
Contents

1 INTRODUCTION 1

1.1 Preamble . 1

1.2 Terminology . 2

1.3 Historical Perspective . 4

1.4 Modern Cryptography . 5

2 BACKGROUND THEORY 8

2.1 Elements of Number Theory . 8

2.1.1 Divisibility and the Euclid Algorithm . 8

2.1.2 Primes and the Sieve of Eratosthenes . 11

2.1.3 Congruences . 12

2.1.4 Computing Inverses in Congruences . 14

2.1.5 The Legendre and Jacobi Symbols . 18

2.1.6 The Chinese Remainder Theorem . 19

2.2 Algebraic Structures in Computing . 20

2.2.1 Sets and Operations . 21

2.2.2 Polynomial Arithmetics . 23

2.2.3 Computing in Galois Fields . 26

2.3 Complexity of Computing . 27

2.3.1 Asymptotic Behaviour of Functions . 28

2.3.2 Hierarchy of Functions . 29

2.3.3 Problems and Algorithms . 30

2.3.4 Classes P and NP . 31

2.3.5 NP Completeness . 32

2.3.6 Complementary Problems in NP . 32

2.3.7 NP-hard and #P-complete Problems . 34

2.3.8 Problems Used in Cryptography . 34

2.3.9 Probabilistic Computations . 36

2.3.10 Quantum Computing . 36

2.4 Elements of Information Theory . 37

2.4.1 Entropy . 37

2.4.2 Hu�man Codes . 39

2.4.3 Redundancy of the Language . 39

2.4.4 Key Equivocation and Unicity Distance . 42

2.4.5 Equivocation of a Simple Cryptographic System 43

2.5 Problems and Exercises . 46

i

1ii

3 PRIVATE-KEY CRYPTOSYSTEMS 48

3.1 Classical ciphers . 48

3.1.1 Caesar Ciphers . 49

3.1.2 A�ne Ciphers . 50

3.1.3 Monoalphabetic Substitution Ciphers . 52

3.1.4 Transposition Ciphers . 53

3.1.5 Homophonic Substitution Ciphers . 55

3.1.6 Polyalphabetic Substitution Ciphers . 57

3.1.7 Cryptanalysis of Polyalphabetic Substitution Ciphers 58

3.2 DES Family . 63

3.2.1 Product Ciphers . 63

3.2.2 The Lucifer Algorithm . 65

3.2.3 The DES Algorithm . 66

3.2.4 DES Modes of Operation . 70

3.2.5 Triple DES . 73

3.3 Modern Private-Key Cryptographic Algorithms . 75

3.3.1 Fast Encryption Algorithm (FEAL) . 75

3.3.2 The IDEA Algorithm . 75

3.3.3 RC6TM . 77

3.3.4 Rijndael . 79

3.3.5 Serpent . 82

3.3.6 Other Ciphers . 85

3.4 Di�erential Cryptanalysis . 86

3.4.1 XOR Pro�les . 86

3.4.2 DES Round Characteristics . 90

3.4.3 A Cryptanalysis of 4-Round DES . 91

3.4.4 A Cryptanalysis of 6-Round DES . 92

3.4.5 Analysis of Other Feistel-Type Cryptosystems 94

3.5 Linear Cryptanalysis . 95

3.5.1 Linear Approximation . 96

3.5.2 Analysis of 3-Round DES . 97

3.5.3 Linear Characteristics . 100

3.6 S-box Theory . 101

3.6.1 Boolean Functions . 102

3.6.2 S-box Design Criteria . 105

3.6.3 Bent Functions . 110

3.6.4 Propagation and Nonlinearity . 111

3.6.5 Constructions of Balanced Functions . 113

3.6.6 S-Box Design . 116

3.7 Problems and Exercises . 117

4 PSEUDORANDOMNESS 120

4.1 Number Generators . 120

4.2 Polynomial Indistinguishability . 121

4.3 Pseudorandom Bit Generators . 124

4.3.1 The RSA Pseudorandom Bit Generator . 124

4.3.2 The BBS Pseudorandom Bit Generator . 125

1iii

4.4 The Next Bit Test . 129

4.5 Pseudorandom Function Generators . 130

4.6 Pseudorandom Permutation Generators . 133

4.7 Super Pseudorandom Permutation Generators . 136

4.8 Problems and Exercises . 136

5 PUBLIC-KEY CRYPTOSYSTEMS 138

5.1 The Concept of Public-Key Cryptography . 138

5.2 The RSA Cryptosystem . 140

5.2.1 Concealment of Messages . 142

5.2.2 Variants of RSA . 144

5.2.3 Primality Testing . 145

5.2.4 Factorisation . 146

5.2.5 Security of RSA . 150

5.3 The Merkle-Hellman Cryptosystem . 152

5.3.1 Security of Merkle-Hellman cryptosystem . 154

5.4 McEliece cryptosystem . 154

5.4.1 Security of the McEliece Cryptosystem 155

5.5 The ElGamal Cryptosystem . 156

5.5.1 Security of ElGamal Cryptosystems . 157

5.6 Elliptic Curve Cryptosystems . 157

5.6.1 Elliptic Curves . 157

5.6.2 Elliptic Curve Variant of RSA . 158

5.6.3 Elliptic Curve Variant of ElGamal . 160

5.7 Probabilistic Encryption . 161

5.7.1 The GM probabilistic encryption . 161

5.7.2 The BG probabilistic encryption . 162

5.8 Public-Key Encryption Practice . 163

5.8.1 Taxonomy of Public-Key Encryption Security 163

5.8.2 Generic OAEP Public-Key Cryptosystem . 164

5.8.3 RSA Encryption Standard . 165

5.8.4 Extended ElGamal Cryptosystem . 166

5.9 Problems and Exercises . 167

6 HASHING 170

6.1 Properties of Hashing . 170

6.2 The Birthday Paradox . 171

6.3 Serial and Parallel Hashing . 174

6.4 Theoretic Constructions . 175

6.5 Hashing Based on Cryptosystems . 177

6.6 MD Family . 179

6.6.1 MD5 . 180

6.6.2 SHA-1 . 183

6.6.3 RIPEMD-160 . 184

6.6.4 HAVAL . 186

6.6.5 Hashing Based on Intractable Problems . 190

6.7 Keyed Hashing . 192

1iv

6.7.1 Early MACs . 193

6.7.2 MACs from Keyless Hashing . 194

6.8 Problems and Exercises . 195

7 DIGITAL SIGNATURES 197

7.1 Properties of Digital Signatures . 197

7.2 Generic Signature Schemes . 198

7.2.1 Rabin Signatures . 198

7.2.2 Lamport signatures . 199

7.2.3 Matyas-Meyer Signatures . 199

7.3 RSA Signatures . 200

7.4 ElGamal Signatures . 202

7.5 Blind Signatures . 204

7.6 Undeniable Signatures . 205

7.7 Fail-Stop Signatures . 207

7.8 Timestamping . 210

7.9 Problems and Exercises . 211

8 AUTHENTICATION 212

8.1 Active Opponents . 212

8.2 Model of Authentication Systems . 213

8.2.1 Elements of the Theory of Games . 214

8.2.2 Impersonation Game . 215

8.2.3 Substitution Game . 217

8.2.4 Spoo�ng Game . 218

8.3 Information Theoretic Bounds . 219

8.4 Constructions of A-codes . 220

8.4.1 A-codes in Projective Spaces . 221

8.4.2 A-codes and Orthogonal Arrays . 222

8.4.3 A-codes Based on Error Correcting Codes . 223

8.5 General A-codes . 223

8.6 Problems and Exercises . 224

9 SECRET SHARING 226

9.1 Threshold Secret Sharing . 226

9.1.1 The Shamir Scheme . 226

9.1.2 The Blakley Scheme . 228

9.1.3 The Modular Scheme . 228

9.1.4 (t; t) Threshold Schemes . 229

9.2 General Secret Sharing . 230

9.2.1 The Cumulative Array Construction . 231

9.2.2 The Benaloh-Leichter Construction . 233

9.3 Perfectness . 233

9.4 Information Rate . 235

9.4.1 Upper Bounds . 235

9.4.2 Ideal Schemes . 237

9.4.3 Multiple Cumulative Arrays . 239

9.5 Cheating . 241

1v

9.6 Problems and Exercises . 242

10 GROUP ORIENTED CRYPTOGRAPHY 244

10.1 The Conditionally Secure Shamir Scheme . 244

10.1.1 Description of the Scheme . 244

10.1.2 Renewal of the Scheme . 245

10.1.3 Non-interactive Veri�cation of Shares . 246

10.1.4 Proactive Secret Sharing . 247

10.2 Threshold Decryption . 249

10.2.1 ElGamal Threshold Decryption . 249

10.2.2 RSA Threshold Decryption . 251

10.2.3 RSA Decryption without Dealer . 253

10.3 Threshold Signatures . 254

10.3.1 RSA Threshold Signatures . 255

10.3.2 ElGamal Threshold Signatures . 256

10.3.3 Threshold DSS Signatures . 258

10.4 Problems and Exercises . 260

11 KEY ESTABLISHMENT PROTOCOLS 262

11.1 Classical Key Distribution Protocols . 263

11.2 The Di�e-Hellman Key Agreement Protocol . 265

11.2.1 The DH problem . 266

11.3 Modern Key Distribution Protocols . 266

11.3.1 Kerberos . 268

11.3.2 SPX . 269

11.3.3 Other Authentication Services . 271

11.4 Key Agreement Protocols . 272

11.4.1 MTI Protocols . 272

11.4.2 The Station to Station Protocol . 273

11.4.3 Protocols with Self-certi�ed Public Keys . 274

11.4.4 Identity-Based Protocols . 275

11.5 Conference Key Establishment Protocols . 275

11.6 The BAN Logic of Authentication . 277

11.6.1 BAN Logical Postulates . 278

11.6.2 Analysis of the Needham-Schroeder Protocol 280

11.7 Problems and Exercises . 282

12 ZERO KNOWLEDGE PROOF SYSTEMS 284

12.1 Interactive Proof Systems . 284

12.2 Perfect Zero Knowledge Proofs . 287

12.3 Computational Zero Knowledge Proofs . 292

12.4 Bit Commitment Schemes . 294

12.4.1 Blobs with Unconditional Binding . 295

12.4.2 Blobs with Unconditional Concealing . 297

12.4.3 Multivalued Blobs . 298

12.5 Problems and Exercises . 299

1vi

13 IDENTIFICATION 301

13.1 Basic Identi�cation Techniques . 301

13.2 User Identi�cation . 302

13.3 Passwords . 303

13.3.1 Attacks on Passwords . 304

13.3.2 Weaknesses of Passwords . 304

13.4 Challenge-Response Identi�cation . 305

13.4.1 Authentication of Shared Keys . 305

13.4.2 Authentication of Public Keys . 306

13.5 Identi�cation Protocols . 307

13.5.1 The Fiat-Shamir Identi�cation Protocol . 308

13.5.2 The Feige-Fiat-Shamir Identi�cation Protocol 309

13.5.3 The Guillou-Quisquater Identi�cation Protocol 311

13.6 Identi�cation Schemes . 313

13.6.1 The Schnorr Identi�cation Scheme . 313

13.6.2 The Okamoto Identi�cation Scheme . 314

13.6.3 Signatures from Identi�cation Schemes . 317

13.7 Problems and Exercises . 319

14 INTRUSION DETECTION 321

14.1 Introduction . 321

14.2 Anomaly Intrusion Detection . 322

14.2.1 Statistical IDS . 323

14.2.2 Predictive Patterns . 324

14.2.3 Neural Networks . 325

14.3 Misuse Intrusion Detection . 325

14.4 Uncertainty in Intrusion Detection . 326

14.4.1 The Probabilistic Model . 326

14.4.2 Dempster-Shafer Theory . 329

14.5 A Generic Intrusion Detection Model . 331

14.6 Host Intrusion Detection Systems . 332

14.6.1 IDES . 332

14.6.2 Haystack . 334

14.6.3 MIDAS . 335

14.7 Network Intrusion Detection Systems . 336

14.7.1 NSM . 336

14.7.2 DIDS . 338

14.7.3 NADIR . 338

14.7.4 Cooperating Security Manager (CSM) . 339

14.8 Limitations of Current Intrusion Detection Systems . 340

14.8.1 General limitations . 340

14.8.2 Network-IDS Shortcomings . 341

14.9 The Common Intrusion Detection Framework (CIDF) 342

14.10Partial List of ID systems: Research Prototype and Commercial 343

14.11Problems and Exercises . 346

1vii

15 ELECTRONIC ELECTIONS AND DIGITAL MONEY 348

15.1 Electronic Elections . 348

15.1.1 A Simple Electronic Election Protocol . 349

15.1.2 The Chaum Protocol . 351

15.1.3 The Boyd Protocol . 352

15.1.4 The Fujioka-Okamoto-Ohta Protocol . 353

15.1.5 Other Protocols . 355

15.2 Digital Cash . 355

15.2.1 Untraceable Digital Coins . 356

15.2.2 Divisible Electronic Cash . 358

15.2.3 The Brands Electronic Cash Protocol . 361

15.2.4 Other E-Cash Protocols . 363

15.2.5 Micropayments . 363

15.3 Payment Protocols . 364

16 DATABASE PROTECTION AND SECURITY 366

16.1 Database Access Control . 366

16.2 Security Filters . 367

16.3 Encryption Methods . 368

16.3.1 Privacy Homomorphisms . 374

16.4 Database Machines and Architectures . 376

16.4.1 Experimental Backend Database Systems . 377

16.5 Database Views . 378

16.5.1 Advantages and Disadvantages of Views . 380

16.5.2 Completeness and Consistency of Views . 381

16.5.3 Design and Implementations of Views . 382

16.6 Trends in Database Security Research . 384

16.6.1 Security in Distributed Databases . 384

16.6.2 Security in Object-Oriented Database Systems 385

16.6.3 Security in Knowledge-Based Systems . 387

17 ACCESS CONTROL 389

17.1 Mandatory Access Control . 390

17.1.1 Lattice Model . 390

17.1.2 The Bell-LaPadula Model . 392

17.2 Discretionary Access Control . 393

17.2.1 Access Matrix Model . 393

17.2.2 The Harrison-Ruzzo-Ullman Model . 395

17.3 Role Based Access Control Model . 397

17.4 Implementations of Access Control . 398

17.4.1 The Security Kernel . 398

17.4.2 Multics . 399

17.4.3 UNIX . 401

17.4.4 Capabilities . 402

17.4.5 Access Control Lists . 404

1viii

18 NETWORK SECURITY 406

18.1 Internet Protocol Security (IPsec) . 406

18.1.1 Security Associations . 407

18.1.2 Authentication Header Protocol . 408

18.1.3 Encapsulating Security Payload Protocol . 409

18.1.4 Internet Key Exchange . 410

18.1.5 Virtual Private Networks . 412

18.2 Computer Viruses . 413

18.2.1 What is a Computer Virus ? . 413

18.2.2 Worms and Trojan Horses . 414

18.2.3 Taxonomy of Viruses . 415

18.2.4 IBM-PC Viruses . 416

18.2.5 Macintosh Operating System . 418

18.2.6 Macintosh Viruses . 421

18.2.7 Macro Viruses . 423

18.2.8 Protection against Viruses . 424

Bibliography 427

Chapter 1

INTRODUCTION

1.1 Preamble

Cryptology - the science concerned with communications in secure and usually secret form. It

encompasses both cryptography and cryptanalysis. The former involves the study and application of

the principles and techniques by which information is rendered unintelligible to all but the intended

receiver, while the latter is the science and art of solving cryptosystems to recover such information

(The New Encyclop�dia Britannica, Vol.3, page 768, 1988).

Today this de�nition needs to be extended as the modern cryptology focuses its attention on the

design and evaluation of a wide range of methods and techniques for information protection. Infor-

mation protection covers not only secrecy (a traditional protection against eavesdropping) but also

authentication, integrity, veri�ability, non-repudiation and other more speci�c security countermea-

sures. The part of cryptology which deals with the design of algorithms, protocols and systems which

are used to protect information against speci�c threats is called cryptography.

To incorporate information protection into a system, protocol or service, the designer needs to

know:

� a detailed speci�cation of the environment in which the system (protocol or service) is going to

work,

� a list of threats together with the description of places in the system where adverse tampering

with the information ow can occur,

� the level of protection expected or how powerful (in term of accessible computing resources) is

an expected attacker (or adversary),

� the projected life span of the system.

Cryptography provides our designer with tools to implement the information protection requested.

The collection of basic tools includes encryption algorithms, authentication codes, one-way functions,

hashing functions, secret sharing schemes, signature schemes, pseudorandom bit generators, zero-

knowledge proof systems, etc. From these elementary tools, it is possible to create more complex

tools and services such as threshold encryption algorithms, authentication protocols, key establish-

ment protocols and a variety of application-oriented protocols including electronic payment systems,

electronic election and electronic commerce protocols. Each tool is characterised by its security spec-

i�cation which usually indicates the recommended con�guration, its strength against speci�c threats

(such as eavesdropping, illegal modi�cation of information, etc.). The designer can use all the tools

provided by cryptography to combine them into a single solution. Finally, the designer has to verify

the quality of the solution including a careful analysis of the overall security achieved.

1

Terminology 2

The second part of cryptology is cryptanalysis. Cryptanalysis uses mathematical methods to prove

that the design (an implementation of information protection) cannot withstand an attack from the

list of threats given in the security speci�cation of the design. This may be possible if the claimed

security parameters are grossly overestimated or more often the inter-relations among di�erent threats

are not well understood.

An attentive reader could argue that cryptography includes cryptanalysis as the designer always

applies some sort of analysis of the information protection achieved. To clarify this point note that the

aim of cryptography is the design of new (hopefully) secure algorithms, protocols, systems, schemes,

and services while cryptanalysis concentrates on �nding new attacks. Attacks (which are a part of

cryptanalysis) are translated into the so-called design criteria or design properties (which are a part

of cryptography). The design criteria obtained from an attack, allow to design a system which is

immune against the attack.

Cryptography tries to prove that the obtained designs are secure, using all available knowledge

about possible attacks. Cryptanalysis carefully examines possible and realistic threats to �nd new

attacks and to prove that the designs are not secure (are breakable). In general, it is impossible to

prove that information protection designs are unbreakable, while the opposite is possible { it is enough

to show an attack.

1.2 Terminology

Cryptography has developed a quite extensive vocabulary. More complex terms will be introduced

gradually throughout the book. There is however a collection of basic terms. These terms are discussed

briey now.

There is a list of basic security requirements. This list includes: secrecy (or con�dentiality), au-

thenticity, integrity and non-repudiation. Secrecy ensures that information ow between the sender

and the receiver is unintelligible to outsiders. It protects information against threats based on eaves-

dropping. Authenticity allows the receiver of messages to determine the true identity of the sender. It

guards messages against impersonation, substitution or spoo�ng. Integrity enables the receiver to ver-

ify whether the message has been tampered with by outsiders while in transit via an insecure channel.

It ensures that any modi�cation of the stream of messages will be detected. Any modi�cation which

results from changing the order of transmitted messages, deleting some parts of messages, replaying

old messages will be detected. Non-repudiation prevents the sender of a message from denying that

they sent the message.

Encryption was the �rst cryptographic operation used to ensure secrecy or con�dentiality of in-

formation transmitted across an insecure communication channel. The encryption operation takes a

piece of information (also called message, message block, or plaintext) and translates it into a cryp-

togram (ciphertext or codeword) using a secret cryptographic key. Decryption is the reverse operation

to encryption. The receiver who holds the correct secret key can recover the message (plaintext) from

the cryptogram (ciphertext).

The step-by-step description of encryption (or decryption) is called the encryption algorithm (or

decryption algorithm). If there is no need to distinguish encryption from decryption, we are going

to call them collectively ciphers, cryptoalgorithms or cryptosystems. Private-key or symmetric cryp-

tosystems use the same secret key for encryption and decryption. More precisely, the encryption and

decryption keys do not need to be identical { the knowledge of one of them su�ces to �nd the other.

Public-key or asymmetric cryptosystems use di�erent keys for encryption and decryption. The

knowledge of one key does not compromise the other.

Terminology 3

Hashing is a cryptographic operation which generates a relatively short digest for a message of

arbitrary length. Hashing algorithms are required to be collision-free i.e. it is \di�cult" to �nd two

di�erent messages with the same digest.

One-way functions are functions for which it is \easy" to compute their values from their arguments

but it is \di�cult" to reverse them i.e. to �nd their arguments knowing their values.

Electronic signature or simply signature is a public and relatively short string of characters (or

bits) which can be used to verify the authorship of an electronic document (a message of arbitrary

length) by anybody.

Secret sharing is the method of distribution of a secret amongst participants so every large enough

subset of participants is able to recover collectively the secret by pooling their shares. The class of all

such subsets is called the access structure. The secret sharing is set up by the so-called dealer who, for

the given secret, generates all shares and delivers them to all participants. The recalculation of the

secret is done by the so-called combiner to whom all collaborating participants entrust their shares.

Any participant or any collection of participants outside the access structure is not able to �nd out

the secret.

Cryptanalysis developed its own terminology as well. In general cryptographic designs can be

either unconditionally or conditionally secure. An unconditionally secure design is immune against

any attacker with an unlimited computational power. For a conditionally secure design, its security

depends on the di�culty of reversing the underlying one-way function. At the best, the design can be

only as strong as the one-way function.

An attack is an \e�cient" and non-trivial algorithmwhich for a given cryptographic design, enables

some protected elements of the design to be computed \substantially" quicker than speci�ed by the

designer. Some other attacks may not contradict the security speci�cation and may concentrate on

�nding overlooked and realistic threats for which the design fails.

Cryptographic algorithms can be analysed using the following typical attacks:

� the ciphertext-only attack - the cryptanalyst knows encrypted messages (cryptograms) only. The

task is to either �nd the cryptographic key applied or decrypt one or more cryptograms,

� the known-plaintext attack - the adversary has access to a collection of pairs (message and the

corresponding cryptogram) and wants to determine the key or decrypt some new cryptograms

not included in the collection,

� the chosen-plaintext attack - this is the known-plaintext attack for which the cryptanalyst can

choose messages and read the corresponding cryptograms,

� the chosen-ciphertext attack - the enemy can select their own cryptograms and observe the

corresponding messages for them. The aim of the enemy is to �nd out the secret key or encrypt

a new message into a valid cryptogram.

Authentication algorithms can be evaluated using their resistance against the following attacks:

� the impersonation attack - the cryptanalyst knows the authentication algorithm and wants to

construct a valid cryptogram for a false message, or determine the key (the encoding rule),

� the substitution attack - the enemy cryptanalyst intercepts a cryptogram and replaces it with an

another cryptogram (for a false message),

� the spoo�ng attack of order r - the adversary knows r di�erent cryptograms (codewords) and

plans to either work out the key (encoding rule) applied or compute a valid cryptogram for a

chosen false message.

Historical Perspective 4

Attacks on cryptographic hashing are \e�cient" algorithmswhich allow a collision i.e. two di�erent

messages with the same digest, to be found. All hashing algorithms are susceptible to the so-called

birthday attack. A weaker form of attack on hashing produces pseudo-collisions i.e. collisions with

speci�c restrictions imposed usually on the initial vectors.

Secret sharing is analysed by measuring the di�culty of retrieving the secret by either an outsider

or an unauthorised group of participants. More sophisticated attacks could be launched by a cheating

participant who sends a false share to the combiner. After the reconstruction of the incorrect secret

(which is communicated to all collaborating participants), the cheater tries to compute the correct

one.

1.3 Historical Perspective

The beginnings of cryptography can be traced back to ancient times. Almost all ancient civilisations

developed some kind of cryptography. The only exception was ancient China. This could be attributed

to the Chinese complex ideogram alphabet - writing down the message made it private as few could

read. In ancient Egypt secret writing was used in inscriptions on sarcophaguses to increase the mystery

of the place. Ancient India used their allusive language to create a sort of impromptu cryptography.

Kahn [266] gives an exciting insight into the secret communication starting from ancient to modern

times.

Steganography or secret writing was probably the �rst widely used method for secure communi-

cation in a hostile environment. The secret text was hidden on a piece of paper by using variety

of techniques. These techniques included the application of invisible ink, masking of the secret text

inside an inconspicuous text, and so forth. This method of secure communication was rather weak if

the document found its way to an attacker who was an expert in steganography. Cryptography in its

early years resembled very much secret writing { the well-known Caesar cipher is an excellent example

of concealment by ignorance. This cipher was used to encrypt military orders which were later deliv-

ered by trusted messengers. This time the ciphertext was not hidden but characters were transformed

using a very simple substitution. It was reasonable to assume that the cipher was \strong" enough as

most of the potential attackers were illiterate and hopefully the rest thought that the document was

written in an unknown foreign language.

It was quickly realized that the assumption about an ignorant attacker was not realistic. Most early

European ciphers were designed to withstand attacks of educated opponents who knew the encryption

process but did not know the secret cryptographic key. Additionally it was requested that encryption

and decryption processes could be done quickly usually by hand or with the aid of mechanical devices

such as the cipher disk invented by Leon Battista Alberti 1.

At the beginning of the nineteenth century �rst mechanical-electrical machines were introduced

for \fast" encryption. This was the �rst breakthrough in cryptography. Cryptographic operations

(in this case encryption and decryption) could be done automatically with a minimal involvement of

the operator. Cipher machines could handle relatively large volumes of data. The German ENIGMA

and Japanese PURPLE are examples of cipher machines. They were used to protect military and

diplomatic information.

The basic three-wheel ENIGMA was broken by Marian Rejewski, Jerzy R�o_zycki and Henryk

Zygalski, a team of three Polish mathematicians. Their attack exploited weaknesses of the operating

procedure used by the sender to communicate the settings of machine rotors to the receiver (see [96]).

1Leon Battista Alberti (1404-1472) was born in Genoa, Italy. He was a humanist, architect and principal founder of
Renaissance art theory. Alberti is also called the Father of Western Cryptology because of his contributions to the �eld

[266].

Historical Perspective 5

The British team with Alan Turing at Bletchley perfected the attack and broke the strengthened

versions of ENIGMA. Churchhouse in [97] describes the cryptanalysis of four-wheel ENIGMA. These

remarkable feats were possible due to careful analysis of the cryptographic algorithms, predictable

selection of cipher machine parameters (bad operational procedures), and a signi�cant improvement

in computational power. Cryptanalysis was �rst supported by application of the so-called crypto

bombs which were copies of the original cipher machines used to test some of the possible initial

settings. Later cryptanalysts applied early computers to speed up computations.

The advent of computers gave both the designers and cryptanalysts a new powerful tool for fast

computations. New cryptographic algorithms were designed and new attacks were developed to break

them. New impetus in cryptology was not given by new designing tools but rather by new emerg-

ing applications of computers and new requirements for the protection of information. Distributed

computations and sharing information in computer networks are among those new applications which

demonstrated, sometimes very dramatically, the necessity of providing tools for reliable and secure

information delivery. Recent progress in the Internet applications illustrates the fact that new services

can be put on the net only after a careful analysis of their security features. Secrecy is no longer the

most important security issue. In the network environment, authenticity of messages and correct

identi�cation of users have become two most important requirements.

The scope of cryptology has increased dramatically. It is now seen as the �eld which provides

the theory and a practical guide for the design and analysis of cryptographic tools which then can

be used to build up complex secure protocols and services. The secrecy part of the �eld, tradition-

ally concentrated around the design of new encryption algorithms, was enriched by the addition of

authentication, cryptographic hashing, digital signatures and secret sharing schemes.

1.4 Modern Cryptography

Shannon in his seminal work [461] laid the theoretical foundations of modern cryptography. He used

information theory to analyse ciphers. He de�ned the unicity distance in order to characterise the

strength of a cipher against an opponent with unlimited computational power. He also considered the

so-called product ciphers. Product ciphers use small substitution boxes connected by larger permuta-

tion boxes. Substitution boxes (also called S-boxes) are controlled by a relatively short cryptographic

key. They provide confusion (because of the unknown secret key). Permutation boxes (P-boxes)

have no key { their structure is �xed and they provide di�usion. Product ciphers are also termed

substitution-permutation or S-P networks. As the decryption process applies the inverses of S-boxes

and P-boxes in the reverse order, decryption in general cannot be implemented using the encryption

routine. This is expensive in terms of both hardware and software.

Feistel [169] used the S-P network concept to design the Lucifer encryption algorithm. It encrypts

128-bit messages into 128-bit cryptograms using 128-bit cryptographic key. The designer of the

Lucifer algorithm was able to modify the S-P network in such a way that both the encryption and

decryption algorithms could be implemented by a single program or a piece of hardware. Encryption

(or decryption) is done in sixteen iterations (also called rounds). Each round acts on 128-bit input

(Li; Ri) and generates 128-bit output (Li+1; Ri+1) using 64-bit partial key ki. A single round can be

described as

Ri+1 = Li � f(ki; Ri)

Li+1 = Ri (1.1)

where Li and Ri are 64-bit long sequences, f(ki; Ri) is a cryptographic function (also called the round

function) which represents a simple S-P network. In the literature, the transformation de�ned by

Historical Perspective 6

(1.1) is referred to as the Feistel permutation. Note that a round in the Lucifer algorithm always is a

permutation no matter what is the form of the function f(). Also the inverse of a round can use the

original round routine with the swapped input halves. The strength of the Lucifer algorithm directly

relates to the strength of the cryptographic function f(). Another interesting observation is that the

design of a Lucifer-type cryptosystem is equivalent to the design of its f() function which operates on

shorter sequences.

The Data Encryption Standard (DES) was developed fromLucifer (see [379]) and very soon became

a standard for encryption in banking and other non-military applications. It uses the same Feistel

structure with shorter 64-bit message/cryptogram blocks and shorter 64-bit key. As a matter of fact

the key contains 56 independent and 8 parity-check bits. Due to its wide utilisation, the DES was

extensively investigated and analysed. The di�erential cryptanalysis invented by Biham and Shamir

[32] was �rst applied to the DES. Also the linear cryptanalysis by Matsui ([320] and [317]) was tested

on the DES.

Experience with the analysis of the DES gave a valuable insight into design properties of cryp-

tographic algorithms. Successors of the DES whose structure was based on Feistel permutation are

amongstmany Fast Encryption Algorithm (FEAL), International Data Encryption Algorithm (IDEA),

and many algorithms submitted as candidates for the Advanced Encryption Standard.

Cryptographic hashing became an important component of cryptographic primitives especially in

the context of e�cient generation of digital signatures. MD4 [424] and its extended version MD5 [425]

are examples of the design which combines Feistel structure with C language bitwise operations for

fast hashing. Although both MD4 and MD5 were shown to have security aws, their design principles

seem to be sound and can be used to develop more secure hashing algorithms.

Both encryption and hashing algorithms can be designed using one-way functions. These con-

structions are conditionally secure as the security of the algorithms depends upon the di�culty of

reversing the underlying one-way functions. This concept was articulated by Di�e and Hellman in

their visionary paper [151] in 1976. Soon after in 1978 two practical implementations of public-key

cryptosystems were published. Rivest, Shamir and Adleman [423] based their algorithm (RSA system)

on two one-way functions: factorisation and discrete logarithm. Merkle and Hellman [336] used the

knapsack function. Unfortunately, the Merkle-Hellman cryptosystem was broken six years later.

The conventional approach to the design of cryptographic algorithms exploits Shannon S-P net-

works. The outcome is always a single crypto-algorithm with a �xed security parameter (the size of

input or output). The DES is an example of such design. On the other hand, the number-theoretical

(or conditionally secure) approach uses speci�c one-way functions. As the result of the design process

in the number-theoretical approach, a family of cryptographic algorithms (with a variable size of its

input and output) is produced. The RSA can be seen as a family of crypto-algorithms. The members

can be indexed by the moduli they apply.

Conventional cryptographic algorithms have a limited life time { an algorithm \dies" if the exhaus-

tive attack 2 has become possible due to the progress in computing technology. Conditionally secure

cryptographic algorithms are insensitive to the increment of computational power of the attacker. It

is enough to select larger security parameters for the algorithm and be sure that the algorithm is still

secure.

Note that the design and analysis of conditionally secure cryptographic algorithms have very strong

links with Complexity Theory and Number Theory. Surprisingly, some �elds of Number Theory are

now considered parts of Cryptology (for instance factorisation algorithms, primality testing algorithms,

etc.). To prove that a cryptographic algorithm based on one-way functions is secure, it is enough to

2In the case of encryption algorithms, this means that the secret key space can be exhaustively searched. In the case

of hashing algorithms, this means that the birthday attack becomes viable.

Historical Perspective 7

show that the attacker faces a computational problem from the class di�erent from P (see [191])

provided the well known open question: is NP=P ? is not answered positively.

Chapter 2

BACKGROUND THEORY

Background theory covers main concepts and notions from Number Theory, Information Theory and

Complexity Theory which are frequently used in cryptographic designs. Those readers with a good

mathematical training may wish merely to browse through this chapter or skip it completely.

2.1 Elements of Number Theory

Denote the set of natural numbers as N = f1; 2; : : :g, the set of integers as Z = f: : : ;�1; 0;+1; : : :g,
the set of rational numbers as Q, the set of irrational numbers as I and the set of real numbers as R.

2.1.1 Divisibility and the Euclid Algorithm

Let a be a non-zero integer or simply a 2 Z �f0g. We can create the set f: : : ;�3a;�2a; a; 2a;3a; : : :g
of all integers which are multiples of a. Any integer b from the set f: : : ;�3a;�2a; a; 2a; 3a; : : :g is

divisible by a or a divides b without a remainder. This fact can be expressed in short as a j b. All

integers which are divisible by other integers with no remainder are called composites. Divisibility has

the following properties [362]:

1. if n j a and n j b, then n divides both (a + b) and (a � b) (the set of multiples of n is closed

under addition),

2. if a j b and b j c, then a divides c (transitivity),

3. for any non-zero b 2 Z, if n j a, then n divides ab,

4. for any non-zero b 2 Z, j a j�j b j if a j b,

5. if a j b and b j a, then j a j=j b j (antisymmetry).

Integers which are divisible by themselves and 1 are called prime numbers or simply primes. The set

of all primes is denoted by P.
The fundamental theorem of arithmetics states that any natural number can be uniquely factorized

into primes i.e. any n 2 N can be written as

n =
Y
p2P

pep (2.1)

where ep is the exponent of the prime p (p 6= 1). The representation of n on the right side of Equation

(2.1) is called its factorisation and the primes p its factors.

Let a and b be two natural numbers. The least common multiple (lcm) of a and b is the smallest

integer which is divisible by both a and b. How can we �nd lcm(a; b) ? Clearly, both a and b have their

8

Elements of Number Theory 9

unique factorisations so a =
Q

i pi
ai and b =

Q
i pi

bi . Their least common multiple can be computed

as

lcm(a; b) =
Y
i

pi
max (ai;bi) (2.2)

where max (ai; bi) selects the maximum exponent for the given factor and i indexes all factors of the

integer. Consider a = 882 and b = 3465. Their factorisations are: a = 2�32�72 and b = 33�5�7�11.
Thus lcm(a; b) = 2� 33 � 5� 72 � 11 = 145530.

The greatest common divisor (gcd) is another integer which expresses relation between two natural

numbers a and b. The greatest common divisor of a and b is the largest integer which divides with no

remainder both a and b. Therefore

gcd (a; b) =
Y
i

pi
min (ai;bi) (2.3)

where a =
Q

i pi
ai and b =

Q
i pi

bi and i indexes all factors of the integer. The function min(ai; bi)

produces the smallest exponent for the given factor. For our two integers a = 882 and b = 3465, their

greatest common divisor is gcd (a; b) = 32�7 = 63. Both lcm and gcd work with an arbitrary number

of arguments and can be de�ned recursively as follows:

lcm(a; b; c) = lcm(lcm(a; b); c) and gcd (a; b; c) = gcd (gcd (a; b); c) (2.4)

Some of the properties of lcm and gcd are:

1. if there is an integer d 2 Z such that d j ni for all ni 2 N (i = 1; : : : ; k), then d j gcd (n1; : : : ; nk),

2. if n1 j m; : : : ; nk j m (m 2 Z), then lcm(n1; : : : ; nk) j m,

3. if d = gcd (n1; : : : ; nk) and bi =
ni
d
, then gcd(b1; : : : ; bk) = 1,

4. lcm(a; b)� gcd (a; b) = a� b.

Two integers a and b are said to be coprime if their gcd (a; b) = 1. For example, a = 15 and b = 77

are coprime as their gcd (15; 77) = 1. Their lcm(15; 77) = 15� 77.

How can we compute the greatest common divisor ? Clearly, the gcd can be computed from

factorisations of the integers. All known factorisation algorithms are not e�cient especially when the

factorized integers are \long". An excellent alternative not based on factorisation is the well-known

Euclid algorithm which is very e�cient even for very long numbers.

Euclid Algorithm { �nds the greatest common divisor of two numbers a; b 2 N

E1. Initialise r0 = a and r1 = b.

E2. Compute the following sequence of equations:

r0 = q1r1 + r2

r1 = q2r2 + r3

... (2.5)

rn�3 = qn�2rn�2 + rn�1

rn�2 = qn�1rn�1 + rn

until there is a step for which rn = 0 while rn�1 6= 0.

Elements of Number Theory 10

E3. The greatest common divisor is equal to rn�1.

Theorem 2.1 Let the sequence rk be de�ned as in (2.5), then rn�1 = gcd (a; b) when n is the �rst

index for which rn = 0.

Proof: We will show using induction that both rn�1 j gcd (a; b) and gcd (a; b) j rn�1 which implies

that gcd (a; b) = rn�1.

Note that rn�1 j rn�2 as rn�2 = qn�1rn�1. Further rn�1 j rn�3 as rn�3 = qn�2qn�1rn�1 + rn�1

and so forth. Finally, rn�1 j a and rn�1 j b. This implies that rn�1 j gcd (a; b) By de�nition, gcd (a; b)

divides both a and b and we conclude that gcd (a; b) j rn�1. 2

For example, assume we have two integers a = 882 and b = 3465. The Euclid algorithm will give

the following equations:

3465 = 3� 882 + 819

882 = 1� 819 + 63

819 = 13� 63 + 0

The remainder in the last equation is zero so the algorithms terminates and gcd (882; 3465) = 63.

The Euclid algorithm can be implemented as a computer program. A C language implementation

of the algorithm is given below.

A C Implementation of Euclid Algorithm

/* gcd finds the greatest common divisor for a and b */

long gcd(long a, long b)

f

long r0,r1,r2;

if(a==0 || b==0) return(0);

/* if one is zero output zero */

r0=a;

r1=b; /* initialisation */

r2=r0 % r1;

while(r2) f

r0=r1;

r1=r2;

r2=r0 % r1;

g

if(r1>0)

return(r1);

else

return(-r1);

g

Observe that we do not need to compute qi in the Euclid algorithm as we are looking for the last

nonzero remainder.

The number of iterations n in the Euclid algorithm is proportional to log2 a where a is the larger

integer from the pair. To justify this, it is enough to observe that the divisor in each iteration is bigger

Elements of Number Theory 11

than or equal to 2. If the divisor were always 2, then the number of iterations would be exactly equal

to log2 a. In other words, every iteration reduces the length of the remainder by at least one bit. How

many steps are consumed by a single iteration ? Let our two integers be a and b (a > b). To produce

two integers q and r such that a = q � b + r, we will need at most log2 a subtractions. This can be

seen if we represent a and b in binary and carry out the division. A single subtraction takes at most

log2 a bit operations. All together the Euclid algorithm needs O((log2 a)
3) steps. This upper bound

can be re�ned to O(log22 a) after a more detailed analysis.

2.1.2 Primes and the Sieve of Eratosthenes

The fact that any integer can be uniquely represented by their prime factors, emphasises the impor-

tance of primes. They are \building blocks" for construction of all other integers.

A Mersenne number is an integer of the form Mp = 2p � 1 where p is a prime. If a Mersenne

number is itself prime then it is called a Mersenne prime. The numberM3 = 23�1 = 7 is a Mersenne

prime. Two consecutive primes separated by a single even number are called twin primes. Numbers

5 and 7 are twin primes.

In cryptography most primes that are used are relatively long (typically more than a hundred

decimal digits). One could ask whether is possible to generate long (or large) primes. Another

question could relate to the distribution of primes or how often they occur. The answer to the �rst

question was given by Euclid who showed that there are in�nitely many primes. His proof is one of

the gems of Number Theory [449].

Theorem 2.2 There are in�nitely many primes.

Proof: (By contradiction) Assume that the number of primes is �nite. Then there is the largest

prime pmax. So we can construct a number which is the product of all primes plus \1", i.e.

N = p1 � � � � � pmax + 1

N is bigger than pmax so it cannot be prime. Therefore N has to be composite. But this is impossible

as any of the known primes p1; : : : ; pmax divides N leaving the remainder 1. Thus, there is a prime

N larger then pmax. This is a contradiction which leads us to the conclusion that there are in�nitely

many primes. 2

Eratosthenes gave a method which generates all primes smaller than a given number N . His

method is referred to as the sieve of Eratosthenes.

The sieve of Eratosthenes {determines all primes smaller than N

S1. Create an initial set of all numbers NN = f2; 3; 4; : : : ; N � 1g smaller than N .

S2. For all integers n <
p
N (which are still in the set NN), remove all multiples of n from the set

NN (leaving n itself in the set).

S3. The �nal reduced set NN contains all primes smaller than N .

Let the upper limit N be 20. The set N20 = f2; 3; : : :; 19g. We need to remove all multiples of

2,3,4 (n <
p
20). After removing all multiples of 2, the set is

f2; 3; 5; 7; 9; 11; 13; 15; 17; 19g

Elements of Number Theory 12

After removing all multiples of 3, the set reduces itself to

f2; 3; 5; 7;11;13;17;19g

The number 4 is not in the set so our sieving is completed. The set contains all primes smaller than

20.

Denote by �(x) the number of all primes smaller than the number x. �(x) is also named the

prime-counting function. Gauss claimed that �(x) � x
ln x

. A better approximation �(x) � x
ln x�1:08366

was given by Legendre. Hadamard and de la Vall�ee proved the prime number theorem which says that

lim
x!1

�(x) ln(x)

x
= 1 (2.6)

For more details, readers are referred to [362] and [449].

2.1.3 Congruences

Modular arithmetic is often introduced in school as \clock arithmetic". Fourteen hours after 3 pm is

5 am the next morning. Simply,

14 + 3 � 5 (mod 12) or 14 + 3 = 1� 12 + 5

The formula a � b mod N is a congruence and can be read as \a is congruent to b modulo N". It

holds for integers a; b and N 6= 0 if and only if

a = b+ kN for some integer k

or N j (a � b).

If a � b mod N , b is called a residue of a modulo N . In our example, 17 � 5 mod 12 or 5

is a residue of 17 modulo 12. A set fr1; r2; : : : ; rng is called a complete set of residues modulo N

if for every integer a exactly one ri in the set satis�es that a � ri mod N . For any modulus N ,

f0; 1; : : : ; N � 1g forms a complete set of residues modulo N . For N = 12 the set of complete residues

is f0; 1; : : :; 11g. We usually prefer to use integers from f0; : : : ; N � 1g but sometimes integers in the

set f�1
2
(N � 1); : : : ; 1

2
(N � 1)g may be more useful (N is odd). Note that

: : :� 12 (mod 7) � �5 (mod 7) � 2 (mod 7) � 9 (mod 7) � : : :

Congruences have the following properties.

1. If a � A mod N and b � B mod N , then a+ b � A+ B mod N and a � b � A �B mod N .

2. a � b mod N if and only if N j (a� b).

3. If ab � ac mod N and gcd(a;N) = 1, then b � c mod N .

The rule of \casting out nines" relies on adding all the digits of a number. If they add to 9, then

ultimately the original number is divisible by 9. For instance, is 46909818 divisible by 9? The sum of

the digits is 4 + 6 + 9 + 9 + 8 + 1 + 8 = 45 and the sum of these digits is 4 + 5 = 9 so the number is

divisible by 9. The method relies on the fact that:

10 � 1 (mod 9)

102 � 10 (mod 9)� 10 (mod 9) � 1 (mod 9)

103 � 102 (mod 9)� 10 (mod 9) � 1 (mod 9)

...

Elements of Number Theory 13

Any integer a is represented by the sequence of their successive decimal digits a = (am : : : a2a1a0)10

and a = am � 10m + : : :+ a2 � 102 + a1 � 10 + a0. So the integer,

a � (am : : :a2a1a0)10 (mod 9)

� am � 10m + � � �+ a2 � 102 + a1 � 10 + a0 (mod 9)

� am + � � �+ a2 + a1 + a0 (mod 9)

The casting out nines rule illustrates the fact that the calculation of powers of an integer in

congruences can be done very e�ciently. There should be no surprise that many cryptographic

designs use exponentiation modulo N .

Algorithm for Fast Exponentiation { computes ae mod N .

1. Find a binary representation of the exponent e. Let it be e = ek � 2k + : : :+ e1 � 2 + e0 where ei

are bits (ei 2 f0; 1g) for all i and ek = 1.

2. Initialise an accumulator accum (which will be used to store partial results) to 1.

3. For i = 0; : : : ; k, multiply modulo N the contents of accum by aei and save a2 in a.

4. The result is stored in accum.

Observe that all the computations can be done \on the y". For every i, it is enough to square the

power of a and modify the accumulator only if ei = 1. The modulus N can be represented as a string

of ` = blog2Nc+ 1 bits. Exponential can be done using at most ` modular multiplications.

An example of the algorithm implementation in C is given below.

A C Implementation of Fast Exponentiation

/* fastexp returns a to the power of e modulo N */

long fastexp(long a, long e, long N)

f

long accum=1;

while(e) f

while(!(e%2)) f

e/=2;

a = ((a % N)*(a % N)) % N;

g

e--;

accum =((accum % N)*(a % N)) % N;

g

return(accum);

g

Suppose we wish to �nd 75 mod 9. We �rst note that 5 is e = 1� 22 + 0� 2 + 1 or e = (101)2 in

binary. We start from the less signi�cant (the rightmost) bit e0 of the exponent. As e0 = 1 so a = 7

and accum = 7. Since the second rightmost digit is zero, we square a but do not multiply it onto

accum:

a = 72 = 49 � 4 (mod 9); and accum = 7:

Elements of Number Theory 14

The left most digit of e is 1, so we square a and multiply it onto accum to get the result,

a = 74 � 42 = 16 � 7 (mod 9); and accum = 72 = 4:

Note that if the fast exponential is used for very long integers (i.e. longer than the length of the

long integer type in your C compiler), then a special care must be taken.

The inverse problem to that of �nding powers of numbers in modular arithmetics is that of �nding

the discrete logarithm of a number. Speci�cally, we wish to �nd e where

ae � b (mod N)

Consider an example. Find two exponents e; f such that the two following congruences are satis�ed:

3e � 4 mod 13 and 2f � 3 mod 13. Let us compute 31 � 3, 32 � 9, 33 � 1, 34 � 3; : : :mod 13 which

clearly has no solution. On the other hand, for the congruence 2f � 3 mod 13, we have the following

sequence:

21 � 2; 22 � 4; 23 � 8; 24 � 3;

25 � 6; 26 � 12; 27 � 11; 28 � 9;

29 � 5; 210 � 10; 211 � 7; 212 � 1 (mod 13):

So f = 4.

Finding discrete logarithms is generally not an easy problem.

2.1.4 Computing Inverses in Congruences

Unlike ordinary integer arithmetic, sometimesmodular arithmetic has inverses. So given a 2 f0; : : : ; N�
1g there may be a unique x 2 f0; : : : ; N � 1g such that,

ax � 1 (mod N)

For example, 3� 7 � 1 mod 10.

Consider the following lemma.

Lemma 2.1 If gcd(a;N) = 1 then,

a� i 6= a� j (mod N)

for all numbers 0 � i < j < N (i 6= j).

Proof: We proceed by contradiction. Assume a � i � a � j mod N . This means that N j a(i � j).

This implies that i� j � 0 mod N as gcd(a;N) = 1. We conclude that i = j which is a contradiction.

2

Corollary 2.1 If gcd(a;N) = 1, then the collection of numbers a � i mod N for i = 0; 1; : : : ; N � 1

is a permutation of the numbers from 0 to N � 1.

For example, if a = 3 and N = 7 then the congruence 3� i (mod 7) yields the following sequence

of numbers f0; 3; 6; 2; 5;1;4g for all successive i = 0; 1; : : : ; 6. The sequence is just a permutation of

the set f0; 1; 2; 3; 4;5;6g. This is not true when gcd(a;N) 6= 1. For example, if a = 2 and N = 6 then

for i = 0; 1; : : : ; 5 the congruence 2� i mod 6 generates all multiples of 2 smaller than 6.

Elements of Number Theory 15

Modulus Reduced set '(N)

N prime f1; 2; : : : ;N � 1 g N � 1

N2
(N prime) f1; 2; : : : ;N � 1;N + 1; : : :, N(N � 1)

2N � 1; 2N + 1; : : : ;N2 � 1 g
.
.
.

.

.

.

.

.

.

Nr
(N prime) f1; 2; : : : ;Nr � 1 g (Nr � 1)� (Nr�1 � 1)

{ multiples of N < Nr
= Nr�1

(N � 1)

pq (p, q prime) f1; 2; : : : ; pq � 1g (pq � 1)� (q � 1)� (p� 1)

{ multiples of p = (p� 1)(q � 1)

{ multiples of q

.

.

.

.

.

.

.

.

.Q
t

i=1
p
ei
i
; (pi prime)

Q
t

i=1
p
ei�1

i
(pi � 1)

Table 2.1: Euler's totient function

Theorem 2.3 If gcd(a;N) = 1, then the inverse element a�1, 0 < a�1 < N , exists and

a� a�1 � 1 (mod N):

Proof: From Lemma (2.1) we know that a� i mod N is a permutation of 0; 1; : : : ; N�1. Thus there

must be an integer i such that a� i � 1 mod N . 2

A reduced set of residues is a subset of the complete set of residues relatively prime to N . The

complete set of residues modulo 10 is f0; 1; 2; 3; 4;5;6;7; 8; 9g but of these only 1, 3, 7, 9 do not have

a factor in common with 10. So the reduced set of residues modulo 10 is f1; 3; 7; 9g. The elements

that have been excluded to form the reduced set are the multiples of 2 and the multiples of 5. It is

easy to see that for the modulus N = p � q (p; q are primes), the number of elements in the reduced

set of residues is (p � 1)(q � 1).

The complete set of residues modulo 11 is f0; 1; 2; 3;.. . ; 10g. Of these, only one element, 0, is

removed to form the reduced set of residues which has 10 elements. In general, for a prime modulus,

the reduced set of residues contains (N � 1) elements.

The reduced set of residues modulo 27 is:

f1; 2; 4; 5;7;8; 10; 11;13;14;16;17;19;20;22;23;25;26g

which has 18 elements. The number 18 is obtained from the observation that the reduced set of

residues modulo 3 has 2 elements \1" and \2" and all the elements are either 3i + 1 or 3i + 2 for

i = 0; 1; : : : ; 8. In general for a prime power N r, the reduced set of residues has (N � 1) � N r�1

elements.

The Euler totient function '(N) is the number of elements in the reduced set of residues. This is

tabulated in Table (2.1).

Theorem 2.4 (Euler's Theorem) Let gcd(a;N) = 1 then

a'(N) (mod N) = 1: (2.7)

Elements of Number Theory 16

Proof: Let R = fr1; : : : ; r'(N)g be a reduced set of residues modulo N . Then far1; ar2; : : : ; ar'(N)g
is a permutation of R for any a = 1; 2; : : : ; N � 1. Thus,

'(N)Y
i=1

ri =

'(N)Y
i=1

ari = a'(N) �
'(N)Y
i=1

ri � a'(N) �
'(N)Y
i=1

ri (mod N):

Hence a'(N) � 1 (mod N). 2

Euler's Theorem is also called the generalisation of Fermat's theorem.

Theorem 2.5 (Fermat's Little Theorem) Let p be a prime and suppose the gcd(a; p) = 1 then

ap�1 � 1 (mod p) (2.8)

To understand the Rivest Shamir Adleman public-key algorithm, we need to study how e�ciently

we can �nd inverses in modular arithmetic.

Algorithms for �nding inverses a�1 mod N :

� Search through 1; : : : ; N � 1 until an a�1 is found such that a� a�1 mod N = 1.

� Apply the exponentiation if '(N) is known i.e.

a�1 � a'(N)�1 (mod N)

� Use the Euclid algorithm if '(N) is not known (see Formula (2.5)).

Consider the third algorithm from the above list. Recall Formula (2.5) which describes the Euclid

algorithm. We are going to show how to adjust it to �nd inverses. It starts with the following

initialisation: r0 = N and r1 = a where N is the modulus and a is the number for which the inverse

is sought. The �rst step is r0 = q1r1 + r2. The equation can be rewritten as

r2 = r0 � q1r1

As r0 = N so r2 � �q1r1 mod N . We store the coe�cient against r1 in x1 = �q1 so r2 = x1r1. The

second step r1 = q2r2 + r3 can be presented as

r3 = r1 � q2r2 = r1 � q2x1r1 = (1� q2x1)r1 = x2r1

where x2 = (1� q2x1). The third step proceeds as

r4 = r2 � q3r3 = x1r1 � q3x2r1 = x3r1

and x3 = (x1 � q3x2). In general, the i-th step is

ri+1 = ri�1 � qiri = xir1

where xi = (xi�2 � qixi�1). The computations end when there is a step n � 1 for which rn = 0 and

rn�1 = 1. The equation for the previous step is

rn�1 = rn�3 � qn�2rn�2 = xn�2r1 = 1

The value of xn�2 is the inverse of a = r1.

Elements of Number Theory 17

To illustrate the algorithm, consider an example. Find the inverse of 5 modulo 23. We get the

following equations:

3 = 23� 4� 5 � �4 � 5 (mod 23)

2 = 5� 1� 3 = 5� 1(�4� 5) = 5� 5

1 = 3� 1� 2 = (�4� 5)� 1(5� 5) = �9� 5

So 1 � �9� 5 (mod 23) and �9 � 14 (mod 23) is the inverse.

A C Implementation of the Euclid algorithm for �nding inverses

/* inverse returns an element x such that */

/* a*x=1 mod N */

long inverse(long N, long a)

f

long r0,r1,r2,q1,q2,x0,x1,x2;

r0=N; r1=a;

x0=1; /* initialisation */

q1=r0/r1; r2=r0 % r1;

x1=-q1;

while(r2)f

r0=r1; r1=r2;

q1=r0/r1; r2=r0 % r1;

x2=x0-q1*x1;

x0=x1; x1=x2;

g

if(r1!=1)f

printf("NO INVERSE \n");

exit(1);

g

if(x0>0) return(x0);

return(N+x0);

g

Algorithms for �nding inverses can be used to solve congruences

ax � b (mod N): (2.9)

To �nd an integer x which satis�es Congruence (2.9), �rst compute the inverse of a, i.e.

ay � 1 (mod N)

and x � yb (mod N). For instance, to solve 5x � 9 (mod 23), we �rst solve 5y � 1 (mod 23)

getting y = 14 and thus x = 14� 9 � 11 (mod 23).

Theorem 2.6 If d = gcd(a;N) and d j b, then the congruence ax � b (mod N) has d solutions

xi+1 � (
b

d
� x0 + i� N

d
) (mod N) (2.10)

Elements of Number Theory 18

for i = 0; 1; : : : ; d� 1 and x0 is the solution to

a

d
x � 1 (mod

N

d
)

otherwise it has no solution.

Proof: If ax � b mod N has a solution in [1; N � 1] then N j (ax� b). The fact that d j N and d j a
implies that d j b. Hence the congruence

a

d
x � 1 (mod

N

d
)

has a unique solution x0 in [1; N
d
� 1]. Thus x1 � b

d
x0 mod N

d
is a solution of

a

d
x � b

d
(mod

N

d
)

therefore a
d
x1 � b

d
= k � N

d
for some k. Multiplication by d gives

ax1 � b = kN

so x1 is a solution of ax � b mod N . But any x 2 f1; : : : ; N � 1g such that x � x1 mod N
d
is also a

solution. So all solutions are:

xi+1 =
b

d
x0 + i

N

d
for i = 1; : : : ; d� 1:

2

Suppose we wish to solve 9x � 6 mod 12. We denote d = gcd(9; 12) = 3 and 3 divides 6 so there

are three solutions. We �rst solve:

3x1 = 2 (mod 4)

by �nding the solution to :

3x0 = 1 (mod 4)

Now x0 = 3 and so x1 = 3� 2 = 6 � 2 mod 4. Thus the three solutions are:

xi+1 = 2 + i � 4; i = 0; 1; and 2

That is x = 2, 6 and 10.

Diophantine equations are equations with solutions in the set of integers or natural numbers.

Congruences have an intimate relation with Diophantine equations. The congruence a�x � b mod N

has its Diophantine counterpart

a� x = k � N + b

To solve it, it is enough to show pairs (x; k) which satisfy the equation for the given (a; b).

2.1.5 The Legendre and Jacobi Symbols

Consider the following quadratic congruence

x2 � a (mod p) (2.11)

where p is a prime integer. Note that squering takes two values x and �x and produces the same

result x2. So it is obvious that the quadratic congruence (2.11) may either have two or no solutions

(assuming that a 6= 0). More precisely, there are three possibilities. The congruence has

Elements of Number Theory 19

1. one solution if a � 0 (mod p),

2. two solutions if a is a quadratic residue modulo p,

3. no solution if a is a quadratic non-residue modulo p.

The Legendre symbol is de�ned as follows

�
a

p

�
=

8><
>:

0 if a = 0

1 if a quadratic residue modulo p

�1 if a quadratic non-residue modulo p

(2.12)

Below we list some properties of the Legendre symbol.

� The value of the Legendre symbol can be computed from the congruence�
a

p

�
� a

1

2
(p�1) (mod p)

�
�
ab
p

�
=
�
a
p

��
b
p

�
- the Legendre symbol is multiplicative.

� If a � b (mod p), then
�
a
p

�
=
�
b
p

�
.

� The sets of non-residues and residues modulo p are of the same cardinality.

The Jacobi symbol is a generalisation of the Legendre symbol for the case when the quadratic

congruence is considered for an arbitrary modulus N (N need not be a prime). The Jacobi symbol for

a given quadratic congruence x2 = a (mod N), where N = p1 � � �pr, is de�ned as

� a
N

�
=

rY
i=1

�
a

pi

�

where N is a composite integer, pi are factors of N and
�
a
pi

�
are Legendre symbols primes pi.

Jacobi symbols are easy to compute using exponentiation when the factors of N are known. If

factors of N are not known, then Jacobi symbols can still be computed e�ciently using the Euclid

algorithm with O(log22N) steps (for details see [102]).

2.1.6 The Chinese Remainder Theorem

Solving congruences for moduli which are composite is equivalent to the solution of systems of con-

gruences. If the congruence is ax � b mod p� q, then we solve two congruences ax � b mod p,

ax � b mod q and combine the results. The Chinese remainder theorem (CRT) states how we can

solve a single congruence modulo N by solving the system of congruences for factors of N .

Theorem 2.7 Let p1; : : : ; pr be pairwise coprime. Further let N = p1 � � � � � pr . Then,

f(x) (mod N) � 0 i� f(x) (mod pi) � 0

for i = 1; : : : ; r.

Proof: The pi are pairwise coprime so if

f(x) = kN = k � p1 � : : :� pr) pi j f(x)

for any i. 2

Algebraic Structures in Computing 20

Theorem 2.8 (Chinese remainder theorem) Let p1; : : : ; pr be pairwise coprime, where N = p1� : : :�
pr. Then the system of congruences

x � xi (mod pi); i = 1; : : : ; r

has a common solution x in f0; : : : ; N � 1g.

Proof: For each i, gcd(pi;
N
pi
) = 1. Therefore there exists a yi such that:

N

pi
� yi � 1 (mod pi)

and
N

pi
� yi � 0 (mod pj)

for all j 6= i and pj j N
pi
. Let x � Pr

i=1
N
pi
� xiyi mod N . Then x is a solution of xi = x mod pi

because, x = N
pi
� xiyi � xi mod pi. 2

Solve two congruences x � 1 mod 5 and x � 10 mod 11 to �nd a solution modulo 55. First �nd

the inverse of 11 modulo 5

55

5
y1 � 1 (mod 5) or 11y1 � 1 (mod 5)) y1 = 1;

next the inverse of 5 modulo 11

55

11
y2 � 1 (mod 11) or 5y2 � 1 (mod 11)) y2 = 9;

Thus x = 55
5
� x1y1 +

55
11
� x2y2 � 11� 1� 1 + 5� 10� 9 � 21 mod 55.

CRT Algorithm { generates the solution for x mod N from xi mod pi where N = p1 � : : : � pr;

i = 1; : : : ; r

1. Precomputation { for all i = 1; : : : ; r, �nd all inverses yi of
N
pi

modulo pi and store them as the

vector (y1; : : : ; yr).

2. Composition { for the given vector of residues x1; : : : ; xr, create the solution x � Pr

i=1
N
pi
�

xiyi mod N .

The CRT asserts the equivalence of the representation of integers in modular arithmetics i.e.

x mod N is equivalent to the vector representation (x1; : : : ; xr). From a cryptographic point of view,

both the recovery procedure of x from its vector (x1; : : : ; xr) and the reverse operation (i.e. �nding

the vector from the integer x) are very e�cient only if the factors of N are known ! If manipulations

involve integers x modulo a large composite N , than they can be processed in parallel for every

component xi (see Knuth [283]).

2.2 Algebraic Structures in Computing

Cryptography exploits a variety of algebraic structures. Most computations are done in �nite groups,

rings, and �elds. In this section, we introduce basic algebraic concepts and explore properties of basic

algebraic structures frequently used in cryptography.

Algebraic Structures in Computing 21

2.2.1 Sets and Operations

Computing always involves passive entities (numbers) and active entities (operations). Algebra pro-

vides already a well-developed theory which deals with such objects. An algebraic structure is de�ned

as the collection of a set with one or more operations which can be performed on elements of the set.

Let S be a set of elements and � be an operation. For any pair of elements a; b 2 S, the operation �
assigns an element from the set S (a � b 2 S).

A group G =< S; � > is an algebraic structure which satis�es the following conditions:

G1. For any two elements a; b 2 S, c = a � b 2 S. This is called closure.

G2. For any three elements a; b; c 2 S, the group operation is associative i.e.

(a � b) � c = a � (b � c):

G3. There is a neutral (identity) element e 2 S such that

8a2S a � e = e � a = a:

G4. Each element a 2 S has its inverse, i.e.

8a2S 9a�12S a � a�1 = a�1 � a = e:

An Abelian group is a group whose group operation is commutative:

G5. For any two a; b 2 S
a � b = b � a:

The following structures are examples of groups.

� The set of integers with the addition as the group operation < Z;+ > is a group. The identity

element is zero and the inverse element of a 2 Z is �a 2 Z. The group is Abelian as 8a;b2Z a+

b = b+ a. The group is in�nite.

� The set of nonzero rationals R under multiplication creates an Abelian group < R n f0g;� >.

The identity element is \1" and the inverse of a is 1
a
. The group is in�nite.

� The set ZN = f0; 1; : : :; N �1g, where N is prime, with addition modulo N is an Abelian group

ZN =< ZN ;+ >. The identity element is \0". The inverse of a is (N � a). The group is �nite.

� The group Z2 =< Z2;+ > has a special practical signi�cance. It has two elements only. The

group addition is equivalent to the binary Exclusive-Or operation �.

� The set Z�N = f1; 2; : : :; N � 1g with multiplication, i.e. Z�N =< Z�N ;� > is an Abelian group

(N is prime). The identity element is \1". The inverse element of a is a�1 such that a�a�1 � 1

(mod N). The group is �nite.

The order of a �nite group is the number of elements in the group. A group G1 =< S1; � > is a

subgroup of the group G =< S; � > if S1 � S. The Lagrange theorem (see [231]) states that the order

of any subgroup of a �nite group divides the order of the group.

A cyclic group is a group whose elements are generated by a single element g (also called the

generator of the group).

Algebraic Structures in Computing 22

Consider the multiplicative group Z�7 . Note that the identity element 1 2 Z�7 generates the trivial

group < f1g;� >. The element 6 � �1 (mod 7) generates a bigger subgroup namely < f1; 6g;� >.

The element 2 generates the following subgroup: 21 = 2, 22 = 2 � 2 = 4, 23 = 2 � 2 � 2 = 8 �
1 (mod 7) of Z�7 . Obviously we can rewrite 23 � 20 (mod 7). The subgroup generated by 2 is

< f1; 2; 4g;�>. The element 3 yields the following:

31 = 3;

32 = 3� 3 � 2 (mod 7);

33 = 3� 3� 3 � 6 (mod 7);

34 = 3� 3� 3� 3 � 4 (mod 7);

35 = 3� 3� 3� 3� 3 � 5 (mod 7);

36 = 3� 3� 3� 3� 3� 3 � 1 (mod 7):

The element 3 generates the whole group Z�7 . Powers, of 4 are: 41 = 4, 42 � 2 (mod 7) and 43 � 1

(mod 7). The subgroup < f1; 2; 4g;� > is generated by 4. Finally, the element 5 produces 51 = 5,

52 � 4 (mod 7), 53 � 6 (mod 7), 54 � 2 (mod 7), 55 � 3 (mod 7) and 56 � 1 (mod 7), i.e.

the whole group Z�7 . The number of elements in each subgroup is directly related to the factorisation

of '(N) = 6. All the trivial and nontrivial factors are: 1,2,3,6. If we deal with larger N and the

factorisation of '(N) has n nontrivial factors, then the probability that a randomly selected element

from Z�N generates the whole group is � 1
n+1

.

Mapping f : X ! Y is a generalisation of a function, i.e. for every element of the set X , it assigns

an element from the set Y. Let < G; � > and < H; � > be two groups, then the mapping f : G! H

is a group homomorphism if

8a;b2G f(a � b) = f(a) � f(b): (2.13)

If some additional conditions are imposed on the homomorphism, it is called:

� epimorphism { the image of the homomorphism covers the whole set H or f(G) = H,

� monomorphism { there is the inverse mapping f�1 : H ! G such that

8a2G f�1(f(a)) = a

� isomorphism { monomorphism with f(G) = H.

A ring is an algebraic structure with the set S and two operations addition + and multiplication

�, i.e. R =< S;+;� > such that

R1. For each pair a; b 2 S, a+ b and a� b belong to S.

R2. < S;+ > is an additive Abelian group.

R3. Multiplication operation is associative, i.e. for any a; b; c 2 S

(a � b)� c = a� (b� c):

R4. Multiplication operation is distributive with respect to addition, i.e. for any three elements

a; b; c 2 S,
a(b+ c) = ab+ ac and (a+ b)c = ac+ bc:

Algebraic Structures in Computing 23

Let p; q are two odd primes and the modulus N = pq. The set ZN = f0; 1; : : :; N � 1g with

addition and multiplication modulo N is a ring. It is easy to check that < ZN ;+ > is an Abelian

group. Multiplication is associative and also is distributive with respect to addition. The ring ZN

describes alebraic structure of the well-knownRivest-Shamir-Adleman public-key cryptosystem. Using

the CRT, any element a 2 ZN can be equivalently represented as a vector

a � (a mod p; a mod q)

Note that all elements a 2 ZN whose vector components are di�erent from zero a1 6= 0 and a2 6= 0

do have additive and multiplicative inverses. Under multiplication, the set of these elements forms a

�nite group Z�N of order '(N). The group is cyclic and any element generates a subgroup of order

which divides '(N) ('(N) is the Euler totient function). Elements with one component zero do not

have multiplicative inverses. The collection of all elements (0 mod p; a2 mod q) includes the set of all

multiples of p, i.e. fip j i = 0; 1; : : : ; q�1g. The other set of multiples is fiq j i = 0; 1; : : : ; p�1g. Those
two sets have special properties: they are closed under addition and any product of their elements by

an arbitrary element of ZN falls back into the sets. The sets are called ideals.

More formally, an ideal in a ring R is a non-void subset I (I � R) such that

I1. For any pair of elements a; b 2 I, (a + b) 2 I { ideal is closed under addition.

I2. For any a 2 I and any b 2 R, both ab and ba belong to I.

The ring ZN (N = pq, p and q primes) contains two ideals: I1 = fip j i = 0; 1; : : : ; q � 1g and

I2 = fiq j i = 0; 1; : : :; p� 1g.
As not all elements of rings have multiplicative inverses, computations which involve division may

not be possible unless special care is exercised. To make sure that all nonzero elements have their

multiplicative inverses, computations should be done in rings with division. Commutative rings with

division are called �elds.

A �eld F =< S;+;� > is a set S with two operations: addition and multiplication with the

following properties:

F1. < S;+;� > is a commutative ring { it satis�es all the conditions for rings and in addition

multiplication is commutative, i.e. for all a; b 2 S, ab = ba.

F2. There is an identity element 1 with respect to multiplication, i.e. for all a 2 S, there is e = 1 2 S
such that a � 1 = 1� a = a.

F3. Any nonzero element a 2 S has its unique inverse and a� a�1 = a�1 � a = 1.

ZN =< f0; 1; : : : ; N � 1g;+;� > is a �eld if N is prime. Some other important �elds can be

constructed using polynomials.

2.2.2 Polynomial Arithmetics

Let F be a �eld. Consider a function f : F ! F of the form:

f(x) = a0 + a1x+ : : :+ anx
n (2.14)

where ai 2 F for i = 0; 1; : : : ; n. Any function which can be written in the form (2.14) is called a

polynomial. Any polynomial has its degree { the highest power of x. For the polynomial (2.14) its

degree is equal to n or in other words deg(f(x)) = n. Two polynomials p(x) = a0 + a1x+ : : :+ anx
n

and q(x) = b0 + b1x+ : : :+ bmx
m can be added and subtracted

p(x)� q(x) = (a0 � b0) + (a1 � b1)x+ : : :+ (am � bm)x
m + am+1x

m+1 + : : :+ anx
n (2.15)

Algebraic Structures in Computing 24

where n > m. Their product is also a polynomial and

p(x)q(x) = a0b0 + (a0b1 + a1b0)x+ : : :+ anbmx
n+m =

nX
i=0

mX
j=0

aibjx
i+j : (2.16)

It is easy to verify that the collection of all polynomials over the �eld F with polynomial addition

(2.15) and multiplication (2.16) create a commutative ring F [x].

Theorem 2.9 (Division Algorithm) Let a(x) = a0+a1x+ : : :+anx
n and b(x) = b0+b1x+ : : :+bmx

m

be two polynomials from F [x] (n > m). Then we can �nd two polynomials q(x) and r(x) such that

a(x) = q(x)� b(x) + r(x); (2.17)

where q(x) is a quotient and r(x) is a remainder whose degree is smaller than m.

Proof: We apply induction on the degrees n and m.

1. n < m, then clearly a(x) = 0� b(x) + a(x).

2. n � m, then

a(x) = ~a(x) +
an

bm
xn�mb(x): (2.18)

The degree of ~a(x) is smaller then n and equal to k. Assume that Expression (2.17) is true for

any k > m. From this assumption we can draw the conclusion that

~a(x) = q1(x)b(x) + r1(x)

By putting the above expression for ~a(x) into the equation (2.18), we obtain the �nal result

(2.17).

2

This algorithm is an extension of the division algorithm for integers. The algorithm works for

polynomials if the coe�cients have multiplicative inverses { the coe�cient anb
�1
m in Equation (2.18)

has to exist. That is why polynomial coe�cients have to be from a �eld.

Consider the ring Z7[x]. The division of a(x) = 2x4 + x2 + 5x + 3 by b(x) = 4x2 + 3 proceeds as

follows:

2x4 + x2 + 5x+ 3 = (4x2 + 3)� 4x2 + (3x2 + 5x+ 3)

3x2 + 5x+ 3 = (4x2 + 3)� 6 + (5x+ 6)

So �nally, 2x4 + x2 + 5x+ 3 = (4x2 + 3)(4x2 + 6) + (5x+ 6).

A polynomial a(x) is irreducible over a �eld F if for all polynomials b(x) 2 F [x] (deg a(x) >

deg b(x))

a(x) = q(x)b(x) + r(x)

where deg r(x) < deg b(x) and r(x) 6= 0. All reducible polynomials have two or more nontrivial factor

polynomials or simply factors. Any irreducible polynomial p(x) = p0 + p1x + : : : pnx
n 2 F [x] can

be represented as p(x) = a � p0(x) where a 2 F . We can normalise p(x) in such a way that its

leading coe�cient pn = 1. Such polynomial is called monic. In polynomial arithmetics, there is also

the unique factorisation theorem which is equivalent to the fundamental theorem of arithmetics. It

says that every polynomial over a �eld F can be uniquely represented as a product of a constant (an

Algebraic Structures in Computing 25

element of the �eld F) and monic irreducible polynomials. Thus notions such as the greatest common

divisor and the least common multiple can be extended for polynomials. The Euclid algorithm can

be easily modi�ed to generate the gcd of two polynomials.

Euclid Algorithm { �nds the greatest common divisor of two polynomials a(x); b(x) 2 F [x]

E1. Initialise r0(x) = a(x) and r1(x) = b(x).

E2. Compute the following sequence of equations:

r0(x) = q1(x)r1(x) + r2(x)

r1(x) = q2(x)r2(x) + r3(x)

... (2.19)

rk�3(x) = qk�2(x)rk�2(x) + rk�1(x)

rk�2(x) = qk�1(x)rk�1(x) + rk(x)

until there is a step for which rk(x) = 0 while rk�1(x) 6= 0 (deg ri(x) > deg ri+1(x) for all

i = 2; : : : ; k).

E3. The greatest common divisor is equal to rk�1(x).

Let p(x) = p0 + p1x + : : : pnx
n 2 F [x] be a polynomial. Then two polynomials a(x); b(x) 2 F [x]

are congruent modulo p(x) or

a(x) � b(x) (mod p(x))

if p(x) j (a(x)� b(x)). For instance, consider Z5[x], 3x
3 + 2x+ 4 � 4x+ 4 mod x2 + 1 as 3x3 + 2x+

4� (4x+ 4) = 3x3+ 3x = 3x(x2+ 1). Most properties discussed for congruences modulo N , hold for

congruences modulo p(x) including the Chinese Remainder Theorem.

Assume that p(x) is an irreducible polynomial over �eld F (p(x) 2 F [x]) with deg p(x) = n. A

set of residues modulo p(x) is a set F [x]=p(x) of all polynomials whose degree is smaller than the

degree of p(x). The set of residues also includes all elements of the �eld F . It is easy to check that

the set of residues (modulo irreducible polynomial p(x)) with polynomial addition and multiplication

modulo p(x) is a �eld. The only point which needs some elaboration is the existence of multiplicative

inverses. Let a(x); b(x) 2 F [x]=p(x). Consider that a(x) and p(x) are given, and we would like to �nd

b(x) = a�1(x) such that

a(x) � b(x) � 1 (mod p(x)):

We apply the Euclid algorithm (2.19) for r0(x) = p(x) and r1(x) = a(x). At each step we express ri(x)

as multiple of a(x) modulo p(x). Therefore r0(x) = 0, r1(x) = a(x), r2(x) = �q1(x)a(x) = m1(x)a(x),

r3(x) = (1 + q1q2)a(x) = m2(x)a(x) and so on. Obviously, there must be the �rst rk(x) = 0. If

gcd(p(x); a(x)) = c 2 F , the previous remainder rk�1 = c. Note that the constant c 2 F becomes 1 if

the p(x) is monic ! The equation with rk�1(x) is

rk�3(x) = qk�2(x)rk�2(x) + c

Knowing that rk�3(x) = mk�4(x)a(x) and rk�2(x) = mk�3(x)a(x), we obtain

c�1a(x)(mk�4(x)� qk�2(x)mk�3(x)) = 1

The inverse of a(x) is c�1(mk�4(x)� qk�2(x)mk�3(x)).

Euclid Algorithm { �nds the inverse of a(x) modulo p(x) (p(x) 2 F [x] is irreducible)

Algebraic Structures in Computing 26

E1. Initialise r0(x) = p(x) and r1(x) = a(x).

E2. Compute the following sequence of equations:

r0(x) = q1(x)r1(x) + r2(x)

) r2(x) � �q1(x)a(x) = m1(x)a(x) (mod p(x))

r1(x) = q2(x)r2(x) + r3(x)

) r3(x) = r1(x)� q2(x)r2(x) = m2(x)a(x)

... (2.20)

rk�3(x) = qk�2(x)rk�2(x) + rk�1(x)

) rk�1(x) = rk�3(x) � qk�2(x)rk�2(x) = mk�4(x)a(x)

rk�2(x) = qk�1(x)rk�1(x) + rk(x)

until there is a step for which rk(x) = 0 while rk�1(x) = c 2 F (deg ri(x) > deg ri+1(x) for

i = 2; : : : ; k).

E3. The inverse is equal to c�1(mk�4(x) � qk�2(x)mk�3(x)).

The �eld de�ned over the set of residues F [x]=p(x) with the addition and multiplication modulo

p(x) where p(x) is irreducible is called a Galois �eld. If the �eld F is ZN (N is prime) then the

corresponding Galois �eld over ZN [x]=p(x) is denoted GF (Nn) (n = deg p(x)). Note that GF (N) is

the �eld of coe�cients with addition and multiplication modulo N .

2.2.3 Computing in Galois Fields

Many cryptographic designs extensively use binary Galois �elds GF (2n). Consider an example which

shows how computations can be done in GF (23) with an irreducible polynomial p(x) = x3 + x+ 1 2
Z2[x] (in binary Galois �elds all polynomials are monic).

The Galois �eld GF (23) has the following elements: 0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1.

Zero is equivalent to any multiple of p(x) = x3 + x + 1. This fact is equivalent to x3 = x + 1 { this

equation can be used to reduce any polynomial of degree higher than or equal to 3 to a polynomial

of degree at most 2. For instance, (x2 + 1)2 is equal to x4 + 1 and using the fact that x3 = x+ 1, we

have

x4 + 1 = x� x3 + 1 = x� (x+ 1) + 1 = x2 + x+ 1:

To do computations in the �eld is enough to build up two tables, one for addition and the other for

multiplication (see Table 2.2).

All nonzero elements of GF (2n) under multiplication modulo p(x) (p(x) is an irreducible polyno-

mial of degree n) constitute a cyclic group with 2n � 1 elements. The Euler totient function can also

be extended for polynomials and '(p(x)) = 2n�1. There is a polynomial version of Fermat's theorem

which states that

8a2GF (2n);a6=0 a'(p(x)) � 1 (mod p(x))

Thus exponentiation can be used to �nd multiplicative inverses in GF (2n) as

8a2GF (2n);a6=0 a�1 � a'(p(x))�1 � a2
n�2 (mod p(x))

Any nonzero element of GF (2n) generates a cyclic group whose order j divides (2n � 1) or in other

words j j (2n�1). If for some reason, one would like all nonzero elements (di�erent from 1) to generate

the whole cyclic group, then it is enough to select a �eld for which 2n � 1 is a Mersenne prime.

Complexity of Computing 27

+ 0 1 010 011 100 101 110 111

0 0 1 010 011 100 101 110 111
1 1 0 011 010 101 100 111 110

x = 010 010 011 0 1 110 111 100 101
x+ 1 = 011 011 010 1 0 111 110 101 100

x2 = 100 100 101 110 111 0 1 010 011
x2 + 1 = 101 101 100 111 110 1 0 011 010
x2 + x = 110 110 111 100 101 010 011 0 1

x2 + x+ 1 = 111 111 110 101 100 011 010 1 0

� 1 010 011 100 101 110 111

1 1 010 011 100 101 110 111
x = 010 010 100 110 011 1 111 110

x+ 1 = 011 011 110 101 111 100 1 010
x2 = 100 100 011 111 110 010 101 1

x2 + 1 = 101 101 1 100 010 111 011 110
x2 + x = 110 110 111 1 101 011 010 100

x2 + x+ 1 = 111 111 101 010 1 110 100 011

Table 2.2: The addition and multiplication tables for GF (23).

GF (23) has its totient function '(x3 + x + 1) = 7. Seven is a Mersenne prime. Therefore there

should be no surprise to learn that any nonzero element (di�erent from 1) in GF (23) generates the

whole set of nonzero elements of the �eld. Let (x + 1) be a tested element. We have the following

sequence of powers; (x+1)2 = x2+1, (x+1)3 = x2, (x+1)4 = x2+x+1, (x+1)5 = x, (x+1)6 = x2+x,

(x+ 1)7 = 1.

Computations in GF (2n) are often desirable for the following reasons:

1. Algorithms for computation in GF (2n) are usually more e�cient than their counterparts in

GF (N). There is also the other side of the coin { cryptographic designs based on integer arith-

metics in GF (N) are usually more secure than their equivalents based on polynomial arithmetics

in GF (2n) when both �elds have similar sizes.

2. Polynomial arithmetics in GF (2n) is more e�cient as nothing is carried and there is no need to

divide by the modulus in order to perform addition or subtraction. For example the C language

o�ers bit-by-bit Exclusive-Or (XOR) operation which gives very fast implementation of addition

in GF (2n).

3. The cost of the hardware depends on choice of modulus. For instance, we can use trinomials

p(x) = xk + x + 1 as the modulus to speed up multiplication as the string involved in the

operation contain mostly zeros.

2.3 Complexity of Computing

The evaluation of security of cryptographic designs is in general a di�cult business. It is not unusual

to �nd out that the security evaluation has been upheld by a statement \as the design is based on

the well-known intractable problem, a successful attack will be equivalent to showing an algorithm

which solves all instances of the problem in polynomial time". Cryptanalysis is a part of cryptology

whose ultimate goal is to demonstrate the existence of a polynomial-time algorithm which enables the

Complexity of Computing 28

computation of some of the secret elements of the design. In this section we present the basic results

and discuss their applicability in cryptography and cryptanalysis.

2.3.1 Asymptotic Behaviour of Functions

Assume that there are two algorithms which can be applied to solve a numerical task. To select a

better algorithm we need to know how the e�ciency of algorithms can be measured. One of the

measurements is the so-called time complexity function. It describes how many steps (time intervals)

are necessary to perform before the algorithm generates the result for an instance of length n. Time

complexity functions are usually compared using their asymptotic behaviour.

Let f(n) and g(n) be two functions whose rates of growth are to be compared. The following

notations are commonly used.

� Little \o" notation { the function f(n) is little oh of g(n) when the quotient of f(n) by g(n)

converges to zero or

f(n) = o(g(n)) if lim
n!1

f(x)

g(x)
= 0 (2.21)

For instance, 3n3 = o(7n4) and 2 = o(n).

� Big \O" notation { the function f(n) is big oh of g(n) or

f(n) = O(g(n)) (2.22)

if there is a constant C 2 R such that limn!1 j f(n)g(n)
j < C. The function 3n7 + n3 = O(n7).

� � notation { the function f(n) is theta of g(n) if there is a pair of positive nonzero constants

c1; c2 such that

c1g(n) < f(n) < c2g(n)

for all big enough n.

� � notation { the function f(n) is asymptotically equal to or f(n) � g(n) if

lim
n!1

f(n)

g(n)
= 1

�
 notation { f(n) =
(g(n)) i� g(n) = O(f(n))

Let g(n) be a �xed function. Given o(g(n)), the space of all functions is divided into two disjoint

subsets: ff(n) j f(n) = o(g(n))g and its complement. Informally, we can look at o(g(n)) as the set of

all functions whose rate of growth is negligible with the rate of the function g(n). So x3 = o(x4) but

also x2 = o(x4) and x = o(x4). Similarly, the set ff(n) j f(n) = O(g(n))g contains all functions whose
rate of growth is not faster than the rate of the function g(n). So 3x4 = O(x4) but also x3 = O(x4),

x2 = O(x4), and x = O(x4).

The �(g(n) is equivalent to the set ff(n) j f(n) = �(g(n))g = ff(n) j c1g(n) < f(n) < c2gng.
The set comprises all functions whose rate of growth is equivalent with the accuracy to a constant c 2
[c1; c2]. The notation f(n) � g(n) says that the rate of growth of both functions is the same. Functions

which are equal to
(g(n)) create the set ff(n) j f(n) =
(g(n))g= ff(n) j g(n) = O(f(n))g. The

set encompasses all functions whose rate of growth is not slower than the rate of g(n). For instance,

3x4 =
(x4) but also x5 =
(x4), x6 =
(x4), and x7 =
(x4).

Complexity of Computing 29

Consider a problem of multiplication of two n � n matrices. As the resulting product matrix

contains n2 elements and each element involves n multiplication, we can say we can multiply two

matrices in time O(n3). Strassen showed that it is possible to multiply matrices quicker in time

O(n2:81). On the other hand, we cannot multiply matrices quicker than n2 as 2n2 entries of matrices

have to be read from the input. So multiplication of two matrices can be performed in time
(n2).

Or in other words, any algorithm for matrix multiplications has to take at least n2 steps. More details

about the asymptotic notations together with an extensive discussion can be found in the book by

Brassard and Bratley [59].

2.3.2 Hierarchy of Functions

Consider two algorithms. The �rst runs in time given by the polynomial f1(n) = na where n is an

input length, and a is a �xed positive integer. The second has its time complexity function f2(n) = 2n.

Consider the following question. Is there any integer N 2 N such that:

8n�N 9a2N na � 2n ?

In order to answer the question, take the equality na = 2n. As n 2 N , the equality can be rewritten

as

a =
n

log2 n

The function n
log

2
n
grows to in�nity as n ! 1. So there is an integer N such that for all n > N ,

na < 2n.

So even for large exponents a, the rate of growth of polynomials is negligible to the rate of

exponential functions. For instance, assume we have two algorithms. The �rst runs in polynomial time

f1(n) = n1000, the second in exponential time f2(n) = 20:001n. Of course, the second algorithm is much

more e�cient than the �rst for small n. But, for n > 225, the situation changes and the polynomial-

time algorithm is more e�cient as it requires � 225000 steps while the exponential one needs � 232000

steps. This example is unrealistic but illustrates what we mean by asymptotic behaviour of functions.

In general, we can introduce a hierarchy of functions depending on their rates of growth [521].

1. Logarithm functions { slow growing functions. A typical representative of the class is f(n) =

log2(n).

2. Polynomial functions { functions of the form f(n) = na where a is constant and �xed (a 2 N).

3. Sub-exponential functions { functions from the following set

ff(n) j f(n) =
(na) for all a 2 N and f(n) = o((1 + ")n)for all " 2 R; " > 0:g

A function f(n) = 2log(n) is a typical example of a member of this class.

