
Matthew MacDonald

Silverlight and
ASP.NET Revealed

Understanding Silverlight . 1
Creating a Silverlight Project . 6
Silverlight Essentials . 16
Silverlight and ASP.NET . 30
Drawing in 2D . 34
Animation . 51

Books for professionals by professionals®

Silverlight and ASP.NET Revealed
Author of

Pro ASP.NET 3.5 in C# 2008
(Apress)

Beginning ASP.NET 3.5
in C# 2008 (Apress)

Pro WPF: Windows
Presentation Foundation
in .NET 3.0 (Apress)

Beginning ASP.NET 2.0
in VB 2005 (Apress)

ASP.NET: The Complete
Reference

Apress’s firstPress series is your source for understanding cutting-edge technology. Short, highly
focused, and written by experts, Apress’s firstPress books save you time and effort. They contain
the information you could get based on intensive research yourself or if you were to attend a
conference every other week—if only you had the time. They cover the concepts and techniques
that will keep you ahead of the technology curve. Apress’s firstPress books are real books, in your
choice of electronic or print-on-demand format, with no rough edges even when the technology
itself is still rough. You can’t afford to be without them.

this print for content only—size & color not accurate spine = 0.149" 72 page count

User level:
Intermediate

www.apress.com
SOURCE CODE ONLINE

72
pages

Available as a
PDF Electronic Book
or Print On Demand

About firstPress

Apress's firstPress series is your source for understanding cutting-edge technology. Short, highly
focused, and written by experts, Apress's firstPress books save you time and effort. They contain the
information you could get based on intensive research yourself or if you were to attend a conference
every other week––if only you had the time. They cover the concepts and
techniques that will keep you ahead of the technology curve. Apress's firstPress books are real books, in
your choice of electronic or print-on-demand format, with no rough edges even when the technology
itself is still rough. You can't afford to be without them.

Silverlight and ASP.NET Revealed
Dear Reader,

Silverlight 1.1 is a revolutionary browser plug-in that allows developers to create rich web pages. Like
Adobe Flash, Silverlight supports event handling, two-dimensional drawing, video playback, and ani-
mations. Unlike Flash, Silverlight is tailored to .NET developers. Most impressively, Silverlight 1.1
applications can execute pure C# code.

The most exciting part of Silverlight is its cross-platform support. When Silverlight 1.1 is released, it
will support a range of modern web browsers (such as Internet Explorer, Firefox, Opera, and Safari),
and it will run on a variety of operating systems (including Windows, Mac OS X, and Linux). Essentially,
Silverlight 1.1 will be a scaled-down, browser-hosted version of .NET.

Although Silverlight 1.1 is still a long way from release, it's already generating more interest than
any new Microsoft technology since .NET 1.0. Silverlight and ASP.NET Revealed provides a valuable pre-
view that explores the alpha release of Silverlight 1.1. In it, you'll examine how you can integrate
Silverlight content in an ASP.NET application, and you'll get a head start on Microsoft's next great inno-
vation.

Welcome aboard!
Matthew MacDonald (Microsoft MVP, MCSD)

Silverlight and ASP.NET
Revealed

Matthew MacDonald

Silverlight and ASP.NET Revealed

Copyright © 2007 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-939-6

ISBN-10 (pbk): 1-59059-939-X

eISBN-13: 978-1-4302-0543-2

Printed and bound in the United States of America (POD)

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Lead Editor: Jonathan Hassell

Technical Reviewer: Stephen Kaufman

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick, Jonathan Hassell,
James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Denise Santoro Lincoln

Copy Edit Manager: Nicole Flores

Assistant Production Director: Kari Brooks-Copony

Compositor: Richard Ables

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA
94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

About the Author . v
Understanding Silverlight . 1

Silverlight vs. Flash . 2
Silverlight Adoption . 4
Silverlight and WPF . 4
Installing Silverlight and the Visual Studio Extensions. 5

Creating a Silverlight Project . 6
The HTML Entry Page . 7
The Silverlight Initialization Script . 8
The XAML Page . 10

Understanding XAML. 11
Silverlight Elements. 11
XAML Namespaces . 11

The XAML Code-Behind . 13
Properties and Events . 14
Silverlight Compilation . 15

Silverlight Essentials . 16
.NET Framework Classes in Silverlight . 17
The Canvas . 18

Positioning Elements in a Canvas . 19
Layering Elements in a Canvas . 19
Dragging Circles . 20

Text . 23
Interacting with HTML . 24
Isolated Storage. 28

Silverlight and ASP.NET . 30
ASP.NET Futures . 30

The Xaml Control. 31
The Media Control. 32

Communicating Between Silverlight and ASP.NET 34
Drawing in 2D . 34

Simple Shapes . 35
Rectangle and Ellipse . 36
Line . 36
Polyline . 37

Contents

iii

Polygon. 38
Paths and Geometries . 39

Line, Rectangle, and Ellipse Geometries 40
Combining Shapes with GeometryGroup 41
Curves and Lines with PathGeometry 42
Straight Lines . 43
Arcs . 43
Bézier Curves . 46

Brushes . 47
Gradient Brushes . 48
Using Brushes to Fill Text . 49

Transparency . 49
Animation . 51

Animation Basics . 52
Defining an Animation . 52

The Animation Class . 52
The Storyboard Class . 53
The Event Trigger . 53
Starting an Animation with Code . 54
Configuring Animation Properties . 55

An Interactive Animation Example . 56
Transforms . 59

Using a Transform . 60
Animating a Transform . 61

Summary. 62

■CONTENTSiv

■MATTHEW MACDONALD is an author, educator, and MCSD developer who has a passion for emerging
technologies. He is a regular writer for developer journals such as Inside Visual Basic, ASPToday, and
Hardcore Visual Studio .NET, and he's the author of several books about programming with .NET,
including User Interfaces in VB .NET: Windows Forms and Custom Controls, The Book of VB .NET, and
.NET Distributed Applications. In a dimly remembered past life, he studied English literature and theo-
retical physics. Send e-mail to him with praise, condemnation, and everything in between, to
p2p@prosetech.com.

About the Author

v

1

■ ■ ■

Silverlight and ASP.NET Revealed

Although the Web is easily the most popular environment for business software, there are some
things that web applications just can’t do, or can’t do very well. Even if you outfit your ASP.NET web
pages with the latest cutting-edge JavaScript, you won’t be able to duplicate many of the capabilities
that desktop applications take for granted, such as animation, sound and video playback, and 3D
graphics. And although you can use JavaScript to respond on the client to focus changes, mouse
movements, and other “real-time” events, you still can’t build a complex interface that’s anywhere
near as responsive as a window in a rich client application. (The saving grace of web programming
is that you usually don’t need these frills. The benefits you gain—broad compatibility, high security,
no deployment cost, and a scalable server-side model—outweigh the loss of a few niceties.)

That said, developers are continuously pushing the limits of the Web. These days, it’s not
uncommon to watch an animated commercial or play a simple but richly designed game directly in
your browser. This capability obviously isn’t a part of the ordinary HTML, CSS, and JavaScript stan-
dards. Instead, it’s enabled by a browser plug-in, sometimes for a Java applet, but most commonly
for Flash content.

Microsoft’s new Silverlight is a direct competitor to Flash. Like Flash, Silverlight allows you to
create interactive content that runs on the client, with support for dynamic graphics, media, and
animation that goes far beyond ordinary HTML. Also like Flash, Silverlight is deployed using a light-
weight browser plug-in and supports a wide range of different browsers and operating systems.
At the moment, Flash has the edge over Silverlight, because of its widespread adoption and its
maturity. However, Silverlight boasts a few architectural features that Flash can’t match—most
importantly, the fact that it’s based on a scaled-down version of .NET’s common language runtime
(CLR) and thus allows developers to write client-side code using pure C#.

Coming up, you’ll take a detailed tour of Silverlight. You’ll learn how it works, what features it sup-
ports, and what features aren’t quite there yet. You’ll also consider how you can use Silverlight to
supplement ASP.NET websites, or even integrate Silverlight content into existing ASP.NET web pages.

Understanding Silverlight
Silverlight uses a familiar technique to go beyond the capabilities of standard web pages—it uses a
lightweight browser plug-in.

The advantage of the plug-in model is that the user needs to install just a single component to
see content created by a range of different people and companies. Installing the plug-in requires a
small download and forces the user to confirm the operation in at least one security dialog box (and
usually more). It takes a short but definite amount of time, and it’s an inconvenience. However, once
the plug-in is installed, the browser can process any content that uses the plug-in seamlessly, with
no further prompting.

Figure 1 shows two views of a page with Silverlight content. On the left is the page you’ll see if you
don’t have the Silverlight plug-in installed. At this point, you can click the Get Microsoft Silverlight picture

2 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

to be taken to Microsoft’s website, where you’ll be prompted to install the plug-in and then sent back to
the original page. On the right is the page you’ll see once the Silverlight plug-in is installed.

■Note Silverlight is designed to overcome the limitations of ordinary HTML to allow developers to create more
graphical and interactive applications. However, Silverlight isn’t a way for developers to break out of the browser’s
security sandbox. For the most part, Silverlight applications are limited in equivalent ways to ordinary web pages.
For example, a Silverlight application is allowed to create and access files, but only those files that are stored in a
special walled-off isolated storage area. Conceptually, isolated storage works like the cookies in an ordinary web
page. Files are separated by website and the current user, and size is severely limited.

Figure 1. Installing the Silverlight plug-in

Silverlight vs. Flash
The most successful browser plug-in is Adobe Flash, which is installed on over 90 percent of the
world’s web browsers. Flash has a long history that spans more than ten years, beginning as a
straightforward tool for adding animated graphics and gradually evolving into a platform for devel-
oping interactive content.

It’s perfectly reasonable for ASP.NET developers to extend their websites using Flash content.
However, doing so requires a separate design tool, and a completely different programming language
(ActionScript) and programming environment (Flex). Furthermore, there’s no straightforward way to
generate Flash content user server-side .NET code, which means it’s difficult to integrate ASP.NET
content and Flash content—instead, they exist in separate islands.

■Note There are some third-party solutions that help break down the barrier between ASP.NET and Flash. One
example is the innovative SWFSource.NET (http://www.activehead.com/SWFSource.aspx), which provides a
set of .NET classes that allow you to dynamically generate Flash (.swf) files. However, these tools work at a relatively
low level. They fall far short of a full development platform.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 3

Silverlight aims to give .NET developers a better option for creating rich web content. Silverlight
provides a browser plug-in with many similar features to Flash, but one that’s designed from the
ground up for .NET. Silverlight natively supports the C# language and uses a range of .NET concepts.
As a result, developers can write client-side code for Silverlight in the same language they use for
server-side code (such as C# and VB), and use many of the same abstractions (including streams,
controls, collections, generics, and LINQ).

The Silverlight plug-in has an impressive list of features, some of which are shared in common
with Flash, and some which are entirely new and even revolutionary. They include the following:

• Widespread browser support: It’s too early to tell how well the Silverlight browser works on
different platforms. Currently, the beta builds of Silverlight 1.1 work on Windows Vista and
Windows XP (in the PC universe) and OS X 10.4.8 or later (in the Mac world). The minimum
browser versions that Silverlight 1.1 supports are Internet Explorer 6, Firefox 1.5.0.8, and
Safari 2.0.4. Although Silverlight 1.1 doesn’t currently work on Linux, the Mono team is creat-
ing an open-source Linux implementation of Silverlight 1.0 and Silverlight 1.1. This project is
known as Moonlight, and it’s being developed with key support from Microsoft. To learn
more, visit http://www.mono-project.com/Moonlight.

• Lightweight: In order to encourage adoption, Silverlight is installed with a small-size setup
(about 4 MB) that’s easy to download. That allows it to provide an all-important “friction-
less” setup experience, much like Flash (but quite different from Java).

• 2D Drawing: Silverlight provides a rich model for 2D drawing. Best of all, the content you
draw is defined as shapes and paths, so you can manipulate this content on the client side.
You can even respond to events (like a mouse click on a portion of a graphic), which makes
it easy to add interactivity to anything you draw.

• Animation: Silverlight has a time-based animation model that lets you define what should
happen and how long it should take. The Silverlight plug-in handles the sticky details, like
interpolating intermediary values and calculating the frame rate.

• Media: Silverlight provides playback of Windows Media Audio (WMA), Windows Media
Video (WMV7–9), MP3 audio, and VC-1 (which supports high-definition). You aren’t tied to
the Windows Media Player ActiveX control or browser plug-in—instead, you can create any
front-end you want, and you can even show video in full-screen mode. Microsoft also pro-
vides a free companion hosting service (at http://silverlight.live.com) that gives you
4 GB of space to store media files.

• The CLR: Most impressively, Silverlight includes a scaled-down version of the CLR, com-
plete with an essential set of core classes, a garbage collector, a JIT (just-in-time) compiler,
support for generics, and so on. In many cases, developers can take code written for the full
.NET CLR and use it in a Silverlight application with only moderate changes.

• Web service interaction: Silverlight applications can call old-style ASP.NET web services
(.asmx) or WCF (Windows Communication Foundation) web services. They can also send
manually created XML requests over HTTP.

Of course, it’s just as important to note what Silverlight doesn’t include. Silverlight is a new tech-
nology that’s evolving rapidly, and it’s full of stumbling blocks for business developers who are used
to relying on a rich library of prebuilt functionality. Not only does Silverlight lack any sort of data
binding features, it also includes relatively few ready-made controls. Some basics, like buttons, are
relatively easy to build yourself. But others, like text boxes, are not.

At present, Silverlight is primarily of interest to developers who plan to create a highly graphi-
cal, complete customized user interface, and who aren’t afraid to perform a fair bit of work.

4 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Silverlight Adoption
Silverlight is very new—so new that at the time of this writing, it exists in two versions (1.0 and 1.1),
both of which are only available in beta form. For that reason, it’s difficult to predict how well Silver-
light will stack up against Flash’s real strength: adoption.

At present, Silverlight is only on a fraction of computers. However, Microsoft is convinced that
if compelling content exists for Silverlight, users will download the plug-in. There are a number of
factors that support this argument. Flash grew dramatically in a short space of time, and Microsoft
has obvious experience with other web-based applications that have started small and eventually
gained wide adoption. (Windows Messenger comes to mind, along with numerous ActiveX plug-ins
for tasks ranging from multiuser coordination on MSN Games to Windows verification on MSDN.)

A key point to keep in mind when considering the Silverlight development model is that in most
cases you’ll use Silverlight to augment the existing content of your website (which is still based on
HTML, CSS, and JavaScript). For example, you might add Silverlight content that shows an adver-
tisement or allows an enhanced experience for a portion of a website (such as playing a game,
completing a survey, interacting with a product, taking a virtual tour, and so on). Your Silverlight
pages may present content that’s already available in your website in a more engaging way, or they
may represent a value-added feature for users who have the Silverlight plug-in.

Although, it’s easily possible to create a Silverlight-only website, it’s unlikely that you’ll take that
approach. The fact that Silverlight is still relatively new, and the fact that it doesn’t support legacy
clients (most notably, it has no support for users of Windows ME, Windows 2000, and Windows 98)
mean it doesn’t have nearly the same reach as ordinary HTML. Many businesses that are adopting
Silverlight are using it to distinguish themselves from other online competitors with cutting-edge
content.

Silverlight and WPF
One of the most interesting aspects of Silverlight is the fact that it borrows the WPF (Windows
Presentation Foundation) model for designing rich, client-side user interfaces.

WPF is a recently introduced, next-generation technology for creating Windows applications
that has built-in support for rich features like 3D graphics, animation, document display, and much
more. It was introduced in .NET 3.0 as the successor to Windows Forms. WPF is notable because it
not only simplifies development with a powerful set of high-level features, it also increases perfor-
mance by rendering everything through the DirectX pipeline. To learn about WPF, you can refer to
Pro WPF: Windows Presentation Foundation in .NET 3.0 (Apress).

SILVERLIGHT 1.0 AND 1.1

Silverlight exists in two versions:

• The first version, Silverlight 1.0, is a relatively modest technology. It includes the 2D drawing features and the
media playback features. However, it doesn’t include the CLR engine or support for .NET languages, so any
code you write must use JavaScript.

• The second version, Silverlight 1.1, adds the .NET-powered features that have generated the most developer
excitement. It includes the CLR, a subset of .NET Framework classes, and a user interface model based on
WPF (as described in the next section, “Silverlight and WPF”).

Although Silverlight 1.1 is the least mature of the two, it’s the one that has the most appeal for .NET develop-
ers. Here we’re focusing on Silverlight 1.1.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 5

Silverlight obviously can’t duplicate the features of WPF, because many of them rely deeply on
the capabilities of the operating system, including Windows-specific display drivers and DirectX
technology. However, rather than invent an entirely new set of controls and classes for client-side
development, Silverlight uses a subset of the WPF model. If you’ve had any experience with WPF,
you’ll be surprised to see how closely Silverlight resembles its bigger brother. Here are a few com-
mon details:

• To define a Silverlight user interface (the collection of elements that makes up a Silverlight
page or content window), you use XAML markup, just as you do with WPF.

■Note XAML (short for Extensible Application Markup Language, and pronounced zammel) is a markup language
used to instantiate .NET objects. Coming up, you’ll see how it’s used to define Silverlight content.

• When creating your user interface, you use elements that are also found in WPF, including
the Canvas layout container; shapes like the Rectangle, Ellipse, Line, Polyline, and Polygon;
the TextBlock and Image; and so on.

