this book are coupled to a particular mecha-
nism for exposing them. For example, creating Web Services by decorating your methods with
the WebMethod attribute couples them to using WSDL for metadata, schema for type definition,
and SOAP for invocation.

However, you must keep in mind that someone could still add a reference to the assembly
where your service is implemented and invoke it in-process. Sometimes the coupling is not
nearly as clear. Deciding to leverage the features of Enterprise Services by creating types that
inherit from ServicedComponent does not in any way couple those types to a particular method
of exposure. They may be created in-process with your ASPX pages, exposed directly as Web
Services, or exposed via a remoting listener installed as an NT Service (to name just a few
options).

A lot of the time people will discuss making a choice between using Remoting, Web Ser-
vices, or Enterprise Services. We think this “choice” is artificial; the decision to use any of these
technologies is not mutually exclusive from using the others. You can use all three technolo-
gies from different contexts to get to the same method on a single type. Further, this is not an
exhaustive set of the choices you have.

In this chapter, we’ll examine some of the different ways these different types of services
can be exposed to other logical layers and other physical tiers of your application. The services
you select become the “plumbing” of your application.

Processes and Marshaling
The sets of choices we present in this chapter revolve around two fundamental decisions you
must make about the different tiers of your application.

271

C H A P T E R 8

■ ■ ■

522xCH08.qxd 8/31/05 3:33 PM Page 271

• What process will be used to host a given tier? Whenever out-of-process communica-
tion takes place within a distributed application, a facility to start and “pin” in memory
a process that’s “listening” for incoming requests has to exist. This process acts as the
“host” of your listener process. Frequently this host is expecting messages to arrive via
the network; however, the same concepts apply when the communication is between
two processes on the same machine. When this machine is part of the architecture of a
distributed application, it’s commonly called an application server.

• How will communication occur between those tiers? This second question directly fol-
lows, and is closely related to, the first. What is the host listening for? The answer to this
question determines what is marshaled between the processes of the distributed appli-
cation. Sometimes the answer to this question is determined by the choice made for
hosting; sometimes it’s independent of that choice.

A process host can provide a number of services to your application. It can provide auto-
matic startup for your application. It enables you to establish and control an identity that will
be used to execute the process, and, therefore, can provide a security boundary between tiers
of an application. It can provide complex pooling behaviors, such as the automatic allocation
of thread pools or automatic establishment of database connection pools. And it can directly
affect maintainability. COM+, which we discussed in the Chapter 7, is an example of a process
host. You can also create your own custom hosting processes. Deployment of components
within a given host dictate the lifetime of, the availability of, and how recycling happens for
the process hosting the components. Table 8-1 provides you with a look at the options you
have available to address the question of where your processes will be hosted.

Table 8-1. Processes You Can Use as “Listeners” in a Distributed Application

Process Meaning In Life

Internet Information If you use IIS as a process host, you expose the functionality of
Server (IIS) your application via the HTTP protocol. IIS provides many features

as a host, including many built-in security models, thread pool
management, and a flexible model of process isolation via the
abstractions of virtual directories and IIS applications. The
functionality of IIS can be extended via an Internet Server
Application Program Interface (ISAPI) application. An ISAPI
application enables third-party code libraries to be configured to
extend the functionality of the server. ASP and ASP.NET are both
implemented as ISAPI applications. We’ll take a look at some others
in the sections that follow.

Component Services As you saw in Chapter 7, you can configure Component Services
to run in a dedicated process. This happens when the
ApplicationActivation attribute is set to Server. This process is
named DLLHost.exe, and provides and manages many features of
the COM+ infrastructure, including thread pool management,
object pools, and interacting with the Distributed Transaction
Coordinator for transaction management. Keep in mind that when
a COM+ application has its ApplicationActivation attribute set
to Library, the services are created in the process of the caller.
This is commonly the case when using COM+ from IIS. Setting
this attribute to Server is done when you decide to run these
components in their own dedicated process. As you’ll see in the
section that follows, this is also the model in use when calling
Component Services via DCOM.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS272

522xCH08.qxd 8/31/05 3:33 PM Page 272

Process Meaning In Life

Windows Service A .NET application can be created to run as a Windows Service.
This enables the operating system to automatically start the process
in the background when Windows boots; allows for background
execution, even when there is no user logged in; and allows you to
control the identity the process is running as. Windows Services are
commonly created to listen for incoming Remoting requests or
monitor a message queue. This host has many fewer features than
IIS or Component Services. It is very much a “roll-your-own”
environment.

User Interface Processes These are what we commonly think of when we’re talking about
processes. They’re kicked off by a user double-clicking on an EXE,
or console applications and Windows applications. While console
applications are generally not suited for hosting the types of
components you’re considering, they can be very handy during
development for easily creating a listener application, and making
its invocation and activation very visible. We’ll take a look at an
example of this for a Remoting listener.

When you’ve chosen more than a single process to use to host your software, you have to
decide how you’ll communicate between them. Marshaling information between processes
takes on many forms and can traverse many boundary types. One thing is constant, and that
is that marshaling is expensive. There will always be a performance hit on your application,
whether you’re moving pieces of a system into different physical tiers or across processes on
the same physical tier.

Marshaling can occur across application domains within a process, across processes on
the same machine, across machines within a LAN, or across machines distributed on the
Internet. Different types of communication work best for different scenarios. Performance is
not always the most important consideration when you’re deciding how to communicate
between processes. Most often, the decision to introduce another physical tier has already
been made (a prerequisite for needing to select a communication technology), and other non-
functional requirements, such as the need to use a pool of database connections, are larger
considerations than performance (see Chapter 1 for several examples of these decisions).

Communication and marshaling breaks down into two facets: What am I sending out of
process (or out of the application domain), and how am I sending it? What you’re sending out
of process can be a SOAP-formatted document, binary data, or a Message Queuing (MSMQ)
message. How you’ll send it involves a protocol, be it HTTP, HTTPS, named pipes, or TCP.
We summarize the options in Table 8-2.

With Web Services, what you’re sending is always a SOAP message. Many people have the
misconception that SOAP messages must always be sent via HTTP or HTTPS, but the SOAP
specification intentionally leaves the question of protocol open. This means that SOAP mes-
sages can be send via TCP, Simple Mail Transfer Protocol (SMTP), MSMQ, or a custom
protocol. HTTP and HTTPS are still the most common way to send Web Service requests.

Remoting breaks the questions of how and what into two extensible layers of abstraction:
channels and messages. The Remoting infrastructure is specifically designed to enable some-
one to plug into his own channel (protocol) and provide his own message format (what’s
getting passed over the protocol). Remoting ships with implementations of both channels and
formatters; HTTP, IPC, and TCP for channels, and SOAP and binary for message formats.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 273

522xCH08.qxd 8/31/05 3:33 PM Page 273

Table 8-2. Communications Options with Different Applications Servers

Application Server Communications Options

Web Services Remoting DCOM and Interop

Component Can be exposed directly via Component Services A DCOM proxy can be
Services configuration from COM+; should be exposed to generated, and a .NET

otherwise, expose via IIS. clients using Remoting client can use it via an
via IIS when using HTTP. interop assembly.
To use TCP, a custom Custom interop is used
listener must be created internally by COM+ to
and installed as an NT communicate between
Service. managed and

unmanaged stacks.

IIS Deploy an ASMX file Deploy a configuration N/A
pointing at the .NET class file specifying URL to
type containing any use to reach exposed
WebMethod attributes on type into the root of the
class method (or on web application. Must
methods of interfaces use HTTP as a channel,
implemented in the class). but any formatter can

be chosen. .NET includes
SOAP and binary
formatters.

Legacy COM You can use the COM SOAP N/A Use an interop
Servers stack to expose these as assembly to expose

Web Services. You could functionality, or use
also use ASMX and an vendor provided
interop assembly to interop assemblies,
expose them via IIS. such as the Office

interop assemblies
from Microsoft.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS274

You can write a custom listener process that accepts requests from a TCP channel or via
HTTP. You can also program it to expect binary or SOAP messages over your chosen channel.
These choices are independent. It’s only when you’re hosting a remoted component within
ASP.NET that you’re limited in these choices, as you are bound to the HTTP channel. However,
this channel can still be used to send binary or SOAP messages. We’ll take a look at all of these
scenarios in the sections that follow.

Remote objects can also be used to pass messages across application domains within a
managed process. This is what Remoting is most highly optimized to accomplish, and is what
Microsoft says is the best reason to adopt Remoting. See Chapter 6 and Chapter 9 for a discus-
sion of some of the issues relating to Remoting versus Web Services (which is really a debate of
RPC versus Service Oriented Architecture, or SOA).

With the introduction of the Windows Communication Foundation (WCF), Microsoft is
moving this concept of an extensible layer of transport and messaging into all out-of-process
calls that are done in the operating system (see Chapter 9 for a preview of WCF). This is why
WCF is called the “unified out-of-process call stack.” Today with WCF, Web Services requests
can get passed via MSMQ as easily as they are via HTTP. There are really a lot of valid combi-
nations.

522xCH08.qxd 8/31/05 3:33 PM Page 274

Internet Information Server
Internet Information Server (IIS) is the application server for the Windows platform. This
application server has been evolving for the past 10 years, and will continue to evolve into the
foreseeable future. IIS has gone from serving static markup to a full-featured application host-
ing environment. ISAPI applications have been available as a point of extensibility for years.
A number of the technologies you’ll be looking at in this chapter are implemented as ISAPI
applications: ASP.NET, SQLXML, and SOAP exposure of Enterprise Services. Others, such as
the COM SOAP stack, are beyond the scope for this book.

■Note As IIS continues to evolve, you can expect to see ASP.NET leveraged for more and more functional-
ity, as this is the ISAPI extension of choice for extending the behavior of IIS using the .NET Framework. We
provide full coverage of ASP.NET as an application pipeline in Chapter 2.

ASP.NET Framework
With the ASP.NET Framework, Microsoft has created an ISAPI application that enables the
functionality of IIS to be extended using the .NET Framework. We examined a number of ways
this is done within the Framework Class Library in Chapter 2. In this section, we’ll focus on
some of these implementations, and how they enable you to leverage IIS as a network end-
point for cross boundary and cross machine communication.

Web Services
In addition to serving requests for Web Forms, the ASP.NET Framework also acts as the
.NET SOAP Stack. (We examined some details of the generalized concept of a SOAP Stack in
Chapter 6.) A SOAP Stack is a process that listens to a well-defined network endpoint for
incoming SOAP messages posted to the server. It maps these requests to a service implemen-
tation, and translates the results of the service into a SOAP response.

In the .NET Framework, Web Services are so well integrated into IIS and ASP.NET that
most people don’t even realize they’re using a SOAP Stack at all if they learn Web Services
using the .NET Framework. For any other platform, you’d have to go out and pick a SOAP
Stack, install it, and take specific steps to map types to service operations you want to expose.
This is true for Java platforms, and it is even true for exposing COM types as Web Services.

Visual Studio .NET and ASP.NET make this so easy that it can be taken for granted by most
developers. By mapping asmx files to types, by automatically handling requests for asmx docu-
ments in ASP.NET, by auto-generating WSDL documents, and by auto-generating client-side
proxies, the Web Service handler built into ASP.NET hides all of the standards-based details of
the underlying protocols and wire format in use.

This can be a good thing or a bad thing. A service-oriented purist would shudder at the
thought of it, and would advocate a “WSDL first” approach to service development. The other
extreme would be to acknowledge the simple fact that if you need a method on a type exposed
across your network, you can slap the WebMethod attribute on it, put an asmx document in front
of it, and you’re done (as long as chunky statelessness is a given for the method design).

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 275

522xCH08.qxd 8/31/05 3:33 PM Page 275

Exposing your .NET types as Web Services vastly increases the reach of your managed
code. If you’re in an environment where there are several platforms and languages in use, Web
Services dramatically decreases the amount of time and churn spent integrating packages and
applications. By hosting your Web Services within IIS, you can also give them exactly the reach
you want them to have. You may have services within a department, services exposed to the
entire enterprise, and services exposed over the Internet to partners and vendors. You can
even publish public services for general consumption. These can be subscription based or free
(see www.xmethods.net). The broader the reach of your Web Services, the greater the chances
you’ll want to adopt some of the WS-* specifications for functionality such as authentication,
message routing, and transactions. You can do this with the Web Service Enhancements add-
on available for free and supported by Microsoft (see Chapter 6 or http://msdn.microsoft.com/
webservices/webservices/building/wse/default.aspx).

Remoting
ASP.NET also acts as a host for remoted components. The Remoting handler is automatically
mapped to requests of files with extensions of .soap or .rem via a configuration document that
gets added to the root of your web application, requests of specific network endpoints are
mapped to types living in assemblies in the application’s bin directory.

Discussions about Remoting internals are beyond the scope of this book (see Tom Barnaby’s
book, Distributed .NET Programming in C# (Apress, 2002) for excellent coverage). However, in
this chapter, we’ll still take a look at a couple of ways .NET types can be exposed via Remoting.
Here’s a simple type that by inheriting from MarshalByRefObject is pinned in the process it’s
created within; and so it can be called via Remoting.

class BookService : MarshalByRefObject
{

public DataTable getBookList()
{

SqlConnection cn = new SqlConnection(connStr);
SqlCommand cm = new SqlCommand(

"select BookID, Title From Book Order by Title", cn);
DataTable dt = new DataTable();
try
{

cn.Open();
dt.Load(cm.ExecuteReader());
return dt;

}
catch { }
finally
{

if (cn.State == ConnectionState.Open) cn.Close();
}

}
}

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS276

522xCH08.qxd 8/31/05 3:33 PM Page 276

This component then can be exposed via ASP.NET using the following entry in the
web.config of an IIS application:

<system.runtime.remoting>
<application>

<service>
<wellknown mode="Singleton"

type="BookLib.BookService, BookLib"
objectUri="BookService.soap" />

</service>

<channels>
<channel port="13101" ref="http" />

</channels>

</application>
</system.runtime.remoting>

The client requires a configuration file to use the remoted type. Here’s a configuration file
you can use as the app.config for a simple console application:

<system.runtime.remoting>
<application>

<client displayName="BookService">
<wellknown type="BookLib.BookService, BookLib"
url="http://localhost:13101/BookHost/BookService.soap" />

</client>

<channels>
<channel ref="http" />

</channels>

</application>
</system.runtime.remoting>

And here’s the code for a console application consuming this remoted type:

static void Main(string[] args)
{

// Load the remoting config file
RemotingConfiguration.Configure("BookClient.exe.config");

// Now connect to the remote object by simply using its constructor!
BookLib.BookService b = new BookLib.BookService();

DataTable dt = b.getBookList();
foreach (DataRow dr in dt.Rows)

Console.WriteLine(dr["Title"]);

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 277

522xCH08.qxd 8/31/05 3:33 PM Page 277

The limitation of exposing remoted types via ASP.NET is that you must use HTTP as the
transport protocol. If you want to use TCP, you have to write your own listener instead of rely-
ing on ASP.NET. See the section “Custom Listeners” later in this chapter for an example of
doing this with a Windows Service.

Serviced Components
When you’re using Serviced Components, you’ll want to consider how they’ll be exposed.
You can do this via either Web Services or Remoting. These choices are independent from one
another; that is, there is nothing in a decision to use Serviced Components that ties you to
using either Web Services or Remoting. These are your choices when exposing your Serviced
Components via ASP.NET. However, they are not your only choices. As you’ll see in the sec-
tions that follow, you still have the option of using traditional DCOM and COM interop to get
to Serviced Components; and with Windows XP and Windows 2003, they can be exposed
directly as Web Services.

The salient point in hosting Serviced Components always comes back to the
ApplicationActivation attribute. This is the assembly-level attribute we discussed in
Chapter 7.

//Use this for DllHost.exe
[assembly: ApplicationActivation(ActivationOption.Server)]
//or this for hosting in the process of the creator
[assembly: ApplicationActivation(ActivationOption.Library)]

This is the attribute that determines how your Serviced Components will be hosted. Keep
in mind that a server application can call components in a library application, and those types
will then be created in the DllHost process dedicated to the server application. DllHost.exe
actually hosts an instance of the Common Language Runtime (CLR), within which it can exe-
cute Serviced Components.

When calling a Library application from IIS, types are created in process with the calling
worker process (w3wp.exe for IIS6, aspnet_wp.exe for IIS5.x). If you have several IIS applica-
tions calling library applications in COM+, they will each be created in the process of the
caller, resulting in thread pools, connection pools, and object pools for each of your IIS
applications.

Windows Communication Foundation
As you’ll see in Chapter 9, ASP.NET will also be the hosting environment of choice for services
created using Microsoft’s new unified out-of-process class stack named Windows Communi-
cation Foundation (WCF). While this won’t be your only choice for hosting WCF services, it
will be the “path of least resistance choice” as WCF is being designed from the ground up to
be a first-class (and well-behaved) citizen within ASP.NET.

Component Service SOAP
Windows XP and Windows Server 2003 add the option of exposing Component Services
directly via SOAP. This SOAP Stack is implemented as another IIS application that acts as a
dedicated listener for SOAP requests and maps them to your COM+ application. This technol-
ogy is not limited to .NET. It can be used to expose your Enterprise Services (.NET types that

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS278

522xCH08.qxd 8/31/05 3:33 PM Page 278

inherit from ServicedComponent; see Chapter 7), but also can be used to expose Component
Services written in a COM language. If your COM+ application is written with a COM language,
interop assemblies are automatically generated that act as a front end for the SOAP stack.

Setting this up is very easy. The Activation tab of the property page of a COM+ application
is displayed in Figure 8-1.

Figure 8-1. The Activation tab of the property page of a COM+ application

Notice we’ve checked the Uses SOAP check box and provided a name for a virtual direc-
tory. When you click OK, Component Services does the rest of the work. A directory is created
in the System32\COM\SOAPVRoots subdirectory within the Windows installation directory. This
directory is automatically configured as an IIS application. The directory has a few files, but
the important one is an automatically generated copy of a web.config, where the mapping of
incoming SOAP requests to the type contained in Component Services is set up.

For this to work, .NET types must be installed in the Global Assembly Cache (GAC). If a
COM type is exposed via this method, interop assemblies will be generated and added to the
bin subdirectory of this virtual directory.

WSDL can be retrieved from this directory using fully qualified type names. For example,
the ESDemoSOAP application you’ve just exposed contains a number of types in the ESDemo
namespace. On of them is a class named Poolable. These types are exposed via a handler
that responds to requests for documents with a .soap extension. The general form is:

http://servername/ApplicationName/Namespace.TypeName.soap

Tacking on a query string of ?wsdl causes the handler to generated the WSDL document.
The URL for the WSDL document of the type named JITA in the ESDemo namespace would be
formed as:

http://localhost/ESDemoSOAP/ESDemo.JITA.soap?wsdl

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 279

522xCH08.qxd 8/31/05 3:33 PM Page 279

So a request for this URL causes the WSDL describing the type to be generated and
returned, as displayed in Figure 8-2.

Figure 8-2. The auto-generated WSDL describing a Serviced Component

Any of the types in the application can now be exposed via a Web Service proxy. Now use
the Add Web Reference feature of Visual Studio .NET to generate a proxy in your console appli-
cation, as shown in Figure 8-3.

And now you can use this type just like any other Web Service. In the following code you
use a proxy to the Just-in-Time Activation (JITA) service (from the TestApp project in the
Code08 solution):

static void Main(string[] args)
{

Proxies.JITA j = new Proxies.JITA ();

for (int i = 0; i < 10; i++)
{

DateTime t = j.GetCreateStamp();
Console.WriteLine(t);

}
}

Furthermore, any platform supporting Web Services can now use it, too.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS280

522xCH08.qxd 8/31/05 3:33 PM Page 280

Figure 8-3. Adding a Web Reference to the Serviced Component

Stored Procedure SOAP
The SQLXML add-on for SQL Server exposes very similar functionality for stored procedures.
This mechanism uses its own ISAPI application and is not dependent upon the .NET Frame-
work. The tool will interrogate the schema of a Transact-SQL (T-SQL) Stored Procedure and
automatically generate the WSDL to expose the procedure directly via SOAP. See the SDK docs
on SQLXML for a walk-through of this functionality.

DLLHost and DCOM
The debate of performance versus maintainability always exists on a continuum. In this envi-
ronment, way off to the side of this continuum that favors performance at the expense of
maintainability is DCOM. Oddly enough, exporting DCOM proxies and invoking them via an
interop assembly from the client is still the best-performing option for remote procedure calls.

A DCOM package can be exported from COM+ using the Export option on the context
menu of a COM+ application, as shown in Figure 8-4.

Notice we’ve selected the Application proxy radio button. This causes the wizard to create
an installable package of COM+ proxies, which are wrapper types that expose the interface of
the configured components on the client, but marshal the actual method call across the net-
work to the Component Services server using the DCOM RPC mechanism.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 281

522xCH08.qxd 8/31/05 3:33 PM Page 281

Figure 8-4. The COM+ Application Export Wizard

This option is only available on server applications, because when you’re using DCOM
you’re relying on DLLHost.exe to act as your host. Remember that a library application is
created in the process of the caller. Since you’re not using ASP.NET as the host, there is no
server-side process within which to create the library application types. DLLHost.exe provides
the dedicated process, listening for requests coming in from the network.

Managed clients need to access these proxy types via a COM interop assembly, as they are
exported as COM libraries. It’s hard to believe this performs twice as fast as the fastest Remot-
ing configuration, considering you’re introducing two layers of interoperability between
managed and unmanaged code: one on the client to go from managed code to the COM
proxy, and another on the server to move from the COM-based Component Services call
stack to the managed call stack of our Serviced Components.

This performance comes at a high price for maintainability. DCOM is notoriously difficult
to configure correctly, especially if there are firewalls or complex security requirements in
place. We won’t be digging into the details here. This technology has been around for a decade,
so there are volumes of information and references available for its usage. Hosting in ASP.NET
should be considered as a first option if it will meet the performance demands of your envi-
ronment. The DCOM option should really only be on the table for rich client applications;
with a web application, it almost always makes more sense to host COM+ in-process on the
web server. Possible exceptions to this would show up in environments with a lot of web
servers running a lot of different applications. In these cases, it may be possible, for example,
that you want the data access layer isolated on a single server to pool connections to the data-
base. You should still consider ASMX for exposing this data access layer via SOAP before using
DCOM. Remoting may even be a better option. It’s not as easy to configure as ASMX, but it’s
still significantly simpler than DCOM. When performance is the primary concern, however,
DCOM is still about twice as fast as Remoting for crossing machine boundaries.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS282

522xCH08.qxd 8/31/05 3:33 PM Page 282

Message Queuing
Message Queuing (MSMQ) is Microsoft’s messaging solution. Access to queues is exposed in
the Framework via types in the System.Messaging namespace. This is one of the two main
ways in .NET to leverage MSMQ. The other is to use Enterprise Services, which provides a
layer of abstraction on top of queues and their messages by automatically transforming
method calls into messages when they’re configured as Queued Components (QC) (see Chap-
ter 7 for details on Queued Components).

There are many tangible benefits to a message queuing infrastructure. Client functional-
ity is not tied to server availability. Since message queuing is done asynchronously from the
perspective of the client, if the server is unavailable or under a heavy load, the client is not
required to wait for the server to become available before continuing processing. This is very
handy for dealing with times of high load on the server. Requests for services are serialized
in the message queue, and clients continue to work without waiting for their requests to be
processed. You also get guaranteed delivery of your service request. Since the message is per-
sisted to disk when it arrives at the server, even if the server is unavailable, the message will
be processed when it comes back online.

The downside is that there can be no response returned from the service request. This is
intrinsic in the design of any asynchronous messaging infrastructure, and it seriously limits
the number of operations that are viable for service requests. In some situations the client/
server paradigm can be flipped around, and the client can have its own queues exposed to
receive messages back from the server (see Figure 8-5). We’ll show you an example of this later
in the chapter.

Figure 8-5. Using the client as the server for message-based callbacks

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 283

522xCH08.qxd 8/31/05 3:33 PM Page 283

When you’re comparing MSMQ to the ASMX style of message processing, the big differ-
ence is the wire format and protocol. While you can pack SOAP into the body of MSMQ
messages, you still need the MSMQ stack on both the client and the server. This necessitates
Windows-to-Windows communication (or the use of some translation layer). ASMX, on the
other hand, does not know and does not care what platform is on the other end of the com-
munication because it is based on open, industry-standard specifications (see Chapter 6).
Conversely, you have much more control over what goes into the message with MSMQ, liber-
ating you from the constraints of SOAP and XML Schema.

When you’re not using Queued Components, you must write code to create messages
and place them in queues. You must also create a listener process, one that is listening for
messages arriving in the queue, pulls them out, and processes them. This alone is a strong
argument in favor of using Component Services. Many features of COM+ can be leveraged
automatically via adherence to some design principles and some details of configuration
(thread pools and object pools, for instance). See Chapter 7 for a detailed look at Queued
Components.

Let’s take a look at a custom message pump for MSMQ. Here’s the premise: The enterprise
you work for has decided it needs a complete inventory of all of the Word documents that exist
on all of the workstations. You’re going to push an application to the users’ machines that will
scan their hard drive for Word docs, and send them to the server, which will insert them into
the database. Because this application will run first thing in the morning when users log in,
you know there will be a huge spike in traffic doing inserts into this database table. In order to
avoid coupling the efficiency of the document search to the availability of the database, you’ll
have the client post messages into a queue, and then they can be pulled out and processed as
the server can get to them, without forcing the update to succeed before the client can con-
tinue looking for more documents.

The first thing you’ll need is a Windows Service that acts as a listener for incoming mes-
sages. You’ll start with the Windows Service Visual Studio .NET project type, which gives you a
template for a class that uses System.ServiceProcess.ServiceBase as its base class. This class
gives you the “plumbing” you need to host your process as a service running in the back-
ground. Note that this code needs a reference to the System.Messaging.dll assembly.

using System.Messaging;

namespace QListener
{

public partial class ListenerSvc : ServiceBase
{

private MessageQueue queue;
bool bDone = false;

protected override void OnStart(string[] args)
{

if (!MessageQueue.Exists(QLibrary.DocDescription.QueueName))
{

MessageQueue.Create(QLibrary.DocDescription.QueueName);
}
queue = new MessageQueue(QLibrary.DocDescription.QueueName);

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS284

522xCH08.qxd 8/31/05 3:33 PM Page 284

Thread t = new Thread(MonitorQueue);
t.Start();

}

protected override void OnStop()
{

bDone = true;
}

//Class Definition Continues…

The overridden onStart method is called when the Service is started, either at system
startup or when an administrator starts it manually from the Services applet. This code
ensures that the queue you’ll be using exists, and then starts a listener thread using the
address of the MonitorQueue method. You’ll look at the code for monitor queue shortly. The
QLibrary.DocDescription type contains some types that you’ll use from both the client and
the server, so it lives in its own assembly. The definition of the string QueueName (used above)
looks like this:

public const string PrivateQ = @"\private$\";
public const string LocalQName = "queuetest";
public static readonly string QueueName =

string.Format("{0}{1}{2}",
System.Net.Dns.GetHostName(),
PrivateQ,
LocalQName);

This builds up the full name of the queue you’ll be monitoring. The overridden OnStart
method instructs your code to create a private queue named queuetest that you’ll monitor
from the service. MonitorQueue is the process that waits for messages to come into the queue,
and then processes them. There are a couple of different ways you can monitor a queue. You
can set up a trigger, which relies on another Windows Service to monitor the queue and then
pass the messages to a component of your choosing. Using this results in code that looks more
like “event trapping” code. The downside of this approach is that you must set up the trigger
on the server hosting the queue, resulting in more complex deployment and configuration.
The other method is to write your listener as a polling application. The algorithms used to
do this can become quite complex. You can create your own thread pools, and you’re also in
control of the polling frequency used on each thread. Further, you may have many queues
involved. What you need will depend upon the type of processing the listener will be doing
and the expected load patterns of messages coming into the queue. The example here is quite
simple: It uses a single thread that’s listening for incoming messages and then processes them
(from Program.cs in the ConsoleHost project of the Code08 solution).

private void MonitorQueue()
{

Message msg;
while (!bDone)
{

try
{

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 285

522xCH08.qxd 8/31/05 3:33 PM Page 285

msg = queue.Receive(new TimeSpan(0, 0, 1));
msg.Formatter = new BinaryMessageFormatter();
QLibrary.DocDescription d = (QLibrary.DocDescr)msg.Body;
QLibrary.DocDescription.SendToDatabase(d);

}
catch { Thread.Sleep(1000); }

}
}

This code sets up a single loop that will iterate as long as the bDone Boolean variable
remains true. This value is set to false in the overridden OnStop method (shown in the preced-
ing code), and so when the system shuts down or an administrator stops the service, this loop
will terminate and the process hosting the thread will be torn down.

Within the loop, we use the MessageQueue instance to monitor the thread for incoming
messages. The call to the Receive method does this, and we’re using a TimeSpan to specify that
the operation should time out if no message arrives within one second. If the timeout occurs,
the Receive method throws an exception, at which point we’re putting the thread to sleep for
one second before monitoring the queue again. This keeps the listener quiet in times when no
messages arrive in the queue.

When a message does arrive, execution continues in the body of our try block. Anything
can be packed away into a message body. For our application, we’re packing away an instance
of the DocDescription object. We obtain a reference to this object by casting the Body of the
message into the DocDescription type. We’ll show you the client code that sends an instance of
this type into the message body in a bit. First take a look at the definition of the instance por-
tions of the DocDescription type itself. (We’ll cover the static methods later. This code is from
the QLibrary project in the Code08 solution.)

[Serializable()]
public class DocDescription
{

//Static methods omitted for brevity

public DocDescription() { }

public DocDescription(string docIP, string docPath, string docName)
{

this.DocIP = docIP;
this.DocPath = docPath;
this.DocName = docName;

}

private string docName;
public string DocName
{

get { return docName; }
set { docName = value; }

}
private string docIP;

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS286

522xCH08.qxd 8/31/05 3:33 PM Page 286

public string DocIP
{

get { return docIP; }
set { docIP = value; }

}
private string docPath;
public string DocPath
{

get { return docPath; }
set { docPath = value; }

}
}

This is a simple type, which contains three properties: an IP, a path, and a name. You use
this object to pass state information over the wire in the body of the message. The listener
application sends the object on to the database by calling a static method on DocDescription
that uses ADO.NET to call a stored procedure (not shown here, as this could be any data
access layer call).

On the client, you need to write code that will place messages into the queue. This code
could run on an end user’s machine for a rich client Windows Forms application, or could be
executed from ASP.NET for a Web-based application (resulting from a Web Service call from
the client, for example). This code is also in DocDescription.cs of the QLibrary project.

public static void SendToQueue(DocDescr d)
{

MessageQueue q = new MessageQueue(QueueName);
Message msg = new Message(d, new BinaryMessageFormatter());
q.Send(msg);

}

This code accepts an instance of the DocDescription type and serializes it into the mes-
sage body using the binary message formatter. Note that this is the same formatter used in the
listener to pull the instance out of the message body (as seen in the code for MonitorQueue).

The client code then simply surfs the hard drive of your user, creating an instance of
DocDescription and posting it to the queue whenever a Word document is found. (This code
is Form1.cs of the QClient project in the Code08 solution.)

bool bDone = false;
int count;
string ip = System.Net.Dns.GetHostAddresses

(System.Net.Dns.GetHostName())[0].ToString();

private void btnScan_Click(object sender, EventArgs e)
{

count = 0;
bDone = false;
btnScan.Enabled = false;
btnCancel.Enabled = true;
Thread t = new Thread(FindDocs);

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 287

522xCH08.qxd 8/31/05 3:33 PM Page 287

t.Start();
}

private void FindDocs()
{

FindDocs(new DirectoryInfo(@"c:\"));
btnCancel.Enabled = false;
btnScan.Enabled = true;

}

private void FindDocs(DirectoryInfo dir)
{

QLibrary.DocDescription doc;
string name;
string path;
if (bDone) return;
try
{

foreach (FileInfo fi in dir.GetFiles("*.doc"))
{

name = fi.Name;
path = fi.FullName.Substring(0, fi.FullName.LastIndexOf(@"\"));
doc = new QLibrary.DocDescription(ip, path, name);
QLibrary.DocDescription.SendToQueue(doc);
label1.Text = string.Format("{0} documents found", ++count);

if (bDone) break;
}

foreach (DirectoryInfo d in dir.GetDirectories())
{

FindDocs(d);
if (bDone) break;

}
}
catch { }

}
private void btnCancel_Click(object sender, EventArgs e)
{

bDone = true;
btnCancel.Enabled = false;
btnScan.Enabled = true;

}

Since this code is placing messages into queues, there is no blocking that occurs to wait
for the row to actually get inserted into the databases. This leaves the client free to search the
drives of the users, regardless of how many concurrent instances are posting messages to the
queue.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS288

522xCH08.qxd 8/31/05 3:33 PM Page 288

Realize also that you would want to have the client application use a Web Service proxy
and send the document information to ASP.NET, where it could be serialized into the queue.
This enables you to have several instances running on many machines across the network,
and use a single centralized queue to aggregate the requests. This example is coded to run on
a single user’s machine, which simplifies the composition of the demo, and still leaves the per-
tinent code intact.

Custom Listeners
The other time you’ll need to create your own custom listener is when you want to use a TCP
channel to send binary encoded requests in Remoting. This can be as simple as a console
application with an application configuration file.

<system.runtime.remoting>
<application>

<service>
<wellknown mode="Singleton"

type="BookLib.BookService, BookLib"
objectUri="BookService.soap" />

</service>

<channels>
<channel port="8080" ref="tcp" />

</channels>

</application>
</system.runtime.remoting>

You can see in this configuration that the Remoting infrastructure is being directed to lis-
ten to port 8080 for incoming TCP requests. The code for the listener application simply calls
into the Remoting infrastructure to start listening for requests on that port.

class Program
{

static void Main(string[] args)
{

// Load the remoting configuration file
RemotingConfiguration.Configure("RListener.exe.config");

// Keep server alive until enter is pressed
Console.WriteLine("Press Enter to end");
Console.ReadLine();

}
}

Notice that this application blocks and therefore keeps the process alive by making a call
to Console.Writeline. A background thread, spawned by the Remoting infrastructure when
you call Configure, will listen to the configured port for incoming requests for remoted com-
ponents as long as this process stays running.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 289

522xCH08.qxd 8/31/05 3:33 PM Page 289

This is fine for development and testing, but it is obviously no solution for a production
environment. You would generally want to install a custom listener as an NT Service. This can
be done by leveraging the Windows Service project type in Visual Studio .NET, and then using
a command line tool to install the service on the server (see Figure 8-6).

Figure 8-6. The Windows Service project type dialog box

You’ll simply move your configuration code from the console application into the imple-
mentation template provided by the Windows Service project type:

public partial class Service1 : ServiceBase
{

private bool bDone = false;
public Service1()
{

InitializeComponent();
}

protected override void OnStart(string[] args)
{

Thread t = new Thread(PulseService);
t.Start();

}

private void PulseService()
{

RemotingConfiguration.Configure("RService.exe.config");
while (!bDone)
{

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS290

522xCH08.qxd 8/31/05 3:33 PM Page 290

Thread.Sleep(1000);
}

}

protected override void OnStop()
{

bDone = true;
}

}

After compiling this assembly, you’ll need to install it on the server using a command-line
tool that ships with the Framework: InstallUtil.exe, which executes the Install method imple-
mented on the ServiceBase class to configure your type as a Windows Service (see Figure 8-7).

Figure 8-7. The output of a call to InstallUtil.exe. The name of the service executable and the
–i parameter (for install) are passed to it as command line arguments.

We also need to copy the configuration file, RServer.exe.config, to the System32 subdi-
rectory of the Windows installation directory so it can be found when the operating system
starts the service. Now the service is available in the services applet of the Administrative Tools
menu (see Figure 8-8).

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 291

522xCH08.qxd 8/31/05 3:33 PM Page 291

Figure 8-8. Your service in the Services Applet. Choosing Start causes your onStart override to
execute.

Things are not that different in the client application from our previous example, where
the components were hosted in ASP.NET. Because the channel and format of the message is
completely abstracted away from the consumer of the remoted component, the only thing
that needs to change is the configuration file:

<system.runtime.remoting>
<application>

<client displayName="Server">
<wellknown type="BookLib.BookService, BookLib"

url="tcp://newton:8080/BookService.soap" />
</client>

<channels>
<channel ref="tcp" />

</channels>

</application>
</system.runtime.remoting>

Newton is a machine name. You will need to replace this with the name of the server host-
ing the component. You now can easily call the BookLibrary methods from a Windows Forms
application:

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS292

522xCH08.qxd 8/31/05 3:33 PM Page 292

public partial class Form1 : Form
{

public Form1()
{

RemotingConfiguration.Configure("RClient.exe.config");
InitializeComponent();

}

private void button1_Click(object sender, EventArgs e)
{

BookLib.BookService b = new BookLib.BookService();
dataGridView1.DataSource = b.getBookList();

}
}

Your calls to the BookService type are now automatically marshaled to the Remoting
server on TCP port 8080 (see Figure 8-9).

Figure 8-9. Data retrieved from the remoted component and bound to a GridView

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 293

522xCH08.qxd 8/31/05 3:33 PM Page 293

Permutations
With all these choices, it helps to know the direction is Microsoft is going. Their advice? Use
ASMX and WSE 3.0 (if you need the additional features). This will provide the easiest migration
path into WCF, and is the area where you’re guaranteed the best future support from Microsoft.
Looking out even further, Windows Vista will have WCF baked right into it, and will be the
messaging stack the OS is heavily dependent upon. Planning for interoperating with and
migrating into WCF is discussed extensively in Chapter 9.

You only need to adopt WSE if you need the feature set. This is the package that contains
the implementations of some of the WS-* specifications (see Chapter 6).

OOP is not the next “legacy” technology. Traditional object-oriented techniques should
still be used within service boundaries. Objects are no longer what get passed around on the
wire, but they’re still perfectly valid for use within a process. To adopt Service Oriented Archi-
tecture (SOA) is to acknowledge that RPC is conceptually flawed, and messages should be
passed across boundaries instead of passing instances of types.

Enterprise Services is a separate and independent package of functionality. The choice to
use Enterprise Services does not hinge on your choice of hosting environment or communica-
tion mechanism. This decision should be based entirely on your application’s need for any
element of the feature set. This can include dynamic composition of transactions, the asyn-
chronous guaranteed delivery of MSMQ messages via queued components, or complex
security requirements involving roles that are distinct from intrinsic Windows roles.

In Figure 8-10 you can see that the components implementing a given service can be
implemented with more than one interface. In this case, the services are implemented as
Serviced Components, but this would not be necessary. Each of these decisions can be
made in isolation from decisions about adopting the other mechanisms.

There may be times when you need the asynchrony and guaranteed delivery of MSMQ
but have no need of any of the other Enterprise Services features. In this case, you’ll need to
write a custom listener for a queue, as outlined above.

And what is Microsoft’s recommendation for when to use Remoting? Use it if you need to
communicate within a process across application domains. This is where they plan to con-
tinue support for the technology. This is also the only technology we’ve covered that will not
have a seamless migration path into WCF. ASMX, MSMQ, and COM+ will all have a relatively
painless journey into the WCF call stack.

Summary
When you’re doing distributed application development, you must always decide how you’re
going to communicate across boundaries. When you’re using .NET to do your distributed
application development, these boundaries can be between application domains within a
process, across processes on a machine, or across machines on a network.

In order to decide how to communicate across these boundaries, you must decide two
things: what will be used as a listener, and what the listener will be listening for? There are
many answers to these questions when using the .NET Framework. The answer to one ques-
tion doesn’t necessarily dictate the answer to the second question, so you have many
valid combinations of choices.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS294

522xCH08.qxd 8/31/05 3:33 PM Page 294

Figure 8-10. Exposing Serviced Components via multiple hosts and protocols

ASP.NET should be your first choice as a listener because it can deal with requests for Web
Services, can handle requests for remoted objects, can expose Enterprise Services, and can be
used in concert with MSMQ.

Microsoft is attempting to simplify this entire landscape with the WCF. In the next chapter,
we examine the WCF and see how it will reign in some of this complexity.

CHAPTER 8 ■ HOSTING AND COMMUNICATIONS 295

522xCH08.qxd 8/31/05 3:33 PM Page 295

522xCH08.qxd 8/31/05 3:33 PM Page 296

Windows Communication
Foundation

Not too long ago, many web applications were deployed as a single unit on a single machine.
That is, the presentation, business, and data access logic all executed on the same machine
and within the same process. Typically, only the database server would be on a different physi-
cal machine. As business needs became more and more complex, however, businesses
required more out of their web applications—more performance, more scalability, more
flexibility, and more integration with other systems.

This, in turn, has lead to the present era, where a given web application may need to com-
municate with several applications running on a variety of different machines and platforms.
In Chapter 5, we discussed the distributed technologies that .NET currently provides to help
you meet these challenges. In this chapter, however, we look at a future distributed technol-
ogy—Windows Communication Foundation (WCF)—that will eventually supersede the
technologies of today.

Introducing Windows Communication Foundation
To begin, we describe the nature of the new technology and why it is different from the current
set of technologies. Then we dive into some of the issues surrounding the current distributed
technologies to establish why something this unique was required in the first place.

What Is Windows Communication Foundation?
Windows Communication Foundation (WCF) is Microsoft’s next-generation distributed sys-
tems technology. It provides a single API and a single infrastructure on which you can build,
deploy, and operate distributed applications WCF takes the best features from the existing
.NET distributed technologies and unifies them under a single programming model. As if this
weren’t ambitious enough, it also promotes service orientation to a first-class citizen, while
also supporting the best practice usage of conventional Distributed Object and Remote Proce-
dure Call (RPC) technologies.

WCF ships within WinFX—a redistributable that contains the .NET Framework 2.0,
Windows Communication Foundation, and Windows Presentation Foundation (Microsoft’s
next-generation UI technology). The WinFX release is planned for the second half of 2006
alongside Windows Vista. WinFX for Windows XP (SP2+) and Windows Server 2003 (SP1+) will
also ship at the same time. 297

C H A P T E R 9

■ ■ ■

522xCH09.qxd 8/31/05 3:35 PM Page 297

Understanding the WCF Motivations
As with any new technology, having a good understanding of WCF begins with having an
appreciation for its underlying motivations. After all, .NET currently has several effective tech-
nologies that enable you to build distributed applications: .NET Remoting, MSMQ, Enterprise
Services, and, of course, Web Services. What is the point of having yet another distributed
technology? In this section, we tackle this all-important question.

Problem: Distributed Technology Soup
In the previous paragraph, we mentioned the many distributed technologies that are already
available to .NET developers. To save syllables and trees, we’ll collectively refer to these four
technologies—.NET Remoting, MSMQ, Enterprise Services, and Web Services—as the “Big
Four.”1 Although it’s usually nice to have many options, in this case, the number of options
combined with large amounts of overlapping functionality make it extremely difficult to
choose the right technology for the job. Of course, each of the Big Four exhibits distinct advan-
tages and disadvantages relative to the others. But deciding the right technology based on
them may require application and infrastructure knowledge that you may not yet have. For
example, you may choose Web Services to leverage its loose coupling advantage, only to find
out much later that the actual application load requires the performance advantage of Enter-
prise Services. Given that the programming models for each of the Big Four differ greatly,
switching to another technology midstream in the development cycle proves difficult and
costly.

To better understand the nature of the problem, take a look at Table 9-1. This table details
each technology’s characteristics, advantages, and disadvantages. Looking at this, it’s no won-
der that news groups and forums are flush with which, when, where, and why questions
regarding the Big Four.

WCF’s Solution to Distributed Technology Soup
WCF solves the distributed technology soup problem by incorporating the best of each Big
Four technology into one programming model. For developers, this eases the burden of hav-
ing to remember four extremely different models. It also simplifies the task of switching
midstream to another distributed technique.

In terms of a programming model, WCF actually supports three levels of “programming”:
API, declarative attributes, and configuration. The extensive WCF API exposes all of its func-
tionality including low-level plumbing and extensibility points. Although the API is powerful,
WCF also defines many attributes that are much simpler to use and that support most scenar-
ios. Finally, WCF’s configuration support enables you modify many settings without even
touching your source code.