4. Exponential functions { a function f(n) is exponential if there is a constant a 2 N such that

f(n) =
(an) and there is another constant b 2 N such that f(n) = O(bn). The function

f(n) = 2n is a typical representative of this class.

5. Super-exponential functions { all functions whose rate of growth is higher than for previous

classes, i.e. f(n) is super-exponential if every exponential function g(n) = o(f(n)). Examples

of such functions include n! and 2n
2

.

Complexity of Computing 30

2.3.3 Problems and Algorithms

A problem is a general question with the associated parameters and variables whose values are not

speci�ed. The de�nition of a problem consists of two parts. The �rst one gives a general setting

of the problem with precise description of the problem parameters. The second part determines the

requested answer or solution.

Consider the problem of �nding the greatest common divisor. The problem can be de�ned as

follows.

Name: GCD problem

Instance: Two natural numbers a; b 2 N .

Question: What is the greatest common divisor of a and b ?

Clearly, any problem consists of the collection of instances whose all values are �xed. An instance

of GCD problem is: what is gcd(24; 16) ?

An algorithm is a step-by-step procedure which for an instance produces the correct answer. An

algorithm is said to solve a problem if it produces correct answers for all instances of the problem.

Obviously, there are some instances of a problem for which the answer is generated quicker than

for the rest. For example it is much easier to compute gcd(2; 4) than gcd(1245; 35820). The commonly

accepted characterisation of the instance complexity is the size of an instance which is the length of

input data needed to completely specify the instance.

The time complexity function (TCF) of an algorithm expresses how many steps (time intervals)

are necessary to produce the solution for a given instance of the size n. The TCF of an algorithm

depends upon:

� the encoding scheme used to represent instances, and

� the model of computer.

Assume that the TCF of an algorithmbelongs to either polynomial, sub-exponential, or exponential

class of functions from Section 2.3.2 hierarchy. Observe that the TCF will stay in its class even for a

quite wide range of possible encoding schemes. Any encoding scheme which di�ers polynomially from

the best encoding scheme is acceptable as it leaves the TCF in the same class.

There are many computer models. But all realistic models are polynomially equivalent to the

deterministic Turing machine (DTM).

The class of all problems can be divided into two broad subclasses:

� Undecidable or provably intractable problems.

� Decidable problems.

A problem belongs to the class of undecidable problems if there is no algorithm which solves it. The

existence of such problems was proved by Alan Turing in 1936. Being more speci�c, he showed that the

Halting problem is undecidable. Another example of undecidable problem is Hilbert's tenth problem.

Name: Hilbert's tenth problem

Instance: Given a polynomial equation, with integer coe�cients, in an arbitrary number of unknowns.

Question: Are there integers which are solutions of the equation ?

Complexity of Computing 31

2.3.4 Classes P and NP

There are many naturally occurring problems which have resisted a concerted e�ort of researchers

and we know no polynomial-time algorithms for solving them. Let us concentrate on a speci�c kind

of problems for which a sought answer is either \yes" or \no". They are called decision problems.

Name: Knapsack problem

Instance: A �nite set U = fui j i = 1; : : : ; ng, a size s(ui) of any element of ui 2 U , and an integer B.

Question: Is there a subset U 0 � U such that
P

ui2U 0 s(ui) = B ?

The Knapsack problem given above requires a binary yes/no answer.

A class of decision problems which are solvable in polynomial time by a DTM is called the class

P. Note that we are not particularly concerned about e�ciency of algorithms as long as they run in

polynomial time. For instance, the matrix multiplication can be rephrased as a decision problem.

Name: Matrix multiplication problem

Instance: Given two n� n matrices A1 and A2.

Question: Is there a n� n matrix A such that A = A1 � A2 ?

As noted in Section 2.3.1, there are at least two polynomial-time algorithms to solve this problem.

Both algorithms: the straightforward one with its TCF of order O(n3) and the Strassen algorithm

with its TCF of order O(n2:81) are good enough as both are polynomial.

As we have indicated the classi�cation of problems mainly depends on the computer model used.

A nondeterministic Turing machine (NDTM) is much more powerful than the deterministic Turing

machine. The NDTM works in two stages: guessing and checking. Informally, the guessing stage

is where the computing power of the NDTM is \concentrated". In this stage, a correct solution is

guessed. The solution is veri�ed against the parameters of the instance and the �nal yes/no answer

is produced. A decision problem is solvable by the NDTM if the NDTM produces the \yes" answer

whenever there is a solution. There is a �ne point which needs to be clari�ed. The solvability of

a problem by the NDTM requires the correct \yes" answer for all \yes" instances of the problem.

On the other hand, the NDTM can either produce the correct \no" answer or run forever for \no"

instances of the problem.

A class of decision problems which are solvable in polynomial time by the nondeterministic Turing

machine is called the class NP. NP can be thought of as a class of decision problems whose solutions

(if exist) can be veri�ed in polynomial time.

Clearly any problem from P belongs to NP. An embarrassing fact in the theory of computational

complexity is that we do not know whether P is really di�erent fromNP. In 1971 Cook made a major

contribution to the theory of computational complexity. He showed that there is a decision problem

which is the hardest in the class NP. The problem used by Cook was the Satis�ability problem.

Name: Satis�ability problem (SAT)

Instance: A set U of variables and a collection C of clauses over U .

Question: Is there a satisfying truth assignment for C ?

Complexity of Computing 32

NPC
NP

P

NPI

Figure 2.1: NP world

2.3.5 NP Completeness

The main tool used in proving the existence of equivalence subclasses inNP is the so-called polynomial

reduction. Assume we have two decision problems Q1; Q2 2 NP with their corresponding sets of

instances I1 and I2. Denote that I
+
1 and I+2 are subsets of all \yes" instances of I1 and I2, respectively.

We say that Q1 is polynomially reducible to Q2 if there is a function f : I1 ! I2 which

1. is computable in polynomial time by a DTM,

2. for all instances x 2 I1, x 2 I+1 if and only if f(x) 2 I+2 .

This fact can be written shortly as Q1 �poly Q2. If we know an algorithm A2 which solves Q2 and

we are able to polynomially reduce Q1 to Q2, then we can create an algorithm A1 to solve Q1. A1

is a concatenation of the function f and A2, i.e. A1(x) = A2(f(x)) where f is the function which

establishes the polynomial reducibility between Q1 and Q2. If Q2 2 P then Q1 2 P. If Q1 has a

higher than polynomial-time complexity i.e. Q1 =2 P then of course also Q2 =2 P.

Cook's theorem can be rephrased as; any NP problem Q is polynomially reducible to the satis�-

ability problem or Q �poly SAT . The proof of the theorem starts from the observation that for each

problem in NP, there is a NDTM program which solves it (in polynomial time). Next it is shown

that any NDTM program can be polynomially reduced to an instance of the SAT problem. The

construction of the function which forces the polynomial reducibility is quite complex. The reader

who wishes to learn more about the proof is referred to [191].

The SAT problem is called to be NP-complete or NPC as any other problem from NP is

polynomially reducible to it i.e.

8Q2NP Q �poly SAT:

The class NPC is nonempty as SAT belongs to it. Are there any other problems in it ? The answer is

positive and we know many otherNPC problems. Core problems which share the same computational

complexity with SAT are: 3-satis�ability (3-SAT), 3-dimensional matching (3DM), vertex cover (VC),

partition, Hamiltonian circuit (HC), etc. To prove that a given problem Q 2NP is inNPC is enough

to show that the satis�ability problem or any other NPC problem is polynomially reducible to Q, i.e

SAT �poly Q.

If we assume that P 6= NP then we can identify three subclasses: P, NPC, and NPI = NP n
(NPC [P) { see Figure 2.3.5.

2.3.6 Complementary Problems in NP

Let us de�ne the class of complementary problems as:

Complexity of Computing 33

co-NP = f Qc ; Q 2 NP g

where Qc means the complementary problem to Q. A complementary problem Qc can be easily

generated from Q as follows:

Name: Complementary problem Qc

Instance: The same as for Q.

Question: The complementary answer required.

Consider the following two problems.

Name: Factorisation problem (FACT)

Instance: Positive integer N .

Question: Are there integers p and q such that N = p� q ?

and

Name: Primality problem (PRIM)

Instance: Positive integer N .

Question: Is N prime ?

It is easy to notice that the FACT problem is complementary problem to the PRIM problem. In our

case, PRIMc = FACT. So having the PRIM problem, we can create the FACT problem by putting

not (Is N prime?) in the Question part. Of course, \not (Is N prime?)" is equivalent to \Is N

Composite?" and it is the same as \Are there integers p, q such that: N = p � q?". Consider an

instance x of both PRIM and FAC. The answer is \yes" for x 2 PRIM if and only if the answer is

\no" for the same instance x considered as the member of FACT.

In general, however, such an observation cannot be made for all problems in NP and numerous

examples lead us to the conclusion that:

co-NP 6= NP

In other words, the answer \yes" for an instance x 2 Q does not guarantee that the answer is \no"

for the same instance x in Qc. If we consider the class P � NP then it is easy to prove that: co-P

= P that is, the class P is closed under complementation.

The next question concerns the interrelation between the class NPC and the class co-NPC. The

answer is given in the following theorem.

Theorem 2.10 If there exists an NP-complete problem Q such that Qc 2NP, then NP = co-NP.

The proof can be found in Garey and Johnson[191, p. 156]. Our discussion is summarised in Figure

2.3.6 (assuming that P 6=NP andNP 6= co-NP). Going back to the pair FACT and PRIM problems.

According to Theorem 2.10 they must not belong to NPC. On the other hand there is the common

consensus that the FACT problem does not belong to P as all existing factorisation algorithms run

in time longer than or equal to

e
p

ln(n) ln ln(n)

Thus we can conclude that both PRIM and FACT problems belong to the intersection NPI \
co�NPI.

Complexity of Computing 34

NP

NPI co-NPI

co-NP

P

NPC
co-NPC

co-NPI NPI

Figure 2.2: Classes NP and co-NP

2.3.7 NP-hard and #P-complete Problems

The theory of NP-completeness relates to decision problems only. Most problems used in cryptography

are search problems so statements which are true for the NP class are not necessarily correct if we

deal with search problems. A search problem Q consists of a set of instances denoted by I. For each

instance x 2 I, we have a set SQ(x) of all solutions for x. An algorithm is said to solve the problem Q

if it gives a solution from the set SQ(x) for an instance x whenever SQ(x) is not empty. Otherwise,

the algorithm returns a \no" answer. The knapsack problem can be rewritten as a search problem.

Name: Knapsack search problem

Instance: A �nite set U = fui j i = 1; : : : ; ng, a size s(ui) of any element of ui 2 U , and an integer B.

Question: What is a subset U 0 � U such that
P

ui2U 0 s(ui) = B ?

Informally, a search problem Qs is NP-hard if there is a decision problem Qd 2 NPC which is

polynomially reducible to it i.e. Qd �poly Qs. NP-hard problems are believed to be at least as hard

as NPC problems. If there existed a polynomial-time algorithm for an NP-hard problem, then all

NPC problems would collapse into the class P.

Another class of problems which is closely related to search problems is the class of enumeration

problems. The enumeration problem based on the search problemQ (with the set SQ(x) of all solutions

for an instance x) asks about the cardinality of SQ(x). The knapsack enumeration problem can be

de�ned as follows.

Name: Knapsack enumeration problem

Instance: A �nite set U = fui j i = 1; : : : ; ng, a size s(ui) of any element of ui 2 U , and an integer B.

Question: How many subsets U 0 � U satisfy the equation
P

ui2U 0 s(ui) = B ?

The class #P-complete problems comprises hardest problems of enumeration equivalents of NPC.

Again if a #P-complete problem was solvable in polynomial time, then P=NP.

2.3.8 Problems Used in Cryptography

There are many problems which have been used in cryptography. We already discussed the PRIM

and FACT problems. There is also another problem which shares the same computational complexity

as PRIM and FACT problems. This is the discrete logarithm problem or DL problem.

Complexity of Computing 35

Name: DL problem

Instance: Integers (g; s) that belong to GF (N) determined by a prime N .

Question: Is there a positive integer h (h = 0; : : : ; N) such that h = logg s (mod N) ?

The DL problem or more precisely its search-problem variant is extensively used in conditionally

secure cryptographic designs. There is a general purpose algorithm which solves instances of DL in

sub-exponential time. Let us briey describe a version of the algorithmwhich is applicable for GF (2n).

Assume that g 2 GF (2n) is a primitive element of GF (2n). We would like to compute h such that

s = gh. The index-calculus algorithm starts from the pre-processing stage which can be done once

for the given primitive element g of GF (2n). In the pre-processing stage, a \big" enough set D of

discrete logarithms of g is being computed. The elements of D are usually irreducible polynomials of

degree m where m is appropriately selected.

Once the set D is created, we can proceed with the main stage of computations in which we select

repeatedly at random an integer a = 1; : : : ; 2n � 1 and compute

ŝ = s � ga

Then the polynomial ŝ is factorized into irreducible polynomials. If all factors are in D then

ŝ =
Y
p2D

pbp(ŝ):

As polynomials p 2 D are discrete logarithms of g, we know the exponents of g for any given p 2 D.

Therefore

h = logg s =
X
p2D

bp(ŝ)� a (mod 2n � 1)

The algorithm needs to be run for many random a. It will terminate once all factors of ŝ are in

D. Probabilistic arguments can be used to prove that on average the algorithm takes the following

number of steps

e((1+o(1))
n
m

log m
n
):

The knapsack problem is also used in cryptography. Apparently, the problem was applied in

cryptography to build one of the �rst public-key cryptosystems. Unfortunately, this application did

not lead to a secure design despite the fact that the knapsack problem belongs to the NPC class !

The statement that the knapsack problem belongs to NPC does not mean that all its instances are

of the same complexity. It is possible to de�ne an easy knapsack problem whose all instances can be

solved using a linear-time algorithm.

Name: Easy knapsack problem

Instance: The n-dimension vector space V over GF (2) with the basis v1 = (1; 0; : : : ; 0), : : :, vn =

(0; : : : ; 0; 1) 2 V , the vector of sizes S = (s(v1); : : : ; s(vn)) such that si+1 >
Pi

j=0 sj and an

integer B.

Question: Is there a binary vector v0 2 V such that v0 � S = B?

In general, any NPC problem consists of easy instances which are solvable in polynomial time and

di�cult ones for which there is no polynomial-time algorithm unless P=NP. When an intractable

problem is used in a cryptographic design to thwart some possible attacks, it is essential to make sure

that almost all instances applied are di�cult ones.

Complexity of Computing 36

2.3.9 Probabilistic Computations

As mentioned before, the e�ciency of algorithms depends on the encoding scheme used to represent

instances and the model of computation. As there is no substantial room for improvement if you use

a reasonable encoding scheme, the only way to increase e�ciency of algorithms is to apply a di�erent

model of computations.

Probabilistic methods in computations are mostly used to simulate large systems which work

in a probabilistic environment. By its nature probabilistic computations do not guarantee \error

free" computations. Sometimes when the error rate can be made as small as required, probabilistic

computations may be an attractive alternative.

The reader should be warned that there is no concensus about de�nitions of probabilistic algorithms

discussed below. Our de�nitions are in line with those accepted by Brassard and Bratley [59] and and

Gill [201].

Monte Carlo algorithm is a probabilistic algorithm which solves a decision problem. A yes-biased

Monte Carlo algorithm never makes mistakes if it deals with \yes" instances. If the algorithm handles

a \no" instance, it may make a mistake with the probability ". A no-biased algorithm correctly solves

\no" instances making mistakes for \yes" instances with probability ".

Las Vegas algorithm is a probabilistic algorithm which for any instance of the problem may either

give the correct answer with the probability 1� " or fail with probability ". If the algorithm fails, it

returns \no answer".

The primality testing (the PRIM problem) calculated using DTM requires sub-exponential time.

It can be run faster, as a matter of fact, in polynomial time if we are ready to accept a small chance

of mistake in computations. The probabilistic algorithm for solving PRIM returns either \prime" or

\composite". If the tested integer is prime, the algorithm never makes mistakes. If, however, the

tested integer is composite, it returns \prime" with some probability p < 1. The algorithm can be

repeated n times for n independent inputs. If the algorithm consistently has answered \prime", we

can assume that the integer is prime. The probability of mistake (i.e. the integer is in fact composite)

is pn.

2.3.10 Quantum Computing

A new paradigm in computation which has an explosive potential to revolutionise the theory and

practice of computation is quantum computing. Unlike the classical computers, the quantum ones are

based on the rules of quantum mechanics. The idea of quantum computing emerged in early 1980

when Richard Feynman [180] asked about the suitability of classical computers to simulate physics.

He also gave an abstract model of quantum simulator. In 1985 David Deutsch [150] gave a model of

universal quantum computer. The power of the quantum computer steams from the phenomenon of

quantum parallelism. Roughly saying, a classical bit can be either \0" or \1" while a quantum bit is

a superposition of both \0" and \1". Thus a register of n quantum bits can be seen as a collection

of 2n potential states existing at the same time. A con�rmation of extraordinary power of quantum

computers came when Peter Shor showed that the factorisation and discrete logarithm problems are

computable in polynomial time ! This development has a dramatic impact on the RSA cryptosystem

as the RSA uses both problems.

The crucial issue related to the quantum computer is its implementation. We can build some

components such as negation gates and 2-bit quantum gates. The full general-purpose quantum

computer is still far away. We may expect that some specialised quantum computers will be easier to

implement. These includes a factorisation engine.

Readers who would like to �nd out more about the topic are referred to Brassard [58].

Elements of Information Theory 37

2.4 Elements of Information Theory

It would be di�cult to discuss any matter concerning cryptography without referring to the funda-

mental precepts of information theory. Claude Shannon, who is seen as the father of this discipline,

published in 1948 the seminal work [460] in which he formulated principles of reliable communication

via a noisy channel. One year later Shannon extended his information theoretic approach to secrecy

systems [461] and provided the greater portion of the theoretical foundation for modern cryptography.

The principal tools of secure communications across a channel are codes and ciphers. A code is a �xed

predetermined \dictionary", where for every valid message there is an equivalent encoded message,

called a codeword. Coding theory addresses itself to the \noisy channel" problem, where by selecting

a particular code, if a message M is distorted to M 0 during transmission, this error can be detected

and hopefully corrected to the original message. On the other hand, ciphers are a general method of

transforming messages into a format whose meaning is not apparent.

2.4.1 Entropy

An information source is one of the basic components of any communication and secrecy system.

It generates messages which are later transmitted over a communication channel. In most cases, a

probabilistic model of the information source seems to be adequate. So the source is represented by

a random variable S with the collection of source states (also called messages) S = fs1; s2; : : : ; skg
and associated probabilities P (S = si) = p(si) for each state i = 1; : : : ; k. The entropy of a discrete

message source is de�ned as:

H(S) =

kX
i=1

p(si) log2
1

p(si)
: (2.23)

Each log2(p(si)
�1) term represents the number of bits needed to encode the message optimally. When

all the messages are equally likely, i.e. p(s1) = p(s2) = : : : = p(sk) =
1
k
, then H(S) is log2 k. If k = 2n,

then n bits are needed to encode each message. The value of H(S) ranges between its maximumvalue

log2 k and its minimum of zero when there is a single message with the probability \1". Note that

this is so because there is no information as there is no choice of messages. The entropy of a source

H(S) also measures its uncertainty, in that it indicates the number of bits of information that must

be acquired to recover a state (message). The uncertainty of a message cannot exceed log2 k bits,

where k is the possible number of messages. 1

Consider a random variable that takes on two values s1 and s2 with probabilities,

p(s1) = " and p(s2) = 1� "

What is the maximum entropy of the random variable and how does the entropy behave as a function

of " ? First of all, we apply the de�nition of entropy to obtain,

H(S) =

2X
i=1

p(si) log2
1

p(si)
= �" log2 "� (1� ") log2(1� ")

As H(S) is a function of ", we �nd its derivative:

dH(S)

d"
= � log2 " + log2(1� ")

1If a message is known to contain a marital status, either married or single, then the uncertainty is only one bit,

since there are only two possibilities for the �rst character, and once this is determined the message can be recovered.
If the message was a student number, then the uncertainty is greater than one bit but will not exceed log

2
k bits.

Elements of Information Theory 38

log 2

0.50 1

y

x

Figure 2.3: The entropy function y = H(x)

Clearly,
dH(S)

d"
= 0 for " =

1

2

As the second derivative,
d2H(S)

d"2
= � 1

ln2
(
1

"
+

1

1� "
)

is negative for " = 1
2
, H(S) can have its maximum at " = 1

2
unless it has its maximum at " = 0 or

" = 1. We calculate the values of H(S) at these points:

H(S) j"=0= lim"!0

�
" log2

1

"
+ (1� ") log2

1

1� "

�

and,

H(S) j"=1= lim"!1

�
" log2

1

"
+ (1� ") log2

1

1� "

�

Now, as lim"!0(" log2 ") = 0, H(S) j"=0= H(S) j"=1= 0. In other words the maximum entropy of

the random variable with just two values is attained for the uniform distribution p(s1) = p(s2) =
1
2
,

and then H(S) = log2 2 = 1 (see Figure 2.4.1).

Let S andX are two random variables de�ned over the sets S = fs1; : : : ; skg and X = fx1; : : : ; xng,
respectively. Assume that for every value of xj 2 X , we know conditional probabilities p(si j xj) =
P (S = si j X = xj). Now we can de�ne the entropy in S conditional on xj as follows: H(S j xj) =
�Pk

i=1 p(si j xj) log2 p(si j xj). The conditional entropy

H(S j X) =

nX
j=1

H(S j xj)P (X = xj)

is also called equivocation and characterises the uncertainty about S knowing X. The following

properties hold for the entropy:

1. H(S j X) � H(S) { any side information X never increases the entropy of S,

2. H(S;X) = H(S) +H(X j S) = H(X) +H(S j X) { the joint entropy of the pair (S;X) is the

sum of uncertainty in X and the uncertainty in S provided X is known,

3. if S and X are independent random variables then H(S;X) = H(S) +H(X),

4. if (X1; : : : ; Xn) is a collection of random variables then H(X1; : : : ; Xn) = H(X1) + H(X2 j
X1) + : : :+H(Xn j X1; : : : ; Xn�1).

The properties can be easily proven and the proofs are left to the reader as an exercise.

Elements of Information Theory 39

2.4.2 Hu�man Codes

Assume we have a discrete source which is represented by the random variable S. Clearly, H(S)

speci�es the average number of bits necessary to represent messages from the set S = fs1; : : : ; skg.
Can we encode messages in such a way that their average length is as short as possible and hopefully

equal to H(S) ? The Hu�man algorithm gives the answer to this question.

The Hu�man code { produces an optimal binary representation of messages of the source de�ned

by S = fs1; : : : ; skg with their probabilities p(s1); : : : ; p(sk) (recursive algorithm)

H1. Recursive step. Assume that there are j messages (j � k). Order the messages according to

their occurrence probabilities. The ordered collection of messages is x1; : : : ; xj (j � k) and

p(x1) � p(x2) � : : : � p(xj). Suppose further that the encodings of the original messages

s1; : : : ; sk have their partial codes b1; : : : ; bk. At the beginning, all bis are empty. Choose the

two �rst messages and merge them creating a new message x1;2 with its occurrence probability

p(x1;2) = p(x1)+ p(x2). If si has been merged into x1, put the pre�x \0" to the encoding i.e. bi

becomes 0kbi. If si has been merged into x2, put the pre�x \1" to the encoding i.e. bi becomes

1kbi. Otherwise the encodings are unchanged. Note that k stands for the concatenation. Call

the algorithm for the collection of x1;2; x3; : : : ; xj messages.

H2. Stopping step. There are two messages x1 and x2 only. Create the �nal codes by putting \0" at

the front of all encodings of messages which have been merged into x1 and \1" otherwise.

Consider a source S = fs1; s2; s3; s4g with their corresponding probabilities 1=8; 1=2; 1=8;1=4.

The messages (s1; s3; s4; s2) are ordered and their probabilities are (1=8; 1=8; 1=4; 1=2). The partial

encodings are b1 = 0 and b3 = 1 and s1 and s3 are merged into x1 and x1 occurs with the probability

1=4. The messages (x1; s4; s2) are already in the requested order so x2 is a merge of x1 and s4. The

partial encodings are b1 = 00, b3 = 01 and b4 = 1. Finally x2 is merged with s2 and the codes are:

b1 = 000, b3 = 001, b4 = 01, b2 = 1. It is easy to check that H(S) = 14
8
= 1:75 and the average length

of the Hu�man code is L = 3� 1
8
+ 3� 1

8
+ 2� 1

4
+ 1

2
= 1:75

2.4.3 Redundancy of the Language

Any natural language can be treated as a message source of a quite complex structure. Entropy is

a convenient tool that can be used to specify probabilistic behaviour of the language. Let S(k) be a

random variable de�ned over the set S � S � : : :� S| {z }
k

with the corresponding probability distribution

for sequences of length k where j S j= N . N is the number of letters in the alphabet. The rate of

language S(k) for messages of length k is de�ned as

rk =
H(S(k))

k
;

which denotes the average number of bits of information in each character. For English, when k is

large, rk has been estimated to lie between 1.0 and 1.5 bits/letter. The absolute rate of a language is

the maximum number of bits of information that could be encoded in each character assuming that

all combinations of characters are equally likely. If there are j S j= N letters in the alphabet, then

the absolute rate is given by R = log2N , which is the maximum entropy of the individual characters.

For a 26 character alphabet this is 4.7 bits/letter. The actual rate of English is much less as it is

highly redundant, like all natural languages. Redundancy stems from the underlying structure of a

Elements of Information Theory 40

language, in particular certain letters and combinations of letters occur frequently, while others have

a negligible likelihood of occurring (e.g. in English the letters e, t and a occur very frequently, as do

the pairs, or digram, th and en, while z and x occur less frequently).2

The redundancy of a language with rate r is de�ned as D = R� r. When r = 1 and R = 4:7 then

the ratio D
R

shows that English is about 79 percent redundant.

Consider a language which consists of the 26 letters of the set S = fA;B; C;D;E; F;G;H; I; J;K;
L;M;N; O; P;Q; R; S; T; U; V;W;X; Y; Zg = fs1; s2; : : : ; s26g. Suppose the language is characterised
by the following sequence of probabilities:

P (s1) = 1
2
; P (s2) =

1
4

P (si) = 1
64

for i = 3; 4; 5; 6; 7;8;9;10

P (si) = 1
128

for i = 11; : : : ; 26

The entropy of our single letter language is:

r1 = H(S)

=
P26

i=1 P (si) log2
1

P (si)

= 1
2
log2 2 +

1
4
log2 4 + 8(1

64
log2 64) + 16(1

128
log2 128)

= 2:625

Now the language has N = 26 letters so,

R = log2 26 = 4:7 :

In other words, the redundancy of the language calculated for single letter probabilities is

D1 = R� r1 = 4:7� 2:625 = 2:075:

This example only applies to language structure which is described by the probability distribution

of single letters only. This description should be treated as the very �rst approximation of language's

statistical structure. As a matter of fact, a natural language's structure is far more complex and the

second approximation of a language's structure gives better picture of statistical properties.

Let our language be de�ned as in the previous example and let its conditional probability distri-

bution be given as follows:

P (s0i+1 j si) = P (s0i+2 j si) = 1
2

for i = 1; : : : ; 24

P (s026 j s25) = P (s01 j s25) = 1
2

P (s01 j s26) = P (s02 j s26) = 1
2

where P (s0i+1 j si) means the conditional probability that the second letter is si+1 provided that the

�rst letter is si.

2In coding theory, redundancy refers to that portion of a codeword that is used to transmit check symbols, so as to
allow error detection and possible correction. This portion of the codeword contains no information.

Elements of Information Theory 41

Now, we calculate the probability distribution of two letter sequences:

P (s1; s
0
2) = P (s02 j s1)P (s1) = 1

4

P (s1; s
0
3) = P (s03 j s1)P (s1) = 1

4

P (s2; s
0
3) = P (s03 j s2)P (s2) = 1

8

P (s2; s
0
4) = P (s04; j s2)P (s2) = 1

8

P (si; s
0
i+1) = P (s0i+1 j si)P (si) = 1

128
for i=3, . . . , 10

P (si; s
0
i+2) = P (s0i+2 j si)P (si) = 1

128
for i=3, . . . , 10

P (si; s
0
i+1) = P (s0i+1 j si)P (si) = 1

256
for i=11, . . . , 24

P (si; s
0
i+2) = P (s0i+2 j si)P (si) = 1

256
for i=11, . . . , 24

P (s25; s
0
26) = P (s25; s

0
1) = P (s26; s

0
1) = P (s26; s

0
2) =

1
256

All other probabilities are equal zero and, in this case, the entropy of two-letter language sequences

is equal to:

H(S(2)) =
P26

i;j=1P (si; s
0
j) log2

1
P (si;s

0

j
)

= 2(1
4
log2 4) + 2(1

8
log2 8) + 16(1

128
log2 128) + 32(1

256
log2 256)

= 3:625

Consider, for the moment, the entropy H(S) from the previous example and compare it to H(S(2)).

We can immediately state that H(S(2))�H(S) = 1. This equation means that, having the �rst letter,

we can obtain the second one using one bit only. This results from the fact that there are two equally

probable candidates. For example, if the �rst letter is s3 = C, then the second letter may be either

s04 = D or s05 = E.

Returning to our example, we calculate the rate of the language for messages of length 2, namely,

r2 =
1

2
H(S(2)) = 1:8125

As the absolute rate of our language is �xed and depends on the number of letters only, the redundancy

D2 is:

D2 = R � r2 = 2:9

We can now state that the language considered is 60 percent redundant.

We note that the more redundant a language is, the stronger the statistical relations between

the letters in a sequence. On the other hand, if a language has no redundancy then occurrences of

subsequent letters are statistically independent.

Once we have dealt with a natural language, we can easily calculate the entropy of a single letter

r1 = H(S). Also the entropy r2 = H(S(2))=2 of two-letter words can be found relatively easily.

Unfortunately, the amount of calculation for rn = H(S(n))=n grows exponentially as a function of n.

So, the real redundancy of language which can be expressed as :

r1 = limn!1

H(S(n))

n

is estimated using several earlier evaluated entropies.

Elements of Information Theory 42

SOURCE
MESSAGE ENCRYPTION

 E

GENERATOR
OF KEYS

M

K

C

Figure 2.4: Graphical presentation of the interrelations between messages and cryptograms in a binary
cryptosystem

2.4.4 Key Equivocation and Unicity Distance

Consider an encryption system fromFigure 2.4. The cryptosystem consists of three basic components:

the message source, the key generator, and the encryption block. The message source is characterised

by the random variableM and describes statistical properties of the language generated by the source.

The set of all characters in the language alphabet is M. The key generator selects keys randomly

usually with uniform probability from the whole set K. Once chosen, the key stays �xed for some

time. The encryption block uses a publicly known algorithm to encrypt messages into cryptograms

under the control of the secret key. The set of possible cryptograms is denoted by C.
The sender applies the cryptosystem (or cipher) for n consecutive messages and produces n corre-

sponding cryptograms (ciphertexts). An enemy cryptanalyst who does not know the secret key but

can read cryptograms, may try to:

� reveal messages from cryptograms or

� recover the secret key.

The attacker is also assumed to know the statistical properties of the message source. Thus they can

calculate message and key equivocation to �nd out the collection of most probable messages and keys.

As the attacker knows n cryptograms, they can compute the message equivocation as follows:

H(M (n) j C(n)) =
X
c2Cn

p(c)
X

m2Mn

p(m j c) log2
�

1

p(m j c)

�
(2.24)

where Cn = C � : : :� C| {z }
n

, Mn = M� : : :�M| {z }
n

, and p(m j c) is the conditional probability of the

sequence m provided c has been observed. Similarly, the enemy can compute the key equivocation

according to

H(K j C(n)) =
X
c2Cn

p(c)
X
k2K

p(k j c) log2
�

1

p(k j c)

�
(2.25)

where p(k j c) is the probability of k given c.

The unicity distance of the cryptosystem (or cipher) is the parameter n for which

H(K j C(n)) � 0: (2.26)

In other words, the unicity distance is the amount of ciphertext needed to uniquely determine the key

applied. Intuitively, as the number of observations increases, the key equivocation stays the same or

decreases.

The unicity distance can be used to de�ne two classes of cryptosystems (ciphers):

Elements of Information Theory 43

� unbreakable whose unicity distance is in�nite and limn!1H(K j C(n)) = H(K).

� breakable whose unicity distance is �nite.

The class of unbreakable cryptosystems is also called ideal ciphers. Ideal ciphers are immune against

any attacker who knows the statistical properties of the language (message source) and has access to

cryptograms (communication channel) even if the attacker has unlimited computational power !

Cryptographic designs which are secure against an enemy with unlimited computational power are

called unconditionally secure.

2.4.5 Equivocation of a Simple Cryptographic System

Consider the cryptographic system (see Figure 2.4) which encrypts binary messages using binary keys

according to the following formula:

c = m � k

where c 2 C, m 2 M, k 2 K are a cryptogram (ciphertext), a message, and a key, respectively

(C =M = K = f0; 1g and � stands for addition modulo 2). The message source is known to generate

elementary messages (bits) with probabilities,

P (M = 0) = v and P (M = 1) = 1� v

while 0 � v � 1. For each transmission session, a cryptographic key K is selected from equally

probable binary elements, namely,

P (K = 0) = P (K = 1) =
1

2

Our task is to calculate the cipher equivocation and estimate the unicity distance.

Assume that our cryptosystem has generated n binary cryptograms so that the probability P (A),

where A is the event that the ordered cryptogram sequence consists of i zeros and n-i ones, is equal

to:
P (A) = P (A; (K = 0 or K = 1))

= P (A;K = 0) + P (A;K = 1)

= P (A j K = 0)P (K = 0) + P (A j K = 1)P (K = 1)

The conditional probability P (A j K = 0) is equal to the probability that the ordered message

sequence consists of i zeros and n� i ones. On the other hand, P (A j K = 1) equals the probability

that the ordered message sequence contains n� i zeros and i ones. Therefore,

P (A j K = 0) = vi(1� v)n�i and P (A j K = 1) = (1� v)ivn�i

As the result, we have:

P (A) =
1

2

�
vi(1� v)n�i + (1� v)ivn�i

�
Assume that Ci;n is the event that the unordered cryptogram sequence contains i zeros and n-i ones,

then,

P (Ci;n) =
1

2

n

i

!�
vi(1� v)n�i + (1� v)ivn�i

�
Of course, the conditional key probability is equal to:

P (K = 0 j Ci;n) =
P (Ci;n j K = 0)P (K = 0)

P (Ci;n)

Elements of Information Theory 44

The probability P (Ci;n j K = 0) is equal to the probability that the unordered message sequence

obtains i zeros and n� i ones. Substituting values, we get the following expression:

P (K = 0 j Ci;n) =
1

1 + a
while a =

vn�i(1� v)i

vi(1 � v)n�i

Considering the second conditional probability of the key, we obtain:

P (K = 1 j Ci;n) =
a

1 + a

Clearly, the conditional entropy H(K j Ci;n) of the key can be calculated according to the following

formula:

H(K j Ci;n) =
P

k2K P (k j Ci;n) log2
1

P (kjCi;n)

= P (K = 0 j Ci;n) log2
1

P (K=0jCi;n)
+ P (K = 1 j Ci;n) log2

1
P (K=1jCi;n)

= log2(1 + a) � a
1+a

log2 a

So, the equivocation of the cipher (or the average conditional entropy of the cryptographic key) can

be presented as:

H(K j Cn) =

nX
i=0

P (Ci;n)H(K j Ci;n)

Substituting values, we obtain:

H(K j Cn) =
1

2

nX
i=0

n

i

!
vi(1� v)n�i(1 + a)

�
log2(1 + a) � a

1 + a
log2 a

�

Figure 2.5 shows the equivocation EQ(n) = H(K j Cn) for �ve di�erent parameters of v, namely,

v=0.5; 0.4; 0.3; 0.2; 0.1

 0 1 2 3 4 5 6 7 8 9 10

-

-

-

-

-

0.2

0.4

0.6

0.8

1.0 v=0.5

v=0.4

v=0.3

v=0.2
v=0.1

EQ(n)

n

Figure 2.5: Diagram of EQ(n) for di�erent values of v

First consider the case when v = 0:5. The equivocation is constant and equals 1. This means that

the uncertainty in the key is �xed no matter how much of the cryptogram sequence is known. In other

words, the key applied can be determined by selecting from two equally probable elements from all

observations of cryptograms.

The second case is for v = 0:1. More exact values of EQ(n) for n = 1; : : : ; 10 are given in Table

2.3. Our equivocation is the entropy of two value random variables. Now consider such a variable

which is characterised by two probabilities P (a) = ", P (b) = 1 � ". Its entropy H" is presented in

Elements of Information Theory 45

Number of observations n EQ(n) jv=0:1
1 0.47
2 0.26
3 0.14
4 0.078
5 0.043
6 0.025
7 0.014
8 0.0081
9 0.0046
10 0.0027

Table 2.3: The equivocation for v = 0:1 with various numbers of observations

Value of probability " entropy H"

0.5 1
0.4 0.91
0.3 0.88
0.2 0.72
0.1 0.47
0.05 0.29
0.01 0.081

Table 2.4: Some probabilities and entropies

Table 2.4. From the two tables, we can state the equivocation EQ(n) for v = 0:1 and n = 4 is less

than H", that is:

EQ(4) = 0:078 < H" = 0:081

Therefore, in this case, the unicity distance equals 4. In other words, after observing four elementary

cryptograms, we are able to discover the key applied with the probability 0.99. Moreover, if we accept

the threshold probability 0.9 instead of 0.99, then the unicity distance equals 1 as:

EQ(1) = 0:47 � H" = 0:47

As you can see in the above example, the calculation of equivocation becomes more and more

complicated as the number of elementary messages and keys grows. Sometimes, we can calculate

(or estimate) the unicity distance of a cipher, but, unfortunately, we may not be able to use this

knowledge to break the cipher.

In the above example the unicity distance stays the same only when the language (message source)

has no redundancy (the case v = 0:5). But we must not draw a conclusion that this is an ideal

cipher as the in�nite unicity distance results from the lack of redundancy of the language rather than

the strength of the cryptosystem. The ideal cipher should keep the unicity distance in�nite for all

message sources no matter how redundant they are. It is possible to improve the cipher considered in

the example and make it ideal. How ? It is enough to generate the cryptographic key independently

and uniformly for every single message. The resulting cipher is the well-known Vernam one-time pad.

Gilbert Vernam invented the cipher in 1917 for encryption of telegraphic messages. Although the

one-time pad provides the perfect secrecy the price to pay for it is the length of the cryptographic key

{ it has to be as long as the message (or cryptogram) itself.

Elements of Information Theory 46

2.5 Problems and Exercises

1. Show that the following properties of lcm and gcd hold:

(a) if there is an integer d 2 Z such that d j ni for all ni 2 N (i = 1; : : : ; k), then d j gcd (n1; : : : ; nk),

(b) if n1 j m; : : : ; nk jm (m 2 Z), then lcm(n1; : : : ; nk) j m,

(c) if d j gcd (n1; : : : ; nk) and bi =
ni

d
, then gcd(b1; : : : ; bk) = 1,

(d) lcm(a; b)� gcd (a; b) = a� b.

2. Apply the Euclid algorithm to �nd the following:

� gcd111;141;

� gcd208;264;

� gcd57998;162432;

� gcd(785437;543889);

3. Write a C program that accepts two arguments lower bound and upper bound and generates all twin primes

between two bounds. Make any other reasonable assumptions.

4. Write a C program that produces all Mersenne primes smaller than an integer give as an argument to the program.

5. Use the sieve of Eratosthenes to determine all primes smaller than 10,000. Write a C program to execute the

computations.

6. Justify that the Euler totient function is equal to:

� N(N � 1) for the modulus N2, and

� (p� 1)(q� 1) for the modulus pq.

7. To compute inverses modulo N , it is possible to use at least the three following methods: exhaustive search

through all elements, exponentiation if '(N) is known, or the Euclid algorithm. Analyse the e�ciency of these

methods.

8. Use the exponentiation to �nd inverses a�1 of

� a = 87543 for the modulus N = 111613 = 239� 467,

� a = 8751 for the modulus N = 12347.

9. Apply the Euclid algorithm to �nd inverses a�1 of the following integers:

� a = 2317 modulo 3457,

� a = 111222 modulo 132683.

10. Write a C language implementation of the CRT algorithm. It should accept an arbitrary number of primes as the

command line arguments (primes p1; : : : ; pr) and convert any vector (a1; : : : ; ar) given from the standard input

into the corresponding integer a (where ai = amod pi).

11. Let p1 = 11, p2 = 13 and p3 = 17. Find the integer representation of the following vectors;

� a = (5 mod 11; 7 mod 13;3 mod 17),

� a = (2 mod 11; 11 mod 13; 2 mod 17).

12. Implement a polynomial version of the Euclid algorithm for �nding gcd. Program can be written in C or other

language. Assume that coe�cients are from the �eld GF (N) where N is prime.

13. Modify your program for gcd of two polynomials so it computes the inverse of a polynomial a(x) modulo p(x).

14. Consider polynomials Z2[x] over the binary �eld. Write a program (in C or other language) which generates all

irreducible polynomials of a given degree. The degree should be an input argument passed to the program.

15. Create the multiplication and addition tables for

� GF (22) generated by an irreducible polynomial p(x) = x2 + x+ 1,

� GF (23) generated by an irreducible polynomial p(x) = x3 + x2 + 1.

16. Take a function g(n) = 12n6 + 34n5 + 23. Give examples of the function f(n) such that

� f(n) = o(g(n)),

Elements of Information Theory 47

� f(n) = O(g(n)),

� f(n) = �(g(n)),

� f(n) =
(g(n)),

17. De�ne conditional entropy and show that

� H(S j X) � H(S),

� H(S;X) = H(S) +H(X j S),

� H(S;X) = H(S) +H(X) if S and X are independent random variables.

18. Design a Hu�man code for a message source S = fs1; s2; s3; s4; s5g with the probabilities p(s1) = 1=2; p(s2) =

3=16; p(s3) = 1=8; p(s4) = 1=8; p(s5) = 1=16. Calculate the average length of the code and compare it to the

entropy of the source.

19. Design an algorithm for measuring statistical properties of English language. Your algorithm should count

occurrences of single characters and output the complete statistics for all single letters. Implement the algorithm

in C or any other high level programming language. Test your program for di�erent texts and discuss the results.

Compute the redundancyD1 of English for single letters. Modify your program so it will output statistics of two

letter strings. Compute the redundancy D2 of English for two-letter sequences.

20. Show that the one-time pad cipher is ideal.

Chapter 3

PRIVATE-KEY CRYPTOSYSTEMS

Section 3.1 overviews some classical ciphers for which both plaintext and ciphertext are characters or

strings of characters. Section 3.2 covers the theory of modern cryptosystems and describes two early

ciphers: Lucifer and DES. Section 3.3 presents �ve private-key block ciphers: FEAL, IDEA, RC6,

Rijndael and Serpent. The last three compete in the 2-nd round of the AES call. Sections 3.4 and 3.5

introduce the di�erential and linear cryptanalysis, respectively. Section 3.6 studies the principles for

secure S-box design.

3.1 Classical ciphers

The private-key ciphers (or cryptosystems) enable two parties: the sender and receiver to talk in

secrecy via an insecure channel (see Figure 3.1). Before any communication of messages takes place,

MESSAGE
SOURCE

INSECURE
CHANNEL

GENERATOR
KEY

SECURE CHANNEL

ENCRYPTION
ALGORITHM

E
ALGORITHM

D

DECRYPTIONm mc c

k k

SENDER RECEIVERCRYPTANALYST

Figure 3.1: Diagram of a private-key cryptosystem

both parties must exchange the secret key k 2 K via a secure channel. The secure channel can

be implemented using a messenger or a registered mail. If the distribution of the key is done, the

sender can select message m 2 M, apply the encryption algorithm E : M� K ! C, and put the

corresponding cryptogram c = Ek(m) into the insecure channel, where M; C;K are sets of messages,

cryptograms and keys, respectively. The receiver recreates the message from the cryptogram using

the decryption algorithmD : C�K !M i.e. m = Dk(c). Clearly, the cryptosystem works correctly if

Dk(Ek(M)) =M for all keys k 2 K. Note that if the parties communicate using a particular language,

the sender always chooses letters according to the probability distribution which characterises the

language.

An enemy cryptanalyst knows the statistical properties of the message source (language) and reads

all cryptograms which are being sent via the insecure channel. They want to either recreate messages

48

Classical Ciphers 49

or determine the secret key from cryptograms. This is the so-called ciphertext-only attack.

Very �rst encryption algorithms were monoalphabetic ciphers where the encryption and decryption

were done independently for each character.

3.1.1 Caesar Ciphers

Julius Caesar used a cipher which moved each letter of the alphabet to the letter three to the right in

the predetermined order of the letters of the alphabet, so:

A ! D

B ! E

C ! F

and so on. The last three substitutions are X ! A, Y ! B, and Z ! C. It is much more convenient

to convert letters of the alphabet into integers. The most natural conversion is to assign each letter

an integer which indicates the position of the letter in the alphabet. This means that A! 0, B ! 1,

: : :, Z ! 25. If we use this conversion, then encryption in the above cipher can be de�ned as

c = Ek(m) = m+ 3 (mod 26):

The decryption is

m = Dk(c) = c � 3 (mod 26)

Notice that the cipher does not have any key ! The integer 3 which determines the shift is �xed (and

perhaps known to the cryptanalyst). If we replace the integer by the key, we get the Caesar cipher.

The cryptanalysis of the cipher is easy { there are 26 possible keys only. In Figure 3.2 we have

a histogram of the percentage frequency of English characters in text. In Figure 3.3 this has been

shifted using the Caesar cipher with k = 3. So if a ciphertext is given, it is easy to get frequency

of characters in the ciphertext and compare it with the frequency of the language. So having the

ciphertext

L FDPH L VDZ L FRQTXHUHG

it is easy to �nd out that k = 3 and the plaintext is

I CAME I SAW I CONQUERED

R S T U VW X Y ZA B C D E F G H I J K L M N O P Q
0

5

10

15

Figure 3.2: English character frequencies

The Caesar cipher

Classical Ciphers 50

Message Space: M = f0; 1; : : : ; 25g { letters converted to their positions in the alphabet.

Cryptogram Space: C = f0; 1; : : :; 25g.

Key Space: K = f0; 1; : : : ; 25g, j K j= 26 and H(K) � 4:7.

Encryption: c = Ek(m) = m + k (mod 26).

Decryption: m = Dk(c) = c� k (mod 26).

Unicity Distance: N �
H(K)
D

� 1:5 letters (assuming D = 3:2).

Cryptanalysis: Uses letter frequency distributions. If encipherment is achieved by a simple letter

shift then a frequency count of the letter distributions in the ciphertext will yield the same

pattern as the original host language of the plaintext but shifted.

QA B C D E F G H I J K L M N O P R S T U VW X Y Z
0

5

10

15

Figure 3.3: Encryption character frequencies with c = m + 3 (mod 26)

3.1.2 A�ne Ciphers

This is a generalisation of the Caesar cipher obtained by numbering the letters of the alphabet and

then multiplying the number of the letter to be enciphered by k1 where gcd(k1; 26) = 1 and adding a

constant k2. The answer is then reduced modulo 26. Figure 3.4 shows what happens to the histogram

of Figure 3.2 when the a�ne cipher c = Ek(m) = k1m + k2 (mod 26) is applied with k1 = 5 and

k2 = 7.

A B C D E F G H I J K L M N O P R S T U VW X Y Z
0

5

10

15

Q

Figure 3.4: Encryption character frequencies with c = 5m + 7

Suppose we have to decipher:

Classical Ciphers 51

WZDUY ZZYQB OTHTX ZDNZD KWQHI BYQBP WZDUY ZXZDSS

we note that:

Z occurs 8 times

D occurs 5 times

Y occurs 4 times

W, Q, B occurs 3 times each

Presuming the language is English, we note that the most frequently occurring letters in English text

are, in order,

E, T, R, I, N, O, A

This leads us to try Z ! E and D ! T or Y ! T. That is, we try to simultaneously solve,

25 � 4k1 + k2 (mod 26)

3 � 19k1 + k2 (mod 26)
or

25 � 4k1 + k2 (mod 26)

24 � 19k1 + k2 (mod 26)

which have as solution k1 = 2, k2 = 17 in the �rst case (we reject it as k�11 does not exist) and k1 = 19,

k2 = 1 in the second. If we try to decipher the letters WZDUY (the integers 22, 25, 3, 20, 24) using

(c� k2) � k
�1
1 , which, in this case, is (c� 1) � 19�1 or (c � 1) � 11, we will get the following plaintext

23, 4, 22, 1, 7 or XEWBH

which is not a part of any recognisable English expression or word. In fact, we could try all combina-

tions Z ! E with other letters and �nd that, in fact, Z does not map to E.

After much trial we would �nd that Z ! O (we would expect the most common letter to be a

vowel). Now let us try Z ! O and D ! T or Y ! T. That is, we simultaneously try to solve,

25 � 14k1 + k2 (mod 26)

3 � 19k1 + k2 (mod 26)
or

25 � 14k1 + k2 (mod 26)

24 � 19k1 + k2 (mod 26)

which have solutions k1 = 6 and k2 = 19 or k1 = 5 and k2 = 7.

Now if we use the second of these to decode,

WZDUYZ (the integers 22, 25, 3, 20, 24, 25)

using (c � k2) � k
�1
1 = (c � 7) � 21, we get 3, 14, 20, 13, 19, 14 or DOUNTO which is recognisable as

the words DO UNTO. We leave the reader to decipher the remainder of the message.

The a�ne cipher

Message Space: M = f0; 1; : : : ; 25g { letters converted to their positions in the alphabet.

Cryptogram Space: C = f0; 1; : : :; 25g.

Key Space: K = fk = (k1; k2) j k1; k2 2 f0; 1; : : :; 25g; gcd(k1; 26) = 1g, j K j= 312, H(K) � 8:3.

Encryption: c = Ek(m) = k1m+ k2 (mod 26).

Decryption: m = Dk(c) = (c� k2)k
�1
1 (mod 26)

Unicity Distance: N �
H(K)
D

� 2:6 letters (D = 3:2).

Cryptanalysis: Uses letter frequency distributions. The letter frequencies are still preserved but

permuted according to the secret key k = (k1; k2).

Classical Ciphers 52

3.1.3 Monoalphabetic Substitution Ciphers

It is a common practice to use a secret word or words, not repeating letters, and write them in a

rectangle to use as a mnemonic to translate plaintext into ciphertext. Suppose the secret words were

STAR WARS. We note that STAR WARS has the letters A, R and S repeated so we use only the

letters S, T, A, R, W. We write these �rst and then �ll out the rectangle with the unused letters of

the alphabet:

S T A R W

B C D E F

G H I J K

L M N O P

Q U V X Y

Z

Columns are then read o� to give us the following plaintext to ciphertext transformation:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

S B G L Q Z T C H M U A D I N V R E J O X W F K P Y

Thus,

I KNOW ONLY THAT I KNOW NOTHING

becomes,

H UINF NIAP OCSO H UINF INOCHIT

The above cipher is a substitution cipher. The nice property of it is that the secret permutation

can be readily reconstructed from a relatively short and easy to memorise word or sentence. A general

instance of substitution cipher can be obtained if the secret word consists of a random permutation

of 26 letters. Unfortunately, it is di�cult to learn by heart. The secret key is the permutation

� : Z26 ! Z26, where Z26 = f0; 1; : : : ; 25g. A message m 2 Z26 is encrypted into c = �(m). The

decryption is m = ��1(c) where ��1 is the inverse permutation of �.

Cryptanalysis uses frequency analysis on the letters of the alphabet. Short amounts of ciphertext

can readily be attacked by computer search but even reasonable amounts of ciphertext are easy to

decipher by hand. Decipher:

BRYH DRL R ITEEIA IRBS TEF CIAAXA NFR NDTEA RF FGKN RGL AOAYJNDAYA EDRE

BRYHNAGE EDA IRBS NRF FMYA EK ZK TE CKIIKNAL DAY EK FXDKKI KGA LRHNDTXD

NRF RZRTGFE EDA YMIAF.

We do a frequency analysis and note the following distribution of letters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

17 4 2 10 13 10 5 3 9 1 9 4 2 9 1 15 2 6 3 6 2

So the most frequent letters are:

A, R, E, D or F, I or K or N

There is a one letter word so R is I or A. The two most common three letter words in English are

THE and AND. So we guess EDA is one of these. Since the most common letters in English are:

Classical Ciphers 53

E, T, R, I, N, : : :

we will guess EDA is THE and that R is A so our message becomes:

BaYH HaL a ITttle IaBS TtF CIeeXe NaF NhDte aF FGKN aGL eOeYJNheYe that BaYH NeGT

the IaBS NaF FMYe tK ZK Tt CKIIKNeL heY tK FXhKKI KGe LaH NhTXh NaF aZaTGFt the

YMIeF.

Which resolves to:

mary had a little lamb its eece was white as snow and everywhere that mary went the lamb was sure

to go it followed her to school one day which was against the rules.

The monoalphabetic substitution cipher

Message Space: M = f0; 1; : : : ; 25g = Z26

Cryptogram Space: C = f0; 1; : : :; 25g = Z26.

Key Space: K = f� j � : Z26 ! Z26g, j K j= 26!, and H(K) = log2 26! � 88:3. To evaluate log2 26!,

Sterling's approximation can be used and log2 26! � 26log2
26
e
.

Encryption: c = Ek(m) = �(m).

Decryption: m = Dk(c) = ��1(c).

Unicity Distance: N �
H(K)
D

� 27:6 letters (assuming D = 3:2).

Cryptanalysis: Uses letter frequency distributions. The letter frequencies are still preserved but

permuted according to the permutation �.

3.1.4 Transposition Ciphers

The other principal technique for use on alphabets is transposition of characters. Thus,

plaintext ! rearrange characters ! ciphertext

Write the plaintext CRYPTANALYST as a 3� 4 matrix:

1 2 3 4

C R Y P

T A N A

L Y S T

and read o� the columns in the order 2, 4, 1, 3 to get,

RAYPATCTLYNS

This technique can also be used for n-dimensional arrays. Transposition ciphers often use a �xed

period d. Let Zd be the integers from 0 to d� 1, and � : Zd ! Zd be a permutation. Then the key is

the pair k = (d; �) and blocks of d characters are enciphered at a time. Thus, the sequence of letters

m0 � � �md�1 md � � �m2d�1 � � �

is enciphered to,

m�(0) � � �m�(d�1) md+�(0) � � �md+�(d�1) � � �

Suppose d = 4 and � = (�(0); �(1); �(2); �(3)) = (1; 2; 3; 0). Then the following shows a message

broken into blocks and enciphered:

Classical Ciphers 54

Plaintext: CRYP TOGR APHY

Ciphertext: PCRY RTOG YAPH.

Note that the frequency distribution of the characters of the ciphertext is exactly the same as

for the plaintext. A knowledge of the most frequent pairs and triples in a language is used with

anagraming. The most frequent pairs of letters in English, on a relative scale from 1 to 10, are:

TH 10.00 ED 4.12 OF 3.38

HE 9.50 TE 4.04 IT 3.26

IN 7.17 TI 4.00 AL 3.15

ER 6.65 OR 3.98 AS 3.00

RE 5.92 ST 3.81 HA 3.00

ON 5.70 AR 3.54 NG 2.92

AN 5.63 ND 3.52 CO 2.80

EN 4.76 TO 3.50 SE 2.75

AT 4.72 NT 3.44 ME 2.65

ES 4.24 IS 3.43 DE 2.65

We note some other salient features of English:

1. The vowel-consonant pair is most common { no high frequency pair has two vowels.

2. Letters that occur in many di�erent pairs are probably vowels.

3. Consonants, except for N and T, occur most frequently with vowels.

4. If XY and YX both occur, one letter is likely to be a vowel.

The most frequent three letter combinations, on a scale of 1 to 10, are:

THE 10.00 FOR 1.65 ERE 1.24

AND 2.81 THA 1.49 CON 1.20

TIO 2.24 TER 1.35 TED 1.09

ATI 1.67 RES 1.26 COM 1.08

Decipher the following ciphertext

LDWEOHETTHSESTRUHTELOBSEDEFEIVNT

We start by looking at blocks of various lengths by dividing up the text:

LD WE OH ET TH SE ST RU HT EL OB SE DE FE IV NT.

Is d = 2? The pairs LD WE, which can only be permuted to DL EW, tell us no.

LDW EOH ETT HSE STR UHT ELO BSE DEF EIV NT

Is d = 3? The triple LDW in any permutation tells us no.

LDWE OHET THSE STRU HTEL OBSE DEFE IVNT

Is d = 4? This case is a bit harder because we have to try 16 permutations on the �rst two groups of

four letters but we become convinced that none of these make sense.

LDWEO HETTH SESTR UHTEL OBSED EFEIV NT

Classical Ciphers 55

d N=0.3d log2 (d/e) N
3 0.9 log2 (3/e) 0.12804
4 1.2 log2 (4/e) 0.66877
5 1.5 log2 (5/e) 1.31885
6 1.8 log2 (6/e) 2.05608
7 2.1 log2 (7/e) 2.86579

Table 3.1: The period and associated unicity distance

Is d = 5? A bit harder because we have to try 5! permutations on the �rst two groups of �ve letters

but become convinced that none of these make sense.

LDWEOH ETTHSE STRUHT ELOBSE DEFEIV NT

Is d = 6? The second group of six letters suggests

THESET or TTHESE.

That means we try the following permutations for deciphering,

(205134), (250134), (405132), (450132)

(501234), (301245), (510243), (310245)

When we try (450132) on the other blocks we recover the following message:

WE HOLD THESE TRUTHS TO BE SELF EVIDENT

The transposition cipher

Message Space: M = Z26 � : : :Z26| {z }
d

= Zd
26 - collection of sequences with d letters.

Cryptogram Space: C = Zd
26 - d-letter sequences.

Key Space: K = f� j � : Zd ! Zdg, j K j= d! and H(K) = log2 d! � d log2(d=e).

Encryption: Amessagem = (m0; : : : ;md�1) is encrypted into cryptogram c = Ek(m) = (c0; : : : ; cd�1) =

(m�(0); : : : ;m�(d�1)).

Decryption: m = Dk(c) = (c��1(0); : : : ; c��1(d�1)).

Unicity Distance: N �
H(K)

D
- see Table 3.1.

Cryptanalysis: Uses letter frequency distributions. First the period d needs to be guessed. Next

single letter frequencies combined with the most frequent pairs and triples allows to break the

cipher.

3.1.5 Homophonic Substitution Ciphers

Letters which occur frequently may be mapped into more than one letter in the ciphertext to atten

the frequency distribution. The number of cipher letters for a given character is determined by its

frequency in the original language.

Suppose the alphabet is mapped into the numbers 0 to 99 then,

Classical Ciphers 56

map E to 17, 19, 23, 47, and 64

map A to 8, 20, 25, and 49

map R to 1, 29, 65

map T to 16, 31, and 85

but otherwise the ith letter maps to the the integer 3i. Then the plaintext,

MANY A SLIP TWIXT THE CUP AND THE LIP

will become,

08 20 16 3185 17 25 16 47

3608397220543324451666246931852117066045253909162147332445

If a letter is to be encrypted, a single element is chosen at random from all homophones associated

with the letter.

For each message m 2 Z26, the cipher assigns the set Hm of homophones or positive integers.

Each set contains at least one element. Usually the cardinality of a set Hm is proportional to the

frequency of the letter m in the language. The cryptogram space C =
S
m2MHm � ZH where ZH is

the smallest possible set which contains all homophones. The parameters and properties of the cipher

are summarised below.

The homophonic cipher

Message Space: M = Z26.

Cryptogram Space: C =
S
m2MHm � ZH .

Key Space: The secret key is the assignment of homophones to all messages so k = (H0;H1; : : : ;H25).

If we assume that sizes of Hi for i = 0; : : : ; 25 are known (or easy to guess from the statisti-

cal analysis of the language), then the number of possible keys is equal the number of pos-

sible arrangements of H elements into 26 compartments. Each compartment has to contain

ni =j Hi j di�erent elements. Thus the number of all keys is j K j=

H

n0

!
H � n0

n1

!
: : :

n24 + n25

n24

!
where H =

P25
i=0 ni.

Encryption: A message m 2 M is encrypted by random selection of a homophone from Hm, i.e.

c = Ek(m) = h 2R Hm (where 2R means that element is chosen randomly and uniformly).

Decryption: Knowing a cryptogram c 2 C, the decryption relies on �nding the set Hm to which c

belongs { the message is m.

Unicity Distance: If sets of homophones contain single elements only, the cipher becomes a monoal-

phabetic substitution cipher with j K j= 26! and the unicity distance � 27:6. If each set of

homophones has exactly v elements and H = 26 � v, then j K j= (26v)!
(v!)26 and the unicity distance

is N � 38:2 � v (note that this approximation does not work very well for small v = 1; 2; 3).

Cryptanalysis: Uses homophone frequency distributions. If there is enough ciphertext, it is easy to

determine the set C. From the language frequency distribution, guesses about ni can be made.

The �nal stage would involve enumeration of possible assignments of homophones to messages.

Classical Ciphers 57

3.1.6 Polyalphabetic Substitution Ciphers

Whereas homophonic substitution ciphers hide the distribution via the use of homomorphisms, polyal-

phabetic substitution ciphers hide it by makingmultiple substitutions. Leon Battista Alberti (see [266])

used two discs which were rotated according to the key. In e�ect this gave, for a period d, d di�erent

substitutions. Thus polyalphabetic substitution ciphers apply d di�erent permutations

�i : Z26 ! Z26 for i = 1; : : : ; d

and the message,

m = m1;m2; : : : ;md;md+1;md+2; : : :m2d

becomes,

Ek(m) = �1(m1); �2(m2); : : : ; �d(md); �1(md+1); : : : ; �d(m2d)

Note that if d = 1, we get back the monoalphabetic substitution cipher. We now give a few methods

for obtaining polyalphabetic ciphers.

The Vigen�ere cipher

Message Space: M = Zd
26 { d-letter sequences.

Cryptogram Space: C = Zd
26 { d-letter sequences.

Key Space: K = Zd
26, k = (k1; : : : ; kd), j K j= 26d and H(K) � 4:7d.

Encryption: c = Ek(m1; : : : ;md) = (c1; : : : ; cd) and ci = �i(mi) � mi + ki (mod 26) for i =

1; : : : ; d.

Decryption: m = Dk(c1; : : : ; cd) = (m1; : : : ;md) and mi = ��1i (ci) � ci � ki (mod 26) for i =

1; : : : ; d.

Unicity Distance: N �
H(K)

D
� 1:47d (assuming D = 3:2).

Cryptanalysis: If the period d is not known, then it can be determined using the Kasiski or index

of coincidence methods. Once the period d is known, cryptanalysis reduces to the simultaneous

analysis of d independent Caesar ciphers.

Let us consider how the Vigen�ere cipher can be used. Encipher the message INDIVIDUAL CHAR-

ACTER with the key HOST,

m = INDI VIDU ALCH ARAC TER

k = HOST HOST HOST HOST HOS

Ek(m) = PBVB CWVN HZUA HFSV ASJ

The Beauford cipher

Message Space: M = Zd
26 { d-letter sequences.

Cryptogram Space: C = Zd
26 { d-letter sequences.

Key Space: K = Zd
26, k = (k1; : : : ; kd), j K j= 26d and H(K) � 4:7d.

Encryption: c = Ek(m1; : : : ;md) = (c1; : : : ; cd) and ci = �i(mi) � ki � mi (mod 26) for i =

1; : : : ; d.

Classical Ciphers 58

Decryption: m = Dk(c1; : : : ; cd) = (m1; : : : ;md) and mi = ��1i (ci) � ki � ci (mod 26) for i =

1; : : : ; d.

Unicity Distance: N �
H(K)
D

� 1:47d (assuming D = 3:2).

Cryptanalysis: If the period d is not known, then it can be determined using the Kasiski or index

of coincidence methods. Once the period d is known, cryptanalysis reduces to the simultaneous

analysis of d independent a�ne ciphers with the known multiplier.

Observe that for the Beauford cipher

�i(mi) � (ki �mi) (mod 26) and ��1i (ci) � (ki � ci) (mod 26);

so the same algorithm can be used for encryption and decryption as �i = ��1i !

3.1.7 Cryptanalysis of Polyalphabetic Substitution Ciphers

To break a polyalphabetic substitution cipher, the cryptanalyst must �rst determine the period of

the cipher. This can be done using two main tools: the index of coincidence and the Kasiski method

which is named after its inventor Friedrich Kasiski.

The Kasiski method uses repetitions in the ciphertext to give clues to the cryptanalyst about the

period. For example, suppose the plaintext TO BE OR NOT TO BE has been enciphered using the

key NOW then we have:

m = TOBEO RNOTT OBE

k = NOWNO WNOWN OWN

Ek(m) = GCXRC NACPG CXR

Since the characters that are repeated, GCXR, start nine letters apart we conclude that the period

is probably 3 or 9.

The index of coincidence (IC), introduced in the 1920s by Friedman [187] (see also [266]), measures

the variation in the frequencies of the letters in a ciphertext. If the period of the cipher is one (d = 1),

that is a simple substitution has been used, there will be considerable variation in the letter frequencies

and the IC will be high. As the period increases, the variation is gradually eliminated (due to di�usion)

and the IC is low (Table 3.2).

Assume that there is an alphabet of n letters uniquely identi�able by their positions from the

set Zn = f0; 1; : : : ; n� 1g. Each character is assigned its corresponding frequency expressed by the

probability P (M = m) = pm where m 2 Zn. Note that
Pn

i=0 pi = 1. Following Sinkov [472], we

shall derive the IC by �rst de�ning a measure of roughness, (MR), which gives the variation of the

frequencies of individual characters relative to a uniform distribution. So the measure of roughness of

the language with Zn and fpi j i = 0; 1; : : : ; n� 1g is

MR =
n�1X
i=0

�
pi �

1

n

�2

: (3.1)

For English letters we have:

MR =
25X
i=0

�
pi �

1

26

�2
�

25X
i=0

p2i � 0:038:

P25
i=0 p

2
i expresses the probability that two characters generated by the language are identical. If we

want to compute either MR or
P25

i=0 p
2
i , we have to estimate these from a limited number of observed

cryptograms.

Classical Ciphers 59

Language IC
Arabic 0.075889
Danish 0.070731
Dutch 0.079805
English 0.066895
Finnish 0.073796
French 0.074604
German 0.076667
Greek 0.069165
Hebrew 0.076844
Italian 0.073294
Japanese 0.077236
Malay 0.085286
Norwegian 0.069428
Portuguese 0.074528
Russian 0.056074
Serbo Croatian 0.064363
Spanish 0.076613
Swedish 0.064489

Table 3.2: Languages and their indices of coincidence

Assume that we have seen ciphertext with N characters. For every character in the ciphertext, its

frequency Fi expresses how many times it has occurred in the ciphertext. Obviously,
P25

i=0 Fi = N .

Note that Fi can be used to estimate pi as pi � Fi=N . It is possible to create
N

2

!
=
N (N � 1)

2

pairs of characters out of N observed in the ciphertext. The number of pairs (i; i) containing just the

letter i is:
Fi(Fi � 1)

2

The IC is de�ned as:

IC =
25X
i=0

Fi(Fi � 1)

N (N � 1)
(3.2)

and gives the probability that two (2) letters observed in ciphertext are, in fact, the same. It is not

di�cult to see that IC �
P25

i=0 p
2
i . To prove this, it is enough to note that Fi � pi �N and

IC �

25X
i=0

p2i (N �
1
pi
)

N � 1

IC become closer and closer to
P25

i=0 p
2
i as the number of observed characters in the ciphertext

increases. The IC estimate can be used to compute the corresponding measure of roughness:

MR � IC � 0:038:

The Index of Coincidence (an algorithm)

IC1. Collect N ciphertext characters.

Classical Ciphers 60

IC2. Find the collection F = fFi j i 2 Zng of frequencies for all characters. Note that
P

i
Fi = N .

IC3. Compute

IC =
nX
i=0

Fi(Fi � 1)

N (N � 1)

For a at distribution of a 26 character alphabet, all letters have the same frequency, 1/26, and

the sum of the squares is (1=26)2�26: Hence the MR for a at distribution is 1=26�1=26 = 0. When

the MR is 0, corresponding to a at distribution, we say it has in�nite period (d =1). At the other

extreme we have period one (d = 1) for simple substitution. English with period one hasMR = 0:028.

Thus we have:

0.038 < IC < 0.066

(period 1) (period 1)

For a cipher of period d, the expected value of IC is given by:

exp(IC) =
N � d

d(N � 1)
(0:066) +

(d� 1)N

d(N � 1)
(0:038)

Thus, while we can get an estimate of d from the ciphertext, it is not exact but statistical in nature

and a particular ciphertext might give misleading results. Table 3.2 gives the index of coincidence for

some other languages. For English, the relation between IC and d is given in Table 3.3.

Decrypt the following ciphertext which was produced using the Vigen�ere cipher:

TSMVM MPPCW CZUGX HPECP REAUE IOBQW PPIMS

FXIPC TSQPK SZNUL OPACR DDPKT SLVFW ELTKR

GHIZS FNIDF ARMUE NOSKR GDIPH WSGVL EDMCM

SMWKP IYOJS TLVFA HPBJI RAQIW HLDGA IYOU

Given that the cipher was produced using a Vigen�ere cipher, we would �rst like to determine the

period that has been used. The Kasiski method allows us to do that, assuming the repetitions are

not coincidental. Examining the trigraphs we �nd two occurrences of IYO and LVF. The IYO's are

25 letters apart and the LVF's are 55 apart. The common factors are 1 and 5.

Let us now examine the IC. The frequency count gives us:

a ! 6 g ! 5 1 ! 6 q ! 3 v ! 4

b ! 2 h ! 5 m! 8 r ! 6 w ! 6

c ! 6 i ! 10 n ! 3 s ! 10 x ! 2

d ! 6 j ! 2 0 ! 5 t ! 5 y ! 2

e ! 5 k ! 5 p ! 13 u ! 5 z ! 3

f ! 6

Thus the IC = 0.04066. From the table of IC's (see Table 3.3) it appears more likely that 10 alphabets

were used than 5, but we will proceed with an assumption of 5. We split the ciphertext into �ve sections

getting:

(a) TMCHRIPFTSODSEGFANGWESITHRHI

from text positions 5i, i=0,1, . . . ,27.

(b) SPZPFOPXSZPDLLHNRODSDMYLPALY

from text positions 5i+1, i=0,1, . . . ,27.

Classical Ciphers 61

d IC
1 0.0660
2 0.0520
3 0.0473
4 0.0450
5 0.0436
6 0.0427
7 0.0420
8 0.0415
9 0.0411
10 0.0408
11 0.0405
12 0.0403
13 0.0402
14 0.0400
15 0.0399
16 0.0397
17 0.0396
18 0.0396
19 0.0395
20 0.0394

Table 3.3: Periods and associated indices of coincidence

(c) MPUEABIIQNAPVTIIMSIGMWOVBQDO

from text positions 5i+2, i=0,1, . . . ,27.

(d) VCGCUQMPPUCKFKZDUKPVCKJFJIGU

from text positions 5i+3, i=0,1, . . . ,27.

(e) MWXPEWSCKLRTWRSFERHLMPSAIWA

from text positions 5i+4, i=0,1, . . . ,27.

In Table 3.4, the frequency distribution for each of these �ve sections is shown. Each column of

Table 3.4 corresponds to the frequency distribution of the section indicated by the text position in the

heading. Thus column 4, headed by 5i+3 corresponds to the fourth section which gave text positions

5i+ 3.

It would be best to consider columns 2 and 4 as their IC is 0.06614 which corresponds most closely

to `English'. In the second column of Table 3.4 we see L and P occur frequently, suggesting that they

might be A and E respectively. In the fourth column we are more uncertain what initial guess to try

for A so we will try the three most frequent values as guesses for A: i.e. U, C, K.

The second section is:

SPZPFOPXSZPDLLHNRODSDMYLPALY

Since P is the most common letter we are going to replace P ! E, Q ! F, : : : getting:

HEOEUDEMHOESAAWCGDSHSBNAEPAN

The fourth section is:

VCGCUQMPPUCKFKZDUKPVCKJFJIGU

Classical Ciphers 62

text 5i 5i+1 5i+2 5i+3 5i+4

a ! 1 1 2 0 2

b ! 0 0 2 0 0

c ! 1 0 0 4 1

d ! 1 3 1 1 0

e ! 2 0 1 0 2

f ! 2 1 0 2 1

g ! 2 0 1 2 0

h ! 3 1 0 0 1

i ! 3 0 5 1 1

j ! 0 0 0 2 0

k ! 0 0 0 4 1

l ! 0 4 0 0 2

m ! 1 1 3 1 2

n ! 1 1 1 0 0

o ! 1 2 2 0 0

p ! 1 5 2 3 2

q ! 0 0 2 1 0

r ! 2 1 0 0 3

s ! 3 3 1 0 3

t ! 3 0 1 0 1

u ! 0 0 1 4 0

v ! 0 0 2 2 0

w ! 1 0 1 0 4

x ! 0 1 0 0 1

y ! 0 2 0 0 0

z ! 0 2 0 1 0

IC 0.04233 0.06614 0.05026 0.06614 0.04843

Table 3.4: Frequency distribution for the �ve sections of the ciphertext

Hence replacing U ! A, V ! B, : : : we get:

BIMIAWSVVAIQLQFJAQVBIQPLFOMA

which we quickly decide is unlikely to be English because of the number of Qs. The other choices for

A, from the frequency distribution are C ! A or K ! A. Trying these gives respectively:

TAEASOKNNSAIDIXBSINTAIHDHGES

CGCEGCFFECAFAJDEAFFCADFDCGE

Of these two the �rst looks the most promising so we look at what we have for our �ve sections as

rows:

. .

H E O E U D E M H O E S A A W C G D S H S B N A E P A N

. .

T A E A S O K N N S A I D I X B S I N T A I H D H G E S

. .

Neither row is part of a sentence so we look down the �rst column and decide that since the most

common �rst word in English is THE we will start by leaving the �rst row as it is and replacing M

! E, N ! F, . . . in the third row giving:

Classical Ciphers 63

T M C H R I P F T S O D S E G F A N G W E S I T H R H I

H E O E U D E M H O E S A A W C G D S H S B N A E P A N

E H M W S T A A I F S H N L A A E K A Y E O G N T I V G

T A E A S O K N N S A I D I X B S I N T A I H D H G E S

. .

Hence we decide that the plaintext is:

THE TIME HAS COME THE WALRUS SAID TO SPEAK OF MANY THINGS OF SHOES AND

SHIPS AND SEALING WAX OF CABBAGES AND KINGS AND WHY THE SEA IS BOILING

HOT AND WHETHER PIGS HAVE WINGS.

Looking at the character which gave A in each of the �ve alphabets gives us the key ALICE.

3.2 DES Family

This section discusses modern cryptographic algorithms. The discussion starts from the description

of Shannon's concept of product ciphers. Later Feistel transformations are studied. The Lucifer

algorithm along the Data Encryption Standard (DES) are presented.

3.2.1 Product Ciphers

Shannon [461] proposed composing di�erent kinds of simple and insecure ciphers to create complex

and secure cryptosystems. These complex cryptosystems were called product ciphers. Shannon argued

that to obtain secure ciphers, the designer had to operate on large message and key spaces and use

simple transformations to incorporate confusion and di�usion. The concept is illustrated in Figure

3.5. The S-boxes are simple substitution ciphers and they provide confusion because of the secret keys

P

S

S

S

S

P

S

S

S

S

P

S

S

S

S

0

15

Round

Figure 3.5: S-P network

used. Permutation boxes (P-boxes) di�use partial cryptograms across the inputs to the next stage.

The P-boxes have no secret key. They have a �xed topology of input-output connections. The product

cipher needs to have a number of iterations or rounds. A single round consists of concatenation of

a single P-box with the subsequent layer of S-boxes. The more rounds the better mixing of partial

cryptograms. Consequently the probability distribution of the cryptograms becomes atter. Product

ciphers based on substitution and permutation boxes are also known as substitution-permutation

networks (S-P networks). S-P networks are expected to have ([68]):

Classical Ciphers 64

� the avalanche property { a single input bit change should force the complementation of approx-

imately half of the output bits [169],

� the completeness property { each output bit should be a complex function of every input bit

[267].

In general, to implement product ciphers, it is necessary to have two algorithms: one for encryption

and the other for decryption. This can be expensive in terms of both hardware and software. Feistel

[169] showed an elegant variant of S-P networks which could be implemented using a single algorithm

for both encryption and decryption. A single round of this variant is shown in Figure 3.6. Note the

L R

L R

f

k

i-1 i-1

i i

i

L R

L R

f

k

i-1 i-1

i i

i

a) Encryption b) Decryption

Figure 3.6: Feistel permutation

following interesting properties of the round

� it is always a permutation no matter what is the form of the function f ,

� as Li = Ri�1, the function f is evaluated for the same input for both encryption and decryption,

� the design of the round and consequently the cipher reduces to the design of the function f .

So the design of a cipher E : K � M ! C with M = C = �n needs to design a function

f : K ��
n

2 ! �
n

2 where � = f0; 1g.

De�nition 3.1 A Feistel transformation is a permutation Fki : �n ! �n which takes an input

Li�1; Ri�1 2 �
n

2 and assigns the output Fki(Li�1; Ri�1) = (Li; Ri) according to the following equa-

tions

Li = Ri�1 and Ri = Li�1 � f(ki; Ri�1): (3.3)

where the function f is any function of the form f : K��
n

2 ! �
n

2 and ki 2 K is a cryptographic key

used (where � stands for bit-by-bit XOR operation).

A cryptographic system is called a Feistel-type cryptosystem or Feistel-type cipher if it applies `

rounds each based on a Feistel transformation (Feistel permutation) so the encryption is

Ek = Fk` � Fk`�1 � � � � � Fk1: (3.4)

The decryption applies the inverse Feistel transformations in the reverse order. The cryptographic

key is k = (k1; : : : ; k`).

An encryption algorithm should allow a user to select an encryption function from a large enough

collection of all possible functions by a random selection of a cryptographic key. Note that for a

Classical Ciphers 65

plaintext/ciphertext block of n bits, the collection of all possible permutations contains 2n! elements

and is called the symmetric group. If we assume that the size of the key block is also n bits, then the

selection of permutations is restricted to 2n out of 2n! by random selection of the key. To generate a

random permutation e�ciently, it is enough to iterate Feistel permutations many times. The single

iteration is controlled by a shorter partial key which is usually generated from the cryptographic key.

Therefore the iteration has to be seen as a collection of permutations each of which is indexed by the

partial key.

Coppersmith and Grossman [110] studied iterations of basic permutations and their suitability to

encryption. They de�ned the so-called k-functions. Each k-function along with its connection topology

produces a single iteration permutation which can be used as a generator of other permutations by

composing them. Coppersmith and Grossman proved that these generators produce at least the

alternating group using a �nite number of their compositions. It means that using composition

and with generators of relatively simple structure, it is possible to produce at least half of all the

permutations. Even and Goldreich [165] proved that the Feistel permutations can also generate

the alternating group. It turns out [405] that even if the function f(k;R) is restricted to one-to-

one mappings, the Feistel permutations still generate the alternating group. In other words, having

(2n=2)! generators, it is possible to produce (2n)!
2 di�erent permutations. Bovey and Williamson

reported in [51] that an ordered pair of generators can produce either the alternating group AVn or

the symmetric group SVn with the probability greater than 1 � exp(�log1=22n). So if we select the

pair at random, there is a high probability that it generates at least AVn .

3.2.2 The Lucifer Algorithm

The �rst cryptosystem developed using Feistel transformations, was the Lucifer algorithm. It was

designed at the IBM Watson Research Laboratory in the early 1970s by a team including Horst

Feistel, William Notz, and J. Lynn Smith (see [169],[170],[479]).

The Lucifer cryptosystem

Message Space: M = �128.

Cryptogram Space: C = �128.

Key Space: K = �128, j K j= 2128, H(K)=128. A cryptographic key is k = (k1; : : : ; k16).

Encryption: Ek = Fk16 � � � � � Fk1.

Decryption: Dk = F�1
1 � � � � � F�1

k16
.

Unicity Distance: N �
H(K)
D

� 40 letters (assuming D = 3:2).

The Lucifer operates on 128-bit messages and encrypts them into 128-bit cryptograms under a

128-bit key. The general scheme of Lucifer is given in Figure 3.7. The core element is the function

f (see Figure 3.8). It translates 64-bit inputs into 64-bit outputs using a 64-bit partial key kj;

j = 1; : : : ; 16. A 64-bit input Ri�1 to the function f goes to eight identical S-boxes. Each S-box is a

simple substitution cipher with a single bit key (\0" or \1"). The eight bits needed to control S-boxes

are extracted from the partial key kj The outputs from S-boxes are XORed with the partial key kj.

Finally, bits of the resulting sequence are permuted according to the �xed wire-crossing topology of

the block P.

Classical Ciphers 66

k

f ROL 56-bits

.

.

.

KeyPLAINTEXT
64 64 128L R k

k

f

CIPHERTEXT

.

.

.

.

.

.
16

3

2

1k

f ROL 56-bits

k

f ROL 56-bits

Figure 3.7: Lucifer

The key schedule of Lucifer is very regular. Partial keys are selected from 64 lower bits of the key.

After every extraction of the partial key, the contents of the 128-bit key register is rotated 56 bits to

the left.

3.2.3 The DES Algorithm

The Data Encryption Standard (DES) [379] or Data Encryption Algorithm (DEA) was developed at

IBM in the mid 70s and was the outgrowth of Lucifer. There is an interesting story behind the design

and adoption of DES as an US encryption standard for non-military applications. Readers are referred

to Schneier's book [445] for details. There is no surprise to learn that the DES algorithm repeats the

Lucifer general structure. The algorithm is summarised in Figure 3.9. DES processes 64-bit blocks of

data under a 56-bit key using 16 rounds (or iterations).

The DES cryptosystem

Message Space: M = �64.

Cryptogram Space: C = �64.

Key Space: K = �56, j K j= 256, H(K)=56. A cryptographic key is k = (k1; : : : ; k16).

Encryption: Ek = Fk16 � � � � � Fk1.

Decryption: Dk = F�1
1 � � � � � F�1

k16
.

Unicity Distance: N �
H(K)
D

� 17:5 letters (assuming D = 3:2).

There was a disagreement over whether 56-bit key is su�ciently long. Di�e and Hellman [153]

had predicted the DES algorithm would be vulnerable to the exhaustive search attack by a special

purpose machine. Indeed, Michael Wiener [520] at the Crypto'93 rump session gave technical details

Classical Ciphers 67

L i-1

S

S

S

S

S

S

S

S

P

ki

8

L iR i

R i-1
/

Figure 3.8: Lucifer function f

of a key search chip which can test 5� 107 keys per second. A search machine which uses 5760 chips

will search the entire DES key space in 35 hours and cost $100,000.

The algorithm can be used for both encryption and decryption. An input x can be either plaintext

or ciphertext block. The sequence x is �rst transposed under an initial permutation IP. The 64-bit

output IP (x) is divided into halves L0 and R0. The pair (L0; R0) is subject to 16 Feistel transforma-

tions each of which uses the function f(ki; Li); i = 1; : : : ; 16. Finally, the pair (L16; R16) is transposed

under the inverse permutation IP�1 and produces the output y. The permutations IP and IP�1 are

given in Table 3.5. The IP and IP�1 tables (as well as the other permutation tables described later)

should be read left-to-right, top-to-bottom (e.g. IP transposes a binary string x = (x1x2 : : :x64) into

(x58x50 : : :x7)). All tables are �xed.

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

(a)

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

(b)

Table 3.5: (a) Initial permutation IP and (b) Final permutation IP�1

Note that after the last iteration, the left and right halves are not exchanged; instead the con-

catenated block (R16L16) is input to the �nal permutation IP�1. This is necessary in order that the

algorithm can be used both to encipher and decipher.

The Function f and S-boxes

Figure 3.10 shows the components of the function f(ki; Ri�1). First Ri�1 is expanded to a 48-bit

string E(Ri�1) using the bit-selection function E shown in Table 3.6. This table is used in the same

way as the permutation tables, except that some bits of Ri�1 are selected more than once; thus, given

Ri�1 = r1r2 : : : r32, E(Ri�1) = r32r1r2 : : : r32r1. Next, XOR of E(Ri�1) and ki is calculated and the

Classical Ciphers 68

L = R2 1

f

f

+

+

f

k1

k 2

f

+ k16

CIPHERTEXT

IP

L R 0 0

R = L

 R = L 2 1 1 2

 0 1L = R1 0 0

PLAINTEXT

f (R , k)1

L = R

R L

IP

15

16 16

-1

15R = L 1514 14 14

f (R , k)

f (R , k)

Figure 3.9: Data Encryption Standard

result broken into eight 6-bit blocks B1; : : : ; B8, where,

E(Ri�1)� ki = B1B2 : : :B8

Each 6-bit block Bj is then used as the input to a selection (substitution) function (S-box) Sj , which

returns a 4-bit block Sj(Bj). These blocks are concatenated together, and the resulting 32-bit block

is transposed by the permutation P shown in Table 3.7. Thus, the block returned by f(ki; Ri�1) is:

P (S1(B1) : : :S8(B8)):

Each S-box Sj maps a 6-bit sequence Bj = b1b2b3b4b5b6 into a 4-bit sequence as de�ned in Table 3.8.

This is done as follows. The integer corresponding to b1b6 selects a row in the table, while the integer

corresponding to b2b3b4b5 selects a column. The value of Sj(Bj) is then the 4-bit representation of

the integer in that row and column. For example, if B1 = 011100, then S1 returns the value in row 0,

column 14; this is 0, which is represented as 0000. If B7 = 100101, then S7 returns the value in row

3, column 2; this is 13, which is represented as 1101.

Although the DES algorithm was made public, the collection of tests used to select S-boxes and

the P -box was not revealed until 1994 (see [107]). The collection of tests is equivalently referred in

Classical Ciphers 69

SS

32 bits

P

SSS S SSS1 2 3 4 5 6 7 8

E

48 bits i

i-1
R (32 bits)

k (48 bits)

Figure 3.10: DES function f(ki; Ri�1)

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Table 3.6: Bit-selection function E

the literature as the design criteria/properties. A summary of the design properties used during the

design of S-boxes and the P-box can be found in [68] and [375]. Some S-box design properties are

� Each row function in an S-box is a permutation (S-boxes produce sequences with balanced

number of 0s and 1s).