■Note In WPF terminology, each graphical widget that appears in a user interface and is represented by a .NET
class is called an element. The term control is generally reserved for elements that allow user interaction.

• To draw 2D graphics in Silverlight, you use paths, transforms, geometries, and brushes, all
of which closely match their WPF equivalents.

• Silverlight provides a declarative animation model that’s based on storyboards, and works
in the same way as WPF’s animation system.

• To show video or play audio files, you use the MediaElement class, as you do in WPF.

Microsoft has made no secret about its intention to continue to expand the capabilities of
Silverlight by drawing from the full WPF model. In future Silverlight releases, you’re likely to see
features like data binding, more layout containers, elements that duplicate common Windows con-
trols, and so on.

In other words, Silverlight is a .NET-based Flash competitor. It aims to compete with Flash
today, but provide a path to far more features in the future. Unlike the Flash development model,
which is limited in several ways due to the way it’s evolved over the years, Silverlight is a starting-
from-scratch attempt that’s thoroughly based on .NET and WPF, and will therefore allow .NET
developers to be far more productive. In many ways, Silverlight is the culmination of two trends: the
drive to extend web pages to incorporate more and more rich client features, and the drive to give
the .NET Framework a broader reach.

Installing Silverlight and the Visual Studio Extensions
Although you could create a Silverlight page by hand, it’s not easy (and not worth the trouble).
Instead, it makes sense to use a design tool like Visual Studio or Expression Blend.

Currently, Visual Studio doesn’t have design-time support for creating Silverlight content.
However, Microsoft has released a free add-in with extensions for developing Silverlight 1.1 content
in Visual Studio 2008. These extensions, which are in beta at the time of this writing, include helpful
templates for creating websites and ASP.NET pages that use Silverlight content. However, these
extensions currently don’t include a visual designer. In other words, there’s no way to view your Sil-
verlight content in Visual Studio or drag and drop it into existence. Instead, you’ll need to code the
markup by hand and then run it in a browser.

6 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

You can download the Visual Studio extensions and everything else you need to started with
Silverlight from http://silverlight.net/GetStarted. Here’s what you’ll find:

• The Silverlight 1.1 runtime: This is the browser plug-in that allows you to run Silverlight con-
tent. (You’ll also see the Silverlight 1.0 runtime, which is completely separate.)

• ASP.NET Futures: This is an add-on to ASP.NET that includes features that will be a part
of future ASP.NET releases. (Of course, these features may change quite a bit by the time
they make it into an official release. ASP.NET AJAX is an example of a technology that was
released first as a separate add-on, and then integrated into the .NET Framework.) ASP.NET
Futures includes the Xaml web control, which is a requirement if you want a straightfor-
ward way to place Silverlight content into a region of an ASP.NET page.

• Silverlight Tools for Visual Studio 2008: This is the Visual Studio add-in that allows you to
create Silverlight websites and Silverlight pages for use with the Xaml web control.

• The Silverlight 1.1 Software Development Kit: This SDK provides additional documentation
and samples. It’s optional, but useful.

Before you continue to the Silverlight samples, make sure you’ve installed all these compo-
nents: the Silverlight 1.1 runtime, ASP.NET Futures, and Silverlight Tools for Visual Studio.

Future versions of Visual Studio are sure to offer better design-time support for Silverlight
content. There’s also one other option—you can create Silverlight applications using Microsoft
Expression Blend 2, a professional design tool that has many of the capabilities of Visual Studio, but
is intended for UI designers and highly graphics-oriented development (rather than pure coding).
Expression Blend 2 allows you to create desktop applications that use WPF and web pages that use
Silverlight, but it doesn’t allow you to create ASP.NET web pages. Thus, if you use Expression
Blend 2, it’s up to you to create the ASP.NET web pages for the rest of your site in Visual Studio.

Expression Blend 2 is currently in an early beta stage, and it isn’t discussed here. However, you
can find entire books about Expression Blend 1, which allows you to create full-fledged WPF user
interfaces (but not Silverlight content) using the same model.

Creating a Silverlight Project
There are two ways to integrate Silverlight content into an ASP.NET application:

• Create HTML files with Silverlight content: You place these files in your ASP.NET website
folder, just as you would with any other ordinary HTML file. The only limitation of this
approach is that your HTML file obviously can’t include ASP.NET controls, because it won’t
be processed on the server.

• Place Silverlight content inside an ASP.NET web form: To pull this trick off, you need the
help of the Xaml web control. You can also add other ASP.NET controls to different regions of
the page. The only disadvantage to this approach is that the page is always processed on the
server. If you aren’t actually using any server-side ASP.NET content, this creates an extra bit
of overhead that you don’t need when the page is first requested.

Of course, you’re also free to mingle both of these approaches, and use Silverlight content in
dedicated HTML pages and inside ASP.NET web pages in the same site.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 7

Visual Studio provides two ways to develop Silverlight content, which almost (but don’t quite)
line up:

• Create a Silverlight project: A Silverlight project consists of Silverlight files (XAML files that
define your Silverlight content and code, and ordinary HTML web pages that expose this con-
tent. Because Silverlight is a client-side technology, you can request these HTML pages
directly in your web browser. Visual Studio doesn’t need to use its integrated web server,
because there’s no code running on the server.

• Use the Xaml control in an ASP.NET web form: You can use the Xaml control in an existing
ASP.NET web form in an existing ASP.NET website. The Xaml web control is an ASP.NET web
control with a difference—instead of rendering the usual HTML and JavaScript, it renders the
XAML markup that defines a Silverlight user interface. However, the XAML markup isn’t
coded directly in your ASP.NET page (which would be a bit messy). Instead, it’s pulled out of
a separate Silverlight file that’s a part of your website.

In this section, you’ll begin by using the first approach. After you’ve explored the Silverlight
environment and you’ve seen how to integrate Silverlight content into ordinary web pages, you’ll
consider how you can embed it in an ASP.NET web form.

To create a Silverlight project, simply select File ➤ New ➤ Project in Visual Studio and select the
Silverlight Project template. As usual, you need to pick a project name and a location on your hard
drive before clicking OK to create the project.

Every Silverlight project starts with a small set of essential files, as shown in Figure 2. These files
are described in the following sections.

Figure 2. A Silverlight project

The HTML Entry Page
This page is the entry point into your Silverlight content—in other words, the page the user requests
in the web browser. Visual Studio names this file TestPage.html, although you’ll probably want to
rename it to something more appropriate.

The HTML entry page doesn’t actually contain the Silverlight markup or code-behind. Instead,
it creates it using a small amount of JavaScript. (For this reason, browsers that have JavaScript dis-
abled won’t be able to see Silverlight content.)

8 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Here’s what the HTML entry page looks like:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Silverlight Project Test Page </title>
 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript" src="TestPage.html.js"></script>
 <style type="text/css">
 .silverlightHost { width: 640px; height: 480px; }
 </style>
</head>

<body>
 <div id="SilverlightControlHost" class="silverlightHost">
 <script type="text/javascript">
 createSilverlight();
 </script>
 </div>
</body>
</html>

As you can see, this page references two other JavaScript files (TestPage.html.js and Silverlight.js).
Although you could add other HTML content to the page, this example includes a single <div> element
where the Silverlight control will be placed. When this <div> element is processed, the JavaScript
code in the script block is executed. This code calls the createSilverlight() function (which is defined
in TestPage.html.js) to generate the Silverlight content. After the content has been created and the
browser has processed all the markup in the HTML entry page, the onload event of the body element
ensures that the SilverlightControl gets the keyboard focus.

■Note Visual Studio sets TestPage.html to be the start page for your project. As a result, when you launch your
project, this page will be loaded in the browser. You can choose a different start page by right-clicking an HTML file
in the Solution Explorer and choosing Set As Start Page.

The Silverlight Initialization Script
By default, Visual Studio generates a JavaScript function named createSilverlight() to initialize your
Silverlight content region. It places this code in a file named TestPage.html.js (although you’re free
to rename the file or move the JavaScript code elsewhere, so long as you update the references in the
HTML entry page to match).

Here’s what the createSilverlight() function looks like:

function createSilverlight()
{
 Silverlight.createObjectEx({
 source: "Page.xaml",
 parentElement: document.getElementById("SilverlightControlHost"),
 id: "SilverlightControl",
 properties: {
 width: "100%",
 height: "100%",
 version: "1.1",

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 9

 enableHtmlAccess: "true"
 },
 events: {}
 });

 // Give the keyboard focus to the Silverlight control by default
 document.body.onload = function() {
 var silverlightControl = document.getElementById('SilverlightControl');
 if (silverlightControl)
 silverlightControl.focus();
 }
}

The createSilverlight() function calls the Sys.Silverlight.createObjectEx() function, which is
defined in the Silverlight.js file. The Silverlight.js file is a basic piece of Silverlight infrastructure, and
one you’re not likely to modify. It includes the JavaScript that checks if Silverlight is installed (and
offers to redirect the user if it’s not) and the JavaScript that instantiates the Silverlight control. If
you have several Silverlight applications on the same web server, they might well use the same
Silverlight.js file.

On the other hand, the code in the createSilverlight() function in the TestPage.html.js file is
more significant. When the createSilverlight() function calls createObjectEx(), it specifies a few key
details about the Silverlight control, including the name of the XAML file where the markup is stored,
the name of the <div> element where the Silverlight control will be placed, the name that will be
assigned to the Silverlight control, the size of the Silverlight control, the minimum required Silver-
light version, and whether you want to enable interaction between Silverlight and the HTML DOM.
Because this information varies, every Silverlight page has its own createSilverlight() function to set
up the Silverlight content region.

In this example (which shows the default code generated by Visual Studio), the XAML file is
named Page.xaml, the <div> element is named SilverlightControlHost, and the Silverlight control
will be named SilverlightControl.

The width and height are set to 100%, which means the Silverlight content will always be just
large enough to fill the containing element. In this case, the element is a <div> element that’s placed
directly in the body of your web page. Ordinarily, a <div> element placed in this way is allowed to
grow without restriction. However, when you create a Silverlight page, Visual Studio adds a style rule
that limits the size of the <div>. The style rule looks like this:

<style type="text/css">
 .silverlightHost { width: 640px; height: 480px; }
</style>

This gives the <div> element an exact size of 640× 480 pixels. You can alter the style rule to
choose a different size. (You could also change the parameters in the createObjectEx() call so that
they use fixed pixel values, but it’s clearer to place these details in the HTML file.)

You can remove the height property so the Silverlight content region expands to fit the available
width but is limited in size. If you remove both the width and height properties (or remove the style
rule altogether), the Silverlight content region will be sized to fit its container, which in this case
gives it the height and width of the browser window. This usually won’t be the behavior you want,
and it’s definitely not the right choice if you have other HTML content on the page. (For example, if
you have some HTML content after your <div> element, this content won’t be visible, because it will
always remain just underneath the Silverlight content, which fills the browser window.) If you don’t
use the width and height properties, you’ll probably want to constrain the <div> element by placing
it in a specific place in your layout, such as in between other <div> elements, in another fixed-size
element, or in a cell in a table.

10 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

■Tip You can also apply a <div> style to draw a border around your Silverlight content region, so you can clearly
see its bounds. To do so, simply set the CSS border properties in the style.

After the width and height information are two more details in the createObjectEx() call. The
version indicates the minimum required version of Silverlight that the client must have installed in
order to see this content. If the version doesn’t match, the user will be prompted to install the appro-
priate version of Silverlight from Microsoft’s website.

Finally, the last property that you pass to createObjectEx() is the enableHtmlAccess flag. Use
true if you want to be able to interact with the HTML elements on the entry page through your
Silverlight code. You’ll learn how to take this step later on.

The XAML Page
When your entry page calls createObjectEx(), it specifies the name of a XAML file. This XAML file
contains the markup that’s used to generate the set of elements that appears in the Silverlight con-
tent region. By default, Visual Studio names this file Page.xaml.

Here’s the markup that Visual Studio adds to the Page.xaml file, with one added line—the
<TextBlock> element that’s highlighted in bold:

<Canvas x:Name="parentCanvas"
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="Page_Loaded"
 x:Class="SilverlightProject1.Page;assembly=ClientBin/SilverlightProject1.dll"
 Width="640"
 Height="480"
 Background="White"
>
 <TextBlock FontSize="20">Hello, World!</TextBlock>
</Canvas>

This gives you enough to test your Silverlight project. If you run your application, Visual Studio
launches your default web browser and navigates to TestPage.html. The test page creates a new Silver-
light control and initializes it using the markup in Page.xaml. Figure 3 shows the modest final result.

Figure 3. A page with Silverlight content

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 11

In order to understand how this markup works and how to create the Silverlight user interface
you want, you need to dig deeper into the XAML standard.

Understanding XAML
XAML is a markup language used to instantiate .NET objects. Although XAML is a technology that
can be applied to many different problem domains, it was primarily designed as a way for develop-
ers to construct WPF user interfaces for rich Windows applications. As Silverlight is a small subset of
WPF, it uses the same XAML markup standard.

Conceptually, XAML plays an analogous role to HTML. HTML allows you to define the elements
that make up an ordinary web page. XAML allows you to define the elements that make up a block
of XAML content. To manipulate HTML elements, you use client-side JavaScript (or just rerender
the entire page, as ASP.NET does after every postback). To manipulate XAML elements, you write
client-side C# code. Finally, both XAML and HTML look the same. Like XHTML, XAML is an XML-
based language that consists of elements that can be nested in any arrangement you like to express
containment.

You can write XAML markup by hand, or you can use a tool that generates the XAML you need.
Currently, Visual Studio does not include support for creating XAML pages with a visual design sur-
face, although you can expect it to appear soon (after all, Visual Studio does allow you to design XAML
windows for a full-fledged WPF application).

Silverlight Elements
Every element in a XAML document maps to an instance of a Silverlight class. The name of the ele-
ment matches the name of the class exactly. For example, the element <Canvas> instructs Silverlight
to create a Canvas object. <TextBlock> instructs Silverlight to create a TextBlock object. Because the
<TextBlock> element is nested inside the <Canvas> element, and because the Canvas is a container
control, the TextBlock is placed inside the Canvas.

Currently, Silverlight includes a very small set of elements, as described in Table 1. Many more
are expected in future builds. You’ll encounter all of these elements as you continue.

Table 1. Silverlight Elements

XAML Namespaces
When you use an element like <Canvas> in a XAML file, the Silverlight parser recognizes that you
want to create an instance of the Canvas class. However, it doesn’t necessarily know what Canvas
class to use. After all, even if the Silverlight namespaces only include a single class with that name,

Class Description

Canvas A layout container that can hold any number of other Silverlight ele-
ments, arranged with fixed coordinates.

TextBlock An element that contains single-line or multiline text content.

Image An element that shows a picture file, typically using the GIF, JPG, or
PNG format.

Rectangle, Ellipse, Line,
Polygon, Polyline, Path

Shape drawing elements that represent various 2D figures. You can
use these in combination to build up a complex piece of vector art.

MediaElement An element that manages the playback of an audio or video file and,
optionally, displays a video window.

12 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

there’s no guarantee that you won’t create a similarly named class of your own. Clearly, you need a
way to indicate the Silverlight namespace information in order to use an element.

In Silverlight, classes are resolved by mapping XML namespaces to Silverlight namespaces. In
the sample document shown earlier, two namespaces are defined:

<Canvas x:Name="parentCanvas"
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

You’ll find these two namespaces in every XAML document you create for Silverlight:

• http://schemas.microsoft.com/client/2007 is the core Silverlight 1.1 namespace. It encom-
passes all the Silverlight 1.1 classes, including the Canvas. Ordinarily, this namespace is
declared without a namespace prefix, so it becomes the default namespace for the entire doc-
ument. In other words, every element is automatically placed in this namespace unless you
specify otherwise.

• http://schemas.microsoft.com/winfx/2006/xaml is the XAML namespace. It includes various
XAML utility features that allow you to influence how your document is interpreted. This
namespace is mapped to the prefix x.

In many situations, you’ll want to have access to your own namespaces in a XAML file. The most
common example is if you want to use a custom Silverlight control that you (or another developer)
have created. In this case, you need to define a new XML namespace prefix and map it to your
assembly. Here’s the syntax you need:

<Canvas x:Name="parentCanvas"
 xmlns:w="clr-namespace:Widgets;assembly=ClientBin/Widgets.dll"
 ...

The XML namespace declaration sets three pieces of information:

• The XML namespace prefix: You’ll use the namespace prefix to refer to the namespace in
your XAML page. In this example, that’s w, although you can choose anything you want that
doesn’t conflict with another namespace prefix.

• The .NET namespace: In this case, the classes are located in the Widgets namespace. If you
have classes that you want to use in multiple namespaces, you can map them to different
XML namespaces or to the same XML namespace (as long as there aren’t any conflicting
class names).

• The assembly: In this case, the classes are part of the Widgets.dll assembly. You always pre-
cede this assembly with the folder name ClientBin. This is the subfolder of your website
where Visual Studio places your compiled Silverlight assembly and any class library assem-
blies that it uses. (You’ll consider the Silverlight compilation model in more detail a bit later
on) If you want to use a class that’s defined in your Silverlight project assembly, the assembly
name is based on the name of your project, as in SilverlightProject1.dll.

