THE EXPERT’S VOICE® IN SQL SERVER

Pro

ASPNET for
SQL Server

High Performance Data Access
for Web Developers

Mastering the bridge between ASPNET and SQL Server

Brennan Stehling

Apress:

Pro ASPNET
for SQL Server

High Performance Data Access
for Web Developers

Brennan Stehling

Apress*

Pro ASP.NET for SQL Server: High Performance Data Access for Web Developers
Copyright © 2007 by Brennan Stehling

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-860-3
ISBN-10 (pbk): 1-59059-860-1
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jonathan Gennick, Jim Huddleston

Technical Reviewer: Vidya Vrat Agarwal

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Jonathan Hassell, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editors: Sharon Wilkey, Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Diana Van Winkle, Van Winkle Design

Proofreader: April Eddy

Indexer: Carol Burbo

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

Contents at a Glance

Aboutthe AUuthor Xi
About the Technical REVIBWET i e et e e e Xiii
ACKNOWIBAGMENTSo XV
INtrOdUCHION Xvii
CHAPTER1 GettingStarted .. 1
CHAPTER 2 Data Model Choicescco ... 37
CHAPTER 3 Database Management .. 55
CHAPTER 4 Databound Controls ... 73
CHAPTERS5 SQLProviders.............. i, 111
CHAPTER 6 Cachingoi i, 147
CHAPTER 7 Manual DataAccess Layer 191
CHAPTER 8 Generated DataAccesslLayer................................. 233
CHAPTER9 Deployment 255
CHAPTER 10 A Sample Application .. 289
APPENDIX Photo Album 343
INDEX . 399

Contents

Aboutthe AUTNOr ... e Xi
About the Technical Reviewer Xiii
ACKNOWIBAGMENTSo XV
Introduction Xvii
CHAPTER1 Getting Started .. 1
Preparing Your Environment 1

Project Organization i, 2

CommonFolders ... 4

Datasource Configuration 5

Code and Database Separation 7

Managing Provider Servicesc. i 7

Using the CommandLinet 8

Mixing and Matching Providers 11

Configuring Providerso 11

Membership Configuration 13

Roles Configurationl 14

Profile Configurationl 15

CreatingUsersand Roles ..., 18

Securing the Admin Section 34

Creating the AdminUseroiiiiiiin.s. 35

SUMMANY ... e 36

CHAPTER 2 Data Model Choices .. 37
The Data Access Application Block 37

Data Access Code Snippetso 39

Sample Database 46

Trivial Data Examples 47

Nontrivial Data Examples i 49

TypedDataSet 49

Nontyped DataSet 51

DataReader i 53

CONTENTS

CHAPTER 3

CHAPTER 4

DataObject 53
What’s the Downside? 54
SUMMArY ... 54
Database Management 55
Using Database Projectsl 55
Visual Studio 56
SQL Server Management Studio 57
Managing Stored Procedureso i, 57
Managing Indexes and Constraints 62
Performance Considerationsc.coiiiii... 65
Stability Considerations 70
UnitTestsforData 70
Continuous Integration i, yal
SUMMANY ... yal
Databound Controls 73
DetailsView 73
FormView ... 74
GridView 76
Editing and Validating Fields 77
Binding Input Parameters 81
Binding Input Parameters witha Control 81
Binding Input Parameters Programmatically 82
BindingaUserControlcoiiiiiiiiiint. 83
Embedding Databound Controls 84
ViewState and DatabindingL. 87
SessionandViewState 87
Paging 88
DisablingViewStatel 89
ControlState vs. ViewState 89
Creating a Databound Control 91
GettingtheData il 94
Getting the Total Rows Count 97
Wiring the PagerEvents 98
Creating PersonRow ..., 101
Persisting ViewState Manually 105
Working Without ViewState 107
Walking the Debugger i 109

SUMMANY ... 110

CHAPTER 5

CHAPTER 6

CONTENTS

SQL Providers 111
The SgliMembershipProvider 112
Using XML Implementations 113
Setting the Database Connection............................ 113
Creating a Password Policyoouae. 114
The SqlRoleProvidercoii 115
Controlling AccessbyRole 115
Controlling BehaviorbyRole 117
The SqlProfileProvider i 118
Why Anonymous Profiles? 119
Configuring Anonymous Profiles 119
Managing Anonymous Profiles 120
Anonymous and Authenticated Profile Differences 121
Migrating from Anonymous to Authenticated 121
Creatinga USero it 122
Dynamic Profiles and Profilesas BLOBs 124
Using the Provider-Powered ASP.NET Controls 126
Building a SQL Photo Album Provider 129
Provider Requirements 130
Configuration SectionClass 130
Provider Collection Classccoiiiiiiiin... 131
Abstract Provider Class 132
The Provider Implementation 134
Provider Service Class ..., 135
UnitTesting ... 137
The Finished Product, 138
Building a SQL SiteMap Provider, 139
SiteMap Requirementsl 140
Implementing SiteMapProvider 140
SUMMANY ... 145
Caching ... 147
Alternativesto Caching 148
ApplicationState 149
SBSSION ... 150
ViewState 150
CurrentContext i 150
Caching Options i 153
OutputCaching 153

DataCachingo it 159

vii

CONTENTS

CHAPTER 7

Invalidating Cached Data 164
Absolute Expiration 164
Sliding Expiration 164
Cache Dependencyovouir i 165
Manual Removal 165

SQL Cache Dependencies ..., 165
Using the SqglDependency and SqlCacheDependency 165
Polling 168
Query Notifications 172
Troubleshooting Query Notifications 176

Problems with Caching, 186

Performance Strategiesooi i 187
DataWarehousing i 187
Lazyloadingo i 188

SUMMANY .. 189

Manual Data Access Layer 191

Using DataSets, Inline SQL, and Stored Procedures 191
DataSets ... 192
INine SAL 196
Stored Proceduresl 198

Using DataObjects and the ObjectDataSource 199
Design Contract i, 200
DataContract 201
Testing the Design and Data Contracts 203

Buildingthe Database 203
Creating the Database Structure 203
ConsolidatingtheData......................ccoiiiinn. 204
Managing Relationships, 204
Created and Modified 205
What About Nulls? 206
Using Database Projects 208
The DataAccessLayer ..., 217

Buildingthe Website i 225
Connecting the Data Access Layer 225
CreatingUser Controls, 226
Creatingthe Pages ..., 229

SUMMANY ... 231

CHAPTER 8

CHAPTER 9

CHAPTER 10

CONTENTS

Generated Data Access Layer 233
Code Generation ...ttt 233
Build Providers i 234
CodeDom Namespaceccooiiiiiiiiiananans. 237
Templating ... 241
SUDSONIC ... 242
SubSonic Templating 243
Partial Classes ... 245
QueryTool 247
Scaffolding ... 248
BliNg ... 249
SUMMANY ... 253
Deployment 255
Automation with MSBuild 256
DeployingtheWebsite 261
Website Deployment Projects 261
Automating Configuration Changes 262
PostBuild Deployments 264
Deploying the Databasel 2711
Generating Change Scripts ..., 272
Automating Database Updates 274
Custom Configuration Sections 285
SUMMArY ... 288
A Sample Application 289
Understanding Performance and Scalability 289
ConcurrentRequestsl 290
Bottlenecks ... 291
Traffic SPIKeS 291
Distributing Traffic 293
Distributing Contentl 294
Distributing Services 295
Distributing the Back End 296
Planning for Scalabilityl 298
The Sample Application i 298
Creating the Database, 299

Get,Save,andDelete 300

ix

CONTENTS

APPENDIX

Creating Data Access Providerscooviiiiriinin... 303
EventProvider Objectl 303
Revised DomainObject 307

Managing Relationships 310
UsingLocationso 311

Custom Configurationco i 314
Configuration Groupingcc i 315
Declaring the Custom Configuration 317
Configuring the Providers, 318

Creating New Providersco i, 321

Implementing a LINQ Provider 321

Implementing a WCF Providerl 332
WCF Service Requirements 333
Hosting the Service 335
Defining the DataContracts 336
Configuring the Provider iiiiiiiit. 336

Usingthe Providers i 337

SUMMANY .. 341

Photo Album 343

Photo Album Provider 343
Configuration i 343
Classesoiit i 344
Table Scripts ... 371
Constraints Scripts 372
Stored Procedure Scripts 373
Website Classes ... 379

SQL SiteMap Providerl 385
ClasSesoviiti 385
Table Scripts ... 394
Stored Procedure Scripts ...l 394

... 399

About the Author

BRENNAN STEHLING is a developer who has a long background in web development. He
created SmallSharpTools.com, which is a collection of open source C# projects designed to

augment the .NET Framework with small components that are extensible and interoperable.

He is also a member of the Wisconsin .NET User Group executive committee.

Xi

About the Technical Reviewer

VIDYA VRAT AGARWAL is a Microsoft .NET purist and an MCPD, MCTS,
MCT, MCSD.NET, MCAD.NET, and MCSD. He works with Lionbridge
(NASDAQ: LIOX), and his business card reads Subject Matter Expert
(SME). He is also a lifetime member of the Computer Society of India
(CSI). He started working on Microsoft .NET with its beta release. He has
been involved in software development, evangelism, consultation, corpo-
rate training, and T3 programs on Microsoft .NET for various employers
and corporate clients.

He lives with his beloved wife, Rupali, and lovely daughter, Vamika (“Pearly”). He believes
that nothing will turn into a reality without them. He is the follower of the concept “No Pain, No
Gain” and believes that his wife is his greatest strength. He is a bibliophile; when he is not work-
ing on technical stuff, he likes to play with his one-and-a-half-year-old daughter and also likes
reading spiritual and occult science books. He blogs at http://dotnetpassion.blogspot.com.

xiii

http://dotnetpassion.blogspot.com

Acknowledgments

I would like to thank everyone who made this book possible. A great deal of work went into
creating every detail, and I received a lot of support and encouragement from the Apress staff,
which includes Kylie Johnston, Jonathan Gennick, Sharon Wilkey, Ami Knox, and Ellie Foun-
tain. Each of them has impressed me. I am glad I wrote this book with Apress.

I also want to thank others who helped me work through technical details. Julie Lerman
helped me through some strange technical problems and also deserves credit for being such a
great supporter and a speaker for INETA. The development community could use more devel-
opers like her.

XV

Introduction

This book covers the middle ground between ASPNET and SQL Server that is not covered
sufficiently by books that focus on these two big pieces independently. I wrote this book to
focus on the bridge between these two systems to reveal all of the techniques and features
available to developers so that you could learn to fully leverage these two technologies, which
were designed very cleverly to work together. As you read the book and work through the sam-
ple projects, my hope is that you will discover features that you did not know about previously
that will help you make your websites faster and easier to maintain.

Who This Book Is For

This book is for the developer who wants to dig deeper into what can be done with ASPNET
and SQL Server. If you ever wanted to know more about how databound controls worked
with the ObjectDataSource or to build your own provider model implementations, this book
is for you.

How This Book Is Structured

This book is made up of the following ten chapters with a sample project for each chapter:

Chapter 1: Getting Started

This chapter starts with preparing the development environment that will be used throughout
the book. Then it moves into managing and configuring the provider services and finally cre-
ating users and roles.

Chapter 2: Data Model Choices

There are many ways to access the database from ASPNET, so this chapter looks into those
choices and explains how to decide what to use in different situations as well as the reasons why.

Chapter 3: Database Management

Many ASPNET developers do not leverage the tools that are available in Visual Studio that
make it very easy to manage the tables, stored procedures, and other resources that are in the
database. This chapter walks through how to use a Database Project to manage the scripts to
create tables and stored procedures as well as manage the indexes and constraints. Finally, it
covers how you can test changes to the database regularly to ensure your application and
database stay in sync.

Xvii

xviii

INTRODUCTION

Chapter 4: Databound Controls

ASPNET has a broad collection of databound controls, and this chapter goes over the ones
that you will use the most and then digs into techniques you can employ to minimize the
amount of code that you would place in the code-behind files. Then it covers how to create a
databound control from the ground up and walks through how every part works including the
use of ViewState and ControlState.

Chapter 5: SQL Providers

The provider model is very useful, and this chapter covers the three most used providers. It
then covers the creation of a completely custom SQL Photo Album provider that works with a
custom SQL SiteMap provider implementation.

Chapter 6: Caching

Improving the speed of an application can be done using caching, but there are so many ways
this can be done. ASPNET does include a caching mechanism, which is covered extensively,
but there are also other simpler techniques that you can leverage that can also boost perform-
ance. All of these techniques are explained.

Chapter 7: Manual Data Access Layer

A manually constructed data access layer gives you the most control and greatest flexibility,
and this chapter goes through everything that you can do to produce a fully functioning web-
site built on top of a finely tuned data access layer.

Chapter 8: Generated Data Access Layer

Instead of manually building the data access layer, you can choose to generate some or all of
the data access code using various utilities that are available. This chapter covers how to use
code generation to automatically create working software and then explores two powerful util-
ities that generate complete data access layers for your website.

Chapter 9: Deployment

Once your website is built, you will need to deploy it, and this can often be the hardest part of
the job. Fortunately, there are ways to make it the easiest task. This chapter covers how to use
MSBuild to automate the build and deployment of a website including the database changes.

Chapter 10: A Sample Application

The final chapter puts it all together with a sample application that starts out with an explana-
tion of performance and scalability and then shows how all of the concerns about speed are
addressed by building a highly flexible website that can adapt to changing needs.

INTRODUCTION

Prerequisites

To work with the sample projects for this book, you will need Visual Studio 2005 and SQL
Server 2005 for the majority of the chapters. Chapters 8 and 10 make use of the .NET Frame-
work 3.5, so you will need either the LINQ CTP or Visual Studio 2008.

Downloading the Code

The source code for this book is available to readers at http://www.apress.comin the Down-
loads section of this book’s home page as well as from http://SmallSharpTools.com/Apress.

Contacting the Author

You can contact the book’s author, Brennan Stehling, at brennan@smallsharptools.com or
access his blog at http://brennan.offwhite.net/blog/.

Xix

http://www.apress.com
http://SmallSharpTools.com/Apress
mailto:brennan@smallsharptools.com
http://brennan.offwhite.net/blog

CHAPTER 1

Getting Started

Brformance is always an issue. This book will show you how to optimize ASPNET 2.0 applica-
tion access to SQL Server databases. You can leverage the close integration of ASPNET 2.0 and
SQL Server to achieve levels of performance not possible with other technologies. You'll inves-
tigate in detail the middle ground between ASPNET 2.0 and SQL Server and how to exploit it.
This book demonstrates all concepts with professional code, so the first thing you need to
do is set up your development environment. I'll cover related issues along the way.
This chapter covers the following:

¢ Preparing your environment
* Managing provider services
* Configuring providers

* Creating users and roles

Preparing Your Environment

I typically run several Microsoft Virtual PC environments and move between them as my
needs change. When I first set up my initial virtual environments, I create as many as I need.
One will be my main development environment. This has been helpful as I keep a backup
image of the initial environment immediately after I create it. As I try out beta releases or
third-party add-ons, I may begin to dirty up my environment. Because the uninstall process
may not completely clean up Windows installations, the virtual environments come in handy.

For example, at a local user group session, a presenter was demonstrating a tool that
integrated with Visual Studio. Instead of installing the tool in my current development envi-
ronment, I cloned a fresh environment and used it to try the tool. Afterward, I turned off the
environment and deleted it to clear up space for another environment. My primary environ-
ment wasn't affected at all.

I also create two drives within my virtual environment. The C: drive holds the operating
system, while the D: drive holds my data. These drives are represented by virtual hard drives.
And if I decide to clone my data drive, I can use it with another system as I see it. Because I
typically develop every project by using source control, I can start with a fresh environment,
pull down the current project versions, and start development again.

To further leverage virtualization, you can also create a virtual hard-drive installation of
your development environment and set the files to read-only. Then you can create a new vir-
tual image that uses the read-only copy as a base image while keeping all changes on the

CHAPTER 1 ©' GETTING STARTED

secondary image. When you are given the option to create a new virtual hard drive, you can
choose the Differencing option, as shown in Figure 1-1.

Virtual Hard Disk Options
The Linked to & hard disk option is advanced., g

Select & virtual hard disk option:
() Dynamically expanding (Recommended)
The size of this virtual hard disk expands to a fixed maximum size as data is saved

to it, The disk size does not compact automatically when data is deleted. To
compact the disk size, edit the disk using this wizard.

) Fixed size
This virtual hard disk uses a fixed amount of space regardless of the amount of

data stored on it. Its default size is the maximum amount of space available on your
physical hard disk.

(%) Differencing
This virtual hard disk is based on an existing virtual hard disk configuration. Only
changes are stored to the differencing virtual hard disk.

() Linked to a hard disk (Advanced)
This virtual hard disk links to & hard disk on the physical computer,

I « Back |[Meaxt =]I Cancel

Figure 1-1. Creating a differencing virtual hard disk

The differencing image allows you to leave your base image untouched as you begin to
use a fresh environment for development. This conserves space on a hard drive, which can
fill up quickly; a typical virtual image can grow to 20 GB, not including the data image. And
because you can have multiple virtual images using the same base image, your environment
can quickly be prepared for your work as you need it.

One time my coworker needed to start work on a short .NET 1.1 project the next day. She
had only Visual Studio 2005 installed and so was facing a long install process that typically takes
several hours to complete. But because I had already prepared virtual images for .NET 1.1 and
.NET 2.0 development, I had her ready to go in under 20 minutes. The longest wait was for
copying the image off the file server. After she was finished with the short project, she was able
to remove the temporary environment.

Having access to these prebuilt environments has been a major time-saver. I can experi-
ment with tools and techniques that I would not have a chance to try if had to cope with the
consequences of having alpha- and beta-release software mixed in with my main develop-
ment environment.

Project Organization

For each environment, I place all of my projects into D: \Projects. And I explicitly have the
solutions at the root of each project. I have seen how some teams create solution files only as a
side effect of creating projects, but that undercuts the advantages you get when you properly
manage your projects within a solution.

For a typical web project, I start with the ASPNET website in a blank solution. I then add a
class library and call it ClassLibrary. I put as much of the code for the website into this class
library, for reasons I'll cover later. Then I associate the class library to the website as a reference,
which the solution records as a dependency. This is quite helpful, as the new ASPNET 2.0

CHAPTER 1 © GETTING STARTED

website project model does not include a project file that maintains a manifest for files and
dependencies. I add a database project called Database, which holds all of my database scripts
for creating tables and stored procedures, and scripts to prepare the database with supporting
data. (Database projects require Visual Studio 2005 Professional Edition.) Finally, I create a solu-
tion folder called Solution Items and add a text file named README. txt that provides the basic
information for the project, such as the name, description, requirements, dependencies, and
build and deployment instructions.

The result of all this is the solution structure shown in Figure 1-2.

Solution Explorer - Solution Items > 1 x

i 4

(A Solution 'Sample’ (3 projects)

- | README.txt
Q ClassLibrary
+|- [=d] Properties
T[22l References
2P D:\.\Website\
Bin
%) SampleClassLibrary.dll
@& sampleClassLibrary.pdb
= Database
[Change Scripts
-~ [Create Scripts
- [Queries
- (gll Database References
- @) vista\sqlexpress.Sample.dbo

Lj Selution Explorer | <4 Server Explorer

Figure 1-2. Typical solution environment

When you first set up a blank solution and add your first project or website to it, you may
find that the solution goes away. This is a default setting for Visual Studio, which you can
change. From the Tools menu, choose Options and then click the Projects and Solutions item,
as shown in Figure 1-3.

Options [(esa]
= Environment -~ Visual Studio projects location:
General C\Users\brennaniDocumentsiVisual Studio 20054 Projects |
- Add-in/Macros Security X i
AbtoRecover Visual Studio user project templates location:

C\Users\brennan\DocumentstVisual Studio 20054 Templates\ProjectTemplat |

- Documents
Find and Replace
- Fonts and Colors

Visual Studic user item templates location:
C\Users\brennan'\Documents'Visual Studic 2005\ Templates\ItemTemplates

+- Help =
Import and Export Settings (7 [] Always show Error List if build finishes with errors
-International Settings [7] Track Active Item in Solution Explorer
-+ Keyhaatd ¥| Show advanced build configurations
Saitip [7] Always show solution
- Task List =

Web Browser |¥| Save new projects when created

g [¥] Warn user when the project location is not trusted

Show Output window when build starts

[#- Source Control

[+ Text Editor 7| Prompt for symbelic renaming when renaming files
- Database Tools
Debuaaing

OK | l Cancel

Figure 1-3. Setting the Always Show Solution option

CHAPTER 1 ©' GETTING STARTED

This sample solution will be the template for all the examples in this book. Using the
same basic structure for all projects provides a consistent basis for build automation. It also
keeps everything in the same place for every application you develop. Being able to easily
search the solution for a reference to a database table and then get the table creation script
and any stored procedures using that table is very convenient. Most developers simply write
and keep their table Data Definition Language (DDL) and stored procedures in the database
and move them around by using tools within the database, never saving them as scripts that
can be version-controlled in a Visual Studio project. This common practice fails to leverage
one of the great strengths of Visual Studio 2005 and makes it harder to re-create database
objects from scratch. As a result, changes to improve the application when it comes to data-
base updates are avoided because of all the extra work necessary to make the change. When
your environment allows you to work in a very agile way, you can take on tasks that may not
be attempted otherwise.

Common Folders

As you work on many projects, you'll accumulate tools, templates, and scripts that are useful
across multiple projects. It’s helpful to place them into a common folder that you manage with
source control so that the developers among multiple teams can leverage them as they do
their work. With the Solution layout in Figure 1-2, it’s trivial to drop in an MSBuild script and
CMD scripts to a new project to provide build automation. You'll use the following folders for
tools, templates, and scripts throughout the book (see Figure 1-4):

D:\Projects\Common\Tools
D:\Projects\Common\Templates

D:\Projects\Common\Scripts

@'\:jv' <« DATA(D:) » Projects » Common » - | +y | | Search 2|

‘ Organize ~ Views -

= Name Date modif.. Type 3
‘|: Documents
BB Pictures i ! I
:[J' Music Scripts Templates Tools
Mare »
Folders v
a DATA (D) & Select a file to preview,
Common
Downloads

Program Files

m

w Projects
Archive
Commeon

Scripts
Templates -

Figure 1-4. Folders for tools, scripts, and templates

CHAPTER 1 © GETTING STARTED

To make it easier to script against these folders, let’s add some system environment vari-
ables for these locations (see Figure 1-5):

DevTools =D:\Projects\Common\Tools
DevTemplates =D:\Projects\Common\Templates

DevScripts =D:\Projects\Common\Scripts

Environment Variables

User variables for brennan

Variable Value

SVN_ASP_DOT_... *

TEMP %LUSERPROFILE%:\AppData'Local Temp
T™MP 2LUSERPROFILE%: \AppDataLocal \Temp

System variables

Variable Value

I ey empla{:es :\Projects \CommoniTempl ahés
DevToals D:\ProjectsiCommeniTools
FP_NO_HOST_C... NO i

| mMew.. || Edt. || Deete |

| OK | l Cancel |

Figure 1-5. Environment variables for development

You'll build on these folders and variables throughout the book to enhance your common
development environment.

Datasource Configuration

The datasource is the mechanism used to connect an ASPNET 2.0 web application to data.

For an ASPNET application, the data is typically in a SQL Server database. To connect to a data-
source, you use a connection string that sets various options for connecting to a database. There
are many options available with connection strings. For the most basic connection string, you
need the location of the database and the authentication details to access the database. The
following is an example of such a connection string:

server=localhost;database=Products;uid=webuser;pwd=webpw

Notice that this includes server, database, uid, and pwd parameters, which provide all that
is necessary to access the Products database on the local machine. This form should be very
familiar to an ASPNET developer. However, there are alternatives I will explain shortly.

5

6

CHAPTER 1 = GETTING STARTED

MIXED-MODE AUTHENTICATION

With SQL Server, you can choose to allow for Windows authentication, SQL Server authentication, or both.
This choice is presented to you when SQL Server is installed. SQL Server accounts are useful when the data-
base is hosted on a remote server without access to the Windows domain. Windows authentication is helpful
during development, when your users and the database server are running on the domain. For development
and staging databases, you may grant different levels of access to groups such as database developers and
web developers and then place people in those groups accordingly. For the production databases, you use a
user account that is not shared with the entire development team so that only those limited users who should
have access, do. The applications working with these databases just need the connection string updated to
change authentication modes.

In an ASPNET application, datasources are configured in the Web. config file in a section
named connectionStrings. Each connection string is added to this section with a name, con-
nection string, and provider name—for example:

<connectionStrings>
<add name="SampleDatabase" connectionString="...
providerName="System.Data.SqlClient" />
</connectionStrings>

In a team environment, you'll likely use a source-control system. You'll place your
Web.config file into source control so that each member of the team has the same configura-
tion. However, sharing a source-controlled configuration file can present some problems.

For starters, a common set of authentication values may be used. Using a Windows user
account (for example, of one of the team members) exposes the password to the whole
team—which is bad practice, especially if the password policy requires routine updates.
Another approach is to use a SQL Server account that is shared by the team. This way is better
than using a shared Windows account, but the following option works best. Each project
should be configured with a trusted connection string so that the current user’s account is
used to connect with the database—for example:

server=localhost;Trusted Connection=yes;database=Products;

Instead of providing the uid and pwd parameters, this uses Windows authentication to
access the database. All developers use the same connection string but individually access the
database by using their own accounts.

A trusted connection allows you to control who has access to what in the databases. When
there is a universally shared user account, everyone will have access to everything, and no
individual role management is possible. This way, you can set up the web development team
with access to create and modify stored procedures while not giving them access to directly
alter tables or data. Meanwhile, you can have your database team manage changes to the
tables and stored procedures. And if you do have business analysts or management accessing
the database, you can give them enough access to do what they need to do, but nothing that
would cause trouble with the databases.

A side benefit is that your web team can focus on their concerns without having responsi-
bility for what is happening to the database internals. It also gives the database team the

CHAPTER 1 © GETTING STARTED

freedom to change the database structure while using updated stored procedures to provide
the same public interface for the web team, taking in the same parameters and returning the
same result columns. Keep in mind that sometimes some team members will wear hats for the
web and database teams. That is perfectly fine. Some senior members of the team may have
the right level of mastery on every part of the system to handle those responsibilities. But not
every team member will be ready to take on that level of responsibility. Isolating the latter
group of developers to what they can manage will give them and the project leader some
peace of mind knowing that the project is in the right hands.

Code and Database Separation

On one recent project, I took care of changes to the database while developing the new web-
site from the ground up. The catch was that this website was being built as a front end for
multiple online stores and had a unique database structure for each store. That presented a
real challenge. I planned to build just one basket and order management component but had
to work with different databases while minimizing the effort to integrate the data with various
front ends.

To make the same front end work with these multiple back ends, I created a clean integra-
tion point by using a set of stored procedures that had the same name and a set of parameters
for each of the databases. These stored procedures each returned the same columns or output
parameters. Internally, each would join differently named tables and gather column data from
different locations than the next database, but ultimately would return data that the front end
could easily interpret and display to customers. To run this online store with a different data-
base, all that was needed was to implement those stored procedures. No coding changes were
needed for the websites.

Another side benefit was that my team member was proficient with T-SQL and intimately
familiar with each of the databases. By isolating her focus in that space, she was very produc-
tive and able to complete the integrations for a new website rollout much more quickly that I
could have. As she worked on those changes, I was able to focus on requested changes to the
front end as well as performance optimization.

As an alternative to using a set of stored procedures as a reliable integration layer, you
could consider a set of web services (Windows Communication Foundation, or WCF) as a
service-oriented architecture (SOA). I am sure that could work, but when a database already
allows a wide range of platforms to talk with it, you already have a cross-platform approach. It
may not use Extensible Markup Language (XML) or Web Services Interoperability Organiza-
tion (WSI) specifications, but SQL Server does work with .NET, PHP, Java, Delphi, and a whole
range of languages and platforms over an Open Database Connectivity (ODBC) connection.
And the developers using those languages and platforms will already have some basic profi-
ciency with SQL, so they can jump right into this approach without touching a single line of
C# or Visual Basic (VB).

Managing Provider Services

The provider model was introduced to ASPNET 2.0. It is to web applications what plug-ins
are to web browsers. Included with the ASPNET providers are the Membership, Roles, and
Profile providers. Each of these providers has a SQL Server implementation, among others. By
default, the SQL Server implementations are preconfigured for an ASPNET website. However,

CHAPTER 1 = GETTING STARTED

you must support these implementations with resources in the database. To prepare these
resources, you will use the aspnet_regsql.exe utility.

The Visual Studio 2005 command prompt provides easy access to this utility from the
console. The utility itself is located in the .NET 2.0 system directory, which is included on that
path defined for the special command line used by the Visual Studio 2005 command prompt.
The utility can be run with no arguments to start the wizard mode, which is a visual mode.
Despite the name, the wizard mode is not nearly as powerful as the command line, which
offers more options.

For starters, the visual mode turns on support for all providers. To enable just the Profile
or Membership provider, you can request just those features from the command line and not
add support for the Roles provider (which you may implement with a custom provider or not
at all). Get a full list of the available options with the following command:

aspnet_regsqgl.exe -?

The available services supported by the utility include Membership, Role manager,
Profiles, Personalization, and SQL Web event provider. Each can be selectively registered
with the database.

Using the Command Line

Most of the time that I work with a website using the available providers, I use only the
Membership, Roles, and Personalization support and leave the others off. To add just
the desired services, use the following Add Provider Services.cmd scriptin Listing 1-1.

Listing 1-1. Add Provider Services.cmd

@echo off

set REGSQL="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_regsql.exe"
set DSN="Data Source=.\SQLEXPRESS;Initial Catalog=Chapteroi; w

Integrated Security=True"

%REGSQL% -C %DSN% -A mrpc

pause

This script can be placed at the root of a project, alongside the solution file, to make it
easily available during development. It sets the location of first the utility and then the data-
source to be used to host these features. Finally, the command is executed to add support for
the Membership and Roles provider in the database.

The -C switch specifies the connection string, while -A specifies the list of services you
want added to the database. To add all of them, you can simply specify all instead. The script
takes a short time to complete. When it is done, you can see there will be new tables and
stored procedures in the selected database.

Adding only the services that are going to be used is a practice of minimalism. Features
have a tendency to be used if they are available, so by withholding the services that you do not
plan to use, you save yourself the trouble of watching over them.

While you are developing a website with these features, you will occasionally want to reset
everything and start from scratch. To do so, you can use a script to remove the provider serv-
ices. However, the utility does not let you remove these services if there is data in tables

CHAPTER 1 © GETTING STARTED

created by the utility. To help it out, you must delete the data in the right order because of the
foreign key constraints among the tables.
To do so, use the following script named WipeProviderData.sql in Listing 1-2.

Listing 1-2. WipeProviderData.sql

-- WipeProviderData.sql

-- Wipes data from the provider services table so the services can be removed
-- (and added back fresh)

-- SELECT name FROM sysobjects WHERE type = 'U' and name like 'aspnet %'

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND
name = 'aspnet WebEvent Events')

BEGIN
delete from dbo.aspnet WebEvent Events
END
GO
IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND
name = 'aspnet PersonalizationAllUsers')
BEGIN
delete from dbo.aspnet PersonalizationAllUsers
END
Go

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND
name = 'aspnet PersonalizationPerUser')
BEGIN
delete from dbo.aspnet PersonalizationPerUser
END
Go

IF EXISTS (SELECT * FROM sysobjects WHERE type
name = 'aspnet Membership')
BEGIN
delete from dbo.aspnet Membership
END
Go

1}
c

AND

IF EXISTS (SELECT * FROM sysobjects WHERE type
BEGIN
delete from dbo.aspnet Profile
END
GO

1}
c

AND name = 'aspnet Profile')

IF EXISTS (SELECT * FROM sysobjects WHERE type

1}
c

AND

10

CHAPTER 1 = GETTING STARTED

name = 'aspnet UsersInRoles')
BEGIN
delete from dbo.aspnet UsersInRoles
END
Go

IF EXISTS (SELECT * FROM sysobjects WHERE type
BEGIN
delete from dbo.aspnet Users
END
Go

"U' AND name = 'aspnet Users"')

IF EXISTS (SELECT * FROM sysobjects WHERE type
BEGIN
delete from dbo.aspnet Roles
END
Go

"U' AND name = 'aspnet Roles"')

IF EXISTS (SELECT * FROM sysobjects WHERE type

"U' AND name = 'aspnet Paths')

BEGIN
delete from dbo.aspnet Paths
END
Go
IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND

name = 'aspnet Applications')
BEGIN
delete from dbo.aspnet Applications
END
Go

You can place this script into your scripts folder, D: \Projects\Common\Scripts, for use in
multiple projects. When you want to use it, load it into SQL Server Management Studio and
run it in the context of the database you want wiped. Then you can run the removal script,
Remove Provider Services.cmd, shown in Listing 1-3.

Listing 1-3. Remove Provider Services.cmd

@echo off

set REGSQL="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_regsql.exe"
set DSN="Data Source=.\SQLEXPRESS;Initial Catalog=Chapteroi; w

Integrated Security=True"

%REGSQL% -C %DSN% -R mrpc

Pause

This script is identical to Add Provider Services.cmd, except for the simple change in the
command-line switch from -A to -R, which specifies that the services are to be removed. After
the data is wiped, this script will run successfully.

CHAPTER 1 © GETTING STARTED

Mixing and Matching Providers

Because of the nature of the providers, it is possible to deploy these provider services to either
the same database that the rest of the website is using or an entirely different database. It is
possible to even deploy the services for each individual provider to a separate database. There
can be good reason to do so. In one instance, you may be running a website connected to a
massive database that needs to be taken offline occasionally for maintenance. In doing so, it
may not be completely necessary to take the provider services offline as well. You may also
find that you get better performance by having your provider services hosted on a database on
a different piece of hardware.

Your configuration options go much further, as explained in the next section.

Configuring Providers

When you first create a new ASPNET 2.0 website with Visual Studio 2005, it is already precon-
figured to work with a set of defaults. These defaults are set in the Machine. config file, which
is a part of the .NET 2.0 installation. Typically it is located at C: \WINDOWS\Microsoft.NET\
Framework\v2.0.50727\CONFIG, or wherever .NET 2.0 has been installed onto your computer.
The defaults for the provider configuration are near the bottom, in the system.web section, as
shown in Listing 1-4.

Listing 1-4. system.web in Machine.config

<system.web>
<processModel autoConfig="true"/>

<httpHandlers />

<membership>
<providers>
<add name="AspNetSqlMembershipProvider"
type="System.Web.Security.SqlMembershipProvider, w=
System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b0o3f5f7f11d50a3a"
connectionStringName="LocalSqlServer"
enablePasswordRetrieval="false"
enablePasswordReset="true"
requiresQuestionAndAnswer="true"
applicationName="/"
requiresUniqueEmail="false"
passwordFormat="Hashed"
maxInvalidPasswordAttempts="5"
minRequiredPasswordLength="7"
minRequiredNonalphanumericCharacters="1"
passwordAttemptWindow="10"
passwordStrengthRegularExpression="" />
</providers>
</membership>

11

12

CHAPTER 1 = GETTING STARTED

<profile>
<providers>
<add name="AspNetSqlProfileProvider"
connectionStringName="LocalSqlServer" applicationName="/"
type="System.Web.Profile.SqlProfileProvider, System.Web, w=
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
</providers>
</profile>

<roleManager>
<providers>
<add name="AspNetSqlRoleProvider"
connectionStringName="LocalSqlServer" applicationName="/"
type="System.Web.Security.SqlRoleProvider, System.Web, w=
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
<add name="AspNetWindowsTokenRoleProvider" applicationName="/"
type="System.Web.Security.WindowsTokenRoleProvider, XXX
System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
</providers>
</roleManager>
</system.web>

A default connection string named LocalSqlServer is also defined, which looks for a file
called aspnetdb.mdf in the App_Data folder (see Listing 1-5).

Listing 1-5. connectionStrings in Machine.config

<connectionStrings>

<add name="LocalSqlServer"
connectionString="data source=.\SQLEXPRESS;Integrated =
Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true" w
providerName="System.Data.SqlClient"/>
</connectionStrings>

The default LocalSqlServer connection is referenced by the Membership, Roles, and
Profile provider configurations in the system.web block. The datasource specifies that this
database exists in the DATA_DIRECTORY. That DATA DIRECTORY for an ASPNET 2.0 website is
the App_Data folder. If you were to create a new website and start using the Membership and
Profile services, this SQL Express database would be created for you in the App_Data folder.
However, if you have the Standard or Professional Edition of SQL Server installed, this process
would fail because SQL Express is required. This default configuration can be quite handy, but
also dangerous if you do not adjust it for the deployed environment.

For each provider configuration, the parent block has multiple attributes for the respec-
tive provider implementation. And within that block, you have the ability to add, remove, or
even clear the provider implementations. In your new website’s Web. config file, you will want
to clear the defaults set by Machine.config and customize them specifically for your needs.

Next you will configure a new website to use the SQL implementations of the Membership,
Roles, and Profile providers. Before those are configured, you must prepare the datasource.

CHAPTER 1 © GETTING STARTED

Assuming you have a sample website that will work with a database called Sample and that
has been prepared with the provider services as described in the previous section, use the
configuration in Listing 1-6.

Listing 1-6. Custom Web.config

<connectionStrings>
<add name="sampledb"
connectionString="Data Source=.\SOLEXPRESS;Initial Catalog=Sample; =
Integrated Security=True"
providerName="System.Data.SqlClient"/>
</connectionStrings>

During the development process, I use a trusted database connection and talk to the local
machine. Now you are ready to configure the providers with the SQL implementations. And
because the defaults in Machine. config already use the SQL implementations, let’s start with
them and then make our adjustments.

Membership Configuration

For starters, you'll organize the configuration block to make it more readable. You will be look-
ing at this quite a bit during development, so making it easy to read at a glance will save you
time. Place each attribute on a separate line and indent the attributes to line them up. Then
make the name, applicationName, and connectionStringName the first few attributes. These are
the critical values.

Next you want to ensure that this is the only Membership provider for this website.
Add the clear element before the add element in the membership block to tell the ASPNET
runtime to clear all preconfigured settings. Then add an attribute called defaultProvider to
the membership element and set it to the same value as the name for the newly added provider
configuration. Listing 1-7 shows the Membership configuration. Table 1-1 covers the various
settings that are available.

Listing 1-7. Membership Configuration

<membership defaultProvider="Chaptero1SqlMembershipProvider">

<providers>

<clear/>

<add
name="Chapter01SqlMembershipProvider"
applicationName="/chaptero1”
connectionStringName="chaptero1db"
enablePasswordRetrieval="true"
enablePasswordReset="true"
requiresQuestionAndAnswer="true"
requiresUniqueEmail="false"
passwordFormat="Clear"
maxInvalidPasswordAttempts="5"
minRequiredPasswordLength="7"

13

14

CHAPTER 1 = GETTING STARTED

minRequiredNonalphanumericCharacters="0"
passwordAttemptWindow="10"
passwordStrengthRegularExpression=
type="System.Web.Security.SqlMembershipProvider, w=

System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b0o3f5f7f11d50a3a"

/>
</providers>
</membership>

nn

Table 1-1. Membership Configuration Settings

Setting Description

name Specifies the configuration name referenced by the
membership element

applicationName Defines the application name used as a scope in the
Membership database

connectionStringName Specifies the connection string to use for this provider

enablePasswordRetrieval Specifies whether this provider allows for password
retrieval

enablePasswordReset Specifies whether this provider can reset the user

password (enabled = true)

requiresQuestionAndAnswer Specifies whether the question and answer are required
for password reset and retrieval

requiresUniqueEmail Specifies whether this provider requires a unique e-mail
address per user

passwordFormat Specifies the password format, such as cleared, hashed
(default), and encrypted

maxInvalidPasswordAttempts Specifies how many failed login attempts are allowed
before the user account is locked

minRequiredPasswordLength Specifies the minimal number of characters required
for the password

minRequiredNonalphanumericCharacters Specifies the number of special characters that must be
present for the password

passwordAttemptWindow The duration in minutes when failed attempts are
tracked
passwordStrengthRegularExpression A regular expression used to check a password string for

the required password strength

Roles Configuration

Now you’ll do much of the same with the Roles provider. This configuration block is called
roleManager, and in addition to the defaultProvider attribute, it also has an attribute called
enabled, which allows you to turn it on and off. Later you can easily access the enabled setting
in your code by using the Roles.Enabled property. By default this value is set to false, so it
must be set to add support for roles even if you have configured a provider. See the following
roles configuration in Listing 1-8.

CHAPTER 1 © GETTING STARTED

Listing 1-8. Roles Configuration

<roleManager defaultProvider="ChapteroiSqlRoleProvider" enabled="true">
<providers>
<clear/>
<add
name="Chapter01SqlRoleProvider"
connectionStringName="chapteroidb"
applicationName="/chaptero1”
type="System.Web.Security.SqlRoleProvider, =
System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
/>
</providers>
</roleManager>

Profile Configuration

Finally, you can add support for the Profile provider. And as with the preceding two provider
configurations, you will set the defaultProvider attribute to match the newly added configu-
ration and also add the clear element to ensure that this is the only configured provider. The
unique feature for the Profile provider configuration is the ability to define custom properties.
In the sample configuration shown in Listing 1-9, a few custom properties have been defined:
FirstName, LastName, and BirthDate. I will explain these properties in a bit; Table 1-2 lists the
profile configuration settings.

Listing 1-9. Profile Configuration

<profile defaultProvider="ChapteroiSqlProfileProvider"
automaticSaveEnabled="true" enabled="true">
<providers>
<clear/>
<add
name="Chapter01SqlProfileProvider"
applicationName="/chaptero1”
connectionStringName="chapteroidb"
type="System.Web.Profile.SqlProfileProvider, =
System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"/>
</providers>
<properties>
<add name="FirstName" type="String" allowAnonymous="true" />
<add name="LastName" type="String" allowAnonymous="true" />
<add name="BirthDate" type="DateTime" allowAnonymous="true" />
</properties>
</profile>

15

16

CHAPTER 1 = GETTING STARTED

Table 1-2. Profile Configuration Settings

Setting Description

name Specifies the configuration name referenced by the profile element
applicationName Defines the application name used as a scope in the Profile database
connectionStringName Specifies the connection string to use for this provider

You can see those custom properties near the end. The Profile provider allows you to
manage properties that are bound to the ASPNET user. You can define anything that can be
serialized. In the three examples, both String and DateTime objects can easily be serialized for
storage in the SQL Server database. However, the properties can be much more complicated
objects than these common primitive types. Perhaps you have a business object called
Employee, which holds properties such as Title, Name, Department, and Office. Instead of con-
figuring all these properties, you can instead just specify the Employee object as a property.

Then with code in either your code-behind classes or classes held with the App_Code
folder, you can access this property as Profile.Employee. Thanks to the dynamic compiler,
which is part of the ASPNET runtime, these properties are immediately available within
Visual Studio with IntelliSense support. That sounds really powerful, doesn't it? It is.

However, you can quickly paint yourself into a corner if you set up many complex
objects as Profile properties. What happens when you need to add or remove properties to
the Employee object but you already have many serialized versions of the object held in the
database? How will you upgrade them?

When ASPNET 2.0 first came out, I saw all kinds of examples of how you could create an
object called ShoppingBasket, add objects called Items to the ShoppingBasket, and set up the
ShoppingBasket as a Profile property. I immediately knew that would not be something I was
going to attempt. In the year previous to the launch of .NET 2.0, I was building a commerce
website to manage a basket with items and customer orders, and I never used the Profile
properties. I still had my ShoppingBasket object, which held lots of Item objects, but managed
the tables and stored procedures used with those objects so that I could add new properties to
them and easily manage the changes. If the ITtem started out with just one value for price called
Price, and later I needed to add a couple more such as SalesPrice and SeasonalPrice, it was
easy enough to add them. And to associate them to the current website user, I used the follow-
ing technique.

For this particular website, I had to work with anonymous and authenticated users. When a
user first came to the site, that user was given a token to identify him as he moved from page to
page. This was an anonymous user token. After the user created an account, that anonymous
token would be deleted and the user would be migrated to an authenticated user token. Authenti-
cated users were Members with the Membership provider. To seamlessly work with anonymous
and authenticated users, I needed a way to uniquely identify these users. Unfortunately, there is
no such default value as Profile.UserID. There is a property for Profile.UserName, but that is
available only for authenticated users. So I ended up creating a wrapper property, which provided
a Guid value whether the user was anonymous or authenticated.

CHAPTER 1 © GETTING STARTED

ANONYMOUS PROFILES

To make use of properties on the profile, you must first have anonymous profiles enabled. An element in
system.web named anonymousIdentification can be enabled to turn on this feature.

In the App_Code folder, I created a class called Utility and added the properties in
Listing 1-10.

Listing 1-10. Utility Methods

public static bool IsUserAuthenticated
{
get
{
return HttpContext.Current.User.Identity.IsAuthenticated;
}
}

public static Guid UserID
{
get
{
if (IsUserAuthenticated)
{

return (Guid)Membership.GetUser().ProviderUserKey;

}

else
{
Guid userld =
new Guid(HttpContext.Current.Request.AnonymousID.Substring(0, 36));
return userld;
}

}
}edd

Whenever I needed the unique identifier for the current user, I would access it with
Utility.UserID. But then I had to handle the transition from anonymous to authenticated.
To do so, I added a method to Global.asax called Profile OnMigrateAnonymous, shown in
Listing 1-11.

Listing 1-11. Profile_OnMigrateAnonymous

public void Profile OnMigrateAnonymous(object sender, ProfileMigrateEventArgs args)

{

Guid anonID = new Guid(args.AnonymousID);
Guid authId = (Guid)Membership.GetUser().ProviderUserKey;

17

18

CHAPTER 1 = GETTING STARTED

// migrate anonymous user resources to the authenticated user

// remove the anonymous user.
Membership.DeleteUser(args.AnonymousID, true);

}

In the case of the basket, I just added the items that were in the anonymous user’s basket
into the authenticated user’s basket, and removed the anonymous account and all associated
data.

T have considered adding a Guid property to the Profile properties called UserID, but the
dynamic compiler for the ASPNET runtime works only in code-behind files. It would not work
in the Utility class held in the App _Code directory, which is where I place a good deal of the
code. So the preceding technique was the only option.

Creating Users and Roles

When you work on a website with Visual Studio, you are able to use the Website Administra-
tion tool to create users and roles. But this utility is not a feature built into Microsoft Internet
Information Server (IIS). To work with users and roles, you have to do it yourself—either in the
database by carefully calling stored procedures or by creating an interface to safely use the
Membership API. I chose to create a couple of user controls that I can easily drop into any
website.

The two main controls, UserManager.ascx and RolesManager . ascx, do the work to manage
the users and roles. These controls are held in another user control called MembersControl.ascx.
This control switches between three views to create a new user, edit existing users, and edit
roles. Listings 1-12 through 1-17 provide the full source for these controls.

Listing 1-12. UserManager.ascx

<%@ Control Language="C#" AutoEventWireup="true"

CodeFile="UserManager.ascx.cs" Inherits="MemberControls UserManager" %>
<asp:Label ID="Titlelabel"

runat="server" Text="User Manager"></asp:Label>

<asp:MultivView ID="UsersMultiView" runat="server"

ActiveViewIndex="0">

<asp:View ID="SelectUserView" runat="server"
OnActivate="SelectUserView Activate">

<table>

<tr>

<td>

<asp:GridView ID="UsersGridView" runat="server"

AllowPaging="True"
AutoGenerateColumns="False"
OnInit="UsersGridView Init"
OnPageIndexChanging="UsersGridView PageIndexChanging"
OnRowCommand="UsersGridView RowCommand"

CHAPTER 1 © GETTING STARTED

GridLines="None">
<Columns>
<asp:BoundField DataField="UserName" HeaderText="Username" />
<asp:BoundField DataField="Email" HeaderText="Email" />
<asp:TemplateField ShowHeader="False">
<ItemTemplate>
<asp:LinkButton ID="LinkButton1" runat="server"
CausesValidation="false"
CommandName="ViewUser"
CommandArgument="<%# Bind("UserName") %>
Text="View"></asp:LinkButton>
</ItemTemplate>
</asp:TemplateField>
</Columns>
<RowStyle CssClass="EvenRow" />
<HeaderStyle CssClass="HeaderRow" />
<AlternatingRowStyle CssClass="OddRow" />
</asp:GridView>
</td>
</tr>
<tr>
<td align="center">
<asp:TextBox ID="FilterUsersTextBox" runat="server"
Width="75px"></asp:TextBox>
<asp:Button ID="FilterUsersButton" runat="server"
OnClick="FilterUsersButton Click" Text="Filter" />
</td>
</tr>
</table>

</asp:View>
<asp:View ID="UserView" runat="server" OnActivate="UserView Activate">

<table>
<tr>
<td class="Label">
<asp:Label ID="UserNamelLabel" runat="server" Text="User Name:
Font-Bold="True"></asp:Label></td>
<td class="Data">
<asp:Label ID="UserNameValuelabel" runat="server"
Text=""></asp:Label></td>

</tr>
<tr>
<td class="Label">
<asp:Label ID="ApprovedlLabel" runat="server" Text="Approved:
Font-Bold="True"></asp:Label></td>
<td class="Data">

19

20

CHAPTER 1 = GETTING STARTED

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<asp:Label ID="ApprovedValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">

<asp:Label ID="LockedOutlLabel" runat="server" Text="Locked Out:

Font-Bold="True"></asp:Label></td>
class="Data">
<asp:Label ID="LockedOutValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">

<asp:Label ID="OnlinelLabel" runat="server" Text="Online:
Font-Bold="True"></asp:Label></td>

class="Data">

<asp:Label ID="OnlineValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">

<asp:Label ID="Creationlabel" runat="server" Text="Creation:
Font-Bold="True"></asp:Label></td>

class="Data">

<asp:Label ID="CreationValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">
<asp:lLabel ID="LastActivitylLabel" runat="server"
Text="Last Activity:" Font-Bold="True"></asp:Label></td>
class="Data">
<asp:Label ID="LastActivityValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">
<asp:Label ID="LastlLoginlLabel" runat="server"
Text="Last Login:" Font-Bold="True"></asp:Label></td>
class="Data">
<asp:Label ID="LastlLoginValuelabel" runat="server"
Text=""></asp:Label></td>

colspan="2" class="Data">
<asp:Label ID="UserCommentlLabel" runat="server"
Text="Comment:" Font-Bold="True"></asp:Label>

CHAPTER 1 © GETTING STARTED

<asp:Label ID="UserCommentValuelabel" runat="server"
Text=""></asp:Label>
</td>
</tr>
<tr>
<td colspan="2">
<asp:Button ID="EditUserButton" runat="server"
Text="Edit User" OnClick="EditUserButton Click" />
<asp:Button ID="ResetPasswordButton" runat="server"
Text="Reset Password" OnClick="ResetPasswordButton Click"
Visible="False" />
<asp:Button ID="UnlockUserButton" runat="server"
OnClick="UnlockUserButton Click" Text="Unlock" />
<asp:Button ID="ReturnViewUserButton" runat="server"
Text="Return" OnClick="ReturnViewUserButton Click" />
</td>
</tr>
</table>

</asp:View>
<asp:View ID="EditorView" runat="server" OnActivate="EditorView Activate">

<table>
<tr>
<td class="Label">
<asp:Label ID="UserName2lLabel" runat="server" Text="User Name:
Font-Bold="True"></asp:Label></td> <td class="Data">
<asp:Label ID="UserNameValue2lLabel" runat="server" Text="">
</asp:Label></td>
<td>
 </td>

</tr>
<tr>
<td class="Label">
<asp:lLabel ID="Emaillabel" runat="server" Text="Email:
Font-Bold="True"></asp:Label>

</td>
<td class="Data">
<asp:TextBox ID="EmailTextBox" runat="server"
AutoCompleteType="Email"></asp:TextBox></td>
<td>
<asp:RequiredFieldValidator
ID="EmailRequiredFieldValidator" runat="server"
ErrorMessage="*"
ControlToValidate="EmailTextBox"
EnableClientScript="False"></asp:RequiredFieldValidator>
<asp:RegularExpressionValidator

21

22 CHAPTER 1 = GETTING STARTED

ID="RegularExpressionValidator1" runat="server"
ControlToValidate="EmailTextBox"
EnableClientScript="False"
ErrorMessage="*"
ValidationExpression="\w+([-+." J\w+)*@\w+([-.]\w+) =
N\ AAw+([-.]\w+)*"></asp:RegularExpressionValidator>
</td>
</tr>
<tr>
<td class="Label">
<asp:Label ID="CommentlLabel" runat="server" Text="Comment:
Font-Bold="True"></asp:Label>
</td>
<td class="Data">
<asp:TextBox ID="CommentTextBox" runat="server"
AutoCompleteType="Email" TextMode="MultilLine"></asp:TextBox></td>
<td>
 </td>
</tr>
<tr>
<td class="Label"><asp:Label ID="Approved2lLabel" runat="server"
Text="Approved: " Font-Bold="True"></asp:Label></td>
<td class="Data"><asp:CheckBox ID="ApprovedCheckBox" runat="server" /></td>
<td></td>
</tr>
<tr>
<td class="Label"><asp:Label ID="RoleslLabel" runat="server"
Text="Roles " Font-Bold="True"></asp:Label></td>
<td class="Data">
<asp:CheckBoxList ID="RolesCheckBoxList" runat="server">
</asp:CheckBoxList>
</td>
<td></td>
</tr>
<tr>
<td colspan="3">
<asp:Button ID="UpdateUserButton" runat="server"
Text="Update User" OnClick="UpdateUserButton Click" />
<asp:Button ID="CancelEditUserButton" runat="server"
OnClick="CancelEditUserButton Click"
Text="Cancel" /></td>
</tr>
</table>

</asp:View>
</asp:Multiview>

CHAPTER 1 © GETTING STARTED

Listing 1-13. UserManager.ascx.cs

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class MemberControls UserManager : UserControl

{

#iregion " Events
protected void Page Init(object sender, EventArgs e)
{
}
protected void Page Load(object sender, EventArgs e)
{
}
protected void FilterUsersButton Click(object sender, EventArgs e)
{
BindUsersGridView();
}
protected void EditUserButton Click(object sender, EventArgs e)
{

UsersMultiView.SetActiveView(EditorView);

}

protected void UnlockUserButton Click(object sender, EventArgs e)

{

MembershipUser user = CurrentUser;
if (user != null)

{
user.UnlockUser();
Membership.UpdateUser(user);
BindUserView();

}

}

protected void ResetPasswordButton Click(object sender, EventArgs e)

{

MembershipUser user = CurrentUser;
if (user != null)

{

user.ResetPassword();

}

UsersMultiView.SetActiveView(UserView);

}

protected void ReturnViewUserButton Click(object sender, EventArgs e)

{

23

24 CHAPTER 1 = GETTING STARTED

UsersMultiView.SetActiveView(SelectUserView);

}
protected void UpdateUserButton Click(object sender, EventArgs e)
{
if (CurrentUser != null)
{
MembershipUser user = CurrentUser;
user.Email = EmailTextBox.Text;
user.Comment = CommentTextBox.Text;
user.IsApproved = ApprovedCheckBox.Checked;
Membership.UpdateUser(user);
foreach (ListItem listItem in RolesCheckBoxList.Items)
{
string role = listItem.Value;
if (Roles.RoleExists(role))
{
if (!listItem.Selected &&
Roles.IsUserInRole(user.UserName, role))
{
Roles.RemoveUserFromRole(user.UserName, role);
}
else if (listItem.Selected &&
IRoles.IsUserInRole(user.UserName, role))
{
Roles.AddUserToRole(user.UserName, role);
}
}
}
UsersMultiView.SetActiveView(UserView);
}
}
protected void CancelEditUserButton Click(object sender, EventArgs e)
{
UsersMultiView.SetActiveView(UserView);
}
protected void CancelRolesButton Click(object sender, EventArgs e)
{
UsersMultiView.SetActiveView(UserView);
}
protected void SelectUserView Activate(object sender, EventArgs e)
{
BindUsersGridview();
}

protected void UserView Activate(object sender, EventArgs e)

{

CHAPTER 1 © GETTING STARTED

BindUserView();

}

protected void EditorView Activate(object sender, EventArgs e)
{

BindEditorView();
}
protected void UsersGridview Init(object sender, EventArgs e)
{
}

protected void UsersGridView PageIndexChanging(
object sender, GridViewPageEventArgs e) {
UsersGridView.PageIndex = e.NewPageIndex;
BindUsersGridview();
}
protected void UsersGridView RowCommand(
object sender, GridViewCommandEventArgs e)

{
if ("ViewUser".Equals(e.CommandName))
{
CurrentUser = GetUser(e.CommandArgument.ToString());
UsersMultiView.SetActiveView(UserView);
}
}
#endregion

#iregion " Methods
private void BindUsersGridView()

{
if (String.Empty.Equals(FilterUsersTextBox.Text.Trim()))
{
UsersGridView.DataSource = Membership.GetAllUsers();
}
else
{

List<MembershipUser> filteredUsers = new List<MembershipUser>();
string filterText = FilterUsersTextBox.Text.Trim();
foreach (MembershipUser user in Membership.GetAllUsers())

{
if (user.UserName.Contains(filterText) ||
user.Email.Contains(filterText))
{
filteredUsers.Add(user);
}
}

UsersGridView.DataSource = filteredUsers;

25

26 CHAPTER 1

GETTING STARTED

UsersGridView.DataBind();

private void BindUserView()

MembershipUser user = CurrentUser;
if (user != null)

UserNameValuelabel.Text = user.UserName;

ApprovedValuelabel.Text = user.IsApproved.ToString();
LockedOutValuelabel.Text = user.IsLockedOut.ToString();
OnlineValuelabel.Text = user.IsOnline.ToString();
CreationValuelabel.Text = user.CreationDate.ToString("d");
LastActivityValuelabel.Text = user.lLastActivityDate.ToString("d");
LastlLoginValuelabel.Text = user.lastlLoginDate.ToString("d");
UserCommentValuelabel.Text = user.Comment;

UnlockUserButton.Visible = user.IslLockedOut;
ResetPasswordButton.Attributes.Add("onclick",
"return confirm('Are you sure?');");

private void BindEditorView()

MembershipUser user = CurrentUser;
if (user != null)

}
{
{
}
}
{
{
}
}

UserNameValue2label.Text = user.UserName;
EmailTextBox.Text = user.Email;
CommentTextBox.Text = user.Comment;
ApprovedCheckBox.Checked = user.IsApproved;

RolesCheckBoxList.Items.Clear();
foreach (string role in Roles.GetAllRoles())

{
ListItem listItem = new ListItem(role);
listItem.Selected = Roles.IsUserInRole(user.UserName, role);
RolesCheckBoxList.Items.Add(1listItem);

}

public void Reset()

{

UsersMultiView.SetActiveView(SelectUserView);
Refresh();

CHAPTER 1 © GETTING STARTED

public void Refresh()

{
BindUsersGridview();
}
public bool IsUserAuthenticated
{
get
{
return HttpContext.Current.User.Identity.IsAuthenticated;
}
}
public string GetUserName()
{
if (IsUserAuthenticated)
{
return HttpContext.Current.User.Identity.Name;
}
return String.Empty;
}
public MembershipUser GetUser(string username)
{
return Membership.GetUser(username);
}
#endregion
#iregion " Properties "

[Category("Appearance"), Browsable(true), DefaultValue("User Manager")]
public string Title

{
get
{
return Titlelabel.Text;
set
{
Titlelabel.Text = value;
EnsureChildControls();
}
}

[Category("Appearance"), Browsable(true), DefaultValue(false)]
public bool TitleBold
{

get

{
return Titlelabel.Font.Bold;

27

28 CHAPTER 1 = GETTING STARTED

set
Titlelabel.Font.Bold = value;
EnsureChildControls();
}
}
[Browsable(false)]
public CssStyleCollection TitleStyle
{
get
{
return Titlelabel.Style;
}
}
private MembershipUser CurrentUser
{
get
{
return ViewState["CurrentUser"] as MembershipUser;
set
ViewState["CurrentUser"] = value;
}
}
#endregion

Listing 1-14. RoleManager.ascx

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="RolesManager.ascx.cs"
Inherits="MemberControls RolesManager" %>
<asp:Label ID="TitlelLabel" runat="server"
Text="Roles Manager" Font-Bold="true"></asp:Label>
<table>
<tr>
<td align="center">
<asp:GridView ID="RolesGridView" runat="server"
AutoGenerateColumns="False"
OnRowCommand="RolesGridView RowCommand"
OnRowDataBound="RolesGridView RowDataBound"
GridLines="None"
Width="100%">
<Columns>
<asp:TemplateField HeaderText="Role">
<ItemTemplate>

CHAPTER 1 © GETTING STARTED

<asp:Label ID="Label1" runat="server"
Text="Role"></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Users">
<ItemTemplate>
<asp:Label ID="Label1" runat="server"
Text="Users"></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:ButtonField CommandName="RemoveRole"
Text="Remove" />
</Columns>
<EmptyDataTemplate>
 - No Roles -
</EmptyDataTemplate>
<RowStyle CssClass="EvenRow" />
<AlternatingRowStyle CssClass="OddRow" />
<HeaderStyle CssClass="HeaderRow" />
</asp:CGridView>
</td>
</tr>
<tr>
<td align="center">
<asp:Label ID="Label3" runat="server"
Font-Bold="True" Text="Role: "></asp:lLabel>
<asp:TextBox ID="AddRoleTextBox" runat="server"
Width="75px"></asp:TextBox>
<asp:Button ID="AddRoleButton" runat="server"
Text="Add" OnClick="AddRoleButton Click" /></td>
</tr>

</table>

Listing 1-15. RoleManager.ascx.cs

using System;

using System.ComponentModel;
using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class MemberControls RolesManager : UserControl

n

#iregion " Events

protected void Page PreRender(object sender, EventArgs e)

{
BindRolesGridview();

29

30 CHAPTER 1 = GETTING STARTED

}

protected void RolesGridView RowDataBound(object sender, GridViewRowEventArgs e)
{
if (e.Row.RowType == DataControlRowType.DataRow)
{
string role = e.Row.Dataltem as string;
foreach (TableCell cell in e.Row.Cells)
{
foreach (Control control in cell.Controls)
{
Label label = control as Label;
if (label != null)

{
if ("Role".Equals(label.Text))
{
label.Text = role;
}
else if ("Users".Equals(label.Text))
{
label.Text = Roles.GetUsersInRole(role). =
Length.ToString();
}
}
else
{
LinkButton button = control as LinkButton;
if (button != null)
{
button.Enabled = Roles.GetUsersInRole(role).Length == 0;
if (button.Enabled)
{
button.CommandArgument = role;
button.Attributes.Add("onclick",
"return confirm('Are you sure?');");
}
}
}

}
}

protected void RolesGridView RowCommand(
object sender, GridViewCommandEventArgs e)

{

if ("RemoveRole".Equals(e.CommandName))

{

string role = e.CommandArgument as string;
Roles.DeleteRole(role, true);

CHAPTER 1

BindRolesGridView();

}
}
protected void AddRoleButton Click(object sender, EventArgs e)

{
if (Page.IsValid)

{
string role = AddRoleTextBox.Text;
if (!Roles.RoleExists(role))
{
Roles.CreateRole(role);
AddRoleTextBox.Text = String.Empty;
BindRolesGridview();
}
}
}
#endregion

#iregion " Methods "

public void Refresh()

{
BindRolesGridView();

}

private void BindRolesGridView()

{
RolesGridView.DataSource = Roles.GetAllRoles();
RolesGridView.DataBind();

}

#endregion

#iregion " Properties "

GETTING STARTED

[Category("Appearance"), Browsable(true), DefaultValue("Roles Manager")]

public string Title

{
get
{
return Titlelabel.Text;
set
Titlelabel.Text = value;
}
}

#endregion

31

CHAPTER 1 = GETTING STARTED

Listing 1-16. MembersControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="MembersControl.ascx.cs"
Inherits="MembersControl" %>
<%@ Register Src="UserManager.ascx" TagName="UserManager" TagPrefix="uc2" %>
<%@ Register Src="RolesManager.ascx" TagName="RolesManager" TagPrefix="uc1" %>

Select View:

<asp:DropDownlist ID="NavDropDownlist" runat="server"
AutoPostBack="True"
OnSelectedIndexChanged="NavDropDownList SelectedIndexChanged">
<asp:ListItem>Create User</asp:ListItem>
<asp:ListItem>Manage Users</asp:ListItem>
<asp:ListItem>Manage Roles</asp:ListItem>

</asp:DropDownList>

<asp:MultiView ID="MultiView1" runat="server">
<asp:View ID="UserCreationView" runat="server"
OnActivate="UserCreationView Activate">
<asp:CreateUserWizard ID="CreateUserWizard1i" runat="server"
AutoGeneratePassword="True"
LoginCreatedUser="False"
OnCreatedUser="CreateUserWizardl CreatedUser">
<WizardSteps>
<asp:CreateUserWizardStep
ID="CreateUserWizardStep1" runat="server">
</asp:CreateUserWizardStep>
<asp:CompleteWizardStep
ID="CompleteWizardStep1" runat="server">
</asp:CompleteWizardStep>
</WizardSteps>
</asp:CreateUserWizard>
</asp:View>
<asp:View ID="UserManagerView" runat="server"
OnActivate="UserManagerView Activate">

<uc2:UserManager
ID="UserManager1" runat="server"
Title="Users"
TitleBold="true" />
</asp:View>
<asp:View ID="RolesManagerView" runat="server">

<uci:RolesManager

CHAPTER 1 © GETTING STARTED

ID="RolesManager1" runat="server"
Title="Roles" />

</asp:View>
</asp:Multiview>

Listing 1-17. MembersControl.ascx.cs

using System;
using System.Web.UI;

public partial class MembersControl : UserControl

{
protected void Page Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
MultiView1.SetActiveView(UserManagerView);
NavDropDownlist.SelectedValue = "Manage Users";
}
}

protected void NavDropDownlist SelectedIndexChanged(object sender, EventArgs e)

{
if ("Create User".Equals(NavDropDownlList.SelectedValue))

{
MultiViewl.SetActiveView(UserCreationView);
}
else if ("Manage Users".Equals(NavDropDownlList.SelectedValue))
{
MultiView1.SetActiveView(UserManagerView);
RefreshUserManager();
}
else if ("Manage Roles".Equals(NavDropDownlList.SelectedValue))
{
MultiView1.SetActiveView(RolesManagerView);
RefreshRolesManager();
}

}

protected void CreateUserWizardi CreatedUser(object sender, EventArgs e)
{
MultiView1.SetActiveView(UserManagerView);
NavDropDownlist.SelectedValue = "Manage Users";
RefreshUserManager();

33

34 CHAPTER 1 = GETTING STARTED

private void RefreshUserManager()

{
MemberControls UserManager userManager =
UserManagerView.FindControl("UserManager1")
as MemberControls UserManager;
if (userManager != null)
{
userManager.Refresh();
}
}
private void RefreshRolesManager()
{
MemberControls RolesManager rolesManager =
UserManagerView.FindControl("RolesManager1")
as MemberControls RolesManager;
if (rolesManager != null)
{
rolesManager.Refresh();
}
}
protected void UserManagerView Activate(object sender, EventArgs e)
{
UserManageri.Reset();
}
protected void UserCreationView Activate(object sender, EventArgs e)
{
CreateUserWizardi.ActiveStepIndex = 0;
}

Securing the Admin Section

With the user and role management controls placed into a folder named Admin, it can be
secured by requiring authenticated users in the Admin role. Near the end of Web. config, you
can create a location configuration for the Admin path and allow members in the Admin role
(see Listing 1-18).

Listing 1-18. Securing the Admin Section with Web.config

<?xml version="1.0"?>
<configuration>

<!-- other configuration settings -->

CHAPTER 1 © GETTING STARTED

<location path="Admin">
<system.web>
<authorization>
<allow roles="Admin"/>
<deny users="*"/>
</authorization>
</system.web>
</location>

</configuration>

Creating the Admin User

After your Admin section is ready, you will naturally need the Admin user so you can log in to
this section and use the controls. It is sort of a catch-22 scenario. But just as you can use the
Membership API to manage users and roles, with these controls you can also programmati-
cally create users and roles. To automatically ensure that your website has the necessary Admin
user, you can add the code to do all of this work to the Application Start event handler in the
Global.asax file for the website. I first check whether the three default roles exist and add each
one that does not exist. And then if there are no users, I have the method add the default Admin
user, as shown in Listing 1-19.

Listing 1-19. Adding Roles and Users

public void Application Start(object sender, EventArgs e)
{
if (Roles.Enabled)
{
String[] requiredRoles = { "Admin", "Users", "Editors" };
foreach (String role in requiredRoles)

{
if (!Roles.RoleExists(role))
{
Roles.CreateRole(role);
}
}

string[] users = Roles.GetUsersInRole("Admin");
if (users.lLength == 0)
{
// create admin user
MembershipCreateStatus status;
Membership.CreateUser("admin", "CHANGE ME", "admin@localhost",
"Favorite color?", "green", true, out status);
if (MembershipCreateStatus.Success.Equals(status))
{
Roles.AddUserToRole("admin", "Admin");

}

else

35

36

CHAPTER 1 = GETTING STARTED

{
LogMessage("Unable to create admin user: " + status, true);
}
}
}
}

Summary

This chapter covered how to prepare your environment for working with ASPNET websites
and how to configure the link to the database. You learned how to configure and manage the
provider services, including adding users and roles programmatically so a new website can be
managed immediately after it is deployed.

CHAPTER 2

Data Model Choices

The ASPNET 2.0 data model allows for many methods to get the data from the database to
the Web Form. The three top methods are DataSets, DataReaders, and DataObjects. This chap-
ter reviews each of these options as well as the Data Access Application Block, which is a part
of the Enterprise Library.

This chapter covers the following:

¢ Data Access Application Block

* Data Access code snippets

» Sample Person database

* Performance and ViewState considerations
* Typed DataSet

* Nontyped DataSet

* DataReader

* Subsets and sorting with ranges

There is not just one way to work with data in .NET. There are many distinct and some-
times intermingling ways, which give you a seemingly overwhelming set of choices. Although
you may get by using a limited set of the available features, you will find that as your knowl-
edge of your options deepens, you can come up with more-streamlined approaches that
reduce the amount of work you need to do to get the job done. That translates quickly into
higher productivity and less code to maintain.

And although the clever examples documented on the Microsoft Developer Network
(MSDN) offer some amazing solutions, they really are simple examples. This chapter digs
beyond the simplistic by throwing a wrench into the works and showing you how to get past it.

The Data Access Application Block

The Microsoft Patterns & Practices group provides a set of modules called Application Blocks,
which give developers additional tools to work with the .NET framework. One of the modules
is the Data Access Application Block, which provides a set of methods that consolidate the
work you would normally have to do in order to work with the database. This layer of abstrac-
tion simplifies what can otherwise be a cumbersome task.

37

38

CHAPTER 2 " DATA MODEL CHOICES

One goal of the Data Access Application Block is to give the developer an interface that is
not specific to the underlying database. Software using this module will work with SQL Server
and SQL Server CE as well as Oracle without modification of the C# code. This module also
handles common tasks you must do if you are just using ADO.NET, such as opening and clos-
ing each database connection. Various tasks such as this one are handled automatically.

In addition to this alternate interface, the Enterprise Library includes configuration tools
that can modify your web configuration file for you. In the case of the Data Access Application
Block, such a configuration tool is unnecessary because all you need to configure is the con-
nection string you will use to connect to the database. However, the configuration tool can set
the default connection string to be used when it is not specified explicitly in the code.

At the core of the Data Access Application Block is the Database object, which abstracts
away much of the complexity of the .NET framework related to database communications.
You run your database commands through the Database object by using the DbCommand from
the System.Data.Common namespace to do everything from selects, inserts, updates, and
deletes to calling stored procedures that carry out more-complex tasks.

The majority of examples throughout this book use the Data Access Application Block. It
is an easy-to-use interface and should be used to build your data access layer if you choose to
build that layer manually.

To use the Enterprise Library, you will have to download it from the Microsoft Patterns &
and Practices website. When you run the installation, you may want to change the installation
directory so that it is placed in your common folder, such as D: \Projects\Common\Microsoft
Enterprise Library 3.1.As apart of the installer, you are given the option to install and com-
pile the source. You can place the source in the same folder, as shown in Figure 2-1. When you
build from the source, it will create assemblies that are not signed, so you will need to update
the projects to use your own key if you plan to deploy the assemblies to the global assembly
cache (GAC) or use them with projects that are strongly signed. Otherwise, you can use the
assemblies in the bin folder, which are signed by Microsoft.

[F=3 Eol 5
@-\%/-vl « Projects » Common v Microsoft Enterprise Librang 3.1 ¢ EntLib3Src » - | v,| [P
Folders v | Mame ’ Date modified Typ
Common -~ App Blocks 5/25/2007 2:00 Pr File
Microsoft Enterprise Library 3.0 Application Block Softwa.., 5/25/2007 8:10 Ph File
Microsoft Enterprise Library 3.1 Quick Starts 5/25/2007 &0 PM File
EntLib35r: Strong Marning Guidance.. 5/25/2007 8:10 P File
App Blocks
Application Block Software Factory |E Select afile to preview.
Quick Starts
Strong Marning Guidance Package
Ity Shippets
Scripts
Templates
Taols -4 m b

Figure 2-1. Enterprise Library 3.1 in the Common directory

The Enterprise Library is made up of many assemblies for all the Application Blocks. You
do not need to reference every one of these assemblies to make use of just a single module.
In the case of the Data Access Application Block, you need only three assemblies: Microsoft.

CHAPTER 2 ' DATA MODEL CHOICES

Practices.Enterpriselibrary.Common.dll, Microsoft.Practices.ObjectBuilder.dll, and
Microsoft.Practices.EnterpriselLibrary.Data.dll.

When I build my data access layer, I do so with a class library instead of placing all that
code in the App_Code folder of an ASPNET Website Project. Doing so allows it to be used as a
dependency for multiple websites as well as console and desktop applications. It also makes
it easy to version-control the data layer and run unit tests against it. When it is built inside the
App_Code folder, it cannot be used externally, which makes versioning and unit testing difficult.

GUIDANCE AUTOMATION TOOL

The Enterprise Library is just one product of the Patterns & Practices team. The team also produces the Guid-
ance Automation Extensions for Visual Studio, which uses templates and recipes for building applications that
conform to their recommendations. Within the WCF and Web Service Software Factories is the Data Access
Guidance Package, which can generate code for your data access layer.

Whenever you start work on an application, you do not want to be slowed down with all
the tedious work of setting up your database with the various tables, stored procedures, index-
ing, and constraints only to spend a significant amount of time writing the intermediate layer
between the database and the front end of the application. To speed up the process of creating
all that code, you can use code snippets. This powerful feature of Visual Studio 2005 (and
Visual Studio 2008) allows you to quickly select a template and fill in placeholders so you can
avoid manually writing each line of code (typically, boilerplate code). Code snippets also help
you avoid coding errors due to typos.

Data Access Code Snippets

I have created five code snippets to assist with writing code that uses the Data Access Applica-
tion Block. In addition to adding lines of code to your class, the snippets can also specify the
required namespace statements for the new block of code. The namespace imports work only
in VB code, but the references will work if the assemblies can be found by Visual Studio. If you
add the necessary assembly references to your project before adding one of the following code
snippets, Visual Studio will automatically add the using statements to your class.

My collection of data access code snippets is as follows:

¢ Data Access Types

¢ Database Creation

* DataSet Method

* DataReader Method
* Nonquery Method

The code for these snippets follows in Listings 2-1 through 2-5.

39

CHAPTER 2 " DATA MODEL CHOICES

Listing 2-1. Data Access Types

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>1 Type Declarations</Title>
<Shortcut>da1</Shortcut>
<Description>Data Access Types</Description>
<Author>Brennan Stehling</Author>
<SnippetTypes>
<SnippetType>Expansion</SnippetType>
</SnippetTypes>
</Header>
<Snippet>
<References>
<Reference>
<Assembly>Microsoft.Practices.EnterpriseLibrary.Common.dll</Assembly>
</Reference>
<Reference>
<Assembly>Microsoft.Practices.EnterpriselLibrary.Data.dl1</Assembly>
</Reference>
<Reference>
<Assembly>Microsoft.Practices.ObjectBuilder.dl1l</Assembly>
</Reference>
</References>
<Imports>
<Import>
<Namespace>System.Data</Namespace>
</Import>
<Import>
<Namespace>System.Data.Common</Namespace>
</Import>
<Import>
<Namespace>Microsoft.Practices.Enterpriselibrary.Data</Namespace>
</Import>
</Imports>
<Code Language="CSharp" Kind="type decl" Delimiter="$">
private Database db;

</Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>
</CodeSnippet>
</CodeSnippets>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

CHAPTER 2 ' DATA MODEL CHOICES

The Data Access Types snippet simply declares a reference for the Database object that is
used in the data access methods. This initial code snippet specifies the imports and references
that are required for all the code snippets. Although C# does not automatically include the
imports as in VB, I have included them with the expectation that a future release of Visual
Studio will be able to use them.

Listing 2-2. Database Creation

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>2 Database Creation</Title>
<Shortcut>da2</Shortcut>
<Description>Data Access Database Creation</Description>
<Author>Brennan Stehling</Author>
</Header>
<Snippet>
<Imports>
<Import>
<Namespace>Microsoft.Practices.EnterpriselLibrary.Data</Namespace>
</Import>
</Imports>
<Declarations>
<Literal Editable="true">
<ID>connectionStringName</ID>
<ToolTip>Connection String Name</ToolTip>
<Default>db</Default>
<Function>
</Function>
</Literal>
</Declarations>
<Code Language="CSharp" Kind="method body">
<I[CDATA[
db = DatabaseFactory.CreateDatabase("$connectionStringName$");
11></Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>

The Database Creation snippet creates the database instance. It should be placed in
the constructor so that it needs to be initialized only once. The connection string is the only
placeholder defined here. You should set this to the name of the connection string to use for
this instance of the Database object.

41

http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

42 CHAPTER 2 " DATA MODEL CHOICES

Listing 2-3. DataSet Method

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>3 Get DataSet Method</Title>
<Shortcut>da3</Shortcut>
<Description>Data Access DataSet Method</Description>
<Author>Brennan Stehling</Author>
</Header>
<Snippet>
<Imports>
<Import>
<Namespace>Microsoft.Practices.Enterpriselibrary.Data</Namespace>
</Import>
</Imports>
<Declarations>
<Literal Editable="true">
<ID>methodName</ID>
<ToolTip>Method Name</ToolTip>
<Default>GetDataSet</Default>
<Function>
</Function>
</Literal>
<Literal Editable="true">
<ID>sproc</ID>
<ToolTip>Stored Procedure</ToolTip>
<Default>GetDataSet</Default>
<Function>
</Function>
</Literal>
</Declarations>
<Code Language="CSharp" Kind="method decl">
<! [CDATA[

public DataSet $methodName$()

{
DataSet ds = new DataSet();

using (DbCommand dbCmd = db.GetStoredProcCommand("$sproc$”))

{
//db.AddInParameter(dbCmd, "@Parameterl”, DbType.String, String.Empty);

//db.AddOutParameter (dbCmd, "@Parameter2", DbType.String, 0);

ds = db.ExecuteDataSet(dbCmd);
//0bject outputParameter =

http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

CHAPTER 2 ' DATA MODEL CHOICES

//db.CetParameterValue(dbCmd, "@OutputParameter");
}

//return the results
return ds;
}11></Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>

The DataSet method returns a DataSet after filling it with the results of a stored procedure
call. The placeholders are for the name of the method and the name of the stored procedure.
The snippet also includes a few lines for input and output parameters. These are in place to
show how to add input and output parameters. These lines can be deleted if the stored proce-
dure that is called does not take parameters. This snippet references the DbCommand variable
with the using statement, which was introduced as a part of C# 2.0. It ensures that the
DbCommand is disposed of at the end of the block. You will notice that it is not necessary to
open and close the database connection here.

Listing 2-4. DataReader Method

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>4 Get DataReader Method</Title>
<Shortcut>dag</Shortcut>
<Description>Data Access DataReader Method</Description>
<Author>Brennan Stehling</Author>
</Header>
<Snippet>
<Imports>
<Import>
<Namespace>Microsoft.Practices.Enterpriselibrary.Data</Namespace>
</Import>
</Imports>
<Declarations>
<Literal Editable="true">
<ID>methodName</ID>
<ToolTip>Method Name</ToolTip>
<Default>GetDataReader</Default>
<Function>
</Function>
</Literal>
<Literal Editable="true">
<ID>sproc</ID>
<ToolTip>Stored Procedure</ToolTip>

43

http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

44 CHAPTER 2 " DATA MODEL CHOICES

<Default>GetDataReader</Default>
<Function>
</Function>
</Literal>
</Declarations>
<Code Language="CSharp" Kind="method decl">
<1 [CDATA[

public IDataReader $methodName$()

{
IDataReader dr = null;
using (DbCommand dbCmd = db.GetStoredProcCommand("$sproc$”))
{
//db.AddInParameter(dbCmd, "@Parameter", DbType.String, String.Empty);
dr = db.ExecuteReader(dbCmd);
}
//return the results
return dr;
}11></Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>

The DataReader snippet does exactly the same work as the DataSet snippet, except that
the DataReader snippet returns a DataReader object.

Listing 2-5. Nonquery Method

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>5 Execute Nonquery</Title>
<Shortcut>das</Shortcut>
<Description>Data Access Nonquery Method</Description>
<Author>Brennan Stehling</Author>
</Header>
<Snippet>
<Imports>
<Import>
<Namespace>Microsoft.Practices.Enterpriselibrary.Data</Namespace>
</Import>
</Imports>
<Declarations>

http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

CHAPTER 2 ' DATA MODEL CHOICES

<Literal Editable="true">
<ID>methodName</ID>
<ToolTip>Method Name</ToolTip>
<Default>SaveData</Default>
<Function>
</Function>
</Literal>
<Literal Editable="true">
<ID>sproc</ID>
<ToolTip>Stored Procedure</ToolTip>
<Default>SaveData</Default>
<Function>
</Function>
</Literal>
</Declarations>
<Code Language="CSharp" Kind="method decl">
<1 [CDATA[

public void $methodName$()

{
using (DbCommand dbCmd = db.GetStoredProcCommand("$sproc$"))
{
//db.AddInParameter(dbCmd, "@Parameter", DbType.String, 0);
//db.AddOutParameter(dbCmd, "@Parameter2", DbType.String, 0);
db.ExecuteNonQuery (dbCmd);
//0bject outputParameter =
//db.GetParameterValue(dbCmd, "@OutputParameter");
}
}11></Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>

The Nonquery snippet does not return a DataSet or a DataReader. It can be used when
doing an insert, an update, or a delete call into the database. It can also be used when simply
pulling output parameters from the result of an executed command. In each of the three
preceding method snippets (Listings 2-3, 2-4, and 2-5), the line after the execution line is a
commented line showing how an output parameter value is pulled from the executed data-
base command. Initially such a parameter is a generic object, but if the output value is
DbType.Int32, the variable can be an int with the value cast as int. When running an insert
command, it is common practice to return the primary key value of the newly inserted record.

To use code snippets, you must first add them to Visual Studio with the Code Snippet
Manager. Place the preceding code snippets in a folder under D: \Projects\Common\Templates\
My Snippets in a folder called Data Access. Then click Tools » Code Snippet Manager. This
brings up the Code Snippet Manager. Click the Add button and select the My Snippets folder.
Then click OK. This makes these code snippets available to you in the editor.

45

46

CHAPTER 2 " DATA MODEL CHOICES

With the code snippets in place, you can access them in three ways. You can right-click
the editor, select Insert Snippet, and use the selection menu to get to the snippet you want to
insert. Alternatively, you can use the hot keys Ctrl+K, Ctrl+X to pull up the menu. The fastest
way is to use the shortcut specified by the snippet. The five snippets are marked as dal, da2,
and so forth. Entering dal and pressing the Tab key twice will include that snippet. Figure 2-2
shows the selection menu for code snippets.

Insert Snippet: My Snippets > Data Access >

[] 1 Type Declarations

1;'_:b'_'_c GethllPeople :]JE Database Creation

i Data Access DataSet Method
=] 4 Get DataReader Method Shortcut: da3
5] 5 Execute Mon Query

ds =

Figure 2-2. Code Snippet selection menu

After you select a snippet, the code is placed into the editor and the placeholders are
highlighted. You can press Tab to move from placeholder to placeholder. There are default val-
ues in each placeholder. You can change the text in each marked placeholder and tab to the
next value until you are finished. Then press Enter to accept the code snippet. In a matter of
seconds, you can have a new method that returns a DataSet from a call to a stored procedure.

COMMON FOLDER ADDITIONS

These code snippets can be added to your Common folder in the My Snippets subfolder. (D: \Projects\
Common\Templates\My Snippets).After they are in place, you can set up Visual Studio to reference them
to be used in all your projects.

Sample Database

The examples shown through the rest of this chapter use a database holding two tables,
Person and Location, as shown in Figure 2-3. Each record in the Person table references a
record in the Location table with a foreign key constraint. A random and significantly sized
set of data is then loaded into the Person table to allow for a distribution of values across the
three columns: FirstName, LastName, and BirthDate. The foreign key reference is LocationId.

¥ Personld

. ? LocationId
Firsthame
City
LastMame o=
. Country
BirthDate

LocationId

Figure 2-3. Person and Location tables

CHAPTER 2 ' DATA MODEL CHOICES

With a single table, it is trivial to drop a table from the Server Explorer onto a Typed
DataSet Designer to generate the basic CRUD methods: Create, Read, Update, and Delete.
By adding the secondary table, additional work is necessary to make the following examples
work. A simple SELECT * FROM Tablel will not be sufficient to bring two tables together.
Instead, you can use a stored procedure to get all the desired data. The script in Listing 2-6
creates this stored procedure.

Listing 2-6. chpr02_GetAllPeople.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'chpt02_GetAllPeople')
BEGIN
DROP Procedure chpt02_GetAllPeople
END

Go

CREATE Procedure dbo.chpt02_GetAllPeople
AS

SELECT p.Personld,p.FirstName,p.LastName,p.BirthDate,1.City,1.Country
FROM chpt02_Person AS p
JOIN chpto2_Location AS 1 on 1.LocationId = p.LocationId

Go

GRANT EXEC ON chpt02_GetAllPeople TO PUBLIC
Go

Trivial Data Examples

It is amusing to call some data examples trivial in ASPNET because they really are pulling off a
complex task with little or no code. Simply dropping a table from the Server Explorer onto the
design surface of a Web Form will automatically create a GridView and associate it with an
SqlDataSource. The SqlDataSource is immediately configured with the SQL necessary to
select, insert, update, and delete rows in that table. At all launch events for .NET 2.0, this sort
of example was used to show the power of the ASPNET 2.0 data model.

As you change properties on the GridView to allow for paging, sorting, selecting, and edit-
ing, it all just works. And more than that, it works without you writing any code. Listing 2-7
shows all the markup created after the Person table from the sample database is dragged onto

a page.