� No S-box is linear or a�ne function of the input (S-boxes are nonlinear),

� A single-bit change on the input of an S-box changes at least two output bits (S-boxes provide

\avalanche" e�ect).

� For each S-box S, S(x) and S(x � 001100) must di�er in at least two bits.

� S(x) 6= S(x � 11ef00) for any choice of bits e and f .

� The S-boxes minimize the di�erence between the number of 1's and 0's in any S-box output

when any single bit is constant.

S-box design criteria can be de�ned using the information theory concept of mutual information.

This approach was applied by Forre in [186] and Dawson and Tavares in [127]. They argued that the

mutual information between inputs and outputs of S-boxes should be as small as possible. The study

of the DES S-boxes gave rise to a new �eld called the S-box theory.

Davies [123] and Davio, Desmedt, Goubert, Hoornaert and Quisquater [124] analyzed the concate-

nation of the P-box and bit-selection function E. Assume that the input to an S-box is abcdef . The

following observations can be made (see Brown [68]):

Classical Ciphers 70

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

Table 3.7: Permutation P

� Each S-box input bit comes from the output of a di�erent S-box.

� No input bit to a given S-box comes from the output of the same S-box.

� An output from Si�1 goes to one of the ef input bits of Si and further via E an output from

Si�2 goes to one of the ab input bits.

� An output of Si+1 goes to one of the cd inputs bits of Si.

� For each S-box output, two bits go to ab or ef input bits, the other two go to cd input bits.

The above properties allow a quick di�usion of partial cryptograms between two consecutive rounds.

DES Key Scheduling.

Each iteration uses a di�erent 48-bit key ki derived from the initial key k. Figure 3.11 illustrates

how this is done. The initial key is input as a 64-bit block, with 8 parity bits in positions 8, 16, : : :,

64. The permutation PC1 (permuted choice 1) discards the parity bits and transposes the remaining

56 bits as shown in Table 3.9. The result, PC1(k), is then split into halves C0 and D0 used to derive

each partial key ki. Subsequent values of (Ci; Di) are calculated as follows:

Ci = LSs(Ci�1);

Di = LSs(Di�1);

where LSs is a left circular shift by the number of positions shown in Table 3.10. Key ki is then given

by,

ki = PC2(CiDi)

where PC2 is the permutation shown in Table 3.11.

The key schedule works well for most of possible keys. Let the key be k = 01010101 01010101x,

then all partial keys are ki = 0000000 0000000x where the subscript x denotes a hexadecimal number.

Note the key k has 8 parity bits which are stripped o� later in the key scheduling. In general, all

keys whose partial keys are the same must be avoided. These keys are termed as weak keys. DES has

16 weak keys. There is also a class of semiweak keys. A key is called semiweak if the key scheduling

scheme produces two di�erent partial keys only (instead of 16).

3.2.4 DES Modes of Operation

Encryption and decryption are usually done for larger than 64-bit blocks of data. A method of

processing a large number of 64-bit data blocks is called a mode of operation. There are four modes

of operation:

Classical Ciphers 71

Column

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Box

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 S1
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 S2
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 S3
2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 S4
2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 S5
2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 S6
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 S7
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 S8
2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Table 3.8: DES S-boxes

� electronic codebook mode (ECB),

� cipher block chaining mode (CBC),

� cipher feedback mode (CFB),

� output feedback mode (OFB).

In the ECB mode, a data block m of arbitrary length is divided into 64-bit blocks m1;m2; : : : ;m`.

The last block, if it is shorter than 64 bits, needs to be padded to the full length of 64 bits. Later

the DES algorithm is applied independently for each block using the same cryptographic key k so the

ciphertext

c = (c1; : : : ; c`) = (Ek(m1); : : : ; Ek(m`))

consists of ` independent cryptograms each related to a single message mi. The decryption in the

ECB mode is

m = (m1; : : : ;m`) = (Dk(c1); : : : ; Dk(c`)):

Classical Ciphers 72

 LS LS

16 16

16

D (28 bits)C (28 bits)

PC2
k

.

.

.
.
.
.

 LS LS

 LS

D (28 bits)

 LS

C (28 bits)

D (28 bits)C (28 bits)

Key (64 bits)

PC1

PC2

0 0

1 1

1
PC2

D (28 bits)C (28 bits)

k

k
2 2

2

Figure 3.11: DES key schedule

As the blocks are independent, the receiver of ciphertext blocks is not able to determine the correct

order of the blocks, or to detect duplicates or missing blocks.

The CBC mode is illustrated in Figure 3.12. The initial vector IV needs to be known at both sides

but does not need to be secret. For encryption, cryptograms are created for the current message block

and the previous cryptogram according to the following equation

ci = Ek(mi � ci�1)

where c1 = Ek(m1 � IV) and i = 2; : : : ; `. The decryption process unravels the ciphertext

mi = Dk(ci)� ci�1

for i = 2; : : : ; ` and m1 = Dk(c1)� IV .

In the CFB mode (Figure 3.13), cryptograms are equal to

ci = mi � Ek(ci�1)

where c1 = m1 � Ek(IV) and i = 2; : : : ; `. The decryption uses Ek function as well therefore

mi = ci � Ek(ci�1):

and the decryption Dk is never used. Note that the sequence Ek(ci) mimics a random key in the

one-time pad system. If the pseudorandom string Ek(ci) (i = 1; : : : ; `) is simpli�ed to the string

Ei
k(IV), then this mode of operation becomes OFB where Ei

k = Ek �Ek � : : : �Ek| {z }
i

.

CBC and CFB modes are useful for message integrity checking as any interference with the original

contents of the transmission will generate, after the decryption, a number of meaningless messages.

Classical Ciphers 73

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

Table 3.9: Key Permutation PC1

Iteration s Iteration s

1 1 9 1
2 1 10 2
3 2 11 2
4 2 12 2
5 2 13 2
6 2 14 2
7 2 15 2
8 2 16 1

Table 3.10: Key schedule of left shifts LSs

Assume that we have received a ciphertext sequence (c1; : : : ; cj�1; c0j; cj+1; : : :) where the cryptogram

cj was modi�ed (accidently or otherwise) during the transmission. For the both modes, the messages

mj and mj+1 cannot be recovered.

3.2.5 Triple DES

Right from the very beginning when the DES algorithm was published, there was clear that the

proposed cipher was intentionally weakened by the introduction of relatively short 56-bit cryptographic

key [153]. The exhaustive search of the key space is possible as documented in [520].

To thwart the exhaustive search attack on the key space, the length of key must be increased.

Consider double DES encryption with two independent keys or c = Ek1(Ek2(m)) where k1; k2 are

56-bit independent keys. Clearly, the exhaustive search becomes infeasible as the key space contains

now 2112 candidates. Assume that the attacker knows a valid pair (m; c) obtained under the double

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table 3.11: Key Permutation PC2

Classical Ciphers 74

Ek
Ek Ek

kD kD kD

. . . IV

IV

Encryption

Decryption

1 l

. . .

l

1 2

m m m m

m m m

c c c

c c c

 2

1
2 l

1 2

l

3

Figure 3.12: CBC mode

Ek Ek Ek

Ek Ek Ek

. . . IV

. . . IV

Encryption

Decryption

1

1 2 l-1 l

l-12

1

1

2

 2

l-1

l-1 l

m m m m

m m m m

c c c c

c c c c
l

l

Figure 3.13: CFB mode

DES. The attacker can produce two sets

E = fe = Ek1(m)jk1 2 Kg

and

D = fd = E�1
k2

(c)jk2 2 Kg

where K is the set of DES keys with 256 elements, E�1
k2

is the DES decryption for the key k2. Observe

that for the correct pair of keys partial encryption/decryption must be the same or e = d. This also

means that the pair (m; c) allows the attacker to create 256 possible pairs of keys among which there

must be the correct one. This obviously reduces the exhaustive search to 256 candidates which is far

smaller than the expected 2112. Needless to say that, the second pair of (message, cryptogram) points

out with a high probability the correct pair of keys.

This observation leads us to the conclusion that to expend the key space, at least the triple

encryption (triple DES) must be applied. The following list shows possible implementations of the

triple DES.

� Ek1(Ek2(Ek3(m))) { the implementation with three independent keys (encryption is used three

times { EEE triple DES).

Classical Ciphers 75

� Ek1(E
�1
k2

(Ek3(m))) { the implementation with three independent keys. The encryption trans-

formation uses the sequences (encrypt, decrypt and encrypt) of DES (EDE triple DES).

� Ek1(E
�1
k2

(Ek1(m))) { the triple encryption-decryption-encryption DES with two independent

keys.

The triple DES with two independent keys is recommended in the ANSI X.9.17 and ISO 8732 standards

for banking key management. The two-key triple DES is subject to a known-plaintext attack described

in [389].

3.3 Modern Private-Key Cryptographic Algorithms

This section describes some of encryption algorithms. There have been many ciphers published so

far. They can be roughly categorised into ciphers which exhibit either Feistel structure or are based

on Shannon S-P network. The FEAL algorithm belongs to the DES family of ciphers with both S-

boxes and key scheduling replaced by functions which can be run very fast. The IDEA algorithm uses

a modi�ed Feistel structure with cryptographic operations performed by carefully selected algebraic

group operations. The RC6 algorithm again uses the Feistel structure with a heavy use of word

instructions (rotation, shifting, and bit-by-bit Boolean instructions). The Rijndael algorithm uses S-P

network with operations performed in GF(28). The Serpent algorithm again is an example of S-P

network with S-boxes derived from those used in DES with extensive use of word shift and rotation.

3.3.1 Fast Encryption Algorithm (FEAL)

The FEAL is Japanese encryption algorithm designed by the researchers from NTT Japan [462]. The

main objective was to design an algorithm which would be as secure as DES but much faster. The

FEAL algorithm processes 64-bit messages or cryptograms using a 64-bit key (Figure 3.14). It applies

four Feistel permutations (rounds) with the function f shown in Figure 3.15. The function f uses two

S-functions: Sf0 and Sf1 of the form

Sf0(x; y) = ((x+ y mod 256)� 2) and Sf1(x; y) = ((x+ y + 1 mod 256)� 2)

where (x � s) stands for rotation of the word x s positions to the left. The key schedule applies

another function fk which is also based on Sf0 and Sf1 (see Figure 3.16).

In the literature the original FEAL is called FEAL-4 because it uses 4 rounds. There are also

other versions with more rounds such as FEAL-8 or FEAL-32. The generic name FEAL-N refers to

the FEAL with unrestricted number of rounds.

3.3.2 The IDEA Algorithm

IDEA stands for International Data Encryption Algorithm. The algorithmwas designed by researchers

from Swiss Federal Institute of Technology in 1990 (see [292, 293]). The algorithm uses a modi�ed

Feistel structure with eight rounds and the message (cryptogram) block size of 64-bits. Cryptographic

keys are 128-bit long. All transformations used in the algorithm are based on three operations in

GF (216). They are

� bit-by-bit XOR operation (denoted by �),

� addition modulo 216 (denoted by +),

� multiplication modulo (2n + 1) (denoted by �).

Classical Ciphers 76

f

f

{L }
R 0

4

{L }
R 0

4

{R }
L 0

4

{R }
L 0

4

f k

f k

f k

A 0 B0

B1

B2

 (K , K , K , K)5 6 74

{(K , K , K , K)}8 9 A B

{K }
K

 3

0

{K }
{R }

L K

{L }
R1

3

1

 2 1

3

32-bit

A

K , K

2

2 3

A

K , K 0 1

1

32-bit 32-bit

32-bit

Key Block 64-bitPlaintext (ciphertext) block 64-bit

f k

B5

f

f

f k

f k

B3

B4

 K

K , K A B

B6

A 5

Legend : { }

()
A , B , L , R

= Deciphering

= Exclusive OR operation

= Data concatenation
= 32-bit data
= 16-bit intermediate key

{K }
{R }

L K

{L }
R

{K }
{R }

L K

{L }
R2

2

3

1

2

 1

3

 1

2

2

3

1
K , K 8 9

A

K , K

4

6 7

A

K , K

3

4 5

Ciphertext (Plaintext) block 64-bit

 (K , K , K , K)8 9 A B

{(K , K , K , K)}4 5 6 7

i i i

i

i

Figure 3.14: FEAL algorithm

The algorithm applies an S-box which accepts two 16-bit input words and generates two 16-bit output

words under control of two 16-bit words of the round key. The S-box is called the multiplication-

addition (MA) structure and is a permutation for a �xed key. The data ow during encryption is

presented in Figure 3.17. Given a 64-bit message block X = (X1; X2; X3; X4) which is divided into

four 16-bit words. The i-th round employs 96-bit key ki = (k
(1)
i ; : : : ; k

(6)
i) with six 16-bit words;

i = 1; : : : ; 8.

The key schedule takes the 128-bit primary key and generates 6-word round keys for eight rounds

plus 4 words for the output transformation (all together 52 16-bit words). First the primary key is

divided into eight 16-bit words (k(1)1 ; : : : ; k
(6)
1 ; k

(1)
2 ; k

(2)
2). Next the primary key is rotated 25 positions

to the left and partitioned into the next 8 words. This process continues until all 52 key words have

been generated.

Decryption process uses the same algorithm { rounds are performed in reverse. Note that the

S-box is invertible if the same keys are applied (for encryption and decryption). Wherever mixing

operations � are applied (keys k
(i)
1 ; k

(i)
4), the decryption uses their multiplicative inverses. On the

other hand, if the addition + is used, the additive inverse has to be used (keys k
(i)
2 ; k

(i)
3). Also observe

that the multiplication � is modi�ed in such a way that the key k(j)i = 0 has its inverse. This is done

by assigning k(j)i = 216 whose inverse is 216 modulo 216 + 1.

IDEA is a strong encryption algorithm. The only weakness reported so far is related to the

existence of weak keys, i.e. a key is weak if it belongs to a set of keys for which their membership can

be e�ciently tested (see [118, 238]).

Classical Ciphers 77

S 0

S 1
+ +

+ +S 0

S 1

a 0

a 1

a 2

 3 a

b0b 1

a 32 - bit

b

32 - bit

f (a , b)

Figure 3.15: Function f

+

S 1

+

S 0+

+

S 1S 0 + +

a a a a a

b

b

b

b

 0 3

2

 3

b

f (a , b)

32 - bit

32 - bit

32 - bit

2 1

0

 1

k

Figure 3.16: Function fk

3.3.3 RC6TM

RC6TM was designed by researchers from MIT and RSA Laboratories and submitted as a candidate

for the new Advanced Encryption Standard (AES). The description of the algorithm can be found

in http://www.nist.gov/aes. RC6 is a strengthened version of the RC5 algorithm while keeping the

e�ciency of RC5. RC6 is in fact, a family of encryption algorithms indexed by three parameters

(w; r; b), where w is the size of the word (typically forced by the underlying hardware architecture), r

is the number of rounds used and speci�es the tradeo� between e�ciency and security, and b stands

for the length of the primary cryptographic key K (in bytes).

The collection of operation used in RC6 includes

� integer addition modulo 2w denoted as + ,

� bit-by-bit XOR denoted by �,

� integer multiplication modulo 2w denoted by
. The function f(a) = a
 (2a + 1).

� rotation: a� b stands for rotation of the word a to the left by the least signi�cant log2w bits

of b and similarly, a � b stands for rotation of the word a to the right by the least signi�cant

log2w bits of b.

Given a message in the form of four words (A;B;C;D) each of w bits (see Figure 3.18). Encryption

starts from adding keys K[0] and K[1] to words B and D, respectively. Next the input is transformed

Classical Ciphers 78

X 2 X 3

1k k
2k 3

k

k

5

6

X 4

4k(1)

(1)

(1)

(1) (1) (1)

X 1

k 1

(9)
k
(9)

2 k 3

(9)
k 4

(9)

Y1 Y Y Y2 3 4

Rounds 2-8

Round 1

Transformation
Final

MA

Figure 3.17: IDEA general structure

using r rounds each round can be described as:

t = f(B) � logw;

u = f(D) � logw;

A = ((A� t)� u) + K[2i];

C = ((C � u)� t) + K[2i+ 1]:

The vector (A;B;C;D) is rotated so (A;B;C;D) = (B;C;D;A). After r rounds, the output is

(A + K[2r + 2]; B;C + K[2r+ 3]; D).

The primary key K has b bytes. A su�ciently large array L of c words is allocated so it can hold

the key. The key is stored into L and the unused bits of L are �lled by zeros. So the �rst word

L[0] contains �rst bytes of the key and the last word L[c � 1] contains the tail of the key padded

with zeros to the full size of the word. RC6 uses two magic constants Pw and Qw. Pw is a word

derived from the constant e { the base of the natural logarithm, while the word Qw is obtained from

binary expansion of the Golden Ratio constant. For instance for w = 32, the words P32 =0xB7E15163

and Q32 =0x9E3779B9. Let K[i]; i = 0; : : : ; 2r + 3, be words of the round keys. Keys K[i] are �rst

initialised

K[0] = Pw and K[i] = K[i � 1] + Qw

for i = 1; : : : ; 2r + 3. Next the four variables A;B; i; j are set to zero and the constant v =

3max(c; 2r+ 4) is computed. Round keys are calculated by repeating the following sequence of

Classical Ciphers 79

A

f<<

B

<< f

C D

<<

A CB D

rounds

for r

Repeat
<<

K[1]K[0]

K[2i] K[2i+1]

K[2r+3]K[2r+2]

Figure 3.18: Encryption in RC6

operation v times.

A = K[i] = (K[i] + A + B)� 3;

B = L[j] = (L[j] + A + B)� (A + B);

i = (i + 1) (mod 2r + 4);

j = (j + 1) (mod c):

Decryption follows the footsteps of encryption in reverse and applies the additive inverse of the

keys. Each round starts from rotation (A;B;C;D) = (D;A;B;C) and

t = f(B) � logw;

u = f(D) � logw;

A = ((A + (�K[2i]))� u)� t;

C = ((C + (�K[2i+ 1]))� t)� u:

There is little work on the cryptographic strength of RC6 but the fact that it went through to the

second round of the AES call indicates its quality (for more details go to http://www.nist.gov/aes).

Some conclusions about its security can be derived from analysis done for RC5. For instance, Knudsen

and Meier [282] demonstrated the existence of weak keys with respect to di�erential cryptanalysis and

showed some weaknesses in the structure of the cipher.

3.3.4 Rijndael

The Rijndael cipher competes in the AES race and was design by the researchers from Belgium. Its

description is taken from the NIST Web site http://www.nist.gov/aes. The cipher works for three

block sizes: 128, 192 and 256 bits. Rijndael applies the Shannon product cipher concept and it is not

based on the Feistel structure. Cryptographic operations use heavily arithmetics in GF (28).

Denote Nb and Nk as the number of 32-bit words in the message (cryptogram) and the key,

respectively. The cipher uses a sequence of rounds which varies depending on the length of message

and key. If Nb = Nk = 4, the number of rounds is Nr = 10. If both Nb � 6 and Nk � 6 but not

simultaneously equal to 4, Nr = 12. Otherwise, Nr = 14.

The cipher applies the following transformations:

Classical Ciphers 80

� ByteSub { the input block with 4Nb bytes is subject to byte-by-byte transformation using the

S-box,

� ShiftRow { the bytes of the input are arranged into four rows and every row is rotated the �xed

number of positions,

� MixColumn { the bytes of the input are arranged into four rows and every column is transformed

using polynomial multiplication over GF (28),

� AddRoundKey { the input block is XOR-ed with the round key.

a a a a a a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,4 1,5

2,0

ai,j

2,1 2,2 2,3 2,4 2,5

3,0 3,1 3,2 3,3 3,4 3,5

S-box
0,0

1,0

2,0

3,0

0,1

1,1

2,1

3,1

0,2

1,2

2,2

3,2

0,3

2,3

3,3

0,4

1,4

2,4

3,4

0,5

1,5

2,5

3,5

bi,j

Figure 3.19: ByteSub transformation

The ByteSub transformation (see Figure 3.19) takes and inputA = (a0;0; : : : ; a0;Nb�1; : : : ; a3;0; : : : ; a3;Nb�1)

and outputs B = (b0;0; : : : ; b0;Nb�1; : : : ; b3;0; : : : ; b3;Nb�1) such that bi;j = S(ai;j) for i = 0; 1; 2; 3 and

j = 0; : : : ; Nb�1. S(x) is the S-box (permutation) described as follows:

y =

2
66666666666664

10001111

11000111

11100011

11110001

11111000

01111100

00111110

00011111

3
77777777777775

x�1 +

2
66666666666664

1

1

0

0

0

1

1

0

3
77777777777775

;

where x�1 2 GF (28) is the multiplicative inverse of x if x 6= 0 or zero if x = 0 (see also Figure 3.20).

The S-box outputs an element from GF (28). Note that for decryption S�1(x) must be used. In this

x y

y xz

S-box

Inverse S-box

x L

L

-1

-1 -1z

Figure 3.20: S-box in Rijndael

case, the inverse a�ne transformation is used followed by �nding the multiplicative inverse in GF (28).

Classical Ciphers 81

The ShiftRow transformation (illustrated in Figure 3.21) takes the input

a0 = (a0;0; : : : ; a0;Nb�1);

a1 = (a1;0; : : : ; a1;Nb�1);

a2 = (a2;0; : : : ; a2;Nb�1);

a3 = (a3;0; : : : ; a3;Nb�1)

and returns a0 � C0; a1 � C1; a2 � C2; a3 � C3 where a � C is the rotation of the sequence a of

bytes to the right by C bytes. The values of Ci are given below:

C0 = 0; C1 = 1; C2 =

(
2 if Nb = 4; 6

3 otherwise
and C3 =

(
3 if Nb = 4; 6

4 otherwise

In decryption mode, ShiftRow rotates the corresponding sequence of bytes the same number of posi-

tions but to the left.

m n o

k

e

w z

j

d

x

l

y . . .

. . .

. . .

. . .

f

p m n o p . . .

j

d e

x yw

no shift

rotation by C3

rotation by C2

rotation by C1

Figure 3.21: ShiftRow transformation

The MixColumn transformation (see Figure 3.22) takes the input

a0 = (a0;0; : : : ; a0;Nb�1);

a1 = (a1;0; : : : ; a1;Nb�1);

a2 = (a2;0; : : : ; a2;Nb�1);

a3 = (a3;0; : : : ; a3;Nb�1);

creates Nb polynomials Aj(x) = a3;jx
3 + a2;jx

2 + a1;jx + a0;j; j = 0; : : : ; Nb�1, multiplies Aj(x) by

the polynomial C(x) = c3x
3 + c2x

2 + c1x+ c0 where c3 =0x03, c2 =0x01, c1 =0x01, and c0 =0x02

(ci 2 GF (28)). MixColumn returns Bj = b3;jx
3+ b2;jx

2+ b1;jx+ b0;j such that Bj(x) = Aj(x)�C(x)

where
b0 = (b0;0; : : : ; b0;Nb�1);

b1 = (b1;0; : : : ; b1;Nb�1);

b2 = (b2;0; : : : ; b2;Nb�1);

b3 = (b3;0; : : : ; b3;Nb�1);

In the decryption mode, MixColumn multiplies the respective columns by the inverse D(x) = C(x)�1

or D(x) �C(x) = 1 2 GF (28).

The key schedule procedure KeyExpansion produces key material W = (W0; : : : ;WNb(Nr+1)�1)

from the primary key K = (K0; : : : ;KNk�1) where Wi;Ki are 32-bit words. It applies two functions:

� SubByte(a; b; c; d) which accepts four bytes and returns (S(a); S(b); S(c); S(d)),

� RotByte(a; b; c; d)=(b; c; d; a) - rotates bytes.

KeyExpansion has two versions: one for Nk � 6 and the other for Nk > 6. The �rst version (for

Nk � 6) takes two phases:

Classical Ciphers 82

a a a a a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0,0 0,1 0,3 0,4 0,5

1,0 1,1 1,4 1,5

2,0 2,1 2,3 2,4 2,5

3,0 3,1 3,3 3,4 3,5

1,0

2,0

3,0

0,1

1,1

2,1

3,1

0,3

2,3

3,3

0,4

1,4

2,4

3,4

0,5

1,5

2,5

3,5

a1,3

0,0

b0,3

a

a

a

a b

b

b

b

0,j

1,j

2,j

3,j

0,j

1,j

2,j

3,j

c(x)

Figure 3.22: MixColumn transformation

� initialisation where Wi = Ki for i = 0; : : : ; NK � 1,

� expansion phase which takes the last computed word and extends it for the next one. The steps

are as follows:

tmp = Wi�1;

if i (mod Nk) = 0; then tmp=SubByte(RotByte(tmp))� Rconbi=Nkc;

Wi =Wi�Nk
� tmp;

where the constants Rconi = (RCi; 0; 0; 0) and RCi = RCi�1 = xi�1 where x is an element of

GF (28).

The second version (for Nk > 6) takes two phases:

� initialisation where Wi = Ki for i = 0; : : : ; NK � 1,

� expansion phase which takes the last computed word and extends it for the next one. The steps

are as follows:

tmp = Wi�1;

if i (mod N) = 0; then tmp=SubByte(RotByte(tmp))� Rconbi=Nkc

else if i (mod Nk) = 4 then tmp=SubByte(tmp);

Wi = Wi�Nk
� tmp:

Encryption process is illustrated in Figure 3.23. Clearly, decryption employs inverse transformation

in reverse order.

3.3.5 Serpent

The Serpent cipher is an AES submission from an international team (England, Israel and Norway).

The description of the cipher can be found at the AES Web site http://www.nist.gov/aes. A very �rst

version of the algorithm called Serpent-0 was presented at the Fast Software Encryption Workshop in

1998 [31].

Serpent handles 128-bit messages and cryptograms using a cryptographic key which can be either

128 or 192 or 256-bit long. It implements a Shannon S-P network. The basic cryptographic operations

are:

� S-boxes { there are 8 di�erent S-boxes S0; : : : ; S7. Each S-box is a permutation mapping 4-bit

input into 4-bit output. The i-th round applies 32 copies of the same S-box Si mod 8; i = 0; : : : ; 7,

Classical Ciphers 83

AddRoundKey

Message

ByteSub

ShiftRow

MixColumn

AddRoundKey

ByteSub

ShiftRow

AddRoundKey

CipherText

Further

Last Round

1st Round

k
N -2 Rounds

Figure 3.23: Rijndael encryption

� linear transformation L { it takes four 32-bit words X0; X1; X2; X3, performs the following

X0 = X0 �� 13;

X2 = X2 �� 3;

X1 = X1 �X0 �X2;

X3 = X3 �X2 � (X0 � 3);

X1 = X1 �� 1;

X3 = X3 �� 7;

X0 = X0 �X1 �X3;

X2 = X2 �X3 � (X1 � 7);

X0 = X0 �� 5;

X2 = X2 �� 22

and returns X0; X1; X2; X3, where X �� s stands for rotation of X by s bits to the left and

X � s means left shift of X by s bits.

S-boxes used in Serpent have the following properties:

1. probabilities of di�erential characteristics are no smaller than 1=4 and a one-bit di�erence never

translates into a one-bit output di�erence,

2. probabilities of linear characteristics are within the range 0:5� 1=4 and the correlation between

pairs of input/output bits expressed by a probability in the range 0:5� 1=8,

3. the nonlinear order of the output bits is maximum.

S-boxes are generated from DES S-boxes. Given a (32� 16) sbox[][]. The 32 rows are initialised by

32 permutations of the DES S-boxes. An array serpent[] with 16 four-bit entries is used to point

Classical Ciphers 84

out the entry of sbox[][] which is chosen for modi�cation. The array serpent[] is initialised to

the least signi�cant four bits of each of 16 ASCII characters in the string sboxesforserpent. The

following procedure is used to generate the necessary eight S-boxes

index=0

repeat

currentsbox=indexmod 32

for i=0 to 15 do

j=sbox[(currentsbox+1)mod32][serpent[i]]

swapentries(sbox[currentsbox][i],sbox[currentsbox][j])

if sbox[currentsbox][] has the desired properties, save it

index=index+1

until eight S-boxes have been saved

The modi�cation of S-boxes is based on swapping entries of the row indexed by the currentsbox

index. S-boxes obtained according to the prescription described above are shown in Table 3.12.

Clearly, the intention of the designers of Serpent was to convince potential users that the S-boxes

have been designed with no hidden trapdoors.

S0 3 8 15 1 10 6 5 11 14 13 4 2 7 0 9 12
S1 15 12 2 7 9 0 5 10 1 11 14 8 6 13 3 4
S2 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2
S3 0 15 11 8 12 9 6 3 13 1 2 4 10 7 5 14
S4 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13
S5 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1
S6 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0
S7 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6

Table 3.12: Serpent S-boxes

The encryption commences from the initial permutation (IP), runs through 32 rounds and con-

cludes with the �nal permutation (FP) which the inverse of IP (see Figure 3.24). The input to the

i-th round is �rst XOR-ed with the round key Ki and next put into inputs of 32 copies of the same

S-box (one of the eight generated from DES S-boxes); i = 0; : : : ; 30. The outputs are transformed by

the linear transformation L. The last (32-nd) round replaces L by XOR of the key K32.

There are eight S-boxes only so the execution of 32 rounds requires that the same S-box is used

in four rounds. The S-box Si is used in rounds i; 8 + i; 16 + i; 24 + i for i = 0; : : : ; 7.

Obviously the decryption requires that the inverse operations (including inverse S-boxes) have to

be used in reverse order.

Key scheduling is used to produce 33 128-bit subkeys used. As we have already mentioned, the

main key is expanded to the 256-bit primary key K. Denote the key K as a sequence of eight 32-bit

words K = (w�8; : : : ; w�1). The necessary key material is generated word by word according to the

following equation:

wi = (wi�8 � wi�5 �wi�1 � �� i)� 11

where � is the part of decimal extension of the golden ratio (� =0x9e3779b9); i = 0; : : : ; 131. The

words of round keys are computed using consecutive four words pieces (w4i; w4i+1; w4i+2; w4i+3) for

Classical Ciphers 85

IP

Si mod 8 i mod 8S i mod 8S

L

7S S7 S7

FP

CipherText

PlainText

K

K 32

31

Round Key K

Repeat

31

Times

Last

Round

i

Figure 3.24: Serpent encryption

i = 1; 2; : : : ; 32 as

K0 = (k0; k1; k2; k3) = S3(w0; w1; w2; w3);

K1 = (k4; k5; k6; k7) = S2(w4; w5; w6; w7);

K2 = (k8; k9; k10; k11) = S1(w8; w9; w10; w11);

K3 = (k12; k13; k14; k15) = S0(w12; w13; w14; w15);

K4 = (k16; k17; k18; k19) = S7(w16; w17; w18; w19);
...

K31 = (k124; k125; k126; k127) = S4(w124; w125; w126; w127);

K32 = (k128; k129; k130; k131) = S3(w128; w129; w130; w131):

The Serpent cipher is one of the �ve �nalists chosen in the second round of the AES call. Its

strength needs to be con�rmed by independent tests.

3.3.6 Other Ciphers

The LOKI algorithm was designed in Australia. The �rst version called LOKI89 was published at

AUSCRYPT'90 Conference [67]. The revised version LOKI91 can be found in the proceedings of

ASIACRYPT'91 Conference [66]. Interestingly enough, LOKI applies many copies of a single S-box

which is based on cubing in GF(28).

The GOST algorithm is a Russian cipher [380] with the Feistel structure. It applies eight S-boxes

which are permutations of 4-bit integers. The details of the S-boxes, however, are left unspeci�ed

suggesting that the algorithm was designed to force users to apply for S-boxes to the central authority.

Classical Ciphers 86

Note that the central authority could choose weak S-boxes on purpose to be able to read encrypted

data. This looks like a Russian version of key escrowing.

The 2nd round �nalists of the AES call are RC6, Rijndael, Serpent, MARS and Two�sh. We have

described the �rst three. Now let as discuss briey the remaining two.

The MARS algorithm is an IBM cipher (see http://www.nist.gov/aes). The designers di�erentiated

between internal rounds and external ones (also called \wrapper layers"). The internal rounds are

seen as \the core" of the algorithm (provide mostly confusion) while external ones are using non-

cryptographic mixing (di�usion).

The Two�sh algorithm is an AES candidate designed by a team of researchers from Counterpane

Systems, Hi/fn, Inc. and University of California, Berkeley. It is a Feistel cipher with 16 uniform

rounds. The round function F : �64! �64 consists of two copies of the function g : �32 ! �32. The

function g is built using four 8-bit S-boxes. Each S-box is a permutation controlled by a cryptographic

key. The outputs from the four S-boxes are mixed using maximum distance separable code. The

outputs from the two copies of g are combined using modular addition.

3.4 Di�erential Cryptanalysis

Private-key cryptographic algorithms can be subject to the following general attacks:

� Ciphertext-only attack - the cryptanalyst knows cryptograms only. They know Ek(m1), Ek(m2),

: : :, Ek(m`) and want to �nd out either the key k or one or more messagesmi for some i = 1; : : : :`.

This attack takes place if the cryptanalyst is able to eavesdrop the communication channel.

� Known-plaintext attack - the adversary has access to a collection of pairs f(mi; Ek(mi)) j i =

1; : : : ; `g and wants to determine the key k or to decrypt a cryptogram Ek(m`+1) not included in

the collection. The adversary in this attack can not only eavesdrop the communication channel

but also can, in some way, access to a part of the plaintext. This happens if for example,

messages have a predictable structure so the attacker knows or can guess that the header of the

plaintext starts from \How are you ?" or \Dear Sir/Madam" and ends with \Sincerely yours".

� Chosen-plaintext attack - this is a known-plaintext attack for which the cryptanalyst may choose

messages and read the corresponding cryptograms. This scenario may happen if the encryption

equipment is left without supervision for some time, and the attacker can play with it assuming

they cannot access the key.

� chosen-ciphertext attack - the enemy can select their own cryptograms and observe the corre-

sponding messages for them. The aim of the enemy is to �nd out the secret key or encrypt a

new message into the valid cryptogram. This attack may happen if the decryption equipment is

left unsupervised and the attacker can try di�erent cryptograms (assuming that the equipment

is tamper proof { the attacker cannot access the secret key).

Biham and Shamir invented the di�erential cryptanalysis in 1990 ([32], [34]). This is a chosen-

plaintext attack which is not only applicable for encryption algorithms but also can be used for other

cryptographic algorithms including hashing.

3.4.1 XOR Pro�les

The basic tool used in the analysis is a table which shows di�erences between input and output of

S-boxes. This table is further referred to as the XOR pro�le of an S-box. Assume that we have an

Classical Ciphers 87

S-box that transforms input strings according to the following function

f : �n
! �m:

For a given pair of input strings (s1; s2), the S-box generates outputs s�1 = f(s1) and s�2 = f(s2).

The pair of input/output tuples f(s1; s�1); (s2; s
�
2)g is characterised by their input and output XOR

di�erences � = s1 � s2 and � = s�1 � s
�
2. Denote

S
�
� = f(s1; s2; s

�
1; s

�
2) j s1 � s2 = �; s�1 � s�2 = �; s1; s2 2 �n; s�1; s

�
2 2 �m; s�1 = f(s1); s

�
2 = f(s2)g

the set consists of elements (four-tuples) whose � and � are �xed. For instance, the set S3Cx2x
=

f(3x; 3Fx;Fx; Dx), (17x; 2Bx;Bx; 9x), (2Bx; 17x; 9x; Bx), (3Fx; 3x;Dx; Fx)g is computed for S1 of DES.

It means that there are four elements in the set. Note that there are actually two di�erent elements

only as the remaining two are permutations of their inputs and outputs. That is why the cardinality

of S�� is always an even number. There are also some � and � for which the set S�� is empty. Indeed,

any set S0x� for � 6= 0 is empty. This happens because any 4-tuple for two identical inputs is of the

form (xi; xi; yi; yi) and the corresponding � must be zero. The number of 4-tuples in S0x0x is equal to

2n.

De�nition 3.2 The XOR pro�le of an S-box de�ned by f : �n ! �m is a table which has 2n rows

and 2m columns. Each row and column is indexed by � and �, respectively. Each entry (�,�) of the

table shows the number of elements in the set S��.

The XOR pro�le of the DES S1 is presented in Table 3.13. For the full collection of XOR pro�les

of other DES S-boxes, the reader is referred to [34]. For the rest of this section we shall use S1 of DES

in our examples.

The properties of XOR pro�les can be summarised as follows:

� all entries in the table are zeros or positive even integers,

� the row for � = 0 has only one nonzero entry equal to 2n (n is the number of input bits of the

S-box),

� the sum of entries in each row is equal to 2n,

� an input di�erence � may cause an output di�erence � with probability p = �

2n
where � is the

entry of (�;�). This is denoted as � ! �,

� if an entry (�;�) is zero, then the input di�erence � cannot cause the di�erence � on the output.

Suppose both � and � are known. What can be said about actual values of the input ? Obviously,

the input must occur in some tuples from S��. For example, the set S3Cx2x
computed for S1 of DES

contains four inputs s 2 f3x; 3Fx; 17x; 2Bxg. Consider the DES S1 with a 6-bit partial key k XORed

to the input (see Figure 3.25). The XOR pro�le of S1 with the key is identical to the XOR pro�le of

the original S-box. This results from the fact that (s1 � k) � (s2 � k) = s1 � s2. Now assume that

the values s1, s2 and � are known. What we can say about the key ? First, observe that both s1 � k

and s2 � k must occur in S�� where � = s1 � s2. So we can extract all input values from the set S��.

Let the set of the inputs be X = fsi1 ; : : : ; sijg where j =j S
�
� j. Then the key k must belong to the

set K = X � s1= X � s2= fsi1 � s1; : : : ; sij � s1g = fsi1 � s2; : : : ; sij � s2g.

Consider an example. Let an input (s1; s2) = (21x; 38x) and the output di�erence � = 1x. The

set
S
19x
1x

= f(2x; 1Bx; 4x; 5x); (1Bx; 2x; 5x; 4x);

(22x; 3Bx; 1x; 0x); (2Cx; 35x; 2x; 3x);

(35x; 2Cx; 3x; 2x); (3Bx; 22x; 0x; 1x)g:

Classical Ciphers 88

Output XOR - �

� 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
2x 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2

3x 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
4x 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
5x 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
6x 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
7x 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4
8x 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
9x 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12

Ax 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
Bx 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12

Cx 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
Dx 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
Ex 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
Fx 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8
10x 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6
11x 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0
12x 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0

13x 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 6
14x 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0
15x 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4

16x 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6
17x 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0
18x 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2
19x 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0

1Ax 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8
1Bx 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2

1Cx 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0
1Dx 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0
1Ex 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2

1Fx 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4
20x 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12

21x 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8
22x 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10

23x 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10
24x 12 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4
25x 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2

26x 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0
27x 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4
28x 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2
29x 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4

2Ax 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2
2Bx 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4
2Cx 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6
2Dx 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6
2Ex 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4
2Fx 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2
30x 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4

31x 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8
32x 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0

33x 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4
34x 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
35x 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0
36x 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0
37x 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4
38x 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10
39x 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0

3Ax 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0
3Bx 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2
3Cx 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0

3Dx 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4
3Ex 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4
3Fx 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2

Table 3.13: XOR pro�le of DES S1

Classical Ciphers 89

S1

+

S1

+

k k

k ks s

ss

s s
1 2

1 2
* *

21

Figure 3.25: Di�erential analysis of S1

The collection of all inputs is X = f2x; 1Bx; 22x; 3Bx; 2Cx; 35xg. The applied key must be in the

following set K1 = X � s1 = X � s2 = f23x; 3Ax; 3x; 1Ax; Dx; 14xg. If the second observation is done

for the input (s1; s2) = (14; 23) and � = 2x. The set S
37x
2x

has 12 elements and is equal to

S
37x
2x

= f(Ex; 39x; 8x; Ax); (Fx; 38x; 1x; 3x);

(11x; 26x;Ax; 8x); (12x; 25x;Ax; 8x);

(18x; 2Fx; 5x; 7x); (19x; 2Ex; 9x; Bx);

(25x; 12x; 8x; Ax); (26x; 11x; 8x; Ax);

(2Ex; 19x;Bx; 9x); (2Fx; 18x; 7x; 5x);

(38x; Fx; 3x; 1x); (39x; Ex;Ax; 8x)g:

The set of inputs is X = fEx; 39x; Fx; 38x; 11x; 26x; 12x; 25x; 18x; 2Fx; 19x; 2Exg. The key applied must

be in the set K2 = X � s1 = X � s2 = f1Ax; 2Dx; 2Cx; 1Bx; 32x; 5x; 31x; 6x; 3Bx; Cx; 3Ax; Dxg. The

intersection of the sets K1 \K2 = f1Ax; Dx; 3Axg. The key must be there. Yet another observation

should be enough to �nd out the unique key. Indeed, let (s1; s2) = (14x; 1Cx) and � = 9x, then we

have X = f6x; Ex; 20x; 28x; 25x; 2Dxg and K3 = X � s1 = X � s2 = f12x; 1Ax; 34x; 3Cx; 31x; 39x; g.

The only key in all sets K1;K2;K3 is 1Ax.

At this stage we know how a single S-box can be analysed using input observations and the

corresponding output di�erences. The following points summarise our considerations:

� the XOR pro�le of an S-box with the secret key XORed with the input is identical to the XOR

pro�le of the S-box without the key,

� every input observation (s1; s2) and the corresponding output di�erence � enables the cryptan-

alyst to �nd out a set K of key candidates and

j K j=j S�� j

where � = s1 � s2 and � = f(s1)� f(s2),

� the analysis of di�erences for a single S-box allows to retrieve the key which is XORed to the

input of an S-box.

Now we would like to extend our analysis to the DES algorithm. Consider the last round of DES. As

DES uses Feistel permutations, inputs to all S-boxes used in the last round can be observed by looking

at the second half of the cryptogram. The problem is that we cannot see the corresponding output

di�erences. Fortunately, Biham and Shamir demonstrated that there is a probabilistic argument which

allows to make guesses about �. To explain the idea, we need to introduce the so-called characteristics

of DES rounds.

Classical Ciphers 90

3.4.2 DES Round Characteristics

An important feature of XOR pro�les is that the input di�erence � = 0 forces the output di�erence

� to be zero as well. Consider a single DES round with two input sequences (A1; 0) and (A2; 0). So

their input di�erence is
in = (A1 � A2; 0) = (�A; 0). The inputs to S-boxes are identical so their

output di�erences are zero. Finally, the output di�erence
out = (�A; 0) { see Figure 3.26.

= (, 0)δ in AΩ

 = (, 0)δ out AΩ

f
δ∆ 11 = 0 = 0

Figure 3.26: A single round characteristic of DES

Consider the XOR pro�le of S1. Our goal now is to �nd a characteristic which feeds a nonzero

input di�erence into S1 while other input di�erences of S2; : : : ; S8 are set to zero. Additionally, the

characteristic should work with a high probability. If we have a �xed input di�erence, then output

di�erences happen with the probability proportional to the corresponding entries in the XOR pro�le.

The largest entry is 14 and occurs in many places in the table. The �rst occurrence is in (3x; 0x). It

means that the input di�erence 00 00 11 produces the output di�erence 00 00. The two nonzero bits

on the S1 input have had to pass through the expansion block E so they are duplicated on the input

of S2. The only pair of bits which is not duplicated in other S-boxes is the pair of two middle bits

(in the E table marked as bits 2 and 3). So we have to look at rows 00 01 00 = 4x, 00 10 00 = 8x,

and 00 11 00 = Cx. The only row with an entry 14 is the last one � = Cx. The pair of di�erences

(Cx; Ex) happens with probability
14
64 . The characteristic is depicted in Figure 3.27. The binary string

∆1 δ 1

 = (δ out AΩ + 00 80 82 00 , 60 00 00 00)x x

= (δΩ in , 60 00 00 00 A)x

f
= 60 00 00 00 x= 00 80 82 00 x

Figure 3.27: Another single round characteristic of DES

(00 80 82 00x) is obtained by permuting (E0 00 00 00x) according to the DES permutation block P .

The two single round characteristics can be concatenated to create 2-round characteristic shown

in Figure 3.28. Its probability is 14
64

as the second round happens always (with the probability 1).

This informal discussion can be generalised for an arbitrary Feistel-type cryptosystem. The cryp-

tosystem processes n-bit messages or cryptograms and uses a round function fk : �
n

2 ! �
n

2 . The

cryptographic key k is XORed to the inputs of S-boxes.

De�nition 3.3 An m-round characteristic of a Feistel-type cryptosystem is a sequence

(
in; �1;�1; : : : ; �m;�m;
out) = (
in;
�;
out)

where
in and
out are input and output di�erences. The pairs (�i;�i); i = 1; : : : ;m, are consecutive

input and output di�erences for the round function fk.

Classical Ciphers 91

= 0∆ 2 = 0δ 2

∆1 δ 1

 = (outΩ 60 00 00 00 , 00 00 00 00)
x

Ω in = (00 80 82 00 , 60 00 00 00)x

f

f

= 00 80 82 00 x = 60 00 00 00 x

Figure 3.28: A two-round characteristic of DES

Characteristics can be concatenated in similar way as we have done to create 2-round characteristic

from two single ones. Let
1 = (
1
in;

1
�;

1
out) and
2 = (
2

in;

2
�;

2
out) be two characteristics.

They can be concatenated if the swapped halves of
2
in are equal to
1

out and the concatenation

 = (
1
in;

1;2
� ;
2

out). where

1;2
� is the concatenation of the two sequences
1

� and
2
�.

Any characteristic has a probability attached to it. Let our m-round characteristic be (
in; �1;�1;

: : : ; �m;�m;
out. Then its probability

P (
) =
mY
i=1

p�i�i

where p�i�i
is the probability that input di�erence �i causes the output di�erence �i for the function

fk in the i-th round.

3.4.3 A Cryptanalysis of 4-Round DES

First recall that to be able to �nd out keys we have to concentrate on the last round. For a given

pair of plaintext, we need to know values given to the function fk in the last round. These values are

known as they are the right halves of the cryptograms. The main goal is to �nd the output di�erences

which occur on S-boxes in the last round.

We use a characteristic given in Figure 3.26 for �A = 20 00 00 00x which works always (with

probability 1). The general scheme of di�erences in the 4-round DES is given in Figure 3.29. We start

from an observation that

�4 = �out ��2 � �1: (3.5)

�out is known from the cryptograms (left halves) and �1 is given from the input (right halves). Take

a closer look at �1 and �2. As �1 = 0, �1 = 0 as well. On the other hand, �2 = 20 00 00 00x so

the input di�erence on S1 becomes 00 10 00 leaving the rest of S-boxes with zero di�erences (notice

that the two middle bits of S1 are not duplicated in other S-boxes by the bit-selection block E).

This means that all output di�erences of S2; : : : ; S8 are forced to zero { we know di�erences on their

outputs. Thus 28-bits of �2 are known. From Equation (3.5), we conclude that 28 bits of �4 are

known. Being more speci�c, we know inputs of seven S-boxes and their output di�erences in the last

round. By the di�erential analysis given in Section 3.4.1, we can �nd 7� 6 = 42 bits out of the 48-bit

key k4.

To be able to analyse S1 in the 4-th round, we need another characteristic. We can use the same

one but for �A = 04 44 44 44x. As previously, �1 = �1 = 0 but �2 = 04 44 44 44x. As the input

Classical Ciphers 92

∆
out 4δOutput difference (,)

f

f

f

f

δ

δ

δ

δ

∆

∆

∆

∆

1

2

3 3

4 4

1

2

Input difference

Figure 3.29: Four-round DES

di�erence on S1 is zero in the second round, the output di�erence on S1 is also zero. From Equation

(3.5), the 4-bit di�erence on the output of S1 in the 4-th round can be determined. Note that the

permutation block P behind S-boxes is used in all rounds so the corresponding bits always meet. Once

this is done, the missing part of the key can be recovered by the di�erential analysis of S1.

Having the partial key k4, we can strip o� the last round and analyse the three round DES. After

�nding k3, we are left with 2-round DES which can be easily analysed. The analysis assumes that

keys are independent in each round so the introduction of long randomly selected keys for each round

does not protect the cryptosystem against the di�erential analysis. On the other hand, a \weak" key

schedule may allow to deduce the initial key from the partial key used in the last round.

3.4.4 A Cryptanalysis of 6-Round DES

Figure 3.30 shows a general scheme of di�erences in the 6-round DES. As previously, to be able to

�nd the key k6 used in the sixth round, we have to determine the output di�erence �6. The following

equation can be easily established

�6 = �out ��4 � �3 (3.6)

To derive �3, we use two 3-round characteristics given in Figures (3.31) and (3.32). The �rst charac-

teristic uses

�3 = 04 00 00 00x

�out is available as it is the di�erence of the left halves of the cryptograms. To determine �4, consider

�4 = 40 08 00 00x. In the fourth round, S-boxes S2,S5,S6,S7,S8 have their input di�erences set to zero

so their output di�erences are forced to zero. This means that we can �nd di�erences in the sixth

Classical Ciphers 93

f

f

δ

δ

∆

∆

1

2

1

2

f

f

δ

δ

∆

∆

3 3

4 4

f
δ∆ 55

f
δ∆ 66

Input Difference

Output Difference

Figure 3.30: Six-round DES

round for S2,S5,S6,S7 and S8. This time the analysis of S-boxes is not deterministic due to the fact

that �3 = 40 08 00 00x occurs with the probability 1
16 . This of course complicates the analysis as

we cannot reduce the set of candidate keys after every observation. Indeed, we need to count all the

candidate keys. It is expected that the right key will have a higher frequency than the rest. Thus,

after enough observations we can �nd 30 bits of k6.

The second characteristic produces

�4 = 00 20 00 08

so input di�erences in the fourth round are zeros for S1,S2,S4,S5 and S6. �4 has zero output di�erences

for these S-boxes. From Equation (3.6), we can �nd �6 for these S-boxes. By counting keys for S1

and S4, we can determine the corresponding 12 bits of k6. So we know 42 out of 48 bits of k6.

The missing 6 bits of the key (used in S3) can be determined by using 42 already recovered bits.

To do this, we �rst identify pairs of plaintext/ciphertext which behave according to the characteristic.

These pairs are called right pairs. The identi�cation can be done by checking if the di�erences on

the outputs of S-boxes in the fourth round are zeros. As we know 42 bits of k6, we can generate the

corresponding 28 bits of �0
6 (using the 7-th round). Knowing �out, we verify whether

�0
6 ��out = �4 � �3

Classical Ciphers 94

()
1
4

()
1
4

 outΩ1 = 40 08 00 00 04 00 00 00 x

Ω in

f

f

f

()1

x x

0 x 0 x

40 08 00 00 04 00 00 00

40 08 00 00 04 00 00 00

x x

1
= 40 08 00 00 04 00 00 00 x

Figure 3.31: First 3-round characteristic

0 x 0 x

()
1
4

()
1
4

 outΩ2
 = 00 20 00 08 00 00 04 00 x

Ω in

f

f

f

()1

00 20 00 08 00 00 04 00

00 20 00 08

x x

x 00 00 04 00 x

2
 = 00 20 00 08 00 00 04 00 x

Figure 3.32: Second 3-round characteristic

If the equation is not satis�ed, we reject the pair as there is an overwhelming probability that this is

not the right pair.

For every right pair, we guess the 6-bit part of k6 XORed to the input of S3. Now the 48-bit k6 is

used to determine �0
6. Next we calculate �

0
5 = �out ��0

6 and verify whether values of di�erences on

S2, S3, and S8 in the �fth round satisfy the equation �5 = �4� �6. After at most 26 tries, we have all

bits of k6. The still missing 56� 48 = 8 bits, can be reconstructed by exhaustive search of 28 = 256

possibilities.

3.4.5 Analysis of Other Feistel-Type Cryptosystems

The analysis can be conducted for versions of DES with more rounds. Table 3.14 shows the results.

For more details see [35]. It is no surprise to �nd out that the more rounds a DES variant has the less

e�cient analysis becomes. This is due to the fact that longer characteristics have smaller probabilities

associated with them.

Murphy [358] has shown that the FEAL-4 algorithm is vulnerable to the di�erential analysis with

20 chosen plaintexts only. Biham and Shamir [33] demonstrated that FEAL-N with N smaller than

32 is subject to the di�erential cryptanalysis whose e�ciency is higher than the exhaustive search of

Classical Ciphers 95

No. of Chosen Analysed Complexity
rounds plaintexts plaintexts of analysis

8 214 4 29

9 224 2 232

10 224 214 215

11 231 2 232

12 231 221 221

13 239 2 232

14 239 229 229

15 247 27 237

16 247 236 237

Table 3.14: Cryptanalysis of DES

the key space.

The main features of the di�erential analysis are summarised below.

� The di�erential analysis can be applied to Feistel cryptosystems with t rounds where it is possible

to see inputs to the round function and deduce or guess (with high probability) the corresponding

output di�erences.

� Characteristics are useful in guessing the correct output di�erences of the round function. It is

enough to have (t� 3)-round characteristic to �nd out output di�erences in the t-round Feistel

cryptosystem.

� As the di�erential analysis enables to �nd keys applied in the last round function, it by-passes

the key schedule. It works under the assumption that round keys are statistically independent.

� Once the key in the last round is found, the last round can be stripped o� by applying the extra

round which is the inverse of the last round. The analysis can be now applied to system with

t� 1 rounds (peeling o� technique).

To make a Feistel cryptosystem immune against the di�erential analysis, the following points need to

be addressed:

� The XOR pro�le must not have entries with large numbers,

� The best (t � 3)-round characteristics should work with the probability smaller than the prob-

ability of guessing the right key (t is the number of rounds in the cryptosystem).

� The S-boxes should depend upon the secret key in a nonlinear way. This will cause that XOR

pro�le of S-boxes become more complex. One way of implementation of this idea would be an

on-y selection of S-boxes depending on the round key.

3.5 Linear Cryptanalysis

At Eurocrypt'93 Matsui presented a new class of general attacks which exploits a low nonlinearity of

S-boxes. The attack referred to as the linear cryptanalysis is a known-plaintext attack. The linear

cryptanalysis can also work as a ciphertext-only attack. The principles of the linear cryptanalysis are

explained in [317]. The linear cryptanalysis of DES is described in [320].

Classical Ciphers 96

3.5.1 Linear Approximation

A Boolean function ` : �n ! � in n variables s1; : : : ; sn, is linear if it can be represented as `(s) =

a1s1 � : : :� ansn for some ai 2 � = f0; 1g; i = 1; : : : ; n. The set of all linear Boolean functions in n

variables is denoted by

Ln = f` : �n
! � j ` = a1s1 � : : :� ansng

A Boolean function f : �n ! � is called a�ne if either f(s) = `(s) or f(s) = `(s) � 1, for some

`(s) 2 Ln. The set of all a�ne Boolean functions in n variables is

An = Ln [f`� 1 j ` 2 Lng = Ln [Ln

i.e. An consists of all linear functions and their negations. A Boolean function f : �n ! � is uniquely

represented by the corresponding truth table. Assume that the argument �i 2 �n runs through all its

possible values 0; 1; : : : ; 2n � 1 so �0 = (00 : : :0), �1 = (00 : : :1) and so forth until �2n�1 = (11 : : :1).

The truth table of f is equivalent to the following vector

f = (f(�0); f(�1); : : : ; f(�2n�1))

where f(�i) speci�es the value of the function for the argument expressed by the vector �i (i =

0; : : : ; 2n � 1). The Hamming distance d(f; g) between two Boolean functions f; g : �n ! � is the

number of 1s in the vector

(f(�0)� g(�0); f(�1) � g(�1); : : : ; f(�2n�1)� g(�2n�1)):

De�nition 3.4 (Pieprzyk, Finkelstein [402]) The nonlinearity N(f) of a Boolean function f : �n !

� is

N(f) = min
`2An

d(`; f);

i.e., it is the minimal distance between the function f and the set of a�ne functions An.

An (n � m) S-box S : �n ! �m is a collection of m functions fi : �n ! �; i = 1; : : : ;m, in n

Boolean variables s = (s1; : : : ; sn) for which

S(s) = (f1(s); : : : ; fm(s)):

The notion of nonlinearity can be extended as in the following de�nition.

De�nition 3.5 (Nyberg [373]) The nonlinearity of a (n�m) S-box S = (f1; : : : ; fm) is

N(S) = min
w=(w1;:::;wm)2�m;v2�

N(w1f1 � : : :�wmfm � v): (3.7)

Consider f : �2 ! � of the form f(s) = s1s2. The truth table and all linear functions from

L2 = f0; s1; s2; s1 � s2g are presented in Table 3.15. So distances are d(f; 0) = d(f; s1) = d(f; s2) = 1

s2s1 f 0 s1 s2 s1 � s2 f � s1 f � s2 f � s1 � s2
00 0 0 0 0 0 0 0 0
01 0 0 1 0 1 1 0 1
10 0 0 0 1 1 0 1 1
11 1 0 1 1 0 0 0 1

Table 3.15: The truth table of f(s) = s1s2 and linear functions from L2

Classical Ciphers 97

and d(f; s1 � s2) = 3.

Knowing the distance d(f; `) = df;` where ` 2 Ln, it is easy to obtain d(f; ` � 1) = 2n � df;`. So

to determine the nonlinearity of a function f : �n ! �, it is enough to �nd all distances between

the function and the linear functions. The distances for the a�ne functions from the set �Ln can be

computed from the distances of linear functions.

In the DES algorithm, there are eight S-boxes Si : �6 ! �4 for i = 1; : : : ; 8. Each S-box can

be treated as a collection of four Boolean functions. For a given S-box, we can create a table of

distances as follows. Rows of the table are indexed by a linear function ` 2 L6. There are 26 = 64

possible linear functions. The index of the row is a hexadecimal number which represents the linear

function. So the index 31x = 11 0001 corresponds to the linear function `(s) = s6� s5� s1 where s =

(s6; s5; s4; s3; s2; s1). The columns of the table are indexed by linear combinations of S-box outputs. So

if the S-box function S = (f4; f3; f2; f1), the linear combination f = (a4f4�a3f3�a2f2�a1f1) where

a4a3a2a1 is the column index in the hexadecimal notation. For instance, the index 9x corresponds to

the linear combination of outputs f4 � f1. There are 15 nonzero columns. The entry (`; f) gives the

Hamming distance d(`; f). This table is called the linear pro�le of an S-box.

The linear pro�le of S5 is given in Table 3.16. All entries are even numbers { this results from

the fact that all output functions in all S-boxes have equal number of 0s and 1s (the output functions

are balanced). The nonlinearity of a linear combination of outputs can be found by looking for the

smallest and the biggest entry in the corresponding column f . Let the two entries be dmin = df;r1

dmax = df;r2. The nonlinearity of the function f is the smaller integer from (dmin; 26 � dmax). The

best linear approximation of the column function is either the linear function `r1 if dmin < 26 � dmax

or the negation of the linear function `r2, i.e. the a�ne function `r2 � 1 where `r1 and `r2 are linear

functions which correspond to the row r1 and r2, respectively.

The best linear approximation of a function f : �n ! � is the a�ne function ` 2 An which is

closest (in the sense of Hamming distance) to the function f and the distance d(`; f) is the nonlinearity

of the function. For instance, the function f8x has the best linear approximation `f8x=s6 � s5 � s3 �

s2 � s1 (the row 37x) and the nonlinearity 20. The function f4x is best approximated by `f4x=

s6 � s5 � s4 � s3 � s2 � s1 � 1 (the row 3Fx). The nonlinearity of f4x is 64� 46 = 18.

The global characterisation of S-box can be done by the selection of the pair: the smallest dgmin

and biggest entry dgmax. The nonlinearity of the S-box is the minimum of dgmin and 2n � dgmax. For

S5 the nonlinearity of the S-box is 12 (the entry for the row 10x and the column Fx) { so fFx can

be approximated by s5. This is the best available approximation in S5 and as a matter of fact, in all

S-boxes.

Let a function f : �n ! � and its linear approximation ` : �n ! � be given. How well does `

approximate f ? The distance d(`; f) gives the number of input values for which the functions di�er.

So if we randomly select an input, we have the probability

2n � d(`; f)

2n

that the outputs of ` and f will be the same. The worst case is when the best linear approximation `

di�ers for about half of the possible input values, i.e. d(`; f) � 2n�1. The probability that `(s) 6= f(s)

or `(s) = f(s) is � 0:5 for a random s 2 �n.

3.5.2 Analysis of 3-Round DES

The attack uses the best linear approximation of S5. This approximation is

s�1 � s�2 � s
�
3 � s

�
4 = s5

Classical Ciphers 98

Combinations of Outputs

1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
1x 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
2x 36 30 34 30 34 28 32 36 32 34 30 34 30 32 28

3x 32 34 26 34 34 28 36 32 32 34 26 34 34 28 36
4x 34 30 32 32 34 30 32 32 34 34 36 28 30 30 32
5x 30 30 36 32 22 38 36 32 30 42 32 28 34 30 28

6x 34 36 38 34 36 30 32 32 34 32 34 38 40 30 32
7x 34 32 34 30 40 38 32 28 38 32 26 30 32 26 28
8x 32 34 38 32 32 30 26 30 34 36 20 34 38 28 36
9x 36 26 34 32 36 38 38 26 34 32 36 30 38 40 36
Ax 28 32 32 34 38 30 30 30 30 34 30 28 36 36 32
Bx 36 36 36 38 34 30 30 30 30 30 34 32 24 28 32
Cx 30 32 34 32 30 28 22 34 28 34 40 34 28 38 36
Dx 38 32 34 32 30 36 22 30 32 30 36 30 40 26 32
Ex 30 30 32 30 36 32 34 30 32 36 34 28 38 30 28

Fx 34 34 24 26 28 32 30 30 28 24 34 24 38 30 32
10x 34 30 32 32 30 26 24 32 30 30 28 32 34 42 12
11x 30 34 32 28 30 34 36 28 30 30 32 40 38 30 28
12x 34 32 34 30 36 34 40 28 26 28 26 34 28 38 32

13x 26 32 34 30 36 34 32 36 26 36 34 26 36 30 32
14x 28 36 32 32 32 32 32 36 36 28 28 32 28 36 32
15x 36 32 28 28 36 24 24 32 32 28 36 40 36 32 36

16x 32 38 38 34 30 36 32 36 32 38 34 34 34 32 32
17x 28 38 34 26 34 36 28 28 36 38 30 34 30 32 28

18x 26 32 30 28 42 36 30 30 32 34 32 30 28 34 36
19x 34 36 26 32 30 36 30 38 40 38 36 42 32 34 28

1Ax 34 34 24 30 36 32 34 30 32 36 34 32 30 30 32
1Bx 30 26 36 38 32 32 30 26 24 32 34 36 38 34 32
1Cx 32 30 34 36 32 26 34 30 38 28 32 34 30 32 32

1Dx 28 34 26 40 32 34 30 22 34 40 40 30 30 32 28
1Ex 36 40 32 34 34 34 30 34 30 34 26 28 28 28 32

1Fx 28 40 24 34 26 26 30 30 34 30 30 24 32 32 28
20x 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
21x 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
22x 28 30 34 30 34 28 40 28 32 26 38 34 30 16 20
23x 32 34 34 26 34 36 28 32 32 34 34 34 26 28 36

24x 30 38 36 32 38 30 36 36 26 30 36 32 46 34 32
25x 26 30 32 32 26 30 32 36 38 30 40 32 34 26 36
26x 30 28 34 34 32 30 36 28 34 36 34 26 32 34 32
27x 22 32 30 38 36 38 28 32 38 20 34 34 32 38 28

28x 36 30 30 32 36 26 34 34 26 36 32 38 30 28 32
29x 32 30 26 32 32 26 30 30 34 40 32 34 38 32 32

2Ax 32 36 40 26 26 26 38 26 30 34 34 40 28 36 28
2Bx 40 32 36 38 30 26 38 34 38 30 38 28 32 36 36
2Cx 30 28 38 32 38 32 26 34 36 30 36 34 28 26 32

2Dx 30 28 30 32 30 24 34 30 32 26 24 30 32 30 36
2Ex 38 34 28 38 36 36 30 22 24 32 30 36 30 34 32
2Fx 26 38 36 26 36 28 34 30 28 28 38 32 30 34 36
30x 34 30 32 28 26 30 28 36 34 34 32 32 34 34 36

31x 30 34 32 32 34 30 32 32 34 34 36 32 30 30 28
32x 26 32 34 34 24 30 28 32 22 32 30 34 28 30 32
33x 26 32 42 34 32 30 28 32 38 32 22 34 36 30 32
34x 32 44 28 36 32 28 40 36 32 36 32 36 36 32 32
35x 24 32 32 40 28 36 32 32 28 28 32 36 36 28 36

36x 36 30 26 30 30 40 32 36 28 30 30 38 34 28 32
37x 40 38 38 38 26 32 28 20 32 30 34 30 30 28 36
38x 30 28 38 32 34 28 34 38 28 38 32 26 28 34 32
39x 30 40 34 28 38 28 26 30 28 34 36 30 32 34 32
3Ax 38 22 32 34 36 32 30 38 28 32 34 36 30 30 28
3Bx 34 38 36 42 32 40 34 42 28 28 34 32 30 34 28
3Cx 24 26 30 32 28 34 34 26 34 36 32 42 30 36 36

3Dx 28 30 30 28 28 34 30 34 22 32 32 30 30 28 32
3Ex 36 28 36 30 30 34 30 30 34 34 34 28 36 32 28

3Fx 28 28 28 46 38 26 30 34 30 38 30 32 32 28 32

Table 3.16: Linear Pro�le of S5

Classical Ciphers 99

where s�i are outputs and s5 is an input of S5. This equation translates to (see Figure 3.33)

R(15)� k(22) = S(7) � S(18) � S(24) � S(29)
def
= S(7;18;24;29)

in a single round of DES.

X
E

S-boxes

P

15

R k

S
(7,18,24,29)

Figure 3.33: Linear approximation in a single round of DES

For a 3-round DES (Figure 3.34), we can establish the following equations:

R2(7;18;24;29)� L1(7;18;24;29) = k1(22) � R1(15) (3.8)

R2(7;18;24;29)� L3(7;18;24;29) = k3(22) � R3(15) (3.9)

If we merge Equations (3.8) and (3.9), we obtain

12
24()

12
24()

(15)(7,18,24,29)

(7,18,24,29)

f

f

f

(22)L1

R1

R2

R3

L3

CIPHERTEXT

PLAINTEXT

k2

k1

k3

Figure 3.34: Three-round linear characteristic

L1(7;18;24;29)� L3(7;18;24;29)� R1(15) �R3(15) = k1(22) � k3(22) (3.10)

What is the probability that Equation (3.10) is true ? Equation (3.10) is true in the two cases: (1)

if Equations (3.8) and (3.9) are true, or (2) if the equations are simultaneously false. Therefore the

probability is (52
64
)2 + (12

64
)2 �0.7

Looking at di�erent pairs of plaintext/ciphertext, we count how many times the right-hand side

of Equation (3.10) is zero or one. The right value of k1(22) � k3(22) can be established after enough

observations. In the result we have a �rst linear equation for two bits of the key. The attack could

proceed by choosing other good approximations and collecting more linear equations for other key

bits. If we had enough linearly independent equations, we could �nd the key.

Classical Ciphers 100

3.5.3 Linear Characteristics

Take a look at Figure 3.35 that shows a 5-round DES. In the �rst and �fth round the 15-th bit coming

f S1(15)

L1 R1

S2(7,18,24,29)
(22)

(22)

f

f

f

f

R2

(42,43,45,46)

R3

R4

R5

L5

S4(7,18,24,29)

(15)

(15)

(27,28,30,31)S5(15)

k1

k2

k3

k4

k5

(27,28,30,31)

PLAINTEXT

CIPHERTEXT

Figure 3.35: Five-round linear characteristic

out of the round function is approximated using the following equation

S(15) = k(27)�k(28)�k(30)�k(31)�R(27)�R(28)�R(30)�R(31)
def
= k(27;28;30;31)�R(27;28;30;31) (3.11)

This bit comes from S1 and its nonlinearity is 22. The following two equations are derived for the 1st

and 5-th round

R2(15) = L1(15) � S1(15) = L1(15) � k1(27;28;30;31)�R1(27;28;30;31)

R4(15) = L5(15) � S5(15) = L5(15) � k5(27;28;30;31)�R5(27;28;30;31)

The 2-nd and 4-th rounds use the same approximation as in the previously discussed 3-round DES so

we have

R3(7;18;24;29) = R1(7;18;24;29)� S2(7;18;24;29) = R1(7;18;24;29)� k2(22) �R2(15)

R3(7;18;24;29) = R5(7;18;24;29)� S4(7;18;24;29) = R5(7;18;24;29)� k4(22) �R4(15)

After merging of the last two, we get

R1(7;18;24;29)� R5(7;18;24;29) = k2(22) �R2(22) � k4(22) �R4(22)

Now we substitute R2(22) and R4(22) by their linear approximations and we have the �nal linear

characteristic

L1(15) � L5(15) �R1(7;18;24;27;28;29;30;31)�R5(7;18;24;27;28;29;30;31) =

k1(27;28;30;31)� k2(22) � k4(22) � k5(27;28;30;31): (3.12)

Classical Ciphers 101

The characteristic uses four linear approximations. Each approximation has the associated probabil-

ity which expresses the accuracy of the approximation. How can we compute the probability that

Equation (3.12) holds ? The answer is given in the following theorem.

Theorem 3.1 (Matsui [317]) Given n independent random variables X1; : : : ; Xn such that P (Xi =

0) = pi and P (Xi = 1) = 1� pi for i = 1; : : : ; n. Then the probability that X1 � : : :�Xn = 0 is

1

2
+ 2n�1

nY
i=1

(pi � 0:5): (3.13)

Note that to produce the characteristic from Equation (3.12), we have used four approximations whose

probabilities are: 42
64 ;

52
64 ;

52
64 ;

42
64 . The probability that Equation (3.12) holds, is � 0:519. It means

that after � 2800 pairs of plaintext/ciphertext the right value of k1(27;28;30;31)� k2(22)� k4(22)�

k5(27;28;30;31) can be found.

Linear characteristics are linear approximations of some of the key bits by a combination of plain-

text/ciphertext bits. The e�ciency of a characteristic is measured by the probability that the charac-

teristic is true (or all approximations in the characteristic hold). It can be computed from probabilities

of S-box approximations by applying Theorem 3.1.

Matsui introduced also a nice improvement which speeds up the analysis. The improvement can

be used in the �rst and last round when we can see the inputs to the round functions. Instead of

approximation, we try to guess the right bits of a part of the round key (only these bits of the key

which inuence the characteristic). Assume that the characteristic depends on v bits of the key (in the

�rst or last round). We can evaluate the characteristic for all possible patterns of v bits simultaneously.

Due to the probabilistic nature of characteristics, it is expected that the correct value of v bits will

cause a noticeable bias in counting which must be proportional to the probability of the characteristic.

This allows to retrieve v bits of the key.

The analysis of 16-round DES can be done by using two linear characteristics. The second charac-

teristic is obtained from the �rst one by swapping plaintext bits with ciphertext bits in the equation.

The characteristics approximate all rounds except the �rst and last ones. For the �rst and last rounds,

we guess parts of the round keys. This produces 12 bits of the key plus 1 bit from the characteristic.

As the attack uses 2 characteristics, we can determine 26 bits of the key. The rest 30 bits are found

by the exhaustive search. To break DES, it takes 243 steps and the success rate is 85% if 243 pairs

(plaintext, ciphertext) are known.

The FEAL algorithm was the �rst one which was subject to linear analysis by Matsui and Yam-

agishi in [319]. FEAL-4 is breakable with 5 observations and FEAL-8 with 215 observations.

How to prevent cryptographic systems against the linear cryptanalysis ? The answer seems to be

easy { use highly nonlinear S-boxes (see [402]). For a highly nonlinear S-box, each linear approximation

of the S-box function works with low probability. However, it is also possible to increase the immunity

of the system against the linear analysis by permuting S-boxes (see [318]). This is due to the fact that

for a carefully chosen order of S-boxes in the round function, concatenation of linear approximations

to create a characteristic with a high probability, becomes impossible.

The di�erential and linear analysis can be used together. There is a hope that a combination of

the attacks may succeed where both attacks have failed when applied separately.

3.6 S-box Theory

Shannon's concept of product ciphers uses two basic transformations: confusion and di�usion. All

modern cryptographic algorithms use in some or other way a collection of S-boxes which provide

Classical Ciphers 102

confusion and P-boxes which spread out the output bits to di�erent S-boxes of the next round. P-boxes

have usually a �xed permutation of input and output bits. The strength of product ciphers mainly

comes from the \properly" designed S-boxes. The de�nition of cryptographically strong S-boxes is

to some extend arbitrary. It is well known fact that weaknesses of S-boxes may be compensated by

the increased number of rounds. This is precisely the case with the FEAL algorithm which becomes

immune against the linear cryptanalysis when the number of rounds is bigger than 32. Note that if a

cryptographic algorithm is to be both cryptographically strong and fast, then a careful design of all

its components is of utmost importance.

Each general cryptographic attack on product ciphers explores some weaknesses in S-boxes. In

response, a new S-box criterion is introduced. If the criterion is incorporated into S-boxes, it makes

the cryptographic algorithm immune against the attack. For instance, the di�erential attack caused

that a \good" XOR pro�le was added to the list of S-box criteria.

3.6.1 Boolean Functions

Recall that � = f0; 1g. The simplest �eld which can be de�ned over � is GF (2) = h�;�;�i with the

addition � and multiplication�. GF (2) is called the binary �eld. Clearly, addition is 0�0 = 1�1 = 0

and 0� 1 = 1� 0 = 1. Multiplication is de�ned as 0� 0 = 1� 0 = 0� 1 = 0 and 1� 1 = 1.

Consider a Boolean function f : �n ! GF (2) which assigns a binary element y 2 � to a vector

x = (x1; : : : ; xn) 2 �n of n bits (n-tuple) so y = f(x). For example, the vector space �3 consists of

the following vectors:

(000); (001); (010); (011); (100); (101); (110); (111)

Note that we do not need to use commas to separate components of vectors. For simplicity, we will

denote elements (vectors) of �n by their decimal representations used as the subscript so

�0 = (00 : : :00)

�1 = (00 : : :01)
...

�2n�1 = (11 : : :11)

Let f : �n ! GF (2) be a Boolean function. The binary sequence

(f(�0); f(�1); : : : ; f(�2n�1))

is called the truth table of the function f . The sequence with components from f1;�1g de�ned by

((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1))

is called the sequence of the function f . A 2n� 2n matrix F with entries fi;j = (�1)f(�i��j) is called

the matrix of the function f .

Let f(x) = x1x2x3 � x1x3 � x2 � x3 � 1 be a function on �3. It is easy to check that

f(000) = 1; f(001) = 0; f(010) = 0; f(011) = 1;

f(100) = 1; f(101) = 1; f(110) = 0; f(111) = 1:

So the truth table of f is (10011101) and the sequence of f is (�1; 1; 1;�1;�1;�1;1;�1) or (�++�

Classical Ciphers 103

� �+�) where + and � stand for +1 and �1, respectively. The matrix of f is

F =

2
66666666666664

� + + � � � + �

+ � � + � � � +

+ � � + + � � �

� + + � � + � �

� � + � � + + �

� � � + + � � +

+ � � � + � � +

� + � � � + + �

3
77777777777775

:

A Boolean function f : �n ! GF (2) is said to be balanced if its truth table has 2n�1 zeros (or

ones). For instance, the function f(x) = x1x2 � x3; x 2 �3, is balanced since the truth table of f is

(01010110) and the function takes the value zero the prescribed 4 times.

A Boolean function f : �n ! GF (2) is a�ne if it can be represented in the form

f(x1; : : : ; xn) = a0 � a1x1 � � � � � anxn;

where ai 2 � for i = 0; : : : ; n. The set of all a�ne functions over �n is denoted by An. An

a�ne function f is called linear if a0 = 0. The sequence of an a�ne (or linear) function is called

an a�ne (or linear) sequence. The function f(x1; x2; x3) = x3 � x1 � 1 is a�ne and the function

f(x1; x2; x3) = x3 � x1 is linear.

The Hamming weight of a binary vector � 2 �n, denoted by W (�), is the number of ones it

contains. For example, W (010011) = 3. Given two functions f; g : �n ! GF (2), the Hamming

distance between them is de�ned as d(f; g) = W (f(x) � g(x)), where W (f(x) � g(x)) is the weight

of the truth table of the function f(x) � g(x). Let f(x) = x1x2 and g(x) = x1 � x2 be two Boolean

functions. Then

d(f; g) = W (f(x) � g(x)) = W (x1x2 � x1 � x2):

As the truth table of the function f � g = x1x2 � x1 � x2 is (0111), the distance d(f; g) = 3.

Let � = (a1; : : : ; an) and � = (b1; : : : ; bn) be two vectors (or sequences), the scalar product of �

and �, denoted by h�; �i, is de�ned as the sum of the component-wise multiplications. In particular,

when � and � are from �n, h�; �i = a1b1� � � �� anbn, where the addition and multiplication are over

GF (2). If � and � are (1;�1)-sequences, the scalar product h�; �i =
Pn

i=1 aibi, and the addition and

multiplication is taken over the reals.

Lemma 3.1 If � = (a0; : : : ; a2n�1) and � = (b0; : : : ; b2n�1) are the sequences of functions f1; f2 :

�n ! GF (2), respectively, then

� � � = (a0b0; a1b1; : : : ; a2n�1b2n�1)

is the sequence of f1(x)� f2(x), where x = (x1; x2; : : : ; xn).

Proof: The two sequences are given by ai = (�1)f1(�i) and bi = (�1)f2(�i) for �i = 0; : : : ; 2n � 1.

Then

aibi = (�1)f1(�i)(�1)f2(�i) = (�1)f1(�i)�f2(�i):

2

Let f1(x) = x1x2 (x 2 �2) which has its sequence

� = (�1)f1(0;0); (�1)f1(0;1); (�1)f1(1;0); (�1)f1(1;1) = (1 1 1 �)

Classical Ciphers 104

where � stands for �1. The function f2(x) = x2 (x 2 �2) which has the function sequence

� = (�1)f2(0;0); (�1)f2(0;1); (�1)f2(1;0); (�1)f2(1;1) = (1� 1�):

Now f1(x)�f2(x) = x1x2�x2 has the sequence (1�1 1) which equals to is ��� = (1 1 1�)�(1�1�) =

(1� 1 1).

An r � r matrix with entries from f1;�1g is called a Hadamard matrix if HHT = rIr where HT

is the transpose of H and Ir is the r � r identity matrix. It is well known that Hadamard matrices

exist when n = 1; 2 or n is multiple of 4 [510]. A Sylvester-Hadamard or Walsh-Hadamard matrix is

a 2n � 2n matrix Hn which is generated according to the following recursive relation:

H0 = 1; Hn =

"
Hn�1 Hn�1

Hn�1 �Hn�1

#
; n = 1; 2; : : ::

The way the matrix Hn is constructed from Hn�1 is written shortly as Hn = H1
Hn�1 where
 in

means the Kronecker product. For instance, let

A =

"
a1 a2

a3 a4

#
B =

2
64
b1 b2 b3

b4 b5 b6

b7 b8 b9

3
75

then

A
B =

"
a1B a2B

a3B a4B

#
and B
 A =

2
64
b1A b2A b3A

b4A b5A b6A

b7A b8A b9A

3
75

An interesting relation between Walsh-Hadamard matrices and the collection of linear functions

is described in the next lemma.

Lemma 3.2 The i-th row (column) of Hn is the sequence of linear function 'i(x) = h�i; xi, where

x; �i 2 �n and �i is the binary representation of the integer i; i = 0; 1; : : : ; 2n � 1.

Proof: By induction on n. Let n = 1. Note that H1 =

"
+ +

+ �

#
where + and � stand for 1

and �1, respectively. The �rst row of H1 is `0 = (+ +) which is equal to h0; xi. The corresponding

function is the constant function f(x) = 0. The second row of H1 is `1 = (+ �) which is the same as

the sequence of h1; xi where x 2 �. The corresponding function is f(x) = x.

Suppose the lemma is true for n = 1; 2; : : : ; k� 1. Since Hk = H1
Hk�1, each row of Hn can be

written as either (`; `) or (`;�`) where ` is a row in Hk�1. From the assumption, ` is the sequence of

some linear function '(x) where x = (x2; : : : ; xk) 2 �k�1. Thus (`; `) is the sequence of the function

�(y) = '(x) where y = (x1; : : : ; xk) 2 �k and (`;�`) is the sequence of the function �(y) = '(x)�x1

where y = (x1; : : : ; xn) 2 �k. Thus the lemma is true for k. Since Hk is symmetric, the lemma is also

true for columns. 2

The �rst four Walsh-Hadamard matrices are:

H0 = [1] ; H1 =

"
1 1

1 �1

#
;

H2 =

2
6664

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

3
7775 ;

Classical Ciphers 105

H3 =

2
66666666666664

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

3
77777777777775

Let � = (i1; i2; : : : ; ip) be a constant vector from �p. Then D� : �p ! � is de�ned as

D�(y1; y2; : : : ; yp) = (y1 � �i1)(y2 � �i2) � � � (yp � �ip)

where �ij is the complement of ij for j = 1; 2; : : : ; p. The D-function of � is useful in obtaining

the function representation for the concatenation of binary sequences. Let fi : �q ! GF (2); i =

0; : : : ; 2p � 1, be a collection of 2p Boolean functions. Also let �i be the sequence of fi(x1; : : : ; xq).

Now we create the concatenation � of the sequences �i; i = 0 : : : ; 2p � 1 so

� = (�0; �1; : : : ; �2p�1)

Obviously, the function which corresponds to �, is Boolean function f : �p+q ! GF (2) and

f(y; x) =
M
�2�p

D�(y)f�� (x) (3.14)

where y = (y1; : : : ; yp), x = (x1; : : : ; xq), and �� is the decimal representation of �. For example, if

�1, �2 are the sequences of functions f1, f2 (f1; f2 : �n ! GF (2)) then � = (�1; �2) is the sequence of

the function g : �n+1 ! GF (2) and

g(u; x1; : : : ; xn) = (1� u)f1(x)� uf2(x):

3.6.2 S-box Design Criteria

There is a set of design criteria which are believed to be essential in the design of cryptographic

algorithms. If S-boxes do not satisfy one of the criteria, the cryptographic design based on the S-

boxes may be cryptographically weak (or easy to attack) or alternatively, the design may need extra

rounds to compensate the weakness (resulting in an ine�cient design). The collection of essential

S-box design criteria includes:

� completeness,

� balance,

� nonlinearity,

� propagation criterion, and

� good XOR pro�le.

The completeness criterion was introduced by Kam and Davida [267]. The criterion is applicable

to the whole cryptographic design (or S-P network) rather than a single S-box. Given S-boxes with a

�xed structure, it is necessary to design a suitable permutation box (P-box) and compute how many

rounds are necessary to build up the cross dependencies so any binary output is a complex function

Classical Ciphers 106

of every binary input. The lack of these dependencies enables an opponent to use the \divide and

conquer" strategy to analyse the design.

A Boolean function f : �n ! GF (2) is said to be balanced if its truth table has 2n�1 zeros (or

ones). For instance, f = x1x2 � x3, a Boolean function on �3, is balanced since the truth table of f

is (01010110) and the function takes the value zero 23�1 = 4 times. The lack of balance in an S-box

causes that each time the S-box is used, it produces outputs with a bias. So some output strings

are more probable than other. Even worse as any cryptographic design uses many rounds with the

same S-box, the bias tends to accumulate making the bias larger when the number of rounds grow.

This opens up the design to all sort of attacks which explore a non-uniform output string probability

distribution.

Given a balanced function f : �n ! GF (2). What are possible input transformations such that

the resulting function preserves the balance.

Lemma 3.3 Let

g(x) = f(xB � �)

where B is any n� n nonsingular matrix and a vector � 2 �n. Then g is balanced if and only if f is

balanced.

Proof: Note that if B is nonsingular, then for x running through all input values from the set

f�0; : : : ; �2n�1g, y = xB � � also takes on the same collection of values. Hence if f(x) is balanced so

is g(x) = f(xB � �) as the output values of g are permuted values of the function f . 2

Let g(x) = f(xB � �) where � = (1; 1; 1) and

B =

2
64 1 1 0

1 0 1

0 1 0

3
75 :

Thus g(x1; x2; x3) = f(x1 � x2� 1; x1� x3� 1; x2� 1). Clearly, g is also balanced since g(x0) = 0 if

and only if f(x0B � �) = 0.

Lemma 3.4 Let f : �n ! GF (2) and g : �m ! GF (2) be Boolean functions. Then the function

h : �n+m ! GF (2) de�ned as h(x; y) = f(x) � g(y) is balanced if f is balanced.

Proof: Observe that g(�) is constant for given � and the truth table of f(x) is zero (one) half the

time. Consequently, the truth table of f(x) � g(y) is zero (one) half the time. 2

The nonlinearity of a Boolean function can be de�ned as the distance between the function and

the set of all a�ne functions (see [402]). More precisely, the nonlinearity of a Boolean function

f : �n ! GF (2) is

Nf = min
g2An

d(f; g)

where An is the set of all a�ne functions over �n. Consider the function f(x1; x2) = x1x2. What is

its nonlinearity ? The set A2 = f0; x1; x2; x1 � x2; 1; x1� 1; x2 � 1; x1� x2 � 1g.

x1x2 f(x) = x1x2 `1(x) = x1 `2(x) = x2 `3(x) = x1 � x2

00 0 0 0 0

01 0 0 1 1

10 0 1 0 1

11 1 1 1 0

Classical Ciphers 107

So that d(f; `1) = d(f; `2) = 1, d(f; `3) = 3. For the missing a�ne functions the distances are either

1 or 3, so the nonlinearity of f is 1.

Lemma 3.5 Let f; g : �! GF (2) then

d(f; g) = 2n�1 �
1

2
h�; �i

where �; � are the sequences of f and g, respectively.

Proof: Denote � = (a0; a1; : : : ; a2n�1) and � = (b0; b1; : : : ; b2n�1). Let �(+) denote the number

of positions for which two sequences are the same (aj = bj). The integer �(�) gives the number of

positions where the two sequences di�er or aj 6= bj. Hence, h�; �i = �(+) � �(�) = 2n � 2�(�) and

�(�) = 2n�1 � 1
2 h�; �i. Obviously, �(�) = d(f; g). 2

The next lemma can be easily veri�ed using the de�nition of nonlinearity.