■Note Remember, Silverlight uses a lean, stripped-down version of the CLR. For that reason, a Silverlight appli-
cation can’t use a full .NET class library assembly. Instead, it needs to use a Silverlight class library. You can easily
create a Silverlight class library in Visual Studio by choosing the Silverlight Class Library project template.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 13

Once you’ve mapped your .NET namespace to an XML namespace, you can use it anywhere in
your XAML document. For example, if the Widgets namespace contains a control named HotButton,
you could create an instance like this:

<w:HotButton Text="Click Me!" Click="DoSomething"></w:HotButton>

The XAML Code-Behind
XAML allows you to construct a user interface, but in order to make a functioning application, you
need a way to connect the event handlers that have your application code. XAML makes this easy
using the Class attribute shown here:

<Canvas x:Name="parentCanvas" ...
 x:Class="SilverlightProject1.Page;assembly=ClientBin/SilverlightProject1.dll"
 ...

The x namespace prefix places the Class attribute in the XAML namespace, which means the
Class attribute is a more general part of the XAML language, not a specific Silverlight ingredient.

In fact, the Class attribute tells the Silverlight parser to generate a new class with the specified
name. That class derives from the class that’s named by the XML element. In other words, this exam-
ple creates a new class named SilverlightProject1.Page, which derives from the base Canvas class.
The automatically generated portion of this class is merged with the code you’ve supplied in the
code-behind file.

Usually, every XAML file will have a corresponding code-behind class with client-side C# code.
Visual Studio creates a code-behind class for the Page.xaml file named Page.xaml.cs. Here’s what
you’ll see in the Page.xaml.cs file:

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace SilverlightProject1
{
 public partial class Page : Canvas
 {
 private void Page_Loaded(object o, EventArgs e)
 {
 // Required to initialize variables
 InitializeComponent();
 }
 }
}

Keen eyes will notice that the Page_Loaded() event handler actually responds to an event with
a slightly different name—the Canvas.Loaded event. The event handler is attached in the XAML
markup for the page. The name Page_Loaded() is used because it’s more familiar to ASP.NET devel-
opers, and it more clearly communicates what’s just taken place—namely, the Silverlight content on
the page has finished being initialized.

14 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Currently, the Page class code doesn’t include any real functionality. However, it does include
one important detail—the default constructor, which calls InitializeComponent() when you create
an instance of the class. This parses your markup, creates the corresponding objects, sets their prop-
erties, and attaches any event handlers you’ve defined.

■Note The InitializeComponent() method plays a key role in Silverlight content. For that reason, you should never
delete the InitializeComponent() call from the constructor. Similarly, if you add another constructor, make sure it also
calls InitializeComponent().

There’s one more detail to consider. In your code-behind class, you’ll often want to manipulate
controls programmatically. For example, you might want to read or change properties or attach and
detach event handlers on the fly. To make this possible, the control must include the Name attribute.
In the previous example, the TextBlock control does not include a Name attribute, so you won’t be able
to manipulate it in your code-behind file.

Here’s how you can attach a name to the TextBlock:

<TextBlock x:Name="txt" FontSize="20">Hello, World!</TextBlock>

This model is surprisingly like developing an ASP.NET web page. However, the underlying
plumbing is completely different. XAML markup is parsed on the client side by the Silverlight engine
using a scaled-down version of the CLR. The final content is rendered using a specialized Silverlight
control that’s embedded in the page. ASP.NET markup is processed by the ASP.NET engine on the
server, along with any ordinary HTML that the page contains. The final result is rendered to HTML
and then sent to the client.

Properties and Events
In order to do anything practical with Silverlight, you need to set the properties of your elements and
attach event handlers to their events.

Setting properties is straightforward—you simply use an attribute with the value as a string.
Silverlight uses type converters (as in ASP.NET pages) to convert the string value to the appropriate
data type. In many cases, this is an easy task—for example, there’s no difficulty in changing a string
with a number into a number or a string with a color name into the corresponding color value. How-
ever, in other situations you need to set a property using an object that can’t be easily represented as
a single string.

In Silverlight, this is handled with a special nested element syntax. The nested element takes a
two-part name in the form ClassName.PropertyName. Inside this element, you can instantiate the
object you want with the appropriate element.

For example, the following markup sets the Canvas.Background property by creating a
RadialGradientBrush. It does this using a <Canvas.Background> element (rather than setting the
Background attribute of the <Canvas> element, as in the previous examples.) To configure the
RadialGradientBrush, you need to supply a center point for the gradient, and the gradient stops
(the colors in the gradient). Figure 4 shows the result.

<Canvas ... >
 <Canvas.Background>
 <RadialGradientBrush Center="0.5,0.5">
 <GradientStop Offset="0" Color="LightSteelBlue" />
 <GradientStop Offset="1" Color="White" />
 </RadialGradientBrush>
 </Canvas.Background>

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 15

 <TextBlock x:Name="txt" FontSize="20">Hello, World!</TextBlock>
</Canvas>

Figure 4. A Canvas with a RadialGradientBrush background

To attach an event, you also use attributes. However, now you need to assign the name of your
event handler to the name of the event. This is similar to the approach used in ASP.NET web pages,
except for that fact that event attributes do not begin with the word On.

Silverlight elements support a relatively small set of events, including GotFocus, KeyDown,
KeyUp, Loaded, LostFocus, MouseEnter, MouseLeave, MouseLeftButtonDown, MouseLeftButtonUp,
and MouseMove. There is no higher-level Click event.

For example, here’s an event handler that responds to a mouse click by altering the text in the
TextBlock:

public partial class Page : Canvas
{
 ...

 private void txt_Click(object o, EventArgs e)
 {
 txt.Text = "You clicked here.";
 }
}

And here’s how you can wire that event up to the TextBlock:

<TextBlock ... MouseLeftButtonDown="txt_Click">Hello, World!</TextBlock>

Silverlight Compilation
Because Silverlight uses the CLR (albeit a pared-down, streamlined version), it supports the same
compilation model as other .NET applications.

When you build your Silverlight application, the code is compiled to an assembly that’s named
after your project (for example, SilverlightProject1.dll). This assembly is the ClientBin subfolder
inside your project directory. Unlike the code in ASP.NET web applications, the code in a Silverlight

16 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

project must be compiled during development—the server does not perform JIT compilation when
a Silverlight file is requested. This makes sense—after all, there’s no reason to assume the web server
for a Silverlight application even has the .NET Framework installed.

The Silverlight project assembly contains the code from your code-behind classes, and the
compiled code for any other code files in your project. Optionally, it can also include resources—
binary blocks of data that need to be easily accessible, such as images. Although these resources
could include XAML documents that are extracted using code, in the present Visual Studio develop-
ment model the XAML files you create aren’t embedded in the assembly. (Developers who create
custom Silverlight controls often use this model, and embed the XAML templates that define their
control content as an assembly resource.)

The Silverlight compilation model has a number of advantages, including easy deployment and
vastly improved performance when compared to ordinary JavaScript. However, although the code is
compiled, the same considerations apply to Silverlight assemblies as any other type of client-side
code. IL code can be easily decompiled or reverse engineered, so it’s not an appropriate place to
store secrets (like encryption keys, proprietary algorithms, and so on). If you need to perform a task
that uses sensitive code, consider calling a web service from your Silverlight application.

Once you understand the Silverlight compilation model, it’s a short step to understanding the
deployment model. When you deploy a Silverlight application, you need to transfer the following
files to the web server:

• The HTML entry pages.

• The .js script pages.

• The XAML pages.

• The ClientBin folder, with all its assemblies. (You don’t need the .pdb debugging files.)

You don’t need to copy the raw source code, because it’s compiled into the project assembly in
the ClientBin folder.

When hosting a Silverlight application, your web server must be configured to allow requests
for two new file types: .xaml and .dll. This allows the HTML entry page to download the initial XAML
page, which then in turn downloads the project assembly that contains the code-behind class.

The Silverlight execution model is quite straightforward. First, the client requests the HTML
entry page. At this point, the browser downloads the HTML file and the linked .js file. While process-
ing the HTML page, the browser executes the JavaScript code, including the createObjectEx() call
that creates the Silverlight content region. After this step, the client-side plug-in takes over. It
downloads the linked XAML file (which is identified by the source parameter that’s passed to the cre-
ateObjectEx() method). As the plug-in processes the XAML file, it comes across the Class attribute,
which references the compiled project assembly. The browser then downloads that assembly in its
entirety, along with any other referenced assemblies (such as class library assemblies that contain
your own custom types and are used in the page). These assemblies are cached on the client side, so
they don’t need to be repeatedly downloaded each time the user visits a new page that uses the same
assembly. All the Silverlight code is executed on the client side by the scaled down version of the
.NET Framework that’s embedded in the Silverlight plug-in.

Silverlight Essentials
Now that you’ve had an overview of the Silverlight model, you’re ready to take a closer look at the
fundamental concepts that go into building Silverlight content. In this section, you’ll explore the
Silverlight version of the .NET Framework, the Silverlight layout model, and the TextBlock. You’ll
also learn how to interact with HTML elements and use isolated storage.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 17

.NET Framework Classes in Silverlight
Silverlight includes a subset of the classes from the full .NET Framework. Although it would be
impossible to cram the entire .NET Framework into Silverlight—after all, it’s a 4 MB download that
needs to support a variety of browsers and operating systems—Silverlight includes a remarkable
amount.

The Silverlight version of the .NET Framework is simplified in two ways. First, it doesn’t provide
the sheer number of types you’ll find in the full .NET Framework. Second, the classes that it does
include often don’t provide the full complement of constructors, methods, properties, and events.
Instead, Silverlight keeps only the most practical members of the most important classes, which
leaves it with enough functionality to create surprisingly compelling code.

■Note The Silverlight classes are designed to have public interfaces that resemble their full-fledged counterparts
in the .NET Framework. However, the actual plumbing of these classes is quite different. All the Silverlight classes
have been rewritten from the ground up to be as streamlined and efficient as possible.

Before you start doing any serious Silverlight programming, you might like to browse the Silver-
light version of the .NET Framework. One way to do so is to open a Silverlight project, and then show
the Object Browser in Visual Studio (choose View ➤ Object Browser). Along with the assembly for the
code in your project, you’ll see the following Silverlight assemblies (shown in Figure 5):

• mscorlib.dll: This assembly is the Silverlight equivalent of the mscorlib.dll assembly that
includes the most fundamental parts of the .NET Framework. The Silverlight version includes
core data types, exceptions, and interfaces in the System namespace, ordinary and generic
collections, file management classes, and support for globalization, reflection, resources,
debugging, and multithreading.

■Note Some of the members in the Silverlight assemblies are only available to .NET Framework code, and aren’t
callable from your code. These members are marked with the SecurityCritical attribute. However, this attribute does
not appear in the Object Browser, so you won’t be able to determine whether a specific feature is usable in a Silver-
light application until you try to use it. (If you attempt to use a member that has the SecurityCritical attribute, you’ll
get a SecurityException.) For example, Silverlight applications are only allowed to access the file system through the
isolated storage API. For that reason, the constructor for the FileStream class is decorated with the SecurityCritical
attribute.

• System.dll: This assembly contains additional generic collections, classes for dealing with
URIs, and classes for dealing with regular expressions.

• System.Core.dll: This assembly contains support for LINQ. (You may remember that all the
features that are new to .NET 3.5 are implemented in an assembly named System.Core.dll.)

• System.Silverlight.dll: This assembly contains classes for interacting with HTML elements,
a version of the OpenFileDialog that works with isolated storage, and classes for sending
HTTP requests.

• System.Xml.core.dll: This assembly includes the bare minimum classes you need for XML
processing: XmlReader and XmlWriter.

• agclr.dll: This assembly includes the Silverlight UI classes that have been derived from the
WPF model. For example, you’ll find classes for all the Silverlight elements and for animation.
(It’s rumored that the ag in the name agclr.dll is derived from the symbol for Silver in the peri-
odic table, while clr represents the scaled-down version of the CLR that Silverlight uses.)

94de36c1b1ebffe8366b5b8cacd6e50e

18 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Figure 5. Silverlight assemblies in the Object Browser

The Canvas
In the example you considered in the previous section, the root element in the XAML page was a Canvas.

The Canvas is a layout container, which means it’s an element that holds (and displays) other ele-
ments. The full WPF platform includes several layout managers, including ones that automatically
stack elements, wrap them over multiple lines, or arrange them into an invisible grid. The Canvas is the
simplest layout manager—it simply positions each item using fixed coordinates. Although more layout
managers are planned for Silverlight, the Canvas is the only one that’s currently included.

Technically, you can use any element as the root of a Silverlight XAML file. However, the Canvas
is the most common and logical choice because of its ability to hold other elements. For example, if
you use a Rectangle as the root element, your Silverlight content will be limited to that single Rect-
angle object, because the Rectangle can’t hold anything else inside.

■Note By default, Visual Studio sets the size of the Canvas to 640× 480 by setting the Width and Height prop-
erties in the XAML file. However, there’s a potential discrepancy at work because the content inside the Canvas is
allowed to overflow its bounds. Thus, if you place a 640× 480 Canvas in a Silverlight content region that’s sized
larger, you will see content that stretches outside those bounds. Ordinarily, you won’t see this behavior, because
the Silverlight content region is also limited to 640× 480 using a style rule, as described earlier, in the section
named “The Silverlight Initialization Script.”

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 19

Positioning Elements in a Canvas
To position an element in the Canvas, you use attached properties. Attached properties are another
concept that’s brought over from WPF. Essentially, an attached property is a property that’s defined
by one class but used by another. Attached properties are a key extensibility mechanism, because
they allow classes to interact in flexible ways even without prior planning. For example, the Canvas
defines three attached properties: Left, Top, and ZIndex. Elements inside a Canvas can use these
properties to position themselves. This is a better solution than defining these properties as part of
some base element classes, because it’s more loosely coupled. Elements don’t need to be specifically
designed to work with the Canvas—they just do. And when Silverlight adds more layout managers,
they’ll include their own set of layout-related attached properties. It also makes more sense concep-
tually for the properties to be “attached” to the Canvas, because it’s the Canvas that reads these
values and acts on them, not the contained element.

To set an attached property in XAML, you use a two-part syntax with a period. The portion on
the left is the name of the class where the property is defined (like Canvas), while the portion on the
right is the name of the property (like Top). Here’s an example that places a Rectangle in a specific
location in a Canvas:

<Rectangle x:Name="rect" Canvas.Top="30" Canvas.Left="30"
 Fill="Blue" Height="50" Width="50" />

Coordinates are measured from the top-left corner, so this creates a shape that’s 30 pixels from
the top and left edges. If you don’t set the Top and Left properties, they default to 0, which places the
element in the top-left corner (as was the case with the TextBlock demonstrated in the previous
example).

If you want to modify an attached property programmatically, you need to use a slightly more
convoluted syntax. The trick is to call the SetValue<T> method on your element. You specify the data
type of the property as your type argument, and pass in two parameters: the property you want to
modify and the new value you want to set. The following line of code sets the Canvas.Top property
that’s applied to the Rectangle to 100.

rect.SetValue<double>(Canvas.TopProperty, 100);

When specifying the property, you use the syntax ClassName.PropertyNameProperty. In other
words, the Canvas.Top property is represented by a static field named Canvas.TopProperty.

Layering Elements in a Canvas
If you have more than one overlapping element, you can set the attached Canvas.ZIndex property to
control how they are layered.

Ordinarily, all the elements you add have the same ZIndex: 0. When elements have the same
ZIndex, they’re displayed in the same order that they’re declared in the XAML markup. Elements
declared later in the markup are displayed on top of elements that are declared earlier.

However, you can promote any element to a higher level by increasing its ZIndex. That’s
because higher ZIndex elements always appear over lower ZIndex elements. Here’s an example that
uses this technique to reverse the layering of two rectangles:

<Rectangle Canvas.Left="60" Canvas.Top="80" Canvas.ZIndex="1"
 Fill="Blue" Width="50" Height="50" />
<Rectangle Canvas.Left="70" Canvas.Top="120" Width="100" Height="50"
 Fill="Yellow" />

Now the yellow rectangle will be superimposed over the blue rectangle, despite the fact that it’s
declared earlier in the markup.

20 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

■Note The actual values you use for the Canvas.ZIndex property have no meaning. The important detail is how
the ZIndex value of one element compares to the ZIndex value of another. You can set the ZIndex using any positive
or negative integer.

The ZIndex property is particularly useful if you need to change the position of an element
programmatically. Just call the SetValue<T> method on the element you want to modify, with the
new ZIndex value you want to apply. Unfortunately, there is no BringToFront() or SendToBack()
method—it’s up to you to keep track of the highest and lowest ZIndex values if you want to imple-
ment this behavior.

Dragging Circles
You can put these concepts together using a simple example.

Figure 6 shows a Silverlight application that allows you to draw and move small circles. Every
time you click the Canvas, a red circle appears. To move a circle, you simply click and drag it to a new
position. When you click a circle, it changes color from red to green. Finally, when you release your
circle, it changes color to orange. There’s no limit to how many circles you can add or how many
times you can move them around your drawing surface.

Figure 6. Dragging shapes

Each circle is an instance of the Ellipse object. Obviously, you can’t define all the ellipses you
need in your XAML markup. Instead, you need a way to generate the Ellipse objects dynamically
each time the user clicks the Canvas.

Creating an Ellipse object isn’t terribly difficult—after all, you can instantiate it like any other
.NET object, set its properties, and attach event handlers. You can even use the SetValue<T> method
to set attached properties to place it in the correct location in the Canvas. However, there’s one more
detail to take care of—you need a way to place the Ellipse in the Canvas. This is easy enough, as the

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 21

Canvas class exposes a Children collection that holds all the child elements. Once you’ve added an
element to this collection, it will appear in the Canvas.

The XAML page for this example uses a single event handler for the Canvas.MouseLeftButton-
Down event. No other elements are defined.