Listing 2-7. TrivialExample.aspx with SqlDataSource

<%@ Page Language="C#" MasterPageFile="~/Site.master"
AutoEventWireup="true" CodeFile="TrivialExample.aspx.cs"
Inherits="TrivialExample" Title="Trivial Example" %>
<asp:Content

47

48 CHAPTER 2 " DATA MODEL CHOICES

ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<asp:CridView
ID="CridView1" runat="server" AllowPaging="True" AllowSorting="True"

AutoGenerateColumns="False" DataSourceID="SqlDataSource1"

EmptyDataText="There are no data records to display.">

<EmptyDataTemplate>

No Data
</EmptyDataTemplate>
</asp:CGridView>
<asp:SqlDataSource ID="SqlDataSource1l" runat="server"

ConnectionString="<%$ ConnectionStrings:chpto2 %>"

ProviderName="<%$ ConnectionStrings:chpto2.ProviderName %>"

DeleteCommand="DELETE FROM [chpt02 Person] WHERE [Personld] = =
@PersonId"

InsertCommand="INSERT INTO [chpt02 Person] ([FirstName], w
[LastName], [BirthDate], [LocationId]) VALUES (@FirstName, w
@LastName, @BirthDate, @LocationId)"

SelectCommand="SELECT [PersonId], [FirstName], [LastName], w
[BirthDate], [LocationId] FROM [chpt02 Person]”

UpdateCommand="UPDATE [chpt02 Person] SET [FirstName] = w»
@FirstName, [LastName] = @LastName, [BirthDate] = @BirthDate, =
[LocationId] = @LocationId WHERE [PersonId] = @PersonId">

<InsertParameters>

<asp:Parameter Name="FirstName" Type="String" />

<asp:Parameter Name="LastName" Type="String" />

<asp:Parameter Name="BirthDate" Type="DateTime" />

<asp:Parameter Name="LocationId" Type="Int64" />
</InsertParameters>

<UpdateParameters>

<asp:Parameter Name="FirstName" Type="String" />

<asp:Parameter Name="LastName" Type="String" />

<asp:Parameter Name="BirthDate" Type="DateTime" />

<asp:Parameter Name="LocationId" Type="Int64" />

<asp:Parameter Name="PersonId" Type="Int64" />
</UpdateParameters>

<DeleteParameters>

<asp:Parameter Name="PersonId" Type="Int64" />
</DeleteParameters>
</asp:SqlDataSource>
</asp:Content>

The first concern I always have is that instantly you have inline SQL, right in the applica-
tion layer, directly in a page. And as easy as that SQL was to create, it is not that easy to update
it for changes later, which will eventually trip you up unless the database never changes or you
understand everything that has just been generated. It is easy to imagine that the Person table
would eventually have more columns (for example, for the middle initial and gender). And if
the table started with just a Name column and was split into First Name and Last Name, you

CHAPTER 2 ' DATA MODEL CHOICES

would need to make some changes to the SQL shown in Listing 2-7; otherwise, that SQL would
be invalid.

The SqlDataSource in Listing 2-7 has a Refresh Schema command on the Smart Tag, but it
really is not as capable as you might hope. Changing Last Name to Surname will cause an error
when you refresh the schema. And adding a new column for the Middle Initial will notadd
the new column to the Select and other commands. To make those adjustments, you have to
choose the other option on the Smart Tag, Reconfigure Datasource. And when this is done,
there are consequences with the GridView, such as resetting the columns that you may have
already customized considerably and will not want changed by the automatically generated
changes. With all of this in mind, it is best to leave this quick-and-dirty way of data binding
to prototyping new ideas and adjust to use a more maintainable and architecturally sound
approach as a project moves past the early stages. Fortunately, the fast prototypes created
with an inline query by using an SqlDataSource can be replaced with an ObjectDataSource
later, as the prototype starts to become the actual application. The columns produced by the
ObjectDataSource simply have to match the columns from the SqlDataSource, while your
GridView can remain unchanged.

Nontrivial Data Examples

In real-world applications, the trivial examples get you only so far, and soon you are required
to work with more than one table at a time. Adding data from more than one table to be
shown as well as edited in a GridView or other databound control enters into the space of the
nontrivial example.

In the sample Person database, the Person table has a relationship with the Location table
through the LocationId. And in the Location table, the City and Country values define the
location where the person lives. When displaying a GridView of all the people in the database,
it will be much more intuitive to show the city and country instead of the LocationId. The
chpto2_GetAllPeople stored procedure shown previously pulls these values together so they
can be used as if they were in just a single table in the database from the application’s point
of view. Unfortunately, you cannot drag a stored procedure from the Server Explorer window
onto the design surface of a Web Form as you can with the tables. Instead, you must drag a
GridView from the Toolbox and configure it with a datasource. When configured as an
SqlDataSource, the stored procedure can be selected, but the Insert, Update, and Delete
commands will not be offered as options in the datasource wizard. It is still possible to get all
the features of the single table example in the previous sections, but providing all the features
that a GridView needs will require more than just this one stored procedure configured with a
Typed DataSet. An example of how to do this is covered in detail in Chapter 3.

Typed DataSet

Starting with the basic stored procedure in Listing 2-6, you can build a customized Typed
DataSet. You simply go to the class library project you have prepared to act as your data access
layer and add a DataSet to it called PersonDataSet.xsd. Then add a TableAdapter and follow
the steps provided by the wizard to add the existing stored procedure defined here. You then
rename the DataTable and TableAdapter to more user-friendly names such as People and

49

50

CHAPTER 2 " DATA MODEL CHOICES

PeopleTableAdapter in an attempt to make the code that is generated with the Typed DataSet
better resemble the object it is meant to represent. Figure 2-4 shows what the People Typed
DataSet looks like, and Figure 2-5 shows the properties from the Fil1Al1People method.

FillallPeople Query -

[e=]44

E Code Generation

E People & FillMethodModifier Public
ey FillMethodMarme FillallPeople
FirstRarne GenerateMethods Bath
GetMethodModifier Public
LaskMarne GetMethodMame GetallPeople
. B Dpata
BlrthDEltE CommandText dbo.chpt0Z_GetallPeo
Ciby CommandType StoredProcedure
c F ExecuteMode Reader
Quncry Parameters {Collection)
I
L CommandText
i . The query or stored procedure to be executed against the
=1 FillallPecple, zetalPecple () Database
Figure 2-4. People Typed DataSet Figure 2-5. FillAllPeople properties

This Typed DataSet is defined as a part of a class library. With the website set to use this
class library as a dependency, run the build for the website to ensure that the current assem-
blies used by the website have this newly created Typed DataSet. After the dependency is
compiled, it is copied automatically into the bin directory of the website and is ready to be
used in aWeb Form. Simply drag a GridView control onto the design surface. Then use the
Smart Tag to choose a datasource. Select a new ObjectDataSource. The available options
will show the PeopleTableAdapter as it was named earlier. Set the select method to the
GetAllPeople method. After the ObjectDataSource is set, you can return to the GridView
and open the Smart Tag to enable paging and sorting. Now try out the page by right-clicking
the page in the Solution Explorer and selecting View in Browser.

You may be pleasantly surprised that the page loads in a reasonable time and provides the
sorting and paging functionality that you expect. The Typed DataSet also does a great job of
cutting down the size of the ViewState. It is no wonder that the approach I've just described is
strongly encouraged by MSDN documentation. However, this solution is not the only option
or even the best option for all scenarios. Next you will explore a few alternatives.

RIGID TYPED DATASETS

When a Typed DataSet is put together on the XML Schema Definition (XSD) designer, it reads in all the
schema information from the database and hard-codes the names of all the columns as well as the types
and exact sizes. Changing a VARCHAR (10) to VARCHAR (11) can break the Typed DataSet. As soon as a
record that is 11 characters long is inserted into the data and the Typed DataSet comes across this data, it
will throw an exception due to the size constraint. If you are not careful, this problem could go unnoticed until
it is pushed into a production environment and discovered at the worst time. To head off the problem, the
updated column definition can be adjusted in the Typed DataSet manually in the Properties panel.

CHAPTER 2 ' DATA MODEL CHOICES

Nontyped DataSet

The Typed DataSet used in the previous section was built with an XSD file, which defines the
various properties of the DataTables and TableAdapters. This is a fairly rigid model because
the XSD file is edited primarily by using Visual Studio and the visual Typed DataSet Designer.
It also locks in the database schema, which will most likely change over the life of a project. It
can be helpful to use a more flexible option.

The stored procedure used by the Typed DataSet can be run directly to get the same
columns that will generate a compatible DataSet at runtime. Instead of the columns redun-
dantly being defined by the Typed DataSet and the stored procedure, they can be defined by
just the stored procedure.

In the same class library, you create a class called PersonDomain and start filling in the
code by using the code snippets defined earlier in this chapter. First you add the reference to
the Database object and then add the initialization for that reference to the constructor (see
Listing 2-8).

Listing 2-8. Database Initialization

/// <summary>

/// This is used as a global connection for database connectivity
/// </summary>

private Database db;

public PersonDomain()

{
db = DatabaseFactory.CreateDatabase("chpto2");

}

Next you add the method in Listing 2-9, which calls the same stored procedure as the
Typed DataSet.

Listing 2-9. GetAllPeopleDataSet

[DataObjectMethod(DataObjectMethodType.Select)]
public DataSet GetAllPeopleDataSet()

{
DataSet ds = new DataSet();

using (DbCommand dbCmd =
db.GetStoredProcCommand("chpto2_GetAllPeople"))

{
}

ds = db.ExecuteDataSet(dbCmd);

//return the results
return ds;

51

52

CHAPTER 2 " DATA MODEL CHOICES

The simple method in Listing 2-9 calls the chpt02_GetAllPeople stored procedure and
returns the generated DataSet with all the same columns as the Typed DataSet. The method
also includes the DataObjectMethod attribute, which indicates that the associated method
acts as a Select method. In addition to this method attribute, an attribute is also placed in the
class declaration. For example:

[DataObject(true)]
public class PersonDomain

{

The attributes preceding the class and method declarations make these Select methods
available to the ObjectDataSource configuration wizard used by the Web Form. Create a new
Web Form and repeat the same steps to add the GridView to the page as done for the Typed
DataSet. When configuring the ObjectDataSource, select the PersonDomain object and the
GetAllPeopleDataSet method. Because the class is marked as a DataObject and the method
is marked as a Select method, it is listed.

Also, instead of creating a new implementation from scratch, you can add a second
ObjectDataSource to the same Web Form as the Typed DataSet by using the newly created
class and method. Now you can use the Smart Tag on the GridView to select this new
ObjectDataSource. Because the columns are completely compatible, you use either
datasource interchangeably. Figure 2-6 shows a databound control with two configured
ObjectDataSources.

(i3]
Content - Contentl (Custom)

FirstName LastName BirthDate City Country
Databound Databound Databound Datab ound Databound
Databound Databound Databound Databound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Databound Databound
Databound Databound Databound Databound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Databound Databound
12

zlthiecI:DataSource - ObjectDataSourcel

zlthiecI:DataSource - ObjectDataSource?

Figure 2-6. Interchangable datasources

Both of the solutions I've described work sufficiently if there is not a great deal of data.
But after there is a significant amount of data, the time necessary to transfer all that data
between the database and application will become unreasonably long because the query is
transferring all the data each time. The sheer size of the data being pulled from the database

CHAPTER 2 ' DATA MODEL CHOICES

will contribute to this sluggishness. Then shaping that data into the DataSet requires a certain
amount of processing overhead. By using a DataReader, you can reduce that overhead.

DataReader

Unlike a DataSet, the DataReader does not offer functionality such as sorting, filtering, or even
bidirectional movement on the result set. It has minimal features to iterate over the result rows
and access the fields as needed. After you have passed a row, you cannot return to it with a
DataKey or an index. Those seem like major limitations, but these limitations are meant to
cut down on the overhead necessary with the DataSet, which maintains indexes on the data
columns and holds the full result set in memory. In contrast, the DataReader is a lean and
mean option with unique characteristics that make it ideal in some cases.

Listing 2-10 shows the code to add to PersonDomain, which again calls the same stored
procedure but returns an IDataReader object as the result instead of a DataSet.

Listing 2-10. GetAllPeopleReader

[DataObjectMethod(DataObjectMethodType.Select)]
public IDataReader GetAllPeopleReader()

{
IDataReader dr = null;

using (DbCommand dbCmd = db.GetStoredProcCommand("chpt02 GetAllPeople"))
{
dr = db.ExecuteReader(dbCmd);

}

//return the results
return dr;

Build the website, and this new Select method can be used with an ObjectDataSource.
Either create a new Web Form to start from scratch, or add a new ObjectDataSource to the
Web Form used for the Typed and Nontyped DataSet and associate it with the GridView.
Naturally, you should select this new method. The new datasource shows the same data as
the other two options, but unfortunately you will discover that the paging functionality does
not work with the DataReader in its current form. Some changes must be made to allow for
paging as well as sorting.

DataObject

These examples are all using the new DataObject introduced with .NET 2.0. With a Typed
DataSet, the generated classes are marked as DataObjects and each of the methods are
marked as one of the enumerations of DataObjectMethodType. One useful point about

the DataObject and how databound controls work is that you can return a Typed DataSet,
Nontyped DataSet, a DataReader, or a collection of Person objects as long as the column
names or properties give the databound controls the values and types it is configured to use.

53

54

CHAPTER 2 " DATA MODEL CHOICES

In fact, you can change the PersonDomain method returning a DataSet to return a collec-
tion of Person objects with properties called FirstName, LastName, BirthDate, City, and Country
as they are defined by the stored procedure. The GridView will happily bind those properties
just as easily as it would named columns on the DataSet.

What’s the Downside?

Each of the approaches discussed in this chapter has a common shortcoming. Every time the
page is displayed, the full set of data is pulled from the database—even if only ten rows are
sent to the web client. When the database server is on the same machine as the web server,
this is not a major issue. However, if the database server is on a different machine, especially
when there is a very large amount of data, the time to transfer all that data will be a critical
concern. Cutting down on the data moved from the database to the application is one of the
optimizations we will explore in the next chapter.

Summary

This chapter covered the various choices available in the .NET framework for working with
data. We looked at how each choice has its own unique advantages and disadvantages. As we
go forward, we will leverage these options.

CHAPTER 3

Database Management

Often the database is treated as an unchangeable resource as new application versions are
released. Performance improvements are isolated to changes in the application layer instead
of fully leveraging any improvements that could be made to the database. Database scripts
can be managed as projects. This feature of Visual Studio is extremely useful but terribly
underused. Every table, stored procedure, and database resource can be created and managed
within these Database Projects. The solutions that hold your websites and other projects can
be managed alongside your Database Projects. As each release is prepared, changes to the
application and data layer can be adjusted as needed.

This chapter covers the following:

* Creating a Database Project

* Managing stored procedures

e Managing indexes and constraints

¢ Considering performance and stability

* Performing unit testing and continuous integration

Databases and the scripts tables and stored procedures are often not included within
Visual Studio solutions along with the website and class library projects that we work with all
the time.

By not including these scripts with a solution, they are disconnected and unmanaged.
They are not even included in the same source-control system as the software that uses the
databases. But Visual Studio Professional Edition supports Database Projects that you can
include alongside your website and class library projects and organize with your source-
control system.

Using Database Projects

Instead of only creating your tables and stored procedures in the database, you can extract
those creation scripts and place them in Database Projects. Doing so aligns their changes
directly with applications and manages them with the same source-control system. This
allows you to deploy every application release with the necessary database changes.

55

CHAPTER 3 © DATABASE MANAGEMENT

Note To use Database Projects, you must have Visual Studio Professional Edition. The Standard and
Express editions do not recognize this project type.

Visual Studio

In Visual Studio, the Database Projects are included in the other project types group when
you add a new project to a solution. A file manifest keeps track of which files are in each of
the folders, as with a class library project, and when you add a new table or stored procedure
script to a folder, you are given a quick start template just as with Web Forms and classes.

But the Database Project goes beyond the mundane work of holding your Structured Query
Language (SQL) scripts. Each project can be associated with a database connection, with one
being marked as the default. To run a stored procedure script on the default database, you
simply right-click on the script and select Run On. The results of the script will be shown in
the Output window. Figure 3-1 shows how to create a Database Project.

Add New Project

Projeck bypes: Templates:
= Wisual C# ~ ¥isual Studio installed templates
Windows
+- Smart Device (5] Database Project
Database
Starter Kits My Templates
Weh

% Other Languages -i|Search Online Templates. ..

= Other Project Types
Setup and Deployment
Database
Exctensibility

Create a new database project allowing direct manipulation of the database objects and data

Mame: Database

Location: [n\ProjectsiApress -

O,][Cancel]

Figure 3-1. Database Projects

Database Projects are not used as often as they should be. All too often, tables and stored
procedures are managed directly in the database, and changes to the schema or stored proce-
dures are propagated either manually or with a third-party tool that generates scripts by
analyzing the differences between these databases. By developing the scripts within Visual
Studio, you will better understand the changes and have the control you need to plan for
changes. And when the database scripts are managed within the solution, they will also be

CHAPTER 3 © DATABASE MANAGEMENT

version-controlled with your source-control system. At each release, you should be able to not
only build your projects, but also return the database to a state that works with that release.
Relying on manual changes or tools that adapt for unmanaged changes leads to confusion
over the state of the database schema. And although these tools can eliminate the need to
write change scripts yourself, they should not generate so much scripting that it is not possi-
ble to make sense of everything that is changing.

A silent feature built into the Run On process is dependency detection across table and
stored procedure scripts. If you have several table scripts that must be run in a certain order,
the dependency detection will determine the order when you highlight all the tables and click
the Run On command. That is a real time-saver.

Visual Studio also has the Server Explorer, where you can view the tables and stored pro-
cedures deployed to the database. You can open a table to view and edit the contents of the
table. You can even start a new query window within Visual Studio to query the databases
listed in the Server Explorer. But for a little more power, many developers choose to use SQL
Server Management Studio, which has a few additional features beyond what Visual Studio
offers.

SQL Server Management Studio

SQL Server Management Studio does everything you need to manage table creation and mod-
ifications. It also works great with any sort of script. I have learned it is a valuable tool when it
is paired properly with the Database Projects available in Visual Studio. I first create the stubs
for the tables and stored procedure scripts in Visual Studio and then use Management Studio
to build the tables and stored procedures. I do so with one table and one stored procedure at a
time and test the changes at each step.

To create a table, I simply add a new table to the database with Management Studio and
save it with the name I choose. Then I right-click the table in the Object Explorer and select
Script Database As and then Create To and send it to the Clipboard. I move back to Visual Stu-
dio and paste the script in place and save the script. From that point, I can make adjustments
to the script in Visual Studio, such as resizing the size of a VARCHAR or adding a new column.
And to ensure that my script works after changes, I run it from Visual Studio against the devel-
opment database. Right-click the script in the Solution Explorer and select Run On. The script
will be run on the default database for the Database Project and report the result in the Output
window.

Managing Stored Procedures

The process of creating stored procedures is very different from creating tables. In Visual
Studio, you write your stored procedure script, run it against the database, and test it with
any required parameters. As you refine the script, you will find that the process of deploying
the stored procedure to the database to test it requires unnecessary overhead. Instead you
can write the script in Management Studio and adjust it to work as a stored procedure.

I start by declaring the variables that the script will need and then set their values. Then I
write the rest of the script, which makes use of those variables, as shown in Listing 3-1.

57

58

CHAPTER 3 " DATABASE MANAGEMENT

Listing 3-1. Script to Select People by First and Last Name

DECLARE @FirstName varchar(50)
DECLARE @LastName varchar(50)

SET @FirstName = 'John'
SET @LastName = 'Smith'

SELECT * FROM chpt03_Person
WHERE FirstName = @FirstName
AND LastName = @LastName

The preceding script shows how the variables are declared, set, and used within the script.
After the script is working propetly, it can be placed into the stored procedure template that was
stubbed out in the Database Project (see Listing 3-2).

Listing 3-2. Stored Procedure to Select People by First and Last Name

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND
name = 'chpt03_GetPeopleByName')
BEGIN
DROP Procedure chpt03_GetPeopleByName
END
Go

CREATE Procedure dbo.chpt03_GetPeopleByName

(
@FirstName varchar(50),
@LastName varchar(50)

}

AS

SELECT * FROM chpt03_Person
WHERE FirstName = @FirstName
AND LastName = @LastName

Go

GRANT EXEC ON chpt03_GetPeopleByName TO PUBLIC
Go

You can see how the declared variables are now used as parameters and the set commands
are not necessary. The rest of the script follows unchanged. As your stored procedures grow more
and more complex, this process will help simplify your work. A key difference is that Management
Studio will be able to give you more descriptive and accurate warnings and errors when run as
scripts instead of calls to a stored procedure.

CHAPTER 3 © DATABASE MANAGEMENT

CRUD PROCEDURES

CRUD is an acronym for Create, Read, Update, and Delete. The typical approach is to create stored proce-
dures for each of these actions for every table in the database. With a fully normalized database structure,
this means there would be many of these CRUD procedures that may not be very useful. By updating records
in a piecemeal way, performance can suffer. By grouping CRUD functionality into planned-out stored proce-
dures, it is possible to update multiple tables at a time without multiple trips to the database. As a result,
there will not always be four stored procedures per database table.

Stored procedures do more than just return the results of a Select statement. A stored
procedure may just set the value of an output parameter. In the case of saving data to the
database, it may just return the key value of the saved record. Listing 3-3 shows how a person
is saved.

Listing 3-3. chpt03_SavePerson.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'chpt03_SavePerson')
BEGIN
DROP Procedure chpt03_SavePerson
ENDGO

CREATE Procedure dbo.chpt03_SavePerson
(

@FirstName varchar(50),

@LastName varchar(50),

@BirthDate datetime,

@LocationId bigint,

@PersonId bigint OUTPUT

INSERT into chpto3 Person
(FirstName, LastName, BirthDate, LocationID)
values (@FirstName, @LastName, @BirthDate, @LocationID)

SET @PersonId = @@IDENTITY
Go

GRANT EXEC ON chpt03_SavePerson TO PUBLIC
GO

This stored procedure inserts a new person record and sets the output parameter for the
PersonId. Notice that the PersonId parameter defined near the top has OUTPUT marking it as
an output parameter. Having access to such values can become quite useful when you take
advantage of them. The Person table has a relationship with the Location table and takes

59

60 CHAPTER 3 " DATABASE MANAGEMENT

LocationId as a parameter. An arbitrary value cannot be used, so a real value should be.
Listing 3-4 shows the procedure of how to save a location.

Listing 3-4. chpt03_SaveLocation.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = "P' AND
name = 'chpto3_Savelocation')
BEGIN
DROP Procedure chpt03_Savelocation
END

@0

CREATE Procedure dbo.chpt03_Savelocation
(

@City [varchar](50),

@Country [varchar](50),

@LocationId bigint OUTPUT

)
AS

IF NOT EXISTS (
SELECT * FROM chpt03_Location
WHERE City = @City and Country = @Country
)
BEGIN
-- INSERT
PRINT 'Inserting Location'
INSERT into chpto3_Location
(City,Country)
values (@City, @Country)

SET @LocationId = @@IDENTITY
END
ELSE
BEGIN
-- get LocationId
PRINT 'Location Exists'
SET @LocationId = (
SELECT LocationId FROM chpt03_ Location
WHERE City = @City and Country = @Country

)
END

Go

GRANT EXEC ON chpt03_Savelocation TO PUBLIC
GO

CHAPTER 3 © DATABASE MANAGEMENT

This stored procedure includes an additional location to first check whether the city
and country combination already exists. The procedure then either runs an INSERT or a SELECT
command to get the value of the LocationId, which is the output parameter. When saving a
Location and Person, this stored procedure can be called to get the LocationId.

Finally, a single stored procedure, shown in Listing 3-5, can be created to combine all this
work into a single call to the database.

Listing 3-5. chpt03_SavePersonWithLocation.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND
name = 'chpt03_SavePersonWithLocation")
BEGIN
DROP Procedure chpt03_SavePersonWithLocation
END

Go

CREATE Procedure dbo.chpt03_SavePersonWithLocation
(

@FirstName varchar(50),

@LastName varchar(50),

@BirthDate datetime,

@City [varchar](50),

@Country [varchar](50),

@LocationId bigint OUTPUT,

@PersonId bigint OUTPUT

)
AS

EXEC chpto3_Savelocation @City, @Country, @LocationId OUTPUT

EXEC chpt03_SavePerson @FirstName, @LastName, @BirthDate, @LocationId, =
@PersonId OUTPUT

Go

GRANT EXEC ON chpt03_SavePersonWithLocation TO PUBLIC
GO

Fewer trips to the database makes for a more efficient application. It also gives you some
flexibility with how the tables are organized in the database. Schema changes could be com-
pletely encapsulated behind the stored procedures so that the applications using the database
require no changes.

61

62

CHAPTER 3 " DATABASE MANAGEMENT

Managing Indexes and Constraints

As you add tables that have foreign key constraints, you will start to run into some complica-
tions. You cannot drop a table if there are foreign key dependencies preventing that action. To
get past this problem, I create a folder in each Database Project called Constraints, which has
a script to add all the foreign key constraints and another to remove them. I also often have a
script that will purge all data and fill in some initial sample data. When I change several table
scripts, I can remove the constraints, run the table scripts, and repopulate the database with
sample data so I can test the stored procedures.

There are no templates for Database Projects to check indexes and foreign keys, so you
have to start from scratch. The best feature of table and stored procedure templates is the
check for the existence of an item that needs to be dropped before it is re-created so that you
can run the script without errors.

For the Person and Location tables, there are just three indexes. The scripts to manage the
indexes are created by using Management Studio. The scripts were first added to the tables,
and before saving the change I used the Generate Change Script button on the taskbar, which
displays the script used to make an individual change. I copied and pasted that script into the
script to add indexes. This script does not check whether the index already exists, so the query
to check for these indexes must be included before the CREATE INDEX command to be run suc-
cessfully each time. Listing 3-6 shows the script that removes indexing.

Listing 3-6. Remove Indexing.sql

BEGIN TRANSACTION
Go

IF EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Location' and i.name =
'IX_chpto3_Location City")
BEGIN
PRINT 'Dropping index IX chpt03 Location City'
DROP INDEX IX chpt03_Location City ON dbo.chpt03_Location
END
Go

IF EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Location' and i.name =
"IX _chpto3_Location Country')
BEGIN
PRINT 'Dropping index IX chpt03 Location Country'
DROP INDEX IX chpt03_Location Country ON dbo.chpt03_Location
END
Go

CHAPTER 3 © DATABASE MANAGEMENT

IF EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Person' and i.name =
"IX _chpto3_Person BirthDate')
BEGIN
PRINT 'Dropping index IX chpt03 Person BirthDate'
DROP INDEX IX chpt03_Person BirthDate ON dbo.chpt03_Person
END
Go

COMMIT

The sysindexes and sysobjects tables provide the information needed to detect whether
an index already exists so the DROP command can be run conditionally to avoid any errors.
Removing indexing makes the process of adding lots of data to tables much faster because the
indexes do not have to be checked and maintained for each insert when it is removed. After
the index can be added back, the script in Listing 3-7 can be run. After the indexes are back in
place, queries should run much faster when there is a lot of data.

Listing 3-7. AddIndexing.sql

BEGIN TRANSACTION
Go

IF NOT EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Location' and i.name =
'IX _chpto3_Location City")
BEGIN
PRINT 'Adding index IX chpto3 Location City'
CREATE NONCLUSTERED INDEX
IX chpto3_Location City ON dbo.chpto3 Location
(
City
) WITH(STATISTICS NORECOMPUTE = OFF, IGNORE DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
END
Go

IF NOT EXISTS

(SELECT * FROM sysindexes AS i

JOIN sysobjects AS o on i.id = o.id

WHERE o.name = 'chpt03_Location' and i.name =
"IX chpto3_Location Country')

BEGIN

63

64

CHAPTER 3 " DATABASE MANAGEMENT

PRINT 'Adding index IX chpto3 Location Country'
CREATE NONCLUSTERED INDEX
IX _chpto3_Location Country ON dbo.chpt03 Location
(
Country
) WITH(STATISTICS NORECOMPUTE = OFF, IGNORE DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW PAGE_LOCKS = ON)
ON [PRIMARY]
END
Go

IF NOT EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Person' and i.name =
"IX _chpto3_Person BirthDate')
BEGIN
PRINT 'Adding index IX chpto3 Person BirthDate'
CREATE NONCLUSTERED INDEX IX chpt03_Person BirthDate
ON dbo.chpt03_Person
(
BirthDate
) WITH(STATISTICS NORECOMPUTE = OFF, IGNORE DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
END
Go

COMMIT

After the indexes are easily managed, it is time to move on to the foreign key constraints.
In the case of these constraints, there also is no starter template that checks for existing con-
straints before dropping them. The script in Listing 3-8 removes the single foreign key
between the Person and Location tables.

DEFRAGGING INDEXES

Over time indexes can become fragmented. A fragmented index will take longer to scan than a freshly
created index, so it is necessary to occasionally use the REORGANIZE command to clean up indexes. That
command does not fully refresh an index but does improve performance. The REBUILD command can be
used to fully refresh the index. These tasks are best left to your database administrator (DBA). As you start to
notice performance degradation, you can consider this tuning technique.

CHAPTER 3 © DATABASE MANAGEMENT

Listing 3-8. RemoveConstraints.sql

IF EXISTS (SELECT * FROM dbo.sysobjects

WHERE id = object id(N'[dbo].[FK chpt03 Person chpto3 Location]")
and OBJECTPROPERTY(id, N'IsForeignKey') = 1)

ALTER TABLE [dbo].[chpt03 Person]

DROP CONSTRAINT FK chpto3 Person chpt03 Location

And then to add the constraint back, the constraint in Listing 3-9 is run.

Listing 3-9. AddConstraints.sql

ALTER TABLE [dbo].[chpto3 Person] WITH CHECK ADD
CONSTRAINT [FK _chpt03_Person _chpt03 Location] FOREIGN KEY([LocationId])
REFERENCES [dbo].[chpto3_Location] ([LocationId])

Now that roadblock is easily removed whenever the tables need to be readjusted for a
change to the tables. If you want to add a column, you can update the table script, remove the
constraints, run the table script, and add the constraints back.

Performance Considerations

Before I get to the next example, there are some considerations to review. Where performance
is concerned, there are many factors to consider. To tune a slow application using a database,
there are a few basic steps you can take such as adding indexes to your tables and pulling only
the necessary data. The indexing will help assemble the results more quickly, while pulling less
data will reduce the amount of data transferred. In the case of very large result sets, leaving off
some columns will add up to a measurable difference. There are many other changes that can
be made to enhance performance, but these first two are the low-hanging fruit that will typi-
cally give the most benefit.

After you have pulled all data from the database into the web application to display on
the Web Form, the databound values will be serialized to ViewState. With a very large amount
of data, the result will be a very large file that the users of the website will have to download.
For a GridView that is showing only 10 of 100 rows, the ViewState can still hold all the data for
all 100 rows. And although the pages with such large sets of data will load quickly during
development while you are working on the same computer as the web server, it will be
painfully slow for a user accessing the website remotely. As a rule of thumb, the web page
must be under 100 KB, if not under 50 KB.

I once worked on a website using a dynamic navigational menu that had ViewState and
PostBack events covering several levels of the website hierarchy. It included a large number of
links, which added to the size of the ViewState. The typical web page was nearly 300 KB, with
over 90 percent of the page content being the ViewState. The original developer never knew
about this problem as he worked on his laptop, and everything was always fast. He never
checked the page size or how long it took to move from page to page from a remote server.
This sort of problem should be caught early, when it is easier to fix.

65

66

CHAPTER 3 " DATABASE MANAGEMENT

You can tune your tables and queries all you like, but if the page is 300 KB and many of your
users are still using dial-up or even low-end broadband speeds, they will find that your website is
slow. In contrast, most major news sites and information portals are under 30 KB. In the follow-
ing examples, the ViewState issue will be addressed and resolved with a simple strategy.

Note The time to transfer data is just one aspect of a slow web page. Large tables with many rows and
cells add to the rendering time for a web page. If it takes less than a second to load the data for a page, it
can still take a few more seconds for the web page to render a complex table.

It would be much more efficient to ask that the database return only the range of items that
will be displayed, rather than have the database return all possible items. When only ten rows
are shown, it is wasteful to transfer thousands of rows from the database to the web application.
Fortunately, we can request just that subset, but we will need a new stored procedure that will
work with our new goal. Listing 3-10 shows the script to create this special stored procedure.

Listing 3-10. chpt03_GetPeopleSubSetSorted.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND
name = 'chpto3_GetPeopleSubSetSorted")
BEGIN
DROP Procedure chpto3_GetPeopleSubSetSorted
END

Go

CREATE Procedure dbo.chpto3_GetPeopleSubSetSorted
(

@sortExpression nvarchar(50),

@startRowIndex int,

@maximumRows int

)
AS

IF LEN(@sortExpression) = 0
SET @sortExpression = 'PersonId’

-- reset to 1 based index
SET @startRowIndex = @startRowIndex + 1

-- build sql
DECLARE @sql nvarchar(4000)
SET @sql = 'SELECT PersonId,FirstName,LastName,BirthDate,City,Country
FROM
(SELECT p.Personld,p.FirstName,p.LastName,p.BirthDate,1.City,1.Country,

CHAPTER 3 © DATABASE MANAGEMENT

ROW_NUMBER() over(ORDER BY ' + @sortExpression + ') AS RowNum
FROM chpt03_Person AS p
JOIN chpto3_Location AS 1 on 1.LocationId = p.LocationId
) AS People
WHERE RowNum between ' + CONVERT(nvarchar(10), @startRowIndex) +
"and (' + CONVERT(nvarchar(10), @startRowIndex) + ' + '
+ CONVERT(nvarchar(10), @maximumRows) + ') - 1'

-- Execute the SQL query
EXEC sp_executesql @sql

Go

GRANT EXEC ON chpt03_GetPeopleSubSetSorted TO PUBLIC
Go

COMMON FOLDER ADDITIONS

The stored procedure in Listing 3-10 is a technique that you can apply many times to reduce load on the
database while speeding up the application layer. This script can be placed in your Common folder in the
Scripts subfolder to be referenced in future projects (D: \Projects\Common\Scripts\Database).

Alot is happening in this new stored procedure. It does not return every item in the
Person table. Instead it uses input parameters @startRowIndex and @maximumRows to define
arange of items to return. It also uses the @sortExpression input parameter to provide for
sorting.

Introduced with SQL Server 2005 is the new Row_Number function. Given the order of a
selection, the Row_Number function assigns a row number to each row. This row number is used
to limit the scope of the returned items.

But the @startRowIndex and @maximumRows values have to come from somewhere. This infor-
mation is given by the ObjectDataSource. When paging is enabled on the ObjectDataSource,
the SelectMethod must reference a method that has these parameters. We must add such a
method to the PersonDomain class. Listing 3-11 shows sample methods that use these additional
parameters.

Listing 3-11. GetPeopleSubSetSortedDataSet Methods

[DataObjectMethod(DataObjectMethodType.Select)]
public DataSet GetPeopleSubSetSortedDataSet(int? startRowIndex, int? maximumRows)

{
}

return GetPeopleSubSetSortedDataSet(null, startRowIndex, maximumRows);

[DataObjectMethod(DataObjectMethodType.Select)]
public DataSet GetPeopleSubSetSortedDataSet(

67

68

CHAPTER 3 " DATABASE MANAGEMENT

string sortExpression, int? startRowIndex, int? maximumRows)

DataSet ds = new DataSet();
if (String.IsNullOrEmpty(sortExpression))

{

sortExpression = "";
}
if (!startRowIndex.HasValue)
{

startRowIndex = 0;

}

if (!maximumRows.HasValue)

{

maximumRows = 0;

}

using (DbCommand dbCmd =
db.GetStoredProcCommand("chpto3_GetPeopleSubSetSorted"))
{
db.AddInParameter(dbCmd, "@sortExpression”, DbType.String, sortExpression);
db.AddInParameter(dbCmd, "@startRowIndex", DbType.Int64, startRowIndex);
db.AddInParameter(dbCmd, "@maximumRows", DbType.Int64, maximumRows);

ds = db.ExecuteDataSet(dbCmd);
}

//return the results
return ds;

In Listing 3-11 there are two methods with the same name. The difference is the addi-
tional argument for sortExpression on the second method. You may recognize this technique
as method overloading. Depending on whether the ObjectDataSource supports sorting, this
parameter will be used. The first method simply calls the second method with a null value for
the sortExpression, which leads to the chpt03_GetPeopleSubSetSorted stored procedure in
Listing 3-10.

The ObjectDataSource has one other property beyond the SelectMethod property that we
have been using so far and that we will use to make the solution work more efficiently. This
property, called SelectCountMethod, is used to tell the databound control the total number of
items the datasource returns. This value comes from another stored procedure. Listing 3-12
shows this stored procedure.

Listing 3-12. chpr03_GetPeopleRowCount.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND w
name = 'chpt03_GetPeopleRowCount")
BEGIN
DROP Procedure chpt03_GetPeopleRowCount

CHAPTER 3 © DATABASE MANAGEMENT

END
Go

CREATE Procedure dbo.chpt03_GetPeopleRowCount

(
@Count int OUTPUT
)

AS
SET @Count = (SELECT COUNT(*) AS [Count] FROM chpt03_Person)
GO

GRANT EXEC ON chpt03_GetPeopleRowCount TO PUBLIC
Go

This counts all records in the Person table and is used in the method shown in Listing 3-13.

Listing 3-13. GetPeopleRowCount Method

public long? GetPeopleRowCount()
{

long? count = 0;

using (DbCommand dbCmd = db.GetStoredProcCommand("chpto3_GetPeopleRowCount"))

{
db.AddOutParameter(dbCmd, "@Count", DbType.Int64, 0);

db.ExecuteNonQuery(dbCmd);
count = (long)db.GetParameterValue(dbCmd, "@Count");

return count;

Finally, the following ObjectDataSource in Listing 3-14 pulls it all together so it can be
used by a databound control.

Listing 3-14. ObjectDataSourcel

<asp:ObjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}"
TypeName="Chapter02.PersonDomain"
SelectMethod="GetPeopleSubSetSortedDataSet"
SelectCountMethod="GetPeopleRowCount"
EnablePaging="True"
SortParameterName="sortExpression">

</asp:0ObjectDataSource>

69

70

CHAPTER 3 " DATABASE MANAGEMENT

With this ObjectDataSource, you can page through thousands of rows quickly and effi-
ciently. It also reduces the amount of data moved from the database to the web application.

Stability Considerations

The link between the application and the database is often taken for granted. As a result, it is
not given enough protection nor treated as a true integration point. As much as we would like
a database query to be as reliable as looping over an array of objects in memory, it is not. Part
of the disconnected nature of the database is the ability to change the application or database
independently of the other, and despite our best efforts to keep them compatible, it is easy to
change one without adjusting the other properly.

With a Typed DataSet, the schema is very strict. The slightest change on a single column
will cause the application to break. Changing the name of a column will cause unwanted
behavior on a Nontyped DataSet. When the relationship between the application and the
database is treated as an integration point, the approach and assumptions change. And that
change will allow for additional steps to be taken to ensure the stability of the integration.
Later in this chapter, you will see what the options are for working with the data and what you
can do to ensure that this important link stays reliable.

ISOLATING CHANGES

A primary goal of any software project should be to minimize the amount of maintenance. When a database
used by several applications changes, it can generate a great deal of work to update all of the applications.
But the changes could be isolated to a choke point, where all applications share a dependency. Consider
placing your Typed DataSets and domain classes in a class library, which creates an assembly to be used by
all the applications. When the database schema changes, the class library can be updated and deployed to
each of the applications. In the case of a growing VARCHAR, it is easily absorbed into .NET because the
String object is not concerned with the size and will not throw an exception if this class library suddenly
starts returning longer String values. There may still be adjustments to be made, such as validation control
properties, but this approach avoids updating a Typed DataSet reference in each application by isolating the
change to a single point. And with this single point of access to the database, we have the perfect opportunity
to test the class library to ensure that the changes in the database have been synchronized with the code.

Unit Tests for Data

Instead of manually testing every change each time a change is made, you can use unit tests,
which can run a whole suite of tests automatically. These tests can confirm that each stored
procedure and domain method do as they are requested and can give you an early warning
when something does break. The early warning gives you the opportunity to correct the prob-
lem soon after the breaking change is made so you can more easily identify and fix it. If a
problem were to go unnoticed until the application was being prepared for deployment, iden-
tifying the cause would be quite difficult, which would make it harder to make a correction.
The most popular unit-testing framework for .NET is NUnit. It is a simple framework used
by placing attributes on classes and methods to indicate that they are part of a test suite. The

CHAPTER 3 © DATABASE MANAGEMENT

NUnit test runner will load an assembly, look for these attributes, and dynamically build a
collection of tests to be run. In each test you will make calls into the database and check the
return values with Assert statements, which will be either succeed or fail. When a test suite
succeeds in all tests, the indicators are all green. But when a test fails, it is lit up in red.

After unit tests are in place and the test suite comprehensively covers your code base,
each developer can run the tests prior to committing changes to the source-control system.
Doing so will keep broken code out of the source-control system, which would spread to the
other developers’ systems as they pull down updates. But even when tests are run, the combi-
nation of changes from multiple developers can break the unit tests. To protect against this
scenario, you can set up a build server to pull updates from source control, build the projects,
and run the tests at regular intervals. This is commonly known as continuous integration.

Continuous Integration

The most popular continuous integration solution over the past few years has been
CruiseControl.NET. It works with the unit-testing frameworks such as NUnit as well as a

wide range of source-control systems. It can be configured to check the source-control system
for updates every five minutes. When there is an update, CruiseControl.NET kicks off the build
and testing process. The results of the build and tests are recorded with build reports, and the
developer can get the results immediately by e-mail.

CruiseControl.NET also has a system tray application that stays in touch with the build
server to report changes back to the developers. When a build is successful, the application
pops up a notification bubble from the system tray. And when there is a failure, it displays a
notification with the bad news. CruiseControl. NET also has a website that displays each of
the configured projects with a list of all of the build reports. When a build fails, you can look
at the latest build to see exactly what went wrong.

Not only does it show you the files that were changed for the latest build, but also the line
numbers where the code broke. These details make it much easier to determine who broke the
build and what was changed to cause the break. A side effect of having the automated build
report failures is that it is much less personal, and the developer can simply volunteer to fix
his problem right away. Many times I have seen the build fail because of a missing file that
was not committed to source control with all the other changes. Committing that missing file
quickly fixes the build, and everyone can get back to work. Because of such cases, it is best to
commit your changes and request the build server to run the build immediately so you can
ensure that the build is run successfully after your changes are included but before you head
home for the day. That last thing you need is to be called back into work because you did not
include a file with your latest changes.

The upcoming chapters cover specific examples for unit testing and continuous integra-
tion. They will become a regular part of your daily routine.

Summary

This chapter covered database management processes, from organizing the scripts in Data-
base Projects to creating the scripts for managing stored procedures, indexes, and constraints.
It concluded with a review of automated testing techniques that can be used to ensure that
the application layer continues to work well with the database.

7

CHAPTER 4

Databound Controls

There are many useful controls available in ASPNET 2.0, which makes it very easy to work
with data. Many of the examples provided by Microsoft show how you can quickly assemble a
data-driven website with little or no code. But sometimes the real-world requirements push
you beyond this safe space and demand a more complex solution. The solutions can still be
elegant and work with very little code. You just need a deeper understanding of what you can
do with the available controls and what you do with a more complex combination of these
controls. And once you break up your approach into smaller components that work together,
you can handle the more complicated requirements with manageable components.

This chapter covers the following:

* The DetailsView control

e The FormView control

* The GridView control
 Editing and validating fields

* Binding input parameters

* Embedding user controls

* Creating a databound control

By far the most commonly used databound control is the GridView control. It is a very
powerful control that can show your data and provide add, update, and delete functionality
you would expect from a rich data control. Beyond this one control, there are several other
databound controls that provide the same display and editing features as GridView but do
itin a different way. Let’s look at those other controls first.

DetailsView

The DetailsView control shows a single record at a time. Like the GridView control, it features
add, update, and delete functionality. It also has paging functionality. In contrast, the GridView
shows the data in a tabular format so you can view multiple records at a time. The DetailsView is
useful when there are more fields than you would reasonably want to show in a tabular view.
This makes it better suited for editing.

Let’s use the DetailsView control with the person and location data from the previous
chapter. The first example is in Listing 4-1.

73

74 CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-1. DetailsView Example

<asp:DetailsView ID="DetailsViewl" runat="server"
DataSourceID="0ObjectDataSource1" AllowPaging="True"
AutoGenerateRows="False" DataKeyNames="PersonId">
<Fields>
<asp:BoundField DataField="FirstName"
HeaderText="First Name" SortExpression="FirstName" />
<asp:BoundField DataField="LastName"
HeaderText="Last Name" SortExpression="LastName" />
<asp:BoundField DataField="BirthDate"
HeaderText="Birth Date" SortExpression="BirthDate"
DataFormatString="{0:MM/dd/yyyy}" HtmlEncode="False" />
<asp:BoundField DataField="City"
HeaderText="City" SortExpression="City" />
<asp:BoundField DataField="Country"
HeaderText="Country" SortExpression="Country" />
<asp:CommandField ShowDeleteButton="True"
ShowEditButton="True" ShowInsertButton="True" />
</Fields>
</asp:DetailsView>

The columns selected here include First Name, Last Name, Birth Date, City, and Country.
Each of these fields is automatically editable, and each record can be deleted. You can even
add a new record. And with paging enabled, you can jump to each of the records. It is all as
you would expect from such a data-editing control. I'll come back to the DetailsView control
in the advanced examples throughout the rest of this chapter.

FormView

The FormView control starts out looking a lot like the DetailsView, but it is not as rigid. It may
start out as a two-column layout, but it is a template control that can be changed completely.

You may choose to group the First Name, Last Name, and Birth Date columns together in one
block and the City and Country columns in another. When you view the code, you will see the
various templates, including the ItemTemplate, which shows the data in read-only mode; you
will also see all of the Label controls with the Bind method calls to fill each Label with the data
from the DataSource. A sample FormView is shown in Listing 4-2.

Listing 4-2. FormView Example

<asp:FormView ID="FormViewl" runat="server"
AllowPaging="True" DataKeyNames="PersonId"
DataSourceID="0ObjectDataSource1">
<EditItemTemplate>
Personld:
<asp:Label ID="PersonIdlLabel1" runat="server"
Text="<%# Eval("PersonId") %>'></asp:Label>

FirstName:

CHAPTER 4 =" DATABOUND CONTROLS

<asp:TextBox ID="FirstNameTextBox" runat="server"
Text="<%# Bind("FirstName") %>'>

</asp:TextBox>

LastName:

<asp:TextBox ID="LastNameTextBox" runat="server"
Text="<%# Bind("LastName") %>'>

</asp:TextBox>

BirthDate:

<asp:TextBox ID="BirthDateTextBox" runat="server"
Text="<%# Bind("BirthDate") %>'>

</asp:TextBox>

City:

<asp:TextBox ID="CityTextBox" runat="server"
Text="<%# Bind("City") %>'>

</asp:TextBox>

Country:

<asp:TextBox ID="CountryTextBox" runat="server"
Text="<%# Bind("Country") %>'>

</asp:TextBox>

<asp:LinkButton ID="UpdateButton" runat="server"
CausesValidation="True" CommandName="Update" Text="Update">

</asp:LinkButton>

<asp:LinkButton ID="UpdateCancelButton" runat="server"
CausesValidation="False" CommandName="Cancel" Text="Cancel">

</asp:LinkButton>

</EditItemTemplate>
<InsertItemTemplate>

FirstName:

<asp:TextBox ID="FirstNameTextBox" runat="server"
Text="<%# Bind("FirstName") %>'>

</asp:TextBox>

LastName:

<asp:TextBox ID="LastNameTextBox" runat="server"
Text="<%# Bind("LastName") %>'>

</asp:TextBox>

BirthDate:

<asp:TextBox ID="BirthDateTextBox" runat="server"
Text="<%# Bind("BirthDate") %>'>

</asp:TextBox>

City:

<asp:TextBox ID="CityTextBox" runat="server"
Text="<%# Bind("City") %>'>

</asp:TextBox>

Country:

<asp:TextBox ID="CountryTextBox" runat="server"
Text="<%# Bind("Country") %>'>

</asp:TextBox>

76 CHAPTER 4 =" DATABOUND CONTROLS

<asp:LinkButton ID="InsertButton" runat="server"
CausesValidation="True" CommandName="Insert" Text="Insert">
</asp:LinkButton>
<asp:LinkButton ID="InsertCancelButton" runat="server"
CausesValidation="False" CommandName="Cancel" Text="Cancel">
</asp:LinkButton>
</InsertItemTemplate>
<ItemTemplate>
FirstName:
<asp:lLabel ID="FirstNamelabel" runat="server"
Text="<%# Bind("FirstName") %>'></asp:Label>

LastName:
<asp:Label ID="LastNamelLabel" runat="server"
Text="<%# Bind("LastName") %>'></asp:Label>

BirthDate:
<asp:Label ID="BirthDatelabel" runat="server"
Text="<%# Bind("BirthDate") %>'></asp:Label>

City:
<asp:lLabel ID="CitylLabel" runat="server"
Text="<%# Bind("City") %>'></asp:Label>

Country:
<asp:Label ID="CountrylLabel" runat="server"
Text="<%# Bind("Country") %>'></asp:Label>

<asp:LinkButton ID="EditButton" runat="server"
CausesValidation="False" CommandName="Edit" Text="Edit">
</asp:LinkButton>
<asp:LinkButton ID="DeleteButton" runat="server"
CausesValidation="False" CommandName="Delete" Text="Delete">
</asp:LinkButton>
<asp:LinkButton ID="NewButton" runat="server"
CausesValidation="False" CommandName="New" Text="New">
</asp:LinkButton>
</ItemTemplate>
</asp:FormView>

The free-form nature of the FormView allows for layouts that are very different from those
possible with the DetailsView, yet still gives you the same features to add, edit, and delete data.

GridView

Now for the granddaddy of all databound controls: the GridView control. Whether it lists
transactions from your checking account or lists contacts in your address book, this control
is used nearly everywhere. And while it lists data in a tabular format and allows you to add,
edit, and delete records, it also allows you to sort the data. This makes it a powerful and easy
means of looking at data in a way that is most useful to you. Listing 4-3 shows an example of
the GridView control.

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-3. GridView Example

<asp:Gridview ID="GridViewl" runat="server" AllowPaging="True" AllowSorting="True"
AutoGenerateColumns="False" DataKeyNames="PersonId"
DataSourceID="0ObjectDataSource1">
<Columns>
<asp:BoundField DataField="FirstName"
HeaderText="First Name" SortExpression="FirstName" />
<asp:BoundField DataField="LastName"
HeaderText="Last Name" SortExpression="LastName" />
<asp:BoundField DataField="City"
HeaderText="City" SortExpression="City" />
<asp:BoundField DataField="BirthDate"
HeaderText="Birth Date" HtmlEncode="False"
SortExpression="BirthDate" />
<asp:BoundField DataField="Country"
HeaderText="Country" SortExpression="Country" />
<asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
</Columns>
</asp:GridView>

The editing functionality of the BoundField used by the GridView and the DetailsView is
pretty limited. Fields will be edited with a TextBox control for strings as well as dates. And in
the case of the City and Country fields, it will allow for any value. It would be an improvement
to use an editor that recognized data types. This shortcoming will be addressed in the follow-

ing section.

Editing and Validating Fields

While the preceding controls do allow you to modify the data they display, they do not offer a
great deal of smart functionality for various data types. For example, the date-editing function
will have you edit the date with a regular TextBox control. Entering a string that is not a date
will cause the postback event to throw an exception, as shown in Figure 4-1.

€ The string was not recognized as a walid DateTime, There is a unknown word starting at index 7. - Win... | = || B |[Z3]

@_/ - |ﬁ_ http:fflocalhost 1636 \ebsite/ Termpd.aspz v ‘ "7‘ x ‘ | Live Search R -

W ,é The string was not recognized as a valid DateTirm...

Server Error in 'fWebsite' Application. [

The string was not recognized as a valid DateTime. There is a
unknown word starting at index 7.

Description: An unhandled exception occurred during the execution of the current weh request. Please review the stack
trace for more information about the error and where t originated inthe code.

Exception Details: System FormatException: The string was not recognized as & valid DateTime. There i3 & unknown
weord starting at index 7 ik

« m 3

Dane &) Internet | Protected Mode: On H100% v

Figure 4-1. FormatException when saving a date value

77

78

CHAPTER 4

You may even enter a value that looks like a valid date, such as June 31, but there is no 31+
day of June, so it will also fail. It would be best to prevent that error from happening and prevent
the exception. To do so, the BoundField can be replaced with a TemplateField. This can be done
by converting the BoundField to a TemplateField in the Fields panel, shown in Figure 4-2, which
is accessed by clicking the Edit Columns link on the Smart Tag for the GridView.

DATABOUND CONTROLS

Fields

Awailable fields:
=] (Al Fields) -
=12l BoundField
=] Personld =
=] FirstMame
=] LastMame
(=] BirthDate
5] Locationld
=1 CherkRoField g

BoundField properties:

734

B Accessibility
AccessibleHeaderText

E Appearance
FooterText
Headerdmagelrl

HeaderText BirthDate

Selected fields:

A edit, Update, Cancel | III
=] personld =
=] FirstName |L|
] e |T|
= . £

=] Lacationld |
|

Auto-generate fields

Refresh Schema

5 Behavi
LpplyFormatinEdithod: False
ConvertErnptyStringTal True

HtrmlEncode True
Insertiisible True
NullDisplayText

ReadOnly False

HeaderText

The text within the header of this field.

Convert this field into a TernplateField

[EeRx]

m

oK

Cancel

Figure 4-2. Fields editor

Once you have your TemplateField, it will start with a Label for read-only mode and a
TextBox for edit mode and be placed in the ItemTemplate and EditTemplate. An example is

shown in Listing 4-4.

Listing 4-4. GridView with TemplateField

<asp:GridView ID="GridView1" runat="server"
AllowPaging="True" AllowSorting="True"

AutoGenerateColumns="False" DataKeyNames="PersonId"

DataSourceID="0ObjectDataSource1">

<Columns>

<asp:BoundField DataField="FirstName"
HeaderText="First Name" SortExpression="FirstName" />

<asp:BoundField DataField="LastName"

HeaderText="Last Name" SortExpression="LastName" />
<asp:BoundField DataField="City" HeaderText="City" SortExpression="City" />
<asp:TemplateField HeaderText="Birth Date" SortExpression="BirthDate">

<EditItemTemplate>

<asp:TextBox ID="TextBox1" runat="server"
Text="<%# Bind("BirthDate") %>'></asp:TextBox>

</EditItemTemplate>
<ItemTemplate>

<asp:Label ID="Label1" runat="server"

CHAPTER 4 =" DATABOUND CONTROLS

Text="<%# Bind("BirthDate") %>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="Country"
HeaderText="Country" SortExpression="Country" />
<asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
</Columns>
</asp:GridView>

The new TemplateField initially does not stop the problem with the invalid date but will
allow you to add validation controls to check on the value. A ValidationSummary control can
be placed above the GridView to show the ErrorMessage property of any validator that indi-
cates an invalid value, but this would have to be repeated in every place that a date is edited. It
also makes the GridView definition quite bulky. Instead, you will create a simple user control
called DateEditor. This user control will be made up of a TextBox along with a CustomValidator
and RegularExpressionValidator. The DateEditor is shown in Listing 4-5.

Listing 4-5. DateEditor

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="DateEditor.ascx.cs" Inherits="DateEditor" %>

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<asp:CustomValidator ID="cvDate" runat="server"
ControlToValidate="TextBox1" Display="Dynamic"
EnableClientScript="False" ErrorMessage="Date is invalid"
OnServerValidate="cvDate ServerValidate">*

</asp:Customvalidator>

<asp:RegularExpressionValidator ID="revDate" runat="server"
ControlToValidate="TextBox1"
Display="Dynamic" ErrorMessage="Date format is invalid. [MM/dd/yyyy]"
ValidationExpression=""\d\d*\/\d\d*\/\d\d\d\d$">*

</asp:RegularExpressionValidator>

In the code-behind, you add a little help to the CustomValidator to verify the value is truly
avalid date and also make the value available through a property for the TemplateField that
will hold the DateEditor (see Listing 4-6).

Listing 4-6. DateEditor Code-Behind

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class DateEditor : UserControl

{

protected void Page Load(object sender, EventArgs e)

{
}

79

80 CHAPTER 4 =" DATABOUND CONTROLS

public DateTime Date

{
get
{
DateTime tmpDate = DateTime.MinValue;
DateTime.TryParse(TextBox1.Text, out tmpDate);
return tmpDate;
set
{
TextBox1.Text = value.ToString("MM/dd/yyyy");
}
}

protected void cvDate ServerValidate(object source,
ServerValidateEventArgs args)

{
DateTime tmpDate;
if (!DateTime.TryParse(TextBox1.Text, out tmpDate))
{
args.IsValid = false;
return;
}
// these are the database constraints
DateTime minDate = new DateTime(1753,1,1);
DateTime maxDate = new DateTime(9999,12,31);
if (tmpDate < minDate || tmpDate > maxDate)
{
args.IsValid = false;
return;
}
}

The code-behind carefully checks the value of the TextBox to ensure it never returns
an invalid value. In the ServerValidate event handler for the CustomValidator, it uses the
TryParse method of the DateTime object to check that the Text property from TextBox not only
looks like a date, but also is a valid date. It will not allow June 31 through. And then in the Date
property, the same check is done to prevent an invalid date from getting through. Back in the
GridView, the DateEditor is placed in the EditTemplate with the Date property bound to the
Birth Date field (see Listing 4-7).

Listing 4-7. DateEditor

<EditItemTemplate>
<chpto4:DateEditor ID="DateEditor1" runat="server"
Date="'<%# Bind("BirthDate") %>' />
</EditItemTemplate>

CHAPTER 4 =" DATABOUND CONTROLS

Now when an invalid date is entered, a helpful error is shown instead of the exception.
Better yet, the DateEditor can be used anywhere throughout the website, so a consistent vali-
dation check is used everywhere that will make for a better interface and less work.

Binding Input Parameters

Datasources can be configured with input parameters to filter data in multiple ways. Input
parameters could come from controls like a TextBox or DropDownlList as well as query string
values. The wizard for configuring an ObjectDataSource and a SqlDataSource will detect when
the datasource requires input parameters and will present these options. You can bind these
parameters or choose to handle them programmatically.

Binding Input Parameters with a Control

The simplest example of working with input parameters is to bind them to a control such as a
TextBox or a DropDownlList. With the sample database, you will start by binding a list of last
names to a DropDownlList. Then a GridView will take the SelectedValue from the DropDown-
List and get all people where the last names are a match. This example can be done without
writing any code in the code-behind file. It is just a matter of dragging and dropping the con-
trols. Listing 4-8 shows the code.

Listing 4-8. InputParameterExample.aspx

Select Last Name:
<asp:DropDownList ID="DropDownlList1" runat="server" AutoPostBack="True"
DataSourceID="ObjectDataSource1" DataTextField="LastName">
</asp:DropDownList>
<asp:ObjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetLastNames" TypeName="Chapter04.PersonDomain">
</asp:0bjectDataSource>
<asp:CridView ID="GridView1l" runat="server" AllowPaging="True"
AllowSorting="True" DataSourceID="ObjectDataSource2">
</asp:CridView>
<asp:0ObjectDataSource ID="ObjectDataSource2" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetPeopleByLastName"
TypeName="Chapter04.PersonDomain">
<SelectParameters>
<asp:ControlParameter ControlID="DropDownList1"
Name="lastName" PropertyName="SelectedValue"
Type="String" />
</SelectParameters>
</asp:0bjectDataSource>

The important part is near the bottom with the SelectParameters, which defines that the
ControlParameter comes from the DropDownListl and sets the lastName input parameter.

81

82

CHAPTER 4 =" DATABOUND CONTROLS

Binding Input Parameters Programmatically

Sometimes you cannot just get a value from a control. Either the datasource is not bound

to the control yet or it needs to be carefully validated before setting the value as an input
parameter to prevent an exception. In these cases, you can withhold the ControlParameter
definition and instead leave the input parameter undefined except for the Name and Type. The
ObjectDataSource has an event called Selecting, which is where you will want to set the input
parameter programmatically. Listing 4-9 shows an example of declaring input parameters.

Listing 4-9. InputParameterExample2.aspx

Select Last Name:

<asp:DropDownList ID="DropDownlList1" runat="server" AutoPostBack="True"
DataSourceID="0ObjectDataSource1" DataTextField="LastName">

</asp:DropDownlList>

<asp:GridView ID="GridView1l" runat="server" AllowPaging="True"
AllowSorting="True" DataSourceID="ObjectDataSource2">

</asp:GridView>

<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
0ldValuesParameterFormatString="original {0}"
SelectMethod="GetLastNames"
TypeName="Chapter04.PersonDomain"></asp:0bjectDataSource>

<asp:0ObjectDataSource ID="ObjectDataSource2" runat="server"
0ldValuesParameterFormatString="original {0}"
SelectMethod="GetPeopleByLastName"
TypeName="Chapter04.PersonDomain"
OnSelecting="0ObjectDataSource2 Selecting">

<SelectParameters>
<asp:Parameter Name="lastName" Type="String" />
</SelectParameters>
</asp:0bjectDataSource>

Notice that the OnSelecting event handler is specified and the SelectParameters specifies
the lastName parameter with no control association. The value for the parameter is set in the
code-behind file. Listing 4-10 shows an event handler for the Selecting event.

Listing 4-10. Selecting Event Handler

protected void ObjectDataSource2 Selecting(object sender,
ObjectDataSourceSelectingEventArgs e)
{

e.InputParameters["lastName"] = DropDownlist1.SelectedValue;

}

If this input parameter wanted a date and the value was coming from a TextBox, the value
could be checked to ensure that it really is a valid date and only set the input parameter when
it is valid. An input parameter may also be a more complex type, like a business object, that
you assemble in the Selecting event handler. This simple handler gives you many options.

CHAPTER 4 =" DATABOUND CONTROLS

Binding a User Control

All too often I have seen very large pages with piles and piles of markup in the template side
of each page and plenty more code in the code-behind because the pages were not broken up
into user controls. A user control is just a fragment of a page that is very useful when used to
encapsulate a section of the page. It will isolate not only a piece of the markup, but also events
and behavior. User controls can also be used multiple times on one page as well as across
many pages. It is a great way to introduce code reuse for a website.

The matter of binding to a user control can be tricky when you first attempt it. Should it
try to read values from the query string or somehow traverse the control hierarchy to get to a
control that defines the input parameter it needs to carry out its DataBind function? The best
way to handle this is to treat the user control just like you already treat other controls such as
the TextBox and set properties on the user control. First you need a user control, as shown in
Listing 4-11.

Listing 4-11. PersonListingControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="PersonListingControl.ascx.cs"
Inherits="Controls_PersonlListingControl" %>
<asp:GridView ID="GridViewl" runat="server" AllowPaging="True"
AllowSorting="True" DataSourceID="ObjectDataSource1">
</asp:GridView>
<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
0ldValuesParameterFormatString="original {0}"
SelectMethod="GetPeopleByLastName"
TypeName="Chapter04.PersonDomain"
OnSelecting="0ObjectDataSourcel Selecting">
<SelectParameters>
<asp:Parameter Name="lastName" Type="String" />
</SelectParameters>
</asp:0bjectDataSource>

This example includes the GridView as in the previous examples, yet it is held in a user
control. It also has an ObjectDataSource with a lastName input parameter with the Selecting
event handler specified. The parent page will need to pass in the value for the lastName
parameter, and you will do it with a property declaration (see Listing 4-12).

Listing 4-12. PersonListing.aspx.cs Code-Behind

protected void ObjectDataSourcel Selecting(
object sender, ObjectDataSourceSelectingEventArgs e)

{

e.InputParameters["lastName"] = LastName;

}

private string lastName = String.Empty;
public string LastName

{

83

84

CHAPTER 4 =" DATABOUND CONTROLS

get
{

return _lastName;

_lastName = value;
ObjectDataSourcel.DataBind();

The LastName property holds the value that is used on the Selecting event handler. And
when the LastName property is set, you can see that it calls DataBind on ObjectDataSourcel to
immediately bind the data to the GridView. Without calling DataBind, the GridView may not
be bound at all because it will not automatically get fired like it would if the ObjectDataSource
was configured with a control property. It makes sense to call it right here when the value is
set, but it can also be called on the PreRender event for the user control or even have the page
holding this control call the DataBind method on the user control. Having the data bound
immediately once the value is known ensures that the data is always bound.

In the case when there are multiple properties that are used to set multiple input parame-
ters, it is better to defer the data binding to a later event like the PreRender event so all of the
properties can be set before the Selecting event runs.

Embedding Databound Controls

For a more complex data hierarchy, you may find that you would like to embed a user control
within another user control, just as the previous example embedded a user control within a
page and bound data to it by passing a value to it through a property. Perhaps you are showing
areport, and with each section there is a related subsection. Creating a user control to repre-
sent the section that holds another user control representing the subsection is a great way to
break up the code into isolated pieces that are responsible for their own data binding.

The sample database has a Location table holding a City and a Country column. You will
bind a list of countries to a Repeater control that displays the country with a Label control and
then passes the country to a user control to show a list of cities in that country. You just need
to design the user controls and wire them together to set the properties and fire the data bind-
ing in the right order.

The first user control, shown in Listing 4-13, draws a bulleted list with the countries.

Listing 4-13. CountryListingControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="CountrylListingControl.ascx.cs"
Inherits="Controls CountrylListingControl" %>
<%@ Register Src="CitylListingControl.ascx"
TagName="CitylListingControl" TagPrefix="uc1" %>
<asp:Repeater ID="Repeater1" runat="server"
DataSourceID="ObjectDataSource1">

CHAPTER 4 =" DATABOUND CONTROLS

<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<1i>
<asp:Label ID="Label1" runat="server"
Text="<%# Bind("Country") %>'></asp:lLabel>
<ucl:CitylListingControl ID="CitylListingControl1"
runat="server" Country='<%# Bind("Country") %>"' />
</1i>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>
<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
0ldValuesParameterFormatString="original {o}"
SelectMethod="GetAllCountries"
TypeName="Chapter04.PersonDomain"></asp:0bjectDataSource>

What is interesting here is that the Country property on the user control can be bound to
the Country value just like the Label control, which is a standard ASPNET control. When the
data is bound to Repeaterl, it automatically sets the Country property on CityListingControll.
And this all happens without any additional code in the code-behind. Listing 4-14 shows the
city listing control.

Listing 4-14. CityListingControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="CityListingControl.ascx.cs" Inherits="Controls CitylListingControl" %>
<asp:Repeater ID="Repeater1" runat="server" DataSourceID="ObjectDataSource1">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<1li>
<asp:Label ID="Label1" runat="server"
Text="<%# Bind("City") %>'></asp:Label>

</1i>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>
<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
0ldvaluesParameterFormatString="original {0}"
SelectMethod="GetCitiesByCountry"
TypeName="Chapter04.PersonDomain"

85

86

CHAPTER 4 = DATABOUND CONTROLS

OnSelecting="0ObjectDataSourcel Selecting">
<SelectParameters>
<asp:Parameter Name="country" Type="String" />
</SelectParameters>
</asp:0bjectDataSource>

This user control also makes use of a Repeater to list all of the data in a bulleted list. In this
case, it is all of the cities in the selected country. In the code-behind, shown in Listing 4-15, a
little bit of code is put in place to wire together the parent user control to bind the data.

Listing 4-15. CityListingControl.ascx.cs

protected void ObjectDataSourcel Selecting(
object sender, System.Web.UI.WebControls.ObjectDataSourceSelectingEventArgs e)

{
}

e.InputParameters("country"] = Country;

private string _country;
public string Country

{
get {
return _country;
}
set {
_country = value;
ObjectDataSourcel.DataBind();
}
}

You could theoretically go many levels deeper, perhaps listing the people who live in each
city by following this same pattern of passing properties into the user control to be bound as
an input parameter. And doing so completely encapsulates the behavior of each user control.

BEWARE OF RECURSIVE DATA BINDING

Be sure to bind just the ObjectDataSource and not the entire user control when the properties are set.
Rebinding the user control will cause an infinite recursive loop on the property as the user control repeatedly
binds the data over and over.

CHAPTER 4 =" DATABOUND CONTROLS

ViewState and Databinding

When working with databinding, you will be using ViewState extensively as a part of the post-
back model. All of the data that is bound to a control, such as a GridView, is held in ViewState.
By default, the data is serialized to a string, encrypted, and included in the page as a hidden
input field. When a postback occurs, the value from the hidden field is decrypted and deserial-
ized. The postback process then attempts to reset the control values with this data. By using
the ViewState to redraw a databound control, you avoid going back to the database to get all
of the necessary data. On a typical page, you may have several databound controls that will
make use of this ViewState. In the case of a GridView, you could click one of the pager links to
change the selected index, which will cause new data to be pulled from the database. While
that happens, the other databound controls will simply use the ViewState data to redraw
themselves. It is a pretty efficient model if you compare it to other solutions that would need
to rebind all of the data from the database with each page request.

However, using ViewState does mean that when a page displays a large set of data, the
ViewState data held in the hidden input field is also large. It is also a duplication of the dis-
played data held inside of an encrypted string to preserve the integrity of the data. So while
you reduce the number of trips to the database during postbacks, you cause the page load
time to increase, which may be just as much of a performance penalty for users who have a
limited-bandwidth connection to your web application. Such users could be using a modem
or mobile connection that does not offer high-speed access. They could also be sharing a
high-speed connection with everyone in their office, which degrades the speed of their access.
In any case, you want to make your page load times as fast as possible by reducing the size of
the page. When ViewState becomes large, you will want to consider ways to reduce the size.

PAGE SIZE AND LOAD TIME

Jakob Nielsen, a leader in web usability, notes on his website that a user connected to the Internet with a
modem will take ten seconds to load a page that is just 34 KB (http://www.useit.com/alertbox/
sizelimits.html). For a Cable/DSL connection, it would take one second to load a 100KB page. It is easy
for a data-heavy page to go well beyond 100 KB, so high-speed users may still wait two to five seconds for
your pages to load. Cutting the ViewState could save a few seconds for those high-speed users and much
more for any user on a slower connection. Of course these delays are extended by the time to prepare and
start sending a response to a user.

Session and ViewState

You can change how ViewState is persisted to avoid placing all of this extra data in the page.
ASPNET 2.0 introduced the option to store ViewState in the Session instead of the hidden
input field. You just have to override the PageStatePersister property to return either the
HiddenFieldPagePersister, which is the default, or the SessionPageStatePersister. An exam-
ple is shown in Listing 4-16.

87

http://www.useit.com/alertbox/sizelimits.html
http://www.useit.com/alertbox/sizelimits.html
http://www.useit.com/alertbox/sizelimits.html
http://www.useit.com/alertbox/sizelimits.html

88

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-16. PageStatePersister Set to Use the Session

protected override PageStatePersister PageStatePersister

{
get
{
return new SessionPageStatePersister(Page);
}
}

The implementation for SessionPageStatePersister places a Guid value into the hidden
input field in place of all the encrypted data and places the actual data into the user’s Session.
When a postback occurs, the Guid value is used to look up that data. This data is limited to a
rotating queue that holds only the last ten pages of data. And while this reduces the page size,
the limitation of placing it in the Session presents a few problems.

The clear problem is that if the data is removed from the Session, a postback will throw
an exception. This can happen if the user’s Session expires after the default time-out of 20 min-
utes. When a user’s Session expires, the Session is abandoned on the server along with the
server-side ViewState. If a user steps away for that time period, returns, and then clicks a but-
ton causing a postback, that user will see the exception. You may consider bumping up the
Session time-out to eight hours, but doing so will cause more memory to be used on the server.
If you retain the Session state for all users who visit your website in that eight-hour period, you
may struggle with the amount of memory that is required.

Users could also open two browser windows while using your web application. They click
around in one window for a while and then move to the other window and click some more,
causing postbacks as they do so. If they go beyond the ten-click limit and return to the other
window and cause a postback, they will get the state exception. Fortunately, this feature can
be enabled on a page-by-page basis. If your website has a limited set of data-intensive pages,
you could set them to use the SessionPageStatePersister while the rest of the pages use the
default functionality.

You could also implement your own custom PageStatePersister that works much like the
SessionPageStatePersister, butinstead of limiting the data to ten items, older data could be
stored to the database in case it is needed. A scheduled job could purge this data nightly.

Paging

The size of the ViewState can also be reduced using paging. Consider a GridView that has
1,000 total items with the page size set to 10 items. Only the data for those 10 items will be per-
sisted in ViewState instead of the data for all 1,000 items. When paging is combined with the
subset selection technique covered in the last chapter, you can ensure that only the 10 rows
that are shown are pulled from the database, which will reduce the load on the database. You
will learn more about the benefits of paging later when you get into building a custom data-
bound control in the section “Creating a Databound Control.”

CHAPTER 4 =" DATABOUND CONTROLS

Disabling ViewState

Another way to reduce page size is to disable ViewState. You can do so with an entire page or
at the control level with the EnableViewState property. If you disable ViewState for the page,
that decision will have an impact on every control included on the page. Each control will not
be able to override that setting, so the impact would be universal and possibly damaging for
controls that require ViewState. The same is true for any control that holds other controls
below it. The setting impacts all controls below it.

Due to the fact that you cannot enable ViewState for a control if the ViewState has been
disabled for the entire page, you will want to identify individual controls that do not need it. A
navigational control included on each page, perhaps as a part of the master page, would make
for an ideal candidate. If it simply contains markup and a few HyperLink controls that have the
NavigateUrl set declaratively, the value will be available during a postback when ViewState is
disabled.

For a custom user control, you may also design its behavior to work with and without
ViewState. Listing 4-17 shows how this can be done.

Listing 4-17. Working With and Without ViewState

if (! IsPostBack)

{
GridView1.DataSource = GetDataSource();
GridView1.DataBind();

}

else if (! IsViewStateEnabled)

{
GridView1.DataSource = GetDataSource();
GridView1.DataBind();

}

The datasource for the GridView is set on the first page load when it is not a postback and
when it is a postback with ViewState disabled. Doing it this way will load the GridView data
when the control needs it. However, this approach is pretty manual. It is better to simply use
a declared ObjectDataSource reference. Doing so will allow the GridView to automatically
detect when ViewState is disabled and bind using the ObjectDataSource when it needs data.

ControlState vs. ViewState

Because some pieces of data are critical to the functionality of a control, it is necessary to
retain access to those details when ViewState is enabled. Controls such as the GridView are
smart enough to work with and without ViewState, but they still need to retain the current
state of the control related to position when paging is enabled. The data for each of the
columns can be pulled from the database with each postback, but the database will not know
that the fourth page of the GridView was selected. This value is retained by the SelectedItem
property that is persisted with ControlState, a variation of ViewState.

ControlState was introduced with ASPNET 2.0. It is not an automatic feature like
ViewState. You must implement it yourself and register with the Page to persist the data.
Listing 4-18 shows how to save ControlState.

89

90

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-18. SaveControlState

protected override object SaveControlState()

{
Pair state = new Pair();
state.First = base.SaveControlState();
state.Second = controlStateData;
return state;

}

ControlState and ViewState are often persisted using the Pair and Triplet types from the
System.Web.UI namespace. They are simply tiny arrays that hold onto your data. You could also
use an array of objects that can be serialized, which means it is best to stick to types like string,
int, and DateTime. You want to use the least amount of data to persist the necessary state. Using
the Pair type is a good first layer that will hold the ControlState of the base class in the First
property and the state of the current instance in the Second property. If you have many values to
persist, the value stored in the Second property could be the array of many objects. This hierar-
chy of this state will then be unfolded when it is loaded, as shown in Listing 4-19.

Listing 4-19. LoadControlState

protected override void LoadControlState(object savedState)

{
Pair pair = savedState as Pair;
if (pair != null)
{
base.loadControlState(pair.First);
_controlStateData = (string)pair.Second;
}
else
{
base.LoadControlState(null);
}
}

The state is cast as a Pair type and used to load the ControlState of the base class with
the First property and then the state of the current instance with the Second property. With
these values defined, it is necessary to tell the Page that ControlState is required for this con-
trol. This must be done during the Init event before the events to load ControlState are fired
later in the event life cycle, as shown in Listing 4-20.

Listing 4-20. Requiring ControlState

protected void Page Init(object sender, EventArgs e)

{
}

Page.RegisterRequiresControlState(this);

CHAPTER 4 =" DATABOUND CONTROLS

The preceding examples for ControlState simply persist a single string variable. Many
times you should not have much data to persist. The event ordering will cause ControlState
to be persisted and loaded between the Init and Load events so that the persisted data will be
available when your Load event is fired. Later the PreRender event will fire where most data-
bound controls actually load the data. It is important to know when this data is available to
your page or control.

Given the option to persist state in the Session or in ControlState, it should be noted that
not all state has to be persisted. Some data can be lost safely because the input fields that were
using them are already persisting the data, such as a TextBox. The value from the form will
always be set in the Text property. However, the TextChanged event will now fire with each
postback because the control cannot compare whether or not the value actually changed.

If your control does handle this event, you will not be affected by ViewState being disabled.
Other controls such as the ListBox and RadioButtonList may be populated declaratively
instead of binding them to a datasource. These will work like the TextBox in that they can give
you the currently selected value properly and redraw themselves with all of the available
selections with the declared values. And again, the events triggered when a selection changes
will not work as they would with ViewState enabled. In either situation, you can still get the
value the user has set and take action as needed.

Creating a Databound Control

In order to deepen your understanding of how databound controls work, you will learn how to
create a control that will be bound to an ObjectDataSource. You will be able to do more with this
control than you can with standard controls such as the GridView and DetailsView because you
will have the full source code, which you can modify and walk with the debugger. You can also
see directly what the consequences are for those modifications.

This new control, called the PersonListingControl, will take in several fields related to
people and locations and display them in one of two formats. It will also offer optional paging
support that is coordinated with the datasource, which is defined declaratively with the
DataSourcelD property on the control. It will also work with and without ViewState enabled.
This control will implement a great deal of functionality with very rich controls such as the
GridView.

WHY CREATE A CUSTOM DATABOUND CONTROL?

The purpose of this databound control is purely as a learning tool. You would be hard pressed to come up with
many scenarios where you cannot use the existing databound controls, from the GridView to the Repeater, to
serve your needs. What you cannot do with those controls is walk them with the debugger to see exactly what is
happening internally and experiment with various tests to see how you can improve on the process. Because
this databound control also inherits from CompositeDataBoundControl, it will behave like the standard
databound controls.

However, you could use this example as a basis for creating a practical solution that is closely cus-
tomized to your application to leverage every advantage available to you. You may not see a great deal of
improved performance just by converting a user control to a server control. With this example to get you
started, you may be able to compare the two and measure the difference.

91

92

CHAPTER 4 =" DATABOUND CONTROLS

When you dig into the code for this control, you will start to see all of the facilities that
are available to a control through the use of abstract classes. Just a few years ago, creating
controls was quite difficult. In ASPNET 2.0, it became much easier with the CompositeControl
and CompositeDataBoundControl, which are base classes that the standard ASPNET controls
are built on. You can also use these base classes, which automatically provide you with rich
Design Time support as well as extensive runtime functionality.

Both of these base classes include a method called CreateChildControls, which takes no
parameters and does not return anything. The control hierarchy is created in this method, which
is called automatically as a part of the event life cycle. In the CompositeControl you could over-
ride the behavior of this method, but in the CompositeDataBoundControl this method has already
been implemented. Instead, there is an abstract method by the same name that takes a couple
of parameters and has a result type. Because it is an abstract method, it must be implemented in
the inheriting class. The example method signature is shown in Listing 4-21.

Listing 4-21. CreateChildControls for CompositeDataBoundControl

protected override int CreateChildControls(IEnumerable dataSource, bool dataBinding)

{
}

// code

The CreateChildControls method is the core of the databound control. The overall
control is created by initializing controls and adding them to the Controls collection. The
Controls property is the accessor for this collection. When the dataBinding parameter is true,
the dataSource value should be holding onto data that can be enumerated over while creating
a collection of controls that are added to the Controls collection.

This may make you wonder why the dataBinding parameter would ever be false. You may
also wonder why it returns an integer. When a postback occurs, the ViewState must be applied
to the control hierarchy constructed when the control was first created. This means there
must be the same number of rows, but because you are not going to have access to the actual
data at this time, you have to create the skeleton of the previous hierarchy that will match the
data in ViewState. There must be the same number of items in the Controls collection as there
were before in order for the ViewState to be applied successfully.

For the PersonListingControl, these items are instances of the PersonRow control. This
is equivalent to a GridViewRow. Each item pulled from the IEnumerable value is passed to the
PersonRow through the constructor and added to the Controls collection. The PersonRow is
then responsible for drawing that individual row.

There are a few additional classes that provide Design Time support that you will find in
the downloadable sample code. The class library with these classes looks like Figure 4-3.

CHAPTER 4 =" DATABOUND CONTROLS

= 5 ClassLibrany
. [~ [=d Properties

4 (3] References

- | Controls
H cﬁ
] PersonlistingControl&ctionlist.cs
] PersanListingDesigner.cs
A PersonRowcs
L] PersonRowsCollection.cs

Figure 4-3. Files for the PersonListingControl

You will skip the PersonRow for the moment and look at the implementation of the
CreateChildControls method. When the control is created for the initial page request, it
will call CreateChildChild controls with the Boolean value set to true with a defined value for
the data. You can iterate over that data, create the PersonRow instances, and add them to the
Controls collection.

During a postback, before ViewState is applied, the CreateChildControls method must
be called with the Boolean value set to false for the dataBinding parameter and a null value
for the dataSource parameter. And somehow the number of items created in the previous
control rendering must be known at this point so the correct number of items are re-created.
Listing 4-22 shows the full implementation.

Listing 4-22. CreateChildControls Implementation

protected override int CreateChildControls(
IEnumerable dataSource, bool dataBinding)

{
Controls.Clear();

int count = 0;

if (dataBinding &3 dataSource != null)

{
IEnumerator e = dataSource.GetEnumerator();
while (e.MoveNext())
{
object datarow = e.Current;
PersonRow row = new PersonRow(count, datarow);
Rows . Add(row);
Controls.Add(row);
count++;
}
_itemCount = count;
}
else
{

if (_itemCount > 0)
{

93

94

CHAPTER 4 =" DATABOUND CONTROLS

for (count = 0; count < _itemCount; count++)

{
PersonRow row = new PersonRow(count, null);
Rows.Add(row);
Controls.Add(row);

}

}

CreatePagerControls();
AttachStyle();

ClearChildViewState();
ChildControlsCreated = true;

return count;

When there is data available, the first section of code moves over the enumerator, creates
instances of PersonRow, and adds them to the Rows and Controls collections and increments
the count. When there is no data, the member variable itemCount is used to ensure the cor-
rect number of empty items is added to the Controls collection. As you can see, a null value is
given to the PersonRow constructor. Finally, at the very end the count variable that was incre-
mented on both execution branches is used as the return value.

Getting the Data

In order to get the data that is passed into CreateChildControls, a databound control will fire
the PerformSelect method. The implementation details of the CompositeDataBoundControl
take care of calling this method when it is needed so you do not have to call it explicitly with
your own code. This is the method that raises the OnDataBinding and OnDataBound events
before and after the data is requested.

The data is represented as a DataSourceView, which could be a datasource that was manu-
ally bound to the control or defined by the DataSourceID property. In any case, you can get an
instance of it with the built-in GetData method, as shown in Listing 4-23.

Listing 4-23. GetData Method
DataSourceView dataSourceView = GetData();

This view has a method called Select that takes two parameters, DataSourceSelectArguments
and DataSourceViewSelectCallback, which are used to give the view additional details that will be
used when retrieving the data. In the case of an ObjectDataSource configured with a DataObject
and DataObjectMethod with paging enabled, the StartRowIndex and MaximumRows must be defined.
These values are passed as parameters to the DataObjectMethod. This is shown in Listing 4-24.

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-24. Calling the Select Method

DataSourceSelectArguments selectArguments = CreateDataSourceSelectArguments();
selectArguments.StartRowIndex = PageSize * Pagelndex;
selectArguments.MaximumRows = PageSize;

dataSourceView.Select(selectArguments, callback);

The callback takes the data and carries out the data binding. Declare this callback inline
with the PerformSelect method as a delegate. The callback delegate is shown in Listing 4-25.
Listing 4-25. DataSourceViewSelectCallback

DataSourceViewSelectCallback callback =
delegate(IEnumerable data)

{
if (IsBoundUsingDataSourcelD)
{
OnDataBinding(EventArgs.Empty);
}
PerformDataBinding(data);
};

Both the PersonListingControl and the ObjectDataSource have a property named
EnablePaging that controls how the Select method will work. If paging is enabled, it
requires the StartRowIndex and MaximumRows values and passes them into the declared
DataObjectMethod. If paging is not enabled, it uses a method that does not have those
parameters. However, the ObjectDataSource and PersonListingControl do not have to
have the same value for EnablePaging. If the ObjectDataSource has paging enabled and the
PersonListingControl does not, it will still use the method that takes the paging parameters.
When this mixed mode is the case, the values should be set to allow for all data to be returned
to the control. The code to these values is shown in Listing 4-26.

Listing 4-26. Select Arguments in Mixed Mode

if (dataSourceView.CanPage)

{
selectArguments.AddSupportedCapabilities(DataSourceCapabilities.None);
selectArguments.StartRowIndex = 0;
selectArguments.MaximumRows = Int16.MaxValue;

}

The MaximumRows property is set to Int16.MaxValue to allow for effectively unlimited results.
This mixed mode is useful when more than one control is using the same ObjectDataSource.
Once the Select method has been called on the view, that data will be sent to the callback.
To finish up, the RequiresDataBinding value must be set to false to indicate that the
data has been requested. Also, the MarkAsDataBound method, which updates the state of the
control to indicate that data has been successfully bound to the control, must be called.
The PerformSelect method is shown in Listing 4-27.

95

96

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-27. PerformSelect Method

protected override void PerformSelect()

{
if (!IsBoundUsingDataSourcelD)
{
OnDataBinding(EventArgs.Empty);
}

DataSourceView dataSourceView = GetData();

DataSourceViewSelectCallback callback =
delegate(IEnumerable data)
{ if (IsBoundUsingDataSourceID)
{ OnDataBinding(EventArgs.Empty);
gerformDataBinding(data);

};

if (EnablePaging 8& dataSourceView.CanPage)
{
DataSourceSelectArguments selectArguments =
CreateDataSourceSelectArguments();
selectArguments.StartRowIndex = PageSize * Pagelndex;
selectArguments.MaximumRows = PageSize;
dataSourceView.Select(selectArguments, callback);

}

else
{
DataSourceSelectArguments selectArguments =
CreateDataSourceSelectArguments();
if (dataSourceView.CanPage)
{
selectArguments.AddSupportedCapabilities(DataSourceCapabilities.None);
selectArguments.StartRowIndex = 0;
selectArguments.MaximumRows = Int16.MaxValue;

}

dataSourceView.Select(selectArguments, callback);

RequiresDataBinding = false;
MarkAsDataBound();

OnDataBound(EventArgs.Empty);

CHAPTER 4 =" DATABOUND CONTROLS

Getting the Total Rows Count

When paging through data, it is necessary to know the total number of rows. Because the data
returned from the selection is limited to the MaximumRows property, it does not represent the total.
Instead, you must use the Select method on the DataSourceView to get the TotalRowCount, as is
done in Listing 4-28.

Listing 4-28. GetTotalRowCount

private int GetTotalRowCount()
{
int totalRowCount = 0;
DataSourceView dataSourceView = GetData();
if (dataSourceView.CanRetrieveTotalRowCount)
{
DataSourceSelectArguments selectArguments =
CreateDataSourceSelectArguments();
selectArguments.AddSupportedCapabilities(
DataSourceCapabilities.RetrieveTotalRowCount);
selectArguments.RetrieveTotalRowCount = true;
DataSourceViewSelectCallback callback =
delegate

{
};

dataSourceView.Select(selectArguments, callback);

totalRowCount = selectArguments.TotalRowCount;

}

return totalRowCount;

The DataSourceSelectArguments method is adjusted by adding the RetrieveTotalRowCount
capability, which calls the TotalRowCount to be populated for the callback. This value is cap-
tured with the delegate and returned for use in other parts of the control. Specifically, this
value is used by the TotalRowsCount property shown in Listing 4-29.

Listing 4-29. ToralRowsCount Property

private int _totalRowsCount = 0;

[Browsable(false)]
public virtual int TotalRowsCount
{
get
{
if (_totalRowsCount == 0)
{
_totalRowsCount = GetTotalRowCount();
}

return _totalRowsCount;

97

98

CHAPTER 4 =" DATABOUND CONTROLS

The TotalRowsCount property is used along with the PageSize property to calculate the
value of the MaxIndex property, which is shown Listing 4-30.

Listing 4-30. MaxIndex Property

private int _maxIndex = 0O;

[Browsable(false)]
public virtual int MaxIndex
{
get
{
if (_maxIndex == 0)
{
double maxIndexDbl = (TotalRowsCount/PageSize) - 1;
_maxIndex = (int)maxIndexDbl;
if (maxIndexDbl > maxIndex)
{
_maxIndex++;
}
}

return maxIndex;

To control paging, the PersonListingControl uses pager controls to move to the next and
previous page using postback events. These pager controls are links created using LinkButton
controls that have the CommandArgument value set to the targeted PageIndex.