Beyond providing a simple programming mode, WCF’s attribute-based approach also
enables you to expose a component on the wire without deriving from a special base class. In
contrast, .NET Remoting and Enterprise Services require that you derive your remote object
from MarshalByRefObject and ServicedComponent, respectively. Because .NET allows only one
base class, this makes it difficult to incorporate your own custom base class.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION298

Web Services.

522xCH09.qxd 8/31/05 3:35 PM Page 298

Problem: Current Focus on Distributed Objects and RPC
Currently, most of the Big Four provide a distributed object programming model. In other
words, they try to apply the principles of object orientation to the world of distributed appli-
cations. The problem, unfortunately, is that while object orientation is extremely successful in
many types of applications, it does not translate well to distributed applications. In fact, to
achieve acceptable performance and scalability out of a distributed object, you must violate
some core principles of object orientation. Examples of this include creating stateless objects
(an oxymoron by many object standards) and exposing a chunky interface rather than the
chatty interface recommended by object orientation. Furthermore, many distributed object
technologies assume a homogeneous environment and atomic deployment—both of which
are exceedingly rare in the real world.

Despite these issues, .NET Remoting and Enterprise Services rely heavily on the object
metaphor. The same can also be said for .NET Web Services in that the Web Service code gen-
erated by Visual Studio .NET implements a logical RPC interface on top of a document-based
wire format. This leaves MSMQ as the only Big Four technology that eschews the distributed
object mentality in favor of a pure messaging approach.2

WCF’s Solution to the Distributed Object/RPC Focus
In light of the limitations of a distributed object mindset, the industry is beginning to adopt
a new approach called service orientation (SO). In the next section, we provide a detailed

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 299

Table 9-1. Summary of the Big Four Distributed Technologies

Technology Characteristics Advantages Disadvantages

Web Services RPC style1 Great for interoperability Issues with
XSD type fidelity Resilient performance and
Schema/WSDL integration immature specifi-

cations in the WS-*
space.

Remoting RPC style Lean and mean Fragile
CLR type fidelity No built-in services
Code-based integration such as hosting or

security
Poor interop

Enterprise RPC style Proven technology COM-isms leak out
Services Code integration Very fast and present COM

Declarative services: Provides many services hassles
transactions, pooling Poor interop
concurrency

MSMQ Message style Great when robust Poorly understood
Schema or code integration messaging is required
Robust messaging support
(guaranteed deliver,
transacted messaged, etc.)

1. By this, we’re referring to the .NET tools that assume every developer wants an RPC façade over the SOAP messages.

2. Unless you are one of the few who has forged a contract-first Web Service design and implementation

522xCH09.qxd 8/31/05 3:35 PM Page 299

explanation of this approach and why it’s a better fit for a distributed application. For now,
simply remember this: SO addresses the unique characteristics and requirements of a distrib-
uted application in a cleaner way than distributed objects do. The problem today, however, is
that most distributed technologies and tools favor the classic distributed object approach.
Obviously, this makes a service-oriented approach much more difficult to implement than it
should be.

WCF addresses this situation by making SO a first-class citizen. Its primary focus is to
provide the tools and infrastructure necessary to ease a developer’s learning curve and imple-
mentation burden when applying a service-oriented solution. That said, WCF also supports
the best practice use of distributed objects.

YASOE: Yet Another Service Orientation
Explanation
The terms service orientation (SO) and Service Oriented Architecture (SOA) are clearly the
new buzzwords leading us into the next generation of distributed applications and shaping
the stack of technologies that enable developers to implement them.

■Note The terms SO and SOA are often interchanged despite being two distinct ideas. Later, you’ll see the
difference, but until then we’ll simply use the SO/A acronym to represent the union of the two concepts.

Despite (or maybe because of) the huge amount of cyberspace real estate dedicated to
SO/A explanations, debates, and marketing, the SO/A semantics still remain unclear. Line up
ten SO/A enthusiasts and ask each “What is SO/A?” and you’ll get ten different answers, each
with varying degrees of overlap and conflict. These discussions, frankly, are becoming more
and more tedious and at the same time less and less fruitful.

That said, we still feel compelled to convey our SO/A point of view within this chapter.
Not because we believe ours is the canonical one, but because:

• Not everyone has had the luxury of reading the hundreds of SO/A related articles,
slides, and presentations. For these folks, this section serves as a nice overview of the
concepts.

• Those who are already veterans of the SO/A definition wars may benefit from this sec-
tion because it explains what we mean when we refer to SO/A. Hopefully, this will ward
off confusion (not to mention a few angry e-mails) based purely on semantics.

SO/A: Revolution, Evolution, or Neither?
One of the many complaints we often hear regarding SO/A is that it offers nothing that sophis-
ticated and successful distributed implementations aren’t already doing. To which we simply
say: “That’s the point.” We’ve all learned many hard lessons over the past few years by watch-
ing distributed applications deliver disappointing results or completely fail. The primary goal

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION300

522xCH09.qxd 8/31/05 3:35 PM Page 300

of SO/A is to take those lessons to heart and document the characteristics of the most success-
ful distributed systems. The hope is that this information will help future developers avoid the
same mistakes that crippled many early attempts at building distributed applications.

Therefore, we see SO/A as a meta-pattern. Like any pattern, it defines a proven approach
that incorporates the experience of architects and developers as they struggled to build these
systems. Or, as Joe Long of Microsoft succinctly said: “Service orientation is all about building
distributed systems the right way.”

Objects vs. Services: The Metaphor Matters
If you compare object orientation with service orientation, the first obvious distinction is the
use of the object metaphor versus the service metaphor. The object metaphor is simply an
abstraction to help humans better understand the machine code underneath. This, in turn,
makes it easier for humans to reason about and organize the larger system.

By nature, a metaphor implies characteristics. An object, for example, has attributes and
behaviors, and maintains its own state. In the context of software development, an object
implies chatty interfaces and support for encapsulation, inheritance, and polymorphism.
Objects and their implied characteristics have proved extremely helpful when you’re design-
ing and implementing local systems. However, in the early ’90s, high-speed LAN networks
became more common, making it feasible to create applications that were distributed across
several physical machines. Later, the emergence of the Web made it possible to communicate
with business partners over this common networking infrastructure rather than using a costly
propriety infrastructure.

Given the success of objects in the local context, it seemed natural to also apply the object
metaphor in the distributed context. Unfortunately, the characteristics that worked so well in
the local context were ineffective and even destructive in the distributed context. Specifically,
chatty interfaces caused an object-based distributed solution to perform poorly and stateful
objects made it extremely difficult to scale the system out. When you think about it, that’s a
fatal combination. Over time, many developers learned these issues and began developing
“objects” that were stateless and exposed chunky interfaces. But, of course, the resulting entity
was not an object at all. The bottom line is that the object metaphor actually hindered, rather
than helped, developers in gaining an understanding of the best way to develop a distributed
system.

Unlike past distributed approaches, which tried to take the round object metaphor and fit
it into the square distributed world, SO/A introduces a new metaphor—the service, whose
characteristics are much better aligned with the realities of the distributed world. The service
metaphor helps humans reason about the communication that occurs between two distrib-
uted applications. It also implies the characteristics that help make that communication as
efficient, flexible, and open as possible.

The Four Tenets of Service Orientation
So what exactly are the characteristics that make services a better metaphor for describing
distributed applications? This is where the well-traveled “Four Tenets of Service Orientation”
come into play. Understand, these are Microsoft-defined tenets, so they describe how
Microsoft views SO/A. Also, these tenets have been bouncing around cyberspace for quite
some time, so in-depth discussions and arguments about each one are only an Internet
search away.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 301

522xCH09.qxd 8/31/05 3:35 PM Page 301

With that last point in mind, our goal in this section is to cover each tenet in just enough
detail to satisfy the curiosity of someone fairly new to the SO/A discussion. Others may (and
likely will) skip this section.

Tenet One: Boundaries Are Explicit
Many current distributed technologies boast of a feature called location transparency. This is
the notion that the code you write to invoke a procedure is the same regardless of where that
function actually lives. For example, it may be executing in process, out of process but on the
same physical machine, or out of process and running on a different machine. Of course, in
the distributed object paradigm, the procedure is really a method within an object, so the
location of the method follows the object. And that, of course, brings us back to the issues
around the object metaphor. An object assumes that all communication with its consumer is
simple and local. In other words, it assumes the best case scenario. These assumptions caused
a lot of pain, particularly in the early days of DCOM and CORBA, as developers took their
local, chatty, and stateful objects and relocated them to a remote server without modification.

Services, on the other hand, take an entirely different approach. Around any service
implementation lies a logical boundary that separates the service from the outside world.
From the service point of view, the mechanisms used beyond this boundary to communicate
with its consumers are completely unknown. The communication may need to cross large
physical distances, multiple networks, various trust boundaries, etc. Or the communication
may simply need to cross the service boundary to an in-proc consumer. Since these commu-
nication details are unknown to the service, it assumes the worst case scenario. That is, it
assumes that each communication between it and the consumer is extremely costly. There-
fore, SO ensures that each boundary crossing does as much work as possible. To that end, a
service uses explicit message passing to communicate outside of its boundary, where each
message contains all the data required to complete the operation.

Tenet Two: Services Share Schema and Contract
No matter what distributed technology you use, each one must provide some way for the con-
sumer to know what operations are available, what inputs are needed and what their structure
is, and what the structure of the return is. In .NET Remoting, for example, this information is
deployed to the consumer in the form of a shared .NET assembly that contains the remote
object interfaces or even their concrete classes. This complicates versioning and makes inter-
operation with non-.NET platforms impossible without bridging tools.

In contrast, services follow the Web Service approach and provide their structural and
operational details using schemas and contract. In Web Service implementations, the schema
and contract are typically contained within a Web Service Description Language (WSDL) doc-
ument that the consumer can retrieve. And although SO doesn’t require the use of WSDL, early
implementations do use it.

Tenet Three: Service Compatibility Is Based on Policy
In certain cases, the service consumer may need to make specific demands on the service
before engaging in any conversation (or vice versa). For example, the consumer may be a serv-
ice itself and running within the context of a larger transaction. Therefore, the consumer must
ensure that the remote service supports transactions. This transaction requirement represents

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION302

522xCH09.qxd 8/31/05 3:35 PM Page 302

A given policy may indicate a service capability (for example, “I support transactions”) or
a service requirement (for example, “I require transaction support from other services”). In the
case of WCF, each policy assertion adds the appropriate interceptor on both sides of the com-
munication link. These interceptors actually apply the policy. Therefore, policy negotiation
must occur before any real communication commences.

Tenet Four: Services Are Autonomous
Quite honestly, this tenet is probably the most nebulous one for developers as they learn the
service-oriented concepts. In fact, of the four tenets, the majority of questions and discussions
tend to focus on this one. The concept itself is simple to explain: services are self-governed
and contain resources that cannot be modified by any external entity. The completely logical
question that typically follows this, however, is the confusing aspect. That question is “How
practical is a service that is completely autonomous?” The answer, of course, is not at all.

To help resolve this apparent contradiction, it’s best to consider this tenet as a driving
principle that a service should strive to achieve, rather than a hard and fast rule that a service
must follow. In that sense, this tenet is similar to the encapsulation principle in object orien-
tation. Total encapsulation would dictate that the object has no public members, which, of
course, is a completely useless object. However, it still is an important principle that you
should violate only when necessary. Likewise, you should use the autonomy principle to drive
the design and factoring of your services. This will help you create services that are as inde-
pendent, robust, and resilient to change as possible.

Service Orientation vs. Service Oriented Architecture
New technologies and development paradigms typically come attached with a barrage of new
terminology, acronyms, and jargon. SO/A is no exception. To make things even more confus-
ing, some terms are often lazily interchanged despite being different in subtle but important
ways. But this is hardly unique to SO/A. In writings about object orientation, for example, the
term object is often used where class would be more appropriate, or vice versa.

The terms that are most confused in the service space are service orientation (SO) and
Service Oriented Architecture (SOA). Service orientation refers to a mindset that centers on
the four SO tenets. These principles can drive activities across the entire spectrum of develop-
ment tasks: architecture, design, requirement gathering, and coding. In contrast, the term
Service Oriented Architecture is more specific in that it refers to the activity of developing an
architecture or can be used to describe and existing architecture.

When the service notion first appeared within the developer world, it was commonly
referred to as SOA. The problem with the SOA term, however, is that it implies that service
orientation is simply an architectural approach. Therefore, the industry is slowly adopting
SO as the generic term and using SOA in the context of discussing architectures.

Programming with WCF
While the previous sections paint a high-level picture of WCF, if you are anything like us, then
a few lines of code speak a thousand words. So after providing you with an overview of some
core WCF concepts, we’ll show you several code examples that demonstrate the “look and
feel” of programming WCF.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 303

522xCH09.qxd 8/31/05 3:35 PM Page 303

■Caution At the time of this writing, WCF has been released only as an early beta. Therefore, take all code
examples with a pound of salt—many of the details will likely change by the time WCF is officially released.

The ABCs of WCF: Address, Binding, and Contract
Concisely stated, a WCF service is a collection of endpoints where each endpoint implements
a service contract and contains a binding and an address. Crystal clear, right? Probably not, so
in this section, we elaborate on this definition by illustrating what is meant by contracts, bind-
ings, and addresses.

Defining Service Contracts
Defying convention, a good place to start is with the C, which actually represents service con-
tract. A service contract defines the service operations and the input and output parameters
of each operation. In fact, this notion is extremely similar to the <portType> section in WSDL
today. A service contract is typically defined by applying attributes to a class or interface:

using System.ServiceModel

[ServiceContract]
class MathService
{

[OperationContract]
public int Add(int n1, int n2)
{

return n1 + n2;
}

[OperationContract]
private int Subtract(int n1, int n2)
{

return n1 - n2;
}

}

In this example, note the ServiceContract and OperationContract attributes. These attrib-
utes combine to create the service contract. The OperationContract attributes are analogous
to the familiar WebMethod attribute in that each attribute defines the attached method as an
exposed operation. However, notice that the Subtract method is private. In WCF, the access
modifiers are orthogonal to the service contract and, therefore, have no bearing on what can
or cannot be exposed outside the service.

These attributes can also be applied to an interface to create the service contract. For
example:

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION304

522xCH09.qxd 8/31/05 3:35 PM Page 304

using System.ServiceModel

[ServiceContract]
interface IMathService
{

[OperationContract]
int Add(int n1, int n2);

[OperationContract]
int Subtract(int n1, int n2);

}
class MathService : IMathService
{

public int Add(int n1, int n2)
{

return n1 + n2;
}

public int Subtract(int n1, int n2)
{

return n1 - n2;
}

}

In this example, notice how the implementing class needs no attributes; its only concern is
to implement the IMathService interface. Since it’s desirable to keep the contract separate from
the implementation, using an interface to define the service contract is the preferred approach.

Specifying the Address and Binding
In addition to implementing a contract, each endpoint also contains an address and a binding.
The address is essentially a URL that defines the location of the endpoint (and the service by
extension) in the network.

Bindings are a little more interesting. The endpoint binding defines what protocols, trans-
port, and encoding the endpoint will use for all its communication. You can create a custom
binding, but WCF provides several useful built-in bindings. Table 9-2 shows a partial list of these.

Table 9-2. A Few of WCF’s Standard Bindings

Binding Description

BasicProfileBinding WS-I Basic Profile conformant binding that provides seamless
interoperability with any other Basic Profile conformant Web
Service. Use this binding to communicate with Web Services.

WSProfileBinding Provides the same features as BasicProfileBinding, but also
includes support for the full WSE 3.0 stack of protocols.

NetProfileNamedPipeBinding Provides extremely fast communication between processes
running on the same machine.

MsmqIntegrationBinding Use to interoperate with MSMQ applications.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 305

522xCH09.qxd 8/31/05 3:35 PM Page 305

Although you can configure the address and binding programmatically, it’s much easier (not
to mention more flexible) to configure these in the app.config file (or web.config file) as we
show here:

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<system.serviceModel>
<services>

<service serviceType="IndigoServer.MathService">
<endpoint bindingSectionName="wsProfileBinding"

address="http://localhost:13101/MathService"
contractType="IndigoServer.MathService, IndigoServer">

</endpoint>
</service>

</services>
</system.serviceModel>

</configuration>

As you can see, the <endpoint> element provides several attributes. With these, you can set the
address, binding, and contract type.

Remember, by definition a service can contain multiple endpoints. Here’s the configura-
tion for this scenario, where multiple endpoints are applied to one service:

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<system.serviceModel>
<services>

<service serviceType="IndigoServer.MathService">
<endpoint bindingSectionName="wsProfileBinding"

address="http://localhost:13101/MathService"
contractType="IndigoServer.IMathService, IndigoServer">

</endpoint>

<endpoint bindingSectionName="basicProfileBinding"
address="http://localhost:13102/MathService"
contractType="IndigoServer.IMathService, IndigoServer">

</endpoint>
</service>

</services>
</system.serviceModel>

</configuration>

In this example, the second endpoint configures a slightly different binding, thus enabling the
service to communicate using two different protocol stacks.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION306

522xCH09.qxd 8/31/05 3:35 PM Page 306

Hosting the Service
A WCF service can be hosted in many types of applications: Windows Service, Windows Forms,
ASP.NET, and even a simple console application. Although ASP.NET will likely be the most
popular host for services, for the sake of simplicity the following example demonstrates how
to host a service within a simple console application.

static void Main(string[] args)
{

using (ServiceHost<MathService> service =
new ServiceHost<MathService>())

{
// communication infrastructure set up on call to open
service.Open();

//Stay alive to process requests
Console.WriteLine("Hit [Enter] to exit");
Console.ReadLine();

}
}

The points of interest in this simple example are the ServiceHost constructor call and the call
to Service.Open method. By constructing the generic ServiceHost class with the MathService
parameter, the runtime generates a hosting environment for the MathService service. The
ServicedHost.Open method establishes the communication infrastructure required by each
endpoint based on its binding. Each opened ServicedHost consumes its share of resources,
so it’s important to close the service to release those resources. You could do this explicitly
by calling the Close method on the ServiceHost, but the previous example implements
a using block that implicitly closes the ServiceHost once the thread leaves the scope of the
using block.

Calling the Service
WCF supports several ways to create and configure a client to call a service. First, as was the
case with hosting a service, the calling code can exist within any type of application—web
application, Windows application, even another WCF service.

Regardless of the client application type you choose, the client requires several bits of
information to successfully call the service.

• The service contract: This can be any local type (class or interface) that adheres to the
contract published by the service endpoint.

• The service address: This should be the same address configured in the service end-
point.

• The service binding: The client must use the same protocols, transport, and encoding as
the service endpoint.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 307

522xCH09.qxd 8/31/05 3:35 PM Page 307

Notice that these three pieces of information match the information exposed by the service
endpoint exactly. In fact, the client must use this information to establish a client-side end-
point. Similar to the service endpoint, the client-side endpoint establishes the communi-
cation plumbing going up to the service and also manages the message exchange.

WCF does not care exactly how all this information gets to the client. You could, for exam-
ple, manually code the contract type into the client and set the proper address and binding in
the configuration file. Here’s what this might look like:

// In the client code
// This must adhere to the service contract, but does NOT need
// to be named the same.
[ServiceContract]
interface INotTheSameNameAsService
{

[OperationContract]
int Add(int n1, int n2);

[OperationContract]
int Subtract(int n1, int n2);

}

<!-- In the client’s configuration file -->
<system.serviceModel>
<client>

<endpoint bindingSectionName="wsProfileBinding"
address="http://localhost:13101/MathService"
contractType="INotTheSameNameAsService">

</client>
</system.serviceModel>

In this example, notice that the client-side contract (INotTheSameNameAsService) is, as its name
suggests, not named the same as the service-side contract (IMathService). WCF will validate
that the service contract at each endpoint (client and service) is structurally equivalent, but
unlike some distributed technologies, such as .NET Remoting, WCF does not require full type
fidelity down to the type name and assembly name. This is an important difference between a
distributed object approach and a service-oriented approach because the latter leads to easier
versioning and, therefore, more resilient systems. That said, you shouldn’t radically change the
name of the contract for no good reason.

Although the technique shown in the previous listing is a valid way to represent the
address, binding, and contract, most developers would rather avoid all the manual coding
and tedious configuring in favor of a more automated approach. Thankfully, WCF ships with
the Service Metadata Utility tool (Svcutil.exe) that can query a service, retrieve its metadata,
and create the appropriate client-side address, binding, and contract. It also creates a service
proxy that, similar to a Web Service proxy, enables the client code to call the service by calling
the proxy’s methods.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION308

522xCH09.qxd 8/31/05 3:35 PM Page 308

The Svcutil.exe tool has many options, but the following example demonstrates a simple,
common usage:

svcutil.exe http://localhost:13101/MathService /config:app.config

In this case, the Svcutil.exe tool generates a configuration file with all the appropriate
address and binding settings. It also generates a client-side service contract type and a proxy
class, as we show here:

[ServiceContract()]
public interface IMathService
{

[OperationContract(...)]
int Add([MessageBody(...)] int n1, [([MessageBody(...)]int n2);
[OperationContract(...)]
int Subtract([MessageBody(...)] int n1, [([MessageBody(...)]int n2);

}

public partial class MathServiceProxy : ProxyBase<IMathService>, IMathService
{

public MathServiceProxy() {}

public MathServiceProxy(string configurationName) :
base(configurationName) {}

public MathServiceProxy(System.ServiceModel.Binding binding) :
base(binding){}

public MathServiceProxy(EndpointAddress address, Binding binding) :
base(address, binding) {}

public int Add(int n1, int n2)
{

return base.InnerProxy.Add(n1, n2);
}

public int Subtract(int n1, int n2)
{

return base.InnerProxy.Subtract(n1, n2);
}

}

Now that the proxy, contract, and configuration are complete, the client code can simply
use the proxy to call operations on the service. We demonstrate this here:

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 309

522xCH09.qxd 8/31/05 3:35 PM Page 309

class Program
{

static void Main(string[] args)
{

using(MathServiceProxy math = new MathServiceProxy("IMathService"))
{

Console.WriteLine(math.Add(5, 2));
Console.WriteLine(math.Add(3, 3));

}
}

}

Revisiting WCF Contracts
The concept of a contract is a core foundation to WCF. Address and binding are also important
pieces, but they track closer to an administrator’s set of responsibilities. Contracts, on the
other hand, are firmly rooted in the developer’s space.

WCF defines three different types of contracts:

• Service contract: As we mentioned earlier, this defines the service operations and the
input and output parameters of each operation. Every service must have one associated
service contract and may have more.

• Data contract: This defines the data structure WCF uses to serialize and deserialize an
instance of a complex type. Data contracts must be associated with every complex type
exposed by a service operation as parameters or return values.

• Message contract: This enables you to explicitly define the layout of a message; for
example, what goes in the header versus what goes in the body of the message.

The following sections provide some more details about each of the contract types.

Using Service Contracts
WCF provides three attribute types that together allow you to define a service contract:
ServiceContract, OperationContract, and BindingRequirements.

You’ve already seen simple examples of ServiceContract and OperationContract. Under-
stand that each of these provides additional parameters that allow you to further refine the
contract. For example, consider this service contract, which shows some ServiceContract and
OperationContract settings:

[ServiceContract(Namespace="http://indigorocks/", Name="CustomerService")]
interface ICustomerService
{

[OperationContract()]
CustomerData GetCustomerByEmail(string email);

[OperationContract(IsOneWay=true)]
void SaveCustomer(CustomerData cust);

}

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION310

522xCH09.qxd 8/31/05 3:35 PM Page 310

In this example, first notice the additional parameters set in the ServiceContract attribute.
Namespace and Name together enable you to explicitly specify the namespace and name of
the contract. By default, WCF uses the full interface or class name. Also notice the IsOneWay
parameter is set in the OperationContract to indicate that the SaveCustomer method is a one-
way operation with no return values.

Using Data Contracts
Data contracts describe the structure of data passed in and out of the service. In the case of
simple, known types such as integers and strings, WCF applies a default contract; if your serv-
ice exposes only simple types, you do not need to define a data contract. The CustomerService
contract shown in the previous listing, however, exposes a CustomerData type, which is a com-
plex type and, therefore, requires a data contract.

Again, WCF makes it easy to define a data contract by providing several attributes that you
can use to decorate the CustomerData type:

// Also need a reference to System.Runtime.Serialization.dll
using System.Runtime.Serialization;

[DataContract]
public class CustomerData
{

[DataMember] public string FirstName;
[DataMember] public string LastName;
[DataMember] public string Email;

}

As you can see, the data contract attributes are analogous to the XML serializer attributes
such as XmlElement and XmlAttribute. However, unlike today’s Web Services, WCF does not by
default use the XmlSerializer to serialize complex types. Instead it uses XmlFormatter, which
has better support for versioning and understands these new DataContract and DataMember
attributes. You can explicitly specify the desired formatter using the FormatMode parameter of
the ServiceContract attribute as we show in the following example.

[ServiceContract(Namespace="http://indigorocks/", Name="CustomerService",
FormatMode = ContractFormatMode.XmlFormatter)]

interface ICustomerService
{ ... }

Using Message Contracts
Future WCF developers will frequently define service and message contracts, but using mes-
sage contracts to explicitly define the message structure will likely be less common. This can
prove useful if you need to interoperate with another (non-WCF) service, which requires a
particular message format.

To define a message contract, you use the MessageContract, MessageHeader, and
MessageBody attributes as shown here:

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 311

522xCH09.qxd 8/31/05 3:35 PM Page 311

[MessageContract]
public class CustomerMessage
{

[MessageHeader]
public int CustomerId;

[MessageBody]
public CustomerData Customer;

}

This message contract can now be used as a parameter in a service operation. For example:

[ServiceContract()]
interface ICustomerService
{

[OperationContract()]
void SaveCustomer(CustomerMessage customerMsg);

Instancing, Transactions, and Much, Much More
The previous examples are meant to provide a sneak preview of the WCF programming look
and feel. Of course, WCF provides many more features and so this is by no means an exhaus-
tive look at WCF programming.

To help fill some gaps, Table 9-3 lists several important features and which WCF API or
attribute enables each one. Use this as a self-study starting point.

Table 9-3. Other WCF Features

WCF Feature Attribute or API Notes

Transactions OperationBehaviorAttribute Provides AutoEnlistTransaction
parameter

Instancing ServiceBehaviorAttribute InstanceMode parameter accepts
values such as PerCall, Singleton,
etc.

Asynchronous calls OperationContract Both provide parameters for
ServiceContract declaring an asynchronous task

and a valid callback interface on
the client.

Message Queuing NetProfileMsmqBinding Sends message to queues.

Preparing for WCF
WCF and SO represents a huge shift both in how we reason about distributed applications and
how we implement them. The benefits, however, are significant, so it’s no wonder that archi-
tects and developers are anxious to adopt WCF as soon as possible. On the other hand, most
of these folks also have systems that need to be developed today using today’s technologies
and, therefore, they cannot afford to wait for Microsoft to release WCF. So the question on

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION312

522xCH09.qxd 8/31/05 3:35 PM Page 312

everyone’s mind then is, “What can I do today to make the future migration to WCF easier?” In
particular, you need to know which of the Big Four technologies to choose and what features
of the chosen technology you should use or avoid. To answer this question, we must break it
down into three more specific questions:

1. Will installing WCF break my application because it uses a particular Big Four
technology?

2. Will my chosen Big Four technology interoperate with WCF services?

3. Will my chosen Big Four technology easily port to WCF?

This section discusses each of these questions as it applies to each of the Big Four
technologies.

Will WCF Break My Current Application?
Of the three, this is probably the most important question. It also has the most welcomed
answer: WCF will not break an existing application using any of the Big Four technologies.
WCF will be deployed as an entirely distinct technology with its own protocol stacks and,
therefore, it neither changes nor depends on anything from the Big Four stacks.

This is great news, particularly for folks who have already heavily invested in current
technologies. It also contradicts some of the talk around .NET Remoting, a technology that
should steal a famous line from Mark Twain: “The rumors of my death have been greatly exag-
gerated.” Although it’s true that Remoting presents some issues in terms of porting to and
interoperating with WCF, like all the other Big Four technologies it will continue working as
normal after you install WCF.

Will My Implementation Interoperate with WCF?
As we stated in the previous section, all of the Big Four technologies are equal in that they
won’t break after you install WCF. In terms of interoperating with WCF, however, the Big Four
technologies are clearly not equal; most interoperate, but one simply does not.

Before getting to that detail, however, let us clarify the question. Each of the Big Four
relies on a distinct stack of protocols that define serialization, wire format, object lifetime
semantics, and so on. It should be no surprise, therefore, that these technologies generally do
not interoperate well. For example, a Web Service cannot directly communicate with a .NET
Remoting object or vice versa because (among a few other issues) it accepts and sends differ-
ent message formats across the wire. However, since WCF incorporates the best of each Big
Four technology, it achieves “wire interoperability” with three of the Big Four technologies.

The one exception is .NET Remoting. Some, unfortunately, have misinterpreted this to
mean that WCF breaks Remoting. In reality, it simply means that your existing Remoting code
will not communicate with your new WCF-based services (and vice versa). This is certainly an
important limitation that you’ll need to consider carefully before you adopt a solution based
on .NET Remoting. That said, it doesn’t signal the death of .NET Remoting.

Remoting aside, the overall WCF interoperability story is outstanding. It does achieve wire
interoperability with your current Enterprise Service, MSMQ, and .NET Web Service code. In
addition, WCF services can interoperate with any non-.NET Web Service if it conforms to the
WS-I Basic Profile specification.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 313

522xCH09.qxd 8/31/05 3:35 PM Page 313

Finally, WCF can also interoperate with a Web Service that uses Web Service Enhance-
ments (WSE) for WS-Security, WS-Policy, and other new Web Service specifications. This WSE
interoperability, however, comes with one big caveat: It is true for WSE version 3.0 only. To
keep up with the dynamic nature of the Web Service specification space, Microsoft must con-
stantly produce updated versions of their WSE tool. Because of this, the WCF team decided to
target a WSE version that, hopefully, contains a much more stable set of specifications.

How Easily Will my Application Migrate to WCF?
Like the interoperability question, this question also helps to distinguish the current Big Four
technologies. The answer to the ease of migration question centers on the programming
model; if your current technology uses a programming model based primarily on declarative
attributes rather than code, it will be easier to port the code to WCF.

Before diving into the details for each technology, however, let us address another ques-
tion that has likely crossed your mind. Given WCF’s great interoperability story, why would
you endure the hassle of migrating a Web Service that has proven to be reliable and func-
tional? The answer, simply, is that migrating allows you take full advantage of all the WCF
capabilities. WCF is built upon the latest and greatest protocols, brings SO to the masses, and
provides a single, simple programming model. But migrating existing code to WCF is the only
way to realize all of its functionality.

The following sections discuss the migration details of each Big Four technology and give
each a rating of either “trivial” or “non-trivial” where:

• Trivial means that the required changes are simple and can be expressed in a cook-
book-style document or can be reliably automated via a tool.

• Non-trivial means that the required changes are generally too complex for reliable
automation and, therefore, require human intervention.

In the non-trivial cases, Microsoft intends to publish whitepapers to help guide developers
through the migration process. Also understand that even in these non-trivial cases, a little
WCF foreknowledge can help you implement solutions with WCF in mind and, thus, ease that
migration. To that end, in each of the following sections we provide usage suggestions that will
minimize your migration task.

Migrating Web Services to WCF
Not surprisingly, Web Services are easily migrated to WCF. This is true for a couple reasons.
First, the .NET Web Service programming model is based primarily on attributes rather than
code. Second, the underlying protocols and standards already support, if not embrace, a
service-oriented mindset. Because of this, Web Services enjoy a trivial migration.

That said, if you’re writing a Web Service today but know it will eventually be ported to
WCF, here are a few suggestions for ensuring a seamless transition.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION314

522xCH09.qxd 8/31/05 3:35 PM Page 314

• Avoid or abstract custom SOAP extensions. SOAP extensions enable you to intercept
incoming and outgoing SOAP messages and execute custom logic before the message
lands within the Web Service or at the client. This can be useful when you’re imple-
menting a custom security mechanism, custom logging, etc. However, WCF provides its
own interception and extensibility mechanism, so all SOAP extensions must be rewrit-
ten as WCF behaviors or channels.

• Avoid or abstract calls to HttpContext. The HttpContext class provides access to the
intrinsic ASP.NET objects such as Session, Application, and Server. You can rely on this
to work because .NET Web Services are always hosted in ASP.NET. However, WCF serv-
ices may run within several types of hosts, including a simple console application. So
you can no longer assume the WCF service is hosted by ASP.NET and, therefore, has an
HTTP context.

Currently, WSE 2.0 is a popular way to provide security and other required enterprise
abilities to Web Services. Unfortunately, Web Services that leverage WSE 2.0 experience a
decidedly non-trivial migration path. In fact, Microsoft warns that it may cost significant
developer time. This is a particularly problematic given that WCF also doesn’t support wire-
interoperability with WSE 2.0 either. The good news, however, is that the port from WSE 3.0
to WCF should be trivial. So if you use WSE 2.0, be prepared to migrate to WSE 3.0 as soon as
possible to provide a much smoother path to WCF.

Moving Enterprise Services to WCF
Like Web Services, the Enterprise Services programming model is based on attributes. Despite
this, there are several issues that prevent the Enterprise Services migration from achieving a
trivial rating. First, the attribute names and settings are extremely different from those you’ve
come to know in Enterprise Services. For example, the familiar Requires Transactions, Supports
Transactions, etc. settings are replaced by an attribute setting named AutoEnlistTransaction.
Furthermore, the Enterprise Services technology is tightly bound to the distributed object
mindset, and has few facilities for a serviced-oriented implementation. Therefore, the migra-
tion path is rated as non-trivial.

That said, understand that migrating an Enterprise Service implementation promises to
be much easier than a WSE 2.0 implementation primarily because of its attribute-based pro-
gramming model. But there are too many caveats to call it a truly simple migration. These
caveats include:

• Different attribute names and settings. WCF not only changes the attributes for transac-
tional behavior, but it also uses different attributes for lifetime and security settings.

• Loosely Coupled Events (LCE). Depending on the scenario, LCE code may require signif-
icant modifications.

• Implicit Reference Passing. In classic distributed object programming, it’s common to
pass a reference back to the client that provides direct access to another object on the
server. However, this practice violates the autonomous tenet of SO, and, therefore, is
not allowed in WCF. Instead, WCF supports the notion of explicitly returning endpoint
references—essentially URLs that the client can use to access another service, but only
through a service boundary layer.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 315

522xCH09.qxd 8/31/05 3:35 PM Page 315

If you’re writing Enterprise Service code today, you obviously cannot avoid the attribute name
issue. However, if you can avoid using LCE or returning objects by reference, then you can
greatly simplify your future migration to WCF.

Migrating Remote Objects to WCF
Given that .NET Remoting does not provide an attribute-based programming model and that
it fully embraces the distributed object mindset, it is no surprise that it also presents a non-
trivial migration path to WCF. Much like Enterprise Services, however, if you carefully imple-
ment your Remoting solutions by avoiding specific features of .NET Remoting, you’ll enjoy a
much easier migration to WCF in the future. Here are a few suggestions:

• Avoid using .NET Remoting extensibility. .NET Remoting’s channel, sink, and formatter
objects allow you to extend its behavior. For example, many have used these objects to
implement a secure channel that automatically encrypts and decrypts the messages. To
migrate to WCF, however, all of this code will need to be rewritten against WCF’s exten-
sibility model, which has similar object names but different interfaces and behaviors.
Also note that a lot of functionality, such as security, is already implemented in WCF so
custom extensions may not be required.

• Use interfaces for all remoted classes. Split each remoted class into an interface and a
class implementation. This not only simplifies deployment today, but it also eases
migration to WCF in the future.

• Strive for a service oriented solution. Although it’s difficult if not impossible to imple-
ment a pure SO solution using Remoting, taking a few small steps toward SO is
relatively easy and can greatly simplify a future migration. These steps include using
chunky interfaces, using stateless objects, avoiding Remoting events, and avoiding
implicitly returning object references.

Migrating System.Messaging Code to WCF
Although the MSMQ technology is well-suited to the service-oriented mindset, its program-
ming model is different enough to warrant a non-trivial migration rating. Keep in mind that
it’s extremely easy to interoperate between WCF and MSMQ. Given this, plus given MSMQ’s
already rich messaging infrastructure, migrating MSMQ code will likely be a low priority.

MSMQ offers a few different APIs: a Win32 unmanaged API, a COM-based API, and a
managed API named System.Messaging. The best approach you can take today to ease future
MSMQ migration is to work exclusively through the managed System.Messaging API.

Interoperability and Migration Summary
You’ve now seen how the Big Four technologies compare in terms of interoperability and
migration and how to best utilize each for the smoothest path to WCF. You can find a conven-
ient summary of the key facts in Table 9-4.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION316

522xCH09.qxd 8/31/05 3:35 PM Page 316

Table 9-4. WCF Interoperability and Migration Summary

Technology Interop with WCF? Migration?

Web Services Yes Trivial

WSE 2.0 No Non-trivial

WSE 3.0 Yes Trivial

Enterprise Services Yes Non-trivial

.NET Remoting No Non-trivial

System.Messaging (MSMQ) Yes Non-trivial

Overall Guidance for Choosing the Best Technology
One Big Four technology stands out as providing the best migration path to WCF: Web Services.
This is true not only for simply migrating code, but also more importantly for migrating your
frame of mind from objects to services. The best way to understand SO is to do service orien-
tation, and Web Services allow you to do just that—right now. If you’re currently using
WSE 2.0, plan to migrate to WSE 3.0 as soon as possible. This will provide interoperability
with WCF and a simpler migration path to WCF.

While the above is the recommended approach straight out of Redmond, no one—includ-
ing Microsoft—is foolish enough to believe that one technology is always the right answer for
every situation. For example, some applications may have performance requirements that a
Web Service-based solution cannot meet. Or the situation may require distributed transac-
tions or involve a proprietary protocol. For all these reasons and more, the other technologies
still play important roles.

If Web Services are ruled out, particularly for performance reasons, Enterprise Services
is the next recommended technology. Enterprise Services use DCOM as the communication
protocol, which, somewhat surprisingly, remains the fastest distributed wire protocol—faster
even than .NET Remoting over the network. Enterprise Services also provide critical services
such as distributed transactions, object pooling, and a proven hosting environment. However,
Enterprise Services is currently built upon COM+ technology. This may seem like a minor
detail except that it leaks through the Enterprise Service abstraction in serious ways. For
example, all Enterprise Service assemblies must be strong named, and configured within
COM+.

So that brings us to .NET Remoting, which performs extremely well when using binary
serialization with the TCP protocol. In fact, it’s actually faster than DCOM when communicat-
ing between application domains within a single process. It’s also a pure managed code
solution that doesn’t suffer from registration and deployment hassles like Enterprise Services.
Finally, .NET Remoting allows you to get extremely close to the underlying wire protocols. So
much so that you can use .NET Remoting to implement or interact with a proprietary wire
protocol. The downside, however, is that Remoting is strongly biased toward distributed object
approaches, which can potentially make your code difficult to migrate into WCF. Because of
this and because Remoting is not wire interoperable with WCF, it’s recommended to use it
only for cross-application domains, in process calls, or when you need to implement custom
protocols.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION 317

522xCH09.qxd 8/31/05 3:35 PM Page 317

Compared to the other three technologies, the decision to use MSMQ is a simple one. If
you need robust messaging with guaranteed delivery, transacted queues, built-in security, and
more, you must use MSMQ because it’s the only current Microsoft technology that provides
these features.

Summary
WCF is a future technology that promises to unify the current distributed technologies under
one programming model and technology stack. It also promises to bring SO to the mainstream.
Microsoft has already released and continues to release a large amount of WCF-related infor-
mation. This is a testament to the impact it’s expected to have.

Of all the current .NET distributed technologies, Web Services will enjoy the easiest transi-
tion to WCF. The migration story for the rest of the Big Four is a mixed bag. However, the best
way to ensure a smooth migration path is to learn everything you can about SO and apply its
ideas now to guide how you build a distributed application.

CHAPTER 9 ■ WINDOWS COMMUNICATION FOUNDATION318

522xCH09.qxd 8/31/05 3:35 PM Page 318

Data Access Layer

The third part of the book is about how the data access layer manifests in the .NET Framework.

Every business application has requirements to retain information across a user’s sessions

with the application. These requirements are called the persistence requirements for the applica-

tion. Although there are scores of persistence mediums, one has come to dominate: the relation

database server. Relational databases store information using rules described by a schema; these

rules are based on the tenets of information theory and are implemented using Structured Query

Language, or SQL. It has also become widely accepted that isolating access to this persistence

medium yields great benefits in the design and maintenance of complex applications. This isolation

layer is called the data access layer.

Chapter 10

The third part of the book starts with an overview of ADO.NET, with a focus not so much on the

“hows” of using a managed provider for data access, but rather on when to use different types and

techniques and some best practices for each scenario.

Chapter 11

Several features of the Framework are designed for the data access layer, yet they don’t directly

pertain to managed providers. We’ll examine some of these key services here, including data

source controls, database-dependent cache entries, and the data access layer application block.

In the last section of this chapter, we’ll examine some of the radical new features of SQL Server

2005, which change some of our fundamental suppositions about distributed applications, and

force us to learn new ways to think about what runs in-memory with the database engine.

P A R T 3

■ ■ ■

522xCH10.qxd 8/31/05 3:38 PM Page 319

Chapter 12

The next version of the Framework introduces a more elaborate transaction model, enabling you to

have a transaction manage work that gets done in memory, so it can be rolled back the same way

transactional database work can be. We’ll examine this and see how a transaction can start as you

make modifications to business objects, and then be promoted to do database work, and get

promoted again if the transaction becomes distributed across databases. We’ll also show you

how to implement your own resource manager, which can do work that will participate in these

transactions.

522xCH10.qxd 8/31/05 3:38 PM Page 320

Managed Providers of
Data Access

The data access model that you’ve used for your .NET development is called ADO.NET. This
is a marketing name, as the technology has very little to do with ADO, and nothing to do with
ActiveX (which is what the A in the acronym ADO stands for). A more descriptive name would
be Managed Providers of data access. In this chapter, we’ve made the assumption that you’ve
used Managed Providers in your .NET development efforts. We examine some specific tech-
niques for optimizing data access, compare and contrast the data access models available
when using Managed Providers, and provide a summary of some of the new features in
ADO.NET 2.0. A Managed Provider is really just a set of types that implements a known set
of interfaces.

ADO and OLEDB, Microsoft’s COM-based data access technology, was designed when the
client-server model of application development was at its peak. As the Web caused distributed
application development to move to the fore, ADO had to be modified to account for architec-
tural differences that worked well in a client server environment, but were not scalable enough
for distributed applications. ADO.NET was designed from the ground up for distributed archi-
tectures, formalizing a disconnected model of data access into the object model.

One of the major drawbacks of working with Recordsets (the type for working with result
sets with COM-based ADO) was that it was hard to know in what situations you should use
which cursor and locking models. Furthermore, there was very little discernable difference in
how the developer interacted with the result set regardless of the cursor model used. In short,
it was very easy to use ADO result sets in a way that could negatively impact performance and
scalability. A developer needed to understand the internals of the Recordset cursor model in
order to choose the cursor and locking models most appropriate in specific circumstances.

ADO.NET gives you a choice of how to work with result sets with two different data access
models. One is an in-memory model, and the other is a low memory footprint, row-based
approach. Each of these models is implemented with different classes, meaning you work
with different objects depending on which method you employ. The programming models
between the two methods are different, and this makes it clear to the developer which tech-
nique he’s using. This clear differentiation should reduce the number of times the incorrect
model gets used. However, choosing the correct model still requires a clear understanding of
the differences, the features, and trade-offs of each one.