<Canvas x:Name="parentCanvas" ...
 MouseLeftButtonDown="canvas_Click">
 </Canvas>

In the code-behind class, you need two member variables to keep track of whether or not an
ellipse-dragging operation is currently taking place:

// Keep track of when an ellipse is being dragged.
private bool isDragging = false;

// When an ellipse is clicked, record the exact position
// where the click is made.
private Point mouseOffset;

Here’s the event-handling code that creates an ellipse when the Canvas is clicked:

private void canvas_Click(object o, MouseEventArgs e)
{
 // Create an ellipse (unless the user is in the process
 // of dragging another one).
 if (!isDragging)
 {
 // Give the ellipse a 50-pixel diameter and a red fill.
 Ellipse ellipse = new Ellipse();
 ellipse.Fill = new SolidColorBrush(Colors.Red);
 ellipse.Width = 50;
 ellipse.Height = 50;

 // Use the current mouse position for the center of
 // the ellipse.
 Point point = e.GetPosition(this);
 ellipse.SetValue<double>(Canvas.TopProperty,
 point.Y - ellipse.Height/2);
 ellipse.SetValue<double>(Canvas.LeftProperty,
 point.X - ellipse.Width/2);

 // Watch for left-button clicks.
 ellipse.MouseLeftButtonDown += ellipse_MouseDown;

 // Add the ellipse to the Canvas.
 this.Children.Add(ellipse);
 }
}

Not only does this code create the ellipse, it also connects an event handler that responds when
the ellipse is clicked. This event handler changes the ellipse color and initiates the ellipse-dragging
operation:

private void ellipse_MouseDown(object o, MouseEventArgs e)
{
 // Dragging mode begins.

22 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

 isDragging = true;
 Ellipse ellipse = (Ellipse)o;

 // Get the position of the click relative to the ellipse
 // so the top-left corner of the ellipse is (0,0).
 mouseOffset = e.GetPosition(ellipse);

 // Change the ellipse color.
 ellipse.Fill = new SolidColorBrush(Colors.Green);

 // Watch this ellipse for more mouse events.
 ellipse.MouseMove += ellipse_MouseMove;
 ellipse.MouseLeftButtonUp += ellipse_MouseUp;

 // Capture the mouse. This way you'll keep receiveing
 // the MouseMove event even if the user jerks the mouse
 // off the ellipse.
 ellipse.CaptureMouse();
}

The ellipse isn’t actually moved until the MouseMove event occurs. At this point, the Canvas.Left
and Canvas.Top attached properties are set on the ellipse to move it to its new position. The coordi-
nates are set based on the current position of the mouse, taking into account the point where the user
initially clicked. This ellipse then moves seamlessly with the mouse, until the left mouse button is
released.

private void ellipse_MouseMove(object o, MouseEventArgs e)
{
 if (isDragging)
 {
 Ellipse ellipse = (Ellipse)o;

 // Get the position of the ellipse relative to the Canvas.
 Point point = e.GetPosition(this);

 // Move the ellipse.
 ellipse.SetValue<double>(Canvas.TopProperty, point.Y - mouseOffset.Y);
 ellipse.SetValue<double>(Canvas.LeftProperty, point.X - mouseOffset.X);
 }
}

When the left mouse button is released, the code changes the color of the ellipse, releases the
mouse capture, and stops listening for the MouseMove and MouseUp events. The user can click the
ellipse again to start the whole process over.

private void ellipse_MouseUp(object o, EventArgs e)
{
 if (isDragging)
 {
 Ellipse ellipse = (Ellipse)o;

 // Change the ellipse color.
 ellipse.Fill = new SolidColorBrush(Colors.Orange);

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 23

 // Don't watch the mouse events any longer.
 ellipse.MouseMove += ellipse_MouseMove;
 ellipse.MouseLeftButtonUp += ellipse_MouseUp;
 ellipse.ReleaseMouseCapture();

 isDragging = false;
 }
}

Text
As you’ve already learned, you use the TextBlock element to add text to your Silverlight user inter-
face. The TextBlock element includes a few key properties, which are described in Table 2.

Table 2. TextBlock Properties

■Note Ordinarily, you don’t need to set the Width and Height of a TextBlock. The TextBlock is automatically set
high enough to show a single line of the current font, and wide enough to fit all the supplied text (even if that means
the TextBlock stretches beyond the bounds of the Silverlight content region, and so isn’t visible). However, if you
want to use text wrapping, you must set the width of the TextBlock to limit the length of the line. This causes the
text content to flow to subsequent lines, and it causes the height of the TextBlock to increase to fit all the text.

Property Description

FontFamily Specifies the name of the font you want to use, such as Times New Roman
or Arial. This name should not include any formatting information—in other
words, don’t use a value like Times New Roman Bold. The default value is
Portable User Interface, which is an alias for the Lucida Sans font that’s
included with Silverlight.

FontSize Specifies the font size in pixels. The default value is 14.666 pixels, which is
exactly 11 points.

FontStyle Specifies whether the font style is normal or italic. The default value is Normal.

FontWeight Describes the relative weight of a font. The default value is Normal. The
FontWeight enumeration defines all the supported values, such as Thin,
Light, Medium, Bold, ExtraBold, Black, and so on.

FontStretch Describes the degree to which a font form is stretched from its normal
aspect ratio, by stretching or compressing the letters horizontally. The
default value is Normal. The FontStretch enumeration defines all the sup-
ported values, such as UltraCondensed, Condensed, Medium, Expanded,
and so on.

TextDecorations Allows you to apply additional graphical detailing to a font using a value
from the TextDecorations namespace. Currently, there are just two choices:
Normal (the default) and Underline.

TextWrapping Allows you to wrap text over multiple lines. You can choose NoWrap (the
default), Wrap, or WrapWithOverflow. Both Wrap and WrapWithOverflow
enable text wrapping. The difference is that WrapWithOverflow allows a sin-
gle large word to stretch beyond the bounds of the element if there’s no
space or hyphen to break on, while Wrap will split the word in this scenario.

24 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Although you can set any font you want using the FontFamily property, there’s no guarantee
that the font you want will be available on the client’s computer. For consistent results, you should
use one of the core fonts included with Silverlight and shown in Figure 7.

Figure 7. Silverlight fonts

As when setting the fonts for an ASP.NET control, you can supply a comma-separated list that
puts the preferred fonts at the beginning and the fallback fonts at the end.

In some situations, you’ll want to format just part of the content in a TextBlock. You can do this
by nesting a Run element inside a TextBlock. The Run represents any segment of similarly formatted
text. Here’s an example that uses it:

<TextBlock FontFamily="Arial" Width="400" TextWrapping="Wrap">
To create the Silverlight control, you use
the <Run Foreground="Maroon" FontFamily="Courier New">createObjectEx()</Run>
JavaScript function.
</TextBlock>

Along with the Run element, you can also place a LineBreak element inside a TextBlock to force
a line break.

■Note If you place extra whitespace at the beginning or ending of your text inside the <TextBlock>, that
whitespace is ignored.

Interacting with HTML
Silverlight includes a set of managed classes that replicate the HTML DOM (document object
model) in managed code. These classes allow your Silverlight code to interact with the HTML con-
tent on the same page. Depending on the scenario, this interaction might involve reading a control
value, updating text, or adding new HTML elements to the page.

The classes you need to perform these feats are part of the System.Silverlight.dll assembly, and
they’re found in the System.Windows.Browser namespace. These classes include HtmlElement,
which represents any HTML element; HtmlObject, which represents a scriptable object that’s part of
the HTML DOM (for example, a window in a frameset); and HtmlDocument, which represents the
complete HTML document. To get access to live instances of these classes, you use the HtmlPage
helper class, which provides the static members listed in Table 3.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 25

Table 3. Static Members of the HtmlPage Class

If you want to interact with the HTML content on the current page, the HtmlPage.Document
property is the best starting point. Once you have the HtmlDocument object that represents the page,
you can browse down through the element tree (starting at HtmlDocument.DocumentElement) or
search for an element with a specific name (using the GetElementByID() or GetElementsByTagName()
method of the HtmlDocument class). When you have a specific HtmlElement, you can give it focus,
add or remove children, or modify the text content.

■Tip You can use the HttpUtility class in the System.Windows.Browser namespace to perform common tasks like
HTML encoding and decoding (making text safe for display in a web page) and URL encoding and decoding (making
text safe for use in a URL—for example, as a query string argument).

For example, imagine you have this HTML markup just underneath your Silverlight content
region (and your Silverlight content region doesn’t fill the entire browser window), as shown here:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Silverlight Project Test Page </title>
 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript" src="TestPage.html.js"></script>
 <style type="text/css">
 .silverlightHost { width: 640px; height: 480px; }
 </style>

Member Description

BrowserInformation Returns a BrowserInformation object with information about the
browser version, platform, user agent string, and cookie support.

Cookies Provides a collection of all the current HTTP cookies. You can read or
set the values in these cookies. Cookies provide one easy, low-cost
way to transfer information from server-side ASP.NET code to client-
side Silverlight code.

CurrentBookmark Returns the optional bookmark portion of the URL string, which can
point to a specific anchor on a page. You can use NavigateToBook-
mark() to move to a different bookmark.

Document Returns the HtmlDocument object that represents the current HTML
document.

DocumentUri Returns the URL of the current document as a Uri object.

QueryString Returns the query string portion of the URL as a single long string
that you must parse.

Window Returns an HtmlObject that represents the current browser window.

Navigate() Sends the browser to another page. You can use an overloaded ver-
sion of the Navigate() method to specify a target frame.

NavigateToBookmark() Scrolls to a specific bookmark in the current page.

Submit() Submits the page. This is useful if you’re hosting your Silverlight con-
trol in an ASP.NET page, because it triggers a postback that allows
server-side code to run.

26 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

</head>
<body>
 <div id="SilverlightControlHost" class="silverlightHost">
 <script type="text/javascript">
 createSilverlight();
 </script>
 </div>

 <div>
 <hr />
 <p id="paragraph"></p>
 </div>
</body>
</html>

You can retrieve an HtmlElement object that represents this paragraph in any Silverlight event
handler. The following code retrieves the paragraph and changes the text inside:

HtmlElement element = HtmlPage.Document.GetElementByID("paragraph");
element.SetProperty("innerHTML",
 "This HTML paragraph has been updated by Silverlight.");

You’ll notice that the transition between Silverlight and the HTML DOM isn’t quite perfect.
Silverlight doesn’t include a full HTML DOM, just a lightweight version that standardizes on a basic
HtmlElement class. To manipulate this element in a meaningful way, you’ll often need to set an
HTML DOM property (such as innerHTML in the previous example) using the SetProperty() method
and supply the name of the property as a string.

It’s possible to interact in the reverse direction—in other words, to allow an HTML element to
trigger your Silverlight code in response to a specific event. The easiest way to do so is to use the
HtmlElement.AttachEvent() method in your Silverlight code to wire up your event handler. You can
do this at any point, although it makes sense to do it once, when your Silverlight content is first ini-
tialized, by responding the Canvas.Loaded event.

Here’s an example that connects a Silverlight event handler to the onclick event of the HTML
<p> element:

public partial class Page : Canvas
{
 private void Page_Loaded(object o, EventArgs e)
 {
 InitializeComponent();

 element.AttachEvent("onclick", paragraph_Click);
 }

 private void paragraph_Click(object o, HtmlEventArgs e)
 {
 txt.Text =
 "You clicked an HTML element, but this Silverlight application noticed.";
 }
}

Once again, you need to know the name of the HTML DOM event. In other words, you’ll need
to have your JavaScript skills handy in order to make the leap between Silverlight and HTML.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 27

This technique achieves an impressive feat. Using Silverlight as an intermediary, you can script
an HTML page with client-side C# code, instead of using the JavaScript that would normally be
required.

Figure 8 shows this code in action.

Figure 8. Silverlight and HTML interaction

In some cases, you might choose to deepen the integration by another layer. Instead of con-
necting your Silverlight event handler directly to an HTML DOM event, you might want to connect
your event to a JavaScript method, and then have that JavaScript method call into your Silverlight
code. This is a bit more involved. In order to make it work, you need to take the following steps:

1. Create a public method in your Silverlight code that exposes the information or functionality
you want the web page to use. You’ll need to stick to simple data types, like strings, Boolean
values, and numbers, unless you want to go through the additional work of serializing your
objects to a simpler form.

2. Mark that method with the Scriptable attribute.

3. Mark your Silverlight class (the custom class that derives from Canvas) with the Scriptable
attribute.

4. To expose your Silverlight method to JavaScript, call the WebApplication.RegisterScriptable-
Object() method in the Page_Loaded() event handler, when your Silverlight content is first
loaded.

Provided you take all these steps, your JavaScript code will be able to call your Silverlight
method as though it’s a method of the Silverlight control.

28 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

For example, consider the code-behind class shown here, which includes a scriptable method
named RemoveGradient():

[Scriptable]
public partial class Page : Canvas
{
 public void Page_Loaded(object o, EventArgs e)
 {
 // Required to initialize variables
 InitializeComponent();

 WebApplication.Current.RegisterScriptableObject("SilverlightPage",
 this);
 }

 [Scriptable]
 public void RemoveGradient()
 {
 this.Background = new SolidColorBrush(Colors.LightGray);
 }

 ...
}

The RemoveGradient() method is registered with the name Canvas. As a result, Silverlight will
create a property named Canvas, and expose the RemoveGradient() method on that property. You
can use any property name you want, but in this example it makes sense to emphasize that the
method is attached to the Canvas, because calling it affects the Canvas.

Now all you need is a JavaScript function that calls the RemoveGradient() method:

<script type="text/javascript">
 function removeGradient()
 {
 var control = document.getElementById("SilverlightControl");
 control.Content.Canvas.RemoveGradient();
 }
</script>

You can trigger this JavaScript method at any time. Here’s an example that fires it off when a
paragraph is clicked:

<p onclick="removeGradient()">Click here to remove the gradient</p>

Now clicking the paragraph triggers the removeGradient() JavaScript function, which in turn
calls the RemoveGradient() method that’s a part of your Silverlight class.

Isolated Storage
Silverlight code isn’t permitted to write to arbitrary locations on the file system (or read from them).
Obviously, if this ability were possible, it would break the web browser’s secure sandbox model.
However, Silverlight applications that need to store data permanently still have an option. They can
use isolated storage.

Isolated storage provides a virtual file system that lets you write data to a small, user-specific and
application-specific slot of space. The actual location on the hard drive is obfuscated (so there’s no
way to know exactly where the data will be written beforehand), and the total space available is 512 KB.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 29

A typical location is a path in the form c:\Document and Settings\[UserName]\Local Settings\
Application Data\Isolated Storage\[Guid_Identifier]. Data in one user’s isolated store is restricted
from all other nonadministrative users.

■Note Isolated storage is the .NET equivalent of persistent cookies in an ordinary web page—it allows small bits
of information to be stored in a dedicated location that has specific controls in place to prevent malicious attacks
(such as code that attempts to fill the hard drive or replace a system file).

Isolated storage is quite easy to use because it exposes the same stream-based model as ordi-
nary file access. You simply use the types in the System.IO.IsolatedStorage namespace. You begin by
calling the IsolatedStorageFile.GetUserStoreForApplication() method to get a reference to the iso-
lated store for the current user and application. (Each application gets a separate store.) You can
then create a virtual file in that location using the IsolatedStorageFileStream. Here’s an example that
writes the current date to a virtual file named date.txt in isolated storage. In order to use this code as
written, you must import the System.IO and System.IO.IsolatedStorage namespaces.

// Write to isolated storage.
try
{
 IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication();

 using (IsolatedStorageFileStream fs = new IsolatedStorageFileStream(
 "date.txt", FileMode.Create, store))
 {
 StreamWriter w = new StreamWriter(fs);
 w.Write(DateTime.Now);
 w.Close();
 }
 txtData.Text = "Data written to date.txt";
}
catch (Exception err)
{
 txtData.Text = err.Message;
}

Retrieving information is just as easy. You simply need to open the IoslatedStorageFileStream
in read mode:

// Read from isolated storage.
try
{
 IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication();

 using (IsolatedStorageFileStream fs = new IsolatedStorageFileStream(
 "date.txt", FileMode.Open, store))
 {
 StreamReader r = new StreamReader(fs);
 txtData.Text = r.ReadLine();
 r.Close();
 }
}

30 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

catch (Exception err)
{
 // An exception will occur if you attempt to open a file that doesn't exist.
 txtData.Text = err.Message;
}

You can try this code out with the IsolatedStorageTest.html page included with the download-
able examples.

Unlike the full .NET Framework, the Silverlight version of the IsolatedStorageFile class
doesn’t include methods like IsolatedStorageFile.GetFileNames() and IsolatedStorageFile.Get-
DirectoryNames(), which allow you to enumerate the contents of the isolated store. Instead,
you’re limited to getting the current store for the current application and creating or retrieving
a file by name.

Silverlight and ASP.NET
The Silverlight examples you’ve seen so far can be used in a basic, stand-alone website or in an
ASP.NET web application. If you want to use them in an ASP.NET website, you simply need to add
the Silverlight files to your website folder or web project. You copy the same files that you copy when
deploying a Silverlight application—everything except the source code files. (For more information
about Silverlight deployment, refer to the “Silverlight Compilation” section .)

Unfortunately, the ASP.NET development process and the Silverlight development process
aren’t yet integrated in Visual Studio. As a result, you’ll need to compile your Silverlight project sep-
arately and copy the compiled assembly by hand. (You can’t simply add a reference to the compiled
assembly, because Visual Studio will place the referenced assembly in the Bin folder, so it’s accessi-
ble to your ASP.NET server-side code, which isn’t what you want. Instead, you need to place it in the
ClientBin folder, which is where your HTML entry page expects to find it.)