Wiring the Pager Events

The pager controls fire postback events in order to set the new PageIndex value. Typically,
attaching an event is fairly automatic. Because this is a custom databound control, it is neces-
sary to initialize the control, attach the event, and then add it to the Controls collection so
that when the postback events are fired, it is included. The sequence of events happens in this
order: Init, PagePreload, Load, and RaisePostBackEvent. Between the Init and PagePrelLoad
events, the ControlState and ViewState are loaded. The pager controls must be initialized
and added to the Controls collection prior to loading states and the RaisePostBackEvent. To
ensure this is done, these controls can be initialized in CreateChildControls with the call
to the CreatePagerControls method.

A control only needs to be initialized once, while each time CreateChildControls is run
the controls need to be added back to the Controls collection. The CreatePagerControls
method is shown in Listing 4-31.

Listing 4-31. CreatePagerControls Method

private void CreatePagerControls()

{

CHAPTER 4 =" DATABOUND CONTROLS

InitializePagerControls();

Controls.Add(_previousLinkButton);
Controls.Add(new LiteralControl(" "));
Controls.Add(_nextLinkButton);
Controls.Add(new LiteralControl(" "));

The work to set the properties on the controls and attach the events is handled in the
InitializePagerControls method, which has a check in place to ensure that it is only run
once. The code for this method is shown in Listing 4-32.

Listing 4-32. InitializePagerControls

private void InitializePagerControls()

{

if (_controlsInitialized)

{
return;

}

if (_nextLinkButton == null)

{
_nextLinkButton = new LinkButton();
_nextLinkButton.ID = "lbNext";
_nextLinkButton.Text = "Next";
_nextlLinkButton.CssClass = "btn";
_nextLinkButton.CommandName = SetPageIndexCommandName;
_nextLinkButton.Click += new EventHandler(PagerButton Click);

}

if (_previousLinkButton == null)

{
_previousLinkButton = new LinkButton();
_previousLinkButton.ID = "1lbPrev";
_previousLinkButton.Text = "Previous";
_previousLinkButton.CssClass = "btn";
_previousLinkButton.CommandName = SetPageIndexCommandName;
_previousLinkButton.Click += new EventHandler(PagerButton Click);

}

_controlsInitialized = true;

}

These pager methods ensure that the events will fire during the postback process. And
while moving from page to page, the next and previous links may or may not be available to
the user. If the user is already on the last page of the controls, the next link should be hidden.
Because the RaisePostBackEvent runs after the Load event, even the visibility of these pager
links must be set in the PreLoad event shown in Listing 4-33.

99

100

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-33. PreLoad Event

protected override void OnPreRender(EventArgs e)

{
base.OnPreRender(e);
_previousLinkButton.Text = PreviousPageText;
_nextlLinkButton.Text = NextPageText;
_previousLinkButton.CommandArgument = (PageIndex - 1).ToString();
_previousLinkButton.Visible = EnablePaging &3 PageIndex > 0;
_nextLinkButton.CommandArgument = (PageIndex + 1).ToString();
_nextLinkButton.Visible = EnablePaging && PageIndex < MaxIndex;

}

When the page is first loaded, the previous link will not be visible. The next link will have
the CommandArgument set to 1, which will be used to set the PageIndex when the pager event is
handled by the PagerButton_Click event handler in Listing 4-34.

Listing 4-34. PagerButton_Click Event Handler

protected void PagerButton Click(object sender, EventArgs e)

{
LinkButton 1b = sender as LinkButton;
if (1b != null && SetPageIndexCommandName.Equals(1b.CommandName))
{
int pagelndex;
int.TryParse(1lb.CommandArgument, out pageIndex);
PageIndex = pagelndex;
}
}

Implicitly some data binding is happening. The PageIndex property is sensitive to change,
as shown in Listing 4-35.

Listing 4-35. Pagelndex Property

private int _pageIndex = 0;

[Browsable(false)]
public virtual int PageIndex

{
get

{
EnsureChildControls();

return _pagelndex;

set

CHAPTER 4 =" DATABOUND CONTROLS

{
EnsureChildControls();
if (value < 0)
{
throw new ArgumentOutOfRangeException("value");
}
if (_pageIndex != value)
{
_pageIndex = value;
if (Initialized)
{
RequiresDataBinding = true;
}
}
}

The set operation of the PageIndex property will set the RequiresDataBinding value to
true when the value for PageIndex changes, which will cause the data to be bound later in the
event life cycle.

Creating PersonRow

The main content of the PersonListingControl is the collection of PersonRow items. This
is a simple control that uses the data given to it to bind to the controls that it creates.
The PersonRow inherits from WebControl and implements the IDataltemContainer and
INamingContainer interfaces. Remember that the INamingContainer interface has no
methods as it is just a marker interface used to manage the naming container hierarchy.
The IDataItemContainer implements three read-only properties, shown in Listing 4-36.

Listing 4-36. IDataltemContainer Members

n n

#iregion IDataItemContainer Members

public object Dataltem

{

get

{

return Data;

}
}
public int DataItemIndex
{

get

{

return _itemIndex;

}

101

102

CHAPTER 4 =" DATABOUND CONTROLS

}
public int DisplayIndex
{
get
{
return _itemIndex;
}
}
#endregion

When the PersonRow is constructed, these values are passed in as parameters. The data is
stored in a member variable that is accessed with the Data property. The constructor and Data
property are shown in Listing 4-37.

Listing 4-37. PersonRow Constructor and Data Property

public PersonRow(int itemIndex, object o)
: base(HtmlTextWriterTag.Div)

{

_data = o;

_itemIndex = itemIndex;
}
public virtual object Data
{

get

{

return data;

}

}

The data passed in here could be a null value, so when the CreateChildControls method
is called, this should be handled properly. If there is data, the values can be loaded using the
DataBinder from the data object with the code in Listing 4-38.

Listing 4-38. Data Binding Code

if (Data != null)
{

DateTime dateValue;

DateTime.TryParse(DataBinder.GetPropertyValue(Data, birthDateField, ""), w=
out dateValue);

FirstName = DataBinder.GetPropertyValue(Data, firstNameField, null);
LastName = DataBinder.GetPropertyValue(Data, lastNameField, null);
BirthDate = dateValue;

City = DataBinder.GetPropertyValue(Data, cityField, null);

CHAPTER 4 =" DATABOUND CONTROLS

Country = DataBinder.GetPropertyValue(Data, countryField, null);

You will notice that there is no code here to check if the data is a DataSet, an IDataReader,
or a custom business object. The DataBinder uses reflection to get the value from the object
and set it on the property. The FirstName property receives the value associated with the
firstNameField, which is a string that should match a property on the data object. By default,
the string value for firstNameField is FirstName, which matches up with one of the columns
returned by the stored procedure that is used with this control. And like a good databound
control, this string can be adjusted with a series of properties in case you cannot match up the
field names with your datasource. The FirstName data field property is shown in Listing 4-39.

Listing 4-39. FirstName Data Field Property

private string _dataFirstNameField = "FirstName";

[Browsable(true), Category("Data"), Description("First Name Data Field"), w
DefaultValue("FirstName")]

public string DataFirstNameField

{
get
{
EnsureChildControls();
return _dataFirstNameField;
set
{
EnsureChildControls();
_dataFirstNameField = value;
}
}

The DataFirstNameField property is actually defined by the PersonListingControl to
simplify the configuration of the control. When the PersonRow creates the child controls,
amethod called CaptureSettings will get the values from the PersonListingControl. The
CaptureSettings method is shown in Listing 4-40.

Listing 4-40. CaptureSettings Method

/// <summary>
/// Gets from the parent if the parent is the PersonListingControl
/// </summary>
private void CaptureSettings()
{
PersonListingControl parent = Parent as PersonlListingControl;
if (parent != null)
{
personFormat = parent.PersonFormat;
firstNameField = parent.DataFirstNameField;
lastNameField = parent.DatalastNameField;

103

104 CHAPTER 4 = DATABOUND CONTROLS

birthDateField = parent.DataBirthDateField;
birthDateFormat = parent.DataBirthDateFormat;
cityField = parent.DataCityField;
countryField = parent.DataCountryField;

When the DataBinder is called, the data it extracts from the data object is first set on the
FirstName property. This property is an accessor to a member variable instead of the Text
property of a control. The controls used by the PersonRow are just a series of LiteralControls
that are initially added to the Controls collection during the CreateChildControls method
without the Text value defined. A simplified version of the CreateChildControls method is
shown in Listing 4-41.

Listing 4-41. Creating the Controls Collection

1tFirstName = new LiteralControl();
ltLastName = new LiteralControl();
1tBirthDate = new LiteralControl();
1tCity = new LiteralControl();
1tCountry = new LiteralControl();

Controls.Add(new LiteralControl("\n<p>\n"));
Controls.Add(1tFirstName);

Controls.Add(new LiteralControl(" "));
Controls.Add(1tLastName);

Controls.Add(new LiteralControl(", "));
Controls.Add(1tBirthDate);

Controls.Add(new LiteralControl(", "));
Controls.Add(1tCity);

Controls.Add(new LiteralControl(", "));
Controls.Add(1tCountry);

Controls.Add(new LiteralControl("\n</p>\n"));

EFFICIENT MARKUP

The PersonRow uses the LiteralControl instead of a Label control specifically because it generates less
markup code for the page. This reduces the page size and decreases the page load time for the user. A new
control called ListView will be included with the .NET 3.5 release coming in early 2008. It will allow the devel-
oper to choose exactly what markup will be presented to the web browser, with a focus on offloading styling
to an external stylesheet that is loaded a single time with each visit to a website. This reduced overall size
will speed up the page requests and make your applications work more quickly.

These LiteralControls act as containers that are updated later during the PreRender event
when the Text values are finally set, as shown in Listing 4-42.

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-42. Setting the Text Properties in the OnPreRender Method

protected override void OnPreRender(EventArgs e)

{

base.OnPreRender(e);

if (String.IsNullOrEmpty(CssClass))
{

CssClass = "personRow";

}

1tFirstName.Text = FirstName;

ltLastName.Text = LastName;

1tBirthDate.Text = BirthDate.ToString(birthDateFormat);
1tCity.Text = City;

1tCountry.Text = Country;

This separation is done to address some issues with ViewState that will be explained in
the following section.

Persisting ViewState Manually

Custom controls may not persist state as you would like. To overcome this shortcoming, it is
possible to manually handle the ViewState. This is done by overriding the SaveViewState and
LoadViewState methods. The SaveViewState method is shown in Listing 4-43.

Listing 4-43. SaveViewState Method

protected override object SaveViewState()

{
Pair state = new Pair();
object baseState = base.SaveViewState();
object[] objArray = new object[5];
objArray[0] = firstName;
objArray[1] = lastName;
objArray[2] = birthDate;
objArray[3] = city;
objArray[4] = _country;
state.First = baseState;
state.Second = objArray;
return state;

}

The structure of the state is completely arbitrary. It is virtually identical to how
ControlState works, as shown earlier in this chapter. For a small amount of data, it may be
reasonable to just use the Pair or Triplet types. Because there are five values that need to

105

106

CHAPTER 4 =" DATABOUND CONTROLS

be serialized here, I chose to use an array of objects set to the values of the member variables.
Next the state must be reloaded into the page on the next page request. The LoadViewState
method is shown in Listing 4-44.

Listing 4-44. LoadViewState Method

protected override void LoadViewState(object state)

{
if (state != null 88 state is Pair)
{
Pair pair = (Pair)state;
base.loadViewState(pair.First);
object[] objArray = (object[])pair.Second;
if (objArray[o] != null)
{
_firstName = (string)objArray[0];
}
if (objArray[1] != null)
{
_lastName = (string)objArray[1];
}
if (objArray[2] != null)
{
_birthDate = (DateTime)objArray[2];
}
if (objArray[3] != null)
{
_city = (string)objArray[3];
}
if (objArray[4] != null)
{
_country = (string)objArray[4];
}
}
else
{
base.LloadViewState(null);
}
}

The LoadViewState method carries out the opposite action as SaveViewState by casting
the object to a Pair to access the Second property, which is the array of objects set previously.
With these methods in place, the five member variables will be safely stored to ViewState and
reloaded before the Load event during the postback request.

This leads into the reason why the Text properties of the LiteralControls were not set in the
CreateChildControls method and instead were set in the OnPreRender method. The ViewState
used to persist the data for PersonRow will not be available when CreateChildControls is called.
But these values are available when the OnPreRender method is run.

CHAPTER 4 =" DATABOUND CONTROLS

Working Without ViewState

To reduce page size, a developer may choose to disable the ViewState on a databound control.
If the control does not handle this case, the control will fail to work as expected. Instead of dis-
playing the data as it does on the first page load, it will show empty rows. It is important to
note that this databound control may be one of several listed on a page, and a postback event
could be caused by any control on the page. While creating this control, I used a test page that
had a button that was not attached to an event handler (see Figure 4-4). It simply caused a
postback.

Stacey Jameson, 291951, Stockholm, Sweden
James Butler, 4/1/1968, Moscow, Fussia
Mewt

| Next || DoMathing |

Figure 4-4. Do Nothing button

When I first turned off ViewState, it did what I expected because it was specifically using
the ViewState accessor to hold onto the data. It was expected that it would fail. One option to
ensure this data stays in place is to use ControlState, but doing so would simply move the
problem to another place and not allow developers using the control to tune their page size
by disabling ViewState. Instead, the problem has to be resolved in the PersonListingControl.

The PersonListingControl has access to the data through the DataSourcelID so that it can
always retrieve the data if it needs it. When ViewState is disabled, a set of values must be per-
sisted as ControlState. These values include the PageIndex, TotalRowsCount, ItemCount, and
CommandArgument values for the pager links.

Earlier you looked at the CreateChildControls method for the PersonListingControl in
Listing 4-22, which used the _itemCount member variable to re-create the right number of
items when the dataBinding value was false. This is one of the values the that will be persisted
using ControlState. Listing 4-45 shows the SaveControlState method.

Listing 4-45. SaveControlState Method

protected override object SaveControlState()

{
object[] state = new object[6];
state[0] = base.SaveControlState();
state[1] = pageIndex;
state[2] = totalRowsCount;
state[3] = _itemCount;
state[4] = previousLinkButton.CommandArgument;
state[5] = nextLinkButton.CommandArgument;

return state;

107

108

CHAPTER 4 =" DATABOUND CONTROLS

This limited set of values should be quite small when they are persisted. You may notice
the value in the hidden input field where ViewState is placed normally is not empty even
though you may have disabled ViewState for the entire page. The reason it is not empty is that
ControlState is using the same space as ViewState with hopefully much less space. Loading
the ControlState is shown in Listing 4-46.

Listing 4-46. LoadControlState Method

protected override void LoadControlState(object savedState)

{
_pageIndex = 0;
object[] objArray = savedState as object[];
if (objArray != null)
{
InitializePagerControls();
base.loadControlState(objArray[0]);
if (objArray[1] != null)
{
_pageIndex = (int) objArray[1];
}
if (objArray[2] != null)
{
_totalRowsCount = (int)objArray[2];
}
if (objArray[3] != null)
{
_itemCount = (int)objArray[3];
}
if (objArray[4] != null)
{
_previousLinkButton.CommandArgument = (string)objArray[4];
}
if (objArray[5] != null)
{
_nextLinkButton.CommandArgument = (string)objArray[5];
}
}
else
{
base.LoadControlState(null);
}
}

When I implemented these methods, everything started to work as it did before ViewState
was disabled. I knew that I had done absolutely nothing to persist the data for the PersonRow,
yet I could click the pager links and the Do Nothing button and would always get the data I
expected. It seems everything was handled for me automatically, and I wanted to know exactly
how it was being done, so I fired up the debugger.

CHAPTER 4 =" DATABOUND CONTROLS

Walking the Debugger

To see exactly what was happening, I placed breakpoints at the start of each of the event-
handler methods and the CreateChildControl methods for the PersonListingControl
and PersonRow classes. I then started a debugging process on a page that had a single
PersonListingControl on the page. Once the debugger was started, I added a few watch items
such as dataSource, dataBinding, firstName, and IsViewStateEnabled so I could see their val-
ues at each step.

Normally, with ViewState enabled, a postback will only cause the CreateChildControls
method to be called once if a postback event does not specifically cause it to load fresh
data, like when the PageIndex changes. With the ViewState disabled, I found that the
CreateChildControls method was called a second time during the PreRender event with
the dataSource parameter defined, which caused the PersonRow items to get the values
they needed. As you can see in Figure 4-5, the ViewState is disabled and the _firstName
member variable has been defined. This value was set during the second call to the
CreateChildControls method.

T protected override woid OnPreRender | =3
‘) q
hase.OnPreRender (e) ;
if | . IsNullOrEmpty (CssClass))
Watch 1
MNarme Walue
it
+ &
I
¥ _firstMame "Lisa"
&

Figure 4-5. Debugging without ViewState

With this sample databound control, you can now try your own experiments and watch
exactly what happens while walking through the code during a debugging session. You can see
how the ViewState can impact performance, while moving ViewState to the Session can offer
some benefits with a different set of risks. Using the right combination of databound control
settings for your application will give you some performance improvements with minimal
effort.

COMMON FOLDER ADDITIONS

This custom databound control is a useful code sample that you could place in your Common folder in the
Templates subfolder (D: \Projects\Common\Templates\Databound Control). While you may not be
building a custom databound control, you will occasionally want to create a control that uses ViewState
more efficiently, perhaps even with ViewState disabled. This code can be downloaded with the rest of the
sample code for the book.

109

110

CHAPTER 4 =" DATABOUND CONTROLS

Summary

In this chapter, you looked at all of the data binding options available to ASPNET. You looked
at several of the standard controls, combined them with a series of user controls, and finally
created your own custom databound control. With these choices, you can now decide which
databound controls will work well for your needs, and by choosing the right controls along
with the optimal settings for ViewState, you can make a more efficient presentation layer.

CHAPTER 5

SQL Providers

The flexibility of ASPNET 2.0 is largely due to the pluggable architecture of the provider model,
which beautifully connects SQL Server, the SQL implementations of the providers, and many
ASPNET controls. Not only are these providers and the controls that use them highly config-
urable, but they are also completely replaceable if you choose to build your own from scratch to
suit unique requirements. It is quite easy to get your ASPNET website to do exactly what you
need it to do by using the available features, which give you a rich base of functionality to get
you started with a full bag of tricks.
This chapter covers the following:

¢ The SqlMembershipProvider

* The SqlRoleProvider

The SqlProfileProvider
* Building a SQL Photo Album provider
* Building a SQL SiteMap provider

The SQL providers in ASPNET 2.0 give the platform a great deal of flexibility by pairing
a domain model with user-interface components that can be pieced together with other
domains and components in a very modular way. Most of the new controls introduced with
ASPNET 2.0 are backed by providers offering multiple implementations that go beyond SQL
Server. And if you would like to implement your own provider, there are features in the frame-
work to help you get started with minimal effort. You could even design your own SQL
provider that is represented in a Web Form with your own controls. I have found the combina-
tion of SQL providers and controls to be a powerful combination when building modular
websites.

The providers supplied with ASPNET were created to address common tasks that were car-
ried out over and over with custom code in classic ASP and ASPNET 1.1. Such common tasks are
managing users and roles and creating the controls to allow these users to create accounts, log in
and out, change and retrieve their passwords, and customize the user accounts. As far back as
classic ASP it has been possible to use forms authentication and the database to create all the
controls that are offered with ASPNET 2.0, but you first had to design your database schema and
then build all the controls to handle all the tasks users need to do with their accounts. Without a
common implementation, developers were left to build their own from the ground up, which
took time but also did not offer nearly as much of the rich, highly customized functionality that
the ASPNET 2.0 controls offer.

mn

112

CHAPTER 5 "/ SQL PROVIDERS

From the database to the user interface, there are ways to quickly deploy, customize, mix
and match, and completely replace the implementations while still maintaining a level of
compatibility with other standard components within the system. When you can master all
the nuances available with these components, you will be able to produce a website that has
all the expected features of a modern website, even if there are unique requirements that were
not anticipated by the ASPNET 2.0 design. It was created with extensibility in mind.

In this chapter, I will walk through the basics of setting up the three most used providers
and will show you their flexibility. I will then show you how to implement your own provider,
including one provider completely from the ground up that seamlessly integrates with the
ASPNET 2.0 providers and controls.

The SqlMembershipProvider

The most used SQL provider has to be SqlMembershipProvider, which manages users for
your website. In the first chapter, you added membership services to the database by using
the aspnet_resql.exe utility. With those tables, views, and stored procedures as well as config-
uration settings in place, you are able to use various controls that use the Membership API to
manipulate the data held in your SQL Server. The ones of interest here are the Login controls
shown in Table 5-1.

Table 5-1. Login Controls

Login Displays the login form and handles authentication

LoginView Displays content by using one of two templates for authenticated or
anonymous users

LoginStatus Displays a login link when the user is anonymous, and a logout link when
the user is authenticated

LoginName Displays the user’s login name

PasswordRecovery Displays a form to recover a lost password

CreateUserWizard Displays a sequence of steps used to create a new user account

ChangePassword Displays a form to allow a user to change her password

The controls in Table 5-1 are all configured with the settings in the Web.config file as well
as properties on the controls themselves. The defaults are generally reasonable, but if you
have requirements that differ from the defaults, it is not difficult to alter the behavior to meet
your needs.

The SqlMembershipProvider is just one of two providers that Microsoft released with
ASPNET 2.0, with the other being the Active Directory implementation. SqlMembership-
Provider conforms to the required interface of the base class of MembershipProvider and
accurately carries out the equivalent work that the SQL implementation does. And as the
names suggest, one uses a directory, while the other uses a database to manage users. This
common interface is what the ASPNET controls use to carry out the same behavior regardless
of the underlying implementation.

CHAPTER 5 ©© SQL PROVIDERS

INTERFACE OR ABSTRACT?

The base classes used by provider implementations are really abstract classes that first inherit from the
ProviderBase class, which adds the base methods and properties common among all provider implemen-
tations. The methods and properties defined by a MembershipProvider that must be implemented are
marked with the abstract attribute. Common functionality between providers could be implemented within
the abstract base classes just as the ProviderBase sets the Name and Description properties in the
Initialize method. You use this base class to define required methods but also to make it easier for a
developer to implement his own implementation.

Although both the Active Directory and SQL implementations handle the required meth-
ods of the MembershipProvider base class, they have several unique configuration settings
related to their implementations. For example, the Active Directory implementation has an
attribute called attributeMapEmail, which is not used by the SQL implementation. The ability
to use unique configuration settings will come in handy when you need to create a custom
implementation that has requirements going well beyond what was anticipated with these
two implementations.

Using XML Implementations

Another alternative to a SQL implementation is XML. You can serialize a DataSet to disk as

an XML file and load it as you need it. When you create a custom SQL provider, you have to
create the tables and stored procedures, which takes more than just programmatically build-
ing a DataSet in memory and serializing it out to disk as an XML file. In this way, you can
build a quick prototype of a custom provider, and after you have controls using it through the
provider interface, you can implement a SQL implementation for better scalability. Because
the XML implementation is compatible as a provider implementation, it can still be used dur-
ing development even after you have a SQL implementation. The XML version can come in
handy when you are disconnected from the database, voluntarily or otherwise. Switching
between the XML and SQL provider is just a matter of changing the defaultProvider attribute
in the configuration.

Note The XML implementation of the Membership provider will not automatically have all the same users
that are held by using the SQL implementation, but you will be able to switch between the XML and SQL
configurations during development by creating a set of sample users to suit your needs. In Chapter 1, the
example in Listing 1-19 shows how users and roles can also be created automatically when the application
is started.

Setting the Database Connection

Connecting the SqlMembershipProvider to the database is done with the connectionStringName
configuration attribute. Notice that this is a name and not a connection string. In .NET 1.1 it
was common to set the connection string as just another setting in appSettings. With .NET 2.0

113

114

CHAPTER 5 "/ SQL PROVIDERS

configuration files, the connectionStrings element represents database connections with a name
and a connectionString attribute. The formalized construct separates connection string settings
from other general settings for an application that makes it possible to reach these values pro-
grammatically. In the SqlMembershipProvider configuration, the connectionStringName refers to
the name attribute of a connection string, binding the provider implementation to that database.
You will discover that you can set multiple connection strings for different database catalogs in
your database server and configure each of your provider implementations with a separate data-
base. You could choose to isolate all the ASPNET-generated resources in a database separate
from your application tables for a clear separation and for ease of maintenance.

You may also find that as you are working on a website with these provider configura-
tions, you will want to switch between different copies of databases on your workstation and
remote databases on servers at the office. You can configure every one of these database con-
nections and move the name used by the provider configurations to the one you want active. I
typically work with a local copy of the database so that I can work without direct interference
by someone making changes to a database on the server. You may maintain a common staging
database that all developers use to test integration builds. As you complete a set of features on
your local copy, you can deploy your database changes to that staging database, reconfigure
your website for the staging database, and then run your tests to verify that your changes inte-
grate properly with changes others may have made, before you check your changes in the
source control.

Creating a Password Policy

When configuring the SqIMembershipProvider for a new website, you must choose how pass-
words will be handled. It is the first stumbling block to using the MembershipProvider because
the default password policy is somewhat rigid. It requires a password to be at least seven char-
acters long with at least one nonalphanumeric character. A password such as aspnet9 would
not be allowed, but aspnet9! would be allowed. During development I frequently create new
accounts and log in to them, so simplifying this requirement, at least during development, is
one of my first steps. Depending on the level of security your public site requires, you can ease
the password policy and not require the nonalphanumeric character and possibly drop the
required length down to six characters. Alternatively, you can configure a regular expression to
be used to validate new passwords. Table 5-2 shows a few sample regular expressions you
could use.

Table 5-2. Regular Expressions for Passwords

~.A{7,10}$ The password can have any characters and a length
of seven to ten characters.

rMa-zA-Z\w{7,14}$ The password must be just letters with a length of
seven to fourteen characters.

A(2=.%\d).{7,12}% The password must include at least one numeric
character and have a length of seven to twelve
characters.

A(2=.0\d) (?=.*[a-z]) (?=.*[A-Z]).{7,15}$ The password must have at last one uppercase
letter, one lowercase letter, and one digit. Its length
must be seven to fifteen characters.

CHAPTER 5 ©© SQL PROVIDERS

Naturally, you can get much more rigid with the regular expressions requirement but
should balance that with what will work for your users. If it is just an online discussion forum
about your fantasy football league, you can use a relaxed password policy. But if it is for an
SSL-secured website managing bank accounts, you should lean toward the last example.

Note You can get more example regular expressions online at http://regexlib.com/. Search for
password, and you will be given a list of regular expressions for passwords.

The SqlRoleProvider

The SqlRoleProvider is an implementation of the RoleProvider, which provides a way to group
users. You are not required to enable the RoleProvider if you are using the SqlMembership-
Provider. And if you do have both of them enabled, you can even choose different types of
providers. You could configure your website to use the Active Directory Membership provider
and the SqlRoleProvider, and it will work as it should through the provider interfaces.

The features of the SqlRoleProvider are pretty simple but very much necessary for most
sites. Users are associated with roles, which can be used in various ways to grant or deny
access as well as customize the behavior of the website.

Controlling Access by Role

After the website is using the SqlMembershipProvider and the SqlRoleProvider, you will prob-
ably want to secure it. To lock down a website completely, you deny access to all anonymous
users. With ASPNET, you do so in the Web. config file by using the authorization element. That
element holds either deny or allow elements that designate your authentication requirements,
whether it is by role or user as well as authenticated or anonymous. Listing 5-1 shows how to
lock down a website so that only authenticated users can get in.

Listing 5-1. Authenticated Users Only

<authorization>
<deny users="?"/>
</authorization>

The question mark designates anonymous users. The default authentication is to allow all
users regardless of their login status, as shown in Listing 5-2.

Listing 5-2. Any User Allowed

<authorization>
<allow users="*" />
</authorizationy

You can also combine the directives to first allow a user, perhaps by role, and then deny
everyone else. Your access control rules can also be limited to a specific location. Listing 5-3
shows a configuration that must be placed outside the main system.web configuration section

115

http://regexlib.com
http://regexlib.com

116

CHAPTER 5 "/ SQL PROVIDERS

because the location block cannot be contained by the system.web section. Typically, you will
set your global access settings in the main system.web configuration and add additional, more
restrictive rules immediately afterward.

Listing 5-3. Allow Admin Users Only

<location path="Admin">
<system.web>
<authorization»>
<allow roles="Admin"/>
<deny users="*"/>
</authorization>
</system.web>
</location>

CAREFUL, NOT EVERYTHING IS SECURED!

When adding the authorization requirement to prevent anonymous accounts from reaching your pages, you
may not be securing everything. You are really securing only ASP.NET resources that are mapped to run under
the .NET runtime. Files with extensions such as .aspx, .asmx, and .ashx are mapped to the .NET runtime,
but images and text files are not. The files that are not managed with the .NET runtime are also not protected
by this authorization mechanism. Normally, your critical data is on a web page, but keep this in mind if your
ASP.NET application generates images or other documents to disk with critical data.

However, when you are working with Visual Studio 2005, you will find that all your
resources are protected according to the configuration. This is because everything served up
by the development web server is run through the .NET runtime, which respects the settings
in Web. config. If you do wish to protect your files, you can either specifically map the exten-
sion for the file type to the .NET runtime or set the wildcard application maps for every file not
specifically mapped in the application extensions section. The latter option may introduce
more load on your server, because IIS is better equipped to serve up static image files, so if you
are looking to secure generated Excel documents, it would be best to just map the .x1s exten-
sion to the .NET runtime. You can copy the mapping of the .aspx extension. It references the
.NET 2.0 installation folder ending with aspnet_isapi.d1l.

There is one exception to the authorization mechanism, and that is for the login page.
This page has to be allowed so that forms authentication can give the user access. By default
the authentication mode is Windows, but to use the SqlMembershipProvider and the Login
controls, you must change it to Forms mode. You can decide to use a different page, but
Login.aspx is the default. You can also change the time-out from the default of 30 minutes to
something like 2 weeks (20,160 minutes) and set it to use a sliding expiration so that as long as
the user returns to the website within 2 weeks, she stays logged in. This configuration, shown
in Listing 5-4, is useful for a portal or shopping website.

CHAPTER 5 @ SQL PROVIDERS

Listing 5-4. Login Page Configuration

<authentication mode="Forms">
<forms loginUrl="Login.aspx"
name=".ASPXFORMSAUTH"
timeout="20160"
slidingExpiration="true"/>

</authentication>

After the user successfully logs in to her account, she is assigned a token that is kept on the
client side as a cookie. This cookie is known as the Forms Authentication token. In Listing 5-4,
the cookie name is . ASPXFORMSAUTH, the default name. This token is the connection between the
client and the back end for the membership system.

Controlling Behavior by Role

As the administrator of your website, you will likely add yourself to a role called Admin. In
Listing 5-5, you can see how the Admin role is used to restrict access to the Admin section for
users in the Admin role. When you log in to the website, you can display a link to the Admin
section while the same link will not be visible to a regular user. You simply check whether
the current user is in the Admin role and set the Visible property on the hyperlink.

Listing 5-5. Setting Visibility of the AdminHyperlink

protected void Page Load(object sender, EventArgs e)
{

AdminHyperLink.Visible = Roles.IsUserInRole(User.Identity.Name, "Admin");

}

You can take this even further. In the case of a commerce site, when a customer makes a
first purchase, you may add him to a role of Customer, which will start showing content on his
account page for order history and shipment tracking. And if your commerce site works with
multiple vendors who supply the products for the website, you may add them to a Vendor role
and grant them access to update inventory data and projected ship times.

Keep in mind that all the role information is stored in the database along with your
application data. Although it is best to use the RoleProvider to interact with this data, you can
use the underlying stored procedures to interact with the membership data. For a commerce
site, you may want to run a monthly report to find all users who have purchased more than
$1,000 in merchandise in the last three months. You can then use the aspnet_UsersInRoles
AddUsersToRoles stored procedure to add them to a PreferredCustomer role that makes them
eligible for discounts and special offers. And as orders come in, you will record the items,
quantities, and prices for the order but leave the processing to be handled as a batch later in
the day. At that point, you can verify that a user is in the PreferredCustomer role and give him
his discount by using the aspnet_UsersInRole IsUserInRole stored procedure. Back on the
website, the user will start to see special offers on the home page that are not available to
everyone else (hopefully winning the user’s loyalty), which is all keyed on the user’s associa-
tion with the privileged role.

Another advantage of having these stored procedures accessible is that many platforms
work with SQL Server. Your public website may run ASPNET, but your fulfillment process may

117

118

CHAPTER 5 ©° SQL PROVIDERS

be implemented with a different language or platform that cannot use the .NET framework
directly. With all the talk about server-oriented architecture (SOA) as a means to integrate
diverse platforms, I feel that the database is already an excellent integration point. When I was
building a website a couple of years back, I had a few developers on the team who produced
desktop applications with another software platform that handled vendor applications and
the fulfillment process. I used the database as a way to safely pass data between platforms.
With the stored procedures equally available to the other platform, I did not have to do any
additional work for them to adapt to what I was building.

The SqlProfileProvider

The ASPNET Profile provider adds additional properties to a user account. We touched on this
in Chapter 1. What is interesting about the SqlProfileProvider is that it does not require you to
also use an implementation of the MembershipProvider. That would seem to make little sense,
if you could customize a user account but then could not log in to it and restore your prefer-
ences. But that is not exactly how ASPNET authentication works. The Membership provider is
actually just a layer above forms authentication, which has been around for several years. In
fact, you can completely implement a membership system with forms authentication directly,
which is compatible with the SqlProfileProvider. You can even store usernames and passwords
in your Web. config file, as shown in Listing 5-6.

Listing 5-6. Usernames and Passwords in Web.config

<authentication mode="Forms">
<forms loginUrl="Login.aspx"
name=".ASPXFORMSAUTH"
slidingExpiration="true">
<credentials passwordFormat="Clear">
<user name="admin" password="easyl2guess"/>
<user name="user" password="abc123"/>
</credentials>
</forms>
</authentication>

This all may explain why the Membership, Roles, and Profile interfaces seem mixed up,
with so many places to gather the necessary information about your users. The MembershipUser
object uses the User object, which has been around since .NET 1.0. But although you can use
SqlProfileProvider without the MembershipProvider, there is little reason to do so.

After you are using the SqlProfileProvider, you have a choice to make. You can choose to
allow anyone who comes to your website to maintain a profile anonymously or not. This is a
common feature, but there are some concerns worth considering.

Note Remember that there are already default providers configured that you will need to clear when con-
figuring your website. Otherwise, you will experience unexpected behavior. Although you can configure and
use multiple implementations of a provider, it is not common. Starting your provider configuration with a
clear directive should be the first step in configuring your website.

CHAPTER 5 ©© SQL PROVIDERS

Why Anonymous Profiles?

An anonymous profile can store customization settings associated to a profile just as an
authenticated profile can. These settings will stay with the user even after the web browser has
been restarted. Perhaps you want to allow a new user to use your website before requiring her
to create an account. A common feature on commerce sites allows a user to add products to
her basket anonymously, and after she chooses to purchase the items, it creates an account for
her during the checkout process so she can return later, log in, and access her order status or
make a new order with the previous account information.

More and more websites are also offering small ways to customize their content to suit
their users, but these minor preferences are not really worth the effort to create yet another
account on another website. One example is the font-resizing buttons on the CNN website
that allow you to increase or decrease the size of the text on the page (see Figure 5-1). The
CNN site remembers your preference when you return days later. This single setting could be
saved alone as a cookie, but when it is so easy to set properties on a profile, you can rely on the
anonymous profile.

Adjust font size + Adjust font size: [=
CANNES, France (AP) - Forget the tuxedo. Jerry Seinfeld made his [CANNES, France (AP) —- Forget the tuxedo. Jerry

big appearance atthe Cannes Film Festival wearing a fuzzy Seinfeld made his big appearance at the Cannes Film
bumblebee suit and black tights. Festival wearing a fuzzy bumblebee suit and black tights.

Figure 5-1. CNN.com font resizing

You can also use the anonymous profile to keep track of a user by recording the user’s
actions to the database. Each time the user returns to the website, it will log the visit. And each
time the user digs into a section to get to an individual article, you can record that detail. Later
you can analyze all this data to get a picture of the users coming to the website. Perhaps you
later break down the users into seven groups, assign longtime users to one of those groups,
and start to proactively adapt features, content, and advertising on the website to them.

Configuring Anonymous Profiles

Anonymous profiles are not enabled by default, so you will need to add that setting to the con-
figuration (see Listing 5-7).

Listing 5-7. Anonymous Profiles Enabled

<anonymousIdentification
enabled="true"
cookieName=".ASPXANONYMOUS"
cookieTimeout="144000"
cookieSlidingExpiration="true"/>

This configuration gives the anonymous session a 100-day time-out with a sliding expira-
tion. If you are going to allow for anonymous profiles, you will want to weigh the benefits and
the consequences. Although it will be a benefit to have thousands of users with anonymous
profiles using your commerce site to add products to your shopping basket system as they

119

120

CHAPTER 5 "/ SQL PROVIDERS

mull over whether to purchase an item, it will also be costly to have all those anonymous
profiles taking up space in your database.

Managing Anonymous Profiles

If you set the time-out to four weeks with a sliding expiration window, you can assume that an
anonymous account that has not had any activity in four weeks is inactive as the user will not
be able to reestablish a connection to that profile. After you can identify these inactive pro-
files, you can purge them from the system. You could purge some of them even sooner if they
do not have significant data stored with the profile. You will find that search engines and other
automated programs generate a significant number of anonymous sessions. This classifica-
tion of anonymous profiles will make up a significant number of the profiles in your database.
You could write a query identifying profiles in the database and write a script to purge those
profiles, but fortunately the Membership API anticipated this need so you do not have to do
all that work.

Listing 5-8 shows the event handler for a button on a Web Form. It can be placed in the
code-behind of a page in the admin section of your website. When you want to purge the inac-
tive profiles, you can have it execute the following lines of code.

Listing 5-8. Delete Inactive Profiles with Buttonl

protected void Buttoni Click(object sender, EventArgs e)
{
ProfileManager.DeleteInactiveProfiles(
ProfileAuthenticationOption.Anonymous,
DateTime.Now.AddMonths(-1));

This code deletes all anonymous profiles that have not had any activity in the past
month. The ProfileAuthenticationOption enumeration also includes values of Authenticated
or All to give you access to deleting any profile. This is still a manual process. It would be
better to schedule a script to run nightly, to keep a rolling window going that keeps deleting
all inactive profiles. When the MembershipProvider is backed by SQL Server, you can take
advantage of the stored procedure that the SqlMembershipProvider calls, aspnet_Profile
DeleteInactiveProfiles.You have to pass in the application name, the profile option, and the
date since the profile has been active. The profile option is 0 for anonymous, 1 for authenti-
cated, and 2 for both profile types. Listing 5-9 shows the code that deletes the inactive profiles.

Listing 5-9. Delete Inactive Profiles with T-SQL

DECLARE @PurgeDate DATETIME
SET @PurgeDate = DATEADD(DAY, -60, GETDATE())
EXEC aspnet Profile DeleteInactiveProfiles 'appName', 0, @PurgeDate

With this script scheduled to run nightly, it should keep your database clear of unneces-
sary profile data. It is set to go back 60 days, but 14 days may be preferable.

CHAPTER 5 @ SQL PROVIDERS

Anonymous and Authenticated Profile Differences

The time-out for anonymous sessions can be different from the time-out for the authenticated
sessions, but that is not the only difference. As discussed in the first chapter, custom properties
can be allowed to require authenticated profiles. Keeping the anonymous profile properties to a
minimum will help keep the size down for the anonymous profile data in the database. The cus-
tom properties to record the font size and profile group are shown in Listing 5-10.

Listing 5-10. Custom Profile Properties

<properties>
<add name="FontSize" type="String" allowAnonymous="true" defaultValue="10" />
<add name="ProfileGroup" type="String" allowAnonymous="false" />
</properties>

Migrating from Anonymous to Authenticated

When a user creates an account or logs in to your website, that user will carry along with him
his anonymous profile. The cookie for it will still be set in his browser, and the profile values
associated with the anonymous profile will still be in your database. What I typically want to
do is remove that cookie and copy forward any values that make sense.

In the first chapter, I explained that managed an association to a shopping basket
with the Guid value from the authenticated or anonymous profile. But when a user did
come to the site from a different computer, add items to an anonymous basket, and then
finally log in while making purchases, I did not want to lose the items placed in the anony-
mous basket. To bring these basket items over to the authenticated account, I handled the
Profile MigrateAnonymous event, which is a global application event in Global.asax.

But I did not just blindly replace the authenticated basket with the anonymous basket. It
was necessary to merge the baskets by adding items. If the user had logged in to that account
from home the day before and added a couple of items to the basket and then while at work
the next day added more items to a fresh anonymous basket, that user would effectively have
two baskets. When logging in, the Profile MigrateAnonymous event fires, and I simply add the
items from the anonymous basket to the authenticated basket and display the merged basket.
The alternative was to either completely forget the items in the anonymous basket or to
replace the authenticated basket with the anonymous basket. Moving the items from the
anonymous basket to the authenticated basket was the ideal choice.

Sometimes your profile may hold data that you cannot handle in this way. The simple
example of font size preference shows how you may have selected one size when you first
created your profile, and when you log in from another computer, you do not just want to
override your authenticated profile value with the anonymous value. Perhaps the exception
would be if the authenticated value is set as the default and the anonymous value is not
the default. In that case, it may be helpful to take in the value to maintain some consistency
as the user continues using the website. The code in Listing 5-11 handles the Profile
MigrateAnonymous in Global.asax to migrate the FontSize property and then removes all
traces of the anonymous profile.

121

122

CHAPTER 5 ©° SQL PROVIDERS

Listing 5-11. Migrating an Anonymous Profile

void Profile MigrateAnonymous(object sender, ProfileMigrateEventArgs e)
{
ProfileCommon anonymousProfile = Profile.GetProfile(e.AnonymousID);
string defaultFontSize = "10";
if (defaultFontSize.Equals(Profile.FontSize) 8&
ldefaultFontSize.Equals(anonymousProfile.FontSize))

{

Profile.FontSize = anonymousProfile.FontSize;

}

// remove the anonymous user, profile, and cookie
Membership.DeleteUser(e.AnonymousID, true);
ProfileManager.DeleteProfile(e.AnonymousID);
AnonymousIdentificationModule.ClearAnonymousIdentifier();

The last few lines of Listing 5-11 clean up the database so it is not cluttered with those anony-
mous accounts. I have seen how leaving the anonymous cookie identifier causes the Profile
MigrateAnonymous event to fire with each page request. So not only does removing the anonymous
profile keep the database clean, it also prevents this event from firing unnecessarily.

Creating a User

The control used to create accounts with the Membership API is the CreateUserWizard. It is
highly customizable. Beyond customization, you can even completely take over the process with
your own Web Form and just work with the Membership API to create users. That involves more
work, which you want to avoid with our goal of productivity in mind. Instead of starting from
scratch with your own control, you will simply add a step to the CreateUserWizard.

For your profile, you want to allow the user to select a primary interest for the website
and also the user’s preferred font size (as defined in the custom properties as ProfileGroup
and FontSize in Listing 5-10). The ProfileGroup is not allowed for an anonymous user. To
customize the CreateUserWizard, you first add a step to the wizard (see Figure 5-2).

Iﬂ@ - [createuserwWizard Tasks
Zign Up for Tour Mew Account

TTzer Mame: i

Auto Format. ..

Step: | Rl T

Pazsword: * AddiRemove Wizardijep
Confi Password: - Convert ko StartMavit=tionTemplate

Convert ko StephlavigationTemplate

s *
E-mail: Convert ko FinishMavigationTemplate
Security Cuestion: * Convert ko CustomMavigationTemplate
. Customize Create User Ste
Security Answer: i v

Customize Complete Step
Administer Website

:Edlt Templates

£

The Pazssword and Confirmation Password must match.

Figure 5-2. Add a step to the wizard.

CHAPTER 5 @ SQL PROVIDERS

For this customization, you want to place your wizard step at the start of the three-step
sequence. Your step will ask for the user’s preferences on the custom profile properties. The
second step will ask for all the required profile information, and the last step will show the
confirmation that the new user profile has been created. Use the markup in Listing 5-12 for
the customized control.

Listing 5-12. Customed CreateUserWizard

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="CreateCustomUserControl.ascx.cs"
Inherits="Controls CreateCustomUserControl" %>
<asp:CreateUserWizard ID="CreateUserWizard1" runat="server"
OnCreatedUser="CreateUserWizard1l CreatedUser"
ContinueDestinationPageUrl="~/Default.aspx">
<WizardSteps>
<asp:WizardStep runat="server" Title="Primary Interest">

Select your primary interest:

<asp:RadioButtonList ID="rblPrimaryInterest" runat="server"»
<asp:ListItem Selected="True" Value="1">Sports</asp:ListItem>
<asp:ListItem Value="2">Politics</asp:ListItem>
<asp:ListItem Value="3">Weather</asp:ListItem>
<asp:ListItem Value="4">Business</asp:ListItem>
<asp:ListItem Value="5">Entertainment</asp:ListItem>
</asp:RadioButtonList>

<p>

Please choose the font size below that you feel
is most readable.

</p>

<table><tr><td>

Sample Sizes:

<div style="font-size: 10px;">Small Font Size</div>
<div style="font-size: 12px;">Regular Font Size</div>
<div style="font-size: 14px;">Large Font Size</div>

</td><td>

<asp:RadioButtonList ID="rblFontSize" runat="server">
<asp:ListItem Value="10">Small</asp:ListItem>
<asp:ListItem Selected="True" Value="12">Regular</asp:ListItem>
<asp:ListItem Value="14">Large</asp:ListItem>

</asp:RadioButtonList>

</td></tr></table>

</asp:WizardStep>
<asp:CreateUserWizardStep runat="server">

123

124 CHAPTER 5 = SQL PROVIDERS

</asp:CreateUserhWizardStep>
<asp:CompletelWizardStep runat="server">
</asp:CompleteWizardStep>
</WizardSteps>
</asp:CreateUserWizard>

The controls holding the values you want to use are in the radio button lists,
rblPrimaryInterest and rblFontSize. You will take their values when the CreatedUser
event is fired (see Listing 5-13).

Listing 5-13. CreatedUser Event Handler

protected void CreateUserWizardi CreatedUser(object sender, EventArgs e)
{

Profile.FontSize = rblFontSize.SelectedValue;

Profile.ProfileGroup = rblPrimaryInterest.SelectedValue;

}

You can now use the ProfileGroup value to show the users content that serves them better
and do so with their preferred font size. But you may want to get at this data directly. That can
be tricky.

Dynamic Profiles and Profiles as BLOBs

It is tricky to get at profile data for two reasons. First, the data is serialized in a format that is not
directly accessible via a simple database query. Second, you cannot create a command-line util-
ity to read profile data that you can run as a scheduled job on a nightly basis to perform analysis
tasks on your users because you need the ASPNET dynamic compiler to generate the user profile.
In the case of the data serialization, the sample properties will be stored in the aspnet_
Profile table in the PropertyNames and PropertyValues columns, as you can see in Table 5-3.

Table 5-3. Serialized Profile Properties

PropertyNames FontSize:S:0:2:ProfileGroup:S:2:1:
PropertyValues 143

In PropertyNames, it lists the name, type, starting index, and length separated by a colon.
In PropertyValues, you can use PropertyNames to derive that 14 is the FontSize and 3 is the
ProfileGroup. This construct is designed for size optimization and for single-profile access
and not for aggregate analysis. If you want to work with this data, you will need to write a
rather complex stored procedure. The alternative is to rely on the .NET classes, which are
already capable of deserializing this data.

That leads us to the second reason that working with this data is tricky. The ASPNET
dynamic compiler uses a build provider that reads the settings in the Web.config file and
generates the Profile object in memory. This is how you can see IntelliSense support for
your custom properties in Visual Studio. Currently this dynamic compiler does not work for
class libraries. And if you place code in the App_Code folder of your website, you will find you
cannot access these dynamic values either.

CHAPTER 5 @ SQL PROVIDERS

This leads us back to using the ASPNET runtime to access these values through the pro-
files, which you can use from within a Web Form. To get usable data, you will simply go over
every authenticated account and generate a comma-separated values (CSV) export file with
all the profile data that you can parse and use, as people have been doing with CSV files for
years. Listing 5-14 includes the code to export the profile data as a CSV download.

Listing 5-14. Profiles Exporter

using System;
using System.Web.Profile;
using System.Web.UI;

public partial class ProfilesExporter : Page
{
protected void Page Load(object sender, EventArgs e)
{
Response.AddHeader ("content-disposition”,
"attachment; filename=CustomProfiles.csv");
Response.ContentType = "text/csv";
ProfileInfoCollection profiles =
ProfileManager.GetAllProfiles(
ProfileAuthenticationOption.Authenticated);
foreach (ProfileInfo profile in profiles)
{
ProfileCommon pc = Profile.GetProfile(profile.UserName);
Response.Write(String.Format("{0},{1},{2}\n",
pc.UserName, pc.FontSize, pc.ProfileGroup));
}

Response.End();

Notice that the code in Listing 5-14 adds the content-disposition header, which forces a
download and defines a filename ending with the . csv extension. Without this header, the file
will likely try to use ProfilesExporter.aspx as the filename. You could change the filename to
include a timestamp so you can distinguish it from newer copies of the data from day to day.
With this CSV data, you will be able to do your analysis more easily.

Instead of exporting to a CSV file, you could adjust this Web Form to insert the data back
into the database with tables you have created for the purpose of data analysis. The approach
used here is built to run quickly. In contrast, reading and writing data will slow down the data-
base and extend the time to run the export.

The BLOB storage mechanism used by SqlProfileProvider caused many developers to cre-
ate their own alternatives. My approach was to create my own set of tables and key them on
the Guid used to identify the user. You can also use SqlTableProfileProvider created by Hao
Kung. He is one of the engineers working at Microsoft on the ASPNET team. He put together
a provider implementation to resolve the BLOB problem. A quick search on Windows Live
(http://www.live.com) for SqlTableProfileProvider will send you right to the download page.

125

http://www.live.com

126

CHAPTER 5 "/ SQL PROVIDERS

Using the Provider-Powered ASP.NET Controls

Now you have configured your website with all the membership features your users will need
to log in to your website. The Login control handles that easily. This process is rich with secu-
rity, built on years of legacy technologies. Although the Membership API and provider model
are new to ASPNET, the mechanisms to authenticate and maintain a session with a user has
been with ASPNET from the beginning. When the user logs in to your website successfully, she
is given a token that is stored with her web browser as a cookie. This token acts as a key that
gets her into the protected and customized areas of your website.

The authentication token is an encrypted FormsAuthenticationTicket, which holds the
name of the user, the session expiration time, and other data including custom user data.

In the following scenario, I will show how this custom user data can be used to improve the
security of an authenticated session and to demonstrate the flexibility of the authentication
systems in ASPNET.

For this example scenario, you are working with a banking website and you are checking
on your balance while you are at work. You get called away briefly and do not think to lock
your computer. A dishonest coworker sneaks onto your computer and copies the cookie used
to authenticate your session with the bank. This cookie at least is not a plain-text value with
your account number, which would allow access your account anytime. Instead it is an
encrypted form of FormsAuthenticationTicket, which holds the expiration time and the date
the token was issued. That means this dishonest coworker has a limited time to use that
cookie.

What the coworker can do with a sliding expiration is place the cookie into a browser,
which will keep updating the expiration time. What it does not change is the last login date,
which is held on the server. If your banking website is really secure, the site may check your
last login time prior to allowing you to do anything really important, such as scheduling a pay-
ment or transferring money to another person’s account. Before the website allows you to do
that, it could check that you had logged in within a few minutes of the transaction and request
that you provide your password if you have not. You can log in even if you already are authen-
ticated, and doing so will reset the last login time. This requirement will stop your coworker
from completing those sorts of actions because he has only the cookie, which allows basic
access to your account. But all it would take to grant the coworker access to make that trans-
action would be to wait for you to return to your computer and log in to the banking website
again. What would be helpful would be to store your IP address in the token so the website can
verify that you logged in recently and from that computer. This is where you will use the cus-
tom user data.

The login process can be adjusted to insert the remote address into the
FormsAuthenticationTicket as user data. Simply drop the Login control onto the
design surface of aWeb Form. Then create a handler for the Authenticate event. The code
in Listing 5-15 handles that event and inserts the remote address of the user into the ticket,
which can be used to verify the user’s location each time that user returns to the website.

Listing 5-15. Login Authenticate Event Handler

protected void Loginl Authenticate(object sender,
System.Web.UI.WebControls.AuthenticateEventArgs e)

{

CHAPTER 5

if (Membership.ValidateUser(Logini.UserName, Loginl.Password))
{

e.Authenticated = true;

string username = Loginil.UserName;

bool persist = Logini.RememberMeSet;

int timeout = GetloginTimeout();

string userData = "remoteAddress=" + Request.UserHostAddress;

FormsAuthenticationTicket ticket = new FormsAuthenticationTicket(1,
username, DateTime.Now, DateTime.Now.AddMinutes(timeout),
persist, userData);

string encTicket = FormsAuthentication.Encrypt(ticket);

HttpCookie cookie = new HttpCookie(
FormsAuthentication.FormsCookieName, encTicket);

cookie.Expires = ticket.Expiration;

Response.Cookies.Add(cookie);

Response.Redirect(

FormsAuthentication.GetRedirectUrl(username, persist), true);

}

else
{
e.Authenticated = false;
}
}

SQL PROVIDERS

To get the configured time-out for the user session, I created a method that reads in the

configured value from Web. config, as shown in Listing 5-16.

Listing 5-16. GetLoginTimeout Method

private int GetlLoginTimeout()
{
AuthenticationSection authSection =
ConfigurationManager.GetSection("system.web/authentication")
as AuthenticationSection;
if (authSection != null && authSection.Forms != null)

{

}
// return the default

return 30;

return authSection.Forms.Timeout.Minutes;

Now that the ticket has the value, you can check it whenever the user is about to do some-
thing more critical than the typical page request, such as making a bank transfer or changing a

password. The method in Listing 5-17 checks the remote address.

127

128

CHAPTER 5 "/ SQL PROVIDERS

Listing 5-17. IsRemoteAddressMatched Method

private bool IsRemoteAddressMatched()

{
if (User.Identity.IsAuthenticated)
{
FormsIdentity identity = User.Identity as FormsIdentity;
if (identity != null)
{
string prefix = "remoteAddress=";
if (!String.IsNullOrEmpty(identity.Ticket.UserData) &&
identity.Ticket.UserData.Index0f(prefix) == 0)
{
string remoteAddress =
identity.Ticket.UserData.Substring(prefix.Length);
return Request.UserHostAddress.Equals(remoteAddress);
}
}
}
return false;
}

The method in Listing 5-17 pulls the ticket from the user identity and then extracts the
value of the remote address. Finally, it compares the stored value with the actual value from
the page request. This added check helps enhance security.

However, you can take this a step further. Perhaps you would like to give the user an
option to save his current location as a trusted location so that security can be relaxed when
he comes from that location. Perhaps if he goes on a business trip and logs in from his hotel
room, the login process will ask him to provide more than just his username and password. It
could instead ask for the last four digits of his social security number and home ZIP code. By
authorizing trusted locations, you will be able to log and analyze transactions that take place
from newly added locations. This approach is enhanced as home broadband connections
tend to maintain the same IP address for an extended period of time, so this remote address
will not change very often.

PHYSICAL LOCATION BY IP ADDRESS

There are services known as GeolP, which can tell you the physical location of an IP address. Allowing a user to
take certain actions on her account from trusted physical locations instead of just an IP address can enhance
the security but also make it easier for the user. If your user lives and works in Chicago, you can grant her a
higher level of trust when you know she is logged in from that location. However, if she logs in at 1:00 p.m. from
Chicago, and someone else logs in at 1:40 p.m. from Los Angeles, you can assume that something unexpected
is happening, flag the account for review, and alert the user of the unexplained activity.

GeolP attempts to identify every IP address with a physical location, but it is not always going to be
accurate—just as you cannot always look up someone’s phone number in the phone book. You can also use
the blocks of IP addresses that are assigned by country. For example, Korea has IP addresses in the range
from 210.220.128.0 to 210.223.255.255. Even when you cannot determine that the user is not in Chicago,
you can identify whether that user is reaching the site from Korea, China, Russia, or another country.

CHAPTER 5 ©© SQL PROVIDERS

USE A SHARED MACHINE KEY FOR WEB FARMS

When placing multiple web servers into a farm to distribute the load for a high-traffic website, it is necessary
to use the machine key setting, which is typically unique to a server. This configuration setting includes the
validation and decryption keys, which are used for hashing and decryption. The forms authentication token
uses these values, and if the machine key is not identical across the servers, you will experience authentica-
tion problems as user sessions hop from server to server. This can be partially avoided with sticky sessions,
but after a user leaves for an extended period, he may lose his sticky session with the load balancer and hit a
different server with different machine key values that will be incompatible.

Other data is also protected by using the machine key, such as the ViewState, which is encrypted to
prevent tampering. If a user were to leave a page idle for a long period and then later cause a PostBack, that
user might experience an exception due to this cross-server incompatibility.

The machine key is configured in the Web. config file and must be generated. Although Microsoft does
not provide a utility to generate these values, the MSDN documentation explains how it is done. Multiple utili-
ties to do it can be found online on sites such as The Code Project, which has a utility aptly named the
ASPNET machineKey Generator.

Building a SQL Photo Album Provider

Beyond the standard providers, you can create your own custom provider to fill a specific
need. And as you build your own provider, you can have it interact with the interfaces of the
standard providers for a seamless integration. Creating your own custom provider allows for
multiple implementations. More than one implementation may not be necessary for an inter-
nal application, at least not initially.

You could build a component that is used by multiple applications. If you build it by
using the provider model, you allow for multiple implementations. This component could
interact with a custom order-fulfillment system. Later your company might purchase an
order-fulfillment system package that handles the same features. Instead of tightly coupling
your applications to this new package, you could create a provider implementation for it.
Migrating your applications to it will then just be a matter of adjusting the configuration.

The same scenario could be applied to internal releases of components. The first imple-
mentation of a custom provider might interface with a complex set of underlying dependencies.
Maybe you have a mountain of legacy code that is difficult to maintain, but you and your team
are in the process of cleaning it up to improve maintainability. Later, as the code base has been
refactored, you could create a new implementation that works with the updated system. The
applications built on top of the provider will not have to change.

Versioning the assemblies can also achieve a similar solution. The difference with
providers is that you do not compile your applications directly against the implementation or
version. You instead use the provider as an abstraction layer, which will use the configuration
to instantiate the desired assembly. Doing so also avoids directly binding one assembly to a
specific version of another assembly.

In this section, you will build a provider that manages a photo album via an implementa-
tion that uses the popular photo website Flickr.

129

130 CHAPTER 5 = SQL PROVIDERS

Provider Requirements

A provider is made up of three essential pieces: the abstract provider, at least one provider
implementation, and the configuration to load the implementation. For a custom provider
built from the ground up, you will need additional code to load the configuration and give you
access to the provider implementations. If you were implementing a custom implementation
of an existing provider, such as the MembershipProvider, you would use the loading mecha-
nism already in place and just create your provider implementation class.

The first two classes to implement when getting started with a new provider are the con-
figuration and provider collection classes. To facilitate the loading of providers, there is a
whole infrastructure to support the process. Using the following classes accelerates the
process of creating a provider.

Configuration Section Class

If you were to look in the Machine.config file for references to the membership, you

would see a section definition that references the MembershipSection type, which is the
class that the MemerbershipProvider uses to read in its configuration. This class inherits the
ConfigurationSection class, which you will use to create your own PhotoAlbumSection class,
starting with Listing 5-18.

Listing 5-18. PhotoAlbumSection.cs

using System.Configuration;

namespace Chapter04.PhotoAlbumProvider

{

public class PhotoAlbumSection : ConfigurationSection
{

[ConfigurationProperty("providers")]

public ProviderSettingsCollection Providers

{

get { return (ProviderSettingsCollection)base["providers"]; }

}

[StringValidator(MinLength = 1)]

[ConfigurationProperty("defaultProvider"”,
DefaultValue = "SqlPhotoAlbumProvider")]

public string DefaultProvider

{
get { return (string)base["defaultProvider"]; }
set { base["defaultProvider"] = value; }

CHAPTER 5 @ SQL PROVIDERS

The Providers property loads the providers sub-element, while the DefaultProvider
property loads the value of the defaultProperty attribute. There is really not much work
necessary at this point, because the provider infrastructure handles a good deal of the work.
Simply creating a property for the ProviderSettingsCollection type causes this ALlbumSection
class to function as a provider configuration section, just as with the standard providers,
which hold the add, remove, and clear directives within a providers element in the configura-
tion. The Providers property automatically handles these configuration elements.

Provider Collection Class

Because you can configure multiple instances of a provider, you will want to be able to hold
a collection of them. To do so, you will create a class called PhotoAlbumProviderCollection,
which will inherit the ProviderCollection and override the behavior to use the
PhotoAlbumProvider type instead of the generic Provider type. This class is shown in

Listing 5-19.

Listing 5-19. PhotoAlbumProviderCollection.cs

using System;
using System.Configuration.Provider;

namespace Chapter04.PhotoAlbumProvider

{
public class PhotoAlbumProviderCollection : ProviderCollection
{
public new PhotoAlbumProvider this[string name]
{
get { return (PhotoAlbumProvider)base[name]; }
}
public override void Add(ProviderBase provider)
{
if (provider == null)
throw new ArgumentNullException("provider");
if (!(provider is PhotoAlbumProvider))
throw new ArgumentException
("Invalid provider type", "provider");
base.Add(provider);
}
}
}

With your own customized provider infrastructure in place, you are ready to start defining
the PhotoAlbumProvider.

131

132

CHAPTER 5 "/ SQL PROVIDERS

Abstract Provider Class

The abstract provider is the class that directly inherits the ProviderBase class, which all
providers are built on. This base class defines a baseline of support for all providers, with
properties for Name and Description as well as the Initialize method, which is called when
a provider is first loaded into an application. The properties and the method are all declared
by using the virtual attribute so you can override them, but typically you just override the
Initialize method.

In the abstract provider, you could leave the Initialize method untouched and leave it
up to the provider implementation to do so, but you may want to add one or more universally
available properties for all implementations of the provider, such as an Enabled property. You
would do so in the abstract provider.

Now you want to start adding abstract property and method declarations to define your
service contract, which all implementations must fulfill. For the PhotoAlbumProvider, these
declarations include methods to insert, change, and delete data related to albums and photos.
Listing 5-20 covers the ProviderAlbumProvider class.

Listing 5-20. PhotoAlbumProvider.cs

using System;
using System.Collections.Generic;
using System.Configuration.Provider;

namespace Chapter04.PhotoAlbumProvider
{
/// <summary>
/// Photo Album Provider
/// </summary>
public abstract class PhotoAlbumProvider : ProviderBase

{

#iregion " Abstract Methods "

/// <summary>

/// Gets albums for a user

/// </summary>

public abstract List<Album> GetAlbums(string userName);

/// <summary>

/// Gets photos for an album

/// </summary>

public abstract List<Photo> GetPhotosByAlbum(Album album);

/// <summary>

/// Creates an album

/// </summary>

public abstract Album AlbumInsert(string userName, string albumName,
bool active, bool shared);

CHAPTER 5 @ SQL PROVIDERS 133

/// <summary>

/// Creates a photo

/// </summary>

public abstract Photo PhotoInsert(Album album, string photoName,
DateTime photoDate, String regularUrl, int regularWidth,
int regularHeight, String thumbnailUrl, int thumbnailWidth,
int thumbnailHeight, bool active, bool shared);

/// <summary>

/// Updates an album

/// </summary>

public abstract void AlbumUpdate(Album album);

/// <summary>

/// Updates a photo

/// </summary>

public abstract void PhotoUpdate(Photo photo);

/// <summary>

/// Deletes an album

/// </summary>

public abstract void AlbumDeletePermanent(Album album);

/// <summary>

/// Deletes album permanently

/// </summary>

public abstract void PhotoDeletePermanent(Photo photo);

/// <summary>
/// Moves an album
/// </summary>
public abstract void AlbumMove(Album album,
string sourceUserName, string destinationUserName);

/// <summary>

/// Moves a photo

/// </summary>

public abstract void PhotoMove(Photo photo, Album sourceAlbum,
Album destinationAlbum);

#endregion

The abstract methods in PhotoAlbumProvider define the entire scope of what the
provider will support.

134

CHAPTER 5 "/ SQL PROVIDERS

The Provider Implementation

For the concrete implementation of the provider, you will likely want to read in more
configuration settings. A SQL implementation will surely use a configuration attribute called
connectionStringName, just as SqIMembershipProvider and SqlProfileProvider do. As you pre-
pare to initialize the provider, you will want to validate the data that you are going to use. First
check that the config parameter is not null and throw an ArgumentNullException ifitis. Then
make sure the core properties of Name and Description are in place so that ProviderBase can use
them. The description may not be defined, so you can give it a default value when it is not. Then
you want to call the Initialize method on the base class, which is the PhotoAlbumProvider in
this case. It will eventually lead to the Initialize method in ProviderBase, which will load these
configuration values for the Name and Description properties.

Next you will deal with just the configuration values that matter to this implementation,
which is the connectionStringName attribute. Again, you want to ensure that the attribute is
defined and that it is associated with a connection string in the connection string’s configura-
tion. If everything appears to be in place, you can use it to initialize the database connection
that is used throughout the rest of the class. Finally, you will want to check that you have han-
dled all the configured attributes and that no extras have been accidentally included. As you
use each configuration value, you remove it from the collection so that in the end you should
be left with none. If you do find that there are still attributes left, you can throw an exception
complaining that an unrecognized attribute has been given. This may seem a bit rigid, but this
may help you discover a misspelled attribute in your configuration that may otherwise go
unnoticed, which would lead to unexplained behavior by the provider. Listing 5-21 shows how
the SQL implementation is initialized.

Listing 5-21. Initialize Method for SqIPhotoAlbumProvider.cs

public override void Initialize(string name,
NameValueCollection config)

{ if (config == null)
{ throw new ArgumentNullException("config");
}
if (String.IsNullOrEmpty(name))
{ name = "SqlPhotoAlbumProvider";
}

if (String.IsNullOrEmpty(config["description"]))

{
config.Remove("description");
config.Add("description”, "SQL Photo Album Provider");

}

CHAPTER 5 @ SQL PROVIDERS

base.Initialize(name, config);

if (config["connectionStringName"] == null)
{
throw new ProviderException(
"Required attribute missing: connectionStringName");

}

connStringName = config["connectionStringName"].ToString();
config.Remove("connectionStringName");

if (WebConfigurationManager.ConnectionStrings[connStringName] == null)

{

throw new ProviderException("Missing connection string");

}

db = DatabaseFactory.CreateDatabase(connStringName);

if (config.Count > 0)

{
string attr = config.GetKey(0);
if (!String.IsNullOrEmpty(attr))
{

throw new ProviderException("Unrecognized attribute: " + attr);

}

}

}

For a full listing of this code, please refer to Appendix A.

Provider Service Class

You can now take all these pieces and put them together. The provider service reads in the
configuration section, loads the providers, and sets the default provider. This is the point
where providers set themselves apart from simple assembly versioning. The class starts as a
simple string in the configuration and is then brought to life as an instance of a class. It is also
where you may be spending some time with breakpoints as you work through issues with your
implementations and configurations and as you work out the details.

One important detail to remember here is that a provider should be initialized only once;
otherwise, it will throw an exception. And you need to do so in a thread-safe way. To handle
these requirements, you will make the PhotoAlbumService class a singleton—meaning the
default constructor is private, and a static property called Instance returns the only instance.
And in that property, the providers will be loaded while using the lock statement to ensure
thread safety (see Listing 5-22).

135

136 CHAPTER 5 = SQL PROVIDERS

Listing 5-22. PhotoAlbumService.cs

using System.Configuration.Provider;
using System.Web.Configuration;

namespace Chapter04.PhotoAlbumProvider

{

public class PhotoAlbumService

{

private static PhotoAlbumProvider defaultProvider = null;
private static PhotoAlbumProviderCollection providers = null;
private static object lock = new object();

private PhotoAlbumService() {}

public PhotoAlbumProvider DefaultProvider

{
get { return defaultProvider; }
}
public PhotoAlbumProvider GetProvider(string name)
{
return providers[name];
}
public static PhotoAlbumProvider Instance
{
get
{
LoadProviders();
return defaultProvider;
}
}

private static void LoadProviders()
{
// Avoid claiming lock if providers are already loaded
if (_defaultProvider == null)
{
lock (_lock)
{
// Do this again to make sure _defaultProvider is still null
if (_defaultProvider == null)
{

// Get a reference to the < PhotoAlbumSection > section

CHAPTER 5 @ SQL PROVIDERS

PhotoAlbumSection section = (PhotoAlbumSection)
WebConfigurationManager.GetSection
("photoAlbumService");

// Only want one provider here

//_defaultProvider = (PhotoAlbumProvider)

// ProvidersHelper.InstantiateProvider

/7 (section.Providers[0], typeof(PhotoAlbumProvider));

_providers = new PhotoAlbumProviderCollection();

ProvidersHelper.InstantiateProviders(
section.Providers, providers,
typeof (PhotoAlbumProvider));

_defaultProvider = providers[section.DefaultProvider];

if (_defaultProvider == null)
throw new ProviderException
("Unable to load default PhotoAlbumProvider");

You can see that the bulk of the work is done in the LoadProviders method. The
photoAlbumService configuration section is loaded into the PhotoAlbumSection object. Then
the PhotoAlbumProviderCollection is prepared to hold all provider implementations. And then
you get to the interesting line of code that uses the InstantiateProviders method from the
ProvidersHelper class. If you have ever done much work with reflection, you will appreciate
the simplicity of that single line of code. But what is it doing? If you dig into what is happening
in there, you will see it ultimately uses the CreateInstance method of the System.Activator
class. That method instantiates an instance of the class specified by the configuration setting.

That is all there is to creating a custom provider from scratch. With a little bit of infra-
structure in place, you are ready to get into the “real code” for the job at hand.

Unit Testing

To enhance and accelerate development while building your own custom provider, it is
extremely helpful to use unit tests. A provider is a service contract, and unit tests are meant
to verify expected functionality. These two models just belong together.

137

138

CHAPTER 5 "/ SQL PROVIDERS

For the PhotoAlbumProvider, I used unit tests right from the beginning to check each new
method and implementation for proper functionality. Running the tests immediately identi-
fied breaking changes, whether due to logic error in the C# code or an incorrectly functioning
stored procedure. And as I chose to completely rework the implementation, I was able to com-
pletely test my changes in a matter of moments by running the unit tests against the provider
interface. If had multiple provider implementations, I could run the same tests against all
implementations to ensure compatibility as well.

Please refer to Appendix A for the complete listing of source code for the PhotoAlbum-
Provider, including the unit testing class as well as all the SQL scripts to create the tables and
stored procedures.

The Finished Product

With the SqlPhotoAlbumProvider completed, you can now configure a website to use it and
start showing those albums and photos. You just have to place the assemblies in the bin folder
for the website and configure the Web. config file to hold the configuration. A sample configu-
ration is shown in Listing 5-23.

Listing 5-23. Web.config for PhotoAlbumProvider

<?xml version="1.0"?>
<configuration>
<configSections>
<section name="photoAlbumService"
type="Chaptero4.PhotoAlbumProvider.PhotoAlbumSection, w=
Chapter04.PhotoAlbumProvider" />
</configSections>

<!-- other configurations --»>

<photoAlbumService defaultProvider="SqlPhotoAlbumProvider">
<providers>
<clear/>
<add name="SqlPhotoAlbumProvider"
connectionStringName="chpt4"
type="Chaptero4.PhotoAlbumProvider.SqlPhotoAlbumProvider, =
Chapter04.PhotoAlbumProvider" />
</providers>
</photoAlbumService>
</configuration>

With a few Web Forms wired up to the PhotoAlbumProvider, the photo gallery comes
together quickly, as you can see in Figure 5-3. And to fill in some sample photos, I also created
an import routine that pulls in photos by tag from Flickr to prefill a few sample albums. (See
Appendix A for all source code.)

CHAPTER 5 ©© SQL PROVIDERS 139

& Albums - Windows Internet Explorer (=[5][=]

@'\J - |] hitpi//localhost1717/Website/ Albums/Album.aspx?Al ~ | 43 | | Live Search o ~|
i - [= 2 2 3
W e | @ Albums (= 2 - B G

Chapter 5

Home > Albums > Sunset Album

Sunset Album

SE=

how are things... Dying Light ... and Fire in the fire in the sky Salin enn og aftur
Sky

m

Point Reyes Jetplane at Dusk DSC01473 Evening Lineup... DSC01464
Lighthouse at
Sunset
Logout =
& Internet | Protected Mode: On H100% -

Figure 5-3. The finished product

Building a SQL SiteMap Provider

If you look closely at the finished product of the PhotoAlbumProvider in Figure 5-3, you will
see something familiar at the top. It is a breadcrumb trail, which is a standard ASPNET feature.
Unfortunately, the only implementation of the breadcrumb navigation is XML. To make it
work with the new photo album, you need a SQL implementation that will adapt instantly to
changes in the photo album. Naturally, you want to be able to navigate around the different
photo albums, so it makes sense to leverage the navigational controls in ASPNET that work
with the SiteMapProvider.

This time around, it will be a bit easier because you have a couple of details working in
your favor. First, the SiteMapProvider already handles the configuration loading for you. And
second, you can choose to extend one of the existing SiteMapProvider implementations or
implement it from the abstract SiteMapProvider class. Because there was a great example on
MSDN showing how to build an implementation from the base, I started with that and
adjusted it to my requirements.

140

CHAPTER 5 "/ SQL PROVIDERS

Note There is a great deal of content on MSDN for sample code and explanations of the architecture. It
continues to improve all the time as Microsoft identifies areas that need more attention. | watched as the
documentation was continually augmented as .NET 2.0 was prepared for the launch. And | find that every
time I return to MSDN, | find something that was not there before. It now features a wiki so that developers
like us can contribute content to MSDN to better enhance the overall document and the platform. If you look
today, you will see most pages allow you to move to various versions of the frameworks such as .NET 1.1,
2.0,3.0,and 3.5.

A site map is a hierarchical construct that must have a single parent node, and each node
must have a unique URL. It is important to ensure that when the database is generated to hold
the data about the website hierarchy, these rules are followed; otherwise, the site map will not
work.

SiteMap Requirements

A SiteMap works like a tree and conforms to the following requirements. First, there must be a
single root node. From there, each node must have a parent node that ultimately leads to the
root node. Finally, each node must have a unique URL. The requirement for the unique URL
can be tricky because you may allow a left node to appear in more than one area of the web-
site, such as a product that is a leather chair. A page displaying leather furniture would point
to the chair, and so would the page displaying chairs. The breadcrumb can point to only a
single parent, so somehow the URL has to be unique even though it may conceptually exist
under two separate parent nodes.

Implementing SiteMapProvider

With a working sample in place, I started to adjust it to fit my database requirements. They are
very modest requirements that are easily handled by a single table, as shown in Table 5-4.

Table 5-4. sm_SiteMapNodes Table

1D Bigint (Primary Key)
ParentID Bigint

url Nvarchar(150)
Title Nvarchar (50)

Depth Int

Creation Datetime

Modified Datetime

To load the SiteMap, I just hard-coded the home page and the main gallery page and then
read the table used by the PhotoAlbumProvider. The script used to populate the SiteMap is
shown in Listing 5-24.

CHAPTER 5 @ SQL PROVIDERS

Listing 5-24. sm_RepopulateSiteMapNodes.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'sm_RepopulateSiteMapNodes')
BEGIN
DROP Procedure sm RepopulateSiteMapNodes
END

GO

CREATE Procedure dbo.sm RepopulateSiteMapNodes
AS

SET NOCOUNT ON

DECLARE @RootNodeID bigint
DECLARE @AlbumsNodeID bigint

-- reset the table

--TRUNCATE TABLE sm_SiteMapNodes

--DBCC CHECKIDENT (sm_SiteMapNodes, RESEED, 0)
DELETE FROM sm_SiteMapNodes

EXEC sm_InsertSiteMapNode -1, 'Default.aspx', 'Home', 0,
@RootNodeID OUTPUT

EXEC sm_InsertSiteMapNode @RootNodeID, 'Albums/Default.aspx’,
"Albums', 1, @AlbumsNodeID OUTPUT

DECLARE @Albums TABLE

(
ID int IDENTITY,
AlbumID bigint,
[Name] varchar(50),
UserName nvarchar(256)

)

INSERT INTO @Albums (AlbumID, [Name], UserName)
SELECT ID, [Name], UserName

FROM pap_Albums

WHERE IsActive = 1

DECLARE @CurID int

DECLARE @MaxID int

DECLARE @AlbumID bigint

DECLARE @AlbumNodeID bigint
DECLARE @Name varchar(50)
DECLARE @UserName nvarchar(256)
DECLARE @Url nvarchar(150)

141

142

CHAPTER 5 "/ SQL PROVIDERS

SET @MaxID
SET @CurID

(SELECT MAX(ID) FROM @Albums)
1

WHILE (@CurID <= @MaxID)

BEGIN
SET @AlbumID = (SELECT AlbumID FROM @Albums WHERE ID = @CurID)
SET @Name = (SELECT Name FROM @Albums WHERE ID = @CurID)
SET @UserName = (SELECT UserName FROM @Albums WHERE ID = @CurID)

SET @Url = ('Albums/Album.aspx?AlbumID=" +
CONVERT (varchar(10), @AlbumID) +
"8UserName=" + @UserName)

-- PRINT 'Name = ' + @Name
-- PRINT 'UserName = ' + @UserName
-- PRINT 'Url = ' + @Url

EXEC sm_InsertSiteMapNode @AlbumsNodeID, @Url, @Name, 2,
@AlbumNodeID OUTPUT

SET @CurID = @CurID + 1
END

SET NOCOUNT OFF
Go

GRANT EXEC ON sm RepopulateSiteMapNodes TO PUBLIC
Go

T have a few lines commented out so they are not included when the stored procedure
is used normally, but when I need to make updates to it, I find it is helpful to re-enable those
lines. As for the TRUNCATE command that is commented out, that requires increased privileges
that you may not allow on a production system, so I have it set to use the DELETE command
instead. The truncate alternative is useful because when it runs, it does not bother generating
audit logs, which can save you time and disk space.

As the @CurID is used to loop over the table variable, the @Ur1 is assembled and the new
node is inserted into the sm_SiteMapNodes table by using sm _InsertSiteMapNode. The script to
create this stored procedure is shown in Listing 5-25.

Listing 5-25. sm_InsertSiteMapNode.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'sm InsertSiteMapNode')
BEGIN
DROP Procedure sm_InsertSiteMapNode
END

CHAPTER 5 @ SQL PROVIDERS

Go

CREATE Procedure dbo.sm_InsertSiteMapNode
(

@ParentID bigint,

@Url nvarchar(150),

@Title nvarchar(50),

@epth int,

@ID bigint OUTPUT

)
AS

IF NOT EXISTS (SELECT * FROM sm SiteMapNodes WHERE Url = @Url)
BEGIN
INSERT INTO sm_SiteMapNodes (ParentID, Url, Title, Depth, Creation, Modified)
VALUES (
@ParentID,
@Uurl,
@Title,
@Depth,
GETDATE(),
GETDATE()
)
SET @ID = @@IDENTITY
END
ELSE
BEGIN
SET @ID
END

(SELECT ID FROM sm SiteMapNodes WHERE Url = @Url)

Go

GRANT EXEC ON sm_InsertSiteMapNode TO PUBLIC
GO

Implementing the SiteMapProvider itself is a matter of overriding four abstract methods.
There are several other methods on the SiteMapProvider abstract base class that orchestrate
these four methods, but individually some of those methods can also be overridden, as shown
in Listing 5-26.

Listing 5-26. Abstract Methods on SiteMapProvider
public abstract SiteMapNode FindSiteMapNode(string rawUrl);
public abstract SiteMapNodeCollection GetChildNodes(SiteMapNode node);

public abstract SiteMapNode GetParentNode(SiteMapNode node);

protected abstract SiteMapNode GetRootNodeCore();

143

144

CHAPTER 5 "/ SQL PROVIDERS

There is nothing terribly difficult about implementing these methods. The real work
is in loading the data from the database and then keeping it current. This work starts in the
Initialize method in Listing 5-27.

Listing 5-27. Initialize Method for SqlSiteMapProvider

public override void Initialize(string name, NameValueCollection attributes)
{

lock (this)

{

base.Initialize(name, attributes);

connStringName = attributes["connectionStringName"].ToString();
db = DatabaseFactory.CreateDatabase(connStringName);
siteMapNodes = new List<DictionaryEntry>();
childParentRelationship = new List<DictionaryEntry>();
EnsureSiteMaploaded();

The initial infrastructure is prepared here and then the EnsureSiteMapLoaded method is
called. This method is actually called at multiple points throughout the class in the event
that the SiteMap data is updated and has to be reloaded. Let’s take a look at this method in
Listing 5-28.

Listing 5-28. EnsureSiteMapLoaded Method in SqlSiteMapProvider

private void EnsureSiteMaploaded()
{
if (rootNode == null)
{
// Build the site map in memory.
LoadSiteMapFromDatabase();
}
}

The rootNode is required for the SiteMap to work, so setting it to null causes the data to be
reloaded the next time this method is called. I created a mechanism to automatically reset the
rootNode back to null when the data is updated.

The SiteMap data is loaded from that single table by using a single query. Ultimately, this
data is loaded from the database and placed into the cache mechanism with a one-hour win-
dow to live, with the CachedItemRemovedCallback attached. When it is removed from the cache,
it clears the rootNode, forcing it to get fresh data on the next pass. There are many ways that
the cache can be manipulated to invalidate a cached item. For the moment, this uses a very
simplistic solution.

The first way the SiteMap data will be reset is via the simple one-hour time-out period,
which is helpful to clear up memory when a cached item is not used. I also assumed that I am
able to control the SiteMap when a change is made to the photo album database. What I cre-
ated was a helper class for the SqlSiteMapProvider, which removes the item from the cache.

CHAPTER 5 ©© SQL PROVIDERS

This raises the CachedItemRemoved event and clears the rootNode. In the code for the website,
every time an album is added or removed, the code also calls this helper class to remove the
cached item as well as repopulate the SiteMap with the new data.

This is not a very elegant approach, but it is functional. In the next chapter, you will learn
techniques to manage cached data in far more efficient ways without resorting to manual calls
to clear the data.

COMMON FOLDER ADDITIONS

The custom SiteMap provider will be useful for many websites because the standard XML provider is

not typically sufficient. This sample could be placed in your Common folder under the Templates folder
(D:\Projects\Common\Templates\Provider Model).The provider model will also be something that
you will want to implement in future projects, so you may want to also include the Photo Aloum provider,
which is available with the sample code download for the book (in the Source Code area of the Apress
website, http://www.apress.com).

Summary

This chapter covered the three major ASPNET SQL providers and how to adjust their behavior

to suit your needs. You implemented a provider from the ground up and integrated it with a cus-
tom implementation of a standard SQL provider. The topics covered in this chapter showed how
your application can use providers as pluggable components. These components are completely
interchangeable by design, giving you the flexibility necessary to rework whatever part of your
application that you determine needs to be reworked. This chapter also showed you how the
interface layer will automatically work with multiple provider implementations if you simply
adjust the configuration.

145

http://www.apress.com
http://www.apress.com

CHAPTER 6

Caching

Brhaps the best way to speed up your applications is to implement a targeted caching strat-
egy. As you profile an application for performance, you will typically find that the time to pull
data from the database is the most significant delay during a page request cycle. And the less
data you have to pull from the database, the faster your application will perform. The caching
mechanisms built into ASPNET give you a great deal of options when it comes to caching,
building on a sound foundation with .NET 1.1 with additional features in .NET 2.0.

Caching is handled in ASPNET with the Cache object, which is a part of the System.Web.
Caching namespace. And despite the fact that it is in the System.Web assembly, it can easily be
used in any .NET application including console and desktop applications. You can reference
the assembly just like any other. And with an ASPNET website, the Cache object can be used in
a class library to create a reusable data access layer.

This chapter covers the following:

* Alternatives to caching
* Caching options

* Problems with caching
e Invalidating a cache

» Performance strategies

The focus of caching in this chapter is on ASPNET largely due to the stateless nature of
HTTP. Many strategies and technologies have been created to overcome the stateless nature
of the request-and-response cycle such as cookies and sessions, but the fact remains that
websites work in a detached mode. In contrast, a desktop application can load data and keep
it in memory reliably with constant access to it. A desktop application also has a single user,
which allows the application to take up all resources for that single user. These factors reduce
the need for desktop applications to use the same caching techniques employed in web
applications.

With a website, you could be servicing many sessions that hold data for each user, each
session taking up a memory footprint. If you were to load data into each user’s session that
takes up 3 MB of space and had 1,000 concurrent sessions, you would already be at 3 GB of
memory. By default, a session will be kept active until it times out after 20 minutes of inactiv-
ity. While it not uncommon for a server to have 4 GB of memory or more, it is not reasonable
to take up that much space. It would be better to allow data to drop out of memory when
space is needed, such as when a peak traffic period occurs, as they do with websites, and sud-
denly there are 5,000 active sessions. 147

148

CHAPTER 6 © CACHING

For a typical visit, users may hit a few pages and be gone in less than 10 minutes. Perhaps
they are checking your website for some prices on a product or the status of an order. They
want to get at it quickly and then leave. Once they do leave, you want to have a way to clear
up the memory they were using so it is available for other users. This is where caching fills a
real need.

There is also the scenario where a particular set of data is used by many users simultane-
ously. Perhaps a popular product just went on sale. Each hit on the product page generates a
series of queries to the database to display the page. The data does not really change all that
often, but in a second you may have 20 users hit the page and run the same queries to load the
page. This generates load on the database, causing more and more I/0 delay as the database
does a great deal of work in a short time frame. It also fills the network connection between
the database server and the web server, which could be a bottleneck if the network does not
have sufficient capacity to handle the bandwidth. If the product page or the queries were
wrapped with a caching mechanism, even if it used just a five-second time-out, you could dra-
matically improve the performance of the page and reduce the load on the database server
and network. This is another real issue that caching addresses.

WEB TO DATABASE SERVER COMMUNICATIONS

The communications between the web server and the database server are easily overlooked during develop-
ment when a local database is on the same machine as the development web server started by Visual Studio.
It can give you a false impression that the data access layer is going to be just as fast once it is deployed.
Adjusting queries to just pull the necessary columns from a table instead of all columns is an example of
easily reducing the bandwidth between the web server and the database server.

A sudden surge of queries on the database, even if they are the same query, could cause the perform-
ance of the database to drop dramatically. This can be caused by the fact that the query joins across multiple
tables that happen to be located in different parts of the physical disk. SQL Server 2005 will attempt to com-
pensate by keeping recently used data and indexes in memory, but these desired automatic optimizations are
not guaranteed. It is best to save the results of those queries on the web server to allow the database to
service other queries.

Alternatives to Caching

Using the ASPNET cache is not always the right solution to boost performance. The more
data you place in the cache, the more complex it can become. And more data in the cache
may push out items you want to have in there to enhance performance. Some data can be
stored by other means that require less overhead, such as using application state, Session, or
even ViewState.

While the techniques described in the following text are sometimes appropriate solutions,
they do also have some problems. Either they hold onto objects without an automatic way to
release them when memory is in short supply or they do not hold onto the data long enough to
be useful. Even so, you can combine the techniques with each other and with caching to provide
a more comprehensive solution that gives you all of the benefits with a minimal downside.

CHAPTER 6 = CACHING

Application State

Application state is a global resource that every user and request will be able to access. You can
use it to hold onto objects you will want to access quickly. You can place items into this collec-
tion with the Application_Start eventin Global.asax so items are available immediately
when the application first starts up. Listing 6-1 shows how data can be stored in the applica-
tion state using the Global.asax file in the root folder of the website. The rest of the code can
be placed in a utility class in the App_Code folder. Listing 6-2 shows the GetApplicationState
method, which is called by the methods in Global.asax.