Lemma 3.6 Let � be the sequence of a function f on �n. Then the nonlinearity of the function is

expressible by

Nf = 2n�1 �
1

2
max

i=0;:::;2n�1
fj h�; `ii jg

where `i is the i-th row of Hn.

Lemma 3.7 Let f be an arbitrary function on �n. The nonlinearity of f satis�es the following

relation

Nf � 2n�1 � 2
1
2
n�1:

Proof: Let � be the sequence of f . Let `j be the jth row (column) of the Walsh-Hadamard matrix

Hn, j = 0; 1; : : : ; 2n � 1. Note that

�Hn = (h�; `0i; h�; `1i; : : : ; h�; `2n�1i):

Clearly, �HnHn�
T =

P2n�1
j=0 h�; `ji

2. As HnHn = 2nI2n , 2n��T =
P2n�1

j=0 h�; `ji
2, where I2n is 2n � 2n

identity matrix. The product ��T is always equal to 2n so

2n�1X
j=0

h�; `ji
2 = 22n: (3.15)

The equation (3.15) is called Parseval's equation (see [314]). Thus there exist an index j, 0 � j � 2n�1,

such that h�; `ji
2 � 2n and equivalently either h�; `ji � 2

1
2
n or h�; `ji � �2

1
2
n.

From Lemma (3.2), `j is the sequence of some linear function 'j . For the case h�; `ji � 2
1
2
n,

we can use Lemma 3.5 and conclude that d(f; 'j) � 2n�1 � 2
1
2
n�1. For the case h�; `ji � �2

1
2
n,

we have h�;�`ji � 2
1
2
n. Note that �`j is the sequence of a�ne function 1 � 'j . From Lemma 3.5,

d(f; 1� 'j) � 2n�1 � 2
1
2
n�1. So �nally we have that Nf � 2n�1 � 2

1
2
n�1. 2

The nonlinearity of a Boolean function is invariant under a nonsingular linear transformation.

Lemma 3.8 Let f be a Boolean function over �n, B be a n�n nonsingular matrix, and � a constant

vector from �n. Then the function g(x) = f(xB � �) has the same nonlinearity as the function f so

Ng = Nf .

Classical Ciphers 108

Proof: From the de�nition of the nonlinearity, there exists an a�ne function '(x) 2 An such that

d(f; ') = Nf . Consider the function (x) = '(xB � �). Obviously d(g;) = d(f; ') and the function

 is also an a�ne function i.e. (x) 2 An. From the de�nition of nonlinearity, we can deduce that

Ng � d(g;). This proves that Ng � Nf . Since B is nonsingular, the process can be repeated (for

B�1) and thus derive that Nf � Ng. 2

The notion of nonlinearity can be generalised for a collection of Boolean functions. Let the function

f : �n ! �m. The nonlinearity of the function (Nyberg [373]) is

Nf = min
�2�m;�6=0

Nf�

where f� = h�; fi= �1f1�� � ���mfm is a linear combination of component functions f = (f1; : : : ; fm)

de�ned by the vector � = (�1; : : : ; �m).

Strict Avalanche Criterion or SAC was introduced by Webster and Tavares [513]. A function

f : �n ! GF (2) satis�es the SAC if f(x) � f(x � �) is balanced for all � whose weight is 1, i.e.

W (�) = 1. In other words, the SAC characterises the output when there is a single bit change on the

input. Higher order SAC is generalisation of the SAC property. Both the SAC and higher order SAC

are collectively called propagation criteria ([2],[411]).

We say that f satis�es the propagation criterion with respect to the vector � if f(x) � f(x � �)

is a balanced function, where x; � 2 �n and � is a non-zero vector. The function which holds the

propagation criterion with respect to all � 2 �n whose weight is 1 � W (�) � k, is said to satisfy the

propagation criterion of degree k.

Consider the function f = x1x2 � x3 over �3. Let � = (1; 1; 0). It is easy to check that

f(x) � f(x � �) = (x1x2 � x3)� ((x1 � 1)(x2 � 1)� x3) = x1 � x2 � 1

is balanced. So f satis�es the propagation criterion with respect to the vector � = (1; 1; 0). Take the

following function over �5

f(x1; x2; x3; x4; x5) = x1 � x1x5 � x2x4 � x2x5 � x2x4x5 � x3x4x5:

Let the vector � = (0; 0; 1; 0; 0) then the function

f(x) � f(x � �) = x3x4x5 � (x3 � 1)x4x5 = x4x5

is not balanced. In fact, f does not satisfy the propagation criterion with respect to any vector in the

subset

< = f(0; 0; 0; 0; 0); (0;0; 0; 0;1); (0; 0;0;1;0); (0;0;1; 0; 0); (0;0; 1; 1;1)g:

The next theorem shows how a nonsingular linear transformation can be used to obtain a function

which satis�es the SAC.

Theorem 3.2 Let f : �n ! GF (2) be a Boolean function and A be an n�n nonsingular matrix with

entries from GF (2). If f(x)�f(x�) is balanced for each row of A, then the function (x) = f(xA)

satis�es the SAC.

For instance, consider the function f = x1x2 � x3 which does not satisfy SAC as

f(x) � f(x � e3) = x1x2 � x3 � x1x2 � (x3 � 1) = 1

is not balanced, for the vector e3 = (001). On the other hand,

f(x) � f(x � e1) = x2; f(x) � f(x � e2) = x1; f(x) � f(x �) = x1 � x2 � 1

Classical Ciphers 109

are balanced for the vectors e1 = (100), e2 = (010), = (111), respectively. Consider the matrix built

from these vectors so

A =

2
64
e1

e2

3
75 =

2
64

1 0 0

0 1 0

1 1 1

3
75 :

From Theorem (3.2) we conclude that g(x) = f(xA) satis�es the SAC.

Theorem (3.2) can be generalised and used to design a collection of functions each of which satis-

fying the SAC.

Theorem 3.3 Let f1; : : : ; fm be functions over �n and the set of vectors over �n be

< = f�jfj(x)� fj(x� �) is not balanced for j, 1 � j � mg:

If j<j < 2n�1 then there exists a nonsingular n � n matrix with entries from GF (2) such that each

 j(x) = fj(xA) satis�es the SAC.

Consider the following three functions f1 = x1 � x3 � x2x3, f2 = x1 � x2 � x1x2 � x2x3 and

f3 = x1x2 � x2x3 � x1x3. The function f1 does not satisfy the propagation criterion with respect

to the vector (1; 0; 0) only. The function f2 { to (1; 0; 1) only and f3 { to (1; 1; 1) only. Therefore

< = f(1; 0; 0); (1; 0; 1); (1; 1; 1)g and j<j = 3 < 2n�1, where n = 3. From Theorem 3.3, there exists a

nonsingular 3 � 3 matrix A such that each function j(x) = fj(xA) satis�es the SAC. For example,

A can be chosen as

A =

2
64

0 0 1

0 1 0

1 1 0

3
75 :

A Boolean function may not satisfy the propagation criterion. The ultimate failure happens when

the function f(x) � f(x � �) is constant. Being more precise, let f be a function over �n. A vector,

�, is called a linear structure of f if f(x)�f(x��) is constant. Every function has at least one linear

structure { the zero vector. For instance, consider the function f = x1x2 � x3 over �3. The vector

� = (0; 0; 1) is a linear structure of f as

f(x) � f(x � �) = (x1x2 � x3) � (x1x2 � x3 � 1) = 1:

Needless to say, nonzero linear structures should be avoided in S-boxes as they force the corresponding

di�erences of functions to be constant.

The XOR pro�le was introduced in Section (3.4.1). The criterion is not very restrictive as the

designer of S-boxes needs to take care that XOR pro�le does not contain entries with \large" numbers.

In addition, the XOR pro�le must be considered in the context of the best round characteristics. It

is possible to trade o� the largest entries of XOR pro�le with the number of rounds.

In some circumstances, we may request from a collection of Boolean functions to be linearly

nonequivalent [81]. The collection of functions ff1; : : : ; fmg; fi : �
n ! GF (2), is linearly nonequiva-

lent if there is no a�ne transformation for which fi(x) = fj(Ax+ �) where A is an n� n nonsingular

matrix and � 2 �n (i 6= j).

The function f : �n ! GF (2) is written in the algebraic normal form if

f(x) = a0 �
X

1�i�n

aixi �
X

1�i<j�n

aijxixj � � � � � a12:::nx1x2 � � �xn

The requirement of short algebraic normal form of a Boolean function becomes essential when the

function is too big to be stored as the lookup table. So the function needs to be evaluated \on the

y". Clearly, shorter functions consume less time for their evaluation.

Classical Ciphers 110

3.6.3 Bent Functions

In 1976 Rothaus introduced the so-called bent functions [430]. Because of their properties, they can

be used as building blocks to design Boolean functions with requested properties [1, 287, 387, 532].

Bent functions from Zn
q to Zq are de�ned and studied in [288].

A Boolean function f over �n is called bent if

2�
n

2

X
x2�n

(�1)f(x)�h�;xi = �1

for all � 2 �n. The expression f(x) � h�; xi is regarded as a real-valued function.

The following statements are equivalent.

(i) f is bent,

(ii) h�; `i = �2
1
2
n for any a�ne sequence ` of length 2n, where � is the sequence of f ,

(iii) 2�
1
2
nHn�

T is equal to �1,

(iv) f(x) � f(x � �) is balanced for any non-zero vector � 2 �n, where x = (x1; x2; : : : ; xn),

(v) the matrix F of the function f is a Hadamard matrix,

(vi) the nonlinearity Nf satis�es Nf = 2n�1 � 2
1
2
n�1.

The proof that the statements are equivalent can be found in [1, 451, 532]. Note that the equivalence

of (i), (ii), (iii), and (iv) are easy to prove.

As an exercise, we are going to prove that (ii) , (vi).

First we prove that (ii)) (vi). Assume that (ii) holds, i.e. h�; `ji = �2
1
2
n for each linear sequence `j of

length 2n and the linear function 'j corresponds to the linear sequence `j. Note that h�; 1+`ji = �2
1
2
n

for each linear sequence of length 2n. Note that 1 + `j is the sequence of the a�ne function 1� 'j.

From Lemma 3.5, for any linear 'j , either d(f; 'j) = 2n�1 � 2
1
2
n�1 or d(f; 1� 'j) = 2n�1 � 2

1
2
n�1.

This proves (vi).

Now we prove that (vi)) (ii). This is done by contradiction. Assume that the statement (ii) is

false. From Equation (3.15), we can state that there exists a linear sequence ` of length 2n and its

linear function ' such that jh�; `ij > 2
1
2
n. Thus either h�; `i > 2

1
2
n or h�; `i < �2

1
2
n. In the �rst case,

by Lemma 3.5, d(f; 'j) < 2n�1 � 2
1
2
n�1 so Nf < 2n�1 � 2

1
2
n�1. In the second case, we know that

h�;�`i > 2
1
2
n. Note that �` is the sequence of the a�ne function 1� '. Using the same argument,

we have d(f; 1 � 'j) < 2n�1 � 2
1
2
n�1 so Nf < 2n�1 � 2

1
2
n�1. This gives the requested contradiction

that Nf 6= 2n�1 � 2
1
2
n�1 which concludes the proof.

Bent functions have some remarkable properties. Let f be a bent function over �n and � be a

bent sequence of the function f . Basic properties of bent functions are:

1. n must be even { bent functions exist for even values of n,

2. for n 6= 2, the degree of f � 1
2n { the degree of f written in the algebraic normal form,

3. for any a�ne function ', f � ' is also bent,

4. f(xA��) is also bent where A is any nonsingular matrix of order n, and � is any vector in �n,

5. f takes the value zero 2n�1 � 2
1
2
n�1 times,

6. 2�
1
2
nHn�

T is also a bent sequence.

Classical Ciphers 111

We now verify some of the properties for the bent function f(x) = x1x2 over �2.

� The truth table of f has to contain 21�20 ones (or zeros). As f(0; 0) = 0; f(0; 1) = 0; f(1; 0) =

0; f(1; 1) = 1 the truth table is (0001) so the weight of it is 1.

� The 4� 4 Sylvester-Hadamard matrix is

H2 =

2
6664

+ + + +

+ � + �

+ + � �

+ � � +

3
7775 =

2
6664
`1

`2

`3

`4

3
7775 :

The sequence of f = x1x2 is � = (+ + + �). It is easy to compute that h�; `1i = 2, h�; `2i = 2,

h�; `3i = 2, and h�; `4i = �2. This property is consistent with the statement (ii).

� The matrix of f is

F =

2
6664

+ + + �

+ + � +

+ � + +

� + + +

3
7775 ;

which is a Hadamard matrix as FFT = 4I4.

� According to Statement (iv), f(x)�f(x��) has to be balanced for all nonzero � 2 �2. Indeed,

f(x)� f(x� �) = x1x2 � (x1 � a1)(x2 � a2)= a1x2� a2x1 � a1a2 is an a�ne function thus 0-1

balanced.

Consider another bent function f = x1x2 � x3x4 over �n. The truth table of f is

0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1; 1; 1; 1; 0:

The function f takes on the value zero 24�1+2
1
2
4�1 = 8+2 = 10 times. The function is not balanced.

3.6.4 Propagation and Nonlinearity

There is an intrinsic relation between propagation properties and the nonlinearity of Boolean functions.

For instance, bent functions satisfy propagation criterion with respect to all nonzero vectors. Now

we are going to investigate the relation between propagation and nonlinearity for arbitrary Boolean

functions.

Let f be a function over �n and �(�) be the sequence of the function f(x��). Using our notation,

it is obvious that �(0) � �(�) is the sequence of f(x)� f(x� �). The autocorrelation of f with a shift

� is de�ned as

�(�) = h�(0); �(�)i:

Lemma 3.9 Let f be a function over �n. Then the Hamming weight of f(x) � f(x � �) is equal to

2n�1 � 1
2�(�).

Proof: Let e+ (e�) denote the number of ones (minus ones) in the sequence of �(0) � �(�). Thus

e+ � e� = �(�) and (2n � e�)� e� = �(�) so e� = 2n�1� 1
2�(�). Note that e� is also the number

of ones in the truth table of f(x) � f(x � �). Thus the lemma holds. 2

The following corollary is a simple conclusion from Lemma (3.9).

Classical Ciphers 112

Corollary 3.1 �(�) = 0 if and only if f(x) � f(x � �) is balanced, i.e. f satis�es the propagation

criterion with respect to �.

Note that if j�(�)j = 2n then f(x) � f(x � �) is constant and then � is a linear structure (see

[373]). In practice, for most Boolean functions, the propagation criterion with respect to arbitrary �

is not satis�ed and also � is not a linear structure. For some cases, �(�) 6= 0 and is relatively small

so f(x) � f(x � �) is almost balanced, and the function f has \good" propagation properties. To

measure the global propagation property of a function f with respect to all vectors in �n, we can use

the number X
�2�n

�2(�):

Ideally, we expect the number to be as small as possible. In fact, it is smallest for bent functions and

largest for a�ne functions.

Let F be the matrix of f : �n ! GF (2), � be the sequence of f . It is easy to verify that the �rst

row of FFT is

(�(�0);�(�1); � � � ;�(�2n�1)):

Now consider the Fourier transform of the function f written in the form 2�nHnFHn. According to

the result by McFarland (see Theorem 3.3 of [155]), the matrix F can be represented as

F = 2�nHndiag(h�; `0i; � � � ; h�; `2n�1i)Hn (3.16)

where `i is the i-th row of a Sylvester-Hadamard matrix Hn and diag(a0; � � � ; a2n�1) is a 2n � 2n

matrix with all zero entries except for the diagonal whose entries are (a0; � � � ; a2n�1). Using Equation

(3.16), the matrix FFT takes on the form

FFT = 2�nHndiag(h�; `0i
2; � � � ; h�; `2n�1i

2)Hn

Note that f and Hn are symmetric so F = F t and Hn = Ht
n. The �rst row of FF t is

2�n(h��; `0i; � � � ; h�
�; `2n�1i) = 2�n��Hn

where �� = (h�; `0i2; � � � ; h�; `2n�1i2). Thus

(�(�0);�(�1); � � � ;�(�2n�1)) = 2�n(h�; `0i
2; � � � ; h�; `2n�1i

2)Hn:

So the following theorem has been proved.

Theorem 3.4 Let f be a function over �n. Then

(�(�0);�(�1); � � � ;�(�2n�1))Hn = (h�; `0i
2; � � � ; h�; `2n�1i

2):

As h�; `ii expresses the distance between the function f and the linear function which corresponds to

the sequence `i, Theorem (3.4) characterises the relation between the nonlinearity and the propagation.

Let us investigate the relation in more details. First denote � = (�(�0);�(�1); � � � ;�(�2n�1)). The

expression h��; ��i = h�Hn; �Hni = �HnH
T
n �

T = 2nh�; �i. As h��; ��i =
P2n�1

j=0 h�; `ji
4, we have shown

that the following corollary is true.

Corollary 3.2 Let f be a function over �n. Then

X
�2�n

�2(�) = 2�n
2n�1X
j=0

h�; `ji
4:

Classical Ciphers 113

Corollary (3.2) gives an insight into the relation between propagation properties expressed by �(�)

and the nonlinearity characterised by distances of f to the set of linear functions. Clearly, the larger

the nonlinearity of f the better the propagation of the function. It is convenient to describe the

nonlinearity and propagation of the function f by the parameter

�(f) =
X
�2�n

�2(�) = 2�n
2n�1X
j=0

h�; `ji
4: (3.17)

the parameter �(f) is called the global propagation of the function f . It would be interesting to know

how it behaves depending on the function f . The next theorem gives the answer.

Theorem 3.5 Let f be a function over �n. Then

(i) 22n � �(f) � 23n,

(ii) �(f) = 22n if and only if f is a bent function,

(iii) �(f) = 23n if and only if f is an a�ne function.

Proof: Statement (i). By the de�nition, we have

�(f) = 2�n
2n�1X
j=0

h�; `ji
4
� 2�n(

2n�1X
j=0

h�; `ji
2)2:

From Equation (3.15), we have
2n�1X
j=0

h�; `ji
2 = 22n:

Thus �(f) � 2�n24n = 23n.

Statement (ii). Note that always �(0) = 2n. So �(f) =
P

�2�n �2(�) = �2(0) = 22n happens if and

only if �(�) = 0 for any � 6= 0. This means that f is bent.

Statement (iii). Denote yj = h�; `ji
2. By Parseval's equation,

P2n�1
j=0 yj = 2n. The following state-

ments are equivalent: �(f) = 23n () 2�n
P2n�1

j=0 y2j = 23n ()
P2n�1

j=0 y2j = 24n ()
P2n�1

j=0 y2j =

(
P2n�1

j=0 yj)2 () yiyj = 0 if j 6= i () there exists a j0 such that yj0 = 22n and yj = 0 if j 6= j0 ()

there exists a j0 such that h�; `j0i = �2n and h�; `ji = 0 if j 6= j0 () there exists a j0 such that

� = �`j0 i.e. f is an a�ne function. 2

3.6.5 Constructions of Balanced Functions

Bent functions have the largest nonlinearity and good propagation properties but are not balanced.

The lack of balance complicates the use of bent functions. Nevertheless, bent functions are still major

building blocks for the design of cryptographically strong S-boxes. We study two methods of the

construction of balanced functions. The �rst method concatenates bent functions. The second one

applies linear functions. Readers interested in details are referred to [451, 452, 453, 454].

Concatenating Bent Functions. There are two case. The �rst one when we have a bent

function over �2k and we would like to construct balanced functions over �2k+1. The second case

is when we want to construct balanced functions over �2k+2 having a bent function over �2k. Our

considerations start from the �rst case.

Let f : �2k ! GF (2) be a bent function and g be a function over �2k+1 de�ned by

g(x1; x2; : : : ; x2k+1) = x1 � f(x2; : : : ; x2k+1):

Classical Ciphers 114

Incidentally, this construction is embedded in cubing permutations over GF (22k+1) (see [401]). The

function g is balanced as its truth table is the concatenation of the truth tables of the original function f

and its negation, i.e. the function f�1. The function g satis�es the propagation criterion with respect

to all non-zero vectors � 2 �2k+1 and di�erent from (1; 0; : : : ; 0). This happens as g(x) � g(x � �)

is balanced for all � 62 f(0; : : : ; 0); (1; 0; : : : ; 0)g (or �(�) = 0). If � = (1; 0; : : : ; 0) = �1, then

g(x) � g(x � �1) = 1 for all x 2 �2k+1 and �(�1) = �22k+1. The vector �1 is a nonzero linear

structure of g. The global propagation �(g) can be calculated and

�(g) =
X

�2�2k+1

�2(�) = �2(0) + �2(�1) = 2 � 24k+2 = 24k+3:

The lower bound of �(h), where h is a function on �2k+1, is 24k+2. This bound is attained by bent

functions only. But bent functions exist in even dimension vector spaces only.

Denote g�(x) = g(xA), where A is a nonsingular (2k + 1) � (2k + 1) matrix with entries from

GF (2). The function g� is a balanced function on �2k+1. Note that �(g) is invariant under any

nondegenerate linear transformation on the variables. Thus ��(g�) = 24k+3. Clearly, the nonlinearity

and the number of vectors for which the propagation criterion is satis�ed, is the same for g� and g.

Unfortunately, g has a linear structure although it satis�es the propagation criterion with respect to

other nonzero vectors.

Let f be a bent function over �2k�2 and g be a function over �2k de�ned by

g(x1; x2; : : : ; x2k) = x1 � x2 � f(x3; : : : ; x2k):

For any nonzero vector � 2 �2k, consider g(x)�g(x��). Denote �1 = (1; 0; : : : ; 0), �2 = (0; 1; : : : ; 0),

�3 = (1; 1; : : :; 0). First assume that � 6= �1; �2; �3. From the de�nition of the function g, it is easy

to conclude that g(x)� g(x��) is balanced and �(�) = 0. On the other hand, suppose that � = �j,

j = 1; 2; 3. From the de�nition of g, we have that g(x)�g(x��j) = 1; j = 1; 2, for all x 2 �2k+1. Also

�(�j) = �22k for j = 1; 2. For �3, g(x) � g(x � �3) = 0 and �(�3) = 22k. The global propagation

�(g) is easy to compute and

�(g) =
X

�2�2k

�2(�) = �2(0) +
3X

j=1

�2(�j) = 4 � 24k = 24k+2:

The collection of balanced function can be expanded by using a nonsingular linear transformation.

Denote

g�(x) = g(xA)

where A is any nonsingular 2k � 2k matrix over GF (2). It can be proved that the function g� is

balanced and satis�es the propagation criterion with respect to all but three non-zero vectors. The

nonlinearity of g� satis�es Ng� � 22k�1 � 2k. Note that �(g) is invariant under any nondegenerate

linear transformation on the variables. Thus �(g�) = 24k+2: This value compares quite favourably

with the lower bound on �(h) which is 24k. Unfortunately, the function g has three linear structures

although it satis�es the propagation criterion with respect to other nonzero vectors.

Concatenating Linear Functions. Assume we have two collections of Boolean variables y =

(y1; : : : ; yp) and x = (x1; : : : ; xq) (p < q). We can build up a Boolean function over �p+q by con-

catenating 2p linear functions each one over �q . The collection of non-zero linear functions used in

the construction is denoted by < = f'0; : : : ; '2p�1g and 'i 6= 'j for any i 6= j, 'i : �q ! GF (2).

More precisely, we construct balanced, nonlinear functions by combining the linear functions from <

as follows:

g(z) = g(y; x) =
M

�=0;:::;2p�1

D�(y)'�(x): (3.18)

Classical Ciphers 115

The properties of the resulting function are summarised below (the proof of the properties can be

found in [452]).

PR1. The function g is balanced.

PR2. The nonlinearity of g satis�es Ng � 2p+q�1 � 2q�1.

PR3. The function g satis�es the propagation criterion with respect to any = (�; �) with � 6= 0

where � 2 �p and � 2 �q .

PR4. The degree of the function g (in the algebraic normal form) can be p + 1 if < is appropriately

chosen.

Let �� is the sequence of '� and � is the sequence of g. Clearly, from the construction, � is the

concatenation of 2p distinct ��. Note that Hp+q = Hp
 Hq. So each row of Hp+q , say L, can be

represented as the Kronecker product L = `0
 `00, where `0 is a row of Hp and `00 is a row of Hq. If

`0 = (a0; : : : ; a2p�1) then `0
 `00 = (a0`00; : : : ; a2p�1`00) and the string ai`00 is equal to `00 if ai = 1 or

�`00 if ai = �1. Since di�erent rows of Hp are orthogonal, we have

h�; Li =

(
2q if f 2 <, where L = `0
 `00

0 if f 62 <, where L = `0
 `00
(3.19)

where f is the linear function corresponding to `00. There are 2p �2p di�erent vectors L = `0
`00 which

can be constructed from 2p linear functions from <. From Equations (3.17) and (3.18), we can obtain

that the global propagation of g is

�(g) = 2�p�q2p � 2p � 24q = 2p+3q:

The parameter �(g) is invariant under any nondegenerate linear transformation on the variables. Thus

�(g�) = 2p+3q where g�(z) = g(Az). The lower bound of �(f), where f is a function on Vp+q , is 22p+2q.

As we know this bound is reached only by bent functions. The nonlinearity and the number of vectors

for which the propagation criterion is satis�ed, are the same for both g and g�.

The above construction applies 2p di�erent nonzero linear functions. There are no other restrictions

imposed on the set <. We can improve the construction when we select the set < more carefully. The

rank of the set of linear functions is the number of all linearly independent elements (functions) in the

set. Assume that there is �0 such that the rank of the set

f'� � '�0 j� = 0; : : : ; 2p � 1g (3.20)

is equal to q. Next we are going to show that the function g de�ned by Equation (3.18) has no linear

structure. Consider

g(z) � g(z �) = g(y; x) � g(y � �; x� �) (3.21)

As we know the function (3.21) is balanced for � 6= 0 (see the property PR3). So we can �nd linear

structures only when � = 0. The expression (3.21) reduces to

g(z) � g(z �) = g(y; x) � g(y; x � �)

=
L

�=0;:::;2p�1D�(y)('� (x)� '(x� �)) =
L

�=0;:::;2p�1D�(y)'� (�): (3.22)

Clearly, = (0; �) is a linear structure if and only if (3.22) is constant or equivalently '�(�) = c. This

is true when

'�(�)� '�0(�) = 0 (3.23)

Classical Ciphers 116

for every � = 0; : : : ; 2p � 1 where c 2 �. Since the rank of f'� � '�0 j� = 0; : : : ; 2p � 1g = q, there

exists no nonzero � satisfying (3.23) which is equivalent to the set of linear equations. This proves

that g has no linear structures.

The condition imposed on the set < is easy to satisfy. For example, the following collection of

linear functions h1(x) = x1, h2(x) = x2, : : :, hq(x) = xq are linearly independent over �q . Let '0 be

an arbitrary linear function on �q . Denote 'j = hj � '0, j = 1; 2; : : : ; q. Thus '1 � '0, : : :, 'q � '0

are linearly independent. The set < has to have 2p linear functions. It contains the following linear

functions: '1 = h1 � '0, : : :, 'q = hq � '0, '0 as the (q + 1)-th linear function. The rest can be

selected arbitrarily from the other nonzero linear functions.

3.6.6 S-Box Design

Single Boolean functions are basic elements which can be used to construct more complex (and useful

from a cryptographic point of view) structures called S-boxes. An n� k S-box is a mapping from �n

to �k and

S(x) = (f1(x); : : : ; fk(x))

where n � k and fj : �n ! GF (2).

The collection of cryptographically essential properties includes the following ones:

S1. Any nonzero linear combination of f1, : : : , fk, i.e. f = c1f1�� � ��ckfk, (c1; : : : ; ck) 6= (0; : : : ; 0),

should be balanced.

S2. Any nonzero linear combination of f1, : : : , fk should be highly nonlinear.

S3. Any nonzero linear combination of f1, : : : , fk should satisfy the SAC.

S4. The S-box S(x) should be regular, i.e. each vector in �k should happen 2n�k times while x runs

through �n once.

S5. S(x) should have a good XOR pro�le, i.e. S(x) � S(x � �) runs through some 2k�1 vectors in

�k each 2n�k+1 times while x runs through �n once, but does not take on other 2k�1 vectors.

Observe that properties S2 and S4 are equivalent. Other properties may not hold simultaneously but

a \reasonable" tradeo� can always be negotiated.

To illustrate the properties, consider a simple example. Let our S-box be the mapping from �3 to

�3 such that

S(x) = (f1(x); f2(x); f3(x))

where f1 = x1� x3 � x2x3, f2 = x1� x2� x1x2� x2x3 and f3 = x1x2� x2x3� x1x3. The properties

S1-S5 can be veri�ed as follows.

S1. Any nonzero linear combination of f1; f2; f3, say f = c1f1 � c2f2 � c3f3, (c1; c2; c3) 6= (0; 0; 0),

is balanced.

S2. Any nonzero linear combination f of f1, f2, f3 has nonlinearity 2 i.e. Nf � 2 (the maximum

for balanced functions on �3).

S3. Any nonzero linear combination of f1, f2, f3 satis�es the propagation criterion except for a

single vector.

S4. S(x) is regular as it is a permutation.

Classical Ciphers 117

S5. S(x) has a good XOR pro�le, i.e. S(x) � S(x � �) runs through some 22 vectors in �3 each

twice while x runs through �3 once and does not take on other 22 vectors. More precisely, let

� = (001). Then S(x) � S(x � �) runs through vectors (010), (011), (100), (101) twice while x

runs through �3 once. If � = (111), then S(x) � S(x � �) runs through vectors (001), (011),

(101), (111) twice while x runs through �3 once.

Permutations de�ned in GF (2n) can be searched for ones with good cryptographic properties. It

turns out (see [401]) that exponentiation can produce cryptographically strong S-boxes. Being more

speci�c, the S-boxes S : �n ! �n de�ned as S(x) = x3, x 2 GF (2n) where n is odd, are permutations

and they have the following properties ([401, 372, 373, 29]):

S1' Any nonzero linear combination of the co-ordinate functions, is balanced. This results from the

fact that cubing is a permutation. Any nonzero linear combination f of the co-ordinate functions

has a high nonlinearity and Nf � 2n�1 � 2
1
2
(n�1).

S3' Any nonzero linear combination of the co-ordinate functions satis�es the propagation criterion

except for a single nonzero vector.

S5' S(x) has a good XOR pro�le, i.e. S(x) � S(x� �) runs through a subset of 2n�1 vectors in �n

twice while x runs through �n once. The remaining 2n�1 vectors do not occur.

The design of S-boxes is not free from some pitfalls. They are especially dangerous when having

a cryptographically strong S-box, one would like to modify it by adding or reducing output bits.

Consider the S-box S(x) = (f1(x); : : : ; fk(x)) which is regular and has a good XOR pro�le where

fi : �n ! GF (2) for i = 1; : : : ; k. It turns out (see [455]) that S(x) = (f1(x); : : : ; ft(x)) where t < k

is regular but does not have a good XOR pro�le.

On the other hand, for any regular S-box S(x) = (f1(x); : : : ; fk(x)) with a good XOR pro�le, there

is a collection of functions fk+1(x); : : : ; fs(x) such that the extended S-box S0(x) = (f1(x); : : : ; fk(x),

fk+1(x); : : : ; fs(x)) is a regular mapping from �n to �s but does not have a good XOR pro�le.

3.7 Problems and Exercises

1. Write C programs for the implementation of the following ciphers:

� the Caesar cipher,

� the a�ne cipher,

� the monoalphabetic substitution cipher,

� the transposition cipher,

� the homophonic substitution cipher,

� the Vigen�ere cipher,

� the Beauford cipher.

Your programs should include routines for both encryption and decryption.

2. The Caesar cipher is relatively easy to break. Write a C programwhich �rst is fed by a sample text to collect sta-

tistical properties of the language. The statistics is further used to cryptanalyze a given ciphertext by comparing

it with the statistics computed for the ciphertext.

3. Design and implement a C program for cryptanalysis of the a�ne cipher. Your program must not use the

enumeration of all possible keys but should use the frequencies of characters to make \optimal" guesses about

the key.

4. Write a computer program which calculates the index of coincidence. Run the program for di�erent texts. Try

an English text, a text of a high level programming language and a text of random characters generated by a

pseudorandom generator. Compare and discuss the results.

Classical Ciphers 118

5. Let the message space M = Z4

26
and m = (m1;m2;m3;m4) where mi 2 Z26 for i = 1; 2;3;4. Design a

product cipher c = Ek(m) such that m; c; k 2 Z4

26
based on the network of P-boxes and S-boxes. The P-box

P : Z4

26
! Z4

26
where P (x1; x2; x3; x4) = (x1; x3; x2; x4) and the S-box S : Z2

26
! Z2

26
is de�ned as

S(x; y) = (x+ k1y mod 26; k2x+ y mod 26)

where k = (k1; k2) and gcd(ki;26) = 1 for i = 1;2. Derive the encryption and decryption formulae for a cipher

with n iterations. Analyse the cipher and try to break it under the known-plaintext attack. How the security

depends on the number of iterations.

6. Consider the above product cipher with the S-box built using a Feistel permutation de�ned as

S(x; y) = (x; y + k1x
k2 mod 26):

Derive encryption and decryption formulae for the cipher with n iterations. Analyse the cipher for the known-

plaintext attack and discuss its strength in relation to the number of iterations.

7. Design a DES type cryptosystemwhich encrypts 16-bit messages into 16-bit cryptograms and applies a functions

f : �8 ! �8 of the form:

f(ki;Ri�1) = (ki �Ri�1)
e

for e = 7 in GF(28). What would happen if the exponent was e = 2; 3;4;5; 6 ? Implement the cipher. Assume a

reasonable key scheduling.

8. The DES algorithm satis�es the complementation property which can be expressed as Ek(m) = E�k(�m). Give a

justi�cation why the property holds.

9. Key schedule is an essential component of any encryption algorithm. Assume that your key scheduling algorithm

is to generate subkeys ki 2 �8 from the key k 2 �16 for i = 1; : : : ; 16. Consider the following key schedules:

� the key k is placed into 16-bit register. k1 is the 8-bit sequence of less signi�cant bits. Next the contents

of the register is rotated � positions to the left { k2 is again the 8-bit sequence of less signi�cant bits. The

process continues for the requested number of times,

� the key k is an argument of a one-way function f : �512 ! �512. Subkeys are generated by applying one

way function so k1 = f(k) j8 where f(k) j8 stands for 8-bit string of less signi�cant bits, k2 = f(f(k)) j8

and so forth.

Assume that you happen to know the last subkey k16 (for instance, extracted using the di�erential cryptanalysis).

What you can tell about the other subkeys and the key k for the two key scheduling algorithms ?

10. In the ECB mode, encryption is applied independently for each message block mi for i = 1;2; : : :. The sequence

of cryptograms ci = Ek(mi) is subject to many attacks which exploit the lack of links between consecutive

cryptograms. Consider the following chaining scheme in which ci = Ek(mi)�ci�1 for i = 1; 2; : : :. Is this scheme

better than the ECB mode ? Justify your answer.

11. Assume that encryption applies the CBC mode and during transmission a single cryptogram ci = Ek(mi� ci�1)

has been corrupted due to a noise in the communication channel. Which messages cannot be reconstructed at

the receiver side ? Support your answer by a detailed analysis.

12. Suppose the sender uses the CFB mode to protect the transmittedmessages against tamperingwith the sequence

of cryptograms. Let the sender transmit a sequence of cryptograms c1; c2; c3; c4; c5; c6. An attacker has changed

the order of cryptograms so the receiver gets c1; c2; c4; c3; c5; c6. Which messages will be correctly recovered by

the receiver ?

13. Consider GF (23) with addition and multiplication given in Table 2.2. Let an S-box be de�ned by s� = f(s) = s3

in GF (23) where s 2 GF (23). Construct an XOR pro�le of the S-box.

14. An S-box is de�ned by Table (3.17). The XOR pro�le of the S-box is given below.

� n� 0 1 2 3 4 5 6 7

0 8 - - - - - - -

1 - 2 - 2 - 2 - 2

2 - - 2 2 2 2 - -

3 - 2 2 - 2 - - 2

4 - - - - 2 2 2 2

5 - 2 - 2 2 - 2 -

6 - - 2 2 - - 2 2

7 - 2 2 - - 2 2 -

Classical Ciphers 119

s s�

0 0
1 1
2 3
3 4
4 5
5 6
6 7
7 2

Table 3.17: An example of S-box

The key is XOR-ed with the input of the S-box. Given two observations s1 � k = 3 and s2 � k = 7 and their

corresponding output di�erence � = s�
1
� s�

2
= 5, what can you tell about the key k ?

15. Given a DES-type encryption algorithm which encrypts 6-bit messages into 6-bit cryptograms using four rounds.

Each round applies the S-box described in Table (3.17). A subkey ki (i = 1;2; 3;4) is XOR-ed to the input of

the S-box where the subkey ki is used in the i-th iteration. Assume some values of the subkeys and use the

di�erential cryptanalysis to break the algorithm.

16. Take the encryptionalgorithmfrom the previous exercise. Find the best linear approximationof the S-box outputs

and derive the necessary linear characteristics. Apply the linear cryptanalysis to recover the cryptographic key.

17. Write the polynomial of a function over �3 whose truth table is (10101001).

18. Consider a Boolean function f : �3 ! � such that f(x1; x2; x3) = x1x2 � x1x3 � x2. Find out its truth table.

Is the function balanced ?

19. Let f(x1; x2; x3; x4) = x1x2x3�x3x4�x2. Find the truth table, sequence and matrix of f , W (f), Nf and �(�)

for � = (1111).

20. Given two Boolean functions f(x1; x2; x3) = x1x2x3�x2 and g(x1; x2) = x1�x2. What is the distance d(f; g) ?

21. Determine all a�ne functions from the set A3.

22. Find the nonlinearity of the function f(x1; x2; x3) = x1 � x2x3. The function f can be extended for arbitrary

number of variables. Let f(x1; : : : ; xn) = x1 � x2x3 where n > 3, what is the nonlinearity of the extended

function ?

23. Assume that f , g and h be functions on �n with W (f) = 0, W (g) = 1 and W (h) = 2n. Find the nonlinearities

Nf , Ng and Nh.

24. Let f(x1; x2; x3; x4; x5) = x1x3�x2x5�x2x4x5. Determine the set of vectors < for which the function does not

satisfy the SAC.

25. Prove that any function of the form f(x1; : : : ; xn) = x1x2 � x3x4 � � � � � xn�1xn is bent when n is even and

bigger than 2.

26. Calculate the nonlinearity of f(x1; : : : ; xn) = x1x2 � x2x3� � � � � xn1xn � xnx1 where n � 3 and is odd.

27. Take two functions f(x1; x2; x3; x4) = x1x2 � x2x3 � x3x4 � x4x1 and g(x1; x2; x3; x4) = x1 � x2 � x3 � x4.

Compute their autocorrelation functions �f (�) and �g(�). Discuss the results.

28. Let f be a function over �n. Consider the following statements:

� if Nf = 0, then f = 0,

� if Nf = 2, then W (f) = 2,

� d(f; f � g) = 2n�1 for some linear function g,

� Nf�g = Nf for any linear function g.

Chapter 4

PSEUDORANDOMNESS

Most of physical processes expose some random behaviour. A good example of such random behaviour

is a noise in telecommunication channels. A great irony is that when there is a need for a source of

random bits or numbers, then the ever-present randomness is in a short supply. Generation of large

volume of random bits is usually very expensive and requires a special hardware. Also the parameters

of truly random generators can uctuate so they need to be calibrated and tested from time to time.

The major drawback of truly random generators is the lack of reproducibility of yielded bits and

numbers. The reproducibility is crucial in simulations where there is a need to repeat the same

experiments many times. It is also necessary in some cryptographic applications when for instance

two communicating parties want to generate identical sequences from a shared secret (and short) key.

From a cryptographic point of view, we are interested in deterministic algorithms that generate strings

of bits e�ciently and these strings cannot be distinguished from truly random ones.

4.1 Number Generators

Knuth [283] devotes the whole Chapter 3 on generation of \random" numbers. Let us review some of

the classical solutions for number generation. The most popular solution applies the linear congruential

method which generates a sequence of integers x1; x2; : : : according to the following congruence

xi+1 � a � xi + c mod N (4.1)

where N is an positive integer, 0 � a; c � N and i = 1; 2; : : :. The congruence needs the so-called seed

x0 which provides a starting point. Note that the sequence of integers is periodic. The choice of the

modulus N and the multiplier a forces the length of the period. The maximum length of the period

is N .

Consider an instance of the linear congruential generator for N = 7, a = 3, and c = 4. If the

starting point is x0 = 2, then we get the following sequence of integers x1 = 3, x2 = 6, x3 = 1, x4 = 0,

x5 = 4 and x6 = 2.

The quadratic congruential method is a generalisation of the linear one and can be described by

xi+1 � d � x2i + a � xi + c mod N (4.2)

The maximum length of the period of the sequence is N .

There is a class of number generators based on linear feedback shift registers (see for example

[108],[215]). These generators can be seen as a far fetched generalisation of congruential generators.

They o�er an e�cient method of number generation which can be a very attractive alternative for

some applications. Unfortunately, a numerous examples show that generators based on linear feedback

shift registers are inherently insecure (see [211],[341]).

120

121

Observe that the randomness of the sequences obtained is measured by statistical tests. We say

that a number generator passes a statistical test if it behaves in the same way as a truly random

generator. On the other hand, if a number generator fails a statistical test, the test can be used

to distinguish the sequence generated by it from a truly random one. From a cryptographic point

of view, the security of number generators could be determined by the computational e�ciency of

an algorithm which enables an opponent, Oscar, to �nd out the seed and other secret parameters

from an observed output sequence. There is an intimate relation between the existence of an e�cient

statistical test (which can be used to distinguishes a generator from a truly random one) and the

existence of a cryptographic attack which breaks the generator. Informally we can formulate the

following proposition.

Given a number generator. If a generator G is polynomially indistinguishable from a truly random

generator, then there is no e�cient algorithm that breaks the generator.

A generator is polynomially indistinguishable if there is no e�cient statistical test which can be used to

tell apart G from a truly random generator. The proposition can be justi�ed using the contradiction.

Assume that there is an e�cient algorithm that breaks the generator. Now we can construct a simple

test to distinguish the generator from a truly random one. To do that we take a long enough output

sequence of the tested generator and feed it to our algorithm. The algorithm returns the parameters

of the generator. We take the computed parameters and determine the next numbers which will

be generated. If the observed numbers equal to the expected ones, we can conclude that this is

the generator G. Otherwise, the tested generator is the random generator. This is the requested

contradiction which justi�es the proposition.

4.2 Polynomial Indistinguishability

The notion of polynomial indistinguishability is central in the theory of pseudorandomness ([531]).

The proof of security of a generator can be reduced to the demonstration that the generator is

polynomially indistinguishable from a truly random generator.

An ensemble E = fSn;Pn j n 2 Ng is an in�nite family of sets Sn;n 2 N , together with their

probability distributions Pn = fp(x) j x 2 Sng. For instance, consider a ensemble E such that

Sn = fx1; : : : ; x2ng and

Pn = fp(x) = 2�n j x 2 Sng (4.3)

For any n (n 2 N), the corresponding ensemble instance generates 2n strings with the uniform

probability.

De�nition 4.1 (Yao [531]) Let E1 = fSn;P
1
n j n 2 Ng and E2 = fSn;P

2
n j n 2 Ng be two ensembles.

A distinguisher D for E1; E2 is a probabilistic polynomial-time algorithm such that

1. it halts in time O(nt) and leaves a binary output Dn(�) 2 f0; 1g for any input (n; �) where n is

the size of the instance and � = (x1; : : : ; xnk) is a sequence of nk elements of Sn. Denote

PDn
(E1) =

X
�2Skn

p1(�)p(Dn(�) = 1)

and

PDn
(E2) =

X
�2Skn

p2(�)p(Dn(�) = 1)

where p1(�) and p2(�) are probabilities induced from P1 and P2, respectively,

122

2. there exists an in�nite sequence of n such that

j PDn
(E1)� PDn

(E2) j> � (4.4)

for �xed t, k and � > 0.

Consider Figure 4.2 with two ensembles. Assume that we would like to identify which ensemble is

currently used. We can observe the output of the ensemble. A witness algorithm can be used to

Which is it ?

ENSEMBLE ENSEMBLE
 1 2

Figure 4.1: Illustration of the distinguishability problem

identify the ensemble. Clearly the witness algorithm can process only a polynomial samples of output

elements and has to make its decision in polynomial time. Also its decisions may not always be correct

but if it is run for along enough � 2 Skn, there is a signi�cant (larger than �) di�erence between the

probabilities j PDn
(E1) � PDn

(E2) j. If this di�erence persists for in�nite sequence of n, we say that

the witness algorithm distinguishes the two ensembles.

Consider two ensembles over the space Sn = f1; 2; : : :; 2ng

E1 = fSn; fp1(x) =
1

2n
j x 2 Sng j n 2 Ng

E2 = fSn; fp2(x) =
x

2n�1
j x 2 Sng j n 2 Ng

Assume that we have a probabilistic polynomial time algorithm D which takes a polynomial size

sequence � generated by an unknown ensemble (either E1 or E2) and outputs its guess about the

ensemble. Consider the two probabilities

PDn
(E1) =

X
�2Skn

p1(�)p(Dn(�) = 1)

PDn
(E2) =

X
�2Skn

p2(�)p(Dn(�) = 1)

Assuming that xi 2 Sn are independent we can compute the probabilities p1(�) = p1(�1) � � �p1(�k)

and p2(�) = p2(�1) � � �p2(�k) where � = (�1; : : : ; �k) and �i 2 Sn. Their di�erence is

j PDn
(E1) � PDn

(E2) j=
X
�2Skn

j p1(�1) � � �p1(�k) � p2(�1) � � �p2(�k) j p(Dn(�) = 1):

Note that the di�erence

j p1(�1) � � �p1(�k) � p2(�1) � � �p2(�k) j�
1

2nk

123

for all � 2 Skn. This implies that

j PDn
(E1) � PDn

(E2) j<
1

2nk

X
�2Skn

p(Dn(�) = 1) (4.5)

Note that � goes through all possible sequences of the set Skn { there are exponentially many such

sequences. As the witness algorithm D is polynomially bounded, it means that for any n it can

investigate a polynomial sample of the whole space Skn. Denote the sample by S(n) where the

polynomial (n) indicates the size of the sample for a given n. Therefore Inequality (4.5) becomes

j PDn
(E1)� PDn

(E2) j<
(n)

2nk
(4.6)

The ratio (n)

2nk
can be made as small as required by the selection of a big enough n { see our discussion

in Section (2.3.2). So the two ensembles are polynomially indistinguishable as Inequality (4.6) holds for

any witness algorithmD. This kind of indistinguishability is also called statistical as it does not depend

upon any number theoretic assumptions. In fact, two ensembles are statistically indistinguishable if

their probability distributions converge. The statistical indistinguishability implies the polynomial

indistinguishability but not vice versa.

De�nition 4.2 Two ensembles are said to be polynomially indistinguishable if there exists no distin-

guisher for them.

To denote that two ensembles E1, E2 are polynomially indistinguishable, we simply write E1 � E2. It

is easy to verify that the polynomial indistinguishability is an equivalence relation, i.e. it is reexive,

symmetric and transitive. The relation is reexive E � E as there is no witness algorithm that

distinguishes two identical ensembles. It is symmetric as E1 � E2) E2 � E1. To show that the

relation is transitive, assume that we have three ensembles E1, E2, E3 and (1) E1 � E2 and (2) E2 � E3.

Now we have to prove that E1 � E3. From the assumption (1) and (2), we know that for any

probabilistic polynomial time algorithm D

j PDn
(E1)� PDn

(E2) j� �1:

and

j PDn
(E2)� PDn

(E3) j� �2;

respectively. Take

j PDn
(E1)� PDn

(E3) j = j PDn
(E1) � PDn

(E2) + PDn
(E2)� PDn

(E3) j

� j PDn
(E1) � PDn

(E2) j + j PDn
(E2) � PDn

(E3) j

� �1 + �2 = �:

This proves our claim.

De�nition 4.3 An ensemble E = f�n
;Pn j n 2 Ng which generates binary strings of length n (the

set of all n-bit strings is �n) with the uniform probability distributions Pn is said to be the reference

ensemble or truly random generator GR.

There is a class of ensembles which are polynomially indistinguishable from the truly random generator

GR. As a matter of fact, any member of this class can be used as a reference ensemble.

124

4.3 Pseudorandom Bit Generators

Bit generators are often de�ned as deterministic algorithms which produce long bit sequences from

random and short seeds (see [46],[531]).

De�nition 4.4 Given an ensemble E = f�n
;P j n 2 Ng. A bit generator BG over E is a determin-

istic polynomial time function g that upon receiving an n-bit input as a seed from E , extends the seed

into a sequence of nk bits where k 2 N . The seed is selected randomly and uniformly from �n.

A bit generator consists of two layers. The probabilistic one is given by the uniform ensemble E =

f�n
;P j n 2 Ng used to produce the seed. The deterministic one de�ned by the function g which

extends an n-bit seed to nk-bit output string. The generator induces a new ensemble

Eg = f�nk
;P j n 2 Ng

which reects both the probabilistic and deterministic nature of the bit generator. We simplify the

notation of an ensemble to Eg if the set and the probability distribution can be derived from the

de�nition of the generator.

De�nition 4.5 A bit generator g over E is pseudorandom if for large enough n and for any proba-

bilistic polynomial time (witness) algorithm D

j PDn
(Eg) � PDn

(GR) j�
1

(n)
(4.7)

where (n) is a polynomial in n.

Pseudorandom bit generators (PRBG) cannot be distinguished from a truly random generator GR

by any polynomially bounded attacker. They can be used as a secure substitute of a truly random

generator whenever there is a need. But how can PRBGs be constructed ?

The natural candidates for implementation of PRBGs are problems from complexity classes higher

than P. The con�rmation of this came when Levin [299] proved the following important result.

Theorem 4.1 A pseudorandom bit generator exists if and only if there exists a one-way function.

The problem of the PRBG construction has been converted into the problem of �nding a one-way

function. Informally, a one-way function is \easy" (in polynomial time) to compute but \hard" to

invert. Now we are going to describe some constructions for PRBG. Evidently, the generators are

pseudorandom under the assumption that the underlying function is one-way. That is why all the

constructions are conditionally secure.

4.3.1 The RSA Pseudorandom Bit Generator

Alexi, Chor, Goldreich, and Schnorr [5] used the RSA exponentiation as a one-way function.

The RSA Generator { outputs pseudorandom bits

Initialisation: For an instance n, select at random an instance of exponentiation function g 2R EN;K

where N is the product of two random primes p; q 2R [2n=2�1; 2n=2] and K 2R [1; '(N)] such

that gcd (K;'(N)) = 1. The seed x0 2R [1; N]. Recall that � 2R S means that � is selected

randomly and uniformly from S.

Expansion: For an input sequence xi (i = 0; 1; : : : ; nk), generate

xi+1 = g(xi) � x
K
i mod N:

125

Output: For i = 1; 2; : : :, extract `(n) least signi�cant bits of xi where `(n) is polynomial in n. So

the output is yi = xic`(n).

Theorem 4.2 (Alexi et al, [5]) If the RSA exponentiation is one-way and `(n) = O(logn), then the

following ensembles are polynomially indistinguishable:

�
�
g; x; y = g(x)c`(n)

�
where g 2R EN;K , x 2R [1; N],

� (g; r; z) where g 2R EN;K , r 2R [1; N], and z 2R �`(n)

Clearly, for a polynomially bounded attacker output bits yi are indistinguishable from truly random

bits zi 2R �`(n). The conclusion from this theorem can be formulated as follows.

Corollary 4.1 (Alexi et al, [5]) If the RSA exponentiation is one-way and `(n) = O(logn), then the

sequence y1; : : : ; ynk is pseudorandom.

There are two interesting issues for the RSA generator. The �rst one is: how to extract more bits

per iteration and make the generator more e�cient ? The second issue is: how to design an RSA

generator so the extracted bits are not used in further generation. These issues were studied by Micali

and Schnorr in [340].

Consider an instance of the RSA generator for a small n = 20. The two primes p; q are chosen at

random from [29; 210]. Let them be p = 719 and q = 971. The modulus N = pq = 698149. The public

exponent K 2R [1; '(N) = 348230]. Let it be K = 176677. The random seed x0 = 371564 is chosen

from [1; 698149]. The �rst �ve elements of the sequence are:

x1 = x
K
0 � 612281 mod 698149

x2 = x
K
1 � 421586 mod 698149

x3 = x
K
2 � 359536 mod 698149

x4 = x
K
3 � 580029 mod 698149

x5 = x
K
4 � 210375 mod 698149

If we decide to extract 4 least signi�cant bits from each number xi (log2 20 > 4), then the �rst 20 bits

of the output is:

1001 0010 0000 1101 0111

4.3.2 The BBS Pseudorandom Bit Generator

Blum, Blum, and Shub [44] studied two bit generators. One of them based on squaring is pseudoran-

dom provided the quadratic residuacity problem is intractable. The generator is further referred as

the BBS generator.

The BBS Generator { outputs pseudorandom bits

Initialisation: For an instance n, select at random two primes p; q 2R [2n=2�1; 2n=2] such that p �

q � 3 mod 4. The seed x0 2R [1; N] such that its Jacobi symbols
�
x0
p

�
=
�
x0
q

�
= 1 (so x0 is a

quadratic residue).

Expansion: For an input sequence xi (i = 0; 1; : : : ; nk), generate

xi+1 � x
2
i mod N:

126

Output: For i = 1; 2; : : : ; nk, extract the least signi�cant bit (the parity) of xi i.e.

yi = xi mod 2

First we investigate some algebraic properties of Jacobi symbol and the BBS generator.

Lemma 4.1 Let N be a product of two primes p; q such that p � q � 3 mod 4. Then
�
a
N

�
=
�
�a
N

�
.

Proof: From the de�nition of the Jacobi symbol we have

�
a

N

�
=

�
a

p

��
a

q

�

and �
�a

N

�
=

�
a

p

��
a

q

��
�1

p

��
�1

q

�

Primes p; q can be represented as p = 4�+ 3 and q = 4� + 3 for some integers �; � so�
�1

p

�
= (�1)

p�1

2 = (�1)2�+1 � �1 mod p:

Similarly,
�
�1
q

�
= �1. So

�
�1
p

��
�1
q

�
= 1 and the conclusion follows. 2

Lemma 4.2 Let N be a product of two primes p; q such that p � q � 3 mod 4. Then each quadratic

residue modulo N has exactly one square root which is a quadratic residue.

Proof: Squaring x2 mod N where N is a product of two primes, has four roots. To �nd them,

it is enough to �nd roots of two congruences (x2 mod p) and (x2 mod q). Each congruence has two

solutions. Let them be �a and �b for the �rst and the second congruence, respectively. The Chinese

Remainder Theorem allows to combine them giving the four possible roots: r1 = (a mod p; b mod q),

�r1 = (�a mod p;�b mod q), r2 = (�a mod p; b mod q) and �r2 = (a mod p;�b mod q). According

to Lemma 4.1 the Jacobi symbols
�
r1
N

�
=
�
�r1
N

�
and and

�
r2
N

�
=
�
�r2
N

�
. The Jacobi symbols

�
r1
N

�
6=�

r2
N

�
. This is true as �

r1

N

�
=

�
a

p

��
b

q

�

and �
r2

N

�
=

�
�a

p

��
b

q

�
=

�
�1

p

��
a

p

��
b

q

�
:

In Lemma 4.1 we showed that
�
�1
p

�
= �1. So we have eliminated two roots, say �r2, with their

Jacobi symbols with respect to N equal to �1. There is only one root (either r1 or �r1 = N � r1)

whose both Jacobi symbols (with respect to p and q) are positive. 2

Lemma 4.2 shows that if the seed is a quadratic residue (
�
x0
p

�
=
�
x0
q

�
= 1), then there is a

one-to-one correspondence of generated elements. The knowledge of factors of N and a generated xi,

allows to identify the unique predecessor xi�1 (which is also a quadratic residue). If the factorisation

of N is unknown, there are two possible roots each of which generates a di�erent output bit.

The set of quadratic residues is

ZQ+
N = fx 2 ZN j

�
x

p

�
=

�
x

q

�
= 1g

127

and the set

ZQ�
N = fx 2 ZN j

�
x

p

�
=

�
x

q

�
= �1g

The set ZQ
N = ZQ+

N [ZQ�
N is the set of all integers in ZN whose Jacobi symbols with respect to N

are equal to 1. The cardinality of ZQ
N is '(N)

2
. The both sets ZQ+

N and ZQ�
N are of the same size so

their cardinality is '(N)

4
.

The security of BBS generator depends on how e�ciently an opponent can decide which of two

possible roots r or �r is the quadratic residue or whether r 2 ZQ+
N or �r 2 ZQ+

N provided the factors

of N are unknown.

Name: Quadratic Residue Problem

Instance: Given a composite integer N with two unknown factors p and q. The integer x 2 ZQ
N .

Question: Does x belong to ZQ+
N (or is x a quadratic residue) ?

De�nition 4.6 Let N and x0 be selected as in the BBS generator. Given a probabilistic polynomial

time algorithm A which for an input (N; x0) (of size 2n) guesses the parity bit of x�1 (x�1 is a

predecessor of x0). We say that A has an �-advantage for N in guessing a parity bit of x�1 if and

only if X
x02Z

Q+

N

p(x0)p (A(N; x0) = (x�1 mod 2)) >
1

2
+ �

where 0 < � <
1
2
.

Note that the space ZQ+
N has '(N)=4 di�erent elements so p(x0) =

4
'(N)

for all x0 2 Z
Q+
N .

De�nition 4.7 Let N be selected as in the BBS generator. Given a probabilistic polynomial time

algorithm B which for an input (N; x) (of size 2n) guesses whether x 2 ZQ+
N or x 2 ZQ�

N . We say

that B has an �-advantage for N in guessing quadratic residuacity of x if and only if

X
x2Z

Q

N

p(x)p (B(N; x) = 1) >
1

2
+ �

where 0 < � <
1
2
and the algorithm makes binary decision: B(N; x) = 1 if x 2 ZQ+

N or B(N; x) = 0

otherwise.

An algorithm A which has an �-advantage for N in guessing a parity bit of x�1 can be converted

into an algorithm B which has an �-advantage for N in guessing quadratic residuacity of x.

The algorithm B takes as an input N and x 2 ZQ
N and calls the algorithm A as a subroutine.

B(N; x) f

1. let x0 � x
2 mod N ,

2. call A(N; x0) = b 2 f0; 1g,

3. if b � x mod 2, then x 2 ZQ+
N

otherwise x 2 ZQ�
N g.

Clearly the complexity of B is equivalent to the complexity of A as the overhead involved in the

construction is polynomial in n. So we have proved the following lemma.

128

Lemma 4.3 [44] An algorithm A which has an �-advantage for N in guessing parity of x�1 can

be converted e�ciently into an algorithm B which has an �-advantage for N in guessing quadratic

residuacity of x.

Lemma 4.4 [208] An algorithm B which has an �-advantage for guessing quadratic residuacity can

be e�ciently converted into a probabilistic polynomial time algorithm C which guesses quadratic resid-

uacity with an arbitrary small error � > 0.

Proof: First we describe the C algorithm which calls B as a subroutine.

C(N; x) f

1. let c1 2 N and c2 2 N be two counters initialised to zero,

2. for i = 1; : : : ; u do f

� select a random ri 2R Z
Q
N ,

� compute r2i mod N (clearly r2i 2 Z
Q+
N and �r2i 2 Z

Q�
N),

� choose at random �ri 2R fr
2
i ;�r

2
i g,

� call B(N; x � �ri) = bi 2 f0; 1g (if bi = 1, then x � �ri 2 Z
Q+
N),

� if �ri = r
2
i and x � �ri 2 Z

Q+
N or �ri = �r2i and x � �ri 2 Z

Q�
N , then increment c1 by 1 otherwise

increment c2 by 1 g,

3. if c1 > c2 then x 2 Z
Q+
N otherwise x 2 ZQ�

N g.

Now we discuss the probability of error of the algorithm C assuming that B give correct answers

with the probability at least 1
2
+ � and the number of iterations is u = 2v+ 1. So we have u Bernoulli

trials with two probabilities a = 1
2
+ � and b = 1 � a = 1

2
� �. The probability that j answers are

correct in u trails is
u

j

!
a
j
b
u�j

The algorithm C errs if there are more than v incorrect answers of the subroutine B in the sequence

of u trials, so

p(C errs) �

vX
j=0

u

j

!
a
j
b
2v+1�j

=

vX
j=0

u

j

!
a
v

av�j
b
v+1

b
v�j

= a
v
b
v+1

vX
j=0

u

j

!
b
v�j

av�j

� a
v
b
v+1

vX
j=0

u

j

!

= a
v
b
v+122v

= (
1

4
� �)v4vb

�
(1 � 4�2)v

2
(4.8)

129

Note that any �xed � (0 < � < 0:5), it is possible to select big enough u = 2v + 1 � n
t so p(C errs)

can be make as small as requested (in particular, smaller than �). 2

Now we can formulate the theorem that asserts the security of the BBS generator.

Theorem 4.3 ([44]) Suppose that the quadratic residuacity problem is intractable (there is no prob-

abilistic polynomial time algorithm that solves it), then the BBS is pseudorandom (there is no proba-

bilistic polynomial time distinguisher for it).

Proof: We need to prove that the ensemble EBBS induced by the BBS generator is indistinguishable

from the ensemble GR. The proof proceeds by contradiction. Assume that there is a distinguisher D

which tells apart EBBS from GR. It turns out (see [44]), that the distinguisher D can be e�ciently

converted into a probabilistic polynomial time algorithm A which guesses the parity of x�1 given

arbitrary x0 2 ZQ+
N . Lemma (4.3) asserts that A can be converted into an algorithm B which

guesses quadratic residuacity. Lemma (4.4) shows that B can be used to determine a polynomial time

algorithmC which guesses quadratic residuacity with arbitrary small error �. This is the contradiction.

2

Consider an instance of BBS generator for n = 20. Primes p; q 2R [29; 210]. Let them be p = 811,

q = 967 (p � q � 3 mod 4). The modulus is N = 784237. Let the seed be x0 = 345137 which is a

quadratic residue. The sequence of xi � x
2
i�1 mod N is:

x1 = 222365, x2 = 50375,

x3 = 633930, x4 = 678990,

x5 = 367621, x6 = 774379,

x7 = 719013, x8 = 468688,

x9 = 520696, x10 = 261487,

x11 = 179850, x12 = 167435,

x13 = 359186, x14 = 537963,

x15 = 346207, x16 = 424954,

The �rst sixteen parity bits are (1,1,0,0,1,1,1,0,0,1,0,1,0,1,1,0).

4.4 The Next Bit Test

Any witness algorithm applies a (statistical) test. As a witness algorithm has to run in polynomial

time, the statistical test used in the witness algorithm has to be polynomial. The statement \a bit

generator is pseudorandom" can be equivalently rephrased as \a bit generator passes all polynomial

time (statistical) tests". Among all polynomial time tests, one can de�ne the subclass of next bit tests.

De�nition 4.8 Given a bit generator which produces nk-bit sequences. Let T be a probabilistic poly-

nomial time test which takes �rst i bits of a nk-bit output sequence and guesses the (i+1)-th bit. The

bit generator passes the next-bit test if for any probabilistic polynomial time test T , for all polynomials

(n), for all su�ciently large n, and for all integers i 2 f1; : : : ; nkg

j p (Tn(b1; : : : ; bi) = bi+1) �
1

2
j<

1

(n)

where p (Tn(b1; : : : ; bi) = bi+1) is the probability that the test correctly guesses the (i+ 1)-th bit of the

output sequence (b1; : : : ; bnk).

130

The importance of next bit tests is con�rmed by the following theorem.

Theorem 4.4 [531] Given a bit generator. Then the following two statements are equivalent:

� the bit generator passes the next-bit test,

� the bit generator passes all probabilistic polynomial time statistical tests for output sequences.

Blum and Micali de�ned cryptographically strong pseudorandom bit generators as bit generators

which pass the next bit test. Clearly, the two notions: cryptographically strong pseudorandom bit

generators and pseudorandom bit generators (PRBG) are equivalent. The next-bit test is universal in

a sense that if a PRBG passes the next-bit test, it also passes all other probabilistic polynomial time

tests. Some extensions of universal tests can be found in [323] and [448].

4.5 Pseudorandom Function Generators

We are going to describe a construction of pseudorandom function due to Goldreich, Goldwasser, and

Micali [205]. The starting ingredient is a function ensemble. A function ensemble is F = fFn j n 2 Ng

where

Fn = ff j f : �n ! �ng

is a collection of functions together with the probability distribution. We assume the uniform proba-

bility distribution unless another distribution is explicitly given.

De�nition 4.9 A function ensemble F = fFn j n 2 Ng is called polynomial if the ensemble is:

1. polynomial time samplable, i.e. there is a probabilistic polynomial time algorithm which returns

a description of function f 2R Fn which is chosen randomly and uniformly from the set Fn.

This usually is done by an introduction of indexing (a function is chosen by a random selection

of its unique index),

2. polynomial time computable, i.e. there is a probabilistic polynomial time algorithm which on the

input x 2 �n, outputs f(x) for any f 2 Fn.

To clarify the de�nition, consider the well known DES encryption algorithm. The DES can be seen as

an instance ensemble F64 = ff j �64 ! �64g. The polynomial sampling amounts to the requirement

that a function can be randomly, uniformly and e�ciently chosen by a random selection of the secret

key (index). The polynomial time computability (or evaluation) requests the function to generate the

corresponding cryptogram e�ciently for any message (input) and any secret key (index).

A random function ensemble R = fRn j n 2 Ng is an in�nite family of functions where Rn = ff j

f : �n ! �ng is the collection of all functions on �n. The probability distribution is uniform for a

�xed n.

A probabilistic polynomial time algorithm (Turing machine) can be equivalently de�ned as a

probabilistic polynomial size acyclic circuit with Boolean gates AND, OR, NOT and constant gates

\0" and \1". The main di�erence is that the circuit produces output in one step while its Turing

counterpart needs a polynomial number of steps. The complexity of computation using the circuit

model is expressed by the size of the circuit which is measured by the total number of connections

inside the circuit. Any probabilistic polynomial size circuit can be implemented by a probabilistic

polynomial time Turing machine and vice versa.

131

De�nition 4.10 A witness circuit Cn is a probabilistic polynomial size acyclic circuit with Boolean

gates AND, OR, NOT, constant gates \0" and \1" and oracle gates. Oracle gates accept inputs of

length n and generate outputs of the same length. Each oracle gate can be evaluated using some

function f : �n ! �n.

Witness circuits can be used to tell apart a polynomial function ensemble F from the random function

ensemble R.

De�nition 4.11 An in�nite sequence of witness circuits C = fCn j n 2 Ng is called a distinguisher

for F if for two arbitrary constants t; k 2 N and for each large enough parameter n, there exists a

circuit Cn whose size is bounded by a polynomial nt and

j pn(F)� pn(R) j>
1

nk

where pn(F) =
P

f2RFn
pF (f) (Cn(f) = 1) and pn(R) =

P
f2RRn

pR(f) (Cn(f) = 1) provided that f

is used to evaluate the oracle gates.

De�nition 4.12 A polynomial function ensemble F is pseudorandom if there is no distinguisher for

it (the ensemble F is also called a pseudorandom function or PRF).

An instance witness circuit Cn can query the tested function f using the oracle gates. Oracle

gates can be implemented as calls to a subroutine which evaluates the tested function f . Cn can

freely choose the input values x 2 �n for which the function f is to be evaluated. Cn collects the

corresponding outputs f(x) 2 �n from the oracle gates. The number of pairs (x; f(x)) is equal to the

number of oracle gates and it has to be polynomial in n.

Now we are ready to describe the construction by Goldreich, Goldwasser and Micali. The con-

struction applies a pseudorandom bit generator that extends n-bit seed into 2n-bit sequence. So the

PRBG g takes an n-bit seed and produces 2n-bit output g(x) = g0(x)jjg1(x) where g0(x) and g1(x)

are n-bit substrings and jj stands for the concatenation of two strings. Strings g0(x) and g1(x) are

next used as seeds for the second level - see Figure 4.5. After the PRBG is used n times it produces

g (x)
00

g (x)01 g (x)10 g (x)
11

g (x)
0

g (x)y

g (x)
1

x
0

0 0

1

11

z

Figure 4.2: The construction of a function ensemble

gy(x) where y is n-bit string which marks the unique path from the top to the bottom (in Figure 4.5

y = 01z). Our function ensemble is Fn = ffx j fx(y) = gy(x); fx : �n ! �ng where g�(x) is de�ned

recursively

g(x) = g0(x)kg1(x)

gb1:::b`(x) = gb1:::b`0(x)kgb1:::b`1(x)

132

for ` = 2; : : : ; n�1 where b1 : : : b` is an `-bit string. The parameter x is an index of Fn as the random

selection of a function from Fn is done by the random choice of x 2R �n. It is easy to verify that

the ensemble Fn is polynomial time samplable and computable. The next theorem asserts that the

ensemble is also pseudorandom.

Theorem 4.5 If the underlying PRBG g is pseudorandom, then the function ensemble F = fFn j

n 2 Ng constructed from g, that is Fn = ffx j fx(y) = gy(x); fx : �
n ! �ng, is pseudorandom.

Proof: (by contradiction) We assume that there is a distinguisher for F , i.e. an in�nite sequence of

probabilistic polynomial size witness circuits Cn which can tell apart F fromR with an arbitrary large

probability. We are going to show that this assumption leads us the conclusion that the underlying bit

generator is not pseudorandom. Further we are going to use a probabilistic polynomial time algorithm

Ai(n; y) where n indicates the current instance size, y 2 �n is an input (argument) for which a function

from Ai is to be evaluated, and i = 1; : : : ; n.

Ai(n; y) f

1. if the pre�x (y1 : : : yi; r) of y = y1 : : : yn has been used before retrieve the stored pair (y1 : : : yi; r),

2. otherwise, select r 2R �n and store (y1 : : : yi; r),

3. return gyi+1:::yn(r) g.

The algorithmAi operates on a tree gy(x) { Figure 4.5. It places random n-bit strings in all nodes

on the i-th level and returns gyi+1:::yn(r). We use the following notations:

� pn(Ai) is the probability that the distinguisher Cn outputs \1" when allCn's queries are answered

by Ai (or in other words, oracle gates apply Ai to evaluate their outputs for inputs given by

Cn),

� pn(F) is the probability that the distinguisher Cn outputs \1" when allCn's queries are answered

by oracle gates which use f 2R Fn,

� pn(R) is the probability that the distinguisher Cn outputs \1" when allCn's queries are answered

by oracle gates which use f 2R Rn,

Observe that pn(F) = pn(A0) and pn(R) = pn(An).

As the ensemble is not pseudorandom, there is a family of probabilistic polynomial size circuits

Cn such that for in�nitely many n

j pn(F)� pn(R) j>
1

nk

Now we construct a probabilistic polynomial time witness algorithmD for the underlying bit generator.

It calls Cn as a subroutine. The input parameters to the algorithm D are the instance size n and a

sequence Un = (u1; u2; : : : ; un`) where each ui is a 2n-bit string. The sequence Un is the sequence is

needs to be decided whether it is truly random or comes from the bit generator.

D(n; Un) f

1. choose at random i 2R f0; 1; : : :; n� 1g,

2. call the distinguisher Cn,

133

3. for j = 1; : : : ; n`, do f

� pick the next uj = uj0kuj1 from the sequence Un (uj0 ; uj1 2 �n),

� Cn queries about the output of the j-th oracle gate for an n-bit input y = y1 : : : yn of its

choice,

� take y and store the pairs (y1 : : : yi0; uj0) and (y1 : : : yi1; uj1),

� if y is the �rst query with the pre�x y1 : : : yi and yi+1 = 0, return gyi+2:::yn (uj0) to Cn or

� if y is the �rst query with the pre�x y1 : : : yi and yi+1 = 1, return gyi+2:::yn (uj1) to Cn,

� otherwise, retrieve the pair (y1 : : : yi+1; u) and return gyi+2:::yn(u) g to Cn,

4. return the binary output of Cn as the �nal guess g.

There are two cases when Un is

� a string generated by the bit generator g on random selected n-bit seeds so ui = g(xi) for

xi 2R �n. The probability that D(n; Un) outputs \1" is

n�1X
i=0

1

n
pn(Ai)

This case can be illustrated by a tree (see Figure 4.5) with random seeds on the i-th level and

strings from Un on the (i + 1)-th level,

� a sequence of randomly selected 2n bits. The probability that D(n; Un) outputs \1" is

n�1X
i=0

1

n
pn(Ai+1)

The function tree in Figure 4.5 holds random strings on the (i+ 1)-th level.

Note that the algorithmD distinguishes random strings from string generated by the bit generator g

as

j
n�1X
i=0

1

n
pn(Ai)�

n�1X
i=0

1

n
pn(Ai+1) j =

1

n
j pn(A0) � pn(An) j

=
1

n
j pn(F) � pn(R) j>

1

nk+1

This is the contradiction which proves the theorem. 2

The construction of pseudorandom function generators is universal and works for any PRBG.

4.6 Pseudorandom Permutation Generators

Clearly a one-to-one pseudorandom function is a pseudorandom permutation or PRP. Now we are

going to describe how pseudorandom permutations can be generated. Recall from Section 3.2 the

de�nition of Feistel permutation.

De�nition 4.13 Given a function f : �n ! �n. A Feistel permutation F2n;f : �
2n ! �2n associated

with the function f is

F2n;f (L;R) = (R� f(L); L)

where L and R are n-bit strings.

134

A truly random permutation is a permutation ensemble � = f�n j n 2 Ng where �n contains all n!

permutations and the probability distribution is uniform for all n 2 N .

Having a set of functions f1; : : : ; fi 2 Rn, we can de�ne the composition of the corresponding

Feistel permutations as

 2n(f1; : : : ; fi) = F2n;fi � : : : � F2n;f1 (4.9)

Consider a permutation 2n(f; g) for some f; g 2 Rn illustrated in Figure 4.6. It turns out [304], that

f

g

L R

S T

Figure 4.3: Permutation generator 	R(f; g)

	R(f; g) = f 2n(f; g) j f; g 2R Rn; n 2 Ng can be told apart from a truly random permutation by a

polynomial size witness circuit C2n. The structure of the circuit is given in Figure 4.6. The circuit

Comparator

O O1 2

L LR R1 2

S
1

S
2

Figure 4.4: A distinguishing circuit for 	R(f; g)

employs two oracle gates O1 and O2. In order to decide whether a tested permutation is truly random

or is an instance of 	R(f; g), the witness circuit

� selects L1; L2; R 2R �n,

� queries oracle gates O1 and O2 for two strings (L1; R) and (L2; R), respectively,

� collects the answers (S1; T1) and (S2; T2) from the oracle gates,

� there are two possible cases:

1. a tested permutation is an instance of 	R(f; g), then S1 = L1 � R and S2 = L2 � R so

L1 � L2 is equal to S1 � S2,

2. otherwise S1 and S2 are n-bit random string and L1 � L2 6= S1 � S2 with the probability

2�n.

135

� returns the result from the comparator as its guess.

Luby and Racko� [304] analysed permutation generators based on Feistel transformations. In

particular, they de�ned a permutation generator 	R(f; g; h) = f 2n(f; g; h) j f; g; h 2R R; n 2 Ng

which uses three Feistel permutations and three random functions. They proved the following theorem.

Theorem 4.6 Let f; g; h 2R R be three independent random functions and C2n be a probabilistic

circuit with m < 2n oracle gates, then

j p2n(�)� p2n(R(f; g; h)) j�
m

2

2n
(4.10)

As the number m has to be polynomially bounded (the witness circuit has to be of a polynomial

size), the two generators cannot be told apart by any polynomial witness. Note that the permutation

generator 	R(f; g; h) can be implemented by no polynomial time algorithm as it uses three random

functions f; g; h 2R R. But if the functions f; g; h are chosen from a pseudorandom function, then

the resulting permutation generator is pseudorandom. Let our pseudorandom function ensemble be

F = fFn j n 2 Ng. The permutation generator 	(f; g; h) = f 2n(f; g; h) j f; g; h 2R F ; n 2 Ng.

Theorem 4.7 ([304]) Let F = fFn j n 2 Ng be a pseudorandom function generator. A permutation

generator 	(f; g; h) = f 2n(f; g; h) j f; g; h 2R F ; n 2 Ng is pseudorandom so for any probabilistic

polynomial size witness circuit C2n (the number of oracle gates is polynomially bounded)

j p2n(�) � p2n((f; g; h)) j�
1

nk
(4.11)

for some constant k.

An interesting observation is that the pseudorandom permutation 	(f; g; h) is immune against

the chosen plaintext attack. Oracle gates allow the circuit to query about cryptograms for messages

chosen by the circuit.

Another interesting issue is the number of pseudorandom functions used in the permutation gen-

erator. Ohnishi [381] proved that both 	(f; g; g) and 	(f; f; g) are pseudorandom. Rueppel [432]

showed that 	R(f; f; f) can be e�ciently distinguished from �. The distinguisher is depicted in Fig-

ure 4.6. It employs two oracle gates O1 and O2 only. The circuit chooses L;R 2R �n and queries the

O 2

Comparator

O1

R

Output

L

Figure 4.5: A distinguishing circuit for 	R(f; f; f)

oracle gate O1. The two n-bit strings of the answer are swapped and the oracle gate O2 is queried

for the swapped answer. If the oracle gates are evaluated using a function from 	R(f; f; f), then O2

136

has to return a string which is equal to (L;R) as O2 undo the process done by O1. Otherwise, if the

oracle gates are evaluated using a function from �, O2 returns a random string which is di�erent from

(L;R) with the probability 2�2n. Zheng, Matsumoto and Imai showed in [536] that 	(f i; fj; fk) is

not pseudorandom where i; j; k 2 N and f i = f � : : : � f i| {z }. They gave a construction of a probabilistic

polynomial size witness circuit which e�ciently tells apart 	R(f
i
; f

j
; f

k) from �. Pieprzyk [404]

demonstrated that 	(f; f; f; f i) is pseudorandom for i � 2.

4.7 Super Pseudorandom Permutation Generators

One can ask to allow witness circuits to not only query about cryptograms (for chosen messages) but

also about messages (for chosen cryptograms). The power of such circuits increases as there are two

kinds of oracle gates: normal and inverse. For a string x provided by a witness circuit, a normal gate

returns f(x). An inverse gate for the same string, returns f�1(x) where f is a tested permutation. The

notion of pseudorandomness can be extended to super pseudorandomness if a probabilistic polynomial

size witness circuit applies both normal and inverse oracle gates. Luby and Racko� proved that

	(e; f; g; h) where e; f; g; h 2R F are pseudorandom functions, is super pseudorandom so there is no

probabilistic polynomial size witness circuit with normal and inverse oracle gates which can tell apart

	(e; f; g; h) from �. A super pseudorandom permutation generator is immune against both the chosen

plaintext and chosen ciphertext attacks.

The number of necessary pseudorandom functions can be reduced to two only as 	(f; f; g; g) is

super pseudorandom (see [393]). Now consider the design of a super pseudorandom permutation

generator from a single pseudorandom function. A permutation generator 	(f i; fj ; fk; f`) is not

pseudorandom and there is a distinguisher for it. Its construction is given in [435]. Patarin in [393]

argued that 	(f; f; f; f � & �f) is super pseudorandom if & is a \well chosen" public permutation and f

is a pseudorandom function. Sadeghiyan and Pieprzyk [434] showed that 	(f; 1; f2; f; 1; f2) is super

pseudorandom where f is pseudorandom function and 1 stands for the identity permutation. The

construction was based on the so called optimal perfect randomiser [403].

4.8 Problems and Exercises

1. The congruence xi+1 � axi + c mod N is used to generate a sequence of pseudorandom numbers. Compute �rst

10 numbers assuming the following parameters: N = 347, a = 34, c = 23 and x0 = 1. What is the period of the

sequence ?

2. Given Sn = f1; : : : ;2ng and two ensembles E1 = fSn; fp1(x) = 1

2n
j x 2 Sngg and E2 = fSn; fp2(x) j x 2 Sngg

where the probability distribution

p2(x) =

�
3

2n+1
for x 2 Sn�1

1

2n+1
for x 2 Sn n Sn�1

Are the two ensembles statistically indistinguishable ?

3. Consider two ensembles

E1 = fSn; fp1(x) =
1

2n
j x 2 Sng

and E2 = fSn;fp2(x) j x 2 Sng where the probability distribution

p2(x) =

�
1

2n�1
for x 2 Sn�1

0 for x 2 Sn n Sn�1
Are the two ensembles statistically indistinguishable ?

4. Compute �rst ten integers using an instance of the RSA pseudorandombit generator for the following parameters:

the modulus N = 313 � 331, the seed x0 = 83874 and K = 23113. Create a sequence of bits by extracting three

less signi�cant bits from each integer.

137

5. Discuss the behaviour of the period of integers generated from the RSA pseudorandom bit generator. How to

select parameters of the generator to maximise the period ?

6. In calculationsmodulo a prime p, the Jacobi symbol can be used to judge whether a given integer a is a quadratic

residue or in other words, whether there is an integer x =
p
a such that x2 � a mod p. Take p = 11 and �nd all

quadratic residues (and quadratic non-residues). Show that the quadratic residue constitute an algebraic group

under multiplication modulo p.

7. Two smallest primes congruent to 3 modulo 4 are 7 and 11. Find the set of quadratic residues ZQ+
N

and the set

of quadratic non-residues ZQ�
N

. Note that both sets have '(N)=4 = 15 elements.

8. Construct an instance of BBS generator for p = 7 and q = 11. Generate a sequence of bits for a random selected

seed x0 (x0 has to be a quadratic residue). What is the period of the sequence ?

9. The GM probabilistic encryption rests on the assumption that Jacobi symbols cannot be e�ectively computed

if the factoring of the modulus N is unknown. Elements of ZN are used to carry single bit messages which are

Jacobi symbols. The receiver is always able to compute the message (Jacobi symbol) as he knows the factors of

N . Design an instance of the GM encryption for p = 101, q = 103, u = 5646.

10. The BG probabilistic encryption uses BBS pseudorandombit generator. Use an instance of the BBS generator for

p = 7 and q = 11 to construct the BG encryption. Make necessary assumption. Show encryption and decryption

processes.

Chapter 5

PUBLIC-KEY CRYPTOSYSTEMS

In 1976 Di�e and Hellman [152] in their pioneer paper set up the framework for public-key cryp-

tography. In 1978 three designs were published. Rivest, Shamir and Adleman [426] showed how the

discrete logarithm and factorisation problems could be used to construct a public-key cryptosystem.

This is the well-known RSA cryptosystem. Merkle and Hellman [336] used the knapsack problem in

their construction. McEliece [326] built a system which applied error correcting codes. Later in 1985

ElGamal [163] designed a public-key cryptosystem using the discrete logarithm problem. Koblitz [284]

and Miller [343] suggested to use elliptic curves to design public-key cryptosystems.

5.1 The Concept of Public-Key Cryptography

In private-key cryptosystems, both encryption and decryption keys are secret and either the same or

the knowledge of one of them is enough to determine the other. That is why private-key systems are

also called symmetric. Public-key cryptosystems use two di�erent keys. One is public while the other

is kept secret. Clearly, it is required that computing one key from the other has to be intractable.

Public-key cryptosystems are also called asymmetric. As public-key cryptosystems use two keys, it

is possible to make public either the encryption or decryption key. If the encryption key is public,

we deal with cryptosystem in which anybody can encrypt a message (plaintext) into a cryptogram

(ciphertext) but only the receiver can decrypt the cryptogram. The system can be used for secrecy

only. If the decryption key is public, anybody can read cryptograms but only the holder of the secret

encryption key can generate meaningful cryptograms { the system can be used for authenticity only.

In this chapter we will concentrate on secrecy systems in which encryption keys are public.

A cryptosystem with a public encryption key is depicted in Figure 5.1. Sets of messages, cryp-

m

SENDER

Alice

RECEIVER

BobCRYPTANALYST

INSECURE CHANNEL

INSECURE CHANNEL
mENCRYPTION

ALGORITHM
 E

DECRYPTION
ALGORITHM

D

GENERATOR

KEY

K

C C

kpublic key secret key

Figure 5.1: Diagram of a public-key cryptosystem

tograms and keys are M, C and K, respectively. The setup of the system is done by the receiver Bob

138

The Concept of Public-Key Cryptography 139

who generates a pair of keys (K; k) 2 K. Bob broadcasts the encryption key K and keeps the decryp-

tion key k secret. Assume that Alice wants to communicate secretly a message m 2 M to Bob. She

uses the known encryption algorithm E : K�M! C and the public key to compute the cryptogram

c = EK(m) 2 C. The cryptogram is sent over the insecure channel to Bob. Bob now applies his secret

key k together with the decryption algorithm D : K � C ! M to recover the message m = Dk(c).

The cryptosystem has to be e�cient and secure. The e�ciency requirement can be translated into

the following conditions:

1. Calculation of the pair (the public key K, the secret key k) should be easy, that is, it can be

done by the receiver in polynomial time.

2. The sender, knowing the public key K and a message m, can easily determine (in polynomial

time) the corresponding cryptogram,

c = EK(m): (5.1)

3. The receiver, knowing the cryptogram c and the secret key k, can compute the original form of

m in polynomial time,

m = Dk(c) = Dk(EK(m)): (5.2)

The security requirement is equivalent to the following conditions:

1. The task of computing the secret key k from the public key K must be intractable for any

instance of the public key.

2. Any attempt to recover the message m from the pair (K; c) must be equivalent to solving an

intractable instance of a suitable problem.

Assume that for a parameter n 2 N , we have a set of encryption functions

E(n) = fEK j EK : �n ! ��(n)g

where �(n) is a polynomial in n. Every element of the set E(n) is indexed by the public key K 2 K.
So the set E(n) comprises of all encryption functions which can be used in the system for the �xed n.

The family

E = fE(n) j n 2 Ng (5.3)

describes the public encryption. The integer n is also called the security parameter as it indicates

the size of the message and cryptogram spaces. Now we can de�ne two search problems. The �rst

problem called the public encryption has the following form:

Name: Public encryption

Instance: Given a security parameter n 2 N , public-key scheme with the family E = fE(n) j n 2 Ng
of encryption functions, public key K 2 K and message m 2 �n.