321

C H A P T E R 1 0

■ ■ ■

522xCH10.qxd 8/31/05 3:38 PM Page 321

The low memory footprint model of data access in ADO.NET provides a row-based
approach to processing a result set. With this approach, a single row of data is loaded into
memory at a time; you process the data for your specific operation, and then the row is
discarded from memory when you move on to the next row. This means the memory con-
sumed on the web server (or the physical tier where the result set is being processed) is
minimized to the memory needed to hold a single row of the result set, and that footprint is
bounded throughout the processing of the set. This is ideal for operations that are common to
web applications such as transforming a result set into an HTML table. The type that provides
this functionality is called a data reader. We’ll examine data readers in some detail shortly.

The in-memory type for processing data is called a DataSet. A DataSet is like a collection
of ADO-style Recordsets. The actual type the DataSet carries a collection of is a DataTable. The
DataSet provides a complete layer of abstraction between you and the data that you’re work-
ing with. That is, a DataSet does not know and does not care where its data comes from. It can
come from SQL Server, some legacy ODBC source, or even an XML file; the programming
model stays the same. There can even be a layer of indirection between the schema used at
the database and the schema used in memory by the DataSet.

Because all of the data for a DataSet is loaded into memory when a command is executed
against the database, more features are available than with a data reader. With a DataSet, you
can sort data, modify data, apply filters to the data, even establish relationships between dif-
ferent result sets. DataSets can be stored in the Session, squirreled away in the Web Cache, or
marshaled to a client via a Web Method. We’ll show you how to put the DataSet through its
paces after we delve into the data readers.

Managed Providers
There are many different database vendors with strong offerings on the market. A data access
model must be designed to generalize the functionality of a relational database, so that the
data access model is relevant regardless of the database of choice. With ADO.NET, you access
a specific vendor’s database using a Managed Provider of data access specifically created for
that vendor. There are also providers implemented that allow backwards compatibility with
OLEDB and ODBC.

When a vendor decides to create a Managed Provider for .NET Framework users to
employ to access their database, they implement a series of interfaces (see Figure 10-1). Since
all Managed Providers consist of classes implementing this common set of interfaces, the pro-
gramming model is the same or very similar, regardless of which vendor’s product you’re
using.

These interfaces are what provide the layer of abstraction between the developer and the
database. For many providers, this removes a software layer between your code and the data-
base that was present in the ADO model. This can provide better performance, as the types
that are used to talk to SQL Server, for example, are coded to communicate directly with that
database. For native providers such as SQL Server and Oracle, a layer of abstraction that was
present in OLEDB and ODBC has been removed in the ADO.NET model. For backwards-
compatibility providers, such as OLEDB and ODBC, no performance gains are realized.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS322

522xCH10.qxd 8/31/05 3:38 PM Page 322

Figure 10-1. The interfaces underlying a Managed Provider of data access

This gain in performance is at the expense of reuse. In ADO, you could change a connec-
tion string and use the same code to access different databases (as long as the SQL statements
used were compatible across the systems). This was a model commonly used by software ven-
dors to write applications that could use either SQL Server or Oracle as a backend database,
for example. Because each Managed Provider is implemented as a set of different types, to get
this type of reuse is a bit trickier in version 1.x of the .NET Framework than it was in ADO
(where all you needed to do was change a connection string). Microsoft has acknowledged the
need to simplify this type of reuse in certain situations and has introduced a new set of fea-
tures in 2.0 that addresses this specifically. We’ll take a look at these features in the upcoming
section on data provider factories.

There are many Managed Providers available (see Table 10-1). Microsoft ships several
with the Framework, there are open source implementations, and several vendors have writ-
ten providers for their own products, as well.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 323

522xCH10.qxd 8/31/05 3:38 PM Page 323

Table 10-1. Some Managed Providers That Are Available for Different Vendor’s Databases

Provider Name Vendor Description

SQL Server Microsoft Provides access to Microsoft SQL Server, version 6.5 and later.

OLEDB Microsoft Provides a backwards-compatibility layer for using legacy
OLEDB drivers. Need to use this one to work with MS Access
or FoxPro, as no native provider is available for Jet.

ODBC Microsoft Provides backwards compatibility to those databases
supporting ODBC drivers.

Oracle Microsoft Provides access to Oracle data sources. Built on top of the
Oracle client libraries, which must be installed on the system
using this provider.

Interbase Borland Access to Borland’s Interbase relational database product.

mySQL Source Forge Access to the open source implementation of mySQL.
Open source
Others

Oracle Oracle Provides access to Oracle data sources. Built on top of the
Oracle client libraries, which must be installed on the system
using this provider.

These implementations all use the same set of interfaces, and are, therefore, similar to
one another.

System.Data Namespace
The core namespace of the Framework class library for data access is System.Data. Table 10-2
is a survey of the namespaces contained within this namespace.

Table 10-2. Survey of Namespaces from the System.Data Assembly

Namespace Meaning in Life

System.Data This is the core namespace of ADO .NET. It defines types that
represent tables, rows, columns, constraints, and the almighty
DataSet. Be aware that this namespace does not define types
to connect to a data source. Rather, it defines the interfaces
implemented by specific Managed Providers and the types
that represent the data itself.

System.Data.OleDb This namespace defines the types that allow you to connect to
an OLE DB-compliant data source, submit SQL queries, and fill
DataSets. These are the types you must use to talk to Access or
FoxPro data sources. They are also provided for backwards
compatibility to vendors that do not have a native provider
available.

System.Data.ODBC This namespace defines the types that allow you to connect to
an ODBC providers of data access. These types are provided for
backwards compatibility and will usually not perform as well as
a native provider.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS324

522xCH10.qxd 8/31/05 3:38 PM Page 324

Namespace Meaning in Life

System.Data.SqlClient This namespace defines the types that constitute the SQL
Managed Provider. Using these types, you can talk directly to
Microsoft SQL Server and avoid the level of indirection associated
with the OleDb equivalents.

System.Data.OracleClient These are types to talk directly to Oracle8i and later databases.
These types ship in a stand-alone assembly. You must also have
MDAC 2.6 and Oracle Client installed. There is also a native
Managed Provider available directly from Oracle.

System.Data.SqlServerCe Provides access to SQL Server CE Edition, which is part of the
.NET Compact Framework, and is designed to run on hand-held
devices.

In addition to the subnamespaces that are defined the in System.Data namespace, a
number of types are also housed in the namespace (see Table 10-3). The core object from this
namespace is the DataSet. The DataSet object can hold a collection of result sets in memory,
providing random access to the data for sorting, filtering, and modifying the data. A number
of types contained by the DataSet object are also defined in System.Data.

Table 10-3. A Sampling of Types That Live in the System.Data Namespace

System.Data Type Meaning in Life

DataSet Represents an in-memory cache of data, which may consist of
multiple related DataTables.

DataTableCollection The DataTableCollection type represents all the tables (DataTable
DataTable types) for a particular DataSet.

DataRelationCollection This collection represents all relationships (DataRelation types)
DataRelation between the tables in a DataSet.

ForeignKeyConstraint ForeignKeyConstraint represents an action restriction enforced on
UniqueConstraint a set of columns in a primary key/foreign key relationship when a

value is changed or deleted. The UniqueConstraint type represents a
restriction on a set of columns in which all values must be unique.

ConstraintCollection The ConstraintCollection represents all constraints (foreign key
Constraint constraints, unique constraints) assigned to a given DataTable.

Constraint represents a single constraint assigned to one or more
DataColumns.

DataColumnCollection DataColumnCollection represents all of the columns used by a
DataColumn DataTable. DataColumn represents a specific column in a DataTable.

DataRowCollection These types represent a collection of rows for a DataTable
DataRow (DataRowCollection) and a specific row of data in a DataTable

(DataRow).

DataRowView DataRowView allows you to carve out a predefined “view” from an
DataView existing row. The DataView type represents a customized view of a

DataTable that can be used for sorting, filtering, searching, editing
and navigation.

These types are all contained by instances of the DataSet object. We’ll look at DataSets
after we examine the data access model that’s built for speed: data readers. Data readers
expose a forward-only, read-only, low memory footprint architecture for data access. The

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 325

522xCH10.qxd 8/31/05 3:38 PM Page 325

choice between a data reader and a DataSet is a choice between performance and functional-
ity. Which you choose depends on what you’re trying to accomplish. We’ll take a look at the
details of data access with data readers and with the DataSet, and then we’ll examine some of
the trade-offs and differences between these methods. But first, we’ll examine the fundamen-
tal requirement of any data access toolset, the Connection class.

Connections
Connections are the fundamental abstraction needed in a data access technology. A Connection
object deals with the underlying technical details of establishing a network path of communi-
cation with the database server, and is also responsible for presenting the credentials of the
user requesting the data to the database. This is one of the most expensive parts of communi-
cating with the database, and is, therefore, one of the most critical resources in data access
technology. For this reason, an environment that establishes a pool of connections to the
database is usually desired, so that each request for data does not have to incur the overhead
of knocking on the door of the database, making an introduction, and getting permission to
come in and wander around.

Pools
Connection pooling is implemented by the Managed Providers of data access. The discussion
in the section pertains to the SQL- and Oracle-managed providers from Microsoft. The ODBC-
and OLEDB-managed providers are backwards compatibility layers, and so rely on the native
pooling functionality provided by the driver or provider, respectively.

Connections are established on a per-user basis. That is, two different users cannot
share a connection to the database. This is true whether you’re using integrated security or a
database-specific security model. This works fine when a web application is executing as a
dedicated user (such as ASPNET, the user the ASP.NET Framework runs as by default). When
you’re using impersonation and integrated security, though, code is executed with the creden-
tials of the user that has requested the page. This leaves connection pools virtually useless,
which can seriously impair the scalability of your application. For this reason, impersonation
in the data access tier is not highly recommended. Instead, you should use a dedicated user
account or a database user defined for the application.

Pooling behavior is controlled using attributes in the connection string. You can control
the minimum pool size, control the maximum pool size, or opt out of pooling altogether.

When designing your application to leverage connection pools, the most important thing
to keep in mind is that there is a pool allocated for each connection string and for each secu-
rity context. For example, when you’re using impersonation within ASP.NET, and using
integrated security against the database, you can connect to the database with the following
connection string:

Server=YourServerName;Integrated Security=SSPI;database=Library;MinPoolSize=5

When 100 users show up, how many connection pools are there? How many connections?
Since all users are using the same connection string, you might hope that there would be one
pool. The default maximum pool size is 100, but your actual connection count will, hopefully,
be much lower, as many of the users will be able to share the connections—that is, they’re not
all going to be accessing the database at exactly the same time. This, after all, is the whole
point of connection pooling.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS326

522xCH10.qxd 8/31/05 3:38 PM Page 326

Table 10-4. Connection String Attributes That Control the Managed Provider’s Connection
Pooling Behavior

Defaulted
Attribute Value Meaning in Life

Pooling true Set this value to false to avoid having connections pooled at all.

MinPoolSize 0 You can control the minimum pool size with this value. Smaller
minimum pool sizes will incur less overhead when the first
connection to the database is established. Larger minimums
incur more of a hit on the first request, but subsequent users
connect more quickly, as connections are already in the pool
for them.

MaxPoolSize 100 You can lower this to throttle connections to the database; if it
does not have the capacity to bear the load, requests to connect
will begin to pool on the web server. The default value is overkill
in almost all cases. This value will enable connections to trend
up over time if your application has a connection leak.

Unfortunately, your hopes are dashed when you learn of the sad reality of the situation.
Since pools are sensitive to security context, and you’re using impersonation and integrated
security, each user has her own context, and so each user is actually allocated her own pool.
Since you’ve established a minimum pool size of 5, with 100 users on your site, you have 100
pools with 5 connections each in them—500 connections total!

This is the reason why connection pools, impersonation, and integrated security don’t
mix very well. To best leverage connection pooling, you should use SQL Server logins in con-
nection strings when using impersonation from the web server. This can throw a wrench in
plans to meet a common requirement, which is that all changes and additions to the data
must record who made the change. With integrated security, this information is present and
can be used in the SQL statement. With SQL Server security, you must pass this information
from the web server to the database server when executing a command. The best way to do
this is to make data modifications with stored procedures, and add a username as a parameter
to the procedure footprint.

For this reason, connection pools are also not very helpful in a two-tiered application;
though by leaving the minimum pool size at zero, they also don’t hurt anything. Each user gets
a pool on the client, and each pool has a connection in it (after the first time a connection is
opened from the code). The only way another connection could get added is if the client
application uses two connections and holds them both open at once. You may wonder what
the point of using the pool at all is. Instead of leveraging the pool, which keeps the connection
open, why not just open a connection when the process spins up and leave it open until the
user tears it down? The answer is that there’s no real difference. However, the coding practice
of opening connections late and closing them early allows the pool to manage the number of
connections and their lifetimes. This can be especially important when you start doing trans-
actional work on a connection. Since there’s no difference between using the pool and holding
the connection open with application scope, you might as well use the pool, saving you from
rewriting the data access layer if you should ever choose to move to an n-tiered architecture by
adding a dedicated physical data access tier.

In ADO.NET 2.0, the capability to tear down a pool has been added. In 1.x, almost the only
way the pool would release its connections was to end the process. There was also a bug in
the perfmon tool that showed this connection count, leaving many people believing that

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 327

522xCH10.qxd 8/31/05 3:38 PM Page 327

connections remained open even after a process was torn down. These new methods give
you the ability to choose when these connections close, by calling ClearPool to tear down a
specific pool, or ClearPools to tear them all down. These are both static methods on the
SqlConnection and OracleConnection types.

Connection Strings
Where to store the connection string is a challenge that every application using a relational
database has to solve. This is a simple persistence problem, with a “chicken and an egg” twist.
When a relational database is the chosen source of persistence, it’s the default location for
storing information. The connection string, however, is needed to get to your location of per-
sistence. This, coupled with the fact that sensitive security information is often stored in the
connection string, and that the string frequently needs to change as you move from develop-
ment to staging to production, presents a problem that needs some careful consideration to
solve.

You can hard code the connection string in a public, static string of some type in the
application. This means the string becomes compiled into the application, which can have
the feel of being more secure than storing somewhere in a flat file. Keep in mind, though, that
.NET libraries are compiled to Common Intermediate Language (CIL) code, which can easily
be decompiled.

Here’s a line of code from a data access layer containing sensitive authentication
information:

SqlConnection cn = new
SqlConnection("server=.;database=pubs;uid=sa;pwd=password");

And here’s the resulting, compiled, CIL code (viewed via ILDASM):

IL_0007: ldstr "server=.;database=pubs;uid=sa;pwd=password"
IL_000c: newobj instance void
[System.Data]System.Data.SqlClient.SqlConnection::.ctor(string)

Not really secure. Don’t fool yourself into thinking that it is. To show you how connection
strings can easily be secured, we’re first going to look at a new feature—the connectionStrings
element—in the Framework for connection string management. You need to see this feature
in order to work your way back to how to protect connection strings. Take a look at the
connectionStrings element in the configuration file:

<connectionStrings>
<add name="localPubs"

connectionString="server=.;database=pubs;uid=sa;pwd=123123"/>
<add name="productionPubs"

connectionString="server=prodBox;database=pubs;uid=web_db_user;pwd=ab@2de3"/>
</connectionStrings>

This gives you a dedicated place in the configuration file for storing connection strings.
The feature just acknowledges the fact that today a lot of folks are storing these strings in
the appSettings element. By breaking it out into its own section, you separate the sensitive
connection information from any other values you’re storing within appSettings. Later you’ll

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS328

522xCH10.qxd 8/31/05 3:38 PM Page 328

see how this enables you to encrypt this sensitive information, without having to also encrypt
other less sensitive information in appSettings.

There’s also now a dedicated method for retrieving connection strings from configuration.
It’s a static method of the ConfigurationManager type named ConnectionStrings (you can see
this code in UseConnStr.aspx of the Web10 project).

protected void Page_Load(object sender, EventArgs e)
{

string sConn = ConfigurationManager.ConnectionStrings["localPubs"].ToString();
SqlConnection cn = new SqlConnection(sConn);
SqlCommand cm = new SqlCommand("select * from authors", cn);
GridView gv = new GridView();

cn.Open();
gv.DataSource = cm.ExecuteReader(CommandBehavior.CloseConnection);
gv.DataBind();
this.form1.Controls.Add(gv);

}

Changing a connection string in a configuration file as you move from environment to
environment (QA to staging, for example) can be a dicey proposition. Someone could make
a typo and the system would fail to connect in the new environment. It would be better to
change a simple string describing the environment as the application moves through the
development process.

<appSettings>
<add key="EnvironmentName" value="local"/>

</appSettings>

<connectionStrings>
<add name="local"

connectionString="server=.;database=pubs;uid=sa;pwd=123123"/>
<add name="production"

connectionString="server=prodBox;database=pubs;uid=db_user;pwd=ab@2de3#"/>
</connectionStrings>

Now the connection strings portion of the configuration file can remain constant as
the application moves across environments. The only thing that needs changing is the
EnvironmentName value in appSettings. You then change the code to use the appSetting as the
key for retrieving the connection string (see this code in UseConnStr.aspx of the Web10 project).

string Environment = ConfigurationManager.AppSettings["EnvironmentName"].ToString();
string Conn = ConfigurationManager.ConnectionStrings[Environment].ToString();
SqlConnection cn = new SqlConnection(Conn);
SqlCommand cm = new SqlCommand("select * from authors", cn);

This also better isolates the connection strings, making it easier to encrypt this portion
of the configuration document and leave it encrypted, leaving the only thing that needs to be
changed in the unencrypted appSettings portion of the file.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 329

522xCH10.qxd 8/31/05 3:38 PM Page 329

You can also use these connections strings from the markup in your page. Here’s the dec-
laration of a SqlDataSource control, which we’ll be looking at in Chapter 11. With this code,
though, notice how the connection string attribute is being set.

<asp:SqlDataSource Runat=server ID=sdsAuthors
ConnectionString= '<%$ ConnectionStrings:localPubs %>'
SelectCommand="select * from authors" />

This looks like a data-binding expression, but it is a new, hybrid syntax that can be
embedded into your markup, and will be evaluated even when DataBind is not called on
the Page.

Encrypting this section is very simple in 2.0. The capability to do encryption of any sec-
tion of your configuration file has been added to the aspnet_regiis command-line tool. This
feature of configuration is really nice, because it’s completely transparent to the consumer
of the encrypted information. Even with the connectionStrings section encrypted, all of the
code you’ve looked at in this section will continue to work, with no changes. Doing the
encryption is simple as well. The name of the web application you’ve been working on is
Web10. Here’s the call to aspnet_regiis that will encrypt the connection strings section of
the configuration file:

aspnet_regiis -pe connectionStrings -app /Web10

This transforms the connectionStrings element of the web.config for the Web10 applica-
tion into the following (abbreviated a bit):

<connectionStrings>
<EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"

xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.org/2001/04/..." />
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<EncryptedKey Recipient="" xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.org/2001/04/..." />
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<KeyName>Rsa Key</KeyName>
</KeyInfo>
<CipherData>

<CipherValue>c/2j0F+gayZtHeusqvsHkiEPeHzLOliKjo3eRkJUmI/Af+3Q…
</CipherData>

</EncryptedKey>
</KeyInfo>
<CipherData>

<CipherValue>k2bGkbrLexSN8cz4iN8PgJF4qxy1OddDMJCU6EUe2+kboIdYf9Nwh…
</CipherData>

</EncryptedData>
</connectionStrings>

All of the code that uses these connection strings continues to work. To decrypt these
values, use the same command with the –pd switch instead of –pe.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS330

522xCH10.qxd 8/31/05 3:38 PM Page 330

Data Readers
The data reader is the low memory footprint, forward-only, read-only method of data access.
What it lacks in functionality, it makes up for in performance. By maintaining a low memory
footprint, rather than loading the entire result set into the memory space of the web server,
you greatly increase the scalability of data access operations using a data reader. It is ideally
suited for generating HTML. When the data is being transformed directly into an HTML form
or an HTML table, there’s no real need to have random access to it in memory. Instead, the
data is transformed into markup a row at a time. The markup is retained, but each row of data
is discarded after it’s processed. You can do almost all data-binding operations with the data
reader.

Working with Data Readers
Data readers are created by an object factory built into the Command object. This is always how a
reference to a reader is obtained. There are no data reader types with any public constructors,
so it’s impossible to create an instance of it directly. Instead, the Command type’s ExecuteReader
method uses the Connection property and CommandText property to execute the command
against the database, and then returns a reference to an instance of a specific data reader type,
which is ready and waiting to stream the results back as quickly as they can be consumed.

Data readers are designed to be executed and consumed as quickly as possible. Because
they are forward-only, once the code has moved through the result set, the data is no longer
available. Readers should be closed as soon as they’ve been consumed, freeing the connection
to execute other commands. They do not inherit from MarshalByRefObject, nor are they flagged
with the Serializable attribute, meaning they are bound within the application domain where
they are created. References to readers should not be cached, marshaled across processes, or
held as a field level variable. If you need any of this behavior with your result set, then you
need to use a DataSet and not a reader.

Because data readers are read-only, when it comes time to move data back to the data-
base, you must use something other than the data reader. You can use the ExecuteNonQuery
method of the command object, which you should employ whenever you aren’t expecting a
result set back from the database. This can be for simple insert, update, or delete commands,
but it can also be for calls to stored procedures that don’t return a result set.

Even when dynamically generating SQL instead of using stored procedures, you should
use the Command’s parameter collection instead of building values right into strings. The follow-
ing code will work just fine to insert a row into a table. (You can see this code in app_Code\
DataReaderIE.cs of the Web10 project.)

public void InsertWithGenSql(string JobDescr, int MinLvl, int MaxLvl)
{

string sql = string.Format(
"INSERT INTO Jobs "
+ " (job_desc, min_lvl, max_lvl)"
+ " ('{0}', {1}, {2})",
JobDescr, MinLvl, MaxLvl

);

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 331

522xCH10.qxd 8/31/05 3:38 PM Page 331

SqlCommand cm =
new SqlCommand(
sql,
new SqlConnection(
"server=.;data6base=pubs;uid=sa;pwd=123123")

);

cm.Connection.Open();
cm.ExecuteNonQuery();
cm.Connection.Close();

}

But you should increase the scalability of this code by using parameters in the SQL string,
and then creating parameter objects to hold the values. This is just a matter of being kind to
your database. When you send in the hard-coded values in the string, the server has to parse
the command, compile it, and then come up with an execution plan. When you send a new
command string the next time a row is inserted, the server has to repeat the whole process.
When a parameter is used, the server recognizes the second execution of the command as
being fundamentally the same as the first. Instead of sending two different command strings,
you’re sending the same command strings that differ only by the values of the parameters
built into the string. Here’s the same insert logic implemented using parameters. (You can
see this code in app_Code\DataReaderIE.cs of the Web10 project.).

public void InsertWithParams(string JobDescr, int MinLvl, int MaxLvl)
{

string sql = "INSERT INTO Jobs "
+ " (job_desc, min_lvl, max_lvl)"
+ " ('@descr', @min, @max)";

SqlCommand cm =
new SqlCommand(
sql,
new SqlConnection(
"server=.;database=pubs;uid=sa;pwd=123123")

);

cm.Parameters.Add(
new SqlParameter(
"@descr",
SqlDbType.VarChar, 50)

).Value = JobDescr;

cm.Parameters.Add(
new SqlParameter(
"@min",
SqlDbType.TinyInt)

).Value = MinLvl;

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS332

522xCH10.qxd 8/31/05 3:38 PM Page 332

cm.Parameters.Add(
new SqlParameter(
"@min", SqlDbType.TinyInt)
).Value = MaxLvl;

cm.Connection.Open();
cm.ExecuteNonQuery();
cm.Connection.Close();

}

When you can use them, stored procedures are your best option for data access. They live
within the database server, and, thus, are always going to outperform other methods. Stored
procedures are compiled and optimized internally, and they create a layer of abstraction
between the consumer of the data and the actual data being consumed. They also simplify
security, as you can grant execute permissions to the stored procedure without granting direct
access to the underlying database tables. This enables the stored procedures to enforce a final
layer of validation on the work being done on the database, making these rules impossible to
circumvent with the credentials granted to an application.

You can use the facility of the DataReader to return multiple result sets with stored proce-
dures as well. Here’s a simple TSQL stored procedure that returns publisher details, authors,
and titles that pertain to a specified publisher ID. (You can find a script to create this stored
procedure in usp_GetPublisherDetails.sql in the Code10 project.)

create procedure usp_GetPublisherDetails
@pubid char(4)
as
select * from publishers
where pub_id = @pubid

select * from titles
where pub_id = @pubid

select * from authors
where au_id in
(select au_id from titleauthor
inner join titles on
titleauthor.title_id = titles.title_id
where titles.pub_id = @pubid)

Here’s the code to execute this stored procedure and output the data as HTML tables to a
web browser.

public partial class CallSproc_aspx : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

bool bDone = false;
SqlDataReader dr;
string pubid;

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 333

522xCH10.qxd 8/31/05 3:38 PM Page 333

if (Request.QueryString["pubid"] == null)
pubid = "0736";

else
pubid = Request.QueryString["pubid"].ToString();

SqlCommand cm =
new SqlCommand(
"usp_GetPublisherDetails",
new SqlConnection(ConfigurationManager.
ConnectionStrings["localPubs"].ToString())

);
cm.CommandType = CommandType.StoredProcedure;
cm.Parameters.Add(

new SqlParameter(
"@pubid",
SqlDbType.Char, 4)

).Value = pubid;
cm.Connection.Open();
dr = cm.ExecuteReader();
while (!bDone)
{

GridView gv = new GridView();
gv.DataSource = dr;
gv.DataBind();
form1.Controls.Add(gv);
bDone = !dr.NextResult();

}
dr.Close();
cm.Connection.Close();

}
}

By using output parameters and return values, you can use stored procedures in combi-
nation with the ExecuteNonQuery method of the Command object to quickly retrieve data from
the server that’s not in a tabular form. For example, you may have a procedure that calculates
total sales for a given day and returns the amount as an output parameter. The code to execute
this procedure would look like this. (This procedure is in app_Code\DataReaderIE.cs in the
Web10 project.)

public double DailySalesTotal(DateTime day)
{

SqlCommand cm =
new SqlCommand(
"usp_GetDailySalesTotal",
new SqlConnection(
"server=.;database=pubs;uid=sa;pwd=123123")

);

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS334

522xCH10.qxd 8/31/05 3:38 PM Page 334

cm.Parameters.Add(
new SqlParameter(
"@dayToCalc",
SqlDbType.DateTime)

).Value = day;

cm.Parameters.Add(
new SqlParameter(
"@total",
SqlDbType.Money)

). Direction = ParameterDirection.Output;

cm.Connection.Open();
cm.ExecuteNonQuery();
cm.Connection.Close();

return Convert.ToDouble(cm.Parameters["@total"].Value);
}

The advantage to this is that your process doesn’t incur the overhead of preparing to
retrieve a result set that you’re not actually planning on getting back. Tabular data is a memory
hog. Aside from the actual size of the data, there’s a lot of metadata describing the result set
that gets created in preparation for the set. This involves many allocations to the managed
heap; therefore, it should be avoided when results aren’t going to be processed as tabular data.

Even when retrieving a single row from the database, output parameters will perform bet-
ter than a select statement. Here’s a stored procedure that queries on the primary key of the
publishers table; given this, it will always only return a single row of data (or none). (A script
for this procedure is in usp_GetPubDetails.sql in the Code10 project.)

create procedure usp_GetPubDetails
@pub_id char(4),
@pub_name varchar(40) OUTPUT,
@city varchar(20) OUTPUT,
@state char(2) OUTPUT,
@country varchar(30) OUTPUT
as
SELECT
@pub_name = pub_name,
@city = city,
@state = state,
@country = country
FROM publishers
WHERE (pub_id = @pub_id)

Instead of incurring the overhead of using a data reader, this procedure is executed with
ExecuteNonQuery, and the data is retrieved from the values of the output parameters. Here, the
stored procedure is used from the custom constructor of a business object. (You’ll find this
business object in the app_Code\PublisherBO.cs file of the Web10 project.)

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 335

522xCH10.qxd 8/31/05 3:38 PM Page 335

public PublisherBO(string pubId)
{

SqlCommand cm =
new SqlCommand(
"usp_GetPubDetails",
new SqlConnection(ConfigurationManager.ConnectionStrings

["localPubs"].ToString())
);

cm.CommandType = CommandType.StoredProcedure;

cm.Parameters.Add(
new SqlParameter(
"@pub_id",
SqlDbType.Char,4)

).Value = pubId;

cm.Parameters.Add(
new SqlParameter(
"@pub_name",
SqlDbType.VarChar,10)

).Direction = ParameterDirection.Output;

cm.Parameters.Add(
new SqlParameter(
"@city",
SqlDbType.VarChar,10)

).Direction = ParameterDirection.Output;

cm.Parameters.Add(
new SqlParameter(
"@state",
SqlDbType.VarChar,10)

).Direction = ParameterDirection.Output;

cm.Parameters.Add(
new SqlParameter(
"@country",
SqlDbType.VarChar,10)

).Direction = ParameterDirection.Output;

cm.Connection.Open();
cm.ExecuteNonQuery();
cm.Connection.Close();

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS336

522xCH10.qxd 8/31/05 3:38 PM Page 336

this.pubId = cm.Parameters["@pub_id"].Value.ToString();
this.pubName = cm.Parameters["@pub_name"].Value.ToString();
this.city = cm.Parameters["@city"].Value.ToString();
this.state = cm.Parameters["@state"].Value.ToString();
this.country = cm.Parameters["@country"].Value.ToString();

}

When you need to retrieve a single value from a single row, an execute method for an even
more specific type of query exists. This is basically a database lookup, where the select state-
ment being used has a single column in the column list and is querying on a primary or unique
column in the where clause. You can use ExecuteScalar as a programming convenience in this
instance. It returns an instance of a System.Object, and, therefore, must always be cast into
the return type expected. (You can find this code in app_Code\DataReaderIE.cs of the Web10
project.)

public int GetBookCount(string pubid)
{

string sql = "select count(title_id) from titles "
+ "where pub_id = @pubid";

SqlCommand cm =
new SqlCommand(
sql,
new SqlConnection(ConfigurationManager.ConnectionStrings

["localPubs"].ToString())
);

cm.Parameters.Add(
new SqlParameter(
"@pubid", SqlDbType.Char, 4)

).Value = pubid;

cm.Connection.Open();
int count = Convert.ToInt32(cm.ExecuteScalar());
cm.Connection.Close();

return count;
}

A data reader should always be closed after the result set (or sets) are processed. Close the
data reader before closing the Connection the reader is on. Also, be sure to understand the role
and function of each of the different execute commands in the previous section, and use the
one appropriate to the command being executed.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 337

522xCH10.qxd 8/31/05 3:38 PM Page 337

CommandBehavior
The ExecuteReader method has an overloaded footprint that accepts an instance of a
CommandBehavior enumeration value. CommandBehavior enables you to influence the reader
in many different ways. We list the different values of the CommandBehavior enumeration in
Table 10-5.

Table 10-5. Values of the CommandBehavior Enumeration and Their Effect on a Data Reader

Enumeration Value Meaning in Life

CloseConnection Causes the connection used for the data reader to be closed when the data
reader is closed.

Default The default value used when no argument is specified and does not affect
the behavior of the data reader.

KeyInfo Returns only column and primary key information.

SchemaOnly Gets only schema information from the database for the command, but
executes the command against the database.

SequentialAccess Causes a forward-only cursor to be placed over the columns, so that data
not accessed by the program is not marshaled to the caller.

SingleResult Use to inform the reader you’re expecting only a single result set.

SingleRow Use to inform the reader you’re expecting only a single row. Managed
Providers may use this to optimize the performance for returning a
single row.

Let’s talk about a scenario where you would use one of these behaviors: SequentialAccess.
By default, a data reader loads an entire row into memory at once. It doesn’t expose random
access to rows of data, but random access is available for the columns within a single row.
When you’re working with a result set that has columns that can contain a lot of data (usually
because of having a column of binary information in the result set), you can access only those
large chunks of data on demand by setting the CommandBehavior to SequentialAccess.

When using SequentialAccess, the data reader grants forward-only access to the columns
within a single row of data. If some criteria in the first few columns determine whether or not
the large column will be accessed, you can use this option to avoid marshaling all of the data
to the client for each and every row. There may not be many situations where this is actually
necessary (hopefully you can apply the criteria at the database level and return only the binary-
large objects you need), but it’s a good technique to be aware of should the situation arise.

Final Notes on Data Readers
When executing several commands against the database, do not reuse the same instance of a
Command object. Changing parameter values of a Command object is okay, but if the CommandText
is changing, you should allocate a new instance of the Command object to the managed heap.
This is a cheaper operation than the tear down and build up the Command object has to do
when its CommandText changes.

Another peculiarity of data reader behavior occurs when there is a need to terminate the
processing of the result before you get to the end of the result set. If a loop reads halfway

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS338

522xCH10.qxd 8/31/05 3:38 PM Page 338

through a result set and then calls the Close method, the rest of the results are marshaled to
the caller before the reader is actually closed! To avoid this, call Cancel instead of Close to ter-
minate processing the result set.

DataSets
The DataSet is a very feature-rich type for working with result sets in memory. Data can be
modified, filtered, and sorted. It can be read from relational or hierarchical sources, and the
DataSet provides a bridge between SQL and XML. Schema can be used from either a database
or XML Schema document. Relationships can be established between result sets, which then
enforce rules of referential integrity and can be used to navigate parent child relationships.

DataSets are always populated using the services of a DataAdapter. The DataAdapter is a
provider-specific type, whereas there is only one DataSet, regardless of the provider being
used. A DataSet actually neither knows nor cares where its data came from. Changes made to
a DataSet exist only in memory until they are moved back to the database using a DataAdapter,
or are sent to some form of persistence as a stream of XML.

We’ll show you how put the DataSet through some of its motions. Here’s a method that
will try to retrieve a DataSet from the cache, and load it from the database if it’s not already in
the cache. (You can find this code in DataSetIE.aspx of the Web10 project.)

private DataSet GetSourceData()
{

DataSet ds;

ds = (DataSet)Cache["Pub_Title"];

if (ds == null)
{

ds = new DataSet();
SqlConnection cn = new

SqlConnection
("server=.;database=pubs;uid=sa;pwd=123123");

SqlCommand cm = new
SqlCommand
("select * from publishers select * from titles", cn);

SqlDataAdapter da = new SqlDataAdapter(cm);

da.Fill(ds);

ds.Tables[0].TableName = "Publishers";
ds.Tables[1].TableName = "Titles";

ds.Relations.Add(
new DataRelation(
"Pub_Title",

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 339

522xCH10.qxd 8/31/05 3:38 PM Page 339

ds.Tables["Publishers"].Columns["pub_id"],
ds.Tables["Titles"].Columns["pub_id"]));

Cache["Pub_Title"] = ds;

}
return ds;

}

Centralizing this functionality is a good idea, because any code that needs this data does
not need to be concerned with where the data comes from or the caching policy applied to the
data. Every place where this data is consumed simply calls the central function.

Notice also that you’re using white space-separated select statements in the command
text. This results in the data adapter retrieving both result sets and creating a DataTable for
each of them. This technique can also be used with stored procedures that return multiple
result sets. After the DataTables have been created and added to the DataSet, you provide
them with string names. Now, another override of the Fill method that accepts a table name
exists, but this name applies to the first table retrieved, leaving the rest of the tables with auto-
generated names (“Table” for the first DataTable, then “Table1,” “Table2,” through “Tablen”).
Using the override where no name is provided, and then explicitly naming the tables after the
fact provides for more readable code. Naming them is a good idea; they should be referred to
in the rest of the code with explicit names instead of ordinal positions. Here’s a case where the
increased ease of maintenance using named tables exceeds the miniscule performance gain
that would be gleamed by using ordinal positions.

You can then use the named tables to establish the relationship between them. This cor-
responds directly to the primary and foreign key relationship that exists between them in the
database. A DataRelation will enforce the same rules on DataTables that a primary/foreign
key relationship enforces within a database. At the point this relation is created, the DataSet
checks the existing data to make sure the data complies with the rule, and then enforces the
rule as changes are made to the data. You could not, for example, delete a publisher that had
corresponding rows in the titles table. You’ll use this relationship to find all of the titles that
belong to the publisher your user selects.

Although this code is to be part of a code-behind for this example, this pattern will still
work just fine when you’re using a data access tier. The check in the cache can be done, and
when it’s not found, the DataSet can be retrieved by a call to a data access layer helper method
(or a Web Service method).

The other common modification that you can make to this method is to break it out into
a static method in a stand-alone helper class, so that it will be available from more than one
page.

We’re going to show you how to use this data to create a list of publishers, and when a
choice is made from the list, render a GridView with all of the titles from the publisher. To do
this, you’ll leverage DataViews and DataSet relations.

Here’s the simple markup for our page (from DataSetIE.aspx in Web10):

<%@ Page Language="C#"
CompileWith="DataSetIE.aspx.cs"
ClassName="DataSetIE_aspx" %>
<html xmlns="http://www.w3.org/1999/xhtml" >

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS340

522xCH10.qxd 8/31/05 3:38 PM Page 340

<head runat="server">
<title>DataSet IE</title>

</head>
<body>

<form id="form1" runat="server">
<asp:DropDownList Runat=server ID=ddlPub

AutoPostBack=true
OnSelectedIndexChanged="ddlPub_SelectedIndexChanged" />

<asp:GridView Runat=server ID=gvTitle
EnableViewState="false"
BorderWidth="1px"
BackColor="White"
GridLines="Vertical"
CellPadding="4"
BorderStyle="None"
BorderColor="#DEDFDE"
ForeColor="Black">
<FooterStyle BackColor="#CCCC99" />
<PagerStyle ForeColor="Black"

HorizontalAlign="Right"
BackColor="#F7F7DE" />

<HeaderStyle ForeColor="White"
Font-Bold="True"
BackColor="#6B696B" />

<AlternatingRowStyle BackColor="White" />
<SelectedRowStyle ForeColor="White"

Font-Bold="True"
BackColor="#CE5D5A" />

<RowStyle BackColor="#F7F7DE" />
</asp:GridView>

</form>
</body>
</html>

Most of these attributes just establish the look and feel that the page will have. The impor-
tant bits are the ones that determine that the DropDownList will automatically post back when
a choice is made from the list, and the name of the method that will fire on the server when
this occurs (AutoPostBack and OnSelectedIndexChanged).

From the code-behind, then, you have only to add the code that will bind the list, and
the code that will bind the grid when the user makes a choice from the list. You’ll bind the
DropDownList when the page first loads (again, from DataSetIE.aspx in Web10):

protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

ddlPub.DataSource = GetSourceData().Tables["Publishers"];

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 341

522xCH10.qxd 8/31/05 3:38 PM Page 341

ddlPub.DataTextField = "pub_name";
ddlPub.DataValueField = "pub_id";
ddlPub.DataBind();
ddlPub.Items.Insert(0, "");

}
}

Here you’re drilling right into the reference of the DataSet’s first table, and handing the
reference straight to the data-binding engine. After the list is bound, you pop an empty item
into the first position of the list, so that the page will not render with a “default” choice of
publisher.

When the user makes a selection, you need to bind your GridView. Since you have the
data cached, and you have a relationship established between publishers and titles, this will
only take a few lines of code. For this operation, you’ll use the DataView object, leveraging its
intrinsic abilities to establish row filters and navigate relationships:

protected void ddlPub_SelectedIndexChanged(object sender, EventArgs e)
{

DataView dv = new DataView(
GetSourceData().Tables["Publishers"],
string.Format("pub_id = '{0}'",
ddlPub.SelectedValue), "",
DataViewRowState.CurrentRows);

if (dv.Count > 0)
{

gvTitle.DataSource = dv[0].CreateChildView("Pub_Title");
gvTitle.DataBind();

}
}

Although this is only a few lines of code, you’re making the DataView do quite a bit of work
in its constructor. The first parameter to the constructor is, of course, the DataTable you want
to create a view on. The second is the RowFilter you’re applying to the view. Here you use the
value of the drop-down list to describe the publisher the user has selected. Since you’re filter-
ing on the primary key of the publishers table, you know you only ever have one row in the
result set of the view. The next parameter is a sort, which you’re leaving blank as there’s no
sense in sorting a single row, and the last is an enum indicating the state of the rows you want
to query. CurrentRows should be the default, and there should be an overridden constructor
that omits this argument. Since there is not, you provide it here.

After the constructor finishes its work, you’ll have a DataView object with a single row in it,
corresponding to the publisher the user has selected in the interface. To bind the grid, then,
you’ll use the CreateChildView method of the DataViewRow class, which allows you to navigate
from a row of data in the parent view to its collection of children in a new view that gets cre-
ated by the method. You can pass an instance of a relation to this method, or just name a
relation, as you’re doing here.

Another handy facility of the DataSet is the capability to bind a column to an expression.
You can use this to create simple aggregates across relationships. You can add an OrderTotal

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS342

522xCH10.qxd 8/31/05 3:38 PM Page 342

column to an Orders table that uses a relationship to calculate the total from the OrderItem
child table. This example adds an average price column to the DataSet used in the last exam-
ple, and displays it at the top of the grid when a publisher is chosen. First you add a line of
code to the GetSourceData method, just after the relation is created.

ds.Tables["Publishers"].Columns.Add(
new DataColumn(

"AveragePrice",
typeof(double),
"Avg(Child.price)"));

Here you’re adding a new DataColumn to the collection of columns for the publisher table.
The first two constructor parameters are the name and type of the column. The third is our
column expression. This string tells the DataTable to use the relation to get to its child table,
and compute an average of all the prices in its collection of child rows. Other simple aggre-
gates are valid in these expressions as well. If there’s more than one relation on the parent
table, you can also build the relation name into the expression.

Avg(Child(Pub_Title).price)

You can now use this column to output the average when the user makes a selection from
the publisher list. You’ve added a label control named lblAvgPrice next to the drop-down list
in the markup of the page. The output is then done from the SelectedIndexChanged event trap.

if (dv[0]["AveragePrice"] != DBNull.Value)
lblAvgPrice.Text =

Convert.ToDouble(dv[0]["AveragePrice"]).ToString("C");

Enhancements in 2.0
The DataSet gets a nice set of enhancements in version 2.0 of the Framework. The perform-
ance of the DataSet has been optimized for large row counts in a DataTable. Performance here
is typically twice as fast. The indexing engine is a complete rewrite, also to accommodate large
row counts. For Remoting, the DataSet can now be marshaled across processes as a binary
stream of information, greatly reducing the footprint of what gets passed on the wire. The
DataTable itself also gets a major facelift, reducing many of the dependencies it has on the
DataSet in version 1.x of the Framework. For example, with version 1.x of the Framework
there’s no way you can read an XML document from the file system and create a DataTable
without using a DataSet, even if you know the DataSet will have only a single DataTable in it.
And a new method on the DataTable allows you to get a reference to a data reader for reading
the DataTable data using a cursor-based approach, without the aid of a DataAdapter.

A very useful new feature of the DataTable allows you to read data from the database
using a data reader and create an instance of a DataTable without using the services of a
DataAdapter and without involving a DataSet. This would take a significant amount of coding
to do in 1.x, but in 2.0, it’s built into the DataTable via the Load method. Here you use the new
Load method on the DataTable to load the author's data into memory (see DataTableIE.aspx in
the Web10 project).