Listing 6-1. Loading Data into Application State in Global.asax

void Application Start(object sender, EventArgs e)

{
HttpContext.Current.Application["ApplicationState"] = GetApplicationState();
}
void Application End(object sender, EventArgs e)
{
HttpContext.Current.Application["ApplicationState"] = null;
}

Listing 6-2. GetApplicationState Method in App_Code\Utility.cs

public static DataSet GetApplicationState()

{
return HttpContext.Current.Application["Global Data"] as DataSet;

}

Without any additional work, the data placed in application state will not be updated. If
an external event requires this data to be updated, a handler could be used to reload the data.
Listing 6-3 shows a handler (.ashx) that can be called to reload the application state.

Listing 6-3. ApplicationStateHandler.ashx

<%@ WebHandler Language="C#" Class="ApplicationStateHandler" %>

using System.Web;
using Chaptero6.ClasslLibrary;

public class ApplicationStateHandler : IHttpHandler {

public void ProcessRequest (HttpContext context) {
context.Response.ContentType = "text/plain”;

string action = context.Request.QueryString["action"];

if ("ReloadApplicationState".Equals(action))
{

149

150

CHAPTER 6 © CACHING

context.Response.Write("Reloading Application State\n");
Domain.LoadApplicationState();
context.Response.Write("Done.");

}

else

{

context.Response.Write("Action unknown: " + action);

}
}

public bool IsReusable {
get {
return false;

}

Application state can hold multiple items like any collection, so a diverse set of data could
be stored for use anytime a request would need it.

Session

A Session holds onto data for an individual user with a sliding 20-minute window. In Global.
asax, you can use the Session Start and Session_End event handlers to manage the life cycle
of a Session, which is another collection that can hold any type of object. You can add data to
it over time as the user uses the website. A good place to load up a Session is right after a user
logs in to a website. It could hold all data relevant to that user that you expect the user will
eventually request from the database during the visit.

ViewState

ViewState further limits the scope of the data that it holds to just the current page, for as long
as the page maintains a postback cycle. When data is bound to a GridView, it will not have to
hit the database on a postback, as it uses the ViewState to draw the GridView. You can also
place additional items into the ViewState, which you can access on the postback, that are not
attached to page elements. However, this is limited to objects that can be serialized for use in
ViewState.

Current Context

You can also hold data in the current context, which is limited to just the current request. You
can store data that is then shared by any control through the request process. Consider that if
the Page Load in your code-behind populates objects in the context, all user controls included
in that page will then be able to use it instead of going to the database to get the data. In the
case of a product detail page, you may break up sections of the page into user controls to sim-
plify maintenance, but with a page holding five user controls, you could be hitting the

CHAPTER 6 = CACHING

database to pull product details five separate times for one request. Using the current context
would dramatically reduce your database load. Listing 6-4 shows how you can load data into
the current context. Listing 6-5 shows how every user control, or any control, on the page can
access the data placed in the current context.

Listing 6-4. Loading the Product into the Current Context in the Page_Load Method

using System;
using System.Web.UI;

public partial class Default : Page

{
protected void Page Load(object sender, EventArgs e)
{
Context.Items["CurrentProduct"] = GetProduct();
}
private Product GetProduct()
{
Product product = new Product("Product 1");
return product;
}
}

Listing 6-5. Using the Current Context to Access the Product in a User Control

using System;
using System.Web.UI;

public partial class Controls ProductControl : UserControl

{
protected void Page Load(object sender, EventArgs e)
{
Product currentProduct = Context.Items["CurrentProduct"] as Product;
if (currentProduct != null)
{
Label1.Text = currentProduct.Name;
}
else
{
// hide the control when there is nothing to display
Visible = false;
}
}

151

152

CHAPTER 6 © CACHING

YOUR OWN WORST ENEMY

| once worked with a developer who hit the database hundreds of times for a single page request without
realizing it. These queries caused the page to take a very long time to load. He did not see how calls into cer-
tain methods within loops in his code were continually reloading data he already requested previously. By
simply holding onto data from early in the same request to be used later in the request, you can speed up
your application without making use of the ASP.NET caching system.

One of the side effects of hitting the database hundreds of times for a single page request is an unusu-
ally slower response for each query, which adds up quickly. It is like a traffic jam during rush hour, but it all
happens in a matter of seconds for a database, which is noticeable when you expect a page to load in under
a second. Using the data you recently requested from the database will space out your queries and reduce
the frequency of query traffic jams.

Event order is very important when you are loading data and making use of it later. When
used with a master page, you may expect the Load event on the master page to run first, but in
fact the Load event on the page will fire first, then the master page, and then all of the user
controls on the page. I have used this technique along with a custom SiteMap to load the cur-
rent objects for the page into the current context using the Url association to these objects.
The Url may not be a product, but when it is, I can populate that item, and all user controls
can check for it and use it when it is available. To centralize all of this logic, you could place
the code to populate these context items in the master page in the Init event handler so it
precedes the Load event on the page.

SHOULD YOU SKIP PERFORMANCE TUNING?

You should not prematurely optimize a system, because early on you will not know what will need to be
tuned. It important to first measure before you tune, and then again after so you can show the difference.
After several iterations, you will start to see patterns in your code emerge that will show you common
performance problems that hopefully have a common solution you can apply throughout your code in a
consistent way. Attempting to tune an application before it is completed can introduce problems that delay
the completion of the project without adding measurable value.

There are also features deep in .NET that address commonly inefficient coding techniques that kick in
to automatically speed up your application. By using your normal coding techniques, you will find what may
appear to be inefficient will actually perform quite well. But if you attempt to pretune the application, you will
not realize that automatic benefit and will put in much more time and energy into the project.

CHAPTER 6 " CACHING

PERFORMANCE TUNING STRING CONCATENATION

A common hallway conversation on tuning is the debate over string concatenation. Should you add strings
together or use a StringBuilder and append strings together? The conflict is that it is easier and faster
to just add strings together with the + operator instead of using a StringBuilder, buta StringBuilder
performs better. What quickly ends the debate is someone pointing out that once the code is compiled either
way, it is optimized to use a StringBuilder anyway. And this is just one of many performance-enhancing
mechanisms built into .NET that you can use without changing your current coding practices. A good rule of
thumb to remember is that programming code is for people and machine code is for machines. Let the com-
piler do its job.

As you complete the components that make up your application, you will be able to
profile the actual performance and identify bottlenecks. Sometimes tuning the performance
will be a simple one-line adjustment to a stored procedure or a few lines of code in your data
access layer. Using regular techniques to build your application allows you to be as productive
as possible while letting the inefficiencies appear as you near completion. Gradually, as you
gain a level of comfort, you will start to fall into the patterns that result in more performant
applications right from the start.

Caching Options

There is a dizzying array of options available when it comes to caching. The Cache object does
not simply hold onto a collection of objects so they are available for fast access. The entire
caching system includes a rich set of features that can be used in different scenarios. Primarily
caching in ASPNET breaks down into two groupings: output caching and data caching.

Output Caching

With output caching, you are working at the user interface level. You are caching the output
of either a page or a user control. (Caching the output of a user control is known as fragment
caching. Think of a user control as generating part of, or a fragment of, a page.) A page or user
control configured for output caching will run normally for the first request and every subse-
quent request until it expires from the cache, and it will return the same output as the request
that placed the content into the cache. Pulling the content from the cache prevents server-
side processing in the code-behind, which includes all data binding and database queries.

While there are some major benefits to output caching, it is a bit of a brute-force
approach as opposed to a targeted solution, which can take into account the nature of the
data that is being consumed. A page or user control can cache many pieces of data that all
have unique dependencies, which raises many questions when the data is grouped together
for display. With the right combination of the techniques covered here, it should be possible to
minimize the downside.

153

154

CHAPTER 6 © CACHING

Page Caching

At the highest level you will cache the output of an entire page, including all controls held
within the page. The declarative way to enable such caching is to place a directive in the page
with the desired settings.

The example in Listing 6-6 will cache the output of the page for a Duration of 60 seconds
and will be unique for any parameter. The VaryByParam attribute will cause the output cache to
produce a fresh output if any of the query string parameters are different when the wildcard
(*) is used. You can also specify a specific query string or strings with a semicolon-delimited
list of names.

Listing 6-6. Enabled Output Caching
<%@ OutputCache Duration="60" VaryByParam="*" %>

One of the appealing features about output caching is that not only does it not have to
pull data from the database when it returns a cached response, it also does not have to fire any
page events because the output from the first request that recorded the output to the cache is
used. So not only does it reduce database load, it also reduces processor usage.

The output cache can also be set programmatically in the code-behind, as shown in
Listing 6-7, although this approach is not as elegant as the declarative approach. It does give
you the option to use logic to set your expiration time, which could come in handy if you want
to adapt the cache based on server load.

Listing 6-7. Programmatically Setting a Page for Output Cache

protected void Page Load(object sender, EventArgs e)
{
Response.Cache.SetCacheability(HttpCacheability.Public);
if (IsPeaklLoadTime())
{
// cache for ten minutes during peak load time
Response.Cache.SetExpires(DateTime.Now.AddMinutes(10));
}
else
{
// cache for two minutes during normal traffic periods
Response.Cache.SetExpires(DateTime.Now.AddMinutes(2));

}
Response.Cache.SetValidUntilExpires(true);

Product currentProduct = Context.Items["CurrentProduct”] as Product;
if (currentProduct != null)

{

Label1.Text = currentProduct.Name;

}

else

{
// hide the control when there is nothing to display

CHAPTER 6 = CACHING

Visible = false;
}
}

Problems with Qutput Caching

A website deployed with precompiled assemblies has already achieved a great deal of perform-
ance optimization from a request-handling standpoint. The slower activities in an application
will still be pulling data from the database. By using efficient cache dependencies, you can
ensure the data in your cache is always current, but the output cache declarations do not have
all of the richness and detail necessary to know when the cache dependencies change. All the
efforts to tune your data access layer to ensure the data that is displayed is current may be lost if
the output cache holds the cached output for too long. As a result, you may find that output
caching is not often a realistic option.

Fragment Caching

Instead of caching an entire page, you may have various sections, some of which need to be
updated more often than others. Using output caching in a user control is known as fragment
caching. Each user control placed on a page can have distinct output cache settings. Consider
a product detail page showing a photo of the product along with various details about the
product. I once used fragment caching to display several sections of a product page with five
or six user controls. Some of the user controls were cached and others were not. Certain
details would not change all that often, such as the product photo, description, dimensions,
colors, and vendor association. But other details such as the pricing and availability status
could change more regularly. Each user control declared the output cache settings specific to
the content being displayed. The product page was a composite of these user controls, and it
performed very well during busy traffic periods.

You can combine page caching and fragment caching, but obviously the Duration set on
the page must be shorter than the user controls with output caching enabled. You could set
the page to a value of 10 seconds, while a user control that holds data that rarely changes is
cached at 3,600 seconds.

Postcache Substitution

Another output-caching feature is postcache substitution, which allows a page to use output
caching while allowing a piece of the page to be updated with each request. This can be done
declaratively with the Substitution control. This technique has a limitation: the Substitution
control cannot be used in a user control or master page that has output caching enabled, so
you cannot combine this technique with fragment caching, at least not directly. You have to
instead cache the entire page and use the Substitution control where you need each request to
get fresh content.

The Substitution control works differently from a typical ASPNET control. A typical con-
trol like a Label lets you set the Text property, which the control uses for display along with
other properties such as Font-Bold and CssClass. With a Substitution control, you instead
provide a string that is displayed directly like a Literal control. This is done with a MethodName
property that refers to a static method in the code-behind, which takes an HttpContext object
as the only parameter and returns the string. This string is displayed directly without manipu-
lation or decoration due to other properties on the control.

155

156

CHAPTER 6 © CACHING

In the case of a product detail page, you would set the entire page to use the output cache,
while each user control used to assemble the page is not. In place of certain details that need
to be updated, you would use a Substitution control.

In Listings 6-8 and 6-9, the Label controls will only be updated when the output cache for
the page expires, while the Substitution control’s values are current with each request.

Listing 6-8. Substitution Control Markup

<asp:lLabel ID="1blProductName" runat="server" Text=

<asp:Label ID="1blProductNumber" runat="server" Text=

<asp:Substitution ID="subPrice" runat="server"
MethodName="CetPrice" />

<asp:Substitution ID="subAvailability" runat="server"
MethodName="GetAvailability" />

></asp:Label>

""></asp:Label>

Listing 6-9. Substitution Control Code-Behind

private static string GetPrice(HttpContext context)
{

Product product = GetProduct(context);

return product.Price.ToString("C");

}

private static string GetAvailability(HttpContext context)
{

Product product = GetProduct(context);

return product.Availability;

}

If all you are doing is returning a small bit of text, this would be sufficient, but if you
instead want to return anything more, you will have to somehow generate all of the content to
be returned from this method. Creating a string full of markup is what you try to avoid with
ASPNET development because of all of the helpful visual tools. The way the Substitution con-
trol works does not give you a direct way to stay in that visual mode. But this can be done
indirectly.

Fragment Caching with Postcache Substitution

With the page set for output caching, you can set a user control to hold a Substitution control,
which then loads another user control that holds the content to return through the Substitution
method. To simplify this process, I created the SubstitutionFragment class (see Listing 6-10) and
placed it in the App_Code folder.

Listing 6-10. SubstitutionFragment Class

using System.IO;
using System.Text;
using System.Web;
using System.Web.UI;

CHAPTER 6

public abstract class SubstitutionFragment : UserControl

public abstract void BindToContext();

private HttpContext currentContext;
public HttpContext CurrentContext

get
{

return _currentContext;
set
{

_currentContext = value;
}

public virtual string RenderToString(HttpContext context)

{
{
}
{
}
}

CurrentContext = context;
BindToContext();
DataBind();

StringBuilder sb = new StringBuilder();
StringWriter sw = new StringWriter(sb);
HtmlTextWriter tw = new HtmlTextWriter(sw);
RenderControl (tw);

return sb.ToString();

CACHING

What you should notice first is the fact that the SubstitutionFragment class inherits from
UserControl as the base class and then declares the BindToContext method as abstract. Any
user control that will be used as a fragment in a substitution will change the inherited class
from UserControl to SubstitutionFragment and implement the BindToContext method (see
Listing 6-11). The rest of the work is handled by the RenderToString method, which converts
the user control into a string that can be used with the Substitution control.

Listing 6-11. User Control As a SubstitutionFragment

using System.Web;

public partial class Controls ProductDetailSF : SubstitutionFragment

{

public override void BindToContext()

{

157

158 CHAPTER 6 © CACHING

Product product = GetProduct(CurrentContext);
if (product != null)

{
1blProductName.Text = product.Name;
1b1ProductNumber.Text = product.ProductNumber;
1blPrice.Text = product.Price.ToString("C");
1blAvailability.Text = product.Availability;
}
}
private static Product GetProduct(HttpContext context)
{
return Utility.GetProduct(context);
}

The context makes it possible to load the product using the query string value that I have
placed in a class in App_Code called Utility. This method also works with any other page or
user control, which can simply pass in the Context property that is normally populated with
the page or user control class (see Listing 6-12).

Listing 6-12. GetProduct Method in the Utility Class

public static Product GetProduct(HttpContext context)

{
if (context == null)
{
return null;
}

Product product = context.Items["CurrentProduct"] as Product;
if (product == null)
{
// use the context.Request to load the Product
string productIdStr = context.Request.QueryString["ProductID"];
int productId = -1;
int.TryParse(productIdStr, out productId);
Domain domain = new Domain();
DataSet productDs = domain.GetProductByID(productId);
if (productDs != null && productDs.Tables.Count > 0 &3
productDs.Tables[0].Rows.Count > 0)
{
DataRow row = productDs.Tables[0].Rows[0];
product = new Product((int) row["ProductID"]);
product.Name = (string) row["Name"];
product.ProductNumber = (string) row["ProductNumber"];
product.Price = (decimal)row["ListPrice"];
product.Availability = (string) row["Availability"];

CHAPTER 6 = CACHING

product.Data = row;

}

context.Items["CurrentProduct”] = product;

}

return product;

}
With the user control ready to be used as a SubstitutionFragment, it can be referenced by
a Substitution control with the Substitution method (see Listings 6-13 and 6-14).
Listing 6-13. User Control Markup
<asp:Substitution ID="subProductDetail" runat="server"
MethodName="GetProductDetail" />
Listing 6-14. User Control Code-Behind

using System.Web;
using System.Web.UI;

public partial class Controls ProductDetailSFBridge : UserControl

{
private static string GetProductDetail(HttpContext context)

{
SubstitutionFragment substitutionFragment = (new Page()).LoadControl(
"~/Controls/ProductDetailSF.ascx") as SubstitutionFragment;
if (substitutionFragment != null)
{
return substitutionFragment.RenderToString(context);
}
else
{
return "Unable to load control: control is null";
}
}

The abstraction provided by the SubstitutionFragment class saves you from having to
resort to casting or reflection techniques and also encapsulates some common behavior for all
user controls that will be used with this technique.

Data Caching

Data caching allows you to place any object into the cache along with a key to uniquely iden-
tify it and several other parameters to customize how the cache manages your data.

159

160

CHAPTER 6 © CACHING

Cache Methods

There are a few methods you can use to place items into the cache and then remove them.
The Cache object directly includes three methods: Add, Insert, and Remove. These are the only
methods you will use to directly manipulate the cache. Beyond these methods, you will use
the various types of dependencies you send into the cache as you work with your data.

Add Method

The Add method takes a key and an object along with other parameters to place objects into
the cache. If an item is already in the cache, it does not add the new value; instead, it leaves
the existing item untouched. This behavior is the reason it is more common to use the Insert
method. It is important to realize this key difference between the Add and Insert methods.
You can test the behavior I've just described by adding an item to the cache with a key of
myKey and a value of 1. Then add another item with the same key with a value of 2. When you
pull the value for myKey from the cache, it will be 1, as the second add did not replace the first
value. This behavior can present a problem, but it can also be used to your advantage in the
right scenario. Generally though, you will not attempt to add an item to the cache when one
already exists. The normal data-caching pattern is to first check whether an item exists in the
cache. If it exists, you use it. If it does not exist, you create it, add it to the cache, and then
use it.

Insert Method

The Insert method also takes a key and an object with several parameters to place items into
the cache. However, if an item with the same key is already in the cache, it will replace the item
and use all of the values provided by the parameters. While the Add method only has one
method signature, there are four method signatures for the Insert method.

Remove Method

The Remove method takes the key used to place an item into the cache and removes it from the
cache. It is not required that an item marked with that key still exist in the cache for it to be
removed, but if it does, the Remove method will return a reference to this object as it is removed.
Otherwise, it returns a null reference.

The Cache Index

The cache can also be used as an index. Listings 6-15 and 6-16 show how the index is used
to add and get data from the cache. Adding a value in this way uses the Add method and does
not give you the option to set the other parameters, so it will use the default cache settings.
Getting data from the cache is normally done through the index, as you do not need any
parameters to get the value. You just need the key used to place the item into the cache.

Listing 6-15. Adding an Item with the Cache Index

Cache["Product-129"] = product;

Listing 6-16. Getting an Item with the Cache Index

Product product = Cache["Product-129"] as Product;

CHAPTER 6 = CACHING

Enumerating Over the Cache

You can loop over the cache entries with the Cache object. For monitoring purposes, you may
want to log the number of items in the cache broken down by type so you can better fine-tune
the performance that the cache is providing. You could also purge all items in the cache by a
certain type, as demonstrated in Listing 6-17.

Listing 6-17. Purging Cached Items by Type

private static int PurgeCacheItemsByType(Type type)
{
Cache cache = HttpRuntime.Cache;
List<String> keys = new List<string>();
foreach (DictionaryEntry entry in cache)
{
if (entry.value != null &8&
entry.Value.GetType().Equals(type))
{
keys.Add((string)entry.Key);
}
}
foreach (string key in keys)
{

cache.Remove(key);

}

return keys.Count;

While the example in Listing 6-17 could prove useful in the right situation, it is generally
better to allow the cache to manage the data based on the parameters provided when you
insert items.

Parameters

The cache makes use of several parameters that control the behavior for the cache, specifically
for the item being added. The parameters used to place items into the cache form a policy for
how the data should be handled. Some data can be assigned a higher priority, which will
increase the likelihood that the data will be available when it is requested. But you may also
have data that you are caching for the simple convenience of reducing database load. You can
give it a lower priority. The following text discusses these parameters and explains how they
can be used to influence how the data you place in the cache is handled.

CacheltemPriority

The cache uses the priority to determine which items it can remove when it needs to clear
space to free up memory or there are other reasons for automatic removal. Table 6-1 shows the
various values for CacheItemPriority.

161

162

CHAPTER 6 © CACHING

Table 6-1. CacheltemPriority Values

Value Description

AboveNormal The value just above normal, meaning it is less likely to be removed when freeing
up space for memory, etc.

BelowNormal The value just below normal, meaning it is more likely to be removed when
freeing up space for memory; etc.

Default The same as Normal

High A value that causes the associated item to be the least likely to be removed before
other items

Low A value that causes the associated item to be the most likely to be removed
before other items

Normal The middle priority, which is used as the default

NotRemovable A value that prevents the cache from removing the item when automatically

purging items to free up space

CacheltemRemovedCallBack

The CacheRemovedCallback property references a method that will be called whenever the item
is removed from the cache. This method provides the key used to place the item into the
cache, the object itself, along with a CacheItemRemovedReason, which indicates why the item
was removed (see Table 6-2). Generally, an item is removed because the time-out has been
reached and the item just expires, but there are other reasons an item is removed.

Table 6-2. CacheltemRemovedReason Values

Value Description

DependencyChanged A cached dependency associated with the item has changed.

Expired The end of the time-out period has been reached.

Removed The item was removed by request by either the Remove or Insert method.
Underused The item was removed to clear space.

You may find that items are being removed due to the Underused reason, even though you
keep placing them back into the cache. This can be frustrating when you know you have only a
few small items in the cache and it keeps kicking them out. It is tempting to raise the priority
or to just set the priority to NotRemovable. But if everything in the cache is set to NotRemovable,
you lose the advantage that the priority gives you. Instead, you can try adjusting your cache
settings.

For the cache settings in the Web.config file, there are two values that will matter
the most when it comes to removing items from the cache with the Underused reason:
privateByteslLimit and percentagePhysicalMemoryUsedLimit. By default, there is no limit
for privateBytesLimit, and percentagePhysicalMemoryUsedLimit will be at 89 percent of total
physical memory. Knowing that 89 percent is already a very high value, you may want to sim-
ply add more physical memory to the server to improve caching. But if your server is shared by
multiple applications, you could set the privateBytesLimit to a restrictive setting for some of
the applications to free up more space for the ones that need it most.

CHAPTER 6 " CACHING

Finding the right cache settings can be tricky. The cache is managed using your custom
settings along with a set of heuristics that are hard to predict. To get a better idea of how your
settings will perform, you can test your configuration settings with a simulation.

Cache Simulation

It can be hard to understand how the cache will work with the various parameters described
in the previous section. To visualize what it is actually doing, I have created a simulation.
Because the cache system can be used outside of a web application, you can create a simple
console application that reads in data from the database and places it in the cache. To simu-
late the load of an active web server, I have set it to run a thread that adds several new items
into the cache every few seconds. As activity occurs, it is reported immediately to the console
with coloring to indicate the type of activity, such as adding an item being added to or
removed from the cache. I set the simulation to use two variables: the time-out between new
additions and the number of additions to make at each interval.

The simulations I have run use the sample database from Microsoft called AdventurelWorks,
which is an example of a commerce database full of products and ordering data. (The database
can be downloaded from the Microsoft website.) The simulation starts by reading in a list of all
of the products and then placing all of the keys into a collection to be used for randomly adding
items to the cache at each interval.

This simulation also behaves differently based on the cache settings. When I set the
privateBytesLimit to an unreasonably low value, I find that items are removed more fre-
quently due to the Underused reason. But as I raise that value or return it to the default, I start
to see more items reach the time-out. That causes more to be removed from the cache with
the Expired reason, which is preferable to the Underused reason.

You can rework this simulation for each of your applications as you work to find an opti-
mal compromise between memory and performance. This simulation software reports the
results at the end, along with the current cache settings and the duration so you can docu-
ment the results (see Figure 6-1). This documentation will help justify the purchase of
additional memory if that is what the test shows. See the code download for this chapter for
the complete source code for the simulation.

AWINDOWSisystem3 2vemd. exe

{Already in cache> Product—-367
Product—-381. System.Data.DataSet
{Already in cache? Product—-4
Product—-86, System.Data.DataSet
{Already in cache? Product-459%

{g to guit)> :
q
Conf iguration:

Private Bytes Limit
Percentage Physical Memory Used Limit

Already in Cache
Expired

Underused

Removed

Dependency Changed

Duration: B@:01:87.8875824
Press any k to continue . . .

Figure 6-1. Cache simulation

163

164

CHAPTER 6 © CACHING

COMMON FOLDER ADDITIONS

The cache simulation can be adjusted to scenarios matching your application. It can be a helpful tool to add
to your Common folder in the Tools subfolder (D: \Projects\Common\Tools\Cache Simulation).The
full source for the simulator can be downloaded with the sample code for this book.

Invalidating Cached Data

Cached data can be invalidated in multiple ways. Primarily, a time-out is set to force a cached
item to expire after a specified point in time. Alternatively, you can set a sliding window for a
moving expiration. After a period of inactivity, the sliding window will allow the cached item
to be removed from the cache. The settings for absolute expiration and sliding expiration are
mutually exclusive. Also in this section, I talk about cache dependencies, which you can use
to invalidate items when dependent items change, and about manually removing items from
the cache.

Absolute Expiration

My preference has always been to set an absolute time-out on items in the cache. I know that
just having an item cached for ten seconds will help improve performance during peak load
periods. But setting the time-out to five minutes or more at least ensures that if I were to
change values in the database, the content displayed on the website would be updated within
the five-minute period. Listing 6-18 shows an example using absolution expiration.

Listing 6-18. Absolute Expiration

DataSet data = GetItem(3491);

string cacheKey = "Item-3491";

DateTime expiration = DateTime.Now.AddMinutes(5);

Cache.Insert(cacheKey, data, null, expiration,
Cache.NoSlidingExpiration, CacheItemPriority.Normal, null);

Sliding Expiration

Sliding expiration causes the item to stay in the cache as long as the item is accessed within
the specified window. For data that does not change often but does get hit frequently, this is a
good choice. But theoretically, there is no limit to how long an item could be in the cache if the
item is frequently accessed. This could represent a problem that first arises through some
unexplained behavior when data does not appear to change after it has been updated in the
database. It is generally a good practice to set up a cache dependency with an item when slid-
ing expiration is used. Listing 6-19 shows an example using sliding expiration.

CHAPTER 6 = CACHING

Listing 6-19. Sliding Expiration

DataSet data = GetItem(3491);

string cacheKey = "Item-3491";

TimeSpan slidingWindow = TimeSpan.FromSeconds(30);

Cache.Insert(cacheKey, data, null, Cache.NoAbsoluteExpiration,
slidingWindow, CacheItemPriority.Normal, null);

Cache Dependency

To quickly remove an item from the cache before the absolute expiration or when the period
for the sliding expiration has passed, you can make use of a cache dependency. There are
multiple implementations of cache dependencies. You could have an item in the cache
bound to a file, and when the file is updated the cached item would be removed from the
cache. You can also implement your own cache dependency by creating a class that inherits
the CacheDependency class. A SqlCacheDependency is one of these implementations that can
alert your application when data has changed in the database. This implementation will be
covered shortly.

Manual Removal

If you keep track of the keys you use to place items into the cache, you can use them to call

the Remove method on the cache to manually remove the items. And when you call the Insert
method when an item already exists by the same key, you actually cause the existing item to
be removed as you add the new item. Perhaps as users log into your website you load up their
data and place it into the cache using a key such as UserData-JSmith, and when their session
expires or when they log out, you proactively ask the cache to remove such keys as you will not
be using them again until they return. The data does not have to be in the cache when you
request it to be removed, but because you would know the username, it will be possible to
assemble the key used to place the data into the cache. If the data stored for this user is signifi-
cant, this approach may help make space for other items to remain in the cache longer,
improving performance.

SQL Cache Dependencies

Data can be automatically removed from the cache when the data in the database changes by
attaching dependencies to the cached items. A dependency will override the expiration or
sliding window for the cached items immediately once a database change has been detected.

Using the SqlDependency and SqlCacheDependency

There are a couple of ways to tie a dependency to a cached item to inform you when the
data has changed. The SqlDependency is the baseline mechanism that communicates with
SQL Server to monitor the database for changes. (Note that SqlDependency is not the same as
SqlCacheDependency.) Table 6-3 shows the members of the SqlDependency object.

165

166

CHAPTER 6 © CACHING

Table 6-3. SqlDependency Members

Name Type Description

Id Guid Read-only property
HasChanges Boolean Read-only property
OnChange Event Event

The Id and HasChanges properties are the only properties on the SqlDependency object,
and they are read-only. The OnChange event is raised when a dependency change occurs that
gives you access to the Id and HasChanges properties on the SqlDependency object. Because
the Id property is created with a random Guid value, it is not terribly useful. Listing 6-20
shows an OnChange event handler. Because you cannot use the Id property to identify the key
used to place the changed item into the cache or the item itself, you may choose to just use
the SqlCacheDependency object instead, which does provide these useful details.

Listing 6-20. The OnChange Handler Method

void OnChangeHandler(object sender, SqlNotificationEventArgs e)
{

SqlDependency sqlDependency = (SqlDependency) sender;

// sqlDependency.Id is a random Guid

}

Why Use SqlDependency?

There are clear limitations of SqlDependency when compared to SqlCacheDependency, which
manages items in the cache for you. But if you want to ensure that items are not ejected from
the cache, you can manage your own collection and use the OnChange event to remove items
from the collection to keep it current. You will have to understand that items placed in your
managed collection will take up memory until you remove those items. You already know the
cache will manage memory usage and eject items from the cache when it determines memory
space needs to be cleared for new items. Depending on your needs, you may decide to make
this trade-off.

To enhance the use of the SqlDependency, it will be necessary to get the parameters used
in the originating query into the OnChange event handler. This can be done with an anonymous
method that is created as a delegate. The inline block of code will have access to the parame-
ters of the enclosing method, so it will not be necessary to make use of the Guid value on the
SqlDependency. In Listing 6-21, a method is given an integer value named productId, which is
used as a parameter passed to a stored procedure that retrieves a product from the database.
This integer value is used as the index value for the managed collection.

Listing 6-21. Anonymous Method with a Delegate

SqlDependency sqlDependency = new SqlDependency(sqlCmd);
OnChangeEventHandler onChangeHandler =
delegate(object sender, SqlNotificationEventArgs e)

CHAPTER 6 = CACHING

{
dataltems.Remove(productId);
15
sqlDependency.OnChange += onChangeHandler;

Notice how the signature of the delegate matches the required signature of the OnChange
event. The block of code also directly references the productId even though this event may not
fire until long after the enclosing method has passed. This is a powerful technique that can be
used for just a single query parameter or many.

To construct the SqlDependency requires a standard SqlCommand object. Because you are
using the Data Access Application Block, you have a DbCommand instead. Conveniently, it can be
cast as a SqlCommand and used to construct the SqlDependency.

You can also add more SqlCommand objects to the SqlDependency with the
AddCommandDependency method. Listing 6-22 shows how many commands are added to
the same SqlDependency.

Listing 6-22. Multiple SqlCommand Dependencies

SqlDependency sqlDependency = new SqlDependency();
sqlDependency . AddCommandDependency (productSqlCmd) ;
sqlDependency . AddCommandDependency (pricingSqlCmd) ;
sqlDependency . AddCommandDependency (inventorySqlCmd) ;
OnChangeEventHandler onChangeHandler =
delegate(object sender, SqlNotificationEventArgs e)

{

};
sqlDependency.OnChange += onChangeHandler;

dataItems.Remove(productId);

If the data among the three commands in Listing 6-22 actually do invalidate each other, it
does make sense to bind them together in this way. However, you may never have a reason to
do this. If the pricing data changes, it most likely will not require you to get updated product
and inventory data, but the option is there if you need it.

Using the SqlCacheDependency

The SqlCacheDependency makes use of the SqlDependency to remove data from the cache when a
dependency changes. It derives from the CacheDependency base class, which is one of the param-
eters used when inserting an item into the cache. Table 6-4 shows the SqlCacheDependency
constructors.

Table 6-4. SqlCacheDependency Constructors

Parameters Callback Mechanism
String dbName, String tableName Polling

SqlCommand sqlCmd Notifications

167

168

CHAPTER 6 © CACHING

Polling

When a SqlCacheDependency is created with a database and table name, it will monitor the
table for changes. Monitoring the table is done with the polling features that are available with
SQL Server 2000 and 2005. The way polling works is by attaching a trigger to the table to be
monitored that is fired with each insert, update, and delete statement. The trigger increments
anumber in a status table for this source table to indicate that the table has been changed.
When a table is being monitored, this status table is polled for that number to check whether
it has changed.

Enabling Polling for a Table

Polling is enabled using the aspnet_regsql.exe utility. I use the script in Listing 6-23 to enable
the Production.Product table in the AdventureWorks sample database. First the services to
manage dependencies must be enabled and then the specific table must be enabled.

Listing 6-23. Add SQL Cache Dependencies.cmd
@echo off

set REGSQL="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet regsql.exe"
set DATABASE=AdventureWorks
set DSN="Data Source=.\SQLEXPRESS;Initial Catalog=%DATABASE%;=

Integrated Security=True"

echo Registering dependencies
%REGSQL% -C %DSN% -ed

echo Registering Production.Product table
%REGSQL% -C %DSN% -et -t Production.Product

Pause

Unfortunately, the script in Listing 6-23 breaks on the first run because the Product table
is in the Production schema instead of the default dbo schema. This can be fixed by adjusting
the stored procedure used by the utility to make it recognize the fact that the target table does
not exist in the dbo schema. Once the database has been enabled for dependencies, a stored
procedure named AspNet SqlCacheRegisterTableStoredProcedure is created. This stored
procedure must be updated to allow for the Production.Product table to be monitored with
polling (see Listing 6-24). (Thanks go to Chris Benard [http://chrisbenard.net/], who
published this updated script on his blog.)

Listing 6-24. Updated AspNet_SqlCacheRegisterTableStoredProcedure

ALTER PROCEDURE [dbo].[AspNet SqlCacheRegisterTableStoredProcedure]
@tableName NVARCHAR(450)

AS

BEGIN

http://chrisbenard.net
http://chrisbenard.net

CHAPTER 6 = CACHING

DECLARE @triggerName AS NVARCHAR(3000)
DECLARE @fullTriggerName AS NVARCHAR(3000)
DECLARE @canonTableName NVARCHAR(3000)
DECLARE @quotedTableName NVARCHAR(3000)
DECLARE @schemaName NVARCHAR(3000)

/* Detect the schema name */
IF CHARINDEX('.', @tableName) <> O AND CHARINDEX('[', @tableName) = 0
OR CHARINDEX('[', @tableName) > 1
SET @schemaName = SUBSTRING(@tableName, 1, CHARINDEX('.', @tableName) - 1)
ELSE
SET @schemaName = ‘dbo’

/* Create the trigger name */

IF @schemaName <> 'dbo'

SET @triggerName = SUBSTRING(@tableName,
CHARINDEX('.', @tableName) + 1, LEN(@tableName) -
CHARINDEX('.', @tableName))

ELSE

SET @triggerName = @tableName

SET @triggerName = REPLACE(@triggerName, '[', ' o ")

SET @triggerName = REPLACE(@triggerName, ']', ' c ")

SET @triggerName = @triggerName + ' AspNet SqlCacheNotification Trigger'

SET @fullTriggerName = @schemaName + '.[' + @triggerName + ']'

/* Create the canonicalized table name for trigger creation */
/* Do not touch it if the name contains other delimiters */

IF (CHARINDEX('.', @tableName) <> 0 OR

CHARINDEX('[', @tableName) <> 0 OR

CHARINDEX(']', @tableName) <> 0)

SET @canonTableName = @tableName

ELSE

SET @canonTableName = '[' + @tableName + ']’

/* First make sure the table exists */

IF (SELECT OBJECT ID(@tableName, 'U')) IS NULL
BEGIN

RAISERROR ('00000001', 16, 1)

RETURN

END

BEGIN TRAN
/* Insert the value into the notification table */
IF NOT EXISTS (SELECT tableName FROM
dbo.AspNet SqlCacheTablesForChangeNotification
WITH (NOLOCK) WHERE tableName = @tableName)
IF NOT EXISTS (SELECT tableName FROM

169

170

CHAPTER 6 © CACHING

dbo.AspNet SqlCacheTablesForChangeNotification
WITH (TABLOCKX) WHERE tableName = @tableName)

INSERT dbo.AspNet SqlCacheTablesForChangeNotification
VALUES (@tableName, GETDATE(), 0)

/* Create the trigger */
SET @quotedTableName = QUOTENAME(@tableName, '''")
IF NOT EXISTS (SELECT name FROM sysobjects WITH (NOLOCK)
WHERE name = @triggerName AND type = 'TR")
IF NOT EXISTS (SELECT name FROM sysobjects WITH (TABLOCKX)
WHERE name = @triggerName AND type = 'TR")
EXEC('CREATE TRIGGER ' + @fullTriggerName + ' ON ' + @canonTableName +'
FOR INSERT, UPDATE, DELETE AS BEGIN
SET NOCOUNT ON
EXEC dbo.AspNet SqlCacheUpdateChangeIdStoredProcedure N' +
@quotedTableName + '
END
)
COMMIT TRAN
END

The Add SOL Cache Dependencies.cmd script can be adjusted to update the stored proce-
dure inline so that it does not fail using the OSQL command-line utility, which is a part of SQL
Server 2005 (see Listing 6-25).

Listing 6-25. Add SQL Cache Dependencies.cmd (Revised)
@echo off

set REGSOL="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet regsql.exe"
set 0SQL="C:\Program Files\Microsoft SOL Server\90\Tools\Binn\osgl.exe"
set SCRIPTS DIR="AdventureWorksDatabase\AspNet Scripts"
set UPDATE_SCRIPT=AspNet SqlCacheRegisterTableStoredProcedure.sql
set DATABASE=AdventureWorks
set DSN="Data Source=.\SQLEXPRESS;Initial Catalog=%DATABASE%;=

Integrated Security=True"

echo Registering dependencies
ZREGSQL% -C %DSN% -ed

echo Updating AspNet Stored Procedure for Schema Support
%0SQL% -S .\SQLEXPRESS -E -d %DATABASE% -i =
ZSCRIPTS_DIR%\%UPDATE_SCRIPT%

echo Registering Production.Product table
%REGSQL% -C %DSN% -et -t Production.Product

pause

CHAPTER 6 = CACHING

Once this stored procedure is updated, the script to enable dependency polling on this
table will run without failing. And to again clear the resources added to the database, you can
run the script in Listing 6-26.

Listing 6-26. Remove SQL Cache Dependencies.cmd
@echo off

set REGSOL="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet regsql.exe"
set DATABASE=AdventureWorks

set DSN="Data Source=.\SQLEXPRESS;Initial Catalog=%DATABASE%; w=
Integrated Security=True"

ZREGSQL% -C %DSN% -dd

pause

Configuring the SqlCacheDependency for Polling

Once the database is prepared for polling, you must also configure the application to make
use of it. The configuration block shown in Listing 6-27 belongs within the system.web block
and creates a mapping to the AdventurelWorks database, which is designated with the aw values
as the connection string name as well as the name of the cache dependency.

Listing 6-27. Configuration SqlCacheDependency

<caching>
<sqlCacheDependency enabled="true">
<databases>
<add name="aw" connectionStringName="aw" pollTime="15000"/>
</databases>
</sqlCacheDependency>
</caching>

The pollTime attribute is optional. It controls how often the status table is checked. This
value is in milliseconds, but I would highly discourage the value ever dropping below one sec-
ond (1,000 ms). In fact, I would make the poll time much higher, such as ten seconds or a full
minute. And if you are using absolute expiration, you would naturally want the poll time to be
much shorter than the caching window, while a sliding window may never invalidate cached
items unless polling indicates to the cache that a dependency has changed.

Now that polling is enabled and configured, the code snippet in Listing 6-28 will create a
polling cache dependency and insert the item into the cache.

Listing 6-28. Creating a Polling Cache Dependency

Cache cache = HttpRuntime.Cache;
CacheDependency cacheDependency =

new SqlCacheDependency("aw", "Production.Product");
cache.Insert(cacheKey, dataSet, cacheDependency,

17

172

CHAPTER 6 © CACHING

DateTime.Now.AddSeconds(120), Cache.NoSlidingExpiration,
CacheItemPriority.Normal, removedCallback);

Notice the aw parameter references the configured cache dependency, and the table fully
qualifies the Production.Product table. The cached item is given an absolute time-out of 120
seconds, while the cache dependency will poll the status table for changes every 15 seconds.
If the data changes immediately after the query pulls the data, it will not get a change until at
least 15 seconds later.

Problems with Polling

While polling is a simple and reliable way to invalidate data held in the cache, it can be a bit
resource intensive if the poll time is very low. And because the poll time is configured for the
entire database and not unique for each monitored table, it is likely you will set the poll time
to the lowest number necessary for the table that needs to remain the most current. A shorter
poll time means the database will be hit more often.

Polling is also not a fine-grained approach. The cache dependency will change for any
insert, update, or delete in the monitored table regardless of whether the modified data is
actually held in the cache. If you have a table with 50,000 rows and 10,000 of those rows are
currently held in the cache, an update to a single record will cause all of those 10,000 rows to
be removed from the cache.

Query Notifications

The other option to remove items from the cache automatically prior to their expiration

is query notifications. Instead of constantly checking whether the status of a table has
changed, query notifications register a query with the notifications system and request to

be notified if the resources referenced in the query change. This is an immediate notification
without delay and also specific to the scope of the query, which makes it ideal when the tar-
geted data is time sensitive. It also means it is more fine-grained than the polling approach,
which cannot distinguish changes of one row from another in the same table.

Contrasting Polling and Notifications

Choosing between polling and notifications will be a critical decision when you approach
caching. While one or the other may be a perfect solution for your scenario, there are some
details to consider. What is appealing about polling is the fact that it is so easy to set up, but as
the examples in the previous section show, the change dependency is not known by the appli-
cation until the poll time is reached. And each change is triggered by any change made to the
table.

Notifications do alert you immediately to a changed dependency with greater specificity
of the rows you are concerned about, but the valid queries are limiting. Notifications can also
become quite intense on a system where the data changes frequently. Where the choice of
polling or notifications alone does not sufficiently solve your performance needs, you can
consider a hybrid or custom approach.

The polling solution works by placing a trigger on each table, which is monitored for each
insert, update, and delete. Each time a change is made, a counter is incremented on a status
table. Then the polling mechanism monitors the counters for changes. A custom solution

CHAPTER 6 = CACHING

could make use of stored procedures that handle all inserts, updates, and deletes to your data,
and a more fine-grained status table can be updated as changes are made so that a single row
does not invalidate all of the cached items from that table. Perhaps you have products organ-
ized into categories, and when a single category changes, you just invalidate the cached items
from the affected category.

With your own efficient status table, you can use notifications to monitor changes and
remove cached items as necessary. Variations of this custom solution will allow you to adapt a
high-performance solution to your application.

Enabling the Service Broker

To get query notifications set up, you must take several steps to prepare your database. This
can be a tricky process, but the following steps should get you up and running shortly. Query
notifications work on top of a notifications system that uses the Service Broker, which is a fea-
ture of the SQL Server database. This feature goes well beyond just monitoring queries, and for
security reasons it is not enabled by default when you first install your database. This is true
for SQL Server 2005 and SQL Express. To enable it, you would use a utility called SQL Server
Surface Area Configuration for Features, which has a link at the bottom called Surface Area
Configuration for Features. After a fresh installation, you will see that when you dig into the
Service Broker node under the Database Engine node, you cannot enable the Service Broker
because an endpoint has not been created yet. The necessary endpoint requires the master
key to be defined. This can all be created with the script in Listing 6-29.

Listing 6-29. Create Service Broker Endpoint.sql

CREATE MASTER KEY ENCRYPTION BY password = 'CHANGE_ME';
Go

use Master;
(0]

CREATE CERTIFICATE [SERVER NAME]
with subject = N'SERVER_NAME';
Go

CREATE ENDPOINT [ServiceBroker]
state = started as tcp (listener port = 4022) for service broker
(authentication = certificate [SERVER NAME]);

Go

Naturally, you should change the password used to create the master key and also set it to
use your computer name in place of SERVER_NAME. With the endpoint in place, you can restart
the Surface Area Configuration for Features utility and check the status of the Service Broker.
With the endpoint defined, you will now see the endpoint that was created in this script, and
the state will either be started or stopped. It may be necessary to restart your instance of SQL
Server for this change to take effect.

173

174

CHAPTER 6 © CACHING

You are now ready to enable the Service Broker. When you first create a new database, the
Service Broker will already be enabled. For the AdventureWorks database, the Service Broker is
not enabled. It is enabled with the script shown in Listing 6-30.

Listing 6-30. Enable Service Broker.sql
ALTER DATABASE AdventureWorks SET ENABLE BROKER

If also goes well, this command should run fairly quickly, but you may find that it takes an
extremely long time to complete due to a deadlock. To force the command to run, you can add
WITH ROLLBACK IMMEDIATE to the end of the command and rerun the script. To check whether
the Service Broker is enabled, you can run the query in Listing 6-31.

Listing 6-31. Service Broker Query.sql

SELECT name, is broker enabled FROM sys.databases

This query will list all of your databases with a 1 or 0, the former indicating the Service
Broker is enabled and the latter indicating it is disabled.

Granting Permissions

In order to make use of the notifications system, it will be necessary to grant the user the abil-
ity to create procedures, queues, and services in the database (see Listing 6-32). Several other
permissions are also necessary.

Listing 6-32. Grant Permissions.sql

GRANT CREATE PROCEDURE to [USERNAME]
GRANT CREATE QUEUE to [USERNAME]
GRANT CREATE SERVICE to [USERNAME]

GRANT REFERENCES on

CONTRACT: : [http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification]
to [USERNAME]

--(note that the schema is case sensitive)

CREATE SERVICE SqlQueryNotificationService ON QUEUE ServiceBrokerQueue

GRANT VIEW DEFINITION to [USERNAME]

EXEC sp_addrole 'sql dependency subscriber'

GRANT SUBSCRIBE QUERY NOTIFICATIONS TO [USERNAME]

GRANT REFERENCES on

CONTRACT: : [http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification]
to [USERNAME]

http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification
http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification

CHAPTER 6 " CACHING

EXEC sp_addrolemember 'sql dependency subscriber', 'USERNAME'
GRANT SELECT TO [USERNAME]

GRANT SUBSCRIBE QUERY NOTIFICATIONS TO [USERNAME]
GRANT SEND ON SERVICE::SqlQueryNotificationService TO [USERNAME]
GRANT RECEIVE ON QueryNotificationErrorsQueue TO [USERNAME]

Simply change USERNAME to the username specified in the connection string. The user will
be granted the necessary permissions to create the resources required for notifications.

COMMON FOLDER ADDITIONS

You will need to run the scripts to enable SQL notifications each time you want to make use of this feature of
SQL Server. You can place these scripts into your Common folder under the Scripts subfolder (D: \Projects\
Common\Scripts\SQL Notifications).

Requirements for Queries

Query notifications will not work for all queries. First, a query must reference the tables quali-
fied with a two-part name, such as in Listing 6-33.
Listing 6-33. Valid Query for Notifications

SELECT
ProductID, [Name], ProductNumber, Color, ListPrice,
SellStartDate, SellEndDate, DiscontinuedDate

FROM Production.Product

WHERE ProductID = @ProductID

There is also a long list of operators and expressions that will not be allowed with a query
notification request. The following are the commonly used functions, operators, and expres-
sions that cannot be used with query notifications.

e A count(*) aggregate

e AVG, MAX, MIN

* The TOP clause

e The DISTINCT keyword

¢ The UNION operator

* Subqueries

¢ A SUM function that references a nullable expression

e An INTO clause

175

176

CHAPTER 6 © CACHING

The rule of thumb to follow is to create a query that has a limited scope. It makes perfectly
good sense that you cannot include the average ListPrice from the Production.Product table
in the AdventureWorks database because it would require monitoring all rows in the table.

You will also want to consider that monitoring a table with query notifications will
degrade the performance of table updates. And if the data that is being monitored is updated
frequently by multiple applications, it may be best to choose another way to ensure data in
the cache is kept current, as the notifications will negate the value of caching the data. You
may not be able to cache the frequently updated data, but instead limit the caching to the
data that does not change frequently. Doing so will at least reduce the overall load on the sys-
tem, as less data is being pushed around.

Due to all of the special cases that are not supported, it is necessary to verify that each
query is valid. If a query is not valid, a notification will immediately fire the OnChange event,
which will remove the item from the cache.

Troubleshooting Query Notifications

Notifications can be a black box, much like the cache itself. Knowing what is happening and
how changes to the code base will affect the actual performance of the cache and notifications
should be carefully monitored to ensure these black boxes are functioning as expected. There
are tools that you can use to take a peek into the black boxes to monitor activity.

Troubleshooting with the SQL Server Profiler

The SQL Server Profiler for SQL Server 2005 can be used to see what is happening as queries
are sent into the system and how the notifications system responds by tracing the internals of
the system. Unfortunately, SQL Express Management Studio does not include the profiler, so
you will need to use the full version. Most of the examples so far use SQL Express because I
personally prefer to just run SQL Express on my development system and only install SQL
Server 2005 on another system that I use as needed. I have found that SQL Express does not
tie up resources as much as SQL Server 2005. When it comes to tracing, I simply deploy my
changes to the other computer (Virtual PC) and run a trace to get the information I need.
Normally, I only need to run traces when I cannot diagnose a problem by other means, such
as watching the monitor utility covered earlier in the chapter.

To capture information specific to notifications, it is necessary to create a custom tem-
plate in the profile. Start the SQL Server Profiler and click the New Template icon. Then click
the Events Selection tab to get a listing of all of the available events (see Figure 6-2). For notifi-
cations, you are interested in the Broker and Query Notifications events. Click the check box in
the leftmost column to enable all of the events for those two event groupings. Return to the
General table and enter Notifications as the name of the new template and save it.

Now start a new trace by clicking the New Trace icon. Select the newly created Notifica-
tions template and click the Run button (see Figure 6-3).

CHAPTER 6 " CACHING

+ Security Audit
+ Server

T Cansinne

] O ——

x|
Gereral Events Selection
Review selected events and event columns to trace when using this template. To see a complete list, select the "Show all events" and "Show all calurns" options.
Events I Applic.. I Bigint... | Bigirt... I Binany... I CPU I Client... | Colurn.. | DBUs... I Datab... I Datab... I Duratl..;l
+ Objects
+ Performance
+ Progress Feport
= Query Motifications
W OM: dynamics I~ ¥ ¥ I
[¥ QN parameter table I I I~ I
W OM: subscription I~ ¥ 2 I
[V QN template I I I~ Iz
+ Scang

O dynamics
Tracks internal activities of query notifications.

Ird
Il

— ApplicationMame {na Filters applied)
Mame of the client application that created the connection to SQL Server. This column is populated with the values
passed by the application rather than the displayed name of the program.

of
Shows all events

Shows all columns

Column Eilters.. . I

Organize Columns. .. I

Save I Cancel Help |

Figure 6-2. Custom tracing template for notifications

Trace Properties

General IEvents Selection I

Trace name: | Untitled - 4
Trace pravider name: I WINDOWSZ003\S0L2005
Trace pravider bype: | Micrasaft SOL Server 2005 version: 9.0.1399

Use the template:

™ Save tofils: |
Set masximun file size (MBT:
¥ Enatle file rollover

5 trace data

= Server proce:

I~ Savetotable:

[™ | St masimum eows

af1afzoo7

I™ Enable trace stop time: I

Cancel Help

Figure 6-3. Running the notifications trace

177

178

CHAPTER 6 © CACHING

Once the trace has started, you can launch your application and watch the events as they
happen. Figure 6-4 shows a trace of a functioning notification system. The broker and query
notification systems are showing the right sequence of events in the trace, and the application
is behaving as it should. If it were failing, you may see the broker starting and ending a “con-
versation” immediately. This will indicate that the query notification rejected your query.
Perhaps it had an aggregate function or another SQL feature it could not support. You can
update the query you are testing by trimming it down and restarting this sequence to identify
which part of the query is being rejected.

E= 50L Server Profiler - [Untitled - 1 (WINDOWS20034,50L2005)]] =18 =|
2_.=-’==| File Edit Wew Replay Tools ‘Window Help ;Iilll
ANE a2 v | BRAMR D P
| EventClass | Applicationt ame | TextD ata | SPID | Da;l
OW: parameter table SNet 5glclien... =gnewviQNEwent xmlns:gnew="http:/ /5c... cs Ad
OW: parameter table SNet 5glclien... =gnewviQNEwent xmlns:gnew="http:/ /5c... cs Ad
Eroker:Conversation sqlqueryNotif... DISCONMNECTEO_OUTEOUND ce
Eroker:Conversation Group sqlqueryNotif... ce
Eroker:Message Classify sqlqueryNotif... ce
Eroker:Conversation sqlqueryNotif... DISCONMNMECTEO_IMEBOUND ce
Eroker:Conversation sqlqueryNotif... CLOSED ce
OW: parameter table SNet 5glclien... =gnewviQNEwent xmlns:gnew="http:/ /5c... cs Ad
OW: parameter table SNet 5glclien... =gnewviQNEwent xmlns:gnew="http:/ /5c... cs Ad
ON: subscription SNet 5glclien... =gnewviQNEwent xmlns:gnew="http:/ /5c... cs Ad
Eroker:Conversation Group .Net sglclien... 5]
Eroker:Conversation .Net 5glclien... STARTED_OUTEBOUND 4] |
-
« | 2
rSTARTED_DUTBDUND -
B
« | BN
Trace is running. |Ln 96, Col 1 |R0ws: 97
| |C0nnecti0ns: 1 v

Figure 6-4. Watching the trace

You do not have to stop the trace, but it is helpful to pause it and click the Clear button,
which is directly to the left of the Play button. Click play before launching your application
again to resume watching the trace.

Once you have your application working as you like, you can save the trace to a file to use
as a comparison later if you ever need to compare behavior. Simply save the trace from the
File menu. Later, you can open the saved trace file in the profiler alongside another freshly
created trace.

Troubleshooting via Unit Tests

For a more automated approach to testing notifications and the caching system in general,
you can make use of unit tests. If you expect that a notification will force a dependency
change, you can check that a change in the data does raise the event to remove the cached
data from the cache.

CHAPTER 6 " CACHING

A popular unit-testing framework is NUnit (http://www.nunit.org/), which is open source
and available freely. You can also get UnitRun from JetBrains (http://www.jetbrains.com/
unitrun/), which is a free tool that runs as an add-in to Visual Studio 2005 to run and debug tests
created with NUnit (see Figure 6-5).

8 » b % E [=]E %

[=] &l sy Failed (07 | 5] Ignored (0} Diagnostics For test suite 'DomainTests'
All tests were successhul

=+ ' [UnitTests
S {} UnitTests [Z output | [Statistics
= '/ “14 DomainTests

A~
" =i Test101_Caching_OFf_Test

— U=ing Ab=oluteEzpiratior

iy Test102_Caching_aAbsoluteE:xpiration_Test — Using cached copy
i Test103_Caching_Polling_Test - Product—lf System.Data.DataSgt,
@ Test104_Caching_Motification_Test — Using dbsoluteExpiratior

— Product-1, System.Data.DataSet.
— U=ing SglCacheDependency
— U=ing cached copy

— Product-1, System.Data.DataSet.
— U=ing SglCacheDependency

— Product-1, System.Data.DataSet.
— U=ing SglCacheDependency

— Product-1, System.Data.DataSet.
— U=ing SglCacheDependency
— U=ing cached copy

- Product-1. System.Data . DataSet.

Cattine mdeal
>

i Test105_Caching_SqiDependency _Test

Figure 6-5. UnitRun with NUnit tests

Each of the tests shown in Figure 6-5 check the various caching scenarios supported by
the data access layer created for use in this chapter. These scenarios include no caching (Off),
absolute expiration, polling, notifications with SqlCacheDependency, and notifications with
SqlDependency.

These tests are not strictly unit tests. They cross the line to integration tests because they
are doing much more than a single unit of work and interact with more than a single object or
resource. This distinction is critically important to some developers who feel strongly about
test-driven development. For the purposes of testing here, these tests are integration tests;
however, attempts are made to isolate each test so that one test does not affect another.

Part of that effort includes declaring the StartUp and TearDown methods (see Listing 6-34).

Listing 6-34. DomainTests.cs

using System;

using System.Data;

using System.Threading;

using Chapter06.ClassLibrary;
using NUnit.Framework;

namespace UnitTests

{
[TestFixture]
public class DomainTests

{

179

http://www.nunit.org
http://www.jetbrains.com/unitrun
http://www.jetbrains.com/unitrun
http://www.jetbrains.com/unitrun
http://www.jetbrains.com/unitrun

180 CHAPTER 6 © CACHING

#iregion " Shared Methods "

private Domain domain;
private int productId;
private decimal originalPrice;

[Setup]
public void SetUp()
{
productId = 1;
domain = new Domain();
DataSet productDs = domain.GetProductByID(productId, CachingMode.O0ff);
originalPrice = GetPrice(productDs);

}

[TearDown]

public void TearDown()

{
domain.SetlListPrice(originalPrice, productId);
domain.ClearCache();
domain = null;

}

private decimal GetPrice(DataSet ds)

{
// verify there is data
Assert.IsTrue(ds.Tables.Count > 0, "DataSet must be populated");
Assert.IsNotNull(ds.Tables[0], "Table must be populated");
Assert.IsTrue(ds.Tables[0].Rows.Count > 0, "Row must be populated");
DataRow row = ds.Tables[0].Rows[0];
decimal price = (decimal)row["ListPrice"];
return price;

}

#endregion

// Test Methods //

You can see the SetUp method creates the domain object and gets the original price.
The TearDown method restores the price using the original price. For every test that is run, the
SetUp method is run first, and after the test has completed, the TearDown method is run. One
test does not affect the next.

CHAPTER 6 = CACHING

With each test, a specific scenario is checked to conform to expectations. Each of the
assumptions is checked with an Assert call, which will be counted as a pass or fail for the
overall test suite. The tests in Listing 6-35 check the proper behavior when caching is not
turned on.

Listing 6-35. Test101_Caching_Off_Test Method

/// <summary>

/// Tests that the system works properly with caching off

/// </summary>

[Test]

public void Test101 Caching Off Test()

{
CachingMode mode = CachingMode.Off;
domain.PrepareCachingMode(mode);

// get the first copy of the product
DataSet productDs1 = domain.GetProductByID(productId, mode);

decimal oldPrice = GetPrice(productDs1);
decimal newPrice = oldPrice + 0.01m;
domain.SetlistPrice(newPrice, productId);

// get the second copy of the product
DataSet productDs2 = domain.GetProductByID(productId, mode);
decimal updatedPrice = GetPrice(productDs2);

Assert.AreNotEqual(oldPrice, updatedPrice);
Assert.AreEqual(newPrice,updatedPrice);

domain.CompleteCachingMode(mode);

If caching is off, the old and new price should not match, and the updated prices should
match the new price. In Listing 6-36, the test tries caching with the absolute expiration mode.

Listing 6-36. Test102_Caching_AbsoluteExpiration_Test Method

/// <summary>
/// Tests that the system works properly with absolute expiration
/// </summary>
[Test]
public void Test102 Caching AbsoluteExpiration Test()
{
CachingMode mode = CachingMode.AbsoluteExpiration;
domain.PrepareCachingMode(mode);
domain.SetAbsoluteTimeout(3);

181

182 CHAPTER 6 © CACHING

// get the first copy of the product
DataSet productDs1 = domain.GetProductByID(productId, mode);

decimal pricel = GetPrice(productDs1);
decimal newPricel = pricel + 0.01m;
domain.SetlListPrice(newPricel, productId);

// get the second copy of the product
DataSet productDs2 = domain.GetProductByID(productId, mode);
decimal price2 = GetPrice(productDs2);

Thread.Sleep(3000);

DataSet productDs3 = domain.GetProductByID(productId, mode);
decimal price3 = GetPrice(productDs3);

Assert.AreEqual(pricel, price2,

"pricel and price2 should match due to caching");
Assert.AreNotEqual(newPricel, price2,

"newPricel and price2 should not match due to caching");
Assert.AreEqual(newPrice1, price3,

"newPricel and price3 should match once the cache expires the item");

domain.CompleteCachingMode(mode);
}

This test is a little more complex. The first and second price should be equal because even
though the price was updated, the second price is retrieved while the old price should still be
cached. With the absolute time-out set to 3 seconds, the third price should get the update value
and match the update to the first price. This test specifically changes the absolute time-out to
3 seconds from the default of 120 seconds to ensure the test runs in a reasonable amount
of time.

The next test checks that polling is functioning properly. The absolute time-out is still in
place when the caching mode is set to polling, which is set to the default value. To speed this
up, the poll time for the unit-testing project is set to 3 seconds. Listing 6-37 shows the polling
test.

Listing 6-37. Test103_Caching Polling_Test Method

/// <summary>

/// Tests that the system works properly with polling
/// </summary>

[Test]

public void Test103_Caching Polling Test()

{

CHAPTER 6 = CACHING

CachingMode mode = CachingMode.Polling;
domain.PrepareCachingMode(mode);

// get the first copy of the product
DataSet productDs1 = domain.GetProductByID(productId, mode);

decimal pricel = GetPrice(productDs1);
decimal newPricel = pricel + 0.01m;
domain.SetlListPrice(newPricel, productId);

// get the second copy of the product
DataSet productDs2 = domain.GetProductByID(productId, mode);
decimal price2 = GetPrice(productDs2);

// poll time is set to 3 seconds
Thread.Sleep(3000);

DataSet productDs3 = domain.GetProductByID(productId, mode);
decimal price3 = GetPrice(productDs3);

Assert.AreEqual(pricel, price2,

"pricel and price2 should match due to caching");
Assert.AreNotEqual(newPricel, price2,

"newPricel and price2 should not match due to caching");
Assert.AreEqual(newPrice1, price3,

"newPricel and price3 should match once the cache expires the item");

domain.CompleteCachingMode(mode);

}

This test runs much like the test for absolute expiration, but the messages printed to the
output window show that instead of the cached item being removed due to the expiration,
they are removed due to a changed dependency. Otherwise, the assertions are the same.

The test in Listing 6-38 gets into notifications. The time between updating the price and
getting the updated value is very short, but long enough for the notification to remove the
cached item from the cache.

Listing 6-38. Test104_Caching Notification_Test Method

/// <summary>

/// Tests that the system works properly with notification
/// </summary>

[Test]

public void Test104 Caching Notification Test()

{

183

184

CHAPTER 6 © CACHING

CachingMode mode = CachingMode.Notification;
domain.PrepareCachingMode(mode);

// get the first copy of the product
DataSet productDs1 = domain.GetProductByID(productId, mode);
Assert.IsNotNull(productDs1, "productDsi cannot be null");

decimal pricel = GetPrice(productDs1);
decimal newPricel = pricel + 0.01m;
domain.SetlListPrice(newPricel, productId);

// sleep just long enough to allow the notification to work
Thread.Sleep(200);

// get the second copy of the product

DataSet productDs2 = domain.GetProductByID(productId, mode);
Assert.IsNotNull(productDs2, "productDs2 cannot be null");
decimal price2 = GetPrice(productDs2);

DataSet productDs3 = domain.GetProductByID(productId, mode);
Assert.IsNotNull(productDs3, "productDs3 cannot be null");
decimal price3 = GetPrice(productDs3);

Assert.AreNotEqual(price1, price2,

"pricel and price2 should not match due to the cache notification");
Assert.AreEqual(newPrice1, price2,

"newPricel and price2 should match due to the cache notification");
Assert.AreEqual(newPrice1, price3,

"newPricel and price3 should match");

domain.CompleteCachingMode(mode);

}

The assertions verify that the first and second price do not match, while the new price

does match the third price, which should come from the cache. The text in the output window
should again show when the dependency change removes the item from the cache and when
a cached copy is used.

Finally, the last test shown in Listing 6-39 uses the SqlDepdendency object, which does not

use the cache, but still uses the notifications system.

Listing 6-39. Test105_Caching SqlDependency_Test Method

/// <summary>
/// Tests that the system works properly with SqlDependency
/// </summary>

[Test]

CHAPTER 6 = CACHING

public void Test105 Caching SqlDependency Test()
{
CachingMode mode = CachingMode.SqlDependency;
domain.PrepareCachingMode(mode);

// get the first copy of the product
Console.WriteLine("Getting price1");

DataSet productDs1 = domain.GetProductByID(productId, mode);
Assert.IsNotNull(productDs1, "productDsi cannot be null");

decimal pricel = GetPrice(productDs1);
decimal newPricel = pricel + 0.01m;
domain.SetlListPrice(newPricel, productId);

// sleep just long enough to allow the notification to work
Thread.Sleep(200);

// get the second copy of the product
Console.WriteLine("Getting price2");

DataSet productDs2 = domain.GetProductByID(productId, mode);
Assert.IsNotNull(productDs2, "productDs2 cannot be null");
decimal price2 = GetPrice(productDs2);

Console.WriteLine("Getting price3");

DataSet productDs3 = domain.GetProductByID(productId, mode);
Assert.IsNotNull(productDs3, "productDs3 cannot be null");
decimal price3 = GetPrice(productDs3);

Assert.AreNotEqual(price1, price2,

"pricel and price2 should not match due to the SqlDependency");
Assert.AreEqual(newPrice1, price2,

"newPricel and price2 should match due to the SqlDependency");
Assert.AreEqual(newPricel, price3,

"newPricel and price3 should match");

domain.CompleteCachingMode(mode);

}

This final test works much like the other notifications test, except the internals use a cus-
tom collection to hold onto a copy of the product data instead of relying on the cache. When
all of these tests pass without an error, it confirms that the caching system and the database
are working properly. This small group of tests will at least provide a baseline of support that is
necessary for the application as a whole. Some teams make it a requirement that all unit tests
must pass before changes are committed to the source control system. It acts as a safeguard
from breaking changes.

185

186

CHAPTER 6 © CACHING

Once a testing system is in place, you can use an MSBuild script to run the tests without
firing up Visual Studio 2005 (see Figure 6-6). If your current work relies on several other proj-
ects, you can sync up the source code for the dependency projects and run the MSBuild
scripts to build and test them. This automation will save you time and identify problems with
the dependencies before you start making changes in your project.

AWINDOWS\system32\cmd. exe

SglDependency.OnChange =

Type: Change

Source: Data

Info: Updat

Id: 82d276a2 2918-4151-8499-11bb3caabdeb ;5h7eB3ab—fi14a—4a?5-hel2-Bab3336e48

— Removed data item <12
Getting price2

— Using SglDependency
Getting price3

— Using cached copy

Tests run: 5, Failures: B, Mot run: B, Time: 13.688 seconds

Tests run successfully?
Build succeeded.

B Warning<{s>

8 Erroris)

Time Elapsed B8:88:15.89

D= \P1oJectg\ﬂpless\Booki\Chaptex B85 »pause
Press any k to continue . .

Figure 6-6. MSBuild with unit testing

Problems with Caching

Unexpected problems come up when you make use of caching, unless you have devised a
caching policy that you enforce through planning, training, and code reviews. You may decide
as a policy that all data placed in the cache will use an absolute expiration no greater than five
minutes. You may also decide that you will not make use of output caching and instead focus
on data caching with dependency notifications to ensure the data used by the application is
always current. By setting a clear policy and enforcing it with code reviews, it will be easier to
keep things under control.

There are a few things to keep an eye on. When using data caching, you could easily hold
cached items with a static reference in a code-behind that will cause it to never go away. I find
it is best to avoid static references when working with cached data. To cope with it, I create
wrapper methods that act as the access points where I get the data. The wrapper first checks
for the cached item in the cache and returns it if it exists. If not, it pulls the data from the data-
base, places it in the cache, and returns it. I never assume that the item is already in the cache.

With output caching, you will likely set the VaryByParam to *, thinking that will
ensure that different URLs will get different results. For a product page, you want Product.
aspx?ProductID=808 to show a different result from Product.aspx?ProductID=429. This
VaryByParam setting will make sure it works that way, but if you have a website that has been
set to show content in multiple languages, the first user to hit the page will cache the content
for his language. The next person who hits the page, with a different language preference, will
see the language preference of the first user for the duration that the output cache holds the
original request. To account for this situation, you can check the Accept-Language header as a
part of uniquely identifying the contents of a page. Listing 6-40 shows the settings to use for
output caching when language is a concern.

CHAPTER 6 = CACHING

Listing 6-40. VaryByHeader for Language

<%@ OutputCache Duration="300" VaryByParam="*"
VaryByHeader="Accept-Language" %>

Performance Strategies

It will be necessary to develop a comprehensive approach to performance. Simply caching
the results from the database will not ensure your application performs well. If several of the
queries are very slow, you will continue to experience performance problems. Wherever your
application is slowest, you can try to speed up the queries.

In one scenario, you may have a query that is run occasionally, but it takes a painfully
long time to return the results. In another scenario, you have a moderately slow query, but it
needs to run multiple times with different parameters, which quickly adds up and slows down
your application. In both cases, you have the choice of optimizing the query itself or changing
the structure of the data that it is querying.

A query may run a long time because it has the join across multiple tables, even if there
are indexes in place to assist with the table joins. If there is a great deal of data, you may be
scanning across a great many rows to match your join criteria. This performance hit is hard to
avoid by rewriting the query, but it is possible to instead restructure the data.

Data Warehousing

Database designers will do their best to break up data so that it is fully normalized. Doing so
reduces the required storage to hold your data, but at the same time it requires your queries to
be more complicated. Consider a product database again. If you have 50,000 products and all
of the data related to the products is spread across ten tables, you will need to join across
many tables to get to the data you need. And some products may not even be visible for pur-
chase by customers, so you have extra data in the database, which adds to the cost of a full
table scan.

In this scenario, you may be able to create a denormalized table to hold your product data
so that it is not necessary to join tables. When the denormalized table is populated, it can also
be limited to the active products to reduce the size. A simple SELECT * FROM MYTABLE is a great
deal faster than any join.

To make this work, you still need to refresh the warehouse table occasionally. Perhaps you
can do it during off-peak time periods a few times a day, or just do it once a day during the
slowest usage period. You may even choose to spread the databases across separate physical
machines and populate the warehouse with a remote query. Doing so will allow your vendors
to work on the data for their products throughout the day without impacting the performance
of the publicly used database.

1did all of this with a product database and pulled all of the contents of the warehouse
table into a DataSet that I then dropped into the cache. I considered holding all of the prod-
ucts in memory when I discovered that the data only took up less than 10 MB of space while
the server had well over 2 GB of total memory. Once I had the DataSet in memory, all I had to
do was query it with the RowFilter property on the DataView object (see Listing 6-41).

187

188

CHAPTER 6 © CACHING

Listing 6-41. Using RowFilter with ProductID

public DataTable GetProductByID(DataSet productDs, int productId)
{

DataView dv = new DataView(productDs.Tables[0]);

dv.RowFilter = "ProductID = " + productld;

return dv.ToTable();

}

This sample takes a DataSet that already has all of the products and then makes use of a
DataView with a RowFilter to create a new DataTable with just the matching rows. You can
then use this DataTable with any databound control just as you would with a DataSet.

With .NET 2.0, the performance of DataSets improved dramatically with a revised index-
ing implementation. As a result, this technique was run very quickly. The RowFilter property
can take any string that you would use in a normal WHERE class in a SQL query.

What I also discovered was that loading every row from the warehouse table was faster
than loading a single product using a query with joins with the normalized tables. If I had to
keep the product data more current, it may have been reasonable to allow the DataSet to fall
out of the cache more frequently without compromising the performance significantly.

The products also fit into a hierarchy of categories. A set of root categories held subcate-
gories and so on until they reached products. I flattened this structure and placed it into
another warehouse table for fast access. In the case of this table, I included many calculated
fields such as the number of products and the start and end dates for the categories, as some
categories were seasonal. These extra columns assisted with the RowFilter by making them
easy to access without querying the database. I found that each time I had a new requirement
to query the database for new criteria, I could simply add a column to the warehouse table
instead of breaking out of the warehouse strategy, which was working extremely well.

Lazy Loading
Not every product detail was placed in the warehouse table. When there were one-to-many
relationships, it was not possible to do so. I also did not want to load data that was not imme-
diately necessary. As users dig into the website through the hierarchy of product categories,
they only see summary data about each product such as the name and price. Loading the
detail data can be deferred until it is necessary, and I did so by leveraging the object model.
What I typically do is translate the data from the database in DataSet form into a business
object such a Product that has properties such as Name, Price, and VendorName. These are the
sort of properties that are always loaded when the object is constructed. I call the data that
goes into these properties summary data. Other properties such as Colors, Features, and
Dimensions are detail data that is not shown on category pages and not loaded into the
Product object when it is first constructed. But when the property is accessed, starting with
the null value, the database is then queried for the necessary data and returned. This is called
lazy loading, and Listing 6-42 shows an example of this.

CHAPTER 6 = CACHING

Listing 6-42. Lazy Loading Example

private ColorsCollection colors = null;
public ColorsCollection Colors
{
get
{
if (_colors == null)
{
_colors = GetColors(ProductID);
}
return colors;
}
}

Every subsequent request for the Colors property will have the data already and will
return immediately. This all works on the assumption that the summary data will be used far
more often than the detail data that is pulled in via lazy loading. In the case of a website listing
summary data on the category pages, this will be true.

The individual Product object can be placed in the cache for a limited time, which will
automatically hold onto the detail data held by the member variables. This detail reduces the
number of hits on the database for the entire product. However, this may not be exactly what
you want. In the same way the output cache will cache data for the entire page regardless of
any individual data caching time-out, this will also hold onto the data as long as the parent
object is held in the cache. Instead of holding onto the data as a member variable, it could use
data caching and simply request the data each time and expect that the data will be cached for
the appropriate amount of time. You have many available options with this scenario.

Summary

In this chapter, you saw the various options of caching with System.Web.Caching and other
alternatives. You also learned the techniques used to invalidate the cache due to changed
dependencies as well as several problems with caching. Finally, you explored a few techniques
and strategies to make the most out of mixing and matching the available features to squeeze
the best possible performance out of the system.

189

CHAPTER 7

Manual Data Access Layer

Although there are many powerful tools built into Visual Studio to assist with binding data
to your application, you will still manually build portions of your data access layer. A manual
data access layer will give you the greatest flexibility in laying out the table structure, the
stored procedures, and the layer of code to carry the data from the database to your applica-
tion and back. As you work directly with your data access layer, you will become intimately
aware of all the nuances of your system. You will also be able to put a good deal of thought into
how the system will behave.

This chapter covers the following:

* Using DataSets, inline SQL, and stored procedures
* Using DataObjects and the ObjectDataSource

* Building the database

* Building the data access layer

* Building the website

When building a data access layer, you can make design decisions that affect perform-
ance. If you are fortunate, you can make changes to the way data is structured in the database,
and even better, you could be starting from scratch. Your design decisions will have an impact
for better or worse. Currently, our options are expanding in new ways with the introduction of
WCEF and LINQ to the .NET platform. These options push beyond the typical ADO.NET and
DataSet model, which has become commonplace. Yet these new technologies are compelling
enough to break into the designs reviewed in this chapter.

The sample application for this chapter is a website used to store and tag your favorite
links. I will show you how every part of the application is built and explain the decisions made
along the way.

Using DataSets, Inline SQL, and Stored Procedures

The traditional approach has been to use either inline SQL or stored procedures to fill a DataSet
with query results and to bind that data to a databound control on the user interface. This
process can be used to quickly throw together a rich interface that is actually quite functional.

191

192

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

However, too often the only cost that is considered is the time to build the first version
of the application. But then the next version comes around. As the real world changes, the
requirements for the application and the database also change. Going back and maintaining
an application has historically shown to take up 80 percent of developers’ workload.

You can open the Server Explorer in Visual Studio, drop a table onto the design surface of
aWeb Form, and automatically generate the GridView and associated SqlDataSource with full
support for selecting, updating, deleting, paging, and sorting. But what happens when even
the smallest change is required? What if you add a new column to the database table and want
to show it on the GridView? Are you certain that you will properly update all the commands in
the SqlDataSource? Now what happens if your query joins two or more tables? How do you
handle the delete and update commands? This is where all the wizard tools leave you to your
own devices and where you start to get your hands dirty and spend more time with a white-
board and dry-erase marker. And if you have gotten to this point with the easy-to-use wizards,
it will be difficult to form a functional plan to address the new feature requirements.

DataSets

The DataSet is an object we have come to know well. It is the primary object used to push data
around in .NET. It comes in two major flavors: Typed (XSD) and Nontyped. You looked at their
differences in Chapter 2, which exposed the rigid nature of a Typed DataSet that makes it a dif-
ficult animal to maintain as the database changes. So we fall back to the Nontyped DataSet. In
practice, a DataSet is used as a glorified data transfer object (DTO), which is magically bound
to a control without any real regard for the data type for each column. This automatic data
binding is what allows us to build fast prototype applications by using the wizards. But this
nontyped grouping of data with all of the automatically generated methods can confuse the
developer, who must use it as a data access layer. We will get into these difficulties in the fol-
lowing sections.

Compile-Time and Runtime Support

The content of a Nontyped DataSet is defined from the query that populates it. If a column
called BirthDate is a DateTime today but it updates to return a VARCHAR(15) tomorrow, the
Nontyped DataSet will hold the changed column automatically without complaint. But if
you are casting that value to a DateTime in your code, you will risk an InvalidCastException,
which will happen at runtime. It is preferable to catch this at compile time, so you can take
care of it while you are making changes to the application. Of course, you will be testing your
application for the proper runtime behavior, but because the database is really disconnected
from the application, the type coming back from a query could change at the worst time.
Another database administrator who is not aware that your application is querying a table
may adjust it to change an int column to bigint because the auto-incrementing values are
about to reach the maximum value for 16-bit integers. Such changes are unfortunate, but they
do happen.

CHAPTER 7 © MANUAL DATA ACCESS LAYER

Consider a table that has a primary key value set as int, which is also an IDENTITY column
incremented by 1 each time a new record is created. You may be casting the column as an
Int16, but once it goes beyond 32,767, you will get a runtime exception because it will now
need to be at least an Int32. If you are just testing the application with a few records in the
database, you will not reach this runtime exception. And when this problem does finally hap-
pen, it will be when the application has been out in the wild for a while like a time bomb.

And when this runtime error happens, how will it be logged and reported back to the
development team? If the error happens on the user interface layer, the error will seem to indi-
cate a binding problem instead of the real cause for the problem deep in the database. You can
imagine that diagnosing this sort of problem will chew up your development time as you spin
your wheels looking for the problem on your side of the system, which is using a different
copy of the database that has not reached that troublesome threshold.

Instead of using a Nontyped DataSet that happily passes along any data dropped into it,
you can manually load data into a business object with properties set to the exact type you
intend the user interface layer to use. When the application is compiled, it will ensure that
these types line up properly. When a change happens in the database that breaks this implicit
agreement, the error can be handled and logged at the source of the problem so you are better
able to fix it. A logged error message that states, “Type mismatch at Line 151 while loading
Person object” will pinpoint the issue so that you can check that line of code for what it is
expecting and which type the database query is actually returning.

Refactoring

A nontyped value also makes it hard to refactor the application. You cannot simply right-click
on a property in a DataSet and select Find All References. Values from a DataSet are accessed
as a DataRow or DataRowView by using an index by name or number, which cannot be
tracked back to the source object through automatic code analysis. A generic DataRow could
belong to any DataSet, and the refactoring features provided by Visual Studio and third-party
add-ins will not assist you in making solution-wide changes. To make changes globally, you
must resort to a search-and-replace, but doing so is problematic.

When your application is revised and you want to update a query to make it more
descriptive, you may add another column called VendorName, rename Name to CustomerName,
and eliminate the Name column. Suddenly all references to Name are now invalid and will cause
runtime exceptions, so you must find all references to Name and correct them. Each time a
change like this is made, you must run your searches and be sure that row["Name"] actually
refers to the same query result you have just changed. You could easily have many queries
with a column named Name. A global search-and-replace would break those references.

If you instead are using custom business objects, you can safely use refactoring tools to
rename properties for the scope of a solution. To reach references beyond the scope of the
application, you can also mark an older property with the Obsolete attribute and a note to use
the new property while maintaining existing functionality. This technique is covered later in
this chapter.

193

194

CHAPTER 7 © MANUAL DATA ACCESS LAYER

Debugging

You might expect that debugging with DataSets would be well supported. Surprisingly, the
lack of debugging support is a significant shortcoming of working with DataSets. In Figure 7-1
you can see how you can get to the values for the first DataRow of the first DataTable in the
DataSet. To get to the next DataRow, you must change the index value.

Wiatch 1 > 0 x
MNarme Walue Type e
T o ods {5ystem,Data,Dataset} 3, = System,.Data,DataSet
£ ﬁ* ds, Tables[0] {Table} 3, = System.Data,DataTable
£ ﬁ‘*ds.TabIes[D].Rows {5ystem,Data,DataRowCollection} System,Data, DataRowCollection
= ﬁ‘*ds.TabIes[D].Rows[D] {5ystem.Data,DataRow} Syskem,Data,DataRow
— % HasErrars False baal |
SR =

2 [0] 2477 object {long}
s [1] "Test Link 4" 3, = object {string}
2 [2] "http: fitestlinks, com” 3, = object {string}
2 [3] true ohject {boal}
/ [4] 1 ohject {short}
s [5] " 3, = object {string}

o [6] {7I1/2007 11:24:13 PM} object {Syskem.DateTime}

= w [7] {7I1/2007 11:24:13 PM} object {Syskem.DateTime}

— % RowErrar " 3, = string =
= Output |E Find Results 1| ElWatch 1 |§2 Find Symbol Results | 5] Locals | E]Immediate YWindow

Figure 7-1. Viewing a DataSet in the debugger

At least you can view the values for the columns in the row, but these values are accessed
by using the index and not the column name. When you are accessing this same row that is
being attached to a databound control on the Web Form, such as a Repeater, you will access
the row with e.Item.DataItem, which is a DataRowView. And as you see from Figure 7-2, the
watch window is less helpful than Figure 7-1. You cannot directly navigate to the values, and
you can hardly infer the type by looking at the watch window.

Wiatch 1 > 0 x
MNarme Walue Type
= ﬁ- !
5 Datatiew {5ystem,Data, Dataview} 3, = System,Data.Dataview
0 IsEdit False baal
o Tslew False baoal
£ ﬁ‘*Row {5ystem.Data,DataRow} Syskern,Data, DataRow
ﬁ‘* Row\ersion Current Syskem,Data, DataRowYersion

i Static members
+ i Mon-Public members

=] Output |E Find Results 1| ElWatch 1 |§2 Find Symbol Results | E] Locals | E]Immediate YWindow

Figure 7-2. Viewing a DataRowView in the debugger

This poor debugging experience will decrease the amount of time you can spend creating
and maintaining your application. When the data is moved immediately into a business object
on the data access layer and passed back to the application, you will be able to access the data
from the debugger in a much more useful way. The same data used in Figures 7-1 and 7-2 is

CHAPTER 7 © MANUAL DATA ACCESS LAYER

dropped into a Favoritelink object in Figure 7-3. Favoritelink is a key object used by the
website that will we will be building later in this chapter.

Wiatch 1 > 0 x
MNarme Walue Type e
T @ base {Chapter07.Domain, FavoriteLink}: Chapterd? . Domain, DomainObject {Chapterd:
— _id 2483 long
— _keeper true bool
g _note " 3, = string
g _rating 3 shart =
g _tags rll skring
— _title "MSNBC" 3, = string
— @ _url "http: v msnbe, msn, com™ 3, = string
— I 2483 long
— % Keeper true bool
5 Note " 3, = string
% Rating 3 shart:

— ﬁ* Tags "news msn'" 3, = string
i Title "MSHBC" 3, = string =
= Output |E Find Results 1| ElWatch 1 |§2 Find Symbol Results | E] Locals | E]Immediate YWindow

Figure 7-3. Viewing a FavoriteLink object in the debugger

The values shown in Figure 7-3 are definitely much more readable, and you know exactly
what you are working with. Using a business object clearly offers a better debugging experi-

ence over DataSets. Compile-time support is restored for at least the user interface layer, while

the type-safety issues are isolated deep inside the data access layer. When you set the Url
property in the Favoritelink object by casting row["Url"] to String, you will do so near

the query that pulled the data. Any resulting exception will show a stack trace leading to this
query and the line number if you have deployed the Program Debug Database (PDB) file
with the assembly. Later you will see how to completely avoid the InvalidCastException.

Note Exceptions can provide a more detailed stack trace if the PDB file that is created when the class
library is compiled is deployed with the assembly. Useful details such as the exact line number where the
exception came from will assist you in tracking down and fixing bugs. The PDB file is created while in
the Debug and Release configuration.

Like any other normal object, the FavoritelLink object is also more approachable for
refactoring. You can find all references to the Url property wherever it is used in the code in
your solution. Unfortunately, if you declaratively bind the Url property to a databound con-
trol, the refactoring search will not find that reference.

And finally, you can use the Favoritelink object more easily while debugging, as shown in

Figure 7-3. This even includes setting break points in the property accessors, which will be
very useful when watching which values are being bound to a databound control.

195

196

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

Inline SQL

One temptation to avoid is writing your SQL right into your code. Although it is true that the
code you create to communicate with the database will be tightly bound to the queries and
other database commands, that is not the most efficient way to create or maintain the software.

Maintenance Considerations

One problem with placing SQL right into your code is the resulting extra maintenance work
when those queries change. You end up making more work for yourself and increasing the
opportunity for error. For example, your most basic query may start out looking like Listing 7-1.

Listing 7-1. Simple Inline Query
String sql = "SELECT * FROM Production.Product WHERE ProductID = 1"

You can see that it starts out all right with a readable query, but as the query gets longer, it
starts to look more like Listing 7-2.

Listing 7-2. More Complex Inline Query

String sql = "SELECT " +
"p.ProductID, p.[Name], p.ProductNumber," +
"p.Color, p.ListPrice, " +
"p.SellStartDate, p.SellEndDate, " +
"p.DiscontinuedDate " +
"FROM Production.Product AS p " +
"JOIN Production.ProductProductPhoto AS ppp " +
"ON ppp.ProductID = p.ProductID " +

"WHERE ppp.ProductPhotoID I= 1";

The query in Listing 7-2 is an obvious maintenance nightmare. As you make minor changes,
you will do it inline and do your best to make sure you have the query wrapped carefully inside
the quotes for the String. But there is so much that you give up.

If the query in Listing 7-2 was maintained as a stand-alone SQL script, you could use tools
such as SQL Server Management Studio or Visual Studio with Database Projects to provide
syntax coloring along with several other rich features. Third-party tools are also available to
offer real-time IntelliSense support and give you access to listings of column and table names
as you work with your SQL. An inline query cannot leverage all of that support.

Security Considerations

Another problem with using inline SQL is the risk of SQL injection attacks. This risk is

often not considered but it is a very real problem. In Listing 7-1, the ProductID is hard-coded
into the String, but you may be getting the value from a Query String with a URL such as
Product.aspx?ProductID=1. This inline query can be easily exploited if the String to query
the database looks like Listing 7-3.

CHAPTER 7 © MANUAL DATA ACCESS LAYER

Listing 7-3. Exploitable Inline Query

public String GetProductQuery(String productId)
{
return "SELECT * FROM Production.Product WHERE ProductID = " + productld;

}

An attacker will need to only adjust the query string with a statement that ends the query
and starts another command, such as an update or a delete command. A resourceful attacker
could gain access to all your data by querying your schema to discover all the tables and copy-
ing the data without you ever knowing. And until the problem is corrected, the attacker can
return anytime to repeat that query and compromise your data.

Protecting against a SQL injection attack starts by never trusting data coming from the
user. Data should always be validated. If you expect the ProductID to be an integer, you could
use the code in Listing 7-4 to more safely assemble the query.

Listing 7-4. Validating Incoming Data

int productId = 0;
String sql = "";
if (int.TryParse(Request.QueryString["ProductID"], out productld))
{
sql = GetProductQuery(productId);
}
else
{
// handle the failed attempt

}

To make matters worse, if your application shows the message from the exception directly
to a potential attacker, it will give that attacker information that can help in modifying the
query. When you catch an exception, you should log the error and throw a new exception
without any information that would help an attacker. A user does not need to know that level
of detail. The user does not need to notify you about the details of the exception, because you
can always look into the error log for the details. You also should monitor that error log
because it may show attempts to compromise your database.