This approach allows you to place Silverlight and ASP.NET pages side by side on the same web-
site; but they aren’t in any way integrated. You can navigate from one page to another (for example,
use a link to send a user from an ASP.NET web form to a Silverlight entry page), but there’s no inter-
action between the server-side and client-side code. In many situations, this design is completely
reasonable, because the Silverlight application represents a distinct “applet” that’s available in your
website. In other scenarios, you might want to share part of your data model, or integrate server-side
processing and client-side processing as part of a single task.

ASP.NET Futures
The ASP.NET Futures release includes two ASP.NET web controls that render Silverlight content:
Xaml and Media (which are described in the following sections). Both of these controls are placed in
an assembly named Microsoft.Web.Preview.dll, which you can find in a directory with a name like
c:\Program Files\Microsoft ASP.NET\ASP.NET Futures July 2007\v1.2.61025\3.5.

In order to use the Xaml and Media controls, you need a reference to the Microsoft.Web.Preview.dll
assembly. You also need to register a control tag prefix for the Microsoft.Web.Preview.UI.Controls
namespace (which is where the Xaml control is located). Here’s the Register directive that you can add to
a web page (just after the Page directive) to use the familiar asp tag prefix with the new ASP.NET Futures
controls:

<%@ Register Assembly="Microsoft.Web.Preview"
 Namespace="Microsoft.Web.Preview.UI.Controls" TagPrefix="asp" %>

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 31

Alternatively, you can register the control prefix in your web.config file so that it automatically
applies to all pages:

<?xml version="1.0"?>
<configuration>
 ...
 <system.web>
 <pages>
 <controls>
 <add tagPrefix="asp" namespace="Microsoft.Web.Preview.UI.Controls"
 assembly="Microsoft.Web.Preview" />
 ...
 </controls>
 </pages>
 ...
 </system.web>
 ...
</configuration>

Rather than adding the assembly reference and editing the web.config file by hand, you can use a
Visual Studio website template. Choose File ➤ New ➤ Web Site and select ASP.NET Futures Web Site.
When you take this approach, you’ll end up with many more new settings in the web.config file, which
are added to enable other ASP.NET Futures features that aren’t related to Silverlight. Once you’ve fin-
ished these configuration steps, you’re ready to place the Xaml and Media controls in a web page.
You’ll need to type the markup for these controls by hand, as they won’t appear in the Toolbox. (You
could add them to the Toolbox, but it’s probably not worth the effort considering that there are likely
to be newer builds of ASP.NET Futures in the near future.)

The Xaml Control
As you learned earlier, the HTML entry page creates a Silverlight content region using a <div> place-
holder and a small snippet of JavaScript code. There’s no reason you can’t duplicate the same
approach to place a Silverlight content region in an ASP.NET web form. However, there’s a shortcut
that you can use. Rather than creating the <div> tag and adding the JavaScript code by hand, you can
use the Xaml control.

The Xaml control uses essentially the same technique as the HTML entry page you saw earlier,
rendering a <div> tag and adding the JavaScript. The advantage is that you specify the XAML page
you want to use (and configure a few additional details) using properties on the server side. That
gives you a slightly simpler model to work with, and an easy way to vary these details dynamically
(for example, choose a different XAML page based on server-side information, like the identity of the
current user).

Here’s the ASP.NET markup you’d use to show a XAML file named Page.xaml:

<form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:Xaml XamlUrl="~/Page.xaml" runat="server"></asp:Xaml>
</form>

You can set a number of properties on the Xaml control to configure how the Silverlight content
region will be created, including Height, Width, MinimumSilverlightVersion, SilverlightBackColor,
and EnableHtmlAccess. You can also attach the Xaml control to two JavaScript functions. Set
OnClientXamlError with the name of a JavaScript function that will be triggered if the Silverlight
XAML can’t be loaded, and set OnClientXamlLoaded with the name of the JavaScript function that
will be triggered if the Silverlight content region is created successfully.

32 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

You also need to add the XAML page to your website. Unfortunately, the current build of ASP.NET
Futures doesn’t include a XAML template for Silverlight 1.1 content. Instead, it includes a XAML tem-
plate for Silverlight 1.0 content, complete with a JavaScript code-behind file. (This choice was made for
compatibility with Silverlight 1.0, which doesn’t support client-side C# and the scaled-down CLR.)

The easiest way to use Silverlight 1.1 content with the Xaml control is to create your XAML pages
in a dedicated Silverlight project. You can then copy the XAML files and the ClientBin folder to your
ASP.NET website. This extra work isn’t the result of a technical limitation—it’s simply a limitation of
pre-release software.

The Media Control
The Media web control gives you a server-side abstraction over the MediaElement class from Silver-
light. (As explained earlier, the MediaElement is a Silverlight element that manages the playback of
an audio or video file.)

The obvious question is, “When should you use the MediaElement, and when should you prefer
the server-side Media web control?” They both amount to the same thing—after all, the server-side
Media web control renders a MediaElement, although it requires slightly more work on the server to
do so. The primary advantage to using the Media web control is that you have the chance to set some
of its properties using server-side code. For example, you could set the media URL based on infor-
mation from a database and even extract it through data binding.

Here’s an example of how you might define the Media control:

<asp:Media runat="server" ID="Media1"
 AutoPlay="true" MediaUrl="MyVideoFile.wmv"
 SilverlightBackColor="blue" MediaSkin="Professional"
 Height="240" Width="320" />

This creates a Silverlight control with a media player in it, as shown in Figure 9.

Figure 9. The Silverlight media player

The media player attempts to access the MyViewFile.wmv file, and begins playing it immedi-
ately. In order to streamline the video playback experience, the media player downloads and buffers
small chunks of video data as it plays. Best of all, the Silverlight media player works without requiring

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 33

Windows Media Player. It’s more lightweight and performant, and the user interface (playback but-
tons, skin, and so on) is more customizable.

To get the most out of Silverlight’s media playing ability, you need to take a closer look at the
properties provided by the Media control. Table 4 lists some of the most important.

Table 4. Properties of the Media Web Control

There are several more features of the Media control that aren’t covered here:

• You can define chapters that link to specific locations in your media file, and show them in
the media player. The user can then jump directly to one of these chapters.

• You can export any of the media player’s skins as XAML, customize it, and then use that
customized version on your web page.

• You can use JavaScript methods to control media playback. This gives you another way to inter-
act with ASP.NET, as you can create ASP.NET AJAX routines that interact with the media player.
You can also set various OnXxx properties (like OnClientMediaEnded and OnClientMedia-
Failed) to trigger a JavaScript function when a specific event happens in the media player.

Property Description

MediaUrl Identifies the location of the media file. You can use .wma, .wmv, .mp3
and .asx file types. You can specify a relative path for a file on your web
server (as in the previous example), or you can supply a full URL that
points to another location.

AutoPlay Sets whether playback starts immediately when the page is initialized.
The default is false, which means the user will need to use the playback
controls to initiate playback.

AutoScale Sets whether the XAML should be resized to fit the player size. The
default is true.

LoopCount Sets the number of times to loop (repeat) the media file. Use a value of
0 to loop the media file continuously.

MediaSkin Specifies the “skin” that determines the appearance of the media
player. The media player includes several built-in skins that include
different graphics, colors, and animated effects. Each skin is defined in
a XAML resource that’s embedded in the Silverlight assemblies. Skins
are defined by the MediaSkin enumeration and include AudioGray,
Basic, Blitz, Classic, Expression, Game, Professional, and Simple.

PlaceholderImageUrl Specifies a URL to a placeholder image that will be shown while the
media file is being opened. Once the media file is opened, this image is
replaced with the first frame of your video.

Volume Sets the volume as a value between 0 (silent) and 1 (the maximum volume).

Muted Determines whether the audio should be muted initially. The default
is false.

StartTime Specifies a location in the media file (as an offset in seconds) where
playback should start. By default, playback starts at the beginning of
the file.

Duration Sets the number of seconds that media should play before stopping. By
default, the entire media file is played.

34 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

For information about these more advanced tasks, refer to http://quickstarts.asp.net/
Futures/Silverlight/media.aspx.

Communicating Between Silverlight and ASP.NET
If your website includes ASP.NET code and Silverlight content, you may want to pass some informa-
tion from one side to another. There are several ways that you can allow this sort of interaction. Here
are two simple approaches:

• When you redirect the user from an ASP.NET web page to a Silverlight entry page, you can
supply startup information in a cookie or a query string. The Silverlight code can access this
information using the classes in the System.Windows.Browser namespace, as described in
the “Interacting with HTML.”

• Similarly, your Silverlight application can use the query string or set a cookie before navigat-
ing to an ASP.NET web form by calling HtmlPage.Navigate(). If the Silverlight control is on an
ASP.NET web form, it can call HtmlPage.Submit() to trigger a postback. This is also described
in the “Interacting with HTML” section.

Both of these techniques allow you to send information as you switch from the client side to the
server side, and vice versa. For example, if your Silverlight control calls HtmlPage.Submit(), the
entire page is posted back, the Silverlight application ends, and the ASP.NET objects are created. If
you want the user to perform another action with your Silverlight application, you need to return a
new page with the Silverlight content. Then, the Silverlight control needs to be created and initial-
ized all over again.

Another option is to allow a long-running Silverlight application to trigger some server-side
code without actually posting back the page. That way, the application continues running. The eas-
iest way to do this is to have your Silverlight application call an ASP.NET web service, just as you
would with an ASP.NET AJAX page. The development model is quite convenient—when you add a
web reference to your web service in the Silverlight project, Visual Studio generates the proxy class
you need to call the web service. You simply need to instantiate the proxy class and call its methods,
just as you would in a full-fledged .NET application that calls a web service. (For more information
about designing web services, generating proxy classes in Visual Studio, and calling them in rich cli-
ents, you can refer to Bonus Chapter 2, Bonus Chapter 3, and Bonus Chapter 4, which are provided
on at (http://www.apress.com/book/view/1590598938).

■Note In the current Silverlight build, you can’t launch cross-domain web service calls. In other words, you can
only make a call to the website where the Silverlight page is located.

Drawing in 2D
As you’ve probably noticed, Silverlight includes relatively few elements, and none of the higher-level
controls that rich client developers are used to (like buttons, text boxes, list boxes, scroll bars, and so
on). All of these details are planned for future editions, but the first versions of Silverlight concen-
trate on two different areas—2D drawing and animation. Coming up, you’ll consider these two
feature areas.

Silverlight’s 2D drawing support is the basic foundation for many more sophisticated features,
such as custom-drawn controls, interactive graphics, and animation. Even if you plan to code at a
higher level and deal with more capable Silverlight controls (when they appear), you’ll need to have
a solid understanding of drawing fundamentals such as geometries, brushes, and transparency.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 35

Silverlight supports a surprisingly large subset of the drawing features from WPF, its more capable
sibling. In this section, you’ll consider how you can create complex geometries complete with arcs and
curves, how you can great gradients and other effects with brushes, and how you can use partial trans-
parency. But every Silverlight drawing begins with a relatively simple ingredient—shapes.

Simple Shapes
Silverlight includes a small set of elements that represent shapes: the Rectangle, Ellipse, Line, Poly-
line, Polygon, and Path. You’ve already encountered the Rectangle and Ellipse, but you haven’t
considered all the details that they entail. For example, you’ve focused on using the Fill property to
paint the inside of your rectangles and ellipses, without considering the Stroke property that lets you
drawn an outline around it.

All the shape classes share some common functionality that’s based on the properties listed in
Table 5. In the following sections, you’ll start by taking a closer look at the shape classes.

Table 5. Shape Properties

CREATING XAML GRAPHICS

In many cases, you won’t create Silverlight art by hand. Instead, you (or a designer) will use a design tool to create vec-
tor art, and then export it to XAML. The exported XAML document you’ll end up with is essentially a Canvas that
contains a combination of Shape elements. You can place that Canvas inside an existing Canvas to show your artwork.

Microsoft Expression Design is one example of a design tool that supports XAML natively. However, plug-ins
and conversion tools are available for many other popular formats. For example, you can convert an Adobe Illustrator
document to XAML using the converter at http://www.mikeswanson.com/xamlexport.

Name Description

Fill Sets the brush object that paints the surface of the shape (everything
inside its borders).

Stroke Sets the brush object that paints the edge of the shape (its border).

StrokeThickness Sets the thickness of the border, in pixels. When drawing a line, Silver-
light splits the width on each side. So a line that’s 10 units wide gets 5
units of space on each side of where a single-unit line would be drawn.

StrokeStartLineCap and
StrokeEndLineCap

Determine the contour of the edge of the beginning and end of the
line. These properties only have an effect for the Line, the Polyline,
and (sometimes) the Path shapes. All other shapes are closed, and so
have no starting and ending point.

StrokeDashArray,
StrokeDashOffset, and
StrokeDashCap

Allow you to create a dashed border around a shape. You can con-
trol the size and frequency of the dashes and how the edge where
each dash line begins and ends is contoured.

StrokeLineJoin and
StrokeMiterLimit

Determine the contour of the corners of a shape. Technically, these
properties affect the vertices where different lines meet, such as the
corners of a Rectangle. These properties have no effect for shapes
without corners, such as Line and Ellipse.

36 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

■Note Remember, the Silverlight shape classes are genuine elements. That means they support all the standard
element events, allowing you to react to mouse movement and mouse clicks to create an interactive interface.

Rectangle and Ellipse
The Rectangle and Ellipse are the two simplest shapes. To create either one, set the familiar Height
and Width properties (inherited from FrameworkElement) to define the size of your shape, and then
set the Fill or Stroke property (or both) to make the shape visible.

The Ellipse class doesn’t add any properties to those inherited from FrameworkElement. The
Rectangle class adds just two: RadiusX and RadiusY. When set to nonzero values, these properties
allow you to create nicely rounded corners.

You can think of RadiusX and RadiusY as describing an ellipse that’s used just to fill in the cor-
ners of the rectangle. For example, if you set both properties to 10, Silverlight draws your corners
using the edge of a circle that has a radius of 10 pixels. As you make your radius larger, more of your
rectangle will be rounded off. If you increase RadiusY more than RadiusX, your corners will round off
more gradually along the left and right sides and more sharply along the top and bottom edge. If you
increase the RadiusX property to match your rectangle’s width and increase RadiusY to match its
height, you’ll end up converting your rectangle into an ordinary ellipse.

Figure 10 shows a few rectangles with rounded corners.

Figure 10. Rounded corners

Line
The Line shape represents a straight line that connects one point to another. The starting and ending
points are set by four properties: X1 and Y1 (for the first point) and X2 and Y2 (for the second). For
example, here’s a line that stretches from (0, 0) to (10, 100):

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"></Line>

The Fill property has no effect for a line. You must set the Stroke property.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 37

The coordinates you use in a line are relative to the top-left corner where the line is placed.
When you place a line at a specific position in a Canvas, the starting point of the line is offset by the
Canvas coordinates. Consider this line:

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"
 Canvas.Left="5" Canvas.Top="100"></Line>

It stretches from (0, 0) to (10, 100), using a coordinate system that treats the point (5, 100) on the
Canvas as (0, 0). That makes it equivalent to this line that doesn’t use the Top and Left properties:

<Line Stroke="Blue" X1="5" Y1="100" X2="15" Y2="200"></Line>

It’s up to you whether you use the position properties when you place a Line on a Canvas. Often,
you can simplify your line drawing by picking a good starting point.

Polyline
The Polyline class allows you to draw a sequence of connected straight lines. You simply supply a list
of X and Y coordinates using the Points property. Technically, the Points property requires a Point-
Collection object, but you fill this collection in XAML using a lean string-based syntax. You simply
need to supply a list of points and add a space or comma between each coordinate.

A Polyline can have as few as two points. For example, here’s a Polyline that duplicates the line
in the previous example, which stretches from (5, 100) to (15, 200):

<Polyline Stroke="Blue" Points="5,100 15,200"></Polyline>

And here’s a more complex PolyLine that begins at (10, 150). The points move steadily to the
right, oscillating between higher and lower Y values:

<Polyline Stroke="Blue" StrokeThickness="5"
 Points="10,150 30,140 50,160 70,130 90,170 110,120
 130,180 150,110 170,190 190,100 210,240" >
</Polyline>

Figure 11 shows the final line.

Figure 11. A line with several segments

38 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Polygon
The Polygon is virtually the same as the Polyline. Like the Polyline class, the Polygon class has a
Points collection that takes a list of coordinates. The only difference is that the Polygon adds a final
line segment that connects the final point to the starting point. (If your final point is already the
same as the first point, the Polygon class has no difference.) You can fill the interior of this shape
using the Fill brush.

In a simple shape where the lines never cross, it’s easy to fill the interior. However, sometimes
you’ll have a more complex Polygon where it’s not necessarily obvious what portions are “inside”
the shape (and should be filled) and what portions are outside.

For example, consider Figure 12, which features a line that crosses more than one other line,
leaving an irregular region at the center that you may or may not want to fill. Obviously, you can con-
trol exactly what gets filled by breaking this drawing down into smaller shapes. But you may not
need to.

Every Polygon and Polyline includes a FillRule property that lets you choose between two dif-
ferent approaches for filling in regions. Understanding how FillRule works is the key to filling in the
regions you want in a compound shape.