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 343

522xCH10.qxd 8/31/05 3:38 PM Page 343

public DataTable GetAuthorData()
{

string conn = ConfigurationManager.ConnectionStrings["localPubs"].ToString();
SqlConnection cn = new SqlConnection(conn);
SqlCommand cm = new SqlCommand("select * from authors", cn);
DataTable dt = new DataTable();

cn.Open();
dt.Load(cm.ExecuteReader());
cn.Close();
return dt;

}

The benefit here is twofold. First, you don’t have to create a DataAdapter. The smarts of
the adapter have been built into the DataTable, making the coding model much simpler.
Second, you don’t need to create a DataSet. Creating an instance of a DataSet is pure wasted
overhead whenever you’re expecting a single result set. What good is it with a single result set?
“It can write out the data as XML,” you may say. “It can write out schema for the data, too!”
you may add. Well the DataTable can now do those things, too. The ReadXML and WriteXml
methods from the DataSet have been added to the DataTable, along with the corresponding
methods for reading and writing schema information, so you can do single table transforma-
tions from hierarchical to relational data and back again. Here you see a method that will write
a DataTable out to disk (in DataTableIE.aspx from Web10).

public void SaveDataTableToDisk(DataTable dt)
{

string schemaFile = string.Format("{0}.xsd",dt.TableName);
string xmlFile = string.Format("{0}.xml",dt.TableName);

schemaFile = Server.MapPath(schemaFile);
xmlFile = Server.MapPath(xmlFile);

dt.WriteXmlSchema(schemaFile);
dt.WriteXml(xmlFile);

}

This code may seem familiar to you, because WriteXml and WriteXmlSchema have been
available on the DataSet for years. This is their first appearance on the DataTable, though.
You can read the DataTable back in from disk with other familiar methods adopted from the
DataSet, as well (in DataTableIE.aspx from Web10).

public DataTable ReadDataTableFromDisk(string TableName)
{

DataTable dt = new DataTable(TableName);
string schemaFile = string.Format("{0}.xsd", TableName);
string xmlFile = string.Format("{0}.xml", TableName);

schemaFile = Server.MapPath(schemaFile);
xmlFile = Server.MapPath(xmlFile);

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS344

522xCH10.qxd 8/31/05 3:38 PM Page 344

dt.ReadXmlSchema(schemaFile);
dt.ReadXml(xmlFile);

return dt;
}

Another very nice new feature of the DataTable is the addition of a data reader factory
method. Here the DataTable learns a new trick from the Command object. Command objects have
always exposed the ExecuteReader method, which serves as a factory for provider-specific data
readers. The DataTable now exposes the CreateDataReader method, which will create a forward-
only cursor for us to traverse the DataTable data with. The type it returns is a DataTableReader,
which implements the IDataReader interface and so is type-compatible with data readers from
other Managed Providers.

Let’s say, for example, that you’ve made caching data in your site a configurable behavior.
More specifically, you’ve added a UseCaching entry to the appSettings of the web.config. (This
entry is in the web.config of the Web10 project.)

<appSettings>
<add key="UseCaching" value="false" />

</appSettings>

When set to true, you’re going to cache data on the web server so you don’t need to go
back to the database for it with every request. When false, you’re going to go back to the data-
base with every request. This strategy can be used effectively in combination with SQL Cache
Dependencies (see Chapter 11). In either case, you want to bind to a data reader instead of a
DataTable, so when you’re not caching you don’t take the hit of loading the entire result set
up in memory. Because the DataTable now returns a data reader-compatible cursor, a single
method can account for both of these scenarios (from DataTableIE.aspx in Web10).

public IDataReader GetTitleReader()
{

bool caching = Convert.ToBoolean(
ConfigurationManager.AppSettings["UseCaching"]);

DataTable dt = null;
IDataReader dr;

if (caching) dt = (DataTable)Cache["TitleData"];

if (dt == null)
{

string conn =
ConfigurationManager.ConnectionStrings["localPubs"].ToString();

SqlConnection cn = new SqlConnection(conn);
SqlCommand cm = new SqlCommand("select * from titles", cn);
dt = new DataTable();

cn.Open();
if (caching)
{

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 345

522xCH10.qxd 8/31/05 3:38 PM Page 345

dt.Load(cm.ExecuteReader());
Cache.Insert("TitleData", dt);
cn.Close();
dr = dt.CreateDataReader();

}
else
{

dr = cm.ExecuteReader(CommandBehavior.CloseConnection);
}

}
else
{

dr = dt.CreateDataReader();
}

return dr;
}

This method deals with three main possibilities. When caching is off, you return a
SqlDataReader streaming data straight from the database. Or caching can be on. If it’s on, the
DataTable may be in the cache. If so, you’ll call the CreateDataReader method and return it to
the caller. If not, you use the Load method of the DataTable to load the data, and then call
CreateDataReader to return to the caller.

Code calling this method doesn’t need to be concerned with where the data is coming
from and whether or not it’s being cached. It just binds (also from DataTableIE.aspx).

gv = new GridView();
gv.DataSource = GetTitleReader();
gv.DataBind();
this.form1.Controls.Add(gv);

While the DataSet continues to be a very powerful object, you can largely retire it to the
work it’s good at, which is dealing with multiple result sets. The DataAdapter may make less
frequent appearances as well. With these upgrades to the DataTable, this type moves into
the primary role when the focus is on a single result set, shedding its former limitations that
forced you to unnecessarily tangential instances.

DataSets vs. DataReaders
The choice between a DataSet and a data reader is one of functionality versus performance.
The DataSet is very full-featured, but these features come at the price of resource consump-
tion and performance. The data reader, on the other hand, is a very fast, very low footprint
method for processing a result set.

So choose which one to use based on the requirements of the data processing that’s being
done. Understanding what can be done with each data access method is the key to consis-
tently making this choice quickly and correctly.

A data reader cannot sort your result set. You can build sorting into a SQL statement or a
stored procedure, but when you’re using a stored procedure, it cannot be dynamically built
into the procedure definition itself. A stored procedure that dynamically generates the

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS346

522xCH10.qxd 8/31/05 3:38 PM Page 346

statements it is going to execute is not much better than dynamically generated SQL. What
gets compiled and optimized is the code that generates the statement, not the actual execu-
tion of that statement. All the work that has to be done with dynamically generated SQL
passed in as command text has to also be done with statements that are generated within
a stored procedure and executed using sp_executesql or a similar facility built in to your
database.

This can become a problem when you’re allowing your users to pick which columns they
want to sort on. Either you need a stored procedure for each possible sort value or you need to
dynamically generate the statement.

Using a GridView, we’ll show you some of the differences in solving this problem with a
data reader and a DataSet. The GridView itself is very simple (see SortIE.aspx in Web10).

<asp:GridView Runat=server ID=gvAuthors
EnableViewState=false
AllowSorting=True
OnSorting="gvAuthors_Sorting"
BorderWidth="1px"
BackColor="White"
GridLines="Vertical"
CellPadding="3"
BorderStyle="Solid"
BorderColor="#999999"
ForeColor="Black">
<FooterStyle BackColor="#CCCCCC" />
<PagerStyle ForeColor="Black"

HorizontalAlign="Center"
BackColor="#999999" />

<HeaderStyle ForeColor="White"
Font-Bold="True"
BackColor="Black" />

<AlternatingRowStyle BackColor="#CCCCCC" />
<SelectedRowStyle ForeColor="White"

Font-Bold="True"
BackColor="#000099" />

</asp:GridView>

The grid is bound by a method named BindGrid. You’ll be implementing several different
versions of this method. This code will be common to all of the examples (see SortIE.aspx in
Web10).

protected void gvAuthors_Sorting(object sender, GridViewSortEventArgs e
{

BindGrid(e.SortExpression);
}

protected void Page_Load(object sender, EventArgs e)
{

BindGrid("au_id");
}

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 347

522xCH10.qxd 8/31/05 3:38 PM Page 347

The grid, when rendered, will be a simple dump of the author data (see Figure 10-2).
The column headers, however, will be rendered as hyperlinks because you set AllowSorting
to true in the declaration of the grid. Clicking on the column header is what causes the
gvAuthors_Sorting event to fire on the server. The name of the column the user has clicked
on will be passed along to this event trap as SortExpression.

Figure 10-2. The authors data displayed in a grid for sorting

First you’ll dynamically generate the SQL (see SortIE.aspx in Web10).

private void BindGrid(string sortExpr)
{

SqlConnection cn = new
SqlConnection ConfigurationManager.ConnectionStrings
["localPubs"].ToString());

SqlCommand cm = new
SqlCommand
(string.Format(

"select * from authors order by {0}",
sortExpr),

cn);

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS348

522xCH10.qxd 8/31/05 3:38 PM Page 348

cn.Open();
gvAuthors.DataSource = cm.ExecuteReader();
gvAuthors.DataBind();
cn.Close();

}

When this page is put under load, it serves about 106 requests per second. Of course, this
is specific to the machine that it’s running on, but in the following examples, you’ll be chang-
ing nothing except the data access method, so you should get a good relative gauge as to how
these sorting methods compare. Next, you’ll move the dynamic generation of the SQL into that
database, using this stored procedure (script for this can be found in usp_SortAuthors.sql in
the Code10 directory).

create procedure usp_SortAuthors
@sortExpr varchar(25)
as
declare @sql varchar(100)

set @sql = 'select * from authors order by ' + @sortExpr

EXEC(@sql)
Go

The BindGrid method of your test page will be modified to call this stored procedure
instead of generating the SQL itself. The sort expression will be passed as a parameter to the
stored procedure (see SortIE.aspx in Web10).

private void BindGrid(string sortExpr)
{

SqlConnection cn = new
SqlConnection ConfigurationManager.ConnectionStrings
["localPubs"].ToString());

SqlCommand cm = new
SqlCommand("usp_SortAuthors", cn);

cm.CommandType = CommandType.StoredProcedure;
cm.Parameters.Add(

new SqlParameter(
"@sortExpr",
SqlDbType.VarChar,
25)).Value = sortExpr;

cn.Open();
gvAuthors.DataSource = cm.ExecuteReader();
gvAuthors.DataBind();
cn.Close();

}

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 349

522xCH10.qxd 8/31/05 3:38 PM Page 349

This method yields about 104 requests per second. Clearly, you’re not getting the gains
you’d expect to by moving to a stored procedure. You’re simply not saving the database any
work; you’re just moving the SQL generating logic into another process.

Next you’ll try a dedicated stored procedure for each column the user can sort by. You’ll
dynamically generate these stored procedures (see SortIE.aspx in Web10).

private void GenSprocs()
{

SqlConnection cn = new
SqlConnection ConfigurationManager.ConnectionStrings
["localPubs"].ToString());

SqlCommand cm = new
SqlCommand("select * from authors", cn);

DataSet ds = new DataSet();

cn.Open();
SqlDataAdapter da = new SqlDataAdapter(cm);

da.Fill(ds);

foreach (DataColumn dc in ds.Tables[0].Columns)
{

string sql = "create procedure usp_SortAuthors_{0} as "
+ "select * from authors order by {0}";

sql = string.Format(sql, dc.ColumnName);
cm = new SqlCommand(sql, cn);

cm.ExecuteNonQuery();

}
cn.Close();

}

Now you’ll modify the BindGrid method to dynamically build the name of the stored
procedure you’ll call (see SortIE.aspx in Web10).

private void BindGrid(string sortExpr)
{

SqlConnection cn = new
SqlConnection(ConfigurationManager.ConnectionStrings
["localPubs"].ToString());

SqlCommand cm = new SqlCommand
(string.Format("usp_SortAuthors_{0}",sortExpr), cn);

cm.CommandType = CommandType.StoredProcedure;

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS350

522xCH10.qxd 8/31/05 3:38 PM Page 350

cn.Open();
gvAuthors.DataSource = cm.ExecuteReader();
gvAuthors.DataBind();
cn.Close();

}

This method bears about 110 requests per second. This improvement isn’t much, and you
may expect more because you’ve moved away from dynamically generated SQL and are using
stored procedures. However, the statements are not that complex, and the lion’s share of the
work is the actual sorting of the data. With this in mind, an improvement this size is almost
surprising. This method is not very maintainable. Each of these stored procedures now has to
be maintained. In a real application, the logic retrieving the data is going to be more complex
than select * from a table. Any change to this logic will have to be propagated across all of
these stored procedures. This is probably just not a reasonable, realistic solution.

The real way to help this situation is to index all of the columns you’re sorting by. Here,
though, you’re allowing the user to sort by all of the columns, and this many indexes is proba-
bly not a reasonable option. This is something to consider when designing an interface that
enables users to pick what they sort by. It may be better to pick a subset of the columns that
are most common to sort by and add indexes to those.

The best thing to increase the performance of this page is going to be to cache the data in
the memory of the web server, instead of going back to the database for it on each request. You
already know that a data reader cannot be sorted, and you’ve examined several strategies for
doing the sorting at the database. Take a look at what happens when you move the data to the
client. First, you’ll pull that data access out into a helper method, centralizing the command
and caching logic (see SortIE.aspx in Web10).

private DataSet GetAuthors()
{

DataSet ds;

ds = (DataSet)Cache["AuthorData"];

if (ds == null)
{

ds = new DataSet();
SqlConnection cn = new SqlConnection

("server=.;database=pubs;uid=sa;pwd=123123");

SqlCommand cm = new
SqlCommand("select * from authors", cn);

new SqlDataAdapter(cm).Fill(ds);

Cache.Insert("AuthorData", ds);

}
return ds;

}

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 351

522xCH10.qxd 8/31/05 3:38 PM Page 351

Then you’ll modify BindGrid to use the cached data from the DataSet instead of a data
reader. You’ll use the construction semantics of the DataView to apply the sort the user has
requested (see SortIE.aspx in Web10).

private void BindGrid(string sortExpr)
{

gvAuthors.DataSource = new DataView(
GetAuthors().Tables[0], "",
sortExpr,
DataViewRowState.CurrentRows);

gvAuthors.DataBind();
}

This method yields an average of about 126 requests per second, but from the chart dis-
played in Figure 10-3, you can see this processing is really erratic. The server can handle about
145 requests per second; there are just consistent drops in the processing.

Figure 10-3. Results per second when caching data and sorting with a DataView

The problem is the number of allocations you’re making to the managed heap. Every time
a request occurs, you’re allocating a DataView to the heap. With all the requests coming in, this
forces the garbage collector to do frequent sweeps and reclaim the memory you’ve used for
previous requests. This leads to the up and down peak load the server can handle. Instead of
creating a view for each user, you’ll want to get more aggressive in the use of the cache. In
this version, you’ll cache each DataView; thus, all users will share the same instance of the
DataView, and there will only be one per sort in the cache (see SortIE.aspx in Web10).

private void BindGrid(string sortExpr)
{

DataView dv;
string sCacheEntry =

string.Format("Author_Sort_{0}", sortExpr);

dv = (DataView)Cache[sCacheEntry];

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS352

522xCH10.qxd 8/31/05 3:38 PM Page 352

if (dv == null)
{

dv = new DataView(
GetAuthors().Tables[0], "",
sortExpr,
DataViewRowState.CurrentRows);

Cache.Insert(sCacheEntry, dv);
}

gvAuthors.DataSource = dv;
gvAuthors.DataBind();

}

Here, you get 136 requests per second, making this the best performing option. This also
consumes fewer resources than the previous example, as you only have one DataView per sort
instead of one per request.

In-memory filtering of the data is another example of a task that the DataSet and DataViews
are particularly suited for. Again, you could implement this at the database tier, but if you’re
giving the user control over the column they’re querying on, once again you’re looking at hav-
ing to use dynamic SQL generation. Sorting on a column using a DataView causes the DataView
to index that column under the hood, so you get an optimized structure for applying the filter.

For this example, you’ll display a list of states, and when the user selects one, display a
grid of the authors from that state. You’ll once again use a DropDownList and a GridView (the
code for this demo can be found in Filtering.aspx of the Web10 project).

<asp:DropDownList Runat=server ID=ddlState
AutoPostBack="True"
OnSelectedIndexChanged="ddlState_SelectedIndexChanged" />

<asp:GridView Runat=server ID=gvAuthors
EnableViewState=False
BorderWidth="1px"
BackColor="LightGoldenrodYellow"
GridLines="None"
CellPadding="2"
BorderColor="Tan"
ForeColor="Black">
<FooterStyle BackColor="Tan" />
<PagerStyle ForeColor="DarkSlateBlue"

HorizontalAlign="Center"
BackColor="PaleGoldenrod" />

<HeaderStyle Font-Bold="True"
BackColor="Tan" />

<AlternatingRowStyle BackColor="PaleGoldenrod" />
<SelectedRowStyle ForeColor="GhostWhite"

BackColor="DarkSlateBlue" />
</asp:GridView>

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 353

522xCH10.qxd 8/31/05 3:38 PM Page 353

The list gets bound upon the first request of the page.

protected void Page_Load(object sender, EventArgs e)
{

if (!IsPostBack)
{

SqlConnection cn = new SqlConnection(
ConfigurationManager.ConnectionStrings
["localPubs"].ToString());

string sql =
"select state from authors group by state order by state";
SqlCommand cm = new

SqlCommand(sql, cn);

cn.Open();
ddlState.DataSource = cm.ExecuteReader();
ddlState.DataTextField = "state";
ddlState.DataBind();
cn.Close();
ddlState.Items.Insert(0, "");

}
}

All postbacks are then fired by a change made to the DropDownList. Here’s where you’ll
use a cached DataView that already has an index prepared for the state column of the authors
table. By applying a row filter to the view, you’re leveraging the index on the column you
sorted by when creating the view. By keeping it in the cache you are once again using only a
single instance of the data instead of returning to the database each time the user selects a
state.

private DataView GetAuthors()
{

DataSet ds;
DataView dv;

dv = (DataView)Cache["AuthorData"];

if (dv == null)
{

ds = new DataSet();
SqlConnection cn = new SqlConnection(

ConfigurationManager.ConnectionStrings
["localPubs"].ToString());

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS354

522xCH10.qxd 8/31/05 3:38 PM Page 354

SqlCommand cm = new
SqlCommand("select * from authors", cn);

new SqlDataAdapter(cm).Fill(ds);

dv =
new DataView
(ds.Tables[0], "",
"state",
DataViewRowState.CurrentRows);

Cache.Insert("AuthorData", dv);

}
return dv;

}
protected void ddlState_SelectedIndexChanged(object sender, EventArgs e)
{

DataView dv = GetAuthors();

dv.RowFilter =
string.Format("state = '{0}'", ddlState.SelectedValue);

gvAuthors.DataSource = dv;
gvAuthors.DataBind();

}

Here again, you could go back to the database with each request that comes into the
server, but you’ll be much better off keeping a cache of this data in memory and using the
DataView to create an index on the data you’ll be querying upon. If the users can choose the
column they want to apply the filter to, you can apply a strategy similar to the one you used
in the sorting example, creating a cached DataView per column being queried upon.

The problem with an in-memory cache is, of course, concurrency and dirty data. When
someone comes along and makes a change to the data, the cache entry is no longer useful
to you. In Chapter 11, we take a look at the new facility that’s been added to 2.0 to create a
dependency between a cache entry and the relational database where the entry came from,
the SqlCacheDependency.

We also examine some overall strategies for managing latency and concurrency when
modifying data.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 355

522xCH10.qxd 8/31/05 3:38 PM Page 355

Managed Provider Factories
Version 2.0 of the Framework introduces a factory model for creating instances of data access
objects. Using this factory enables you to write code that’s generic across different database
vendors. This feature is available through ADO, but to write vendor-neutral code in .NET
requires using an interface-based late bound programming model or one of the backwards
compatibility Managed Providers, such as OLEDB or ODBC. The interface-based approach
involves programming against the interfaces common to all Managed Providers, and then
using Reflection or a custom-written factory to actually load instances of types at runtime.
The backwards compatibility layer introduces a serious performance hit to your managed
applications. This is particularly painful if the databases you’re supporting do provide Man-
aged Providers coded specifically for those vendors’ platforms. You don’t ever want to, for
example, use the OLEDB Managed Provider to talk to SQL Server 2000.

So in 2.0, there’s a Provider Factory model. This factory enables you to let configuration
entries drive what database you’re to use, but get instances of types from specific Managed
Providers at runtime. So if you’re using SQL Server, you get a SqlConnection object to use from
your code. If you’re using Oracle, you get an OracleConnection.

The services of the Provider Factory are exposed through a couple of types that Microsoft
added to the System.Data.Common namespace. DbProviderFactories exposes a couple of simple
shared methods (see Table 10-6).

Table 10-6. The Shared Methods of the DbProviderFactories type

Shared Method Meaning in Life

GetFactoryClasses This method returns a DataTable with metadata about all of the
installed providers on the system.

GetFactory This method returns an instance of a DbProviderFactory type. It
accepts an argument that describes the factory—either a DataRow from
the DataTable returned by GetFactoryClasses, or an “invariant name”
of the provider, which is a column returned in the DataTable.

All of the configured Managed Providers are available through the services of the Provider
Factory. To get a list of installed providers on a system, you can use the GetFactoryClasses
method on the DbProviderFactory type (see Default.aspx in Web10).

protected void Page_Load(object sender, EventArgs e)
{

GridView gv = new GridView();
gv.DataSource = DbProviderFactories.GetFactoryClasses();
gv.DataBind();
form1.Controls.Add(gv);

}

By binding this DataTable to a grid, you can see the information it returns, and a list of the
installed providers on the machine, shown here in Figure 10-4.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS356

522xCH10.qxd 8/31/05 3:38 PM Page 356

Figure 10-4. The data returned by GetProviderFactories, listing the installed Managed Providers
on the system

In Figure 10-4, you can see the data contained in the DataTable returned by
GetObjectFactories, including all of the invariant names of the providers, which you can
use to create instances of the factory for a specific provider. All of the installed providers are
registered in the machine.config under a new element named DbProviderFactories.

<system.data>
<DbProviderFactories>
<add name="Odbc Data Provider"

invariant="System.Data.Odbc"
description=".Net Framework Data Provider for Odbc"
type="System.Data.Odbc.OdbcFactory, System.Data, Version=..." />

<add name="OleDb Data Provider"
invariant="System.Data.OleDb"
description=".Net Framework Data Provider for OleDb"
type="System.Data.OleDb.OleDbFactory, System.Data, Version=..." />

<add name="OracleClient Data Provider"
invariant="System.Data.OracleClient"
description=".Net Framework Data Provider for Oracle"
type="System.Data.OracleClient.OracleClientFactory, System.Data..." />

<add name="SqlClient Data Provider"
invariant="System.Data.SqlClient"
description=".Net Framework Data Provider for SqlServer"
type="System.Data.SqlClient.SqlClientFactory, System.Data, Version=..." />

<add name="SQL Server CE Data Provider"
invariant="Microsoft.SqlServerCe.Client"
support="3F7"

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 357

522xCH10.qxd 8/31/05 3:38 PM Page 357

description=".NET Framework Data Provider for Microsoft SQL Server ..."
type="Microsoft.SqlServerCe.Client.SqlCeClientFactory, Microsoft...." />

</DbProviderFactories>
</system.data>
<system.web>

If you want to use a new or third-party provider with the Provider Factory, you must regis-
ter it in configuration using the DbProviderFactory element. You can make this entry in the
machine.config, or if you only plan to use the provider from a specific application, you can
enter into the web.config.

The other method on DbProviderFactories returns an instance of DbProviderFactory.
This type exposes eight factory methods for creating instance of connections, commands,
parameters, and whatever other objects you need for interacting with your database.
Here, you create an instance of the SQL Server Managed Provider factory and use it to
execute a parameterize query against the database using the generic types served by the
DbProviderFactory. (You can find this code in UseFactory.aspx of Web10.)

protected void Page_Load(object sender, EventArgs e)
{

DbProviderFactory factory =
DbProviderFactories.GetFactory("System.Data.SqlClient");

DbConnection cn = factory.CreateConnection();
cn.ConnectionString =

ConfigurationManager.ConnectionStrings
["localPubs"].ToString();

DbCommand cm = factory.CreateCommand();
cm.Connection = cn;
cm.CommandText = "select * from authors where [state] = @state";
DbParameter pm = factory.CreateParameter();
pm.ParameterName = "@state";
pm.Value = "CA";
cm.Parameters.Add(pm);

GridView gv = new GridView();
cn.Open();
gv.DataSource = cm.ExecuteReader(CommandBehavior.CloseConnection);
gv.DataBind();
form1.Controls.Add(gv);

}

The code listed previously generates the Web Form displayed in Figure 10-5.
Notice the types you’re using aren’t SQL Server-specific. You’re not using a SqlConnection

object; you’re using a DbConnection object. There is a whole set of these new types in the
System.Data.Common namespace. They’re created by the factory to represent a specific
provider, but expose a generic type and programming model to the developer using the
types (see Table 10-7).

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS358

522xCH10.qxd 8/31/05 3:38 PM Page 358

Figure 10-5. An HTML table generated using the generic data Provider Factory to talk to
SQL Server

Table 10-7. Generic Database Types, the Factory Method on DbProviderFactory That Creates
Them, and Their Role in Life

System.Data.Common Type Factory Method Meaning in Life

DbCommand CreateCommand A generic command object,
exposing Connection,
CommandText, CommandType, a
Parameters collection, and
Execute methods for sending
queries to the database.

DbCommandBuilder CreateCommandBuilder A generic object that will
build the Insert, Update,
and Delete Commands for a
DataAdapter.

DbConnection CreateConnection A generic Connection object
that uses a ConnectionString
and Open method to
establish communication
with any database server.

DbConnectionStringBuilder CreateConnectionStringBuilder A helper type that abstracts
away the details of the syntax
of a connection string for a
specific provider.

DbDataAdapter CreateDataAdapter A generic DataAdapter for
manufacturing DataTables
and moving DataSet changes
back to the database.

DbParameter CreateParameter A generic Parameter for
sending arguments to para-
meterized SQL statements or
to procedures defined within
the database.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 359

522xCH10.qxd 8/31/05 3:38 PM Page 359

Of course, the whole point of a Provider Factory is to select a Managed Provider at run-
time instead of at design time. This can be especially helpful for software vendors who want to
write applications that work against SQL Server or Oracle, for example; and their customers
control this with the configuration when they install the application. You can change the last
example to pull the name of the provider out of the connection information using the
providerName attribute of the add element in the connectionStrings section of the configura-
tion file.

<appSettings>
<add key="EnvironmentName" value="localPubs"/>

</appSettings>
<connectionStrings>

<add name=" localPubs"
connectionString="server=.;database=pubs;uid=sa;pwd="
providerName="System.Data.SqlClient"/>

<add name=" OraclePubs"
connectionString="Oracle Connetion String..."
providerName="System.Data.OracleClient"/>

</connectionStrings>

By adding the provider name in your configuration file, you can change the code to have
these configuration entries drive the provider, enabling users to dynamically select a provider
when they deploy the application. You’ll use the providerName setting to drive the invariant
name of the provider you’ll use (see ConfigFactory.aspx in Web10).

protected void Page_Load(object sender, EventArgs e)
{

string EnvName =
ConfigurationManager.AppSettings["EnvironemntName"].ToString();

ConnectionStringSettings css =
ConfigurationManager.ConnectionStrings[EnvName];

DbProviderFactory factory =
DbProviderFactories.GetFactory(css.ProviderName);

DbConnection cn = factory.CreateConnection();
cn.ConnectionString = css.ConnectionString;

DbCommand cm = factory.CreateCommand();
cm.Connection = cn;
cm.CommandText = "select * from authors where [state] = @state";
DbParameter pm = factory.CreateParameter();
pm.ParameterName = "@state";
pm.Value = "CA";
cm.Parameters.Add(pm);

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS360

522xCH10.qxd 8/31/05 3:38 PM Page 360

GridView gv = new GridView();
cn.Open();
gv.DataSource = cm.ExecuteReader(CommandBehavior.CloseConnection);
gv.DataBind();
form1.Controls.Add(gv);

}

Adding the Provider Factory restores a feature of ADO that was lost when you moved to
ADO.NET version 1.x: the ability to easily switch your backend database at deployment or
even at runtime. Using these features won’t be for everyone, but it will be very nice for those
who do have the requirement of shipping code that can dynamically adjust to different ven-
dor’s databases.

Concurrency
Concurrency, or more specifically, the problem of what to do with a dirty read is always an
issue in distributed application development. The problem is simple. User A reads a row of
data, and begins to examine it within his browser window, contemplating changing it. Mean-
while, user B comes along and makes a change to the same row. User A finally applies a
change, and posts it to the server for submission to the database. The row in the table has
changed since user A first retrieved the data, so user A is said to have a dirty read of the data,
and if user A posts those changes, it will result in a dirty write (see Figure 10-6).

Figure 10-6. A dirty read from the database

The question is: How should the updating process deal with this situation? How can the
updating process even learn of it? And once it does, what should be done? These questions
must always be asked when inventing an application’s architecture. How they are solved
depends on the business requirements of the application, and the amount of control the
development team has over the database whose data is being consumed. The problem is
much different when it’s a custom database than it is when the database is vendor supplied
and changes cannot be made to it. These are the factors that determine which of the following
solutions will be employed.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 361

522xCH10.qxd 8/31/05 3:38 PM Page 361

Blindly Overwrite Changes
Here, user A’s changes overwrite the changes made by user B. This is the easiest solution to
implement, as it requires that you do nothing other than squash the changes made by user B
without telling either user about it. This is not acceptable under most circumstances. Users
quite frequently confuse this “architectural solution” with something entirely different that
they call a “bug.”

Use Pessimistic Locking
Yeah. Right. That is so 1980s.

Query All Values in the where Clause
Here is the first solution worth serious consideration. In this case, when an update occurs,
instead of finding the row to update by querying only on the columns that comprise the pri-
mary key, you query on all columns of the table that may have been changed since you did the
read. In the case where a row has changed, the update will fail. What the application does in
that circumstance is where the specific requirements of your application come in, but gener-
ally it involves informing the user that the data has changed since the time that she read it,
and asking her if she’d like to overwrite the changes, cancel her update, or examine the differ-
ences between her data and the new data in the database.

The downside to this approach is that it can be extremely expensive for the database to
perform these operations. When preparing the query, you need to send not only the updated
values across the wire, but all of the original values as well. Evaluating the where clause will
take the database much longer to do than it would if it were using only primary key or indexed
columns. Also, it won’t work for binary type columns (image, text, etc.). You must make special
consideration for null values, as well (as the expression null = null evaluates to false).

Here’s an example of what an update query using this strategy might look like:

update authors set
au_lname = @au_lname,
au_fname = @au_fname,
phone = @phone,
address = @address,
city = @city,
state = @state,
zip = @zip,
contract = @contract
WHERE au_id = '123123' and
au_lname = @org_au_lname and
au_fname = @org_au_fname and
phone = @org_phone and
(address = @org_address or
(address is null and @org_address is null)) and
city = @org_city or
(city is null and @org_city is null)) and
state = @org_state or

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS362

522xCH10.qxd 8/31/05 3:38 PM Page 362

(state is null and @org_state is null)) and
zip = @org_zip or
(zip is null and @org_zip is null)) and
contract = @org_contract

The columns address, city, state, and zip allow nulls, so a separate comparison must be
made to account for the case where the value was null when it was read out of the database
and is still null when the update occurs. You can see this strategy is not pretty, and involves
much more code.

When using a DataSet, this strategy is easily implemented from the data access layer code,
as each row of a DataTable automatically tracks its current and original values. Code to move
all updated rows from a DataTable to the database using the preceding command text follows
(see Concurrency1.aspx from the Web10 project).

private bool UpdateAuthors(DataSet ds)
{

string sql = "…statement from above…";

SqlConnection cn = new SqlConnection(
ConfigurationManager
.ConnectionStrings["localPubs"].ConnectionString);

SqlCommand cm = new SqlCommand(sql, cn);
SqlDataAdapter da = new SqlDataAdapter

(new SqlCommand("select * from authors",cn));
SqlParameter pm;

pm = new SqlParameter
("@au_lname", SqlDbType.VarChar, 40);

pm.SourceVersion = DataRowVersion.Current;
pm.SourceColumn = "au_lname";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@au_fname", SqlDbType.VarChar, 10);
pm.SourceVersion = DataRowVersion.Current;
pm.SourceColumn = "au_fname";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@phone", SqlDbType.Char, 12);
pm.SourceVersion = DataRowVersion.Current;
pm.SourceColumn = "phone";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@address", SqlDbType.VarChar, 40);
pm.SourceVersion = DataRowVersion.Current;
pm.SourceColumn = "address";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@city", SqlDbType.VarChar, 20);

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 363

522xCH10.qxd 8/31/05 3:38 PM Page 363

pm.SourceVersion = DataRowVersion.Current;
pm.SourceColumn = "city";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@state", SqlDbType.Char, 2);
pm.SourceVersion = DataRowVersion.Current;
pm.SourceColumn = "state";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@zip", SqlDbType.Char, 5);
pm.SourceVersion = DataRowVersion.Current;
pm.SourceColumn = "zip";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@contract", SqlDbType.Bit);
pm.SourceVersion = DataRowVersion.Current;
pm.SourceColumn = "contract";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@org_au_id", SqlDbType.VarChar, 11);
pm.SourceVersion = DataRowVersion.Original;
pm.SourceColumn = "au_id";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@org_au_lname", SqlDbType.VarChar, 40);
pm.SourceVersion = DataRowVersion.Original;
pm.SourceColumn = "au_lname";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@org_au_fname", SqlDbType.VarChar, 20);
pm.SourceVersion = DataRowVersion.Original;
pm.SourceColumn = "au_fname";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@org_phone", SqlDbType.Char, 12);
pm.SourceVersion = DataRowVersion.Original;
pm.SourceColumn = "phone";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@org_address", SqlDbType.VarChar, 40);
pm.SourceVersion = DataRowVersion.Original;
pm.SourceColumn = "address";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@org_city", SqlDbType.VarChar, 20);
pm.SourceVersion = DataRowVersion.Original;
pm.SourceColumn = "city";

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS364

522xCH10.qxd 8/31/05 3:38 PM Page 364

cm.Parameters.Add(pm);
pm = new SqlParameter

("@org_state", SqlDbType.Char, 2);
pm.SourceVersion = DataRowVersion.Original;
pm.SourceColumn = "state";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@org_zip", SqlDbType.Char, 5);
pm.SourceVersion = DataRowVersion.Original;
pm.SourceColumn = "zip";
cm.Parameters.Add(pm);
pm = new SqlParameter

("@org_contract", SqlDbType.Bit);
pm.SourceVersion = DataRowVersion.Original;
pm.SourceColumn = "contract";
cm.Parameters.Add(pm);

da.UpdateCommand = cm;
da.Update(ds);

return true;
}

Notice how you’re mapping columns of the DataTable to parameters of the CommandText
using the SourceColumn and SourceVersion attributes of the parameter object. For the para-
meters in the "set" portion of the SQL statement, you’re pulling the current values from the
DataTable. For columns in the where clause, you’re pulling the original values from the
DataTable. Realize that "select * from authors" is the SelectCommand of the DataAdapter.
What you’re building with this code is the UpdateCommand of the adapter, which you set just
before calling the Update method.

Typically, when using an adapter for retrieving data from the database and later moving it
back, you’ll do a one-time creation of this adapter and cache it, as it’s a lot of work. This code
will also only work for updates to the DataSet; you’ll also want to create and set an insert and
delete command (for the InsertCommand and DeleteCommand properties of the adapter, respec-
tively).

When the user gets into a “dirty read” situation using this approach, the error displayed in
Figure 10-7 occurs.

In a full-blown application, this is the exception that would be caught and would kick off
the rendering of whatever “concurrency resolution” interface was required by the business
rules.

This strategy is good when modifications cannot be made to the database in use. Be sure
to build only columns that could change into the where clause. The disadvantage to this
approach is the amount of code it takes and the amount of work that must be done at run-
time, including marshaling of data across the wire and the complexity of the database queries.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 365

522xCH10.qxd 8/31/05 3:38 PM Page 365

Figure 10-7. A concurrency error raised by the data adapter

Query On Only Changed Column Values
If you have no control over the database schema, but the overhead of the last approach is too
much to bear, you can update and query on only those column values that have changed.
Unfortunately, this approach requires dynamic generation of SQL statements, so it is generally
frowned upon. For tables with high column counts, this approach may be worth the trade-off.

There is another business rule that must be present before adopting this approach. When
user A moves a change to "address" back to the database, it must be irrelevant if user B has
changed "state" in the meantime. Using this approach, "address" will get updated with the
new value from user A, but "state" will remain the value that user B set it to. While technically
both changes were based on “fresh” data, the combination of values might be invalid. You
could end up with an author from Green Bay, MN. (East coasters: Green Bay is in Wisconsin.)

So, if your requirements can overlook all of the glaring deficiencies of this method, here’s
what it would look like (see Concurrency2.aspx in Web10).

private bool UpdateAuthors(DataSet ds)
{

string sql = "";
string sqlBase = " update authors set {0} where au_id = '{1}'{2}";
string sqlUpdate = "";
string sqlWhere = "";

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS366

522xCH10.qxd 8/31/05 3:38 PM Page 366

SqlConnection cn = new SqlConnection(
ConfigurationManager
.ConnectionStrings["localPubs"].ConnectionString);

SqlCommand cm = new SqlCommand("", cn);
foreach (DataRow dr in ds.Tables[0].Rows)
{

sqlUpdate = "";
sqlWhere = "";
foreach(DataColumn dc in ds.Tables[0].Columns)
{

if (dr[dc, DataRowVersion.Current] !=
dr[dc, DataRowVersion.Original])

{
sqlUpdate += string.Format("{0} = '{1}', ",

dc.ColumnName, dr[dc]);
sqlWhere += string.Format(" and {0} = '{1}'",

dc.ColumnName, dr[dc,
DataRowVersion.Original]);

}
}
if (sqlUpdate.Length > 0)
{

sqlUpdate = sqlUpdate.Substring
(0, sqlUpdate.Length - 2);

sql += string.Format(sqlBase, sqlUpdate,
dr["au_id", DataRowVersion.Original],
sqlWhere); ;

}
}

cm.CommandText = sql;
cn.Open();
int updates = cm.ExecuteNonQuery();
cn.Close();

return true;
}

The next thing to do with this method is to compare the number of rows that were
updated to the number of rows that have changed in the DataSet, to make sure no concur-
rency errors occurred (in the limited definition you’ve implemented here). Then the DataSet
would need to be refreshed by calling AcceptChanges.

if (updates != ds.Tables[0].GetChanges().Rows.Count)
return false;

else
{

ds.AcceptChanges();

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 367

522xCH10.qxd 8/31/05 3:38 PM Page 367

return true;
}

AcceptChanges doesn’t move any data to the database (only an adapter can do that); it
simply copies current values over original values. The same null checking logic you saw earlier
needs to be built into this method as well.

Timestamp Column
When you have control of the schema of the database, your best option for managing concur-
rency is to add a timestamp column to the table, and then build a check of the value into the
update query. The database automatically updates the timestamp value whenever a change
is made to the data. So as long as the timestamp value that was read still matches it when an
update is attempted, you can rest assured that the data has not changed in the interim.

A timestamp is binary data, so marshaling the value to and from a web browser requires
some transformation along the way. You’ll send the timestamp value to the browser in a hid-
den input. When the user sends changes back, you can retrieve it and use it in the where
clause of your update. First, you’ll need to modify the authors table and add a timestamp
column to it. You’ll do this on a copy of the authors table named authors_ts, as shown in
Figure 10-8.

Figure 10-8. The modified version of the authors table

Here’s the markup from the editing page. The user will pick an author for editing with
the DropDownList. You’re only creating an interface to edit the first and last name. Of course,
usually you would create an interface for editing more of the data. What you’re interested in
for this demonstration, though, is the user control created just after the HTML table (see
Concurrency3.aspx in Web10).

<asp:Panel Runat=server ID=pnEdit Visible=false>
<table>

<tr>
<td>First Name</td>
<td>

<asp:TextBox Runat=server ID=txtFirstName />
</td>

</tr>

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS368

522xCH10.qxd 8/31/05 3:38 PM Page 368

<tr>
<td>Last Name</td>
<td>

<asp:TextBox Runat=server ID=txtLastName />
</td>

</tr>
<tr><td colspan=2 align=center>

<asp:Button Runat=server ID=btnSave
Text='Save'
OnClick="btnSave_Click" />

</td></tr>
</table>
<uc1:Timestamp ID="tsAuthor" Runat="server" />

</asp:Panel>

<asp:Label Runat=server ID=lblOutput />

To facilitate reuse of this logic across several tables, you’ll encapsulate the timestamp
value in a user control. You can also do this with a custom control, making it usable across dif-
ferent applications. Here’s the markup for the user control. (This code is in Timestamp.ascx of
the Web10 project.)

<%@ Control Language="C#"
CodeFile="Timestamp.ascx.cs"
Inherits="Timestamp_ascx" %>
<asp:TextBox Runat=server ID=txtTimestamp Visible=false />

It gets included on your edit page with the following register directive from
Concurrency3.aspx:

<%@ Register TagPrefix="uc1"
TagName="Timestamp"
Src="Timestamp.ascx" %>

You can see there’s not much to this control. It will have no visible rendering behavior;
you’re really just using it to store a value in the ViewState. The timestamp will be tracked by
the user control with a public property named TimestampValue. It’s implemented thusly in
Timestamp.ascx.

public object TimestampValue
{

get
{

byte[] ba = new byte[8];
for(int indx = 0; indx < 8; indx++)
{

ba[indx] = Convert.ToByte(
txtTimestamp.Text.Substring(indx * 3,2),16);

}
return ba;

}

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 369

522xCH10.qxd 8/31/05 3:38 PM Page 369

set
{

txtTimestamp.Text = BitConverter.ToString((byte[])value);
}

}

This code uses a BitConverter to transform the byte array received from the database into
a string, and then uses the Convert.ToByte method to transform it back into a byte array for
populating a parameter value to send to the database. By typing it as an Object, consumers of
the control need not worry about their parameter values. They can set it with code like this
(user control instance is named tsAuthor):

tsAuthor.TimestampValue = cm.Parameters["@ts"].Value;

And they can retrieve the value with this line of code:

pm = cm.Parameters.Add("@ts", SqlDbType.Timestamp);
pm.Value = tsAuthor.TimestampValue;

This is the type of programming ease you’re designing for by encapsulating this logic in
the user control.

So when the page first renders, you populate the author list. You’ve done this several
times, so this code is omitted here for brevity. You can see from the markup that when the user
chooses an entry from the list, a postback occurs (AutoPostBack=true), and the BindToAuthor
method is executed (from Concurrency3.aspx).

protected void BindToAuthor(object sender, EventArgs e)
{

SqlConnection cn = new SqlConnection(
ConfigurationManager.ConnectionStrings
["localPubs"].ConnectionString);

SqlCommand cm = new SqlCommand(
"select @fname = au_fname, @lname = au_lname, @ts = ts "
+ "from authors_ts where au_id = @id", cn);

cm.Parameters.Add("@id", SqlDbType.Char, 11)
.Value = ddlAuthors.SelectedValue;

cm.Parameters.Add("@fname", SqlDbType.VarChar,20)
.Direction = ParameterDirection.Output;

cm.Parameters.Add("@lname", SqlDbType.VarChar,40)
.Direction = ParameterDirection.Output;

cm.Parameters.Add("@ts", SqlDbType.Timestamp)
.Direction = ParameterDirection.Output;

cn.Open();
cm.ExecuteNonQuery();
cn.Close();

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS370

522xCH10.qxd 8/31/05 3:38 PM Page 370

txtFirstName.Text = cm.Parameters["@fname"].Value.ToString();
txtLastName.Text = cm.Parameters["@lname"].Value.ToString();
tsAuthor.TimestampValue = cm.Parameters["@ts"].Value;
pnEdit.Visible = true;

}

Notice how you’re retrieving values using output parameters built right into our com-
mand text. This statement is executed with ExecuteNonQuery, which means the overhead of
creating a result set is never incurred. This data access method is screaming fast, especially for
dynamically generated SQL.

You get the timestamp value back as an output parameter as well, and pass it right along
to your user control, leaving it typed as an Object (basically untyped). This is fine, because the
user control knows it’s a byte array and converts to a string for streaming to the client.