The next step beyond validating all incoming data is to use parameterized queries to bind
values to database commands. When values are specifically bound to placeholders in a query
with type restrictions, not to mention the proper ordering of parameters, it makes it much
more difficult for an attacker to assemble a functional attack. A parameterized query will also
escape out characters such as quotes and wildcard characters, which eliminates the possibility
of injecting a string that will close your query and start another. Listing 7-5 shows a parame-
terized query.

197

198

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

Listing 7-5. Parameter Binding

public DataSet GetProduct(int productId)

{
DataSet ds;
try
{
String sql = "SELECT * FROM Production.Product " +
"WHERE ProductID = @ProductID";
using (DbCommand dbCmd = db.GetSqlStringCommand(sqgl))
{
db.AddInParameter(dbCmd, "@ProductID",
DbType.Int32, productId);
ds = db.ExecuteDataSet(dbCmd);
}
}
catch (Exception ex)
{
// handle exception
throw;
}
return ds;
}

When ProductID is validated at the user interface layer, you can take proper action such
as showing a validation message that is meaningful to the user. Doing so will prevent garbage
data from getting to the database.

Another step can be taken to further protect the data, but it cannot be done with inline
SQL. When all interactions with the database are done through stored procedures instead of
inline SQL, you can lock down access to the tables and specifically allow access to stored pro-
cedures for particular users.

Stored Procedures

Stored procedures can be used to extend your application and provide a clean and flexible
bridge between your user interface and the underlying data. By blocking access to the tables,
you make the stored procedures the only entry point to the database. When all data passes
through a stored procedure layer, which can include programming logic, you have a great deal
of flexibility.

Stored procedures working as your public interface become an integral part of your data
access layer. In fact, if you have five applications using your database and want to log each
time a record is deleted from the Production.Product table, the stored procedure used to
delete those records can be updated to handle the logging. It is not necessary to incorporate
that change in each of the five applications. And if you choose to adjust the structure of your
database, perhaps further normalizing the structure, the stored procedures can still use the
same parameters and return the same output after the structural change in many cases.

You can also encapsulate what some developers may consider to be business logic in
stored procedures. Generally, it is not a good idea to bury business logic in a stored procedure.

CHAPTER 7 © MANUAL DATA ACCESS LAYER

A stored procedure, typically created in T-SQL, is not as expressive and testable as C# code for
the average developer who tries to avoid writing anything in T-SQL. Those developers who are
comfortable with T-SQL may disagree about the viability of placing business logic into stored
procedures.

Sometimes the business logic is already tightly bound to the structure of the database. For
example, the logic to determine whether a product is on sale, and for what price, may be con-
sidered business logic. But joining the product table to the sales schedule and pricing tables is
structural logic. If I run a stored procedure named GetProduct during a sale, it would give me
the discounted price. Running it at any other time would give me the regular price. Encapsu-
lating that sort of logic in the stored procedure is compelling because of the advantages it
offers. It hides the structure of the database from your application and gives you the data you
need. And if the database was first created without a sales feature, the stored procedure gives
you the opportunity to roll out such a feature without also updating your application code.
The responsibilities we assign to T-SQL vs. the rest of your application will be a line we cross
from time to time.

Because you can identify which stored procedures are in place, you can identify exactly
which commands are hitting the database. You also have direct access to all these commands.
If you decided to restructure the tables for any reason, you can put together a set of scripts to
adjust the tables and update the stored procedures to carry out the change. If you had queries
spread across five applications, you would have to look into each application to see how each
of the queries was working in the source code of each application. If a query is being assem-
bled in a complex way, you may have a difficult time confirming that your updates will not
cause breaking changes. Going forward, we will leverage all the advantages that stored proce-
dures offer.

Using DataObjects and the ObjectDataSource

We come back to DataObjects and the ObjectDataSource, which were covered briefly in
Chapter 2 as a part of our data model choices. From all those choices, these two deserve the
most attention because of the flexibility they provide. These features were designed to work
seamlessly together with rich tool support to give the developer a great deal of control over the
data layer. These pieces give us an intelligent way to plug the application into the datasource.
After the application is plugged into the datasource, the data flows over a pipeline in whatever
form we choose.

As the developer creating the data access layer, you will create classes marked with a
DataObject attribute with methods marked with DataObjectMethodType attributes, which indi-
cates what the method will provide for an ObjectDataSource. Table 7-1 shows each of the
values of a DataObectMethodType.

Table 7-1. DataObjectMethodType Enumeration

Insert Represents a method that performs an insert operation
Update Represents a method that performs an update operation
Delete Represents a method that performs a delete operation
Select Represents a method that retrieves data

Fill Represents a method that fills a DataSet

199

200

CHAPTER 7 © MANUAL DATA ACCESS LAYER

When the developer using the data access layer drags an ObjectDataSource onto the
design surface, a wizard panel will point the developer at these methods by first allowing him
to select any class marked as a DataObject and then methods with the DataObjectMethodType
attribute for the selected class. It shows the developer the return type and the parameters,
along with the method name, which should be explicit enough to indicate what it is doing
(see Figure 7-4).

Configure Data Source - ObjectDataSourcel [-®

Define Data Methods

SELECT | UPDATE | INSERT | DELETE]

Choose a method of the business object that returns data to associate with the SELECT operation, The method can return a
DataSet, DataReader, or strongly-typed collection,

Example: GetProducts{Int32 cateqondd), returns a DataSet,

Choose a method:

GetFavoriteLinksByProfilelDInt64 profileld), returns DataSet -

Method signature:
GetFavoriteLinksByProfilelDInt64 profileld), returns DataSet

< Previous | | MNext » Cancel

Figure 7-4. ObjectDataSource wizard method selection

By directing developers to the right objects and methods, you make their jobs much eas-
ier while encouraging them to use the right methods. Digging through the source code and
guessing at which classes and methods to use would take more time and potentially introduce
problems if they make the wrong choice. Even worse, they may give up and bypass the data
access layer and directly access the database. By encouraging the development team to use
the ObjectDataSource and the properly built data access layer, they will become accustomed
to building the application by using the design surface in this way and expect the database
developers to provide them with the classes and methods they need to implement features for
the application. With this relationship established, and as the application developers begin to
rely on the database developers, you can start to formalize communication.

Design Contract

When the application developer is displaying a set of data about products, the developer will use
a databound control such as a GridView. And when the developer uses an ObjectDatasSource to

CHAPTER 7 © MANUAL DATA ACCESS LAYER

bind the data to that GridView by using the data access layer you created, the developer will
select a class and method that suit his needs. When selecting an object named ProductDomain,
which has a method named GetAllProducts and which returns ProductCollection, the devel-
oper will assume that is the right choice. But these names should do more than just indicate
some relation to products. The names and objects represent a Design Contract that the data
access layer is maintaining for use by any application that will use it. How these objects and
methods go about gathering the data and returning it is not a detail that is a part of the Design
Contract, but what methods are available and what they return is important. A violation of the
contract will cause runtime exceptions.

Another method named GetProductsByCategory that also returns ProductCollection
should include the same columns that the GetAl1Products methods return. The methods on
the ProductDomain class could be set as public or private. Making them private specifically
excludes them from the Design Contract. And for the public methods, you can mark them
with a DataObjectMethodType, which defines the intended use of the method. After the devel-
oper has used a method that returns ProductCollection, she should be able to use the other
methods on the ProductDomain class without concern about the data being different than
expected.

As the application developers require functionality from the data access layer, the Design
Contract will be negotiated to include what is needed and when it will be provided. And after
the new features have been published, the contract cannot be changed without giving the
application developers proper notice of the change.

Data Contract

After a developer has plugged his application into your data layer with the implied Design
Contract, there is also another agreement in place. The Design Contract defines the pipeline
that the data flows through, but the messages flying around must be defined with a Data
Contract. If ProductCollection holds onto Product objects that have properties named
ProductName, ProductNumber, and Price, that Data Contract must be maintained. After the

data binding is in place, it can be difficult, if not impossible, to change that name later without
breaking the applications using it.

The Data Contract includes the name of the fields as well as their type. If the ProductName
is a String and the Price is a Decimal, it should always be that way for future versions of the
data access layer. The data bindings will be declared with those names, expecting the types
that were defined when the bindings were first declared. Changing the Data Contract will
require the applications to be updated to prevent runtime exceptions.

Of course, there will be times when the Data Contract has to change, just as the data itself
also changes. When doing so, you should first increment the version number up to the next
significant value. You should then produce documentation explaining any breaking changes
and how the developers should adapt their applications to the new Data Contract. You can
also help them out with a transitional period, when the old Data Contract is maintained with a
defined end date.

In a simple scenario, you start with a Person object that has a Name property representing a
person’s full name. Later, because of a change in requirements, the Name is broken into proper-
ties called FirstName, MiddleInitial, and LastName. You can start a transitional period by
adding the new properties while keeping the old property in place. Listing 7-6 shows a method
marked as Obsolete.

201

202

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

Listing 7-6. Breaking Up the Name Property

/// <summary>
/// Expects a name formatted like "John Q Public" or "John Public"
/// </summary>
[Obsolete("Use FirstName, MiddleInitial and LastName")]
public string Name
{

get

{

if (String.IsNullOrEmpty(MiddleInitial))

{

non

return FirstName + + LastName;

}

return FirstName + " " + MiddleInitial + " " + LastName;

string[] parts = value.Split(" ".ToCharArray()[0]);

FirstName = parts[o0];

if (parts.Length > 2)

{
MiddleInitial = parts[1];
LastName = parts[2];

}

else if (parts.Length > 1)

{
MiddleInitial = String.Empty;
LastName = parts[1];

In Listing 7-6, the Name property wraps the newly introduced properties to maintain the
existing Data Contract while giving the developers the option to start transitioning their appli-
cations. To assist the developers, the Obsolete attribute has been placed on the Name property
to display a warning when their code is compiled. The warning includes a useful message
explaining which properties should now be used.

Perhaps your data access layer starts out at version 1.2.0.8. When you apply these transitional
changes, you set the version to 1.2.1.0 and release it to the developers. After the transitional
period ends, you can bump the version more significantly to a value such as 1.3.0.0 or even
2.0.0.0, which should prompt the developers to recognize that a significant change has been
made. If the developers see only a very minor version number increase, they may assume that it
is only a minor bug fix release and start using it without properly evaluating and considering the
changes.

CHAPTER 7 © MANUAL DATA ACCESS LAYER

Testing the Design and Data Contracts

Because you cannot fully leverage compile-time support to ensure that runtime exceptions
are avoided, you must test your application. Naturally, this is a good place to add automated
tests. These tests would confirm that the data retrieved from the datasource includes the
expected fields with the proper types.

These tests can be done at two separate levels. Directly on top of the data access layer, a
set of unit tests can ensure that the expected data is returned; a test database is populated
with specific data that the data access layer and the tests use to return a consistent result.
After the data access layer passes those tests, the next step is to include integration tests that
account for the data being used through data binding.

Testing code is fairly easy. Testing data binding on a web page is not so easy. This step now
requires loading up each page and checking that each value looks right and does not cause an
exception. Tools such as Microsoft Visual Studio Team System offer tools to create and run
such tests. Alternatively, you can use Selenium from OpenQA, which offers cross-browser and
cross-platform testing functionality for web pages.

In these integration tests, you load up the page and verify that the expected values appear
on the page.

Building the Database

Whenever I build an application, I always start with the database. It is a bottom-up approach.
I know what data I will be managing and what I will need to do with the data, so I first plan
what the database will hold, how relationships among the data will work, and how the appli-
cation will interact with it. By keeping the scope of the work limited to just the database, the
work progresses more quickly without any distractions about the interfaces or other ancillary
details. After the database functionality is completed, building the front end of the application
is much easier.

In this chapter, you will build a social bookmarking website that holds onto links and fea-
tures a tagging system for browsing the links. The profiles will be directly integrated with the
standard ASPNET Membership User accounts so that you can leverage all the other features
available to ASPNET for managing user accounts.

Creating the Database Structure

The data structure will hold onto the links and tags and the association to the Membership
User. It will be broken up in a fully normalized way to reduce the storage requirements as well
as optimize the speed of access to the data. My assumption is that many users will use the
application and that different users will save the same links and use the same tags, so [will
want to store that common data only once and hold onto just the relationships to that data.

Figure 7-5 lists the database structure. It shows the central piece is the Favoritelinks
table with all the related data around it.

203

204 CHAPTER 7 © MANUAL DATA ACCESS LAYER

chptO7_Profile
% ProfilelD
UserID
Created
Modified

chptO7_LinkUrls
D= @ LinkUrlID
LUl

Created
Modified

chptO7_LinkTags
% LinkTaglD ¥ FavoritelinkID
FavariteLinkID Profilell
TagTokenID LinkUrlIC
Created LinkTitleIr
Modified Keeper

Rating
Mote
Created chptO7_LinkTitles
Modified % LinkTitleID
chptO7_TagTokens Title
% TagTokenID Created
Token Modified
Created

Modified

Figure 7-5. Database structure

Consolidating the Data

Because many users will store the same URL and title as a part of their links, that data is held in
tables separate from the Favoritelinks table. When a user stores a link for http://youtube.com/,
the save procedure will create a new record in the LinkUrls table. The next user to save the same
link will simply point to the existing record. The same is true for the LinkTitles table for any
titles used with the links. This way, the least amount of data possible will be stored in the
database.

Reducing the duplication of data also cuts down on the cost of a full table scan as well as a
range scan of the tables. In the stored procedures to follow, efforts are made to ensure that the
data is pruned of any unused data and that the database is as small as possible. When a link or
atagis no longer used by any user, it will be removed from the database.

Managing Relationships

Data does not live in a vacuum. There will likely be many relationships between the tables in
the average database. The kinds of relationships can be broken down into three groupings:

* One-to-one
¢ One-to-many

¢ Many-to-many

http://youtube.com

CHAPTER 7 © MANUAL DATA ACCESS LAYER

A one-to-one relationship may not be terribly useful at first glance, but consider how you
could break up the data. You could hold information about the most accessed data about a user
in one table and hold the extra details in another. I call the first table the summary table and the
second one the detail table. And I may have multiple detail tables. In the FavoritelLinks data-
base, the Membership User record has a relationship with a single Favorite Link profile. This was
not an effort to normalize the data but to keep the data grouped by use. A table with 30 columns
will be difficult to query in terms of the hard drives scanning each record, not to mention read-
ing and maintaining the indexing. By breaking up the data, you can enhance performance.
When it is broken up, you also have the opportunity to consider partitioning the data for further
performance gains.

You will want to carefully group your data among the tables to create the least number
of joins possible across all the queries necessary for your application. Ideally, you would be
accessing the detail tables directly with their primary key after you have accessed the related
record from the detail table.

The next kind of relationship is one-to-many. For the Favoritelinks database, there are
several one-to-many relationships. A record in the Profile table can have many references to
the Favoritelinks table. The child record points back to the parent in each instance to allow
for multiple relationships. These child-to-parent references are done with foreign keys, which
require the pairing of one column from the child record to the primary key of the parent
record. This implies access to an indexed column, which helps speed queries that make use of
these relationships. Surprisingly, I have come across databases that did not formally use for-
eign keys. The relationships were there, but the extra step to add foreign key constraints to the
database was not put forth. I am sure the developers who created such databases did not want
to bother themselves with having to cope with foreign key constraints as they prepared their
applications for the first release. A simple script to add and remove the constraints would have
eliminated that problem.

I also find that when there are no foreign key constraints in a development database, the
relationships can get a bit sloppy. You may have child records left behind when parent records
are deleted, which adds up over time and fills your database with garbage data. When I work
with a new database or maintain an existing one, I keep the foreign key constraints in place as
I develop the stored procedures to ensure that I respect those relationships. It is simple
enough to adjust a stored procedure to take the necessary steps to satisfy the requirements of
a constraint.

Finally, there are many-to-many relationships logically, but they should not be repre-
sented directly with two tables. It is necessary to break such relationships into three tables,
with the table in the middle acting as the link between two one-to-many relationships. In
the current database, the Favoritelinks database has a many-to-many relationship with the
TagTokens table, which is organized with the LinkTags table. For this relationship, the same tag
can be placed on the many links, and a single link can have many tags. I chose to call the table
in the middle LinkTags. It is useful for the table in the middle to take parts of the related tables.
This structure makes it easy to identify these “bridge” tables and to show the relationships at a
glance.

Created and Modified

Whenever I create databases from the ground up, I like to add the created and modified values
at the end of each table and maintain them for each insert and update. Having access to these

205

206

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

details is useful for many reasons. For starters, you can see how old some of the rows in a table
are after the database has been in use for a long time. It gives you the opportunity to purge or
archive older data that is not being accessed. You can also logically partition the older data
based on the Created or Modified value. When a table grows very large, you may be accessing
only the recently created or modified data. When the data is partitioned, you can run a scan
on the subset that falls in the scope of your query without needing to run a full scan of the
entire table.

Note Partitioning falls well within the realm of a database administrator and is not covered in depth in
this book. When considering logical groupings of data, it will be useful to discuss partitioning strategies with
your DBA to determine what can be done given your database structure and available hardware.

What About Nulls?

The decision about how to handle nulls is a hot-button issue for some development teams.
Some prefer to not allow nulls at all and just use known default values, while others argue that
a truly null value should be preserved as a null. The argument will hinge on how well you can
relay the definition of a default value across all users of the database—which can be difficult if
not impossible. Meanwhile, a null value is well known and will force the application develop-
ers to deal with it sooner or later. However, when you can prevent nulls from coming out of the
database, you reduce the complexity of the data access layer.

When a column could return a null value, using the value requires the additional step to
see whether the value can be safely cast to types such as int or DateTime, which do not allow
null values. The additional check for a null value will have an impact on performance. The tra-
ditional way is to check whether the value matches the DBNull.Value and then cast it when it
is not null. Listing 7-7 shows the traditional way to do so.

Listing 7-7. Traditional Code to Handle Nulls

DateTime birthDate;
if (!DBNull.Value.Equals(row["BirthDate"]) &3 row["BirthDate"]) is DateTime)

{
birthDate = (DateTime)row["BirthDate"];

}

Alternatively, you can streamline this code by using nullable types for DateTime and int so
that you can directly cast the value using the as operator (see Listing 7-8).
Listing 7-8. Streamlined Code to Handle Nulls

DateTime? birthDate;
birthDate = row["BirthDate"] as DateTime?;

CHAPTER 7 © MANUAL DATA ACCESS LAYER

The streamlined code in Listing 7-8 uses the nullable types combined with the as opera-
tor to allow the null values to be assigned without the risk of a Nul1ReferencesException or an
InvalidCastException. The as operator first tests whether the cast is valid and whether it is
completed. Checking for a match on DBNull.Value or using the as operator is unnecessary.

If you instead choose to use default values, you could use well-defined defaults that are
used throughout the application. A natural choice for String is String.Empty, while types such
as int and DateTime do not have obvious default values. Typically, a numerical value is posi-
tive, especially when it is used as a primary key set as an identity value starting at 0 and
increasing. In this case -1 is the clear choice.

When it comes to DateTime, you may want to use DateTime.MinValue, but SQL Server
does not allow that value for the DateTime type in the database because SQL Server limits the
dates to greater than 1/1/1753. You will instead need to use an alternate value. Internally at
Microsoft the value of 1/1/1754 is used, which will be a reasonable default value in most cases.
Table 7-2 shows these default values.

Table 7-2. Suggested Default Values

String String.Empty
int -1
DateTime 1/1/1754

With these values set as constants in your data access layer, they can be checked through-
out the rest of the application. At some point, if you choose to change the default values, you
could update the constants to reflect the change throughout the application. When the data
access layer and the database are both set to recognize the same default values, you can han-
dle them properly with the stored procedures so that while you do not allow the stored
procedures to return null values, you could still set nulls in the database.

Preventing Null Values

Assume that you do have a table that holds a DateTime column called BirthDate that does
allow for null values. The stored procedure returning this value could use the COALESCE func-
tion to change the null value to the default date value. Listing 7-9 shows how to use the
COALESCE function.

Listing 7-9. Return a Default Date for a Null Value

SELECT
COALESCE(
BirthDate,
Convert(DateTime, '1/1/1754")
) AS BirthDate
FROM chpto7_Nullable

When sending a default value into the system, we can also convert the default value to a
null for storage. This check and conversion is shown in Listing 7-10.

207

208

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

Listing 7-10. Converting a Default Date to a Null

DECLARE @DefaultDate DateTime
SET @DefaultDate = Convert(DateTime, '1/1/1754")
DECLARE @BirthDate DateTime
SET @BirthDate = Convert(DateTime, '1/1/1754")
IF (@BirthDate = @DefaultDate)

BEGIN

SET @BirthDate = NULL
END

By handling default value conversion in a stored procedure, you get greater performance
than is possible with CLR code and avoid the overhead of checking the type for DBNull.Value
and casting the value.

COALESCE VS. ISNULL

The COALESCE function is a standard SQL function, while ISNULL is a proprietary function available with
SQL Server. The ISNULL function is generally interchangeable with the COALESCE function and may offer
better performance. You will need to run your own tests to gather metrics to check whether your individual
queries would benefit from one over the other, because one can be faster than the other in certain conditions.

For the Favoritelinks database, I chose to not allow null values at the table level. For
this small application, it is reasonably possible to ensure that the default values are respected
throughout the application. The application will also use validation to ensure that empty
strings are not sent into the data access layer, which itself prevents null values from entering
the system.

Using Database Projects

To construct the database, I used Database Projects, which are a feature of Visual Studio 2005
Professional Edition. Each table and stored procedure script is uniquely organized and source
controlled, which makes it easier to manage changes to the database across releases of the
application.

Managing the Scripts

The Favoritelinks database has six tables, as shown in Figure 7-5. In addition to those tables,
there are several scripts for stored procedures that access the tables in every way the applica-
tion requires. There are also scripts to add and remove the constraints that maintain the
relationships across the tables. All these scripts are organized into groups, in folders.

A hidden feature of Database Projects is the intelligent dependency analysis, which is
done transparently when you select multiple scripts and run them. Visual Studio reviews the
selected scripts, and based on the dependencies, it will run the scripts in the proper order to
allow the scripts to run successfully. If you do happen to define a foreign key in a table script
that references another table which is alphabetically listed after the dependency, the order will
be adjusted when running the script.

CHAPTER 7 © MANUAL DATA ACCESS LAYER

Beyond foreign key constraints, stored procedures can also refer to other stored proce-
dures. Selecting and running all of them will also help you with the order and will prevent the
warnings you get from using a resource that has not been defined yet. I find that if I make sev-
eral changes to all the stored procedures, selecting and running all of them is helpful after I
am finished making the changes.

Planning the Stored Procedures

For the Favorite Links website, a user will store multiple links along with tags and other related
data. To provide for this functionality, the stored procedures will cover all access functions
from getting, saving, and purging the data. And although the relationships between the six
tables are complex, the layer built on top of the table structure does not have to directly reflect
that complexity. Beginning with the stored procedures, the abstraction will start to make the
data easier to consume.

Getting Data

The first set of stored procedures to construct is the one to get the data from the database. The
primary data will be the links, so we will look at those in detail. Among these, the central pro-
cedure will be the one getting all links related to a profile, as shown in Listing 7-11.

Listing 7-11. chpt07_GetFavoriteLinksByProfileID.sql

CREATE Procedure dbo.chpt07 _GetFavoritelinksByProfileID

(
@ProfileID int

)

AS

SELECT
fl.FavoritelLinkID AS ID,
1t.Title,
lu.Url,
fl.Keeper,
fl.Rating,
f1.Note,

fl.Created,
fl.Modified
FROM chpto7_Favoritelinks AS fl
JOIN chpto7_LinkUrls AS lu ON lu.LinkUrlId = fl.LinkUrlID
JOIN chpto7_LinkTitles AS 1t ON 1t.LinkTitleID = fl.LinkTitleId
WHERE fl.ProfileID = @ProfileID
ORDER BY fl.Created DESC

]

We will compare this stored procedure to the next most used stored procedure, shown in
Listing 7-12.

209

210

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

Listing 7-12. chpt07_GetFavoriteLinksByTag.sql

CREATE Procedure dbo.chpt07_GetFavoritelinksByTag
(

@ProfileID bigint,

@Token nvarchar(30)

)
AS

SELECT

fl.FavoritelinkID AS ID,

1t.Title,

lu.Url,

fl.Keeper,

fl.Rating,

f1.Note,

fl.Created,

f1l.Modified
FROM chpto7_Favoritelinks AS fl
JOIN chpto7_LinkUrls AS lu ON lu.LinkUrlId = fl.LinkUrlID
JOIN chpto7_LinkTitles AS 1t ON 1t.LinkTitleID = fl.LinkTitleId
JOIN chpto7_LinkTags AS 1t2 ON 1t2.FavoritelLinkID = fl.FavoritelinkID
JOIN chpto7_TagTokens AS tt ON tt.TagTokenID = 1t2.TagTokenID
WHERE fl.ProfileID = @ProfileID AND tt.Token = @Token
ORDER BY fl.Created DESC

@o

In both of the stored procedures, the result set is identical. Making the result sets identical
is done intentionally to keep them compatible with each other. Later in the data access layer,
the same business object will hold the data for the Favoritelinks database and will require
these values. The only differences in these stored procedures are the incoming parameters
and how they filter the results. In chpto7_GetFavoritelinksByProfileID, the ProfileID is used
to access all the links saved to the specified profile. In chpt07_GetFavoritelinksByTag, the
ProfileID is provided again along with the Token parameter to limit the scope of the result to
the matching tags. The series of joins used to bring together all the data remains consistent
otherwise. There are other criteria for filtering the list of favorite links, which all return the
same columns by using different parameters.

WHAT TO OPTIMIZE AND HOW

Improving the performance of a data access layer requires knowing what to optimize and how to go about
doing it. By simply placing the “get” queries into a limited set of stored procedures, you allow SQL Server to
focus on and tune the query plans for the queries that run most frequently. And because you query the data-
base more than you save or remove data, you can spend most of your effort optimizing the process of getting
data from the database. Over time, you can profile the performance of your limited set of stored procedures
and further optimize them as needed.

CHAPTER 7 © MANUAL DATA ACCESS LAYER

Saving Data

Next, the stored procedures that are used to save links either with an insert or an update pres-
ent a more challenging requirement. Not only does the procedure save the core details of the
link, but it must take the Title and Url values and store them off to the secondary tables while
not creating duplicate records of the same values. The design of the tables allows for a Favorite
Link record to point to the same Url record that other Favorite Link records are already using.
All the work to coordinate this will be managed in the chpt07_SaveFavoritelink stored proce-
dure. Starting out the stored procedure will take in all the parameters needed to save the data,
as shown in Listing 7-13.

Listing 7-13. Parameters for chpt07_SaveFavoriteLink

CREATE Procedure dbo.chpt07_SaveFavoritelink
(
@ProfileID bigint,
@Url nvarchar(250),
@Title nvarchar(150),
@Keeper bit,
@Rating smallint,
@Note nvarchar(500),
@Created datetime,
@Modified datetime,
@0ldFavoritelinkID bigint,
@FavoritelinkID bigint OUTPUT

)

The first step in handling the save process is to save the Url and Title values to the sec-
ondary tables and get back the ID values to use for the foreign key references. Listing 7-14
shows where to get started.

Listing 7-14. Saving the Title and Url Values

DECLARE @LinkUrlID int
DECLARE @LinkTitleID int

EXEC chpto7_SavelinkUrl @Url, @LinkUrlID OUTPUT
EXEC chpto7_SavelinkTitle @Title, @LinkTitleID OUTPUT

After the values for LinkUr1ID and LinkTitleID are set, it will be possible to save the main
record. Because this is a save routine, the procedure could be inserting a new record or updat-
ing a new record. Before the decision between insert and update is possible, the value for the
@0ldFavoritelinkID must be checked. If the value is positive, the save operation is meant to
update an existing known record. Also, if the @01dFavoritelinkID value is negative, meaning it
is not defined, a check should be made for a Favorite Link record that already has the same Url
and Title values. The code in Listing 7-15 handles this work.

211

212 CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

Listing 7-15. Checking an Existing Record

IF (@0ldFavoritelLinkID < 0 AND EXISTS (
SELECT * FROM chpto7_Favoritelinks
WHERE LinkUrlID = @LinkUrlID AND ProfileID = @ProfileID

)
BEGIN
SET @0ldFavoritelLinkID =
(SELECT FavoritelLinkID FROM chpto7 Favoritelinks
WHERE LinkUrlID = @LinkUr1ID AND ProfileID = @ProfilelD)
END

Finally, we should be able to key the insert or update decision on whether the value of
@01ldFavoritelinkID points to an existing record for the specified profile. If a record does exist,
an insert is done. Otherwise, an update is done, as shown in Listing 7-16.

Listing 7-16. Saving with Insert or Update

IF EXISTS (SELECT * FROM chpto7 Favoritelinks
WHERE FavoritelinkID = @0ldFavoritelinkID
AND ProfileID = @ProfilelD)
BEGIN

UPDATE chpt07_Favoritelinks

SET
LinkUrlID = @LinkUrlID,
LinkTitleID = @LinkTitleID,
Keeper = @Keeper,
Rating = @Rating,
Note = @Note,
Modified = GETDATE()

WHERE
FavoritelinkID = @0ldFavoritelLinkID AND
ProfileID = @ProfileID

SET @FavoritelinkID = @0ldFavoritelinkID
END
ELSE
BEGIN
INSERT INTO chpto7 Favoritelinks
(ProfileID, LinkUrlID, LinkTitleID, Keeper,
Rating, Note, Created, Modified)
VALUES (
@ProfilelD,
@LinkUrlID,
@LinkTitleID,
@Keeper,
@Rating,
@Note,

CHAPTER 7 © MANUAL DATA ACCESS LAYER

@Created,
@Modified
)

SELECT @FavoritelLinkID = @@IDENTITY
END
Go

In either case, the value of @FavoritelinkID is set with the identity of the affected record,
which is made available to the caller of the stored procedure as an output parameter.

Deleting Data

The last major work handled by the stored procedures is deleting data. For the Favoritelinks
database, it is easy to remove a reference to a TagToken record that drops the tag association
from a Favorite Link record, but it is not a small matter of a single delete statement. To remove
all TagToken records that are no longer being referenced, a few steps must be completed, start-
ing in Listing 7-17.

Listing 7-17. First Step of the RemoveLinkTag Stored Procedure

CREATE Procedure dbo.chpt07_RemovelinkTag

(
@FavoritelLinkID bigint,
@Token nvarchar(30)

)

AS

DECLARE @LinkTagID bigint

SET @LinkTagID = (
SELECT TOP 1 1t.LinkTagID
FROM chpto7_LinkTags AS 1t
JOIN chpto7_TagTokens AS tt ON tt.TagTokenID = 1t.TagTokenID
WHERE 1t.FavoritelinkID = @FavoritelinkID AND tt.Token = @Token

)

DELETE FROM chpto7_LinkTags WHERE LinkTagID = @LinkTagID
This first step takes the @FavoritelinkID and @Token parameters and gets the value for the
@LinkTagID. After the ID is known, the record can be deleted. Now we must check whether
the @Token value is referenced by any other records, as shown in Listing 7-18.
Listing 7-18. Counting the Token References
DECLARE @TokenCount int

SET @TokenCount = (
SELECT COUNT(*)

213

214

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

FROM chpto7_LinkTags AS 1t
JOIN chpto7_TagTokens AS tt ON tt.TagTokenID = 1t.TagTokenID
WHERE tt.Token = @Token

)

If the count is zero, we know there are no references to it and the record can safely be
deleted in the final step, shown in Listing 7-19.

Listing 7-19. Deleting the Token Record

IF (@TokenCount = 0)
BEGIN

DELETE FROM chpto7_TagTokens WHERE Token = @Token
END

This process will keep the database as small as possible, which will help sustain the per-
formance of queries using this data. A more complex scenario is completely purging all favorite
links for a profile that deletes records for Tags, Tokens, Titles, and Urls in the right sequence to
respect the foreign key constraints. For this sequence, we will break the process into multiple
stored procedures to make it manageable. Table 7-3 lists these stored procedures.

Table 7-3. Purging Stored Procedures

chpto7_PurgeProfile Purges profile
chpto7_PurgeFavoritelinksByProfileID Purges favorite links including titles and URLs
chpto7_PurgelinkTagsByProfileID Purges link tags and tokens

From a high level, the scripts start the process with the profile, which executes the stored
procedure to purge favorite links, which in turn executes the stored procedure to purge tags. It
works like a cascade, where all child references are removed before the parent record is
removed so the foreign key constraint is not violated. This can be a tricky process, because you
cannot delete a child record if a parent record is pointing to it. You must create a list of the
child records before deleting the parent so that you can delete the child records afterward.

We will dig in at the bottom with the link tags handled by the chpto7_
PurgelLinkTagsByProfileID stored procedure, starting in Listing 7-20.

Listing 7-20. First Step of chpt07_PurgeLinkTagsByProfileID

CREATE Procedure dbo.chpt07 PurgelinkTagsByProfileID
(

)
AS

@ProfileID int

IF EXISTS (
SELECT * FROM chpto7_LinkTags AS 1t
JOIN chpto7_Favoritelinks AS fl ON fl.FavoritelinkID = 1lt.FavoritelLinkID

CHAPTER 7 © MANUAL DATA ACCESS LAYER

WHERE fl.ProfileID = @ProfileID

)
BEGIN

This first step checks whether any link tags exist before starting the sequence. Because the
work done to purge link tags requires a little setup, this step helps avoid the extra work. Next,
the list of records to purge is assembled. The code in Listing 7-21 shows the purge routine.

Listing 7-21. Assembling the Token Purge List

DECLARE @TagTokensToPurge TABLE

(
ID int IDENTITY,
TagTokenID bigint,
[Count] int
)

INSERT INTO @TagTokensToPurge (TagTokenID, [Count])
SELECT tt.TagTokenID, COUNT(*) AS [Count]
FROM chpto7_TagTokens AS tt
JOIN chpto7_LinkTags AS 1t ON 1lt.TagTokenID = tt.TagTokenID
JOIN chpto7_Favoritelinks AS fl ON fl.FavoritelinkID = 1lt.FavoritelinkID
WHERE tt.TagTokenID in (
SELECT DISTINCT tt2.TagTokenID
FROM chpto7_LinkTags AS 1t2
JOIN chpto7_TagTokens AS tt2 ON tt2.TagTokenID = 1t2.TagTokenID
JOIN chpto7_Favoritelinks AS fl2 ON fl2.FavoritelinkID = 1t2.FavoritelinkID
WHERE fl2.ProfileID = @ProfileID
)
GROUP BY tt.TagTokenID
HAVING COUNT(*) = 1

To hold onto the list, a table variable is declared and then populated with a query. This
table variable holds onto the TagTokenID and the Count for the number of references to it. In
Listing 7-22, the link tags are finally deleted.

Listing 7-22. Deleting the Link Tag Records

DELETE FROM chpto7_LinkTags WHERE LinkTagID IN

(
SELECT 1t.LinkTagID FROM chpto7_ LinkTags AS 1t
JOIN chpto7_Favoritelinks AS fl ON fl.FavoritelinkID = 1t.FavoritelLinkID
WHERE fl.ProfileID = @ProfileID

)

With the parent records in the chpt07_LinkTags removed, it is now possible to delete the
child records in the chpto7_TagTokens table, as shown in Listing 7-23.

215

216 CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

Listing 7-23. Deleting the Token Records

DELETE FROM chpto7_TagTokens WHERE TagTokenID IN
(SELECT TagTokenID FROM @TagTokensToPurge)

One-half of the dependencies have now been purged properly. Now the titles
and URLs must be purged. This work is done by the stored procedure named chpt07_
PurgeFavoritelinksByProfileID, which starts off in Listing 7-24.

Listing 7-24. First Step in chpt07_PurgeFavoriteLinksByProfilelD

CREATE Procedure dbo.chpto7 PurgeFavoritelinksByProfileID
(

)
AS

@ProfileID bigint

SET NOCOUNT ON

IF EXISTS
(SELECT * FROM chpto7_Favoritelinks WHERE ProfileID = @ProfileID)
BEGIN

EXEC chpt07_PurgelinkTagsByProfileID @ProfileID

The first step is to check whether there is any work to do, so the @ProfileID is used to look
for any existing records. If there are, the previous stored procedure to purge link tags is exe-
cuted. The next step is to assemble the list of URLs to purge, shown in Listing 7-25.

Listing 7-25. Assembling the URLs Purge List

DECLARE @LinkUrlsToPurge TABLE

(
ID int IDENTITY,
LinkUrlID bigint,
[Count] int
)

INSERT INTO @LinkUrlsToPurge (LinkUrlID, [Count])
SELECT 1lu.LinkUrlID, COUNT(*) AS [Count]
FROM chpto7_LinkUrls AS lu
JOIN chpto7_Favoritelinks AS f1 ON fl.LinkUrlID = lu.LinkUrlID
WHERE 1u.LinkUrlID in (
SELECT DISTINCT LinkUrlID FROM chpto7_Favoritelinks
WHERE ProfileID = @ProfileID
)
GROUP BY lu.LinkUrlID
HAVING COUNT(*) = 1

CHAPTER 7 © MANUAL DATA ACCESS LAYER

Again, a table variable is used to hold the list of records. This time it holds the LinkUr1ID.
This step is repeated for the titles in Listing 7-26.

Listing 7-26. Assembling the Titles Purge List

DECLARE @LinkTitlesToPurge TABLE

(
ID int IDENTITY,
LinkTitleID bigint,
[Count] int
)

INSERT INTO @LinkTitlesToPurge (LinkTitleID, [Count])
SELECT 1t.LinkTitleID, COUNT(*) AS [Count]
FROM chpto7_LinkTitles AS 1t
JOIN chpto7_Favoritelinks AS f1 ON fl.LinkTitleID = 1t.LinkTitleID
WHERE 1t.LinkTitleID in (
SELECT DISTINCT LinkTitleID FROM chpt07_Favoritelinks
WHERE ProfileID = @ProfileID
)
CROUP BY 1t.LinkTitleID
HAVING COUNT(*) = 1

The purge lists for URLs and titles hold only records that have a single reference. Because
the records that are about to be deleted are the ones holding the reference, the last step is to sim-
ply delete all the parent records and all the items in the purge lists, as shown in Listing 7-27.

Listing 7-27. Final Step for Purging Favorite Links

DELETE FROM chpt0o7_Favoritelinks WHERE ProfileID = @ProfileID

DELETE FROM chpto7_LinkUrls WHERE LinkUrlID IN
(SELECT LinkUrlID FROM @LinkUrlsToPurge)

DELETE FROM chpto7_LinkTitles WHERE LinkTitleID IN
(SELECT LinkTitleID FROM @LinkTitlesToPurge)

With all the stored procedures in place to get, save, and delete the data, we can start on
the data access layer, which uses all the stored procedures.

The Data Access Layer

Although the stored procedures are a critical element of the data access layer, many consider
the real data access layer to start where the C# code begins. In many cases, that is true. This is
the case when Typed DataSets are used to automatically bind table adapters to the tables in
the database. But the work done in this chapter directly marries the C# code to the stored pro-
cedures to distribute the work in a way that is designed to enhance performance.

To create a data access layer that works well with data binding, we will create a domain
object that has a default constructor so that it can be instantiated declaratively with an

217

218

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

ObjectDataSource. We will also create a business object that represents a favorite link. This
object will encapsulate the inner workings of the data access layer and just expose the data to
the application layer. By hiding the implementation details, updating future releases is easier.
It makes it possible to rework the implementation without requiring the rest of the application
to be updated.

COMMON FOLDER ADDITIONS

The get, save, and delete stored procedures are going to be commonly reused with different values. You could
take a set of these stored procedures from the downloadable code samples and create templates for yourself
and add them to your Common folder in the Templates folder (D: \Projects\Common\Templates\

Data Access Layer). Starting with these templates should save you time when putting together your data
access layers.

Creating the Class Library

The data access layer should be reusable, and the first step to making it so is placing it in a
class library. The alternative is to include the data access layer directly within your application.
In the case of a Website Project, you would place the classes in the App_Code folder. Doing so
does not allow any other projects to use those classes as a dependency. Our goal will be to
treat the data access layer as an internal release that is used by multiple applications even if it
is initially going to be used by only a single website. Doing so does not require much addi-
tional effort and helps keep the priorities of the application and the data access layer separate.

The organization of this project should already include the Database Project as a part of a
solution. Now a class library can be added to the solution to hold onto the Data Access Library.
I prefer to give the projects generic names, so the Database Project is named Database, and the
class library is simply called ClassLibrary. This simplifies the scripting that will be covered in
Chapter 8 because a nearly identical MSBuild script can be used across multiple solutions
with minimal adjustments. Naturally, as the ClassLibrary project takes on a significant num-
ber of features, it can be broken into multiple class libraries. With proper use of namespaces, it
should be simple enough to redistribute the namespaces across multiple class libraries with
minimal impact on the applications using the libraries. In fact, in the properties panel for the
class library, the value for the Default Namespace should be set to the name of the applica-
tion, and classes should be added to folders within the project. For this chapter, the value of
the Default Namespace is Chapter07, while all of the code for the data access layer will go into
a folder called Domain. The namespace automatically set when creating new classes will be
Chapter07.Domain.

Separation of Concerns

To preserve the modular nature of the data access layer, it may be helpful to create a team to
work on the data layer while another team works on the application. The application develop-
ers can handle the concerns of the business while requesting the necessary features from the
data team. This clean separation helps ensure that application-specific details do not get
baked into the data access layer. When a new feature is required for the application, the data
team can consider how to best provide that feature without compromising the integrity of the

CHAPTER 7 © MANUAL DATA ACCESS LAYER

data access layer. Later, after the class library holding the data access layer is used by multiple
applications, the library should not have application-specific details that the next application
will not be able to provide, making it harder to be reused.

Creating the Data Access Methods

Creating the data access methods is done easily with the Data Access Application Block

from the Enterprise Library, using the code snippets covered in Chapter 2. We will start

with the class library and a folder called Domain. In that folder, we will create a class named
FavoritelinkDomain. With the code snippets from Chapter 2 in place, we will create a new
variable by using the first Data Access code snippet, which has the shortcut datypes. You can
either press the Ctrl+K, Ctrl+X key sequence to open the snippet selector and navigate to this
first snippet, or you can use the shortcut and type datypes and press Tab twice to instantly
insert that snippet. This first snippet simply declares a reference to the Database object, which
will be used throughout the rest of the class.

Next we need to instantiate the Database object in the default constructor. The second
snippet does this work and has the dacreation defined as the shortcut. Create the default
constructor for the domain class and insert this code snippet there. This snippet includes a
placeholder for the connection string name. For now, we will set it as Favoritelinks so that it
looks like Listing 7-28.

Listing 7-28. Default Constructor for FavoriteLinkDomain

public FavoritelinkDomain()

{

db = DatabaseFactory.CreateDatabase("Favoritelinks");

}

DATABASE CONFIGURATION

A simple application may have only a single database connection. In such an application, it will be possible to
configure the data access layer to use the default database connection as a part of the Enterprise Library
configuration. In Chapter 8, custom configurations will offer greater flexibility than hard-coding connection
string names into the data access layer.

The next step is to create the methods that get the data from the database. The Get
DataSet Method snippet will create a method that calls a stored procedure and constructs
a DataSet with the result. This snippet has dagetds as a shortcut. Listing 7-29 shows one of
the get methods.

Listing 7-29. Get Recent Favorite Links Method

public DataSet GetRecentFavoritelinksByProfileID(
long profileld, int startDaysBack, int endDaysBack)

{

DataSet ds;

219

220 CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

try
{
using (DbCommand dbCmd = db.GetStoredProcCommand(
"chpto7_GetRecentFavoritelinksByProfileID"))
{
db.AddInParameter(dbCmd, "@ProfileID",
DbType.Int64, profileld);
db.AddInParameter(dbCmd, "@StartDaysBack",
DbType.Int32, startDaysBack);
db.AddInParameter(dbCmd, "@EndDaysBack",
DbType.Int32, endDaysBack);

ds = db.ExecuteDataSet(dbCmd);

}
}
catch (Exception ex)
{
throw GetException(
"Error in GetRecentFavoritelinksByProfileID", ex);

}

//return the results
return ds;

This method takes in the three parameters and populates the DataSet with the result. For
this example project, there are several other get methods that you will find included in the
downloadable code for this chapter.

As an alternative to filling a DataSet with the results from a stored procedure, you can also
use the snippet that uses an IDataReader to return the data. This snippet has dagetdr as the
shortcut. It looks identical to the DataSet method but returns an IDataReader instead of a
DataSet.

The save methods work differently than the get methods. Instead of populating a DataSet
or an IDataReader, they simply execute a nonquery and get back an optional output parame-
ter. The code snippet for the nonquery methods has danonquery as the shortcut. Listing 7-30
shows a save method.

Listing 7-30. Save Favorite Link Method

public long SaveFavoritelink(
long profileld, string url, string title,
bool keeper, int rating, string note, string tags,
DateTime created, DateTime modified, long oldFavoritelinkId)

long favoritelinkId;

try
{

CHAPTER 7 © MANUAL DATA ACCESS LAYER

using (DbCommand dbCmd =
db.GetStoredProcCommand("chpt07_SaveFavoritelink"))
{
db.AddInParameter(dbCmd, "@ProfileID",
DbType.Int64, profileld);
db.AddInParameter(dbCmd, "@Url",
DbType.String, url);
db.AddInParameter(dbCmd, "@Title",
DbType.String, title);
db.AddInParameter(dbCmd, "@Keeper",
DbType.Boolean, keeper);
db.AddInParameter(dbCmd, "@Rating",
DbType.Int16, rating);
db.AddInParameter(dbCmd, "@Note",
DbType.String, note);
db.AddInParameter(dbCmd, "@Created",
DbType.DateTime, created);
db.AddInParameter(dbCmd, "@Modified",
DbType.DateTime, modified);
db.AddInParameter(dbCmd, "@0ldFavoritelinkID",
DbType.Int64, oldFavoritelinkId);
db.AddOutParameter(dbCmd, "@FavoritelinkID",
DbType.Int64, 0);

db.ExecuteNonQuery(dbCmd);
object obj = db.CetParameterValue(dbCmd, "@FavoritelLinkID");
favoritelLinkId = (long) obj;
}
}

catch (Exception ex)

{

throw GetException("Error in SaveFavoritelink", ex);
}
SavelinkTags(favoritelLinkId, tags);
return favoritelinkId;

The methods to delete or purge data also use the nonquery snippet to call the stored pro-
cedure to carry out the work necessary to remove data.

Each of these methods to get, save, and remove data work with raw data. This primitive
data is bound directly to the stored procedures, which act as the proxy between the data
access layer and the underlying tables in the database. On top of these methods, the objects
that are used by the user interface layer should represent the data in a way that makes sense to
the application owners and the developers who must maintain this software over the long
term.

221

222

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

Handling Exceptions

In these data access methods, the call into the database is always wrapped with a try...catch
block. I have two main reasons for including this extra layer of protection. First, I want to be
able to handle the problem within the data access layer, where I know how to handle the
problem. Second, I want to trap in the data access layer any exception that may expose infor-
mation about the database to a user. Doing so will head off problems that could lead to a
security hole. However, the addition of the try...catch block can reduce performance. This
choice was made with that fact in mind. The performance penalty should be minimal.

To avoid the performance hit of entering this try...catch block, I can still use caching. If
the data to be requested by the database query is already in the cache, the call to the database
can be avoided along with the exception handling. And if you choose to lose the try...catch
block completely, you can strip it off and just leave the using clause for resource management
of the DbCommand. You may find that the trade-off for performance is not significant enough to
give up the stability and security that the close exception handling offers.

Creating Business Objects

When you work with your application, you will want to pass around objects that make

sense to your business. A business object such as a Customer has properties such as FirstName,
LastName, CurrentOrder, and LastOrder. This business object fully implements the three parts
of an object: data, behavior, and relationships. A Customer has a first and last name and a rela-
tionship to his current and last order. A Customer can also complete his CurrentOrder. These
are all processes that an application owner understands and conveys to the development
team through carefully designed business objects. Instead of having disjointed blobs of data
held in a DataSet that directly mirrors the structure of your relational database, you have the
opportunity to truly represent the real-world objects for the application. In addition to prop-
erly representing the real-world objects, you can also fully encapsulate the data access layer
behind these business objects, which gives you the opportunity to use techniques such as lazy
loading to boost performance while maintaining a consistent public interface.

The central business object of the Favorite Links website is the FavoritelLink object. As a
business object, it holds onto the various properties of a link such as the Title, Url, Rating,
Note, and Tags. Each of these properties is populated by columns returned from calls to stored
procedures. Mapping these values can be a considerable amount of work, especially in the
early stages of your application, when you are still adjusting the columns and properties.
Updating the mappings can be time-consuming.

Loading Data

Perhaps the strongest argument against manually creating your own data access layer is the
amount of work necessary to map the data from the database to the objects. Object/Relational
(O/R) mapping has been a common problem since objects have been used in combination
with relational databases. The impedance mismatch between these generally incompatible
systems requires you to understand how both ends are constructed so that you can use that
understanding to map them together.

One approach to O/R mapping has been to create configuration files that explicitly set the
mapping between every data column and object property. Popular O/R mapping tools such as
NHibernate use extensive XML configuration that defines all the mappings. Many consider

CHAPTER 7 © MANUAL DATA ACCESS LAYER

this to be a powerful solution to the O/R mapping requirement. I find that it is an extra,
unnecessary layer.

To facilitate the O/R mapping work, I created a base class that automatically maps data
columns to properties by matching up the names and types for properties that are writable.
Every business object populated by the data access layer inherits this base class. One load
method takes a DataRow while another takes an IDataReader object to set the properties. With
reflection, the base class compares the columns coming from the query with the properties in
the business object. I call this base class DomainObject. The core properties it always provides
are ID, Created, and Modified. As I add new columns to the stored procedures, and new prop-
erties to the business objects, the values are automatically loaded into the objects without any
additional effort. (See the code downloads for the DomainObject class.)

I made sure that DomainObject would work with either a DataSet or an IDataReader
because both are worthwhile in different scenarios. I always want to maintain the flexibility
of switching between them. For example, I can cache a DataSet deep in the data access layer
because it is holding onto the data, while an IDataReader is just a data enumerator that can
be used only once. But IDataReader is faster, so if I do not cache the data, I can leverage the
speed of the IDataReader.

When data is pulled from the database and the code loops over the results, we will pass
the DataRow or IDataReader into the load method of the business object to prepare it to be
sent back to the application layer. These objects are held in a FavoritelLinkCollection object,
which is shown in Listing 7-31.

Listing 7-31. FavoriteLinkCollection Object

using System.Collections.Generic;

namespace Chapter07.Domain
{
/// <summary>
/// Collection of Favoritelink objects
/// </summary>
public class FavoritelinkCollection : List<FavoritelLink>
{
}

Notice that the FavoritelLinkCollection object simply inherits from the generic collection
List<Favoritelink>, which gives us a clean object that can be extended later. It is also strongly
typed with the Favoritelink business object. A DataSet can be used to populate a
FavoritelinkCollection, as shown in Listing 7-32.

Listing 7-32. Loading with DataRow

private void AddToFavoritelLinkCollection(
FavoritelinkCollection collection, DataSet ds)

{
if (ds.Tables.Count > 0)

{

223

224

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

foreach (DataRow row in ds.Tables[0].Rows)

{

Favoritelink fl = new Favoritelink(row);
collection.Add(fl);

A constructor for the Favoritelink object simply takes a DataRow and internally calls the
load method defined by the DomainObject. Alternatively, an IDataReader could be used for
potentially better performance, as shown in Listing 7-33.

Listing 7-33. Loading with IDataReader

private void AddToFavoritelinkCollection(
FavoritelinkCollection collection, IDataReader dr)

{
while (dr.Read())
{
Favoritelink fl = new Favoritelink(dr);
collection.Add(fl);
}
}

The Favoritelink object also includes a constructor that takes an IDataReader, which is
passed along to the load method. In the case of the DataSet and the IDataReader, the columns
used to populate FavoritelLink should be identical, especially when they call the same stored
procedures.

Tuning the Data Load

Because of the performance hit that is incurred, when using reflection there is a clear per-
formance difference from using it to load data vs. directly casting the data to the properties of
the business object. If you know a data column named Title is a String, you can simply set the
property while directly casting the object, as shown in Listing 7-34.

Listing 7-34. Directly Casting a Data Value to a Property
this.Rating = (int)row["Rating"];

If the column is an int and the value is not null, this will work—but that is never a guarantee.
Because the database is disconnected and can be updated separately from the application,
changes to the database can be a potential problem. The approach using reflection creates map-
pings that match the names and types. Every time the mappings are used to set the property
values, the data column is always checked for a null value, and this check eliminates the risk of
casting the type incorrectly. This protection does come at a cost. Fortunately, that cost has been
minimized.

The Favoritelink object features the ability to switch between the reflection and direct
casting modes by setting a static enum value. This setting allows for testing the performance of

CHAPTER 7 © MANUAL DATA ACCESS LAYER

both modes. The unit tests for this data access layer include load tests that measure the time it
takes to load a large set of Favoritelink objects and then display the average time for both
modes. These load tests are included with the code downloads for this chapter.

These load tests, when run with a high number of items, showed that the reflection cost
does not have a significant impact on the time to load the data into the FavoritelLink objects.
The performance has been refined to minimize the cost of reflection. The mappings created
by using reflection are created once when the first object is loaded. The mappings are reused
for every new instance so that the performance penalty is nearly eliminated while the benefits
are gained.

However, if you want to take advantage of directly casting the data columns to properties
without using reflection, the load methods are marked as virtual so you can override them.

Building the Website

With the data access layer ready to use, we can now start assembling the website. The data will
be brought into the website by using ObjectDataSources that are associated with databound
controls held in user controls. The user controls can be placed on any page, wherever they are
needed. The pages will also use a single master page for the website.

The user controls created for the website will become the building blocks for the website,
and these building blocks will interface directly with the data access layer. A user control may
then expose properties, methods, and events to the parent container to provide rich function-
ality for the user interface layer.

You may choose to start building the website with just large pages, but you will soon have
pages with 2,000-line code-behind files, which are hard to organize and maintain. Starting
with just a page is a good way to prototype a new interface, but ultimately you will want to
break out the sections of a page into the user controls for maintainability and to take advan-
tage of decoupling the various sections of a page into well-defined containers.

Ultimately, you may choose to convert a user control into a server control, which can be
deployed purely as an assembly. This conversion makes the control work well as a dependency
on many websites with minimal effort. A server control requires more work to create and
maintain, so creating one from the start is not normally the best first step. As a user control
matures, it may eventually be a good candidate for conversion. Currently, if you want to use a
user control across multiple websites, you have to copy the .ascx markup file to each website
along with either the code-behind file or a compiled assembly for the code-behind. If a user
control will be useful across many websites, it will be desirable to take the extra step to make it
into a server control.

Over time you may have a suite of user controls and server controls, much like all of the
standard controls in the Toolbox in Visual Studio. This may lead to a set of databound controls
much like the Login controls, which integrate directly with the Membership provider system.
The following sample pages and user controls are designed with such a goal in mind.

Connecting the Data Access Layer

Because the data access layer is a class library within the same solution, it can be associated
to the website by using a project reference. Because an ASPNET website does not have a proj-
ect file, the reference is stored by the solution instead. The connection string name is set to
Favoritelinks, so the Web.config file should include a connection string with the same name.

225

226

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

Using a hard-coded string for the connection string name may be sufficient when a website is
simple, but as it grows and more components are created, coordinating all the hard-coded
strings will become difficult.

As your website becomes more complex, you can implement custom configuration sec-
tions that define settings for each of your components, such as the connection string name.
Then you can adjust the connection string name of a component by using the custom config-
uration. Creating a custom configuration is covered in Chapter 9. The sample project for this
chapter uses a custom section to define the database connection.

Creating User Controls

User controls can be used to encapsulate at least one databound control and the associated
ObjectDataSource. Working with the data in this isolated container makes it easier to handle
the data and the features required of the databound control. This container can expose prop-
erties and events to communicate with the parent container.

Properties

To display the links, we will create the LinksControl user control, which exposes a few proper-
ties that the parent control should set to assist with binding the data. The properties used by
the ObjectDataSource are StartDaysBack and EndDaysBack, which hold int values. These prop-
erties are shown in Listing 7-35.

Listing 7-35. LinksControl Properties

private int _startDaysBack = 7;

[Browsable(true), DefaultValue(7), Category("Links")]
public int StartDaysBack
{

get { return startDaysBack; }

set { startDaysBack = value; }

private int _endDaysBack = 0;

[Browsable(true), DefaultValue(0), Category("Links")]
public int EndDaysBack
{

get { return _endDaysBack; }

set { _endDaysBack = value; }

These are regular properties with member variables that hold onto the int values; how-
ever, the attributes decorating the properties are specific to user controls. The Browsable
attribute allows the property to show up in the Properties window when the user control is
selected in the design surface. The Category attribute places these two properties into the
Links category so they show up together in the Properties window. Finally, the DefaultValue

CHAPTER 7 © MANUAL DATA ACCESS LAYER

attribute indicates the default value. This attribute causes the value in the Properties window
to show up as bold when the value does not match the default value. These additional features
assist the developer using the user control and further encapsulate the data as it is brought
into the application.

With these properties set, the ObjectDataSource uses their values for parameters defined
by the ObjectDataSource in Listing 7-36.

Listing 7-36. LinksControls ObjectDataSourcel

<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}"
TypeName="Chapter07.Domain.FavoriteLinkDomain"
SelectMethod="GetRecentFavoritelinkCollection"
OnSelecting="0ObjectDataSourcel_Selecting">
<SelectParameters>
<asp:Parameter DefaultValue="0"
Name="profileId" Type="Int32" />
<asp:Parameter DefaultValue="7"
Name="startDaysBack" Type="Int32" />
<asp:Parameter DefaultValue="0"
Name="endDaysBack" Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

You can see the startDaysBack and endDaysBack parameters, which are set with the
ObjectDataSourcel Selecting event handler shown in Listing 7-37.
Listing 7-37. ObjectDataSourcel_Selecting

protected void ObjectDataSourcel Selecting(
object sender, ObjectDataSourceSelectingEventArgs e)

{
e.InputParameters["profileId"] = Utility.GetProfile().ProfileID;
e.InputParameters["startDaysBack"] = StartDaysBack;
e.InputParameters["endDaysBack"] = EndDaysBack;

}

All that is left is to bind the data to the databound control, which is a Repeater control
shown in Listing 7-38.

Listing 7-38. Repeater Control

<asp:Repeater ID="rptlLinks" runat="server"
DataSourceID="0ObjectDataSource1"
OnItemDataBound="rptLinks ItemDataBound">

<HeaderTemplate>

<div id="divLinks">

<h3 class="Title" id="h3Title" runat="server">

<asp:literal

227

228

CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

ID="1tTitle" runat="server"
Text="Title"></asp:Literal>
</h3>
<ul class="Links">
</HeaderTemplate>
<ItemTemplate>
<1i>
<asp:HyperLink
ID="h11" runat="server"
Text="<%# Bind("Title") %>
NavigateUrl="<%# Bind("Url") %>'></asp:HyperlLink>

(<asp:lLiteral
ID="1t1" runat="server"
Text="<%# Bind("Rating") %>'>1</asp:Literal>)

</1i>

</ItemTemplate>
<FooterTemplate>

<br style="clear: left;" />
</div>

</FooterTemplate>

</asp:Repeater>

By breaking up the content of the website into smaller user controls and controlling them
through properties, you get a great deal of flexibility. The values from these properties can be
relayed to the data access layer, which allows you to use the same user control multiple times
while getting different results when they are displayed. Using user controls in this way essen-
tially parameterizes their functionality and lines them up with the data access layer in a way
that is much easier to manage.

Events

Events can also be used by a user control to relay information back to the parent control when
a subscribed event occurs. Another user control called TagCloudControl displays a tag cloud
with a set of links. When a user clicks on a link in the TagCloudControl, it raises an event that
the parent page uses to change the content displayed by another user control called Tagged-
LinksControl. Using events in this way further encapsulates the internals of the user control,
making it more reusable.

The TagCloudControl declares one event named TagSelected, which is raised whenever
one of the links in the tag cloud is clicked. The event and the method to raise the event are
shown in Listing 7-39.

Listing 7-39. TagSelected Event

public event EventHandler<TagCloudEventArgs> TagSelected;

[Category("Tags")]

CHAPTER 7 © MANUAL DATA ACCESS LAYER

protected virtual void OnTagSelected(TagCloudEventArgs e)

{
if (TagSelected != null)
{
TagSelected(this, e);
}
}

The EventHandler uses a control EventArgs implementation named TagCloudEventArgs,
which includes a property named Token that is made available to the event subscriber. When
the event is raised, this value can be set as the Token property in the TaggedLinksControl. The
TaggedLinksControl works much like the LinksControl but it uses the Token property to get
the list of links using the Token property.

Note User controls can be declared in each page that uses them, but they can also be declared in the
pages/controls section of the Web.config file so that the user controls can be referenced with a consistent
tag prefix throughout the website. Normally, when you drag a user control onto the design surface, the gen-
erated declaration sets the tag prefix as uc1 or uc2, etc. Later, if a control is converted from a user control to
a server control, there will be a single place in the website to adjust the reference.

Creating the Pages

Combining the user controls together on a page and wiring up their properties and events
may now be the easiest step. With a master page already created, this page will just hold onto
the user controls to list the links and the tag cloud. We can create a new page called Home. aspx
and drag the user controls onto the design surface. The end result will look like Listing 7-40.

Listing 7-40. Home.aspx

<%@ Page Language="C#" MasterPageFile="~/Favoritelink.master"
AutoEventWireup="true"
CodeFile="Home.aspx.cs"
Inherits="Home"
Title="Favorite Link: Home" %>

<asp:Content ID="Content1" runat="server"
ContentPlaceHolderID="MainContentPlaceHolder">
<div id="HomeContent">
<div class="tagCloud" style="float: right; width: 150px;">
<h3 class="Title">Tags</h3>
<fl:TagCloudControl ID="tagCloud" runat="server"
OnTagSelected="tagCloud_OnTagSelected" />
</div>
<div id="Links">
<fl:TaggedLinksControl

229

230 CHAPTER 7 ©© MANUAL DATA ACCESS LAYER

ID="taggedlLinks" runat="server"
Visible="false" />

<fl:LinksControl
ID="1cToday" runat="server"
Title="Today"
EndDaysBack="0"
StartDaysBack="1"
Titlevisible="true" />

<fl:LinksControl
ID="1cThisWeek" runat="server"
Title="This Week"
EndDaysBack="1"
StartDaysBack="7"
TitleVisible="true" />

<fl:LinksControl
ID="1cThisMonth" runat="server
Title="This Month"
EndDaysBack="8"
StartDaysBack="31"
TitleVisible="true" />
</div>
</div>
</asp:Content>

Each of the user controls does not declare the user control references at the top of the
page because they have been predeclared in the Web. config file in the pages section, shown in
Listing 7-41.

Listing 7-41. User Control Configuration

<pages>
<controls>
<add tagPrefix="f1" tagName="HeaderNavigation"
src="~/Controls/HeaderNavigation.ascx"/>
<add tagPrefix="f1" tagName="LinksControl"
src="~/Controls/LinksControl.ascx"/>
<add tagPrefix="f1" tagName="LoginControl"
src="~/Controls/LoginControl.ascx"/>
<add tagPrefix="f1" tagName="TagCloudControl"
src="~/Controls/TagCloudControl.ascx"/>
<add tagPrefix="f1" tagName="TaggedLinksControl"
src="~/Controls/TaggedLinksControl.ascx"/>
</controls>
</pages>

CHAPTER 7 © MANUAL DATA ACCESS LAYER

Each user control is given f1 as the tagPrefix, which you can see in Home . aspx. This detail
cleans up the page a bit and creates a consistent way of declaring each user control.

This main page lists the LinksControl three separate times to show links that were added
today, this week, and this month. The TagCloudControl lists the tags associated with links
added by the user. When the links are clicked, the Token property is captured by the tagCloud
OnTagSelected event handler, as shown in Listing 7-42.

Listing 7-42. tagCloud_OnTagSelected

protected void tagCloud OnTagSelected(object sender, TagCloudEventArgs e)
{

lcToday.Visible = false;

1cThisWeek.Visible = false;

1cThisMonth.Visible = false;

taggedlLinks.Visible = true;

taggedlLinks.Title = "Tagged with " + e.Token;

taggedlLinks.Token = e.Token;

These few lines of code are all that is needed to instrument all of the user controls on the
page. All of their independent details are fully encapsulated and managed internally. Enhanc-
ing the performance of this website can now be done at various levels within the layers of the
architecture. Some adjustments could be done with the tables and coordinated with the nec-
essary changes to the stored procedures. Other adjustments could be done in the data access
layer by introducing caching. And at the application layer, the user controls and pages could
use additional techniques such as data or output caching. Each layer is fully independent and
encapsulated so that the next layer will not need modification when optimizations are imple-
mented.

Summary

This chapter covered the steps and choices to consider when manually creating a data access
layer. You looked at how manually building this layer requires extra work in order to leverage
the performance enhancements it offers. Finally, you connected the data access layer to a
functional website by using the ObjectDataSource and user controls in a way that minimizes
maintenance while leaving plenty of places to optimize performance without requiring major
rework of the application.

231

CHAPTER 8

Generated Data Access Layer

Not many developers like to touch the data access layer. Most developers prefer to stick to
their favorite languages, such as C#, and avoid the languages they use rarely, such as T-SQL.
This is understandable. A developer builds up a level of expertise and confidence with a lan-
guage the more he uses it. So if you are lucky enough to have a skilled database developer on
your team with deep knowledge of T-SQL, you surely leverage his skills as much as possible.
However, these types of programmers are a rare breed. To cope with the situation, you can
seek out ways to generate the data access layer and greatly reduce the time you will need to
spend away from the language of choice, C#.

This chapter covers the following:

* Code generation
* SubSonic
* Bling

The common term used when discussing data access layers is CRUD, for Create, Read,
Update, and Delete. Data access layers are mostly boilerplate code. If you take this to mean
that for each table you just need to create the equivalent SQL statements, you can easily gen-
erate such code automatically by scanning the database and constructing classes that carry
out all of the CRUD tasks. If you want to add smart functionality, such as relationships, you
can read the foreign key constraints during the code generation process to infer the relation-
ships and bake in the object-oriented functionality into your generated code. The tools
covered in this chapter do all of this work for us in an elegant way that does not leave a bad
taste in the mouth like Typed DataSets.

Code Generation

Code generation is an old concept. If you go all the way back to the beginning of software
development, you will see how source files were compiled into assembly code, and developers
at the time argued that a compiler did not produce code nearly as efficient as assembly
instructions written by hand. The benefit of using a compiler was implementing the intent of
the source code with a dramatically shorter development cycle. These days, we are several
steps beyond this initial step that has taken us well into code generation. We write code in an
IDE in the language we choose, it is converted into an intermediate language (IL), and eventu-
ally the Just-In-Time compiler converts it into machine code. The compilation process has
been improved over the past few decades to introduce optimizations the developer does not

233

234

CHAPTER 8 ©° GENERATED DATA ACCESS LAYER

even know about yet benefits from continually. We have embraced code generation, and we
are finding new ways to make use of it to further accelerate our development cycles while gen-
erating more efficient code than if we were to develop it ourselves.

When you work with ASPNET, you are already making use of code generation with each
page and user control that generates a partial class for each code-behind into memory. Each
variable reference for the controls placed on the markup side of a page is placed in this partial
class while you define the rest of the partial class in the code-behind file. You may remember
the generated code region in ASPNET 1.1 that warned you not to modify it directly. The code
for this region is what is now safely generated into the hidden partial class. The code genera-
tion that makes this work is due to the build providers introduced with ASPNET 2.0.

Note If you are not building a Website Project and are instead building a Web Application Project, you will
still be using the old ASP.NET 1.1 model where the code is generated directly into the code-behind file. A
Web Application Project cannot make use of build providers because it requires the dynamic compiler that
is only available for websites. A Web Application Project is technically a class library, which does not have
access to this functionality.

Build Providers

A build provider is a code generator that places the results of the build into memory so that it
is accessible by the runtime. Visual Studio is able to also run the build providers and make the
generated code available immediately without needing to compile the project. Build providers
are preconfigured for all of the common file types such as .aspx, .ascx, .asmx, and several oth-
ers. In the base Web.config file, which all websites inherit from, you will find a configuration
element named buildProviders, which lists all of the mapped providers. In particular, the
.aspx extension is mapped to a provider called PageBuildProvider, while .xsd is mapped to
XsdBuildProvider, which creates Typed DataSets.

You can implement your own build provider and associate it with an extension of your
choosing. Listing 8-1 shows how you would map a build provider for all files with . xyz as the
extension.

Listing 8-1. Build Provider for .xyz Files

<buildProviders>
<add extension=".xyz" type="Chapter08.BuildProviders.XyzBuildProviders" />
</buildProviders>

When the ASPNET compiler comes across files with the . xyz extension, it will use the
configured build provider to generate code into memory so that it can be used by pages
and controls in a website as well as provide IntelliSense support. Figure 8-1 shows how the
IntelliSense appears for the generated class.

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

 Equals

V\—J\;
@ ReferenceEquals™

string SampleClass.GetVirtualPath()
Returns /Website/App_Code/Generated/SampleClass.ayz

Figure 8-1. IntelliSense for generated class

The BuildProvider class, which is found in the System.Web.Compilation namespace,
includes a method named GenerateCode, which you must override in order to inject your gen-
erated code into a website. Listing 8-2 shows an implementation of the GenerateCode method.

Listing 8-2. GenerateCode Method

public override void GenerateCode(AssemblyBuilder assemblyBuilder)
{
assemblyBuilder.AddCodeCompileUnit(this,
new CodeSnippetCompileUnit(GetGeneratedCode()));

The sample class that contains the GenerateCode method is named XyzBuildProviders,
and it inherits the BuildProvider class. The first task you will likely want to do is read the con-
tents of the source file. To read the file, you can either call OpenStream, which returns a Stream,
or OpenReader, which returns a Reader. Listing 8-3 shows you how to get the contents of the
source file as a string.

Listing 8-3. GerContents Method

private string GetContents()

{
TextReader reader = OpenReader();
string contents = reader.ReadToEnd();
reader.Close();
return contents;

}

The contents of a source file could easily be XML or a custom file format of your choosing
that you can parse and use while constructing your generated code. For this example, you will
just have a single line in the source file, which will be used as the comment for the class.

You may also want to know the name of the source file. Perhaps for each source file you
want to generate a single class, and the filename of the source file will be reused as the name
of the generated class. In this case, you can use the VirtualPath property, which is inherited
from the base BuildProvider class. For a website, the source file must be in the App_Code
folder, so a typical value would be /AppCode/SomeFile.xyz. Listing 8-4 shows how the class
name can be extracted from this value.

235

236

CHAPTER 8 " GENERATED DATA ACCESS LAYER

Listing 8-4. GetClassName Method

private string GetClassName()

{
int startIndex = VirtualPath.lastIndexOf("/") + 1;
int length = VirtualPath.IndexOf(".") - startIndex;
string className = VirtualPath.Substring(startIndex, length);
return className;
}

You could also allow the class name to have some significance as well, but here you will
assume the same namespace regardless of the directory structure. Finally, the GetGeneratedCode
method called in Listing 8-2 is shown in Listing 8-5.

Listing 8-5. GetGeneratedCode Method

public string GetGeneratedCode()

{
string className = GetClassName();
string contents = GetContents();

StringBuilder code = new StringBuilder();
code.AppendLine("namespace Chaptero8.Website {");
code.AppendLine("/// <summary>");
code.AppendlLine("/// " + contents);
code.AppendLine("/// </summary>");
code.AppendlLine("public partial class
code.AppendLine("/// <summary>");
code.AppendLine("/// Returns " + VirtualPath);

(

(

(

(

+ className + " {");

code.AppendlLine("/// </summary>");

code.AppendLine("public static string GetVirtualPath() {");
code.AppendLine("return \"" + VirtualPath + "\";");
code.AppendLine("}\n}\n}");

return code.ToString();

The code generated in Listing 8-5 is simply a string returned to the caller that is used to
create a new CodeSnippetCompileUnit class. For the moment, all you need to know is that this
class reads in the string value for the code and passes it into the AssemblyBuilder class, which
generates the code into memory.

Note A new dynamic language runtime (DLR) is currently under development for the .NET platform. It will
support languages such as IronPython and IronRuby, which you can then use as your language of choice
beyond C# and VB in a production environment. Many developers think this is great news because they feel
these languages can do a great deal more with less code. It is an area worth some attention over the next
few years as these technologies mature and become a core part of the .NET platform.

CHAPTER 8 " GENERATED DATA ACCESS LAYER

CodeDom Namespace

Generating code for the .NET platform is conveniently supported by the CodeDom namespace,
specifically System.CodeDom. The namespace represents code as a document object model that
can be manipulated just as easily as XML. You can create new classes and add fields, proper-
ties, and methods to them in a language-neutral way and then generate them out to
supported languages such as C# and VB.

In Listing 8-5, the code was assembled as a string. You can do the very same work with
CodeDom, which will give you more structure. By assembling the code as a string within quotes
across multiple lines, you have to be careful to end each statement with a semicolon and close
each block. When the code is assembled programmatically with CodeDom, these concerns go
away.

Starting with a new custom build provider named AbcBuildProvider, you will define an
XML file format with files using an . abc extension. The compilation section of the Web. config
file now includes the additional build provider, shown in Listing 8-6.

Listing 8-6. Adding Build Provider for .abc Files

<compilation debug="true">
<buildProviders>
<add extension=".abc" type="Chapter08.BuildProviders.AbcBuildProvider"/>
<add extension=".xyz" type="Chapter08.BuildProviders.XyzBuildProvider"/>
</buildProviders>
</compilation>

The new file format will define a custom data class that the build provider will generate
using a list of fields defined in each source file. Listing 8-7 shows a sample file.

Listing 8-7. Person.abc

<?xml version="1.0"?>

<dataClass>
<fields>
<add name="FirstName" type="System.String"/>
<add name="lLastName" type="System.String"/>
<add name="BirthDate" type="System.DateTime"/>
<add name="Location" type="System.String"/>
</fields>
</dataClass>

As with the XyzBuildProvider, this new build provider will use the name of the source of
the generated class. The sample file, Person.abc, will create a class named Person with a set of
fields and properties that are defined by the file. When the build provider and website are
compiled, the Person class should be available to the website.

Starting with the GetGeneratedCode method, which was also created for the previous build
provider, you will adjust it to return a CodeCompileUnit instead of a string, have it parse the
source file as an XML stream, and process each of the fields defined within the fields ele-
ment. Listing 8-8 shows the new method.

237

238

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

Listing 8-8. GetGeneratedCode for AbcBuildProvider

private CodeCompileUnit GetGeneratedCode()

{
CodeCompileUnit code = new CodeCompileUnit();

CodeNamespace ns = new CodeNamespace(GetNamespace());
CodeNamespaceImport import = new CodeNamespaceImport("System");
ns.Imports.Add(import);

code.Namespaces.Add(ns);

string className = GetClassName();
CodeTypeDeclaration generatedClass =
new CodeTypeDeclaration(className);
generatedClass.IsPartial = true;
ns.Types.Add(generatedClass);

XmlDocument document = new XmlDocument();

using (Stream stream = OpenStream()) {
document.Load(stream);
XmlNode rootNode = document.SelectSingleNode(RootPath);
if (rootNode != null)

{

ProcessFieldNodes(generatedClass, rootNode);
}
}

return code;

There are several new types referenced in the new GetGeneratedCode method. Types
like CodeNamespace, CodeNamespaceImport, and CodeTypeDeclaration are all pieces of a
CodeCompileUnit, which is used to create the generated class. The CodeNamespace type is
the namespace that wraps the generated class. A single CodeNamespaceImport for Systemis
added to the namespace. You would add others as needed just as you would to a source file
you are editing in Visual Studio. Finally, the CodeTypeDeclaration is used for an instance of
generatedClass, which will hold the fields that are defined in the ProcessFieldNodes method
shown in Listing 8-9.

Listing 8-9. ProcessFieldNodes

private void ProcessFieldNodes(
CodeTypeDeclaration generatedClass, XmlNode rootNode)

{
XmlNodelist fieldNodes = rootNode.SelectNodes(FieldsAddPath);
foreach (XmlNode addFieldNode in fieldNodes)

{
XmlNode nameNode = addFieldNode.SelectSingleNode("@name");

CHAPTER 8 " GENERATED DATA ACCESS LAYER

XmlNode typeNode = addFieldNode.SelectSingleNode("@type");

string propertyName = nameNode.Value;
string fieldName = GetFieldName(propertyName);
Type fieldType = Type.GetType(typeNode.Value);

// private field
CodeMemberField field = new CodeMemberField(fieldType, fieldName);
generatedClass.Members.Add(field);

AttachProperty(generatedClass, propertyName, fieldName, fieldType);

The ProcessFieldNodes method starts by looping over all of the field nodes under the root
node from the XML source file. The two nodes you want to access are the attributes in the add
element named name and type. These references are done with XPath references such as @name
and @type. At the top of the AbcBuildProvider are two constants defined to assist with travers-
ing this XML document. These XPath constants are shown in Listing 8-10.

Listing 8-10. XPath Constants

public const string RootPath = "/dataClass";
public const string FieldsAddPath = "fields/add";

The first XPath constant, RootPath, accesses the first XML node, which then allows the
second XPath constant, FieldsAddPath, to access all the add elements that hold onto the attrib-
utes we want to use. In Listing 8-9, these two nodes are read and later used to set the values for
the propertyName, fieldName, and fieldType variables. Then a new CodeMemberField instance is
created and added to the list of Members for the generatedClass. These are all private member
variables that are accessed via properties defined by the AttachedProperty method shown in
Listing 8-11.

Listing 8-11. AttachProperty

private static void AttachProperty(
CodeTypeDeclaration generatedClass,
string propertyName,
string fieldName,
Type fieldType)

// public property

CodeMemberProperty prop = new CodeMemberProperty();
prop.Name = propertyName;

prop.Type = new CodeTypeReference(fieldType);
prop.Attributes = MemberAttributes.Public;

CodeFieldReferenceExpression fieldRef;

239

240

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

fieldRef = new CodeFieldReferenceExpression();
fieldRef.TargetObject = new CodeThisReferenceExpression();
fieldRef.FieldName = fieldName;

// property getter

CodeMethodReturnStatement ret;

ret = new CodeMethodReturnStatement(fieldRef);
prop.GetStatements.Add(ret);

// property setter

CodeAssignStatement assign = new CodeAssignStatement();
assign.left = fieldRef;

assign.Right = new CodePropertySetValueReferenceExpression();
prop.SetStatements.Add(assign);

generatedClass.Members.Add(prop);

The AttachProperty method takes in the variables necessary to refer back to the related
private member variable that the property will access. The property is created using the
CodeMemberProperty type along with CodeFieldReferenceExpression, CodeMethodReturnStatement,
and CodeAssignStatement classes. This method first creates the instance of the property, cre-
ates the reference to the field, and then adds the getter and setter statements to the property.
At the end, the property is added to the Members collection of the generatedClass.

That is it for the heavy lifting. There are a few small private methods that help out the
process. Listing 8-12 shows the GetNamespace method, which gets the string value from the
configuration. Listing 8-13 shows the GetFieldName method, which converts a property name
to field name using the naming conventions followed in all of the previous code samples with
a preceding underscore before the field name.

Listing 8-12. GetNamespace Method

private string GetNamespace()

{
string ns = ConfigurationManager.AppSettings["AbcNamespace"];
if (String.IsNullOrEmpty(ns))
{
ns = "Abc";
}
return ns;
}

The setting for the AbcNamespace should be added to the website with the value of
Chapter08.Website; otherwise it will default to Abc.

Listing 8-13. GetFieldName

private string GetFieldName(string propertyName)

{

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

return " " +
propertyName.Substring(0,1).ToLower() +
propertyName.Substring(1);

Now when the website is compiled along with the build provider, it will generate a new class
named Person with all of the fields shown previously in Listing 8-7. After the build has run suc-
cessfully, you can open the Object Browser and see the newly generated class. Figure 8-2 shows
the Person class with all of the generated fields and properties.

Object Browser | Web.config " App_Code/Generated/Person.abc

Browse: All Components .| S

<Search> - g 5 BirthDate
: 5 First
5.3 DA\ Website! 3 g L"StNa"”e
7 1 astName
1-{} Chapter08.Website & Locat
; 1 ocation
+-+1% AnotherClass .
. o _birthDate
L g e firstN
: 414 SampleClass a7 Nrstame
-+ Microsoft.VisualBasic

1. mernrlib

o _lastMame
g _location

Figure 8-2. Object Browser with generated Person class

The original source file is ten lines of XML, and the resulting class that it generates is over
60 lines of code that I did not have to write. You can take this further: instead of having the
XML file define the fields directly, the XML data could instead point to a table or stored proce-
dure in the database that would provide all of the necessary details to generate all of these
fields and properties. Several of the popular data access layer projects do just that. SubSonic
and Bling, which are covered later in this chapter, both read the schema from the database
and generate classes based on what it finds. I will show you what these two projects offer. But
first, consider how you would generate all of this code. Although you would be able to do it
very quickly with CodeDom alone, you should consider templating.

Templating

While CodeDom gives you a structured way to generate code, using CodeDom can be tedious and
difficult to maintain. CodeDom also feels unnatural. As developers, we are more comfortable
with code that looks like code, not the derivative form that CodeDom uses to describe the pieces
that make up the code. When you skim over a set of methods that use CodeDom to generate the
code, you see references to CodeTypeDeclaration and CodeMemberProperty. When there is a lot
of CodeDom code, it can be hard to follow and piece it together in your mind.

So when there is a lot of code to be generated, it helps to place sections of code into tem-
plate files that can be read in a form that is as close to the actual code as possible. When the
code is generated, the process will read these templates and load the resulting string into a
CodeCompileUnit to generate the classes.

ASPNET makes use of templates for pages and user controls that are made up of largely
HTML content along with special directives specific to ASPNET for controls. If it was not done
this way, you would have to piece together all of the HTML from a source file as was done in
the early days of web development.

241

242

CHAPTER 8 " GENERATED DATA ACCESS LAYER

Generating all of the fields from the XML file in the previous section only required about
100 lines of CodeDom code. That is pretty good, but it also only defined the fields and properties.
Creating methods that call the stored procedures, potentially with several input parameters,
would require a great deal more work with CodeDom. And as you have seen how a call into a
stored procedure is very much boilerplate code, especially with the Enterprise Library, you
can get a lot of value out of templating.

The first code generator I will review is SubSonic, which includes a rich templating system.

SubSonic

SubSonic is an open source project, partially hosted on CodePlex, that has become popular
because of the many compelling features it provides. Recently, SubSonic is in its 2.0 release,
which added support for the Enterprise Library as well as the ability to generate code for more
than one database. Visit http://www.subsonicproject.com for more details. Here, I will focus
on how it uses a template to generate the code and how it reads in details from the database to
generate the code.

Note CodePlex (http://www.codeplex.com) is the newest code repository provided by Microsoft. It
features Team System as the source control and work item tracking system. A free Team System—enabled
version of Visual Studio is available for use with CodePlex. CodePlex also supports a basic bridge for
TortoiseSVN, a Subversion client that integrates with Windows Explorer.

You will want to download the SubSonic project files for this section and place them into
the common tools folder as shown in Figure 8-3. You will be referencing the command-line
tool from this location as well as the SubSonic assembly. You will also need the SQL Server
SDK installed if you want to compile the SubSonic project.

Pl
@-u-v| <« Projects » Commeon » Tools » SubSenic » Bin - | +y | | Search p'

Organize ~ iews v

r

MName

[E| Documents %] Microsoft.Practices.Enterpriselibrary. Common.dll
5) %) Microsoft.Practices.EnterpriseLibrary.Data.dll

& Pictures (%) Microsoft.Practices.ObjectBuilder.dil
B Music (% Microsoft.SqlSenver.BatchParser.dll
Mare » Microsoft.SqlServer.Replication.dll
Foldeis v | Bl MySgl.Data.dll Select a file to preview,
|l =
4 | SubSeonic | sonfc.exe .
= | sonic.exe.config
Bin .g S
1) Duzip : somc.p.
- : (%) SubSonic.dll
1) Filemon.zip &) subSonic.pdb
1) PsTools.zip HEOMNER
1, Reflector.zip) (S 1Ll +

Figure 8-3. SubSonic Tools directory

http://www.subsonicproject.com
http://www.codeplex.com

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

Running SubSonic is done with the command-line tool called SubCommander, which
processes multiple commands to generate both code and database scripts. The generate
command recognizes many parameters. The most important parameters are used with the
/config and /out switches. Listing 8-14 shows a sample command used to generate the code
for a data access layer.

Listing 8-14. Running SubSonic
sonic.exe /config Website\Web.config \out Website\App_ Code\Generated

The resulting classes can be included with your project, which could be a website or a
class library. Originally, when SubSonic was created, it worked exclusively with ASPNET 2.0
websites because it leveraged the Build Provider model, which only works with websites. To
extend the reach of the generated code, the ability to generate the classes to source files was
added. Limiting the code generation to the website prevented the data access layer from being
used as a dependency for other types of applications such as desktop and console applica-
tions. Several developers also did not feel comfortable with the data access layer dynamically
changing as the database changed.

Note See the SubSonic website (http://www.subsonicproject.com) for the full documentation
covering the code generate command parameters as well as walkthrough videos.

SubSonic Templating

The templating system in SubSonic mirrors the templating system used by ASPNET. The for-
mat of the files looks much like the .aspx markup files, but instead of generating HTML, it
generates code for your data access layer. Figure 8-4 shows a sample template that is used to
generate a class.

(CS_ClassTemplate.aspx
Server Objects & Events -
1 k%é Page Language="C#" 3>
2i <%@ Import namespace="SubSonic.Utilities"3>
<%@ Import Namespace="SubSonic" %>

4E <%

5 //The data we need

8 string providerName = "#PROVIDER#":

7 string tableName = "#TABLE#";
TakbleSchema.Table tkl = DataService.GetSchema (tableg
DataProvider provider = DataService.Providers[prov]

10 LanguageType lang = Languagelype.CSharp;

12 TableSchema.TableColumnCollection cols = tbl.Columy

13 string classMName = tbl.ClassName;

14 string thisPE = tbl.PrimaryEey.PropertylName;

15 string varPE = tbl.PrimaryEey.ArgumentName;

16 string varPEIype = Utility.GetVariableType (tkbl.Prig

SRR 3

18! //Generated on <%=DateTime.Now.ToString() %> by <3¥=Env]

Figure 8-4. SubSonic class template

243

http://www.subsonicproject.com

244

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

The .NET framework does not provide the facilities to process these template files
except as a part of the ASPNET runtime. To make these templates work for code generation
in SubSonic, a parser and code processor was created for the project. It reads template files
embedded within the assembly, and parses, processes, and generates the output code, which
is then saved out to source files. All of the code to create working code from the templates is
included with the source code download so that you can adjust it to your needs. You can also
specify an alternative location for your own templates if you do not want to use the embedded
templates. The /templateDirectory parameter is used to override the standard templating. To
process the templates with values from the “outside world,” some placeholders are replaced
while parsing and processing the templates. In Figure 8-3, you can see the providerName and
tableName variables are set to #PROVIDER# and #TABLE#, which are placeholders that are
replaced in the early steps of template processing. These variables are used throughout the
rest of the template when the code is generated.

The advantages of emulating the .aspx template processing is that it supports not only
placeholder replacement, but also loops. Listing 8-15 shows a loop within the class template
that is used to generate all of the properties matching the columns from the database table.

Listing 8-15. Loop in Template for Table Properties

<%
foreach(TableSchema.TableColumn col in cols){
string propName = col.PropertyName;
string varType = Utility.GetVariableType(col.DataType, col.IsNullable, lang);
%>
[XmlAttribute("<%=propName%>")]
public <%=varType%> <%=propName%>

{
get { return GetColumnValue[<]<%= varType%>[>]("<%= col.ColumnName %>"); }
set
{
MarkDirty();
SetColumnValue("<%=col.ColumnName %>", value);
}
}
<%
}

%>

The properties generated for each table class will conform to the template in Listing 8-15,
which includes calling the MarkDirty method. That simple call is something that could be a
tedious detail if all of the code were written manually. Here, calling MarkDirty is automatic so
that it is reliably called each time the value on a property is changed. This example is from the
standard template, but you could change it to check whether the new value is different from
the current value and only call MarkDirty as appropriate. If you wanted to do so now, you
could copy the standard templates to your own templates directory and adjust this template
to look like Listing 8-16.