Question: What is the cryptogram c = EK(m) 2 ��(n) where EK 2 E(n) ?

The second problem called the public decryption has the form:

Name: Public decryption

Instance: Given a security parameter n 2 N , public-key scheme with the family E = fE(n) j n 2 Ng
of encryption functions, public key K 2 K and cryptogram c 2 ��(n).

The Concept of Public-Key Cryptography 140

Question: What is the message m = E�1
K (c) 2 �n ?

Clearly, the public encryption must belong to the class P while the public decryption should belong to

NP-hard. Ideally, for a large enough n, we would hope that all instances of the public decryption are

intractable or hard. In practice, we may have to accept that some instances of the public decryption

are easy but we have to make sure that the probability of occurrence of such instances is negligible.

The pair of the public encryption and decryption problems uses the family of encryption functions

E. The family is an example of a one-way function. For a large enough security parameter n and a

message m, it is easy to compute c = EK(m) while computing m = E�1
K (c) is hard.

Unlike private-key cryptosystems, public-key cryptosystems are immune against a progress in

computing technology. To keep an adequate safety margin, it is enough to choose a higher security

parameter n. The major drawback of public-key cryptography is its reliance on numerical problems

whose di�culty is not rigorously proven.

There must be a trusted public registry (or White Pages) that keeps an up-to-date list of all active

public-key cryptosystems. An entry of the list has to include the name of the receiver along with

their original public keys. The lack of the registry causes that an attacker instead of breaking existing

public-key cryptosystems, may set up their own system and try to convince senders that the system is

someone else's (a typical masquerading scenario). Needless to say, the public registry allows the read

only access when a potential sender browses entries. Any insertion or modi�cation of entries is done

by the trusted authority who veri�es their originality.

5.2 The RSA Cryptosystem

The RSA system applies two numerical problems, namely the discrete logarithm and factorisation

problems. In the system, messages, cryptograms and keys (public and secret) belong to the set ZN .
The integer N is the product of two primes p and q, i.e. N = p� q. The set ZN along with addition

and multiplication modulo N creates a ring as there is a subset of elements which do not have their

multiplicative inverses. All multiples of p and q belong to the subset. For a given public key K and

message m, the encryption function is

c = EK(m) � mK (mod N): (5.4)

The decryption function applies the secret key k 2 ZN for the cryptogram c 2 ZN as follows:

m = Dk(c) � ck (mod N): (5.5)

Clearly, the encryption and decryption process should allow to recover the original message m so

m = Dk(EK(m))

Substituting (5.4) and (5.5), we get:

(mK)k � m (mod N) (5.6)

It is known that if the integer N was prime, the congruence (5.6) would have solution if and only if,

K � k � 1 (mod N � 1). In the case in question, however, N = pq (p, q are primes) therefore (5.6)

has a solution if and only if

K � k � 1 (mod '(N)) (5.7)

where '(N) = (p� 1)(q� 1) is Euler's totient function. Equation (5.7) has a solution if K is coprime

to '(N).

The system is set up by the receiver Bob who

The Concept of Public-Key Cryptography 141

� chooses two large enough primes p and q,

� announces the modulus N = p � q while keeping the factors p; q secret,

� selects at random the key K 2R ZN which is coprime to '(N) and makes it public,

� computes the secret key k according to Congruence (5.7).

The sender, Alice, encrypts a message m using Congruence 5.4 and sends the corresponding cryp-

togram to Bob. Upon receiving the cryptogram, Bob applies Congruence 5.5 to recover the message.

The RSA cryptosystem

Problems Used: Factorisation and Discrete Logarithm.

The modulus N = p� q is public, the primes p; q are secret.

Message Space: M = ZN .

Cryptogram Space: C = ZN .

Public Key: A random integer K 2 ZN ; gcd (K;'(N)) = 1.

Secret Key: An integer k 2 ZN such that k �K � 1 (mod (p� 1)(q � 1)).

Encryption: c = EK(m) � mK (mod N).

Decryption: m = Dk(c) � ck (mod N).

Consider a simple example. Assume that Bob intends to create an instance of the RSA cryptosys-

tem. First, Bob selects integers p = 7 and q = 11. Next, he calculates '(N) = 60, and randomly

selects the public key K = 13. Subsequently, he �nds the secret key by solving the congruence (5.7)

so,

13 � k � 1 (mod 60)) k = 37

The above congruence can be solved using the Euclid algorithm (see Section 2.1.1). The pair (N =

77;K = 13) is published. If Alice now wants to transmit the message m = 36, she calculates the

cryptogram,

c = mK = 3613 � 71 (mod 77)

and forwards it to the receiver. Having c and the secret key k, Bob recreates the message according

to the following congruence:

m = ck = 7137 � 36 (mod 77)

The above system is an instance with a very low security parameter and is insecure as anybody can

guess the factors of the modulus.

To have a \secure" instance of the RSA system, we have to pick up large modulus N so both

(1) an instance of the public decryption problem and (2) an instance of the factorisation problem

(factorisation of N), are intractable. Note that in the RSA system, The public decryption is equivalent

to the discrete logarithm problem. The primes p and q used in the RSA system have to be at least

100 decimal digit long. Thus the modulus N has 200 decimal digits and the best known factoring and

discrete logarithm algorithms take � 1023 steps each.

On the other hand, the implementation of public encryption and secret decryption can be done

by using the fast exponentiation from Section 2.1.3. The computation of secret keys knowing public

ones, can be done using Euclid's algorithm from Section 2.1.1.

The Concept of Public-Key Cryptography 142

There are many RSA implementations in hardware. Their speed depends on the length of the mod-

uli used. A typical VLSI chip for RSA handles 512-bit long moduli and processes plaintext/ciphertext

at the rate 64 kilobits per second which is roughly 1000 times slower than for DES. More secure

hardware implementations use moduli of the length 768 or 1024 bits [445].

5.2.1 Concealment of Messages

The RSA system has a characteristic feature, pointed out by Blakley and Borosh in [41] that it does

not always hide the message. Clearly, if m 2 f0; 1;�1g then the encryption does not change the form

of a cryptogram. Consider RSA with p = 97 and q = 109. If the public key is K = 865, then this

cryptosystem provides no concealment, since m865 � m (mod 97 � 109) for all m. Changing the

public key to 169 provides concealment of about 96 percent of all possible messages [41].

Any arithmetic modulo N = pq (p, q are primes) always comprises at least nine messages which

when raised to a positive odd integer K do not change their form, that is,

mK � m (mod N) (5.8)

As N = pq, Congruence(5.8) can be rewritten as a pair of congruences as follows:

mK � m (mod p)

mK � m (mod q) (5.9)

For any K, Congruences (5.9) have at least three solutions from the set f0; 1;�1g. That is three

integers in Zp yield the set for the �rst congruence, and three integers in Zq yield the set for the

second congruence. The set of all messages which satisfy (5.8) is equal to,

fm 2 ZN j m1 � m (mod p);m2 � m (mod q);m1;m2 2 f0; 1;�1gg (5.10)

Elements m1 and m2 of the set (5.10) can easily be presented as integers of ZN using the Chinese

Remainder Theorem.

Consider arithmetic modulo N = 35 (p = 5, q = 7). The congruence mK � m (mod 5) has three

solutions, 0, 1, 4. The second congruence mK � m (mod 7) has also three solutions, 0, 1, 6. The

set of all messages which are not altered during encryption is;

0 � (0 mod 5; 0 mod 7)

1 � (1 mod 5; 1 mod 7)

34 � (�1 mod 5;�1 mod 7)

15 � (0 mod 5; 1 mod 7)

21 � (1 mod 5; 0 mod 7)

20 � (0 mod 5;�1 mod 7)

14 � (�1 mod 5; 0 mod 7)

29 � (�1 mod 5; 1 mod 7)

6 � (1 mod 5;�1 mod 7)

The exact number of unconcealable messages is given in the following theorem.

Theorem 5.1 If messages are encrypted using the RSA system, determined for the modulus N = pq

(p; q are primes), and the public key K, then there are:

�u = (1 + gcd(K � 1; p� 1))(1 + gcd(K � 1; q � 1)) (5.11)

messages which are unconcealable.

The Concept of Public-Key Cryptography 143

Proof: A message is unconcealable if and only if mK � m (mod N). The congruence is equivalent

to the pair mK � m (mod p) and mK � m (mod q). These can be rewritten as:

mK�1 � 1 (mod p) or mK�1 � 0 (mod p)

mK�1 � 1 (mod q) or mK�1 � 0 (mod q)

As the congruence mK�1 � 1 (mod p) has gcd(K � 1; p� 1) solutions, the result follows. 2

Let p = 5, q = 7 (N = 35). Consider the following cases: If K = 5, then �u = 15 and the required

set is:

f 0, 1, 6, 7, 8, 13, 14, 15, 20, 21, 22, 27, 28, 29, 34 g

If K = 7, then �u = 21 and the required set is:

f 0, 1, 4, 5, 6, 9, 10, 11, 14, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30, 31, 34 g

Note that any set of unconcealable messages must contain the set f 0, 1, 15, 21 g. This set contains
idempotent elements only. An element x 2 ZN is idempotent if and only if x2 � x (mod N)).

Thus the following general observations can be made:

� There are four unconcealable messages if gcd(K � 1; p� 1) = gcd(K � 1; q � 1) = 1. This case

never happens in RSA. As K and '(N) have to be coprime, K is always odd { this implies that

K � 1 is even.

� There are nine unconcealable messages if gcd(K � 1; p� 1) = gcd(K � 1; q� 1) = 2. This is the

best case in RSA.

� If K � 3 (mod '(N)), then gcd(2; p� 1) = gcd(2; q� 1) = 2, and the number �u is equal to 9

regardless of the choice of p and q.

Observe that if the public key is selected carelessly, the congruence (5.8) may be valid for more than

50 percent of message space. As the receiver does not know the sender's messages in advance, they

have to avoid keys which do not generate real cryptograms. The situation becomes worse once we

realize that the attacker can easily discover such a lack of protection. It su�ces that the attacker

computes cK (mod N) and discovers that the result is the same c. If we assume that:

p = 2p0 + 1

q = 2q0 + 1 (5.12)

where p0, q0 are primes, then gcd(K�1; p�1) = gcd(K�1; 2p0) can take on three values, namely 1, 2,

and p0. We know that the value 1 does not happen in RSA asK�1 has to be even. When gcd(K�1; 2p0)
is equal to 2, there are nine unconcealable messages. However, when gcd(K � 1; 2p0) = p0, there are

at least 2(p0 + 1) unconcealable messages.

Obviously, the selection of the primes p and q is crucial for the security of the RSA system. Thus we

observe that both primes should be of about the same length. Simultaneously, the following conditions

should be ful�lled:

� The integers p� 1, q � 1 should contain large factors (preferably p� 1 = 2 � p0 and q� 1 = 2 � q0
where p0; q0 are primes).

� The greatest common divisor of p� 1 and q � 1 should be a small number (preferably 2).

The Concept of Public-Key Cryptography 144

5.2.2 Variants of RSA

In some circumstances, senders may have a limited computational power. This usually happens when

the encryption is being done by a smart card which has a limited memory and CPU power. Clearly,

we can reduce a number of computations by restricting the value of the public key.

Rabin [417] suggested a RSA variant with the public key K = 2. This is the smallest nontrivial

exponent. The public encryption is

c = m2 (mod N) (5.13)

where N as before is the product of two primes p and q. The receiver, who knows the factorisation of

N , can decrypt c by solving two following congruences:
p
c � m1 (mod p) and

p
c � m2 (mod q).

In fact, the �rst congruence has two possible solutions �m1 and so does the second �m2. To compose

the original message m using the Chinese Remainder Theorem, the receiver needs to guess correctly

signs against m1 and m2. Rabin's system has 4:1 ambiguity in the decrypted message.

Williams [523] showed how to improve Rabin's scheme. He observed that the decryption process

can be simpli�ed for all messages m whose Jacobi symbol 1 is
�
m
N

�
= 1 where N = p �q and the primes

are chosen such that p � �1 (mod 4) and q � �1 (mod 4). In other words, p and q have to be Blum

integers. If the modulus p is a Blum integer (p � �1 (mod 4)), there is no polynomial-time algorithm

to calculate square roots of quadratic residues modulo p. The deciphering process is expressed by the

following congruence:

ck � �m (mod N) (5.14)

where the secret key k is equal to:

k =
1

2

�
(p � 1)(q � 1)

4
+ 1

�
(5.15)

In William'smodi�cation, the receiver Bob selects two Blum primes p and q and computes the modulus

N = p � q and a small integer S such that
�
S
N

�
= �1. Next, he publishes N and S but keeps secret the

key k determined by (5.15). For a message m, the sender Alice calculates c1 (c1 2 f0; 1g) such that�
m
N

�
= (�1)c1 and creates the message,

m0 � Sc1 �m (mod N) ; m0 2 ZN : (5.16)

Finally, the cryptogram is computed form0 according to (5.13), and Alice forwards the triple (c; c1; c2),

where c2 � m0 (mod 2).

To recover the clear message, Bob computes mt � ck (mod N) according to Congruence (5.14).

The proper sign of mt is given by c2 (i.e. m = mt if c2 � mt (mod N) or m = �mt, otherwise). It

is easy to verify that the original message m is equal to:

m � S�c1 (�1)c1mt (mod N) (5.17)

as the message m0 is even. The enciphering and deciphering processes described above are illustrated

in the following example.

Suppose the receiver Bob has selected p = 7, q = 11 (note p � �1 (mod 4); and q � �1
(mod 4)). Bob next chooses the small integer S = 2 for which the Jacobi symbol is

�
S
N

�
=
�
2
77

�
= �1.

The values (N = 77; S = 2) are sent to the sender Alice while the key k = 8 is kept secret.

1Recall the Jacobi symbol
�
a
b

�
is de�ned by

�
a
b

�
=
�
a
b1

�
� � �
�
a
bn

�
, where b = b1 � � � bn is factorisation of b and�

a
bi

�
� a(bi�1)=2 (mod bi) is the Legendre symbol for i = 1; : : : ; n.

The Concept of Public-Key Cryptography 145

If Alice wishes to transmit the message m = 54, she �rst calculates the Jacobi symbol
�
M
N

�
=�

54
77

�
= 1. It implies that the binary number c1 = 0. According to (5.16), the message m0 = m = 54,

and the cryptogram c is equal to:

c = m2 = 542 � 67 (mod 77)

Finally, Alice forwards the triple (c; c1; c2) = (67; 0; 0) as the cryptogram.

After obtaining the triple, Bob computes:

mt = ck = 678 � 23 (mod 77)

As c2 = 0, the message m must be even so m = N �mt = 54.

Williams [524] considered the cryptosystem for which the public key is �xed and equal to 3 (K = 3).

He showed its construction and proved that it is as di�cult to break as it is to factor the modulus N .

Another modi�cation of the basic RSA system for K � 3 (mod 18) has been presented by Loxton,

Khoo, Bird and Seberry [303] who recommend that it should be used for those K whose binary

representation has many zeros. Their cryptosystem is de�ned in the ring Z[!], where ! is a primitive

cube root. They also showed that their system is as di�cult to break as it is to factor N .

5.2.3 Primality Testing

To set up RSA, the receiver has to generate two long primes p and q. In Section 2.1.2 the prime-

counting function �(x) was introduced. It approximates the number of primes in the interval (0; x]. If

we want to choose prime at random from the interval (0; 10100], then the probability that the selected

integer is prime, is
�(10100)

10100
=

1

100 ln10
� 1

230
:

It means that on the average, every 230-th integer is prime. There is a good chance that after 230

consecutive tries, there is at least one prime. Now we need an e�cient primality test.

From Section 2.3.6, we know that both Primality and Factorisation problems belong to NPI\co-
NPI. This means that there is no polynomial-time deterministic algorithm for primality testing. There

is, however, a class of probabilistic algorithms which can be used if we accept a small probability of

mistake (see Section 2.3.9).

We start from Fermat's Little Theorem (see Section 2.1.4) that could be used to design a simple

primality test algorithm. The theorem asserts that if the modulus p is prime than the following

congruence is true

ap�1 � 1 (mod p) (5.18)

for any nonzero integer a 2 Zp. A Monte Carlo algorithm based upon the congruence will always

generate the correct answer if the tested integer is indeed prime no matter what is the value of a.

Unfortunately, if p is composite Congruence 5.18 may also be satis�ed for some integers. These

numbers are called pseudoprimes. For example, each of the Fermat numbers Fn = 22
n

+ 1 satis�es

Congruence (5.18) but not all these are primes. The situation becomes hopeless when the tested

number p is a Carmichael number. Carmichael numbers satisfy (5.18) for every a which is coprime to

p (i.e. gcd(a; p) = 1). In other words, we need a stronger primality test.

Fermat's Little Theorem can still be useful for primality testing. However, to avoid problems

with pseudoprimes, it is necessary to modify the testing procedure. Note that we do not need to use

congruence ap�1 � 1 (mod p). Instead we may apply the congruence

a
p�1
2 (mod p)

The Concept of Public-Key Cryptography 146

If p is prime the congruence is equal to either 1 or �1. A fast test which looks into factors of p� 1 in

order to determine the primality of the modulus p, was developed by Miller [342] and Rabin [418]. In

the Miller-Rabin test, �rst p � 1 is represented in the form 2r � s where s is an odd number. As the

tested integer p is odd, p � 1 is even so this representation is always valid. The testing starts from

checking if as � �1 (mod p) for a random nonzero a 2 Zp. If the congruence is true, we conclude

that p is prime. Otherwise, we check whether a2
is � �1 (mod p) for i = 1; : : : ; r�1. If there is some

i for which the congruence is true, the test returns \p is prime" otherwise it returns \p is composite".

The Miller-Rabin Primality Test { checks whether an integer p is prime

T1. Find and odd integer s such that p� 1 = 2r � s.

T2. Select at random a nonzero integer a 2R Zp.

T3. Compute

b = as (mod p):

If b = �1, return \p is prime" and quit.

T4. For i = 1; : : : ; r� 1, calculate

c � b2
i

(mod p):

If c = �1, return \p is prime" and quit.

t5. Otherwise return \p is composite".

The test always gives the correct answer if the integer p is indeed prime. For the p composite, the

following theorem characterises the test.

Theorem 5.2 (Rabin [418]) If p is composite, then the Miller-Rabin test fails for at least one quarter

of integers a where 0 < a � p� 1.

So now we have a fast Monte Carlo algorithm for primality testing. It never makes mistakes when

p is prime. If p is composite, it returns \p is prime" with probability 1
4 . For instance, if we expect the

probability of mistake to be smaller than 2�50, it is enough to use the Miller-Rabin test 25 times.

5.2.4 Factorisation

The most obvious attack on RSA is to try to factor the public modulus N . Knowing the factors of N ,

it is easy to recover the secret key. The factorisation problem is believed to be intractable so we may

not hope for a polynomial time algorithm. But certainly we need to know how e�cient the existing

factoring algorithms are.

The sieve of Eratosthenes (see Section 2.1.2) is a factorisation algorithmwhose e�ciency is O(
p
N)

or O(2
n

2) where n = blog2Nc. For moduli � 10200, the sieve of Eratosthenes would take O(10100)

steps. It is easy to check, that this algorithm starts to be unworkable for moduli larger than 1020.

More e�cient algorithms take advantage of the following theorem.

Theorem 5.3 Let N be a composite natural number and X;Y be a pair of integers such that X+Y 6=
N . If X2 � Y 2 (mod N), then gcd(X + Y;N) and gcd(X � Y;N) are nontrivial factors of N .

The following example shows how Theorem 5.3 can be used to factor N = 77. We start with the

two following congruences: 72 � �5 (mod 77) and 45 � �32 (mod 77). Multiplying the separate

sides gives:

23 � 34 � 5 � (�1)2 � 5� 25 (mod 77)

The Concept of Public-Key Cryptography 147

which yields upon reduction 92 = 22 (mod 77). Hence gcd(9 + 2; 77) and gcd(9 � 2; 77) give the

primes p = 11 and q = 7.

Quadratic Sieve (QS)

Let us discuss briey the basic Quadratic Sieve algorithm for factorisation of an integer N . The

algorithms proceeds as follows.

The Quadratic Sieve Algorithm - �nds factors of integer N

F1. Initialisation { a sequence of quadratic residues Q(x) = (m+x)2�N is generated for small values

of x where m = b
p
Nc.

F2. Forming the factor base { the base consists of a small collection of small primes. The set is

FB = f�1; 2; p1; : : : ; pt�1g.

F3. Sieving { the quadratic residues Q(x) are now factorized using the factor base. The sieving stops

when t full factorisations of Q(x) have been found.

F4. Forming and solving the matrix { for the collection of fully factorized Q(x), a matrix F is

constructed. The matrix contains information about the factors. The goal of this stage is to

�nd a linear combination of Q(x)s which gives the quadratic congruence from Theorem 5.3. The

congruence gives a nontrivial factor of N with the probability 1
2 .

Let us illustrate steps of the algorithm using a simple numerical example. Assume that we wish

to �nd factors of N = 4841. First we generate a sequence of quadratic residues Q(x). To keep Q(x)

as small as possible, we �nd m = b
p
Nc = 69 and compute

Q(x) = (m + x)2 � N (5.19)

for x = �8; : : : ;�1; 0; 1; : : :; 8. The sequence of Qs is as follows

x = �8! Q(x) = �1120 = (�1) � 25 � 5 � 7
x = �7! Q(x) = �997 = (�1) � 997
x = �6! Q(x) = �872 = (�1) � 23 � 109
x = �5! Q(x) = �745 = (�1) � 5 � 149
x = �4! Q(x) = �616 = (�1) � 23 � 7 � 11
x = �3! Q(x) = �485 = (�1) � 5 � 97
x = �2! Q(x) = �352 = (�1) � 25 � 11
x = �1! Q(x) = �217 = (�1) � 7 � 31
x = 0! Q(x) = �80 = 24 � 5
x = 1! Q(x) = 59 = 59

x = 2! Q(x) = 200 = 23 � 52

x = 3! Q(x) = 343 = 73

x = 4! Q(x) = 488 = 23 � 61
x = 5! Q(x) = 635 = 5 � 127
x = 6! Q(x) = 784 = 24 � 72

x = 7! Q(x) = 935 = 5 � 11 � 17
x = 8! Q(x) = 1088 = 26 � 17

The Concept of Public-Key Cryptography 148

A factor base can be a collection of the smallest consecutive primes so FB = f�1; 2; 3; 5; 7;11g. Note
that Q(�8), Q(�4), Q(�2), Q(0), Q(2), Q(3) and Q(6) have all their factors in the set FB. These

are the required full factorisations. There are eight fully factorized Qs and the number of elements

in the set FB is six so there is a good chance to �nd a quadratic congruence X2 � Y 2 (mod N) as

required in Theorem 5.3.

For a fully factorized Q(x), we create a binary vector F (x) of the length ` =jFB j whose co-

ordinates indicate the presence or absence of the factor from FB. Thus, for Q(�8), the vector

F (�8) = [1; 1; 0; 1;1;0] as its factorisation contains primes -1, 2, 5 and 7 and primes 3 and 11 are

missing. The collection of all vectors F for fully factorized Qs, is:

Q(�8)! F (�8) = [1; 1; 0; 1; 1;0]

Q(�4)! F (�4) = [1; 1; 0; 0; 1;1]

Q(�2)! F (�2) = [1; 1; 0; 0; 0;1]

Q(0)! F (0) = [0; 1; 0; 1; 0;0]

Q(2)! F (2) = [0; 1; 0; 1; 0;0]

Q(3)! F (3) = [0; 0; 0; 0; 1;0]

Q(6)! F (6) = [0; 1; 0; 0; 1;0]

Vectors F (x) are rows of our matrix F which is

F =

2
66666666664

F (�8)
F (�4)
F (�2)
F (0)

F (2)

F (3)

F (6)

3
77777777775
=

2
66666666664

1; 1; 0; 1; 1;0

1; 1; 0; 0; 1;1

1; 1; 0; 0; 0;1

0; 1; 0; 1; 0;0

0; 1; 0; 1; 0;0

0; 0; 0; 0; 1;0

0; 1; 0; 0; 1;0

3
77777777775

(5.20)

Now we look for a collection of rows such that

F (i1) � F (i2)� : : :� F (ir) = 0

Observe that F (�4)� F (�2)� F (3) = 0. Take the corresponding Q(�4), Q(�2) and Q(3), they are

Q(�4) � (69� 4)2 (mod 4841)

Q(�2) � (69� 2)2 (mod 4841)

Q(3) � (69 + 3)2 (mod 4841)

On the other hand, we can use their factorisations and

Q(�4) � (�1) � 23 � 7 � 11 (mod 4841)

Q(�2) � (�1) � 25 � 11 (mod 4841)

Q(3) � 73 (mod 4841)

Therefore, the requested congruence X2 � Y 2 (mod N) can be constructed. The left integer

X = (69� 4)(69� 2)(69 + 3) � 3736 (mod 4841)

and the right integer

Y =
p
(�1)23 � 7 � 11� (�1)25 � 11� 73 = 24 � 72 � 11 � 3783 (mod 4841):

The Concept of Public-Key Cryptography 149

As X + Y 6= i �N , we obtain the factors of N . Indeed, gcd(3736� 3783; 4841) = 47 and gcd(3736 +

3783; 4841) = 103. So N = 47� 103.

Concept of Number Field Sieve (NFS)

The main idea is to produce two integers X and Y such that X2 � Y 2 mod N , where N is an

integer to be factored. Unlike QS, NFS uses two algebraic structures

� the ring ZN - this is the algebraic structure where quadratic equations are sieved to �nd factors,

� the number �eld K = R(�) for some algebraic integer � that is the root of an irreducible monic

polynomial p(x) 2 R[x] of degree d or p(�) = 0. Assume that an integer m is known such that

p(m) = ` �N (5.21)

for some integer `.

In both algebraic bodies we look for quadratic equations. Suppose that we have found two such

equations:

a+ b �m = X2 mod N in the ring ZN

and

a + b � � = �2 in the �eld R(�):

for some integers a; b. Clearly, to use the second equation, we have to transform it into ZN . For this
purpose, we de�ne a homomorphism

 : ZK ! ZN

where ZK denotes all integers in K and (�) = m mod N while (a) = a mod N for all a 2 ZN .
Consider an example. Given N = 161 which is to be factored. De�ne the number �eld K = R(�)

where � is the root of the polynomial p(x) = x2�2 or (p(�) = 0). Note that the condition in Equation

5.21 holds, i.e.

p(18) = 2 � 161:

for m = 18. Now we take element � 2 K and compute their squares �2 = a+ b �� and check whether

the corresponding equation a+b �m ?� Y 2 mod N . If the second equation holds, then we transform the

�rst equation using the homomorphism . Here we need to extend our homomorphism so it works for

elements of the form (a+ b ��) where a; b 2 ZN . The extended homomorphism is de�ned as follows:

 (b ��) =
(

m mod N if b = 1;

b(b�1a+m) mod N if b has its inverse in ZN

If the element b does not its inverse then a non-trivial factor of N is found. The computations are as

follows

Field K a; b Ring ZN

(�+ 1)2 = 3 + 2� (3; 2) 3 + 2 � 18 = 39

(�+ 2)2 = 6 + 4� (6; 4) 4 + 4 � 18 = 78

(2�+ 1)2 = 9 + 4� (9; 4) 9 + 4 � 18 = 81 = 92

The last row gives us two quadratic equations one in K and the other in ZN . Now we transform the

equation in K into ZN using the homomorphism , i.e.

 (9 + 4�) = 9 + 4 �m and (2� + 1) = 37

The Concept of Public-Key Cryptography 150

We combine the two equations and get

92 � 372 mod N

and two non-trivial factors gcd(37� 9; 161) = 7 and gcd(37 + 9; 161) = 23.

Clearly, for factoring a large integer, guessing a and b will not lead to an e�cient implementation

of NFS. Like in QS, NFS apply the factor bases. What di�ers QS from NFS is the fact that NFS

uses two di�erent factor bases, one in ZN and the other in ZK. The factor base in ZN can be easily

generated and typically includes all primes not exceeding some bound B. Generation of the factor

base in ZK is more complicated as it involves the selection of the so-called prime ideals of ZK. The
description of the NFS algorithm is beyond the scope of the book and the reader is referred to [102]

for details.

Factorisation is considered to be a part of cryptanalysis as the progress in factoring tends to weaken

the existing RSA hardware implementations. There are several classes of factorisation algorithms

� Quadratic sieve ([125],[126], [408], [464]),

� Residue list sieve [111],

� Number �eld sieve [297],

� Continued fraction [349],

� Elliptic curve [298].

QS has been very extensively used as it is the fastest known algorithm to factor integers shorter than

130 decimal digits. In 1994 Atkins, Gra�, Lenstra and Leyland successfully factorized 129 decimal

digit long modulus of RSA (known as RSA-129 on the RSA factoring challenge list). The factorisation

was done using computing resources donated from around the world. As the whole communication

was done by electronic mail, the project was called \factoring by e-mail". For details see [10]. This

proved that 512-bit moduli of RSA are no longer secure against a powerful attacker who can match

the resources used in the factorisation.

NFS is the newest algorithm and the fastest as its asymptotic running time is

O

�
e(1:92+o(1))(lnn)

1
3 (ln lnn)

2
3

�

which compares favourably with the asymptotic running time of the QS algorithm which is

O

�
e(1+o(1))(lnn ln lnn)

1
2

�

The NFS algorithm overtakes QS if factored integers are longer than 130 decimal digits.

5.2.5 Security of RSA

An instance of RSA can be compromised if the corresponding instances of discrete logarithm and

factorisation problems are easy to compute. Interestingly enough, the security of some versions of

RSA are equivalent to the di�culty of factoring the modulus.

Consider the Rabin scheme. Assume that there is a polynomial-time algorithmA which for a given

ciphertext c and modulus N returns a message m = A(c;N) such that m2 � c (mod N). This is a

chosen ciphertext attack. We could use the algorithm to factor N as follows:

1. Select at random a message m 2 ZN .

The Concept of Public-Key Cryptography 151

2. Calculate the cryptogram c = m2 (mod N).

3. Apply the algorithm m0 = A(c;N).

4. If m = �m0, go to step (1) and select another message. Otherwise, compute gcd(m � m0; N)

which is either p or q.

The Rabin scheme is insecure against a chosen ciphertext attack but it is immune against a chosen

plaintext attack.

Simmons and Norris [471] showed that RSA is breakable if the multiplicative group contains short

cycles. Let the opponent know the public elements (N;K) and a cryptogram c 2 ZN . Clearly, the

opponent can generate the following sequence

ci � cKi�1 (mod N)

where c1 = c and i = 2; 3; : : :. If there is an element cj such that c = cj, then the message used to

generate c is cj�1. To avoid the iteration attack is enough to select the primes p and q so p�1 = 2�p0
and q � 1 = 2� q0 where p0 and q0 are primes.

Assume that Euler's totient function '(N) has been made public. Is it possible to compute factors

of N from it ? Take a closer look at '(N) which is

'(N) = (p� 1)(q � 1) = N � p� q + 1 = N � p� N

p
+ 1

This equation can be rewritten as

p2 + p('(N) �N � 1) +N = 0

Clearly, the equation has two solutions: the factors p and q. The conclusion is that revealing '(N)

allows to factor N .

Can the modulusN be shared amongst of several RSA schemes ? This can be an attractive solution

when a single user would like to use the same N after the decryption key has been compromised. Or

perhaps several co-operating users would like to use the same modulus N to establish their public

schemes. To be more precise, assume that two pairs of keys have been compromised and made public.

Is it possible to �nd factors of N or equivalently '(N) ? Denote the two pairs as (k1;K1) and (k2;K2).

All key have to be odd numbers. They can be represented as

k1K1 � 1 � �12
r1p0q0

k2K2 � 1 � �22
r2p0q0

where p� 1 = 2p0 and q� 1 = 2q0 and �1; �2 are two odd numbers. It is easy to compute gcd(k1K1�
1; k2K2� 1) = 2jr1�r2j. Note that if = 1, then '(N) can be determined as p0q0 is easy to calculate.

This happens if �1 and �2 are co-prime. As pairs of keys are randomly chosen, we may assume that

�1 and �2 are also two odd random integers. What is the probability that two odd integers smaller

than N selected randomly and uniformly are co-prime ?

To answer the question consider the following collection of sets: D3 - the set of all odd integers

smaller than N and divisible by 3, D5 - the set of all odd integers smaller than N and divisible by

5 and not divisible by 3, D7 - the set of all odd integers smaller than N and divisible by 7 and not

divisible by 3 or 5. In general Di is the set of all odd integers smaller than N and divisible by i (i is

prime and i <
p
N) and not divisible by any prime smaller than i. Now two random odd integers are

not co-prime if both of them belong to some Di, thus

P (�1; �2 are not co-prime) =
X
i<
p
N

P (�1; �2 2 Di) =
X
i<
p
N

P (�1 2 Di j �2 2 Di)P (�2 2 Di):

The Concept of Public-Key Cryptography 152

where i is a prime. The conditional probability P (�1 2 D3 j �2 2 D3) is the biggest so we can

substitute it for all other conditional probabilities and

P (�1; �2 are not co-prime) < P (�1 2 D3 j �2 2 D3) =
1

3
:

Therefore, P (�1; �2 are co-prime) � 2
3 . A single pair of keys will enable to compute '(N) and

subsequently factor N with the probability greater than 2=3.

5.3 The Merkle-Hellman Cryptosystem

The knapsack decision problem belongs to the class NPC and its search equivalent to the class NP-

hard so it is a very attractive candidate for cryptographic designs. Merkle and Hellman [336] based

their public-key cryptosystem on the knapsack problem. The Merkle-Hellman cryptosystem or MH

system encrypts an n-bit message m = (�1; : : : ; �n) 2 M using a public key K = (�1; : : : ; �n) where

�i 2 f0; 1g and �i 2 Zq ; i = 1; : : : ; n and q is prime. The cryptogram c 2 C is calculated as

c =

nX
i=1

�i�i (5.22)

The enciphering is simple and very e�cient.

The public key and secret elements are generated by the receiver Bob who sets up the whole

system. Bob �rst selects a sequence of superincreasing integers w = (!1; : : : ; !n) where

!i >

i�1X
j=1

!j (5.23)

Note that initial condition w de�nes an instance of the easy knapsack problem which is solvable in

linear time. Now Bob selects a big enough �eld Zq (q is prime) and a multiplier r 2 Zq . Both the

prime q and r can be chosen at random provided that,

q >

nX
i=1

!i

Next Bob transforms the superincreasing vector w according to the following congruence

�i � !i � r (mod q) (5.24)

for i = 1; : : : ; n. The sequence (�1; : : : ; �n) constitutes the public key of the system. Note that the

vector w, multiplier r, and prime q are kept secret by the receiver.

Assume that Bob has received a cryptogram c created according to Equation (5.22). Bob converts

the cryptogram as follows:

c0 � c� r�1 (mod q):

Using Equations (5.22) and (5.24), we have

c0 �
nX
i=1

�i�ir
�1 �

nX
i=1

�i!i (mod q)

The transformed cryptogram c0 corresponds to an instance of the easy knapsack so Bob �nds bits �i

of the message m.

The MH cryptosystem

The Concept of Public-Key Cryptography 153

Problems Used: Knapsack.

The secret easy knapsack is a superincreasing sequence of integers

w = (!1; : : : ; !n) such that !i >
Pi�1

j=1 !j.

Message Space: M = �n

Cryptogram Space: C = Z.

Public Key: K = (�1; : : : ; �n) where �i � !i � r (mod q).

Both the modulus q and the multiplier r are secret.

Secret Key: The easy knapsack w = (!1; : : : ; !n), q and r.

Encryption: c = EK(m) =
Pn

i=1�i � �i where m = (�1; : : : ; �n).

Decryption: Conversion of the cryptogram c into an instance of easy knapsack c0 = c�r�1 (mod q).

To illustrate the MH system, assume that 5-bit messages are to be transmitted. Bob initiates the

algorithm by choosing the vector,

w = (!1; !2; !3; !4; !5) = (2; 3; 6; 12;25)

Note that:
!2 > !1

!3 > !1 + !2

!4 > !1 + !2 + !3

!5 > !1 + !2 + !3 + !4

Next he chooses the pair (r; q) at random provided that q is prime and q >
P5

i=1 !i = 48. Let q = 53

and r = 46. It is easy to check that r�1 = 15 (mod 53). Subsequently, the receiver calculates the

public key using Congruence (5.24), namely,

�1 � !1r (mod q) � 39 (mod 53)

�2 � !2r (mod q) � 32 (mod 53)

�3 � !3r (mod q) � 11 (mod 53)

�4 � !4r (mod q) � 22 (mod 53)

�5 � !5r (mod q) � 37 (mod 53)

So, the public key K = (�1; �2; �3; �4; �5) =(39; 32; 11; 22;37) is sent to the sender Alice. Suppose

now that Bob has received the cryptogram c = 119. To decrypt it, he �rst transforms it as follows:

c0 = c� r�1 = 119� 15 = 36 (mod 53)

and next solves the easy knapsack instance:

c0 = 36 > !5 = 25) �5 = 1

c0 � !5 = 11 < !4) �4 = 0

c0 � !5 = 11 > !3 = 6) �3 = 1

c0 � !5 � !3 = 5 > !2 = 3) �2 = 1

c0 � !5 � !3 � !2 = 2 = !1 = 2) �1 = 1:

In other words, the receiver has recreated the message m = (1, 1, 1, 0, 1).

The Concept of Public-Key Cryptography 154

5.3.1 Security of Merkle-Hellman cryptosystem

The MH system was broken by Shamir [459] who showed a polynomial-time algorithmwhich calculates

easy knapsack from the public key. Shamir used the superincreasing property of easy knapsack integers

to derive a system of linear inequalities. The system was later e�ciently solved using Lenstra's integer

programming algorithm.

There is also a version of the MH system which applies multiple modular multiplications to hide

easy knapsacks. This version of the system is called the iterated MH system. Adleman [3] used the

L3 algorithm [296] to analyse a doubly iterated knapsack system. Brickell [61] and Lagarias and

Odlyzko [291] showed that any low density knapsack are solvable in polynomial time. Finally, Brickell

[62] invented a polynomial time algorithm which for k-iterated MH systems, extracts easy knapsack

integers from the public key. Readers interested in details of breaking the Merkle-Hellman system

are referred to the review paper by Brickell and Odlyzko [63] and the book by O'Connor and Seberry

[374].

5.4 McEliece cryptosystem

McEliece suggested [326] that error correcting codes are excellent candidates for designing public-key

cryptosystems. His work has not received the prominence or detailed study it deserves, because error

correcting codes are e�ective by virtue of their redundancy, which leads to data expansion, which has

not usually been considered desirable in cryptography. Other cryptosystems related to the McEliece

design include the Niederreiter scheme and the Stern scheme { see [504].

Assume we have a message space GF (2k) and a codeword space GF (2n). For any message a 2
GF (2k), a code assigns a codeword b 2 GF (2n) and b = L(a). A code L is linear if the sum of

any two codewords b1 + b2 is equivalent to the codeword of the sum of their messages a1 + a2, i.e.

L(a1 + a2) = L(a1) + L(a2) = b1 + b2. Any linear code can be described as

b = a �G

where a 2 GF (2k), b 2 GF (2n), and G is the (k � n) generating matrix.

McEliece based his cryptosystem on the Goppa codes, a superset of the BCH or the Hamming

codes, because they are easy to implement in hardware and a fast decoding algorithm exists for the

general Goppa codes while no such fast decoding algorithm exists for a general linear code. Goppa

codes can be de�ned by their generating polynomial

p(x) = xt + pt�1x
t�1 + � � �+ p1x+ 1

of degree t over GF (2m). For messages of length k, the Goppa code produces codewords of length

n = 2m and the code is capable of correcting any pattern of t or fewer errors.

The receiver Bob chooses a desirable value of n and t and then randomly picks an irreducible

polynomial of degree t over GF (2m). The probability that a randomly selected polynomial of degree

t is irreducible is about 1=t and Berlekamp [26] describes a fast algorithm for testing irreducibility of

polynomials. Next Bob produces a k�n generator matrix G for the code, which could be in canonical

form, that is:

G = [Ik Fk(n�k)]

where Ik is the identity matrix.

The usual error correction method would now multiply a message vector a = (�1; : : : ; �k) onto G

to form the codeword b which is transmitted via a noisy channel which usually corrupts the codeword

The Concept of Public-Key Cryptography 155

to b0 which must then be corrected and then the message recovered. If a were multiplied onto G in

the canonical form, b would be:

b = (�1; : : : ; �k; f1(a); : : : ; fn�k(a))

and if there was no corruption, the message is trivially recovered as the �rst k bits of b.

Thus McEliece \scrambles" G by selecting a random dense k � k non-singular matrix S, and a

random n � n permutation matrix P . He then computes,

G0 = SGP

which generates a linear code with the same rate and minimum distance as the code generated by G.

G0 is called the public generator matrix and constitutes the public key.

To encrypt a binary message m 2 GF (2k), Alice uses the public key G0 and computes the corre-

sponding cryptogram

c = m � G0 + e

where e is a locally generated random vector of length n and weight t. The vector e is kept secret by

Alice. The decryption is done by Bob who calculates

c0 = c� P�1

where P�1 is the inverse of the permutation matrix P . c0 will then be a codeword of the Goppa code

previously chosen. The decoding algorithm is then used to �nd m = m0S�1.

The McEliece cryptosystem

Problems Used: General Coding.

A Goppa code characterised by its generating matrix G which speci�es an instance.

Message Space: M = GF (2k).

Cryptogram Space: C = GF (2n).

Public Key: Public key G0 = SGP .

Secret Key: Matrices S, G, P .

Encryption: c = EK(m) = m �G0 + e

where e is a secret random binary string of weight t generated by Alice.

Decryption: Bob computes c0 = c� P�1, decodes c0 and obtains m0.

Finally, Bob translates m0 into m applying m = m0S�1.

5.4.1 Security of the McEliece Cryptosystem

We need to determine the security of the system. If an opponent knows G0 and intercepts c, can they

recover m? There are two possible attacks:

1. to try to recover G from G0 and so be able to use the decoding algorithm,

2. to attempt to recover m from c without knowing G.

The Concept of Public-Key Cryptography 156

The �rst attack appears hopeless if n and t are large enough because there are so many possibilities

for G, not to mention the possibilities for S and P .

The second attack seems more promising but the basic problem to be solved is that of decoding a

more or less arbitrary (n; k) linear code in the presence of up to t errors. Berlekamp, McEliece and van

Tilborg [25] have proved that the general coding problem for linear codes is NP-complete, so one

can certainly expect that, if the code parameters are large enough, this attack will also be infeasible.

If n = 1024 = 210 and t = 50 there are about 10149 possible Goppa polynomials and a vast number

of choices for S and P . The dimensions of the code will be about 524. Hence, a brute-force approach

to decoding based on comparing C to each codeword has a work factor of about 2524 = 10158, and a

brute-force approach based on coset leaders has a work factor of about 2500 = 10151.

A more promising attack is to select k of the co-ordinates randomly and hope none are in error

and then calculate m. The probability of no error, however, is about (1 � t=n)k, and the amount of

work involved in solving k simultaneous equations in k unknowns is about k3. Hence before �nding

m using this attack one expects a work factor of k3(1� t=n)�k. For n = 1024, k = 524, t = 50 this is

about 1019 � 265.

On the other hand, this cryptosystem is not suitable for producing `signatures' as the algorithm

is truly asymmetric and not one to one.

5.5 The ElGamal Cryptosystem

In 1985 ElGamal [163] published a public-key cryptosystem which uses the discrete logarithm problem.

Bob the designer of the system chooses a large enough prime q which is used as the modulus. He

randomly selects a primitive element g 2 GF (q) and an integer k < q. Bob computes K = gk

(mod q) and publishes the modulus q, primitive element g and integer K. The exponent k is kept

secret.

To encrypt a message m 2 GF (q), Alice selects �rst her secret element s at random from GF (q)

and prepares a cryptogram which consists of two parts c = (c1; c2) where

c1 � m �Ks (mod q)

c2 � gs (mod q)

The pair is dispatched to Bob. On receiving the cryptogram, Bob computes Ks = ck2 � gsk (mod q)

using c2 and his secret integer k. Next he �nds the inverse K�s and computes the message

m � c1 �K�s (mod q)

The steps in ElGamal systems are summarised below.

The ElGamal cryptosystem

Problems Used: Discrete logarithm.

Bob selects the modulus q, primitive element g, and the exponent k. The modulus q and element

g are public.

Message Space: M = GF (q).

Cryptogram Space: C = GF (q)� GF (q).

Public Key: Public key K � gk (mod q).

The Concept of Public-Key Cryptography 157

Secret Key: k 2 GF (q)

Encryption: Alice selects at random an exponent s 2 GF (q). The exponent s is secret. The

cryptogram is c = EK(m) = (c1; c2) where c1 � m �Ks (mod q) and c2 � gs (mod q).

Decryption: Bob computes Ks = ck2 � gsk (mod q), its inverse K�s and the message m =

Dk(c) =� c1 �K�s (mod q).

5.5.1 Security of ElGamal Cryptosystems

To have a secure instance of the ElGamal system, the modulus needs to be larger than 200 decimal

digits or 660 bits. The security of the system is intimately tied with the di�culty of solving instances

of the discrete logarithm problem. The modulus q must be selected in such a way that q � 1 has at

least one large factor preferably q � 1 = 2p where p is a prime. For q = 2n, it is recommended to use

Mersenne numbers as q � 1 is prime. Readers interested in algorithms for solving discrete logarithm

problem are directed to Odlyzko's paper [376].

5.6 Elliptic Curve Cryptosystems

Both the RSA and ElGamal cryptosystems extensively use the cyclic groups which exist in the un-

derlying algebraic structure. Elliptic curves can be used to de�ne cyclic groups which are suitable for

cryptographic applications. The idea of applying elliptic curves in cryptography was �rst spelt out by

Koblitz [284] and Miller [343]. Readers who want to study the subject in more details are directed to

the book by Menezes [332].

5.6.1 Elliptic Curves

Let p > 3 be a prime and a and b be two integers satisfying the condition 4a3 + 27b2 6� 0 (mod p).

The elliptic curve Ep(a; b) is a collection of points P = (x; y) 2 Zp � Zp such that

y2 � x3 + ax+ b (mod p) (5.25)

together with a point O in in�nity. Two points P = (x1; y1), Q = (x2; y2) can be added and the result

is the point R = P +Q = (x3; y3) with the co-ordinates

x3 � �2 � x1 � x2 (mod p)

y3 � �(x1 � x3) � y1 (mod p) (5.26)

where

� =

8><
>:

y1�y2
x1�x2 if P 6= Q

3x21+a
2y1

if P = Q

The identity element is O as P + O = O + P = P . The point P = (x1; y1) has the inverse element

Q = �P = (x1;�y1) and P + Q = O. It can be proved that the collection of points (5.25) with the

addition de�ned by (5.26) creates an Abelian group.

Consider an elliptic curve E7(1; 6) with points satisfying the congruence y2 � x3+x+6 (mod 7).

The collection of all points is

E7(1; 6) = f(1; 1); (1; 6); (2; 3); (2;4); (3;1); (3; 6); (4;2); (4;5); (6; 2); (6; 5);Og

The Concept of Public-Key Cryptography 158

As the order of the group is prime and equals to 11 so the group is isomorphic to Z�
11 and any point

di�erent from O generates the group. For instance

2� (2; 3) = (4; 2);

3� (2; 3) = (3; 1);

4� (2; 3) = (6; 5);

5� (2; 3) = (1; 1);

6� (2; 3) = (1; 6);

7� (2; 3) = (6; 2);

8� (2; 3) = (3; 6);

9� (2; 3) = (4; 5);

10� (2; 3) = (2; 4);

11� (2; 3) = O:

5.6.2 Elliptic Curve Variant of RSA

Koyama, Maurer, Okamoto, and Vanstone [285] presented an implementation of RSA using elliptic

curves. Demytko [132] showed a variant which is less restrictive as to the types of elliptic curves used

in the cryptosystem.

We describe the �rst system by Koyama, Maurer, Okamoto and Vanstone. Let the number of

points in Ep(a; b) or the order of the group be #Ep(a; b). In general, we know that

#Ep(a; b) = p+ 1 + t

where j t j� 2
p
p. Schoof [447] invented an algorithm which computes the order of an elliptic curve

in O((log p)8) steps. The algorithm becomes impractical for large p. The order of elliptic curves is

known explicitly in the two cases:

(1) if the modulus p is an odd prime p � 2 (mod 3) and the parameter a = 0. The group Ep(0; b) is
cyclic with the order p+ 1 (0 < b < p),

(2) if the modulus p is a prime satisfying p � 3 (mod 4) and b = 0. The group Ep(a; 0) is cyclic with
the order p+ 1 if a is a quadratic residue modulo p (0 < a < p).

The RSA variant based on elliptic curves is described below. It is based on the elliptic curve

EN (0; b) with N = p � q and p � q � 2 (mod 3). Note that #EN (0; b) = lcm(p + 1; q + 1).

The elliptic curve RSA cryptosystem

Problems Used: Factorisation and Discrete Logarithm.

The modulus N = p� q is public, the primes p; q are secret. The elliptic curve used is EN (0; b)
(or EN (a; 0)).

Message Space: M = EN (0; b).

Cryptogram Space: C = EN (0; b).

Public Key: K 2R f1; : : : ;#EN (0; b)g and gcd (K;#EN(0; b)) = 1.

Secret Key: k 2 f1; : : : ;#EN (0; b)g such that k �K � 1 (mod #EN (0; b)).

Encryption: Let m = (mx;my) be a point on the elliptic curve EN (0; b).

c = EK(m) = K �m over EN (0; b).

The Concept of Public-Key Cryptography 159

Decryption: m = Dk(c) = k � c over EN (0; b).

The security of elliptic curve RSA systems is related to the di�culty of factorisation of the modulus

N . Kurosawa, Okada, and Tsujii reported that elliptic curve RSA is not secure with low exponents

[290].

Let us illustrate the system for small parameters. The receiver Bob selects two primes p = 239

and q = 401. Note that the primes are congruent to 2 modulo 3. In other words, Bob have decided to

use the group EN (0; b). Next he computes N = p� q = 95839, #EN (0; b) = lcm(p+ 1; q+ 1) = 16080

and selects at random a public key K. Let it be K = 5891 (gcd(N:K) = 1). A secret key k = 12971

satis�es the congruence k�K � 1 mod 16080. Bob announces the modulus N and the public key K.

Alice takes her message m = (mx;my) = (66321; 24115) which is a point on the elliptic curve

EN (0; b). Alice may even compute b as for all points (x; y) on the curve y2 � x3 + b mod N (b �
y2 � x3 mod N). Addition in EN (0; b) does not depend on b. Sender computes the cryptogram c =

K�m mod N which for the assumed values is the point c = (79227; 19622). Bob can easily decrypt the

cryptogram by multiplying it by the secret key so m = k� c = 12971(79227; 19622) = (66321; 24115).

Multiplication of points on elliptic curves may be conveniently implemented using any system for

algebraic computations such as MAPLE, MATHEMATICA or MAGMA which supports multiprecision

arithmetics. An example of a MAPLE program for addition and multiplication over an elliptic curve

in given below.

To load it into MAPLE, type:

read`<namefile>`;

where <namefile> is a file with the code in the same directory

MAPLE software is run.

#---

Program adds two points on the elliptic curve y^2 = x^3 + b modulo N.

Point in infinity is represented by (0,0) and the inverse of

any point (x,y) is (x,-y)

#---

ad := proc(x1,y1,x2,y2, N)

local lambda, x3, y3, result;

if x1=x2 then

if modp(y1+y2, N)=0 then RETURN(0, 0); fi;

fi;

if x1=0 then

if y1=0 then RETURN(x2, y2); fi;

fi;

if x2=0 then

if y2=0 then

result[1] := x1; result[2] := y1;

RETURN(x1, y1);

fi;

fi;

if x1 <> x2 then

lambda := modp((y1-y2)/(x1-x2), N);

else

lambda := modp((3*(x1^2))/(2*y1), N);

fi;

x3 := modp(lambda^2-x1-x2,N);

y3 := modp(lambda*(x1-x3)-y1, N);

RETURN(x3, y3);

end;

#---

The Concept of Public-Key Cryptography 160

mult function multiplies a point (x,y) by k modulo N on the

curve (the function calls ad function).

#---

mult := proc(k, x, y, N)

local a,i,j,alpha,beta,base,s,accum ;

a := array (1 .. 1000 , sparse);

base := array(1 .. 1000, 1..2, sparse);

if k=0 then RETURN(0,0); fi;

if k=1 then RETURN(x,y); fi;

i := k; j := 1;

while i > 0 do

alpha := irem(i,2,'q');

beta := iquo(i,2,'r');

i := beta; a[j] := alpha; j := j+1;

od;

base[1,1] := x; base[1,2] := y;

accum[1] := 0; accum[2] := 0;

if a[1]=1 then

accum[1] := x; accum[2] := y;

fi;

for i from 2 to j-1 do

s := ad(base[i-1,1],base[i-1,2],base[i-1,1],base[i-1,2],N);

base[i,1] := s[1]; base[i,2] := s[2];

if a[i]=1 then accum := ad(base[i,1],base[i,2],accum[1],accum[2],N);

fi;

od;

RETURN(accum);

end;

The function mult() can be used directly for encryption and decryption. Note that the function

performs an operation which is equivalent to the RSA exponentiation. It works relatively fast for the

modulus N up to several hundreds of bits making computations quite realistic.

5.6.3 Elliptic Curve Variant of ElGamal

Menezes, Okamoto, and Vanstone [333] demonstrated that the discrete logarithm problem on a su-

persingular elliptic curve can be reduced to the discrete logarithm problem in a �nite �eld. So the

discrete logarithm problem on elliptic curves is suitable for cryptographic applications. The system

described below was invented by Menezes and Vanstone [335].

The elliptic curve ElGamal cryptosystem

Problems Used: Discrete Logarithm.

Bob selects a large prime p > 3 (the modulus), an elliptic curve Ep (the corresponding discrete

logarithm problem has to be intractable), and a point P 2 Ep. Ep, the modulus and the point

P are public.

Message Space: M = Zp �Zp.

Cryptogram Space: C = Ep � Zp � Zp.

Public Key: K = k � P 2 Ep.

Secret Key: k 2 Z (k smaller than the order of the cyclic group).

The Concept of Public-Key Cryptography 161

Encryption: Alice selects at random a multiplier s 2 Z, calculates the point R = sP 2 Ep, and �nds

a point Q = sK = skP = (�x; �y) 2 Ep. For the message m = (mx;my), she computes the

cryptogram c = EK(m) = (R; cx; cy) where cx = �xmx (mod p) and cy = �ymy (mod p).

The multiplier s is kept secret by Alice.

Decryption: Bob uses the point R to recover the point Q as Q = kR = ksP = (�x; �y) 2 Ep. Next
m = Dk(c) = (cx�

�1
x (mod p); cy�

�1
y (mod p)).

Consider an ElGamal system on an elliptic curve Ep(0; b) for p = 71 (71 � 2 mod 3). Bob publishes

p and a point on the curve P = (25; 33) and the public key K = kP = (33; 39) for his secret key

k = 43.

To encrypt a message m = (mx;my) = (22; 44), Alice �rst selects her secret s at random { let it be

s = 29 and �nds two points R = sP = (33; 32) and Q = sK = (25; 38). The message m is encrypted

using co-ordinates of the point Q so cx � mx � 25 � 53 mod 71 and cy � my � 38 � 39 mod 71. The

cryptogram c = (R; 53; 39) is communicated to Bob.

Bob reconstructs the point Q using his secret integer k as Q = kR = (25; 38), computes 25�1 �
54 mod 71 and 38�1 � 43 mod 71. Clearly mx � 53�54 � 22 mod 71 and my � 39�43 � 44 mod 71.

5.7 Probabilistic Encryption

In some circumstances, one could wish to encrypt single bits instead of messages selected from a

large set. A public key cryptosystem would generate only two meaningful cryptograms allowing an

opponent, Oscar, to recover the bit by a simple enumeration of two possible cases. A solution to

this problem would be to split the space of all messages de�ned in the public key cryptosystem into

two subspaces R0 and R1. To encrypt a single bit b, the sender, Alice, �rst selects r 2R Rb and

next encrypts the message. The receiver, Bob, decrypts the cryptogram and knowing the two subsets,

recovers the bit.

The concept of probabilistic encryption was introduced and studied by Goldwasser and Micali in

[208]. A probabilistic public key cryptosystem applies the set of messagesM = f0; 1g, the set of keys
K, the set of cryptograms C, and the set R = R0[R1. The encryption proceeds using the encryption

function c = EK(m; r) where r 2R Rm and m 2 f0; 1g. During the decryption process, the message

m = 0 if Dk(c) 2 R0 or m = 1, otherwise. The encryption function induces a pair of two ensembles:

C0 = EK(R0) and C1 = EK(R1). The proof of security of a probabilistic public key cryptosystem can

be reduced to the assertion that the two ensembles C0 and C1 are polynomially indistinguishable.

5.7.1 The GM probabilistic encryption

The Goldwasser-Micali (GM) probabilistic encryption assumes that the quadratic residuacity problem

is intractable.

The GM Probabilistic Encryption

Problems Used: The quadratic residuacity problem. Given a composite integer N with two factors

p and q. The modulus N is public but the factors are secret. An element u 2 ZQ�
N is public.

Message Space: M = f0; 1g.

Cryptogram Space: C = ZN .

Encryption: For a message m 2 M, select r 2 ZN and compute c = EK(m; r) = umr2 mod N .

The Concept of Public-Key Cryptography 162

Decryption:

m = Dk(c) =

(
0 if c 2 ZQ+

N

1 if c 2 ZQ�
N

Clearly, all cryptograms c have their Jacobi symbol equal to 1. To distinguish which one carries 0

bit, the receiver has to know the factorisation of N and calculate
h
c
p

i
= (c)(p�1)=2. If this is equal to

1, um = 1 so m = 0.

5.7.2 The BG probabilistic encryption

Blum and Goldwasser [45] generalised the GM public key encryption. They used the BBS pseu-

dorandom generator to design a probabilistic public key encryption for short binary messages (not

necessarily single bits). Their system is further referred as the BG probabilistic encryption.

The BG Probabilistic Encryption

Problems Used: The quadratic residuacity problem. Given a composite integer N with two factors

p and q such that p � q � 3 mod 4. The modulus N is public. The factors p and q are secret.

Message Space: M = �t.

Cryptogram Space: C = ZN .

Encryption: 1. for a given seed x0, generate (x1; : : : ; xt) using the BBS generator,

2. for a given message m = (m1 : : :mt) 2 M, compute ci � xi +mi mod 2, i = 1; : : : ; t,

3. calculate ct+1 = x2
t+1

0 mod N ,

4. send the cryptogram c = (c1; : : : ; ct+1).

Decryption: 1. recover the seed x0 from ct+1,

2. for the seed x0, generate (x1; : : : ; xt) using the BBS generator,

3. recreate the message string mi � ci + xi mod 2 for i = 1; : : : ; t.

The retrieval of x0 from ct+1 needs some clari�cation. Assume that � 2 ZQ+
N , then � has two

square roots, namely, �p� = �� p+1
4 . Indeed,�

�
p+1
4

�2
= �

p+1
2 = �

p�1
2 �

as � 2 ZQ+
N so

h
�
p

i
= �(p�1)=2 = 1 and

�
�

p+1
4

�2
= �. So the squaring has its inverse 2�1 �

p+1
4 mod p� 1. To recover x0 from ct+1, we need �rst compute

2�(t+1) �
�
p+ 1

4

�t+1
(mod p� 1)

2�(t+1) �
�
q + 1

4

�t+1
(mod q � 1)

and later �nd x0 such that

x0 � c2
�(t+1)

t+1 mod p

x0 � c2
�(t+1)

t+1 mod q

using the Chinese Remainder Theorem.

The Concept of Public-Key Cryptography 163

5.8 Public-Key Encryption Practice

Public-key cryptography traditionally is used to provide con�dentiality of data via encryption under

a standard assumption that the attacker is an outsider. The experience demonstrates that in many

applications, the attacker is more likely to be an insider who apart from public encryption, may access

decryption algorithm. In the so-called lunch-time or midnight attack, an insider can for some time

play with the decryption device asking for messages which correspond to a collection of cryptograms

chosen by the attacker. The device is assumed to be tamper-proof so the attacker is not able to see

the secret key.

5.8.1 Taxonomy of Public-Key Encryption Security

Given an adversary whose computing resources are polynomially bounded. A public-key cryptosystem

can be used to provide the following general security goals:

� one-wayness (OW) { the adversary who sees a cryptogram is not able to compute the corre-

sponding message (plaintext),

� indistinguishability (IND) { observing a cryptogram, the adversary learns nothing about the

plaintext,

� non-malleability (NM) { the adversary observing a cryptogram for a message m, cannot derive

another cryptogram for a meaningful plaintext m0 related to m.

The goals OW and IND relate to the con�dentiality of encrypted messages. The IND goal is, however,

much more di�cult to achieve than the one-wayness. Note that probabilistic encryption presented in

Section 5.7 provides indistinguishability (also termed semantic security). Non-malleability guarantees

that any attempt to manipulate the observed cryptogram to obtain a valid cryptogram, will be un-

successful (with a high probability). For example, the RSA cryptosystem is malleable. The adversary

knowing a cryptogram c = mK , can for the message m0 = 2m, create the valid cryptogram c0 = c�2K .
The power of a polynomial attacker (with polynomial computing resources) very much depends

on his access to the information about the public-key system. The weakest attacker is an outsider

who knows the public encryption algorithm together with other public information about the setup

of the system. The strongest attacker seems to be an insider who can access the decryption device in

regular intervals (lunch-time and midnight attacks). The access to the decryption key is not possible

as the decryption device is assumed to be tamper-proof.

A decryption oracle is a formalismwhich mimics the attacker access to the decryption device { the

attacker can experiment with it giving cryptograms and collecting corresponding message from the

oracle (the attacker cannot access the decryption key). In general, the public-key cryptosystem can

be subject to

� chosen plaintext attack (CPA) { the attacker knows the encryption algorithm and the public

elements including the public key (the encryption oracle is publicly accessible),

� non-adaptive chosen ciphertext attack (CCA1) { the attacker has access to the decryption oracle

before he sees a cryptogram which he wishes to manipulate,

� adaptive chosen ciphertext attack (CCA2) { the attacker has access to the decryption oracle

before and after he observes a cryptogram c which he wish to manipulate (assuming that he is

not allowed to query the oracle about the cryptogram c).

The Concept of Public-Key Cryptography 164

The security level a public-key system achieves, can be speci�ed by the pair: (goal, attack) where

goal can be either OW or IND or NM, attack can be either CPA or CCA1 or CCA2. For example

the level (NM, CPA) assigned to a public-key system says that the system is non-malleable under the

chosen plaintext attack. There are two sequences of trivial implications:

(NM, CCA2)) (NM, CCA1)) (NM, CPA)

(IND, CCA2)) (IND, CCA1)) (IND, CPA)

which are true because the amount of information available to the attacker in CPA, CCA1 and CCA2

grows. Figure 5.2 shows the inter-relation among di�erent security notions. It turns out (see [21])

that the following equivalence holds

(NM,CPA), (IND,CCA1):

(NM, CCA2) (NM, CCA1) (NM, CPA)

(IN, CCA2) (IN, CCA1) (IN, CPA)

Figure 5.2: Relations among security notions

5.8.2 Generic OAEP Public-Key Cryptosystem

Most public-key encryption systems exhibit strong algebraic properties which may be exploited by an

attacker. Clearly, it would be desirable to \destroy" relations among messages and their cryptograms

by the introduction of a redundancy. Bellare and Rogaway [22] introduced the concept of optimal

asymmetric encryption padding or OAEP for short. OAEP is a probabilistic encoding of messages

before they are encrypted by a public-key cryptosystem. The construction uses random oracles.

A random oracle H : �n ! �` is a function which for an argument x 2 �n returns a value y which

is selected randomly, uniformly and independently from �`. Random oracles are very useful because

� their well formulated probabilistic properties allow to derive conclusions about security. The

conclusions are said to be valid in the random oracle (RO) model,

� they can be replaced by hashing algorithms (see Section devoted on hashing) for implementation.

The price to pay is, however, that the security conclusions obtained for the RO model do not

hold.

The following components are used:

� an instance of a public-key cryptosystem with public encryption algorithm E and secret decryp-

tion algorithmD = E�1 where E : �n+` ! �n+`. It is assumed that E is one-way permutation

so a polynomial attacker cannot reverse it,

� two random oracles G : �` ! �n and H : �n ! �`.

Encryption of a message m 2 �n proceeds as follows (see Figure 5.3):

1. generate a random value r 2R �`,

2. calculate

s = m � G(r) and t = r �H(s);

The Concept of Public-Key Cryptography 165

rm

H

G

n-bit - bitl

s t

n-bit l - bit

Figure 5.3: Optimal asymmetric encryption padding

3. compute the corresponding cryptogram

c = E(s; t) 2 �n+`:

Decryption �rst recovers the pair (s; t) = E�1(c), the random value r = t � H(s) and the message

m = s �G(r). The security of the system meets (IND,CPA).

5.8.3 RSA Encryption Standard

RSA Security introduced their public-key encryption standard known as PKCS#1. The early version

1.5 was shown to be subject to the CCA2 attack (see [43]). We describe the version 2.1 which

can be found in http://www.rsasecurity.com/rsalabs/pkcs. This version also called PKCS-OAEP is

recommended for new applications.

The message M to be encrypted is �rst encoded using the function EME-OAEP-ENCODE(M,P,emLen)

where P indicates encoding parameters specifying the choice of hashing algorithms (random oracles)

and emLen gives the requested length of encoded message (EM) in octets. The encoding procedure is

pHash MPS

DB

MGF

MGF

maskedSeed

hLenhLen

maskedDB

seed

EM

Figure 5.4: PKCS#1 version 2.1

illustrated in Figure 5.4. The input consists of four strings: seed, pHash, PS and M. Both seed,

pHash are hLen octets long. The message can be at most emLen-1-2hLen octets long. The string seed

is randomly chosen. pHash=Hash(P) is a string obtained from transforming P by the chosen Hash func-

tion. PS consists of emLen-mLen-2hLen-1 zero octets. The encoding EME-OAEP-ENCODE(M,P,emLen)

takes the following steps:

1. concatenate strings pHash, PS and M and form the string DB in the form

DB=(pHashk PS k 01 k M);

The Concept of Public-Key Cryptography 166

2. compute

maskedDB = DB� MGF(seed,emLen-hLen);

where MGF() is the mask generation function (random oracle),

3. calculate

maskedSeed= seed� MGF(maskedDB,hLen);

4. output EM=(maskedSeed,maskedDB).

The encryption runs through the following steps:

1. encode the message M by invoking the function EM=EME-OAEP-ENCODE(M,P,emLen),

2. convert the message EM into an integer representation, i.e. m=OS2IP(EM),

3. apply the RSA encryption primitive or c=RSAEP((N,K),m) where N is the modulus and K public

key,

4. convert the cryptogram c into its octet equivalent C and output it.

The decryption reverses the operations and �rst the encoded message EM is recovered. The decoding

procedure allows to verify the correctness of the cryptogram when

� the recovered string DB' does not contain the string PS of zeros separated by the 01 octet,

� the string pHash' which is a part of DB' is not equal to the pHash determined by the encoding

parameters P.

PKCS-OAEP is a variant of the generic OAEP public-key encryption and its security is expected

to be (IND,CPA) assuming the RO model (if MGF are replaced by random oracles).

5.8.4 Extended ElGamal Cryptosystem

Cramer and Shoup [115] designed a cryptosystem whose security is based on the presumed di�culty

of the Di�e-Hellman problem.

Name: Di�e-Hellman problem (DH problem).

Instance: Given Zq, q is prime, a primitive element g 2 Zq and three nonzero elements g1 = g�,

g2 = g�, and g3 = g (g1; g2; g3 2 Zp).

Question: Is = �� ?

The cryptosystem is interesting as it allows to identify cryptograms which have not been created

according to the encryption algorithm. Moreover, the identi�cation procedure can be skipped and

then the system becomes the original ElGamal.

Extended ElGamal Cryptosystem

Problems Used: Di�e-Hellman.

Given Zq for prime q and a public random oracle H : Z3
q ! Zq.

Message Space: M = Zq .

Cryptogram Space: C = Z4
q .

The Concept of Public-Key Cryptography 167

Key generation: Random nonzero elements g1; g2; x1; x2; y1; y2; z 2R Zq are chosen, The following

elements are computed

c = gx11 gx22 ; d = g
y1
1 g

y2
2 ; and h = gz1:

Public Key: (g1; g2; c; d; h;H).

Secret Key: (x1; x2; y1; y2; z).

Encryption: Given a message m 2 Zq , perform the following steps;

1. choose random r 2R Zq,
2. compute

u1 = gr1 u2 = gr2 e = hrm � = H(u1; u2; e) v = crdr�:

The cryptogram c = (u1; u2; e; v).

Decryption: Given a cryptogram c = (u1; u2; e; v), do the following

1. compute � = H(u1; u2; e),

2. check whether

u
x1+y1�
1 u

x2+y2�
2

?
= v

If the equation does not hold, reject the cryptogram otherwise continue and output the

message

m = e � u�z1

Note that the decryption can be done by the original ElGamal system from the pair (u1; e). The

whole cryptogram is used to verify its validity. The system is provably secure against CCA2 attack or

more precisely meets (IND, CCA2) and using the equivalence from Figure 5.2 satis�es (NM, CCA2).

5.9 Problems and Exercises

1. Name main components of the public-key cryptosystem and formulate security requirements. Discuss the usage

of the system for secrecy and authenticity.

2. Given a modulus '(N) and a public key K, write a C program which calculates a secret key k for the RSA

system. Assume that both '(N) and K are long integers.

3. Assume that p = 467 and q = 479. Calculate the secret key in the RSA system, knowing that the public key is

equal to KB = 73443.

4. Suppose you want to design an RSA system in which the modulus N = p1 � p2 � p3 (pi is prime for i = 1;2; 3).

Is it possible? If so, what is the main di�erence between this modi�cation and the original RSA system? Derive

necessary expressions for encryption, decryption and keys.

5. Consider the RSA system for N = 2773 (p = 47, q = 59). Compute numbers of unconcealable messages while

applying the following public keys: K1 = 668, K2 = 1174, K3 = 1043, K4 = 878.

6. Given a Rabin scheme for p = 179 and q = 191 with the decryption based on the Williams modi�cation. Compute

the deciphering key. What are cryptograms for two messagesM1 = 33001 and M2 = 18344 ?

7. Write a primality testing algorithm which incorporates both the test based on Fermat's Little Theorem (see

Equation 5.18) and the Miller-Rabin test.

8. Find all primes from the interval (45700, 45750) using the Miller-Rabin test.

9. Implement the sieve of Eratosthenes as a C language program.

10. Suppose that you have an e�cient probabilistic algorithm A which computes square roots (modulo N). More

precisely, the algorithm takes an integer x and returns a single integer which is a square root
p
xmod N . Show

how the algorithm can be applied to factor integers.

The Concept of Public-Key Cryptography 168

11. Use the quadratic sieve algorithm to factor N = 29591. First do the factorisation by hand. Next implement the

algorithm in C (or other high level programming language) assuming that N is a long integer.

12. Apply the iteration attack to recreate the original message for six di�erent pairs (cryptogram, public key) while

the RSA system uses the modulus N = 2773. The pairs are as follows:

(a) c = 1561, K = 573;

(b) c = 1931, K = 861;

(c) c = 2701, K = 983;

(d) c = 67, K = 1013;

(e) c = 178, K = 1579;

(f) c = 2233, K = 791.

13. Consider two strong primes p = 23 and q = 47. How e�ective is the iteration attack in this case ? Select some

cryptograms and compute the cycle. Justify your �ndings and express the relation between the length of cycles

and the particular selection of primes.

14. Design the Merkle-Hellman system which encrypts 7-bit messages. Suppose that w = (!1; : : : ; !7) = (2, 3, 6, 12,

24, 49, 100), q is the smallest integer which is bigger than
P7

i=1
!i and r = 119. What is the cryptogram for

the messageM = 1011011 ? Show the deciphering process.

15. Consider the easy knapsack vector w = (1, 2, 4, 8, 16, 32, 64, 128, 256, 512). Produce the public key using four

iterations de�ned by the following pairs (q1; r1), (q2; r2), (q3; r3), (q4; r4). Choose primes qi; i = 1;2;3; 4, as

small as possible. Accept (r1; r2; r3; r4) = (233, 671, 322, 157).

16. Given an ElGamal cryptosystem with the modulus q = 1283 and g = 653. Let the receiver choose k = 977.

Compute the public key and a cryptogram for the message m = 751.

17. The ElGamal system works under the assumption that the sender always selects her secret exponent s randomly

and independently for each single message. Show how can the security of the system be compromised when the

sender has generated two cryptograms (for two di�erent messages) using the same secret s.

18. It is highly recommended for the modulus q to be selected in such a way that q� 1 has at least one large factor.

Formulate an argument and derive an algorithm which e�ciently solves any instance of the discrete logarithm

whenever q � 1 has small factors only.

Hint: It is requested to calculate a knowing ga mod q when q�1 = p1 � � �pn. Observe that a can be represented by
a vector (a1; : : : an) where ai � a mod pi. The component ai can be readily recovered by computing (ga)ei mod q

where ei is an integer ei � 0 mod pj (i 6= j) and ei � 1 mod pi.

19. Suppose that q is a Mersenne number so q � 1 is prime. Implement the ElGamal system when q = 213 and

q � 1 = 8191. Do all computations in GF(213) using the modulus p(x) = x13 + x11 + x8 + x4 + 1 (p(x) is an

irreducible polynomial over GF(2)). Write C programs for addition and multiplication.

20. Assume an elliptic curve E11(2;5) with points whose coordinates P = (x; y) satisfy the following congruence

y2 � x3 + 2x+ 5 mod 11. Given two points P = (3;4) and Q = (8;7). What are the points P + Q, P + P and

Q+ Q ?

21. Let our elliptic curve RSA system apply the group EN (0; b) where N is product of two suitable primes p and q.

Decrypt the following cryptograms:

� c = (20060;21121) for p = 257 and q = 131 and the decrypting key k = 4163,

� c = (1649684061;291029961) for p = 65537, q = 65543 and decrypting key k = 354897809.

What are the encrypting keys in the two cases ?

22. Implement the RSA encryption on an elliptic curve EN (a;0) using an accessiblemultiprecision arithmetics system

such as MAPLE.

23. Consider the ElGamal cryptosystem on an elliptic curve Ep(0; b0. Assume that p = 233, a point P on the curve

is P = (135;211), the secret key is a multiplier k = 176, and the public key is K = kP = (107;127). Encrypt the

following messages:

� m = (23;223) for a secret multiplier s = 97,

� m = (120;37) for a secret multiplier s = 200.

Decrypt the following cryptograms:

The Concept of Public-Key Cryptography 169

� c = (R;cx; cy) = ((26;34);76;13),

� c = (R;cx; cy) = ((26;199);123;118).

24. The GM probabilistic encryption rests on the assumption that Jacobi symbols cannot be e�ectively computed

if the factoring of the modulus N is unknown. Elements of ZN are used to carry single bit messages which are

Jacobi symbols. The receiver is always able to compute the message (Jacobi symbol) as he knows the factors of

N . Design an instance of the GM encryption for p = 101, q = 103, u = 5646.

25. The BG probabilistic encryption uses BBS pseudorandombit generator. Use an instance of the BBS generator for

p = 7 and q = 11 to construct the BG encryption. Make necessary assumption. Show encryption and decryption

processes.

Chapter 6

HASHING

In many cryptographic applications, it is necessary to produce a relatively short �ngerprint of a

much longer message or electronic document. The �ngerprint is also called a digest of the message.

Cryptographic applications of hashing include, amongst others, the generation of digital signatures.

6.1 Properties of Hashing

A hash function is required to produce a digest of a �xed length for a message of an arbitrary length.

Let the hash function be h : �� ! �n, where �� =
S
i2N �i. It is said that two di�erent messages

m1, m2 collide if h(m1) = h(m2). It is obvious that there are in�nitely many collisions for the hash

function h. The main requirement of a secure hashing is that it should be collision free in the sense

that �nding two colliding messages is computationally intractable. This requirement must hold not

only for long messages but also for short ones. Observe that short messages (for example single bits)

must also be hashed to an n-bit digest. In practice, this is done by �rst padding the message and

later by hashing the padded message. Clearly, a padding scheme is typically considered as a part of

the hash function.

Given a hash function h : �� ! �n. We say that the function is

� preimage resistant if for (almost) any digest d, its is computationally intractable to �nd the

preimage (message m) such that d = h(m). This means that the function is one-way,

� 2nd preimage resistant if given the description of the function h and a chosen message m, it

is computationally intractable to �nd another message m0 which collides with m, i.e. h(m) =

h(m0). 2nd preimage resistance is also equivalently termed weak collision resistance,

� collison resistant if given the description of the function h, it is computationally infeasible to

�nd two distinct messages m1;m2 which collide, i.e. h(m1) = h(m2). Collison resistance is

equivalent to strong collision resistance.

There are many di�erent de�nitions of hash functions depending on what properties are required

from them. There are, however, two major classes of hash function de�ned as follows.

1. A one-way hash function (OWHF) compresses messages of arbitrary length into digests of �xed

length. The computation of the digest for a message is easy. The function is preimage and 2nd

preimage resistant. Equivalently, the function is termed weak one-way hash function.

2. A collision resistant hash function (CRHF) compresses messages of arbitrary length into digests

of �xed length. The computation of the digest for a message is easy. The function is collision

resistant. Equivalently, the function is termed strong one-way hash function.

170

Strong and Weak Hash Functions 171

Collision resistant hash functions can be used without special care if the �nding collision must be

always an intractable task. On the other hand, one-way hash functions do not guarantee that a given

selection of two messages is collision resistant.

Note that a collision resistant hash function is also a one-way hash function. The �rst implication

is trivial, i.e. collison resistance implies 2nd preimage resistance. The statement that a collision

resistant hash function is one-way, can be proved by contradiction (see [488]). Assume that a hash

function h is not one-way, i.e. there is a probabilistic polynomial time algorithm R which for a given

digest d returns a message m = R(d) such that d = h(m). The algorithm R can be used to generate

collisions in the following way. Select at randomm and �nd its digest d. Next call the algorithm which

returns m0 = R(d) such that d = h(m0). If m 6= m0, then this is a collision otherwise select other

random message and repeat the process. Note that probability of �nding collision is proportional to

the cardinality of all messages which collide with the chosen one.

6.2 The Birthday Paradox

For secure hashing, it must be intractable to �nd collisions. In general, it is assumed that the adversary

knows the hashing algorithm. It is also assumed that the adversary can perform an adaptive chosen

message attack, where they may choose messages, ask for their digests, and try to compute colliding

messages. There are many methods of attack on a hash scheme. Some methods are general and can

be applied against any hash scheme. The so-called birthday attack is a general method and can be

applied against any type of hash function. Other methods are applicable against only special groups

of hash schemes. Some of these special attacks can be launched against a wide range of hash functions.

The so-called meet-in-the-middle attack can be launched against any scheme that uses some sort of

block chaining. Others can be launched only against smaller groups.

The idea behind the birthday attack originates from a famous problem from Probability Theory,

called the birthday paradox. The paradox can be stated as follows. What is the minimum number of

pupils in a classroom so the probability that at least two pupils have the same birthday, is greater

than 0:5 ? The answer to this question is 23, which is much smaller than the value suggested by

intuition. The explanation is as follows. Suppose that the pupils are entering the classroom one at a

time. The probability that the birthday of the �rst pupil falls on a speci�c day of the year is equal to
1
365 . The probability that the birthday of the second pupil is not the same as the �rst one is equal to

1� 1
365. If the birthdays of the �rst two pupils are di�erent, the probability that the birthday of the

third pupil is di�erent from the �rst one and the second one is equal to 1 � 2
365

. Consequently, the

probability that t students have di�erent birthdays is equal to (1� 1
365

)(1� 2
365

) : : : (1� t�1
365

). So the

probability that at least two of them have the same birthday is

P = 1�

�
1�

1

365

��
1�

2

365

�
: : :

�
1�

t� 1

365

�

It can be easily computed that for t � 23, this probability is bigger than 0:5.

The birthday paradox can be employed to attack hash functions. Suppose that the number of bits

in the digest is n. Any message m can be represented (written) in many di�erent ways. A single

representation of the message is called a variant. For instance, the message

On November 5, 1998, I sold my PC to Mr John Brown for 1,000 dollars.

can be equivalently written as

On November 5, 1998, I have sold my PC to John Brown for $1,000.

Strong and Weak Hash Functions 172

Due to the natural exibility of a language, it is always possible to generate many variants of the

same message. The variants can be created by adding blanks and empty lines, using equivalent words,

abbreviations, and full wording, or removing some words whose existence is not essential. In the

attack, an adversary generates r1 variants of an original message and r2 variants of a bogus message

(Figure 6.1). The probability of �nding a pair of variants (one of the genuine and one of the bogus

m 1,1

2,r1

1,r1

Original
Message

Bogus
Message

Variants

Digest Set

h

h

h

h

h

h

m

m

m

m

m

1
1,2

2,1

2,2
2

m

m

Figure 6.1: Birthday attack

message) which hash to the same digest is

P � 1� e�
r1r2

2n (6.1)

where r2 � 1 (see [382]). When r1 = r2 = 2
n

2 , the above probability is about 0:63. Therefore

any hashing algorithm which produces digests of the length around 64 bits is insecure as the time

complexity function for the corresponding birthday attack is � 232. It is usually recommended that

the hash value should be longer than 128 bits to achieve a su�cient security against the attack.

This method of attack does not take advantage of structural properties of the hash scheme or its

algebraic weaknesses. It can be launched against any hash scheme. In addition, it is assumed that the

hash scheme assigns to a message a value which is chosen with a uniform probability among all the

possible hash values. Note that if there is any weakness in the structure or certain algebraic properties

of the hash function so digests do not have a uniform probability distribution, then generally it would

be possible to �nd colliding messages with a better probability and fewer message-digest pairs.

The birthday attack may also be modi�ed to �t a particular structure of the hash scheme. Consider

a variant called the meet-in-the-middle attack. Instead of comparing the digests, the intermediate

results in the chain are compared. The attack can be launched against schemes which employ some

sort of block chaining in their structure. In contrast to birthday attack, the meet-in-the-middle attack

Strong and Weak Hash Functions 173

enables an attacker to construct a bogus message with a digest selected by the attacker. In this attack

the message is divided into two parts. The attacker generates r1 variants of the �rst part of a bogus

message. He starts from the initial value and goes forward to the intermediate stage. He also generates

r2 variants on the second part of the bogus message. He starts from the desired target digest and

goes backwards to the intermediate stage. The probability of a match in the intermediate stage is the

same as the probability of success in the birthday attack.

Consider a hash scheme which uses an encryption function E : K�M! �n where K =M = �n.

For a message m = (m1;m2), the digest is computed in two steps: h1 = E(m1; IV) = Em1
(IV) and

d = h(m) = E(m2; h1) = Em2
(h1). Where IV is a public initial vector. This scheme can be subject to

the meet-in-the-middle attack. Let the opponent want to �nd a bogus message m0 = (m0
1;m

0
2) which

collides with m with the digest d. The opponent chooses r1 variants of m
0
1 and r2 variants of m

0
2 (see

Figure 6.2). Let the two sets of variants be: fm0
1;i j i = 1; : : : ; r1g and fm

0
2;j j j = 1; : : : ; r2g. Next,

2,r2

1,r
1

Variants

1
1,2

First Part of
Bogus Message

Intermediate
Results

IV

E

E

E

1,1m’

m’

2,1

2,2
2

Second Part of
Bogus Message

D

D

D

d Target Digest

m’

m’

m’

m’

1,r1

2,r2

m’

m’

Figure 6.2: The meet-in-the-middle attack

the opponent computes r1 variants of h01;i = E(m0
1;i; IV) and r2 variants of h02;j = E�1(m0

2;j; d) =

D(m0
2;j ; d). Note that D(m

0
2;j ; d) is the decryption function. The probability of a match in the sets

fh01;i j i = 1; : : : ; r1g and fh
0
2;i j i = 1; : : : ; r2g is the same as the probability of success in the birthday

attack if the encryption algorithm E behaves as a truly random function.

The meet-in-the-middle attack was thought to be thwarted when the hashing uses the same chain

several times (so called iterated hashing). Coppersmith [109] showed how the attack can be generalised

so it is applicable for iterated hashing.

Strong and Weak Hash Functions 174

6.3 Serial and Parallel Hashing

The design of hash functions with arbitrarily long inputs poses some di�culties related to their

implementation and evaluation. Arbitrarily long messages can be compressed using a �xed input-size

hash function by applying two general methods:

� serial and

� parallel.

The serial method [119] (also called by Merkle meta method [338]) applies the �xed input-size hash

function h : �2n ! �n - Figure 6.3. To hash an arbitrary long message m 2 ��, it is �rst split into

1m

1h

hh h

m m

h

m2 3

2 d

hl-2

l

Figure 6.3: Serial hashing

blocks of the size n so m = (m1;m2; : : : ;m`) and each mi 2 �n for i = 1; : : : ; `. If the last block is

shorter than n bits, it is padded with zeros to the full length. Next, the function h is used repeatedly

h1 = h(m1;m2); h2 = h(m3; h1); : : : ; hi = h(mi+1; hi�1); : : : ; d = h(m`; h`�2): (6.2)

The result d is the digest of the whole message m. Damg�ard proved [119] that the hashing induced by

the serial method is collision resistant if the underlying �xed input-size hash function h : �2n ! �n

is collision resistant.