The user can now edit to his heart’s content, and when done, click the Save button. Here
you’re using dynamic SQL with parameters built in again, but this time they’re all input
parameters (again, from Concurrency3.aspx).

protected void btnSave_Click(object sender, EventArgs e)
{

SqlConnection cn = new SqlConnection(
ConfigurationManager.ConnectionStrings
["localPubs"].ConnectionString);

SqlCommand cm = new SqlCommand(
"update authors_ts set au_fname = @fname, "
+ "au_lname = @lname where au_id = @id "
+ "and ts = @ts", cn);

cm.Parameters.Add("@id", SqlDbType.Char, 11)
.Value = ddlAuthors.SelectedValue;

pm = cm.Parameters.Add("@ts", SqlDbType.Timestamp);
pm.Value = tsAuthor.TimestampValue;
cm.Parameters.Add("@fname", SqlDbType.VarChar, 20)

.Value = txtFirstName.Text;
cm.Parameters.Add("@lname", SqlDbType.VarChar, 40)

.Value = txtLastName.Text;

cn.Open();
int i = cm.ExecuteNonQuery();
cn.Close();

if (i == 1)
lblOutput.Text = "Data saved";

else
lblOutput.Text = "Concurrency error";

pnEdit.Visible = false;
BindList();

}

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS 371

522xCH10.qxd 8/31/05 3:38 PM Page 371

You calibrate your success by the number of rows you’ve affected. Because the query is fil-
tering on the primary key of the table, it will always affect, at most, only one row. So it either
affects zero or one rows. If it affects one, your query has succeeded, which will only ever occur
if a change has not been made to the row since it was read. If a change has been made (or the
row has been deleted), the edit has been done with a dirty read, and you inform the user that
there’s been a concurrency error. This is a simplified example; in an actual application, you
would use this branch of code to render whatever interface is required to deal with the con-
currency error, enabling the user to resolve it.

Concurrency is a problem that must be solved in any distributed application. How the
problem gets solved is going to depend on your business rules and how much control you
have over the schema of the database you’re interacting with. Hopefully some of the tech-
niques we’ve gone over in this section will give you some ideas for meeting the requirements
of your specific application.

Summary
There’s a new data access model in the .NET Framework. This model is very different from
ADO and OLEDB, because it dedicates types to specific databases. Vendors create a Managed
Provider by implementing a known set of interfaces defined in the System.Data assembly.

There are two main data access models in .NET. One is a low memory footprint, read-only
data access model, and the other is an in-memory result set model. Both are tailored for dif-
ferent tasks, and as a .NET database developer, you should be aware of which model to use in
which circumstances.

Version 2.0 of the Framework adds many improvements to Managed Providers of data
access, including a Provider Factory model, a configuration file entry dedicated to connection
strings, and a very easy facility for encrypting these strings.

The DataTable object also has a lot of new functionality; new features enable it to do all of
the operations for a single result set that used to require a DataSet and DataAdapter.

Finally, in a disconnected architecture, the problems of latency and concurrency must be
handled. We examined a number of strategies for doing this in different circumstances.

There are many more features for data access in the .NET Framework in version 2.0. In
Chapter 11, we’ll examine some of these, including SQL cache dependencies and data source
controls.

CHAPTER 10 ■ MANAGED PROVIDERS OF DATA ACCESS372

522xCH10.qxd 8/31/05 3:38 PM Page 372

Data Access Layer Services

Many features are available in managed code that you can put to use in the data access
layer don’t pertain directly to the Managed Providers of data access. In ASP.NET 2.0, a new set
of controls enables you to use the markup of your ASPX page to declaratively bind a control
to a data source. These are called the data source controls, and they are very advanced com-
pared to the data-binding engine available in 1.x. Microsoft has also added one of the most
requested features to the cache object: the capability to establish a dependency between a
cache entry and a database table. This dramatically increases the usefulness of the cache,
making it as dependable for purging dirty data as it always has been for XML documents.
There’s also a data access layer application block available from Microsoft, which simplifies a
lot of the common tasks that need to be done within a data access layer. While this does not
ship with the .NET Framework, it is available as a free download from Microsoft. We’ll take a
look at all of these features in this chapter. We’ll wrap up with a preview of SQL Server 2005.

Declarative Data Access
ASP.NET 2.0 adds a suite of controls to the Framework called data source controls. These con-
trols keep in line with Microsoft’s migration from imperative code to declarative code. Data
source controls allow data to be retrieved from a variety of sources using nothing but markup
in the body of the ASPX page. If you’re having flashbacks to the days of IDC and HTX, you’re
not entirely off base, but these controls are extremely flexible and powerful. Another benefit of
the markup approach to declarative coding is that the XML DOM is much easier to use than
the CodeDOM, and so there’s really impressive support for these controls from within the Visual
Studio IDE graphical editors. These tools generate the markup, exposing an interface that
allows for some powerful expressions to be created without writing any code.

Still, as architects, our hunch is that you’ll look at some of these tools and wince a little on
the inside. They demo really well at the conferences, but for a lot of people, there’s something
about embedding data access code into markup that just somehow seems wrong. Data access
belongs in a different logical layer of the application, and presentation code belongs in
markup. This opinion may change over time, and XML Application Markup Language (XAML)
may bring about changes in the way people think about coding and markup. But these are
changes that may take many years to take hold, and, in the meantime, if these controls don’t
live up to their promise, they could undermine any eventual adoption of this model.

So we’ll take a look at the data access controls in the first part of this chapter, drilling
specifically into the SqlDataSource and ObjectDataSource controls (see Table 11-1). They may
not represent the end of writing code to get to data sources, but in many cases they are a great

373

C H A P T E R 1 1

■ ■ ■

522xCH11.qxd 8/31/05 3:39 PM Page 373

way to dramatically speed a development effort. The ObjectDataSource adheres to a layered
architecture better, whereas the SqlDataSource may prove itself suitable only for prototyping
and quick fixes.

Table 11-1. Data Source Controls in ASP.NET 2.0

Data Source Control Meaning in Life

AccessDataSource Enables you to declaratively bind to an Access database file (MDB).

ObjectDataSource Enables you to bind to an object model.

SitemapDataSource Specialized XML format that describes the structure and hierarchy of
your site. Used for binding to the site navigation controls.

SqlDataSource Allows for binding to relational data sources.

XmlDataSource Used to bind to an XML document.

None of these controls has visible rendering behaviors of its own. They can more logically
be thought of as components rather than controls, but in order to avoid having to write code
(as is common with components), they’re implemented as controls.

When you’re using a data source control, the creation of the interface is done
by one of the new Web Controls that inherits from the DataBoundControl base class
(or HierarchicalDataBoundControl) listed in Table 11-2.

Table 11-2. DataBoundControls in ASP.NET 2.0

Data Bound Control Meaning in Life

AdRotator This 1.x control has been redesigned to allow for binding to a data source
control via the new DataSourceID property.

BulletedList These list controls have all been refactored to inherit from
CheckBoxList DataBoundControl and, thereby, expose the DataSourceID property
DropDownList for binding to data source controls. The bulleted list is a new
ListBox addition to the list control family.
RadioButtonList

GridView This is the replacement for the DataGrid control from 1.x, and is probably
the “flagship” control for ASP.NET 2.0. This control overcomes scores of
limitations of the DataGrid, allowing for editing, selecting, paging, and
sorting features, all without writing a single line of code. Consider this
the new version of the DataGrid. It is only packaged in a brand new type
because the changes made to it are so extensive that they are not back-
wards compatible. Rather than breaking all existing implementations of
the DataGrid, Microsoft wisely decided to just ship a new control.

DataGrid While these controls have not been changed to inherit from the
DataList DataBoundControl base class, they have been modified to support
Repeater the DataSourceID property and do support data source controls.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES374

522xCH11.qxd 8/31/05 3:39 PM Page 374

Data Bound Control Meaning in Life

DetailsView These great new additions to the Web Control collection provide a very
FormView easy facility for creating a form interface, where all columns of a table are

displayed with a label on the left and a control on the right in a single
column. The DetailsView provides a default rendering with VCR-style
buttons to navigate through the result set, whereas the FormView provides
more flexibility (and more work) by using a template-based approach
(akin to the DataList). Realize that the fundamental difference with
these controls, and the other data-binding controls, is that they focus on
displaying a single row of data, whereas the others focus on displaying
some output for each row in your data source.

Menu These advanced controls bind the HierarchicalDataSource controls to
SiteMapPath render their respective interfaces. The TreeView is an especially nice
TreeView addition to the suite of tools. It’s an advanced type of interface that lever-

ages DHTML and out-of-band callbacks (see Chapter 4), but is
still cross-browser compatible. The Menu and SiteMapPath work with
a SiteMapDataSource to provide “easy-to-use” and “easy-to-code” naviga-
tion for your application, making you and your end users happier.

These controls have all been created specifically for binding to the data source controls.
Each of them exposes a DataSourceID property, which points to a data source control also
declared on the page. Using a combination of a DataSourceControl and a DataBoundControl
enables you to do data binding declaratively, in place of setting the DataSource and calling
DataBind from code. You see this strategy in use here with a GridView and a SqlDataSource.
Here’s our mantra: design goal = no code.

<asp:SqlDataSource Runat=server ID=sdsAuthors
ConnectionString="server=.;database=pubs;uid=sa;pwd=123123"
SelectCommand="select * from authors" />
<asp:GridView Runat=server ID=dvAuthors
DataSourceID=sdsAuthors />

This dumps an HTML table with a border of one to the browser, which is the GridView’s
default rendering behavior. You can find this code in Simple.aspx of the Web11 project.

■Note This book does not provide “blow-by-blow” coverage of each new control provided in ASP.NET 2.0,
as we focus on larger issues of architecture and design in an n-tiered application. You can find feature-level
coverage in Beginning ASP.NET 2.0 in C# by Matthew MacDonald (Apress, 2005).

SQL Data Source Control
The SqlDataSource is designed to talk to the most common source of data: the relational data-
base. It enables you to connect to, execute commands against, and update the database
without writing a single line of code.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 375

522xCH11.qxd 8/31/05 3:39 PM Page 375

The SqlDataSource control also supports inserts, updates, and deletes. This markup will
render a form interface for displaying, editing, and navigating to different rows in the authors
table (see DetailsViewIE.aspx in the Web11 project). Figure 11-1 shows the output of the fol-
lowing control declarations.

<asp:DetailsView ID="DetailsView1" Runat="server"
DataSourceID='sdsAuthors'
AutoGenerateDeleteButton=true
AutoGenerateEditButton=true
AutoGenerateInsertButton=true
AllowPaging="True"
AutoGenerateRows="true"
DataKeyNames="au_id">

</asp:DetailsView>

<asp:SqlDataSource Runat=server ID=sdsAuthors
ConnectionString="server=.;database=pubs;uid=sa;pwd=123123"
SelectCommand="SELECT * FROM [authors]"
ProviderName="System.Data.SqlClient"
DeleteCommand="DELETE FROM [authors] WHERE [au_id] = @original_au_id"
InsertCommand="INSERT INTO [authors] ([au_id], [au_lname], [au_fname],

[phone], [address], [city], [state], [zip], [contract])
VALUES (@au_id, @au_lname, @au_fname, @phone, @address, @city,
@state, @zip, @contract)"

UpdateCommand="UPDATE [authors] SET [au_lname] = @au_lname,
[au_fname] = @au_fname, [phone] = @phone, [address] = @address,
[city] = @city, [state] = @state, [zip] = @zip,
[contract] = @contract WHERE [au_id] = @original_au_id">
<DeleteParameters>

<asp:Parameter Type="String" Name="au_id"></asp:Parameter>
</DeleteParameters>
<UpdateParameters>

<asp:Parameter Type="String" Name="au_lname"></asp:Parameter>
<asp:Parameter Type="String" Name="au_fname"></asp:Parameter>
<asp:Parameter Type="String" Name="phone"></asp:Parameter>
<asp:Parameter Type="String" Name="address"></asp:Parameter>
<asp:Parameter Type="String" Name="city"></asp:Parameter>
<asp:Parameter Type="String" Name="state"></asp:Parameter>
<asp:Parameter Type="String" Name="zip"></asp:Parameter>
<asp:Parameter Type="Boolean" Name="contract"></asp:Parameter>
<asp:Parameter Type="String" Name="au_id"></asp:Parameter>

</UpdateParameters>
<InsertParameters>

<asp:Parameter Type="String" Name="au_id"></asp:Parameter>
<asp:Parameter Type="String" Name="au_lname"></asp:Parameter>
<asp:Parameter Type="String" Name="au_fname"></asp:Parameter>
<asp:Parameter Type="String" Name="phone"></asp:Parameter>

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES376

522xCH11.qxd 8/31/05 3:39 PM Page 376

<asp:Parameter Type="String" Name="address"></asp:Parameter>
<asp:Parameter Type="String" Name="city"></asp:Parameter>
<asp:Parameter Type="String" Name="state"></asp:Parameter>
<asp:Parameter Type="String" Name="zip"></asp:Parameter>
<asp:Parameter Type="Boolean" Name="contract"></asp:Parameter>

</InsertParameters>
</asp:SqlDataSource>

Figure 11-1. An editable form created with no code using the SqlDataSource

Queries can also be parameterized. This page uses a drop-down list to pick a publisher,
and then renders a list of titles by that publisher when the user picks one (see ParamIE.aspx in
the Web11 project). Figure 11-2 shows the results.

<asp:SqlDataSource Runat=server ID=sdsPublishers
ConnectionString="server=.;database=pubs;uid=sa;pwd=123123"
SelectCommand="select pub_id, pub_name from publishers" />

<asp:DropDownList Runat=server ID=ddlPublishers
DataSourceID='sdsPublishers'
DataTextField='pub_name'
AutoPostBack=true
DataValueField='pub_id' />

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 377

522xCH11.qxd 8/31/05 3:39 PM Page 377

<asp:SqlDataSource Runat=server ID=sdsTitles
ConnectionString="Server=.;database=pubs;uid=sa;pwd=123123"
SelectCommand="select * from titles where pub_id = @id">
<SelectParameters>
<asp:ControlParameter
ControlID=ddlPublishers
PropertyName=SelectedValue
Name="id" />

</SelectParameters>
</asp:SqlDataSource>

<asp:GridView Runat=server ID=gvTitles
DataSourceID=sdsTitles />

Figure 11-2. A grid that gets queried with a drop-down list, created with no code using a
SqlDataSource

Here you’re looking to another control on the page to provide you with a connection
value. That’s just one of many sources that can be used for parameters. Parameter values can
also be pulled from the query string, the session, cookies, or the ASP.NET profile provider.
Parameters can be built into the SQL declared with the SqlDataSource, or they can be para-
meters of a stored procedure, named by the SelectCommand, for example.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES378

522xCH11.qxd 8/31/05 3:39 PM Page 378

Table 11-3 shows a number of ways you can provide a value for the author ID column of
the following SelectCommand. The table samples are all different ways to provide a value for this
parameterized SQL statement.

SELECT * FROM authors WHERE (au_id = @au_id)

Table 11-3. Parameter Sources, Syntax, and Meanings

Parameter Syntax Meaning in Life

CookieParameter <asp:CookieParameter This parameter enables you to
CookieName="ID" pull a value from a named
Name="au_id" cookie. In this example, the
Type="String" /> cookie named "ID" will be

passed to the select statement
in place of the @au_id
parameter in the statement.

ControlParameter <asp:ControlParameter This parameter enables you to
ControlID="ddlID" pull a named property from a
Name="au_id" control on the page. In this
PropertyName="SelectedValue" example, you’re sending the
Type="String" /> selected value of the drop-

down list control named ddlID
as the @au_id value in the select
statement.

FormParameter <asp:FormParameter This parameter can be used
FormField="ID" when another page is sending
Name="au_id" values to your page via an
Type="String" /> HTTP Post. You can use this to

pass named values from the
HTTP Post header right into
the SQL statement. Here,
you’re passing the ID post value
into the @au_id parameter of
the select statement.

ProfileParameter <asp:ProfileParameter This parameter type enables
Name="au_id" you to pull values from the
PropertyName="ID" custom profile infrastructure
Type="String" /> provided in ASP.NET 2.0.

You name any parameter
configured as a property of the
custom profile provider. Here
you’re moving the ID custom
profile property into the @au_id
value in the select statement.

Continued

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 379

522xCH11.qxd 8/31/05 3:39 PM Page 379

Table 11-3. Continued

Parameter Syntax Meaning in Life

QueryStringParameter <asp:QueryStringParameter The query string parameter
Name="au_id" enables you to pull any value
QueryStringField="id" that was tacked on to the end
Type="String" /> of your URL with a named

value pair. Here, you’re passing
the named query string value
of id along into the @au_id
parameter of the select
command.

SessionParameter <asp:SessionParameter You can also pull values from
Name="au_id" the ASP.NET Session object.
SessionField="id" Here, you’re pulling the session
Type="String" /> value named id and using it as

the value for the @au_id param-
eter of the select command.

You can also move connection information into configuration files and referenced by
name instead of being embedded directly in the markup, using the same techniques you
learned in Chapter 10 on connection string management.

This entry would be in the web.config.

<connectionStrings>
<add name="pubsConn"
connectionString="database=pubs;server=.;uid=sa;pwd=123123" />

</connectionStrings>

And then you can use the <%$ ConnectionStrings:ConnectionName %> syntax from your
markup.

<asp:SqlDataSource Runat=server ID=sdsAuthors
ConnectionString= '<%$ ConnectionStrings:pubsConn %>'
SelectCommand="select * from authors" />
<asp:GridView Runat=server ID=dvAuthors
DataSourceID=sdsAuthors />

In these demos, you’ve seen pages that can display, query, modify, delete, and create
your data. Doing so required no code. We’re not going to bother showing you the Wizards and
Designers that generate this markup (as there’s about 100,000 screen shots of this on MSDN
and the Web in general), but using these tools can eliminate the need to even learn the syntax
and nuances of this markup. Creating pages like this is extremely quick and easy to do. This is
powerful stuff. To reiterate, this control is great for a number of things.

• Evangelizing, and doing demos on, how easy Visual Studio is to use

• Prototyping/proof of concept/Requests for Proposals (RFPs)

• Internal tools or small solutions with simple requirements

• Any time doing something quickly is more important than any other architectural
requirement

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES380

522xCH11.qxd 8/31/05 3:39 PM Page 380

It is not, however, suited as a general purpose approach to providing a data access layer
for a distributed application of any significant size, scale, or complexity. Embedding struc-
tured query language in the presentation tier is not maintainable for larger applications.
Typically you want to see data access encapsulated within its own layer of the application,
probably only exposed by a business object layer that sits between the presentation and data
layers. Ideally, it’s best to create a layer of abstraction between UI developers and relational
databases. This lets developers focus on meeting functional requirements, and relegates data-
base modeling and schema to the information architects and DBAs, where it belongs. When
these architectural requirements are present, the ObjectDataSource provides a much better
solution.

Object Data Source
Another control that may be viable in a wider range of applications is the ObjectDataSource.
This type provides similar functionality to a SqlDataSource, but it allows for binding to an
object model instead of injecting SQL or stored procedure calls directly into the markup.

This enables you to bind to, for example, a collection of business objects instead of the
rows of a result set. Using this data source, you can have your pages declaratively bind to the
middle tier of your application, instead of directly to the data tier. More specifically, these
methods enable you to bind to methods rather than bind directly to database objects.

These objects do need to be designed in a specific manner so that they’ll work correctly
with the ObjectDataSource. This data source control does use a true late binding strategy,
but there are a few rules for how the methods it binds to must be formed. For example, the
SelectMethod must return a type that the data-binding engine can bind to. This means if you
have your own custom CustomerCollection type, you cannot bind directly to that type; you
must have another method that returns an instance of CustomerCollection. This subtle differ-
ence means you must create types (or at least methods on your types) that are tailored to the
ObjectDataSource control.

Let’s start with a very simple example. Here’s the declaration of an ObjectDataSource that
binds to a generic collection of BookDetail objects:

<asp:ObjectDataSource ID="odsBookList" runat="server"
SelectMethod="GetBookList"
TypeName="BookBinding" />

■Note The code for the ObjectDataSource demo can be found in EditBook.aspx, EditBook.aspx.cs,
BookBinding.cs, and BookDetails.cs, all of which are in the Web11 project.

This declaration names a type using the TypeName attribute, and a method on that type
using the SelectMethod attribute. The data source control then uses Reflection and late
binding to create an instance of the type and get the data when it’s time to bind. Here’s the first
part of the code for the BookBinding type you’re using with this ObjectDataSource control:

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 381

522xCH11.qxd 8/31/05 3:39 PM Page 381

public class BookBinding
{

public BookBinding()
{}

public SqlDataReader GetBookList()
{

String sql = "select BookId, Title From Book order by Title";
SqlConnection cn = new SqlConnection(WebStatic.ConnectionString);
SqlCommand cm = new SqlCommand(sql,cn);

cn.Open();
return cm.ExecuteReader(CommandBehavior.CloseConnection);

}
…

The default constructor is required so that the control can create an instance of the type.
You could omit it from this code, because you have no custom constructors, but if you have a
custom constructor on your type, you must explicitly add the default constructor, even if it
does nothing (like the preceding constructor).

The GetBookList serves as the select method of the binding operation. Here you’re
simply passing through a SqlDataReader. Using code like this, you’re really using the
ObjectDataSource to bind directly to a data access layer. This is still a vast improvement over
putting the data access code directly in the markup, and it doesn’t take much code do. You
could call a stored procedure instead of using inline SQL, which would be even better.

You can use this control to bind any of the controls listed in Table 11-2. Here you’ll create
a ListBox bound to the ObjectDataSource:

<asp:ListBox ID="lbBookList" runat="server"
DataSourceID="odsBookList"
Width=600px
DataTextField="Title"
DataValueField="BookID"
Rows=12 AutoPostBack="True" />

This renders a list of books displaying the title and carrying the BookID as the underlying
value of the list items. It’s really not much less code than it would take to do this in 1.x. The main
differences here are that there’s no code in the code-behind of our page (the BookBinding.cs file
is in the app_code directory, but it could be in an external assembly), and the code that actually
does the binding is contained in the ObjectDataSource control. In this example, that means
the only thing you don’t have to do is call DataBind. However, when you design and build an
entire system using these controls, you’ll likely get better reuse out of your object layer, and
your individual page code will be much simpler.

This strategy is also much more powerful when it comes to editing data, as you can bind
to a business object layer and have your business rules enforced. Let’s take a look at another
declaration of an ObjectDataSource:

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES382

522xCH11.qxd 8/31/05 3:39 PM Page 382

<asp:ObjectDataSource ID="odsBookDetail" runat="server"
DataObjectTypeName="BookDetails"
SelectMethod="GetBook"
UpdateMethod="UpdateBook"
TypeName="BookBinding">
<SelectParameters>

<asp:ControlParameter ControlID="lbBookList" Name="BookId"
PropertyName="SelectedValue"
Type="Int32" />

</SelectParameters>
</asp:ObjectDataSource>

Here you’ve added the DataObjectTypeName attribute. This enables you to use a business
object and a collection of those objects, instead of using a DataReader or DataTable. Again,
using Reflection, the ObjectDataSource is able to treat public fields and properties of the type
named by DataObjectTypeName as bindable members instead of relying on columns from a
result set. The BookDetails type is defined in BookDetails.cs of the app_code directory. It’s a
standard business object with public properties, private fields, and a Save method to commit
changes to an underlying data store.

You’ve also added a SelectParameter to the declaration of this data source. All of the
parameter types listed in Table 11-3 are also available on the ObjectDataSource. Instead of act-
ing as parameters in a SQL statement or stored procedure, they’re passed here as arguments
to the corresponding methods they’re declared for. For example, in this case because you
declared a SelectParameter, the ObjectDataSource will automatically pass an Int32 to the
SelectMethod, which in this case is GetBook.

Let’s take a look at the code for GetBook, which is a method of BookBinding, the type
named by the TypeName property. This is different than BookDetails, the type named by the
DataObjectTypeName property. BookDetails is the type that BookBinding will create collections
of and use for data updates.

public List<BookDetails> GetBook(int BookId)
{

List<BookDetails> bookList = new List<BookDetails>();
bookList.Add(new BookDetails(BookId));
return bookList;

}

So GetBook returns a generic List of BookDetails objects. Because it accepts a BookId as an
argument, there will only ever be one book in the list. This is by design. The ObjectDataSource
associated with this method will bind to a DetailsView control, which only displays a single
row at a time.

■Note This method uses a new feature of the .NET Framework called generics, which enable you to create
and use types that have some dynamic type information built into the definition. In this case, you’re creating
a collection of objects, but the type in the collection is declared at the same time you declare the list using
the <TypeName> syntax. For a detailed discussion of generics, see Pro C# and the .NET 2.0 Platform by
Andrew Troelsen (Apress, 2005).

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 383

522xCH11.qxd 8/31/05 3:39 PM Page 383

Notice that for this method, there is a single argument that accepts an Int32. You declared
the ObjectDataSource with an Int32 control parameter on the select statement. The control
parameter points to the SelectedIndex property of the ListBox. This has the effect of passing
the selected value of the ListBox into the GetBook method of the second ObjectDataSource,
which you’ll use to bind a DetailsView control to display the book. You can see the entire coil
laid out in Figure 11-3. Keep in mind that at this point, there’s not a single line of code in the
code-behind the EditBookWeb Form.

Figure 11-3. Interdependent Object Data Sources used to feed values from a ListBox control to a
DetailsView control

Let’s take a look at the declaration for the DetailsView control that displays the details of
the selected book. All of the data and binding behavior for this control is already provided by
the ObjectDataSource named odsBookDetail, which is, in turn, being fed a BookID value from
the ListBox. This means the only thing left to specify with the declaration of the DetailsView is
the look and feel you want to use to display the book data.

<asp:DetailsView ID="dvEditBook" runat="server" DataKeyNames='BookID'
AutoGenerateRows="False" DataSourceID="odsBookDetail" Width=600px
Height="50px" CellPadding="4" ForeColor="#333333" GridLines="None"
OnItemUpdated="dvEditBook_ItemUpdated" >
<Fields>

<asp:BoundField DataField=BookID Visible=false />
<asp:BoundField DataField="Title" HeaderText="Title"

ControlStyle-Width=420px />
<asp:BoundField DataField="Publisher" HeaderText="Publisher"

ControlStyle-Width=420px />
<asp:BoundField DataField="ListPrice" HeaderText="Price"

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES384

522xCH11.qxd 8/31/05 3:39 PM Page 384

DataFormatString="{0:$#,###.##}" />
<asp:BoundField DataField="PageCount" HeaderText="Pages" />
<asp:BoundField DataField="ISBN" HeaderText="ISBN" />
<asp:BoundField DataField="PublicationDate" HeaderText="Published"

DataFormatString="{0:MM-dd-yyyy}" />
<asp:BoundField DataField="ScanDate" HeaderText="Scanned"

DataFormatString="{0:MM-dd-yyyy}" />
<asp:CommandField CancelText='x' UpdateText='ok' ShowEditButton="True" />

</Fields>

<FooterStyle BackColor="#507CD1" Font-Bold="True" ForeColor="White" />
<CommandRowStyle BackColor="#D1DDF1" Font-Bold="True" />
<RowStyle BackColor="#EFF3FB" />
<FieldHeaderStyle BackColor="#DEE8F5" Font-Bold="True" />
<PagerStyle BackColor="#2461BF" ForeColor="White" HorizontalAlign="Center" />
<HeaderStyle BackColor="#507CD1" Font-Bold="True" ForeColor="White" />
<EditRowStyle BackColor=CornflowerBlue />
<AlternatingRowStyle BackColor="White" />

</asp:DetailsView>

The single most important part of this declaration for this discussion is the DataSourceID
property, which points the control at odsBookDetail. This causes the ObjectDataSource control
to feed these control instances of BookDetails as they’re selected from the ListBox. The
BoundField declarations of this control then name public properties of that business object.
Figure 11-4 displays the output generated.

Figure 11-4. A ListBox control and a DetailsView control bound to and tied together with

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 385

522xCH11.qxd 8/31/05 3:39 PM Page 385

Editing is also supported by the data source controls. In the declaration of odsBookDetails,
notice that in addition to declaring GetBook as the SelectMethod, you’re also declaring
UpdateBook as the UpdateMethod.

UpdateMethod="UpdateBook"

This is another method on the BookBinding class. Let’s take a look at this code.

public void UpdateBook(BookDetails b)
{

b.Save();
}

Notice the type of the argument that it accepts is BookDetails. This is determined by the
DataObjectTypeName property on odsBookDetails. The ObjectDataSource takes care of creating
an instance of this type and moving values from the DetailsView to this instance of the busi-
ness object, before passing it along as an argument to the UpdateBook method. Once in this
method, you have only to tell the business object to move its values to persistence. This is
work that the business object would usually delegate to a data access layer.

As far as the DetailsView is concerned, enabling editing involves a single element used in
its declaration.

<asp:CommandField CancelText='x' UpdateText='ok' ShowEditButton="True" />

This results in the Edit hyperlink being displayed (as shown in Figure 11-4). When the user
clicks this link, the DetailsView automatically transforms its display from read-only into a
data entry screen (see Figure 11-5).

Figure 11-5. The DetailsView in edit mode

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES386

522xCH11.qxd 8/31/05 3:39 PM Page 386

Now the user can apply changes, and when she clicks the ok link, the ObjectDataSource
automatically creates an instance of the BookDetails object and passes it to the UpdateBook
method of the BookBinding object.

And you still have no code in the code-behind the EditBookWeb Form. As you begin to
use these controls to implement real functionality, you’ll find yourself in need of tweaking the
interaction between these data source controls and the Web Controls they’re bound to. Luckily
there’s a fairly rich event model exposed, enabling you to modify and extend the default
behavior of these binding interactions (see Table 11-4).

Table 11-4. Events Exposed by the ObjectDataSource Control

Event Meaning in Life

Deleting Raised before a delete operation is executed

Deleted Raised after a delete operation has completed

Filtering Raised before a filter is applied to the underlying control data

Inserting Raised before an insert operation is executed

Inserted Raised after an insert operation has completed

ObjectCreating Enables the developer to create his own custom object for the data source to
use in binding operations

ObjectCreated Raised after the data source’s object is created, allowing for custom
initialization

Selecting Raised before a select operation is executed

Selected Raised after a select operation has completed

Updating Raised before an update operation is executed

Updated Raised after an update operation has completed

In our example, the user may change the title of the book when editing. When they
update the book, the DetailsView will automatically change back into a read-only view, but
the ListBox will not be updated and so the title will be incorrect in the list. You can fix this by
using the Updated event of the DetailsView. You can set up this trap with an attribute of the
DetailsView declaration:

OnItemUpdated="dvEditBook_ItemUpdated"

In your code-behind, you can update the displayed value of the selected book:

protected void dvEditBook_ItemUpdated(
object sender,
DetailsViewUpdatedEventArgs e)

{
lbBookList.SelectedItem.Text = e.NewValues["Title"].ToString();

}

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 387

522xCH11.qxd 8/31/05 3:39 PM Page 387

Hopefully, you can see some of the benefits of the ObjectDataSource model over the
model exposed by the SqlDataSource control. While you must take some consideration at the
business object layer of the application, a set of types dedicated to feeding the data access
controls still creates a better separation of these layers in your application architecture than
using the code-behind for individual Web Forms will. You get a cleaner separation of layers
with this model, where the specialized methods feeding the ObjectDataSource controls are
concerned only with creating and returning appropriate instances of types for the methods
they expose, and the data-binding logic is completely handled by the data source control. This
looser coupling between layers leads to easier maintenance and better reuse across different
presentation tier elements, and even across different applications.

Dependent Cache Entries
It is very easy to establish a dependency between a cache entry and an XML file. This is a great
feature, as it enables you to load, parse, and cache an XML document for exactly as long as
you need to: until you make a change to the document. Make a change to the doc, and the
cache entry is automatically purged.

This type of dependency has very limited applications, though. It’s very common to get
XML data via a URL, or Web Service, or maybe even the database. In fact, it is still much more
common to get data from the database than it is from XML in the first place. When it comes to
loading data out of a database table and putting it into the cache, you have no similar capabil-
ity to automatically purge the entry when a change is made to the data. The best you can do
in 1.x of the Framework is to establish a timeout on the cache entry, and accept some level
of latency. For example, if you put the data in the cache and have an absolute expiration of
60 seconds, any change you make to the data will take, at most, 59 seconds to show up.

This solution is not attractive for a couple of reasons. Sometimes this level of latency is
not acceptable. A change to the data may need to show up on the site immediately. Con-
versely, sometimes your queries are so expensive that you don’t want to go back to the
database at 60-second intervals to refresh it, especially since there’s no guarantee the data
has even changed during that time.

What you’d really like to do is create a cache entry, and tell the cache that if, for example,
the data in the authors table changes, then purge the cache entry so you’ll know to go back to
the database to refresh it. This feature has been added in version 2.0 of the Framework, but
only for SQL Server 7 and later. The implementation for SQL Server 2005 is very different than
it is for versions preceding it. Here, we’ll examine the feature in SQL Server 7 and 2000.

Currently, XML file cache invalidation is done with the FileDependency class. SQL Server
cache invalidation is done with a new class, named SQLCacheDependency. This type uses a com-
bination of triggers on the database and polling from the client to determine when a cache
entry has expired (see Figure 11-6).

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES388

522xCH11.qxd 8/31/05 3:39 PM Page 388

Figure 11-6. SQL cache invalidation infrastructure

SQL Cache Dependency Configuration
The first thing you must do to use SQL cache invalidations is set up a specific database to sup-
port the infrastructure. A command line tool, aspnet_regsql.exe, ships with version 2.0 of the
Framework that automates a lot of the different database server setup that’s required for dif-
ferent features of ASP.NET 2.0 (membership, personalization, session state, etc.). The tool
supports a console window command line mode and a Win32 Wizard mode. To set up a spe-
cific database, you could use the following command line:

aspnet_regsql -S (local) -U sa -P 123123 -d Pubs –ed

Most of the switches are connection information. You could also use a connection string:

aspnet_regsql -C server=.;uid=sa;pwd=123123;database=pubs –ed

So you can see that, besides connection information, the only other switch you’re passing
is -ed. This tells the tool to enable the database you’ve specified for SQL cache invalidation,
which creates a table named AspNet_SqlCacheTablesForChangeNotification in the database
you’ve specified. This is the table that gets polled by the dependency, watching for changes.
You’ll see how changes get recorded in this table soon. There are also half a dozen stored pro-
cedures that get created. These are used for registering and unregistering tables, and polling
and listing registered tables.

After a database is prepared for cache invalidations, you’ll need to configure the tables
you’re interested in watching. This registration adds triggers to the tables that will record when
something changes in the AspNet_SqlCacheTablesForChangeNotification table. This is the
table that gets polled by ASP.NET, and is how the word gets back to the cache dependency that
an entry needs to be purged.

The command line this time needs to specify the command, -et, for enable table, and
then the -t switch to specify the table name:

aspnet_regsql -C server=.;uid=sa;pwd=123123;database=pubs -et -t authors

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 389

522xCH11.qxd 8/31/05 3:39 PM Page 389

This time the command line tool simply calls the stored procedure that was created when
you enabled the database, AspNet_SqlCacheRegisterTableStoredProcedure. It accepts a table
name as a parameter and creates a trigger for inserts, updates, and deletes on it. This imple-
mentation of this trigger calls another stored procedure:
AspNet_SqlCacheUpdateChangeIdStoredProcedure.

This procedure, now called whenever an insert, update, or delete occurs in the registered
table, updates the table that gets polled. The next time the dependency polls this table, it will
see the fact that the registered table has changed.

That’s it for the SQL Server-specific setup needed for cache dependencies. The rest of the
setup gets done within the web application that’s going to declare a dependency. First, you
must add a configuration entry to the application’s configuration file. This is an element
named caching, added as a child to the system.web element.

<caching>
<sqlCacheDependency enabled="true" pollTime="10000">

<databases>
<add name="Publishers" connectionStringName="localPubs" />

</databases>
</sqlCacheDependency>

</caching>

The SqlCacheDependency element allows you to enable caching and set the default fre-
quency of the database polling. This is a number of milliseconds, so here you’re setting it to
poll every ten seconds. If your DBA cringes at the thought of polling the database every ten
seconds, remind her that it’s a simple request of a very small table, and far better than having
to go back to the database for the entire result set with every request. Even when polling,
this strategy should result in a net reduction of overall database traffic. This presupposes, of
course, that there is sufficient demand for (or expense in creating) the result set to warrant
adoption of a caching strategy in the first place. A resource that isn’t under high demand
should not be cached with a database dependency. Polling might actually increase traffic in
that case.

The databases element is where you map names of dependencies to connection strings
the dependency will use to connect and poll. This dependency is named Publishers to illus-
trate that it is not actually a database, and does not even name anything you configured with a
command line tool. It is arbitrary. You use this name when creating a dependency object, and
it is nothing more than a convoluted way of giving the dependency object a connection string
to use to poll the database (an alias for an alias for a connection string).

The connectionStringName attribute refers to a named connection from the
connectionString element (covered in the Chapter 10 discussion on connection strings).

<connectionStrings>
<add name="localPubs"

connectionString="Server=.;Database=Pubs;uid=sa;pwd=123123" />
</connectionStrings>

Everything is now set up to use the dependency.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES390

522xCH11.qxd 8/31/05 3:39 PM Page 390

Programming with SQL Cache Dependencies
Let’s add SQL cache invalidation to the sorting example we examined in Chapter 10. Here we
showed you how to read the authors table, cache the dataset, and then create a DataView to
represent each sort, and cache each of those. To make the dataset dependent upon the data
changing, you have only to modify the line inserting the DataSet into the cache (you can find
this code in SortIE.aspx of the Web11 project).

private DataSet GetAuthors()
{

DataSet ds;

ds = (DataSet)Cache["AuthorData"];

if (ds == null)
{

ds = new DataSet();
SqlConnection cn = new SqlConnection

("server=.;database=pubs;uid=sa;pwd=123123");

SqlCommand cm = new
SqlCommand("select * from authors", cn);

new SqlDataAdapter(cm).Fill(ds);

Cache.Insert("AuthorData", ds,
new SqlCacheDependency("Publishers", "authors"));

}
return ds;

}

The third argument of the call to the Insert method is an instance of a CacheDependency
object. Since SqlCacheDependency inherits from CacheDependency, you can create a new
instance and configure it with its constructor. The first argument the constructor accepts is
the name you gave the dependency entry in the configuration file. This maps back to the con-
nection string the dependency will use for polling. The second parameter is the name of the
table you want to watch. This table must be configured using the -et switch of the command
line tool. The cache will now start polling the database every ten seconds.

As your user selects different sorts, different DataView instances are created and put in the
cache as well. You’ll make the same change to the line inserting these into the cache.

private void BindGrid(string sortExpr)
{

DataView dv;
string sCacheEntry =

string.Format("Author_Sort_{0}", sortExpr);

dv = (DataView)Cache[sCacheEntry];

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 391

522xCH11.qxd 8/31/05 3:39 PM Page 391

if (dv == null)
{

dv = new DataView(
GetAuthors().Tables[0], "",
sortExpr,
DataViewRowState.CurrentRows);

Cache.Insert(sCacheEntry, dv,
new SqlCacheDependency("Publishers", "authors"));

}

gvAuthors.DataSource = dv;
gvAuthors.DataBind();

}

Now every time the user sorts, a new database-dependent cache entry gets created. The
database does not, however, get polled by each dependency. One request is made to retrieve
all change notifications.

These dependencies can also be used with output caching. The following OutputCache
directive will make the page’s output dependent upon a change to the authors table (see
OutputCacheIE.aspx in the Web11 project).

<%@ OutputCache SqlDependency="Publishers:authors"
Duration="9999" VaryByParam="none" %>

The first attribute names your cache entry in the configuration file, followed by a colon
and the name of the table to watch. Keep in mind that the duration attribute determines the
absolute expiration of the entry in the output cache. The polling time is still determined by
the SqlCacheDepedency entry you made in the web.config using the aspnet_regsql command
line tool.

Automating SQL Cache Dependency Administration
You can also perform the setup using an administrative helper type built into the Framework:
SqlCacheDependencyAdmin. This type exposes a number of static methods (see Table 11-5).
There are pairs for enabling and disabling databases and tables, and a method for retrieving
a list of tables set up for notification. You can use these methods from an administrative tool
during development as an alternative to the aspnet_regsql command line tool, or use them
to dynamically set up and tear down dependencies at runtime.

You’ll use this type to build a simple admin tool for setting up databases and tables for
SQL cache dependencies. You’ll use a drop-down list and a grid view to display databases and
tables (see Figure 11-7). You can use this interface during project development to configure
cache dependencies.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES392

522xCH11.qxd 8/31/05 3:39 PM Page 392

Table 11-5. Static Methods of the SQL Cache Dependency Administration Class

Method Name Meaning in Life

EnableNotifications Sets up a database for notifications. Same as the
-ed command line switch.

DisableNotifications Tears down the setup for notifications. Same as the
-dd switch.

EnableTableForNotifications Sets up a table for notifications. Same as the -et switch.

DisableTableForNotifications Tears down the setup for notifications. Same as the
-dt switch.

GetTablesEnabledForNotifications Returns an array of strings naming the tables set up for
notification.

Figure 11-7. A custom made adminstration interface for SQL dependencies

Here’s the markup for the drop-down list, the grid view, and the buttons needed to fire
postbacks (see SetupSqlCache.aspx in the Web11 project).

<asp:DropDownList ID="ddlDatabase" Runat="server"
AutoPostBack=true
OnSelectedIndexChanged="ddlDatabase_SelectedIndexChanged" />

<asp:GridView AutoGenerateColumns=false ID="gvTables" Runat="server"

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 393

522xCH11.qxd 8/31/05 3:39 PM Page 393

BorderWidth="1px" BackColor="White" CellPadding="4"
BorderStyle="None" BorderColor="#3366CC">
<FooterStyle ForeColor="#003399" BackColor="#99CCCC"></FooterStyle>
<PagerStyle ForeColor="#003399"

HorizontalAlign="Left"
BackColor="#99CCCC" />

<HeaderStyle ForeColor="#CCCCFF"
Font-Bold="True"
BackColor="#003399" />

<SelectedRowStyle ForeColor="#CCFF99"
Font-Bold="True"
BackColor="#009999" />

<RowStyle ForeColor="#003399" BackColor="White" />
<AlternatingRowStyle ForeColor=White BackColor=DodgerBlue />
<Columns>

<asp:BoundField DataField='name' HeaderText='Table Name' />

<asp:TemplateField HeaderText='Configured'>
<ItemTemplate>
<asp:checkbox runat='server'

TableName='<%# Eval("name") %>'
Checked='<%# Convert.ToBoolean(Eval("Configured")) %>'
OnCheckedChanged='FlipBit' />

</ItemTemplate>
</asp:TemplateField>

</Columns>
</asp:GridView>

<asp:button Runat=server id=btnSave
Text='Save Changes'
OnClick="btnSave_Click"
Visible="False" />

<asp:Button ID="Button1" Runat="server"
Text="Enable this Database"
OnClick="Button1_Click"
Visible="False" />

When the page first loads, the drop-down list will be populated with a list of databases for
the server you’re using.

protected void Page_Load(object sender, EventArgs e)
{

if (!IsPostBack)
{

string sql =
"SELECT name FROM sysdatabases ORDER BY name";
SqlConnection cn = new SqlConnection

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES394

522xCH11.qxd 8/31/05 3:39 PM Page 394

(BuildConnStr("master"));
SqlCommand cm = new SqlCommand(sql, cn);

cn.Open();
ddlDatabase.DataSource = cm.ExecuteReader();
ddlDatabase.DataTextField = "name";
ddlDatabase.DataBind();
cn.Close();
ddlDatabase.Items.Insert(0, "");

}
}

A blank list item gets added to the top of the drop down, so there’s no database selected
when the page first renders. Since you’re connecting to any number of databases for configu-
ration, connections rely on a helper method to dynamically build the connection string.

private string BuildConnStr(string Database)
{

return string.Format
("server=.;database={0};uid=sa;pwd=", Database);

}

When the user makes a selection from the list, the selected index changed event trap fires
on the server (autopostback is set to true on the control). The trap calls the BindGrid method,
which uses the name of the database the user has chosen to dynamically build a connection
string, and queries the sysobjects table for all table names within the database.

protected void ddlDatabase_SelectedIndexChanged(object sender, EventArgs e)
{ BindGrid(); }

void BindGrid()
{

string sql = "SELECT sysobjects.name, " +
"sysobjects.type, case coalesce " +
"(AspNet_SqlCacheTablesForChangeNotification.tableName, " +
"'0') when '0' then 'false' else 'true' end AS Configured "+
"FROM sysobjects LEFT OUTER JOIN " +
"AspNet_SqlCacheTablesForChangeNotification " +
"ON sysobjects.name = " +
"AspNet_SqlCacheTablesForChangeNotification.tableName " +
"WHERE (sysobjects.type = 'U') " +
"ORDER BY sysobjects.name";

SqlConnection cn = new SqlConnection(
BuildConnStr(ddlDatabase.SelectedValue));

SqlCommand cm = new SqlCommand(sql, cn);

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 395

522xCH11.qxd 8/31/05 3:39 PM Page 395

try
{

cn.Open();
gvTables.DataSource = cm.ExecuteReader();
gvTables.DataBind();
btnSave.Visible = true;

}
catch
{

gvTables.Visible = false;
btnSave.Visible = false;
Button1.Visible = true;

}
finally
{

cn.Close();
}

}

The query in use in this method also does on outer join to the polling table (AspNet_
SqlCacheTablesForChangeNotification). When this table is not present, the execution of the
query throws an exception. From this, you infer that the database is not configured for cache
dependencies, and display a button to let the user configure the database (see Figure 11-8).