By default, Fill Rule is set to EvenOdd. In order to decide whether to fill a region, Silverlight
counts the number of lines that must be crossed to reach the outside of the shape. If this number is
odd, the region is filled in; if it’s even, the region isn’t filled. In the center area of Figure 12, you must
cross two lines to get out of the shape, so it’s not filled.

Figure 12. Determining fill areas when FillRule is EvenOdd

Silverlight also includes a Nonzero fill rule, which is a little trickier. Essentially, with Nonzero, Sil-
verlight follows the same line-counting process as EvenOdd, but it takes into account the direction that
each line flows. If the number of lines going in one direction (say, left to right) is equal to the number
going in the opposite direction (right to left), the region is not filled. If the difference between these two
counts is not zero, the region is filled. In the shape from the previous example, the interior region is

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 39

filled if you set FillRule to Nonzero. Figure 13 shows why. (In this example, the points are numbered in
the order they are drawn, and arrows show the direction in which each line is drawn.)

Figure 13. Determining fill areas when FillRule is Nonzero

■Note If there is an odd number of lines, the difference between the two counts can’t be zero. Thus, the Nonzero
fill rule always fills at least as much as the EvenOdd rule, plus possibly a bit more.

The tricky part about Nonzero is that its fill settings depend on how you draw the shape, not
what the shape itself looks like. For example, you could draw the same shape in such a way that the
center isn’t filled (although it’s much more awkward—you’d begin by drawing the inner region and
then draw the outside spikes in the reverse direction).

Here’s the markup that draws the star shown in Figure 13:

<Polygon Stroke="Blue" StrokeThickness="1" Fill="Yellow"
 Canvas.Left="10" Canvas.Top="175" FillRule="Nonzero"
 Points="15,200 68,70 110,200 0,125 134,125">
</Polygon>

Paths and Geometries
The Path is a shape with a difference. Unlike the simple shapes you’ve considered so far, the Path has
the ability to encompass any simple shape, groups of shapes, and more complex ingredients such as
curves.

The Path class includes a single property, named Data, that accepts a Geometry object that
defines the shape (or shapes) the path includes. You can’t create a Geometry object directly because
it’s an abstract class. Instead, you need to use one of the derived classes listed in Table 6.

40 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Table 6. Geometry Classes

At this point, you might be wondering what the difference is between a path and a geometry. A
geometry defines a shape. A path allows you to draw the shape. Thus, the Geometry object defines
details such as the coordinates and size of your shape, while the Path object supplies the Stroke and
Fill brushes you’ll use to paint it. The Path class also includes element features such as mouse and
keyboard handling.

In the following sections, you’ll take a quick look at the classes that derive from Geometry.

■Note Geometries aren’t just for use with the Path. You can also use them with clipping to define a shaped region
that bounds an element. To use clipping, simply set the Clip property of the element. For example, if you set the Clip
property of a Canvas to an ellipse, all the content that would ordinarily be drawn outside that ellipse won’t be displayed.

Line, Rectangle, and Ellipse Geometries
The LineGeometry, RectangleGeometry, and EllipseGeometry classes map directly to the Line, Rect-
angle, and Ellipse shapes. For example, you can convert this markup that uses the Rectangle element:

<Rectangle Fill="Yellow" Stroke="Blue"
 Width="100" Height="50"></Rectangle>

to this markup that uses the Path element:

<Path Fill="Yellow" Stroke="Blue">
 <Path.Data>
 <RectangleGeometry Rect="0,0 100,50"></RectangleGeometry>
 </Path.Data>
</Path>

The only real difference is that the Rectangle shape takes Height and Width values, while the
RectangleGeometry takes four numbers that describe the size and location of the rectangle. The first
two numbers describe the X, Y coordinate point where the top-left corner will be placed, while the
last two numbers set the width and height of the rectangle. You can start the rectangle out at (0, 0) to
get the same effect as an ordinary Rectangle element, or you can offset the rectangle using different
values. The RectangleGeometry class also includes the RadiusX and RadiusY properties that let you
round the corners (as described earlier).

Similarly, you can convert the following Line:

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"></Line>

Name Description

LineGeometry Represents a straight line, which is the geometry equivalent of the Line shape

RectangleGeometry Represents a rectangle (optionally with rounded corners), which is the
geometry equivalent of the Rectangle shape

EllipseGeometry Represents an ellipse, which is the geometry equivalent of the Ellipse shape

GeometryGroup Adds any number of Geometry objects to a single Path, using the Even-
Odd or Nonzero fill rule to determine what regions to fill

PathGeometry Represents a more complex figure that’s composed of arcs, curves, and
lines, and can be open or closed

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 41

to this LineGeometry:

<Path Fill="Yellow" Stroke="Blue">
 <Path.Data>
 <LineGeometry StartPoint="0,0" EndPoint="10,100"></LineGeometry>
 </Path.Data>
</Path>

And you can convert an Ellipse like this:

<Ellipse Fill="Yellow" Stroke="Blue"
 Width="100" Height="50"></Ellipse>

to this EllipseGeometry:

<Path Fill="Yellow" Stroke="Blue">
 <Path.Data>
 <EllipseGeometry RadiusX="50" RadiusY="25" Center="50,25"></EllipseGeometry>
 </Path.Data>
</Path>

Notice that the two radius values are simply half of the width and height values. You can also use
the Center property to offset the location of the ellipse. In this example, the center is placed in the exact
middle of the ellipse bounding box, so that it’s drawn in exactly the same way as the Ellipse shape.

Overall, these simple geometries work in exactly the same way as the corresponding shapes.
You get the added ability to offset rectangles and ellipses, but that’s not necessary if you’re placing
your shapes on a Canvas, which already gives you the ability to position your shapes at a specific
position. In fact, if this were all you could do with geometries, you probably wouldn’t bother to use
the Path element. The difference appears when you decide to combine more than one geometry
in the same path, as described in the next section.

Combining Shapes with GeometryGroup
The simplest way to combine geometries is to use the GeometryGroup class and nest the other
Geometry-derived objects inside. Here’s an example that places an ellipse next to a square:

<Path Fill="Yellow" Stroke="Blue" Canvas.Top="10" Canvas.Left="10" >
 <Path.Data>
 <GeometryGroup>
 <RectangleGeometry Rect="0,0 100,100" />
 <EllipseGeometry Center="150,50" RadiusX="35" RadiusY="25"/>
 </GeometryGroup>
 </Path.Data>
</Path>

The effect of this markup is the same as if you supplied two Path elements, one with the Rectangle-
Geometry and one with the EllipseGeometry (and that’s the same as if you used a Rectangle and Ellipse
shape instead). However, there’s one advantage to this approach. You’ve replaced two elements with
one, which means you’ve reduced the overhead of your user interface.

There’s also a drawback to combining geometries in a single Path element—namely, you won’t
be able to perform event handling of the different shapes separately. Instead, the Path element will
fire all mouse events. However, you can still manipulate the nested RectangleGeometry and Ellipse-
Geometry objects independently to change the overall path. For example, each geometry provides a
Transform property that you can set to stretch, skew, or rotate that part of the path.

The GeometryGroup becomes more interesting when your shapes intersect. Rather than simply
treating your drawing as a combination of solid shapes, the GeometryGroup uses its FillRule property

42 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

(which can be EvenOdd or Nonzero, as described earlier to decide what shapes to fill. Consider what
happens if you alter the markup shown earlier like this, placing the ellipse over the square:

<Path Fill="Yellow" Stroke="Blue" Canvas.Top="10" Canvas.Left="10" >
 <Path.Data>
 <GeometryGroup>
 <RectangleGeometry Rect="0,0 100,100"/>
 <EllipseGeometry Center="50,50" RadiusX="35" RadiusY="25"/>
 </GeometryGroup>
 </Path.Data>
</Path>

Now this markup creates a square with an ellipse-shaped hole in it (through which you can see
any content that’s layered underneath). If you change FillRule to Nonzero, you’ll get a solid ellipse
over a solid rectangle, both with the same yellow fill.

Curves and Lines with PathGeometry
PathGeometry is the superpower of geometries. It can draw anything that the other geometries can,
and much more. The only drawback is a lengthier (and somewhat more complex) syntax.

Every PathGeometry object is built out of one or more PathFigure objects (which are stored in
the PathGeometry.Figures collection). Each PathFigure is a continuous set of connected lines and
curves that can be closed or open. The figure is closed if the end of the last line in the figure connects
to the beginning of the first line.

The PathFigure class has four key properties, as described in Table 7.

Table 7. PathFigure Properties

So far, this all sounds fairly straightforward. The PathFigure is a shape that’s drawn using an
unbroken line that consists of a number of segments. However, the trick is that there are several type
of segments, all of which derive from the PathSegment class. Some are simple, like the LineSegment
that draws a straight line. Others, like the BezierSegment, draw curves and are correspondingly more
complex. Overall, when using a PathGeometry, your markup will take this form:

<Path Stroke="Blue">
 <Path.Data>
 <PathGeometry>
 <PathFigure>
 <segment/>
 <segment/>
 ...
 </PathFigure>
 </PathGeometry>

Name Description

StartPoint This is a Point that indicates where the line for the figure begins.

Segments This is a collection of PathSegment objects that are used to draw the figure.

IsClosed If true, Silverlight adds a straight line to connect the starting and ending points (if
they aren’t the same).

IsFilled If true, the area inside the figure is filled in using the Path.Fill brush.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 43

 </Path.Data>
</Path>

You can mix and match different segments freely to build your figure. Table 8 lists the segment
classes you can use.

Table 8. PathSegment Classes

In the following sections, you’ll see several examples of Path objects that use these segments to
create basic shapes.

Straight Lines
It’s easy enough to create simple lines using the LineSegment and PathGeometry classes. You simply
set the StartPoint and add one LineSegment for each section of the line. The LineSegment.Point
property identifies the endpoint of each segment.

For example, the following markup begins at (10, 100), draws a straight line to (100, 100), and
then draws a line from that point to (100, 50). Because the PathFigure.IsClosed property is set to true,
a final line segment is adding connection (100, 50) to (0, 0). The final result is a right-angled triangle:

<Path Stroke="Blue">
 <Path.Data>
 <PathGeometry>
 <PathFigure IsClosed="True" StartPoint="10,100">
 <LineSegment Point="100,100" />
 <LineSegment Point="100,50" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>
</Path>

Arcs
Arcs are a little more interesting than straight lines. You identify the endpoint of the line using the
ArcSegment.Point property, just as you would with a LineSegment. However, the PathFigure draws
a curved line from the starting point (or the endpoint of the previous segment) to the endpoint of
your arc. This curved connecting line is actually a portion of the edge of an ellipse.

Name Description

LineSegment Creates a straight line between two points.

ArcSegment Creates an elliptical arc between two points.

BezierSegment Creates a Bézier curve between two points.

QuadraticBezierSegment Creates a simpler form of Bézier curve that has one control
point instead of two, and is faster to calculate.

PolyLineSegment Creates a series of straight lines. You can get the same effect
using multiple LineSegment objects, but a single PolyLine-
Segment is more concise.

PolyBezierSegment Creates a series of Bézier curves.

PolyQuadraticBezierSegment Creates a series of simpler quadratic Bézier curves.

44 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Obviously, the endpoint isn’t enough information to draw the arc because there are many curves
(some gentle, some more extreme) that could connect two points. You also need to indicate the size of
the imaginary ellipse that’s being used to draw the arc. You do this using the ArcSegment.Size prop-
erty, which supplies the X radius and the Y radius of the ellipse. The larger the size of the imaginary
ellipse, the more gradually its edge curves.

■Note For any two points, there is a practical maximum and minimum size for the ellipse. The maximum occurs
when you create an ellipse so large that the line segment you’re drawing appears straight. Increasing the size
beyond this point has no effect. The minimum occurs when the ellipse is small enough that a full semicircle con-
nects the two points. Shrinking the size beyond this point also has no effect.

Here’s an example that creates the gentle arc shown in Figure 14:

<Path Stroke="Blue" StrokeThickness="3">
 <Path.Data>
 <PathGeometry>
 <PathFigure IsClosed="False" StartPoint="10,100" >
 <ArcSegment Point="250,150" Size="200,300" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>
</Path>

Figure 14. A simple arc

So far, arcs sound fairly straightforward. However, it turns out that even with the start and end-
point and the size of the ellipse, you still don’t have all the information you need to draw your arc
unambiguously. In the previous example, you’re relying on two default values that may not be set to
your liking.

To understand the problem, you need to consider the other ways that an arc can connect the
same two points. If you picture two points on an ellipse, it’s clear that you can connect them in two
ways—by going around the short side, or by going around the long side. Figure 15 illustrates.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 45

Figure 15. Two ways to trace a curve along an ellipse

You set the direction using the ArcSegment.IsLargeArc property, which can be true or false. The
default value is false, which means you get the shorter of the two arcs.

Even once you’ve set the direction, there is still one point of ambiguity—where the ellipse is placed.
For example, imagine you draw an arc that connects a point on the left with a point on the right, using the
shortest possible arc. The curve that connects these two points could be stretched down and then up or
it could be flipped so that it curves up and then down. The arc you get depends on the order in which you
define the two points in the arc and the ArcSegment.SweepDirection property, which can be Counter-
clockwise (the default) or Clockwise. Figure 16 shows the difference.

Figure 16. Two ways to flip a curve

46 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Bézier Curves
Bézier curves connect two line segments using a complex mathematical formula that incorporates
two control points that determine how the curve is shaped. Bézier curves are an ingredient in virtu-
ally every vector drawing application ever created because they’re remarkably flexible. Using
nothing more than a start point, an endpoint, and two control points, you can create a surprisingly
wide variety of smooth curves (including loops). Figure 17 shows a classic Bézier curve. Two small
circles indicate the control points, and a dashed line connects each control point to the end of the
line it affects the most.

Figure 17. A Bézier curve

Even without understanding the math underpinnings, it’s fairly easy to get the “feel” of how
Bézier curves work. Essentially, the two control points do all the magic. They influence the curve in
two ways:

• At the starting point, a Bézier curve runs parallel with the line that connects it to the first con-
trol point. At the ending point, the curve runs parallel with the line that connects it to the
endpoint. (In between, it curves.)

• The degree of curvature is determined by the distance to the two control points. If one control
point is farther away, it exerts a stronger “pull.”

To define a Bézier curve in markup, you supply three points. The first two points (BezierSeg-
ment.Point1 and BezierSegment.Point2) are the control points. The third point (BezierSegment.Point3)
is the endpoint of the curve. As always, the starting point is that starting point of the path or wherever the
previous segment left off.

The example shown in Figure 17 includes three separate components, each of which uses a dif-
ferent stroke and thus requires a separate Path element. The first path creates the curve, the second
adds the dashed lines, and the third applies the circles that indicate the control points. Here’s the
complete markup:

<Canvas ...>
 <Path Stroke="Blue" StrokeThickness="5" Canvas.Top="20">
 <Path.Data>
 <PathGeometry>
 <PathFigure StartPoint="10,10">
 <BezierSegment Point1="130,30" Point2="40,140"

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 47

 Point3="150,150"></BezierSegment>
 </PathFigure>
 </PathGeometry>
 </Path.Data>
 </Path>
 <Path Stroke="Green" StrokeThickness="2" StrokeDashArray="5 2" Canvas.Top="20">
 <Path.Data>
 <GeometryGroup>
 <LineGeometry StartPoint="10,10" EndPoint="130,30"></LineGeometry>
 <LineGeometry StartPoint="40,140" EndPoint="150,150"></LineGeometry>
 </GeometryGroup>
 </Path.Data>
 </Path>
 <Path Fill="Red" Stroke="Red" StrokeThickness="8" Canvas.Top="20">
 <Path.Data>
 <GeometryGroup>
 <EllipseGeometry Center="130,30"></EllipseGeometry>
 <EllipseGeometry Center="40,140"></EllipseGeometry>
 </GeometryGroup>
 </Path.Data>
 </Path>
</Canvas>

Trying to code Bézier paths is a recipe for many thankless hours of trial-and-error computer
coding. You’re much more likely to draw your curves (and many other graphical elements) in a ded-
icated drawing program that has an export-to-XAML feature, or Microsoft Expression Blend.

Brushes
Many Silverlight elements support the concept of a background and foreground. Usually, the back-
ground is the surface of the element (as with the Canvas), while the foreground is the text (as with the
TextBlock). In Silverlight, you set the color of these two areas (but not the content) using the Back-
ground and Foreground properties. The shape classes change this model a bit—instead of having
Background or Foreground properties, they expose Fill and Stroke properties, which allow you to
paint the interior region of the shape and the border around it.

It’s natural to expect that the Background, Foreground, Fill, and Stroke properties would use
some sort of color object. However, these properties actually use something much more versatile: a
Brush object. That gives you the flexibility to fill your background and foreground content with a
solid color (by using the SolidColorBrush) or something more exotic, like an image or gradient.
Table 9 lists the brushes that Silverlight currently supports.

Table 9. Brush Classes

Name Description

SolidColorBrush Paints an area with a single color.

LinearGradientBrush Paints an area using a gradient fill, a gradually shaded fill that changes
from one color to another (and, optionally, to another and then another,
and so on).

RadialGradientBrush Paints an area using a radial gradient fill, which is similar to a linear gradi-
ent except it radiates out in a circular pattern starting from a center point.

Continued

48 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Table 9. Continued

Gradient Brushes
You’ve already seen an example of the RadialGradientBrush, where it was used to create a back-
ground for a Canvas. Both the RadialGradientBrush and LinearGradientBrush work in a similar way.
They wrap a collection of GradientStop objects that set the colors in the gradient.