1m

h

h

h h

h

d

h h

m m m m

m m m
2

3

4

5

6

7

8

Figure 6.4: Parallel hashing

The parallel method is illustrated in Figure 6.4. The hashing in this method starts from splitting

the message m 2 �� into ` blocks of size n, i.e. m = (m1;m2; : : : ;m`). The last block is padded

to the full length if necessary. Assume that the number of blocks is 2k�1 < ` � 2k. The number

of 2k � ` blocks all with zero bits are appended to the message m. The resulting message ~m =

Strong and Weak Hash Functions 175

(m1; : : : ;m`; : : : ;m2k) is processed as follows:

h1i = h(m2i�1;m2i) for i = 1; : : : ; 2k�1

h
j
i = h(h

j�1
2i�1; h

j�1
2i) for i = 1; : : : ; 2k�i and j = 2; : : : ; k � 1 (6.3)

d(m) = h(hk�11 ; hk�12):

The �nal result of hashing is d(m). Again Damg�ard proved [119] that the parallel hashing is collision

resistant if the underlying �xed input-size hash function h : �2n ! �n is collision resistant.

Needless to say that parallel hashing is faster than the serial one as the layers of intermediate

digests can be generated independently. Also the extra blocks padded with zeros can be preprocessed

so their digests enter the hashing process when needed.

6.4 Theoretic Constructions

It is interesting to investigate the relation of hash functions to other cryptographic primitives such

as one-way functions (including one-way permutations), signature schemes, and pseudorandom bit

generators. The main result in this area was obtained by Rompel [427] who proved that universal

one-way hash functions can be constructed from any one-way function.

The notion of one-way function is central in the theoretical computer science. It is the basic

cryptographic primitive which can be used to construct other cryptographic primitives. Intuitively, a

one-way function f is a family of instance functions fn indexed by the size of the function domain.

The computation of y = fn(x) is easy while �nding the preimage x knowing y = fn(x) is di�cult.

Formally, the instance functions are

fn : �n ! �`(n)

where `(n) is a polynomial in n. The family of functions is a collection f = ffn j n 2 Ng. The family

f is said to be polynomially computable if the evaluation of fn(x); x 2 �n can be done in time O(nt)

for some t 2 N .

De�nition 6.1 Let the family f = ffn j n 2 Ng be polynomially computable. We say that f is

one-way function if for each probabilistic polynomial time algorithm A, for each polynomial Q and for

all su�ciently large n, the probability

P [fn(A(fn(x))) = fn(x)] <
1

Q(n)
(6.4)

where x is chosen randomly and uniformly from the set �n.

Hash functions can now be formally de�ned. For any index n, there is a collection of hash functions

Hn : �`(n) ! �n where `(n) is a polynomial in n. The family H of hash functions is H = fHn j n 2

Ng. The family H is accessible if there is a probabilistic polynomial time algorithm that on input

n 2 N returns a description of h 2 Hn chosen randomly and uniformly from all instance functions of

Hn. The familyH is polynomially computable if there is a polynomial time algorithmwhich evaluates

any function h 2 H.

Let F be a collision �nder, i.e. a probabilistic polynomial time algorithm F such that on an input

x 2 �`(n) and for a given hash function h 2 Hn returns either \?" (cannot �nd) or a string y 2 �`(n)

which collides with x (i.e. x 6= y and h(x) = h(y)). The universal one-way hash function (UOWHF)

is de�ned as follows.

Strong and Weak Hash Functions 176

De�nition 6.2 Let H be a polynomially computable and accessible hash function compressing `(n)-bit

input into n-bit output strings and F be a collision �nder. H is a universal one-way hash function if

for each F , for each polynomial Q, and for all su�ciently large n

P (F (x; h) 6= ?) <
1

Q(n)
(6.5)

where x 2 �`(n) and h 2R Hn. The probability is computed over all h 2R Hn, x 2 �`(n) and the

random choice of all �nite strings that F could have chosen.

Note that UOWHF is 2nd preimage resistant. The main di�erence between UOWHF and OWHF is

the way hash function is chosen. In the case of OWHF, the hash function is �xed. For UOWHF, the

hash function is randomly chosen.

Let R be a probabilistic polynomial time algorithm that on an input h 2 Hn returns either \?"

(cannot �nd) or a pair of colliding strings x; y 2 �`(n). The algorithm R is called the collision-pair

�nder. The collision resistant hash function is de�ned below.

De�nition 6.3 H is a collision resistant hash function if for each R, for each polynomial Q, and for

su�ciently large n

P (R(h) 6=?) <
1

Q(n)
(6.6)

where h 2R Hn. The probability is computed over all h 2R Hn, and the random choice of all �nite

strings that R could have chosen.

Naor and Yung [361] introduced the concept of a UOWHF and suggested a construction based

on a one-way permutation. In their construction, they took advantage of the universal hash function

family with collision accessibility property [514] { see the de�nitions given below.

De�nition 6.4 Let G = fg j A ! Bg be a family of functions. G is a strongly universalr hash

function family if given any r distinct elements a1; : : : ; ar 2 A, and any r elements b1; : : : ; br 2 B,

there are
(#G)
(#B)2

functions which take a1 to b1, a2 to b2 and so on. Where #G and #B stand for the

cardinality of sets G and B, respectively.

De�nition 6.5 A strongly universalr hash function family G has the collision accessibility property

if it is possible to generate in polynomial time a function g 2 G that satis�es the following equations:

g(a1) = b1

g(a2) = b2

...

g(ar) = br

An example of strongly universalr family of hash functions with collision accessibility property, is a

collection of polynomials of degree r � 1 over GF (q).

Naor and Yung showed that the existence of a secure signature scheme reduces to the existence

of a UOWHF. They also used the serial method to construct UOWHF which hashes arbitrary long

messages using a UOWHF with a �xed size input. Their family of UOWHFs is constructed by the

composition of a one-way permutation and a family of strongly universal2 hash functions with the

collision accessibility property. In Naor and Yung's construction, the one-way permutation provides

the one-wayness of the UOWHF. While the strongly universal2 family of hash functions compresses the

input. When a member is chosen randomly and uniformly from the family, the output is distributed

randomly and uniformly over the output space. The construction is given in the following theorem.

Strong and Weak Hash Functions 177

Theorem 6.1 Let f : �n ! �n be a one-way permutation and let Gn be a strongly universal2 family

Gn : �n ! �n�1, then Hn = fh = g � f j g 2 Gng is a UOWHF compressing n-bit input strings into

(n� 1)-bit output strings.

The above construction is not very e�cient as it compresses a single bit only. This can be improved

when a strongly universalt (t > 2) family of hash functions is used.

Zheng, Matsumoto and Imai [537] de�ned a hashing scheme which was based on the composition

of a pairwise independent uniformizer and a strongly universal hash function with a quasi-injection

one-way function. De Santis and Yung [444] built up a hash function assuming the existence of a

one-way function with an almost-known preimage size.

Rompel managed to construct a UOWHF from any one-way function [427]. His construction is

rather complicated and elaborate, and a detailed explanation is beyond the scope of this book. How-

ever, the idea is to transform any one-way function into a UOWHF through a sequence of complicated

procedures. First, the one-way function is transformed into another one-way function such that for

most elements of the domain it is easy to �nd a collision, except for a fraction of them. Next another

one-way function is constructed such that for most of the elements it is hard to �nd a collision. Sub-

sequently, a length increasing one-way function is constructed such that it is almost everywhere hard

to �nd any collision. Finally this is turned into a UOWHF, which compresses the input such that it

is di�cult to �nd a collision.

In some applications, it may be useful to have a hash scheme with an easy to �nd collection of

colliding messages. The calculation of other collisions should be computationally intractable. The

construction given in [535] called sibling intractable function families or SIFF provides hashing with

a controlled number of easy-to-�nd collisions.

6.5 Hashing Based on Cryptosystems

To minimise the e�ort, many designers of hash functions tend to base their schemes on existing

encryption algorithms. Hashing is done using the serial method by applying encryption algorithm on

blocks of the message. The message block size has to be equal to the input size of the encryption

algorithm. If the length of the message is not a multiple of the block size, then the last block is

usually padded with some redundant bits. To provide a randomising element, an initial vector (IV)

is normally used. The vector IV is public. The encryption algorithm is E : K �M ! C. The

security of such schemes relies on the collision resistance of the underlying encryption algorithm and

the immunity of the scheme against the birthday attack and its variants.

Rabin [419] argued that any private-key cryptosystem E : �2n ! �n can be used for hashing.

The Rabin scheme is depicted in Figure 6.5. First the message is divided into blocks whose size is n.

m1

IV
E E E

m m2

d

l

Figure 6.5: The Rabin hashing scheme

Suppose that we wish to hash a message m = (m1;m2; : : : ;m`). The hashing is performed according

to

h0 = IV

hi = E(mi; hi�1) for i = 1; 2; : : : ; `

Strong and Weak Hash Functions 178

d = h`

where hi are intermediate results of hashing, and d is the �nal digest ofm. Although the Rabin scheme

is simple and elegant, it is susceptible to the birthday and meet-in-the-middle attacks when the size

of the hash value is 64 bits. This scheme can be used only if the size of inputs in the encryption

algorithm is larger or equal to 128 bits (see Equation 6.1).

The meet-in-the-middle attack in the Rabin scheme works because it is possible to reverse hashing

by using the decryption function. Winternitz [528] suggested to design a one-way function from a

block cryptosystem E. The one-way function

E�(kkm) = E(k;m) �m: (6.7)

Davies used the one-way function E� to design the following hash scheme (Figure 6.6)

h0 = IV

hi = E(mi; hi�1)� hi�1 for i = 1; 2; : : : ; `

d = h`

The Davies scheme is immune against the meet-in-the-middle attack but may be subject to attacks

m1

IV
E E E

m m2

d

l

Figure 6.6: The Davies hashing scheme

based on key collision search [416] and weak keys [410].

Based on the one-way function E�, Merkle proposed several schemes [337, 338, 339]. These schemes

use DES and produce digests of the size � 128 bits. The construction of these schemes follows the

serial method. The message to be hashed is �rst divided into blocks of 106 bits. Each 106-bit block

mi of data is concatenated with the 128-bit block hi�1. The concatenation xi = mi k hi�1 contains

234 bits. Each block xi is further divided into halves, xi1 and xi2. The description of the method is

as follows

h0 = IV

xi = mi k hi�1

hi = E�(00 k �rst 59 bits offE�(100 k xi1)g k

�rst 59 bits offE�(101 k xi2)g) k

E�(01 k �rst 59 bits offE�(110 k xi1)g k

�rst 59 bits offE�(111 k xi2)g)

d = h`

In this scheme, E� is a one-way function de�ned by Equation (6.7) and the strings 00, 01, 100, 101,

110 and 111 have been included to prevent against attacks based on weak keys.

As most encryption algorithms have weak keys and possible colliding keys, the key input of en-

cryption systems E should be used for partial hash values rather than for messages. If we modify the

Strong and Weak Hash Functions 179

Davies scheme accordingly we get the following scheme

h0 = IV

hi = E(hi�1;mi)�mi for i = 1; 2; : : : ; `

d = h`

Another variant used by Miyaguchi, Ohta, and Iwata [344] in their N-hash algorithm applies di�erent

chaining method hi = E(hi�1;mi) � mi � hi�1. Other two possible chaining methods are: hi =

E(hi�1;mi� hi�1)�mi � hi�1 and hi = E(hi�1;mi� hi�1)�mi. For discussion of other less secure

chaining methods, the reader is referred to [410].

6.6 MD Family

Hashing algorithms can also be designed from scratch. Typically, it is required the design to be

(1) secure, i.e. collision resistant { this immediately forces the digest to be at least 128 bits long

(see Equation 6.1),

(2) fast and easy to implement both in software and hardware.

Feistel permutations can be used as the basic component in the design. Clearly, it needs some modi�-

cation. Let the n-bit input and output be divided into ` blocks of r bits such that ` �r = n. Our Feistel

permutation modi�ed for hashing is Fm : �r � : : :� �r| {z }
`

! �r � : : :� �r| {z }
`

where m is a message (or

its part) to be hashed. Let the input A = (A1; : : : ; A`) 2 �n and the output B = (B1; : : : ; B`) 2 �n,

then Fm(A) is described as (Figure 6.7)

B1 = A1 + fm(A2; : : : ; A`) mod 2r;

B2 = A2; : : : ; B` = A`:

The function fm(A2; : : : ; A`) is indexed by the message m. The hash scheme would employ many

A1

fm

mA A

1

2

B B 2 B

l

l

Figure 6.7: A modi�ed Feistel permutation

rounds each based on the modi�ed Feistel permutation. To prevent the birthday attack the size

n � 128. If we use 32-bit machines for a software implementation, it is reasonable to assume that

r = 32.

Rivest used the above approach to design his MD4 [424] and MD5 [425] hashing algorithms (MD

stands for Message Digest). The other members of MD family are the Secure Hash Algorithm (SHA)

Strong and Weak Hash Functions 180

also called Secure Hash Standard (SHS) [363] RIPEMD [50] and HAVAL [538]. We will describe MD5,

SHA-1, RIPEMD-160 and HAVAL.

6.6.1 MD5

MD5 is a strengthened version of MD4. It compresses 512-bit messages into 128-bit digests using the

128-bit chaining input. A message of arbitrary length is �rst appended bit 1 and enough 0's so it is

congruent 448 modulo 512. A 64-bit string ` = `12
32 + `0 which is the binary representation of the

length of the original message, is appended to the padded message (Figure 6.8). Now the message

length is a multiple of 512. Hashing is done as in the serial method { block by block and each block

is 512 bits long.

1 0 ... 0 0 0 ... 0

Message 448 bits

64 bits
512 bits

l = (l , l)l
0 1

Figure 6.8: Padding of a message

The hashing of a single message block proceeds as follows. First the message block m is divided

into sixteen 32-bit long words so m = (m0; : : : ;m15). The chaining input contains four 32-bit registers

(A;B;C;D). They are initialised as

A = 0x67452301;

B = 0xefcdab89;

C = 0x98badcfe;

D = 0x10325476;

where the strings are written in hexadecimal. Next the four rounds of MD5 are executed (see Figure

6.9). The four outputs of the last round is added modulo 232 to initial values of the registers A;B;C;D

giving the �nal digest for a 512-bit message m.

MD5 applies four Boolean functions:

f(x; y; z) = xy _ �xz;

g(x; y; z) = xz _ y�z;

h(x; y; z) = x� y � z;

k(x; y; z) = y � (x _ �z);

where _ is OR, � is XOR and xy stands for x AND y. To make the algorithm fast, bitwise operations

are used to evaluate the Boolean functions in parallel. The four bitwise functions used in the four

rounds are:

F (X;Y; Z) = (X ^ Y) _ ((:X) ^ Z);

G(X;Y; Z) = (X ^ Z) _ (Y ^ (:Z));

H(X;Y; Z) = X � Y � Z;

K(X;Y; Z) = Y � (X _ (:Z));

where ^ is bitwise AND, _ is bitwise OR, � is bitwise XOR, : is bitwise complement, and X;Y; Z are

32-bit words. The functions F;H;G, andK are used to de�ne four Feistel permutationsFF;GG;HH;KK :

Strong and Weak Hash Functions 181

A B C D

DCBA

Round

 1
Round

Round

Round

 2

 3

 4

Message
m

Figure 6.9: MD5 hashing algorithm

�128 ! �128. The permutations are identical except the fact that they use di�erent functions. The

permutation based on function F is depicted in Figure 6.10. The Feistel permutations used in MD5

F

A B DC

<<

t

mj

Figure 6.10: A single iteration in MD5

are:

FF (A;B;C;D j mj ; s; t) = (B + ((A + F (B;C;D) + mj + t)� s); B;C;D) ;

GG(A;B;C;D j mj ; s; t) = (B + ((A + G(B;C;D) + mj + t)� s); B;C;D) ;

HH(A;B;C; d j mj ; s; t) = (B + ((A + H(B;C;D) + mj + t)� s); B;C;D) ;

KK(A;B;C;D j mj ; s; t) = (B + ((A + K(B;C;D) + mj + t)� s); B;C;D) ;

where (A;B;C;D) 2 �128 is an input while (mj ; s; t) are current parameters which determine the

form of the permutation and + stands for addition modulo 232. The �rst parameter is the current

message block mj ; j = 0; : : : ; 15. The second parameter s speci�es the number of positions in the

Strong and Weak Hash Functions 182

rotation. The third parameter t is a constant. (A� s) means that the binary string A is rotated to

the left by s positions. The hashing proceeds through the four rounds.

Round 1:

(1) FF (A;B;C;D j m0; 7; 0xd76aa478);

(2) FF (D;A;B;C j m1; 12; 0xe8c7b756);

(3) FF (C;D;A;B j m2; 17; 0x242070db);

(4) FF (B;C;D;A j m3; 22; 0xc1bdceee);

(5) FF (A;B;C;D j m4; 7; 0xf57c0faf);

(6) FF (D;A;B;C j m5; 12; 0x4787c62a);

(7) FF (C;D;A;B j m6; 17; 0xa8304613);

(8) FF (B;C;D;A j m7; 22; 0xfd469501);

(9) FF (A;B;C;D j m8; 7; 0x698098d8);

(10) FF (D;A;B;C j m9; 12; 0x8b44f7af);

(11) FF (C;D;A;B j m10; 17; 0xffff5bb1);

(12) FF (B;C;D;A j m11; 22; 0x895cd7be);

(13) FF (A;B;C;D j m12; 7; 0x6b901122);

(14) FF (D;A;B;C j m13; 12; 0xfd987193);

(15) FF (C;D;A;B j m14; 17; 0xa679438e);

(16) FF (B;C;D;A j m15; 22; 0x49b40821):

(6.8)

Round 2:

(17) GG(A;B;C;D j m1; 5; 0xf61e2562);

(18) GG(D;A;B;C j m6; 9; 0xc040b340);

(19) GG(C;D;A;B j m11; 14; 0x265e5a51);

(20) GG(B;C;D;A j m0; 20; 0xe9b6c7aa);

(21) GG(A;B;C;D j m5; 5; 0xd62f105d);

(22) GG(D;A;B;C j m10; 9; 0x02441453);

(23) GG(C;D;A;B j m15; 14; 0xd8a1e681);

(24) GG(B;C;D;A j m4; 20; 0xe7d3fbc8);

(25) GG(A;B;C;D j m9; 5; 0x21e1cde6);

(26) GG(D;A;B;C j m14; 9; 0xc33707d6);

(27) GG(C;D;A;B j m3; 14; 0xf4d50d87);

(28) GG(B;C;D;A j m8; 20; 0x455a14ed);

(29) GG(A;B;C;D j m13; 5; 0xa9e3e905);

(30) GG(D;A;B;C j m2; 9; 0xfcefa3f8);

(31) GG(C;D;A;B j m7; 14; 0x676f02d9);

(32) GG(B;C;D;A j m12; 20; 0x8d2a4c8a):

(6.9)

Round 3:

(33) HH(A;B;C;D j m5; 4; 0xfffa3942);

(34) HH(D;A;B;C j m8; 11; 0x8771f681);

(35) HH(C;D;A;B j m11; 16; 0x6d9d6122);

(36) HH(B;C;D;A j m14; 23; 0xfde5380c);

(37) HH(A;B;C;D j m1; 4; 0xa4beea44);

(38) HH(D;A;B;C j m4; 11; 0x4bdecfa9);

(39) HH(C;D;A;B j m7; 16; 0xf6bb4b60);

(40) HH(B;C;D;A j m10; 23; 0xbebfbc70);

(41) HH(A;B;C;D j m13; 4; 0x289b7ec6);

(42) HH(D;A;B;C j m0; 11; 0xeaa127fa);

(43) HH(C;D;A;B j m3; 16; 0xd4ef3085);

(44) HH(B;C;D;A j m6; 23; 0x04881d05);

(45) HH(A;B;C;D j m9; 4; 0xd9d4d039);

(46) HH(D;A;B;C j m12; 11; 0xe6db99e5);

(47) HH(C;D;A;B j m15; 16; 0x1fa27cf8);

(48) HH(B;C;D;A j m2; 23; 0xc4ac5665):

(6.10)

Round 4:

(49) KK(A;B;C;D j m0; 6; 0xf4292244);

(50) KK(D;A;B;C j m7; 10; 0x432aff97);

(51) KK(C;D;A;B j m14; 15; 0xab9423a7);

(52) KK(B;C;D;A j m5; 21; 0xfc93a039);

(53) KK(A;B;C;D j m12; 6; 0x655b59c3);

(54) KK(D;A;B;C j m3; 10; 0x8f0ccc92);

(55) KK(C;D;A;B j m10; 15; 0xffeff47d);

(56) KK(B;C;D;A j m1; 21; 0x85845dd1);

(57) KK(A;B;C;D j m8; 6; 0x6fa87e4f);

(58) KK(D;A;B;C j m15; 10; 0xfe2ce6e0);

(59) KK(C;D;A;B j m6; 15; 0xa3014314);

(60) KK(B;C;D;A j m13; 21; 0x4e0811a1);

(61) KK(A;B;C;D j m4; 6; 0xf7537e82);

(62) KK(D;A;B;C j m11; 10; 0xbd3af235);

(63) KK(C;D;A;B j m2; 15; 0x2ad7d2bb);

(64) KK(B;C;D;A j m9; 21; 0xeb86d391):

(6.11)

MD5 was meant to be fast on machines with a little-endian architecture. By the way, for a 32-bit

word (a0; : : : ; a31), a machine with little-endian architecture converts the string into integer a312
31 +

: : :+ a1 � 2 + a0. In big-endian architecture, the same integer is a02
31 + : : :+ a30 � 2 + a31.

As MD4 is a weaker version of MD5, it was apparent that the main e�ort will be concentrated

around analysis of MD4. den Boer and Bosselaers [133] successfully analysed two last rounds of MD4.

Merkle successfully attacked the �rst two rounds of MD4. In 1996 Dobbertin [156] broke the whole

MD4. He also extended his attack on MD5 [157] and showed that MD5 is not collision resistant.

Strong and Weak Hash Functions 183

6.6.2 SHA-1

SHA-1 is closely related to MD5 and shares with MD5 many common features. It is a standard

recommended by the US National Institute for Standard and Technology (NIST). SHA-1 hashes

arbitrarily long messages using the serial method. The message block of 512-bits is compressed into

160-bit digest using a 160-bit chaining input.

SHA-1 main features includes the following.

� Padding is identical to that in MD5 except the lenght of the original message ` = (`12
32 + `0)

is appended as 64-bit sequence in the order (`1; `0) { compare with the Figure 6.8.

� The chaining input is initialised as in MD5 with the additional input E = 0xc3d2e1f0.

� The collection of round functions includes

f(x; y; z) = xy _ �xz;

g(x; y; z) = xy _ xz _ yz;

h(x; y; z) = x� y � z:

Denote F;G;H as the word equivalents of functions f; g; h, respectively. The function F is

used in the �rst round (iterations from 0 to 19). The function H is used in the round 2 and 4

(iterations from 20 to 39 and from 60 to 79). The function G is used in the round 3 (iterations

40 to 59).

� The message bu�er (X0; : : : ; X79) of 80 words (80� 32 bits) is initialised by storing the 512-bit

message into �rst 16 entries and the remainder words are computed according to

Xj = Xj�3 �Xj�8 �Xj�14 �Xj�16;

for j = 16; : : : ; 79. Note that the word Xj is used in the i-th iteration; j = 0; : : : ; 79.

� The j-th iteration is based on a Feistel permutation controlled by the message word Xj and the

constant t where

t =

8>>><
>>>:

0x5a827999 Round 1,

0x6ed9eba1 Round 2,

0x8f1bbcdc Round 3,

0xca62c1d6 Round 4.

The Feistel permutation F� : �160 ! �160 takes the 5-word input and outputs the 5-word

output or

(A;B;C;D;E) := F�(A;B;C;D;E);

where � indicates the currently employed round function (either F;G or H). The form of the

iteration is as follows (Figure 6.11)

F�(A;B;C;D;E) = (�(B;C;D) + Xj + t + E + (A� 5); A; (B � 30); C;D) ;

where (A� s) stands for rotation s bits to the left and + is addition modulo 232.

Hashing of a single message block runs through 4 rounds each containing 20 iterations as shown

in Figure 6.12. More precisely, the round 1 (iterations j = 0; : : : ; 19) applies the function F so

(A;B;C;D;E) := FF (A;B;C;D;E):

Strong and Weak Hash Functions 184

A

t

j

α

X
B C D E

<< 5

<< 30

Figure 6.11: An iteration in SHA-1

The rounds 2 and 4 (iterations j = 20; : : : ; 39; 60; : : : ; 79) use the function H. Thus

(A;B;C;D;E) := FH (A;B;C;D;E):

The round 3 (iterations j = 40; : : : ; 59) employ the function G or

A B C D E

A B C D E

F
1st Round

2nd Round
H

3rd Round
G

4th Round
H

(X , ... ,X)

(X , ... ,X)

(X , ... ,X)

(X , ... ,X)
0 19

20 39

40 59

60 79

Figure 6.12: General diagram of SHA-1

(A;B;C;D;E) := FG(A;B;C;D;E):

Clearly, SHA-1 is believed to be more secure than MD5. Note that the digest space is larger than this

o�ered by MD5 (note additional word E in the chaining variable).

6.6.3 RIPEMD-160

RIPEMD is an outcome of the European RACE Integrity Primitives evaluation (RIPE) project.

RIPEMD-160 is a strenthened version of the RIPEMD algorithm [158]. It applies 5 rounds (instead

Strong and Weak Hash Functions 185

of 3 in RIPEMD) and the size of digest (and the chaining variable) is 160 bits (instead of 128 bits).

Unlike other algorithms in the MD family, RIPE and RIPE-160 use two parallel lines of executions.

Parameters and structure of RIPE-160 are de�ned as follows.

� Padding is identical to that in MD5.

� The chaining input is initialised as in MD5.

� The collection of round functions is:

f(x; y; z) = x� y � z;

g(x; y; z) = xy _ �yz;

h(x; y; z) = (x _ �y)� z;

k(x; y; z) = xz _ y�z;

l(x; y; z) = u� (y _ �z):

Denote F;G;H;K;L their word versions of functions f; g; h; k; l, respectively.

� There are two parallel lines of execution. Both lines use their own message bu�ers X[0; : : : ; 79]

in the left line and Y [0; : : : ; 79] in the right line. The �rst 16 words of the bu�er X is initialised

to the 16 words of the message (m0; : : : ;m15). So

X[0; : : : ; 15] = (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15);

X[16; : : : ; 31] = (7; 4; 13; 1; 10; 6; 15; 3; 12; 0; 9; 5; 2; 14; 11; 8);

X[32; : : : ; 47] = (3; 10; 14; 4; 9; 15; 8; 1; 2; 7; 0; 6; 13; 11; 5; 12);

X[48; : : : ; 63] = (1; 9; 11; 10; 0; 8; 12; 4; 13; 3; 7; 15; 14; 5; 6; 2);

X[64; : : : ; 79] = (4; 0; 5; 9; 7; 12; 2; 10; 14; 1; 3; 8; 11; 6; 15; 13):

The message bu�er Y is initialised as follows.

Y [0; : : : ; 15] = (5; 14; 7; 0; 9; 2; 11; 4; 13; 6; 15; 8; 1; 10; 3; 12);

Y [16; : : : ; 31] = (6; 11; 3; 7; 0; 13; 5; 10; 14; 15; 8; 12; 4; 9; 1; 2);

Y [32; : : : ; 47] = (15; 5; 1; 3; 7; 14; 6; 9; 11; 8; 12; 2; 10; 0; 4; 13);

Y [48; : : : ; 63] = (8; 6; 4; 1; 3; 11; 15; 0; 5; 12; 2; 13; 9; 7; 10; 14);

Y [64; : : : ; 79] = (12; 15; 10; 4; 1; 5; 8; 7; 6; 2; 13; 14; 0; 3; 9; 11):

� Rounds in the left and right lines apply the following constants:

Round left line t` right line tr

1 0 0x50a28be6

2 0x5a827999 0x5c4dd124

3 0x6ed9eba1 0x6d703ef3

4 0x8f1bbcdc 0x7a6d76e9

5 0xa953fd4e 0

� The i-th iteration (Feistel permutatation) is controlled by a message word M (from either X if

the iteration is used in the left line or Y { in the right line) (see Figure 6.13). The value

v = ((�(B;C;D) + M + A + t)� s) + E

is generated and the input (A;B;C;D;E) is transformed according to

(A;B;C;D;E) := F(A;B;C;D;E; �; t; s) = (E; v;B;C � 10; D);

where the constant t is either t` or tr.

Strong and Weak Hash Functions 186

tα

<< S

<< 10

v

A B C D E M

Figure 6.13: An iteration in RIPEMD-160

The hashing process is depicted in Figure 6.14. The input vector (initialised to the �xed values for

the �rst message block or taking on digests obtained from the previous message block) is used in both

lines of execution. Each line includes 5 rounds each round has 16 iterations. The rounds in the left

line of execution apply functions F;G;H;K and L while the rounds in the right line of execution use

functions in the reverse order. Constants t`; tr and the rotation parameters s`; sr are used accordingly.

The parameters s` and sr are chosen as follows.

Left Iterations Values of s`

0 : : : 15 11; 14; 15; 12; 5; 8; 7; 9; 11; 13; 14; 15; 6; 7; 9; 8

16 : : : 31 7; 6; 8; 13; 11; 9; 7; 15; 7; 12; 15; 9; 11; 7; 13; 12

32 : : : 47 11; 13; 6; 7; 14; 9; 13; 15; 14; 8; 13; 6; 5; 12; 7; 5

48 : : : 63 11; 12; 14; 15; 14; 15; 9; 8; 9; 14; 5; 6; 8; 6; 5; 12

64 : : : 79 9; 15; 5; 11; 6; 8; 13; 12; 5; 12; 13; 14; 11; 8; 5; 6

Right Iterations Values of sr

0 : : : 15 8; 9; 9; 11; 13; 15; 15; 5; 7; 7; 8; 11; 14; 14; 12; 6

16 : : : 31 9; 13; 15; 7; 12; 8; 9; 11; 7; 7; 12; 7; 6; 15; 13; 11

32 : : : 47 9; 7; 15; 11; 8; 6; 6; 14; 12; 13; 5; 14; 13; 13; 7; 5

48 : : : 63 15; 5; 8; 11; 14; 14; 6; 14; 6; 9; 12; 9; 12; 5; 15; 8

64 : : : 79 8; 5; 12; 9; 12; 5; 14; 6; 8; 13; 6; 5; 15; 13; 11; 11

6.6.4 HAVAL

HAVAL or a one-way hashing algorithm with variable length of output was design by a team from

University of Wollongong [538]. It compresses an arbitrarily long message into a digest of the length

either 128, 160, 192, 224, or 256 bits. HAVAL allows to trade speed versus security by the optional

number of passes: 3 (fast and least secure), 4 (moderate speed and security), and 5 (slowest and

highly secure). HAVAL uses a 3-bit VERSION �eld which indicates the version number of HAVAL {

the current number is 1. A 3-bit PASS �eld speci�es the number of passes chosen by the user. A

10-bit FPTLEN �eld de�nes the requested length of the digest. A 64-bit MSGLEN �eld is used to store

the length of the processed message.

Hashing starts from padding. A message is appended bit 1 followed by enough 0's so it becomes

congruent 944 modulo 1024. An 80-bit string (VERSION,PASS,FPTLEN,MSGLEN) is appended to the

padded message. The resulting message is a multiple of 1024 bits. The hashing proceeds in a block-

by-block fashion { Figure 6.15. The folding tailors the length of the digest to the requested one.

A 1024-bit messagem is divided into thirty two 32-bit message blocks (words) som = (m0; : : : ;m31).

Strong and Weak Hash Functions 187

Y[0,...,15]
r

r

r

r

r

Y[16,...,31]

X[0,...,15]

l

ls
t

s
t

t
s l

l

X[16,...,31]

X[64,...,79]

X[48,...,63]

X[32,...,47]

s
t l

l

t
s l

l

s l

t l

s
t

Y[32,...,47]

Y[48,...,63]

Y[64,...,79]

t
s

r

r

t
s

r

r

s
t r

r

A B C D E

1st Round
F

2nd Round

3rd Round

4th Round

5th Round

1st Round

2nd Round

3rd Round

5th Round

4th Round

G

H

K

L

L

K

H

G

F

Figure 6.14: General diagram of RIPEMD-160

The general steps executed in HAVAL are depicted in Figure 6.16. The addition modulo 232 performed

on corresponding words, completes the process. Each pass H1;H2;H3;H4 and H5 employs a Boolean

function in seven variables. They are:

F1(X0; : : : ; X6) = X0 � (X0 ^X1)� (X1 ^X4)� (X2 ^X5)� (X3 ^X6);

F2(X0; : : : ; X6) = X0 � (X0 ^X2)� (X1 ^X2)� (X1 ^X4)� (X2 ^X6) �

(X3 ^X5)� (X4 ^X5) � (X1 ^X2 ^X3) � (X2 ^X4 ^X5);

F3(X0; : : : ; X6) = X0 � (X0 ^X3)� (X1 ^X4)� (X2 ^X5)� (X3 ^X6) �

(X1 ^X2 ^X3);

F4(X0; : : : ; X6) = X0 � (X0 ^X4)� (X1 ^X4)� (X2 ^X6)� (X3 ^X4) �

(X3 ^X5)� (X3 ^X6) � (X4 ^X5) � (X4 ^X6)�

(X1 ^X2 ^X3) � (X2 ^X4 ^X5) � (X3 ^X4 ^X6);

F5(X0; : : : ; X6) = X0 � (X0 ^X5)� (X1 ^X4)� (X2 ^X5)� (X3 ^X6) �

(X0 ^X1 ^X2 ^X3):

The Boolean functions chosen are balanced, highly nonlinear, linearly nonequivalent and all satisfy

SAC. For each pass, the message words (m0; : : : ;m31) enter the hashing iterations in di�erent or-

der given in Table 6.1. HAVAL uses � permutations to modify functions F1; F2; F3; F4; F5. The

aim of the modi�cation is to create 3 \independent" variants of HAVAL depending on the chosen

number of passes. The permutations are shown in Table 6.2. HAVAL uses the chaining vector

D = (D0; : : : ; D7) 2 �256, where Di is a 32-bit word. It applies 16 Feistel permutations in each pass.

Pass 1 { Figure 6.17

Strong and Weak Hash Functions 188

HAVAL

HAVAL

HAVAL

FOLDING

Message

1024

1024

1024

digest

IV (256 bits)

Figure 6.15: Hashing with HAVAL

(1) Let Ti = Di (i = 0; : : : ; 7)

(2) For j = 0; : : : ; 15

P =

8><
>:

F1 � �3;1(T0; T1; T2; T3; T4; T5; T6) if PASS=3,

F1 � �4;1(T0; T1; T2; T3; T4; T5; T6) if PASS=4,

F1 � �5;1(T0; T1; T2; T3; T4; T5; T6) if PASS=5,

R = (P � 7) + (T7 � 11) + mj ;

T1 = T0; T2 = T1; T3 = T2; T4 = T3;

T5 = T4; T6 = T5; T7 = T6; T0 = R;

where (A� s) means rotation of A by s positions to the right. The addition + is modulo 232.

Pass 2.

(1) The sequence T0; : : : ; T7 comes from Pass 1.

(2) For j = 0; : : : ; 15, repeat the following

P =

8><
>:

F2 � �3;2(T0; T1; T2; T3; T4; T5; T6) if PASS=3;

F2 � �4;2(T0; T1; T2; T3; T4; T5; T6) if PASS=4;

F2 � �5;2(T0; T1; T2; T3; T4; T5; T6) if PASS=5;

R = (P � 7) + (T7 � 11) + mord2 (j) + �2;j;

T1 = T0; T2 = T1; T3 = T2; T4 = T3;

T5 = T4; T6 = T5; T7 = T6; T0 = R;

Strong and Weak Hash Functions 189

H 1

Message
1024 bits

optional

D

H

H

H

H

D in

2

3

4

5

out

128 bits

Figure 6.16: General scheme of HAVAL

where � = (�2;0; : : :�2;15) are constants generated from the fraction part of �.

Pass 3.

(1) The sequence T0; : : : ; T7 comes from Pass 2.

(2) For j = 0; : : : ; 15, repeat the following

P =

8><
>:

F3 � �3;3(T0; T1; T2; T3; T4; T5; T6) if PASS=3,

F3 � �4;3(T0; T1; T2; T3; T4; T5; T6) if PASS=4,

F3 � �5;3(T0; T1; T2; T3; T4; T5; T6) if PASS=5,

R = (P � 7) + (T7 � 11) + mord3 (j)
+ �3;j;

T1 = T0; T2 = T1; T3 = T2; T4 = T3;

T5 = T4; T6 = T5; T7 = T6; T0 = R;

where � = (�3;0; : : :�3;15) are constants generated from the fraction part of �.

Pass 4.

(1) The sequence T0; : : : ; T7 comes from Pass 3.

(2) For j = 0; : : : ; 15, repeat the following

P =

(
F4 � �4;4(T0; T1; T2; T3; T4; T5; T6) if PASS=4,

F4 � �5;4(T0; T1; T2; T3; T4; T5; T6) if PASS=5,

R = (P � 7) + (T7 � 11) + mord4(j) + �4;j;

T1 = T0; T2 = T1; T3 = T2; T4 = T3;

T5 = T4; T6 = T5; T7 = T6; T0 = R;

Strong and Weak Hash Functions 190

ord2 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8

30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

ord3 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26

31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

ord4 24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3

22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13

ord5 27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10

5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

Table 6.1: Message word processing order

x0 x1 x2 x3 x4 x5 x6
�3;1 x4 x2 x6 x5 x3 x0 x1
�3;2 x6 x3 x5 x0 x1 x2 x4
�3;3 x0 x5 x4 x3 x2 x1 x6
�4;1 x0 x3 x5 x4 x1 x6 x2
�4;2 x4 x6 x1 x0 x2 x5 x3
�4;3 x5 x2 x0 x6 x3 x4 x1
�4;4 x3 x1 x2 x5 x0 x4 x6
�5;1 x6 x2 x5 x0 x1 x4 x3
�5;2 x5 x4 x3 x0 x1 x2 x6
�5;3 x5 x1 x3 x4 x0 x6 x2
�5;4 x6 x4 x0 x2 x3 x5 x1
�5;5 x1 x3 x4 x6 x0 x5 x2

Table 6.2: HAVAL � permutations

where � = (�4;0; : : :�4;15) are constants generated from the fraction part of �.

Pass 5.

(1) The sequence T0; : : : ; T7 comes from Pass 4.

(2) For j = 0; : : : ; 15, repeat the following

P = F5 � �5;5(T0; T1; T2; T3; T4; T5; T6);

R = (P � 7) + (T7 � 11) + mord5 (j) + �5;j;

T1 = T0; T2 = T1; T3 = T2; T4 = T3;

T5 = T4; T6 = T5; T7 = T6; T0 = R;

where � = (�5;0; : : :�5;15) are constants generated from the fraction part of �.

After hashing, the sequence T is shortened to the requested length of digest (for details see [538]).

HAVAL is much stronger than MD5. There is no attack reported on the system.

6.6.5 Hashing Based on Intractable Problems

Gibson [199] based his hashing scheme on the factorisation problem. Assume that an integer N = p�q

where p and q are two large enough primes so the factoring N is intractable. Additionally p�1 = 2�p0

Strong and Weak Hash Functions 191

+

+

R

P

T T T T T T TT

1

543210 6 7

F

Wi

>>

>>

Figure 6.17: A single pass in HAVAL

and q � 1 = 2� q0 where p0; q0 are primes. The hashing function h : Z�N �Z
�
N ! Z�N compresses the

message m according the congruence

h(m) = gm (mod N) (6.12)

where g is a generator of the cyclic group Z�N . The modulus N and the generator g are public. Note

that if a collision can be found, then N can be factored. Let m;m0 2 Z�N �Z
�
N collide, i.e. gm = gm

0

(mod N) for m 6= m0. This implies that gm�m
0

= 1 (mod N) so m � m0 is a multiple of the order

of the cyclic group Z�N and the factors can be found (see Section 5.2.5). On the other hand, knowing

factors of N it is easy to produce collisions.

An example of hashing whose collision-freeness relies on intractability of the discrete logarithm

problem was given by Chaum, van Heijst, and P�tzmann in [90]. Assume we have a large enough prime

N 2 Z such that N�1 = 2�p (p is prime). The designer of the scheme chooses two primitive elements

g1; g2 2 Z
�
N (g1 6= g2). The hash function h : Zp �Zp ! Z�N translates a message m = (m1;m2) into

its digest

h(m) = g
m1

1 � gm2

2 (mod N) (6.13)

The generators g1, g2 and the modulus N are public. It can be proved that if a collision is found,

then the corresponding instance of discrete logarithm can be solved (see [488]).

Knapsack can also be used for hashing. The �rst such scheme reported in [119] was broken in [73].

Impagliazzo and Naor proposed the scheme which is theoretically sound. The scheme h : �n ! �`

where obviously ` < n. To design a scheme, n integers ai (i = 1; : : : ; n) are chosen randomly and

uniformly from the set f0; : : : ; 2`g where ` < n. Next, for an n-bit message m = (b1; : : : ; bn), a subset

Sm = fai j bi = 1g is created. The digest of m is

h(m) =
X
a2Sm

a (mod 2`) (6.14)

Tillich and Z�emor [498] designed a hash scheme based on SL(2; 2n) { the group of two-dimensional

unimodular matrices with entries in the Galois �eld GF (2n). In other words, elements of SL(2; 2n)

are matrices "
a b

c d

#

Strong and Weak Hash Functions 192

whose determinant is equal to 1 and a; b; c; d 2 GF (2n). The hash function h operates on arbitrarily

long binary messages and returns an element of SL(2; 2n) so h : �� ! SL(2; 2n). The core elements

of the hash scheme are two public elements of SL(2; 2n), namely

A =

"
x 1

1 0

#
and B =

"
x x+ 1

1 1

#
:

An r-bit message m = (b1; : : : ; br) is �rst converted into the corresponding sequence of A's and B's

according to the function � : �! fA;Bg which takes 0 to A and 1 to B. The digest of m is

h(m) = �(b1)�(b2) : : : �(br) (6.15)

Finding collisions in the function h is equivalent to the di�culty of �nding short factorisations in the

groups SL(2; 2n) which is known to be intractable. To be collision free, the hash function has to

be determined for n in the range 130-170. If n < 130, the security may be compromised. On the

other hand, schemes with n > 170 become slow. To do computations in GF (2n), the modulus { an

irreducible polynomial p(x) (over GF (2)) of degree n { is chosen at random and made public.

Charnes and Pieprzyk showed in [83] that a careless selection of n or p(x) can result in the scheme

which is not collision free. The order of the group SL(2; 2n) is 24n(22n � 1)(22n + 1). The scheme is

believed to be collision free if both (22n � 1) and (22n + 1) have very large factors only. Ideally, one

would prefer to choose n such that the integers are twin primes. Incidentally, integers p; q are twins if

p� q = �2. There are no twin primes in the recommended range of n.

6.7 Keyed Hashing

A message authentication code (MAC) is a relative short string which is attached to a message to

enable a receiver to decide whether the message comes from the original sender. Clearly, to perform

this role, the MAC must match the message and the sender. As the message can be long and the

MAC is relatively short, it must directly or indirectly employ hashing. Additionally, the pair of

communicating parties is uniquely identi�ed by a secret key shared by them. To produce or verify a

MAC, the parties must know the message and the shared key. An adversary, on the other hand, knows

the message only. Application of MACs allows to create authentication channel where the contents

of messages is public but the message source can be veri�ed (the sender must share the same secret

key with the receiver). Other names for MAC include integrity check value, cryptographic checksum

or authentication tag.

Keyed hash schemes produce digests which depend on not only messages but also secret keys which

are shared between the sender and receiver. Consequently, hashing can be done only by the holders

of the secret key.

Given a family of hash functions

�Hn = fhk : �
� ! �n j k 2 �ng

Any instance function hk is indexed by a secret key k shared by two parties. A keyed hash function

H = f �Hn j n 2 Ng is collision resistant if

1. any instance function hk can be applied for messages of arbitrary length,

2. the function H is a trapdoor one-way function, that is

{ given a key k and message m, it is easy (in polynomial time) to compute the digest d =

hk(m),

Strong and Weak Hash Functions 193

{ for any polynomial size collection of pairs (mi; di = hk(mi)); i = 1; : : : ; `(n), it is intractable

to �nd the key k 2 �n, where `(n) is a polynomial in n.

3. without the knowledge of k, it is computationally di�cult to �nd a collision, that is, two distinct

messages m;m0 2 �� with the same digest d = hk(m) = hk(m
0).

Hashing arbitrarily long messages can be done using either the serial or parallel methods (see Section

6.3). For a given n, the family of instance hash functions compresses ` � n-bit messages into n-bit

digest so

Hn = fhk : �
`�n ! �n j k 2 �ng

Again, �nding a collision for hk 2 �Hn indicates that hk 2 Hn is not collision resistant.

For an ideal collision resistant keyed hashing scheme, �nding a collision could be done by applying

either the exhaustive search through the key space which takes on the average 2n�1 operations, or by

employing a variant of the birthday attack which takes O(2n=2) steps.

6.7.1 Early MACs

First implementations of keyed hashing were based on encryption algorithms in CBC or CFB modes.

An example of keyed hashing in CBC mode is given in Figure 6.18. For a message m = (m1; : : : ;mr),

++

m1

+E

k

kE

k

k E

k

k

m m2 r

IV
digest

Figure 6.18: Keyed hashing with CBC

hashing involves r iterations and

h0 = IV

hi = Ek(hi�1 �mi); i = 1; : : : ; r� 1

d = Ek(hr�1 �mr)

where IV is an initial value, Ek encryption function, and d digest. To prevent the meet-in-the-middle

attack, the message block size must be at least 128 bits. Note that most encryption algorithms

(including DES) work with 64-bit message blocks. Another problem is the speed { most encryption

algorithms are relatively slow.

The Message Authenticator Algorithm (MAA) is probably the �rst dedicated MAC which is also

an ISO 8731-2 standard. MAA takes a message m = (m1; : : : :m`) (mi is a 32-bit word) and a 64-bit

key k = (k1; : : : ; k8) and produces 32-bit digest. The algorithm runs through the following steps:

� Key expansion which takes the key k and produces six 32-bit words (A;B;C;D;E; F). Bytes

0x00 and 0xff in k are replaced according to

x=0;

for i from 1 to 8 (

x=2x;

if ki=0x00 or 0xff then (x=x+1; ki=ki OR x;)

)

Strong and Weak Hash Functions 194

Now, the key bytes are clustered into 32-bit words. Let k = (L;R) then

A = L4 (mod 232 � 1)� L4 (mod 232 � 2);

B = (R5 (mod 232 � 1)�R5 (mod 232 � 2))(1 + x)2 (mod 232 � 2));

C = L6 (mod 232 � 1)� L6 (mod 232 � 2);

D = R7 (mod 232 � 1)�R7 (mod 232 � 2);

E = L8 (mod 232 � 1)� L8 (mod 232 � 2);

F = R9 (mod 232 � 1)�R9 (mod 232 � 2);

The pairs (A;B), (C;D) and (E;F) are checked whether they contain 0x00 or 0xff. If so, they

are replaced as shown above.

� Message processing proceeds as follows:

h=A; g=B; v=C.

for i from 1 to ` (

v=(v� 1); u=(v� E);

t1=(h� mi)�1(((g�mi)+u)OR 0x02040801)AND 0xbfef7fdf);

t2=(g�mi)�2(((h�mi)+u)OR 0x00804021)AND 0x7dfefbff);

where �i stands for multiplication modulo (232 � i), + is addition modulo 232. The �nal result

is h = h� g.

6.7.2 MACs from Keyless Hashing

"Keyless" hashing such as MD5 seems to be an attractive option of MAC generation. Tsudik [502]

suggested to use a hashing algorithm which compresses arbitrary long messages into n-bit digests

under control of n-bit chaining blocks so H : �� � �n ! �n. The hash scheme H uses a hashing

function (such as MD5) h : �` � �n ! �n applied in the serial method. H also pads the message

and appends the length so the resulting message is a multiple of `. For instance in MD5 ` = 512 and

n = 128 bits. For a given message m 2 ��, keyed hashing can be built on the top of H using

� secret pre�x k 2 �`. The digest is d = H(k k m),

� secret su�x k 2 �`. The digest is d = H(m k k),

� secret envelop k1; k2 2 �`. the digest is d = MD(k1 k m k k2).

where k stands for concatenation. The secret pre�x is equivalent to the keyless hashing with a secret

initial value. For both secret pre�x and su�x, if the underlying hash algorithm is not collision resistant,

the keyed hashing scheme is not collision resistant either [11].

Consider the secret pre�x MAC. Let an attacker know a pair the message m and its MAC of the

form H(k k m). Clearly, she can produce arbitrary many valid MACs for the message (m;m0) with

H(k k (m;m0)) where m0 is an arbitrary message selected by the attacker. Even if the padding of

the message includes the length of the message, the security of MACs is determined by the collision

resistance of the hash algorithm H rather than the length of the secret pre�x.

Again security of the secret su�x MAC is determined by the length of digest rather than by the

length of the secret. The attacker knows the message m and the MAC of the form H(m k k). If the

hash function is not collision resistant, then she may �nd 2nd preimages for the chaining variables

and produce the valid MAC for arbitrarily many messages.

Strong and Weak Hash Functions 195

The secret envelop o�ers a far smaller pro�t than expected from the length of the secret key material

used in the scheme [412]. Having a message m and a secret k = (kp; ks), the MAC is computed as

H(kp k m k ks). One would expect that the attack on the MAC should involve exhaustive search of

the keys space K2 if ks; ks 2R K. This is not true and now we show why.

Assume that an attacker can make enquires about the envelop MAC by composing her messages

and collecting corresponding digests. The birthday paradox guarantees that if the attacker knows

O(2n=2) observations f(m;H(kp k m k ks);m 2 Mg where the set jMj � 2n=2, then there is at least

one internal collision (n is the size of the digest). To identify the pair, the attacker

� composes messages (m0; r;m00); m = (m0;m00) 2M where r is a random message block and asks

for their MACs,

� two messages m1;m2 2 M have internal collision if their H(kp k m0
1; r;m

00
1 k ks) = H(kp k

m0
2; r;m

00
2 k ks) where mi = (m0

i;m
00
i), for i = 1; 2.

Having two messages with internal collisions, the attacker now can exhaustively search the key space to

identify kp. If jKj= n, then one pair of such messages is enough to identify kp with a high probability.

In other words, k = kp if

H(k k m1) = H(k k m2):

Having identi�ed kp, the second key ks can be also exhaustively searched through.

Note that keyed hashing should use the secret key repeatedly throughout the whole hashing process.

The keyed hash scheme MDx-MAC [412] uses a modi�ed secret envelop and applies secret keys every

time the underlying hashing algorithm is called. MDx-MAC can be based on any hashing algorithm

(such as MD4, MD5, HAVAL, SHA) which uses internal constants (for example HAVAL uses � in all

iterations in the passes 2,3,4, and 5). The secret key is added to the constant in each iteration of the

underlying hash algorithm. The advantage of this scheme is that it can be collision free even is the

underlying hash algorithm is not. The main drawback of MDx-MAC is its speed { it is always slower

than its keyless underlying algorithm.

6.8 Problems and Exercises

1. Explain the di�erence between strong and weak one-way hash function.

2. Prove that strong collision freeness of a function implies that the function is one-way.

3. Consider the birthday paradox. Let p be the probability that there are at least two pupils with the same birthday.

What is the minimum size of the class so

� p = 0:1,

� p = 0:9.

What is the probability p when the class has 100 students ?

4. To see how the birthday attack works, let us model a hashing function by a probabilistic algorithm. For a given

message, the algorithm chooses at random its digest from the set ZN where N is an integer. Implement the hash

function using the accessible pseudorandom number generator. Prepare two collections of digests (one for the

original message the other for the bogus message). Each collection should have
p
N random numbers. Run your

program several times and count how many times it is possible to �nd colliding messages.

5. Let the encryption algorithm be based on exponentiation modulo a prime p so Ek(m) = ck mod p. Use the

algorithm to hash messages (m1;m2) 2 Z2

p according to the following

h1 = Em1
(IV) and d = Em2

(h1):

Implement the meet-in-the-middle attack on the scheme using the MAPLE programming environment. To

generate variants of bogus messages use a pseudorandom number generator.

Strong and Weak Hash Functions 196

6. Suppose a hash function is de�ned using a good quality encryption algorithm Ek(m). For an arbitrary message

m = (m1; : : : ;mn), the digest is computed as d = Em
i
(IV)� : : :�Emn

(IV). Discuss advantages and drawbacks

of the function.

7. In the Gibson scheme, the modulus N = p � q is public while its factors are secret. The hashing function is

de�ned as h(m) = gm modN where g is a generator of the cyclic group Z�
N
. Let N = 4897 and g = 2231.

Compute digests for the following two messages: m = 132748 and m0 = 75676. Assume that you have two

colliding messages, show that it is possible to �nd factors of N . Demonstrate that the knowledge of factors of N ,

allows to �nd colliding messages.

8. De�ne a hash function h(m1;m2) = g
m1

1
� g

m2

2
mod p where p is a prime and g1; g2 2 Z�

p are two primitive

elements such that logg1 g2 mod p is not known. Assume that p = 65867, g1 = 11638 and g2 = 22770. Find

digests of the following two messages:

� m = (33123;11789),

� m0 = (55781;9871).

Prove that �nding collisions is equivalent to solving the corresponding instance of discrete logarithm problem i.e.

� � logg1 g2 mod p.

9. Consider the knapsack hashing which generates a digest

h(m) =
X
a2Sm

a (mod 2`)

for ` = 16 and the vectorA = (a1; : : : ; a20) = (38434;29900; 51969;11915; 44806;40745; 58466;34082;51216;29628;

45210;37681; 13804;57494; 13287;43391; 28827;6822; 51901;3782). Produce the digest for m = (1;1; 1;0;0;

1;0; 1;1;0; 0;1; 0;1;0; 1;0; 0;0;1). Write a program which �nds collisions. Analyse the e�ciency of your pro-

gram.

10. Implement a hashing scheme based on SL(2; 23) which operates on arbitrary long messages and produces 12-bit

digests (four binary polynomials of degree 2).

Chapter 7

DIGITAL SIGNATURES

Digital signatures should be in a sense similar to hand-written ones. Unlike a written one, an electronic

document is not tied up to any particular storage media. Thus it can be easily copied, transmitted,

and manipulated. Digital signatures have to create a some sort of digital \encapsulation" for the

document so any interference with either its contents or the signature will be detected with a very

high probability. Typically, a signed document is requested to be veri�able by anyone using some

publicly accessible information.

Most books on public-key cryptography also include a chapter or section on digital signatures.

Stinson in [488], Menezes et al. in [334], and Schneier in [445] provide good text for introductory

reading. The book [397] by P�tzmann is useful for more advanced study of digital signatures.

7.1 Properties of Digital Signatures

One would expect that digital signatures should be legally binding in the same way as the hand-written

ones. To design a signature scheme, it is necessary to determine two algorithms: one for signing and

the other for signature veri�cation. The veri�cation algorithm has to be accessible to all potential

receivers. The signing algorithm is executed by a signer, Sally, who for a message m 2 M determines

a signature s 2 S. The signature s is next attached to the message. A veri�er, Victor, takes the

pair (m; s) and some public information about the alleged signer and performs the corresponding

veri�cation algorithm. The algorithm returns a binary result: \yes" if the signature is Sally's or \no"

otherwise.

A digital signature scheme is a collection of two algorithms.

1. The signing algorithm SG : K�M! S assigns a signature s to a pair: the secret key k 2 K of

the signer and the message m 2 M, that is s = SG(k;m) = SGk(m).

2. The veri�cation algorithm V ER : K0�M�S ! fyes,nog takes a public informationK 2 K0 of

the signer and the message m 2 M and checks whether the pair (K;m) matches the signature

s 2 S. If there is a match, the algorithm returns \yes". Otherwise, it outputs \no".

3. The signing algorithm executes in polynomial time when the secret key k is known. For an

opponent, Oscar, who does not know the secret key, it should be computationally intractable to

forge a signature, that is to �nd a valid signature for the message.

4. The veri�cation algorithm is public { anyone can use it and check whether the message m

matches the signature s. Veri�cation should be easy (takes polynomial time).

The crucial issue for security of signature scheme is the meaning of forged signatures. Clearly, Oscar is

successful in forging a signature if the veri�cation algorithm fails to detect the forgery. The veri�cation

197

198

algorithm takes three variables: the identity of the alleged signer (equivalent to K), the message m

and the signature s. Oscar can tamper with all of them. Consider the identity of the alleged signer.

Oscar can always apply the masquerade attack in which he selects the secret key k 2 K, sets up the

scheme and try to register the scheme under Sally's name with the matching public K 2 K0. To

protect the signature schemes against the masquerade attack, there has to be a trusted registry, say

White Pages, which keeps the list of all signers with their public veri�cation algorithm V ERK() in

the public read-only memory. New entries are included after a proper identi�cation of the signer.

If White Pages are set up and work correctly, Oscar can only manipulate messages and signatures.

His aim is to �nd collisions for veri�cation algorithm so V ERK(m; s) = V ERK(m
0; s0) where m; s are

original elements and m0; s0 are forged. Thus the veri�cation algorithm has to be collision free for any

K 2 K0. This implies that the signing algorithm has to be collision free too.

Note that the requirement about public veri�ability of signatures many times throughout their life

time, can be satis�ed when signatures are generated using conditionally secure schemes.

Signature schemes are requested to provide a relatively short signature for a document of an arbi-

trary length. We assume that the document (of arbitrary length) is �rst hashed and later the signature

is produced for its digest. Clearly, the hashing employed has to be collision free. Moreover, hashing

and signing must be analysed together to avoid attacks which exploit existing algebraic structures in

both schemes. For instance, Coppersmith showed that hashing based on squaring together with an

RSA based signature scheme is not collision free [106].

7.2 Generic Signature Schemes

This class of signature schemes can be implemented from any one-way function. Historically, these

schemes were �rst developed using block private key cryptosystems. We will follow the original

notation. The applied one-way function is an encryption algorithm. The signer sets up her signature

scheme by choosing a one-way function (encryption algorithm). Next she selects an index k (secret

key) randomly and uniformly from the set K. The index determines an instance of the one-way

function, that is, Ek : �n ! �n. Note that n has to be large enough to thwart possible birthday

attacks. Also the index (secret key) k is known to the signer only.

7.2.1 Rabin Signatures

Rabin [419] designed a scheme in which the signer uses many secret keys (or indices) and later in the

veri�cation stage Sally reveals a part of her keys. In the Rabin scheme veri�cation is done with the

help of the signer.

Initialisation. The scheme is set up by Sally who generates 2r random keys

k1; k2; : : : ; k2r 2 �n:

They are secret and known to Sally only. Next, she creates two sequences which are needed in the

veri�cation stage. The �rst sequence is chosen at random

S = (S1; S2; : : : ; S2r)

where Si 2 �n for i = 1; : : : ; 2r. The second sequence

R = (R1; R2; : : : ; R2r)

consists of cryptograms of the sequence S, that is

Ri = Eki(Si) for i = 1; : : : ; 2r

199

The sequences S and R are stored in the public registry.

Signing. For a message m 2 �n, Sally creates her signature as follows:

SGk(m) = (Ek1(m); : : : ; Ek2r(m)): (7.1)

Veri�cation. Veri�er selects at random a 2r-bit sequence of r ones and r zeros. A copy of the binary

sequence is forwarded to the signer. Using this 2r-bit sequence, Sally forms an r-element subset of the

keys. The key ki belongs to the subset if the i-th element of the 2r-bit sequence is \1"; i = 1; : : : ; 2r.

The subset of keys is then communicated to Victor. To verify the key subset, Victor generates and

compares suitable r cryptograms of S to the originals kept in the public registry.

7.2.2 Lamport signatures

The scheme invented by Lamport [294] allows veri�cation to be conducted without any help from the

signer { this is what is expected from signature schemes. More e�cient version can be found in [49].

Initialisation. The signer �rst chooses at random n key pairs, namely,

(k10; k11); (k20; k21); : : : ; (kn0; kn1) (7.2)

each element kij 2 �n; i = 1; : : : ; n, j = 0; 1. The pairs of keys are kept secret and are known to Sally

only. Next, she generates a sequence S at random and encrypts it using the secret keys so

S = ((S10; S11); (S20; S21); : : : ; (Sn0; Sn1))

R = ((R10; R11); (R20; R21); : : : ; (Rn0; Rn1))

and

Rij = Ekij (Sij) for i = 1; : : : ; n and j = 0; 1

where Sij ; Rij 2 �n and Ek is the encryption algorithm used. Now S and R are sent to the public

registry.

Signing. The signature of a n-bit message m = (b1; : : : ; bn), bi 2 f0; 1g for i = 1; : : : ; n, is a sequence

of cryptographic keys:

SGk(m) = (k1i1; k2i2; : : : ; knin)

where ij = 0 if bj = 0 otherwise ij = 1; j = 1; : : : ; n.

Veri�cation. Victor validates the signature SGk(m) by checking whether suitable pairs of S and R

match each other for the keys known.

7.2.3 Matyas-Meyer Signatures

Matyas and Meyer [322] designed a signature scheme based on the DES algorithm. Clearly, any

one-way function can be used in the scheme. In the description we use Ek : �
n ! �n.

Initialisation. Sally �rst generates a random matrix U = [ui;j] i = 1; : : : ; 30, j = 1; : : : ; 31 and

ui;j 2 �n. Next she constructs 31 � 31 matrix KEY = [ki;j] where ki;j 2 �n. The �rst row of the

KEY matrix is chosen at random but the rest is generated as follows:

ki+1;j = Eki;j(ui;j)

for i = 1; : : : ; 30 and j = 1; : : : ; 31. Finally, Sally communicates the matrix U and the vector

(k31;1; : : : ; k31;31) (the last row of KEY) to the public registry.

200

Signing. Sally takes a message m 2 �n and computes cryptograms

ci = Ek31;i(m) for i = 1; : : : ; 31

Cryptograms are treated as integers and ordered according to their values so ci1 < ci2 < : : : < ci31 .

The signature of m is the sequence of keys

SGk(m) = (ki1;1; ki2;2; : : : ; ki31;31):

Veri�cation. Victor takes the message m recreates the cryptograms ci, orders them according to

increasing order. Next he puts keys of the signature in the \empty" matrix KEY in the places

indicated by the ordered sequence of ci's. Victor then repeats Sally's steps and computes all keys

below the keys of the signature. He accepts the signature if the last row of KEY is identical to the

row stored in the registry.

Note that the Lamport and Matyas-Meyer generic signature schemes can be veri�ed many times.

However, signing a new message requires the secret key(s) to be regenerated. This is why they are

called one-time signatures.

7.3 RSA Signatures

Due to its algebraic structure, the RSA cryptosystem can be easily modi�ed for signing documents

[426]. It is enough to let Sally initialise the system. Again White Pages keep public elements of Sally's

RSA scheme.

One-time RSA Signatures

Initialisation. Sally chooses two strong primes p; q and calculates the modulus N = p� q. Next she

selects at random a public key K 2 ZN such that gcd (K;N) = 1. The secret key k 2 ZN satis�es

the following congruence

k �K � 1 mod (p� 1)(q � 1)

The signer lodges both the modulus N and the key K with the public registry.

Signing. Given a message m 2 ZN , Sally creates

s = SGk(m) = mk (mod N)

The signature is attached to the message.

Veri�cation. Victor looks up White Pages for Sally's public entry with her modulus N and public

key K. Subsequently, he takes the pair (~m; ~s) and checks whether

V ERK(~m; ~s) =

�
~sK

?
� ~m (mod N)

�

If the congruence is satis�ed the signature is accepted as authentic.

An opponent, Oscar, can always circumvent potential veri�ers using the following attack. He �rst

selects at random a false signature s0 2 ZN . Next he computes the matching false message m0 � s0K

(mod N). This attack is always successful if there is no redundancy of the message source or all

messages in ZN are meaningful. The other feature of the attack is that Oscar has no control over

forged messages. To prevent the scheme against the attack, it is enough to introduce a su�ciently large

redundancy in the message source so all forged messages will be meaningless with a high probability.

201

The RSA signature scheme may be subject to variety of attacks which exploit the commutativity

of exponentiation [128, 347] if the RSA signature scheme is meant to be used many times. Assume

that Oscar knows two original documents (m1; s1) and (m2; s2) signed by Sally. He can sign a new

document m = m1m2 as its valid signature is s = s1s2. Even the knowledge of a single document

(m; s) signed by Sally, can be used to sign message m0 = m�1 as its valid signature is s0 = s�1.

Multiple use of the RSA scheme tends to weaken it. The way out is to make subsequent signatures

dependent on the previously generated. Cramer and Damgard [113] proposed an RSA scheme for

multiple use which is secure against the chosen message attack under the assumption that the factoring

is di�cult. Clearly, an additional component is needed to keep track of previous signatures. This

component is an algorithm TR which builds up a full `-ary tree of depth d by random selection of its

nodes xi. The root of the tree is an integer x0. Every time Sally wants to sign a new message, she

invokes TR. The algorithm creates a new leaf xd and returns its full path (x1; i1; : : : ; xd; id) where the

integer ij tells that the node xj is the ij-th child of xj�1. TR can be used to sign up to `d messages.

Multiple RSA Signatures

Initialisation. The scheme is set up as previously; the modulus is N = p � q where p; q are two

strong primes. The scheme uses also set of distinct primes

L = fq; p0; : : : ; p`�1g

All primes are co-prime to (p� 1)(q � 1). Let e be the smallest integer such that

w = qe > N

and ei be the smallest integer such that

vi = peii > N for i = 0; : : : ; `� 1

Finally, Sally chooses h and x0 at random from Z�

N . The triple (N; h; x0) is stored in the public

registry.

Signing. The signature generation can be done up to `d times. For the i-th signature, Sally calls

TR(i) which returns (x1; i1; : : : ; xd; id). Next, she computes

yj � (xj�1h
xj)

1

vij (mod N) for j = 1; : : : ; d: (7.3)

and

z � (xdh
m)1=w (mod N) (7.4)

Finally, the signature is SGk(m) = (z; y1; i1; : : : ; yd; id).

Veri�cation. Victor takes (~z; ~y1; i1; : : : ; ~yd; id) and �rst calculates

~xd � ~zwh�m (mod N) (7.5)

and goes backwards

~xj�1 � ~y
vij
j h�~xj (mod N) for j = 1; : : : ; d: (7.6)

At last, if ~x0 � x0 (mod N) the signature is authentic.

Consider Equations (7.3) and (7.4). To get rid of commutativity, the message appears as an

exponent and a sequence of random elements xj is used. Each element plays a double role as a

multiplier and exponent.

202

To compute Equations (7.3) and (7.4), Sally needs to know v�1
ij

and w�1 which can be found from

the congruences v�1
ij
� vij � 1 mod (p� 1)(q � 1) and w�1 � w � 1 mod (p � 1)(q � 1), respectively.

Victor reverses Sally's computations using public w and vij . If the signature is authentic, he must

always end up with x0 in the last step of his computations. Victor can also update his copy of the

tree from TR. Note that any two valid signature never traverse through the same path in the tree.

7.4 ElGamal Signatures

The scheme is based on the discrete logarithm problem [190].

Initialisation. Sally chooses a �nite �eld GF (p) where p is a long enough prime so the corresponding

instance of discrete logarithm is intractable. She selects a primitive element g 2 GF (p) and a random

integer k 2 GF (p). Sally then computes

K � gk (mod p) (7.7)

and communicates K, g and p to the public registry. The element k is kept secret.

Signing. For a messagem 2 GF (p), Sally selects a random integer r 2 GF (p) such that gcd (r; p� 1) =

1 and calculates

x � gr (mod p) (7.8)

Later, she solves the following congruence

m � k � x+ r � y (mod p� 1) (7.9)

for y using Euclid's algorithm. The signature is

s = SGk(m) = (x; y):

Note that k and r are kept secret by Sally.

Veri�cation. Upon reception of ~m and ~s = (~x; ~y), Victor checks whether

V ERK(~m; ~s) =

�
g ~m

?
� K~x � ~x~y (mod p)

�
(7.10)

It is worth noting that possessing the pair (x; y), does not allow the message m to be recreated.

In fact, there are many pairs which match the message { for every random pair (k; r) there is a pair

(x; y).

Oscar may

1. try to break the system by solving two instances of discrete logarithm: k = logK (mod p) and

r = logx (mod p). From our assumption, this is intractable,

2. choose his own forged message m0 and modify y0 while keeping x unchanged. This is equivalent

to solving the following instance of discrete logarithm y0 � logx g
m0

K�x (mod p),

3. take a forged message m0 and try to �nd x0 while keeping the same y. In this attack Oscar has

to solve gm
0

� Kx0 � x0y (mod p) for x0. There is no known e�cient algorithm to do that,

4. manipulate with all three elements: m0; x0; y0. The successful veri�cation is when gm
0

� Kx0 �

x0y
0

mod p. The congruence can be satis�ed if we select x0 � g�K� as we are going to get powers

of g and K only (�; � 2 Zp). Indeed

gm
0

� Kg�K�

� g�y
0

K�y0 (mod p)

203

This implies that y0 � �g�k���1 (mod p � 1) and m0 � �y0 (mod p � 1). Clearly, this

attack allows to sign random messages only. To prevent the attack, it is enough to introduce a

redundancy in the message source.

The elements (K; g; p) stored in the public registry are �xed for the life time of the scheme. The

scheme can be used to sign many signatures. The signer, however, has to select a new secret integer

r 2 GF (q) every time she signs. What happens if Sally signs two messages using the same r ? Let

us consider the repercussions. Suppose Sally has signed two messages: m1 with (x; y1) and m2 with

(x; y2). The two signatures produce (see Congruence 7.9):

m1 � k � x+ r � y1 (mod p� 1)

m2 � k � x+ r � y2 (mod p� 1)

The integer r which was supposed to be secret can now be computed from

m1 �m2 � r(y1 � y2) (mod p� 1)

(see Section 2.1.4). If the congruence does not have the unique solution, it can be found by testing

possible candidates and calling the veri�cation algorithm. After �nding r, it is easy to compute the

secret

k = (m1 � ry1)x
�1 (mod p� 1):

Consider a simple example of the ElGamal signature scheme. First Sally sets up the scheme.

She selects a modulus p = 359, a random secret k = 215 and a primitive element g = 152. She

computes K = gk = 152215 � 293 (mod 359). The triple (K; g; p) = (293; 152; 359) is Sally's public

registry entry. To sign a message m = 312, Sally selects a \one-time" random integer r = 175, �nds

x = gr = 152175 � 58 (mod 359), and computes y from the following congruence

m � k � x+ r � y (mod p� 1)

312 � 215 � 58 + 175 � y (mod 358)

It is easy to check that y = 86. The signature on m = 312 is s = (58; 86). Knowing Sally's public

elements, Victor veri�es the signature by computing �rst gm � 74 (mod 359) and next Kx �xy � 74

(mod 359). So Victor assumes that the signature is authentic.

A modi�cation of the ElGamal signature was proposed as Digital Signature Standard (DSS) in

1991 (see [185]). DSS is also known as Digital Signature Algorithm or DSA.

Digital Signature Standard

Initialisation. A large enough prime p is selected as one of the moduli used in the system. The

modulus p is recommended to be of length at least 512 bits. The second modulus q is a 160-bit prime

factor of p � 1. An integer g is a q-th root of 1 modulo p, that is, gq � 1 (mod p) and g� 6� 1

(mod p) for � < q. Sally selects her secret k < q and computes the public key K � gk (mod p). The

sequence (K; g; p; q) is deposited in the public registry.

Signing. Sally generates a \one-time" random integer r < q and the corresponding x � (gr mod

p) mod q. For a message m 2 Z�

q , she computes

y � r�1(m+ k � x) (mod q) (7.11)

The signature on the message m is s = SGk(m) = (x; y).

204

Veri�cation. Victor takes the signature ~s = (~x; ~y), the message ~m and Sally's public entry and

computes two integers

� � ~m � ~y�1 (mod q)

� � ~x � ~y�1 (mod q)

and checks whether

V ERK(~m; ~s) =

�
~x

?
� (g� �K� mod p) mod q

�
(7.12)

Consider a toy DSS scheme. Sally takes two moduli p = 2011 and q = 67 (p � 1 = 67 � 30). To

get an integer g with required properties, we �rst choose a primitive element e = 1570 2 GF (p) and

next compute g � e(p�1)=q (mod p) so g = 157030 � 948 (mod 2011). It is easy to check that

gq � 1 (mod p). Next Sally chooses her secret k = 37 < 67 and computes K = gk = 94837 � 857

(mod 2011). Sally's public entry is (K; g; p; q) = (857; 948; 2011;67).

To sign, Sally generates a \one-time" random integer r = 49 < 67 and computes

x = 60 � (94849 mod 2011) mod 67:

For a message m = 65, she �nds y = 49�1(65 + 37 � 60) � 48 (mod 67). The signature SGk(65) =

(60; 48).

Victor veri�es the signature s = (60; 48) by calculating

� = 65 � 48�1 � 53 (mod 67)

� = 60 � 48�1 � 18 (mod 67):

Finally he substitutes values to g� �K� = 9485385718 � 462 (mod 2011). This results is congruent

to 60 modulo 67. Thus the result is equal to x = 60 so the signature is authentic.

DSS signatures are shorter than ElGamal's. Also messages signed have to be smaller than q.

Otherwise, if m 2 Z�

p , any valid signature SGk(m) = (x; y) can be used to produce a sequence of

other valid signatures for messages from the set f ~m j ~m � m (mod q); ~m < pg. Generation of

signatures using DSS is substantially faster than RSA ones (when both schemes use moduli of the

same size). Additionally, the �rst element of signature x can be precomputed as it does not depend

upon the message signed [445].

7.5 Blind Signatures

Sometimes the signer should be prevented from reading messages to be signed. For instance, in

a notary system the validation of documents can be done for documents kept in sealed envelopes.

Electronic election protocols use a central authority who authenticates voting ballots without being

able to read their contents. Chaum developed a cryptographic scheme which can be applied to produce

blind signatures [91]. There are three active parties in the scheme. Sally is the signer who has agreed

to sign documents blindly. Henry is the holder of the message he wants Sally to sign. Victor is our

veri�er who checks whether the signature is Sally's.

A blind signature scheme works as follows. Henry takes a message and blinds it. The blinded

message is sent to Sally who signs it and sends it back to Henry. Henry unblinds the message. Victor

now can verify the signature. A blind signature is a collection of four algorithms: blinding, signing,

unblinding, and verifying. Note that blinding and signing operations have to commute. The RSA

signature can be used to design a blind signature scheme.

205

RSA Blind Signatures

Initialisation. Sally sets up a RSA scheme with the public modulus N and key K. Primes p; q

(N = p � q) and key k (k �K � 1 mod (p � 1)(q � 1)) are secret.

Blinding. Henry looks up the public registry for Sally's N and K, chooses a random integer r 2 Z�

N ,

takes his message m 2 Z�

N , and computes the blinded message

c � m � rK (mod N)

Signing. Sally simply signs the blinded message c as

�s = SGk(c) � ck (mod N)

The blind signature �s is sent to Henry.

Unblinding. Henry removes the random integer r by

s = SGk(m) = c� r�1 � mk (mod N)

and gets Sally's signature.

Veri�cation. Victor takes Sally's public information (N;K), the message ~m, and the signature ~s

and checks whether

V ERK(~m; ~s) =

�
~sK

?
� ~m (mod N)

�

Blind signatures can be generated without any special signature schemes. It is enough for Henry

to use a secure hash function h(). To get a (blind) signature from Sally, Henry �rst compresses the

message m. The digest d = h(m) is sent to Sally. After signing the digest, Sally communicates

the signature SGk(d) to Henry who attaches the message m to Sally's signature SGk(d). Note that

knowing the digest, Sally cannot recover the message m as the hash function is one way. Also Henry

cannot cheat by attaching a \false" message unless he can �nd collisions in the hash function.

7.6 Undeniable Signatures

Chaum and van Antwerpen [92] introduced undeniable signatures. Their main feature is that Victor

cannot verify a signature without Sally's co-operation. The co-operation takes form of a challenge-

response interaction. Victor sends a challenge to Sally. Sally answers with her response. Victor takes

Sally's response and veri�es the signature. If the signature is authentic the process ends.

What happens if the veri�cation fails ? There are two possibilities: (1) the signature is indeed a

fraud, or (2) Sally cheats by giving an \incorrect" response. To eliminate the case (2), undeniable

signatures have to have a disavowal protocol which is run only after veri�cation failures.

Chaum-van Antwerpen Signatures

Initialisation. The security of the scheme is based on intractability of discrete logarithm. Sally

selects a large prime modulus p such that p � 1 = 2q where q is prime. She also takes an element g

which generates the cyclic group G of order q. Next she chooses at random her secret k (0 < k < q)

and computes the public key K � gk (mod p). The triple (K; g; p) is Sally's entry stored in the

public registry.

Signing. For a message m 2 G, Sally computes

s = SGk(m) � mk (mod p)

Veri�cation.

Challenge. Victor selects two random integers a; b 2 Z�

q and sends the challenge

c = saKb (mod p)

206

to Sally.

Response. Sally computes k�1 (k � k�1 � 1 (mod q)) and sends back

r = ck
�1

� ma � gb (mod p)

to Victor.

Test. Victor checks whether

V ERK(~m; ~r) =

�
~r

?
� ~magb (mod p)

�

If the test fails, Victor runs the disavowal protocol. Otherwise, the signature is accepted.

Disavowal Protocol.

� (V!S) Victor selects randomly two a1; b1 2 Z
�

q and sends c1 � sa1Kb1 (mod p).

� (S!V) Sally replies by sending r1 = ck
�1

1 .

� (TEST) Victor checks whether r1 6� ma1gb1 (mod p). If that is the case, the same process is

repeated.

� (V!S) Victor selects randomly two a2; b2 2 Z
�

q and sends c2 � sa2Kb2 (mod p).

� (S!V) Sally replies by sending r2 = ck
�1

2 .

� (TEST) Victor checks whether r2 6� ma2gb2 (mod p). He concludes that signature is a forgery

if

(r1g
�b1)a2 � (r2g

�b2)a1 (mod p)

Otherwise, Sally cheats by giving inconsistent responses.

After signing the message, Sally may have second thoughts and try to modify either the message

or the signature. The next theorem characterises her chances of success.

Theorem 7.1 If s 6� mk (mod p), then Sally can provide a valid response with the probability q�1.

Proof: We start from an observation that any two pairs (a; b), (a0; b0) where a 6� a0 (mod q) or b 6� b0

(mod q) create di�erent challenges c and c0. This statement can be proved by contradiction. Assume

that c � c0 (mod p). This implies that saKb � sa
0

Kb0 (mod p) or sa�a
0

� Kb0�b (mod p). If we

represent s = g� and K = g� , then

g�(a�a
0) � g�(b

0

�b) (mod p)

and

�(a� a0) � �(b0 � b) (mod q)

So the above congruence is satis�ed if a � a0 (mod q) and b � b0 (mod q). This is the requested

contradiction.

For the challenge c � saKb (mod p), Sally has to reply with her response r � magb (mod p).

Because s 6� mk (mod p) she cannot use c to produce the response according to the algorithm.

As Sally does not know (a; b) and for any possible choice of (a; b) the response is di�erent, her best

strategy would be to select a random x = 0; : : : ; q � 1 and try to send r � gx (mod p) with the

probability of success q�1. 2

Consider the case when Sally follows the algorithm but the signature is a forgery, that is s 6� mk

(mod p).

207

Theorem 7.2 Let Sally follow the disavowal algorithm, then the following congruence is satis�ed

(r1g
�b1)a2 � (r2g

�b2)a1 (mod p)

Proof: Sally follows the algorithmand for Victor's challenges c1 � sa1Kb1 (mod p) and c2 � sa2Kb2

(mod p) replies with

r1 � sa1k
�1

gb1 (mod p) and

r2 � sa2k
�1

gb2 (mod p);

respectively. After simple transformations we get

sa1k
�1

� r1g
�b1 (mod p)

sa2k
�1

� r2g
�b2 (mod p)

Now if we rise the sides of the �rst congruence to the power a2 and the second congruence to the

power a1, we obtain the requested result. 2

Clearly, when Sally cheats by giving an invalid response she may succeed with the probability g�1.

So with the probability (1� q�1), she fails and Victor will run the disavowal protocol.

Theorem 7.3 Let Sally give responses inconsistent with the algorithm, then Victor will detect the

lack of consistency with the probability (1 � q�1) by running the disavowal protocol.

Proof: It is enough to note that �rst inconsistent response forces Sally to guess the unknown pair

of (a2; b2) in the second response. By Theorem (7.1) the result follows. 2

Consider an example. Sally initialises the scheme choosing the modulus p = 983 with q = 491.

The primitive element of GF (983) is e = 7. This element gives a requested g = e(p�1)=q = 72 = 49.

Finally, Sally randomly selects k = 375 < 491, calculates K = gk = 49375 � 100 (mod 983), and

puts the triple (K; g; p) = (100; 49; 983) into the public registry.

To sign, Sally takes her message m = 413 and computes s = SGk(m) = 413375 � 349 (mod 983).

The pair (m; s) is published.

Victor picks up two random numbers a = 119 and b = 227 smaller than 491 and prepares his challenge

c = saKb = 349119375227 � 884 (mod 983).

Sally follows the algorithm and replies with r = ck
�1

= 884182 � 32 (mod 983) where k�1 = 182.

Victor computesmagb = 41311949227 � 32 (mod 983) which matches Sally's response. The signature

is authentic.

7.7 Fail-Stop Signatures

The concept was introduced by P�tzmann and Waidner in [398]. Fail-stop signatures allow to protect

the signatures against an opponent with unlimited computational power. The trick is that the signa-

ture is produced by a signer who has a single secret key. There are however many other keys which

can be used to produce the same signature and match the public key. Thus there is a high probability

that the key computed or guessed by powerful Oscar will be di�erent from the one held by Sally.

Let k be a secret key known to Sally only and K be the public key. Then Sally's signature is

s = SGk(m) for the message m. A fail-stop signature must satisfy the following conditions:

208

(1) An opponent with unlimited power can forge signature with a negligible probability. More

precisely, if Oscar knows the pair (s = SGk(m);m) and Sally's public key K, he can create a

collection of all keys Ks;m such that k� 2 Ks;m i� s = SGk� (m) = SGk(m). The size of Ks;m has

to be exponential with the security parameter n. As Oscar does not know the secret k, he may

only guess an element from Ks;m. Let this element be k�. Now if Oscar signs another message

m� 6= m, it is required that s� = SGk� (m
�) 6= SGk(m

�) with an overwhelming probability.

(2) There is a polynomial-time algorithm which for the input: a secret key k, a public key K, a

message m, a valid signature s and a forged signature s�, returns a proof of forgery.

(3) Sally with polynomially bounded computing power cannot construct a valid signature which she

can later deny by proving it to be a forgery.

Clearly, after Sally has provided a proof of forgery, the scheme is considered to be compromised and

is no longer used. That is why it is called \fail-stop".

We are going to discuss a scheme invented by van Heyst and Pedersen [242]. Their scheme can be

used to sign a single message and verify the signature many times.

Initialisation. The security of the scheme is based on intractability of discrete logarithm. Sally

chooses a prime modulus p (p � 1 = 2q where q is prime) and an element g 2 Zp of order q. She

further chooses at random k = (r; a1; a2; b1; b2) 2 Z
5
q and computes

R � gr (mod p)

A � ga1Ra2 (mod p)

B � gb1Rb2 (mod p)

Next she sends K = (g; p;R;A;B) to the public registry while k is kept secret.

Signing. For a message m, Sally produces

s = SGk(m) = (�1; �2)

where �1 � a1 +mb1 (mod q) and �2 � a2 +mb2 (mod q).

Veri�cation. Victor takes the signature ~s = (~�1; ~�2), message ~m, and the public key K and checks

whether

V ERK(~m; ~s) =

�
AB ~m ?

� g
~�1R

~�2 (mod p)

�

Proof of Forgery. Sally gets a forged signature s0 = (�01; �
0

2) on message m. Then she computes

PROOF (s0) � (�1 � �01)(�
0

2 � �2)
�1 (mod q)

where s = (�1; �2) is the original signature for m. After the proof is generated the scheme is no longer

used.

Theorem 7.4 Let Oscar have an unlimited computational power. Then public information K =

(g; p;R;A;B) and the signature s = (�1; �2) on a message m gives a system of four linear equations

with q possible solutions for (a1; a2; b1; b2).

Proof: Denote A = ge1 and B = ge2 so

ge1 � ga1gra2 (mod p)

ge2 � gb1grb2 (mod p)

209

which gives the �rst two congruences in the system given below.

e1 � a1 + ra2 (mod q)

e2 � b1 + rb2 (mod q)

�1 � a1 +mb1 (mod q)

�2 � a2 +mb2 (mod q)

The system can be rewritten as

2
6664

e1

e2

�1

�2

3
7775 =

2
6664

1 r 0 0

0 0 1 r

1 0 m 0

0 1 0 m

3
7775

2
6664

a1

a2

b1

b2

3
7775

Clearly, Oscar knows r as he has unlimited power and can solve the corresponding discrete logarithm

instance. The coe�cient matrix in the system has rank three { it means that Oscar deals with q

possible solutions. 2

Theorem 7.5 Let s = (�1; �2) be a signature on m and s0 = (�01; �
0

2) { on a message m0 (m 6= m0).

Then there is a single solution for (a1; a2; b1; b2).

Proof: As before we can get the following system of linear equations over GF (q):

2
666666664

e1

e2

�1

�2

�01

�02

3
777777775
=

2
666666664

1 r 0 0

0 0 1 r

1 0 m 0

0 1 0 m

1 0 m0 0

0 1 0 m0

3
777777775
�

2
6664
a1

a2

b1

b2

3
7775

This time the coe�cient matrix has rank 4 and the system has a single solution. 2

Theorem 7.6 Let Sally get a forged signature s0 = (�01; �
0

2) on the message m which passes the

veri�cation test ABm � g�
0

1R�0
2 but s0 6= s = SGk(m), then she can compute logg R.

Proof: The forged signature s0 passes the test

ABm � g�
0

1R�0
2 (mod p)

but also the original signature

ABm � g�1R�2 (mod p)

so g�
0

1R�0
2 � g�1R�2 (mod p) which translates to

g�1��
0

1 � R�0
2
��2 (mod p)

Note that �1 � �01 6� 0 (mod q) and �02 � �2 6� 0 (mod q). This implies that

r = logg R � (�1 � �01)(�
0

2 � �2)
�1 (mod q)

and concludes our proof. 2

210

Take a simple example. Sally sets up the scheme for p = 9743 with q = 4871. A primitive element

of GF (9743) is e = 5 so g = 52 = 25. Let r = 3176, then R = gr = 5052. Further she chooses four

random integers from Zq so

a1 = 1953; a2 = 2711; b1 = 3998; b2 = 833:

The public A = 25195350522711 � 4299 (mod 9743) and B = 2539985052833 � 6058 (mod 9743).