Figure 11-8. The admin display when the selected database is not configured

When the user clicks this button, you configure the database for cache dependencies and
render the grid.

protected void Button1_Click(object sender, EventArgs e)
{

string sConn = BuildConnStr(ddlDatabase.SelectedValue);
SqlCacheDependencyAdmin.EnableNotifications(sConn);
Button1.Visible = false;
gvTables.Visible = true;
btnSave.Visible = true;
BindGrid();

}

In the case where the database is configured (and so the polling table is present), the
outer join attempts to link the object name with the TableName from the polling table.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES396

522xCH11.qxd 8/31/05 3:39 PM Page 396

...FROM sysobjects LEFT OUTER JOIN
AspNet_SqlCacheTablesForChangeNotification
ON sysobjects.name =
AspNet_SqlCacheTablesForChangeNotification.tableName…

If the table name is present in the polling table, it’s configured, and the outer join will suc-
ceed. If the table is not configured, it won’t be present in the polling table, and the column
value will be null. The query uses a case and a coalesce to translate these possible values into
true or false, which you use to bind the checked value of the CheckBox on the grid.

case
coalesce (AspNet_SqlCacheTablesForChangeNotification.tableName ,'0')
when '0' then 'false'
else 'true' end
AS Configured

<asp:TemplateField HeaderText='Configured'>
<ItemTemplate>
<asp:checkbox runat='server'

TableName='<%# Eval("name") %>'
Checked='<%# Convert.ToBoolean(Eval("Configured")) %>'
OnCheckedChanged='FlipBit' />

</ItemTemplate>
</asp:TemplateField>

The TableName attribute is not actually a property of the CheckBox control, but the render-
ing engine is smart enough to pass this value through into the markup and the ViewState,
making it available for your use when the postback occurs. As the user makes changes to these
CheckBox controls, the server-side OnCheckChanged events get queued up on the client, until the
user clicks the submit button. Then a postback occurs, and the CheckChanged trap fires once
for each CheckBox that has had its value altered. After all of the check-changed events are
processed, the onclick of the button finally fires.

protected void FlipBit(Object sender, EventArgs e)
{

CheckBox c = (CheckBox)sender;
string sConn = BuildConnStr(ddlDatabase.SelectedValue);
string tableName = c.Attributes["TableName"];

if (c.Checked)
SqlCacheDependencyAdmin.EnableTableForNotifications

(sConn, tableName);
else

SqlCacheDependencyAdmin.DisableTableForNotifications
(sConn, tableName);

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 397

522xCH11.qxd 8/31/05 3:39 PM Page 397

}
void btnSave_Click(object sender, EventArgs e)
{

BindGrid();
}

In the check-changed trap, you use the TableName attribute and the event sender to deter-
mine what table should be enabled or disabled. By the time the button click event fires, the
only work left to do is to refresh the grid to ensure it matches the current caching configura-
tion in the database.

SQL cache dependencies are a powerful new feature in ASP.NET 2.0. It’s one people have
been clamoring for for years, and is best suited for read-mostly data, or data where some
latency is acceptable between changing the data and seeing the changes on the site. If the
data is highly volatile and no latency is acceptable, then there’s no sense in caching it, as it
will constantly be invalidated as the data changes, and/or frequent polling will be required to
get the latest version. For situations where the data is in high demand and it does not change
constantly within the database, a caching strategy can increase the performance of your appli-
cation by several orders of magnitude.

SQL Server 2005 has a notification infrastructure, which enables the database to call
out to other processes as events occur. This eliminates the need for polling from the cache
dependency, and results in less latency between changes and cache invalidations. See the
last section of this chapter (on SQL Server 2005) for details.

Data Access Application Block
This is a set of assemblies from Microsoft designed to streamline, simplify, and supercharge
data access code. This application block is in its third shipping version from Microsoft. The
first two versions were stand-alone sets of assemblies that provided a generic data access
layer. The original version of the Block was one of about a dozen different blocks available
from Microsoft, each of which provided functionality covering a different set of requirements.
There was a configuration block, an exception handling block, and a logging block, to name a
few. Any block could be used in an application when its services were needed.

Microsoft’s patterns & practices group created the application blocks. The goal of applica-
tion blocks is to provide production-ready sets of functionality that you can add to your .NET
Enterprise applications. Application blocks do not ship with the Framework; you have to
download them separately. When you download them, you get all of the source code, the com-
piled assemblies, and project files for opening them in Visual Studio .NET and modifying
them.

■Note For a list of all application blocks and links for downloading, see http://msdn.microsoft.com/
practices/AppBlocks/default.aspx

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES398

522xCH11.qxd 8/31/05 3:39 PM Page 398

Problems came about when several application blocks were in use concurrently.
Microsoft tested each of the blocks in isolation from one another, but in different combina-
tions, the blocks had a tendency to step on one another’s toes. Microsoft decided it would be
easier to put them all into a single package, test them together, and just let folks leverage func-
tionality out of specific assemblies as needed. And so the Enterprise Library was born.

The official name of this block is now the Enterprise Library Data Access Application
Block Version 1.0, even though it’s the third version of the block. Seven blocks have been rolled
into the Enterprise Library. We discuss Enterprise Library v 1.0, which shipped in January of
2005, here. There will be a new version of the Enterprise Library shipped after the release of
version 2.0 of the Framework, one that leverages some of the new Framework features. But if
you’re still using version 1.1 of the Framework, or until Microsoft ships a new version (as 2.0
will be backwards compatible and so Enterprise Library 1.0 will work with it), this data access
layer can really give you a jump start on your data access code, and provide you with a few fea-
tures that aren’t present in the 1.x version of the Managed Providers.

Almost any application that accesses a relational database can benefit from this applica-
tion block. The block results in less boilerplate code that has to be written to execute any
command, and it manages opening and closing connections to the database, which maxi-
mizes the efficiency of the connection pool and reduces the chances of introducing a
connection leak into an application. Code is simpler to maintain, and developers have a com-
mon model to use to execute commands against the database, simplifying the learning curve
for someone working on an Enterprise suite of applications.

The block also introduces an object factory that creates a layer of abstraction between the
consumer of the data and the database being used on the back end. This means the same
code can use different databases, without any changes to the code. This was one of the biggest
features lost in the move from ADO to Managed Providers. The Data Access Application Block
restores this functionality for SQL Server, Oracle, and DB2. Since the source code is available,
adding support for another Managed Provider is not hard. Instructions are included right in
the block’s documentation (note that the .NET Framework 2.0 adds this functionality to the
Managed Provider model; see provider factories in Chapter 10).

Configuration and the Database Object
You use configuration files to name and provide connection information to the databases to
be used from within the block. Within a configuration file you can name any number of logical
databases, choose a database vendor for each, and establish connection strings. There’s a con-
figuration tool that ships with the Enterprise Library that will generate the appropriate entries
for your application’s configuration file. It’s called “Enterprise Library Configuration.”

The setup goes like this. You have any number of database types. The block supports SQL
Server, Oracle, and DB2 by default. Within each type, you have a number of instances. These
are specific databases you want to connect to of a specific type. This is the level of configura-
tion where you establish a logical name of the database, which is all you need to use from your
code to work with it. An instance is then associated with a named connection string. The con-
nection entry in the configuration file has all of the named/value pairs that will be used to
build the connection string at runtime.

Here you set the configuration for working with the pubs database from SQL Server. The
name you’ll use from code is PubsDatabase. The leaf nodes under the connection string con-
tain all of the named values (see Figure 11-9).

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 399

522xCH11.qxd 8/31/05 3:39 PM Page 399

Figure 11-9. The database node of the Enterprise Library configuration

Although Oracle is set up here, you’re not using it. The application block supports DB2
databases by default, but this option isn’t compiled and built into the block’s assemblies when
you first install the Enterprise Library. The support for DB2 is dependent upon IBM’s Managed
Provider for DB2, so you must first install that, and then compile the DB2 project included
with the application block’s source code.

The configuration tool will still support DB2 databases, even though they are not present
in the tool by default. The Type Selector dialog box sports a Load an Assembly… button. This
dialog enables you to browse out to the assemblies created with the DB2 project, or to your own
implementation of a Managed Provider for the block (see Figure 11-10). The tool does not care,
just so the assembly chosen has a type that inherits from EnterpriseLibrary.Data.Database in it.

Figure 11-10. The Type Selector dialog box

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES400

522xCH11.qxd 8/31/05 3:39 PM Page 400

When the configuration is saved, the tool writes out two files. One contains the elements
that will be used from your application configuration file. It’s basically just a verbose pointer
to a file named dataConfiguration.config. This is the file that will be read by the block at
runtime.

Here’s the (slightly abbreviated) configuration file that will be used by the block:

<?xml version="1.0" encoding="utf-8"?>
<dataConfiguration>
<xmlSerializerSection type="...">
<enterpriseLibrary.databaseSettings

defaultInstance="PubsDatabase" ...>
<databaseTypes>
<databaseType name="Oracle" type="..." />
<databaseType name="Sql Server" type="..." />

</databaseTypes>
<instances>
<instance name="PubsDatabase" type="Sql Server"

connectionString="pubs" />
</instances>
<connectionStrings>
<connectionString name="pubs">
<parameters>
<parameter name="database" value="pubs"

isSensitive="false" />
<parameter name="Integrated Security" value="false"

isSensitive="false" />
<parameter name="pwd" value="123123"

isSensitive="true" />
<parameter name="uid" value="sa"

isSensitive="false" />
<parameter name="server" value="localhost"

isSensitive="false" />
</parameters>

</connectionString>
<connectionString name="Sql Connection String">
<parameters>
<parameter name="database" value="database"

isSensitive="false" />
<parameter name="Integrated Security" value="True"

isSensitive="false" />
<parameter name="server" value="server"

isSensitive="false" />
</parameters>

</connectionString>
</connectionStrings>

</enterpriseLibrary.databaseSettings>
</xmlSerializerSection>

</dataConfiguration>

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 401

522xCH11.qxd 8/31/05 3:39 PM Page 401

The ellipses all indicate omission of a full assembly name or a namespace. The important
bits are retained. You can see from this configuration that a database named PubsDatabase is
now mapped to a connection string to that database. You can create an instance of a database
object that represents this connection with a single line of code.

Database db = DatabaseFactory.CreateDatabase("PubsDatabase");

Also, because the PubsDatabase is set as the default instance, you can simply create it with:

Database db = DatabaseFactory.CreateDatabase();

Naming the instance is only necessary when you’re using more than one database from
an application. You can still use a default in that case, but you’ll be better off naming all
instances explicitly to clarify the code and ease maintenance.

Now that you have an instance to a Database object, the rest of the work is done with its
instance methods.

All of the code that follows requires a reference to the assembly named
Microsoft.Practices.EnterpriseLibrary.Data.dll and the following using statement.

using Microsoft.Practices.EnterpriseLibrary.Data;

Data Access Methods
There are several scenarios this block specifically sets out to simplify (see Table 11-6). These
data access methods require many lines of code when you’re using a Managed Provider
directly, but only a few when you’re using the helper methods exposed by the block.

Table 11-6. Different Data Access Scenarios the Data Access Application Block Assists With

Data Access Scenario Meaning in Life

Returning multiple rows A couple of methods geared towards helping with a command
that prepares and returns tabular data exist. Results can be
returned with a data reader or a data set. Simple queries can be
executed, and results returned, with two lines of code.

Executing commands that A number of commands to send to a database that do not return
do not return result sets a result set exist. Helper methods simplify several of these. You

may be doing inserts, updates, and deletes; doing work within a
transaction; or may expect output parameters or a single value.

Sending Dataset updates After changes are applied in memory to data tables in a Dataset,
back to the database the time comes to ship these back. The block can do this without

a data adapter.

Getting XML data The block will automatically transform result sets into XML.

These scenarios are all exposed via methods on the Database object. The snippet that fol-
lows connects to the pubs database (described as the default in the configuration file) and
binds it to an instance of the GridView control:

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES402

522xCH11.qxd 8/31/05 3:39 PM Page 402

protected void Page_Load(object sender, EventArgs e)
{

Database db = DatabaseFactory.CreateDatabase();

GridView1.DataSource = db.ExecuteReader(CommandType.Text,
"select * from authors");

GridView1.DataBind();
}

You could do this just as easily by caching a DataSet:

void Page_Load(object sender, EventArgs e)
{

GridView1.DataSource = GetAuthors();
GridView1.DataBind();

}

private DataSet GetAuthors()
{

DataSet ds;

ds = (DataSet)Cache["Authors"];

if (ds == null)
{

Database db = DatabaseFactory.CreateDatabase();

ds = db.ExecuteDataSet(CommandType.Text,
"select * from authors");

Cache.Insert("Authors", ds);
}
return ds;

}

In both of these cases, the amount of code is reduced compared to what you’d need if you
used a Managed Provider directly. Changes to the configuration file can switch the type of
database in use. And the connection lifetime is managed by the block, creating consistently
in your application’s data access code.

Regardless of the data access method needed for a given result set, the block standardizes
the code and the process that will be used to acquire resources, execute commands, and
release those resources.

Dynamic SQL generation works fine for limited scenarios. Typically statements are more
complex, or data access is being done with stored procedures, which usually require para-
meters. When parameters are in use, whether they’re built into a dynamic SQL statement,
or they’re input or output parameters to a stored procedure, it is time to use a command
wrapper.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 403

522xCH11.qxd 8/31/05 3:39 PM Page 403

The Command Wrapper Object
The command wrapper is a helper type for a Command object in a Managed Provider. It’s created
for you by a database object and automatically populates several properties of the wrapped
Command. There are two main factory methods for retrieving an instance of a command wrap-
per (see Table 11-7).

Table 11-7. Factory Methods for Command Wrapper Objects

Factory Method Meaning in Life

GetStringCommandWrapper Creates a wrapper configured for CommandType of Text.

GetStoredProcCommandWrapper Creates a wrapper configured for stored procedure execution.

Once returned, the wrapper exposes AddXYZParameter methods to define the parameters
using simple names, types, and values. Consider this stored procedure again. (Recall that we
used it in Chapter 10 to demonstrate calling a stored procedure with Managed Provider code.)

create procedure usp_GetPubDetails
@pub_id char(4),
@pub_name varchar(40) OUTPUT,
@city varchar(20) OUTPUT,
@state char(2) OUTPUT,
@country varchar(30) OUTPUT
as
SELECT
@pub_name = pub_name,
@city = city,
@state = state,
@country = country
FROM publishers
WHERE (pub_id = @pub_id)

The command wrapper code to execute this stored procedure is much simpler than in the
Managed Provider code:

private PublisherBO GetPublisher(string PubID)
{

PublisherBO boReturn = new PublisherBO();

Database db = DatabaseFactory.CreateDatabase();

DBCommandWrapper cw =
db.GetStoredProcCommandWrapper("usp_GetPubDetails");

cw.AddInParameter("@pub_id", DbType.String, PubID);
cw.AddOutParameter("@pub_name", DbType.String, 40);
cw.AddOutParameter("@city", DbType.String, 20);
cw.AddOutParameter("@state", DbType.String, 2);
cw.AddOutParameter("@country", DbType.String, 30);

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES404

522xCH11.qxd 8/31/05 3:39 PM Page 404

db.ExecuteNonQuery(cw);

boReturn.PubID = PubID;
boReturn.Name = cw.GetParameterValue("@pub_name").ToString();
boReturn.City = cw.GetParameterValue("@city").ToString();
boReturn.State = cw.GetParameterValue("@state").ToString();
boReturn.Country = cw.GetParameterValue("@country").ToString();

return boReturn;
}

While using the Database and command wrapper objects largely replaces constructor
semantics of managed code with factory method calls, this example really shows how the
amount of code is reduced, as it has a single line of code to deal with each property value in
use at the business object layer. The structure of the code is much simpler than the construc-
tor and indexing code the Managed Provider requires.

Parameters and the Parameter Cache
There is another option that’s even simpler. The GetXYZCommandWrapper methods have another
overloaded method signature that accepts a parameter array as a second parameter. This
parameter array will accept all the values for the procedure’s input parameters.

The command wrapper factory then makes a request to the database for the schema
definition of the procedure being executed. Using this information, it generates the set of
parameters the procedure expects. Our last example could use this technique with the
following code:

private PublisherBO GetPublisherParamCache(string PubID)
{

PublisherBO boReturn = new PublisherBO();

Database db = DatabaseFactory.CreateDatabase();

DBCommandWrapper cw =
db.GetStoredProcCommandWrapper("usp_GetPubDetails", PubID);

db.ExecuteNonQuery(cw);

boReturn.PubID = PubID;
boReturn.Name = cw.GetParameterValue("@pub_name").ToString();
boReturn.City = cw.GetParameterValue("@city").ToString();
boReturn.State = cw.GetParameterValue("@state").ToString();
boReturn.Country = cw.GetParameterValue("@country").ToString();

return boReturn;
}

Here you’ve replaced all of the calls to create parameters and simply added the PubID as a
second argument passed to the factory method. Notice that even though you haven’t explicitly

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 405

522xCH11.qxd 8/31/05 3:39 PM Page 405

created them, the factory still creates all of the output parameters, which you use after execut-
ing the command. This simplifies your code, but comes at the cost of an extra round trip to the
database to query the schema so the factory knows what parameters to create.

To compensate for this, the block uses a cache to keep the definition of the parameters
present in memory after the initial round trip to retrieve the metadata. This means the penalty
for the extra round trip is only incurred on the first request; subsequent requests will retrieve
the parameters from the cache. This yields better performance for subsequent requests (after
the first) than the previous example, which has to re-create all of the parameter objects with
each request.

Ideally, you could create the parameters yourself on the first request (avoiding the extra
round trip) and then cache the definition yourself for use on subsequent requests (avoiding
the overhead of re-instantiating the collection of parameter objects with each request). Unfor-
tunately, the parameter cache is not publicly exposed by the data access block, and so this
would be a manual coding effort.

The parameter cache method is still good for late binding type of operations, where you
don’t know the footprint of the procedure you’re calling in advance and therefore cannot pos-
sibly write code to create the parameter collection. In this situation, consumers of your data
access layer could simply pass a list of values, and you would pass that list along to the com-
mand wrapper factory, and the appropriate parameter collection would be created using
metadata.

public DataSet ExecuteProcedure(string ProcedureCall)
{

Database db = DatabaseFactory.CreateDatabase();
string SprocName;
string ParamList;

int iPos = ProcedureCall.IndexOf(" ");

SprocName = ProcedureCall.Substring(0, iPos);
ParamList = ProcedureCall.Substring(iPos + 1).Replace(" ", "");

DBCommandWrapper cw =
db.GetStoredProcCommandWrapper
(SprocName, ParamList.Split(",".ToCharArray()));

return db.ExecuteDataSet(cw);
}

Now stored procedures can be executed like the slackers used to do it with ADO!

void Page_Load(object sender, EventArgs e)
{

GridView gv = new GridView();

gv.DataSource =
ExecuteProcedure("usp_SortAuthors au_fname");

gv.DataBind();
this.form1.Controls.Add(gv);

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES406

522xCH11.qxd 8/31/05 3:39 PM Page 406

gv = new GridView();
gv.DataSource =

ExecuteProcedure("AuthorTitleSales 500, 213-46-8915")
gv.DataBind();
this.form1.Controls.Add(gv);

}

This code executes these commands by passing a string naming the stored procedure
first, and then white space separating parameter values. The consumers of this service do not
need to be concerned with parameter names or types. You’d need more robust code to support
parameter values containing spaces, and would need to add logic to parse the command text
out to find values delimited with quotes or tics.

Keep in mind that there are trade-offs to this approach, and this will definitely not be the
right method for any application. The round trip for parameter type discovery incurred on the
first request is nontrivial, and there’s not a lot of type safety built into this infrastructure. On
the plus, side, it’s extremely flexible and easy to use.

Using the Data Access Block for Transaction Management
Invariably, work must be done transactionally. You have many ways to do many types of
transactions. We limit our discussion here to what you can accomplish with the Data Access
Application Block, which is a transaction on a single connection to a single data store. The
block leverages the transaction capabilities built into the Managed Providers.

The transaction model in the block is very simple. Many of the ExecuteXYZ methods
you’ve already examined have a different overloaded method footprint that accepts an
instance of an IDBTransaction instance. When this is present, the work is done in a transac-
tion. This interface exposes the Commit and Rollback methods, which determine the fate of the
work that’s been done in the transaction. Transactions are created by another factory method
of the Database object. Let’s have a look.

Here you’ll increase royalty paid to authors from the pubs database by 10 percent (a very
fine idea indeed). First you’ll update the royalty schedule. You’ll then need to cascade this
update to the titles table, where royalty (in a gross denormalization of the pubs schema) is
carried as well. If this cascade update fails, you’ll need to roll back the initial update of the
royalty amounts.

private void UpdateRoyalties()
{

Database db = DatabaseFactory.CreateDatabase();
IDbConnection cn = db.GetConnection();

string sql1 = "update roysched set royalty = royalty * 1.1";
string sql2 = "update titles set titles.royalty = roysched.royalty " +

"FROM roysched INNER JOIN " +
"titles ON roysched.title_id = titles.title_id";

DBCommandWrapper cwRoyal = db.GetSqlStringCommandWrapper(sql1);
DBCommandWrapper cwTitle = db.GetSqlStringCommandWrapper(sql2);

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 407

522xCH11.qxd 8/31/05 3:39 PM Page 407

IDbTransaction xaction = null;
try
{

cn.Open();
xaction = cn.BeginTransaction();
db.ExecuteNonQuery(cwRoyal, xaction);
db.ExecuteNonQuery(cwTitle, xaction);
xaction.Commit();

}
catch
{

if (xaction != null) xaction.Rollback();
}
finally
{

cn.Close();
}

}

As you can see from the code, the Managed Provider transaction model has an extremely
thin wrapper provided by the block. The preceding example takes control of the connection
lifetime from the Database object. This works much the same way the DataAdapter.Fill
method does. If the transaction is open when the Execute method is called, the Database
object will use it and leave it open; otherwise, it opens, executes, and closes the connection.

This method of transaction management will work only when all work is being done on a
single connection. For transactions that span databases or data providers, Microsoft Distrib-
uted Transaction Coordinator (MSDTC) must be enrolled via COM+.

For more information on transactions, see Chapter 7 for a discussion of distributed trans-
actions, and Chapter 12 for an examination of the in-memory transaction model available in
the .NET Framework 2.0 that automatically enrolls the resource managers needed as the
scope of a transaction increases.

A Developer’s Survey of SQL Server 2005
Traditionally, an ASP.NET developer’s concern regarding the application architecture ends at
the database. Sure, you may need to decide between using stored procedures or queries, or
you may need to work with the data administrator to define the data schemas, but the brunt
of the design and the implementation is normally passed to those who live and breathe tables,
views, stored procedures, triggers, and Transact-SQL (T-SQL).

With the introduction of SQL Server 2005, however, come several new features that blur
the sharp line between application and database concerns. Most notably, SQL Server 2005
provides a feature called Common Language Runtime (CLR) integration, which allows man-
aged code to execute within the SQL Server 2005 process and interact directly with the data.
Other new features of particular interest to application developers include Service Broker and
XML as a native type. Although a detailed drill down of each of the features is beyond the
scope of this book, this section provides an overview of each with the information you need
to correctly position and leverage them in your architecture.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES408

522xCH11.qxd 8/31/05 3:39 PM Page 408

CLR Integration in SQL Server 2005
Perhaps the most anticipated new SQL Server 2005 feature (at least from a developer’s per-
spective) is dubbed CLR Integration, and enables managed code to execute within the SQL
Server 2005 process and interact directly with the data. This means that you can write stored
procedures and user-defined functions using any .NET language while leveraging the rich set
of functionality provided by the .NET Framework classes. You can even extend the SQL Server
type system by creating your own custom data types.

But don’t throw out all your T-SQL books yet! It turns out that CLR Integration is intended
to complement traditional database development rather than replace it. So the real question
regarding CLR Integration is when do you use it versus traditional database techniques such
as T-SQL stored procedures? To help you answer this question, in this section, we’ll go over the
nature and capabilities of CLR integration and compare them with conventional database
approaches.

Comparing Managed Code and Transact-SQL
Traditionally, SQL Server database development is done in Transact-SQL (T-SQL). This lan-
guage is designed to make it easy to write database queries such as selects, inserts, deletes,
and updates. In fact, such queries in T-SQL are syntactically similar to everyday English. Fur-
thermore, T-SQL has many built-in functions that perform calculations on a particular
column of a table for a set of selected rows. For example, this T-SQL query averages the unit
price of all products in each category.

SELECT Categories.CategoryName, AVG(Products.UnitPrice)
FROM Products INNER JOIN Categories
ON Products.CategoryID = Categories.CategoryID
GROUP BY Categories.CategoryName

This demonstrates the power of T-SQL. In one statement, this code joins the Products
and Categories tables by their respective CategoryID columns, computes the average Unit-
Price for all products in each category, and then returns the calculated average UnitPrice for
each category. That is quite a bit of work from one (albeit long) statement. Overall, this code
demonstrates the effectiveness of T-SQL’s set-oriented capabilities, which enable you to
quickly and easily work with, filter, relate, and perform calculations on sets of data. Indeed,
T-SQL excels at processing sets of data, which is not surprising given the fact that it is, after
all, a database language.

T-SQL also has many language constructs that are similar to those of a typical procedural
programming language. These include WHILE loops, variable declaration and assignment,
cursors, decision branching (IF/ELSE, CASE), etc. However, although T-SQL excels at set-
oriented processing, its procedural capabilities pale in comparison to most general purpose
languages, particularly .NET languages such as C# or VB .NET. Furthermore, since T-SQL is an
interpreted language, the execution of procedural logic is much slower than the execution of
equivalent logic in a compiled language, such as C++, or even in a just-in-time (JIT) compiled
language, such as any of those found in .NET. For these reasons, database programmers have
always strived to fully leverage the set-oriented features of T-SQL, while resorting to its proce-
dural constructs only when necessary.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 409

522xCH11.qxd 8/31/05 3:39 PM Page 409

In many cases, the required procedural logic isn’t implemented within the database at all.
Instead, it is placed within a .NET middle-tier component. This approach frees the SQL Server
process to concentrate on what it does best: process sets of data. It also enables the .NET
developer to leverage the rich procedural and object-oriented features of any managed .NET
language and the full set of functionality provided by the .NET Framework classes. The down-
side to this approach, however, is that it results in more data marshaling costs as the data must
be moved out of the SQL Server process and into the middle-tier component and vice versa.

Understanding the Role of CLR Integration
Before CLR Integration, the state of database programming was less than ideal. T-SQL works
great for set-oriented tasks, but it is difficult to work with and slow for procedural tasks. .NET
languages can provide the necessary procedural logic, but only at the expense of marshaling
the data in and out of the SQL Server database.

CLR Integration provides an elegant solution to this problem. SQL Server 2005 can host
the CLR and, therefore, can execute managed code in process. This provides the following
benefits:

• Instead of struggling with the limited procedural constructs of T-SQL, database devel-
opers can take advantage of all the capabilities of a managed .NET language such as C#
or VB .NET. These languages provide modern procedural and object-oriented features,
making it much easier to develop and reuse complex procedural logic. The JIT compila-
tion scheme these languages employ also performs much better than T-SQL
interpretation.

• When writing database code in a managed language, you can access all the functional-
ity of the .NET Framework. The Framework contains thousands of useful classes, many
of which provide functionality that’s missing from and difficult to implement in T-SQL.
For example, the Framework provides rich string handling, regular expressions, cryp-
tography, XML processing, image manipulation, file access, and much, much more.

• Since the managed code executes within the SQL Server process, there is no need to
marshal data across process. Therefore, this is more efficient than using middle-tier
components to implement the procedural logic. In fact, SQL Server 2005 has a new
server-side ADO.NET data provider that enables you to use standard ADO.NET calls
to access the data. In this way, you get the performance benefits of direct data access
while using a familiar programming model.

Remember, despite all these advantages, T-SQL remains the preferred mechanism for
implementing set-oriented logic. CLR Integration, on the other hand, provides a better
approach to implementing tasks that require complex procedural logic or tasks that would
benefit from the functionality found in the .NET Framework classes.

Choosing Between CLR Integration and Middle-Tier Components
As noted earlier, a common approach to implementing data-oriented procedural logic is to
place it in middle-tier .NET components. Although this incurs the cost of data marshaling, it
remains a viable option, even with the advent of SQL Server 2005 and CLR Integration.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES410

522xCH11.qxd 8/31/05 3:39 PM Page 410

The database server is typically the most heavily taxed server in the enterprise. So,
although the marshaling of data causes overhead, it also unloads the procedural processing
from the database server, thus freeing precious CPU resources to do other tasks. Understand-
ing this tradeoff is key to making the right decision about where to execute the logic. Here are
a few other factors that can influence the ultimate placement of any procedural logic:

• The procedural logic may already be contained within the database as a stored proce-
dure. In this case, it’s generally appropriate to take advantage of CLR Integration and
port the logic to a managed language.

• The procedural logic may represent business logic that you wish to share with other
applications. This is typically easier to do if the logic is in the middle tier.

• The procedural logic may represent business logic that requires data from other exter-
nal data sources. Obviously, this is much easier if the code is in the middle tier and can
use ADO.NET to access a variety of data sources.

• Related to the previous case, you may wish to allow an easy transition to another data-
base server in the future. Clearly, having a significant amount of logic contained within
a SQL Server 2005 database complicates any transition to another type of database.
Again, in this scenario, placing the code in middle tier components is the better option.

As the preceding points show, SQL Server 2005’s CLR Integration feature does not render
middle-tier components obsolete. This question, though, of where best to place data-oriented
procedural logic is not new; it is simply a continuation of the age-old debate between T-SQL
stored procedures and middle-tier business objects. In other words, the issues and concerns
that affect your choice between CLR Integration and the middle tier are essentially the same
as those that affect your choice between T-SQL stored procedures and the middle tier. The pri-
mary difference when you’re considering CLR Integration versus the middle tier is that you no
longer need to factor the awkwardness, difficulty, and performance concerns of expressing the
procedural logic in T-SQL. So, generally speaking, if you would otherwise feel comfortable
implementing the logic in a T-SQL stored procedure, then using CLR integration and a man-
aged language is an appropriate solution.

Surveying the CLR Integration Features
Now that we’ve established the role of CLR Integration, its time to look at the specific types of
managed database items this new feature supports. CLR Integration provides five different
types of managed database items:

• Managed stored procedures: The classic stored procedure in a managed language.

• User-defined functions (UDFs): Return single scalar values and are generally called from
queries.

• Table-valued functions (TVFs): Like user-defined functions, but can return a result set.

• User-defined aggregates (UDAs): Enable you to define your own custom aggregate func-
tion that behaves like SUM, AVG, MAX and other built-in functions.

• User-defined types (UDTs): Enable you to extend the SQL Server type system with your
own custom type.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 411

522xCH11.qxd 8/31/05 3:39 PM Page 411

In the rest of this section, we discuss each of these options in more detail and provide
guidance on how to choose the best option for a particular task.

■Note The examples provided in this section use the AdventureWorks sample database, which is available
only as a separate download and install from SQL Server 2005 and SQL Server 2005 Express.

Managed Stored Procedures

A good way to introduce CLR Integration is to start by looking at the stored procedure func-
tionality. With this feature, you can write a stored procedure using any .NET language. Once
the stored procedure is completed and deployed to the database, you can invoke it like any
standard T-SQL stored procedure.

The code within a managed stored procedure looks similar to any other code written in
C# or VB .NET. The main difference, however, is that the logic must somehow access the inter-
nal database data and also must return result sets back to the caller. To facilitate this, SQL
Server 2005 provides several interesting features.

• In-proc ADO.NET: This is a term used to describe the technology used to access SQL
Server 2005 data from managed code running inside the database process. This tech-
nology provides data access through standard ADO.NET API calls. In other words, it
contains classes like SqlCommand and SqlDataReader that you can use to query the data-
base and read the results.

• SqlPipe: This class enables you to return the results of the stored procedure back to the
caller.

• SqlContext: This class provides access to the current SQL context. Most notably, it con-
tains a Pipe property that returns a SqlPipe object that you can use to return the results
of a query to the caller.

For example, the following code defines a stored procedure that returns the title, first, and
last name of every row in a Contacts table.

public partial class StoredProcedures
{

[SqlProcedure()]
public static void GetContactFullName()
{

// Note the connection string for an in-proc connection
using (SqlConnection cnn = new SqlConnection("context connection=true"))
using (SqlCommand cmd = new SqlCommand(

"Select Title, FirstName, LastName From Person.Contact", cnn))
{

cnn.Open();
SqlCommand cmd = new SqlCommand(

"Select Title, FirstName, LastName From Person.Contact", cnn);

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES412

522xCH11.qxd 8/31/05 3:39 PM Page 412

SqlContext.Pipe.ExecuteAndSend(cmd);
}

}
};

In this example, you create the SqlConnection and SqlCommand much like you normally would.
However, note the connection string passed to the SqlConnection constructor. Since this code
is running within the SQL Server process, you simply use the "context connection=true"
setting to connect to that SQL Server instance. Once the connection and command are estab-
lished, the code uses the SqlPipe.ExecuteAndSend() to execute the command and return the
results to the caller.

■Note By default, SQL Server 2005 installs with CLR Integration disabled. To try out these examples, you’ll
need to explicitly enable CLR Integration by executing the query sp_configure 'clr enabled', 1.

This last code example is actually a little more complicated than it needs to be. If you
don’t explicitly provide a connection object in the SqlCommand constructor, it will use the con-
text connection by default. Therefore, you could rewrite this managed stored procedure as:

[SqlProcedure()]
public static void GetContactFullName()
{

// Look Ma - no connection!
using (SqlCommand cmd = new SqlCommand

("Select Title, FirstName, LastName From Person.Contact"))
{

SqlContext.Pipe.ExecuteAndSend(cmd);
}

}

Either way, once this stored procedure is deployed to a SQL Server 2005, you can call it
like any other stored procedure. For example, you can call it using a T-SQL query:

exec GetContactSalutations

Or using ADO.NET in a managed language:

using (SqlConnection cnn = new SqlConnection(expressConnect))
{

cnn.Open();
SqlCommand cmd = new SqlCommand("GetContactSalutations", cnn);
cmd.CommandType = CommandType.StoredProcedure;
SqlDataReader reader = cmd.ExecuteReader();

// Loop through the reader ...
}

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 413

522xCH11.qxd 8/31/05 3:39 PM Page 413

Managed stored procedures are most useful when you need to retrieve a set of data,
process each row (the procedural logic), and return the results. You can also use a managed
stored procedure to encapsulate database update logic. In either case, remember that if there
is little or no procedural logic to perform, then a T-SQL stored procedure will generally be eas-
ier to write and faster to execute. The sample stored procedure code, for example, can easily
be expressed as a T-SQL stored procedure and, therefore, isn’t a good example of a case where
you should use a managed procedure.

User-Defined Functions and Table-Valued Functions

After managed stored procedures, the next logical place to apply CLR Integration is when cre-
ating managed user-defined functions (UDFs). A UDF is similar to a stored procedure in that
it enables you to encapsulate data-oriented logic. However, there are a number of important
differences.

• A UDF can only read data. Updates of any kind are not allowed.

• A UDF can return only a scalar value.

• A UDF can be invoked from nearly anywhere within a T-SQL query.

The last point highlights the primary reason why you might choose a UDF over a stored
procedure. A stored procedure works best as a monolithic, atomic module that encapsulates
all the data interaction required for a given request. In fact, a stored procedure is somewhat
analogous to a service interface, in that a stored procedure typically sits at the data layer
boundary and serves as the interface between the data tier and the middle tier.

On the other hand, UDFs are more analogous to components, in that they are intended to
implement small, but useful, tasks that can be reused within queries as a part of a larger task.
For example, the following code defines a simple managed UDF that returns a single full name
from a given title, first name, middle name, and last name.

[SqlFunction()]
public static SqlString GetFullName(SqlString title, SqlString first,

SqlString middle, SqlString last)
{

StringBuilder fullName = new StringBuilder();
if (!title.IsNull)
{

fullName.AppendFormat("{0} ", title);
}
fullName.AppendFormat("{0} ", first);
if (!middle.IsNull)
{

fullName.AppendFormat("{0} ", middle);
}
fullName.Append(last);
return fullName.ToString();

}

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES414

522xCH11.qxd 8/31/05 3:39 PM Page 414

Now this UDF can be used within a T-SQL query in a variety of ways. For example, the fol-
lowing query displays the full names of each row in the Contact table:

SELECT dbo.GetFullName(Title, FirstName, MiddleName, LastName) As FullName
FROM Person.Contact

One of the disadvantages of a UDF is that it can return only a single scalar value. However,
you can create another type of function, called a table-valued function (TVF) that returns a
result set. Again, this is similar to the functionality of a stored procedure except that a TVF can
be used within a query. Specifically, TVFs are typically found in the FROM clause of a SELECT
query.

User-Defined Aggregates

For years, database developers have requested the ability to extend the set of built-in func-
tions like COUNT, SUM, AVG, etc. with their own custom functions. Finally, you can now do
exactly that by implementing a user-defined aggregate (UDA). UDAs are similar to UDFs,
except that they are designed to compute a single value by operating on a given column over
a set of rows.

Typically, you can also implement UDA functionality as a stored procedure or a UDF. The
benefit of the UDA approach, however, is that you can use it in your queries like any of the
built in aggregate functions. It will also perform better in most cases.

User-Defined Types

SQL Server 2005’s new user-defined type (UDT) feature enables you to extend the SQL Server
type system with your own custom scalar types. You simply define a custom type as a man-
aged class and encapsulate all required data and behaviors within that class. Once the type
is completed and deployed, you can use it just like any other SQL Server data type to define
columns, declare variables, etc.

It is important to note, however, that this feature is not intended as a mechanism to turn
SQL Server into an object-oriented database. This feature is meant for small and simple types
only. If you attempt to use more complex types, you will soon run into the 8KB column size
limit or various indexing restrictions. Therefore, complex business objects such as Customer,
Product, Order, etc. are poor candidates for UDTs. On the other hand, a good example of
where a UDT might be useful is if you have tables that use a custom date structure. With a
UDT, you can encapsulate that custom date structure and its behaviors into a custom type.

SQL Server 2005 Service Broker
Service Broker is an enterprise-ready message queuing infrastructure that is fully integrated
with the SQL Server 2005 data engine. This presents a radically different approach from the
norm where products such as Message Queuing (MSMQ) provide this capability. In turn, this
inevitably fosters many good questions: Why do you need messaging in the database? What
are the scenarios where you would use this? How is this different from MSMQ? How do you
choose between Service Broker and other messaging technologies such as MSMQ, Web Ser-
vices, and BizTalk?

In this section, we address these questions, but let’s begin by answering a more funda-
mental question. . .

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 415

522xCH11.qxd 8/31/05 3:39 PM Page 415

Why Message Queuing?
Message queuing has long been a staple of highly scalable and robust systems. It is particu-
larly useful for systems that must integrate disparate applications running on many different
platforms, but its flexibility makes it an appealing solution for a wide variety of system scenar-
ios where tasks must be executed asynchronously, correctly, and robustly.

So why aren’t all distributed architectures based on messaging? Because building a mes-
saging infrastructure with enterprise-level features is not a trivial task. In fact, it’s plain hard.
Messaging products such as MSMQ alleviate the implementation pain, but bring additional
costs in terms of administration idiosyncrasies and mastering yet another fairly complex API.
For many developers and architects building a small- to medium-sized system, these costs
discourage the use of MSMQ and, thus, messaging in general (see Chapter 8 for a discussion
and examples of MSMQ).

On the other hand, the industry is clearly shifting away from the Remote Procedure Call
(RPC) and distributed object mindset in favor of messaging. A number of new and forthcom-
ing technologies are enabling this shift by making message-based implementations more
palatable in more scenarios. Web Services, BizTalk, and Windows Communication Foundation
all treat a message as a first-class citizen rather than a network protocol detail to be abstracted
into a method call. And now you can also add SQL Server 2005’s new Service Broker feature to
this ever-growing list of messaging tools.

Service Broker’s Place in the Messaging World
Given the messaging capabilities of existing technologies, a common question surrounding
Service Broker is what advantages it has, if any, over traditional messaging implementations
such as MSMQ and BizTalk. Fundamentally, the primary difference between Service Broker
and most other messaging technologies is its tight integration with a database engine. This
provides a number of important benefits.

• Unified programming model: Service Broker adds message-related objects, such as
message, queue, and service, to the standard set of database objects (table, stored pro-
cedure, trigger, etc.). It also enhances the T-SQL with the capability to read queues,
write queues, and send messages to other Service Broker services. The result is a mes-
sage programming model that is immediately familiar to database administrators and
developers with T-SQL experience.

• Improved transactional messaging support: Many messaging scenarios call for a client
application to perform a transactional read on a message queue. Unfortunately, several
messaging infrastructures only support transactional reads on queues that are local to
the receiving application. However, Service Broker allows any client, be it local or
remote, to perform transactional reads. It also does not need to use expensive two-
phase commit protocols to implement transactional messaging.

• Integrated management and operations: An organization’s collected data is priceless, so
it is usually protected with automated backup procedures and clustered hardware that
ensures availability through failover. Since it’s part of SQL Server 2005, the Service Bro-
ker message infrastructure automatically reaps these benefits.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES416

522xCH11.qxd 8/31/05 3:39 PM Page 416

Of course, Service Broker is not a messaging panacea. This tight integration with SQL
Server 2005 comes at a steep price: Service Broker can only exchange messages with other Ser-
vice Brokers (running in SQL Server 2005, of course). In contrast, MSMQ can send messages to
any Windows machine running MSMQ and even some mainframes with the proper bridging
software. And BizTalk, with its flexible adapter mechanism, can accept messages from just
about anyone and send messages just about anywhere. Keep in mind, however, that even a
single instance of SQL Server 2005 can make good use of Service Broker internally to provide
reliable asynchronous interaction between it and the applications using the data—all without
resorting to a general-purpose messaging technology like MSMQ. In fact, this may well
describe the most common usage scenario.

Native XML Support
Another critical feature in SQL Server 2005 is the capability to store XML documents and frag-
ments as a native type. In other words, XML joins the other common SQL Server types like int,
varchar, money, etc. At first glance, this may seem like a minor upgrade. However, this funda-
mental feature provides an exceptional level of database engine integration and, in the
process, opens a new world of possibilities by leveraging the best of the relational and XML
data models.

Mixing XML and Relational Data
From the early days of XML, developers have tried to map data stored in XML documents to
relational data structures. The subtle but fundamental differences between the two data mod-
els, however, create an impedance mismatch that is trumped only by the object/relational
mismatch. Attempts to marry the two models fall into one of the following techniques.

• Storing as a varchar: In this case, the entire XML document is simply copied whole into
a varchar typed column. However, from the database perspective, this varchar is noth-
ing more than a blob of unstructured data, which means it can’t be indexed nor can you
query for individual pieces of information within the XML.