Often a gradient has two colors (allowing it to fade from one side to another with the LinearGradi-
entBrush, or allowing it to radiate from a center point to an outer radius with the RadialGradientBrush).
However, that’s not a requirement. In fact, you can use as many colors as you want. The trick is setting
the Offset property of each one to place it at a specific location in the gradient. The Offset value can range
from 0 (at the start of the fill) to 1 (at the end).

For example, this gradient starts at yellow at the top-left corner and transitions through red,
blue, and finally green at the bottom-right corner.

<Rectangle Width="150" Height="100">
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Color="Yellow" Offset="0.0" />
 <GradientStop Color="Red" Offset="0.25" />
 <GradientStop Color="Blue" Offset="0.75" />
 <GradientStop Color="Green" Offset="1.0" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

By changing the Offset values, you can modify this gradient so that it transitions to specific col-
ors more quickly or more slowly. For example, if you want the colors to blend more slowly at the
beginning and then end more quickly, you could give the offsets values of 0, 0.1, 0.3, and 1.

By default, the LinearGradientBrush paints its gradient diagonally, from the top-left corner of
the fill region to the bottom-right. However, you might want to create a gradient that blends from
top to bottom or side to side, or uses a different diagonal angle. You control these details using the
StartPoint and EndPoint properties of the LinearGradientBrush. These properties allow you to
choose the point where the first color begins to change and the point where the color change ends
with the final color. (The area in between is blended gradually.) However, there’s one quirk. The
coordinates you use for the starting and ending point aren’t real coordinates. Instead, the Linear-
GradientBrush assigns the point (0, 0) to the top-left corner and (1, 1) to the bottom-right corner of
the area you want to fill, no matter how high and wide it actually is.

To create a top-to-bottom horizontal fill, you can use a start point of (0, 0) for the top-left
corner, and an endpoint of (0, 1), which represents the bottom-left corner. To create a side-to-side
vertical fill (with no slant), you can use a start point of (0, 0) and an endpoint of (1, 0) for the bottom-
left corner, as shown here:

<Rectangle Width="150" Height="100">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">

Name Description

ImageBrush Paints an area using an image that can be stretched, scaled, or tiled.

VideoBrush Paints an area with the frames from a video. As the video plays, the
brush changes, and the painted region is updated automatically. The
VideoBrush works with Silverlight’s media playback features.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 49

 ...
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

The RadialGradientBrush works similarly to the LinearGradientBrush. It also takes a sequence
of colors with different offsets. As with the LinearGradientBrush, you can use as many colors as you
want. The difference is how you place the gradient. To identify the point where the first color in the
gradient starts, you use the GradientOrigin property. By default, it’s (0.5, 0.5), which represents the
middle of the fill region. The gradient radiates out from the starting point (set by StartPoint) in a cir-
cular fashion. Eventually, your gradient reaches the edge of an inner gradient circle (described by
the Center, RadiusX, and RadiusY properties), where it ends. The area beyond the edge of the inner
gradient circle and the outermost edge of the fill region is given a solid fill using the last color that’s
defined in the RadialGradientBrush.GradientStops collection.

Using Brushes to Fill Text
Remember, brushes aren’t limited to shape drawing. You can substitute an exotic brush like Linear-
GradientBrush, RadialGradientBrush, ImageBrush, or VideoBrush anytime you would ordinarily
use the SolidColorBrush. For example, Figure 18 shows an example of a TextBlock that has its Fore-
ground property set to use the same multicolored LinearGradientBrush that was applied to the
Rectangle element in the previous section.

Figure 18. Using the LinearGradientBrush to set the TextBlock.Foreground property

Transparency
In the examples you’ve considered so far, the shapes you’ve seen have been completely opaque.
However, Silverlight supports true transparency. That means if you layer several elements on top of
one another and give them all varying layers of transparency, you’ll see exactly what you expect. At
its simplest, this feature gives you the ability to create graphical backgrounds that “show through”
the elements you place on top. At its most complex, this feature allows you to create multilayered
animations and other effects.

50 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

There are several ways to make an element partly transparent:

• Set the Opacity property: Opacity is a fractional value from 0 to 1, where 1 is completely solid
(the default) and 0 is completely transparent. The Opacity property is defined in the UIElement
class (and the base Brush class), so it applies to all elements.

• Use a semitransparent color: Any color that has an alpha value less than 255 is semitransparent.

• Set the OpacityMask property: This allows you to make specific regions of an element trans-
parent or partially transparent. For example, you can use it to fade a shape gradually into
transparency.

The first two techniques are fairly straightforward. The OpacityMask property is a bit more
involved, and it’s demonstrated in the next example.

The OpacityMask property accepts any brush. The alpha channel of the brush determines
where the transparency occurs.

■Note Silverlight supports the ARGB color standard, which uses four values to describe every color. These four val-
ues (each of which ranges from 0 to 255) record the alpha, red, green, and blue components, respectively. The alpha
component is a measure of how transparent the color is—0 is fully transparent and 255 is fully opaque. This is the only
detail that matters when you’re using a color (or an image that contains multiple colors) with the OpacityMask property.

Incidentally, Silverlight also supports a more complex standard called scRGB, which represents the four color com-
ponents with floating point values. The scRGB standard uses the alpha channel to designate transparency in the
same way as ARGB.

For example, if you use a SolidColorBrush that’s set to a transparent color for your OpacityMask,
your entire element will disappear. If you use a SolidColorBrush that’s set to use a nontransparent
color, your element will remain completely visible. The other details of the color (the red, green, and
blue components) aren’t important and are ignored when you set the OpacityMask property.

Using the OpacityMask with a SolidColorBrush doesn’t make much sense because you can
accomplish the same effect more easily with the Opacity property. However, OpacityMask becomes
more useful when you use more exotic types of brushes, such as the LinearGradientBrush or Radial-
GradientBrush. Using a gradient that moves from a solid to a transparent color, you can create a
transparency effect that fades in over the surface of your element.

For example, the following example creates two elements in the same place (their top-left cor-
ners are at the position (0, 0) in the Canvas). Based on the order of declaration, the blue rectangle will
be superimposed over the image. However, the rectangle uses the OpacityMask property to gradu-
ally fade in transparency from left to right.

<Canvas ... >
 <Image Source="grandpiano.jpg"></Image>

 <Rectangle Fill="Blue" Width="300" Height="200">
 <Rectangle.OpacityMask>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
 <GradientStop Offset="0" Color="Black"></GradientStop>
 <GradientStop Offset="1" Color="Transparent"></GradientStop>
 </LinearGradientBrush>
 </Rectangle.OpacityMask>
 </Rectangle>
</Canvas>

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 51

Figure 19 shows the result.

Figure 19. A rectangle that fades from solid to transparent

Animation
Along with 2D drawing, animation is the other key capability of Silverlight 1.1. Animation allows you
to create truly dynamic user interfaces. It’s often used to apply effects—for example, icons that grow
when you move over them, logos that spin, text that scrolls into view, and so on.

Animations are a core part of the Silverlight model. That means you don’t need to use timers
and event-handling code to put them into action. Instead, you can create them declaratively,

SILVERLIGHT CONTROLS

Silverlight graphics aren’t just for static art. You can also use them to create controls. For example, if you use a Can-
vas to wrap a Rectangle in the background and place a TextBlock on top, you can create a surprisingly attractive
button. Add a little event-handling logic and you’ll have a dynamic button that changes its shading as your mouse
moves over it.

In fact, the Silverlight 1.1 SDK includes samples that use this approach to create five common controls: a But-
ton, a ScrollBar, a ScrollViewer (a scrollable region in which you can place content), a Slider, and a ListBox, all with
a carefully shaded blue gradient fill. Eventually, these controls will be integrated into the core Silverlight assemblies,
but they may change dramatically along the way. For now, you can include them with your own test projects. Just
download the Silverlight 1.1 SDK from http://silverlight.net/GetStarted.

You may also be interested in third-party controls. One impressive example is GOA WinForms, which provides
Silverlight elements that duplicate the basic controls from Windows Forms development. (There’s also a version
of GOA WinForms that provides the same set of controls for Flash applications.) You can find out more at http://
community.netikatech.com/demos. Many third-party component developers are creating their own suites
of Silverlight controls (one example is Sapphire by ComponentOne, at http://labs.componentone.com/
Sapphire), and many developers are releasing their own open-source experiments (see http://tinyurl.com/
39oaul for an ambitious example that includes a layout framework that emulates WPF).

52 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

configure them using one of a handful of classes, and put them into action without writing a single
line of C# code.

Animation Basics
Silverlight animation is a scaled-down version of the WPF animation system. In order to under-
stand Silverlight animation, you need to understand the following key rules:

• Silverlight performs time-based animation. Thus, you set the initial state, the final state, and
the duration of your animation. Silverlight calculates the frame rate.

• Silverlight uses a property-based animation model. That means a Silverlight animation can
do only one thing: modify the value of a property over an interval of time. This sounds like
a significant limitation (and it many ways, it is), but there’s a surprisingly large range of
effects you can create by simply modifying properties.

• To animate a property, you need to have an animation class that supports its data type. For exam-
ple, if you want to change a property that uses the double data type (which is one of the most
common scenarios), you must use the DoubleAnimation class. If you want to modify the color
that’s used to paint the background of your Canvas, you need to use the ColorAnimation class.

Silverlight has relatively few animation classes, so you’re limited in the data types you can use.
At present, you can use animations to modify properties with the following data types: double,
Color, and Point.

As a rule of thumb, the property-based animation is a great way to add dynamic effects to an
otherwise ordinary application (like buttons that glow, pictures that expand when you move over
them, and so on). However, if you need to use animations as part of the core purpose of your appli-
cation and you want them to continue running over the lifetime of your application, you probably
need something more flexible and more powerful. For example, if you’re creating a basic arcade
game or using complex physics calculations to model collisions, you’ll need greater control over the
animation. Unfortunately, Silverlight doesn’t have an option for frame-based animation, so you’ll
be forced to create this sort of application the old-fashioned way—by looping endlessly, being care-
ful to modify your visuals and check for user input after each iteration. You can see an example of
this technique with the ball collision simulator at http://bubblemark.com.

Defining an Animation
Creating an animation is a multistep process. You need to create three separate ingredients: an ani-
mation object to perform your animation, a storyboard to manage your animation, and an event
trigger to start your storyboard. In the following sections, you’ll tackle each of these steps.

The Animation Class
There are actually two types of animation classes in Silverlight. Each type of animation uses a differ-
ent strategy for varying a property value.

• Linear interpolation: With linear interpretation, the property value varies smoothly and
continuously over the duration of the animation. Examples include DoubleAnimation, Point-
Animation, and ColorAnimation.

• Key frame animation: With key frame animation, values can jump abruptly from one
value to another, or they can combine jumps and periods of linear interpolation. Examples
include ColorAnimationUsingKeyFrames, DoubleAnimationUsingKeyFrames, and
PointAnimationUsingKeyFrames.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 53

Here, you’ll focus exclusively on the most commonly used animation class: the Double-Animation
class. It uses linear interpolation to change a double from a starting value to its ending value.

Animations are defined using XAML markup. Although the animation classes aren’t elements,
they can still be created with the same XAML syntax. For example, here’s the markup required to cre-
ate a DoubleAnimation:

<DoubleAnimation From="160" To="300" Duration="0:0:5"></DoubleAnimation>

This animation lasts 5 seconds (as indicated by the Duration property, which takes a time value
in the format Hours:Minutes:Seconds.FractionalSeconds). While the animation is running, it
changes the target value from 160 to 300. Because the DoubleAnimation uses linear interpolation,
this change takes place smoothly and continuously.

There’s one important detail that’s missing from this markup. The animation indicates how the
property will be changed, but it doesn’t indicate what property to use. This detail is supplied by
another ingredient, which is represented by the Storyboard class.

The Storyboard Class
The storyboard manages the timeline of your animation. You can use a storyboard to group multiple
animations, and it also has the ability to control the playback of animation—pausing it, stopping it,
and changing its position. However, the most basic feature provided by the Storyboard class is its
ability to point to a specific property and specific element using the TargetProperty and TargetName
properties. In other words, the storyboard bridges the gap between your animation and the property
you want to animate.

Here’s how you might define a storyboard that applies a DoubleAnimation to the Width prop-
erty of an element named rect:

<Storyboard x:Name="storyboard"
 Storyboard.TargetName="rect" Storyboard.TargetProperty="Width">
 <DoubleAnimation From="160" To="300" Duration="0:0:5"></DoubleAnimation>
</Storyboard>

Both TargetName and TargetProperty are attached properties. That means you can apply them
directly to the animation, as shown here:

<Storyboard x:Name="storyboard">
 <DoubleAnimation
 Storyboard.TargetName="rect" Storyboard.TargetProperty="Width"
 From="160" To="300" Duration="0:0:5"></DoubleAnimation>
</Storyboard>

This syntax is more common, because it allows you to put several animations in the same sto-
ryboard but allow each animation to act on a different element and property.

If you give your storyboard a name (as in the previous example), you can interact with it in code.
The Storyboard class includes four methods that let you manually control the animation: Begin(),
Stop(), Pause(), and Resume(). However, if you simply want to start your animation in response to
some event, there’s an easier solution. You can wire this event directly to the BeginStoryboard
action, as described in the next section.

The Event Trigger
Defining a storyboard and an animation are the first steps to creating an animation. To actually put
this storyboard into action, you need an event trigger. An event trigger responds to an event by
performing a storyboard action. The only storyboard action that Silverlight currently supports is
BeginStoryboard, which starts a storyboard (and hence all the animations it contains).

54 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

The following example uses the Triggers collection of a Canvas to attach an animation to the
Loaded event. When the Silverlight content is first rendered in the browser, and the Canvas element is
loaded, the rectangle begins to grow. Five seconds later, its width has stretched from 160 pixels to 300.

<Canvas ... >
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="rect"
 Storyboard.TargetProperty="Width"
 From="160" To="300" Duration="0:0:5"></DoubleAnimation>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Canvas.Triggers>

 <Rectangle Name="rect" Height="40" Width="160" Fill="Blue"
 Canvas.Left="10" Canvas.Top="10"></Rectangle>
</Canvas>

The Storyboard.TargetProperty property identifies the property you want to change (in this
case, Width). If you don’t supply a class name, the storyboard uses the parent element. If you want
to set an attached property (for example, Canvas.Left or Canvas.Top), you need to wrap the entire
property in brackets, like this:

<DoubleAnimation Storyboard.TargetProperty="(Canvas.Left)" ... />

If you want to use multiple animations in the same storyboard, you simply need to add more
than one <Animation> element inside the <Storyboard> element. For example, you could use this
technique to make the rectangle grow in width and height at the same time.

Starting an Animation with Code
The EventTrigger approach is an easy way to kick off an animation. However, in the current build,
not all Silverlight events can be used as event triggers. The Loaded event is supported, but mouse-
related events like MouseEnter, MouseLeave, and MouseMove are not.

If you want to start an animation in response to these events, you need to interact with the sto-
ryboard programmatically. Fortunately, it’s easy. The first step is to move your storyboard out of the
Triggers collection and place it in another collection of the same element: the Resources collection.

All Silverlight elements provide a Resources property, which holds a collection where you can
store miscellaneous objects. The primary purpose of the Resources collection is to allow you to define
objects in XAML that aren’t elements, and so can’t be placed into the visual layout of your content
region. For example, you might want to declare a Brush object as a resource so it can be used by more
than one element. Resources can be retrieved in your code or used elsewhere in your markup.

Here’s an example that defines the rectangle-growing animation as a resource:

<Canvas x:Name="canvas" MouseLeftButtonDown="canvas_Click" ... >
 <Canvas.Resources>
 <Storyboard x:Name="growStoryboard">
 <DoubleAnimation Storyboard.TargetName="rect"
 Storyboard.TargetProperty="Width"
 Storyboard.TargetName="canvas"

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 55

 From="160" To="300" Duration="0:0:5"></DoubleAnimation>
 </Storyboard>
 </Canvas.Triggers>

 <Rectangle Name="rect" Height="40" Width="160" Fill="Blue"
 Canvas.Left="10" Canvas.Top="10"></Rectangle>
</Canvas>

Notice that it’s now given a name, so you can manipulate it in your code. You’ll also notice that
you need to explicitly specify the Storyboard.TargetName property to connect it to the right element
when you’re using this approach.

Now you simply need to call the methods of the Storyboard object in an event handler in your
Silverlight code-behind file. The methods you can use include Begin(), Stop(), Pause(), Resume, and
Seek(), all of which are fairly self-explanatory.

private void canvas_Click(object o, EventArgs e)
{
 growStoryboard.Begin();
}

Configuring Animation Properties
To get the most out of your animations, you need to look a little closer at the base Animation class,
which defines the properties that are provided by all animation classes. Table 10 describes them all.

Table 10. Properties of the Animation Class

Name Description

From Sets the starting values for your animation. In many situations, you won’t set
From. In this case, Silverlight uses the current value of your element. For
example, if you didn’t set the initial width in the growing rectangle example,
it would start at whatever it is currently. This is particularly useful if you’re
animating a value that might be changed by other code or other animations.
In this situation, you want the animation to start from the current value, not
jump abruptly to a preset From value.

To Sets the ending value for your animation. In some situations, you won’t set
From or To. In this case, the property returns to whatever initial value is set in
the XAML markup. For example, you could use this technique to shrink the
rectangle in the previous example back to its original size when it’s clicked.

By Instead of using To, you can use By to create a cumulative animation. By sets
a number that will be added to the initial value. For example, if you replace
the To value in the rectangle growing example with a By value of 10, the rect-
angle will grow 10 pixels wider than its current width over the course of the
animation. If you run this animation every time the rectangle is clicked, it
will continue to grow, and grow.