For a message m = 2164, Sally computes s = (�1; �2) = (2729; 3053).

Victor takes message, signature and Sally's public information and checks whether ABm = 4299 �

60582164 � 7528 (mod 9743) is equal to g�1R�2 = 25272950523053 � 7528 (mod 9743). Indeed the

expressions are equal { the signature on the message is authentic.

Let Sally be given a forged signature s0 = (1179; 1529) on the message m = 2164. Note that the

signature passes the veri�cation test as g�
0

1R�0
2 = 25117950521529 � 7528 (mod 9743). Sally should

now be able to compute her secret key

(2729� 1179)(1529� 3053)�1 � 3176 (mod 4871):

This constitutes the proof that someone powerful enough has attacked the scheme.

7.8 Timestamping

In practice, legal documents have to have a clear timestamp to be legally valid. This apply especially

when the documents are related to patents, copyrights, and in general to all cases where the time is

an important factor to make a legal or other judgement. Without timestamp digital signatures can be

subject to manipulations either by Oscar or Sally. A simple example of such manipulation is replay

attack when an original message is repeated by an opponent. Timestamps provide

� the time when the document was seen, signed or processed. In this case, timestamps indicate

the unique time intervals (time of the day, day, month and year),

� the logical time when the document was processed in the context of processing order of other

documents. Logical clock provides integers which can be used to recover the correct order of

messages processed. A logical clock can be implemented as a long enough counter which is

incremented (or decremented) after processing each document,

� the unique label which can be attached to a document so the receiver always accepts only docu-

ments with di�erent labels. Labels can be implemented using truly random number generators

or pseudorandom number generators. Labels are also called nouns.

Obviously, the mentioned above classes of timestamps have di�erent characteristics. The �rst class

of timestamps indicates the precise point of time when the message was handled. These timestamps

are generated from local clocks. Clearly, in distributed environment with many local (usually not

synchronised) clocks it is di�cult to compare two timestamps from two di�erent local clocks.

The second class of timestamps gets around the problem of synchronisation by using a single logical

clock which is used to mark the correct processing order of documents. This time all documents have

to be handled by a single centre or alternatively a distributed handler of a document has to apply for

a timestamp to the centre where the logical clock resides.

The third class of timestamps provides the receiver with a noun which can be used to detect copies

of a document. Only the �rst occurrence of message with a noun is considered to be legal. All other

copies are discarded. A random selection of a noun from a large enough population of integers is

211

enough to guarantee with a high probability that a given document will never be assigned the same

timestamp. This method of timestamping is very popular in distributed environments. It does not

require synchronisation. The uniqueness of timestamp hinges on a probabilistic argument. Nouns

provide a convenient tool to distinguish the past from the present which is su�cient to detect replay

attacks.

7.9 Problems and Exercises

1. Let the Rabin signature be produced using the DES encryption algorithm. Discuss the following points:

� what is the length of signatures for messagesm 2 �64 and the parameter r = 80 ?

� what is the probability that all keys will be revealed by the signer after ` independent veri�cations (veri�ers

select independently and randomly ` 2r-bit sequences) ?

2. Consider the Lamport signature which allows to sign n-bit messages. The signature is the sequence of n secret

keys corresponding to the particular pattern of bits in the message. Suppose that the signer was careless and

signed two di�erent messages using the same key setting. Show how the opponent, Oscar, can use the two

signatures to sign other (forged) messages.

3. Take an instance of the RSA signature scheme with p = 839, q = 983 and N = p� q = 824737. Assume that the

secret key is k = 132111. Compute the public key K and sign the message m = 23547.

4. Assume that signatures are produced using the RSA scheme with the modulus N = 824737 and the public key

K = 26959.

� recover the messagem from the signature s = 8798,

� is the pair (m; s) = (167058;366314) valid ?

� knowing two pairs (m; s) = (629489;445587) and (m0; s0) = (203821;229149), compute the signatures for

m�m0.

5. Given an instance of the ElGamal signature scheme for the modulus p = 45707, the primitive element g = 41382.

� Sign the message m = 12705 for the secret key k = 38416 and the random r = 3169,

� Verify the triple (m;x; y) = (12705;16884;13633).

6. Show how Oscar can break the ElGamal signature if Sally has produced two signatures for two di�erent messages

using the same random integer r.

7. Consider an instance of the DSS scheme for the following parameters: the modulus p = 35023 with q = 449 and

an integer g = 4781 (a q-th root of 1 modulo p).

� Compute the signature for the messagem = 401 provided k = 277 and r = 168.

� Verify whether s = (x; y) = (262;266) is a signature of m = 401 for K = 24937 ?

8. Given an instance of the RSA blind signature. The public parameters of the signer are the modulus N = 17869

and the public key K = 10117.

� What is the secret key if you know that p = 107 and q = 167 ?

� Compute the blinded message c � m� rK modN for m = 17040 and r = 5593, sign the blinded message

c and extract the signature s � mk modN from c.

� Verify whether s = 13369 is the signature of m = 17040.

9. Modify the RSA blind signature when the holder of the message computes c � m� r�K modN . How does the

holder extract the signature ?

10. Suppose that Henry (the holder of messages) wishes to obtain RSA blind signatures for a sequence of messages

(m1; : : : ;mn) where mi 2 Z
�

N
. What are security implications when Henry uses the same blinding integer r for

all messages (instead of the prescribed random integer r selected independently for each messagemi) ?

11. Consider an instance of the Chaum-van Antwerpen signature for p = 1019, q = 509, g = 475, k = 200 and

K = 807 � gk mod p.

� sign the messagem = 555,

� assuming that the message m = 555 and its signature is s = 842, verify the pair . Generate a challenge c

for the random pair (a; b) = (20;411) and produce a suitable response.

Chapter 8

AUTHENTICATION

Authentication is one of basic cryptographic techniques. Its aim is to provide a receiver with some

kind of a proof that the information comes from by the intended sender. In this chapter we are

going to discuss authentication whose security is unconditional, i.e. its security is independent of the

computational power of a potential attacker. Simmons wrote a good review on the subject in [468].

Stinson treated authentication in Chapter 10 of his book [488].

8.1 Active Opponents

Authentication systems involve three active parties: the sender (Alice), the receiver (Bob) and the

opponent (Oscar). Alice transmits messages to Bob using a communication channel. The opponent,

Oscar, controls the channel. Recall that in secrecy systems, Oscar is assumed to eavesdrop the

conversation between Alice and Bob. He is a passive attacker who does not modify the stream of

cryptograms sent over the channel. It is not di�cult to realize that once Oscar has gained the control

over the channel, he may become \active". Active opponents interfere with the contents of cryptograms

transmitted via the channel. Here is the list of threats which may be launched by an active attacker:

1. Impersonation attack { Oscar initiates a communication with Bob by sending a forged cryp-

togram trying to convince Bob that the cryptogram has come from Alice.

2. Substitution attack { Oscar intercepts a cryptogram sent by Alice and replaces it by a di�erent

cryptogram which is subsequently transmitted to Bob. Again Oscar tries to deceive Bob by

pretending that the forged cryptogram comes from Alice.

3. Spoo�ng attack { Oscar observes r di�erent valid cryptograms sent by Alice and forms a forged

cryptogram hoping that the cryptogram will be accepted by Bob as a valid one. This attack is

also called spoo�ng of order r.

Authentication is used to thwart the above threats. Being more speci�c, we are going to investigate

authentication systems which enable Bob to detect Oscar's attacks listed above with an overwhelming

probability. Note that authentication systems we are going to consider in this Chapter, does not allow

Bob to detect other possible active attacks such as replay of valid cryptograms, interference with the

order of the transmitted valid cryptograms, duplication of one or more valid cryptograms, deletion of

one or more valid cryptograms, delay of transmission, etc.

Because of the similarity between secrecy and authentication systems, there may be a temptation

to use encryption for authentication. Assume that a message source (Alice) generates 64-bit messages

and each message occurs with the probability 2�64. Further, let the DES be used for encryption in the

electronic codebook mode. The cryptographic key is known to Alice and Bob only. Cryptograms are

conveyed via the channel to Bob who decrypts them. Oscar obviously does not know the cryptographic

212

213

key but can launch either impersonation, substitution or spoo�ng attack. Clearly, Oscar will be

successful in any of these attacks { it is enough for him to choose a cryptogram at random and

communicate it to Bob. Bob decrypts it and has to accept it as a genuine one ! Oscar has attained

his goal although he does not know the message which corresponds to the forged cryptogram.

The above scheme can be salvaged if Alice introduces a redundancy to the message source. Given

the message source which generates 64-bit messages. Assume that only 232 messages are meaningful.

The rest 264 � 232 messages are meaningless. The meaningful messages occur with the uniform

probability. The meaningless messages never occur. Now Oscar faces a harder task. If he applies the

same strategy, that is, the random selection of a fraudulent cryptogram from the set of 264 elements,

the probability of Oscar's success is 2�32. On the other hand, Bob detects with the probability 1�2�32

that Oscar cheats.

8.2 Model of Authentication Systems

The authentication theory emerged in late 1970's as a parallel branch to Shannon's theory of secrecy

systems. The model described here follows Simmon's authentication model [470] and deals with

authentication without secrecy. The set of all source states (messages) generated by the message

SECURE CHANNEL

SENDER RECEIVER

MESSAGE
SOURCE

ALICE BOB

CODER DECODER

 RULES
ENCODING

s

e

sm m’

OPPONENT
OSCAR

Figure 8.1: Diagram of authentication system

source is S. The set of all codewords (cryptograms) is denoted by M. The set of all encoding rules

(keys) is E . The set of all authentication tags is T .

An authentication code or A-code is the collection hS;M; Ei such that for each source state s 2 S, an

encoding rule e 2 E assigns a tag t 2 T or simply t = e(s). The cryptogram m = (s; t) soM = S �T .

Denote also j S j= S, j E j= E, j M j= M and j T j= T . A-codes with M = S � T are also called

Cartesian A-codes.

The authentication system described in Figure 8.1 works as follows. First, Alice and Bob agree

on the encoding rule e 2 E they are going to use. The rule is kept secret by the two parties. Let

Alice want to send a message s 2 S to Bob. She computes the tag t = e(s) and sends the cryptogram

m = (s; t) to Bob via the insecure channel. Bob takes m0 = (s0; t0) which may be modi�ed during

transmission, computes his tag t00 = e(s0) using the message s0 and accepts the message s0 only if

t00 = t0.

As the cryptograms are pairs of a clear message and a tag, Oscar can successfully attack the system

if he �nds the correct tag for a false message. Note that in the impersonation attack, Oscar knows the

A-code only. His knowledge increases in the substitution attack as he additionally sees a single valid

cryptogram. In the spoo�ng of order r, Oscar knows the A-code and r distinct valid cryptograms. In

214

EnS s1 s2
e1 0 0

e2 1 0

e3 0 1

e4 1 1

Table 8.1: Authentication matrix

all these attacks, Oscar's goal is to form a valid cryptogram (or tag) for a false message.

An A-code can be equivalently represented by an authentication matrix B = [bij] with E rows and

S columns. Rows are indexed by encoding rules. Columns are labeled by source states (messages). The

entry in the intersection of the row e and the column s contains the tag t = e(s). The corresponding

cryptogram is m = (s; t).

Consider an A-code with E = fe1; e2; e3; e4g, S = fs1; s2g and T = f0; 1g. Clearly M =

fm1;m2;m3;m4g with m1 = (s1; 0), m2 = (s1; 1), m3 = (s2; 0), m4 = (s2; 1). The authentication

matrix is presented in Table 8.1.

8.2.1 Elements of the Theory of Games

The theory of games ([39],[272]) investigates possible game strategies for two competing players A

and B. Each player can make their move independently. For the player A, the collections of moves

is X and for B { the set Y. The cardinality of sets X and Y are n1 and n2, respectively. For every

pair (x; y); x 2 X , y 2 Y, there is a value g(x; y) which characterizes how much the player A wins or

equivalently how much the player B looses. The matrix G = [gxy] is the matrix of the game.

The game processes as follows. The player A selects a row x of the matrix G while B (at the same

time) chooses a column y. The value gxy is the gain of A (or the loss of B). Assume that the player

A wants to gain as much as possible. If A is prudent he may �rst compute the smallest entry in each

row and select the one which gives the biggest gain, that is the row with the gain at least

max
x

min
y

gxy (8.1)

On the other hand, B may �rst calculate the largest value in each column and select the one with the

smallest value. This choice guarantees that no matter what A selects, B will never loose more than

min
y

max
x

gxy (8.2)

When the matrix of the game G is such that

max
x

min
y

gxy = min
y

max
x

gxy = v

then the game has the point of equilibrium and the value v is the value of the game. A player who

apply a pure strategy always decides on the single move (row/column).

Players may choose moves in more complex way using so-called mixed strategies. This time players

attach probabilities (or weights) to each their moves and select the current move probabilistically.

Assume that the strategy of A is determined by the probability distribution � = f�x1; : : : ; �xn1g and

the strategy of Y { by � = f�y1; : : : ; �yn2g, where �xi = P (xi) and �yj = P (yj). It is easy to get an

expression for the expected gain/loss

payo��� =
X

x2X

X

y2Y

�x�ygxy (8.3)

215

EnM m1 m2 m3 m4

e1 1 0 1 0

e2 0 1 1 0

e3 1 0 0 1

e4 0 1 0 1

Table 8.2: Incidence matrix

when the players A and B apply their strategies � and �, respectively. Denote

v1 = max
�

min
�

payo���

and

v2 = min
�

max
�

payo���

The fundamental theorem of rectangular games says that if v1 = v2, then there are two mixed optimal

strategies �� and �� such that

v = payo����� = v1 = v2

The value v is called the value of the game and the two strategies (��,��) is the saddle point of the

game.

8.2.2 Impersonation Game

An authentication system can be looked at as a game between two players. The �rst player consists

of two communicants Alice and Bob. The second player is Oscar. Alice and Bob can select encoding

rules to minimize Bob's chances for deception. On the other hand, Oscar can choose cryptograms

according to a strategy which maximizes his chances for a successful deception of Bob. Communicants'

strategy for the selection of encoding rules is determined by the probability distribution � = f�e j

e 2 Eg where �e is the probability that Alice and Bob choose the encoding rule e (the row of the

authentication matrix). Obviously,
P

e2E �e = 1. Oscar's strategy is described by the probability

distribution � = f�m j m 2Mg where �m is the probability that Oscar selects cryptogram m (whereP
m2M �m = 1).

After both the communicants and opponent have made their choices about the encoding rule e

and the fraudulent cryptogram m = (s; t), Oscar wins only if the tag t0 in the row e and the column

s of the authentication matrix B is equal to t. While considering the game model of authentication,

it is convenient to de�ne the so-called incidence matrix.

An incidence matrix is a binary matrix A = [aem] (aem 2 f0; 1g) with E rows and M columns (e 2 E

and m 2 M). The entry aem = 1 only if the cryptogram m is valid under the encoding rule e.

Otherwise, the entry is zero.

For example, the incidence matrix of the authentication system illustrated in Table 8.1 is given

in Table 8.2. Clearly, knowing the authentication matrix it is easy to construct the corresponding

incidence matrix and vice versa.

Consider the impersonation attack where Oscar knows the A-code i.e. the incidence matrix. After

the communicants (Alice and Bob) agree on their strategy �, it is possible to compute the conditional

probability of Oscar's success provided he has chosen the fraudulent cryptogram m so

payo��(m) =
X

e2E

�eaem (8.4)

216

The probability of Oscar's success never exceeds the values

p�0 = max
�

X

m2M

�mpayo��(m):

Therefore, the optimal strategy �� for Alice and Bob should minimize p�0 that is

p�
�

0 = min
�

(max
�

X

m2M

�mpayo��(m))

= min
�

(max
�

X

m2M

X

e2E

�e�maem):

Similarly, Oscar can compute the conditional probability of his success provided the communicants

have selected the encoding rule e 2 E which is

payo��(e) =
X

m2M

�maem:

The probability never drops below the value

p�o = min
�

X

e2E

�epayo��(e):

The optimal strategy �� for Oscar should maximize p�o so

p
��

0 = max
�

(min
�

X

e2E

�epayo��(e))

= max
�

(min
�

X

m2M

X

e2E

�e�maem):

Note that A = [aem] is the incidence matrix of the game. According to the fundamental theorem of

rectangular games if there is the saddle point of the game then p0 = p�
�

0 = p
��

0 = p
����

0 .

An A-code is perfect under the impersonation if the value p0 of the impersonation game is inde-

pendent of Oscar's strategy �.

Theorem 8.1 (Simmons [465] [466]) An A-code is perfect under the impersonation if and only if

there is a communicants' strategy � such that

p0 = payo��(m) =
S

M
=

1

T

Consider the A-code given by Table 8.1. Assume that the strategy � = f�e1; �e2; �e3 ; �e4g =

f1=2; 1=4; 1=8;1=8g. The conditional probabilities are equal to

payo��(m1) = 1=2 + 1=8 = 5=8

payo��(m2) = 1=4 + 1=8 = 3=8

payo��(m3) = 1=2 + 1=4 = 3=4

payo��(m4) = 1=8 + 1=8 = 1=4

The probability of success for Oscar is at most 5=8. If the communicants use another strategy, say

�� = f1=4; 1=4; 1=4;1=4g, then all conditional probabilities payo��� (mi) = 1=2 for i = 1; 2; 3; 4. Note

that the strategy �� is optimal as the payo� does not depend on the Oscar's strategy.

217

8.2.3 Substitution Game

In the substitution attack, Oscar knows the A-code and a single valid cryptogram m. He tries to

deceive Bob by sending him a fraudulent cryptogram m0. The probability of Oscar's success called

payo� is

payo��(m;m0) = P (m0 valid j m received)

=
P (m0 valid, m received)

P (m received)
(8.5)

For simplicity, denote that P (m) = P (m received). This probability can be computed as follows:

P (m) =
X

e2E

P (m; e)

Some pairs (m; e) never happen { this can be conveniently expressed using the entries of the incidence

matrix so P (m) =
P

e2E aemP (m; e). Note that P (m; e) = P (e)P (m j e) = �eP (m j e). The

probability P (m j e) is equal to the probability PS (s) that the message source has generated a

message s such that m = (s; e(s)). Therefore P (m) =
P

e2E aem�ePS(m; e). The probability P (m j

e) = PS(m; e) as the pair (m; e) uniquely determines the message s.

The probability P (m0 valid;m received) can be transformed in similar way and

P (m0 valid, m received) =
X

e2E

P (m0 valid;m received ; e) =

=
X

e2E

�eP (m
0 valid;m received j e)

=
X

e2E

�eaemaem0PS(m; e)

Finally, we get

payo��(m;m0) =

P
e2E �eaemaem0PS(m j e)

P (m)
(8.6)

After interception of cryptogram m, Oscar can choose a fraudulent cryptogram m0 from (M � 1)

possibilities. His choice can be described in the form of an assignment z :M!M. The assignment

can be represented as

intercepted cryptogram fraudulent cryptogram

m1 ! m0
1(m

0
1 6= m1)

...
...

mM ! m0
M (m0

M 6= mM)

or briey z(m) = m0. There are (M�1)M possible assignments. Let the set Z = fzi j i = 1; : : : ; (M �

1)Mg contain all assignments Oscar may ever apply. Obviously, he will have some preferences for some

assignments. His strategy (preferences) is determined by the probability distribution

� = f�z j z 2 Zg (8.7)

where �z is the probability that Oscar chooses z as his substitution assignment (note that
P

z2Z �z =

1). The probability of Oscar's success when he uses the assignment z 2 Z is

p�1 (z) =
X

m2M

P (m) payo��(m;m0) (8.8)

218

where m0 = z(m). The probability of Oscar's success when he applies the strategy � is

p
��
1 =
X

z2Z

�zp
�
1 (z) =

X

z2Z

�z
X

m2M

P (m) payo��(m;m0) (8.9)

Substituting payo� by equation (8.6), we obtain

p
��
1 =
X

z2Z

X

m2M

X

e2E

�z�eaema
0
em0PS(m; e) =

X

z2Z

X

e2E

�z�e
X

m2M

aemaem0PS(m; e)

Note that g(e; z) =
P

m2M aemaem0PS(m; e) are entries of the game matrix G with E rows and

(M � 1)M columns, where m0 = z(m) and A = [aem] is the incidence matrix of the A-code. Thus the

optimal strategy for Oscar would be �� such that

p
��

1 = max
�

(min
�

X

e2E

X

z2Z

�e�zg(e; z)) (8.10)

On the other hand the optimal Alice and Bob's strategy would be �� and

p�
�

1 = min
�

(max
�

X

e2E

X

z2Z

�e�zg(e; z)) (8.11)

If p
��

1 = p�
�

1 , then the fundamental theorem of rectangular games assures the existence of two optimal

strategies for the players (the saddle point). The value of the game for these two strategies is p1 =

p
��

1 = p�
�

1 . The value p1 expresses also the probability of substitution by Oscar.

An authentication code is perfect for the substitution attack if the value of the substitution game

for the optimal communicants' strategy does not depend on Oscar's strategy. The next theorem

characterizes perfect A-codes.

Theorem 8.2 (Massey [316]) An A-code is perfect under substitution if and only if there is a com-

municants' strategy � such that payo��(m;m0) is constant for every pair (m;m0) 2 M2. The value

of the substitution game is p1 = payo��(m;m0).

As we deal with authentication without secrecy, the requirement that m 6= m0 translates to s 6= s0

where m = (s; t) and m0 = (s0; t0). It is not di�cult to observe that if the payo� function is constant

for every pair s 6= s0, all tags are equally probable and p1 = T�1.

8.2.4 Spoo�ng Game

The substitution game can be generalized to a spoo�ng game. In the spoo�ng game, the communicants,

Alice and Bob, play against the opponent Oscar. Oscar knows the A-code applied and sees r di�erent

valid cryptograms sent over the channel. He chooses a fraudulent cryptogram m0 (the cryptogram has

to be di�erent from all cryptograms observed) and tries to deceive Bob so he will accept m0 as the valid

cryptogram. The spoo�ng game can be analysed in similar way to the analysis of the substitution

game. If the spoo�ng game has a saddle point, then the value of the game denoted by pr is determined

by the following theorem.

Theorem 8.3 If the spoo�ng game is de�ned by an A-code, then

pr �
1

T
: (8.12)

The equality holds if and only if for any sequence of r observed cryptograms (mr 2 Mr) and any

fraudulent cryptogram m0 (m0 is di�erent from the observed cryptograms)

payo�(mr ;m0) =
1

T
: (8.13)

219

An A-code is r-fold secure against spoo�ng if the game values for impersonation, substitution and all

spoo�ng games are

pi =
1

T

where i = 0; 1; : : : ; r. Recall that game values are equivalent to the probability of deception or Oscar's

success.

8.3 Information Theoretic Bounds

Bounds for probabilities pi (i = 0; 1; : : : ; r) can be derived using entropies. Let H(E) = �
P

e2E P (e)

log2P (e) is the entropy of the random variable with the probability distribution fP (e) j e 2 Eg over

the set E . Similarly, H(M) and H(S) are entropies of cryptograms and messages, respectively.

Simmons [465] proved that the impersonation probability

p0 � 2�(H(E)�H(EjM)): (8.14)

This bound was re�ned by Johansson and Sgarro in [263] and

p0 � 2�inf(H(E)�H(EjM)): (8.15)

where inf stands for in�mum that is the greatest lower bound. The in�mum is taken over all source

statistics that do not change the set of pairs (m; e) for which P (m; e) 6= 0.

In 1974 Gilbert, MacWilliams, and Sloane [200] considered a general class of A-codes without

secrecy and proved that the probability of substitution

p1 � E�1=2 (8.16)

Now we are going to generalize the bound (8.16) for the case of spoo�ng of order r. To simplify our

considerations we assume that

1. the message source generates source states with the uniform probability i.e. P (s) = 1=S for

s 2 S,

2. Oscar selects the fraudulent cryptogram m0 that maximizes the probability P (m0 is valid j mr).

The average probability pr of Oscar's success is

pr =
X

mr2Mr

P (mr)max
m0

P (m0 is valid j mr)

First we observe that

pr � 2�H(M 0jMr) (8.17)

where H(M 0 j M r) is the conditional entropy of that the fraudulent cryptogram is valid provided

r cryptograms have been seen. From the de�nition of the conditional entropy and properties of the

logarithm, we get the following sequence of inequalities

H(M 0 jM r) = �
X

mr2Mr

X

m02M

P (m0 is valid;mr) log2 P (m
0 is valid j mr)

� �
X

mr2Mr

X

m02M

P (m0 is valid;mr) log2max
m0

P (m0 is valid j mr)

� � log2

X

mr2Mr

X

m02M

P (m0 is valid;mr)max
m0

P (m0 is valid j mr)

= � log2 pr

220

This sequence produces the requested inequality (8.17).

Secondly, we will show that

H(M 0 jM r) �
H(E)

r + 1

Note that H(E) � H(E j Sr). As the pair: message and encoding rule, assigns the unique cryptogram

so H(E j Sr) = H(E;M r j Sr) so

H(E) � H(E;M r j Sr)

Using the properties of the entropy, we obtain

H(E;M r j Sr) = H(M r j Sr) +H(E jM r; Sr)

The knowledge of r cryptograms is su�cient to determine the corresponding r messages so H(E j

M r; Sr) = H(E jM r) and H(E jM r) � H(E) �H(M r j Sr) Clearly,

H(M 0 jM r) � H(E jM r)

as the uncertainty of encoding rules must be equal or bigger than the uncertainty associated with the

decision about the fraudulent cryptogram. In other words, if the encoding rule is known so is the

valid cryptogram. This means that

H(M 0 jM r) � H(E jM r) � H(E) �H(M r j Sr) (8.18)

The messages are independently and uniformly selected from the set S so

H(M r j Sr) = rH(M j S) (8.19)

There are two possible cases:

(1) H(M j S) �
H(E)

r+1
, then according to (8.18) and (8.19) we get

H(M 0 jM r) �
H(E)

r + 1
(8.20)

(2) H(M j S) � H(E)

r+1
, then H(M 0 jM r) = H(M 0 jM r ; S) � H(M j S) � H(E)

r+1
. This give the �nal

bound for pr and

pr � 2�
H(E)
r+1 (8.21)

This bound was proved independently by Fak [166] and Pieprzyk [400]. If the inequality (8.21) becomes

equality then

� E = 2H(E) and all encoding rules are equally probable,

� probabilities of deception p0 = p1 = : : : = pr =
1
T
,

More details about entropy bounds for spoo�ng can be found in ([166][400][428][439]).

8.4 Constructions of A-codes

Gilbert, MacWilliams, and Sloane [200] demonstrated that A-codes can be constructed using combi-

natorial designs. Projective spaces are combinatorial objects which may be used to construct A-codes.

Also orthogonal arrays and error correcting codes provide tools for the design of A-codes.

221

M s1 s2 s3 s4
EnS m1 m2 m3 m4 m5 m6 m7 m8

e1 1 0 1 0 1 0 1 0

e2 0 1 1 0 1 0 0 1

e3 1 0 0 1 1 0 0 1

e4 0 1 0 1 1 0 1 0

e5 1 0 1 0 0 1 0 1

e6 0 1 1 0 0 1 1 0

e7 1 0 0 1 0 1 1 0

e8 0 1 0 1 0 1 0 1

Table 8.3: The incidence matrix of an A-code designed in PG(3; 2)

8.4.1 A-codes in Projective Spaces

An n-dimensional projective space PG(n; q) over Galois �eld GF (q) is a collection of points, lines,

planes, and subspaces PG(i; q) (i < n) such that

1. the number of all points in the space PG(n; q) is �(n) = qn+1�1
q�1

= qn + qn�1 + : : :+ q + 1,

2. each subset of (n�r) linearly independent equations constitutes a projective subspace PG(r; q).

The number of all di�erent subspaces of dimension r contained in PG(n; q) is

�(r; n) =
�(n)�(n� 1) � � ��(n� r)

�(r)�(r � 1) � � ��(2)�(1)�(0)

The implementation of hS;M; Ei A-code using the projective space PG(N; q) applies the following

assignments ([400]):

� messages s 2 S are projective subspaces PG(N � 2; q) of PG(N; q). Note that the message

spaces are chosen so the intersection of any two arbitrary message spaces is a projective space

PG(N�3; q) and in general the intersection of every ` message spaces creates a projective space

PG(N � (`+ 1); q),

� encoding rules e 2 E are points,

� cryptogramsm 2M are projective spaces PG(N�1; q) spanned over the corresponding message

space containing the point corresponding to the encoding rule,

The properties of the implementation are:

� the number of encoding rules E = qN ,

� the number of tags is T = q,

� N di�erent pairs (message, cryptogram) uniquely determine the encoding rule applied and break

the A-code,

� probabilities of deception are p0 = p1 = : : : = pr = q�1 for r = 1; 2; : : : ; N � 1,

The projective space PG(3; 2) can be used to construct a simple A-code with four messages, eight

cryptograms, two tags whose incidence matrix is given in Table 8.3. If Oscar sees the cryptogram m4,

he knows that the encoding rule e 2 fe3; e4; e7; e8g. If he wants to send a fraudulent cryptogram for

222

EnM s1 s2 s3 s4
e1 0 0 0 0

e2 0 1 1 2

e3 0 2 2 1

e4 1 0 1 1

e5 1 1 2 0

e6 1 2 0 2

e7 2 0 2 2

e8 2 1 0 1

e9 2 2 1 0

Table 8.4: The authentication matrix of an A-code based on OA1(2; 4; 3)

s4, he has to choose either m7 or m8 { both cryptograms are equally probable. If Oscar observes the

second cryptogramm5, he knows that the encoding rule is in the set e 2 fe3; e4g. This observation does

not help him in deciding what is the cryptogram for s4 { he still has two equally probable candidates.

Any other third observation breaks the A-code and allows Oscar to determine the encoding rule used.

8.4.2 A-codes and Orthogonal Arrays

Orthogonal arrays (OA) are combinatorial designs which are ideally suited for the design of A-codes

without secrecy (Cartesian A-codes). There is also a strong relation between orthogonal arrays and

projective spaces. Indeed, one of the general methods used to construct orthogonal arrays applies

projective spaces.

De�nition 8.1 An orthogonal array OA�(t; n; k) is a �kt � n array of k symbols such that for any t

columns of the array, every one of the possible kt ordered t-tuples of symbols occurs in exactly � rows.

Assume we assign elements of an A-code to components of OA as follows:

� an encoding rule identi�es the unique row,

� a message (source state) labels the unique column,

� a tag is a symbol.

Clearly, we can conclude that for every OA there is the corresponding Cartesian A-code.

Theorem 8.4 (Stinson [487]) Given an orthogonal array OA�(t; n; k), then there is a Cartesian A-

code hS;M; Ei such that E = �kt, S = n, T = k, M = nk, and the probabilities of deception

pi = T�1 = k�1 for i = 0; 1; : : : ; t� 1.

Consider OA1(2; 4; 3). It can be used to design an A-code of the form given in Table 8.4. If Oscar

observes the cryptogram (s3; 2), he can deduce that the applied encoding rule e 2 fe3; e5; e7g. His

chances of success are no better than random selection of a tag from the set f0; 1; 2g for any fraudulent

cryptogram. Any other second observation breaks the A-code.

Theorem (8.4) asserts that any orthogonal array corresponds to an A-code. In many practical

situations we would like to know whether a given A-code can be obtained from an orthogonal array.

More precisely, we know the set of source states S and require the deception probabilities to be

smaller than " (pi � " for i = 0; 1; : : : ; r). We are looking for an OA which produces an A-code

whose construction is in a sense \minimal" i.e. contains the smallest possible collection of tags and

223

encoding rules and satis�es the imposed conditions. This problem can be translated into the language

of Combinatorics. Given the parameter n and conditions t � r + 1, and k � "�1. What is the

\smallest" OA�(t; n; k) ? A discussion of this problem can be found in [488].

8.4.3 A-codes Based on Error Correcting Codes

Error correcting codes (E-codes) were invented to detect and hopefully correct errors that occurred

during the transmission of messages via a noisy channel ([314]).

Given a vector space Vn over GF (q). A vector v = (v1; : : : ; vn) 2 Vn contains n co-ordinates from

GF (q) (vi 2 GF (q) for i = 1; : : : ; n). The Hamming distance between two vectors x; y 2 Vn is the

number of co-ordinates in which the two vectors di�er. The number is denoted by d(x; y).

An (n; `; d) E-code is a set of ` vectors from Vn such that the Hamming distance between any two

vectors is at least d. The set of all codewords is denoted C. Clearly j C j= `.

Johansson, Smeets, and Kabatianskii [264] investigated the relation between A-codes and E-codes.

Their observations are summarized in the following two theorems. The �rst theorem indicates how

A-codes with the requested probability of substitution p1 can be implemented using E-codes.

Theorem 8.5 Given a hS;M; Ei A-code with uniform selection of both messages and encoding rules

and with the probabilities p0 = T�1 and p1 = ". Then there exists a corresponding (n; `; d) E-code

with the parameters n = E, ` = q(q � 1)S + q and d = E(1� ").

The next theorem identi�es a class of E-codes which corresponds to A-codes with protection against

substitution.

Theorem 8.6 Assume there is an E-code C over GF (q) with parameters (n; `; d) such that if c 2 C

then c + �1 2 C for all � 2 GF (q). Then there exists a corresponding Cartesian A-code hS;M; Ei

with parameters S = `q�1, E = nq and probabilities p0 = q�1, p1 = 1� d
n
.

In contrast to combinatorial designs, E-codes o�er an relatively e�cient implementation tool for

A-codes that are perfect under substitution.

8.5 General A-codes

If we drop the restriction on the set of cryptograms then the general A-code is a collection hS;M; Ei

with M � S. As previously, the active opponent Oscar has access to the communication channel.

Alice sends to Bob pairs: a message s and the corresponding cryptogram m. After receiving the

pair (s0;m0) from the channel and knowing the secret encoding rule, Bob recovers the message from

the cryptogram m0 and compares it with the message s0. If they are equal, he accepts the pair as

genuine. Oscar may try impersonation, substitution, or spoo�ng attacks. General A-codes can also be

analysed using the game model. As previously, the spoo�ng game (which covers also impersonation

and substitution) is played between communicants (Alice and Bob) and the opponent (Oscar). Oscar

knows the A-code (the authentication matrix is public) and observes r pairs of (message, cryptogram).

An A-code is r-fold secure against spoo�ng if the values of the games pi (or probabilities of decep-

tion) are

pi =
S � i

M � i

for i = 0; : : : ; r. Readers interested in details of game model are referred to ([465],[466], [468]). The

combinatorial nature of A-codes is studied in ([438], [483], [484], [485]). Bounds for probabilities of

deception are investigated in ([30], [263], [262], [428], [474], [509]). A-codes and their resistance against

spoo�ng are examined in ([436], [437], [499]).

224

EnS s1 s2 s3
e1 1 2 3

e2 2 3 1

e3 3 1 2

e4 1 3 2

e5 3 2 1

e6 2 1 3

Table 8.5: Authentication matrix

EnM m1 m2 m3 m4 m5 m6

e1 0 0 0 1 1 1

e2 0 0 1 0 1 1

e3 0 0 1 1 0 1

e4 0 1 0 0 1 1

e5 0 1 0 1 0 1

e6 0 1 1 0 1 0

e7 0 1 1 1 0 0

e8 1 0 0 1 1 0

e9 1 0 1 0 0 1

e10 1 0 1 0 1 0

e11 1 0 1 1 0 0

e12 1 1 0 0 0 1

e13 1 1 0 0 1 0

e14 1 1 0 1 0 0

Table 8.6: Incidence matrix

8.6 Problems and Exercises

1. Given an A-code in the form of its authenticationmatrix shown in Table 8.5. Determine the set of encoding rules

E, the set of tags T , the set of source states S and the set of cryptogramsM. Assume that the communicants

have agreed to use the encoding rule e3. What are cryptograms for all possible messages ? Is the cryptogram

(s1; 2) valid ?

2. Write an incidence matrix for the A-code given in Table 8.5.

3. Consider again the code in Table 8.5. Suppose that an attacker, Oscar knows that communicants' use the strategy

� = (�e1 ; : : : ; �e6) = (
1

12
;
3

12
;
1

12
;
4

12
;
2

12
;
1

12
)

What are conditional probabilities payo��(mi) for all possible cryptogramsmi ? What are conditional probabili-

ties payo�
�� (mi) when Alice and Bob select encoding rules with uniform probabilities (so �� = (1

6
; 1
6
; 1
6
; 1
6
; 1
6
; 1
6
))

? Disuss the results in the context of impersonation attack.

4. Table 8.2 shows an A-codewith four cryptogramsand four encoding rules. Analyse the code under the substitution

attack. In particular, compute conditional probabilities payo��(m;m0) for the two following strategies: � =

(1
8
; 1
8
; 2
8
; 4
8
) and �� = (1

4
; 1
4
; 1
4
; 1
4
). Discuss possible strategies for Oscar.

5. The incidencematrix in Table 8.6 shows an A-code with fourteen encoding rules and six cryptograms. Analyse the

code under the spoo�ng attack of order 2. Compute conditional probabilities payo�
�
(m;m0;m00) = P (m00valid j

(m;m0) received) for the strategy �� in which communicants choose an encoding rule randomly and uniformly

from all the candidates. Discuss Oscar's chances in the attack.

6. Design an A-code over the projective plane PG(2;2). Note that number of points is 7 in PG(2; 2). Points are

used as messages and encoding rules. If the number of encoding rules is 4, the number of messages must be

3. Represent the A-code as the authentication and incidence matrices. Discuss the properties of the code for

225

the impersonation and substitution attacks. How many observations allow Oscar to �nd out the encoding rule

applied ?

7. Show that it is always possible to design an orthogonal array OA1(2; p; p) with p2 rows and p columns.

Hint: Let a row be labelled by a pair (a; b) 2 Z2
p and a column by an integer c 2 Zp. For the row (a; b) and

column c, de�ne the array entry a � c + b. Prove that the array is orthogonal (see [488] page 317). Design an

orthogonal array OA1(2; 5;5) and investigate its properties in the context of impersonation, substitution and

spoo�ng attacks.

Chapter 9

SECRET SHARING

Secret sharing becomes indispensable whenever a secret information needs to be kept in n pieces so

any t pieces allow to recreate the secret (t < n). This is especially true if the storage is not reliable

so there is a high likelihood that some pieces of information will be lost. Secret sharing is also useful

if the owner of the secret does not trust any single person. Instead, the owner is ready to deposit the

secret with a group so only a large enough subgroup of members can reconstruct the secret.

Secret sharing schemes were independently invented by George Blakley [40] and Adi Shamir [458].

Blakley used projective spaces while Shamir applied the Lagrange interpolation.

9.1 Threshold Secret Sharing

A (t; n) threshold secret sharing scheme distributes a secret among n participants in such a way that

any t of them can recreate the secret. But any t� 1 or fewer members gain no information about it.

The piece held by a single participant is called a share or shadow of the secret. Secret sharing schemes

are set up by a trusted authority who computes all shares and distributes them to participants via

secure channels. The trusted authority who sets up the scheme is called a dealer. The participants

hold their shares until some of them decide to pool their shares and recreate the secret. The recovery

of the secret is done by the so-called combiner who on behalf of the co-operating group computes the

secret. The combiner is successful only if the group has at least t members.

Assume that secrets belong to the set K and shares are from the set S.

De�nition 9.1 A (t; n) threshold scheme is a collection of two algorithms. The �rst algorithm called

the dealer

D : K ! S1 � S2 � � � � � Sn

assigns shares to the participants for a random secret k 2 K. The participant Pi 2 P gets their share

si 2 Si. If all share sets Si are equal we simply say that si 2 S. The second algorithm (the combiner)

C : Si1 � Si2 � � � � � Sij !K

takes shares and computes the secret. The combiner recovers the secret only if the number j of di�erent

shares is equal to or bigger than t (j � t). It fails if the number j of shares is smaller than t (j < t).

A (t; n) threshold scheme is perfect if any (t� 1) shares provide no information about the secret.

Note that secret sharing schemes are used one time only { once the secret has been recreated the

scheme is no longer in existence.

9.1.1 The Shamir Scheme

Shamir [458] used the Lagrange polynomial interpolation to design (t; n) threshold schemes. All

calculations are done in GF (p) where the prime p is selected to satisfy the security requirements.

226

227

A (t; n) Shamir scheme is constructed by the dealer Don. First Don chooses n di�erent points

xi 2 GF (p) for i = 1; : : : ; n. These points are public. Next Don selects at random coe�cients

a0; : : : ; at�1 from GF (p). The polynomial f(x) = a0+a1x+ : : :+at�1x
t�1 is of degree at most (t�1).

The shares are si = f(xi) for i = 1; : : : ; n, and the secret is k = f(0). The share si is distributed to

the participant Pi 2 P via a secure channel and is kept secret.

When t participants agree to co-operate, the combiner Clara takes their shares and tries to recover

the secret polynomial f(x). She knows t points on the curve f(x):

sij = f(xij) for j = 1; : : : ; t:

These points produce the following system of equations

si1 = a0 + a1xi1 + : : :atx
t�1
i1

si2 = a0 + a1xi2 + : : :atx
t�1
i2

(9.1)

...

sit = a0 + a1xit + : : : atx
t�1
it

The system (9.1) has the unique solution for (a0; : : : ; at) as

� =

���������

1 xi1 : : : xt�1i1

1 xi2 : : : xt�1i2

...
...

. . .
...

1 xit : : : xt�1it

���������
is a Vandermonde determinant di�erent from zero. The Lagrange interpolation formula gives the

secret

k = a0 =

tX
j=1

sij bj

where

bj =
Y

1 � k � t

k 6= j

xik
xik � xij

:

If Clara knows (t � 1) shares, she cannot �nd the unique solution for k = a0 as the system (9.1)

contains (t� 1) equations with t unknowns.

Consider a simple (3; 6) Shamir scheme over GF (7). The dealer selects six public numbers xi = i

for i = 1; : : : ; 6 and a random polynomial of degree at most 2. Let it be f(x) = 5 + 3x+ 2x2. Shares

are

s1 = f(x1) = 3; s2 = f(x2) = 5;

s3 = f(x3) = 4; s4 = f(x4) = 0;

s5 = f(x5) = 0; s6 = f(x6) = 4:

The shares are sent to the corresponding participants in a secure way.

Assume that three participants P1, P3 and P6 co-operate and have revealed their shares to the

combiner. Clara solves the following system of equations

3 = a0 + a1 + a2

4 = a0 + 3a1 + 2a2

4 = a0 + 6a1 + a2

228

According to the Lagrange interpolation formula, the coe�cients b1 = 6, b2 = 6, and b3 = 3 and the

secret k = a0 = b1s1 + b2s3 + b3s6 = 5. The arithmetics is done in GF (7).

9.1.2 The Blakley Scheme

Blakley [40] used projective spaces to construct a secret sharing scheme. To design (t; n) threshold

scheme, the dealer chooses the projective space PG(t; q) over GF (q). The parameter t is the dimension

of the space. Next Don selects at random a point p 2 PG(t; q). There are (qt�1)

(q�1)
subspaces of

dimension (t � 1). A subspace of dimension (t � 1) is called a hyperplane. Shares are di�erent

hyperplanes PG(t� 1; q) which contain the point p. The shares are distributed to all participants.

At the pooling time, the combiner takes the provided collection of hyperplanes and �nds their

intersection { the point p. The secret cannot be reconstructed when Clara has t�1 or fewer hyperplanes

as the intersection is a subspace containing p.

A modi�cation of the scheme based on a�ne spaces was suggested by Simmons in [467].

9.1.3 The Modular Scheme

Asmuth and Bloom used congruence classes to de�ne threshold schemes [9].

Assume that every participant Pi 2 P is assigned a public modulus pi; i = 1; : : : ; n. The moduli

can be primes or co-primes. The secret k belongs to Zp0 where the modulus p0 is public. Let the

moduli be such that p0 < p1 < : : : < pn. The dealer selects at random an integer s such that

0 < s <
Qt

i=1 pi. The secret k � s (mod p0). Next the dealer distributes shares

si � s (mod pi)

to the participants Pi (i = 1; : : : ; n) via secure channels.

Assume that there are t or more participants who want to recreate the secret. The combiner takes

their shares si1 ; : : : ; sit and solves the following system of congruences

si1 � s (mod pi1)

... (9.2)

sit � s (mod pit)

According to the Chinese Remainder Theorem, the system (9.2) has the unique solution which is

0 < s <
Qt

j=1 pij . The secret is k � s (mod p0).

Note that the condition 0 < s <
Qt

i=1 pi is necessary for the combiner to be able to recompute

the unique s and �nd the correct secret k. s is always smaller than any product of t moduli as

p1 < : : : < pn.

Let us build a (2; 4) threshold scheme. The moduli are: p0 = 17, p1 = 19, p2 = 23, p3 = 29, and

p4 = 31. They are public. The dealer selects a secret number s randomly from Z19�23 = Z437. Let

it be s = 241. Then the secret k = 3 � 241 (mod 17). The shares are s1 = 13 � 241 (mod 19),

s2 = 11 � 241 (mod 23), s3 = 9 � 241 (mod 29), and s4 = 24 � 241 (mod 31). The shares are

communicated securely to all four participants. Assume that the combiner has received two shares

from P2 and P4. Clara can easily solve the following system of congruences

11 � s (mod 29)

24 � s (mod 31)

According to the Chinese Remainder Theorem, there is the solution s = 241. Clearly, the secret

k = 3 � 241 (mod 17).

229

The modular scheme can be modi�ed to work with polynomials instead of integers. Assume

that we would like to construct a (t; n) threshold scheme. Each participant Pi is assigned a public

polynomial modulus pi(x); i = 1; : : : ; n, of degree u. There is also a polynomial modulus p0(x). All

moduli are di�erent irreducible (or coprime) polynomials. The integer u is the security parameter of

the scheme (u = deg pi(x) for i = 0; : : : ; n). The dealer selects randomly and uniformly a polynomial

s(x) from all polynomials of degree at most ut� 1. The secret is k(x) � s(x) (mod p0(x)). Finally,

Don computes shares si(x) � s(x) (mod pi(x)) and distributes them to the participants via secure

channels (i = 1; : : : ; n).

The combiner collects at least t shares. Let them be (si1(x); : : : ; sit(x)). Clara considers the

following system of congruences

si1 (x) � s(x) (mod pi1(x))

... (9.3)

sit(x) � s(x) (mod pit(x))

According to the Chinese Remainder Theorem, the system (9.3) has the unique solution s(x) where

deg s(x) < ut. The combiner recovers the secret k(x) � s(x) (mod p0(x)) and distributes it to all

co-operating participants.

Consider a (2; 3) threshold scheme. GF (25) is the smallest Galois �eld for which it is possible to

�nd enough irreducible polynomials. Let

p0(x) = x5 + x2 + 1;

p1(x) = x5 + x3 + 1;

p2(x) = x5 + x3 + x2 + x+ 1;

p3(x) = x5 + x4 + x2 + x+ 1

be the requested public moduli. The dealer �rst selects at random a polynomial s(x) of degree at

most 9 { let it be s(x) = x9+ x8 + x5 + x+ 1. The secret k(x) � s(x) (mod p0) so k(x) = x4+ 1 or

k = 17. Shares are

s1(x) = x3 + x2 + 1 � s(x) (mod p1(x));

s2(x) = x4 + x2 + x+ 1 � s(x) (mod p2(x));

s3(x) = x3 + x+ 1 � s(x) (mod p3(x)):

Shares can also be represented as s1 = 13, s2 = 23 and s3 = 11.

Having s1(x) and s3(x), the combiner solves the following system of congruences

x3 + x2 + 1 � s(x) (mod p1(x))

x3 + x+ 1 � s(x) (mod p3(x))

The solution is s(x) = x9 + x8 + x5 + x+ 1. The secret k(x) = x4 + 1 � s(x) (mod p0(x)).

9.1.4 (t; t) Threshold Schemes

Karnin, Greene, and Hellman [270] studied (t; t) threshold sharing. The secret can be recovered only

when all participants co-operate. The implementation of (t; t) schemes can be done as follows.

Let the secret integer k be given. The dealer chooses a modulus p which can be any integer bigger

than k. Its value determines the security parameter. Next Don selects randomly, uniformly and

230

independently (t� 1) elements s1; : : : ; st�1 from Zp. The share st is

st = k �

t�1X
i=1

si (mod p): (9.4)

The shares are distributed securely to the participants from the set P = fP1; : : : ; Ptg.

At the pooling time, the combiner can reconstruct the secret only if she is given all shares as

k =

tX
i=1

si (mod p):

Obviously, any (t� 1) or fewer shares provide no information about the secret k.

9.2 General Secret Sharing

The set of all participants is P = fP1; : : : ; Png. The class 2
P of all subsets of P splits into two disjoint

subclasses: the class � of all authorised subsets of P, and the class 2P n � of all unauthorised subsets

of P. Clearly, any authorised subset of participants is able to recover the secret k 2 K while any

unauthorised subset is not. The access structure � is the class of all authorised subsets of P. For

instance, the access structure of (t; n) threshold schemes is

� = fA 2 2P : jAj � tg

Benaloh and Leichter observed in [23] that any reasonable access structure has to satisfy the monotone

property.

De�nition 9.2 An access structure � is monotone if for any subset A 2 � all its supersets B are

contained in �, that is

if A 2 � and (A � B); then B 2 �:

Take a closer look at �. Among the elements (subsets) of � we can identify minimal subsets. A subset

A 2 � is minimal if for all B � A, the subset B does not belong the the access structure �. The

collection of all minimal subset of � is called the access structure basis �0 and

�0 = fA 2 � j 8B�AB =2 �g:

Consider (t; n) threshold scheme. Its basis �0 is

�0 = fA 2 2P : jAj = tg

so it consists of all subsets with precisely t elements. Because of the monotone property, access

structure basis �0 can always be expanded to � by including all supersets generated from the sets of

�0, i.e.

� = cl(�0) = fA : A � B;B 2 �0g

where cl(�0) is the closure of �0.

A general secret sharing over the access structure � is de�ned as follows.

De�nition 9.3 A secret sharing scheme over a (monotone) access structure � with n participants is

a collection of two algorithms: dealer and combiner. For a random secret k 2 K, the dealer algorithm

D : K ! S1 � S2 � � � � � Sn

231

assigns shares to participants. The participant Pi 2 P gets their share from the set Si. The combiner

algorithm

C : Si1 � Si2 � � � � � Sij ! K

takes shares and computes the secret. The combiner recovers the secret only if the set of co-operating

participants fPi1; Pi2; : : : ; Pijg 2 �. It fails if the set of active participants is not in �.

9.2.1 The Cumulative Array Construction

Ito, Saito, and Nishizeki showed how a monotone access structure can be realized as a perfect secret

sharing scheme ([257]). We are going to show their method using the so-called cumulative array.

De�nition 9.4 A cumulative array C� = (S; f)� for the access structure � is a pair comprising of

the share set S and the dealer function f : P ! 2S which assigns a subset of shares to each participant.

The secret k can only be recalculated if all shares are known.

Consider the following access structure

� = cl(ffP1; P2g; fP3; P4gg)

where P = fP1; P2; P3; P4g. It says that P1 and P2 or P3 and P4 or any other their superset can

recover the secret. A cumulative array for this access structure is: f(P1) = fs1; s2g, f(P2) = fs3; s4g,

f(P3) = fs1; s3g, and f(P4) = fs2; s4g. The array is equivalently represented by the matrix

PnS s1 s2 s3 s4

P1 1 1 0 0

P2 0 0 1 1

P3 1 0 1 0

P4 0 1 0 1

By combining cumulative arrays with the Karnin-Greene-Hellman threshold scheme, we obtain a

straight forward implementation of general secret sharing schemes. Thus the task of designing a secret

sharing scheme for an arbitrary access structure � is reduced to the design of a cumulative array C�.

Every access structure � is associated with a Boolean function �(P1; : : : ; Pn) de�ned as follows:

�(P1 = p1; : : : ; Pn = pn) =

(
1 if fPi j pi = 1; i = 1; : : : ; ng 2 �

0 otherwise

From now on, we assume that the function �(P1; : : : ; Pn) is always in the canonical sum-of-product

form (or disjunctive normal form).

For instance, if � = cl(ffP1; P2g; fP3; P4gg) the corresponding Boolean function is �(P1; P2; P3; P4) =

P1P2 + P3P4.

De�nition 9.5 The representative matrix M� of a Boolean function �(P1; : : : ; Pn) expressed as a

disjunctive sum of r products of n variables, is an n � r matrix whose (i; j) entry is \1" if Pi is a

factor of the j-th product, and is \0" otherwise.

The representative matrix of �(P1; P2; P3; P4) = P1P2 + P3P4 is given in Table (9.1).

Let �(P1; : : : ; Pn) be a Boolean function and M� be its representative matrix, if vi and vj are rows

inM� corresponding to Pi and Pj respectively, then Pi_Pj (or Pi+Pj) corresponds to the row vector

vi _ vj in M�.

232

Pnproducts P1P2 P3P4

P1 1 0
P2 1 0
P3 0 1
P4 0 1

Table 9.1: The representative matrix for �(P1; P2; P3; P4) = P1P2 + P3P4

De�nition 9.6 A subset fPi1 ; Pi2; : : :g of the variables of �(P1; : : : ; Pn) is a relation set if Pi1_Pi2_: : :

is represented in M� by the all ones vector.

Consider again the Boolean function �(P1; P2; P3; P4) = P1P2+P3P4 and its representative matrix

given by Table (9.1). Clearly, fP1; P3g, fP1; P4g, fP2; P3g, and fP2; P4g are relation sets.

Now we are ready to establish the connection between the representative matrix M� and the

cumulative array C�.

Theorem 9.1 ([82]) Let �(P1; P2; : : : ; Pn) be a Boolean formula which corresponds to the access

structure � and M� its representative matrix. Let R be the collection of minimal relation sets of M�,

i.e. a collection of product terms obtained from R by uniformly inserting OR or AND operators, which

are not contained in any product term of �(P1; P2; : : : ; Pn). Then the representative matrix with rows

indexed by the variables Pi and columns by product terms derived from R is a cumulative array for �.

In our example �(P1; P2; P3; P4) = P1P2 + P3P4 and its minimal relation set is R = ffP1; P3g,

fP1; P4g, fP2; P3g, fP2; P4gg. A Boolean function associated with R is R(P1; P2; P3; P4) = P1P3+

P1P4+ P2P3+ P2P4. The representative matrix MR is

Pn products P1P3 P1P4 P2P3 P2P4

s1 s2 s3 s4

P1 1 1 0 0

P2 0 0 1 1

P3 1 0 1 0

P4 0 1 0 1

which is a cumulative array C�.

Given access structure � and its Boolean function �(P1; P2; : : : ; Pn). De�ne the dual Boolean

function ��(P1; P2; : : : ; Pn) which is generated from �(P1; P2; : : : ; Pn) by swapping OR with AND

operators.

Theorem 9.2 ([469]) Given access structure � and its Boolean functions �(P1; P2; : : : ; Pn) and �
�(P1; P2;

: : : ; Pn), then the representative matrix M�� is a cumulative array C�.

For the access structure � = cl(ffP1; P2g; fP3; P4gg), the function �(P1; P2; P3; P4) = P1P2+P3P4

and ��(P1; P2; P3; P4) = (P1 + P2)(P3 + P4) = P1P3+ P1P4+ P2P3+ P2P4.

Both methods outlined by Theorems (9.1) and (9.2) produce a cumulative array which in general, is

neither unique nor the smallest (contains the smallest number of shares). Finding the smallest cumula-

tive array amounts to looking for the smallest set R or equivalently for a Boolean function �� with the

smallest number of product terms (minimisation of Boolean functions [197]). Even if the cumulative

array is the smallest, there is no guarantee that the resulting secret sharing scheme is \good". To il-

lustrate the point, consider a (2; 3) threshold scheme. � = ffP1; P2g; fP1; P3g; fP2; P3g; fP1; P2; P3gg.

233

The Boolean functions are

�(P1; P2; P3) = P1P2 + P1P3 + P2P3 + P1P2P3 = P1P2 + P1P3 + P2P3:

and

��(P1; P2; P3) = (P1 + P2)(P1 + P3)(P2 + P3) = P1P2 + P1P3 + P2P3:

The cumulative array C� = M�� is

Pn products P1P2 P1P3 P2P3

s1 s2 s3

P1 1 1 0

P2 1 0 1

P3 0 1 1

Clearly, any two participants are able to recover all three shares (and the secret). Any single one

cannot as there is always a missing share. Note that each participant has two shares. In contrast, the

Shamir scheme which implements (2; 3) sharing, requires a single share for each participant !

9.2.2 The Benaloh-Leichter Construction

Benaloh and Leichter [23] gave a simple construction for arbitrary monotone access structures. Their

construction applies (t; t) threshold schemes.

Given a monotone access structure � over the set P = fP1; : : : ; Png of n participants. A Boolean

function �(P1; : : : ; Pn) associated with the access structure is presented in the minimal disjunctive

normal form. Let

�(P1; : : : ; Pn) =

�X
i=1

i

where i is a product term. The number of factors in the term i is ti. The construction uses �

threshold schemes { each for the given product term i. All threshold schemes share the same secret

k 2 K. The shares in � threshold schemes are selected independently.

Consider an example. Let � = cl(ffP1; P2; P3g; fP1; P4g; fP2; P4gg). The Boolean function

�(P1; P2; P3; P4) = P1P2P3+ P1P4+ P2P4. The �rst product P1P2P3 has three factors so the corre-

sponding threshold scheme is (3; 3). P1 is assigned a share s1;1; P2 { a share s1;2 and P3 { a share

(k�s1;1�s1;2). The second and third product terms have two factors each so their threshold schemes

are (2; 2). For the second threshold scheme, P1 gets a share s2;1 and P4 { a share (k � s2;1). For the

third threshold scheme, P2 obtains a share s3;1 and P4 { a share (k� s3;1). In summary, P1 holds two

shares fs1;1; s2;1g, P2 7! fs1;2; s3;1g, P3 7! fk � s1;1 � s1;2g, and P4 7! fk � s2;1; k � s3;1g.

Note that Pi possesses many shares { each share for di�erent scheme to which Pi belongs. At

the pooling time, participants have to know other co-operating participants as they should provide

correct shares for the given \active" threshold scheme.

9.3 Perfectness

The notion of perfect secret sharing is de�ned as follows.

De�nition 9.7 A secret sharing scheme over the access structure � is perfect if for any subset of

participants A =2 �, the entropy of the secret is

H(K j SA) =

(
H(K) if A =2 �

0 otherwise

234

where SA is a random variable representing the shares assigned to the set A of participants.

Theorem 9.3 The (t; t) Karnin-Greene-Hellman threshold scheme is perfect.

Proof: Recall that (t � 1) shares are selected randomly, uniformly and independently from Zp that

is P (Si = si) = 1
p
for i = 1; : : : ; t � 1 and S1; : : : ; St�1 are independent random variables. The

random variable St = K �
Pt�1

i=1 Si. Without the loss of generality, assume that we have t�1 random

variables S1; S2; : : : ; St�2; St. Clearly, �rst (t � 2) variables are independent. St is independent as

St = K �
Pt�2

i=1 Si � St�1 includes St�1 which is independent from S1; S2; : : : ; St�2. 2

From Theorem (9.3), it is possible to conclude that both the cumulative array and the Benaloh-

Leichter constructions produce perfect secret sharing schemes.

Consider the Shamir scheme. In our de�nition, the dealer selects at random a polynomial f(x)

of degree at most (t � 1), that is Don chooses independently and uniformly at random coe�cients

a0; : : : ; at�1 from GF (p). What happens if the polynomial f(x) is chosen randomly from all polyno-

mials of degree (t � 1) ?

Theorem 9.4 A (t; n) Shamir scheme with a random polynomial f(x) of degree (t�1) is not perfect.

Proof: Let (t�1) participants co-operate with their shares s1; : : : ; st�1. Certainly, they can �nd the

unique polynomial g(x) of degree at most (t � 2) such that si = g(xi) for all i = 1; : : : ; t � 1, where

g(x) = b0+ b1x+ : : :+ bt�2x
t�2. At the same time from the construction of the scheme, it is possible

to write si = f(xi) for i = 1; : : : ; t� 1. So we have the following system of equations

s1 = g(x1) = f(x1)

...

st�1 = g(xt�1) = f(xt�1)

The system can be transformed to

(a0 � b0) + (a1 � b1)x1 + : : :+ (at�2 � bt�2)x
t�2
1 + at�1x

t�1
1 = 0

...

(a0 � b0) + (a1 � b1)xt�1 + : : :+ (at�2 � bt�2)x
t�2
t�1 + at�1x

t�1
t�1 = 0

Now we show by contradiction that a0 6= b0. Suppose that a0 = b0. This implies that the system

becomes

(a1 � b1)x1 + : : :+ (at�2 � bt�2)x
t�2
1 + at�1x

t�1
1 = 0

...

(a1 � b1)xt�1 + : : :+ (at�2 � bt�2)x
t�2
t�1 + at�1x

t�1
t�1 = 0

As the Vandermonde determinant of the system is di�erent from zero, there is only one solution in

which at�1 = 0. This contradicts that f(x) is of degree t � 1 and proves that a0 6= b0. Clearly, the

(t � 1) participants has been successful in �nding an integer b0 which is not the secret { the scheme

is not perfect. 2

To make the Shamir scheme perfect, it is enough to choose all coe�cients ai independently and

randomly with the uniform probability from GF (p) (i.e. ai 2R GF (p) for i = 0; : : : ; t � 1). In this

case, any (t� 1) participants face the system of (t� 1) equations in t unknowns.

235

Corollary 9.1 The Shamir scheme based on a random polynomial f(x) = a0 + a1x+ : : :+ at�1x
t�1

of degree at most (t� 1) with ai 2R GF (p) for i = 0; : : : ; t� 1 is perfect.

9.4 Information Rate

The most important e�ciency measure of secret sharing is the length of shares assigned to each

participant by the dealer. This measure is also called the information rate.

De�nition 9.8 Assume there is a secret sharing scheme with its dealer function D : K ! S1 � S2 �

� � � � Sn over the access structure �. The information rate for Pi 2 P is

�i =
log2 jKj

log2 jSij

The average information rate of the scheme is

~� =
1

n

nX
i=1

�i

The information rate of the scheme is

� = min
i=1;:::;n

�i

Shamir threshold schemes assign always single shares to every participant so their information

rate is one. On the other hand, secret sharing based on cumulative arrays tends to produce much

longer shares. This especially visible in the case of the access structure � = fA : jAj � ng as each

participants is given n� 1 shares so the information rate of the scheme is 1
n�1

.

De�nition 9.9 A secret sharing scheme is ideal if its information rate � = 1 so the length of the

secret equals to the length of a share held by a participant.

9.4.1 Upper Bounds

Given an access structure �, we may build a secret sharing scheme using di�erent methods. None

of the known methods guarantees that the resulting scheme is unique. As a matter of fact, two

designers may come up with two schemes with di�erent information rates. Clearly, the design with

the smaller information rate is better. But there is always a question: Is there any design with a

smaller information rate ? Now we are going to answer the question.

Benaloh and Leichter [23] observed that there are some access structure for which there is no

perfect and ideal scheme. The access structure with the base �0 = ffP1; P2g; fP2; P3g; fP3; P4gg falls

in this category. Capocelli, De Santis, Gargano, and Vaccaro showed in [74] how to get upper bounds

on information rates using the entropy language. To simplify our notations, we are going to denote

the entropy of the random variable which represents the share associated with the participant P 2 P

as H(P) instead of H(SP). The entropy of the secret is H(K). First we prove two lemmas.

Lemma 9.1 Let Y =2 � and X [Y 2 �. Then

H(X j Y) = H(K) +H(X j Y;K):

Proof: Note that H(X ;K j Y) can be written in two ways (see Section 2.4.1):

H(X ;K j Y) = H(X j Y) +H(K j X ;Y)

236

or

H(X ;K j Y) = H(K j Y) +H(X j Y;K)

Thus we get the following sequence:

H(X j Y) +H(K j X ;Y) = H(K j Y) +H(X j Y;K)

H(X j Y) = H(K j Y) +H(X j Y;K)�H(K j X ;Y) (9.5)

As X [Y 2 � so H(K j X ;Y) = 0. On the other hand the scheme is perfect and Y =2 � so

H(K j Y) = H(K) and the �nal result follows. 2

Lemma 9.2 Let X [Y =2 �, then

H(Y j X) = H(Y j X ;K)

Proof: According to Equation 9.5 from Lemma (9.1), we have

H(X j Y) = H(K j Y) +H(X j Y;K)�H(K j X ;Y):

Note that H(K j Y) = H(K) and H(K j X ;Y) = H(K) so H(Y j X) = H(Y j X ;K). 2

Now we are ready to prove the main result.

Theorem 9.5 Given access structure

� = cl(ffP1; P2g; fP2; P3g; fP3; P4gg)

for four participants P1; P2; P3; P4. Then the inequality

H(P2) +H(P3) � 3H(K)

has to be satis�ed for any perfect secret sharing over �.

Proof: First observe that secret sharing is perfect so the following equations are true:

1. H(K j P1; P2) = H(K j P2; P3) = H(K j P3; P4) = 0;

2. H(K j P1) = H(K j P2) = H(K j P3) = H(K j P1; P3) = H(K j P1; P4) = H(K j P2; P4) =

H(K).

Consider the set fP1; P3; P4g 2 �. The set fP1; P4g =2 � so from Lemma 9.1, we have

H(P3 j P1; P4) = H(K) +H(P3 j P1; P4;K)

This is a starting point of the following sequence of inequalities:

H(K) = H(P3 j P1; P4)�H(P3 j P1; P4;K)

� H(P3 j P1; P4) entropy is non-negative

� H(P3 j P1) as H(P3 j P1; P4) � H(P3 j P1)

= H(P3 j P1;K) from Lemma 9.2

= H(P2; P3 j P1;K)�H(P2 j P1; P3;K)

� H(P2; P3 j P1;K) entropy is non-negative

= H(P2 j P1;K) +H(P3 j P1; P2;K)

� H(P2 j P1;K) +H(P3 j P2;K) as H(P3 j P1; P2;K) � H(P3 j P2;K)

= H(P2 j P1)�H(K) +H(P3 j P2)�H(K) from Lemma 9.1

� H(P2) +H(P3 j P2)� 2H(K) as H(P2 j P1) � H(P2)

= H(P2) +H(P2; P3)�H(P2)� 2H(K) as H(P2; P3) = H(P2) +H(P3 j P2)

= H(P2; P3)� 2H(K)

237

Thus we have

3H(K) � H(P2; P3) = H(P2) +H(P3 j P2) � H(P2) +H(P3)

which concludes our proof. 2

Corollary 9.2 Given access structure � = cl(ffP1; P2g; fP2; P3g; fP3; P4gg). Then for any secret

sharing, the information rate � � 2
3
.

Proof: From Theorem 9.5 we have that H(P2) + H(P3) � 3H(K). Clearly, H(P2) = log2 j SP2 j,

H(P3) = log2 j SP3 j and H(K) = log2 j K j. The inequality becomes

log2 j SP2 j

log2 j K j
+

log2 j SP3 j

log2 j K j
� 3

According to the de�nition of the information rate
log

2
jSP2 j

log
2
jKj

� ��1 and
log

2
jSP3 j

log
2
jKj

� ��1. Therefore

2��1 � 3

or equivalently � � 2
3
. 2

Consider the following collection of access structures:

�1 = cl(ffP1; P2g; fP2; P3g; fP3; P4g; fP2; P4gg)

�2 = cl(ffP1; P2g; fP2; P3g; fP1; P3; P4gg)

�3 = cl(ffP1; P2g; fP2; P3g; fP1; P3; P4g; fP2; P4gg)

A closer scrutiny of Theorem 9.5 leads us to the conclusion that its hypotheses are valid also for the

access structures �1;�2;�3. So their information rates are also smaller or equal to 2=3.

9.4.2 Ideal Schemes

Ideal secret sharing schemes attain the best possible information rate � = 1. Now we are going to

discuss the construction of ideal schemes using a linear vector space by Brickell [64].

Recall the Shamir scheme with the polynomial f(x) = a0+ a1x+ : : :+ at�1x
t�1 over GF (p). The

share is

si = f(xi) = a0 + a1xi + : : :+ at�1x
t�1
i :

This can be equivalently rewritten as

si = (a0; a1; : : : ; at�1) � (1; xi; : : : ; x
t�1
i) = �a � �xi

where vectors �a and �xi belong to the vector space GF
t(p). Each participant Pi is assigned the public

vector �xi and the secret share si = �a � �xi { the inner product of the two vectors.

Brickell [64] observed that ideal secret sharing schemes can be designed in a vector space GF t(p).

His method generalises the Shamir approach. Given a vector space GF t(p). Let a function � : P !

GF t(p) assigns a public vector �xi to Pi 2 P in such a way that

8B2� (1; 0; : : :; 0) = b1�x1 + b2�x2 + : : :+ bt�xt (9.6)

for some �b = (b1; b2; : : : ; bt) 2 GF t(p). The vector (1; 0; : : : ; 0) cannot be expressed as a linear

combination of vectors �xi if the subset B =2 �.

238

The dealer �rst determines the vector space, the function � and the collection of public vectors

�x1 = � (P1); : : : ; �xn = � (Pn) where n = jPj. Don also selects at random t� 1 elements of GF (p) { let

them be a2; : : : ; at. The vector �a = (a1; a2; : : : ; at) and the secret k = �a � (1; 0; : : : ; 0) = a1. The share

assigned to Pi is

si = �a � �xi (9.7)

for i = 1; : : : ; n.

At the pooling time, participants submit their shares to the combiner.

1. If the subset B 2 �, then Clara can �nd a vector �b = (b1; : : : ; bt) such that

(1; 0; : : : ; 0) = b1�x1 + b2�x2 + : : :+ bt�xt:

Let us multiply both sides of the equation by the vector �a so

k =

tX
i=1

bi�a � �xi:

The Equation 9.7 guarantees that Clara gets the secret

k =

tX
i=1

bisi:

2. If the subset B =2 � and jBj = r, then Clara gets r linear equations

�xi � �a = si for Pi 2 B

in the t unknowns (a1; : : : ; at). The solution subspace has the dimension ` � t�r (the dimension

` = t � r if all r linear equations are independent). The secret k = a1 cannot be found as

(1; 0; : : : ; 0) 6= b1�x1 + b2�x2 + : : :+ bt�xt for any vector �b = (b1; : : : ; bt).

For a general access structure, the vector space construction has to be treated as a general guide

without a precise implementation methodology. The construction is intuitive but can be used to cover

some special classes of access structures.

Consider the access structure � = cl(ffP1; P2; P3g; fP1; P4gg) over four participants. Let GF
t(p)

be selected for t = 3 and for some big enough p. Assume the following assignment of public vectors

� (P1) = �x1 = (0; 1; 1)

� (P2) = �x2 = (0; 1; 0)

� (P3) = �x3 = (1; 0; 1)

� (P4) = �x4 = (�1;�1;�1)

First we check whether any minimal authorised set B 2 � can get the vector (1; 0; 0) by a linear

combination of its public vectors.

� if B = fP1; P2; P3g, then

(1; 0; 0) = �x3 + �x2 � �x1 = (1; 0; 1) + (0; 1; 0)� (0; 1; 1);

� if B = fP1; P4g, then

(1; 0; 0) = ��x4 � �x1 = (1; 1; 1)� (0; 1; 1);

239

Next we have to verify that any B =2 � is not able to determine the vector (1; 0; 0). We choose the

maximal unauthorised subsets, i.e. those which become authorised after adding a single participant

to them. These subsets are fP1; P2g, fP1; P3g, and fP2; P3; P4g.

� if B = fP1; P2g, then we are looking for b1; b2 2 GF (p) such that

b1�x1 + b2�x2 = b1(0; 1; 1) + b2(0; 1; 0)
?
= (1; 0; 0)

which clearly has no solution.

� if B = fP1; P3g, then we are looking for b1; b3 2 GF (p) such that

b1�x1 + b3�x3 = b1(0; 1; 1) + b3(1; 0; 1) = (b3; b1; b1 + b3)
?
= (1; 0; 0)

To satisfy the equation, b3 = 1 and b1 = 0 so the third component b1 + b3 = 1 6= 0. So there is

no such pair.

� if B = fP2; P3; P4g, then we have to �nd b2; b3; b4 2 GF (p) such that

b2�x2 + b3�x3 + b4�x4
?
= (1; 0; 0)

This is equivalent to the system

b3 � b4 = 1

b2 � b4 = 0

b3 � b4 = 0

which has no solution.

Finally, knowing the public vectors �xi, the dealer selects at random a vector �a. Let it be �a = (12; 17; 6)

over GF(19). The collection of shares are: s1 = �a � �x1 = (12; 17; 6)(0; 1; 1) = 23, s2 = �a � �x2 =

(12; 17; 6)(0; 1; 0) = 17, s3 = �a � �x3 = (12; 17; 6)(1; 0;1) = 18, s4 = �a � �x4 = (12; 17; 6)(�1;�1;�1) = 3.

The secret k = �a � (1; 0; 0) = 12. Recovery of the secret is possible only when the vector (1; 0; 0) is a

linear combination of public vectors �xi for some i. So for B = fP1; P2; P3g, we know that (1; 0; 0) =

�x3+ �x2� �x1. If a combiner knows the shares s1; s2 and s3, the secret k = �a(1; 0; 0) = �a(�x3+ �x2� �x1)=

s3 + s2 � s1 = 18 + 17� 23 � 12 mod 19.

9.4.3 Multiple Cumulative Arrays

We have discussed upper bounds on the information rate of some secret sharing schemes. An imple-

mentation of secret sharing which attains the upper bound is called optimal. Our goal now is to study

optimal or close to optimal implementations of secret sharing using multiple cumulative arrays [84].

Consider the access structure � = cl(ffP1; P2g; fP2; P3g; fP3; P4gg) whose upper bound on infor-

mation rate is � � 2=3. The scheme can be easily implemented in the form of a cumulative array

Pn S s1 s2 s3

P1 1 0 0

P2 0 1 1

P3 1 1 0

P4 0 0 1

The information rate of the scheme is � = 1
2
which is smaller then the optimal.

Assume that a participant Pi is assigned two shares si1 ; si2 2 S, then the composite share is

si = (si1 ^ si2) 2 S such that any authorised subset with Pi in it can recover the secret when Pi uses

their composite share instead of the elementary ones.

240

In our cumulative array we can de�ne the composite share s1;2 = s1 ^ s2 for P3 and the modi�ed

cumulative array is

Pn S s1 s2 s3 s1;2

P1 1 0 0 0

P2 0 1 1 0

P3 0 0 0 1

P4 0 0 1 0

Note that P3 is provided with a single share (instead of two) and the secret can be recovered when

P3 co-operates with P2 or P4. Similarly, another modi�ed cumulative array can be obtained if the

composite share is given to P2. These two copies of (modi�ed) cumulative arrays form the following

multiple cumulative array

Pn S s11 s12 s13 s11;12 s21 s22 s23 s22;23

P1 1 0 0 0 1 0 0 0

P2 0 1 1 0 0 0 0 1

P3 0 0 0 1 1 1 0 0

P4 0 0 1 0 0 0 1 0

The secret k = (k1; k2). The �rst copy of cumulative array determines the �rst part of the secret k1

and the second gives k2 (k1; k2 2 K). So P1 is assigned shares fs11; s21g, P2 ! fs12; s13; s22;23g, P3

! fs11;12; s21; s22g, and P4 ! fs13; s23g. All shares (elementary and composite) are selected from

S. So if jKj = jSj, the information rate is � = 2=3 { the construction attains the upper bound so is

optimal. If the computations of the secret are done for the Karnin-Greene-Hellman threshold scheme,

then s11 + s12 + s13 = k1, s21 + s22 + s23 = k2, and the composite shares s11;12 = s11 + s12 and

s22;23 = s22 + s23.

Let the access structure be

� = cl(ffP1; P2g; fP2; P3g; fP1; P3; P4gg)

A cumulative array for � is

Pn S s1 s2 s3 s4

P1 1 1 0 0

P2 0 1 1 1

P3 1 0 1 0

P4 0 0 0 1

Using three copies of the above array with composite shares, we obtain the multiple array

Pn S 1 2 3 4 (1,2) (3,4) 1 2 3 4 (1,3) (2,4) 1 2 3 4 (2,3,4)

P1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0

P2 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1

P3 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0

P4 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

The secret k = (k1; k2; k3) where each copy of cumulative array generates the corresponding component

of the secret vector. Participants are provided with their shares:

P1 ! fs1(1;2); s21; s22; s31; s32g

P2 ! fs12; s1(3;4); s23; s2(2;4); s3(2;3;4)g

P3 ! fs11; s13; s2(1;3); s31; s33g

P4 ! fs14; s24; s34g

241

where si1+ si2+ si3+ si4 = ki for i = 1; 2; 3 and si(j;k;`) = sij+ sik+ si` in the i-th copy of cumulative

array. The information rate of the scheme is � = 3=5 < 2=3. This is the best possible information

rate achievable using the ideal decomposition or the linear programming method [486].

Given the access structure

� = cl(ffP1; P2g; fP2; P3g; fP1; P3; P4g; fP2; P4gg)

A cumulative array for � is

Pn S s1 s2 s3 s4

P1 1 1 0 0

P2 0 1 1 1

P3 1 0 1 0

P4 1 0 0 1

A multiple cumulative array consists of four copies of the cumulative array with composite shares and

has the following form:

Pn S 1 2 3 4 (1,2) (3,4) 1 2 3 4 (1,3) (2,4)

P1 0 0 0 0 1 0 1 1 0 0 0 0

P2 0 1 0 0 0 1 0 0 1 0 0 1

P3 1 0 1 0 0 0 0 0 0 0 1 0

P4 1 0 0 1 0 0 1 0 0 1 0 0

Pn S 1 2 3 4 (1,4) (2,3) 1 2 3 4 (2,3,4)

P1 1 1 0 0 0 0 1 1 0 0 0

P2 0 0 0 1 0 1 0 0 0 0 1

P3 1 0 1 0 0 0 1 0 1 0 0

P4 0 0 0 0 1 0 1 0 0 1 0

The secret is k = (k1; k2; k3; k4) where each ki is generated by the corresponding copy of the cumulative

array. The information rate � = 4=7 < 2=3 is the best possible information rate achievable using the

ideal decomposition or the linear programming method [486].

9.5 Cheating

So far we have assumed that all participants are honest and follow the recovery protocol of the secret.

Tompa and Woll [500] studied the problem of cheaters who do not obey the protocol. Although they

analysed the susceptibility of the Shamir scheme to cheating, their results can be easily extended for

many other secret sharing schemes.

Given a (t; n) Shamir scheme with a polynomial f(x) = a0 + a1x + : : : ; at�1x
t�1 over GF (p).

The points x1; : : : ; xn 2 GF (p) are public. Each participant Pi holds their secret share si = f(xi),

i = 1; : : : ; n. The secret k = f(0). Assume that at the pooling time, there is t co-operating participants

who wish to reconstruct the secret. Let the participants be P1; : : : ; Pt. Among them there is a cheater,

say P1, who wants to submit a false share. The share is modi�ed in a such way that after the combiner

announces the reconstructed (incorrect) secret, P1 can correct it and recreate the correct value of the

secret.

How the cheater P1 can modify their share ? Assume that P1 knows all co-operating participants

so he knows the set fP1; P2; : : : ; Ptg. P1 can now use the public information to determine a polynomial

242

�(x) such that

�(0) = �1; �(x2) = 0; : : : ;�(xt) = 0:

This can be easily done using interpolation. As there are t di�erent points on �(x), the degree of

�(x) is at most t� 1. The cheater computes �(x1) and creates their false share

~s1 = s1 +�(x1):

P1 submits ~s1 to the combiner. Clara takes all shares ~s1; s2; : : : ; st and determines the polynomial

f(x) + �(x) and the secret ~k = f(0) + �(0) = k � 1 which is clearly di�erent from the original.

Nobody except the cheater can get the true secret k. Cheating will be undetected.

How to modify the Shamir scheme so it is immune against cheating ? The solution is simple.

The points x1; : : : ; xn have to be secret as well. So the share is the pair si = (xi; f(xi) and is kept

secret by Pi. The selection of x1; : : : ; xn is done by the dealer at random from all permutations of n

distinct elements from GF (p) n f0g. Now if ` participants cheat (` � t� 1), there is an overwhelming

probability that the recovered secret is a random value which cannot be corrected by the cheaters.

9.6 Problems and Exercises

1. Design a (4;5) Shamir threshold scheme over GF(787). Choose at random all coe�cients of the polynomial f(x)

and determine shares for the participants.

2. Assume that you are a combiner. A collection of three participants P2, P4 and P5 provided their shares so you

know three points on the parabola. Let them be (2;123), (4;345) and (5;378). Find out the polynomial and the

secret assuming that the threshold is 3 and arithmetics is done in GF(787).

3. Consider the modular threshold scheme with the parameters p0 = 97, p1 = 101, p2 = 103, p3 = 107, p4 = 109.

� Given the secret k = 72 and s1 = 54. Compute the rest of shares providing the threshold t = 2 (n = 4).

� A combiner is given two shares s2 = 51 and s4 = 66 and the threshold is 2, what is the secret ?

4. Given a (2; 3) modular threshold scheme in GF(23).

� Apply the following collection of co-prime polynomials over GF(2): p0(x) = x3+x+1, p1(x) = x3+x2+1,

p2(x) = x3+x2+x, p3(x) = x3+x2+x+1. Check whether the polynomials are really co-prime. Compute

shares knowing that the secret k(x) = x2 + 1 (or equivalently k = 5).

� What is the secret k(x) knowing s1(x) = x2 and s3 = x2 + x+ 1 ?

5. Take an instance of the Karnin-Greene-Hellman scheme.

� Design a system for t = 7 over GF(101).

� What is the secret if t = 5 and shares are s1 = 23, s2 = 75, s3 = 13, s4 = 86 and s5 = 56 in GF(101).

6. LetP = fP1; P2; P3g. Write down all the subsets of 2P . Given the access structure� = ffP1g;fP1; P2; P3g;fP2g;fP3gg

and its complement 2P n � = ffP1; P2g;fP1; P3g;fP2; P3gg. Is the access structure � monotone ?

7. Suppose that P = fA;B;C;Dg and the access structure basis �0 = ffA;Bg;fB;Cg; fC;Dgg. Write down a full

expression for the access structure � (or � = cl(�0)).

8. Construct cumulative arrays for the following access structure bases:

� �0 = ffA;Bg;fB;Cg; fB;Dg;fC;Dgg;

� �0 = ffA;Bg;fB;Cg; fC;Dgg;

� �0 = ffA;B;Cg; fA;B;Dgg.

Using the share assignments provided by the corresponding cumulative arrays and the Karnin-Greene-Hellman

scheme, show how to design secret sharing schemes for the above access structures.

9. The Benaloh-Leichter construction allows to design a secret sharing for an arbitrary access structure straight

from the expression for �. Design the secret sharing schemes for

� �0 = ffA;Bg;fB;Cg; fB;Dg;fC;Dgg;

243

� �0 = ffA;Bg;fB;Cg; fC;Dgg;

� �0 = ffA;B;Cg; fA;B;Dgg.

Compare the resulting schemes with the schemes obtained using cumulative arrays.

10. The Brickell vector space construction allows to design ideal secret sharing schemes. Let P = fA;B;C;Dg. Use

the Brickell method to design ideal schemes for the following access structures:

� �0 = ffA;B;Cg; fA;B;Dgg. Hint: Apply a function � : P ! GF 3(103). �(A) and �(B) must assign

two linear independent vectors while �(C) and �(D) must assign two linear dependent vectors (try �(C) =

�(D)). Check whether the vector (1;0;0) can be expressed by linear combination of the vectors assigned

to participants from the access structure while the vector (1;0;0) is not a linear combination of vectors

assigned to participants from unauthorised subsets.

� �0 = ffA;B;Dg;fA;C;Dg;fB;Cgg. Hint: Consider the following vectors (0;0;1); (0;1; 0); (1;1;0); (1;2; 1).

Can you �nd an assignment � which satis�es the necessary conditions ?

What are shares for �a = (45;3; 56) over GF(57) ?

11. Take the access structure � = cl(ffP1; P2g;fP2; P3g;fP3; P4g;fP2; P4gg) whose information rate is no better

that 2/3.

� Find cumulative arrays for �.

� Combine the arrays into a multiple cumulative array and compute information rates for resulting secret

sharing schemes.

12. Consider a (3;6) Shamir threshold scheme over GF(47). A dishonest participant P1 can cheat the rest of co-

operating participants by providing a modi�ed share ~s1. Assume that the participant holds his share s1 = 24

and modi�es it in such way that �(0) = 13, �(2) = 0; : : :�(6) = 0. What is the modi�ed share ~s1 ?

13. Elaborate how a dishonest participant can cheat in the Karnin-Greene-Hellman scheme.

14. Given a (t; n) modular threshold scheme. Derive appropriate equations which can be used by a dishonest partic-

ipant to cheat. How to prevent cheating in the modular scheme ?

Chapter 10

GROUP ORIENTED CRYPTOGRAPHY

It may be required that the power to execute some operations is to be shared among members of a

group. The recognition of such needs came when NIST tried to introduce the controversial Clipper

Chip [364] with key escrowing to achieve legal wiretapping. The proposed Escrowed Encryption

Standard (EES) uses two parties (called Key Escrow Agencies) to deposit the valid cryptographic key.

Only if the two parties pooled their partial keys together, ciphertext could be decrypted.

This Chapter is devoted to the group oriented (also called society oriented) cryptography. The

security of the presented solutions is conditional as it depends on the assumption of intractability of

underlying numerical problems. The group oriented cryptography emerged as a natural consequence

of embedding secret sharing schemes into a single user cryptography. Unlike in secret sharing, the

secret shares held by participants should never be given to the combiner { shares are used to produce

partial results. The combiner collects partial results and merges them into the �nal result.

Readers who want to study the subject, are recommended a review by Desmedt [147].