• XML decomposition: This approach, sometimes referred to as shredding, entails
decomposing the XML document into one or usually more database tables. Although
this technique is most faithful to the relational model, some of the XML goodness is
stripped away in the process. Namely, XML document order is not preserved, which is
extremely important in cases where the XML truly represents a document rather than a
collection of data.

• Partial decomposition: This approach is a combination of the first two. It involves stor-
ing the entire XML document in a large varchar column and also copying some of the
data from the XML into relational tables. This provides indexing and querying abilities
on the extracted data plus preserves the document order in the original XML. However,
choosing which part of the XML to decompose can be a difficult decision that requires
a large amount of foresight. Who knows how future applications may need to use and
query the data?

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 417

522xCH11.qxd 8/31/05 3:39 PM Page 417

Clearly, none of the earlier solutions are ideal. What you need is a way to store XML data
in its native form while also providing indexing and querying capabilities on any part of the
data. This is exactly what SQL Server 2005 provides with the new XML native type and an inte-
grated XML query language called XQuery.

Using the XML Type
Since XML is a native type like int, varchar, etc., adding an XML column to a table is the same
as adding any other type of column. For example, the following script creates a table with an
XML column:

CREATE TABLE Customer(
CustomerId int NOT NULL,
CustomerData xml NOT NULL,

)

This script creates a Customer table with two fields: CustomerId and CustomerData. Notice
that CustomerData is typed as an XML column.

You can also define XML typed parameters in stored procedures. Again, as the following
example shows, simply define it like any other type of parameter:

CREATE PROCEDURE SaveCustomer(
@CustData xml

)
AS
--- stored proc code ...
GO

Untyped XML vs. Typed XML

The XML column created in the previous example is referred to as an untyped XML column
because you did not associate an XML Schema. An untyped XML column can hold any well-
formed XML document or fragment. This is useful if the column must accept several different
types of XML documents or you do not have prior knowledge of the schema. SQL Server
checks for well formedness before accepting XML into an untyped XML column, but it cannot
validate the XML without an associated schema.

Although untyped XML columns are flexible, if possible, you should define a typed XML
column by associating an XML Schema. This enables SQL Server to perform validation and
optimize storage and queries. The following CREATE script demonstrates how to define a
typed XML column:

CREATE TABLE Customer(
CustomerID int,
CustomerData xml (CustomerSchemaCollection)

)

As this example shows, you specify the schema information after the xml type keyword. SQL
Server 2005 uses schema collections to contain and manage sets of related schemas. So for
this to work, you must first define the customer schema and import the schema into
CustomerSchemaCollection. The following example demonstrates this:

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES418

522xCH11.qxd 8/31/05 3:39 PM Page 418

CREATE XML SCHEMA COLLECTION CustomerSchemaCollection AS
N'<?xml version="1.0" encoding="utf-16"?>

<!-- Put your schema here! -->
</xs:schema>';

Content vs. Document Storage

Typed XML columns come in two varieties: content and document. Surprisingly, the default
is content, which means that a column can store XML with multiple top-level elements. To
explicitly define content storage, specify it when declaring the XML column:

CREATE TABLE Customer(
CustomerID int,
CustomerData xml (CONTENT CustomerSchemaCollection)

)

Alternatively, you can constrain the XML column to accept only XML documents that have
a single top-level element. You do this using the DOCUMENT keyword, as we shown in the
following example:

CREATE TABLE Customer3(
CustomerID int,
CustomerData xml (DOCUMENT CustomerSchemaCollection)

)

XML Methods and the Role of XQuery
Much like an object, the XML data type exposes several methods you can use to query and
modify the XML data. These methods are listed in Table 11-8.

Table 11-8. XML Data Type Methods

Method Name Meaning in Life

query Executes a given XQuery expression on the contained XML and returns the
result as an instance of XML type.

value Executes a given XQuery expression on the contained XML and converts the
result to a given SQL type (such as int, varchar, etc.) The XQuery expression
must return a scalar value.

exists Executes a given XQuery expression on the contained XML and returns 1
(representing true) if the query finds at least one matching XML node.
Otherwise the method returns 0 (representing false).

modify Updates the contained XML according to the given XML Data Manipulation
Language (XML DML) expression.

nodes Executes the given XQuery expression on the contained XML and returns the
resulting nodes as a rowset. This is useful for shredding an XML document in
to relational tables.

As you study these methods, you see a common theme: They all rely on XQuery expres-
sions. XQuery is a relatively recent language created by the World Wide Web Consortium
(W3C) to provide an SQL-like query language for XML data. Therefore, it makes an ideal

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 419

522xCH11.qxd 8/31/05 3:39 PM Page 419

language for querying XML data in SQL Server 2005. XQuery alone, however, can only query
the data; it cannot modify it. So SQL Server 2005 also provides the XML Data Manipulation
Language (XML DML) that extends XQuery with the capability to insert, update, and delete.

Here’s an example of using the value method within a standard SELECT query to retrieve
just the first name from the CustomerData column.

Select
CustomerID,
CustomerData.value(

'declare namespace CUST="http://sql2005/Customer.xsd";
/CUST:Customer/CUST:FirstName', 'varchar(30)') As FirstName

From Customer3

Remember that the value method accepts two arguments: an XQuery expression and an SQL
data type. In this case, the XQuery expression is

declare namespace CUST="http://sql2005/Customer.xsd";
/CUST:Customer/CUST:FirstName

The first line of this expression establishes a namespace alias. The second, more interesting
line, is an XPath expression that retrieves the FirstName element node, which the value
method converts to a varchar(30) data type.

Full coverage of the XQuery language is well beyond the scope of this book. But remem-
ber, XQuery leans heavily on XPath, so past experience with XPath will drastically flatten the
XQuery learning curve. In fact, many enhancements in XPath 2.0 were driven by the needs of
the XQuery working group.

XML and ADO.NET 2.0
SQL Server 2005’s integrated support for XML is truly impressive. However, an application
developer’s primary concern is moving data to and from the database, not how well the data-
base handles XML. So all this XML integration means little if it doesn’t also simplify retrieving
XML data from the database into the application and saving XML data from the application to
the database.

Thanks to enhancements in ADO.NET 2.0, it is, indeed, the case that moving XML
data to and from the database is much easier. You’ll find the clue that this is true in the
System.Data.DbType and System.Data.SqlDbType enumerations, which both now include
an XML value. Furthermore, the System.Data.SqlTypes namespace contains a new SqlXml
class that is a client-side representation of XML typed database columns. The following
code shows these new features in action.

private static void SaveCustomerXml()
{

// Create an XmlReader using a customer data file
using (XmlReader custReader = new XmlTextReader(

"CustomerData.xml"))

// Create a connection to the database
using (SqlConnection cnn = new SqlConnection(cnnString))

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES420

522xCH11.qxd 8/31/05 3:39 PM Page 420

// Create a command to insert the customer XML in the database table
using (SqlCommand cmd = new SqlCommand(

"INSERT Customer(CustomerData) VALUES(@custData)",
cnn))

{
cnn.Open();

// Create an SqlXml instance and pass it as a parameter
SqlXml custXml = new SqlXml(custReader);
SqlParameter param = cmd.Parameters.Add("@custData", SqlDbType.Xml);
param.Value = custXml;

// Execute the query (inserts the Customer XML)
cmd.ExecuteNonQuery();

} // Dispose command, connection and XML reader
}

This example begins by creating an XmlReader to read the data from an external XML file
named CustomerData.xml. Then, after creating and opening a database connection, it creates
an SqlXml instance using the XmlReader. It then executes an INSERT command, passing the
SqlXml instance as a parameter to the SqlCommand object. As a result, the XML data is saved in
the CustomerData column of the Customer table.

Retrieving the XML data into your application is also straightforward. To handle this sce-
nario, the SqlDataReader class provides a new GetSqlXml method that returns the data at the
given column as a SqlXml instance. In addition, the SqlXml.CreateReader method creates and
returns an XmlReader instance that you can use to navigate the XML contents. The following
code demonstrates how to use these new methods to display the contents of an XML typed
column.

static void DisplayCustomerData()
{

using (SqlConnection cnn = new SqlConnection(cnnString))
using (SqlCommand cmd = new SqlCommand(

"SELECT * FROM Customer", cnn))
{

cnn.Open();

// Use the standard ExecuteReader method to retrieve data reader
SqlDataReader reader = cmd.ExecuteReader();

while(reader.Read())
{

// Use GetSqlXml to retrieve the CustomerData column as an
// SqlXml instance.
SqlXml customerXml = reader.GetSqlXml(1);

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES 421

522xCH11.qxd 8/31/05 3:39 PM Page 421

// Create and use an XML reader to navigate the customer data
XmlReader xmlReader = customerXml.CreateReader();
xmlReader.Read();
Console.WriteLine(xmlReader.ReadOuterXml());

}
}

}

This example leverages the SqlXml.CreateReader method to retrieve an XmlReader, which
is one of the common ways to read XML. In this particular case, however, it proves to be
overkill since the next two lines of code simply write the entire XML content as one large
string. You can achieve this more easily using the SqlXml.Value property, which returns the
XML content as a string.

In general, ADO.NET 2.0 provides many ways to navigate, convert, read, and write XML
data types. The overall combination of the ADO.NET SqlXml type, enhancements in the SQL
Server data provider, and the tight data engine integration provided by the SQL Server XML
data type promises to unify XML and relational data like never before. This, in turn, should
accelerate the adoption of XML as the most common mechanism to represent business ori-
ented data.

Summary
You have a lot of choices for putting a data access layer together. Some are useful in more
situations than others. Data source controls are useful in some circumstances, while the Data
Access Application Block is a likely boon to just about any application of decent size. Cache
dependencies are a very powerful facility that can be leveraged to super-charge performance
of applications in many situations that have historically been very difficult to address.

SQL Server 2005 introduces a new era in relational database technology by providing an
integrated asynchronous messaging system, hosting the CLR in the same process as the data-
base engine, and treating XML as a first class data type. Taken individually, these are powerful
new features. Taken together, however, these features elevate SQL Server 2005 from a database
to an application platform in its own right. Personally, we’re excited to see how innovative
developers will combine these features to elegantly address problems that have traditionally
been daunting.

CHAPTER 11 ■ DATA ACCESS LAYER SERVICES422

522xCH11.qxd 8/31/05 3:39 PM Page 422

Transactions

Virtually all business applications require some level of transaction support. You can largely
maintain data integrity in a static view using the rules of schema that a relational database
provides. In dynamic processes, however, a transaction can guarantee that all or none of the
changes applied during the process are persisted when the process is complete. ACID proper-
ties (atomicity, consistency, isolation, and durability) are the cornerstone of any transaction
infrastructure. In Chapter 7, you saw the attribute-based transactional behavior of Enterprise
Services provided by COM+. These transactions are specific to a database, and it’s common to
think of work done with a database whenever you’re considering transactions. Transactional
behavior can be supplied for any resource, however, be it an in-memory hash table, a file on
the disk, or an XML document. One of the design goals of the transactional engine built into
version 2.0 of the .NET Framework is to make creating these resource managers much easier
for any type of resource you want to participate in a transaction.

The problem with COM+ transactions is that they rely on the Distributed Transaction
Coordinator (DTC), which is a feature-rich transactional engine, but those features come at a
price. The DTC consumes a lot of resources and can introduce a performance penalty to your
application. This is fine when transactional work occurs across relational database systems,
but it can be a large price to pay if the transaction is isolated to a single database. For a single
database, you’re better off using T-SQL Transactions, or ADO.NET connection-based transac-
tions. Another benefit of the transactional system in COM+ is the capability to dynamically
compose transactions. An atomic method can be declared as requiring a transaction context.
Sometimes you call that method on its own, where an ADO.NET transaction would completely
suffice. Sometimes, however, you call that method as a step of a larger transaction, one in
which you may need the distributed services of the DTC. Ideally the transaction would use the
less-expensive resource manager of ADO.NET, and the transaction context would recognize
when the services of a more robust resource manager such as the DTC were needed, and then
automatically “promote” the transaction and enlist the more resource intensive manager. This
automatic transaction promotion is the second big design goal of transactions in .NET 2.0.

Transactions in 1.x
A number of technologies that support transactions are available for use in version 1.x of the
.NET Framework. Which one you select depends on the requirements of the transactional
infrastructure. Because of the resource expense and performance hit incurred by introducing
a transaction into a process, you should select the cheapest technology that does the job.

423

C H A P T E R 1 2

■ ■ ■

522xCH12.qxd 8/31/05 3:40 PM Page 423

The first of these are transactions that you can create and manage from within a stored
procedure. We’ll examine Transact-SQL running on SQL Server, but other database vendors’
products expose similar functionality for whatever language is available for coding procedures
(e.g., PSQL in Oracle).

Building transactions right into the database stored procedures results in transaction
logic that is managed by the database server, is optimized by the database engine, and runs in
the same process space of the server. A stored procedure can start a transaction and call other
stored procedures in the database and their work will be included in the transaction.

The downside to this approach is that it tends to move business logic coding into the
database layer. Transactions frequently reflect business rules, so to code the transaction
within the stored procedure code naturally introduces business logic into this tier of your
application. You’re also limited to a single database within which to do your transactional
modifications. You can overcome this in SQL Server using linked servers, but you’re definitely
limited to modifying SQL Server data.

■Note A linked server in SQL Server is a server that is “virtualized” locally. That is, a linked server acts as
an alias for an external database, and makes the database look like it’s on the local SQL Server, even though
it’s located on an entirely different server.

T-SQL is an unmanaged language that lacks the eloquence and clarity of C# code. Stored
procedure support for exception handling is also limited (these limitations can be overcome
with SQL Server 2005, which enables you to write stored procedures using C#, see the last
section of Chapter 11). You also lose the ability to dynamically compose a transaction, as
whatever work is being done in the stored procedure becomes the work done in the transac-
tion. Any attempt to overcome this will invariably result in more business logic in your
database layer.

You can do transactions on a single connection with ADO.NET transactions. This over-
comes some of the problems using T-SQL transactions, as it moves the transaction manage-
ment logic into your C# code, where structured error handling and the other niceties of man-
aged code execution can be leveraged. It’s also easier to dynamically compose transactions
by calling an arbitrary set of stored procedures determined by business logic (although this
still requires some design consideration and coding and is not as easy as the attribute-based
system available in COM+).

Here’s a simple procedure doing some database work in a transaction. (See XActionIE.aspx
in the Web12 project.)

public static void SingleDBUpdate(Hashtable ht)
{

using (SqlConnection cnn = new SqlConnection(WebStatic.ConnectionString))
{

string sql;

cnn.Open();
SqlTransaction tx = cnn.BeginTransaction();
try

CHAPTER 12 ■ TRANSACTIONS424

522xCH12.qxd 8/31/05 3:40 PM Page 424

{
foreach(string key in ht.Keys)
{

sql = "INSERT INTO Tuples (keyValue, dataValue) " +
"VALUES ('{0}', '{1}') ";

sql = string.Format(sql, key, ht[key]);
SqlCommand insert = new SqlCommand(sql, cnn, tx);
insert.ExecuteNonQuery();

}
tx.Commit();

}
catch (Exception e)
{

tx.Rollback();
HttpContext.Current.Response.Write(e.Message);

}
finally
{

cnn.Close();
}

}
}

Here you’re explicitly tied to a single connection. You can pass this connection around to
dynamically compose the commands that make up the connection, but are still tied to a single
data source. To span data sources, you must enlist the services of the DTC via COM+. (See
Mover.cs in the App_Code directory of the Web12 project.)

[Transaction(TransactionOption.Required)]
public class Mover : ServicedComponent
{

[AutoComplete]
public void Move()
{

using(SqlConnection cnnDB1 = new SqlConnection(Database1),
cnnDB2 = new SqlConnection(Database2))

{
SqlCommand cmdDeleteDB1 =

new SqlCommand("DELETE ...", cnnDB1);
SqlCommand cmdInsertDB2 =

new SqlCommand("INSERT ...", cnnDB2);
// ADO.NET connections automatically enlist into
// the DTC transaction
cnnDB1.Open();
cnnDB2.Open();
cmdDeleteDB1.ExecuteNonQuery();

CHAPTER 12 ■ TRANSACTIONS 425

522xCH12.qxd 8/31/05 3:40 PM Page 425

cmdInsertDB2.ExecuteNonQuery();
}

}
}

Here you’re not only spanning databases, but also if you want to dynamically compose
the steps of the transaction, any method you called on the class would also automatically be
enrolled. You could even call out to methods on other types flagged with TransactionOption
as Required and their work would automatically be enlisted in the transaction. You can clearly
see the power available in this model when there are requirements to compose transactions
dynamically. (See Chapter 7 for more details on COM+ transaction composition.)

The trade-off for this amount of flexibility is costly, though. Your type must inherit from
the ServicedComponent base class. And regardless of how your transactions are composed,
you’ll always incur the overhead of invoking the DTC, even if you’re updating a single row in a
single table. This is a high price to pay, especially if most of your transactions are against a sin-
gle data source and a distributed transaction is rare, as is normally the case.

This is a real bummer, because it puts you in the situation where if you ever need to
dynamically compose transactions, then you always have to use the DTC.

Transactions in 2.0
The transaction management system in version 2 of the .NET Framework sets out to address
the problem of excessive overhead for dynamic composition of transactions by enlisting only
the resource managers required for the type of transactional work being done. It also provides
an infrastructure where you can roll in more volatile resources into the “commit” and “roll-
back” model of transactions.

This means that if your transaction starts by modifying a hash table in memory, there is a
resource manager that will manage that memory. If you commit the transaction, the changes
will be committed to the hash table. If you roll it back, the hash table will revert to the state it
had when the transaction started. In 1.x, the following code results in the loss of the entry
from the hash table, even though the transaction is rolled back. (See Mover.cs in the App_Code
directory of the Web12 project).

[AutoComplete]
public void Move2(object key)
{

object val = hashTable[key];
hashTable.Remove(key);
using(SqlConnection cnnDB2 = new SqlConnection(Database2))
{

// Insert value from hash table into DB
SqlCommand cmdInsertDB2 =

new SqlCommand("INSERT ...", cnnDB2);
cnnDB2.Open();
cmdInsertDB2.ExecuteNonQuery();

}
}

CHAPTER 12 ■ TRANSACTIONS426

522xCH12.qxd 8/31/05 3:40 PM Page 426

In 2.0, however, you can use a transacted hash table that would automatically participate
in the transaction present.

Furthermore, if on another path of code dynamically composing a different transaction,
you start again by modifying the hash table but then modify a file from the hard drive, the
transaction will automatically be “promoted” to enlist the file-based transaction manager. If
your code continues and uses ADO.NET to modify a database table, the transaction is pro-
moted again, to one that can handle the database transaction.

Notice at this point in the scenario you have enlisted a transaction manager that is much
more of an expensive resource than one that simply manages the memory consumed by a
hash table. You have done so only on an as-needed basis, however. If your process continues
and modifies a table from a different database, then and only then is the DTC enlisted to man-
age the distributed transaction.

This is a far superior model to the one available in 1.x of the .NET Framework. You can
dynamically compose your transactions, and the DTC will not be involved until you need for
it to be. In fact, only the resource managers that need be involved will be, giving you a much
better cost-to-feature ratio than was available in 1.x.

The volatile management of memory and the file system is provided to you by the Light-
weight Transaction Manager (LTM), which we look at next.

Lightweight Transaction Manager
The LTM is a very fast, very inexpensive resource manager for transactions occurring in a
single application domain. It’s the starting point of all transactions in the Framework, and it
monitors the resources being touched by a transaction and enlists the services of more robust
resource managers on an as-needed basis.

When the transactional work goes out-of-process (i.e., you start modifying database
data), the LTM will automatically use a resource manager that supports the Promotable Single
Phase Enlistment (PSPE) model of transaction management. This is a new transactional infra-
structure that knows and understands the “pay as you go” mechanism of the LTM. If there is
no PSPE manager available, the LTM enlists the DTC. And then, of course, the DTC is enlisted
any time multiple remote data sources are modified.

When the PSPE model can do the job, then your transactions will perform as well as an
ADO.NET Transaction would in version 1.x. Why use the PSPE model if you get the same per-
formance as you would with ADO.NET transactions? It’s used so that the transaction is
automatically promoted to the DTC when more than one database is touched.

In version 2.0 of the .NET Framework, you will automatically get a PSPE transaction when
working with SQL Server 2005. If the transactional work touches another server or another
database, it automatically uses the DTC. Volatile transactions automatically participate in the
PSPE without invoking the DTC.

Programming Transactions
The new functionality of transactions is made available in the System.Transactions name-
space of the Framework class library. There a few ways to create transactions and enlist
resources to do work within them, but the best and most common way is to use the
TransactionScope object.

CHAPTER 12 ■ TRANSACTIONS 427

522xCH12.qxd 8/31/05 3:40 PM Page 427

Here’s a method that uses TranasactionScope to do its work in a transaction. (See
XAction.cs in the App_Code directory of the Web12 project.)

public bool UpdateQuantity(int itemId, int quantity)
{

using (TransactionScope tx =
new TransactionScope(TransactionScopeOption.Required))

{
AuditItemUpdate(itemId, quantity);

string sql = "UPDATE Inventory SET OnHand = OnHand - @quantity "
+ "WHERE InventoryID = @inventoryID and "
+ "OnHand - @quantity >= 0";

SqlConnection cn = new SqlConnection(connStr);
SqlCommand cm = new SqlCommand(sql, cn);

cm.Parameters.Add(new
SqlParameter("@quantity", SqlDbType.Int)).Value = quantity;

cm.Parameters.Add(new
SqlParameter("@inventoryID", SqlDbType.Int)).Value = itemId;

cn.Open();
int i = cm.ExecuteNonQuery();
cn.Close();
if (i==1)
{

tx.Complete();
}
return Convert.ToBoolean(i);

}
}

Here the TransactionScope is declared within the C# using statement. The
TransactionOption enum has three values: Required, RequiresNew, and Suppress. These are a
lot like the transaction options available in COM+. They can affect the transactional behavior
of your method in the context of any transaction that exists in the call stack calling the
method. In other words, with the setting of Required, if a transaction already exists, the work
this method does will participate in that transaction; otherwise, a new one will be created.

The syntax of the TransactionScope simplifies the semantics of transaction management
so much, that it’s easy to miss it entirely unless you look closely. Here’s the code that’s manag-
ing the transaction for this method.

CHAPTER 12 ■ TRANSACTIONS428

522xCH12.qxd 8/31/05 3:40 PM Page 428

…
using (TransactionScope tx =

new TransactionScope(TransactionScopeOption.Required))
{
…
if (i==1)
{

tx.Complete();
}

…
}

Here are some things TransactionScope does for you:

• Any statement appearing within the brackets of the using statement will be done within
the transaction.

• Any connection created in this block will be enlisted in the transaction.

• If an error occurs within the using block, the transaction will be automatically rolled
back.

• The check of i==1 is basically a check of “are you happy with the work?” If yes, then call
Complete on the transaction for your portion of the work.

• Every step of the call stack must call Complete for the transaction to be committed.

How is the transaction managed under the hood? This depends on the database you’re
connecting to. SQL Server 2005 supports lightweight PSPE transactions. So if this code con-
nects to SQL Server 2005, the transaction is managed by that provider and is no more
expensive than an ADO.NET transaction. Let’s contrast this block of code to similar code that
does the same thing in COM+.

• The type defining this method does not need to inherit from ServicedComponent.

• This assembly does not need a strong name, which it would for registration in COM+.

• No special registration steps are necessary to configure the component within COM+.

• It performs just as well as Enterprise Services if you’re using SQL Server 2000, and per-
forms as well as an ADO.NET transaction if you’re using SQL Server 2005.

• With SQL Server 2005, the DTC would automatically be enlisted to manage the transac-
tion if any layer of the call stack connected to a different database.

Let’s build up a simple call stack to demonstrate the dynamic enlistment behavior of this
infrastructure. You’ll use the tables shown in Figure 12-1 to mock-up an order entry scenario.
(The script to build this database is in XActionIE.sql in the Code12 directory.)

CHAPTER 12 ■ TRANSACTIONS 429

522xCH12.qxd 8/31/05 3:40 PM Page 429

Figure 12-1. A set of tables to update within a transaction

So for the sample scenarios, your transaction will be composed of the following steps:

1. Create a new order for the customer in the order table

2. For each order item, decrease the on-hand amount for the item by the quantity being
ordered.

3. Audit the attempt to secure the quantity.

4. Create an order item for the order.

If there is not enough on hand for any item in the order, then the transaction should roll
back. However, the audits should succeed whether the order is created or not. Here’s the
method to create the order. (See XAction.cs in the App_Code directory of the Web12 project.)

public void AddOrder(int orderId, int customerID, DateTime orderDate)
{

using (TransactionScope tx =
new TransactionScope(TransactionScopeOption.Required))

{
string sql = "INSERT INTO [Order](OrderID, CustomerID, OrderDate) "

+ "VALUES (@orderID, @customerID, @orderDate)";

SqlConnection cn = new SqlConnection(connStr);
SqlCommand cm = new SqlCommand(sql, cn);

cm.Parameters.Add(new
SqlParameter("@orderId", SqlDbType.Int)).Value = orderId;

cm.Parameters.Add(new
SqlParameter("@customerID", SqlDbType.Int)).Value = customerID;

cm.Parameters.Add(new
SqlParameter("@orderDate", SqlDbType.DateTime)).Value = orderDate;

CHAPTER 12 ■ TRANSACTIONS430

522xCH12.qxd 8/31/05 3:40 PM Page 430

cn.Open();
cm.ExecuteNonQuery();
cn.Close();
tx.Complete();

}
}

The method to create a new order item follows (also in XAction.cs in the App_Code direc-
tory of the Web12 project).

public bool AddOrderItem(int orderId, int itemId, int quantity)
{

using (TransactionScope tx =
new TransactionScope(TransactionScopeOption.Required))

{
if (UpdateQuantity(itemId, quantity))
{

string sql = "INSERT INTO OrderItem(OrderID, InventoryID, Quantity) "
+ "VALUES (@OrderID, @InventoryID, @Quantity)";

SqlConnection cn = new SqlConnection(connStr);
SqlCommand cm = new SqlCommand(sql, cn);

cm.Parameters.Add(new
SqlParameter("@OrderID", SqlDbType.Int)).Value = orderId;

cm.Parameters.Add(new
SqlParameter("@InventoryID", SqlDbType.Int)).Value = itemId;

cm.Parameters.Add(new
SqlParameter("@Quantity", SqlDbType.Int)).Value = quantity;

cn.Open();
cm.ExecuteNonQuery();
cn.Close();

tx.Complete();
return true;

}
else return false;

}
}

Notice the first thing that this method does after enlisting in the transaction is to call the
UpdateQuantity method (listed previously). If this method fails, it means you’re out of stock on
the item being ordered, and so this method will not create the order item. It also does not call
Complete in this case, which in effect dooms the entire transaction. UpdateQuantity is what

CHAPTER 12 ■ TRANSACTIONS 431

522xCH12.qxd 8/31/05 3:40 PM Page 431

calls for the audit. The code creating the entry in the audit table follows (also in XAction.cs in
the App_Code directory of the Web12 project).

public void AuditItemUpdate(int itemId, int quantity)
{

using (TransactionScope tx =
new TransactionScope(TransactionScopeOption.RequiresNew))

{
string sql =

"INSERT INTO InventoryAudit(InventoryID, Quantity, AttemptDate) "
+ "VALUES (@InventoryID, @Quantity, @AttemptDate)";

SqlConnection cn = new SqlConnection(connStr);
SqlCommand cm = new SqlCommand(sql, cn);

cm.Parameters.Add(new
SqlParameter("@InventoryID", SqlDbType.Int)).Value = itemId;

cm.Parameters.Add(new
SqlParameter("@Quantity", SqlDbType.Int)).Value = quantity;

cm.Parameters.Add(new
SqlParameter("@AttemptDate", SqlDbType.DateTime)).Value = DateTime.Now;

cn.Open();
cm.ExecuteNonQuery();
cn.Close();
tx.Complete();

}
}

Here you’ll notice that the transaction option selected when creating the
TransactionScope instance is RequiresNew. This breaks the work done in this method out into
its own transaction. Since you want the audit to persist regardless of the outcome of the con-
taining transaction, this work is done independent from the transaction of the caller. Using
TransactionOption.Suppress would have the some effect, except the work done within this
method would occur without a transaction at all.

The entire transaction is then managed by this orchestration method, which gets handed
a hash table of inventory IDs and quantities. (See XActionHost.aspx in the Web12 project.)

private void PlaceOrder(int CustomerID,
DateTime OrderDate, Hashtable OrderItems)

{
XAction dalTx = new XAction();
int OrderId = GetNextOrderID();
bool bSuccess = true;

using (TransactionScope tx = new TransactionScope())
{

dalTx.AddOrder(OrderId, CustomerID, DateTime.Now);
foreach(int ItemId in OrderItems.Keys)

CHAPTER 12 ■ TRANSACTIONS432

522xCH12.qxd 8/31/05 3:40 PM Page 432

{
if (!dalTx.AddOrderItem(OrderId,

ItemId,
Convert.ToInt32(OrderItems[ItemId])))

{
bSuccess = false;
break;

}
}
if (bSuccess) tx.Complete();

}
if (bSuccess)
{

lblOutput.Text = "Success";
}
else
{

lblOutput.Text = "Rolled back";
}

}

This is what you could call the root transaction object in COM+. It’s the root of the call
stack for the entire transaction. All of the work at lower levels in the stack is enlisted within the
transaction created by this method (with the exception, of course, of the audit method, which
declares its need for a transaction of its own).

The entire call stack breaks down like this (see Figure 12-2).

ansaction

CHAPTER 12 ■ TRANSACTIONS 433

522xCH12.qxd 8/31/05 3:40 PM Page 433

Notice that each level in the stack must call Complete. If any level fails to call Complete,
then the entire transaction is doomed up and down all levels of the call stack.

Transacted Types
So far we have illustrated the simplified transaction model for updates of either a single data-
base or many databases, which when you’re using SQL Server 2005 will leverage either a
lightweight transaction or the DTC. Support also exists for creating your own transacted types,
which can affect memory, the file system, or any other resource you need to manage in your
application.

Creating your own transacted type involves implementing, at a minimum, the
IEnlistmentNotification interface. Consider the follow example. Here you move orders
from an XML file into the same database you used in the previous example. (See
XActedDomTest.aspx in the Web12 project.)

private void WOATx()
{

XmlDocument dom = new XmlDocument();
dom.Load(Server.MapPath("Orders.xml"));
XmlNode orderElem;
XmlNode ordersElem = dom.SelectSingleNode("//Orders");
int orderCount = ordersElem.ChildNodes.Count;

for (int i = orderCount - 1; i >= 0; i--)
{

orderElem = ordersElem.ChildNodes[i];
orderElem.ParentNode.RemoveChild(orderElem);
AddOrder(orderElem);

}
dom.Save(Server.MapPath("UnprocessedOrders.xml"));

}

The AddOrder method leverages the methods from the previous example to create the
order in the database. In this case, instead of using the hash table like the previous example,
it’s using the data read from the XML document. (See XActedDomTest.aspx in the Web12 project.)

private bool AddOrder(XmlNode orderElem)
{

DateTime orderDate =
Convert.ToDateTime(orderElem.Attributes["OrderDate"].Value);

int customerId =
Convert.ToInt32(orderElem.Attributes["CustomerID"].Value);

XAction dal = new XAction();
int orderID = XAction.GetNextOrderID();
dal.AddOrder(orderID, customerId, orderDate);
bool bSuccess = true;

CHAPTER 12 ■ TRANSACTIONS434

522xCH12.qxd 8/31/05 3:40 PM Page 434

foreach(XmlNode orderItem in orderElem.ChildNodes)
{

int itemID =
Convert.ToInt32(orderItem.Attributes["ItemId"].Value);

int quantity =
Convert.ToInt32(orderItem.Attributes["Quantity"].Value);

bSuccess = dal.AddOrderItem(orderID, itemID, quantity);
if (!bSuccess) break;

}
return bSuccess;

}

What happens when you run into an item that’s not in stock? The creation of the order
and corresponding order items will be rolled back, but you’ve lost the changes describing the
order in your XML document. Your goal here is to have the instance of XMLDocument also partic-
ipate in the transaction. When the transaction fails, any changes you’ve made to the tree of
elements in the document instance will be rolled back as well.

To do this you’ll create a type that extends XMLDocument. The first thing you’ll need to do
with this type is implement IEnlistmentNotification. Table 12-1 shows the methods this
interface requires you to implement.

Table 12-1. Methods of the IEnlistmentNotification Interface

Method Meaning in Life

Commit Called when the transaction is being committed.

InDoubt Called when the outcome of the transaction is not certain (meaning, in real terms,
that it’s doomed).

Prepare Called when the transaction is about to be committed.

Rollback Called when the transaction has failed and the object should be restored to its
original state.

So your responsibility as a transaction supporter is to maintain enough state to track the
changes that occur during the transaction, and be able to revert to the original state of the
document in the event of a rollback. When the transaction is completed, you should also make
appropriate changes to the state of your type to commit any modifications made during the
transaction.

Here’s the implementation of the IEnlistmentNotification interface. (See TransDOM.cs in
the App_Code directory of the Web12 project.)

public class TransactedXMLDocument : XmlDocument, IEnlistmentNotification
{

private string orgXml;

public void Enlist()
{

orgXml = this.InnerXml;
Transaction.Current.EnlistVolatile(this, EnlistmentOptions.None);

}

CHAPTER 12 ■ TRANSACTIONS 435

522xCH12.qxd 8/31/05 3:40 PM Page 435

public void Commit(Enlistment enlistment)
{

orgXml = "";
enlistment.Done();

}

public void InDoubt(Enlistment enlistment)
{

this.LoadXml(orgXml);
orgXml = "";

}

public void Prepare(PreparingEnlistment preparingEnlistment)
{

preparingEnlistment.Prepared();
}

public void Rollback(Enlistment enlistment)
{

this.LoadXml(orgXml);
orgXml = "";

}
}

In this implementation you’re tracking the state of the XML document at the point it
enters into a transaction using the XML representing the tree at that moment. Any changes
made to the tree during the transaction will be reflected in the instance via normal processing
that occurs from the base class. Only in the case if the transaction is in doubt or rolled back do
you need to take action, and you simply restore the document to its original state by reloading
the underlying XML.

This strategy does force your user to call the Enlist method to tie it into a transaction. By
calling EnlistVolatile and passing a reference to your instance (via this), you wire your type
into the rest of the transaction processing. The transaction infrastructure will automatically
call Commit or Rollback when the outcome of the transaction becomes known.

Let’s modify the preceding document processing loop to leverage the new transactional
functionality of this type. (See TransactedDomTest.aspx in the Web12 project.)

private void WithATran()
{

TransactedXMLDocument dom = new TransactedXMLDocument();
dom.Load(Server.MapPath("Orders.xml"));
XmlNode orderElem;
XmlNode ordersElem = dom.SelectSingleNode("//Orders");
int orderCount = ordersElem.ChildNodes.Count;

for (int i = orderCount - 1; i >= 0; i--)
{

orderElem = ordersElem.ChildNodes[i];

CHAPTER 12 ■ TRANSACTIONS436

522xCH12.qxd 8/31/05 3:40 PM Page 436

try
{

using (TransactionScope tx = new TransactionScope())
{

dom.Enlist();
orderElem.ParentNode.RemoveChild(orderElem);
AddOrder(orderElem);
tx.Complete();

}
Response.Write("The transaction was written
");

}
catch (TransactionAbortedException tex)
{

Response.Write("The transaction did not succeed
");
}

}
dom.Save(Server.MapPath("UnprocessedOrders.xml"));

}

Notice you’re kicking off a transaction per processed order. Within each of these transac-
tion scopes, you’re explicitly enlisting your XML document in the transaction. You then
remove the node you’re processing from the document tree, and pass it along to the AddOrder
method, which shreds it and moves it to the database. If the transaction aborts, the
TransactionAbortedExeption is automatically raised, which you trap and report the error
to your user. Otherwise you output a message that the transaction was successful.

Since the call to AddOrder is within the scope of your transaction, the entire descent of the
call stack participates in your transaction, including all of the code in the instance of XAction
that’s created in the AddOrder. The one exception again is the audit method, of course, because
it explicitly demands its own transaction.

Let’s run the following XML through this process. (See Orders.xml in Web12.)

<?xml version="1.0" encoding="utf-8" ?>
<Orders>

<Order OrderDate="5/15/2005" CustomerID="1">
<OrderItem ItemId="1" Quantity="21" />
<OrderItem ItemId="2" Quantity="21" />

</Order>
<Order OrderDate="5/16/2005" CustomerID="2">

<OrderItem ItemId="1" Quantity="21" />
<OrderItem ItemId="2" Quantity="21" />

</Order>
<Order OrderDate="5/17/2005" CustomerID="3">

<OrderItem ItemId="1" Quantity="21" />
<OrderItem ItemId="2" Quantity="21" />

</Order>
</Orders>

CHAPTER 12 ■ TRANSACTIONS 437

522xCH12.qxd 8/31/05 3:40 PM Page 437

When you start the processing, you’ll have on-hand quantities of 60 for both items 1 and 2.
This means the first two orders will be processed correctly, and the third will fail for lack of
available quantities. The output is shown in Figure 12-3.

Figure 12-3. The output of the transaction shredding the Orders.xml document

The UnprocessedOrders.xml document shows you what happened to your document
during the process. Since the first two transactions were successful, they have been removed.
Notice also that you’re processing the orders in reverse of the order they appear in the docu-
ment, so the last transaction is attempting to process the first order in the document. Even
though the line of code to remove the first order was executed, the transaction where it
occurred failed, and so the order is restored by the time the document instance is written
back out to disk:

<?xml version="1.0" encoding="utf-8"?>
<Orders>
<Order OrderDate="5/15/2005" CustomerID="1">
<OrderItem ItemId="1" Quantity="21" />
<OrderItem ItemId="2" Quantity="21" />

</Order>
</Orders>

Here the order is safely persisted, to be processed another day when there are more items
on hand.

Summary
Transaction processing was been dramatically revamped in the .NET Framework 2.0. A new
lightweight transaction management system has been added to the Framework, and an easy
infrastructure for participating in these transactions has been exposed. Transactions use only
the resources they need for the work that they’re doing. This means that instead of using the
DTC for every transaction from the start, transactions are smart enough to realize when they
need the services of distributed transaction management, and enlist the DTC only then.

While for now the best support for this is with SQL Server 2005, future versions of the
.NET Framework will offer support for transactions with types from System.Collections (for
in-memory transactions) and System.IO (for disk-based transactions). For now, you can easily
add support for the types you need, as we’ve showed you for the XMLDocument type.