Duration The length of time the animation runs, from start to finish, as a Duration
object.

AutoReverse If true, the animation will play out in reverse once it’s complete, reverting to
the original value. This also doubles the time the animation takes.

RepeatBehavior Allows you to repeat an animation a specific number of seconds. Or, you can
use Forever to repeat the animation endlessly.

Continued

56 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Table 10. Continued

An Interactive Animation Example
In the previous example, you used animation to alter an element when it first appears. However, in
most applications, animations will be triggered by another event, such as a mouse movement or a
mouse click.

The following example demonstrates a slightly more realistic use of animation, which is shown in
Figure 20. It begins with a content region that’s filled with irregularly shaped rectangles. When you click
a rectangle, it begins to fall toward the bottom of the Canvas, and simultaneously begins to change color.
When you click another rectangle, the first animation stops and that rectangle begins to fall.

Figure 20. Falling rectangles

Name Description

BeginTime Sets a delay that will be added before the animation starts (as a TimeSpan).
This delay is added to the total time, so a 5-second animation with a 5-second
delay takes 10 seconds. BeginTime is useful when synchronizing different ani-
mations that start at the same time but should apply their effects in sequence.

SpeedRatio Increases or decreases the speed of the animation. Ordinarily, SpeedRatio
is 1. If you increase it, the animation completes more quickly (for example, a
SpeedRatio of 5 completes five times faster). If you decrease it, the anima-
tion is slowed down (for example, a SpeedRatio of 0.5 takes twice as long).
You can change the duration of your animation for an equivalent result. The
SpeedRatio is not taken into account when applying the BeginTime delay.

FillBehavior Determines what happens when the animation ends. Usually, it keeps the
property fixed at the ending value (FillBehavior.HoldEnd), but you can also
choose to return it to its original value (FillBehavior.Stop).

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 57

This animation example is simple, but it demonstrates several of the subtle concepts in Silver-
light animation.

The markup for this example defines a single storyboard. This storyboard isn’t placed in a Trig-
gers collection, because initially it isn’t wired up to any specific rectangle. Instead, it’s placed in the
Canvas.Resources collection so it can be retrieved by your code when needed.

<Canvas ... >
 <Canvas.Resources>
 <Storyboard x:Name="fallingSquareStoryboard">
 <DoubleAnimation
 Storyboard.TargetProperty="(Canvas.Top)"
 To="400" Duration="0:0:2" />
 <ColorAnimation Storyboard.TargetProperty="Rectangle.Fill.Color"
 To="Blue" Duration="0:0:2" />
 </Storyboard>
 </Canvas.Resources>
</Canvas>

This storyboard wraps two animations: a DoubleAnimation that moves the rectangle, and a
ColorAnimation that changes its color. The ColorAnimation uses linear interpolation, which means
it will progressively blend the color from its initial value (in this example, red) to its final value (blue).

You’ll also notice that the Canvas doesn’t contain any other elements. That’s because this
example uses a more flexible approach—it generates the rectangles dynamically. When the Canvas
is loaded, it creates 12 rectangles of random size, at random locations. It wires the MouseLeftButton-
Down event of each one to the same event handler.

public void Page_Loaded(object o, EventArgs e)
{
 // Required to initialize variables
 InitializeComponent();

 // Generate some rectangles.
 Random rand = new Random();
 for (int i = 0; i < 12; i++)
 {
 Rectangle rect = new Rectangle();
 rect.Fill = new SolidColorBrush(Colors.Red);

 // Size and place it randomly.
 rect.Width = rand.Next(10, 40);
 rect.Height = rand.Next(10, 40);
 rect.SetValue<double>(Canvas.TopProperty,
 rand.Next((int)this.Height / 2));
 rect.SetValue<double>(Canvas.LeftProperty,
 rand.Next((int)this.Width));

 // Handle clicks.
 rect.MouseLeftButtonDown += rect_Click;

 // Give it a unique name, which is required for animation.
 rect.SetValue<string>(Rectangle.NameProperty, "rect" + i.ToString());

58 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

 // Add it to the Canvas.
 this.Children.Add(rect);
 }
}

When a rectangle is clicked, there are two steps that need to be performed. The animation for
the current rectangle needs to be halted (by calling the Storyboard.Stop() method), and the existing
storyboard needs to be attached to the new rectangle.

However, there’s a trick here. Animations don’t actually change the underlying value of a prop-
erty, they simply override it temporarily. When the end of an animation is reached, the property is
held indefinitely at its final value (unless you’ve set the FillBehavior property of the animation class
to FillBehavior.Stop). But in this example, the animation needs to be repeatedly stopped. If you
don’t take any extra steps, each time you stop the animation of a falling rectangle, its position will be
reset to its original value, meaning it will “jump” back up to the top of the Canvas.

The solution is to retrieve the current value of the Canvas.Top property for the rectangle, then
stop the animation, and then set the animated value. This last step moves the rectangle to its most
recent animated position. The result is that every time you click a new rectangle, the rectangle that
was falling previously halts in its tracks, but remains in the same position.

Here’s the code that implements this design:

// Keep track of the rectangle that's being animated.
private Rectangle currentlyFallingRectangle;

private void rect_Click(object o, EventArgs e)
{
 // Retrieve the Storyboard.
 Storyboard sb = (Storyboard)this.FindName("fallingSquareStoryboard");
 if (currentlyFallingRectangle != null)
 {
 // Stop the current animation and move the rectangle
 // to its current position.
 double top =
 (double)currentlyFallingRectangle.GetValue(Canvas.TopProperty);
 sb.Stop();
 currentlyFallingRectangle.SetValue<double>(Canvas.TopProperty, top);
 }

 // Get the rectangle that was clicked.
 currentlyFallingRectangle = (Rectangle)o;

 // Start the animation for the new rectangle.
 sb.SetValue<string>(Storyboard.TargetNameProperty,
 currentlyFallingRectangle.Name);
 sb.Begin();
}

Although the Canvas.Top property is set manually after the animation is stopped, the color is
not. As a result, the rectangle reverts to its initial blue color as soon as another rectangle starts falling.

There’s another interesting quirk in this example. The animation always uses the same duration
(2 seconds). However, the square you click may be close to the bottom or far from the bottom. As a
result, squares closer to the bottom will fall more slowly, and squares farther from the bottom will
fall faster.

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 59

In this example, there’s only one storyboard at work at a time. It’s reasonable to ask if you could
create a similar example where every rectangle you click continues falling. This is possible, but a dif-
ferent design is required.

In the current build of Silverlight 1.1, Storyboard objects can’t be fully configured programmat-
ically. Thus, you need to have the storyboard and animations you need defined in your XAML. This
is obviously a challenge if you’re creating elements dynamically, and don’t know how many story-
boards you’ll use. The solution is to create a custom control that has its own animation behavior. To
implement this design in the previous example, you’d create a custom rectangle that has its own
XAML template. This XAML would specify the animation that should be used for that rectangle.
Thus, every time you create an instance of this custom control, it comes pre-wired with the anima-
tion support. Unfortunately, this more modular design takes a fair bit more code, and it’s out of the
scope of this article. However, if you’re interested in learning more, check out the Silverlight Bal-
loons example at http://tinyurl.com/398qf4. It illustrates this principle neatly with an endless
sequence of rising balloons (each of which is an instance of a custom Balloon control).

Transforms
As you’ve already learned, Silverlight animations work by modifying the value of a property. Ele-
ments have several properties that can be usefully changed. For example, you can use Canvas.Left
and Canvas.Top to move an element around. Or, you can alter the Opacity setting to make an ele-
ment fade into or out of view. However, it’s not immediately clear how you can perform more
exciting alterations, like rotations.

The secret is transforms. A transform is an object that alters the way a shape or other element is
drawn by shifting the coordinate system it uses. You can use transforms to stretch, rotate, skew, and
otherwise manipulate the shapes, images, and text in your Silverlight user interface. Transforms are
useful for getting the right shape you want, but they’re even more interesting when you’re animat-
ing. By animating a property in a transform, you can rotate a shape, move it from one place to
another, or warp it dynamically.

Table 11 lists the transforms that are supported in Silverlight.

Table 11. Transform Classes

Name Description
Important
Properties

TranslateTransform Displaces your coordinate system by some amount.
This transform is useful if you want to draw the same
shape in different places.

X, Y

RotateTransform Rotates your coordinate system. The shapes you
draw normally are turned around a center point you
choose.

Angle, CenterX,
CenterY

ScaleTransform Scales your coordinate system up or down so that your
shapes are drawn smaller or larger. You can apply dif-
ferent degrees of scaling in the X and Y dimensions,
thereby stretching or compressing your shape.

ScaleX,
ScaleY,
CenterX,
CenterY

SkewTransform Warps your coordinate system by slanting it a num-
ber of degrees. For example, if you draw a square, it
becomes a parallelogram.

AngleX, AngleY,
CenterX, CenterY

Continued

60 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

Table 11. Continued

Technically, all transforms use matrix math to alter the coordinates of your shape. However,
using prebuilt transforms such as TranslateTransform, RotateTransform, ScaleTransform, and
SkewTransform is far simpler than using the MatrixTransform and trying to work out the right
matrix for the operation you want to perform. When you perform a series of transforms with Trans-
formGroup, Silverlight fuses your transforms together into a single MatrixTransform, ensuring
optimal performance.

Using a Transform
To transform an element, you set its RenderTransform property with the transform object you want
to use. Depending on the transform object you’re using, you’ll need to fill in different properties to
configure it, as detailed in Table 11.

For example, if you’re rotating a shape, you need to use the RotateTransform and supply the
angle in degrees. Here’s an example that rotates a square clockwise by 25 degrees:

<Rectangle Width="80" Height="10" Stroke="Blue" Fill="Yellow"
 Canvas.Left="100" Canvas.Top="100">
 <Rectangle.RenderTransform>
 <RotateTransform Angle="25" />
 </Rectangle.RenderTransform>
</Rectangle>

When you rotate a shape in this way, you rotate it about the shape’s origin (the top-left corner).
If you want to rotate a shape around a different point, you can use the handy RenderTransform-
Origin property. This property sets the center point using a proportional coordinate system that
stretches from 0 to 1 in both dimensions. In other words, the point (0, 0) is designated as the top-left
corner, and (1, 1) is the bottom-right corner. (If the shape region isn’t square, the coordinate system
is stretched accordingly.)

With the help of the RenderTransformOrigin property, you can rotate any shape around its cen-
ter point using markup like this:

<Rectangle Width="80" Height="10" Stroke="Blue" Fill="Yellow"
 Canvas.Left="100" Canvas.Top="100" RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>
 <RotateTransform Angle="25" />
 </Rectangle.RenderTransform>
</Rectangle>

Name Description
Important
Properties

MatrixTransform Modifies your coordinate system using matrix multipli-
cation with the matrix you supply. This is the most
complex option—it requires some mathematical skill.

Matrix

TransformGroup Combines multiple transforms so they can all be
applied at once. The order in which you apply trans-
formations is important—it affects the final result.
For example, rotating a shape (with RotateTrans-
form) and then moving it (with TranslateTransform)
sends the shape off in a different direction than if
you move it and then rotate it.

N/A

 ■ S I LV E R L I G H T A N D A S P . N E T R E V E A L E D 61

This works because the point (0.5, 0.5) designates the center of the shape, regardless of its size.

■Tip You can use values greater than 1 or less than 0 when setting the RenderTransformOrigin property to des-
ignate a point that appears outside the bounding box of your shape. For example, you can use this technique with a
RotateTransform to rotate a shape in a large arc around a very distant point, such as (5, 5).

Animating a Transform
To use a transform in animation, the first step is to define the transform. (An animation can change
an existing transform but not create a new one.) For example, imagine you want to allow a rectangle
to rotate. This requires RotateTransform:

<Rectangle x:Name="rect" Width="80" Height="50" Stroke="Blue" Fill="Yellow"
 Canvas.Left="100" Canvas.Top="100" RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>
 <RotateTransform></RotateTransform>
 </Rectangle.RenderTransform>
</Rectangle>

Now here’s a storyboard that makes the rectangle rotate when the mouse moves over it. It
uses the target property (UIElement.RenderTransform).Angle—in other words, it reads the Ren-
derTransform property of the Rectangle and modifies the Angle property of the RotateTransform
object that’s defined there. The fact that the RenderTransform property can hold a variety of dif-
ferent transform objects, each with different properties, doesn’t cause a problem. As long as
you’re using a transform that has an angle property, this trigger will work.

<Rectangle x:Name="rect" Width="80" Height="50" Stroke="Blue" Fill="Yellow"
 Canvas.Left="100" Canvas.Top="100" RenderTransformOrigin="0.5,0.5"
 MouseEnter="rect_Enter">
 <Rectangle.RenderTransform>
 <RotateTransform></RotateTransform>
 </Rectangle.RenderTransform>
 <Rectangle.Resources>
 <Storyboard x:Name="rotateStoryboard">
 <DoubleAnimation
 Storyboard.TargetName="rect"
 Storyboard.TargetProperty="(UIElement.RenderTransform).Angle"
 To="360" Duration="0:0:0.8" RepeatBehavior="Forever"></DoubleAnimation>
 </Storyboard>
 </Rectangle.Resources>
</Rectangle>

Finally, an event handler starts the storyboard:

private void rect_Enter(object o, EventArgs e)
{
 rotateStoryboard.Begin();
}

The rectangle rotates one revolution every 0.8 seconds and continues rotating perpetually.
While the rectangle is rotating, it’s still completely usable—for example, it still raises the MouseLeft-
ButtonDown event if you click it.

To stop the rotation, you can use a second trigger that responds to the MouseLeave event. At
this point, you could call the Storyboard.Stop() method, but this will cause the button to jump back

62 ■ S I L V E R L I G H T A N D A S P . N E T R E V E A L E D

to its original orientation in one step. A better approach is to start a second animation that replaces
the first. Here’s how the second animation is defined:

<Storyboard x:Name="revertStoryboard">
 <DoubleAnimation
 Storyboard.TargetName="rect"
 Storyboard.TargetProperty="(UIElement.RenderTransform).Angle"
 To="0" Duration="0:0:0.2"></DoubleAnimation>
</Storyboard>

This animation seamlessly rotates the rectangle back to its original orientation in a snappy 0.2
seconds. You can place this storyboard in the same Rectangle.Resources collection as the first ani-
mation. All you need to do is attach an event handler to the Rectangle.MouseLeave event that runs
the storyboard:

private void rect_Leave(object o, EventArgs e)
{
 revertStoryboard.Begin();
}

■Tip You can easily use transforms in combination. In fact, it’s easy—you simply need to use the TransformGroup
to set the RenderTransform property. You can nest as many transforms as you need inside the TransformGroup.

Summary
In this article, you took a thorough look at Silverlight, a new platform that’s modeled after two other
technologies: .NET and WPF.

Silverlight is evolving rapidly. In a matter of months, there will be further releases with more
controls and new features. At present, Silverlight still doesn’t provide enough features for anything
except highly customized and highly graphical applications. The lack of basics (like a text-entry con-
trol) makes it of less interest to business developers.

Although it’s still a bit too early to assess Silverlight’s browser plug-in and its performance on
other browser and operating systems, there’s reason to expect the best. Silverlight is one of Microsoft’s
most highly anticipated new technologies, often inspiring more developer interest than any other
release since .NET 1.0. Developers who learn the Silverlight model now will have a head start in mas-
tering more mature future versions.

If you’ve decided to embark on a Silverlight project, the best starting point is to look at some at
the existing samples on the Web. They are the best tutorials to learn how developers have tackled the
limitations of the current Silverlight platform, such as creating custom controls, showing separate
“screens,” performing background work, and managing the lifetime of the application. You can
find a set of excellent samples with complete source code at http://silverlight.net/community/
gallerydetail.aspx?cat=2. For more information about Silverlight 1.1 controls that you might want
to use, refer to the “Silverlight Controls” mentioned earlier.

	Silverlight and ASP.NET Revealed
	Understanding Silverlight
	Silverlight vs. Flash
	Silverlight Adoption
	Silverlight and WPF
	Installing Silverlight and the Visual Studio Extensions

	Creating a Silverlight Project
	The HTML Entry Page
	The Silverlight Initialization Script
	The XAML Page
	Understanding XAML
	Silverlight Elements
	XAML Namespaces

	The XAML Code-Behind
	Properties and Events
	Silverlight Compilation

	Silverlight Essentials
	.NET Framework Classes in Silverlight
	The Canvas
	Positioning Elements in a Canvas
	Layering Elements in a Canvas
	Dragging Circles

	Text
	Interacting with HTML
	Isolated Storage

	Silverlight and ASP.NET
	ASP.NET Futures
	The Xaml Control
	The Media Control

	Communicating Between Silverlight and ASP.NET

	Drawing in 2D
	Simple Shapes
	Rectangle and Ellipse
	Line
	Polyline
	Polygon

	Paths and Geometries
	Line, Rectangle, and Ellipse Geometries
	Combining Shapes with GeometryGroup
	Curves and Lines with PathGeometry
	Straight Lines
	Arcs
	Bézier Curves

	Brushes
	Gradient Brushes
	Using Brushes to Fill Text

	Transparency

	Animation
	Animation Basics
	Defining an Animation
	The Animation Class
	The Storyboard Class
	The Event Trigger
	Starting an Animation with Code
	Configuring Animation Properties

	An Interactive Animation Example
	Transforms
	Using a Transform
	Animating a Transform

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