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

Listing 8-16. Adjusted Template for Table Properties

<%
foreach(TableSchema.TableColumn col in cols){
string propName = col.PropertyName;
string varType = Utility.GetVariableType(col.DataType, col.IsNullable, lang);
%>
[XmlAttribute("<%=propName%>")]
public <%=varTypek> <%=propNamek>
{
get { return GetColumnValue[<]<%= varType%>[>]("<%= col.ColumnName %>"); }
set
{
if (!GetColumnValue[<]<%= varType%>[>]("<%= col.ColumnName %>") w»
.Equals(value)) {
MarkDirty();
SetColumnValue("<%=col.ColumnName %>", value);

}
<k
}

%>

Now the class will only be marked dirty when a property value changes. Because anything
in the template can be changed, you could make many more changes. The code generated
from SubSonic also leverages partial classes, which are commonly used for ASPNET page
code-behind files.

Note SubSonic works well to generate code that is very consistent so that the MarkDirty method is
always called when a property value is changed. Similarly, you can use the Spring Framework to do what is
called dependency injection to add similar behavior to your methods and properties without generating the
code or even recompiling your existing code. (See http://www.springframework.net.)

Partial Classes

Opening up a class for extensibility can be done with partial classes. Such a feature is very
helpful when much of the code is generated. The generated files can remain separate from the
manually edited files so that your changes are not lost when you generate updates to the code.
Each of the classes that the SubSonic generator creates is marked as a partial class. If you want
to add functionality to the generated classes, you can create a new partial class with additional
methods and properties. Assume you have a table called Person that has a couple of fields
named FirstName and LastName. When the Person class is generated with SubSonic, you will
get properties for these table columns. You could create a partial class to add a property called
FullName as shown in Listing 8-17.

245

http://www.springframework.net
http://www.springframework.net

246

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

Listing 8-17. FullName Property

namespace Chaptero8.SubSonicDAL

{
public partial class Person : ActiveRecord<Person>
{
/// <summary>
/// FirstName and LastName combined
/// </summary>
public string FullName {
get {
return this.FirstName + " " + this.LastName;
}
}
}
}

With the FirstName and LastName properties already defined, you can access them as a part
of the same class despite the fact that they are defined in another source file. You can also add a
method to provide behavior that SubSonic does not provide natively. One standard method is
the FetchByID method, which takes the primary key of the target table. It simply queries the
database for the single record. The FetchByID method is defined in the PersonController class.
What you could do is add caching behavior to the class with a nearly identical method signature.
Instead of just passing in the ID parameter, you will add a Boolean value called cached. When it is
true, it will use caching as shown in Listing 8-18.

Listing 8-18. FetchByID with Caching

namespace Chapter08.SubSonicDAL

{
public partial class PersonController
{
public PersonCollection FetchByID(object ID, bool cached)
{
if (!cached)
{
return FetchByID(ID);
}

string cacheKey = (typeof(Person)).ToString() + "-" + ID;
Cache cache = HttpRuntime.Cache;
if (cache[cacheKey] != null) {

return cache[cacheKey] as PersonCollection;

}

PersonCollection coll = new PersonCollection().Where =
(Person.Columns.ID, ID).Load();

CHAPTER 8 " GENERATED DATA ACCESS LAYER

cache.Insert(cacheKey, coll, null,
DateTime.Now.AddMinutes(5), TimeSpan.Zero);
return coll;

Caching the Person record in this way may eliminate a bottleneck in your application, but
you will want to also ensure that as a Person record is updated, it is removed from the cache.
The ClearCachedItemin Listing 8-19 takes care of removing the item from the cache.

Listing 8-19. ClearCachedItem Method

public void ClearCachedItem(object ID)

{
string cacheKey = (typeof(Person)).ToString() + "-" + ID;
Cache cache = HttpRuntime.Cache;
cache.Remove(cacheKey);

}

Each time you call into the Insert and Update methods, you can ensure the
ClearCachedItem method is called. Adding functionality in this way is a great way to optimize
the application using this data access layer.

Query Tool

SubSonic uses a built-in query tool that generates the SQL used to get, save, and delete data in
the database. This query tool was developed long before the LINQ technology was released as
a Community Technology Preview (CTP), yet it has a significant amount in common.

The query tool uses a class named Query. It is constructed through a series of calls from
many methods that refine the query. The goal is to allow the C# code to look much like a
query written with SQL. Listing 8-20 shows an example method that loads all Person records
by LocationID.

Listing 8-20. FetchPersonsByLocationID Method

public PersonCollection FetchPersonsBylLocationID(object LocationID)
{
return new PersonCollection().
Where(Person.Columns.LocationID, LocationID).
OrderByAsc(Person.Columns.LastName).Load();

There are a couple of important details about the FetchPersonsByLocationID method. The
first detail is that the method is completely type safe. A strong reason for using Typed DataSets
is for type safety, but because the code generated by SubSonic is based directly on the data-
base, it automatically creates type-aware code. And in this method the call to the Where
method could use a literal string, but instead the constant defined for the LocationID column
is used.

247

248

CHAPTER 8 " GENERATED DATA ACCESS LAYER

The second detail is the fact that the query is completely constructed transparently by the
query tool using the Person table with the LocationID column. It is extremely easy to write this
query in C# with additional refinements as they are needed. The resulting query constructs a
parameterized query that will be tuned nicely by SQL Server as the query is used repeatedly.

Scaffolding

One last major benefit to a generated data access layer is the ability to automatically hook up a
scaffolding system to the generated code. Scaffolding is a set of interfaces that you can use to
add sample data to your database without writing a single line of code. Many developers find
this very useful, especially when the scaffolding is intelligent about relationships among
tables. SubSonic includes an automatic scaffolding system that was inspired by work done on
Ruby on Rails, a popular web framework built on the Ruby scripting language. SubSonic actu-
ally borrows several concepts from Ruby on Rails.

For SubSonic, you can use the AutoScaffold page that is in the SubSonicCentral website,
which is a part of the downloadable source code. You can copy this page and the dependen-
cies to the administrative section of your own website, and it will give you an interface for your
database. Figure 8-5 shows the AutoScaffold page editing the Person table.

& subSonic AutoScaffold - Mozilla Firefox = |G]

File Edit View History Bookmarks Tools Help

@ - & EJ Tjﬁ | L1 http://localhost:49978/ Website/Admin/ AutoScaffold.aspx B e 5 |G]' Google

SUbSO"iC(.) SubSonic Edito

Home AutoScaffold

Provider

Chapter0s [=] Person

Tables | Add

Location

(— ID First Name Last Name Location Creation Modified

o Edit 1 John Doe Milwaukee 6/11/2007 12:00:00 AM 6/11/2007 12:00:00 AM

Refresh Providers Edit 2 Joe Public Milwaukee 6/11/2007 12:00:00 AM 6/11/2007 12:00:00 AM

Edit 3 Jane Doe Milwaukes 6/11/2007 12:00:00 AM 5/11/2007 12:00:00 AM
Copyright @ 2006-2007 SubSonic Project. All rights reserved
Done al

Figure 8-5. AutoScaffold page

While the AutoScaffold page will not be perfect, as the sole editor for your application it
does provide automatic access to your data with very minimal work. And as you update your
database and regenerate the data access layer, the AutoScaffold page will adapt to match the
changes. No effort will be necessary on your part to keep it up to date.

In addition to simply wrapping an editor around tables, the AutoScaffold system is aware
of relationships as well. The Person table has a foreign key reference to the Location table. This
simple reference is enough for the AutoScaffold page to provide a drop-down list to select a
location while editing a Person record. Figure 8-6 shows a Person record while in edit mode.

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

& subSonic AutoScaffold - Mozilla Firefox (== ==

File Edit View History Bookmarks Tools Help

@D -@

SubSonic<®>

Home AutoS

2} | [http://localhost49978/ Website/Admin/ AutoScaffold.asps?id=1 Bl % % |G-

SubSonic Editor

Provider

Chapterd [=] AutoScaffold

et | Add | | Save \ | Return | | Delete ‘
Lacation w1 1

First Name |jphn

m,

Person

Refresh Providers Last Name |Dae

Location {nfilwaukee x|
Creation | Boston v 2007 -

benvey Wed Thu Fri Sat
Los Angeles
Miami L
ae 9 o 11 12
15 18 17 18 19
20 21 22 23 24 25 26 2
o =i =2 S = -

Done (+] I

Figure 8-6. Editing a Person record with location reference

With all of the features that SubSonic offers, you should be able to get up and running
very quickly. The generated data access layer and development experience made possible by
SubSonic is dramatically different from what you get with Typed DataSets, which also generate
a great deal of code but are extremely rigid and difficult to update as the database changes. As
you start building an application and as changes happen, you should be able to adapt with
ease. When you add a new column to a database, you can simply run the generate command
to update your data access layer. And with partial classes and the code generating templates,
you can easily modify the code generation process to fit your unique needs.

Bling

Another code generator available for ASPNET is Bling, which builds on the LINQ technology
that is a part of the .NET 3.5 release. LINQ stands for Language Integrated Query, and it extends
the C# language. It essentially turns your application into an in-memory database, as you are
able to query not only databases, but also collections of objects using syntax that is very similar
to SQL.

The Blinq project is a prototype created as a sandbox project on the ASPNET website
(http://www.asp.net). The tool does not simply generate the classes for the data access layer.
It actually generates a complete website with pages and a default theme. It is meant to act as a
starting point for new projects.

249

http://www.asp.net

250

CHAPTER 8 ©° GENERATED DATA ACCESS LAYER

COMMON FOLDER ADDITIONS

SubSonic and Bling are tools that you can use purely for their scaffolding features, if not for your whole data
access layer. You can place these tools in your Common folder in the Tools folder (D: \Projects\Common\
Tools\Code Generators).Bling will be installed in your Program Files folder, while you can unzip the
SubSonic tools and assemblies into a folder you can reference from active projects.

Because the project references LINQ, it should generate optimized queries at runtime,
as LINQ has been finely tuned to work with SQL Server. LINQ also works with other databases
so long as they have LINQ provider implementation. The specific part of LINQ that queries
databases is DLINQ, while XLINQ queries XML. See the MSDN documentation for a full intro-
duction and primer to LINQ technologies. Here, I will focus on how to use Bling, what features
it offers, and how you can leverage it to build a real-world application.

To get started, you will need to download Blinq from the ASPNET website. It is located in
the sandbox section. It requires LINQ support, so you will need either the LINQ CTP or a pre-
view of Visual Studio 2008, codename Orcas. Once you have Blinq installed, you can run the
command in Listing 8-21 to generate a Bling-powered website.

Listing 8-21. Bling Generate Command

"C:\Program Files\Microsoft ASP.NET\Bling\bling.exe" /l:cs /server:.\SQLEXPRESS =
/database:Chapter08 /namespace:Chapter08.BlingDAL /t:$(BlinqTmpDir) /f

The Blinq utility can generate code for C# or VB with the /1 switch. The value will be cs
or vb with C# as the default output language. The /server and /database switches specify the
server and database and assume they should use a trusted connection. The command in
Listing 8-21 connects to a local SQL Express database and the Chapter08 database. The
/namespace switch defines the namespace that the generated code will be placed under. The
/t switch specifies the target directory where all of the files will be created. The file switch, /f,
forces the existing file to be replaced when the command is run again.

The sample database used for the following example has the same structure that was used
for the SubSonic samples. It simply includes a Person and Location table with a foreign key
reference between them. The files created by running the Blinq utility are shown in Figure 8-7.
And Figure 8-8 shows the website, which features a scaffolding system much like the SubSonic
project does.

And again, you may not expect an end user to use this interface, but you can use it to
enter the initial sample data as you develop the application. What you want to take away from
this generated website is the code placed in the App _Code folder as well as the markup in the
pages that provide access to the data.

The pages themselves have virtually no code. Everything is done with markup declarations
with databound controls and ObjectDataSource references. These pages work well as a reference
when you are working on your custom pages. Listing 8-22 shows the ObjectDataSource declara-
tion used for the Person table.

CHAPTER 8

File Falder

ASP.NET Server Page
2,86 KB

Bin =

214 KB

MName Date modified Type Size
App_Browsers | App_Code
§ File Folder l File Folder
T Default.aspx

ASP.MET Server Page

| 2 453 bytes

Locations.aspx 3 MasterPage.master
SP.NET Server Page ZIZ55| ASP.NET Master Page
E ——] 134 KB
MNewlocation.aspx = NewPerson.aspx
SP.NET Server Page = — | ASP.NET Server Page
——] 213 KB
Persons.aspx Web.Config

AML Configuration File

H App_Themes
File Folder
—| LocationDetail.aspx
ASP.NET Server Page
1.74 KB

Source file

MasterPage.master.cs

PersonDetail.aspx
ASP.MET Server Page
234 KB '

*J WEb-j‘E?’?z:MﬂJ
T ’ P

Figure 8-7. Bling-generated files

GENERATED DATA ACCESS LAYER

. & Persons - Mogilla Firefox

Chapter08 > Persons

[E=8 Eol |
File Edit View History Bookmarks Tools Help i
@~ - @ o [0 hpyllocshostSiayBlingWebsitePersonsaspr ||| & 4 [Gl=[6oogie &)

Persons 3
¥ Locations
[ID FirstName LastName LocationlD Creation
©6/11/2007 12:00:00 ©6/11/2007 12:00:00 View
Edit Delete 1 John Doe 2 AM AM Details
©6/11/2007 12:00:00 &/11/2007 12:00:00 View
Edit Delete 2 Joe Public 2 AM AM Details
/1172007 12:00:00 &/11/2007 12:00:00 View L4
Edit Delete 3 lane Doe 2 AM AM Details
Create New Person
Done [v]

Figure 8-8. Bling-generated website

Listing 8-22. ObjectDataSource for Person

<asp:0bjectDataSource ID="PersonsDataSource" runat="server"
TypeName="Chapter08.BlingDAL.Person"
DataObjectTypeName="Chapter08.BlingDAL.Person"
0ldValuesParameterFormatString="original {o}"
ConflictDetection="CompareAllValues"
SelectMethod="GetPerson"

InsertMethod="Insert"
UpdateMethod="Update"
DeleteMethod="Delete"
EnableCaching="True">

251

252

CHAPTER 8 ©© GENERATED DATA ACCESS LAYER

<SelectParameters>
<asp:QueryStringParameter QueryStringField="ID"
Name="ID"
ConvertEmptyStringToNull="False">
</asp:QueryStringParameter>
</SelectParameters>
</asp:0bjectDataSource>

The Person class created by Bling in the Chapter08.BlingDAL namespace includes the
GetPerson, Insert, Update, and Delete methods. The ID value that is used to query the data-
base for an individual record is set to be pulled from the query string.

The code generated by Blinq is placed in two source files, Chapter08.cs and
StaticMethods.cs, in the App_Code folder of the website. The name of the first source file
comes from the name of the database. You could pull these files out to a class library to make
them reusable from a central point as a dependency. What is so interesting about Blinq is how
simple and to the point the code is for working with the data. Listing 8-23 shows the GetPerson
method from the Person class.

Listing 8-23. GetPerson Method

public static Person GetPerson(Int64 ID) {
Chaptero8 db = Chapter08.CreateDataContext();
return db.Persons.Where(x=>x.ID == ID).FirstOrDefault();

}

The query is a single line. There is no stored procedure on the other end. The LINQ sys-
tem creates all of the necessary SQL and uses it to get the data and populate the Person object.
That is all there is to it! The LINQ query simply matches the ID column with the ID value
passed into the method. Another method, GetPersonsByLocation, is a little more complex
because it handles the relationship between the Person and Location tables. It is shown in
Listing 8-24.

Listing 8-24. GetPersonsByLocation Method

public static IQueryable<Person> GetPersonsBylLocation(Int64 ID) {
Chaptero8 db = Chapter08.CreateDataContext();
return db.Locations.Where(x=>x.ID == ID).SelectMany(x=>x.Persons);

}

The GetPersonsBylLocation query takes the ID for a Location, and from there it selects
multiple Person records. As you can see, there is some query chaining happening here. This is
going to become a familiar coding style as you use LINQ more and more in your work. The
results from one query can be passed through another query to filter the final result. And
while you may think the query appears to be inefficient, you will be pleasantly surprised that
the inner workings of the LINQ runtime environment handle several optimizations that speed
up your queries while allowing you to write code that is more readable to you.

I'will get into LINQ a great deal more in Chapter 10 with a series of examples that will
explain what is going on here in more detail.

CHAPTER 8 " GENERATED DATA ACCESS LAYER

Summary

In this chapter, you saw how code can be generated with build providers as well as a couple of
powerful utilities that generate new source files. You should now understand how you can fully
leverage an automatically generated data access layer, saving the time you would normally
spend writing all of the code while still retaining the ability to extend the generated code
through templating and partial classes.

253

CHAPTER 9

Deployment

The largest impediment to improving the performance of an application is the cost of
deployment. This process is associated with a certain amount of risk because it involves
changing the production environment in a way that could potentially cause downtime. As a
result, it requires a good deal of quality assurance testing as well as the resources necessary to
push out the release, which may be done after hours to minimize the impact on the users of
the application. This all adds up to a costly process, which may be enough to delay perform-
ance improvements until a release window that may be weeks or months away. With the right
deployment model in place, the risk and cost can be greatly minimized so that timely updates
can be pushed to the production environment.

This chapter covers the following:

* Automation with MSBuild

* Deploying the website

* Deploying the database

e Automating configuration changes
* Automating database updates

* Custom configuration sections

There is a right way and a wrong way to deploy your application releases. A few years ago I
worked with a developer who would create a backup of the production database, download it,
restore it locally, and make changes to the database. Then he would create a new backup,
upload it, and restore it on the server. There are clearly some problems with this process, the
memory of which makes me smile and cringe at the same time. I am glad that I have never
had to follow this same process. There are far better ways to push out updates with the tools
available today.

Prior to working with SQL Server, many developers hooked up Microsoft Access databases
to classic ASP applications by uploading a copy of the database file to the server where the web-
site could directly access the file. Because Microsoft Access was not typically installed on the
server, a developer would take the application offline, pull down the database file, update it, and
then put it back in place and bring the application back online. This old process may explain
why the developer in the previous example used a very similar process with a SQL Server data-
base. He was just doing what he was always doing, even though there is a better way.

While some of these old practices are becoming rare, I continue to see changes carried out
manually from environment to environment. If all that was changed was adding columns and

255

256

CHAPTER 9 " DEPLOYMENT

perhaps adding an index, the steps are easy enough to carry out manually in each environment,
so these developers do so each time without ever creating a script to carry out these changes. A
specific example of such a change is altering a column from varchar (20) to varchar(25). For
small databases, such a minor change may be acceptable, but over time some changes may be
forgotten, and the database environments become inconsistent. With a little preparation mixed
with some automation, you can ensure that your environments remain consistent.

Automation with MSBuild

Updating the database with minor changes continually can be a tedious and repetitive job,
but it has to be done. Fortunately, the job can be automated with minimal effort. The automa-
tion utility MSBuild is the standard build tool for the .NET platform. It is a scripting system
that uses XML to define a series of build targets that include a set of tasks. The targets are
chained together using dependencies. Visual Studio provides IntelliSense support for the
MSBuild scripts that will help you get started once you know the basics.

MSBuild scripts can do nearly anything. And if a standard task does not do what you
need, you can either use the Exec task to call out to a command line to run another utility or
create a custom task. But you do not want to go too far with MSBuild scripts. I follow three
overriding rules when I work with MSBuild scripts.

First, I keep the work that the script does to the bare minimum. It can be tempting to
automate absolutely everything, but you will end up spending more time maintaining the
script instead of getting work done on the application, which should be your primary concern.

Second, I only automate the time-consuming work that I find myself doing over and over.
The tasks that take several minutes multiple times a day are ideal automation candidates. It
may take me a while to add the functionality to the script, but it will ultimately add up to sav-
ing many hours of work for each release.

Finally, I keep the script’s version controlled with the solution. As the build process
changes over time, you will update the build script to adapt to those changes. These adjust-
ments should stay current with the rest of the application in source control. And as you
produce releases, you will be able to pull an older version from source control and build it
even if the build process has changed since the release was deployed. With release branching
in your source control system, you can support a production version of the application while
development continues on the main branch.

RELEASE BRANCHING

There are many ways to manage projects in source control. With modern source control systems such as
Microsoft Team Foundation Server and Subversion, you can create branches to isolate changes on a project.
You can create branches for each developer, bug fix, or any other reason you choose. However, the branching
model that larger teams settle on eventually is release branching. Development is carried out on the main
branch (trunk), and as releases are prepared, a new branch is created for the release so that it is isolated
from continuing development. The application is then pushed from this release branch. Later, when the
deployed application needs updates, the changes are made on the branch and merged back to the trunk

as necessary.

CHAPTER 9 ©" DEPLOYMENT

An MSBuild script is an XML document that is made up of three primary elements:
PropertyGroup, ItemGroup, and Target, which are all held in the root element, Project. This is
the basic structure for every MSBuild script. The PropertyGroup element defines properties
that are used throughout the rest of the script. The ItemGroup element defines collections of
properties. The Target element contains multiple tasks such as MakeDir and Copy. Listing 9-1
shows the skeleton of a basic MSBuild script.

Listing 9-1. Skeleton of a Basic MSBuild Script

<?xml version="1.0" encoding="utf-8"?>

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>
<Configuration Condition=" '$(Configuration)' ==
<PackageName>MyProject</PackageName>
<DatabaseDirectory>Database</DatabaseDirectory>
<WebsiteBinDirectory>Website\bin</WebsiteBinDirectory>
</PropertyGroup>

noa [T

>Debug</Configuration>

<ItemGroup>
<!-- Collection Definitions -->
</ItemGroup>

<Target Name="Build">
<!-- Build Tasks -->
</Target>

</Project>

While the standard tasks included with MSBuild cover many common tasks, they do not
cover everything you will need to automate your build and deployment work. One task in par-
ticular is the Zip task, which I use frequently to create collections of files so they can be easily
archived and moved from environment to environment. Fortunately, there is an open source
project called MSBuild Community Tasks that includes a Zip task among many other useful
tasks (see the sidebar “MSBuild Community Tasks”).

MSBUILD COMMUNITY TASKS

MSBuild can be extended by creating custom tasks. An open source project that has become the gathering
point for custom MSBuild tasks is the MSBuild Community Tasks project, which continually adds more cus-
tom tasks to the already extensive list (see http://msbuildtasks.tigris.org/). Tasks such as Zip

FxCop, and Prompt are a few examples that add key functionality to this scripting environment.

257

http://schemas.microsoft.com/developer/msbuild/2003
http://msbuildtasks.tigris.org
http://schemas.microsoft.com/developer/msbuild/2003

258

CHAPTER 9 " DEPLOYMENT

It is useful to note that some project files are also MSBuild scripts. The project file for a
class library is an MSBuild script, and you can place tasks in the BeforeBuild and AfterBuild
targets shown in Listing 9-2. These targets are commented out initially, but you can uncom-
ment them. You can then place whatever tasks you want in them to be run before or after the
build process.

Listing 9-2. BeforeBuild and AfterBuild Targets

<Target Name="BeforeBuild">

<Message Text="#it# BeforeBuild ###" Importance="high"></Message>
</Target>
<Target Name="AfterBuild">

<Message Text="#it# AfterBuild ###" Importance="high"></Message>
</Target>

You can also use the PreBuildEvent and PostBuildEvent properties, which work more like
a batch file with a series of commands. These properties are empty by default, but you can call
out to the command line. The example in Listing 9-3 runs the MSBuild utility with parameters
that specify a script in the solution directory.

Listing 9-3. PreBuildEvent and PostBuildEvent Properties

<PropertyGroup>
<PreBuildEvent>%25windir%25\Microsoft.NET\Framework\v2.0.50727\MSBuild.exe w=
"$(SolutionDir)build.proj" /t:PreBuild /p:Configuration=$(ConfigurationName)
</PreBuildEvent>
<PostBuildEvent>%25windir%25\Microsoft.NET\Framework\v2.0.50727\MSBuild.exe w=
"$(SolutionDir)build.proj" /t:PostBuild /p:Configuration=$(ConfigurationName)
</PostBuildEvent>
</PropertyGroup>

With the details about the individual projects managed independently, you can create a
build script at the solution level that will simply use the project files, calling the Build target.
This is done with the MSBuild target. With the standard solution layout—that is, with the solu-
tion file in the root folder with projects in subfolders—it is common to place a file called
build.proj in the root folder, which coordinates the automated processes.

The main build script, build.proj, will primarily handle the build process, but it can also
clean up the project, and run unit tests and other automated tasks. The sample in Listing 9-4
shows a script that uses the Prompt task from the MSBuild Community Tasks project to get a
response from the user after printing a series of options. Doing so makes the build script work
interactively with the user.

Listing 9-4. Sample Main Build Script (build.proj)

<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<NoWarn Condition=""$(NoWarn)'!=""">$(NoWarn),</NoWarn>

http://schemas.microsoft.com/developer/msbuild/2003
http://schemas.microsoft.com/developer/msbuild/2003

CHAPTER 9 ©" DEPLOYMENT

<NoWarn>$(NoWarn)MSB4078</NoWarn>

<Configuration Condition=" '$(Configuration)' ==
<ApplicationName>Chapter09</ApplicationName>
<ApplicationVersion>v1.0</ApplicationVersion>

>Release</Configuration>

<Interactive Condition="'$(Interactive)' == ''">False</Interactive>

</PropertyGroup>
<Import Project="$(MSBuildExtensionsPath)\MSBuildCommunityTasks\ w»
MSBuild.Community.Tasks.Targets" />
<Target Name="Clean">
<Message Text="Running Clean Target..." Importance="high"></Message>
<MSBuild Projects="ClassLibrary\ClassLibrary.csproj"
Targets="Clean" ContinueOnError="false"></MSBuild>
</Target>
<Target Name="PreBuild">
<Message Text="No PreBuild Tasks"></Message>

</Target>
<Target Name="Build">
<Message Text="Running Build Target..." Importance="high"></Message>

<MSBuild Projects="ClassLibrary\ClassLibrary.csproj"
Targets="Build" ContinueOnError="false"></MSBuild>
</Target>
<Target Name="PostBuild">
<Message Text="No PostBuild Tasks"></Message>
</Target>
<Target Name="RunTests" DependsOnTargets="Build">
<Message Text="No Tests Tasks"></Message>
</Target>
<Target Name="Rebuild" DependsOnTargets="Clean;PreBuild;Build;PostBuild">
<Message Text="Full Rebuild Successful!" Importance="high"></Message>
</Target>
<Target Name="FullBuild"
DependsOnTargets="Clean;PreBuild;Build;PostBuild;RunTests">
<Message Text="Full Build Successful!" Importance="high"></Message>
</Target>

<Target Name="PromptForTarget" Condition="'$(Interactive)' == 'True'">

<Message Text=" "></Message>

<Message Text="1) Clean" Importance="high"></Message>
<Message Text="2) PreBuild" Importance="high"></Message>
<Message Text="3) Build" Importance="high"></Message>
<Message Text="4) PostBuild" Importance="high"></Message>
<Message Text="5) RunTests" Importance="high"></Message>
<Message Text="6) Rebuild" Importance="high"></Message>
<Message Text="7) FullBuild" Importance="high"></Message>

259

260 CHAPTER 9 " DEPLOYMENT

<Prompt Text=" Enter a target:">
<Output TaskParameter="UserInput" PropertyName="SelectedTarget"/>
</Prompt>

<Message Text="Selected target is $(SelectedTarget)" Importance="high">
</Message>

<MSBuild Targets="Clean"

Projects="build.proj" Condition=""'$(SelectedTarget)' == '1'"></MSBuild>
<MSBuild Targets="PreBuild"
Projects="build.proj" Condition=""'$(SelectedTarget)' == '2'"></MSBuild>
<MSBuild Targets="Build"
Projects="build.proj" Condition="'$(SelectedTarget)' == '3'"></MSBuild>
<MSBuild Targets="PostBuild"
Projects="build.proj" Condition=""'$(SelectedTarget)' == '4'"></MSBuild>
<MSBuild Targets="RunTests"
Projects="build.proj" Condition=""'$(SelectedTarget)' == '5'"></MSBuild>
<MSBuild Targets="Rebuild"
Projects="build.proj" Condition=""'$(SelectedTarget)' == '6'"></MSBuild>
<MSBuild Targets="FullBuild"
Projects="build.proj" Condition=""'$(SelectedTarget)' == '7'"></MSBuild>
</Target>
</Project>

You cannot simply double-click an MSBuild script to run it, so it is helpful to create a
script that can be clicked in Windows Explorer, such as RunBuild.cmd shown in Listing 9-5.

Listing 9-5. RunBuild.cmd

Zwindir’\Microsoft.NET\Framework\v2.0.50727\MSBuild.exe build.proj w=
/t:PromptForTarget /p:Configuration=Release;Interactive=True
Pause

The MSBuild utility takes several parameters. Specifically, the /t switch specifies a semi-
colon-delimited list or targets, while the /p switch specifies a series of properties that the
script will be able to use. The command in Listing 9-5 calls a target named PromptForTarget
and sets the Configuration property to True and the Interactive property to True. You can get
a full listing of command-line options for MSBuild by running MSBuild \? from the Visual
Studio command prompt.

CHAPTER 9 ©" DEPLOYMENT

Deploying the Website

Moving a website from your development environment to a server can be done in many ways.
The most prescribed way of doing so has been the xcopy command: a standard Windows util-
ity for the command line that has many switches, giving you a great deal of control over the
copying process. Listing 9-6 shows a simple command that copies all of the files from the
source directory to the destination directory. If there are already files in the destination folder,
it will only replace the destination file if the source file is more current.

Listing 9-6. Using xcopy
xcopy /E/D/Y "D:\SourceDir" "\\Serveri\DestinationDir"

While using xcopy may get the job done some of the time, you may not always want to
blindly copy files forward. The xcopy command does nothing to ensure that old files are
removed with each deployment. It also does not adjust the configuration for the destination
environment. To handle these requirements, you can make use of Web Deployment Projects.

Website Deployment Projects

Web applications created with the ASPNET 2.0 website model do not use project files like class
libraries. This new model made many new features possible, such as page-level compilation,
but it also eliminated a few features we had with .NET 1.1 projects. Without a project file, you
cannot run actions automatically before and after builds, and you also cannot manage refer-
ences and resources in the same way. The Web. config file handles some details, but not
everything. Managing ASPNET websites inside of a solution helps manage dependencies and
relationships with other projects in the solution, but ultimately you need a way to build a web-
site and prepare it for deployment. This is where Web Deployment Projects come in.

Web Deployment Projects are an extension to Visual Studio that must be installed as an
add-in. Once the add-in is in place, you can right-click a website in the Solution Explorer and
click the option Create Web Deployment Project, which will create a new project that includes
a single MSBuild script that Visual Studio can manage with a set of wizards.

WHERE TO GET WEB DEPLOYMENT PROJECTS

Web Deployment Projects can be found on the ASP.NET website (http://www.asp.net). Click the Down-
loads link at the top and look for the Web Deployment Projects section. That will take you to the page where
you can download the installer.

261

http://www.asp.net

262

CHAPTER 9 © DEPLOYMENT

Automating Configuration Changes

The most useful feature of Web Deployment Projects is the ability to modify the contents of
the Web.config file based on the targeted configuration. This is done on a section-by-section
basis. The project file is an MSBuild script that runs a sequence of tasks that leads it to read
the settings you put in place. Figure 9-1 shows the dialog window for inserting these settings.

Website_deploy Property Pages ‘E,’ rE=]

Configuration: | Active{Debug) ~ | Platform: |Active(Any CPU) v| I Configuration Manager...

(=) Configuration Properties
Compilation
... Output Assemblies Web.config file section replacements: [examples]

| Enable Web.config file section replacement

Provides a space for you to add the web.config section names and
the files containing the replacement values, Define entries as
sectionMame=filename separated by a semi-colon or a carriage
return. Mote that section names are case sensitive and the files can
only contain the relevant section,

Examples:
appSettings=appsettings.config;
cennectionStrings= connectstrings.config

|
placements

|| Use external configration source file

L =
) _ | Create an IS virtual directory for the output folder

["| Remove the App_Data folder from output location

0K H Cancel H Apply

Figure 9-1. Configuration section replacements

The replacement section settings are unique for each configuration. A standard project in
Visual Studio starts out with just the Debug and Release configurations. You can create a new
one for each of your target environments, such as QA (Quality Assurance), Staging, and Pro-
duction. These unique environments surely have different values for connection strings and
perhaps other settings as well.

The sources for your replacement sections must exist under the website that is being modi-
fied. The original Web. config file will not be changed. The updated copy of the Web. config file is
placed in the output directory along with all of the other files for the website. To create a new
configuration, you can select the New option from within the Configuration Manager, as shown
in Figure 9-2.

With all of your configurations defined, you can open the Property Pages for the Web
Deployment Project. You can open the Property Pages from the context menu from the
Web Deployment Project. The Deployment tab on the left side is where the configuration
section replacement options are. For the Production configuration, you could create a folder
called Config in the website and place a file named ConnectionStrings.Production.configin
that folder. Then you would check the box in the Property Pages to enable configuration sec-
tion replacements with the settings shown in Listing 9-7.

CHAPTER 9 ©" DEPLOYMENT

Configuration Manager 7
Active solution configuration: Active solution platform:

Staging v] |Mixed Platforms v|
Debug :

Production Ilploy].

QA I Platform Build

Release

Stagin Any CPU

| < New,] || MET £

RJ |
e —arayrry- - Any CPU
Website_deploy Staging Iz‘ Any CPU Iz‘

| Close

Figure 9-2. Creating a new configuration

Listing 9-7. Settings for Production Connection Strings
connectionStrings=Config\ConnectionStrings.Production.config;

You can place the configuration files anywhere you like in the website. Although you can
use whatever extension you like on the file, it is best to use the standard . config extension
because it is a protected extension: it is specifically blocked so that the web server will not
serve it up to a user. The contents of the file holding the replacement section should just
contain the single section, as is shown in Listing 9-8.

Listing 9-8. ConnectionStrings.Production.config

<?xml version="1.0"?>
<connectionStrings>
<add name="chpt09" connectionString="Data Source=ProductionDB\SQL2005; w=
Initial Catalog=Chapter09;Integrated Security=True"
providerName="System.Data.SqlClient" />
</connectionStrings>

When the Web Deployment Project is compiled with the Production configuration, it will
replace the connectionStrings section with the contents in Listing 9-8. When it is finished
building, you can confirm that it has been replaced by looking in the Production folder under
the directory for the Web Deployment Project. It will create a folder for each configuration just
like a typical project.

263

264

CHAPTER 9 © DEPLOYMENT

Another useful option is the configSource attribute, which is a feature of all NET applica-
tion configuration files that allows you to refer to an external file for the contents of a section.
This can be done automatically by checking the second option below the text box, as shown in
Figure 9-3.

[¥] Enable Web.config file section replacement

ection replacements: [examples]

[| Enforce matching section replacements

[¥] Use external configration source file

Figure 9-3. Using an external configuration source file

Having the connection string settings in a separate file outside of the Web.config file for a
production environment could allow you to safely isolate the connection strings so that you
can always drop a new Web. config file on top of an older copy with each deployment without
overwriting the external file. Doing so could allow you to lock down the Config folder so that
only a limited group of users can read and modify those files. You could give the user running
the worker process for the website, typically Network Service, permission to read the configu-
ration files while local administrators can modify those files.

PostBuild Deployments

A shortcoming of the Web Deployment Projects is the fact that you must build each time you
want to create a new deployment with the adjusted configuration. Moving an application from
QA to staging and finally to production requires building it once for each environment. It
would be better to build it once, place the files in a drop location, and generate your environ-
ment-specific outputs from there. Fortunately, the task that handles the configuration section
replacements can be used outside of Web Deployment Projects, skipping the build process,
which only needs to be done once.

The task you want to use for your PostBuild deployments is called
ReplaceConfigSections. It is a custom MSBuild task included with the assemblies for the Web
Deployment Projects in an assembly called Microsoft.WebDeployment.Tasks.dll. You can cre-
ate a custom MSBuild script and include this custom task with the UsingTask directive. A
simple example of what this looks like is shown in Listing 9-9. The example looks very much
like the contents of the project file for a Web Deployment Project.

Listing 9-9. PostBuild Configuration Section Replacements

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<UsingTask
TaskName="ReplaceConfigSections"
AssemblyFile="$(MSBuildExtensionsPath)\Microsoft\WebDeployment\v8.0\ w

http://schemas.microsoft.com/developer/msbuild/2003
http://schemas.microsoft.com/developer/msbuild/2003

CHAPTER 9 ©" DEPLOYMENT

Microsoft.WebDeployment.Tasks.d1l1l"/>

<PropertyGroup>
<DeploymentDir>$(MSBuildProjectDirectory)\Website deploy\$(Configuration) w
</DeploymentDir>
<WDTargetDir>$(DeploymentDir)</WDTargetDir>
<ValidateWebConfigReplacement>false</ValidateWebConfigReplacement>
<UseExternallWebConfigReplacementFile>false w=
</UseExternallWebConfigReplacementFile>
</PropertyGroup>

<ItemGroup Condition=" '$(Configuration)' == 'Release’ ">
<WebConfigReplacementFiles Include="Config\ConnectionStrings.Release.config">
<Section>connectionStrings</Section>
</WebConfigReplacementFiles>
</ItemGroup>

<Target Name="Build">
<ReplaceConfigSections
RootPath="$(WDTargetDir)"
WebConfigReplacementFiles="@(WebConfigReplacementFiles)"
UseExternalWebConfigReplacementFile="$(UseExternalWebConfigReplacementFile)"
ValidateSectionElements="$(ValidateWebConfigReplacement)"
/>
</Target>
</Project>

The example in Listing 9-9 defines a replacement for the connectionStrings section
for the Release configuration. The attributes for RootPath, WebConfigReplacementsFiles,
UseExternalWebConfigReplacementFile, and ValidateSectionElements are all set by the
PropertyGroup and ItemGroup elements. The WebConfigReplacementsFiles attribute is a
collection of items. This example just defines a single section, but more could be added to
that collection by simply duplicating the existing ItemGroup definition, such as is shown in
Listing 9-10.

Listing 9-10. Multiple Replacement Sections

"o n

<ItemGroup Condition=" '$(Configuration)' == 'Release’ ">
<WebConfigReplacementFiles Include="Config\AppSettings.Release.config">
<Section>appSettings</Section>
</WebConfigReplacementFiles>
<WebConfigReplacementFiles Include="Config\ConnectionStrings.Release.config">
<Section>connectionStrings</Section>
</WebConfigReplacementFiles>
<WebConfigReplacementFiles Include="Config\Compilation.Release.config">
<Section>compilation</Section>
</WebConfigReplacementFiles>
</ItemGroup>

265

266

CHAPTER 9 " DEPLOYMENT

To manage the creation of these preconfigured deployment files, you can create a second
MSBuild script called deploy that will handle these PostBuild tasks. You will want to leave the
compilation work to the build.proj script while the deployment work is handled by another
script called deploy.proj. When the output from a project is prepared, the deployment script
will use the build script to ensure a Release build has been compiled. Then it will copy the
output of that build to where the Web Deployment Project can adjust Web. config using the
settings for the replacement sections. The full script in Listing 9-11 handles these tasks.

Listing 9-11. deploy.proj

<Project DefaultTargets="Build"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<UsingTask
TaskName="ReplaceConfigSections"
AssemblyFile="$(MSBuildExtensionsPath)\Microsoft\WebDeployment\v8.0\ w
Microsoft.WebDeployment.Tasks.d1l"/>

<Import Project="$(MSBuildExtensionsPath)\MSBuildCommunityTasks\ w»

MSBuild.Community.Tasks.Targets" />

<PropertyGroup>
< Environment Condition=
<Interactive Condition=""'

noa o

$(Environment)' == >QA</ Environment >

$(Interactive)' == >False</Interactive>
<WebDeploymentDir>Website deploy</WebDeploymentDir>

<SourceDeploymentDir>$(WebDeploymentDir)\Release</SourceDeploymentDir>
<DestinationDeploymentDir>$(MSBuildProjectDirectory)\Deployments\ w
$(Environment)</DestinationDeploymentDir>

<!-- Replacement Settings -->

<WDTargetDir>$(WebDeploymentDir)\$(Environment)</WDTargetDir>

<ValidateWebConfigReplacement>false</ValidateWebConfigReplacement>
</PropertyGroup>

noa eon

<PropertyGroup Condition=" '$(Environment)' == >
<UseExternalWebConfigReplacementFile>false</UseExternalWebConfigReplacementFile>
</PropertyGroup>
<PropertyGroup Condition=" '$(Environment)' == "QA' ">
<UseExternalWebConfigReplacementFile>false</UseExternalWebConfigReplacementFile>
</PropertyGroup>

<PropertyGroup Condition=" '$(Environment)' == 'Staging' ">
<UseExternalWebConfigReplacementFile>false</UseExternalWebConfigReplacementFile>
</PropertyGroup>

<PropertyGroup Condition=" '$(Environment)' == 'Production’ ">
<UseExternalWebConfigReplacementFile>true</UseExternalWebConfigReplacementFile>

http://schemas.microsoft.com/developer/msbuild/2003
http://schemas.microsoft.com/developer/msbuild/2003

CHAPTER 9 ©" DEPLOYMENT

</PropertyGroup>

<ItemGroup Condition=" '$(Environment)' == "QA" ">
<WebConfigReplacementFiles Include="Config\ConnectionStrings.QA.config">
<Section>connectionStrings</Section>
</WebConfigReplacementFiles>
</ItemGroup>
<ItemGroup Condition=" '$(Environment)' == 'Staging' ">
<WebConfigReplacementFiles Include="Config\ConnectionStrings.Staging.config">
<Section>connectionStrings</Section>
</WebConfigReplacementFiles>
</ItemGroup>
<ItemGroup Condition=" '$(Environment)' == 'Production' ">
<WebConfigReplacementFiles Include="Config\ConnectionStrings.Production.config">
<Section>connectionStrings</Section>
</WebConfigReplacementFiles>
</ItemGroup>

<Target Name="Build" Condition=" !Exists("'$(WebDeploymentDir)\Release') ">
<MSBuild Projects="build.proj" Targets="Build"
Properties="Configuration=Release"></MSBuild>
</Target>

<Target Name="InitDeployment" DependsOnTargets="Build">
<Delete Files="$(DestinationDeploymentDir)*** *"
Condition=" Exists('$(DestinationDeploymentDir)') "></Delete>
<MakeDir Directories="$(DestinationDeploymentDir)"
Condition=" !Exists('$(DestinationDeploymentDir)"') "></MakeDir>

<CreateItem Include="$(SourceDeploymentDir)*** *">
<Output ItemName="WebsiteFiles" TaskParameter="Include"/>
</CreateItem>

<Copy SourceFiles="@(WebsiteFiles)"
DestinationFiles="@(WebsiteFiles->'$(DestinationDeploymentDir)\ w
%(RecursiveDir)%(Filename)%(Extension)')" SkipUnchangedFiles="true"></Copy>

</Target>

<Target Name="PrepDeployment" DependsOnTargets="InitDeployment">
<ReplaceConfigSections
RootPath="$(DestinationDeploymentDir)"
WebConfigReplacementFiles="@(WebConfigReplacementFiles)"
UseExternalConfigSource="$(UseExternallebConfigReplacementFile)"
ValidateSectionElements="$(ValidateWebConfigReplacement)"

267

268 CHAPTER 9 " DEPLOYMENT

/>

<Message Text="See Output: $(DestinationDeploymentDir)"></Message>
</Target>
<Target Name="PromptForTarget" Condition="'$(Interactive)' == 'True'">

<Message Text="Select an Environment: "></Message>
<Message Text="1) QA" Importance="high"></Message>
<Message Text="2) Staging" Importance="high"></Message>
<Message Text="3) Production" Importance="high"></Message>

<Prompt Text=" Enter a target:">
<Output TaskParameter="UserInput" PropertyName="SelectedTarget"/>
</Prompt>

<Message Text="Selected target is $(SelectedTarget)"></Message>

<MSBuild Targets="PrepDeployment"
Projects="deploy.proj"
Properties="Environment=QA"
Condition=""$(SelectedTarget)' == '1'"></MSBuild>
<MSBuild Targets="PrepDeployment"
Projects="deploy.proj"
Properties="Environment=Staging"
Condition=""$(SelectedTarget)' == '2'"></MSBuild>
<MSBuild Targets="PrepDeployment"
Projects="deploy.proj"
Properties="Environment=Production”
Condition=""$(SelectedTarget)' == '3'"></MSBuild>
</Target>

</Project>

The script in Listing 9-11 supports three environments: QA, staging, and production. It
can be run with RunDeploy.cmd, which is shown in Listing 9-12.

Listing 9-12. RunDeploy.cmd

Zwindir’\Microsoft.NET\Framework\v2.0.50727\MSBuild.exe deploy.proj =
/t:PromptForTarget /p:Environment=0A;Interactive=True
pause

When RunDeploy.cmd is double-clicked in Windows Explorer, it will run the script, which
displays the three options for each of the environments. You can enter one of them, and it will
carry out the tasks to prepare that environment. Each selection simply specifies a different
value for the Environment property when calling the PrepDeployment target.

Before the PrepDeployment target is run it will run InitDeployment, which is set as a depend-
ency with the DependsOnTarget attribute. The InitDeployment target copies the contents of the

CHAPTER 9 ©" DEPLOYMENT

prebuilt website to the destination directory for the selected environment. But before it runs, it
also has a dependency on the Build target, which will only run if the prebuilt deployment direc-
tory does not exist. This prevents it from being built multiple times. The Build target calls the
build.proj script, which is shown in Listing 9-13.

Listing 9-13. build. proj

<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<NoWarn Condition=""$(NoWarn)'!=""">$(NoWarn),</NoWarn>
<NoWarn>$(NoWarn)MSB4078</NoWarn>
<Configuration Condition=" '$(Configuration)' ==
<ApplicationName>Chapter09</ApplicationName>
<ApplicationVersion>vi.0</ApplicationVersion>

>Release</Configuration>

<Interactive Condition="'$(Interactive)' == ''">False</Interactive>

</PropertyGroup>
<Import Project="$(MSBuildExtensionsPath)\MSBuildCommunityTasks\ w»
MSBuild.Community.Tasks.Targets" />
<Target Name="Clean">
<Message Text="Running Clean Target..." Importance="high"></Message>
<MSBuild Projects="ClassLibrary\ClassLibrary.csproj"
Targets="Clean" ContinueOnError="false"></MSBuild>
<MSBuild Projects="UnitTests\UnitTests.csproj"
Targets="Clean" ContinueOnError="false"></MSBuild>
</Target>
<Target Name="PreBuild">
<Message Text="No PreBuild Tasks"></Message>
</Target>
<Target Name="Build">
<Message Text="Running Build Target..." Importance="high"></Message>
<MSBuild Projects="ClassLibrary\ClassLibrary.csproj"
Targets="Build" ContinueOnError="false"></MSBuild>
<MSBuild Projects="Website deploy\Website deploy.wdproj"
Targets="Build" ContinueOnError="false"></MSBuild>
<MSBuild Projects="UnitTests\UnitTests.csproj"
Targets="Build" ContinueOnError="false"></MSBuild>
</Target>
<Target Name="PostBuild">
<Message Text="No PostBuild Tasks"></Message>
</Target>
<Target Name="RunTests" DependsOnTargets="Build">
<Message Text="No Tests Tasks"></Message>
</Target>
<Target Name="Rebuild" DependsOnTargets="Clean;PreBuild;Build;PostBuild">

n

n

269

http://schemas.microsoft.com/developer/msbuild/2003
http://schemas.microsoft.com/developer/msbuild/2003

270 CHAPTER 9 " DEPLOYMENT

<Message Text="Full Rebuild Successful!" Importance="high"></Message>
</Target>
<Target Name="FullBuild"

DependsOnTargets="Clean;PreBuild;Build;PostBuild;RunTests">

<Message Text="Full Build Successful!" Importance="high"></Message>
</Target>

<Target Name="PromptForTarget" Condition="'$(Interactive)' == 'True'">
<Message Text=" "></Message>
<Message Text="1) Clean" Importance="high"></Message>
<Message Text="2) PreBuild" Importance="high"></Message>
<Message Text="3) Build" Importance="high"></Message>
<Message Text="4) PostBuild" Importance="high"></Message>
<Message Text="5) RunTests" Importance="high"></Message>
<Message Text="6) Rebuild" Importance="high"></Message>
<Message Text="7) FullBuild" Importance="high"></Message>

<Prompt Text=" Enter a target:">
<Output TaskParameter="UserInput" PropertyName="SelectedTarget"/>
</Prompt>

<Message Text="Selected target is $(SelectedTarget)"></Message>

<MSBuild Targets="Clean" Projects="build.proj"

Condition=""$(SelectedTarget)' == "1'"></MSBuild>
<MSBuild Targets="PreBuild" Projects="build.proj"
Condition=""$(SelectedTarget)' == '2'"></MSBuild>
<MSBuild Targets="Build" Projects="build.proj"
Condition=""$(SelectedTarget)' == '3'"></MSBuild>
<MSBuild Targets="PostBuild" Projects="build.proj"
Condition=""$(SelectedTarget)' == '4'"></MSBuild>
<MSBuild Targets="RunTests" Projects="build.proj"
Condition=""$(SelectedTarget)' == '5'"></MSBuild>
<MSBuild Targets="Rebuild" Projects="build.proj"
Condition=""$(SelectedTarget)' == '6'"></MSBuild>
<MSBuild Targets="FullBuild" Projects="build.proj"
Condition=""$(SelectedTarget)' == '7'"></MSBuild>
</Target>
</Project>

The build.proj script also has a menu that is displayed when the RunBuild.cmd script is
used, which is shown Listing 9-14.

Listing 9-14. RunBuild.cmd

Zwindir’\Microsoft.NET\Framework\v2.0.50727\MSBuild.exe build.proj w=
/t:PromptForTarget /p:Configuration=Release;Interactive=True
pause

CHAPTER 9 ©" DEPLOYMENT

The seven options displayed by the menu are the typical build options you would expect.
When the deploy.proj calls the main build script, the configuration is set to Release, which
will cause the Build target to run the build for the Web Deployment Project to generate the
output to the Release folder. The Release folder is then used by the deploy.proj script to pre-
pare the selected environment.

Finally, the contents of the prepared output directory can be wrapped up into a zip file,
which can be moved to the destination environments more easily than a large set of files. This
can be done with the Zip task, which is a part of the MSBuild Community Tasks. First you need
to define the name of the zip file in the default PropertyGroup, as shown in Listing 9-15.

Listing 9-15. ZipFilename Defined

<ZipFilename>$(MSBuildProjectDirectory)\Deployments\$(Configuration).zip w
</ZipFilename>

Then the Zip task can be added to the end of the PrepEnvironment target. The Zip task
declaration is shown in Listing 9-16.

Listing 9-16. Zip Declaration

<CreateItem Include="$(DestinationDeploymentDir)*** *">
<Output ItemName="ZipFiles" TaskParameter="Include"/>
</Createltem>

<Zip Files="@(ZipFiles)"
ZipFileName="$(ZipFilename)"
WorkingDirectory="$(DestinationDeploymentDir)" />

The result is a zip file containing all of the files for the website with the modified configu-
ration file. If the web server is located at a remote hosting facility, you can upload the zip file to
the server and unzip it in place without any additional work needed.

COMMON FOLDER ADDITIONS

The MSBuild scripts in this chapter are very reusable in your projects. Using them will cut down on the man-
ual work you do with each project and will capture the details that you must know to build a project. These
scripts can be placed in your Common folder in the Scripts subfolder to be referenced in your projects

(D: \Projects\Common\Scripts\MSBuild).

Deploying the Database

As each release of your web application is pushed to the various environments, there may be
updates to the database that are necessary for the application to work properly. Perhaps an
additional column was added to a table or a new stored procedure was defined. If the updated
website calls that stored procedure, the database must be updated before the new application
version is put into use. All you may need to do to bring the database structure up to the

27

272

CHAPTER 9 © DEPLOYMENT

current version is create a few alter statements. I will show you what it takes to create those
update scripts and how they can be deployed with minimal effort.

Generating Change Scripts

SQL Server Management Studio can assist with creating change scripts. Once you have cre-
ated all of your tables and populated them with data, you can change the structure with alter
statements. You can do so manually in a query window or visually with SQL Server Manage-
ment Studio. To change a table, simply right-click the table in the Object Explorer and select
Modify from the context menu. The table editor will show all of the columns. Make your
changes, and when you are done, you can click the Generate Change Script button, as shown
in Figure 9-4.

File Edit View TableDesigner Tools Window Col
ANewquey | | S H I BEEREZ

Ohjgtt Explarer ~ 1 x

L 4| Generate Change Script

Figure 9-4. Generate Change Script button

Adjusting a column from varchar(25) to varchar (50) will generate a script that will create
a new temporary table with the revised table definition and then copy all of the data from the
existing table into it. Then it will drop the existing table and rename the temporary table to the
name of the table that was just dropped. These steps are all done inside of a transaction that is
committed once all of the steps have completed successfully. For a significant amount of data,
this update can take a while to complete. This script is also pretty large compared to what it
could be if you were to simply write the alter statements manually. The equivalent result can
be achieved with the script shown in Listing 9-17.

Listing 9-17. Alter Script

BEGIN TRANSACTION

GO

ALTER TABLE chpt09 Names

ALTER COLUMN [Name] varchar(50) NOT NULL
GO

COMMIT

Note It is not necessary to alter stored procedures, as you can safely drop and re-create them without
any loss of data.

The process to alter the table is still carried out in a transaction but does not have to
duplicate the contents of the table. As a result, this simple statement may run much faster
than the generated script. It is still helpful to use the generated scripts for reference even if you

CHAPTER 9 ©" DEPLOYMENT

are going to write your own statements manually. Another adjustment you may make to a
table is to add an index. The table updated in Listing 9-17 has a column named Name. It may
speed up queries to this table if this column had an index.

An index can be added visually as well with Management Studio using the Manage
Indexes and Keys button while a table is being edited, as shown in Figure 9-5.

File Edit View TableDesigner Tools Window Co
HNewquey | | G H @ B EEBESF,
| 7 | oSEE & B

Object Explorer & > 0 x

2 2 Ei} Manage Indexes and Keys

Figure 9-5. Manage Indexes and Keys button

Once the index has been added, you can generate the change script and copy the part
that creates the index and use it in your custom script. The result would look like Listing 9-18.

Listing 9-18. Index Creation Script

BEGIN TRANSACTION

GO
CREATE NONCLUSTERED INDEX IX chpt09 Names ON dbo.chpt09 Names
(
Name
) WITH(
STATISTICS NORECOMPUTE = OFF, IGNORE DUP_KEY = OFF,
ALLOW ROW_LOCKS = ON, ALLOW PAGE LOCKS = ON) ON [PRIMARY]
GO
COMMIT

Here again a large amount of data will cause the creation of the index to take a while.
As you work through a release cycle, you may add change scripts to your database project that
you will run as a part of the next deployment. These update scripts can be placed in the data-
base project for the solution in a folder called Change Scripts. At the start of each release, you
may want to incorporate the changes from those scripts in the creation scripts for the data-
base and start with a new set of update scripts as you have new changes. Doing so will cut
down on the complexity of preparing a new environment from scratch. How you manage the
update scripts will depend on how frequently you push out releases and the level of change
each release requires.

USING SCRIPT TEMPLATES

SQL Server Management Studio has a collection of templates that you can use to create scripts to modify an
existing database and to carry out various database-related tasks. You can view these templates by opening
the Template Explorer. Double-clicking a template will open it in a new query window. To replace all of the
parameters in the template with actual values, you can click Specify Values for Templates Parameters from
the Query menu.

273

274

CHAPTER 9 " DEPLOYMENT

Automating Database Updates

The change scripts can be manually run directly against the target database if you have access
to it. Either you will have direct access from your computer or you will upload the scripts to
the database server, connect to the server via Remote Desktop, and use a locally installed copy
of Management Studio to run the scripts. For a limited set of changes for updates that are
infrequent, you may find this manual process is sufficient. But if there are many changes and
you are not fully aware of all of them, you may want the changes controlled by an automated
process that has been carefully crafted and run on the QA and staging environments without
failure. Repeating that controlled and proven process in the production environment will
ensure a more reliable deployment.

Using MSBuild and ExecuteDDL

The ExecuteDDL task, which is included with the MSBuild Community Tasks, can be used to
run scripts to carry out the database updates. As scripts are created, they can be referenced
from an MSBuild script that will be used in each environment to update the databases.
Listing 9-19 shows the contents of db.proj, which is the MSBuild script that runs two update
scripts for four environments: development, QA, staging, and production.

Listing 9-19. db.proj

<Project DefaultTargets="RunScripts"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Import Project="$(MSBuildExtensionsPath)\MSBuildCommunityTasks\ w
MSBuild.Community.Tasks.Targets" />

<PropertyGroup>
<Environment Condition=" '$(Environment)' == >Development</Environment>
<Interactive Condition="'$(Interactive)' == ''">False</Interactive>
</PropertyGroup>

<PropertyGroup Condition=" '$(Environment)' == 'Development' ">
<ConnectionString>
Data Source=.\SQLEXPRESS;Initial Catalog=Chapter09;Integrated Security=True
</ConnectionString>
</PropertyGroup>

<PropertyGroup Condition=" '$(Environment)' == "QA" ">
<ConnectionString>
Data Source=QADB\SQL2005;Initial Catalog=Chapter09;Integrated Security=True
</ConnectionString>
</PropertyGroup>
<PropertyGroup Condition=" '$(Environment)' == 'Staging' ">
<ConnectionString>
Data Source=StagingDB\SQL2005;Initial Catalog=Chapter09; w
Integrated Security=True

http://schemas.microsoft.com/developer/msbuild/2003
http://schemas.microsoft.com/developer/msbuild/2003

CHAPTER 9 ©" DEPLOYMENT

</ConnectionString>
</PropertyGroup>

<PropertyGroup Condition=" '$(Environment)' == 'Production’ ">
<ConnectionString>
Data Source=ProductionDB\SQL2005;Initial Catalog=Chapter09; w=
Integrated Security=True
</ConnectionString>

</PropertyGroup>

<Target Name="RunScripts">
<ExecuteDDL Files="Database\Change Scripts\Updatei1.sql"
ConnectionString="¢$(ConnectionString)"
Condition=" Exists('Database\Change Scripts\Updatei.sql') ">
</ExecuteDDL>
<ExecuteDDL Files="Database\Change Scripts\Update2.sql"
ConnectionString="¢$(ConnectionString)"

Condition=" Exists('Database\Change Scripts\Update2.sql') ">
</ExecuteDDL>
</Target>
<Target Name="PromptForTarget" Condition="'$(Interactive)' == 'True'">

<Message Text="Select an Environment: "></Message>

<Message Text="1) Development" Importance="high"></Message>
<Message Text="2) QA" Importance="high"></Message>

<Message Text="3) Staging" Importance="high"></Message>
<Message Text="4) Production" Importance="high"></Message>

<Prompt Text=" Enter a target:">
<Output TaskParameter="UserInput" PropertyName="SelectedTarget"/>
</Prompt>

<Message Text="Selected target is $(SelectedTarget)"></Message>

<MSBuild Targets="RunScripts"
Projects="db.proj"
Properties="Environment=Development"
Condition=""$(SelectedTarget)' == '1'"></MSBuild>
<MSBuild Targets="RunScripts"
Projects="db.proj"
Properties="Environment=QA"
Condition=""$(SelectedTarget)' == '2'"></MSBuild>
<MSBuild Targets="RunScripts"
Projects="db.proj"
Properties="Environment=Staging"

275

276

CHAPTER 9 " DEPLOYMENT

Condition=""$(SelectedTarget)' == '3'"></MSBuild>
<MSBuild Targets="RunScripts"
Projects="db.proj"
Properties="Environment=Production"
Condition=""$(SelectedTarget)' == '4'"></MSBuild>
</Target>

</Project>

To run the db.proj script, RunDb.cmd, which is shown in Listing 9-20, can be used.

Listing 9-20. RunDb.cmd

Zwindir%\Microsoft.NET\Framework\v2.0.50727\MSBuild.exe db.proj w=
/t:PromptForTarget /p:Configuration=Release;Interactive=True
Pause

When the script is run, it will present a menu displaying the choices for the four sup-
ported environments. The selection controls the value for the ConnectionString property,
which is used by the ExecuteDDL task. The successful result of running this MSBuild script is
shown in Figure 9-6.

EX C\Windows\system32\cmd. exe =13
1> Development
2> 0n

3> Staging
4> Production
Enter a target:

Selected target is 1

Project "D:“\Projects~Chapter B9°db.proj" is building "D:“Projects>Chapter B89
.proj" (RunScripts target{(sd):

Target RunScripts:
Executing DDL file ‘Database“Change ScriptssUpdatel.sgl’
SBuccessfully executed 8QL command with result = -3
Executing DDL file ‘Database“Change Scripts:Update2.sgl’
SBuccessfully executed 8QL command with result = -3

Build succeeded.
B Warning<{s>
8 Erroris)
Time Elapsed B@:88:83.42

D:Projects“Chapter B9>pause
Press any k to continue . . .

Figure 9-6. Successfully running db.proj

Using Embedded Scripts

Database updates can be integrated directly within your application by embedding scripts right
in the assembly with the rest of your data access layer. Initially when the application is used, the
database can be initialized, and future releases of the application can update the existing data-
base schema with the embedded scripts. This will all be done automatically and transparently.
Upgrading a website can be as simple as copying the new assemblies into place, which automat-
ically restarts the worker process. The database updates will be applied automatically.

Such functionality is not an automatic feature of ASPNET but can be implemented with
the building blocks that are available in the application. For the following examples, you will

CHAPTER 9 ©" DEPLOYMENT

create a table to hold names. The initialization script will create a schema versions table that is
used to keep track of the database schema. Then there will be a series of update scripts. Addi-
tional update scripts can be added with each release.

Initializing the Database

To get started, you will create the schema versions table as you do normally with a database
project. This table holds a name and an integer for the version. As each update is executed
successfully, the version is set to the next version. Listing 9-21 shows the creation script for the
schema versions table.

Listing 9-21. chpt09_SchemaVersions.sql

IF EXISTS (
SELECT * FROM sysobjects WHERE type = 'U' AND name = 'chpt09 SchemaVersions')
BEGIN
DROP Table chpt09 SchemaVersions
END
Go

CREATE TABLE [dbo].[chpt09 SchemaVersions](
[Name] [nvarchar](20) COLLATE SQL Latini General CP1 CI AS NOT NULL,
[Version] [smallint] NOT NULL,

CONSTRAINT [PK_chpt09 SchemaVersions] PRIMARY KEY CLUSTERED

(
[Name] ASC

JWITH (PAD_INDEX = OFF, IGNORE DUP KEY = OFF) ON [PRIMARY]

) ON [PRIMARY]

Go

The Name column is the primary key. For the embedded scripts, there is going to justbe a
single schema named names. This structure can support any number of other schemas that
can all be versioned independently. Breaking up all the data held in the database into distinct
named schemas will help isolate the updates, which should simplify the update scripts.

The schema table uses two stored procedures to get and set the schema version. Listing 9-22
shows the script to set the version of a named schema.

Listing 9-22. chpt09_SetSchemaVersion.sql

IF EXISTS (
SELECT * FROM sysobjects WHERE type = 'P' AND name = 'chpt09 SetSchemaVersion')
BEGIN
DROP Procedure chpt09 SetSchemaVersion
END

Go

CREATE Procedure dbo.chpt09 SetSchemaVersion

277

278 CHAPTER 9 " DEPLOYMENT

(

@Name nvarchar(20),
@Version smallint

)
AS

IF NOT EXISTS (
SELECT * FROM chpt09 SchemaVersions
WHERE Name = @Name
)
BEGIN
INSERT into chpto9 SchemaVersions
([Name],Version)
values (@Name, @Version)
END
ELSE
BEGIN
UPDATE chpt09_SchemaVersions
SET Version = @Version
WHERE [Name] = @Name
END

Go

GRANT EXEC ON chpt09_SetSchemaVersion TO PUBLIC
Go

Setting the version is a simple process of either inserting or updating the schema versions
table. Getting the schema version requires a similar process. The script to get the named
schema version is shown in Listing 9-23.

Listing 9-23. chpt09_GetSchemaVersion.sql

IF EXISTS (
SELECT * FROM sysobjects WHERE type = 'P' AND name = 'chpt09_GetSchemaVersion')
BEGIN
DROP Procedure chpt09 GetSchemaVersion
END
Go

CREATE Procedure dbo.chpt09 GetSchemaVersion
(
@Name nvarchar(20),
@Version smallint OUTPUT
)
AS
IF EXISTS (

CHAPTER 9 ©" DEPLOYMENT

SELECT * FROM chpt09 SchemaVersions
WHERE Name = @Name
)
BEGIN
SET @Version = (
SELECT Version
FROM chpt09_SchemaVersions
WHERE Name = @Name)
END
ELSE
BEGIN
SET @Version = 0
END

Go

GRANT EXEC ON chpt09_GetSchemaVersion TO PUBLIC
Go

The version of the named schema is returned as an output parameter. If the named
schema does not exist, the version is defaulted to 0; otherwise the actual value is returned.

Updating the Database

With the schema table and stored procedures in place, you can copy the scripts into the class
library as embedded scripts. Simply create a folder in the class library named Scripts. To add
anew SQL script, you will need to add it as a simple text file, but you can set the extension as
.sql. When you open the file, it will be treated as a SQL script. For this first script, you will
want to create the schemas table and two stored procedures used to get and set the version
numbers. The contents of the three scripts to define these resources will be placed in order in
a script called init.sql. The first script is the table script, and it will be modified to drop off
the first part, which checks for the existence of the schema table. You want to take an extra
precaution here. If the table does exist and somehow this initialization script is run, you want
it to fail right away when it tries to create this first table.

To ensure this script is included within the assembly, you will set the Build Action to
Embedded Resource using the Properties panel shown in Figure 9-7. This setting makes it avail-
able as a resource stream on the assembly. (You will load the script as a resource stream later.)

Properties > 1 x
init.sql File Properties -

Ez: | A
m=- | Z

B Advanced
Build Action Embedded Resource
Copy to Output Directc Do not copy
Custom Tool

Custom Tool Namespa

File Name init.sql

Figure 9-7. init.sql as an embedded resource

279

280

CHAPTER 9 " DEPLOYMENT

Next you will create a few sample scripts that will run as updates to test the functionality
of the update routine. These scripts will be placed in the Scripts folder in the class library and
set as embedded resources. They will be named NamesUpdate.00.sql, NamesUpdate.01.sql, and
NamesUpdate.02.sql. The first script defines the names table and stored procedure. The sec-
ond script adds three names, and the third script adds one more name. These scripts could
easily adjust table columns, add or remove indexes, or whatever you choose to have them do.

There are two important details about these embedded scripts. First the commands are
all separated with a GO statement after each command. This is done so the commands can be
run independently as SQL commands with the Data Access Block in the Enterprise Library as
you have done with stored procedures in previous chapters. Second, the update scripts should
always set the version of the database to the next number. This is done at the end after all of
the other commands have run successfully. However, the order is not strictly necessary as
these commands will be grouped together as a transaction, so if any of the commands fail, all
changes in the update script will be undone. Listing 9-24 shows NamesUpdate.01.sql.

Listing 9-24. NamesUpdate-01.sql

-- update 1 (add stooges to names table)

EXEC chpto9 SaveName 'Larry'
Go

EXEC chpto9_SaveName 'Moe’
GO

EXEC chpto9 SaveName 'Curly'
Go

-- be sure to update the names schema version
EXEC chpt0o9 SetSchemaVersion 'names', 2
Go

Each name is added using the chpt09_SaveName stored procedure created by the first
update script, NamesUpdate.00.sql, which is not shown here (see the code downloads). You
can see how each command ends with a GO statement with the last statement setting the
schema version for the names schema to 2.

Running the Scripts

The scripts embedded in the assembly are now ready to be loaded and run using a class called
DatabaseManager. This class is in the same class library as the update scripts, which has the
default namespace set to Chaptero9—an important detail when loading the scripts as resource
streams. The folder structure is also important. It should look like Figure 9-8.

To reference the scripts, you will use a prefix to access them much like a namespace. This
prefix is defined as a constant in the DatabaseManager class, shown in Listing 9-25.

Solution Explorer - ClassLibrary

=2 E &
[Selution 'Chapter 09' (5 projects)
+ : Solution Items

+ =d| Properties
+ 3] References
= = Database

). [Seripts

[y initsql

|2 NamesUpdate00.5ql
|2 NamesUpdate0l.sql
|2 NamesUpdate02.5ql
- #] DatabaseManager.cs
2P D:\.\Website\

= [App_Code

m

Figure 9-8. Class library structure

Listing 9-25. ScriptsPrefix Constant

private const string ScriptsPrefix

CHAPTER 9

"Chapter09.Database.Scripts.";

DEPLOYMENT

The scripts prefix uses the default namespace and the folder structure to define the path
to the embedded scripts. You are now ready to construct the initialization and update routine,
which starts with the InitializeDatabase method shown in Listing 9-26.

Listing 9-26. InitializeDatabase Method

public void InitializeDatabase()

{

if (IsAutoUpdatesEnabled())

{

bool success = true;

if (!IsInitialized())

{

List<string> initCommands
success = RunSqlCommands(initCommands);

}

if (success)

{

UpdateDatabase();

GetSqlCommands(ScriptsPrefix +

"init.sql");

The InitializeDatabase method first checks whether the automatic updates feature is
enabled. This is based on a configuration setting named EnableAutoUpdates. The value must
be set to true in order for the initialization process to run. Next, the commands for the script
named init.sql are loaded and run. If the script is successful, meaning no exceptions were
thrown, it continues on to run the UpdateDatabase method shown in Listing 9-27.

281

282

CHAPTER 9 " DEPLOYMENT

Listing 9-27. UpdateDatabase Method

private void UpdateDatabase()

{
int version = GetSchemaVersion("names");
if (version == 0)
{
List<string> commands =
GetSqlCommands(ScriptsPrefix + "NamesUpdate.00.sql");
if (RunSqlCommands(commands))
{
version = GetSchemaVersion("names");
}
}
if (version == 1)
{
List<string> commands =
GetSqlCommands(ScriptsPrefix + "NamesUpdate.01.sql");
if (RunSqlCommands(commands))
{
version = GetSchemaVersion("names");
}
}
if (version == 2)
{
List<string> commands =
GetSqlCommands(ScriptsPrefix + "NamesUpdate.02.sql");
if (RunSqlCommands(commands))
{
version = GetSchemaVersion("names");
}
}
}

The UpdateDatabase method gets the initial version of the names schema. If it is not
defined, it will default to 0, which will cause the first script to be run. Once the first script has
completed, the version should be reset to 1, and the next script will run, which follows the
same pattern. If this was the first run for this update process, all three of the update scripts
will run. You can see that adding another block to the end of this method that references a new
update script will be an easy addition.

There are a couple of private methods, GetSqlCommands and RunSqlCommands, that make
this update process work. The first method is shown in Listing 9-28.

CHAPTER 9 ©" DEPLOYMENT

Listing 9-28. GetSqlCommands Method

public List<string> GetSqlCommands(string scriptName)

{

List<string> commands = new List<string>();
Type type = GetType();

Stream stream = type.Assembly.GetManifestResourceStream(scriptName);
if (stream != null)

{

}

StringBuilder sb = new StringBuilder();
StreamReader sr = new StreamReader(stream);
string line = null;

while (sr.Peek() >= 0)

{
line = sr.ReadlLine();
if (!CommandDelimiter.Equals(line))
{
sb.AppendLine(line);
}
else {
commands . Add(sb.ToString());
sb = new StringBuilder();
}
}
if (!String.IsNullOrEmpty(sb.ToString()))
{
commands .Add(sb.ToString());
}

return commands;

The GetSqlCommands method uses the GetManifestResourceStream method on the Assembly
class to load the resource stream. It then uses a StreamReader to iterate over each line looking
for the command delimiter, which is defined as a constant named CommandDelimiter. It is set
to the standard GO statement. Each line that does not match the delimiter is added to the
StringBuilder variable. And when a delimiter line is reached, the StringBuilder value is added
to a collection of commands, which is eventually passed to the RunSqlCommands method shown
in Listing 9-29.

Listing 9-29. RunSqlCommands Method

private bool RunSglCommands(List<string> commands)

{

bool success = true;

283

284 CHAPTER 9 © DEPLOYMENT

using (DbConnection connection = db.CreateConnection())

{
connection.Open();
DbTransaction transaction = connection.BeginTransaction();
try
{
foreach (string command in commands)
{
using (DbCommand dbCmd = db.GetSqlStringCommand(command))
{
db.ExecuteNonQuery(dbCmd, transaction);
}
}
transaction.Commit();
}
catch (Exception ex)
{
success = false;
Trace.Writeline(ex.Message);
// Rollback transaction
transaction.Rollback();
}
connection.Close();
}

return success;

In the RunSqlCommands method, the commands passed in are run individually inside of a
transaction. If any command fails, the entire transaction will be rolled back, and the return
value that indicates whether or not the commands executed successfully will be set to false.

Tip While developing the embedded scripts to update the database, you can leverage the fact that the
commands are run in a transaction to prevent the script from being committed. As you add statements to the
update script, you can place an invalid statement at the very end to ensure the changes will be rolled back;
this way, you can continue working on the script without having to restore the database to the state it was in
before you executed the updates. Once you have completed the update script to your satisfaction, you can
remove the intentional error.

The final step to ensuring the database updates are put in place each time the application
is updated is to call the InitializeDatabase method each time the application starts. For a
website, this can be done using the Application_Start method in the Global.asax file (see
Listing 9-30).

CHAPTER 9 ©" DEPLOYMENT

Listing 9-30. Application_Start Calling InitializeDatabase

void Application Start(object sender, EventArgs e)
{
DatabaseManager dbm = new DatabaseManager();
dbm.InitializeDatabase();

Now each time the website is updated, it will run the InitializeDatabase method, which
will ensure your database schema is up to date.

Custom Configuration Sections

In previous chapters, you have hard-coded the connection string name in the data access
layer. If you continue to hard-code this value in your data access layer and build modular
components that work with different sets of data, you may hard-code the same value in each
component so that you do not have to maintain the connection string configuration for each
of those components. But there is a problem with assuming you will only have a single data-
base connection. It forces you to place all of your data in the same database.

Alternatively, you may use a unique connection string name for each component, which
will require you to maintain a connection string for each component. This approach gives you
some flexibility but duplicates several connection strings in your configuration. Another alter-
native is to use application settings for each component that indicate the connection string
name to use. The class library created earlier in this chapter, which works with a names data-
base, could use an application setting named NamesDatabase, which matches the name of the
connection string to use. This would be done for each component. This may be a reasonable
approach.

The last approach is to create a custom configuration, which allows you to set the
values as you want them in a structure you choose. This is done by leveraging the existing
ConfigurationSectionGroup and ConfigurationSection classes. In Chapter 5, you created
providers that used a custom ConfigurationSection. Through the provider base classes, some
of the extra work was done for you. Here you will build a custom configuration, read it all in
manually, and use it in the DatabaseManager class created in the previous sections.

What you will build is a few classes that provide access to the connection string name
you will use for the DatabaseManager. One class will represent the configuration group while
another will represent the section. The third class will be a utility to load the configuration
programmatically.

The first class is Chapter09SectionGroup, which inherits from ConfigurationSectionGroup
and defines a single property. This class is shown in Listing 9-31.

Listing 9-31. Chapter09SectionGroup

using System.Configuration;

namespace Chapter09.Configuration

{

public class Chaptero9SectionGroup : ConfigurationSectionGroup

{
[ConfigurationProperty("chaptero9Group")]

285

286

CHAPTER 9 " DEPLOYMENT

public Chaptero9Section Chaptero9Section

{
get
{
return (Chaptero9Section)Sections["chapter09"];
}
}

The property named Chaptero9Section returns a class by the same name by accessing
the Sections property, which is inherited from the base class. Chaptero9Section is shown in
Listing 9-32.

Listing 9-32. Chapter09Section

using System.Configuration;

namespace Chapter09.Configuration

{
public class Chapterog9Section : ConfigurationSection
{

[ConfigurationProperty("connectionStringName",
DefaultValue = "chapter09", IsRequired = true),
StringValidator(MinLength = 1, MaxLength = 50)]

public string ConnectionStringName

{
get
{
return (string) this["connectionStringName"];
set
{
this["connectionStringName"] = value;
}
}

[ConfigurationProperty("enableAutoUpdates”,
DefaultValue = "True", IsRequired = false)]
public bool EnableAutoUpdates
{
get
{
bool enabled;
bool.TryParse(this["enableAutoUpdates"].ToString(), out enabled);
return enabled;

CHAPTER 9 ©" DEPLOYMENT

this["enableAutoUpdates”] = value;

The Chaptero9Section class accesses the connectionStringName and enableAutoUpdates
attributes from the configuration. The properties that access these values are decorated with
attributes that control how the property behaves. The EnableAutoUpdates property is not
required, which allows the value to not be specified in the configuration. When it is not, the
default value is used. The ConnectionStringName property is required and will cause an excep-
tion if the property is accessed while the attribute is not defined in the configuration.

To load this configuration, you will use a utility class named Chaptero9Configuration,
which is shown in Listing 9-33.

Listing 9-33. Chapter09Configuration

using System.Configuration;
using System.Web;
using System.Web.Configuration;

namespace Chapter09.Configuration
{
public class Chaptero9Configuration
{
public static Chaptero9SectionGroup GetConfig()
{
System.Configuration.Configuration config;
HttpContext context = HttpContext.Current;
if (context != null)

{
string path = "~";
config = WebConfigurationManager.OpenWebConfiguration(path);
}
else
{

config = ConfigurationManager.OpenExeConfiguration w
(ConfigurationUserLevel.None);
}
Chaptero9SectionGroup chaptero9Config =
(Chaptero9SectionGroup)config.SectionGroups|"chaptero9Group"];
return chaptero9Config;

The Chaptero9Configuration class has a single static method that returns the
Chaptero9SectionGroup class from the GetConfig method. This method will work for a

287

288

CHAPTER 9 " DEPLOYMENT

website and other applications such as console and desktop applications. As you can see, it
uses the WebConfigurationManager or the ConfigurationManager based on the value from the
HttpContext, which is defined when the method is run within a website. Once the configura-
tion is loaded, it uses the SectionGroups collection to return the group named chapter09Group,
which is lined up with the Chaptero9SectionGroup class. In order to make these classes line up
with the names, it is necessary to configure the custom sections in the configuration file. This
definition is shown in Listing 9-34.

Listing 9-34. Custom Section Definition

<configSections>
<sectionGroup name="chapter09Group"
type="Chapter09.Configuration.Chaptero9SectionGroup, Chapter09">
<section name="chapter09"
type="Chapter09.Configuration.Chaptero9Section, Chapter09"/>
</sectionGroup>
</configSections>

The name and the type are defined by the custom section definition with the section con-
tained within the group. The rest of the custom configuration is shown in Listing 9-35.

Listing 9-35. Custom Configuration

<chapter09Group>
<chapter09 connectionStringName="chpt09" enableAutoUpdates="True"/>
</chapter09Group>

Because the enableAutoUpdates attribute is optional, you can leave it off if you want to use
the default value, which is set to True. Now you can configure as many connection strings as
you like and point to the one you choose with this custom configuration section while
enabling and disabling this automatic update feature.

A potential enhancement for the database update process is to define a separate connec-
tion string name for the update process, which is separate from the rest of the data access
layer. The update scripts will need privileges that a normal web application does not need, so
instead of escalating the rights for the entire application, you can define a special connection
with the necessary permissions. This will improve the security of your application. To improve
it further, you can enable the user account for this special connection just during the deploy-
ment process and disable it once you have completed. Doing so will ensure it is not possible
to run the updates and block access to the account with the increased privileges.

Summary

In this chapter, I covered deploying websites and databases, and how to make use of custom
configurations. By streamlining the deployment and configuration processes, you make it
possible to push out more updates for your applications with a lower risk for each deployment
because human error has been minimized by the scripts. Being able to push out timely
updates will be very helpful to adapt to the performance needs of your production environ-
ment. The automation tasks covered in this chapter will also free up more of your time to
spend on performance improvements instead of the busy work of pushing around files.

CHAPTER 10

A Sample Application

Now you can put together several of the pieces covered throughout this book to create a

flexible and high-performance application. Your goal will be to build a modular application

that starts with a clean data access layer and has each business object clearly defined in terms

of its data contained within each domain as well as the relationships between the objects.
This chapter covers the following:

* Understanding performance and scalability
* Creating the database

* Creating data access providers

¢ Managing relationships

¢ Using custom configuration

e Implementing a LINQ provider

e Implementing a WCF provider

In all of the previous chapters, the implicit rule for creating a high-performance application
has been that good design and flexibility are more important than prematurely optimizing your
application. Until you have a finished product that is put under an actual load, you will not really
know where you will experience performance problems. And load can change over time in unex-
pected ways. If you start to optimize for performance too soon in the development cycle, you
may lock yourself into an approach that just does not scale.

Understanding Performance and Scalability

It is important to distinguish between performance and scalability. The two are related but not
one in the same. As your website becomes more heavily used, it will need to handle more and
more requests, and it will need to do so without the cost of each request increasing. If you start
out with 1,000 users, and each request is handled in under a second, you will want that level of
service to be maintained when you reach 100,000 users. If you start out with a website that
already has great performance, you may never have a scaling problem. But there could come a
point when the cost per request does start to increase, and you will need to apply the approaches
in this chapter to get you back to the level of service that kept those initial 1,000 users happy.

In Chapter 6, mentioned how you can often be your own worst enemy by hitting the
database so often that you essentially cause a traffic jam of disk reads against the database.

289

290

CHAPTER 10 "' A SAMPLE APPLICATION

The frequent reads cause a traffic jam on the network as well, which doubles and triples the
time to process a request. Such a high-load scenario causes the cost of each request to
increase dramatically. For a computer, a second can be an eternity. And when many of the
requests that come into your website are processed in well under a single second during nor-
mal load, you can imagine that setting a caching time-out to five seconds would affect the
scalability of your application, even if a user may not see any change in performance. You
eliminate calls to the database while also saving clock cycles on your processor. Setting a
caching time-out is a great first step that will take you a long way.

A typical website can get anywhere between 5,000 and 100,000 page requests in a day.
With 86,400 seconds in a 24-hour period, you can see in Table 10-1 how page requests can
generally be spread apart.

Table 10-1. Time Between Requests

Requests per Day Time Between Requests
5,000 16.78 seconds

100,000 0.86 seconds

500,000 0.17 seconds

Table 10-1 is an overly simplistic representation of website traffic, but it illustrates the dif-
ference between performance and scalability. When a website is getting only 5,000 hits in a
day, it is not important to address scalability, especially when a single request takes less than a
second. If a website gets 100,000 hits in a day, the average time between requests drops below
one second, but the time between requests is still over half a second. You still have a little time
between requests, so you will not have concurrent requests. The difference between 100,000
hits and 5,000 hits represents a huge window, and I assume most sites, especially intranet web
applications, fall into this range. Now, when a website reaches 500,000 hits or more, scalability
becomes a major issue. When traffic to your web application reaches this frequency, you will
want to explore your options to spread the load somehow.

Concurrent Requests

The intersection where performance meets scalability occurs when the number of concurrent
requests starts to increase the cost per request. If ten requests are currently being processed,
and each of them locks a commonly used table in the database—even for just a moment—the
requests may be delayed and their cost increased. But if each request can access the database
efficiently, without interfering with the other requests, you will have the scalability that you
want.

A frequently requested page on your website may not explicitly be locking a table. It may
instead be indirectly locking an index during an update that you did not anticipate. We typi-
cally expect indexes to improve performance, but sometimes they can have the opposite
effect. When you come across concurrency issues, you may be able to consult your DBA to
determine what resource is being locked. If an index is involved, you may need to use a differ-
ent type of index or drop the index entirely so that your concurrency problems go away. You
may also be able leave the index in place and batch the updates to it so they are not happen-
ing so frequently.

CHAPTER 10 " A SAMPLE APPLICATION

Note More and more servers, and even personal computers, are coming out with multiple processors.
It is not uncommon to purchase a new server with dual or quad core processors that can handle a great
number of concurrent requests. These great new capabilities should be exploited as much as possible to the
benefit of your application and your users. You also want to make sure you are not wasting processing power
with unnecessary tasks by offloading ancillary work to other servers whenever the work can be handled out
of process, such as processing an order after it has been submitted.

Bottlenecks

If you focus your efforts on the usual suspects when troubleshooting bottlenecks, you may be
overlooking other areas that are the real bottlenecks, the true gatekeepers to scalability. Years
ago a report that came out compared the scalability of the Apache web server on Linux to IIS
on Windows NT. It showed that IIS could handle many more requests under high load. Many
developers questioned the accuracy of the report because at the time the Apache web server
was the most popular and most efficient web server around, and IIS was seen as a new kid on
the block that had been plagued with various problems. It turns out that the bottleneck had
little to do with the web server. The source of Apache’s problem was that Linux internals used
a locking mechanism allowing only a limited number of concurrent network connections into
the Apache web server, while Windows NT used a threaded model allowing many more con-
current requests into IIS. So no matter how you configured the Apache web server, there was
no way you could possibly make it faster than IIS. It simply was not the weakest link.

In the same way, you may find that your website is not the weakest link in an application.
It could be the database or perhaps even the network. The quality of the networking equip-
ment may be to blame or the quality of the network cables between the servers. I once had a
computer that used a network card that I bought for $15. I could have purchased the $100 net-
work card, but I did not see a difference at the time because they were both rated for the same
speed. I used the cheap network card, which worked fine most of the time, but when I tried to
transfer multiple large files over the network, the card failed and lost the connection. It turns
out the more expensive card was more capable; because it had more buffers, it could handle
the kind of load of many large files being copied to a remote computer. That experience taught
me that sometimes I can speed up an application by changing out a $15 piece of hardware
instead of getting a new $10,000 server that leaves the true bottleneck in place.

To find your bottlenecks, you will need to measure the performance of each part of your
system. You may be pleasantly surprised that you can boost performance with the simplest of
adjustments.

Traffic Spikes

The average time between requests shown in Table 10-1 does not truly represent traffic pat-
terns. Nothing can ensure that the requests on your web server are so conveniently spaced
apart. In reality, the vast majority of web traffic looks like a bell-shaped curve. With a 24-hour
clock, you will surely get most of your traffic during the day if your site is primarily used by
people in your nearby time zones (which is normally the case). In the United States, the traffic
to your website will start to increase when it is 6 a.m. on the East Coast and start to drop off
after it is 10 p.m. on the West Coast. And at noon you will typically see your most traffic,

291

292

CHAPTER 10 "' A SAMPLE APPLICATION

depending on what your website provides. Sites such as news sites get dramatically high
spikes of traffic during the lunch hour, when people check the headlines during their lunch
breaks.

In light of these traffic spikes, you cannot assume that a website getting a total of 100,000
hits in a day will have 0.86 seconds to process each request before scalability becomes an
issue. You web server may be brought to its knees at a few key points in the day due to regular
traffic spikes or in response to your actions. If you are running an informational site that sends
out an e-mail newsletter to millions of readers, you may suddenly get a surge of traffic over the
hours and days following the newsletter’s release. Websites such as Digg (www.digg.com) and
Slashdot (http://slashdot.org) have millions of readers who are all directed to the headlines
placed on their home pages. This results in unsuspecting websites, the ones that Digg and
Slashdot link to, getting a massive amount of traffic in a very short period of time. That effect
has been dubbed the Slashdot effect, and it's known for taking sites offline that are not pre-
pared for large surges in traffic. More recently, Digg has become extremely popular, so your
website may also be hit by the Digg effect. You may simply have posted an interesting blog
entry or photo that enough Digg users found worthwhile. There really is no warning that such
an event is about to happen.