CHAPTER 12 ■ TRANSACTIONS438

522xCH12.qxd 8/31/05 3:40 PM Page 438

A
AcceptChanges method, 367

AccessDataSource control, 374

ACID (atomicity, consistency, isolation, and

durability) properties, 423

AcquireRequestState event, 35, 38, 41–42

Action attribute constraints, 109

activation, 253

Activation tab, 279

Add element, 51, 53, 360

Add Web Form dialog, 70

Add Web Reference feature, 280

<add> subelement, 174

AddOrder method, 434, 437

AddUsersToRole method, 190

AddUsersToRoles method, 190

AddUserToRole method, 190

AddUserToRoles method, 190

Administrators role, 157

ADO.NET, overview, 321

AdRotator control, DataBoundControl base

class, 374

<allow> subelement, <authorization>

element, 168

App_Code directory, 79–80, 208

app.config (web.config) file, 33, 51, 55, 62–63,

108, 158, 243, 279

app.config file, 306

Application Center Test tool, 8

Application class, 30–31, 43

Application directive, 43, 46, 50

application server, 272

Application_End event, 43

Application_Start event, 43

ApplicationActivation attribute, 278

appSetting element, 329

appSettings element, 159, 192, 328

AppSettings method, 192

architecture/service orientation, 15–17

ASHX extension, 57

ASMX enhancements, 234

overview, 210

version 1.x problems

custom serialization lacks adequate

extensibility, 225–34

no type sharing across proxies, 210–18

proxies generate fields and not

properties, 218–20

type fidelity available only for datasets,

220–25

ASMX SOAP Stack, 239

<asp:ChangePassword> declaration, 184

<asp:Login> tag, 179

ASP.NET Framework

remoting, 276–78

serviced components, 278

Web services, 275–76

Windows Communication Foundation

(WCF), 278

ASP.NET Tracing tool, 8

aspnet_compiler command line tool, 81

aspnet_Membership table, 176

aspnet_regiis command line tool, 330

aspnet_regsql.exe tool, 389

aspnet_Roles table, 189

AspNet_SqlCacheRegisterTableStored-

Procedure database, 390

AspNet_SqlCacheTablesForChange-

Notification table, 389

<asp:PasswordRecovery> scope, 182

ASPX extension, 29

aspx files, code generation of, 71–75

aspx pages, code generation of, 70–71

assembly-level attribute, 262

asynchronous calls feature, WCF, 312

Index

439

522xINDEX.qxd 8/31/05 3:41 PM Page 439

asynchronous messaging architecture, 26–27

atomic method, 423

atomicity, consistency, isolation, and

durability (ACID) properties, 423

auditing, 10

Authenticate method, FormsAuthentication,

170–71

AuthenticateRequest event, 33–34, 40

AuthenticateToken method, 242

authentication. See security

<authentication> element, 161, 164–65, 169

authorization, overview, 10

<authorization> element, 164, 168–69, 186

AuthorizeRequest event, 33, 41

AutoComplete attribute, 251, 259–60, 269

AutoDetect setting, cookieless attribute, 167

availability, 5–7

B
Base 64 encoding, 231

BasicProfileBinding binding, 305

BeginRequest event, 33, 44, 52

<BinarySecurityToken> element,

WS-Security SOAP header, 241

BindGrid method, 347, 395–96

BindingRequirements attribute, 310

BindToAuthor method, 370

BindToMoniker method, 265

BitConverter class, 370

Bitmap type, 226

BookBinding type, 381–82

BookCollection instance, 233

BookDetail objects, 381

BookDetails type, 226, 229, 383, 385–86

BookID value, 382–83

BookImage property, 226, 233–34

BookLibrary methods, 292–93

Box, Don, 199

BulletedList control, DataBoundControl

class, 374

Button Click event handler, 171, 175, 189

Button type, 163

Button Web Control, 110

C
/c switch, 268

Cache class, 30–31, 39, 59

cache dependencies, SQL

automating administration, 392–98

configuration, 389–90

programming with, 391

Cache module, 34

CacheDependency object, Insert method,

391–92

caching element, 390

call back infrastructure, 234

CanBePooled method, 256

ChangePassword control, 178, 184

ChangePassword member, MembershipUser

type, 176

ChangePasswordQuestionAndAnswer

member, MembershipUser type, 177

Chatterjee, Soumen, 198

chatty interfaces, 25, 301

CheckBox control, 397

CheckChanged, 397–98

chunky interface, 25, 299

CIL (Common Intermediate Language), 149

CIL assembler (ilasm.exe), 149

Class attribute, 208

ClassName attribute, 43

ClearPool method, 328

ClearPools method, 328

Click event, Button type, 163

client affinity, 10

client script manager, 133–34, 136

clientCallback argument,

GetCallbackEventReference

method, 140

clientErrorCallback argument,

GetCallbackEventReference

method, 140

ClientID attribute, 136

ClientScript object, 134, 137

ClientScriptManager, 134

Close method, 307, 339

■INDEX440

522xINDEX.qxd 8/31/05 3:41 PM Page 440

CloseConnection value, CommandBehavior

enumeration, 338

CLR (Common Language Runtime)

integration, in SQL Server 2005. See

Common Language Runtime (CLR)

integration, in SQL Server 2005

clustering, 6

coarse-grained interface, 25

coarse-grained service, 198

code inline, 70

CodeBehind attribute, 67, 208

code-behind model, 70

CodeDom namespace, 26

CodeFile attribute, 67

COM+, 247–52, 278–80

applications, 252–53

configuration, 267–68

Just-In-Time Activation (JITA), 253–55

object pooling, 255–57

practices

component design, 268

configuration and deployment, 269

object lifetime, 269

overview, 268

security contexts, 268

Queued Components (QC), 261–65

role-based security, 265–67

transactions, 257–61

Command object, 331, 338, 345

command wrapper, 404–5

CommandBehavior enumeration, 338

CommandText property, 331

Commit method, IEnlistmentNotification

interface, 407, 435

commit model of transactions, 426

Common Intermediate Language (CIL), 149

Common Language Runtime (CLR)

integration, in SQL Server 2005

choosing between middle-tier

components and, 410–11

comparing managed code and

Transact-SQL (T-SQL), 409–10

managed stored procedures, 412–14

overview, 409

role of, 410

user-defined aggregate (UDA), 415

user-defined functions (UDFs) and table-

valued functions, 414–15

user-defined type (UDT), 415

communications. See hosting and

communications

compilation, Page object, 75–81

dynamic compilation, 76–81

precompilation, 81

Complete method, 434

CompleteRequest event, 41

Component Services. See COM+

components, 252

concurrency

blindly overwriting changes, 362

overview, 361

querying all values in where clause,

362–65

querying on only changed column values,

366–68

timestamp column, 368–72

using pessimistic locking, 362

configuration element, 223

configuration inheritance, 159–60

<configuration> node, 158

ConfigurationManager type, 329

Configured Component, 249

Connection class, 326

connection pool. See pools

Connection property, 331

connections

connection strings, 328–30

overview, 326

pools, 326–28

connectionString element, 390

connectionStringName attribute, 390

ConnectionStrings method, 329

connectionStrings section, 360

<connectionStrings> element, 159, 328

connectivity, 13

ConstraintCollection, System.Data

namespace, 325

Contact table, 415

■INDEX 441

522xINDEX.qxd 8/31/05 3:42 PM Page 441

Contacts table, 412–13

context argument,

GetCallbackEventReference method,

140

Context class, 31, 35

ContextUtil class, 252

ContextUtil properties, 259–60, 268

control argument,

GetCallbackEventReference method,

139

Control class, 102

Control events, vs. Page events, 89–90

control focus, 136

Control tree essentials, 84–87

Control type, 136

Control-Level Postback event, 89

ControlParameter parameter, 379

Controls, System.Web.UI.Control, 82

ControlState, System.Web.UI.Control

namespace, 82

ControlState class, 118, 122

Convert.ToByte method, 370

cookieless attribute, <forms> section, 166–67

cookieless authentication support, 167–68

CookieParameter parameter, 379

Cookies class, 39

Cookies collection, 31

Copy Web Site interface, 75, 77

Create method, HashAlgorithm class, 154

CREATE script, 418

CreateChildView method, DataViewRow

class, 342

CreateDataReader method, 345–46

CreateReader method, 421–22

CreateUser method, 173, 175, 184

CreateUserWizard control, 178, 184, 186

CreationTime member, MembershipUser

class, 176

<credentials> element, 170–71

cross-page Postbacks, 110–13, 115

Current property, RequestSoapContext class,

240

CurrentRows property, 342

CurrentWebAppFilter property, 31

custom listeners, 289–93

CustomAuthManager class, 243

Customer object, 199, 259–60

CustomerCollection type, 381

CustomerData column, 420

CustomerData field, 418

CustomerData type, 311

CustomerId field, 418

CustomerSchemaCollection schema, 418

CustomerService contract, 311

D
DAL. See data access layer (DAL)

Data Access Application Block, 26

data access layer (DAL), 17, 24

data access layer (DAL) services. See also SQL

Server 2005

data access application block, 398–99

command wrapper, 404–5

configuration and Database object,

399–402

data access methods, 402–3

parameters and parameter cache, 405–7

using for transaction management,

407–8

declarative data access

ObjectDataSource control, 381–88

overview, 373–75

SqlDataSource control, 375–81

dependent cache entries, 388–89

automating SQL cache dependency

administration, 392–98

programming with SQL cache

dependencies, 391

SQL cache dependency configuration,

389–90

overview, 373

data binding, 93–96

data contract, 310

data readers

CommandBehavior, 338

overview, 322, 331

working with, 331–37

■INDEX442

522xINDEX.qxd 8/31/05 3:42 PM Page 442

data source controls, 373

DataAdapter, 339, 343, 346

Database object, 399–403

database-specific security model, 326

DataBind method, 93

DataBoundControl class, 374–75

DataColumnCollection type, System.Data

namespace, 325

dataConfiguration.config file, 401

DataGrid control, 93–96, 118, 374

DataGridItem collection, 116

DataList control, DataBoundControl base

class, 374

DataObjectTypeName attribute, 383

DataObjectTypeName property, 386

DataReader class, 333

DataReaders, vs. DataSets, 346–47, 349–53,

355

DataRelation class, 340

DataRelationCollection, System.Data

namespace, 325

DataRowCollection, System.Data

namespace, 325

DataRowView, System.Data namespace, 325

DataSet class, 94–96, 225, 325, 343, 391, 403

DataSets

vs. DataReaders, 346–55

enhancements in 2.0, 343–46

overview, 322, 339–43

DataSourceControl class, 375

DataSourceID property, 375, 385

DataTable class, 322, 343

DataTableCollection, System.Data

namespace, 325

DataTableReader class, 345

DataTables class, 340

DataView class, 131, 342, 352

DataViewRow class, 342

DbCommand factory method, 359

DbCommandBuilder factory method, 359

DbConnection factory method, 359

DbConnection object, 358

DbConnectionStringBuilder factory method,

359

DbDataAdapter CreateDataAdapter factory

method, 359

DbParameter factory method, 359

DbProviderFactories type, 356, 359

DCOM (Distributed Component Object

Model), 197, 281–82

DeactivateOnReturn attribute, 253–54, 269

DeactivateOnReturn member, ContextUtil

class, 252, 257

declarative coding, 74

declarative data access

ObjectDataSource control, 381–88

overview, 373–75

SqlDataSource control, 375–81

declarative RBS, 157

Default value, CommandBehavior

enumeration, 338

Deleted event, 387

DeleteUser method, 173, 177

deleting

roles, 189–90

users, 177–78

Deleting event, 387

DeluxeContent.aspx file, 186

DeluxeUser role, 186

<deny users = "?"/> subelement, 164

<deny> subelement, <authorization>

element, 168

dependability, 14

dependent cache entries, 388–89

automating SQL cache dependency

administration, 392–98

programming with SQL cache

dependencies, 391

SQL cache dependency configuration,

389–90

DetailsView control, 375, 384, 386–87

Dialer.asmx file, 212, 214

digital signature, 96

Direct Internet Message Encapsulation

(WS-Attachment/DIME)

specification, 236

dirty read, 361

dirty write, 361

■INDEX 443

522xINDEX.qxd 8/31/05 3:42 PM Page 443

DisableCommit member, ContextUtil class,

252

Disabled option, 258

DisableNotifications method, 393

DisableTableForNotifications method, SQL

Cache Dependency Administration

class, 393

DisplayAddress function, 141–42

Dispose function, 269

Dispose interface, 51

Distributed Component Object Model

(DCOM), 197, 281–82

Distributed Transaction Coordinator (DTC),

423, 425

DLL (Dynamic Link Library), 61

DLLHost, 281–82

DllHost.exe, 278, 282

DocDescription object, 286–88

DocDescription type, 287

DOCUMENT keyword, 419

Document Object Model (DOM), 62

Does Not Support option, 258

DOM (Document Object Model), 62

DropDownList control, 102, 112, 128, 133,

341, 353, 368, 374

DTC (Distributed Transaction Coordinator),

423, 425

Duration attribute, 123

Dynamic Link Library (DLL), 61

E
EditBook Web Form, 387

Email property, PasswordRecovery control,

182

EnableCommit member, ContextUtil class,

252

EnableNotifications method, 393

EnableTableForNotifications method, SQL

Cache Dependency Administration

class, 393

EnableViewState property,

System.Web.UI.Control namespace,

82, 103

<EncryptedData> element, WS-Security

SOAP header, 241

<EncryptedKey> element, WS-Security SOAP

header, 241

encryption services

hash codes, 153–54

hashing a file, 154–55

overview, 152–53

<endpoint> element, 306

EndRequest event, 33, 40–41

Enlist method, 436

EnlistVolatile, 436

Enterprise Instrumentation Framework

tool, 8

Enterprise Library Configuration, 399–400

Enterprise Library Data Access Application

Block Version 1.0, 399

Enterprise Services, 24, 299, 315–16, 317

Enterprise UDDI registry, 204

EnvironmentName value, appSettings, 329

Error event, 49

ESDemo namespace, 279

et switch, 391

Execute method, 408

ExecuteNonQuery method, 331, 334, 371

ExecuteReader method, 331, 338, 345

ExecuteScalar method, 337

executeSQL method, 265

ExecuteXYZ method, 407

Executive role, 266

exists method, XML Data type, 419

eXtensible Markup Language. See XML

eXtensible Stylesheet Language

Transformation (XSLT), 56

F
/fc switch, 268

FileDependancy class, 388

Fill method, 340, 408

Filtering event, 387

FindControl method, 111, 115

FindUsersByEmail method, 173

fine-grained interface, 25

■INDEX444

522xINDEX.qxd 8/31/05 3:42 PM Page 444

fine-grained service, 198

Focus method, 136

ForeignKeyConstraint, System.Data

namespace, 325

Form element, 109–10

Form method, Request class, 39

FormatMode parameter, 311

FormatString property, 182

FormattedNumber method, 214

FormParameter parameter, 379

forms authentication, 163–64, 171

<forms> element, 164–66, 169

FormsAuthentication class, 169

FormsAuthentication members, 170

FormsAuthentication type, 169–71

Forms-Based authentication, 160, 162

FormView control, DataBoundControl base

class, 375

Framework Class library, 73–74, 427

functionality, 14

functions

table-valued, 414–15

user-defined (UDFs), 414–15

G
GAC (Global Assembly Cache), 148, 269

generics, 383

GET method, 55

GetAddress function, 139, 141

GetBook method, 383–84

GetBookList method, 382

GetCallbackEventReference method, 139,

141

GetCustomer method, 200

GetFactory shared method,

DbProviderFactories type, 356

GetFactoryClasses shared method,

DbProviderFactories type, 356

GetHashCode method, 153

GetNamedProperty member, ContextUtil

class, 252

GetNumber method, 214

GetPassword member, MembershipUser

type, 177

GetRedirectUrl() method, 170

GetRoles method, Roles class, 189

GetSchema method, 229

GetSourceData method, 343

GetSqlXml method, 421

GetStoredProcCommandWrapper method,

404

GetStringCommandWrapper method, 404

GetTablesEnabledForNotifications method,

SQL Cache Dependency

Administration class, 393

GetUser method, Membership class, 173, 177

GetXYZCommandWrapper method, 405

Global Assembly Cache (GAC), 148, 269

global.asax file, 34, 42–44, 47, 50, 63

Gralla, Preston, 198

granularity of services, 198

GridView control, 118, 340, 347, 353, 374–75,

402–3

gvAuthors_Sorting event, 348

H
Handler class, 35

Handler property, HttpContext class, 35, 39

Hao He, 197

HasControls() method,

System.Web.UI.Control namespace,

83

hash codes, 153–54

hash table, 426

hashing algorithms, 154

HashPasswordForStoringInConfigFile()

method, 170

Hashtable collection, 154

HEAD method, 55

HierarchicalDataBoundControl base class,

374

horizontal scaling, 9–10

horizontally partitioning data, 7

■INDEX 445

522xINDEX.qxd 8/31/05 3:42 PM Page 445

hosting and communications. See also

Internet Information Service (IIS)

custom listeners, 289–93

DLLHost and DCOM, 281–82

Message Queuing (MSMQ), 283–89

overview, 271

permutations, 294

processes and marshaling, 271–74

HtmlTextWriter class, 98

HTTP handlers

built into framework, 55–56

creating, 57–62

overview, 54

HttpApplication class, 29–32, 62

inheriting from, 43–50

life cycle, 32–37, 39

overview, 29

HttpApplication event, 44

HttpApplicationState class, 30

HttpContext class, 59

overview, 29–32

sample of members of, 29–30

HttpHandler class, 30, 34

HttpHandlers class, 32, 63

HttpMethodNotAllowed handler, 55

HttpModule class, 34, 51–54

HttpModules element, 51, 53

HttpProfileBase class, 30

HttpRequest class, 30

HttpResponse class, 30

HttpServerUtility class, 30

HttpSessionState class, 30

I
ICallbackEventHandler, 141

ID member, System.Web.UI.Control

namespace, 83

IDataReader interface, 345

IDBTransaction, 407

IEnlistmentNotification interface, 434–35

IHttpHandler class, 35

IHttpHandler interface, 38–39, 54, 57–59, 63,

65, 206

IHttpModule interface, 51, 62

IIdentiy interface, 156

IIS. See Internet Information Service (IIS)

ilasm.exe (CIL assembler), 149

ildasm.exe utility, 149

IMathService interface, 305

imperative coding, 74

imperative RBS, 157

ImportSchemaType method, 223

Improved transactional messaging support,

416

InDoubt method, IEnlistmentNotification

interface, 435

Inherits attribute, 44, 50

Init event, 83, 88

Init interface, 51

Init method, 39

InitComplete event, 88

in-memory model, 321

In-proc ADO.NET feature, 412

Inserted event, 387

Inserting event, 387

Install method, 291

instancing feature, WCF, 312

Int32 control parameter, 383–84

integrated management and operations, 416

integrated security, 326

IntelliSense, 44

Interbase, 324

InterfaceQueuing attribute, 263–65

Internet Information Service (IIS), 29, 31–32,

40, 42, 47, 49, 51, 53, 56–57, 60–62,

206, 272, 274

ASP.NET Framework

overview, 275

remoting, 276–78

serviced components, 278

Web services, 275–76

Windows Communication Foundation

(WCF), 278

Component Service SOAP, 278–80

overview, 275

stored procedure SOAP, 281

■INDEX446

522xINDEX.qxd 8/31/05 3:42 PM Page 446

interoperability, 14

IPrincipal interface, 156

IPrincipal.Identity property, 156

IQueuable interface, 264–65

IQueuing type, 264

ISAPI extension, 61

IsCallerInRole member, ContextUtil class,

252

IsClientScriptBlockRegistered method, 135

IsClientScriptIncludeRegistered method, 135

IsCrossPagePostBack property, 113

ISessionCounter interface, 35–36

IsInTransaction member, ContextUtil class,

252

IsOneWay parameter, 311

IsOnLine member, MembershipUser type,

176

IsOnSubmitStatementRegistered method,

ClientScript object, 135

IsPostback property, 114

IsReusable method, 58

IsSecurityEnabled member, ContextUtil

class, 252

IsStartupScriptRegistered method,

ClientScript object, 135

IsUserInRole method, Roles class, 190

IsUserValid method, 164

Item() method, 31

IXmlSerializable interface, 225, 228, 230

J
JITA (Just-In-Time Activation), 253–55, 280

Just-In-Time Activation (JITA), 253–55, 280

JustInTimeActivation attribute, 253–54, 257

K
k flag, 150

/keyfile option, 151

KeyInfo value, CommandBehavior

enumeration, 338

<KeyInfo> element, WS-Security SOAP

header, 241

L
LastActivityDate member, MembershipUser

type, 177

lazy loading, 267

Legacy COM Servers, 274

library applications, 253

Lightweight Transaction Manager, 427

linked servers, 424

ListBox control, 374, 382, 384–85

ListItemCollection value, 102

LiteralControl, 86–87

Load event, 35, 39, 84, 88, 103, 114

Load trap, 114

LoadComplete event, 89

loading, lazy, 267

location transparency, 302

Lock method, 43

Logging and Instrumentation Application

Block tool, 8

Login control, 178, 180

Login.aspx file, 178

LoginName control, 178, 181–82

LoginStatus control, 178, 180–81

LoginStatus declaration, 180

loginUrl attribute, 166

logon.aspx file, 181

logon.aspx page, 171

LogoutAction property, 180

LogoutText property, 180

loose coupling, 198–99

low memory footprint, 321

M
Machine.config file, 108, 115, 173, 175, 182,

187, 192

<machineKey> element, 108

MailDefinition element, 182

maintainability, .NET application

architecture, 11–12

manageability, 13

managed code, comparing with Transact-

SQL (T-SQL), 409–10

managed provider factories, 356–61

■INDEX 447

522xINDEX.qxd 8/31/05 3:42 PM Page 447

Managed Provider transaction model, 407–8

managed providers, 321–24. See also

System.Data namespace

managed stored procedures, 412–14

Manager role, 266

MapRequestHandler event, 34–35

MarshalByRefObject, 276

marshaling, 271–74

MathService parameter, 307

MaxPoolSize attribute, 327

measuring performance, 8

Membership class, 172

membership providers, 172

Membership type

adding new members, 175–76

deleting users, 177–78

MembershipUser type, 176

methods of, 173

overview, 172–73

specifying a membership provider for

website, 173–74

updating user's properties, 177

<membership> element, machine.config file,

173

MembershipCreateStatus output parameter,

176

MembershipUser class, 175–77, 184

memory leak, 14

Menu control, DataBoundControl base class,

375

message contract, 310

Message Queuing (MSMQ), 7, 261, 283–89,

299, 312, 415–16

MessageBody attribute, 311

MessageContract attribute, 311

MessageHeader attribute, 311

MessageQueue, 286

messaging stack, 16

meta-pattern, 301

method attribute, 109

MethodName attribute, 124

Microsoft Management Console (MMC),

12, 60

Microsoft Transaction Server (MTS).

See COM+

Microsoft Web Service Enhancements

Specifications, 236

Microsoft.Practices.EnterpriseLibrary.Data.dll

assembly, 402

Microsoft.Web.Service3 namespace, 239

Microsoft.Web.Service3.Addressing

namespace, 239

Microsoft.Web.Service3.Dime namespace,

239

Microsoft.Web.Service3.Messaging

namespace, 239

Microsoft.Web.Service3.Security namespace,

239

Microsoft.Web.Services3 Assembly

namespace, 239

middle-tier components, 410–11

MinPoolSize attribute, 327

MMC (Microsoft Management Console),

12, 60

Mock Objects, 14

mode attribute, <authentication> element,

165

modify method, XML Data type, 419

MonitorQueue method, 285

MSMQ (Message Queuing), 7, 261, 283–89,

299, 312, 415–16

MsmqIntegrationBinding, 305

MTS (Microsoft Transaction Server).

See COM+

MyTransactionVote member, ContextUtil

class, 252

N
n+1 reliability, 6

name attribute, <forms> section, 166

Name parameter, 311

namespace declaration, 244

Namespace parameter, 311

■INDEX448

522xINDEX.qxd 8/31/05 3:42 PM Page 448

.NET application architecture

asynchronous messaging architecture,

26–27

nonfunctional requirements

availability, 5–7

connectivity, 13

horizontal scaling, 9–10

maintainability, 11–12

other nonfunctional requirements,

13–15

overview, 5

performance, 7–9

scalability, 9

security, 10–11

vertical scaling, 9

overview, 3–5

service oriented architecture/service

orientation, 15–17

simple managed application, 19–20

using serviced components, 20–21, 23

widely distributed service application,

23–26

.NET Framework version 1.x, transactions in,

423–26

.NET Framework version 2.0, transactions in

Lightweight Transaction Manager, 427

overview, 426–27

programming transactions, 427–34

transacted types, 434–38

.NET Remoting, 313, 316–17

NetProfileNamedPipeBinding, 305

ninety nine and n nines form, 5

nodes method, XML Data type, 419

n-tiered architecture, 327

NumberLib service class, 212–13

NumberLib.asmx file, 212

NumberLib.PhoneNumber type, 222, 224

O
Object Linking and Embedding Database

(OLEDB), 324

object orientation, 301

Object Oriented Analysis and Design

(OOAD), 203

object pooling, 255–57

ObjectCreated event, 387

ObjectCreating event, 387

ObjectDataSource control, 373–74, 381–88

ObjectPooling attribute, 256–57

ODBC (Open Database Connectivity), 324

odsBookDetail control, 384–86

OLEDB (Object Linking and Embedding

Database), 324

onChange event, 139

onchange property, 128

OnCheckChanged event, 397–98

one-way encryption, 153

onStart method, 285

OOAD (Object Oriented Analysis and

Design), 203

Open Database Connectivity (ODBC), 324

Open method, ServicedHost class, 307

Operation method, 203

OperationContract attribute, 304, 310

option element, 128

OracleConnection class, 328, 356

orchestration method, 432

OrderTotal column, 342

out-of-band callbacks, 136–43

Output Cache module, 33, 41

output caching, 123

output stream, Page class, 96–98

OutputCache directive, 34, 41, 124, 392

outputColor property, 112

P
Page class, System.Web.UI.Control

namespace, 29–31, 34, 39, 54, 83, 110,

112, 119

Page events, vs. Control events, 89–90

Page handler, 54, 56, 63

Page level, 90–91

Page object, 111, 133

basics of Control type, 82–84

capturing rendered output stream, 96–98

■INDEX 449

522xINDEX.qxd 8/31/05 3:42 PM Page 449

code generation of aspx files, 71–75

code generation of aspx pages, 70–71

compilation and deployment, 75–76

dynamic compilation, 76–81

precompilation, 81

Control events vs. Page events, 89–90

Control tree essentials, 84–87

options for building Web Forms, 66–70

overview, 65

resource consumption when data binding,

93–96

role of PreRender event, 90–93

structure of Web Form, 65

Web Form event model, 87

Control-Level Postback event, 89

Init, 88

InitComplete, 88

Load events fire, 88

LoadComplete, 89

preInit, 88

PreLoad, 88

PreRender events fire, 89

PreRender events fire event, 89

PreRenderComplete, 89

SaveStateComplete, 89

Page property, 37

Page type, 111, 135

parameter cache method, 406–7

parameters and parameter cache, 405–7

Parent class, System.Web.UI.Control

namespace, 83

partial classes feature, 65, 69–70

partial decomposition, 417

Passport authentication, 160

<passport> subelement, <authentication>

element, 165

Passport-based authentication, 161

Password Answer property,

PasswordRecovery control, 182

Password property, PasswordRecovery

control, 182

Password Question property,

PasswordRecovery control, 182

PasswordOption enum, 244

PasswordRecovery control, 178, 182–84

pd switch, 330

Perfmon tool, 8

performance, .NET application architecture,

7–9

permutations, 294

PhoneNumber class, 218

PhoneNumber proxy type, 213, 215

PhoneNumber type, 224

PlaceHolder, 129, 132

Poolable class, 279

pooling. See object pooling

Pooling attribute, 327

pools, 326, 328

populateListB method, 130, 133, 135

Port Type Interface, 203

portability, 14

Post event, 35

Post method, 39, 55

Post request processors, 235

PostAcquireRequestState event, 33

PostAuthenticate event, 41

PostAuthenticateRequest event, 33–34, 41

PostAuthorizeRequest event, 33

PostBackUrl attribute, 110

Post-Cache substitution, 122–25

PostMapRequestHandler event, 33, 35, 39

PostReleaseRequestState event, 33

PostRequestHandlerExecute event, 33, 39

PostResolveRequestCache event, 33

PostUpdateRequestCache event, 33

Pre request processors, 235

PreAuthorizeRequest class, 34

PreAuthorizeRequest event, 40

precompile.axd file, 55

PreInit event, 88

PreLoad event, 88

PreMapRequestHandler event, 35

Prepare method, IEnlistmentNotification

interface, 435

PreRender event, 37, 89–90,

PreRender method, 90–91

■INDEX450

522xINDEX.qxd 8/31/05 3:42 PM Page 450

PreRenderComplete event, 89

PreRequestHandlerExecute event, 33, 35,

38–39, 44

PreSendRequestContent event, 33

PreviousPage attribute, 111–12

PreviousPage property, 30

principal object, 156

principal policy, 156

PrincipalPermission attribute, 157

processes, 271–74

ProcessRequest event, 39

ProcessRequest method, 33, 39, 58–59

Profile module, 41

ProfileParameter parameter, 379

Promotable Single Phase Enlistment (PSPE)

model of transaction management,

427

Properties window, Visual Studio 2005, 179

protection attribute, <forms> section, 166

<provider> element, 174

providerName attribute, 360

proxies, 281

Proxies.Web061.PhoneNumber type, 215

Proxies.Web06.PhoneNumber type, 215

Proxies.WSDemo, 215

PSPE (Promotable Single Phase Enlistment)

model of transaction management,

427

PubID argument, 405

PubsDatabase database, 402

Q
QC (Queued Components), 248, 261–63, 265

QLibrary.DocDescription type, 285

quality attributes, 5

Query Analyzer, 115

query method, XML Data type, 419

QueryString collection, 31

QueryStringParameter parameter, 380

Queued Components (QC), 248, 261–63, 265

QueueName string, 285

R
RadioButtonList control, DataBoundControl

class, 374

RBS. See Role-Based Security (RBS)

RDBMS (relational database management

system) communication protocol, 17

ReadXml method, 231, 344

Receive method, 286

Recordsets, 321

recoverability, 13

Redirect() method, Response class, 30

RedirectFromLoginPage method,

FormsAuthentication class, 163, 167,

172

<ReferenceList> element, WS-Security SOAP

header, 241

RegisterArrayDeclaration method,

ClientScript object, 134

RegisterCallbackEventReference method,

ClientScript object, 134

RegisterClientScriptBlock method,

ClientScript object, 133–34, 136

RegisterClientScriptInclude method,

ClientScript object, 134

RegisterClientScriptResource method,

ClientScript object, 135

RegisterHiddenField method, ClientScript

object, 135

RegisterOnSubmitStatement method,

ClientScript object, 135

RegisterStartupScript method, ClientScript

object, 135

relational database management system

(RDBMS) communication protocol,

17

ReleaseComObject method, 265

ReleaseRequestState event, 42

reliability, 14

remote objects, migrating to WCF, 316

Remote Procedure Call (RPC), 199, 416

remoting, 276–78

■INDEX 451

522xINDEX.qxd 8/31/05 3:42 PM Page 451

Remoting technology, 299

Render method, Control base class, 84

repeatability, 13

Repeater control, DataBoundControl class,

374

Request class, 31, 33, 39

request processing pipeline

built-in framework extensions to, 40–42

extending

implementing an HttpModule, 51–54

inheriting from HttpApplication, 43–50

overview, 42–43

HTTP handlers

built into framework, 55–56

creating, 57–62

overview, 54

HttpApplication class

inheriting from, 43–54

life cycle, 32–39

HttpContext

overview, 29–32

sample of members of, 29–30

overview, 29

Required value, TransactionOption enum,

428

Requires New option, 258

Requires option, 258

RequiresNew value, TransactionOption

enum, 428

requiresQuestionAndAnswer attribute,

174–75

requireSSL attribute, <forms> section, 166

RequiresSSL class, 50

ResolveRequestCache class, 34

ResolveRequestCache event, 41

resource consumption, when data binding,

93–96

Response class, 33, 39

role membership

assigning users to roles, 190

creating, obtaining and deleting roles,

189–90

determining, 190–91

enabling role membership services,

187–88

overview, 186

roles type, 188–89

Role-Based Security (RBS), 265–67

overview, 155–57

restricting access based on user identity,

157–58

<roleManager> element, 187

Roles.CreateRole method, 189

Roles.DeleteRole role, 190

Rollback method, 407, 435

rollback model of transactions, 426

root object, 258

root transaction object, 433

round tripping, 149–50

RowFilter, 342

RPC (Remote Procedure Call), 199, 416

RServer.exe.config configuration file, 291

S
SaveCustomer method, 311

SaveViewState method, 102

scalability, 9

scaling up/out, 6

SchemaImporterExtension type, 222, 233

SchemaOnly value, CommandBehavior

enumeration, 338

scripting

generating client-side script, 126–33

out-of-band callbacks, 136–43

overview, 125–26

page support for, 133–36

secondary objects, 258

security

authentication options

Forms-based authentication, 162

overview, 160

Passport-based authentication, 161

Windows-based authentication, 161

<authentication> element, 165

<authorization> element, 168–69

cookieless authentication support, 167–68

■INDEX452

522xINDEX.qxd 8/31/05 3:42 PM Page 452

core security services, 147–48

encryption services

hash codes, 153–54

hashing a file, 154–55

overview, 152–53

forms authentication improvements, 171

<forms> element, 166

FormsAuthentication type, 169–71

leveraging forms authentication model,

163–64

Membership type

adding new members, 175–76

deleting users, 177–78

MembershipUser type, 176

overview, 172–73

specifying a membership provider for

website, 173–74

updating user's properties, 177

.NET application architecture, 10–11

overview, 147

role membership

assigning users to roles, 190

creating, obtaining and deleting roles,

189–90

determining, 190–91

enabling role membership services,

187–88

overview, 186

roles type, 188–89

role of strongly named assemblies, 148–49

Role-Based Security (RBS)

overview, 155–57

restricting access based on user

identity, 157–58

round tripping

example, 149–50

preventing via strong naming, 150–52

securing Web applications

configuration inheritance, 159–60

overview, 158–59

security server controls

ChangePassword control, 184

CreateUserWizard control, 184–86

Login control, 178–80

LoginName control, 181–82

LoginStatus control, 180–81

overview, 178

PasswordRecovery control, 182–84

Web Application Administration Tool,

191–94

security controls, 252

security server controls, 178

<Security> root element, WS-Security header,

241

SecurityCallContext type, 266–68

security-centric namespace, 147

SecurityRole attribute, 265–66

SecurityTokenManager, 242

Select element, 128

SelectCommand, 378

Selected event, 387

SelectedIndex property, 384

Selecting event, 387

SelectMethod attribute, 381–82

SelectParameter parameter, 383

SendHashed value, PasswordOption enum,

244

SendSMS operation, 212, 214

SequentialAccess value, CommandBehavior

enumeration, 338

server applications, 253

/serverInterface switch, 217

ServerVariables collection, 31

service address, 307

service aggregation, 25

service binding, 307

Service Broker, 415–17

Service class, 203

service contracts, 304, 307, 310–12

Service Metadata Utility tool, 308

service metaphor, 301

service orientation (SO), 15–17, 197

four tenets, 301–3

objects vs. services, 301

overview, 300–301

■INDEX 453

522xINDEX.qxd 8/31/05 3:42 PM Page 453

vs. service oriented architecture (SOA),

303

Web services as SO implementation,

202–6

Service Oriented Architecture (SOA), 15–17

difference from Remote Procedure Call

(RPC), 199

overview, 197–99

vs. service orientation (SO), 303

themes, 199–202

ServiceBase class, 291

ServiceContract attribute, 304, 310–11

serviced components, 20–21, 23, 249, 278

ServicedComponent class, 250–51, 271, 426

ServiceHost class, 307

ServiceHost constructor, 307

Service.Open method, 307

Session class, 31, 33, 35, 38–39, 59

Session ID module, 42

Session module, 42

Session state, 10

Session_End event, 43

Session_Start event, 43

SessionParameter parameter, 380

set method, 106

set-oriented capabilities, T-SQL, 409

SetPrincipalPolicy, 156

shadow copying, 72

Short Message Service (SMS) message, 212

<Signature> element, WS-Security SOAP

header, 241

SignOut() method, 170

Simple Object Access Protocol (SOAP), 56

Component Service SOAP, 278–80

headers, 234, 241

messages, 204, 273–74

Stacks, 16, 202, 204

stored procedure SOAP, 281

SingleResult value, CommandBehavior

enumeration, 338

SingleRow value, CommandBehavior

enumeration, 338

SitemapDataSource control, 374

SiteMapPath control, DataBoundControl

class, 375

SMS (Short Message Service) message, 212

<smtpMail> element, 182

sn.exe utility, 150

SO. See service orientation (SO)

SOA. See Service Oriented Architecture (SOA)

SOAP. See Simple Object Access Protocol

(SOAP)

.soap extension, 276, 279

SoapContext object, 240

SomeValue property, 113

SourceColumn attribute, 365

SourceVersion attribute, 365

Sprott, David, 198

SQL, cache dependencies

automating administration, 392–98

configuration, 389–90

programming with, 391

SQL Profiler tool, 8

SQL Server 2005

CLR integration in

choosing between middle-tier

components and, 410–11

comparing managed code and

Transact-SQL (T-SQL), 409–10

managed stored procedures, 412–14

overview, 409

role of, 410

user-defined aggregate (UDA), 415

user-defined functions (UDFs) and

table-valued functions, 414–15

user-defined type (UDT), 415

native XML support

mixing XML and relational data, 417–18

using XML type, 418–19

XML and ADO.NET 2.0, 420–22

XML methods and role of XQuery,

419–20

overview, 408

Service Broker, 415

message queuing, reasons for using, 416

place in messaging world, 416–17

■INDEX454

522xINDEX.qxd 8/31/05 3:42 PM Page 454

SQL Server Transact-SQL (TSQL), 261

SQLCacheDependency class, 355, 388

SqlCacheDependencyAdmin type, 392

SqlCommand constructor, 413

SqlConnection constructor, 413

SqlConnection object, 356

SqlConnection type, 328

SqlContext feature, 412

SqlDataReader class, 346, 421

SqlDataSource control, 330, 373–75, 377–78,

380–81

SqlPipe feature, 412

SqlXml class, 420–21

stability, 14

state server, 10

stateless objects, 299

sticky sessions, 10

stored procedures, managed, 412–14

strongly named assemblies

preventing round tripping via, 150–52

role of, 148–49

Structured Query Language. See SQL

Substitution control, 122

Substitution element, 123

Subtract method, 304

Supports option, 258

Suppress value, TransactionOption enum,

428

Svcutil.exe tool, 309

sysobjects table, 395–96

System32\COM\SOAPVRoots subdirectory,

279

System.Data namespace, 324–25

concurrency

blindly overwriting changes, 362

overview, 361

querying all values in where clause,

362–65

querying on only changed column

values, 366–68

timestamp column, 368–72

using pessimistic locking, 362

connections

connection strings, 328–30

overview, 326

pools, 326–28

data readers

CommandBehavior, 338

overview, 331

working with, 331–37

DataSets

vs. DataReaders, 346–55

enhancements in 2.0, 343–46

overview, 339–43

managed provider factories, 356–61

overview, 324–26

System.Data.Common namespace, 358

System.Data.DbType enumeration, 420

System.Data.ODBC namespace, 324

System.Data.OleDb namespace, 324

System.Data.OracleClient namespace, 325

System.Data.SqlClient namespace, 325

System.Data.SqlDbType enumeration, 420

System.Data.SqlServerCe namespace, 325

System.Data.SqlTypes namespace, 420

System.Diagnostics.AppSettingsReader type,

192

System.EnterprisesServices assembly, 250

System.Messaging namespace, 283, 316

System.Messaging.dll assembly, 284–85

System.Runtime.Remoting.Channels.Http.

HttpRemotingHandlerFactory

namespace, 56

System.Security security-centric namespace,

148

System.Security.AccessControl security-

centric namespace, 148

System.Security.Cryptography security-

centric namespace, 148

System.Security.Permissions security-centric

namespace, 148

System.Security.Policy security-centric

namespace, 148

System.Security.Principal security-centric

namespace, 148

■INDEX 455

522xINDEX.qxd 8/31/05 3:42 PM Page 455

System.Security.Principal.IIdentity interface,

156

System.Security.Principal.IPrincipal

interface, 156

System.ServiceProcess.ServiceBase class, 284

System.String class, 153

System.Transactions namespace, Framework

class library, 427

system.web element, 51, 390

System.Web namespace, 31, 47, 52

<system.web> element, 108, 159

System.Web.Handlers.AssemblyResource-

Loader namespace, 55

System.Web.Handlers.PrecompHandler

namespace, 55

System.Web.Handlers.TraceHandler

namespace, 55

System.Web.Handlers.WebAdminHandler

namespace, 55

System.Web.Handlers.WebPartExportHandler

namespace, 55

System.Web.HttpForbiddenHandler

namespace, 56

System.Web.Security namespace, 172

System.Web.Security security-centric

namespace, 148

System.Web.Security.Membership type, 174

System.Web.Services.Protocols.WebService-

HandlerFactory namespace, 56

System.Web.StaticFileHandler namespace,

56

System.Web.UI.Control object, 111

System.Web.UI.Page namespace, 29, 36, 54,

63, 65

System.Web.UI.PageHandlerFactory

namespace, 56

System.Web.UI.SimpleHandlerFactory

namespace, 56

System.Xml.Serialization.Advanced

namespace, 222

T
TableName attribute, 396–98

Table-valued functions (TVFs), 411, 414–15

testability, 14

Text property, 111

Textbox control, 78, 103, 111, 175–76

Thread Management feature, 248

Thread.CurrentPrincipal interface, 156

tight coupling, 199

timeout attribute, <forms> section, 166

TimeSpan, 286

timestamp column, 368–72

<Timestamp> element, WS-Security SOAP

header, 241

tlbimp.exe utility, 251

trace.axd file, 55

transacted hash table, 427

Transaction attribute, 251

Transaction Management Leveraging feature,

248

TransactionAbortedExeption, 437

TransactionOption enum, 428

transactions, 257–61

in .NET Framework version 1.x, 423–26

in .NET Framework version 2.0

Lightweight Transaction Manager, 427

overview, 426–27

programming transactions, 427–34

transacted types, 434–38

overview, 423

transactions feature, WCF, 312

TransactionScope object, 427

Transact-SQL (T-SQL), 3, 409–10

Transfer() method, 30

TreeView control, DataBoundControl class,

375

TSQL (SQL Server Transact-SQL), 261

T-SQL (Transact-SQL), 3, 409–10

TVFs (Table-valued functions), 411, 414–15

type attribute, 51

Type object, 135

Type Selector dialog box, 400

TypeName attribute, 381–82

■INDEX456

522xINDEX.qxd 8/31/05 3:42 PM Page 456

U
UDAs (user-defined aggregates), 411, 415

UDDI (Universal Description Discovery

Integration) repository, 199

UDDI specification, 202

UDFs (user-defined functions), 411, 414–15

UDTs (user-defined types), 411, 415

Unified programming model, 416

Uniform Resource Locator (URL), 33–34,

40–41, 56–57, 60, 62

Universal Description Discovery Integration

(UDDI) repository, 199

Unload event, 39, 84

Unlock method, 43

UnprocessedOrders.xml document, 438

Update method, 365

UpdateBook method, 386–87

UpdateCommand, 365

Updated event, 387

UpdateMethod, 386

UpdateQuantity method, 431

UpdateRequestCache event, 41

UpdateUser method, 173, 177

Updating event, 387

URL (Uniform Resource Locator), 33–34,

40–41, 56–57, 60, 62

usability, 13

UseCookies setting, cookieless attribute, 167

UseProfileDevice setting, cookieless

attribute, 167

User Control event, 92–93

user identity, restricting access based on,

157–58

User Interface Processes, 273

User property, 40

<user> elements, 170

UserControl class, 34, 171

user-defined aggregates (UDAs), 411, 415

user-defined functions (UDFs), 411, 414–15

user-defined types (UDTs), 411, 415

Username property, PasswordRecovery

control, 182

UsernameToken, 244

<UsernameToken> element, WS-Security

SOAP header, 241

UsernameTokenManager, 242

users attribute, 168

UseUri setting, cookieless attribute, 167

using statement, 402

V
value method, 419–20

Value property, SqlXml class, 422

varchar() data type, 417, 420

VaryByParam attribute, 34, 123

verbs attribute, 168

vertical scaling, 9

ViewState, 84–85

enhancements

Action attribute constraints problems

with, 109

control state solution, 118–19

cross-page Postbacks solution, 110–15

fat serialization problem, 115–17

optimized serialization solution, 117–18

overview, 109

problem losing all properties when

ViewState is off, 118

overview, 102–7

Post-Cache substitution, 122–25

replacing ViewState persistence, 119,

121–22

value, 108

ViewState property, 39

Visible property, System.Web.UI.Control

namespace, 83

W
WCF. See Windows Communication

Foundation (WCF)

Web Application Administration Tool, 191–94

Web Farm, 9

Web Form event model, 87–89

Web Forms

options for building, 66–70

structure of, 65

■INDEX 457

522xINDEX.qxd 8/31/05 3:42 PM Page 457

Web Service Description Language (WSDL),

271, 302

Web Service Enhancements (WSE), 197, 314

operational requirements, 235–39

overview, 234–35

WS-Security, 241–44

Web service handler, 206–9

Web Service stack, 202

Web services, 275–76, 299, 314–15

Web Services Interoperability Organization

(WS-I), 202

operational requirements, 235–41

overview, 234–35

WS-Security, 241–44

WebAdmin.axd file, 55

web.config (or app.config) file, 33, 51, 55,

62–63, 108, 158, 243, 279

WebForm_DoCallback method, 141

WebHandler directive, 57, 59

WebMethod attribute, 208, 271, 275, 304

WebPartExport.axd file, 55

WebResource.axd file, 55

WebService directive, 208–9, 212

Wilkes, Lawrence, 198

Windows authentication, 160

Windows Communication Foundation

(WCF), 274, 278

overview, 297

preparing for

choosing best technology, 317–18

ease of application migration to WCF,

314–16

overview, 312–13

whether implementation will

interoperate with WCF, 313–14

whether will break current application,

313

problems solved by, 298–300

programming with

calling the service, 307–10

hosting the service, 307

instancing, 312

overview, 303

service contracts, 304, 310–12

specifying address and binding, 305–6

transactions, 312

Service Orientation (SO) and Service

Oriented Architecture (SOA)

objects vs. services, 301

overview, 300–301

transactions, 301–3

what it is, 297

Windows Service process, 273

Windows-based authentication, 161

Write() method, Response class, 30, 45

Writeline function, Console class, 289

WriteXml method, 230, 344

WriteXmlSchema, 344

WS-* specifications, 42

WS-Addressing specification, 236

WS-Attachment/DIME (Direct Internet

Message Encapsulation)

specification, 236

WSDL (Web Service Description Language),

271, 302

WSDL specification, 202

WSE. See Web Service Enhancements (WSE)

WSE SOAP Stack, 239

WSECode namespace, 243

WS-I. See Web Services Interoperability

Organization (WS-I)

WS-Policy specification, 236

WSProfileBinding, 305

WS-Referral specification, 236

WS-SecureConnection specification, 236

WS-Security specification, 236

WS-Trust specification, 236

■INDEX458

522xINDEX.qxd 8/31/05 3:42 PM Page 458

X
XAction instance, 437

XDR (XML Schema Reduced), 17

XML

decomposition, 417

schema specification, 202

schema types, 200

specification, 202

in SQL Server 2005

mixing XML and relational data, 417–18

using XML type, 418–19

XML and ADO.NET 2.0, 420–22

XML methods and role of XQuery,

419–20

XML Data Manipulation Language (XML

DML), 420

XML Schema Reduced (XDR), 17

XmlDataSource control, 374

XmlFormatter attribute, 311

XmlQualifiedName type, 229

XmlReader class, 421–22

XmlSchemaImporter attribute, 228

XmlSchemaProvider attribute, 228–29

XmlSchemaSet class, 230

XmlSchemaSet type, 229

XmlWriter class, 230

XQuery, 419–20

XSLT (eXtensible Stylesheet Language

Transformation), 56

■INDEX 459

522xINDEX.qxd 8/31/05 3:42 PM Page 459

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

522xINDEX.qxd 8/31/05 3:42 PM Page 460

	Expert ASP.NET 2.0 Advanced Application Design
	Table of Content
	PART 1 ASP.NET 2.0 Internals
	Chapter 1 Overview of .NET Application Architecture
	Chapter 2 The ASP.NET Request Pipeline
	Chapter 3 Page Object Internals
	Chapter 4 ViewState and Scripting

	PART 2 .NET Middle Tier Solutions
	Chapter 5 .NET 2.0 Security
	Chapter 6 SOA in .NET:Web Services
	Chapter 7 Enterprise Services
	Chapter 8 Hosting and Communications
	Chapter 9 Windows Communication Foundation

	PART 3 Data Access Layer
	Chapter 10 Managed Providers of Data Access
	Chapter 11 Data Access Layer Services
	Chapter 12 Transactions

	Index