SURVIVING THE DIGG EFFECT

I have had my websites hit by Slashdot and Digg twice and was able to weather the storm by making some
adjustments in response to the initial surge. In both instances, the content was hosted on an Apache web
server, and | simply had to adjust the configuration for the newly increased load on my modestly powered
server. The content was already ready to go because it was set up as static content that Apache could serve
from memory, much like output caching for ASP.NET. In the case of the Apache web server, the bottleneck
was created by the number of forked children | was allowing to be created to handle requests. With IIS this is
not a concern because IIS is fully threaded, as is a modern Apache 2.0 installation, which can at least scale
for the number of incoming requests. But if each request hits a database multiple times, you may see that the
bottleneck is not the web server.

These times when you get a massive surge of traffic require an emergency response plan.
Iremember the tragic day of the 9/11 attacks and how everybody was desperately looking for
any news they could find to tell them what was happening. One of the websites I was viewing
was CNN.com. I watched as the website went from the full website we usually see with busy
links and ads all over the home page in the first part of the day, to just a few links and one
headline. They were clearly trying to handle the surge of traffic, which they surely had not
experienced before. They successfully kept their website online and got that critical news to
their readers.

Other times you know there will be a surge of traffic. During the Super Bowl, the NFL web-
site is under a great deal of load. The people running the website can plan for this all year and
typically set up a special website for the Super Bowl for that year, where all traffic is directed
leading up to and during the game. The traffic on this website can be intense as football fans
watch the game on their TV screens while also getting the latest stats from the website. Inter-
active applications show a diagram of the field and provide all the details about the game,
updated continually. Each time the web application hits the server, it gets information about

http://www.digg.com
http://slashdot.org

CHAPTER 10 " A SAMPLE APPLICATION

what line the ball is on, who has possession, and what down it is. Often these are Adobe Flash
applications, which can reach out to different sources other than just the web server serving
up the web pages and can work with a data stream that is optimized to reduce the overall
bandwidth requirements. Sending a 4 KB data stream is definitely preferable to having the
user refresh a 50 KB page for each update. By managing the flow of data by an alternate,

more efficient communication scheme, the high load is more easily managed.

Distributing Traffic

Traffic can be distributed so that while you are getting 500,000 hits per day, you could spread
them across five servers to make it effectively 100,000 hits per day per server. This web farm
approach is pretty common and is supported by load-balancing hardware. You can even lever-
age the fact that one hostname can be associated with multiple IP addresses through the
Domain Name System (DNS). When a hostname has multiple IP addresses for a website, the
web browser will circulate through each of the IP addresses. This technique is called Round
Robin DNS. Sites such as CNN.com and Microsoft have multiple IP addresses configured for
their website addresses to benefit from distributing the load. Figure 10-1 shows the result of
running the utility nslookup on www.cnn.com and www.microsoft.com. You can see that there are
multiple IP addresses for both websites.

EX Command Prampt ol x|
Microsoft Windows [Version 6.8.68881]1
Copyright {(c) 2886 Microsoft Corporation. All rights reserved.

sz hrennan?ns lookup www.microsoft.com
dns—cac—1b-81.rdc—kc.rr.com
24.94.163.18@A:53

itative answer:
1bl .www.ms .akadns .net
2@7 19.254, 287.46.192.254, 207.46.193.254, 287.46.19.198
soft.com. toggle.www.ms.akadns.net
g.www.ms..akadns .net

sz hrennan?ns lookup www.cnn.com
dns—cac—1b-81.rdc—kc.rr.com
24.94.163.18@A:53

Mon—authoritative answer:

MName : WA . CNN . COMm

fddre sz 64.236.24.12, 64.236.29.128, 64.236.91.21,. 64.236.91.22
64.236.91.23, 64.236.91.24, 64.236.16.20, 64.236.16.52

Figure 10-1. Round Robin DNS

A web farm made up of multiple servers running off a common database server can effec-
tively distribute the processing load, and with a good data-caching policy, a web farm can also
reduce the load on the database.

Beyond using a logical distribution through DNS alone, you can also distribute the hard-
ware to multiple physical networks. You may place servers at hosting facilities in a few major
cities that have access to a major backbone of the Internet, which will guarantee reliable and
fast access to your website for all of your users. I live in Milwaukee and remember that back in
1998 there were a few times that major lines between Milwaukee and Chicago were cut off as
new lines were being installed. At the time, there were no redundant lines going to other loca-
tions such as Madison and Minneapolis as they do today. We got calls from customers saying
they could not reach the websites we were hosting for them even though they were online and

293

http://www.cnn.com
http://www.microsoft.com

294

CHAPTER 10 "' A SAMPLE APPLICATION

even reachable from different locations within the city. If these websites were co-located at
multiple hosting facilities, they may have been inaccessible to only a small portion of users or
none at all.

Distributing Content

While distributing the traffic to a website offers speed of access and reliability, you can also
achieve similar benefits by distributing the content that you are publishing. Much of the
bandwidth on your website is likely due to images and other static media. There is no reason
it all has to come from the same web server. You could publish your ASPNET website with
all dynamic pages on one server and all media on another, or perhaps distribute the media
across many servers. The server producing the dynamic pages will then be freed up to handle
personalized content.

For years Apple, Microsoft, Amazon.com, and Facebook have used services that spread
their media across a vast network of web servers to allow them to cope with traffic spikes
affecting them regularly as they announce new products and services.

HOSTING ON AKAMAI

The popular content distribution network used by the major websites for years has been Akamai

(www . akamai . com). The primary service it offers has been image caching, although it has expanded to
dynamic and personalized content. If you were to look up images .apple.com, you will see underneath the
hostname that Akamai is hosting the content.

A useful aspect of distributing the content to separate websites is that you can fully lever-
age the delivery mechanisms provided by HTTP, such as the expiration header (one of many
headers that precede the content of a response from your web server). When you use output
caching, the expiration header is set. If the user returns to that page within the expiration
period, that user’s web browser may simply read the content from the local browser cache.
Client-side caching is further enhanced when a large group of users are behind a caching
proxy that uses the expiration headers to hold onto the content from your website for all users
so that you do not have to serve up every request. The large Internet service providers (ISPs)
such as AOL have used massive proxies to reduce the bandwidth on their networks to benefit
their users and reduce their costs. Reducing bandwidth was a major concern for AOL when
most of its users were on dial-up modems and bandwidth was limited. More recently, Google
has offered their web accelerator service, which is essentially a massive proxy that caches a
great deal of content. However, it cannot cache dynamic content, which includes every
ASPNET website that is generated without output caching enabled.

If your website has a great deal of static content, such as images, style sheets, and
JavaScript, you could benefit greatly from client-side caching, although these benefits are not
guaranteed. In fact, having this sort of content on an ASPNET website can prevent it from
being cached as much as it could be, because every piece of content on an ASPNET website is
associated with the cookies that make up the anonymous and authenticated sessions. A
caching proxy will have to assume that the static content that a user pulls from your website
that comes with a cookie must be unique to that user. The proxy will then not cache that same

http://www.akamai.com

CHAPTER 10 " A SAMPLE APPLICATION

35 KB header graphic used on every page of your website for all users behind the shared
proxy. What you can do is place your static content onto a sub-domain that is not configured
as an ASPNET website, so that there are absolutely no cookies involved. You will need to
ensure that if your main website is running at waw.acme. com and your images are running at
images.acme.com, your cookies are not set to be coming generically from acme.com, which
would cause the cookies to be associated with the images.

After your static content meets the standards that most proxies follow, you will start to
benefit from truly distributing your content by leveraging resources beyond your direct con-
trol. However, you will need to be careful with the static content. I learned about the problem
that proxies have with cookies from a presentation by a developer from Yahoo! who explained
that they have a one-time-use policy for static images. After an image has been published, it
cannot change. Instead, they have to publish an updated image to a new URL and point their
pages to it. The approach is meant to ensure that their users are getting the right image
regardless of how aggressive the client-side caching is. The same could be done for JavaScript,
which has again become a critical part of modern web applications.

DEVELOPING WITH STATIC FILES

Renaming static files as you work with them during development is not a realistic option. | tend to place a
unique query string at the end of a script reference (script.js?20070707) to ensure that when it goes to
the staging server to be tested, the Quality Assurance team gets the latest version of the script. It saves me
from having to version-control an ever-changing filename while also keeping the application aligned with the
latest version. When the website is released to the users, | can rename the script to include an arbitrary and
unique version number to ensure that the day the new website goes live, users are not using the old version
of the script. | find this is sometimes necessary for style sheets as well, especially with Internet Explorer,
which very reluctantly replaces items that it has cached locally.

Distributing Services

You can also split the dynamic content of your website into multiple sub-domains. CNN.com
could split their website into multiple sub-domains such as weather.cnn.com, politics.cnn.com,
entertainment.cnn.com, and sports.cnn.com. Google already has their services split into sites
such as maps.google.com, mail.google.com, and news.google.com. With each service set up to
run in a more independent way, you will gain flexibility you would not have with a single large
website. Each of the sub-domains would be dedicated to a specific service.

With the services split up onto separate servers, you will have the ability to independently
manage each of the websites. If the development team working on the mapping website is
ready to put out a new release, the team can do so without being concerned about how it will
impact the mail and news websites (because they are decoupled from the mapping website).
The mail and news websites at Google likely have their own servers and release schedules with
a minimal number of dependencies between them. Each website can then act as one collec-
tive by using their single sign-on functionality, which unifies all Google websites, much like
you would do with your own website using the ASPNET Membership Provider.

If you could break your website into multiple sections and split them across multiple
servers while also breaking up the development and release schedule, you could take an
unwieldy website and shape it into multiple websites that are much easier to manage from

295

http://www.acme.com

296

CHAPTER 10 "' A SAMPLE APPLICATION

technical and project management points of view. As traffic increases on one of the services,
you can add more web servers to the web farm that is hosting that service to improve overall
performance. Your services could also overlap across servers. Table 10-2 shows an intranet
website split across many sub-domains to service a large company. The services are grouped
by Human Resources (HR), Timesheets (TS), Accounts Payable (A/P), Accounts Receivable
(A/R), and Contracts (C).

Table 10-2. Overlapping Services

Server HR TS A/P A/R C
Web01 X X

Web02 X X

Web03 X X
Web04 X X
Web05 X X
Web06 X X

Web07 X X

Web08 X X
Web09 X X
Web10 X X

With ten servers in the web farm, the services can be placed on each of them. To reduce
the cost of maintenance, however, the services are placed on only as many servers as neces-
sary to provide the desired level of service. The applications that get much more traffic and
require more resources, such as A/P and A/R, are placed on five servers each. The services are
also on separate servers so that no A/P service is hosted on an A/R server. Meanwhile, the
lesser-used applications such as Contracts, Human Resources, and Timesheets are spread
across the ten servers to ensure an even spread. Traffic to these ten servers could be managed
by Round Robin DNS or a load-balancing router.

Distributing the Back End

The approaches in the previous section break up the front-end traffic, but because the bottle-
neck will often be the database, you will want to consider breaking up the various groupings
of data so you can run multiple database servers. For the intranet example in the previous
section, the breakdown could easily go along the lines of the five services: Human Resources,
Timesheets, Accounts Payable, Accounts Receivable, and Contracts. Initially, when you set out
to create a distributed back end, you can do so logically long before you physically distribute
the databases. Either SQL Server could have a single logical database with each of the tables
and stored procedures carefully managed so they do not become interdependent over time,
or you can run multiple logical databases on the same physical server. Later, as the company
grows to the point that the single physical server is not enough, you can move one or more of
the databases to a second server to physically distribute the back end. Table 10-3 shows the
initial configuration for a small company with a single database server.

CHAPTER 10 /" A SAMPLE APPLICATION

Table 10-3. Small Company Configuration

Hostname Database Name Service Database
hrdb.acme.com HR Human Resources DB1
tsdb.acme.com TS Timesheets DB1
apdb.acme.com AP Accounts Payable DB1
ardb.acme.com AR Accounts Receivable DB1
contactsdb.acme.com Contracts Contracts DB1

Table 10-3 shows the configuration of the five databases that handle all the services for
the intranet website. A small company needs only a single database, so each of the hostnames
point to the DB1 database, which may be at an internal IP address of 10.10.1.101. Each of the
hostnames point to that IP address. Later, when the databases are distributed to separate
physical servers, that data will be moved and the DNS records will be updated while the appli-
cation configurations remain the same, as long as they are configured with these hostnames.
Listing 10-1 shows the connection string for the AP database.

Listing 10-1. Connection String for AP Database
Data Source=apdb.acme.com;Initial Catalog=AP;Integrated Security=True

When the company grows and the application performance needs to improve, you could
move the database that is under the most load to a new database server, perhaps with much
more capable hardware than the initial database server created when the company was
smaller and had a much smaller budget. Now instead of just a basic RAID and dual processor
server, you may be stepping up to a SAN with a quad processor server, which could handle
your top two databases. This updated configuration is shown in Table 10-4.

Table 10-4. Growing Company Configuration

Hostname Database Name Service Database
hrdb.acme.com HR Human Resources DB1
tsdb.acme.com TS Timesheets DB1
apdb.acme.com AP Accounts Payable DB2
ardb.acme.com AR Accounts Receivable DB2
contactsdb.acme.com Contracts Contracts DB1

After the databases for the A/P and A/R services have been moved, the DNS records for
apdb.acme.comand ardb.acme.com could be pointed to the IP address of the new server,
10.10.1.102. The change to the new IP will not be instant, as the DNS record typically has a
“time to live” setting of 30 minutes or an hour. To make the change immediate, you will need
to flush the DNS on the application servers to force them to get the latest DNS information
and begin routing the right requests to the databases. For a time, you may want to set the
A/P and A/R databases to Read Only and leave them online for a while after the transition.

297

298

CHAPTER 10 ©* A SAMPLE APPLICATION

Planning for Scalability

With all of the suggestions covered to this point in the chapter, you should have several
options to choose from when you start to experience growing pains. Unfortunately, there is a
lot of space between knowing what you can do to improve the scalability of your application
and being able to actually do it. And as much as you do not want to immediately set out to
make your little website scalable to 1 billion users, you also should not ignore that your soft-
ware should be flexible enough to adapt to your changing needs.

Throughout this book, you have looked into the techniques and features of the ASPNET
environment that assist us with building fast websites. Now you will work on piecing it all
together into a flexible web application that is easy to build and easy to adapt to changing
needs. As the load on the website increases, the software design will allow you to change the
components that need a new approach without forcing the entire system to change. But you
want to ensure that you can start out with the least amount of effort. You will never get a mil-
lion users if you never get that first user, so you will start simple with a few baseline
requirements.

For starters, you will break the business objects into groupings that are managed with
custom provider models. Each business grouping will be managed independently while rela-
tionships between the business objects will be addressed by the design of the system. You will
also create prototypes for future providers to ensure that when it becomes necessary to dis-
tribute the application in multiple ways, you will be ready to do so without a significant
amount of rework.

Building a highly scalable system can be costly in terms of hardware and time, and
because you cannot know what part of your application will need the attention down the
road, it is best to simply be ready to adapt instead of investing all your time and energy on a
problem that may never appear. Let the performance problems reveal themselves in time.
You can make sure you are ready for them.

Note It is best to proactively gather metrics on everything that affects your application, from the number
of requests per hour to the memory, disk, and processor usage of every server in your system. As you see
the numbers change, you should be able to explain the changes and adapt as needed. The metrics should
allow you to see trends so that you can get ahead of them and take the proper actions as necessary. And if
the traffic to your website is seasonal, perhaps with a greater peak of traffic during a specific month, you
should project that traffic increase by using the numbers for the month from the previous year in relation to
the gradual changes you see happening throughout the year. You goal should be to keep the capacity of your
application well ahead of the projected use.

The Sample Application

The sample application for this chapter will be a website for a .NET user group. The website
will display information about upcoming meetings, including details about the speakers and
sponsors. It will also feature a job listing. There are relationships between some of these
things, such as the location that will be associated with each event as well as each job and

CHAPTER 10 " A SAMPLE APPLICATION

sponsor. The relationship to the location objects is a dependency that must be managed so,
for example, a location associated with a job is not deleted when the location is also associ-
ated with an event.

Creating the Database

We will create the database as we have done in previous chapters by building up a database
project with scripts to define the tables, stored procedures, and constraint scripts. The objects
in Table 10-5 will be represented in the database.

Table 10-5. Objects in the Database

Table Object
dug_Events Event
dug_Jobs Job
dug_JobContacts JobContact
dug_Locations Location
dug_Speakers Speaker
dug_Sponsors Sponsor

Each of the tables will share the same basic structure with the primary key defined as a
bigint named ID as well as DateTime values named Created and Modified, which are set as
records are created and updated. The primary key is set as an identity value that will automati-
cally be incremented as new records are created. Alternatively, the primary key could be
named specifically for the table, such as EventID, which is a popular practice. Unfortunately,
that practice makes it hard to work all records in a generic way, which we will be doing in the
next section.

PARTITIONING BY DATE

With the Created and Modified dates set for each record in the database, it will be possible to partition
the database on these values. The primary partition can include all records that have a modified date within
the last three months, while everything else will belong to another partition that effectively represents an
archive for the data. Initially, this partitioning scheme will not be necessary and may never become neces-
sary. But for a high-traffic website that generates a great number of records to the database, this approach
would be a helpful option.

A site such as Digg could use a few partitions. One could be for the current week, another for the last
three months, and another for everything beyond the most recent three months. Because users generally
read and interact on the newest content pages, the first partition will be accessed most frequently and will
require the fastest physical access to the data. The other two partitions will have more modest requirements
for speed but will need a great deal of space. With modest performance requirements, the archive partitions
will cost significantly less, and the primary partition, with the space requirements minimized, will also cost
less than a massive storage system with high-performance requirements.

299

300

CHAPTER 10 "' A SAMPLE APPLICATION

Get, Save, and Delete

The data manipulation methods will follow the get, save, and delete approach covered in
Chapter 7. Each stored procedure that gets the data for an Event will return the same columns,
so an instance of an Event can be created consistently with each stored procedure. For an Event,
we will be using the following stored procedures: dug_GetEvent.sgl, dug_GetAllEvents.sql, and
dug_GetEventsByDate.sql. Listing 10-2 shows dug_GetEvent.sql, which returns a single record
that matches the given key.

Listing 10-2. dug_GetEvent.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND name = 'dug GetEvent')
BEGIN
DROP Procedure dug GetEvent
END
Go

CREATE Procedure dbo.dug GetEvent
(
@EventID bigint

)
AS

SELECT
ID, Title, Description, MeetingDate, Created, Modified
FROM dug_Events
WHERE ID = @EventID
GO

GRANT EXEC ON dug GetEvent TO PUBLIC
GO

Users who visit the website will mostly be interested in upcoming events, so instead of
just providing access to a specific event or all events, we will create a stored procedure called
dug_EventsByDate that returns all events between now and the target date that is passed in as
a parameter. Using this simple stored procedure represents “performance by design” versus
“performance by optimization” because the need is easily anticipated during the design
phase. Clearly, if there are eventually 1,000 events in the database and most are for past
events, there will be unnecessary overhead involved in getting all records and then displaying
only the events for the coming months. This stored procedure is shown in Listing 10-3.

Listing 10-3. dug GetEventsByDate.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND name = 'dug GetEvent')
BEGIN
DROP Procedure dug GetEvent
END
GO

CHAPTER 10 /" A SAMPLE APPLICATION

CREATE Procedure dbo.dug GetEvent

(
@EventID bigint

)
AS

SELECT
ID, Title, Description, MeetingDate, Created, Modified
FROM dug_Events
WHERE ID = @EventID
GO

GRANT EXEC ON dug GetEvent TO PUBLIC
Go

And because the dug_GetEventsByDate stored procedure is using the MeetingDate column
as the filtering criteria, it is a logical candidate for indexing if the table becomes large—but it is
not strictly necessary when the database has just a few records. You may be able to get by eas-
ily for years without indexing the MeetingDate column. Keep in mind that maintaining indexes
also adds load to your database, so the fewer indexes that you add to your tables, the less over-
head you add to the system.

The script to save Event records, dug_SaveEvent.sql, takes in all the values associated with
an Event along with the 01dEventID, which is defined if the Event is already in the database
and is being updated, along with an output parameter named EventID. The EventID is set
whether an update or insert statement is executed during the save procedure. Listing 10-4
shows the save procedure.

Listing 10-4. dug SaveEvent.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND name = 'dug_SaveEvent')
BEGIN
DROP Procedure dug_ SaveEvent
END
Go

CREATE Procedure dbo.dug SaveEvent
(
@Title nvarchar(50),
@escription text,
@MeetingDate datetime,
@SpeakerID bigint,
@SponsorID bigint,
@LocationID bigint,
@01dEventID bigint,
@EventID bigint OUTPUT

301

302

CHAPTER 10 "' A SAMPLE APPLICATION

IF (@01dEventID < 0)
BEGIN

INSERT INTO dug_Events

(Title, Description, MeetingDate, SpeakerID,
SponsorID, LocationID, Created, Modified)

VALUES (
@Title,
@Description,
@MeetingDate,
@SpeakerID,
@SponsorID,
@LocationID,
GETDATE(),
GETDATE()

)

SELECT @EventID = @@IDENTITY
END
ELSE
BEGIN
UPDATE dug_Events
SET
Title = @Title,
Description = @Description,
MeetingDate = @MeetingDate,
SpeakerID = @SpeakerID,
SponsorID = @SponsorID,
LocationID = @LocationID,
Modified = GETDATE()
WHERE
ID = @0ldEventID

SET @EventID = @0ldEventID
END

Go

GRANT EXEC ON dug SaveEvent TO PUBLIC
Go

You can see that the Event record holds foreign key references to the Speaker, Sponsor, and
Location tables. The specific data for the Speaker, Sponsor, and Location is not saved as a part
of the Event save procedure beyond the foreign key reference with the respective ID value. The
boundary between these sets of data is maintained to ensure ease of maintenance. The values
stored in the Sponsor table could be changed completely as long as the ID value remains the
same, which will preserve the relationship to the Event records.

Finally, the delete procedure is straightforward. All that is necessary is that the ID value
for the event and the record are deleted, as shown in Listing 10-5.

CHAPTER 10

Listing 10-5. dug DeleteEvent.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'dug DeleteEvent')
BEGIN
DROP Procedure dug DeleteEvent
END
GO

CREATE Procedure dbo.dug DeleteEvent

(
@EventID bigint

)
AS

DELETE FROM dug_Events
WHERE ID = @EventID

@0

GRANT EXEC ON dug DeleteEvent TO PUBLIC
GO

A SAMPLE APPLICATION

The other tables for Speaker, Sponsor, and Location are managed in a similar way, with a
few differences due to the uniqueness of the data. Later I will go into how the Location table is

used as a dependency by multiple other tables.

Creating Data Access Providers

The modular design of our example website encourages us to use the provider model, which is
easy to implement as you saw in Chapter 5. We will create a SQL provider for each of the sets
of data used by the .NET user group website, to be used when the initial website goes live.
Later, as the website grows and needs to scale further, new providers can be created and
deployed as needed. One provider we will create later uses LINQ, which could be faster than
using the Enterprise Library and ADO.NET. We will also create a WCF provider, which would
allow us to configure the database back end in a distributed way that would spread the data-

base load.

EventProvider Object

For the moment, we will focus on the EventProvider, shown in Listing 10-6.

Listing 10-6. EventProvider.cs

namespace DotnetUserGroup.DataAccess.Events

{

public abstract class EventProvider : ProviderBase, ILocationConsumer

{

303

304

CHAPTER 10 "' A SAMPLE APPLICATION

#iregion "

public
public
public
public
public
public

public

Provider Methods
abstract Event GetNewEvent();

abstract Event GetEvent(DomainKey key);

abstract EventCollection GetAllEvents();

abstract EventCollection GetEventsByDate(DateTime targetDate);
abstract DomainKey SaveEvent(Event evt);

abstract void DeleteEvent(Event evt);

abstract bool IsUsinglocation(Location location);

#endregion

As covered in Chapter 5, the provider inherits from the ProviderBase class and declares all
the operations as abstract methods. The EventProvider primarily works with the Event object,
which holds onto each of the database values that are returned by the “get” procedures cov-
ered in the previous section. The Event class is shown in Listing 10-7.

Listing 10-7. Event.cs

namespace DotnetUserGroup.DataAccess.Events

{
[DataContract]
public class Event : DomainObject<Event>
{
protected internal Event() { }
public Event(DataRow row)
{
Load(row);
}
public Event(IDataReader dr)
{
Load(dr);
}
public static Event CreateNewEvent()

{

CHAPTER 10

Event evt = new Event();
evt.ID.Value = (long) -1;
return evt;

}

private string title;

[DataMember (Name = "Title",Order = 1)]
public string Title

{
get { return title; }
set { _title = value; }
}

private string description;

[DataMember (Name = "Description”,Order = 1)]
public string Description

{
get { return description; }
set { _description = value; }

}

private DateTime meetingDate = DefaultDateTime;

[DataMember (Name = "MeetingDate",Order = 1)]
public DateTime MeetingDate

{
get { return meetingDate; }

set { meetingDate = value; }

}

private Speaker speaker;

[DataMember (Name = "Speaker",Order = 1)]
public Speaker Speaker

A SAMPLE APPLICATION

{
get
{
if (_speaker == null)
{
// lazy load the speaker
EventSection section = new EventSection();
_speaker = SpeakerManager.
GetProvider(section.SpeakerProvider).GetSpeaker(this);
}

return _speaker;

305

306 CHAPTER 10 "' A SAMPLE APPLICATION

}

set { _speaker = value; }
}

private Sponsor _sponsor;

[DataMember (Name = "Sponsor",Order = 1)]
public Sponsor Sponsor

{
get
{
if (_sponsor == null)
{
// lazy load the sponsor
EventSection section = new EventSection();
_sponsor = SponsorManager.
GetProvider(section.SponsorProvider).GetSponsor(this);
}
return sponsor;
}
set { _sponsor = value; }
}

private Location location;

[DataMember (Name = "Location",Order = 1)]
public Location Location

{
get
{
if (_location == null)
{
// lazy load the location
EventSection section = new EventSection();
_location = LocationManager.
GetProvider(section.LlocationProvider).GetlLocation(this);
}
return location;
}
set { location = value; }
}

The Event object generally holds onto properties that come from the database. Because
loading the data is typically a tedious task, this work has been set to work automatically via an
updated version of the DomainObject covered in Chapter 7.

CHAPTER 10 /" A SAMPLE APPLICATION

Revised DomainObject

The revised DomainObject used for the .NET user group website is a lot like the one used in
Chapter 7, with a few differences. One difference in particular is how the primary key is always
assumed to line up with a column named ID. In Chapter 7, the ID was simply a number, whereas
the updated DomainObject uses a new type called DomainKey, which can hold onto primary key
values that could be one of the following types: Int16, Int32, Int64, or GUID.

When a column named ID is pulled from the DataSet or IDataReader, it is assumed to be the
primary key value and is set on the DomainKey property. Listing 10-8 shows the DomainKey class.

Listing 10-8. DomainKey.cs

namespace DotnetUserGroup.DataAccess.Common

{
[DataContract]
public class DomainKey : IComparable<DomainKey>

{
public DomainKey(object keyValue)

{
}

Value = keyValue;

private object keyValue;

[DataMember (Name = "Value",Order = 1)]
public object Value

{
get { return keyValue; }
set
{
// check in the order which is most likely
if (value is Int32 ||
value is Guid ||
value is Inté4 ||
value is Int16)
{
_keyvalue = value;
}
else
{
throw new Exception("Type not supported as a DomainKey: " +
value.GetType());
}
}
}

public static DomainKey Default

{

307

308

CHAPTER 10 "' A SAMPLE APPLICATION

get
{

DomainKey defaultKey = new DomainKey(-1);
return defaultKey;

}

#iregion " Comparison Methods

public int CompareTo(DomainKey other)

{
return Value.ToString().CompareTo(other.Value.ToString());
}
public override int GetHashCode()
{
return Value.GetHashCode();
}
public override bool Equals(object obj)
{
if (obj != null 88 obj is DomainKey)
{
DomainKey other = (DomainKey) obj;
return Equals(other);
}
return false;
}
public bool Equals(DomainKey other)
{
if (other != null 8& Value.Equals(other.Value))
{
return true;
}
return false;
}
#endregion

The primary purpose of the DomainKey is to abstract away the type of the primary key.
One implementation of the EventProvider could use the long value, which is used by the SQL
implementation, while a future implementation may use a Guid value, which is more appro-
priate when data is spread across multiple databases and a sequential identity key cannot be
maintained properly. The EventProvider will not have to change when the type of the primary
key is changed from a long to a Guid in the future implementation. However, the Event class

CHAPTER 10 /" A SAMPLE APPLICATION

does reference the associated Sponsor, Speaker, and Location, which are also set up with pri-
mary keys that are using long values. If one of these implementations is adjusted to use a Guid
value, it will require some adjustments to the stored procedures and table structures.
Another feature of the DomainKey is the implementation of the IComparable<DomainKey>
interface, which allows the key to be uniquely identified within a collection, among other
uses. It can also uniquely identify one record to another by using the primary key value
instead of the default comparison, which will not be accurate. The DomainObject uses the
DomainKey type for the ID property then uses the comparison provided by the DomainKey
to also compare instances of the DomainObject. The comparison methods used by the
DomainObject class are shown in Listing 10-9.

Listing 10-9. DomainObject Comparison Methods

public int CompareTo(Object obj)

{
int result = 0;
DomainObject<T> otherDomainObject = obj as DomainObject<T>;
if (otherDomainObject != null)
{
result = ID.CompareTo(otherDomainObject.ID);
if (result == 0)
{
result = Created.CompareTo(otherDomainObject.Created);
if (result == 0)
{
result = Modified.CompareTo(otherDomainObject.Modified);
}
}
}
return result;
}
public override int GetHashCode()
{
return ID.GetHashCode();
}

public override bool Equals(object obj)
{

DomainObject<T> domainObject = obj as DomainObject<T>;
if (domainObject != null)

{ if (ID.Equals(domainObject.ID))
{
return true;
}
}

return false;

309

310

CHAPTER 10 "' A SAMPLE APPLICATION

Now any object that inherits from the DomainObject can be compared against another to
determine whether they are the same object, such as the same Event or Speaker. The primary
key value is automatically one part of the comparison, while the Created and Modified values
are another part. An old copy of a Speaker object will not match a new copy, whereas a Speaker
record loaded into two Speaker objects will match as they should. This feature is provided
automatically for any class built by using the conventions defined for the data access layer
used by this website. Because each table created for this website uses the ID, Created, and
Modified columns, the loading procedure will populate their respective properties in the
DomainObject instances as planned.

Meanwhile, the rest of the data-loading process happens as it did in Chapter 7. The load
methods can take either a DataRow or an IDataReader to populate the DomainObject. Refer to
the downloadable samples for this chapter for the full code listing.

DOMAINOBJECT AND GENERICS

Generics were used for the revised DomainObject because of a problem combining inheritance and reflec-
tion. A TargetException was thrown in certain scenarios even though the names and types for the data
columns and object properties matched. | eventually discovered through Ayende Rahien, a lead developer on
the NHibernate project, that he also had a similar problem with inheritance and reflection. | got passed the
problem with the TargetException by making the DomainObject into a generic type that required all
inheriting classes to be a DomainObject<T>, where T is a DomainObject. When Location inherits from
DomainObject<Locationy, it meets the generics criteria and overcomes the problem with reflection.

Managing Relationships

Back in Listing 10-7 for the Event class, you may have noticed that there are properties repre-
senting relationships. Specifically, the properties named Speaker, Sponsor, and Location are
values that are not pulled in with the “get” stored procedures for the Event object. For the
Location property, the actual value is left as null initially and loaded as needed. This is the
“lazy loading” technique covered previously. When the Location property is accessed, the “get-
ter” will check whether the variable is defined and if it is not, it will attempt to get the value
from the LocationProvider, as shown in Listing 10-10.

Listing 10-10. Getter for Location Property

private Location location;

[DataMember(Name = "Location",Order = 1)]
public Location Location
{
get
{
if (_location == null)
{
// lazy load the location
EventSection section = new EventSection();

CHAPTER 10 /" A SAMPLE APPLICATION

_location = LocationManager.
GetProvider(section.locationProvider).GetlLocation(this);

}

return location;

}

set { location = value; }

When the Location property is used, the value is loaded by using the LocationManager
class, but instead of just using the default provider to get a location, the EventSection class is
used to determine the name of the provider to use. Later we will get into how custom configu-
rations assist with the relationships between objects managed by different providers.

Using Locations

Another feature of the EventProvider that is used to manage relationships is the
ILocationConsumer interface shown in Listing 10-11.

Listing 10-11. ILocationConsumer Interface

namespace DotnetUserGroup.DataAccess.Locations

{
public interface ILocationConsumer
{
bool IsUsinglocation(Location location);
}
}

The ILocationConsumer interface is used to protect a Location from being deleted when
it is still being used. A Sponsor can be associated with a Location, and so can an Event. Ifa
Sponsor or an Event is using a Location, it should not be deleted. Each provider that has a
relationship with locations implements the ILocationConsumer interface.

When the delete method for a Location is called, the LocationManager checks whether
any provider implementation is using the Location. Listing 10-12 shows the IsLocationInUse
method, which checks all the implementations that implement the ILocationConsumer interface.

Listing 10-12. IsLocationInUse Method

public static bool IslLocationInUse(Location location)

{

foreach (ILocationConsumer locationConsumer in GetlocationConsumers())

{

if (locationConsumer.IsUsinglocation(location))

{

return true;
}
}

return false;

311

312

CHAPTER 10 "' A SAMPLE APPLICATION

The IsLocationInUse method calls the IsUsinglLocation method, which is defined by the
ILocationConsumer interface on each instance in the collection. The GetLocationConsumers
method, shown in Listing 10-13, creates this collection.

Listing 10-13. GetLocationConsumers Method

private static ILocationConsumer[] GetlLocationConsumers()

{
List<ILocationConsumer> locationConsumers =
new List<ILocationConsumer>();
foreach (ProviderBase provider in
AssemblyHelper.GetMatchedProviders (typeof(ILocationConsumer)))
{
ILocationConsumer locationConsumer = provider as ILocationConsumer;
if (locationConsumer != null)
{
locationConsumers.Add(locationConsumer);
}
}
return locationConsumers.ToArray();
}

The GetLocationConsumers method simply gets a collection from the AssemblyHelper class
for all matched providers for the ILocationConsumer interface. The AssemblyHelper class is a
utility class created to discover all configured providers that match a given type so that other
interfaces, such as ISpeakerConsumer and ISponsorConsumer, can also be used in the same way.
Listing 10-14 shows the AssemblyHelper class.

Listing 10-14. AssemblyHelper.cs

namespace DotnetUserGroup.DataAccess.Common

{
public class AssemblyHelper

{

public static Type[] GetMatchedTypes(Assembly assembly, Type searchType)
{

List<Type> types = new List<Type>();

Module[] modules = assembly.GetlLoadedModules();

foreach (Module module in modules)

{
foreach (Type type in module.GetTypes())

{
if (type.IsClass 88
Itype.IsAbstract &&
searchType.IsAssignableFrom(type))

types.Add(type);

CHAPTER 10 /" A SAMPLE APPLICATION

}
}
}
return types.ToArray();
}
public static ProviderBase[] GetMatchedProviders(Type searchType)
{
List<ProviderBase> providers = new List<ProviderBase>();
DugConfiguration sectionGroup =
DugConfiguration.GetConfiguration();
foreach (ProviderConfigurationSection section in
sectionGroup.ProviderSections)
{
foreach (ProviderSettings settings in section.Providers)
{
// The assembly should be in \bin or GAC
Type providerType = Type.GetType(settings.Type, false);
Assembly providerAssembly =
providerType.Assembly;
if (providerType.IsClass &&
IproviderType.IsAbstract &&
searchType.IsAssignableFrom(providerType))
{
ProviderBase provider =
Activator.CreateInstance(providerType) as ProviderBase;
if (provider != null)
{
provider.Initialize(settings.Name, settings.Parameters);
providers.Add(provider);
}
}
}
}
return providers.ToArray();
}

The AssemblyHelper class does not simply return the types that implement the
ILocationConsumer interface. It also instantiates the configured providers and returns the
instances so that the IsUsinglocation method can be called. The assemblies that are checked
are all from the DugConfiguration, which is the root of all custom configurations for the
providers. We briefly looked at custom configurations in Chapters 5 and 9 and will cover them
in more depth next.

313

314

CHAPTER 10 "' A SAMPLE APPLICATION

Custom Configuration

The glue that holds everything together is the configuration. Although each of the providers is
designed to work independently, there are relationships between them that need to be main-
tained. The nature of these relationships can be changed with the configuration alone instead
of rebuilding and redeploying your application. For example, you may want to use the SQL
implementation for each provider initially but later configure a new SpeakerProvider imple-
mentation that integrates with an existing speaker database. All that is needed is the assembly
that holds the class that inherits from the abstract SpeakerProvider class and an update to the
configuration to point to the new class and assembly. The change is then configured with the
respective provider section.

Each custom provider defines a configuration section that inherits from the standard
class named ConfigurationSection. Listing 10-15 shows the SpeakerSection class.

Listing 10-15. SpeakerSection.cs

namespace DotnetUserGroup.DataAccess.Speakers

{

public class SpeakerSection : ProviderConfigurationSection
{

[ConfigurationProperty("providers")]

public override ProviderSettingsCollection Providers

{

get { return (ProviderSettingsCollection)base["providers"]; }

}

[StringValidator(MinLength = 1)]

[ConfigurationProperty("defaultProvider"”,
DefaultValue = "SqlSpeakerProvider")]

public override string DefaultProvider

{
get { return (string)base["defaultProvider"]; }
set { base["defaultProvider"] = value; }

The custom configuration in Chapter 9 simply defined a placeholder for a couple of con-
figuration values. In Listing 10-15, the provider section defines a property named Providers,
which leads to the ProviderSettingsCollection, as well as a property named DefaultProvider,
which points to the provider to use when a name is not given. This should remind you of the
standard ASPNET providers because it is implemented in the same way.

The Providers property uses the ConfigurationProperty attribute to point to the related
element in the configuration. The ProviderSettingsCollection is a standard type that will
automatically handle the configuration within the providers section. Listing 10-16 shows a
sample configuration for the speakers section.

CHAPTER 10 /" A SAMPLE APPLICATION

Listing 10-16. Sample Configuration Section

<speakers defaultProvider="SqlSpeakerProvider">
<providers>
<clear />
<add name="SqlSpeakerProvider"
connectionStringName="dug"
type="DotnetUserGroup.DataAccess.Speakers.SqlSpeakerProvider, w
DotnetUserGroup.DataAccess" />
</providers>
</speakers>

You can see that the providers element lines up with the Providers property in the
SpeakerSection class due to the ConfigurationProperty attribute. Within the providers
section, you can clear, add, or remove provider definitions that must include the name and
type attributes as well as any values the provider implementation needs.

Configuration Grouping

Each provider section looks much the same, and each will be a child element of the
dotnetUserGroup element, which is associated with the DugConfiguration class that inherits
from the standard ConfigurationSectionGroup class. This section group is what contains all
the configurations that cleanly isolate them from the rest of the configuration. The hierarchy
helps keep the configuration organized. Listing 10-17 shows the general structure of this
hierarchy.

Listing 10-17. Configuration Hierarchy

<dotnetUserGroup>
<events />
<jobs />
<jobContacts />
<locations />
<speakers />
<sponsors />

</dotnetUserGroup>

In the AssemblyHelper class shown in Listing 10-14, the ProviderSections property on the
DugConfiguration class was used to iterate over all the providers to get to the instances that
match the target type. Listing 10-18 shows how the ProviderSections property is defined.

Listing 10-18. ProviderSections Property

private List<ProviderConfigurationSection> providerSections = null;

public ProviderConfigurationSection[] ProviderSections

{
get

{

315

316 CHAPTER 10 "' A SAMPLE APPLICATION

if (_providerSections == null)

{
_providerSections = new List<ProviderConfigurationSection>();
_providerSections.Add(EventSection);
_providerSections.Add(JobContactSection);
_providerSections.Add(JobSection);
_providerSections.Add(LocationSection);
_providerSections.Add(SpeakerSection);
_providerSections.Add(SponsorSection);

}

return providerSections.ToArray();

The sections referenced in the ProviderSections property are also defined as properties
in the DugConfiguration, as shown in Listing 10-19.

Listing 10-19. Properties for Sections

[ConfigurationProperty("events")]
public EventSection EventSection
{
get {
return Sections["events"] as EventSection;
}

}

[ConfigurationProperty("jobContacts")]
public JobContactSection JobContactSection
{
get {
return Sections["jobContacts"] as JobContactSection;
}

}

[ConfigurationProperty("jobs")]
public JobSection JobSection
{
get {
return Sections["jobs"] as JobSection;
}

}

[ConfigurationProperty("locations")]
public LocationSection LocationSection
{
get {
return Sections["locations"] as LocationSection;

CHAPTER 10 /" A SAMPLE APPLICATION

}

[ConfigurationProperty("speakers")]
public SpeakerSection SpeakerSection
{
get {
return Sections["speakers"] as SpeakerSection;
}
}

[ConfigurationProperty("sponsors")]
public SponsorSection SponsorSection
{
get {
return Sections["sponsors"] as SponsorSection;

}

You may have noticed that the ProviderSections property returns an array of
ProviderConfigurationSection classes instead of ConfigurationSection classes. This is a
custom class that makes it possible to group all the provider configuration sections together.
The ProviderConfigurationSection class defines two abstract properties: Providers and
DefaultProvider. The SpeakerSection class shown in Listing 10-15 inherits from this class.
See Listing 10-20 for this abstract class.

Listing 10-20. ProviderConfigurationSection.cs

namespace DotnetUserGroup.DataAccess.Common

{
public abstract class ProviderConfigurationSection : ConfigurationSection
{
public abstract ProviderSettingsCollection Providers { get; }
public abstract string DefaultProvider { get; set; }
}
}

Declaring the Custom Configuration

In order to use the custom configuration, it must be declared. Declaring custom configuration
sections must be done at the beginning of a configuration file, right after the opening
Configuration element. Listing 10-21 shows the declaration of the section group and sub-
sections for the sample application.

Listing 10-21. Configuration Declaration

<configSections>
<sectionGroup name="dotnetUserGroup"

317

318 CHAPTER 10 "' A SAMPLE APPLICATION

type="DotnetUserGroup.DataAccess.Common.DugConfiguration, w=
DotnetUserGroup.DataAccess">
<section name="events"
type="DotnetUserGroup.DataAccess.Events.EventSection, =
DotnetUserGroup.DataAccess" />
<section name="jobs"
type="DotnetUserGroup.DataAccess.Jobs.JobSection, =
DotnetUserGroup.DataAccess" />
<section name="jobContacts"
type="DotnetUserGroup.DataAccess.JobContacts.JobContactSection, =
DotnetUserGroup.DataAccess" />
<section name="locations"
type="DotnetUserGroup.DataAccess.Locations.LocationSection, =
DotnetUserGroup.DataAccess" />
<section name="speakers"
type="DotnetUserGroup.DataAccess.Speakers.SpeakerSection, =
DotnetUserGroup.DataAccess" />
<section name="sponsors"
type="DotnetUserGroup.DataAccess.Sponsors.SponsorSection, =
DotnetUserGroup.DataAccess" />
</sectionGroup>
</configSections>

Configuring the Providers

With the custom configuration classes built and the custom sections declared, the provider
configuration can be added. Listing 10-22 shows the provider configuration that points to all
the standard SQL providers for the sample application.

Listing 10-22. Provider Configuration

<dotnetUserGroup>
<events defaultProvider="SqlEventProvider"
locationProvider="SqllLocationProvider"
speakerProvider="5SqlSpeakerProvider"
sponsorProvider="SqlSponsorProvider">
<providers>
<clear />
<add name="SqlEventProvider"
connectionStringName="dug"
type="DotnetUserGroup.DataAccess.Events.SqlEventProvider, =
DotnetUserGroup.DataAccess" />
</providers>
</events>
<jobs defaultProvider="SqlJobProvider">
<providers>
<clear />

CHAPTER 10 /" A SAMPLE APPLICATION

<add name="SqlJobProvider"
connectionStringName="dug"
type="DotnetUserGroup.DataAccess.Jobs.SqlJobProvider, w
DotnetUserGroup.DataAccess" />
</providers>
</jobs>
<jobContacts defaultProvider="SqlJobContactProvider">
<providers>
<clear />
<add name="SqlJobContactProvider"
connectionStringName="dug"
type="DotnetUserGroup.DataAccess.JobContacts.SqlJobContactProvider, =
DotnetUserGroup.DataAccess" />
</providers>
</jobContacts>
<locations defaultProvider="SqllLocationProvider">
<providers>
<clear />
<add name="SqllLocationProvider"
connectionStringName="dug"
type="DotnetUserGroup.DataAccess.Locations.SqlLocationProvider, =
DotnetUserGroup.DataAccess" />
</providers>
</locations>
<speakers defaultProvider="SqlSpeakerProvider">
<providers>
<clear />
<add name="SqlSpeakerProvider"
connectionStringName="dug"
type="DotnetUserGroup.DataAccess.Speakers.SqlSpeakerProvider, w
DotnetUserGroup.DataAccess" />
</providers>
</speakers>
<sponsors defaultProvider="SqlSponsorProvider">
<providers>
<clear />
<add name="SqlSponsorProvider"
connectionStringName="dug"
type="DotnetUserGroup.DataAccess.Sponsors.SqlSponsorProvider, w
DotnetUserGroup.DataAccess" />
</providers>
</sponsors>
</dotnetUserGroup>

The provider settings added within the providers element are required because unlike
the standard ASPNET providers, these settings are not predefined in the Machine.config file
(covered in Chapter 1, in Listing 1-4). But some values are optional. The defaultProvider
attribute is optional in each case when the default is what you intend. In Listing 10-15, the

319

320

CHAPTER 10 "' A SAMPLE APPLICATION

SpeakerSection defined the DefaultProvider property with an attribute for the DefaultValue
set to SqlSpeakerProvider. The EventSection class, shown in Listing 10-23, defines additional
properties for the providers it should use when populating the values for the Speaker, Sponsor,
and Location properties in the Event class. The ConfigurationProperty attribute has the
IsRequired value explicitly set to false, which happens to be the default value, so that you
can leave this additional information out of the configuration if you want to use the default
settings. When you access the properties from the EventSection class, it will return a value
whether or not you have defined it in the configuration file.

Listing 10-23. EventSection.cs

namespace DotnetUserGroup.DataAccess.Events

{

public class EventSection : ProviderConfigurationSection
{

[ConfigurationProperty("providers")]

public override ProviderSettingsCollection Providers

{

get { return (ProviderSettingsCollection)base["providers"]; }

}

[StringValidator(MinLength = 1)]

[ConfigurationProperty("defaultProvider"”,
DefaultValue = "SqglEventProvider")]

public override string DefaultProvider

{
get { return (string)base["defaultProvider"]; }
set { base["defaultProvider"] = value; }

}

[StringValidator(MinLength = 1)]
[ConfigurationProperty("speakerProvider”,
DefaultValue = "SqlSpeakerProvider",
IsRequired = false)]
public string SpeakerProvider
{
get { return (string)base["speakerProvider"]; }
set { base["speakerProvider"] = value; }

}

[StringValidator(MinLength = 1)]
[ConfigurationProperty("sponsorProvider”,
DefaultValue = "SqlSponsorProvider”,
IsRequired = false)]
public string SponsorProvider
{
get { return (string)base["sponsorProvider"]; }
set { base["sponsorProvider"] = value; }

CHAPTER 10 /" A SAMPLE APPLICATION

}

[StringValidator(MinLength = 1)]
[ConfigurationProperty("locationProvider",
DefaultValue = "SgllLocationProvider",
IsRequired = false)]
public string LocationProvider
{
get { return (string)base["locationProvider"]; }
set { base["locationProvider"] = value; }

Creating New Providers

When you determine that the standard SQL providers are not sufficient to handle your needs,
it is easy to create a new provider. All you need to do is inherit from the abstract provider class,
such as EventProvider, and implement all of the abstract methods. Perhaps everything works
as you like except for a few minor details in one provider. You can create a new implementa-
tion for that provider and configure your application to use it while leaving the rest of the
standard providers in place. Because they all work off of the abstract interface defined by

the base provider classes, the new implementation will work seamlessly with the existing
providers. And with the source code that you can download for this book, you can use the
existing classes as a starting point.

A new provider could be much like the standard SQL provider with a few differences, such
as adding data-caching functionality that is not included in the standard implementations.
The design for the .NET user group website is to use output caching on user controls to reduce
the load on the database instead of placing the caching responsibilities into the data access
layer. Content such as the event listings will not change frequently, so it is not necessary to
always get the latest data from the provider to render the page. However, you may have differ-
ent needs and may want to create a new provider that does put the caching functionality
into the data access layer. You could create a new EventProvider implementation called
SqlCachedEventProvider and use it in your application.

Implementing a LINQ Provider

Beyond using ADO.NET and the Enterprise Library, we can also now start using LINQ, which
is currently out as a CTP. The final release of the .NET 3.5 runtime and Visual Studio 2008 is
scheduled for February of 2008. When LINQ is finally released, it will change how we work
with data. LINQ, or Language Integrated Query, is a language extension that introduces
dynamic language features into C#. What it does is enable us to query objects by using a syn-
tax similar to SQL. You may have a large collection of Event objects and want to get a list of the
events that are going to be at a certain location in the next six months. A LINQ query can get
you that result from C# without having the database involved.

321

322

CHAPTER 10 "' A SAMPLE APPLICATION

The portion of LINQ that works with the database is called DLINQ. You can use DLINQ to
query tables in a database or to get the result from a stored procedure call. For the purpose of
implementing a provider, we will create an EventProvider implementation with LINQ that
calls the same stored procedures as the standard SQL implementation.

To get a jump start on creating the LINQ implementation of the EventProvider, I gener-
ated a website with Bling using the database with all the tables and stored procedures. You will
recall Blinq from Chapter 8. I took what I needed from the generated website and adjusted a
few of the details. For example, I know that each of the stored procedures that gets data from
events returns the same set of columns, but Blinq generated a unique class to hold the result
for each stored procedure. I took one of the generated result classes and renamed it to
EventResult. Listing 10-24 shows the EventResult class.

Listing 10-24. EventResult.cs

namespace DotnetUserGroup.DataAccess.LingProviders.Data

{

public class EventResult

{

" n

#region Variables

private long ID;

private string Title;

private string Description;

private System.DateTime _MeetingDate;
private System.DateTime _Created;
private System.DateTime _Modified;

#endregion

" n

#region Constructors

public EventResult()

{
}

#endregion

#region Properties
[Column(Name = "ID", Storage = " ID", DBType = "BigInt")]
[DataObjectField(false, false, false)]

public long ID

CHAPTER 10 /" A SAMPLE APPLICATION

{
get
{
return this. ID;
set
{
if ((this. ID != value))
{
this. ID = value;
}
}
}

[Column(Name = "Title", Storage = " Title", DBType = "NVarChar(50)")]
[DataObjectField(false, false, false, 50)]
public string Title

{
get
{
return this. Title;
set
if ((this. Title != value))
{
this. Title = value;
}
}
}

[Column(Name = "Description"”, Storage = " Description", DBType = "Text")]
[DataObjectField(false, false, false, 2147483647)]
public string Description

{
get

{

return this. Description;

if ((this. Description != value))

{

this. Description = value;

}

323

324 CHAPTER 10 "' A SAMPLE APPLICATION

[Column(Name = "MeetingDate", Storage = " MeetingDate", w»
DBType = "DateTime")]

[DataObjectField(false, false, false)]

public System.DateTime MeetingDate

{
get
{
return this. MeetingDate;
set
{
if ((this. MeetingDate != value))
{
this. MeetingDate = value;
}
}
}

[Column(Name = "Created", Storage = " Created", DBType = "DateTime")]
[DataObjectField(false, false, false)]
public System.DateTime Created

{
get
{
return this. Created;
set
{
if ((this. Created != value))
{
this. Created = value;
}
}
}

[Column(Name = "Modified", Storage = " Modified", DBType = "DateTime")]
[DataObjectField(false, false, false)]
public System.DateTime Modified

{
get

{

return this. Modified;

if ((this. Modified != value))
{

CHAPTER 10 /" A SAMPLE APPLICATION

this. Modified = value;

}

#endregion

You can see that the EventResult class does not inherit from any special LINQ base class
but instead decorates each of the properties with attributes that line them up with the stored
procedure results. Next the DataContext must be defined, which bridges the code to the data-
base. I pulled the methods from the Bling-generated code related to the events and adjusted
them to create the DugDataContext class shown in Listing 10-25.

Listing 10-25. DugDataContext.cs

namespace DotnetUserGroup.DataAccess.LingProviders.Data

{

public class DugDataContext : DataContext

{

" n

#iregion Constructors

public DugDataContext(string connection)

: base(connection)

{

}

public DugDataContext(System.Data.IDbConnection connection)
: base(connection)

{

}

public DugDataContext(string connection, MappingSource mappingSource)
: base(connection, mappingSource)

{
}

public DugDataContext(
IDbConnection connection, MappingSource mappingSource)
: base(connection, mappingSource)

{
}

#endregion

#iregion " Methods "

325

326

CHAPTER 10 "' A SAMPLE APPLICATION

[StoredProcedure(Name = "dug GetEvent")]

public StoredProcedureResult<EventResult> GetEvent(
[Parameter(Name = "EventID", DBType = "BigInt")]
System.Nullable<long> eventID)

return this.ExecuteStoredProcedure<EventResult>(
((MethodInfo)(MethodInfo.GetCurrentMethod())), eventlID);

}

[StoredProcedure(Name = "dug GetEventsByDate")]

public StoredProcedureResult<EventResult> GetEventsByDate(
[Parameter(Name = "TargetDate", DBType = "DateTime")]
System.Nullable<System.DateTime> targetDate)

return this.ExecuteStoredProcedure<EventResult>(
((MethodInfo) (MethodInfo.GetCurrentMethod())), targetDate);

}

[StoredProcedure(Name = "dug GetAllEvents")]
public StoredProcedureResult<EventResult> GetAllEvents()
{
return this.ExecuteStoredProcedure<EventResult>(
((MethodInfo) (MethodInfo.GetCurrentMethod())));

}

[StoredProcedure(Name = "dug SaveEvent")]

public int SaveEvent(
[Parameter(Name = "Title", DBType = "NVarChar(50)")]
string title,
[Parameter(Name = "Description”, DBType
string description,
[Parameter(Name = "MeetingDate", DBType = "DateTime")]
System.Nullable<System.DateTime> meetingDate,
[Parameter(Name = "SpeakerID", DBType = "BigInt")]
System.Nullable<long> speakerID,
[Parameter(Name = "SponsorID", DBType = "BigInt")]
System.Nullable<long> sponsorID,
[Parameter(Name = "LocationID", DBType = "BigInt")]
System.Nullable<long> locationID,
[Parameter(Name = "OldEventID", DBType
System.Nullable<long> oldEventID,
[Parameter(Name = "EventID", DBType = "BigInt")]
ref System.Nullable<long> eventID)

"Text")]

"BigInt")]

StoredProcedureResult result = this.ExecuteStoredProcedure(
((MethodInfo) (MethodInfo.GetCurrentMethod())), title,

CHAPTER 10 /" A SAMPLE APPLICATION

description, meetingDate, speakerID, sponsorID, locationID,
oldEventID, eventID);
eventID = ((System.Nullable<long>)(result.GetParameterValue(7)));
return result.ReturnValue.Value;

}

[StoredProcedure(Name = "dug DeleteEvent")]

public int DeleteEvent(
[Parameter(Name = "EventID", DBType = "BigInt")]
System.Nullable<long> eventID)

{
StoredProcedureResult result = this.ExecuteStoredProcedure(
((MethodInfo) (MethodInfo.GetCurrentMethod())), eventlID);
return result.ReturnValue.Value;
}

[StoredProcedure(Name = "dug IsEventUsinglocation")]

public StoredProcedureResult<CountResult> IsEventUsinglocation(
[Parameter(Name = "LocationID", DBType = "BigInt")]
System.Nullable<long> locationID)

{
return this.ExecuteStoredProcedure<CountResult>(
((MethodInfo) (MethodInfo.GetCurrentMethod())), locationID);
}
#endregion

The attributes associated with each method declare the name of the stored
procedure with the StoredProcedure attribute along with each of the parameters that are
passed into the stored procedure. You can see that the return value from the get methods
is StoredProcedureResult<EventResult>, which is not the same as EventCollection (asis
necessary for the EventProvider implementation). A conversion will be necessary. The
EventResultConvert class shown in Listing 10-26 will convert the LINQ type to the type

Listing 10-26. EventResultConverter.cs

namespace DotnetUserGroup.DataAccess.LingProviders.Data

public static class EventResultConverter

public static EventCollection ToEventCollection(
StoredProcedureResult<EventResult> eventResults)

327

328

CHAPTER 10

}

A SAMPLE APPLICATION

EventCollection eventCollection = new EventCollection();
foreach (EventResult eventResult in eventResults)
{

eventCollection.Add(Convert(eventResult));

}

return eventCollection;

public static Event Convert(EventResult eventResult)

{

Event evt = Event.CreateNewEvent();
evt.ID.Value = (long) eventResult.ID;
evt.Title = eventResult.Title;
evt.MeetingDate = eventResult.MeetingDate;
evt.Description = eventResult.Description;
evt.Created = eventResult.Created;
evt.Modified = eventResult.Modified;
return evt;

With the type conversion class in place, it is now possible to create the LinqEventProvider
class that inherits the EventProvider base class. This new provider will include the Initialize
method that providers have and it will use the configured connection string name to initialize
the DugDataContext so it can be used by all of the implementation methods. Listing 10-27
shows the full LingEventProvider class.

Listing 10-27. LinqEventProvider.cs

namespace DotnetUserGroup.DataAccess.LingProviders.Events

{

public class LinqEventProvider : EventProvider

{

#iregion

" n

Variables

private string connStringName = String.Empty;
private DugDataContext db;

#endregion

#iregion

" n

Provider Methods

/// <summary>
/// SOL Implementation

CHAPTER 10 /" A SAMPLE APPLICATION 329

/// </summary>
public override void Initialize(string name,
NameValueCollection config)

{
if (config == null)

{

throw new ArgumentNullException("config");

}

if (String.IsNullOrEmpty(name))
{

name = "LinqEventProvider";

}

if (String.IsNullOrEmpty(config["description"]))
{

config.Remove("description");
config.Add("description”, "LINQ Events Provider");

}

base.Initialize(name, config);

connStringName = config["connectionStringName"].ToString();
config.Remove("connectionStringName");

if (WebConfigurationManager.ConnectionStrings[connStringName] == null)

{

throw new ProviderException("Missing connection string");

}

string connString = ConfigurationManager.
ConnectionStrings[connStringName].ConnectionString;
db = new DugDataContext(connString);

if (config.Count > 0)

{
string attr = config.GetKey(0);

if (!String.IsNullOrEmpty(attr))
{

throw new ProviderException("Unrecognized attribute: " + attr);

}
}

#endregion

#iregion " Implementation Methods "

330 CHAPTER 10 "' A SAMPLE APPLICATION

public override Event GetNewEvent()

{
return Event.CreateNewEvent();
}
public override Event GetEvent(DomainKey key)
{
StoredProcedureResult<EventResult> eventResults =
db.GetEvent((long?) key.Value);
EventCollection eventCollection =
EventResultConverter.ToEventCollection(eventResults);
if (eventCollection.Count > 0)
{
return eventCollection[0];
}
else
{
return null;
}
}
public override EventCollection GetAllEvents()
{
StoredProcedureResult<EventResult> eventResults = db.GetAllEvents();
EventCollection eventCollection =
EventResultConverter.ToEventCollection(eventResults);
return eventCollection;
}
public override EventCollection GetEventsByDate(DateTime targetDate)
{
StoredProcedureResult<EventResult> eventResults =
db.GetEventsByDate(targetDate);
EventCollection eventCollection =
EventResultConverter.ToEventCollection(eventResults);
return eventCollection;
}
public override DomainKey SaveEvent(Event evt)
{
if (evt == null)
{
throw new ArgumentNullException("evt", "Event must be defined");
}

long? speakerId = null;
if (evt.Speaker != null)

CHAPTER 10 /" A SAMPLE APPLICATION 331

{
speakerId = (long) evt.Speaker.ID.Value;

}

long? sponsorId = null;
if (evt.Sponsor != null)

{
sponsorld = (long) evt.Sponsor.ID.Value;

}

long? locationId = null;
if (evt.Location != null)

{
locationId = (long) evt.location.ID.Value;

}

long? oldEventId = (long) evt.ID.Value;
long? newEventId = null;

db.SaveEvent(evt.Title, evt.Description, evt.MeetingDate,
speakerId, sponsorId, locationId, oldEventId, ref newEventId);
evt.ID.Value = newEventlId;

return evt.ID;

}
public override void DeleteEvent(Event evt)
{
if (evt == null)
{
throw new ArgumentNullException("evt", "Event must be defined");
}
db.DeleteEvent((long)evt.ID.Value);
}
public override bool IsUsinglocation(Location location)
{
if (location == null)
{
throw new ArgumentNullException("location");
}

StoredProcedureResult<CountResult> countResults =
db.IsEventUsinglocation((long)location.ID.Value);
foreach (CountResult countResult in countResults)

{

return countResult.Count > 0;

332

CHAPTER 10 "' A SAMPLE APPLICATION

}

return false;
}
#endregion

The LINQ implementation of the EventProvider was created as a separate assembly from
the standard SQL implementations so that it can be deployed separately. The class library
project for the standard SQL providers does not even need to include any of the references
required by LINQ, such as System.Data.Query, because the new provider is loaded at runtime
and the necessary namespaces for LINQ are accessible from the global assembly cache (GAC).
It is convenient to isolate the LINQ-specific details to the LINQ provider class library, espe-
cially when LINQ is such a new technology. Even when Visual Studio 2008 is out, you can still
target the .NET 2.0 or .NET 3.0 runtimes for the standard SQL providers, while a new LINQ
provider can be built to target the .NET 3.5 runtime and fully leverage all the new dynamic
language features that will be available with Visual Studio 2008.

Implementing a WCF Provider

Another provider implementation can be built by using the Windows Communication Foun-
dation (WCF). WCF is an implementation of web services specifications that have matured
dramatically over the last few years. The specifications for web services started out with SOAP
and .asmx web services that offered some interoperability for multiple platforms such as .NET,
Java, Python, and Ruby. But the industry set out to define many details about how web serv-
ices would become a fully functional protocol for distributing applications as services with the
WS-* specifications. Some of these specifications related to routing requests, while others
addressed how security should be handled. Microsoft produced the Web Service Extensions
(WSE), which added functionality that fell in line with these constantly changing specifica-
tions to the point that they became relatively stable. Then Microsoft released .NET 3.0 with
WCE which is a rich implementation of the WS-* specifications meant for web services, but
the intention is not just for making .NET applications integrate well with other platforms.
WCF will eventually replace .NET remoting and COM.

WCEF will give us a great deal of flexibility that is not possible with other technologies. A
WCEF service could be self-hosted within that application that uses the services, or the service
could be running outside of the application on the same server or a remote server. Making the
change can be done entirely through the configuration. By creating a WCF implementation of
a provider, we will have the option to move the data access layer to a service that runs locally
or remotely on a separate server, which effectively distributes the load and traffic coming into
the application.

Another benefit of using WCF is that you can provide a rich application layer that can be
used by multiple applications simultaneously. Consider a provider that manages the payroll
system, which needs to be accessible by multiple applications. If you had three distinct web-
sites that used that provider, you would not automatically share the caching functionality
from one website to the next because they are running in separate runtimes. But if you were to

CHAPTER 10 /" A SAMPLE APPLICATION

implement the provider with WCF and point each of the three websites to the shared service,
you would benefit from having a central point where data can be effectively cached, because
you can control where data is saved and deleted and remove items from the cache when you
determine they have changed.

You could actually be much more aggressive with your caching policy with a shared serv-
ice because you do control every piece of data that is coming and going. It is much like using
the stored procedures as the gatekeepers, but you have access to the full functionality of the
.NET runtime. And instead of using ASPNET caching, you could simply hold on to your own
collections of data, keep them current as the data changes, and return the requested data from
your internal collection without querying the database each time.

WCEF Service Requirements

Running a WCF service requires a client and a service. It is a bit more work than just setting up
a set of classes that can automatically talk to each other. In order for a client to work, the serv-
ice must be hosted and ready. The service also needs to be at a known location that is set by
using the configuration. For the WCF provider, we will create a new EventProvider and we will
set the service to run inside of a console application during development on a local port by
using the binding called netTcpBinding. The client configuration is shown in Listing 10-28.

Listing 10-28. WCF Client Configuration

<system.serviceModel>
<client>
<endpoint
address = "net.tcp://localhost:8002/EventService/"
binding "netTcpBinding"
contract = "DotnetUserGroup.DataAccess.WcfProviders.Events.IEventService"
/>
</client>
</system.serviceModel>

The client will look for the service by using the netTcpBinding on port 8002 on the
same machine. Then in the console application, the service will use the configuration in
Listing 10-29.

Listing 10-29. WCF Service Configuration

<system.serviceModel>

<services>
<service name = "DotnetUserGroup.DataAccess.WcfProviders.Events.EventService">
<endpoint
address = "net.tcp://localhost:8002/EventService/"

binding = "netTcpBinding"
contract = "DotnetUserGroup.DataAccess.WcfProviders.Events.IEventService"
/>
</service>
</services>
</system.serviceModel>

333

tcp://localhost:8002/EventService
tcp://localhost:8002/EventService

334

CHAPTER 10 "' A SAMPLE APPLICATION

The service element defines the concrete class, EventService, that implements the inter-
face, IEventService, defined by the contract attribute. The interface is defined explicitly because
it is used to generate the WSDL file that describes the web service. If it is not defined, the inter-
face is not a part of the web service. It is clearly much easier to create an interface class than to
create the WSDL file yourself, but you do need to decorate the interface with attributes to assist
with generating the WSDL output. Listing 10-30 shows the IEventService interface.

Listing 10-30. IEventService Interface

[ServiceContract(Namespace = "http://dug/events/")]
[ServiceKnownType(typeof(DomainKey))]
[ServiceKnownType(typeof(Event))]
[ServiceKnownType(typeof(Location))]
[ServiceKnownType(typeof(Speaker))]

public interface IEventService

{

[OperationContract]
Event GetNewEvent();

[OperationContract]
Event GetEvent(DomainKey key);

[OperationContract]
EventCollection GetAllEvents();

[OperationContract]
EventCollection GetEventsByDate(DateTime targetDate);

[OperationContract]
DomainKey SaveEvent(Event evt);

[OperationContract]
void DeleteEvent(Event evt);

[OperationContract]
bool IsUsinglocation(Location location);

The first attribute that you should notice is the ServiceKnownType. By adding these attrib-
utes, the WSDL output will generate the data necessary to define these objects so they can be
passed through the service. By explicitly declaring these types, the service will be able to pass
these objects around safely. Then each method that is meant to be a part of the service is
marked with the OperationContract attribute.

For the actual work of the WFC implementation, we will simply use the standard SQL
provider, which will call the existing stored procedures. The WCF provider will act as a bridge
to make the provider distributable to a remote server. But before we can call the service, we
need to have the console application start up the service host.

http://dug/events

CHAPTER 10 /" A SAMPLE APPLICATION

Hosting the Service

Hosting a service can be done in any type of application. It could be a website, console
application, or even a Windows service. It simply needs to start up a service host by using the
concrete implementation of the service interface. For the event implementation, we will use
the EventServiceHost class shown in Listing 10-31, which runs a singleton and provides meth-
ods to start and stop the service.

Listing 10-31. EventServiceHost.cs

namespace DotnetUserGroup.DataAccess.WcfProviders.Events

{
public class EventServiceHost
{
private static readonly EventServiceHost _instance =
new EventServiceHost();
private ServiceHost host;
public EventServiceHost()
{
}
public static EventServiceHost Instance
{
get
{
return _instance;
}
}
public void StartEventService()
{
Trace.Writeline("Internal Hosting: StartEventService");
host = new ServiceHost(typeof(EventService));
host.Open();
}
public void StopEventService()
{
Trace.WritelLine("Internal Hosting: StopEventService");
if (host != null)
{
host.Close();
host = null;
}
}
}

335

336

CHAPTER 10 "' A SAMPLE APPLICATION

With the service configuration already in place, the console application can use the
EventServiceHost class to run the service host. Listing 10-32 shows the console application.

Listing 10-32. Program.cs

namespace ConsoleApplication

{
class Program
{
static void Main(string[] args)
{
EventServiceHost.Instance.StartEventService();
Console.WriteLine("Running...");
Console.WriteLine("[Press Enter to End]");
Console.ReadLine();
EventServiceHost.Instance.StopEventService();
}
}
}

Using a console application to host a service during development is convenient because
you can easily stop and start the console application as you make changes to the application.
After you are ready to deploy your service to a production environment, you can run the serv-
ice either through a website or a Windows service.

Defining the DataContracts

In addition to defining the operations that a service handles, it is also necessary to define the
data objects that the service passes around. A DataContract is used to mark an object for use
with a WCF service. In Listing 10-7, you may have noticed the DataContract and DataMember
attributes on the Event class. Marking an object as a DataContract is much like marking it as
Serializable.You can actually also pass around objects that are marked as Serializable, but
it is preferable to now mark the classes as a DataContract.

Every bit of data that is used within a service must be prepared so that it can be safely
passed around with the service. The Event class must be marked as a DataContract as well as
each of the classes that it references, such as the Location and DomainKey classes.

Configuring the Provider

The configuration for the new WCF provider is now split into two parts: the client and

the service. The client will be the application, such as the website, which will use the WCF
provider to communicate with the service. Then the service will use the SQL implementation
of the EventProvider to carry out the service operations. Listing 10-33 shows the client config-
uration, and Listing 10-34 shows the service configuration.

Listing 10-33. Client Configuration

<events defaultProvider="SqlEventProvider"
locationProvider="SqllLocationProvider"

CHAPTER 10 /" A SAMPLE APPLICATION

speakerProvider="SqlSpeakerProvider"
sponsorProvider="SqlSponsorProvider">
<providers>
<clear />
<add name="WcfEventProvider"
type="DotnetUserGroup.DataAccess.WcfProviders.Events.WcfEventProvider, w
DotnetUserGroup.DataAccess.WcfProviders" />
</providers>
</events>

Listing 10-34. Service Configuration

<events defaultProvider="SqlEventProvider"
locationProvider="SqllLocationProvider"
speakerProvider="SqlSpeakerProvider"
sponsorProvider="SqlSponsorProvider">
<providers>
<clear />
<add name="SqlEventProvider" connectionStringName="dug"
type="DotnetUserGroup.DataAccess.Events.SqlEventProvider, w=
DotnetUserGroup.DataAccess" />
</providers>
</events>

Using the Providers

Connecting the data to the website means connecting the providers to the pages and controls.
As T have covered frequently, the ObjectDataSource will act as a bridge to bring these two parts
together. But there is one additional step required because an ObjectDataSource requires a
default constructor on the type it uses to populate the databound control with data items.
Because the providers are initialized without a default constructor, we will need to create a
proxy class.

What makes the most sense here is to create a tiny class that simply has the same methods
as the provider and to mark that class as a DataObject. The DataObject is covered in greater
detail in Chapter 7. Then the methods that return data can be marked as a DataObjectMethod
of the type Select. Listing 10-35 shows the EventDataObject.

Listing 10-35. EventDataObject.cs

namespace DotnetUserGroup.DataAccess.Events

{
[DataObject()]

public class EventDataObject
{

#iregion " Data Methods "

337

338 CHAPTER 10 "' A SAMPLE APPLICATION

public Event GetNewEvent()
{

return Provider.GetNewEvent();

}

[DataObjectMethod(DataObjectMethodType.Select)]
public Event GetEvent(DomainKey key)

{

return Provider.GetEvent(key);

}

[DataObjectMethod(DataObjectMethodType.Select)]
public EventCollection GetAllEvents()

{

return Provider.GetAllEvents();

}

[DataObjectMethod(DataObjectMethodType.Select)]
public EventCollection GetEventsByDate(DateTime targetDate)

{
return Provider.CetEventsByDate(targetDate);

}

[DataObjectMethod(DataObjectMethodType.Update)]
public DomainKey SaveEvent(Event evt)

{

return Provider.SaveEvent(evt);

}

[DataObjectMethod(DataObjectMethodType.Delete)]
public void DeleteEvent(Event evt)

{
Provider.DeleteEvent(evt);
}
public bool IsUsinglocation(Location location)
{
return Provider.IsUsinglocation(location);
}
#endregion
#iregion " Provider Properties "

public EventProvider Provider

{
get

{

CHAPTER 10 /" A SAMPLE APPLICATION

return EventManager.GetProvider(ProviderName);

private string providerName = String.Empty;

public string ProviderName

{
get
{
return _providerName;
set
{
_providerName = value;
}
}
#endregion

The EventDataObject uses a property called Provider that is simply a wrapper to get
EventManager, which returns the named provider. Because the default constructor will be
used with an ObjectDataSource, the value returned from the ProviderName property will
always return a null value. When the EventManager is given a null value, it assumes the default
provider is appropriate and the EventDataObject is able to function. If you wanted to use a dif-
ferent provider other than the default, you would have to programmatically instantiate either
the EventDataObject and set the ProviderName property or directly use the EventManager to get
access to the provider you want.

Finally, we can declare the ObjectDataSource and bind it to a databound control, such as
a Repeater. Listing 10-36 shows the event listing in a user control.

Listing 10-36. EventListingControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="EventlListingControl.ascx.cs"
Inherits="Controls_EventListingControl" %>

<h1>Event Listing</h1>

<asp:Repeater ID="rptEvents" runat="server" DataSourceID="odsEventsByDate" w»
OnItemDataBound="rptEvents ItemDataBound">

<HeaderTemplate>
<hr />
</HeaderTemplate>

339

340 CHAPTER 10 "' A SAMPLE APPLICATION

<ItemTemplate>
<asp:Literal ID="1tTitle" runat="server" Text='<%# Bind("Title") %>'>w=
</asp:lLiteral>

<asp:Literal ID="ltMeetingDate" runat="server" Text="9/9/9999"></asp:Literal>

<p>
<asp:lLiteral ID="1tDescription" runat="server"
Text="<%# Bind("Description") %>'>
</asp:lLiteral>
</p>
</ItemTemplate>

<SeparatorTemplate>
<hr />
</SeparatorTemplate>

<FooterTemplate>
<hr />
</FooterTemplate>

</asp:Repeater>

<asp:0ObjectDataSource ID="odsEventsByDate" runat="server"
0ldValuesParameterFormatString="original {o}"
SelectMethod="GetEventsByDate"
TypeName="DotnetUserGroup.DataAccess.Events.EventDataObject"
OnSelecting="ObjectDataSourcel Selecting">
<SelectParameters>
<asp:Parameter
Name="targetDate"
Type="DateTime"
DefaultValue="01/01/1754" />
</SelectParameters>
</asp:0bjectDataSource>

With the event listing declared as a user control, it can be easily dropped into any page on
your website. Most of the time you may not even need to add any code to the code-behind
because you have safely isolated all of the work in the class library so that it is reusable across
websites and other types of applications. In the case of the method used for the event listing,
you will want to set the date to something more useful than the default of 1/1/1754. That
default will show every event before today. The method itself ultimately calls a stored proce-
dure that returns any event between now and the given date, so you can also go forward in
time. The code-behind shown in Listing 10-37 sets that target date to 90 days into the future
to show all upcoming meetings for the next three months. The code-behind also handles the
ItemDataBound event for the Repeater so the meeting date can be set to the short data format.

CHAPTER 10 /" A SAMPLE APPLICATION

Listing 10-37. EventListingControl.ascx.cs

public partial class Controls EventlListingControl : UserControl

{
protected void ObjectDataSourcel Selecting(object sender,
ObjectDataSourceSelectingEventArgs e)
{
e.InputParameters["targetDate"] = DateTime.Now.AddDays(90);
}
protected void rptEvents ItemDataBound(
object sender, RepeaterItemEventArgs e)
{
if (e.Item.Dataltem != null)
{
Event evt = e.Item.Dataltem as Event;
if (evt != null)
{
Literal 1tMeetingDate =
e.Item.FindControl("1ltMeetingDate") as Literal;
if (1tMeetingDate != null)
{
ltMeetingDate.Text = evt.MeetingDate.ToShortDateString();
}
}
}
}
}

Summary

This chapter covered the big concerns, such as scalability and performance, that continue

to drive the need to seek out techniques to make websites faster in high-load situations. I
explained several scenarios where scalability intersects with performance and demands that
you implement a plan to distribute the content and load in a way that is manageable from the
perspectives of the network, web servers, and database servers. Having the ability to change
the distribution of the data and the software with simple configuration changes will enable a
highly agile environment that can adapt to your growing needs so you can address perform-
ance issues when they start to reveal themselves.

34

APPENDIX

Photo Album

This appendix serves as a reference for the Photo Album provider covered in Chapter 5.

Photo Album Provider

Configuration

Listing A-1. Configuration

<?xml version="1.0"?>
<configuration>
<configSections>
<section name="photoAlbumService" w
type="Chapter05.PhotoAlbumProvider.PhotoAlbumSection, w
Chapter05.PhotoAlbumProvider" />
</configSections>
<appSettings>
<!-- Flickr Settings http://www.flickr.com/services/api/ -->
<add key="FlickrFeedUrlFormat" w
value="http://api.flickr.com/services/feeds/photos public.gne?tags={0} =
& format={1}"/>
</appSettings>
<connectionStrings>
<add name="chpt5" connectionString="Data Source=.\SQLEXPRESS; w=
Initial Catalog=Chapter05;Integrated Security=True" w»
providerName="System.Data.SqlClient"/>
</connectionStrings>
<system.web>
<!-- Web Settings-->
</system.web>
<photoAlbumService defaultProvider="SqlPhotoAlbumProvider">
<providers>
<clear/>
<add name="SqlPhotoAlbumProvider" connectionStringName="chpt5" w
type="Chapter05.PhotoAlbumProvider.SqlPhotoAlbumProvider, w

Chapter05.PhotoAlbumProvider" />
343

http://www.flickr.com/services/api
http://api.flickr.com/services/feeds/photos_public.gne?tags=

344

APPENDIX " PHOTO ALBUM

</providers>
</photoAlbumService>

</configuration>

Classes

Listing A-2. PhotoAlbumProvider.cs

using System;
using System.Collections.Generic;
using System.Configuration.Provider;

namespace Chapter05.PhotoAlbumProvider

{

/// <summary>

/// Photo Album Provider

/// </summary>

public abstract class PhotoAlbumProvider : ProviderBase

#region " Abstract Methods "

/// <summary>

/// Gets albums for a user

/// </summary>

public abstract List<Album> GetAlbums(string userName);

/// <summary>

/// Gets photos for an album

/// </summary>

public abstract List<Photo> GetPhotosByAlbum(Album album);

/// <summary>

/// Creates an album

/// </summary>

public abstract Album AlbumInsert(string userName, string albumName,
bool active, bool shared);

/// <summary>

/// Creates a photo

/// </summary>

public abstract Photo PhotoInsert(Album album, string photoName,
DateTime photoDate, String regularUrl, int regularWidth,
int regularHeight, String thumbnailUrl, int thumbnailWidth,
int thumbnailHeight, bool active, bool shared);

/// <summary>

APPENDIX © PHOTO ALBUM

/// Updates an album
/// </summary>
public abstract void AlbumUpdate(Album album);

/// <summary>

/// Updates a photo

/// </summary>

public abstract void PhotoUpdate(Photo photo);

/// <summary>

/// Deletes an album

/// </summary>

public abstract void AlbumDeletePermanent(Album album);

/// <summary>

/// Deletes album permanently

/// </summary>

public abstract void PhotoDeletePermanent(Photo photo);

/// <summary>
/// Moves an album
/// </summary>
public abstract void AlbumMove(Album album,
string sourceUserName, string destinationUserName);

/// <summary>

/// Moves a photo

/// </summary>

public abstract void PhotoMove(Photo photo, Album sourceAlbum,
Album destinationAlbum);

#endregion

Listing A-3. SqlPhotoAlbumProvider.cs

using
using
using
using
using
using
using
using
using

System;

System.Collections.Generic;
System.Collections.Specialized;
System.Configuration.Provider;

System.Data;

System.Data.Common;

System.Web;

System.Web.Configuration;
Microsoft.Practices.Enterpriselibrary.Data;

345

346 APPENDIX " PHOTO ALBUM

namespace Chapter05.PhotoAlbumProvider
{
public class SqlPhotoAlbumProvider : PhotoAlbumProvider

{

#iregion Variables
string connStringName = String.Empty;
private Database db;

#endregion

#iregion Implementation Methods
/// <summary>
/// SQL Implementation
/// </summary>
public override void Initialize(string name,
NameValueCollection config)

{
if (config == null)
{
throw new ArgumentNullException("config");
}
if (String.IsNullOrEmpty(name))
{
name = "SqlPhotoAlbumProvider";
}
if (String.IsNullOrEmpty(config["description"]))
{
config.Remove("description");
config.Add("description”, "SQL Photo Album Provider");
}

base.Initialize(name, config);

if (config["connectionStringName"] == null)

{

throw new ProviderException(
"Required attribute missing: connectionStringName");

}

connStringName = config["connectionStringName"].ToString();
config.Remove("connectionStringName");

APPENDIX © PHOTO ALBUM

if (WebConfigurationManager.ConnectionStrings[connStringName] == null)

{
throw new ProviderException("Missing connection string");

}

db = DatabaseFactory.CreateDatabase(connStringName);

if (config.Count > 0)

{
string attr = config.GetKey(0);
if (!String.IsNullOrEmpty(attr))
{
throw new ProviderException("Unrecognized attribute: " + attr);
}
}

}

/// <summary>
/// SQL Implementation
/// </summary>
public override List<Album> GetAlbums(string userName)
{
// use cache with a 5 second window
String cacheKey = "PhotoAlbum::" + userName;
object obj = HttpRuntime.Cache.Get(cacheKey);
if (obj != null)

{
return (List<Album>)obj;
}
List<Album> albums = new List<Album>();
try
{

using (DbCommand dbCmd =
db.GetStoredProcCommand("pap_GetAlbumsByUserName"))

{
db.AddInParameter(dbCmd, "@UserName", DbType.String, userName);

DataSet ds = db.ExecuteDataSet(dbCmd);

// populate the album collection
if (ds.Tables.Count > 0)
{
foreach (DataRow row in ds.Tables[0].Rows)
{
Album album = new Album();
album.LoadDataRow(row);

347

348 APPENDIX " PHOTO ALBUM

albums.Add(album);

}
}

}
}
catch (Exception ex)
{

HandleError("Exception with pap GetAlbumsByUserName", ex);
}

// cache for 5 seconds
HttpRuntime.Cache.Insert(cacheKey, albums, null,
DateTime.Now.AddSeconds(5), TimeSpan.Zero);

//return the results
return albums;

}

/// <summary>

/// SQL Implementation

/// </summary>

public override List<Photo> GetPhotosByAlbum(Album album)

{
List<Photo> photos = new List<Photo>();

try
{
using (DbCommand dbCmd =
db.GetStoredProcCommand("pap_GetPhotosByAlbum"))

{
db.AddInParameter(dbCmd, "@AlbumID", DbType.Int64, album.ID);
DataSet ds = db.ExecuteDataSet(dbCmd);
// populate the photos collection
if (ds.Tables.Count > 0)
{
foreach (DataRow row in ds.Tables[0].Rows)
{
Photo photo = new Photo();
photo.LoadDataRow(row);
photo.Album = album;
photos.Add(photo);
}
}
}

APPENDIX © PHOTO ALBUM

catch (Exception ex)
{
HandleError("Exception with pap_GetPhotosByAlbum", ex);

}

//return the results
return photos;

}

/// <summary>
/// SQL Implementation
/// </summary>
public override Album AlbumInsert(
string userName, string albumName, bool active, bool shared)

{

try
{
using (DbCommand dbCmd =
db.GetStoredProcCommand("pap_InsertAlbum"))

{
db.AddInParameter(dbCmd, "@UserName", DbType.String, userName);
db.AddInParameter(dbCmd, "@Name", DbType.String, albumName);
db.AddInParameter(dbCmd, "@IsActive", DbType.Boolean, active);
db.AddInParameter(dbCmd, "@IsShared", DbType.Boolean, shared);
db.AddOutParameter(dbCmd, "@AlbumID", DbType.Int64, 0);
db.ExecuteNonQuery(dbCmd);
long albumId = (long)db.CGetParameterValue(dbCmd, "@AlbumID");
ClearAlbumCache (userName);
List<Album> albums = GetAlbums(userName);
foreach (Album album in albums)
{
if (album.ID == albumId)
{
return album;
}
}
}
}
catch (Exception ex)
{

HandleError("Exception with pap_InsertAlbum", ex);

}

349

350

APPENDIX

PHOTO ALBUM

throw new ApplicationException("New album not found");
}
/// <summary>
/// SQL Implementation
/// </summary>
public override Photo PhotoInsert(Album album, string photoName,
DateTime photoDate,String regularUrl, int regularWidth,
int regularHeight, String thumbnailUrl, int thumbnailWidth,
int thumbnailHeight, bool active, bool shared)
{
try
{
using (DbCommand dbCmd =
db.GetStoredProcCommand("pap_InsertPhoto"))

{
if (photoName.Length > 40)
{
photoName = photoName.Substring(0, 40);
}

db.AddInParameter(dbCmd, "@AlbumID",
DbType.Int64, album.ID);
db.AddInParameter(dbCmd, "@Name",
DbType.String, photoName);
db.AddInParameter(dbCmd, "@PhotoDate",
DbType.DateTime, photoDate);
db.AddInParameter(dbCmd, "@RegularUrl",
DbType.String, regularUrl);
db.AddInParameter(dbCmd, "@RegularWidth",
DbType.Int32, regularWidth);
db.AddInParameter(dbCmd, "@RegularHeight",
DbType.Int32, regularHeight);
db.AddInParameter(dbCmd, "@ThumbnailUrl",
DbType.String, thumbnailUrl);
db.AddInParameter(dbCmd, "@ThumbnailWidth",
DbType.Int32, thumbnailWidth);
db.AddInParameter (dbCmd, "@ThumbnailHeight",
DbType.Int32, thumbnailHeight);
db.AddInParameter(dbCmd, "@IsActive",
DbType.Boolean, active);
db.AddInParameter(dbCmd, "@IsShared",
DbType.Boolean, shared);

db.AddOutParameter(dbCmd, "@PhotoID", DbType.Int64, 0);

db.ExecuteNonQuery(dbCmd);
long photoId = (long)db.CGetParameterValue(dbCmd, "@PhotoID");

APPENDIX © PHOTO ALBUM

List<Photo> photos = GetPhotosByAlbum(album);
foreach (Photo photo in photos)

{
if (photo.ID == photold)
{
return photo;
}
}
}
}
catch (Exception ex)
{
HandleError("Exception with pap InsertPhoto", ex);
}

throw new ApplicationException("New photo not found");

}

/// <summary>

/// SQL Implementation

/// </summary>

public override void AlbumUpdate(Album album)

{
try
{
using (DbCommand dbCmd =
db.GetStoredProcCommand("pap_UpdateAlbum"))
{
db.AddInParameter(dbCmd, "@AlbumID",
DbType.Int64, album.ID);
db.AddInParameter(dbCmd, "@Name",
DbType.String, album.Name);
db.AddInParameter(dbCmd, "@IsActive",
DbType.String, album.IsActive);
db.AddInParameter(dbCmd, "@IsShared",
DbType.String, album.IsShared);
db.ExecuteNonQuery(dbCmd);
}
}
catch (Exception ex)
{
HandleError("Exception with pap UpdateAlbum", ex);
}
}

/// <summary>

351

352

APPENDIX

PHOTO ALBUM

/// SQL Implementation
/// </summary>
public override void PhotoUpdate(Photo photo)
{
try
{
using (DbCommand dbCmd =
db.GetStoredProcCommand("pap_UpdatePhoto"))
{
db.AddInParameter(dbCmd, "@PhotoID",
DbType.Int64, photo.ID);
db.AddInParameter(dbCmd, "@Name",
DbType.String,photo.Name);
db.AddInParameter(dbCmd, "@PhotoDate",
DbType.DateTime, photo.PhotoDate);
db.AddInParameter(dbCmd, "@RegularUrl",
DbType.String, photo.RegularUrl);
db.AddInParameter(dbCmd, "@RegularWidth",
DbType.Int32, photo.RegularWidth);
db.AddInParameter(dbCmd, "@RegularHeight",
DbType.Int32, photo.RegularHeight);
db.AddInParameter(dbCmd, "@ThumbnailUrl",
DbType.String, photo.ThumbnailUrl);
db.AddInParameter(dbCmd, "@ThumbnailWidth",
DbType.Int32, photo.ThumbnaillWidth);
db.AddInParameter (dbCmd, "@ThumbnailHeight",
DbType.Int32, photo.ThumbnailHeight);
db.AddInParameter(dbCmd, "@IsActive",
DbType.Boolean, photo.IsActive);
db.AddInParameter(dbCmd, "@IsShared",
DbType.Boolean, photo.IsShared);

db.ExecuteNonQuery(dbCmd);
ClearAlbumCache(photo.Album.UserName);
}
}

catch (Exception ex)

{
HandleError("Exception with pap UpdatePhoto", ex);
}
}

/// <summary>

/// SQL Implementation

/// </summary>

/// <param name="album"></param>

public override void AlbumDeletePermanent(Album album)

APPENDIX © PHOTO ALBUM 353

{
try
{
using (DbCommand dbCmd =
db.GetStoredProcCommand("pap _DeleteAlbum"))
{
db.AddInParameter(dbCmd, "@AlbumID", DbType.Int64, album.ID);
db.ExecuteNonQuery(dbCmd);
ClearAlbumCache(album.UserName);
}
}
catch (Exception ex)
{
HandleError("Exception with pap DeleteAlbum", ex);
}
}

/// <summary>

/// SQL Implementation

/// </summary>

public override void PhotoDeletePermanent(Photo photo)

{
try
{
using (DbCommand dbCmd =
db.GetStoredProcCommand("pap _DeletePhoto"))
{
db.AddInParameter(dbCmd, "@PhotoID", DbType.Int64, photo.ID);
db.ExecuteNonQuery(dbCmd);
ClearAlbumCache(photo.Album.UserName);
}
}
catch (Exception ex)
{
HandleError("Exception with pap DeletePhoto", ex);
}
}

/// <summary>

/// SQL Implementation

/// </summary>

public override void AlbumMove(Album album, string sourceUserName,
string destinationUserName)

{
try

354 APPENDIX © PHOTO ALBUM

using (DbCommand dbCmd = db.GetStoredProcCommand("pap MoveAlbum™"))
{
db.AddInParameter(dbCmd, "@AlbumID",
DbType.Int64, album.ID);
db.AddInParameter(dbCmd, "@SourceUserName",
DbType.String, sourceUserName);
db.AddInParameter(dbCmd, "@DestinationUserName",
DbType.String, destinationUserName);

db.ExecuteNonQuery(dbCmd);
ClearAlbumCache(sourceUserName);
ClearAlbumCache(destinationUserName);
}
}

catch (Exception ex)

{
HandleError("Exception with pap MoveAlbum", ex);
}
}

/// <summary>
/// SQL Implementation
/// </summary>
public override void PhotoMove(
Photo photo, Album sourceAlbum, Album destinationAlbum)
{
try
{
using (DbCommand dbCmd = db.GetStoredProcCommand("pap MovePhoto"))
{
db.AddInParameter(dbCmd, "@PhotoID",
DbType.Int64, photo.ID);
db.AddInParameter(dbCmd, "@SourceAlbumID",
DbType.Int64, sourceAlbum.ID);
db.AddInParameter(dbCmd, "@DestinationAlbumID",
DbType.Int64, destinationAlbum.ID);

db.ExecuteNonQuery(dbCmd);
sourceAlbum.ClearPhotos();
ClearAlbumCache(sourceAlbum.UserName);
destinationAlbum.ClearPhotos();
ClearAlbumCache(destinationAlbum.UserName);
}
}

catch (Exception ex)

{

APPENDIX © PHOTO ALBUM

HandleError("Exception with pap MoveAlbum", ex);

}

#endregion
#iregion " Utility Methods "

private void HandleError(string message, Exception ex)

{
//T0D0 log the error

throw new ApplicationException(message, ex);

}

/// <summary>

/// SQL Implementation

/// </summary>

public void ClearAlbumCache(String userName)

{
String cacheKey = "PhotoAlbum::" + userName;
if (HttpRuntime.Cache.Get(cacheKey) != null)
{
HttpRuntime.Cache.Remove(cacheKey);
}
}
#endregion

Listing A-4. DataObject.cs

using System;
using System.Data;
using System.Reflection;

namespace Chapter05.PhotoAlbumProvider

{

/// <summary>
/// DataObject
/// </summary>
public abstract class DataObject : IComparable

{

/// <summary>
/// Default Datetime
/// </summary>

355

356

APPENDIX

PHOTO ALBUM

public readonly static DateTime DefaultDatetime =
DateTime.Parse("01/01/1754");

/// <summary>

/// Object ID

/// </summary>

public abstract long ID { get; set; }

/// <summary>
/// Loads the values from the DataRow and works to match up column names
/// with Property names. For example <code>row["Name"] = this.Name</code>
/// and <code>row["IsActive"] = this.IsActive</code> where String typed
/// properties are treated as strings and other types are treated properly.
/// Supported types include String, Boolean, Float, Int and DateTime.
/// The Property must also be set as public, not protected and also be
/// writeable.
/// </summary>
/// <param name="row"></param>
protected internal void LoadDataRow(DataRow row)
{
Type type = GetType();
foreach (PropertyInfo pi in type.GetProperties())
{
if (pi.CanWrite)
{
if (pi.PropertyType.Equals(typeof(DateTime)))
{
if (row[pi.Name] != null)
{
pi.SetValue(this,
GetNotNullDateTime(row, pi.Name), null);

}
}
else if (pi.PropertyType.Equals(typeof(Boolean)))
{
if (row[pi.Name] != null)
{
if ("1".Equals(row[pi.Name]))
{
pi.SetValue(this, true, null);
}
else
{
pi.SetValue(this, false, null);
}
}

APPENDIX © PHOTO ALBUM

else if (pi.PropertyType.Equals(typeof(float)))

{
if (row[pi.Name] != null)
{
pi.SetValue(this, GetNotNullFloat(row, pi.Name), null);
}
}
else if (pi.PropertyType.Equals(typeof(String)))
{
if (row[pi.Name] != null)
{
pi.SetValue(this,
GetNotNullString(row, pi.Name), null);
}
}
else if (pi.PropertyType.Equals(typeof(int)))
{
if (row[pi.Name] != null)
{
pi.SetValue(this,
GetNotNullInteger(row, pi.Name), null);
}
}
else if (pi.PropertyType.Equals(typeof(Int64)))
{
if (row[pi.Name] != null)
{
pi.SetValue(this, GetNotNulllLong(row, pi.Name), null);
}
}

}

/// <summary>
/// Utility Method
/// </summary>
protected internal DateTime GetNotNullDateTime(DataRow row, String name)
{

Object obj = row[name];

if (!'DBNull.Value.Equals(obj))

{

return (DateTime)obj;

}

else

{

return DefaultDatetime;

357

358

APPENDIX " PHOTO ALBUM

}

/// <summary>
/// Utility Method
/// </summary>
protected internal String GetNotNullString(DataRow row, String name)
{
Object obj = row[name];
if (!DBNull.Value.Equals(obj))

{

return (String)obj;
}
else
{

return String.Empty;
}

}

/// <summary>
/// Utility Method
/// </summary>
protected internal int GetNotNullInteger(DataRow row, String name)
{
Object obj = row[name];
if (!DBNull.value.Equals(obj) &8 obj is Int32)

{
return (int)obj;
}
else
{
return O;
}

}

/// <summary>
/// Utility Method
/// </summary>
protected internal long GetNotNulllong(DataRow row, String name)
{

Object obj = row[name];

if (!DBNull.value.Equals(obj) &8 obj is Int64)

{

return (long)obj;
}

else

{

return O;

}

/// <summary>
/// Utility Method
/// </summary>

APPENDIX © PHOTO ALBUM

protected internal float GetNotNullFloat(DataRow row, String name)

if (!'DBNull.Value.Equals(obj) &3 obj is float)

{
Object obj = row[name];
{
return (float)obj;
}
else
{
return O;
}
}

private DateTime created = DefaultDatetime;

/// <summary>
/// Object creation time
/// </summary>
public DateTime Created

{
get

{

return created;

_created = value;

}

private DateTime modified = DefaultDatetime;

/// <summary>
/// Object modified time
/// </summary>
public DateTime Modified
{

get

{

return modified;

}

set

359

360 APPENDIX © PHOTO ALBUM

_modified = value;

}

/// <summary>

/// Base override

/// </summary>

public int CompareTo(Object obj)

{
int result = 0;
if (obj is DataObject)
{
DataObject other = (DataObject) obj;
result = Created.CompareTo(other.Created) * (-1);
}
return result;
}

/// <summary>
/// Base override
/// </summary>
public override int GetHashCode()
{
return ID.GetHashCode();

}

/// <summary>

/// Base override

/// </summary>

public override bool Equals(object obj)

{
if (obj is DataObject) {
if (ID.Equals(((DataObject)obj).ID))
{
return true;
}
}
return false;
}

Listing A-5. Album.cs

using System;
using System.Collections.Generic;

APPENDIX

namespace Chapter05.PhotoAlbumProvider

{

/// <summary>

/// Album

/// </summary>

public class Album : DataObject

{

#region Properties
private long id = 0;
/// <summary>

/// Object ID

/// </summary>

public override long ID

{
get
{
return _id;
set
{
id = value;
}
}

private string username;
/// <summary>

/// Owner's username

/// </summary>

public string UserName

{
get
{
return _username;
set
{
_username = value;
}
}

private string name;
/// <summary>

/// Album Name

/// </summary>
public string Name

PHOTO ALBUM

361

362 APPENDIX © PHOTO ALBUM

{
get
{
return _name;
set
{
_name = value;
}
}

private bool active = true;

/// <summary>

/// Indicates if an album is active
/// </summary>

public bool IsActive

{
get
{
return active;
set
{
_active = value;
}
}

private bool shared = true;

/// <summary>

/// Indicates if an album is shared
/// </summary>

public bool IsShared

{
get
{
return _shared;
set
_shared = value;
}
}

private List<Photo> photos = null;
/// <summary>

/// Photos in album

/// </summary>

APPENDIX © PHOTO ALBUM 363

public List<Photo> Photos

{
get
{
if (_photos == null)
{
_photos = PhotoAlbumService.Instance.GetPhotosByAlbum(this);
}
return _photos;
}
}
#endregion

#iregion " Methods "

/// <summary>
/// Clear Photos
/// </summary>
protected internal void ClearPhotos()
{
_photos = null;

}

/// <summary>

/// Base override

/// </summary>

public override String ToString()

{

return Name;
}
#endregion

Listing A-6. Photo.cs

using System;

namespace Chapter0s5.PhotoAlbumProvider
{

/// <summary>

/// Photo

/// </summary>

public class Photo : DataObject

{

364 APPENDIX © PHOTO ALBUM

#iregion " Properties

private long id = 0;
/// <summary>

/// Object ID

/// </summary>

public override long ID

{
get
{
return _id;
set
{
id = value;
}
}

private string name;
/// <summary>

/// Name of photo
/// </summary>
public string Name

{
get
{
return _name;
set
_name = value;
}
}

private DateTime photoDate = DefaultDatetime;
/// <summary>
/// Date photo was taken
/// </summary>
public DateTime PhotoDate
{
get
{

return _photoDate;

_photoDate = value;

APPENDIX

}

private bool active = true;

/// <summary>

/// Indicates if photo is active
/// </summary>

public bool IsActive

{
get
{
return _active;
set
_active = value;
}
}

private bool shared = true;

/// <summary>

/// Indicates if photo is shared
/// </summary>

public bool IsShared

{
get
{
return _shared;
set
{
_shared = value;
}
}

private string regularUrl = String.Empty;
/// <summary>
/// Url for photo
/// </summary>
public string RegularUrl
{
get
{

return _regularUrl;

PHOTO ALBUM

365

366 APPENDIX " PHOTO ALBUM

_regularUrl = value;

}

private int regularWidth = 0;
/// <summary>

/// Width for photo

/// </summary>

public int RegularWidth

{
get
{
return _regularWidth;
set
{
_regularWidth = value;
}
}

private int regularHeight = 0;
/// <summary>

/// Height for photo

/// </summary>

public int RegularHeight

{
get
{
return _regularHeight;
set
{
_regularHeight = value;
}
}

private string thumbnailUrl = String.Empty;
/// <summary>
/// Thumbnail url for photo
/// </summary>
public string ThumbnailUrl
{
get
{

return _thumbnailUrl;

}

set

APPENDIX

_thumbnailUrl = value;

}

private int thumbnailWidth = 0;
/// <summary>

/// Thumbnail width for photo
/// </summary>

public int ThumbnailWidth

{
get
{
return _thumbnailWidth;
set
{
_thumbnailWidth = value;
}
}

private int thumbnailHeight = 0;
/// <summary>

/// Thumbnail height for photo
/// </summary>

public int ThumbnailHeight

{
get
{
return _thumbnailHeight;
set
_thumbnailHeight = value;
}
}

private Album _album = null;
/// <summary>
/// Album which holds this photo
/// </summary>
public Album Album
{
get
{

return _album;

}

PHOTO ALBUM

367

368

APPENDIX " PHOTO ALBUM

set

// should be set when pulled by album
_album = value;

}

#endregion

Listing A-7. PhotoAlbumService.cs

using System.Configuration.Provider;
using System.Web.Configuration;

namespace Chapter05.PhotoAlbumProvider

{

public class PhotoAlbumService

{

private static PhotoAlbumProvider _defaultProvider = null;

private static PhotoAlbumProviderCollection _providers =
private static object _lock = new object();

private PhotoAlbumService() {}

public PhotoAlbumProvider DefaultProvider

{
get { return defaultProvider; }
}
public PhotoAlbumProvider GetProvider(string name)
{
return _providers[name];
}
public static PhotoAlbumProvider Instance
{
get
{
LoadProviders();
return defaultProvider;
}
}

private static void LoadProviders()

{

null;

APPENDIX © PHOTO ALBUM

// Avoid claiming lock if providers are already loaded
if (_defaultProvider == null)

{
lock (_lock)

{

// Do this again to make sure _defaultProvider is still null
if (_defaultProvider == null)
{

PhotoAlbumSection section = (PhotoAlbumSection)
WebConfigurationManager.GetSection
("photoAlbumService");

// Only want one provider here

//_defaultProvider = (PhotoAlbumProvider)

// ProvidersHelper.InstantiateProvider

/7 (section.Providers[0], typeof(PhotoAlbumProvider));

_providers = new PhotoAlbumProviderCollection();

ProvidersHelper.InstantiateProviders(
section.Providers, providers,
typeof (PhotoAlbumProvider));

_defaultProvider = providers[section.DefaultProvider];

if (_defaultProvider == null)
throw new ProviderException
("Unable to load default PhotoAlbumProvider");

Listing A-8. PhotoAlbumSection.cs

using System.Configuration;

namespace Chapter05.PhotoAlbumProvider

{

public class PhotoAlbumSection : ConfigurationSection

{

[ConfigurationProperty("providers")]
public ProviderSettingsCollection Providers

{

369

370

APPENDIX " PHOTO ALBUM

get { return (ProviderSettingsCollection)base["providers"]; }

}

[StringValidator(MinLength = 1)]
[ConfigurationProperty("defaultProvider"”,

DefaultValue = "SqlPhotoAlbumProvider")]
public string DefaultProvider

{
get { return (string)base["defaultProvider"]; }

set { base["defaultProvider"] = value; }

Listing A-9. PhotoAlbumProviderCollection.cs

using System;
using System.Configuration.Provider;

namespace Chapter05.PhotoAlbumProvider

{

public class PhotoAlbumProviderCollection : ProviderCollection

{

public new PhotoAlbumProvider this[string name]

{
get { return (PhotoAlbumProvider)base[name]; }
}
public override void Add(ProviderBase provider)
{
if (provider == null)
throw new ArgumentNullException("provider");
if (!(provider is PhotoAlbumProvider))
throw new ArgumentException
("Invalid provider type", "provider");
base.Add(provider);
}

APPENDIX © PHOTO ALBUM

Table Scripts

Listing A-10. pap_Albums.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND name = 'pap_ Albums')
BEGIN
PRINT 'Dropping Table pap Albums'
DROP Table pap_ Albums
END
]

SET ANSI NULLS ON

]

SET QUOTED_IDENTIFIER ON

Go

SET ANSI _PADDING ON

]

CREATE TABLE [dbo].[pap_Albums](
[ID] [bigint] IDENTITY(1,1) NOT NULL,
[UserName] [nvarchar](256) COLLATE SOL Latini General CP1 CI AS NOT NULL,
[Name] [varchar](50) COLLATE SOL Latini General CP1 CI AS NOT NULL,
[IsActive] [char](1) COLLATE SQL Latini General CP1 CI_AS NOT NULL,
[IsShared] [char](1) COLLATE SQL Latini General CP1 CI_AS NOT NULL,
[Modified] [datetime] NOT NULL,
[Created] [datetime] NOT NULL,

CONSTRAINT [PK pap Albums] PRIMARY KEY CLUSTERED

(

[ID] ASC
YWITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

Go
SET ANSI PADDING OFF

Listing A-11. pap_Photos.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND name = 'pap_Photos')
BEGIN
PRINT 'Dropping Table pap_Photos'
DROP Table pap_Photos
END
GO

SET ANSI_NULLS ON

GO

SET QUOTED IDENTIFIER ON
GO

SET ANSI_PADDING ON

3N

372 APPENDIX © PHOTO ALBUM

GO
CREATE TABLE [dbo].[pap_Photos](

[ID] [bigint] IDENTITY(1,1) NOT NULL,
AlbumID] [bigint] NOT NULL,
Name] [nvarchar](60) COLLATE SQL Latinil General CP1 CI_AS NOT NULL,
PhotoDate] [datetime] NULL,
RegularUrl] [nvarchar](200) COLLATE SQL Latini General CP1 CI AS NOT NULL,
RegularWidth] [int] NOT NULL,
RegularHeight] [int] NOT NULL,
ThumbnailUrl] [nvarchar](200) COLLATE SQL Latini General CP1 CI AS NOT NULL,
ThumbnailWidth] [int] NOT NULL,
ThumbnailHeight] [int] NOT NULL,
IsActive] [char](1) COLLATE SQL Latini General CP1 CI_AS NOT NULL,
IsShared] [char](1) COLLATE SQL Latini General CP1 CI_AS NOT NULL,
Modified] [datetime] NOT NULL,

[Created] [datetime] NOT NULL,
CONSTRAINT [PK pap Photos] PRIMARY KEY CLUSTERED

(

[ID] ASC
YWITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

L R B B e W e e B e B e B B e e B |

Go
SET ANSI PADDING OFF
Go

Constraints Scripts

Listing A-12. AddConstraints.sql

IF EXISTS (select * from dbo.sysobjects where id =
object_id(N'[dbo].[FK_pap_Photos_pap Albums]') and
OBJECTPROPERTY(id, N'IsForeignKey') = 1)
ALTER TABLE [dbo].[pap_Photos] DROP CONSTRAINT FK_pap_Photos_pap_ Albums
GO

ALTER TABLE [dbo].[pap_Photos] WITH CHECK ADD

CONSTRAINT [FK_pap_Photos_pap Albums] FOREIGN KEY([AlbumID])
REFERENCES [dbo].[pap_ Albums] ([id])
@0

Listing A-13. DropConstaints.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'F'
AND name = 'FK_pap_Photos pap Albums")
BEGIN
print 'Dropping FK pap Photos pap Albums'

APPENDIX

ALTER TABLE dbo.pap_Photos
DROP CONSTRAINT FK pap Photos pap Albums
END
Go

Stored Procedure Scripts

Listing A-14. pap_DeleteAlbum.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap_DeleteAlbum')
BEGIN
DROP Procedure pap_DeleteAlbum
END
GO

CREATE Procedure dbo.pap_DeleteAlbum

(

)
AS

@AlbumID bigint

/* Assume child dependencies are deleted by provider */
DELETE FROM pap_ Albums WHERE ID = @AlbumID

0]

GRANT EXEC ON pap_DeleteAlbum TO PUBLIC
GO

Listing A-15. pap_DeletePhoto.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap DeletePhoto")
BEGIN
DROP Procedure pap DeletePhoto
END

Go

CREATE Procedure dbo.pap DeletePhoto
(

)
AS

@PhotoID bigint

/* assume child dependencies have been deleted by provider */

PHOTO ALBUM

373

374 APPENDIX © PHOTO ALBUM

DELETE FROM pap_Photos WHERE ID = @PhotoID
Go

GRANT EXEC ON pap_DeletePhoto TO PUBLIC
Go

Listing A-16. pap_GetAlbumsByUserName.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap_GetAlbumsByUsername")
BEGIN
DROP Procedure pap_GetAlbumsByUsername
END

@0

CREATE Procedure dbo.pap_GetAlbumsByUserName

(

@UserName [nvarchar](256)
)
AS

SELECT * FROM pap_Albums
WHERE UserName = @UserName
ORDER BY Created DESC

@0

GRANT EXEC ON pap_GetAlbumsByUsername TO PUBLIC
GO

Listing A-17. pap_GetPhotosByAlbum.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap_GetPhotosByAlbum')
BEGIN
DROP Procedure pap_GetPhotosByAlbum
END
Go

CREATE Procedure dbo.pap GetPhotosByAlbum
(

)
AS

@AlbumID bigint

SELECT *

APPENDIX © PHOTO ALBUM 375

FROM pap_Photos
wHERE AlbumID = @AlbumID
ORDER BY Created DESC

Go

GRANT EXEC ON pap_GetPhotosByAlbum TO PUBLIC
Go

Listing A-18. pap_InsertAlbum.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap_InsertAlbum')
BEGIN
DROP Procedure pap_InsertAlbum
END
GO

CREATE Procedure dbo.pap_InsertAlbum

(
@AlbumID bigint OUTPUT,
@UserName [nvarchar](256),
@Name [varchar](50),
@IsActive [char](1),
@IsShared [char](1)

)

AS

INSERT INTO pap_Albums (UserName, [Name], IsActive, IsShared, Modified, Created)
VALUES (@UserName, @Name, @IsActive, @IsShared, GETDATE(), GETDATE())

SELECT @AlbumID = @@IDENTITY
G0

GRANT EXEC ON pap_InsertAlbum TO PUBLIC
GO

Listing A-19. pap_InsertPhoto.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap_InsertPhoto")
BEGIN
DROP Procedure pap_InsertPhoto
END
Go

CREATE Procedure dbo.pap_InsertPhoto

376 APPENDIX © PHOTO ALBUM

@PhotoID bigint OUTPUT,
@ALlbumID bigint,

@Name [nvarchar](60),
@PhotoDate [datetime],
@RegularUrl [nvarchar](200),
@RegularWidth [int],
@RegularHeight [int],
@ThumbnailUrl [nvarchar](200),
@Thumbnailwidth [int],
@ThumbnailHeight [int],
@IsActive [char](1),
@IsShared [char](1)

)
AS

INSERT INTO pap_Photos (
AlbumID, [Name], PhotoDate,
RegularUrl, RegularWidth, RegularHeight,
ThumbnailUrl, ThumbnailWidth, ThumbnailHeight,
IsActive, IsShared, Modified, Created

) VALUES (
@AlbumID, @Name, @PhotoDate,
@RegularUrl, @RegularWidth, @RegularHeight,
@ThumbnailUrl, @ThumbnailWidth, @ThumbnailHeight,
@IsActive, @IsShared, GETDATE(), GETDATE()

)

SELECT @PhotoID = @@IDENTITY
Go

GRANT EXEC ON pap_InsertPhoto TO PUBLIC
Go

Listing A-20. pap_MoveAlbum.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap MoveAlbum")
BEGIN
DROP Procedure pap_MoveAlbum
END
GO

CREATE Procedure dbo.pap MoveAlbum
(
@AlbumID bigint,
@SourceUserName [nvarchar](256),
@estinationUserName [nvarchar](256)

APPENDIX © PHOTO ALBUM

)
AS

UPDATE pap_Albums SET UserName = @DestinationUserName
WHERE UserName = @SourceUserName AND ID = @AlbumID

Go

GRANT EXEC ON pap_MoveAlbum TO PUBLIC
Go

Listing A-21. pap_MovePhoto.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap_MovePhoto")
BEGIN
DROP Procedure pap_MovePhoto
END
GO

CREATE Procedure dbo.pap_MovePhoto
(
@PhotoID bigint,
@SourceAlbumID bigint,
@estinationAlbumID bigint

)
AS

UPDATE pap_Photos SET AlbumID = @estinationAlbumID
WHERE AlbumID = @SourceAlbumID AND ID = @PhotoID

@0

GRANT EXEC ON pap_MovePhoto TO PUBLIC
GO

Listing A-22. pap_UpdateAlbum.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap_UpdateAlbum")
BEGIN
DROP Procedure pap_UpdateAlbum
END
Go

CREATE Procedure dbo.pap_UpdateAlbum

(
@AlbumID bigint,

377

378 APPENDIX © PHOTO ALBUM

@Name [varchar](50),
@IsActive [char](1),
@IsShared [char](1)

)
AS

UPDATE pap_Albums SET
[Name] = @Name,
IsActive = @IsActive,
IsShared = @IsShared,
Modified = GETDATE()

WHERE ID = @AlbumID

Go

GRANT EXEC ON pap_UpdateAlbum TO PUBLIC
GO

Listing A-23. pap_UpdatePhoto.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'pap_UpdatePhoto")
BEGIN
DROP Procedure pap_UpdatePhoto
END
GO

CREATE Procedure dbo.pap UpdatePhoto
(

@PhotoID bigint,
@Name [varchar](50),
@PhotoDate [datetime],
@RegularUrl [nvarchar](200),
@RegularWidth [int],
@RegularHeight [int],
@ThumbnailUrl [nvarchar](200),
@ThumbnailWidth [int],
@ThumbnailHeight [int],
@IsActive [char](1),
@IsShared [char](1)

)
AS

UPDATE pap_Photos SET
[Name] = @Name,
PhotoDate = @PhotoDate,
RegularUrl = @RegularUrl,
RegularhWidth = @RegularWidth,

APPENDIX

RegularHeight = @RegularHeight,
ThumbnailUrl = @ThumbnailUrl,
ThumbnailWidth = @ThumbnailWidth,
ThumbnailHeight = @ThumbnailHeight,
IsActive = @IsActive,
IsShared = @IsShared,
Modified = GETDATE()

WHERE ID = @PhotoID

Go

GRANT EXEC ON pap_UpdatePhoto TO PUBLIC
GO

Website Classes

Listing A-24. FlickrHelper.cs

using System;

using System.Collections.Generic;
using System.Configuration;

using System.IO;

using System.Net;

using System.Web.Configuration;

using System.Xml;

using Chapter05.CustomSiteMapProvider;
using Chapter05.PhotoAlbumProvider;

/// <summary>

/// Summary description for FlickrHelper
/// </summary>

public class FlickrHelper

{

public static void ImportFlickrPhotosToAlbum(Album album, string tag)

{
WebClient client = new WebClient();

string url = String.Format(
SiteConfiguration.FlickFeedUrlFormat, tag, "rss2");

byte[] data = client.DownloadData(url);

MemoryStream stream = new MemoryStream(data);

XmlDocument document = new XmlDocument();

PHOTO ALBUM

XmlNamespaceManager nsmgr = new XmlNamespaceManager(document.NameTable);

nsmgr.AddNamespace("media", "http://search.yahoo.com/mrss/");
nsmgr.AddNamespace("dc", "http://purl.org/dc/elements/1.1/");

379

http://search.yahoo.com/mrss
http://purl.org/dc/elements/1.1

380

APPENDIX " PHOTO ALBUM

document. Load(stream);
document.Normalize();

int max = 10;
int count = 1;

XmlNode channelNode = document.SelectSingleNode("/rss/channel™);
if (channelNode != null)

{

XmlNodelist itemNodes = channelNode.SelectNodes("item");
foreach (XmlNode itemNode in itemNodes)

{

XmlNode titleNode = itemNode.SelectSingleNode("title");
XmlNode dateTakenNode = itemNode.SelectSingleNode(
"dc:date.Taken", nsmgr);

XmlNode regularUrlNode = itemNode.SelectSingleNode(
"media:content/@url", nsmgr);

XmlNode regularWidthNode = itemNode.SelectSingleNode(
"media:content/@width", nsmgr);

XmlNode regularHeightNode = itemNode.SelectSingleNode(
"media:content/@height", nsmgr);

XmlNode thumbnailUrlNode = itemNode.SelectSingleNode(
"media:thumbnail/@url", nsmgr);

XmlNode thumbnailWidthNode = itemNode.SelectSingleNode(
"media:thumbnail/@width", nsmgr);

XmlNode thumbnailHeightNode = itemNode.SelectSingleNode(
"media:thumbnail/@height", nsmgr);

try
{
string title = "No Title";
DateTime dateTaken;
string regularUrl;
string thumbnailUrl;
int regularWidth, regularHeight,
thumbnailWidth, thumbnailHeight;

if (titleNode != null &% titleNode.FirstChild != null)
{
title = titleNode.FirstChild.Value;

}
DateTime.TryParse(dateTakenNode.FirstChild.Value,

out dateTaken);
regularUrl = regularUrlNode.Value;
int.TryParse(regularWidthNode.Value,

APPENDIX © PHOTO ALBUM 381

out regularWidth);
int.TryParse(regularHeightNode.Value,
out regularHeight);

thumbnailUrl = thumbnailUrlNode.Value;

int.TryParse(thumbnailWidthNode.Value,
out thumbnailWidth);

int.TryParse(thumbnailHeightNode.Value,
out thumbnailHeight);

PhotoAlbumProvider provider =
PhotoAlbumService.Instance;
provider.PhotoInsert(album, title,
dateTaken, regularUrl, regularWidth,
regularHeight, thumbnailUrl,
thumbnailWidth, thumbnailHeight,
true, true);

}
catch (Exception ex)
{

Utility.LogError("Error reading RSS item", ex);
}
count++;
if (count > max) {

break;

}

}

public static void ExportFlickrPhotos(string tag)
{
WebClient client = new WebClient();
string feedUrlFormat = "http://api.flickr.com/services/feeds/" +
"photos_public.gne?tags={0}&format={1}";
string url = String.Format(feedUrlFormat, tag, "rss2");
byte[] data = client.DownloadData(url);
MemoryStream stream = new MemoryStream(data);

XmlDocument document = new XmlDocument();

XmlNamespaceManager nsmgr = new XmlNamespaceManager (document.NameTable);
nsmgr.AddNamespace("media", "http://search.yahoo.com/mrss/");
nsmgr.AddNamespace("dc", "http://purl.org/dc/elements/1.1/");

document. Load(stream);
document.Normalize();

http://api.flickr.com/services/feeds
http://search.yahoo.com/mrss
http://purl.org/dc/elements/1.1

382 APPENDIX © PHOTO ALBUM

XmlNode channelNode = document.SelectSingleNode("/rss/channel™);
if (channelNode != null)
{
XmlNodelist itemNodes = channelNode.SelectNodes("item");
foreach (XmlNode itemNode in itemNodes)
{
XmlNode titleNode =
itemNode.SelectSingleNode("title");
XmlNode dateTakenNode =
itemNode.SelectSingleNode(
"dc:date.Taken", nsmgr);
XmlNode urlNode = itemNode.SelectSingleNode(
"media:content/@url", nsmgr);
XmlNode heightNode = itemNode.SelectSingleNode(
"media:content/@height", nsmgr);
XmlNode widthNode = itemNode.SelectSingleNode(
"media:content/@width", nsmgr);
XmlNode tagsNode = itemNode.SelectSingleNode(
"media:category”, nsmgr);

string title = titleNode.FirstChild.Value;

DateTime dateTaken;
DateTime.TryParse(dateTakenNode.FirstChild.Value, out dateTaken);
int width;

int height;

string photoUrl = urlNode.Value;

string tags = tagsNode.InnerText;

int.TryParse(widthNode.Value, out width);
int.TryParse(heightNode.Value, out height);

Console.Writeline("title: " + title);
Console.Writeline("dateTaken: " + dateTaken);
Console.WriteLine("photoUrl: " + photoUrl);
Console.WriteLine("tags: " + tags);
Console.Writeline("width: " + width);
Console.WriteLine("height: " + height);
Console.Writeline("title: " + title);

//T0DO use these values to download and save the file

}

public static void CreateFlickrAlbums(string username)

{

PhotoAlbumProvider provider = PhotoAlbumService.Instance;

}

APPENDIX © PHOTO ALBUM

Dictionary<String, String> defaultAlbums =
new Dictionary<string, string>();
defaultAlbums.Add("Forest Album", "forest");
defaultAlbums.Add("Summer Album", "summer");
defaultAlbums.Add("Water Album", "water");

List<Album> albums = provider.GetAlbums(username);
foreach (Album album in albums)

{
// start from scratch
if (defaultAlbums.ContainsKey(album.Name))
{
// delete photos first
foreach (Photo photo in album.Photos)
{
provider.PhotoDeletePermanent(photo);
}
provider.AlbumDeletePermanent(album);
}
}
foreach (string albumName in defaultAlbums.Keys)
{
CreateFlickrAlbums(username, albumName, defaultAlbums[albumName]);
}
RepopulateSiteMap();

private static void CreateFlickrAlbums(string username,

{

}

string albumName, string flickrTag)

PhotoAlbumProvider provider = PhotoAlbumService.Instance;
Album album = provider.AlbumInsert(username, albumName, true, true);
ImportFlickrPhotosToAlbum(album, flickrTag);

private static void DeleteFlickAlbum(string username,

{

string albumName)

PhotoAlbumProvider provider = PhotoAlbumService.Instance;
List<Album> albums = provider.GetAlbums(username);
foreach (Album album in albums)
{

// start from scratch

if (album.Name.Equals(albumName))

{

383

384

APPENDIX " PHOTO ALBUM

// delete photos first
foreach (Photo photo in album.Photos)

{

provider.PhotoDeletePermanent(photo);

}

provider.AlbumDeletePermanent (album);

}

public static void RemoveFlickAlbum(string username,
string albumName)

{
DeleteFlickAlbum(username, albumName);
RepopulateSiteMap();

}

public static void AddFlickrAlbum(string username,
string albumName, string flickrTag)

{
CreateFlickrAlbums(username, albumName, flickrTag);
RepopulateSiteMap();

}

private static void RepopulateSiteMap()

{
string connStringName = GetSqlSiteMapConnectionString();
SqlSiteMapHelper helper = new SqlSiteMapHelper(connStringName);
helper.RepopulateSiteMapNodes();

}

public static string GetSqlSiteMapConnectionString()
{
string connStringName = String.Empty;
SiteMapSection siteMapSection =
ConfigurationManager.GetSection("system.web/siteMap")
as SiteMapSection;
if (siteMapSection != null)

{
string defaultProvider = siteMapSection.DefaultProvider;
connStringName =
siteMapSection.Providers[defaultProvider].
Parameters["connectionStringName"];
}

return connStringName;

APPENDIX © PHOTO ALBUM

SQL SiteMap Provider

Classes

Listing A-25. SqlSiteMapProvider.cs

// Derived from the PlainTextSiteMapProvider example on MSDN
// http://msdn2.microsoft.com/en-us/library/system.web.sitemapprovider.aspx

using
using
using
using
using
using
using
using
using
using

System;

System.Collections;
System.Collections.Generic;
System.Collections.Specialized;
System.Data;
System.Data.Common;
System.Security.Permissions;
System.Web;

System.Web.Caching;

Microsoft.

Practices.Enterpriselibrary.Data;

namespace Chapteros.CustomSiteMapProvider

{

/// <summary>

/// Summary description for SqlSiteMapProvider

/// </summary>
[AspNetHostingPermission(SecurityAction.Demand, Level =
AspNetHostingPermissionLevel.Minimal)]

public class SqlSiteMapProvider : SiteMapProvider

{

#region

private
private

private

" n

Variables

string connStringName;
Database db;

SiteMapProvider parentSiteMapProvider = null;

private SiteMapNode rootNode = null;

private List<DictionaryEntry> siteMapNodes = null;

private List<DictionaryEntry> childParentRelationship = null;
#endregion

#iregion " Implementation Methods "

public override SiteMapNode CurrentNode

{

385

http://msdn2.microsoft.com/en-us/library/system.web.sitemapprovider.aspx

386 APPENDIX © PHOTO ALBUM

get

{
EnsureSiteMaploaded();
string currentUrl = FindCurrentUrl();
// Find the SiteMapNode that represents the current page.
SiteMapNode currentNode = FindSiteMapNode(currentUrl);
return currentNode;

}
}
public override SiteMapNode RootNode
{
get
{
EnsureSiteMaploaded();
return rootNode;
}
}
public override SiteMapProvider ParentProvider
{
get
{
return _parentSiteMapProvider;
}
set
{
_parentSiteMapProvider = value;
}
}
public override SiteMapProvider RootProvider
{
get
{

// If the current instance belongs to a provider hierarchy, it
// cannot be the RootProvider. Rely on the ParentProvider.
if (ParentProvider != null)
{
return ParentProvider.RootProvider;
}
// If the current instance does not have a ParentProvider,
// it is not a child in a hierarchy and can be the
// RootProvider.
else

{

return this;

APPENDIX © PHOTO ALBUM 387

}
}
}

public override SiteMapNode FindSiteMapNode(string rawUrl)

{
EnsureSiteMaplLoaded();

// Does the root node match the URL?
if (RootNode.Url == rawUrl)
{

return RootNode;

}

else

{
SiteMapNode candidate;
// Retrieve the SiteMapNode that matches the URL.
lock (this)

{
candidate = GetNode(siteMapNodes, rawUrl);
}
return candidate;
}

}

public override SiteMapNodeCollection GetChildNodes(SiteMapNode node)

{
EnsureSiteMaplLoaded();

SiteMapNodeCollection children = new SiteMapNodeCollection();

// Tterate through the ArraylList and find all nodes that have the
// specified node as a parent.

lock (this)

{

for (int i = 0; i < childParentRelationship.Count; i++)

{

string nodeUrl = childParentRelationship[i].Key as string;
SiteMapNode parent = GetNode(childParentRelationship, nodeUrl);

if (parent != null &8 node.Url == parent.Url)

{
// The SiteMapNode with the Url that corresponds to
// nodeUrl is a child of the specified node. Get the
// SiteMapNode for the nodeUrl.
SiteMapNode child = FindSiteMapNode(nodeUrl);
if (child != null)

388 APPENDIX © PHOTO ALBUM

{
children.Add(child);
}
else
{
throw new Exception("Arraylists not in sync.");
}
}
}
}
return children;

}

protected override SiteMapNode GetRootNodeCore()

{
EnsureSiteMaplLoaded();

return RootNode;

}
public override SiteMapNode GetParentNode(SiteMapNode node)
{
// Check the childParentRelationship table and find the parent
// of the current node. If there is no parent, the current node
// is the RootNode.
SiteMapNode parent;
lock (this)
{
// Get the Value of the node in childParentRelationship
EnsureSiteMaplLoaded();
parent = GetNode(childParentRelationship, node.Url);
}
return parent;
}

public override void Initialize(string name, NameValueCollection attributes)
{

lock (this)

{

base.Initialize(name, attributes);

connStringName = attributes["connectionStringName"].ToString();
//SqlCacheDependencyAdmin.EnableNotifications(connString);

db = DatabaseFactory.CreateDatabase(connStringName);
siteMapNodes = new List<DictionaryEntry>();
childParentRelationship = new List<DictionaryEntry>();
EnsureSiteMaplLoaded();

APPENDIX © PHOTO ALBUM

}

#endregion

f#iregion Private helper methods
private SiteMapNode GetNode(List<DictionaryEntry> list, string url)
{
for (int i = 0; 1 < list.Count; i++)
{
DictionaryEntry item = list[i];
if (((string)item.Key).ToLower().Equals(url.ToLower()))
return item.Value as SiteMapNode;

}

return null;

}

private string FindCurrentUrl()
{
try
{
// The current HttpContext.
HttpContext currentContext = HttpContext.Current;
if (currentContext != null)
{

return currentContext.Request.Rawlrl;

}

else

{
throw new Exception("HttpContext.Current is Invalid");
}
}
catch (Exception e)
{
throw new NotSupportedException(
"This provider requires a valid context.", e);

}

private void EnsureSiteMaplLoaded()
{
if (rootNode == null)
{
// Build the site map in memory.
LoadSiteMapFromDatabase();

}

389

390 APPENDIX © PHOTO ALBUM

protected virtual void LoadSiteMapFromDatabase()
{
lock (this)
{
// If a root node exists, LoadSiteMapFromDatabase has already
// been called, and the method can return.
if (rootNode != null)
{

return;

}

else

{
// Clear the state of the collections and rootNode
Clear();
SiteMapNode temp = null;

DataSet nodes = LoadSiteMapNodes();
if (nodes != null && nodes.Tables.Count > 0)
{
string baseUrl = HttpRuntime.AppDomainAppVirtualPath + "/";
foreach (DataRow node in nodes.Tables[0].Rows)
{
long parentNodeld = node["ParentID"] is long ?
(long)node["ParentID"] : oL;
String url = node["Url"] as String;
String parentUrl = node["ParentUrl"] as String;
String title = node["Title"] as String;

temp = new SiteMapNode(this, baseUrl + url,
baseUrl + url, title);

// Is this a root node yet?
if (null == rootNode &8 parentNodeId < 0)
{

rootNode = temp;
}
// If not the root node, add the node to the
// various collections.
else if (parentUrl != null)
{
siteMapNodes.Add(
new DictionaryEntry(temp.Url, temp));
// The parent node has already been added
// to the collection.
SiteMapNode parentNode = FindSiteMapNode(
baseUrl + parentUrl);
if (parentNode != null)

APPENDIX

{
childParentRelationship.Add(

new DictionaryEntry(temp.Url, parentNode));
}
else
{
throw new Exception(
"Parent node not found for current node.");

return;

}

private void Clear()

{
rootNode = null;
siteMapNodes.Clear();
childParentRelationship.Clear();

}

/// <summary>

/// Get SiteMap Nodes from the database

/// </summary>

/// <returns></returns>

internal DataSet LoadSiteMapNodes()

{
String cacheKey = SqlSiteMapHelper.CACHE KEY;
object obj = HttpRuntime.Cache.Get(cacheKey);
if (obj != null)

{
return obj as DataSet;
}
DataSet ds = null;
try
{

using (DbCommand dbCmd =
db.GetStoredProcCommand("sm_GetSiteMapNodes"))
{
ds = db.ExecuteDataSet(dbCmd);
}
}

catch (Exception ex)

PHOTO ALBUM

391

392

APPENDIX

PHOTO ALBUM
{
HandleError("Exception with LoadSiteMapNodes", ex);
}
//5qglCacheDependency tableDependency =
// new SglCacheDependency(connStringName, "sm SiteMapNodes");
HttpRuntime.Cache.Insert(cacheKey, ds, null, DateTime.Now.AddHours(1),
TimeSpan.Zero, CacheltemPriority.NotRemovable, OnRemoveCallback);
//return the results
return ds;
}

private void OnRemoveCallback(string key, object value,
CacheItemRemovedReason reason)
{
if (CacheItemRemovedReason.DependencyChanged == reason ||
CacheItemRemovedReason.Removed == reason)
{
Clear();
LoadSiteMapFromDatabase();
}
else
{
Clear();
}
}

private void HandleError(string message, Exception ex)

{
//TODO log error

throw new ApplicationException(message, ex);

}

#endregion

Listing A-26. SqlSiteMapHelper.cs

using Sy
using Sy
using Sy
using Mi

namespac

stem;

stem.Data.Common;

stem.Web;
crosoft.Practices.Enterpriselibrary.Data;

e Chapter0s5.CustomSiteMapProvider

APPENDIX © PHOTO ALBUM 393

public class SqlSiteMapHelper
{
public const string CACHE KEY = "SqlSiteMapNodes";

private Database db;

public SqlSiteMapHelper(string connStringName)

{
db = DatabaseFactory.CreateDatabase(connStringName);
}
public void RepopulateSiteMapNodes()
{
try
{
using (DbCommand dbCmd =
db.GetStoredProcCommand("sm RepopulateSiteMapNodes"))
{
db.ExecuteNonQuery(dbCmd);
InvalidateSiteMapCache();
}
}
catch (Exception ex)
{
HandleError("Exception with RepopulateSiteMapNodes", ex);
}
}
internal void InvalidateSiteMapCache()
{
HttpRuntime.Cache.Remove (CACHE KEY);
}

private void HandleError(string message, Exception ex)

{
//TODO log error

throw new ApplicationException(message, ex);

}

394 APPENDIX © PHOTO ALBUM

Table Scripts

Listing A-27. sm_SiteMapNodes.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND
name = 'sm_SiteMapNodes')
BEGIN
DROP Table sm_SiteMapNodes
END
]

CREATE TABLE [dbo].[sm SiteMapNodes](
[ID] [bigint] IDENTITY(1,1) NOT NULL,
[ParentID] [bigint] NULL,
[Url] [nvarchar](150) COLLATE SQL Latinl General CP1 CI AS NOT NULL,
[Title] [nvarchar](50) COLLATE SOL Latinil General CP1 CI AS NOT NULL,
[Depth] [int] NOT NULL CONSTRAINT [DF sm SiteMapNodes Depth] DEFAULT ((0)),
[Creation] [datetime] NOT NULL,
[Modified] [datetime] NOT NULL,

CONSTRAINT [PK_sm_SiteMapNodes] PRIMARY KEY CLUSTERED

(
[ID] ASC

JWITH (PAD_INDEX = OFF, IGNORE DUP KEY = OFF) ON [PRIMARY]

) ON [PRIMARY]

]

GRANT SELECT ON sm_SiteMapNodes TO PUBLIC
]

Stored Procedure Scripts

Listing A-28. sm_GetSiteMapNodes.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND w
name = 'sm_GetSiteMapNodes')
BEGIN
DROP Procedure sm GetSiteMapNodes
END

Go

CREATE Procedure dbo.sm GetSiteMapNodes
AS

SELECT c.ID, c.ParentID, c.Url, c.Title, c.Depth, p.Url AS ParentUrl
FROM sm_SiteMapNodes AS c
LEFT OUTER JOIN sm_SiteMapNodes AS p ON p.ID = c.ParentID

APPENDIX © PHOTO ALBUM 395

ORDER BY c.Depth, c.ParentID

Go
GRANT EXEC ON sm GetSiteMapNodes TO PUBLIC
Go

Listing A-29. sm_InsertSiteMapNode.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = "P' AND
name = 'sm_InsertSiteMapNode')
BEGIN
DROP Procedure sm_InsertSiteMapNode
END

@0

CREATE Procedure dbo.sm_InsertSiteMapNode
(

@ParentID bigint,

@Url nvarchar(150),

@Title nvarchar(50),

@epth int,

@ID bigint OUTPUT

)
AS

IF NOT EXISTS (SELECT * FROM sm_SiteMapNodes WHERE Url = @Url)
BEGIN
INSERT INTO sm_SiteMapNodes (ParentID, Url, Title, Depth, Creation, Modified)
VALUES (
@ParentID,
@Url,
@Title,
@Depth,
GETDATE(),
GETDATE()
)
SET @ID = @@IDENTITY
END
ELSE
BEGIN
SET @ID
END

(SELECT ID FROM sm SiteMapNodes WHERE Url = @Url)

Go

GRANT EXEC ON sm_InsertSiteMapNode TO PUBLIC
GO

396 APPENDIX © PHOTO ALBUM

Listing A-30. sm_RepopulateSiteMapNodes.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'sm_RepopulateSiteMapNodes')
BEGIN
DROP Procedure sm RepopulateSiteMapNodes
END

GO

CREATE Procedure dbo.sm RepopulateSiteMapNodes
AS

SET NOCOUNT ON

DECLARE @RootNodeID bigint
DECLARE @AlbumsNodeID bigint

-- reset the table

--TRUNCATE TABLE sm_SiteMapNodes

--DBCC CHECKIDENT (sm_SiteMapNodes, RESEED, 0)
DELETE FROM sm_SiteMapNodes

EXEC sm_InsertSiteMapNode -1, 'Default.aspx', 'Home', 0,
@RootNodeID OUTPUT

EXEC sm_InsertSiteMapNode @RootNodeID, 'Albums/Default.aspx’,
"Albums', 1, @AlbumsNodeID OUTPUT

DECLARE @Albums TABLE

(
ID int IDENTITY,
AlbumID bigint,
[Name] varchar(50),
UserName nvarchar(256)

)

INSERT INTO @Albums (AlbumID, [Name], UserName)
SELECT ID, [Name], UserName

FROM pap_Albums

WHERE IsActive = 1

DECLARE @CurID int

DECLARE @MaxID int

DECLARE @AlbumID bigint

DECLARE @AlbumNodeID bigint
DECLARE @Name varchar(50)
DECLARE @UserName nvarchar(256)

APPENDIX

DECLARE @Url nvarchar(150)

SET @MaxID = (SELECT MAX(ID) FROM @Albums)
SET @CurID = 1

WHILE (@CurID <= @MaxID)

BEGIN
SET @AlbumID = (SELECT AlbumID FROM @Albums WHERE ID = @CurID)
SET @Name = (SELECT Name FROM @Albums WHERE ID = @CurID)
SET @UserName = (SELECT UserName FROM @Albums WHERE ID = @CurID)

SET @Url = ('Albums/Album.aspx?AlbumID=" +
CONVERT (varchar(10), @AlbumID) +
"8UserName=" + @UserName)

-- PRINT 'Name = ' + @Name
-- PRINT ‘'UserName = ' + @UserName
-- PRINT 'Url = ' + @Url

EXEC sm_InsertSiteMapNode @AlbumsNodeID, @Url, @Name, 2,
@AlbumNodeID OUTPUT

SET @CurID = @CurID + 1
END

SET NOCOUNT OFF
Go

GRANT EXEC ON sm RepopulateSiteMapNodes TO PUBLIC
Go

Listing A-31. sm_UpdateSiteMapNode.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = "P' AND
name = 'sm_UpdateSiteMapNode')
BEGIN
DROP Procedure sm_UpdateSiteMapNode
END

(0]

CREATE Procedure dbo.sm UpdateSiteMapNode
(

@ID bigint,

@ParentID bigint,

@Url nvarchar(150),

@Title nvarchar(50),

PHOTO ALBUM

397

398 APPENDIX © PHOTO ALBUM

@epth int

)
AS

IF EXISTS (SELECT * FROM sm_SiteMapNodes WHERE ID = @ID)
BEGIN
UPDATE sm_SiteMapNodes SET
ParentID = @ParentID,
Url = @Url,
Title = @Title,
Depth = @Depth,
Creation = GETDATE(),
Modified = GETDATE()
END

Go

GRANT EXEC ON sm_UpdateSiteMapNode TO PUBLIC
Go

Index

Numbers and symbols
@maximumRows input parameter, 67
@OldFavoriteLinkID, checking value for,

211-212
@sortExpression input parameter, 67
@startRowIndex input parameter, 67

A
-A switch, 8
.abc files, adding build provider for, 237
AbcBuildProvider, for .abc files, 237-241
absolute expiration, setting for cached data,
164
abstract properties, 317
abstract property and method declarations,
132-133
abstract provider class, 132-133
Active Directory
attributeMapEmail attribute, 113
released with ASPNET 2.0, 112
Add method, 160
Add Provider Services.cmd script, 8
Add SQL Cache Dependencies.cmd, 170-171
AddConstraints.sql, 65
Photo Album provider, 372
AddIndexing.sql, 63—-64
Admin role, restricting Admin section access
with, 117-118
Admin section, securing, 34-35
Admin user, creating, 35-36
AdminHyperlink, setting Visibility for, 117
Akamai, hosting on, 294
alter script, writing statements manually
with, 272-273
alter statements, updating database
structure with, 272-273
Always Show Solution option, setting, 3
anonymous method, with delegate, 166-167
anonymous profiles
vs. authenticated profiles, 121
configuring, 119-120
deleting inactive with T-SQL, 120
enabling, 17,119
migrating, 121-122
Apache Web server vs. Linux to IIS on
Windows NT, 291
App_Code folder, Utility class in, 17
App_Data folder, DATA_DIRECTORY in, 12

application state, as alternative to caching,
149-150
Application_Start method, 284-285
ASPNET, caching in, 147-148
ASPNET 2.0 application
code and database separation, 7
common folders, 4-5
datasource configuration, 5-7
DATA_DIRECTORY for, 12
managing provider services, 7-11
preparing your environment, 1-7
SqlMembershipProvider released with,
112
ASPNET 2.0 data model. See data model
ASPNET controls, using provider-powered,
126-128
ASPNET machineKey Generator, 129
ASPNET Membership User accounts,
integration of website to, 203
ASPNET providers
configuring, 11-18
introduced in ASPNET 2.0, 7
managing services, 7-11
mixing and matching, 11
removing services, 8-10
ASPNET runtime, accessing values through
profiles with, 125
aspnet_regsql.exe utility, 8
AspNet_SqlCacheRegisterTableStored-
Procedure, updated, 168-170
AssemblyHelper class, 312-313
Assert statements, checking return values
with, 71
AttachedProperty method, 239-240
attributeMapEmail attribute, for Active
Directory implementation, 113
authenticated profiles, migrating from
anonymous to, 121-122
authentication system, security of in
ASPNET, 126-128
authentication token, 126
AutoScaffold page, SubSonic code generator,
248-249

B
back end, distributing to, 296-297
banking website, securing access to, 126-128
BeforeBuild and AfterBuild targets, 258

400

INDEX

binding
input parameters, 81-84
user controls, 83-84
BirthDate column, using COALESCE
function on, 207
Blinq code generator, for ASPNET, 249-252
Blinq project, prototype on ASPNET website,
249-250
BLOB storage mechanism, used by
SqlProfileProvider, 125
BLOBs, dynamic profiles and profiles as,
124-125
bottlenecks, effect on scalability, 291
BoundField, replacing with TemplateField, 78
breadcrumb trail, implementation of, 139
Browsable attribute, 226
Build Action, setting to Embedded Resource,
279
build providers, 234-236
build script, creating at solution level,
258-260
build.proj script
called by Build target, 269-270
creating at solution level, 258-260
BuildProvider class, in
System.Web.Compilation
namespace, 235-236
buildProviders configuration element, 234
business logic, encapsulating in stored
procedures, 198-199
business objects, creating, 222

C

cache
adding and getting items with index,
160-161
adding dependencies, 168
removing items from, 165
Cache object, 147
cached data, 164-165
CacheltemPriority parameter, values, 161
CacheltemRemovedCallBack parameter,
162-163
CacheltemRemovedReason parameter,
values, 162
caching
adding to enable polling, 160
alternatives to, 148
enumerating over the cache, 161
improving performance with, 147
methods, 160
options, 153-163
parameters, 161-163
performance strategies, 187-189
problems with, 186
proxy, 294-295
purging cached items by type, 161

simulation, 163
time-out, effect on scalability, 290
CaptureSettings method, 103-104
Category attribute, 226
change scripts, generating, 272-273
Change Scripts folder, for update scripts, 273
Chapter09Configuration class, loading
configuration with, 287-288
Chapter09Section class, 286-287
Chapter09SectionGroup class, building,
285-286
chpt02_GetAllPeople.sql stored procedure,
47
chpt03_GetPeopleRowCount.sql stored
procedure, 68-69
chpt03_GetPeopleSubSetSorted.sql stored
procedure, 66-67
chpt03_SaveLocation.sql script, 60-61
chpt03_SavePerson.sql script, 59
chpt03_SavePersonWithLocation.sql script,
61
chpt07_GetFavoriteLinksByProfileID.sql
stored procedure, 209
chpt07_GetFavoriteLinksByTag.sql stored
procedure, 209-210
chpt07_PurgeFavoriteLinksByProfileID
stored procedure, 216-217
chpt07_PurgeLinkTagsByProfileID stored
procedure, 215-216
chpt07_SaveFavoriteLink stored procedure,
parameters, 211
chpt09_GetSchemaVersion.sql script,
278-279
chpt09_SchemaVersions.sql script, 277
chpt09_SetSchemaVersion.sql script,
277-278
CityListingControl.ascx, 85-86
class library, structure of, 280
ClassLibrary, creating, 218
ClearCachedItem method, 247
client-side caching, 294-295
COALESCE function, 207-208
code generation, 233-234
Code Snippet Manager, 45
Code Snippet selection menu, 46
code snippets. See data access code snippets
CodeAssignStatement class, 240
CodeCompileUnit, 237-238
CodeDom namespace, 237-242
CodeFieldReferenceExpression class, 240
CodeMemberProperty type, 240
CodeMethodReturnStatement class, 240
CodeNamespace type, 237-238
CodeNamespacelmport type, 237-238
CodePlex
SubSonic partially hosted on, 242-243
website, 242

CodeSnippetCompileUnit class, 236
CodeTypeDeclaration type, 237-238
command line, adding provider services
from, 8-10
Common folder
adding SubSonic and Bling tools to, 250
adding custom databound control to, 109
additions for SQL notifications, 175
common folders. See folders
Comma Separated Values (CSV) export file,
generating, 125
CompositeDataBoundControl,
CreateChildControls for, 92
configSource attribute option, Web
Deployment Projects, 264
configuration
of anonymous profiles, 119-120
creating custom sections, 285-288
custom, 314-321
custom for Chapter09Group, 288
of datasource, 5-7
general structure of hierarchy, 315
grouping, 315-317
section class for Photo Album Provider,
130-131
settings for Membership provider, 14
settings for Profile provider, 16
Configuration property, setting in MSBuild
script, 260
ConfigurationSectionGroup class, 315
connection string, for AP database, 297
connectionStringName attribute, 113
in SqlMembershipProvider configuration,
114
connectionStrings, in Machine.config file, 12
console applications, for hosting a service,
335-336
constraints and indexes, managing, 62-65
content distribution network, Akamai, 294
content-disposition header, 125
continuous integration, tool for, 71
controls collection, creating, 104
ControlState, 89-91
CountryListingControl.ascx, 84-85
CreateChildControls method
for CompositeDataBoundControl, 92
getting data passed into, 94-97
implementing, 93-94
Created value, adding to tables, 205-206
CreatedUser event handler, 124
CreatePagerControls method, 98-99
CreateUserWizard, 122-124
CRUD, 233
methods, generating, 47
procedures, 59
CruiseControl.NET, 71
current context, holding data in, 150-153

INDEX

custom configuration sections, See
configuration
custom section definition, 288

D

dacreation shortcut, 219
dagetdr shortcut, 220
dagetds shortcut, 219
danonquery shortcut, 220
data
deleting from database, 213-217
loading, 222-224
unit tests for, 68-71
Data Access Application Block, 37-39
data access layer (DAL), 191-231
creating to work with data binding,
217-205
generated, 233-253
separation of concerns, 218-219
suggested default values in, 207
data access methods, creating, 219-221
data access providers, creating, 303-310
Data Access Types, code snippet, 40-41
data binding
code, 102-103
warning about recursive, 86
data caching, 159-163. See also caching
Data Contract, 201-203
data examples
nontrivial, 49
trivial, 47-49
dataload, tuning, 224-225
data manipulation methods, get, save, and
delete, 300-303
data model, choices, 37-54
data serialization, profile properties, 124
data transfer object (DTO), DataSets used as,
192
data value, casting to a property, 224
data warehousing, as performance strategy,
187-188
database
automating updates, 285-288
building, 203-225
configuration, 219
deleting data from, 213
deploying, 271-288
initialization file, 51
management, 55-71
partitioning by date, 299
sample for data model, 46-47
updating, 279-280
Database Creation, 41
Database object, 38
Database Projects, 55-57
constructing database with, 208-217

I
=}
=%
=
—
&
177}
—
@
-
QO
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
>
[
=}
=
@
1773
7
o
(=}
3
S~

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

402

INDEX

database server
small company configuration for single,
296-297
updated growing company configuration,
297
web server communications to, 148
DatabaseManager class, loading and running
scripts with, 280-285
DataBinder, loading data values with,
102-103
databound controls
creating, 91-110
embedding, 84
DataContracts, defining, 336
DataFirstNameField property, 103
DataObject, 53-54
DataObjectMethod attribute, 52
DataObjectMethodType attributes, 199-200
DataObjects, 199-203
DataObjects.cs, 355
DataReader method, 43-44, 53
DataRow, loading, 223-224
DataRowView, viewing in debugger, 194
DataSet method, 41-43
DataSets
debugging support, 194-195
inline SQL, and stored procedures,
191-199
populating FavoriteLinkCollection object
with, 223-224
refactoring, 193
types of, 192
datasource configuration, 5-7
DataSourceSelectArguments method,
adjusting, 97
DataSourceViewSelectCallback, callback
delegate, 95
DateEditor user control, 79-80
DateTime type, casting value of, 206-207
datypes shortcut, 219
db.proj script, for database updates, 274-276
DBNull.value, 206-207
debugging
placing breakpoints, 109
support with DataSets, 194-195
without ViewState, 109
defaultProvider attribute, 113
DefaultValue attribute, 226
deploy.proj script, 266-268
deployment, 255-288
deployment files, managing creation of,
266-268
Design Contract, 200-201, 203
DetailsView control, 73-74
differencing virtual hard disk, creating, 2
Digg, 202
distributed back end. See back end

distributing services, 295-296

DLINQ, querying tables with, 322

Do Nothing Button, 107

DomainKey type, 307-309

DomainObject class

comparison methods, 309-310
revised, 307-310, 341

dotnetUserGroup element, 315

Dropconstraints.sql, Photo Album provider,
372

DTO. See data transfer object (DTO)

DugConfiguration class, 315-317

DugDataContext class, creating, 325-327

dug_DeleteEvent.sql stored procedure,
302-303

dug_GetEvent.sql stored procedure, 300

dug_GetEventsByDate.sql stored procedure,
300-301

dug_SaveEvent.sql stored procedure,
301-302

dynamic language runtime (DLR),.NET
platform, 236

dynamic profiles and profiles as BLOBs,
124-125

E
EditTemplate, DateEditor placed in, 80-81
embedded scripts, using, 276-285
EndDaysBack property, 226
endpoint, creating Service Broker, 173
Enterprise Library, 38-39
Data Access Application Block as part of,
37
SubSonic support for, 242
Event class, .NET user group website,
304-306
event handlers
CreatedUser, 124
Login Authenticate, 126-127
ObjectDataSourcel_Selecting, 227
OnSelecting, 82
PageButton_Click, 100
Selecting event, 82
tagCloud_OnTagSelected, 231
TagSelected, 228-229
Web Form button, 120
EventDataObiject, 337-339
EventListingControl.ascx, 339-341
EventProvider class, 303-304
LINQ implementation of, 322
EventResult class, creating, 322-325
EventResultConvert class, 327-328
events, relaying information with, 228-229
EventSection class, 320-321
EventServiceHost class, for event
implementation, 335-336

exceptions, handling in Data Access Layer,
222

ExecuteDDL task, for database updates,
274-276

expiration header, 294

F

/f switch, Blinq code generator, 250
Favorite Link record
checklng existing, 211-212
saving with INSERT or UPDATE, 212-213
Favorite Links website
central business object, 222
stored procedure for getting data, 209-210
FavoriteLink object
testing performance of, 224-225
viewing in debugger, 194-195
FavoriteLinkCollection object, 223-224
FavoriteLinkDomain class, creating, 219-221
FavoriteLinks database
deleting data from, 213-217
managing scripts, 208-209
Membership User record in, 205
relationships in, 205
preventing null values in, 208
FetchByID method, with caching, 246-247
FetchPersonsByLocationID method, 247-248
fields, editing and validating, 77-81
FirstName data field property, 103
Flickr photo website, building provider that
uses, 129
FlickrHelper.cs, Website class, 379
folders, creating common, 4-5
foreign key constraints
handling of, 62
removing and adding, 64-65
FormatException, when saving a date value,
77
Forms Authentication token, assignment of,
117
FormsAuthenticationTicket, inserting remote
address into, 126-128
FormView control, 74-76
fragment caching, 155
of user control output, 153
with postcache substitution, 156-159
FullName property, creating partial class to
add, 245-246

G

Generate Change Script button, 62, 272

GenerateCode method, BuildProvider class,
235

GeolP services, 128

GetAllPeopleDataSet method, 51-52

GetAllPeopleReader, adding to
PersonDomain, 53

INDEX

GetClassName method, 235-236
GetContents method, 235
GetData method, 94
GetFieldName method, 240-241
GetGeneratedCode method, 236-237
GetLocationConsumers method, 312
GetLoginTimeout method, 127
GetManifestResourceStream method, 283
GetNamespace method, 240
GetPeopleRowCount method, 69
GetPeopleSubSetSortedDataSet method,
67-68

GetPerson method, from Person class, 252
GetPersonsByLocation method, 252
GetProduct method, in Utility class, 158-159
GetRecentFavoriteLinks method, 219
GetSqlCommands method, 282-283
GetTotalRowCount, 97
GridView control, 73, 76-77

binding data to, 200-201

with TemplateField, 78-79
Guidance Automation Extensions for VS, 39

H
Hao Kung, 125
Home.aspx page, creating, 229-230
hosting, by Akamai, 294

|

IDataltemContainer members, 101-102
IDataReader, loading data with, 224
IEventService interface, WCF provider, 334
ILocationConsumer interface, 311
indexes

adding to a table, 273

and constraints, managing, 62—65

defragging, 64

improving performance with, 65

index creation script, 273
init.sql script, as embedded resource, 279
InitializeDatabase method, 281
InitializePagerControls method, 99
inline SQL

maintenance considerations, 196

security considerations, 196-198
input parameters, binding, 81-84
InputParameterExample.aspx, 81
InputParameterExample2.aspx, 82
Insert method, 160
IntelliSense support, for generated class, 234
Interactive property, setting in MSBuild

script, 260
InvalidCastException, 192
IP address, physical location by, 128
IsLocationInUse method, method called by,
311-312

ISNULL function vs. COALESCE function, 208

403

I
=
o
=3
—h
Q
n
—+
D
=
QO
—
=
=
S
=
[2)
o
=]
D
=
=
o
D
x
Q0
<
=
D
(V2]
»n
Q
(=)
3
=~

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

404

INDEX

IsRemoteAddressMatched method, 127-128
IsUsingLocation method, 311-312
ItemGroup element, MSBuild scripts, 257

J
JetBrains, 179

K
Kung, Hao, 125

L

lazy loading, 188-189

LinksControl user control, creating, 226-228

LINQ provider, implementing, 321-332

LingEventProvider class, creating, 328-332

Linux to IIS on Windows NT vs. Apache Web
server, 291

LiteralControls, used by PersonRow, 104-105

Load event, effect on data loading, 152

load time and page size, 87

load-balancing hardware, for web farms,
293-294

LoadControlState method, 90, 108

LoadViewState method, 106

Location property, getter for, 310-311

LocationManager class, 311

locations

saving, 6061
using, 311-313

logging, handling with stored procedures,
198

Login Authenticate event handler, 126-127

Login controls, 112

login page, configuration of, 116-117

Machine.config file, 11-12

Management Studio. See SQL Server
Management Studio

many-to-many relationships, 205

MarkDirty method, 244-245

markup code, creating efficient, 104

master key, defining, 173

MaxIndex property, 98

MembersControl.ascx, controls held in, 18

Membership API, creating user with, 122-124

Membership provider, configuration of,
13-14. See also ASPNET providers

membership system, implementing with
forms authentication, 118

MembershipProvider class, 112-113

Microsoft Patterns & Practices group

Guidance Automation Extensions for VS,
39
modules provided by, 37

Microsoft Virtual PC environments,

preparing, 1-2

Microsoft.WebDeployment.Tasks.dll task,
264-265
mixed mode,
authentication, 6
select arguments in, 95
Modified value, adding to tables, 205-206
MSBuild, automation with, 256-260
MSBuild Community Tasks, 257
MSBuild scripts
BeforeBuild and AfterBuild targets, 258
Common folder additions, 271
for database updates, 274-276
parameters for, 260
primary elements of, 257
rules for working with, 256
skeleton of basic, 257
MSDN, content available on, 140

N
Name property, breaking up, 201-202
/namespace switch, Blinq code generator,
250
NamesUpdate-01.sql script, 280
.NET 3.0 with WCE released by Microsoft, 332
.NET user group website
creating data providers for, 303-310
creating EventProvider object for, 303-306
sample application, 298-303
netTcpBinding, 333
networking equipment, effect on network
bottlenecks, 291
NHibernate, O/R mapping tool, 222
Nonquery method, 44-45
nontrivial data examples, 49
Nontyped DataSets, 51-53, 192-193
notifications system, granting permissions to
use, 174-175
null values, preventing, 207-208
nulls
converting default date to, 207-208
handling of, 206-207
NUnit, 179
unit-testing framework for .NET, 70

0
Object/Relational (O/R) mapping, 222-224
ObjectDataSource, 199-203
adding a second to aWeb Form, 52
information given by, 67-70
ObjectDataSource declaration, for Person
table, 250-252
ObjectDataSourcel
for use by databound control, 69-70
LinksControls, 227
ObjectDataSourcel_Selecting event handler,
227
OnChange handler method, 166

one-to-many relationships, 205
one-to-one relationships, 205
OnPreRender method, setting text properties
in, 104-105
OnSelectlng event handler, 82
output caching, 153
enabled, 154
problems with, 155
programmatically setting a page for,
154-155
settings when language is a concern, 186

P

page caching, 154-155

page size and load time, 87

Pagelndex property, 100-101

pager events, wiring, 98— 101

PagerButton_Click event handler, 100

pages, creating, 229-231

PageSize property, calculating MaxIndex
property with, 98

PageStatePersister property, 87-88

Page_Load method, 151

paging, reducing ViewState size with, 88

pap_Albums.sql, Photo Album table script,
371

pap_DeleteAlbum.sql, 373

pap_DeletePhoto.sql, 373

pap_GetAlbumsByUserName.sql, 374

pap_GetPhotosByAlbum.sql, 374

pap_InsertAlbum.sql, 375

pap_InsertPhoto.sql, 375

pap_MoveAlbum.sql, 376

pap_MovePhoto.sql, 377

pap_Photos.sql, Photo Album table script,
371

pap_UpdateAlbum.sql, 377

pap_UpdatePhoto.sql, 378

partial classes, generated by SubSonic
generator, 245-247

partitioning, 206

database by date, 299

password policy, creating for
SqlMembershipProvider, 114-115

passwords, regular expressions for, 114-115

performance and scalability, understanding,
289-297

performance tuning, 152-153

PerformSelect method, 95-97

permissions, granting to use notifications
system, 174-175

Person and Location tables, 46

Person class, object browser with generated,
241

person record, inserting new, 59

Person.abc file, 237

INDEX

Personalization provider. See ASPNET
providers
PersonID parameter, setting, 59
PersonListing.aspx.cs Code-Behind, 83-84
PersonListingControl.ascx, 83
PersonRow, creating, 101-105
Photo Album provider, 343-398
building, 129-138
classes, 344-371
configuration, 343
constraints scripts, 372-373
implementing, 134-135
requirements for, 130
stored procedure scripts, 373-379
table scripts, 371-372
unit testing, 137- 137—138
PhotoAlbumProwder, Web.config for, 138
PhotoAlbumProvider.cs class, 132-133, 344
PhotoAlbumProviderCollection.cs class, 131,
370
PhotoAlbumSection.cs class, 130-131, 369
PhotoAlbumService.cs, 135-137, 368
polling
configuring SqlCacheDependency for,
171-172
enabllng fora table, 168-171
problems with, 172
vs. query notifications, 172-173
postcache substitution, 155 159
PreBuildEvent and PostBuildEvent
properties, 258
PreferredCustomer role, adding users to, 117
PreLoad event, 99-100
ProcessFieldNodes method, 238-239
profile data, trickiness of getting, 124-125
Profile_MigrateAnonymous event, 121
Profile_onMigrateAnonymous script, 17-18
Profile provider, configuration, 15-18. See
also ASPNET providers
profiles exporter, for exporting profile data,
125
PropertyGroup element, MSBuild scripts, 257
provider collection class, for building Photo
Album provider, 131
provider service class, 135
provider services. See also ASPNET providers
managing, 7-11
Membership configuration, 13-14
mixing and matching, 11
removing, 8-10
ProviderBase class, 113
EventProvider.cs inherits from, 304
ProviderConfigurationSection class, 317
providers. See also ASPNET providers
creating new, 321
using, 337-341

I
=
o
=3
—h
Q
n
—+
D
=
QO
—
=
=
S
=
[2)
o
=]
D
=
=
o
D
x
Q0
<
=
D
(V2]
»n
Q
(=)
3
=~

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

406

INDEX

Providers property, defined in
SpeakerSection class, 314
ProviderSections property, 315-316

Q
Query class, used by SubSonic query tool,
247
query notifications
functions, operators, and expressions not
allowed, 175-176
vs. polling, 172-173
removing items from cache with, 172-176
requirements for, 175-176
troubleshooting, 176-186
query tools, 247-248

refactoring, 193

relationships, managing, 204-205, 310-313

release branching, 256

remote address, inserting, 126-128

Remove Indexing.sql, 62-63

Remove method, 160

Remove Provider Services.cmd script, 10

Remove SQL Cache Dependencies.cmd, 171

RemoveConstraints.sql, 64-65

RemoveLinkTag stored procedure, 213-214

Repeater control, 227-228

ReplaceConfigSections task, for PostBuild
deployments, 264-265

rigid Typed Datasets, 50

RoleManager.ascx.cs script, 29-34

RoleProvider, enabling, 118

roles and users, adding, 35-36

Roles provider, configuration, 14-15. See also
ASPNET providers

Roles.Enabled property, 14-15

RolesManager.ascx control, 18

Round Robin DNS, 293-294

RowgFilter property, using with ProductID,
187-188

rows count, getting total, 97-98

Row_Number function, 6_7

Run On process, silent feature built into, 57

RunBuild.cmd script, 270-271

running MSBuild script with, 260

RunDb.cmd script, running db.proj script
with, 276

RunDeploy.cmd script, 268-269

RunSglCommands method, 283 284

runtime errors, 192-193

S
sample application, 289-341
SaveControlState method, 89-90, 107-108
SaveFavoriteLink method, 220-221

SaveViewState method, 105
saving data, 211-213
scaffolding, 248-249
scalability
effect of concurrent requests on, 290
effect of traffic spikes on, 291-293
planning for, 298
scalability and performance. See
performance and scalability
script templates, using, 273
scripts
creating common folders for, 4-5
using embedded, 276-285
ScriptsPrefix Constant script, 280-281
security considerations, in inline SQL,
196-198
Select method, calling, 94-95
SelectCountMethod property, 68
Selecting event handler, 82
Service Broker, enabling, 173-174
services. See distributing services
Session
as alternative to caching, 150
and ViewState, 87-88
shopping basket, setting up, 16-18
shortcuts
dacreation, 219
dagetdr, 220
dagetds, 219
danonquery, 220
datypes, 219
SiteMap prov1der See SQL SiteMap
provider.cs class
Slashdot, 292
sliding expiration, setting for cached data,
164-165
sm_GetSiteMapNodes.sql, 394
sm_InsertSiteMapNode.sql, 142-143, 395
sm_RepopulateSiteMapNodes.sql
loading SiteMap with, 140-142
stored procedure script, 395
sm_SiteMapNodes table, database
requirements, 140
sm_SiteMapNodes.sq], table script, 393
sm_UpdateSiteMapNode.sql, 397
social bookmarking website, building,
203-231
source-control system, keeping broken code
out of, 71
SpeakerSection class, 314
Spring Framework, 245
SQL cache dependencies, 165-186
SQL injection attacks, 196-198
SQL Photo Album provider. See Photo Album
provider
SQL Providers, 111-145
SQL queries, 196

SQL Server, mixed-mode authentication, 6
SQL Server Management Studio
managing table creation and
modifications, 57
removing indexing, 62-63
selecting people by first and last name,
57-58
SQL Server Surface Area Configuration for
Features utility, 173
SQL SiteMap provider
building, 139-145
classes, 385
stored procedure scripts, 394
SQL Web event provider. See ASPNET
providers
SqlCacheDependency
configuring for polling, 171-172
constructors, 167
SqlCommand object, 167
SqglDependency object, 165-167
SqlMembershipProvider, 112-115
SqlPhotoAlbumProvider.cs, 345
initialize method for, 134-135
SqlProfileProvider, 118-125
SqlRoleProvider, grouping users with,
115-118
SqlSiteMapHelper.cs class, 392
SqlSiteMapProvider.cs class, 3¢ 385
SqlTableProfileProvider, 125
StartDaysBack property, 226
static files, developing with, 295
stored procedures. See also individual stored
procedure names
chpt03_GetPeopleRowCount.sql, 68—-69
chpt03_GetPeopleSubSetSorted.sql, 66-67
chpt03_SavePersonWithLocation.sql, 61
extending applications with, 198-199
managing, 57-61
Photo Album provider, 373-379
planning for Favorite Links website, 209
purging to improve performance, 214
requesting a subset of items, 66-67
returning a range of items, 66-67
saving data, 211-213
selecting people by first and last name, 58
sm_InsertSiteMapNode.sql, 142-143
StringBuilder, 153
sub-domains, splitting services into, 295-296
SubSonic code generator, 242-243
adjusted template for table properties,
244-245
AutoScaffold page, 248-249
built-in query tool, 247-248
class template, 243-244
command-line tool, 243
running, 243
templating system, 243-245

INDEX

Tools directory, 242-243
website, 243
Substitution control, 155-156
SubstitutionFragment class, 156
switches, adding services with, 8
system environment variables, adding to
folders, 5
system tray application, CruiseControl.NET,
71
System.CodeDom namespace. See CodeDom
namespace
system.web section, in Machine.config file,
11-12

T

/t switch, Blinq code generator, 250

table scripts, SQL SiteMap Provider, 393

tables, denormalized vs. using join, 187-188

TagCloudControl, 228-229

TagCloudEventArgs, 229

tagCloud_OnTagSelected event handler, 231

TagSelected event handler, 228-229

Target element, MSBuild scripts, 257

Template Explorer, 273

TemplateField, replacing BoundField with,
78

templates, creating common folders for, 4-5

templating vs. CodeDom namespace,
241-242

testing, Des1gn gn and Data Contracts, 203

token purge list, assembling, 215

tools, creating common folders for, 4-5

TotalRowsCount property, 97-98

traffic spikes, effect on scalability, 291-293

trivial data examples, in ASPNET, 47— 49

TrivialExample.aspx with SqlDataSource,
47-48

Typed DataSet Designer, generating CRUD
methods in, 47

Typed DataSets, 192

building customized, 49-50
rigid, 50

u
unit tests

for data, 70-71

DomainTests.cs, 179-180

most popular framework for .NET, 70

MSBuild with, 186

PhotoAlbumPromder, 137-138

Test101_Caching_Off_Test Method, 181

Test102_Caching_AbsoluteExpiration_Test
Method, 181-182

Test103_Caching_Polling Test Method,
182-183

Test104_Caching_Notification_Test
Method, 183-184

I
=}
=%
=
—
&
177}
—
@
-
QO
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
>
[
=}
=
@
1773
7
o
(=}
3
S~

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

408

INDEX

unit tests (continued)
Test105_Caching SqlDependency_
Test Method, 184-185
troubleshooting query notifications with,
178
UnitRun, with NUnit tests, 179
UpdateDatabase method, 281-282
Utl property, setting in FavoriteLink object,
195
user controls
binding, 83-84
configuration, 230
declaring, 229
markup, 159
SubstitutionFragment, 157-158
UserManager.ascx
control, 18-23
script, 23-29
usernames and passwords, storing in a
Web.config file, 118
users and roles, creating, 18-34
Utility class
GetProduct method in, 158-159
in App_Code folder, 17
Utility methods script, 17

)
VaryByParam attribute, effect of wildcard use
on, 154
version numbers, changing, 202
ViewState
as alternative to caching, 150
and databinding, 87
vs. ControlState, 89-91
debugging without, 109
disabling, 89
persisting manually, 105-106
Session and, 87-88
working with and without, 89, 107-108
virtual environment, 1-4
virtual hard drive, creating, 1-2
VirtualPath property, 235-236
Visible property, setting for AdminHyperlink,
117
Visual Studio (VS) 2005, adding code
snippets to, 45
Visual Studio Professional Edition, Database
Projects in, 56-57

w
WCEF provider
benefits of, 332-333
client configuration, 333, 336
configuring, 336-337
hosting the service, 335-336
IEventService interface, 334

implementing, 332-337
service configuration, 333-334, 337
Web Deployment Projects
automating configuration changes,
262-264
configSource attribute option, 264
creating, 261-262
multiple replacement sections, 265-266
PostBuild deployments, 264-271
website for, 261
web farms
distributing traffic with, 293-294
using shared machine key for, 129
Web Form, adding ObjectDataSource to, 52
web pages
performance considerations, 65-70
securing, 116
web server, to database server
communications, 148
Web Service Extensions (WSE), released by
Microsoft, 332
Web.config file, 234
custom, 13
datasource configuration in, 6-7
for PhotoAlbumProvider, 138
securing Admin section in, 34-35
storing usernames and passwords in, 118
website
code and database separation, 7
CodePlex information, 242
controlling access by role, 115-117
controlling behavior by role, 117-118
copying files from source to destination
directory, 261
customizing content to suit users, 119
deploying, 261-271
distributing content and traffic to multiple
servers, 293-295
Web Development Projects, 261
Windows Live, 125
Website classes, Photo Album provider, 379
Website Project, creating class library, 218
Windows Communication Foundation
provider. See WCF provider
WipeProviderData.sql script, 9-10

X
xcopy command, 261
XML implementations, using, 113
XPath constants, 239
XsdBuildProvider, .xsd mapped to, 234

V4
zip file, defining name of in PropertyGroup,
271
Zip task, declaration, 271

	Pro ASP.NET for SQL Server: High Performance Data Access for Web Developers
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Chapter 1: Getting Started
	Chapter 2: Data Model Choices
	Chapter 3: Database Management
	Chapter 4: Databound Controls
	Chapter 5: SQL Providers
	Chapter 6: Caching
	Chapter 7: Manual Data Access Layer
	Chapter 8: Generated Data Access Layer
	Chapter 9: Deployment
	Chapter 10: A Sample Application

	Prerequisites
	Downloading the Code
	Contacting the Author

	Getting Started
	Preparing Your Environment
	Project Organization
	Common Folders
	Datasource Configuration
	Code and Database Separation

	Managing Provider Services
	Using the Command Line
	Mixing and Matching Providers

	Configuring Providers
	Membership Configuration
	Roles Configuration
	Profile Configuration

	Creating Users and Roles
	Securing the Admin Section
	Creating the Admin User

	Summary

	Data Model Choices
	The Data Access Application Block
	Data Access Code Snippets
	Sample Database
	Trivial Data Examples
	Nontrivial Data Examples
	Typed DataSet
	Nontyped DataSet
	DataReader
	DataObject
	What’s the Downside?
	Summary

	Database Management
	Using Database Projects
	Visual Studio
	SQL Server Management Studio

	Managing Stored Procedures
	Managing Indexes and Constraints
	Performance Considerations
	Stability Considerations
	Unit Tests for Data
	Continuous Integration
	Summary

	Databound Controls
	DetailsView
	FormView
	GridView
	Editing and Validating Fields
	Binding Input Parameters
	Binding Input Parameters with a Control
	Binding Input Parameters Programmatically
	Binding a User Control

	Embedding Databound Controls
	ViewState and Databinding
	Session and ViewState
	Paging
	Disabling ViewState
	ControlState vs.ViewState

	Creating a Databound Control
	Getting the Data
	Getting the Total Rows Count
	Wiring the Pager Events
	Creating PersonRow
	Persisting ViewState Manually
	Working Without ViewState
	Walking the Debugger

	Summary

	SQL Providers
	The SqlMembershipProvider
	Using XML Implementations
	Setting the Database Connection
	Creating a Password Policy

	The SqlRoleProvider
	Controlling Access by Role
	Controlling Behavior by Role

	The SqlProfileProvider
	Why Anonymous Profiles?
	Configuring Anonymous Profiles
	Managing Anonymous Profiles
	Anonymous and Authenticated Profile Differences
	Migrating from Anonymous to Authenticated
	Creating a User
	Dynamic Profiles and Profiles as BLOBs

	Using the Provider-Powered ASP.NET Controls
	Building a SQL Photo Album Provider
	Provider Requirements
	Configuration Section Class
	Provider Collection Class
	Abstract Provider Class
	The Provider Implementation
	Provider Service Class
	Unit Testing
	The Finished Product

	Building a SQL SiteMap Provider
	SiteMap Requirements
	Implementing SiteMapProvider

	Summary

	Caching
	Alternatives to Caching
	Application State
	Session
	ViewState
	Current Context

	Caching Options
	Output Caching
	Page Caching
	Problems with Output Caching
	Fragment Caching
	Postcache Substitution
	Fragment Caching with Postcache Substitution

	Data Caching
	Cache Methods
	The Cache Index
	Enumerating Over the Cache
	Parameters
	Cache Simulation

	Invalidating Cached Data
	Absolute Expiration
	Sliding Expiration
	Cache Dependency
	Manual Removal

	SQL Cache Dependencies
	Using the SqlDependency and SqlCacheDependency
	Why Use SqlDependency?
	Using the SqlCacheDependency

	Polling
	Enabling Polling for a Table
	Configuring the SqlCacheDependency for Polling
	Problems with Polling

	Query Notifications
	Contrasting Polling and Notifications
	Enabling the Service Broker
	Granting Permissions
	Requirements for Queries

	Troubleshooting Query Notifications
	Troubleshooting with the SQL Server Profiler
	Troubleshooting via Unit Tests

	Problems with Caching
	Performance Strategies
	Data Warehousing
	Lazy Loading

	Summary

	Manual Data Access Layer
	Using DataSets, Inline SQL, and Stored Procedures
	DataSets
	Compile-Time and Runtime Support
	Refactoring
	Debugging

	Inline SQL
	Maintenance Considerations
	Security Considerations

	Stored Procedures

	Using DataObjects and the ObjectDataSource
	Design Contract
	Data Contract
	Testing the Design and Data Contracts

	Building the Database
	Creating the Database Structure
	Consolidating the Data
	Managing Relationships
	Created and Modified
	What About Nulls?
	Preventing Null Values

	Using Database Projects
	Managing the Scripts
	Planning the Stored Procedures

	The Data Access Layer
	Creating the Class Library
	Creating the Data Access Methods
	Handling Exceptions
	Creating Business Objects

	Building the Website
	Connecting the Data Access Layer
	Creating User Controls
	Properties
	Events

	Creating the Pages

	Summary

	Generated Data Access Layer
	Code Generation
	Build Providers
	CodeDom Namespace
	Templating

	SubSonic
	SubSonic Templating
	Partial Classes
	Query Tool
	Scaffolding

	Blinq
	Summary

	Deployment
	Automation with MSBuild
	Deploying the Website
	Website Deployment Projects
	Automating Configuration Changes
	PostBuild Deployments

	Deploying the Database
	Generating Change Scripts
	Automating Database Updates
	Using MSBuild and ExecuteDDL
	Using Embedded Scripts

	Custom Configuration Sections

	Summary

	A Sample Application
	Understanding Performance and Scalability
	Concurrent Requests
	Bottlenecks
	Traffic Spikes
	Distributing Traffic
	Distributing Content
	Distributing Services
	Distributing the Back End

	Planning for Scalability
	The Sample Application
	Creating the Database
	Get, Save, and Delete

	Creating Data Access Providers
	EventProvider Object
	Revised DomainObject

	Managing Relationships
	Using Locations

	Custom Configuration
	Configuration Grouping
	Declaring the Custom Configuration
	Configuring the Providers

	Creating New Providers
	Implementing a LINQ Provider
	Implementing a WCF Provider
	WCF Service Requirements
	Hosting the Service
	Defining the DataContracts
	Configuring the Provider

	Using the Providers
	Summary

	Photo Album
	Photo Album Provider
	Configuration
	Classes
	Table Scripts
	Constraints Scripts
	Stored Procedure Scripts
	Website Classes

	SQL SiteMap Provider
	Classes
	Table Scripts
	Stored Procedure Scripts

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