10.1 The Conditionally Secure Shamir Scheme

The Shamir scheme described previously is one time. Once shares have been pooled, the secret is

recovered and used. The scheme dies. Also if a participant looses their share, the whole scheme needs

to be regenerated and new shares redistributed. This can be avoided if the Shamir scheme is combined

with exponentiation in GF (q) in which discrete logarithm instances are intractable.

10.1.1 Description of the Scheme

The conditionally secure Shamir scheme is de�ned by two algorithms: dealer and combiner. The

dealer Don selects at random a polynomial f(x) = a0+ a1x+ : : :+ at�1x
t�1 of degree at most (t� 1)

and distributes permanent shares si = f(xi) to participants Pi (i = 1; : : : ; n) via a secure channel.

The values xi 2 GF (q) are public. Don also chooses at random a primitive element g 2 GF (q) { a

generator of the cyclic group of the �eld, and broadcasts it to all participants via a public channel.

We also require that q = 2` so that q� 1 = p is a prime, i.e., p is a Mersenne prime. Note that if p is

prime then all nonzero elements of GF (q) have their multiplicative inverses. The secret is

k = gf(0)

and each participant Pi can easily calculate their transient share

ci = gsi = gf(i):

The transient shares ci in our scheme are like the public communications in the Di�e-Hellman [152]

protocol. The scheme is based on the function

F (x) = gf(x) = ga0 (ga1)x : : : (gat�1)x
t�1

244

245

= g0 g
x

1 : : : gx
t�1

t�1 ;

where gi = gai for i = 0; : : : ; (t� 1) and k = F (0).

At the pooling time, the combiner, Clara, collects t transient shares (ci1 = gf(xi1); : : : ; cit = gf(xit))

from participants (Pi1 ; : : : ; Pit), and sets up the following systems of equations in GF (q)

ci1 = g0 g
xi1
1 : : : g

x
t�1

i1

t�1

ci2 = g0 g
xi2

1 : : : g
x
t�1

i2

t�1

... (10.1)

cit = g0 g
xit
1 : : : g

x
t�1

it

t�1 :

The following theorem asserts that the system of equations (10.1) has a unique solution.

Theorem 10.1 ([85]) The system of equations (10.1) has a unique solution for the variables gi in

Galois �elds GF (q) for q = 2`, such that q � 1 = p is a prime and p > 3. The secret

k = gf(0) =

tY
j=1

(cij)
bj (10.2)

where ci = gsi and

bj =
Y

1 � ` � t

` 6= j

xi`
xi` � xij

(mod p):

Equation (10.2) is equivalent to the Lagrange interpolation formula for polynomials.

Note that the permanent shares are never revealed to the combiner by their owners. They are used

to generate transient shares by participants. The combiner never sees the polynomial f(x). Instead

she works with the function F (x) in order to recalculate the secret k. This is certainly true only if

the corresponding instances of discrete logarithm are intractable.

10.1.2 Renewal of the Scheme

Suppose that some of transient shares have been compromised so there is a possibility that they

could be used by unauthorised persons. We also assume that the permanent shares remain secret

and unknown to the other participants throughout the life time of the scheme. If a transient share

cj is invalidated, the owner { the participant Pj, noti�es the combiner. The combiner invalidates all

the shares of the participants, and distributes to the participants a new primitive element ĝ via a

public channel. This channel has the property that any one can read it but the transmitted messages

cannot be modi�ed without detection of such modi�cations. After authentication of the new primitive

element, the participants use ĝ to regenerate their transient shares using

ĉi = ĝsi for i = 1; : : : ; n:

Renewal Algorithm { regenerates lost transient shares

R1. Participant Pi noti�es the combiner that their share ci has been compromised. At this stage the

combiner ignores requests from other participants to reconstruct the secret key.

246

R2. The combiner generates at random a R (1 < R < q � 1) such that ĝ = gR is another primitive

element. The element ĝ is distributed via a public channel to all participants, and the pair

(R;R�1) is kept by the combiner for a further reference. The combiner now accepts requests

from participants who would like to reconstruct the secret key.

R3. The participants who would like to reconstruct the secret, calculate their new transient shares

ĉi = ĝsi = gRsi ;

and send these to the combiner.

R4. The combiner computes k̂ = ĝf(0) using Expression (10.2). Now k = gf(0) can be readily

recovered from k̂ since

k = gf(0) = gRf(0)R
�1

= (k̂)
R
�1

:

Only the combiner knows the pair (R;R�1), hence only the combiner can recreate the secret.

Assuming that solving an instance of discrete logarithm problem is intractable, the above algorithm

will regenerate the shares securely provided that R is chosen randomly by the combiner.

The combiner can recreate the secret only if she knows t transient shares (t is the threshold value

of the scheme). On the other hand an opponent who knows only r shares (r < t), cannot solve the

suitable system of equations and is unable to recreate the secret.

Once the scheme is created by the dealer, the secret k = gf(0) remains the same for the life-time

of the scheme. New primitive elements are generated from the initial primitive element by combiner

at the time when there is a group of participants who are willing to cooperate to recreate the secret.

10.1.3 Non-interactive Veri�cation of Shares

We now describe a veri�cation protocol which allows all participants to check whether the secret

sharing scheme parameters are consistent, i.e., the shares si are consistent with the polynomial f(x).

The veri�cation protocol due to Pedersen [395] is based on the commitment function:

E(s; u) = gshs+u

where g is a randomly chosen primitive element in GF (q), and h is a randomly selected integer such

that loggh is unknown.

De�nition 10.1 A secret sharing with veri�cation protocol has to satisfy the following two conditions

1. if all parties: the dealer and participants, follow the protocol, then each participant Pi accepts

their share si with probability 1 (i = 1; : : : ; n),

2. any subset Ai 2 � of t or more di�erent participants who have accepted their shares using the

veri�cation protocol recovers the secret k0 6= k = f(0) with an negligible probability.

Veri�cation Protocol { checks consistency of shares

V1. The dealer �rst designs a (t; n) Shamir scheme with a polynomial f(x) = k+a1x+ : : :+at�1x
t�1

of degree at most (t � 1) with shares si = f(xi) assigned to participants Pi (i = 1; : : : ; n). The

secret k = f(0). Shares are communicated to corresponding participants secretly. The dealer

publishes two random integers g; h 2 GF (q) where g is a primitive element and loggh is not

known.

247

V2. Don calculates E0 = E(k; u) for a random u 2R GF (q). E0 is a commitment to the secret k.

Next he chooses at random a sequence of t � 1 elements b1; : : : ; bt�1 2 GF (q) and computes

commitments Ei = E(ai; bi) to coe�cients of the polynomial f(x) for i = 1; : : : ; t � 1. All

commitments Ei are broadcast.

V3. Don creates a polynomialB(x) = u+b1x1+: : :+bt�1x
t�1 and sends ui = B(xi) to the participant

Pi via a secure channel (i = 1; : : : ; n).

V4. Each participant Pi veri�es whether

E(si; ui) �

t�1Y
j=0

E
x
j

i

j
mod q (10.3)

Equation (10.3) is true for each index i = 1; : : : ; n as the left side of the equation can be derived

from the right one as

t�1Y
j=0

E
x
j

i

j
� E0

t�1Y
j=1

(gajhaj+bj)x
j

i

� gkhk+u � ga1xih(a1+b1)xi : : : gat�1x
t�1
i h(at�1+bt�1)x

t�1
i

� gk+a1xi+:::+at�1x
t�1

i hk+a1xi+:::+at�1x
t�1

i
+u+b1xi+:::+bt�1x

t�1

i

� gf(xi)hf(xi)+B(xi)

� gsihsi+ui

� E(si; ui) mod q

The above transformations prove that the �rst condition of De�nition (10.1) is satis�ed. The proof of

the second condition is left as an exercise.

10.1.4 Proactive Secret Sharing

Herzberg, Jarecki, Krawczyk, and Yung came up with a concept of proactive secret sharing [241]. It is

expected that throughout the life-time of the system, shares may be either compromised by revealing

some of them or corrupted by deleting some shares. Clearly, any (t; n) threshold scheme tolerates

(t � 1) revealed and (n � t) lost shares. If we assume that shares are being compromised (revealed

or lost) gradually, then it is possible to divide the life-time of the system into relatively short periods

of time. At the beginning of each consecutive period, a share renewal protocol is run. The protocol

is always successful if the deterioration of shares does not exceed the bounds for revealed and lost

shares. As the result all compromised (lost or revealed) shares are regenerated while the secret stays

the same. An important characteristics of proactive secret sharing is that the share renewal protocol

does not change the value of the secret.

De�nition 10.2 A proactive secret sharing is a collection of two algorithms: dealer and combiner

with a share renewal protocol which keeps the secret unchanged throughout the life-time of the scheme.

Consider an implementation of proactive secret sharing using Shamir (t; n) threshold scheme. The

scheme is initialised by the dealer. Shares are s
(0)

i
= f (0)(xi) for i = 1; : : : ; n and the secret is

k = f (0)(0) for some polynomial f (0)(x). The share renewal protocol run at the beginning of `-th

period, switches the scheme from the polynomial f (`�1)(x) to f (`)(x). New shares are s
(`)

i
= f (`)(xi)

but secret stays the same k = f (`)(0). The switch between two polynomials is done by using a

polynomial �(x) such that �(0) = 0. In other words, f (`)(x) = f (`�1)(x) + �(x) for ` = 1; :::.

248

We now assume that all participants are honest or in other words, they follow the protocol and

opponents are passive. The share renewal protocol is run concurrently by all participants Pi; i =

1; : : : ; n at the beginning of each time period `. Each participant Pi executes the following steps:

1. Pi chooses at random a polynomial �i(x) = di;1x + : : : + di;t�1x
t�1 in Zq (di;j 2R Zq for

j = 1; : : : ; t� 1). Note that �i(0) = 0.

2. Pi communicates to each Pj (j 6= i) a correction cij = �i(xj). Communication is done via secure

channels (providing secrecy).

3. Pi collects all corrections �j(xi) for j = 1; : : : ; n and computes their new share s`
i
= s`�1

i
+P

n

j=1 �j(xi). The old share is discarded.

Let us illustrate the protocol on a simple example. Given (3; 4) threshold scheme with the poly-

nomial f (0)(x) = 3 + 5x + 12x2 over GF(13). After the initialisation, the collection of shares is

s01 = f (0)(1) = 7, s02 = f (0)(2) = 9, s03 = f (0)(3) = 9, s04 = f (0)(4) = 7. The participants P1; P2; P3 and

P4 generate their random polynomials �1(x) = 2x+6x2, �2(x) = x, �3(x) = 5x+7x2, �4(x) = 9x2, re-

spectively. Next they compute values cij . In particular, P1 calculates c11 = �1(1) = 8, c12 = �1(2) = 2,

c13 = �1(3) = 8, c14 = �1(4) = 0, P2 computes c21 = �2(1) = 1, c22 = �2(2) = 2, c23 = �2(3) = 3,

c24 = �2(4) = 4, P3 obtains c31 = �3(1) = 12, c32 = �3(2) = 12, c33 = �3(3) = 0, c34 = �3(4) = 2, and

P4 �nds out c41 = �4(1) = 9, c42 = �4(2) = 10, c43 = �4(3) = 3, c44 = �4(4) = 1. The participant Pi

forwards the corrections cij to the corresponding participants Pj via secure channels. The value cii

stays with Pi. New shares are s11 = s01 + c11+ c21+ c31+ c41 = 11, s12 = s02 + c12+ c22+ c32+ c42 = 9,

s13 = s03 + c13 + c23 + c33 + c43 = 10, s14 = s04 + c14 + c24 + c34 + c44 = 1. It is easy to check that the

secret stays the same.

The share renewal protocol needs to be modi�ed if potential opponents are assumed to be active.

After the exchange of shares, all participants engage themselves in a non-interactive veri�cation of

shares described in Section (10.1.3). The initialisation of secret sharing includes also calculation and

announcement of public parameters necessary for veri�cation of shares. The commitment function

used is E(s; u) = gshs+u where g is a primitive element and h is a random integer whose logg h is

unknown (g; h 2 GF (p)). Public elements are: the function E() and integers g, h, p. The protocol

runs at the beginning of `-th time period and consists of the following steps:

1. Pi chooses at random a polynomial �i(x) = di;1x + : : : + di;t�1x
t�1 in Zq (di;j 2R Zq for

j = 1; : : : ; t� 1). Note that �i(0) = 0. Next the participant generates a collection of parameters

for veri�cation of the corrections cij = �i(xj). They are Ei;j = E(di; bi;j) where Bi(x) =

bi;0 + bi;1x+ : : :+ bi;t�1x
t�1 is a random polynomial selected by Pi and j = 1; : : : ; t� 1.

2. Pi calculates the corrections cij = �i(xj); j = 1; : : : ; n (j 6= i), and a proper share of the polyno-

mialBi(x) that is ui;j = Bi(xj). The pair (cij ; ui;j) is encrypted using public-key cryptosystems

of the corresponding participants Pj, i.e. vij = EKj
(cij; ui;j) where Kj is the authentic public

key of Pj.

3. Pi broadcasts the message (Pi; `; fEi;j j j = 0; : : : ; t� 1g; fvij j j = 1; : : : ; n; j 6= ig and appends

the signature to eliminate tampering with the contents of the message.

4. After all participants �nished broadcasting, Pi decrypts the cryptograms vji where j = 1; : : : ; n;

j 6= i and veri�es correctness of shares cji and uj;i generated by Pj by checking

E(cji; uj;i)
?
�

t�1Y
�=0

Exi
�

j;�
(mod p)

249

where Ej;0 = E(0; bi;0). Note that Pi has to verify n� 1 shares (corrections) generated by other

participants. If all checks are OK, Pi broadcasts a signed acceptance message. If Pi discovers

that some checks have failed, Pi sends a signed accusation in which they specify misbehaving

participants.

5. If all participants have sent their acceptance messages, then each participant Pi updates their

shares to s`
i
= s`�1

i
+
P

n

j=1 cji. The old share is discarded.

6. If there are some accusations, then the protocol resolves them (for details see [241]). As all

messages are broadcast, it is reasonable to assume that all honest participants will come up

with the same list of misbehaving participants. Honest participant update their shares ignoring

corrections from misbehaving participants.

The above protocol has no provision for dealing with lost shares. We have assumed that in any

point of time there must be a large enough set D of participants whose shares are valid (jDj � t).

The rest of participants P n D either lost their shares or hold invalid ones. To determine the set D,

participants employ a non-interactive veri�cation of shares (see Section (10.1.3). As the veri�cation

may be triggered by any participant at any time, the veri�cation parameters must be generated at

the initialisation stage and updated after each renewal of shares. The next protocol allows to recover

shares and it is run be concurrently by all participants Pi 2 D. Before we describe the protocol, �rst

note that the participants from D want to recover a share s
(`)
r = f (`)(xr) of participant Pr 2 P n D.

Instead of revealing their shares to Pr (and compromising the secret), they randomise the polynomial

f (`)(x) so s
(`)
r stays the same. Finally they supply their shares of the randomised polynomial to Pr

so Pr can recover s
(`)
r using the Lagrange interpolation formula.

The share recovery protocol has to be run for each lost share and involves all participants from

the set D. It takes the following steps:

1. Each Pi 2 D selects a random polynomial �i(x) of degree (t� 1) over Zq such that �i(xr) = 0.

2. Pi broadcasts shares to other participants from D, i.e. sends EKj
(�i(xj)) for Pj 2 D.

3. Pi ensembles their new share of the lost share, i.e. s0
i
= s

(`)

i
+
P

Pj2D
�i(xj) and broadcasts it

to Pr (for instance by cryptogram EKr
(s0
i
)).

4. Pr decrypts the cryptograms and uses the Lagrange interpolation to reconstruct s
(`)
r from the

shares s0
i
of all participants from D.

10.2 Threshold Decryption

The (t; n) threshold decryption allows a group of n participants to extract the message from a cryp-

togram only if the active subgroup B consists of t or more participants or B 2 �. If the collaborating

subgroup is smaller, it learns nothing about the message. The cryptogram is generated by a single

sender and is assumed to be public.

10.2.1 ElGamal Threshold Decryption

The group decryption based on the ElGamal system was described by Desmedt and Frankel in [149].

The system is set up by the dealer, Don, who �rst chooses a proper Galois �eld GF (q) such that

(p = q�1) is a Mersenne prime, p = 2` and discrete logarithm instances are intractable. Further Don

selects a primitive element g 2 GF (q) and a nonzero random integer k 2 GF (q). Next Don computes

250

y = gk mod q and publishes the triple (g, q, y) as the public parameters of the system. The triple is

stored in read-only White Pages so any potential sender has the access to the authentic parameters of

the given receiver { here the receiver is a group P of n participants. The dealer then uses the Shamir

(t; n) threshold scheme over GF (p) to distribute the secret k among the participants. The scheme

uses f(x) with the public sequence of x1; : : : ; xn. The shares are si = f(xi) for i = 1; : : :n, and the

secret k = f(0).

Suppose that a sender Sue wants to send a message m 2 GF (q) to the group P. Sue �rst collects

the public parameters from White Pages, chooses at random an integer r 2 GF (q) and computes the

cryptogram c = (gr ;myr) for the message m.

Assume that B 2 � is the authorised subset so it contains at least t participants. Let it be

B = fP1; : : : ; Ptg. The �rst stage of decryption is executed separately by each participant Pi 2 B.

Pi takes the �rst part of the cryptogram and computes (gr)si mod q. The results are sent to the

combiner.

Having t values grsi , Clara \corrects" the values by computing

(grsi)bi mod q

where bis are computed from the public elements xj of the active set B and

bi �
Y

Pj2B;j 6=i

xj

xj � xi
mod p

Then Clara computes
Q

Pi2B
(grsi)bi = gkr = yr , and decrypts the cryptogram

m � myr � y�r mod q:

using the multiplicative inverse y�r modulo q.

Note that shares are never communicated in clear to the combiner. Instead values (gr)si are

transmitted via a public channel to Clara. Scheme can be used repeatedly. Assuming that the

ElGamal system is secure, the threshold ElGamal is also secure.

(t; n) ElGamal Threshold Decryption

Initialisation: 1. The dealer selects a big enough prime q, two elements g; k 2R GF (q), and

computes y = gk mod q. Don deposits (q; g; y) in White Pages.

2. Don designs a (t; n) Shamir scheme over GF (p) with a polynomial f(x) of degree at most

(t � 1). The secret k = f(0). Shares si = f(xi) are communicated to Pi 2 P secretly (xi

are public i = 1; : : : ; n).

Encryption: Sue takes the triple of authentic elements fromWhite Pages. For a messagem 2 GF (q),

she prepares the cryptogram C = (gr ;myr) where r 2R GF (q).

Decryption: 1. Each participant Pi 2 B; jBj = t, calculates (gr)si mod q and sends the result to

the combiner.

2. The combiner �rst �nds out yr �
Q

Pi2B
(grsi)bi mod q and m � myr � y�r mod q

Suppose the modulus q = 263. The integer p = q � 1 = 262, a primitive element g = 193, the

secret k = 161 and y = gk � 257 mod q. The triple (g; q; y) is public. An instance of (3; 4) Shamir

secret sharing is de�ned by the polynomial f(x) = 161 + 88x+ 211x2 over GF (p). Participants are

P = fP1; P2; P3; P4g with public coordinates x1 = 1, x2 = 2, x3 = 3 and x4 = 4. Their shares

251

are s1 = f(1) = 198, s2 = f(2) = 133, s3 = f(3) = 228, s1 = f(1) = 221, and k = f(0) = 161.

To send a message m = 157, Sue selects a random integer r = 95 and forwards the cryptogram

c = (gr ;myr) = (247; 139) over GF (q).

Assume that our active set is B = fP1; P2; P4g. On arrival of the cryptogram c, each participant

Pi 2 B their correction bi. The corrections are: b1 =
x2

x2�x1

x4

x4�x1
= 90 mod 262, b2 =

x1

x1�x2

x4

x4�x2
=

260 mod 262, b4 = x1

x1�x4

x2

x2�x4
= 175 mod 262. Note that calculations of bi involves �nding the

inverse elements modulo p which is not prime. To �x the problem with inverses, it is enough to choose

g as an element of order p=2 = 131 and to perform all exponent computations modulo p = 131. Next

each Pi 2 B takes the �rst part of the cryptogram and �nds grsibi so

grs1b1 � 49 (mod q); grs2b2 � 102 (mod q); grs4b4 � 155 (mod q):

The above integers are communicated to Clara who multiplies them, �nds yr � 155 mod q and retrieves

the message m = 157.

10.2.2 RSA Threshold Decryption

Desmedt and Frankel [148] showed how the RSA public key cryptosystem can be combined with the

Shamir scheme for group decryption.

All public computations in RSA are done modulo N where N = pq (p; q are strong primes). The

secret computations are done in the multiplicative (cyclic) group of invertible elements of the ring

ZN , and can be performed when '(N) = lcm(p�1; q�1) is known ('(N) = 2p0q0 where p0 and q0 are

primes). Suppose we use a (t; n) Shamir threshold scheme de�ned by a polynomial f(x) of the degree

at most (t � 1). The polynomial can be reconstructed by every subset B of t participants using the

Lagrange interpolation formula

f(x) =
X
Pi2B

f(xi)
Y
j 6=i

Pj2B

(x� xj)

(xi � xj)
mod '(N): (10.4)

Computations modulo '(N) = 2p0q0 can be done by applying the Chinese Remainder Theorem { this

involves calculations for the following three moduli: 2, p0, and q0. Multiplicative inverses of (xi�xj) in

Equation (10.4) exist only if they are co-prime to f2; p0; q0g. It is impossible to satisfy these conditions

when the number of participants is greater than two. For example it is impossible to select three

x1; x2; x3 such that all their di�erences are odd. The way out is to set f(xi) (i = 1; : : : ; n) and all

di�erences (xi; xj) (i 6= j) to even numbers, so that all computations yield integers which can be

represented as vectors: a = (0 mod 2; a mod p0; a mod q0). This implies that all xi (i = 1; : : : ; n) have

to be odd (including the coordinate for the secret). Therefore we assume that the secret is f(�1)

(instead of the usual `0').

Consider the denominator of Equation (10.4)

Y
Pj2B;j 6=i

1

(xi � xj)
=

Q
Pj2PnB;j 6=i

(xi � xj)Q
Pj2P;j 6=i

(xi � xj)

Note that �i =
Q

Pj2P;j 6=i
(xi � xj) does not depend upon the currently active set of participants B

and is known to the dealer at the setup time. So Equation (10.4) can be equivalently represented as

f(x) =
X
Pi2B

f(xi)

�i

Y
Pj2PnB;j 6=i

(xi � xj)
Y

Pj2B;j 6=i

(x� xj) mod '(N): (10.5)

Now we are ready to describe the RSA threshold decryption. The dealer �rst designs an RSA system

with public elements: the modulus N and the public exponent K. The secret key is k and k �K =

252

1 mod '(N). Don next sets up a Shamir (t; n) threshold scheme with polynomial f(x). All public

coordinates xi are odd numbers. The secret k�1 = f(�1) and all shares si =
f(xi)

�i
are even numbers.

The shares are distributed to participants of P secretly.

For a message m 2 ZN , a sender creates the cryptogram c = mK (mod N) and broadcast it to

the group. On receipt, each participant Pi of a subgroup B = fP1; : : : ; Ptg 2 � computes

ci � csi mod N

and dispatches the result to a trusted combiner.

Clara collects partial cryptograms ci; i = 1; : : : ; t and knowing the currently active subset B =

fP1; : : : ; Ptg, modi�es them

ĉi � c

Q
Pj2PnB;j 6=i

(xi�xj)
Q

Pj2B;j 6=i
(�1�xj)

i
mod N (10.6)

Finally, she recovers the messageY
Pi2B

ĉi � c = cf(�1)+1 = ck � m (mod N)

(t; n) RSA Threshold Decryption

Initialisation: 1. The dealer designs an RSA system with the modulus N , the public key K, and

the secret key k. Public elements (N;K) are deposited with White Pages.

2. Don sets up a (t; n) Shamir scheme with a polynomial f(x) of degree at most (t � 1)

over Z'(N). The coordinates xi are odd and public. Shares si =
f(xi)

�i
are even where

�i =
Q

Pj2P;j 6=i
(xi � xj). The secret f(�1) = k � 1.

Encryption: Sue takes public elements N;K from White Pages. For a message m 2 ZN , the

cryptogram c � mK mod N .

Decryption: 1. Each participant Pi 2 B; jBj = t, computes ci � csi mod N .

2. The combiner corrects the partial decryptions getting ĉi according to Congruence (10.6)

and recovers the message m.

Let us illustrate the scheme on a simple example. The dealer selects two primes p = 11 and q = 23.

The modulus N = pq = 253 and '(N) = 110. The dealer also creates an instance of Shamir secret

sharing for four participants P = fP1; P2; P3; P4g with the threshold t = 3 using a random polynomial

of degree at most 2 over Z'(N). Let it be f(x) = 6 + 15x + 81x2. Public coordinates are x1 = 1,

x2 = 3, x3 = 5 and x4 = 7. The secret key k = f(�1) + 1 = 73 and the public key K = 107. Public

information is (K;N) and coordinates xi for Pi 2 P. Don computes parameters �i and

�1 = (x1 � x2)(x1 � x3)(x1 � x4) � 62 (mod 110)

�2 = (x2 � x1)(x2 � x3)(x2 � x4) � 16 (mod 110)

�3 = (x3 � x1)(x3 � x2)(x3 � x4) � 94 (mod 110)

�4 = (x4 � x1)(x4 � x2)(x4 � x3) � 48 (mod 110)

Clearly, �i does not have its inverse modulo 110 as they are even and divisible by 2. Take �1. It

can be represented in the vector form as �1 = (0 mod 2; 2 mod 5; 7 mod 11). We compute ��11 =

(0 mod 2; 2�1 mod 5; 7�1 mod 11) = (0; 3; 8) = 8 and

��12 = (0 mod 2; 1 mod 5; 9 mod 11) = 86

��13 = (0 mod 2; 4 mod 5; 2 mod 11) = 24

��14 = (0 mod 2; 2 mod 5; 3 mod 11) = 102

253

Don prepares shares for participants

s1 = f(x1)�
�1
1 � 46 (mod 110);

s2 = f(x2)�
�1
2 � 90 (mod 110);

s3 = f(x3)�
�1
3 � 54 (mod 110);

s4 = f(x4)�
�1
4 � 30 (mod 110)

and sends them to corresponding participants via secret channels.

A sender, Sue, takes her message m = 67 and public elements and computes the cryptogram

c = mK = 67107 � 89 mod 253. The cryptogram is broadcast to all participants. Let an active set be

B = fP1; P3; P4g. Each participant from B computes their partial cryptogram and

c1 = cs1 � 78 (mod 253);

c3 = cs3 � 100 (mod 253);

c4 = cs4 � 144 (mod 253):

The partial cryptograms are sent to the combiner. Clara corrects the cryptograms

ĉ1 = c
(x1�x2)(�1�x3)(�1�x4)
1 � 177 (mod 253);

ĉ3 = c
(x3�x2)(�1�x1)(�1�x4)
3 � 210 (mod 253);

ĉ4 = c
(x4�x2)(�1�x1)(�1�x3)
4 � 100 (mod 253):

and recovers the message

m =
Y
Pi2B

ĉi � c = ĉ1ĉ3ĉ4c � 67 (mod 253):

10.2.3 RSA Decryption without Dealer

It may happen that participants fail to agree on who can be a trusted dealer. The way out is to allow

the sender to set up the system and to compose the requested group of receivers at the time when

there is a need for communication. Also the sender can exercise her discretion in the selection of the

threshold parameter t. A scheme which does not need a trusted dealer was published by Ghodosi,

Pieprzyk, and Safavi-Naini in [198].

Suppose that all participants have established their own RSA public key cryptosystems and reg-

istered their systems with White Pages. The registry provides the authentic public parameters of all

registered RSA systems. Now we will show how the sender constructs a group decryption system on

the top of single user RSA systems. The sender, Sue, creates the group P = fP1; : : : ; Png and looks

up White Pages for their public parameters { let them be Ni and Ki for i = 1; : : : ; n, ordered in the

increasing order so Ni < Ni+1. Next Sue selects at random a polynomial f(x) of degree at most (t�1)

over GF (p) where p < N1. She further computes the collection of shares

si = f(xi)

for a public coordinates xi; i = 1; : : : ; n and the secret k = f(0). The shares are hidden using RSA

encryption so

ci = sKi

i
mod Ni

The �rst part of the cryptogram C1 is the merge of all encrypted shares using the Chinese Remainder

Theorem

C1 = (c1 mod N1; : : : ; cn mod Nn)

254

For a message m (m �
Q

t

i=1Ni), the sender computes mi � m mod Ni and mk
i
mod Ni. The results

create

C2 = (mk

1 mod N1; : : : ;m
k

n
mod Nn)

The cryptogram C = (P; p; t; C1; C2) is broadcast.

Each participant Pi 2 P performs the following operations. First Pi gets ci � C1 mod Ni and

mk

i
� C2 mod Ni. Next using their secret key ki recovers the share si � cki

i
mod Ni. The share si

is broadcast to all other participants. After receiving t � 1 shares each participant in the group can

reconstruct the secret k 2 GF (p) and compute

mi � (mk

i
)k
�1

mod Ni

Although k is public only the participant Pi is able to �nd the inverse k�1 as Pi knows the factors of

Ni and can calculate k � k�1 � 1 mod '(Ni). Now if t participants have sent their partial messages

mi, the combiner can recreate the message m using the Chinese Remainder Theorem.

The decryption process involves two stages: the recovery of the secret k and the reconstruction of

the message. If at least t participants have collaborated at each stage, the message m is reconstructed.

If fewer than t � 1 participants broadcast their shares si at the �rst stage, then the exponent k is

unknown and the message cannot be recovered. An interesting case is when, the requested number of

t� 1 participants have broadcast their shares but fewer than t deposited their partial message to the

combiner. More formally, let the combiner know (m1; : : : ;mt�1). Then the recovery of the message

m is reduced to a guess of a single partial message, say mt. The guess is equivalent to �nding the

inverse of k for some Ni; i = t; : : : ; n.

(t; n) RSA Threshold Decryption without Dealer

Initialisation: 1. The sender creates a group P = fP1; : : : ; Png. She collects the public parameters

of their RSA systems (Ki; Ni); i = 1; : : : ; n from White Pages.

2. Sue constructs a (t; n) Shamir scheme with a polynomial f(x) over GF (p) where p < N1.

The secret k = f(0) and shares si = f(xi). Coordinates xi are public.

Encryption: 1. Sue computes ci � sKi

i
mod Ni; i = 1; : : : ; n. The �rst part of cryptogram is

C1 = (c1 mod N1; : : : ; cn mod Nn).

2. For a message m �
Qt

i=1Ni, she creates C2 = (mk
1 mod N1; : : : ;m

k
n mod Nn).

3. The cryptogram C = (P; p; t; C1; C2) is broadcast.

Decryption: 1. Each participant Pi 2 B; jBj = t, gets ci and mk

i
. Next Pi recovers si = cki

i
mod

Ni. The shares si are broadcast.

2. After receiving t � 1 shares, participant Pi reconstructs k 2 GF (p) and compute their

partial messages mi.

3. The combiner recreate the message m having any t partial messages.

10.3 Threshold Signatures

Group signatures appeared as so-called multisignatures. The concept of multisignatures was intro-

duced independently by Boyd in [52], and Okamoto [383]. A group of n participants generates a

multisignatures if all n members have to contribute to sign documents. Desmedt and Frankel in [149]

255

generalised the concept of multisignatures to the case when each t out of n participants are able to sign

a document { these are threshold signatures. Note that any (t� 1) or fewer participants fail to sign a

document. The veri�cation of signatures can be done by any single person who knows the document

and the signature (and perhaps some additional public information). The threshold signature system

is initialised by a trusted dealer who creates all necessary secret parameters used by the participants.

The signing algorithm is executed independently by the participants. The results are given to not

necessarily trusted combiner who generates the signature. The signature is attached to the message.

The veri�cation algorithm can be executed by any body.

10.3.1 RSA Threshold Signatures

RSA group signature can be implemented in a similar fashion to the RSA threshold decryption. The

group of signers is P = fP1; : : : ; png and the threshold parameter is t. The necessary adjustments are

presented below.

A (t; n) RSA Threshold Signature

Initialisation: 1. The dealer designs an RSA system with the modulus N , the public key K, and

the secret key k. The collection of public elements are stored in White Pages.

2. Don sets up a (t; n) Shamir scheme with a polynomial f(x) of degree at most (t � 1)

over Z'(N). The coordinates xi are odd and public. Shares si =
f(xi)

�i
are even where

�i =
Q

Pj2P;j 6=i
(xi�xj). The secret f(�1) = k�1. The shares are secretly communicated

to P.

Signing: For a given message m 2 ZN , the group B � P of t participants wants to sign the message.

1. Each participant Pi 2 B computes their partial signature

ci � msi mod N:

2. The combiner, Clara, collects t partial signatures and modi�es them according to the

currently active group B

ĉi � c

Q
Pj2PnB;j 6=i

(xi�xj)
Q

Pj2B;j 6=i
(�1�xj)

i
mod N

3. Clara assembles the signature

� =
Y
Pi2B

ĉi = mf(�1)
� mk�1 mod N

Veri�cation: The veri�er, Victor, looks up White Pages for the public parameters (N;K) of the

RSA system used by the group P. Next Victor takes a pair (~m; ~�) and checks whether

VER(~m; ~�) =

�
(~� � ~m)K

?
� ~m mod N

�
(10.7)

If the congruence is true the signature is accepted otherwise it is rejected.

Note that the signature is anonymous as the currently active subset B of t co-signers cannot be

identi�ed by the veri�er.

Recall the example from Section (rsa-threshold-decryption-section). we are going to use the setting

to illustrate the RSA threshold signature. The primes p = 11 and q = 23, the modulus N = 253,

256

and '(N) = 110. The set of participants is P = fP1; P2; P3; P4g with the (3; 4) threshold secret

sharing based on the polynomial f(x) = 6 + 15x+ 81x2 over Z'(N). Public coordinates are x1 = 1,

x2 = 3, x3 = 5 and x4 = 7. The secret key k = f(�1) + 1 = 73 and the public key K = 107. Public

information is (K;N) and coordinates xi for Pi 2 P. Don computes parameters �1 = 62, �2 = 16,

�3 = 94 and �4 = 48. Their "false" inverses are ��11 = 8, ��12 = 86, ��13 = 24, ��14 = 102. Shares

are s1 = 46, s2 = 90, s3 = 54 and s4 = 30. Shares are held by corresponding participants.

Assume that the active set of participants who want collectively to sign a message m = 67, is

B = fP1; P3; P4g. Their partial signatures are

c1 = ms1 � 188 (mod 253)

c3 = ms3 � 12 (mod 253)

c4 = ms4 � 210 (mod 253)

The combiner collects the partial signatures modi�es them accordingly, i.e.

ĉ1 = c
(x1�x2)(�1�x3)(�1�x4)
1 � 177 (mod 253);

ĉ3 = c
(x3�x2)(�1�x1)(�1�x4)
3 � 210 (mod 253);

ĉ4 = c
(x4�x2)(�1�x1)(�1�x3)
4 � 100 (mod 253):

and creates the signature

� =
Y
Pi2B

ĉi = ĉ1ĉ3ĉ4c � 133 (mod 253):

A veri�er, Victor, takes the pair (~m; ~�) = (67; 133) and the public key K = 107 and computes

(~� ~m)K = (133 � 67)107 � 67 (mod 253)

The result equals to the message m = 67 so the signature is considered to be valid.

10.3.2 ElGamal Threshold Signatures

The scheme we present is due to Li, Hwang, and Lee [300]. The signature scheme is set up by a

trusted dealer, Don who on behalf of the group P = fP1; : : : ; Png, sets up the scheme. The scheme

allows to sign a message by every subset B � P of t participants (co-signers).

Don �rst chooses a collision free one-way functionH, a prime modulus q from the range [2511; 2512],

and a prime divisor p of q� 1 from [2159; 2160]. Also Don selects at random element h 2R GF (q) and

compute an element g = h(q�1)=p mod q { g is a generator of a cyclic group of order p. Next Don

determines a polynomial f(x) = a0 + a1x+ : : :+ at�1x
t�1 with ai 2R GF (p).

The group secret is k = f(0) and the group public key is y = gk mod q. The shares are

si = ui + f(xi)

where ui 2R GF (p) n 0 and coordinates xi are public (i = 1; : : : ; n). Further Don calculates public

elements associated with each participant Pi 2 P. They are yi � gsi mod q and zi � gui mod q. The

parameters (H; p; q; g; y) together with f(yi; zi) j Pi 2 Pg are public and accessible for authentication

purposes from White Pages.

To sign a message, each participant Pi �rst chooses their secret integer ki � p � 1 and computes

ri � gki mod q. The element ri is broadcast. Once the active subset B of t participants is known,

each Pi computes

R =
Y
Pi2B

ri � g

P
Pi2B

ki
mod q (10.8)

E � H(m;R) mod p (10.9)

257

Having their (si; ki), Pi generates their partial signature

ci � si
Y

Pj2B;j 6=i

�xj

xi � xj
+ kiE mod p (10.10)

The partial signatures (m; ci) are sent to the combiner.

The combiner can verify partial signatures by checking whether

gci
?
� y

Q
Pj2B;j 6=i

�xj

xi�xj

i
� rEi mod q (10.11)

If all partial signatures are genuine, Clara creates the signature as

� �
X
Pi2B

ci mod p

The triple (B; R; �) is the signature of m.

The veri�er, Victor, takes (B; ~R; ~�; ~m) and computes

T �
Y
Pi2B

~z

Q
Pj2B;j 6=i

�xj
xi�xj

i
mod q (10.12)

~E � H(~m; ~R) mod p (10.13)

Next Victor looks up White Pages for the public parameters of the group and checks

g~�
?
� ~yT ~R

~E

If the congruence holds then the signature is valid.

A (t; n) ElGamal Threshold Signature

Initialisation: 1. The dealer selects: a collision free hashing algorithmH, a prime modulus q with

its prime factor p, the generator g of a cyclic group of order p and the polynomial f(x) of

degree at most (t� 1) with public coordinates associated with each Pi 2 P.

2. The secret of the group is k = f(0). The public key of the group is y � gk mod q. The

shares assigned to participants are si = ui + f(xi).

3. Don publishes (H; p; q; g; y) together with f(yi; zi) j Pi 2 Pg where yi � gsi mod q and

zi � gui mod q.

Signing: 1. Each active participant Pi chooses a secret ki � p � 1 and computes ri � gki mod q.

The element ri is broadcast.

2. Once the active subset B � P is known, each participant Pi 2 B computes R and E

according to Congruence (10.8) and (10.9), respectively.

3. Pi computes their partial signature ci by using Equation (10.10) and sends (m; ci) to the

combiner.

4. The combiner, Clara, veri�es the partial signatures by checking Congruence (10.11). If

the congruence holds for all participants, she computes � =
P

Pi2B
ci mod p. The triple

(B; R; �) is the signature of m.

Veri�cation A veri�er, Victor, checks whether

g~�
?
� ~yT ~R

~E

where T is de�ned by Congruence (10.12) and ~E by (10.13). If the check is true the signature

is accepted.

258

The veri�er accepts always a genuine signature. This observation ows from the following sequence

of congruences

g~� � g

P
Pi2B

~ci

� g

P
Pi2B

~si
Q

Pj2B;j 6=i

�xj
xi�xj

+~ki ~E

� g

P
Pi2B

(~ui+ ~f (xi))
Q

Pj2B;j 6=i

�xj
xi�xj g

P
Pi2B

~ki ~E

� g

P
Pi2B

~ui
Q

Pj2B;j 6=i

�xj

xi�xj �

g

P
Pi2B

~f(xi))
Q

Pj2B;j 6=i

�xj

xi�xj �
Q

Pi2B
~r
~E
i

�
Q

Pi2B
~z

Q
Pj2B;j 6=i

�xj

xi�xj

i
� g

~f (0) � ~R
~E

� ~T ~y ~R
~E mod q

The scheme has some interesting properties:

� the signature is not anonymous. The currently active subset B must be known to a veri�er

and the speci�cation of B is attached to the signature. That is why the signature resembles a

multisignature,

� partial signatures ci can be veri�ed by a combiner. This allows to detect and disregard faulty

partial signatures,

� the length of the signature � is determined by the value of prime p and is no longer than 160

bits.

Security depends on the intractability of discrete logarithm. Some possible attacks are discussed in

[300]. Also the authors studied a variant of their signature which works with no dealer.

10.3.3 Threshold DSS Signatures

Gennaro, Jarecki, Krawczyk and Rabin designed a threshold DSS signature in [196]. Recall that

the regular DSS signature was described in Section 7.4. The signature uses two prime moduli: p

and q where q is a large enough factor of (p � 1). g 2 GF (p) is an element of order q. The secret

key is k (1 � k � q) and the public key is K = gk. Elements (K; g; p; q) are public. To generate

a signature for a message m, the signer picks up a random integer r (1 � r � q) and computes

x � (gr
�1

mod p) mod q and y = r(m + k � x) mod q. The signature of m is the pair (x; y). Note a

slight modi�cation in the de�nition of x for which we use r�1 instead of prescribed r. To verify the

triple (~m; ~x; ~y), we check whether ~x
?
� (gmy

�1

Kxy
�1

mod p) mod q.

Before we describe a distributed version of DSS signature scheme, we show how to compute

r�1 mod q collectively by participants P = fP1; : : : ; Png when they know shares of r (each Pi knows

their share ri). To simplify our notation, we are going to use

(r1; : : : ; rn)
(t;n)
$ r

to indicate that integer r is shared by P with the threshold t. The algorithm for computing reciprocals

of r when its shares are distributed among participants from P, is:

1. Participants collectively generate a (t; n) secret sharing of a random element a 2 Zq . In other

words, each participant Pi selects a random polynomial �i(x) of degree at most (t�1) and sends

corresponding shares via secret channel to the rest of participants so every Pj gets �i(xj) (i 6= j).

The polynomial A(x) =
Pn

i=1 �i(x) de�nes our requested (t; n) secret sharing with A(0) = a

and shares aj = A(xj) =
Pn

i=1 �i(xj), or (a1; : : : ; an)
(t;n)
$ a.

259

2. Participants collectively generate a (2t; n) secret sharing of "0", that is, each participant Pi

selects a random polynomial �i(x) (such that �i(0) = 0) of degree at most (2t � 1) and sends

corresponding shares via secret channels to the rest of participants. The polynomial B(x) =P
n

i=1 �i(x) de�nes the requested (2t; n) secret sharing and each Pi holds the share bi = B(xi).

Shortly, (b1; : : : ; bn)
(2t;n)
$ 0.

3. Participants broadcast their values riai + bi, and each participant recreates the value � = ra.

Observe that assuming that R(x) is the polynomial which distributes r among P, then the

polynomial R(x)A(x) +B(x) becomes ra for x = 0.

4. Pi computes ��1 inGF (q) and sets their share ui � ��1ai. It can be shown that (u1; : : : ; un)
(t;n)
$

r�1.

An algorithm for a distributed DSS signature is described below. The signature is secure under

the assumption that the opponent is passive (can eavesdrop only) and can prevent up to a third

of participants to collaborate in the signing process. To simplify the description, we call Joint-

Shamir-RSS a protocol in which all participants collectively generate a (t; n) Shamir secret sharing

with a random secret. Each participant Pi chooses their random polynomial �i(x) = di;0 + di;1x +

: : : + di;t�1x
t�1 where di;j 2R GF (q). Each Pi communicates secretly shares of the polynomial

�i(x) to other participants. Finally, the participant Pj holds a share
Pn

i=1 �i(xj) of the polynomial

f(x) =
P

n

i=1 �i(x). We denote Joint-Zero-SS a protocol similar to Joint-Shamir-RSS except for all

participants select their polynomials such that �i(0) = 0.

(t; n) DSS Signature

Initialisation: 1. The dealer distributes shares of the group secret k, i.e. (k1; : : : ; kn)
(t;n)
$ k using

a polynomial f(x).

2. The dealer announces the public information (K; g; p; q) where K = gk is the public key,

g 2 GF (p) is an element of order q and p; q are two primes such that q is a large factor of

p� 1.

Signing: 1. Participants P collectively generate a random integer r (1 � r � q) by running Joint-

Shamir-RSS protocol, i.e. (r1; : : : ; rn)
(t;n)
$ r.

2. Participants run twice the Joint-Zero-SS protocol and obtain two schemes:

(b1; : : : ; bn)
(2t;n)
$ b and (c1; : : : ; cn)

(2t;n)
$ c:

3. Participants jointly compute x = gr
�1

mod q.

(a) Participants collectively execute Joint-Shamir-RSS so

(a1; : : : ; an)
(t;n)
$ a:

(b) Participant Pi broadcasts vi � riai + bi mod q and wi � gai mod p. The elements

vi; wi are public for i = 1; : : : ; n.

(c) Pi calculates the secret 3= ra mod q using the Lagrange interpolation of (v1; : : : ; vn).

Similarly, Pi computes ga mod p using (w1; : : : ; wn). Clearly, x � (ga)3
�1

mod p mod

q. The �rst part of signature x is published.

4. Participants collectively calculate y � r(m+ k � x) mod q.

260

(a) Pi broadcasts yi � ri(m + kix) + ci mod q. Note that

(y1; : : : ; yn)
(2t;n)
$ y = r(m + kx):

(b) Pi individually interpolates y from public yi; i = 1; : : : ; n.

5. The signature of message m is (x; y).

Veri�cation: Proceeds as in the regular DSS signature. To verify the triple (~m; ~x; ~y), Victor checks

whether

~x
?
� (gmy

�1

Kxy
�1

mod p) mod q:

The above signature tolerates up to (t � 1) lost shares with the total number of n � 2t + 1

participants.

A version of the threshold DSS signature which allows to sign messages in the presence of malicious

opponents, is described in [196].

10.4 Problems and Exercises

1. Given a (2;3) conditionally secure Shamir scheme overGF (23) with f(x) where Pi is assigned xi = i for i = 1;2;3.

Assume some primitive element g 2 GF (23) and take s1 = f(1) = 4 and s2 = f(2) = 19. What is the missing

s3 ? Retrieve the secrets k = f(0) and k0 = gk. Show how the computation of k0 can be done when participants

pool their transient shares gsi .

2. Design a (2;3) conditionally secure Shamir scheme over GF (23). Show the reconstruction process of the secret

when transient shares are pooled by participants.

3. Feldman [171] suggested a non-interactive veri�cation of shares for a (t; n) Shamir scheme with the polynomial

f(x) = a0+a1x+: : :+at�1x
t�1 overGF (p) such that p = �q+1 (� is small integer while q is a large prime). The

dealer after distribution of shares si = f(xi) to the corresponding participants via secret channels, broadcasts

public elements gai mod p for i = 0;1; : : : ; t� 1. Show how Pi can use their secret si together with the public

information to verify the consistency of the share with the public information.

4. Prove that the non-interactive veri�cation of shares in Section (10.1.3) fails with an negligible probability.

5. The concept of proactive secret sharing employs a protocol which allows participants to jointly share "0". First

each participant Pi generates their own random polynomial �i(x) such that �(0) = 0. Next Pi plays a role of the

dealer and distributes shares �i(xj) to other participants. Prove that the polynomial �(x) =
Pn

i=1
�i(x) becomes

0 for x = 0. Show that
Pn

i=1
�i(xj) is a share of "0" of Pj.

6. Given the modular secret sharing. Demonstrate how participants can collectively share "0" by random selection

of individual schemes and by distribution of the corresponding shares via secret channels to other participants.

Generalise the concept for any linear code.

7. Consider the sequence of threshold schemes indexed by their polynomials ff `(x) j ` = 1;2; : : :g in the proactive

secret sharing. Discuss the perfectness of secret sharing for consecutive periods of time.

8. A (3;5) Shamir secret sharing is de�ned by the polynomial f(x) = 38 + 57x+ 112x2 over GF (131) with public

coordinates assigned in typical way xi = i for i = 1; 2;3;4; 5. Assume that an active set of participants is

B = fP2; P3; P5g. Compute shares si and corrections bi for i = 2;3;5. Show encryption and (3;5) ElGamal

threshold decryption by the active set B for q = 263, p = 131 and g = 166 (g is an element of order 131).

9. Consider an instance of (3;4) ElGamal threshold decryption scheme. Public computations should be performed

over GF (23) while secret computations (including secret sharing) should be executed modulo p = 7. Make all

necessary assumptions.

10. In the ElGamal threshold decryption, the �nal retrieval of message from a cryptogram is done by the combiner.

Discuss how the combiner can handle participants who instead of the prescribed grsi , have sent grsibi .

11. In Section (rsa-threshold-decryption-section), the RSA threshold decryption is presented for small parameters

where the modulus N = 253 and any 3 out of 4 participant can decrypt jointly a cryptogram. Show how the

following active sets B can decrypt the cryptogram when

261

� B = fP2; P3; P4g,

� B = fP1; P2; P3g,

� B = fP1; P2; P4g.

12. Design an instance of the RSA threshold decryption where every 2 out of 5 participants can jointly decrypt a

cryptogram. Select two strong primes p and q smaller than 100. Make necessary assumptions.

13. The RSA thresholddecryptionuses the Shamir secret sharing to allow to construct any (t; n) thresholddecryption.

The system can be considerably simpli�ed for (n; n) threshold decryption. Modify the general (t; n) RSA threshold

decryption for the case when t = n. Hint. Apply the Karnin-Greene-Hellman secret sharing.

14. Reconsider the example from Section (10.3.1) Show how the combiner assembles the signature for the following

active sets:

� B = fP2; P3; P4g,

� B = fP1; P2; P3g,

� B = fP1; P2; P4g.

15. Simplify the ElGamal threshold signature when t = n by using the Karnin-Greene-Hellman secret sharing.

Chapter 11

KEY ESTABLISHMENT PROTOCOLS

So far we have tacitly assumed that all cryptographic algorithms can be readily used assuming that

a suitable collection of secret and public keys is already distributed and known to the parties. For

instance, secrecy systems based on secret key encryption require the same key to be shared by both the

sender and receiver. In this Chapter we focus our attention on how keys needed to enable cryptographic

protection can be exchanged among the parties. The key establishment becomes a major hurdle in

computer networks with many users. To show the scale of the problem, assume that a computer

network encompasses n users. If we allow any pair of users to communicate in a secure way using

symmetric key encryption, then we may need to generate and distribute
n

2

!
=
n(n � 1)

2

di�erent keys. If some network (cryptographic) services involve more than two users (for example a

secure conferencing with i users where i = 2; : : : ; n), the number of possible keys to be distributed

can grow exponentially in n as

2n =

nX
i=0

n

i

!
:

If we cannot pre-distribute keys, then we have to establish them on request whenever there is a

collection of parties who want to share the same key.

There are two major categories of key establishment protocols, depending on who is responsible for

the key generation. In the �rst category, there is a trusted authority TA (also called a server) which

generates the requested key material and distributes it among the parties. This category includes

key distribution protocols. The important ingredient of any TA is trust. For our purposes, trust can

be translated into an assumption that a TA will follow the course of action prescribed by the key

distribution protocol and will not divulge any secret information to unauthorized users. In particular,

we exclude any hostile activity by a TA towards any user. Also any potential attacker is not able to

corrupt or collude with TA.

The second category consists of key agreement protocols in which a key is established collectively

as a result of some prescribed interaction among the parties involved in the protocol. This is the class

of decentralized key establishment protocols where there is no need for a trusted authority to generate

and distribute cryptographic keys.

The design of key establishment protocols has to be done with extreme caution mainly because

the interaction is being done via an insecure public network. Usually the interaction involves the

transmission of several messages or protocol passes. It is assumed that a potential attacker can

� record messages and replay them later,

� change their order,

262

263

� modify part or the whole message,

� repeat some messages,

� delete some messages.

Apart from an abundance of potential threats, large computer networks provide no global public

trusted read-only registry (White Pages) which could be used to verify identities of the parties involved.

The parties are usually called principals. A principal is understood to be any active entity. So it can

be a user, a computer process, a terminal, a node in computer network, etc.

The main goal of key establishment protocols is to enable two or more principals to obtain some

cryptographic key. Some other desirable goals may include

� key freshness,

� entity authentication,

� key con�rmation,

� implicit key authentication, and

� explicit key authentication.

A key is fresh if it has never been generated and used before. Entity authentication is a corroboration

process which allows one principal to correctly identify the other involved in the protocol. Typically,

it allows a party to check whether an other party is active (alive) at the time when the protocol is

being executed. Key con�rmation is a property of protocol which allows one principal to make sure

that the other party possesses a given key. Implicit key authentication provides an assurance to one

principal that no one except a speci�c other party could have gained access to a given key. Implicit

key authentication can be also viewed as key con�dentiality. By explicit key authentication we mean

that both implicit key authentication and key con�rmation hold.

A treatment of key establishment protocols can be found in [488] and [334]. For a variety of other

interpretations of entity authentication, see [212].

11.1 Classical Key Distribution Protocols

An atomic event in a key establishment protocol is a single transmission of a message from one

principal to another. This is also called a pass of a protocol. To indicate that a principal A sends a

message m to a principal B, we write (A! B : m). Note that m may consist of plaintext or ciphertext

or both. For example, if A wants to use encryption to ensure the con�dentiality of a plaintext ptxt,

the transmission would be written as (A ! B : fptxtgkAB), where fptxtgkAB denotes the message

obtained by encrypting ptxt using a (secret) cryptographic key kAB shared by A and B.

In 1978 Needham and Schroeder [366] published their key exchange protocols. The aim of the

protocol is to establish a secret key between two principals A and B with the help of a trusted server

S.

Needham-Schroeder Protocol (Private Key Case)

Goal: To distribute a fresh secret key to A and B using a trusted server S.

Assumptions: S shares a common secret key kAS with A and a common secret key kBS with B. A

and B choose two random challenges (nonces) rA and rB, respectively.

264

Message Sequence: The protocol consists of the following sequence of messages:

1. A! S : A;B; rA.

2. S ! A : frA; B; kAB; fkAB; AgkBSgkAS .

3. A! B : fkAB; AgkBS.

4. B ! A : frBgkAB .

5. A! B : frB � 1gkAB.

The protocol is initiated by A who sends its name A, B's name and its challenge rA in clear to

the server S. The server replies with the cryptogram frA; B; kAB; fkAB; AgkBSgkAS , where kAB is the

shared key to be used by A and B (also called a session key). A decrypts the cryptogram and checks

whether rA and B match the originals. This check enables A to make sure that the message has come

from the holder of the secret key kAS in response to A's request. If the check is successful, A accepts

kAB and forwards fkAB; AgkBS to B.

B decrypts the cryptogram, learns who wants to talk to it and stores the key kAB. The last two

steps allow B to verify whether A knows the key kAB. B takes his random challenge rB and encrypts

it using kAB. Since A knows the key, she extracts rB from the cryptogram, decrements rB by 1,

encrypts the result and communicates frB � 1gkAB to B. B decrypts the cryptogram and veri�es

whether the challenge has been decremented as required.

First, some general observations. The protocol uses three secure channels (each channel provides

both the con�dentiality and authentication). The two channels between the server and A (kAS) and

between the server and B (kBS) are set up before hand. The third one is created as a result of the

protocol execution. All communication is done via these three channels except the �rst message which

is sent in clear.

Suppose that an opponent, Oscar, copies the message forwarded by A to B in the above protocol

(see [144]) and that somehow obtains the corresponding session key kAB . Perhaps, this key was used

sometime ago and as a waste was carelessly discarded. Now he can trick B to accept an old session

key kAB. Oscar replays the copied message in step (3) and successfully completes the rest of the

protocol. B cannot detect Oscar's impersonation. Observe that the attack shows that the protocol

fails to provide key freshness from the point of view of B. Denning and Sacco [144] suggest to use

timestamps to thwart the attack.

Needham-Schroeder Protocol with Timestamps(Denning and Sacco [144])

Goal: To distribute a fresh secret key to A and B using a trusted server S.

Assumptions: S shares a common secret key kAS with A and a common secret key kBS with B. T

denotes a timestamp value generated at S.

Message Sequence: The parties exchange the following sequence of messages:

1. A! S : A;B.

2. S ! A : fB; kAB; T; fA; kAB; TgkBSgkAS .

3. A! B : fA; kAB; TgkBS.

A and B can make sure that messages are fresh by checking whether the transmission is within

the permitted time interval.

In public key cryptography, users need to know authentic public keys. The server S distributes

authentic public keys provided that every user within the server domain knows the authentic public

265

key KS of the server S. The original Needham-Schroeder protocol consists of seven steps. The version

given below is a modi�cation with timestamps by Denning and Sacco [144]. The protocol does not

use con�dentiality channels at all. All messages are transmitted in clear or in the form of public

timestamped certi�cates (signatures). A certi�cate hmik signed using a secret key k allows anybody

who knows the matching public key K to extract the message m. This is a usual way of providing

an authentication channel under the assumption that K is an authentic public key of the sender and

matches its secret key k.

Modi�ed Needham-Schroeder Protocol (Public Key Case)

Goal: To distribute the authentic public keys KA and KB of A and B, respectively.

Assumptions: A and B know the authentic public key KS of the server. The timestamp is T . The

key kS is the secret key of S.

Message Sequence: The protocol consists of the following sequence of messages:

1. A! S : A;B.

2. S ! A : hA;KA; T ikS ; hB;KB; T ikS .

3. A! B : hA;KA; T ikS ; hB;KB ; T ikS .

11.2 The Di�e-Hellman Key Agreement Protocol

Di�e and Hellman [152] in their seminal paper made several breakthroughs in cryptology. Apart

from introducing the notion of public key cryptography, they showed how two parties A and B can

establish a secret key via an insecure network using a public discussion.

Di�e-Hellman Key Agreement Protocol

Goal: To establish a secret key k between A and B.

Assumptions: A and B use a modulus p (p is a large enough prime) and a primitive element g 2 Z�p .

Both integers p and g are public. The integers � and � are randomly chosen from Z
�
p by A and

B, respectively.

Message Sequence: The parties exchange the following sequence of messages:

1. A! B : g� mod p.

2. B ! A : g� mod p.

A and B compute a common secret key as

k =
�
g
�
��

= (g�)
�
= g

�� mod p:

Consider a toy example. Let the modulus p = 2447 and the primitive element g = 1867. A and

B choose their secret elements at random from Z
�
2447. Let � = 1347 and � = 2186. In step (1), A

communicates to B the integer g� = 18671347 � 1756 mod 2447. In step (2), B sends to A the integer

g
� = 18672186 � 848 mod 2447. A computes the secret key k = (g�)� = 8481347 � 2177 mod 2447. B

calculates the key k = (g�)� = 17562186 � 2177 mod 2447.

266

The protocol su�ers from the intruder-in-the-middle attack. Suppose that our attacker, Oscar, sits

between A and B. In the step (1), after A sends B a message (g� mod p), Oscar intercepts it and

forwards to B his own message (g mod p), where 2 Z�p is an integer chosen by Oscar. B responds

as in the prescribed pass (2) by conveying the message (g� mod p) to A. Again, Oscar intercepts the

message and sends (g mod p) to A. Finally, A computes its secret key kA = (g)� and B calculates

its kB = (g)� . Clearly, the secret keys computed by A and B are di�erent. Note that Oscar knows

both keys kA and kB and controls the message exchange between A and B. A and B.

Another manifestation of the same security problem emerges when A receives two (or more) replies

g
�1 , g�2 from two di�erent persons. A cannot identify the senders of these messages. The parties can

establish a secret key but they do not know with whom they share it ! The protocol provides no key

authentication and no key con�rmation.

11.2.1 The DH problem

Security of the Di�e-Hellman key exchange depends upon the di�culty of �nding g�� from two public

messages g� and g�. This is known as the Di�e-Hellman problem.

Name: DH problem

Instance: Given a prime modulus p, a primitive element g 2 Z
�
p and two integers a and b such that

a � g
� mod p and b � g

� mod p.

Question: What is the integer c such that c � g
�� mod p ?

Let us recall the de�nition of the discrete logarithm (search) problem.

Name: DL problem

Instance: Integers (g; s) that belong to GF (p) determined by a prime p.

Question: What is the integer h (h = 0; : : : ; p) such that h = logg s (mod p) (or equivalently gh �

s mod p) ?

Note that the DL problem is not easier than the DH problem. In other words, the DL problem

could be harder or as hard as the DH problem. To see this, it is enough to assume the existence of an

algorithm which solves the DL problem. This algorithm also solves all instances of the DH problem.

It is unknown what would have happened with complexity of the DL problem if the DH problem had

been shown to be solvable in polynomial time.

It is easy to show that breaking the ElGamal encryption is equivalent to solving the DH problem

(see [488]). For further study of the DH problem, the reader is referred to [325] and [324].

11.3 Modern Key Distribution Protocols

Modern key distribution protocols are assumed to pass some sort of security scrutiny. Veri�cation

can proceeds using formal methods. The algebraic approach to protocol veri�cation applies a �nite

state machine analysis with a de�nition of bad states (a protocol failure) [275]. Burrows, Abadi and

Needham have developed a logic which can analyze the evolution of beliefs during the execution of

cryptographic protocols [70]. This is the well known BAN logic. Gong, Needham and Yahalom have

extended the BAN logic [216]. Their extension is often referred to as the GNY logic. A comprehensive

review of formal veri�cation methods for cryptographic protocols can be found in a survey paper by

Meadows [331].

267

A di�erent approach to the design of key distribution protocols has been suggested by Boyd and

Mao [54], [55]. They argue that instead of verifying the protocol security after the design stage, it is

better to formulate a rigorous design procedure so that the �nal product is always a secure protocol.

To achieve this, the designer needs to establish the minimum cryptographic requirements imposed on

a protocol and identify how these requirements are to be realized.

Otway and Rees [392] designed a protocol which was intended to provide a secure alternative for

the Needham and Schroeder protocol. The protocol presented below is a modi�cation of the original

(see [55] for further details). Challenges rA and rB play a role of timestamps and are used to prevent

the replay attack.

Modi�ed Otway-Rees Protocol (Boyd and Mao [55])

Goals: (1) Establishment of a fresh secret key kAB between two principals A and B.

(2) Mutual key authentication.

Assumptions: S shares a common secret key kAS with A and a common key kBS with B. A and B

choose two random challenges (nonces) rA and rB, respectively.

Message Sequence: The parties send the following sequence of messages:

1. A! B : A; rA.

2. B ! S : A;B; rA; rB.

3. S ! B : fA;B; rB; kABgkBS , fA;B; rA; kABgkAS .

4. B ! A : fA;B; rA; kABgkAS .

The Otway-Rees protocol uses the secure channels (de�ned by two secret keys kAS and kBS) for

both message con�dentiality and authentication. These two roles can be clearly separated as is shown

in the following alternative protocol designed by Boyd and Mao [55].

Boyd-Mao Split Channel Protocol

Goals: (1) Establishment of a fresh secret key kAB between two principals A and B.

(2) Mutual key authentication.

Assumptions: S shares a common secret key kAS with A and a common key kBS with B. A and

B choose two random challenges (nonces) rA and rB, respectively. MACkfmg stands for the

message authentication code of the message m generated under the control of the secret key k.

Message Sequence: The parties send the following sequence of messages:

1. A! B : A; rA.

2. B ! S : A;B; rA; rB.

3. S ! B : fkABgkBS , MACkBSfA;B; rB; kABg,

fkABgkAS , MACkASfA;B; rA; kABg.

4. B ! A : fkABgkAS , MACkASfA;B; rA; kABg.

Note thatMACkfmg provides an authentication channel, whereas fmgk provides a con�dentiality

channel. MACkfmg can be also generated using a keyed hashing algorithm. Only these messages

which need to be recovered are encrypted. Messages sent over the authentication channel are short

and of a �xed length (as determined by the length of the MAC). The advantage of the above protocol

is that messages are relatively short.

268

11.3.1 Kerberos

Kerberos is an authentication system developed at the Massachusetts Institute of Technology (MIT) as

part of the Athena project ([481]). The aim of the project was to provide a broad range of computing

services to students across the campus. Kerberos provides authentication services for principals over

an open computer network. There are two trusted authorities: the authentication server AS and

the ticket granting server TGS. The pre-distributed cryptographic key between a principal A and

the authentication server is computed from A's password (passwdA) using a one-way function f as

kA;AS = f(passwdA). The password and the secret key kA;AS are stored in the Kerberos database.

The system is based on a private-key encryption (such as DES).

Kerberos uses two main protocols: credential initialization and client-server authentication. The

�rst protocol is executed every time a principal A logs on a host H. Note that the exchange of

messages between A and the host H are performed via a secure channel.

Kerberos Credential Initialization Protocol (Version V)

Goals: (1) Veri�cation of password of a principal A who logs on a host H.

(2) Distribution of a fresh secret key to host H (acting on behalf of the principal A) for use with

TGS.

Assumptions: The principal A and the authentication server AS share the secret key kA;AS. The

authentication server AS and TGS share kTGS .

Message Sequence: The parties exchange the following sequence of messages:

1. A! H : A.

2. H ! AS : A; TGS;L1; N1.

L1 is a lifespan of the ticket and N1 is a nonce. The authentication server AS undertakes

the following steps:

� retrieves the keys kA;AS and kTGS from the database.

� generates a fresh session key k and composes a ticketTGS = fA;H; TGS; k; T; LgkTGS ,

where T is a timestamp and L is the lifetime of the ticket.

3. AS ! H : A; ticketTGS ; fTGS; k; T; L;N1gkA;AS.

4. H ! A : request for password.

5. A! H : passwd.

� H computes ~kA;AS = f(passwd) and uses the computed key to decrypt the message

fTGS; k; T; L;N1gkA;AS. If the decryption is successful, H concludes that the keys

kA;AS = ~
kA;AS and the password provided by A is valid. In this case, H stores

the session key k, the timestamp T , the ticket lifetime L and the ticketTGS. If the

decryption fails (kA;AS 6= ~
kA;AS), login is aborted.

The next protocol is executed between a client C and a server S. The client C is a process run by

a principal A on a host H. The server S provides computing resources to C. The client C runs the

protocol to establish a secure channel with the server S. It is assumed that the host and the principal

who resides in it, have completed successfully a run of the credential initialization protocol.

Kerberos Client-Server Authentication Protocol (Version V)

269

Goal: To distribute a fresh session key kCS generated by TGS for use between a client C and a server

S. To con�rm the key kCS .

Assumptions: The client C holds a valid ticketTGS and shares a key k with TGS. The server S

shares kS with TGS.

Message Sequence: The parties exchange the following sequence of messages:

1. C ! TGS : S;N;L; ticketTGS ; fC; T1gk,

where N is a nonce, L is a lifespan of the ticket T1 is a timestamp. The ticket granting

server TGS

� retrieves the key k from ticketTGS ,

� checks the timeliness of the ticket,

� recovers the timestamp T1 from fC; T1gk,

� checks timeliness of T1,

� generates a fresh session key kCS ,

� creates a server ticketS = fA;C; S; kCS; Ts; LsgkS , where Ts is a timestamp and Ls is

a lifetime of the ticket.

2. TGS ! C : A; ticketS ; fS; kCS; Ts; Ls; Ngk.

The client C

� extracts kCS , timestamp Ts, the lifetime Ls and the nonce N ,

� checks the timeliness of the message.

3. C ! S : ticketS ; fC; T2gkCS .

The server S

� retrieves kCS from ticketS ,

� checks the timeliness of the ticket,

� recovers the timestamp T2 from fC; T2gkCS ,

� checks timeliness of T2,

4. S ! C : fT2gkCS

An authentication server is responsible for a a single domain (in Kerberos called a realm). To

support authentication services across di�erent realms, authentication servers need to hold inter-

realm keys which provide secure inter-realm communication channels. A principal A can obtain a

granting ticket to contact a remote TGS from its local TGS [390].

11.3.2 SPX

SPX is an authentication system for large distributed systems [493]. It is a part of Digital Distributed

System Security Architecture [195]. SPX uses both secret and public key cryptography. We are going

to use the following notation:

� fmgk { messagem encrypted under a secret key k using a private-key cryptosystem; it is assumed

that encryption preserves both con�dentiality and integrity of m,

� hmik { message m signed using a private key k; anyone who knows the matching public key K

can verify the signed message m,

270

� [m]K { message m encrypted using a public key K; only the holder of the matching secret key

k can read the message m.

There are two authentication servers: a login enrollment agent facility (LEAF) and a certi�cate

distribution center (CDC). There is also a collection of certi�cation authorities (CA) organized in a

hierarchical structure. A single CA has a jurisdiction over a subset of principals and is assumed to

be trusted. The main goal of a CA is to issue public key certi�cates. LEAF is a trusted authority,

whereas CDC does not need to be trusted as all the information stored in the CDC is encrypted.

Like Kerberos, SPX provides several authentication protocols. We are going to describe two basic

ones: credential initialization and client-server authentication. The credential initialization protocol

is initiated by a principal A who wants to login to their host H. The host exchanges messages with

its local LEAF and CDC.

SPX Credential Initialization Protocol

Goals: (1) Delivery of the public key KCA of the local CA to host H of the principal A.

(2) Veri�cation of A's password.

Assumptions: Principal A holds a valid password (passwdA). LEAF has generated its pair of

secret and public keys (kLEAF ;KLEAF). Every host knows the authentic public key KLEAF

of its local LEAF . CDC keeps the secret key kA of principal A in the form of a record

(fkAgh2(passwdA)
; h1(passwdA)), where h1 and h2 are two suitably chosen one-way functions.

Message Sequence: The parties exchange the following sequence of messages:

1. A! H : A; passwd.

2. H ! LEAF : A; [T; r; h1(passwd)]KLEAF
,

where r is a nonce and T is a timestamp.

3. LEAF ! CDC : A.

CDC

� retrieves the record for A,

� chooses a fresh key k,

� uses a private-key encryption to create ffkAgh2(passwdA)
; h1(passwdA)gk,

� encrypts k using KLEAF for con�dentiality.

4. CDC ! LEAF : ffkAgh2(passwdA)
; h1(passwdA)gk; [k]KLEAF

.

LEAF now proceeds as follows:

� LEAF retrieves the key k from [k]KLEAF
,

� extracts fkAgh2(passwdA)
and h1(passwdA),

� veri�es whether h1(passwd) = h1(passwdA),

� aborts A's login attempt if the two passwords are di�erent.

5. LEAF ! H : ffkAgh2(passwdA)
gr.

The host H

� decrypts the message using the key (nonce) r,

� recovers the secret key kA,

� generates a pair of RSA delegation keys (d; e),

� creates a ticket tickA = hL;A; dikA (a certi�cate of d).

271

6. H ! CDC : A.

7. CDC ! H : hCA;KCAikA

Now A can run a client program C which may wish to establish a secure channel (a secret key) to

a server S. It is assumed that the client C has already completed a successful run of the credential

initialization protocol.

SPX Client-Server Authentication Protocol

Goals: To distribute of a fresh session key k to a client C and the server S for use in a private-key

cryptosystem.

Assumptions: The CA of the client C keeps C's public key KC . The client C holds a ticket

tickC = hL;C; dikC. The client knows the valid public key of its CA, i.e. KCAC , and the server

knows the valid public key of its CA, i.e. KCAS .

Message Sequence: 1. C ! CDC : S.

CDC retrieves the public-key certi�cate of KS .

2. CDC ! C : hS;KSikCAC
.

The client C

� recovers the public key KS of S from the certi�cate using the public key KCAC ,

� generates a fresh session key k to be shared with S,

� encrypts the session key using the public key KS of the server,

� encrypts a delegation key e using the session key,

3. C ! S : C; [k]KS
; tickC = hL;C; dikC; fegk.

4. S ! CDC : C.

5. CDC ! S : hC;KCikCAS
.

The server S

� retrieves the key k from [k]KS
using its private key kS ,

� recovers e from fegk,

� gets the public key KC from the certi�cate hC;KCikCAS
,

� extracts L;C; d from the ticket tickC using the public key KC ,

� checks whether e and d form a valid pair of delegation keys (i.e. for a random number

�, (�e)d � � using the RSA system).

6. S ! C : fT + 1gk.

11.3.3 Other Authentication Services

SELANE (SEcure Local Area Network Environment) was developed at the European Institute for

System Security (EISS) in Karlsruhe as an authentication service for distributed systems ([17],[214]).

Security operations are based on modular exponentiation. In particular, signature scheme is based on

on the ElGamal public key scheme. Trusted authorities called SKIAs (Secure Key Issuing Authorities)

supply certi�cates which are used by principals to establish a common secret session key. The key can

be later used to ensure con�dentiality or authentication.

The RHODOS distributed operating system incorporates a number of authentication services

which allow to verify user passwords at the login stage (similar to the Kerberos credential initialization

272

protocol). One-way (unilateral) and two-way (mutual) authentication of principals is also provided

([511]).

KryptoKnight or network security program (NetSP) is an authentication service designed in IBM.

Protocols in KryptoKnight make an extensive use of collision free hash functions and MACs to provide

authentication channels [36, 37, 38].

Some other authentication systems are the SESAME project (a secure European system for appli-

cations in a multivendor environment), the Open Software Foundation's (OSF) distributed computing

environment [390], and Kuperee [233, 234].

11.4 Key Agreement Protocols

The basic Di�e-Hellman (DH) key agreement protocol was discussed in Section 11.2. The protocol

provides no entity authentication. This problem is partially �xed in a modi�cation of the DH protocol

due to ElGamal [190]. It is assumed that there is a trusted authority TA which keeps authentic

(certi�ed) public keys of principals. A principal P generates its secret 2 Z�p and deposits its public

key g mod p with TA, where p is a large enough prime and g is a primitive element g 2 Z�p .

ElGamal Key Agreement Protocol

Goal: Agreement of A and B on a secret key k.

Assumptions: TA keeps a certi�ed public key of B. The modulus p is a large enough prime and a

primitive element g 2 Z�p . Both integers p and g are public.

Message Sequence: A collects an authentic copy of B's public key (g�) from TA, generates a

random integer � 2R Z
�
p and sends

1. A! B : g� mod p.

A calculates the secret key k � (g�)� mod p and B derives k � (g�)� mod p.

The protocol takes a single pass and both A and B can establish the common secret key. A knows

that the key can be shared with B only so the protocol ensures implicit key authentication of B.

There is no provision for key con�rmation. A can be sure of key freshness as long as A selected a

fresh �. On the other side, B derives a key but B does not know with whom it is shared.

The ElGamal protocol can be upgraded to a protocol where both A and B obtain their corre-

sponding certi�ed public keys from TA. This protocol involves no exchange of message between A

and B at all and is called the DH key predistribution. It provides mutual implicit key authentication.

There is no entity authentication or key con�rmation as there is no interaction between A and B.

11.4.1 MTI Protocols

Matsumoto, Takashima, and Imai designed a family of key agreement protocols [321]. Their main

idea is to use the DH predistribution protocol with two passes.

MTI Protocol (version A0)

Goal: Agreement of A and B on a fresh secret key k.

Assumptions: TA keeps certi�ed public keys KA � g
� mod p and KB � g

� mod p of A and B,

respectively. The modulus p is a large enough prime and a primitive element g 2 Z
�
p . Both

integers p and g are public.

273

Message Sequence: A selects a random integer a 2R Z
�
p .

1. A! B : ga mod p.

B chooses its own random integer b 2R Z
�
p .

2. B ! A : gb mod p.

A can compute a common secret key

k � K
a
B �
�
g
b
��

mod p:

B can compute the same key

k � K
b
A � (g

a)
�
mod p:

The protocol provides mutual implicit key authentication and key freshness. There is no provision

for entity authentication or key con�rmation. Readers interested in other versions of MTI protocols

are referred to the original paper [321].

11.4.2 The Station to Station Protocol

The station to station (STS) protocol was designed by Di�e, Van Oorschot, and Wiener [154]. The

protocol combines the basic Di�e-Hellman protocol with certi�cates. Recall that a certi�cate hmikA

denotes message m signed using the secret key of A. Anyone who knows the matching public key KA

can read the message m.

STS Protocol

Goals: (1) Agreement of A and B on a fresh secret key k.

(2) Mutual entity authentication.

(3) Explicit key authentication.

Assumptions: TA keeps certi�ed public keys KA and KB of A and B, respectively. The modulus p

is a large enough prime and g 2 Z�p is a primitive element. Both integers p and g are public. H

denotes a public one-way hash algorithm.

Message Sequence: A collects a certi�ed copy of B's public key KB from TA, generates a random

integer � 2R Z
�
p . B collects a certi�ed copy of A's public key KA from TA, generates a random

integer � 2R Z
�
p .

1. A! B : g� mod p.

Principal B chooses at random � 2R Z
�
p and computes

k = (g�)� mod p:

2. B ! A : g� ; fhH(g�; g�)ikBgk.

Principal A computes its version of the shared key ~
k = (g�)�, decrypts the cryptogram

and uses KB to retrieve ~H(g� ; g�) from the certi�cate. Next A calculates the hash value

H(g� ; g�). If H = ~
H, A accepts the key k.

3. A! B : fhH(g�; g�)ikAgk.

B veri�es the hash values in similar way.

The protocol can be simpli�ed by dropping hashing at the expense of e�ciency (see [488]). Some

other variants are discussed in [154]. For a purported attack on the above protocol see [302].

274

11.4.3 Protocols with Self-certi�ed Public Keys

Girault [202] suggested a family of key agreement protocols using so-called self-certi�ed public keys.

Let a trusted authority TA set up a RSA cryptosystem with the public modulus N = p � q (p and q

are strong primes). An integer g generates the multiplicative group Z�N . TA generates a pair of keys

(kTA;KTA),

Any principal is assumed to possess its identifying string. For instance, the identifying string

IDA is A's name and address. The principal A selects its secret key kA and computes the public key

KA � g
�kA mod N . The public integer g�kA and IDA are communicated to TA via an authentication

channel. TA computes A's public key certi�cate

�A �
�
g
�kA � IDA

�kTA
(mod N)

Anyone who knows the public key KTA, IDA and A's certi�cate �A can compute the public key of A

as

KA � �
KTA

A + IDA (mod N)

Key Pre-distribution with Self-certi�ed Keys

Goal: Agreement of A and B on a secret key k.

Assumptions: TA applies a RSA cryptosystem with public modulus N and a primitive element

g 2 Z
�
N . TA keeps public key certi�cates �A and �B of A and B, respectively. Both A and B

hold their pairs of keys (kA;KA) and (kB;KB), respectively.

Message Sequence: A and B independently compute the common secret key. A calculates

k �

�
�
KTA

B + IDB

�kA
mod N

and B computes

k �

�
�
KTA

A + IDA

�kB
mod N:

This protocol needs no interaction between principals A and B. It provides mutual implicit key

authentication but not key freshness.

Two Pass Protocol with Self-certi�ed Keys

Goal: Agreement of A and B on a fresh secret key k.

Assumptions: TA applies a RSA cryptosystem with public modulus N and a primitive element

g 2 Z
�
N . TA keeps public key certi�cates �A and �B of A and B, respectively. Both A and B

hold their pairs of keys (kA;KA) and (kB;KB), respectively.

Message Sequence: A selects at random integer �.

1. A! B : g� mod N .

B chooses its own random integer �.

2. B ! A : g� mod N .

A calculates

k � (g�)�
�
�
KTA

B + IDB

�kA
mod N

and B calculates

k � (g�)�
�
�
KTA

A + IDA

�kB
mod N:

The protocol provides mutual implicit key authentication as well as key freshness.

275

11.4.4 Identity-Based Protocols

G�unter [227] proposes identity-based protocols in which a trusted authority TA is assumed to set

up all the required parameters. All secret elements are generated by TA and communicated to the

corresponding principals via con�dentiality channels.

During the setup phase, TA selects a large enough prime modulus p and a generator g of Z�p (p and

g are public). It chooses a secret key kTA and computes its public key KTA � g
kTA mod p. For each

principal A, TA assigns a unique identity IDA, generates a random integer rA (gcd (rA; p� 1) = 1)

and calculates A's certi�cate �A � g
rA mod p. Next TA �nds a value kA satisfying the following

congruence:

H(IDA) � �A � kTA + rA � kA (mod p � 1);

where H is a collision-free one-way hash function. The pair (�A; kA) is sent via a con�dentiality

channel to A. The certi�cate �A is made public, whereas kA serves as the secret key of A. Further

the public key of A is �
kA
A � g

rAkA mod p.

Anyone can reconstruct A's public key from the public information. First note that kA �

(H(IDA) � �A � kTA)r
�1
A mod (p� 1), which implies that

�
kA
A � g

H(IDA) �K
��A
TA mod p

Identity-Based Key Agreement Protocol

Goal: Agreement of A and B on a fresh secret key k.

Assumptions: TA publishes the prime modulus p, a generator g of Z�p and its public key KTA. Any

principal A with identity IDA holds its secret key kA and public certi�cate �A.

Message Sequence: A starts the protocol.

1. A! B : IDA; �A.

B chooses a random integer �.

2. B ! A : IDB ; �B; (�A)
� mod p.

A selects its fresh integer �.

3. A! B : (�B)
� mod p.

A calculates

k � (�
�

A)
kA(�

kB
B)� mod p

and similarly B computes

k � (�
kA
A)�(��B)

kB mod p

The protocol guarantees mutual implicit key authentication and key freshness. Other variants of

the protocols are discussed in [334, 433].

11.5 Conference Key Establishment Protocols

In multiuser cryptography, there are more than two principals who may need to establish a common

secret key. Conference key establishment is an umbrella name for these applications. Burmester

and Desmedt [69] describe several conference key distribution protocols. Assume that there are n

principals P1; : : : ; Pn who wish to establish a common secret key. The principal P1 plays the role of

276

a trusted authority and after an initial interaction with the rest of the principals, creates a fresh key

and distributes it among them.

Star Based Protocol

Goal: Distribution of a (fresh) secret key among n principals P1; : : : ; Pn.

Assumptions: There is a public prime modulus p and a generator g of Z�p commonly known to all

principals. P1 is a trusted authority.

Message Sequence: Each Pi selects a random integer ri 2R Z
�
p�1 and computes zi = g

ri mod p for

i = 1; : : : ; n.

1. P1 ! Pi : z1 for i = 2; : : : ; n.

2. Pi ! P1 : zi for i = 2; : : : ; n.

Now P1 computes common secret keys ki � z
r1
i mod p between P1 and Pi. P1 chooses at

random a fresh key k 2R Z
�
p�1.

3. P1 ! Pi : yi � k � ki mod p.

Each principal computes its secret key ki � z
ri
1
mod p and �nds k � yi �k

�1
i mod p; i = 2; : : : ; n.

The next protocol needs no trusted principal.

Broadcast Protocol

Goal: Agreement on a (fresh) secret key by n principals P1; : : : ; Pn.

Assumptions: There is a public prime modulus p and a generator g of Z�p agreed to be used by all

principals.

Message Sequence: Each Pi selects a random integer ri 2R Zp�1, computes zi = g
ri mod p and

broadcasts

1. Pi ! ? : zi for i = 1; : : : ; n.

Each Pi computes xi �

�
zi+1
zi�1

�ri
mod p.

2. Pi ! ? : xi; i = 2; : : : ; n.

Each principal Pi computes the secret key

k � z
nri
i�1 � x

n�1
i � x

n�2
i+1 � � �xi�2 mod p

Note that Pi ! ? means that principal Pi uses a broadcast channel.

Chen and Hwang [93] proposed an identity based conference key distribution using a broadcast

channel. As in the identity based setting, a trusted authority TA generates all secrets for all principals.

TA uses the RSA system with modulus N = p1p2p3p4 where pi are distinct strong primes for i =

1; 2; 3; 4. It has a pair (e; d) of secret and public keys, respectively. Clearly

e � d � 1 (mod lcm(p1 � 1; p2 � 1; p3 � 1; p4 � 1))

TA publishes K � g
�d mod N where g is a generator of Z�N . Further, TA computes a secret key ki

for principal Pi according to the congruence:

g
ki � ID

2

i mod N

277

where IDi is identity of principal Pi; i = 1; : : :n. The secret key ki is communicated to Pi via a

con�dentiality channel. One principal from the group plays the role of a chair who generates a fresh

conference key. Let this principal be P1.

Identity-Based Conference Key Distribution Protocol

Goal: Distribution of a (fresh) secret key among n principals.

Assumptions: TA sets up a RSA cryptosystem. The modulus N , the key e, primitive element

g 2 Z
�
N , K � g

�d mod N , and a one-way hashing function H are public. The key d and

factorization of N are secret. Each principal Pi has its secret key ki; i = 1; : : : ; n. Any body

knows the identity IDi of principal Pi. P1 is trusted.

Message Sequence: P1 chooses a fresh conference key k 2R ZN�1, an element r 2R ZN�1 and

computes a hash value H(t) of the current time and date t. Further P1 calculates

�1 �
�
K
k1
�H(t)

g
r mod N

and

�1;i �
�
ID

2

i

�re
� g

kire mod N

for i = 2; : : : ; n. Subsequently, P1 constructs a polynomial p(x) of degree at most (n� 2) and

p(x) �

nX
i=1

(k + IDi)

nY
j=2;j 6=i

x� �1;j

�1;i � �1;j

mod N

1. P1 ! ? : (�1; p(x); t).

Each principal Pi performs the following transformations:

�1;i �

�
�
e
1(ID

2

1)
H(t)

�ki
� g

�dk1H(t)eki � g
reki � (ID2

1
)H(t)ki

� ID
�2H(t)ki
1

� g
reki � (ID2

1)
H(t)ki

� g
reki mod N

and recovers the conference key

k � p(�1;i)� IDi mod N

Other conference key distribution protocols were also investigated, see [256] and [286].

11.6 The BAN Logic of Authentication

Burrows, Abadi and Needham [70] have developed a formalism for analyzing authentication protocols.

The formalism is referred to as the BAN logic. It investigates the evolution of principal beliefs

throughout the execution of the protocol. The BAN logic operates on the following objects

� principals,

� cryptographic keys, and

� statements (or formulas).

278

Typically, the symbols P;Q range over principals; X;Y range over statements; and K ranges over

keys. The BAN logic uses the following constructs:

1. P believes X { P is persuaded of the truth of X. This construct is central to the logic.

2. P sees X { P receives a message containing X. P can read and repeat X.

3. P said X { a some time ago, P sent a message X.

4. P controls X { P has jurisdiction over X; that is P is an authority on X. Typically, a server

is assumed to have jurisdiction over the generation of fresh session keys.

5. fresh(X) { X has never been sent in any message in the past (nonces are fresh; timestamped

messages are also fresh for their lifetime).

6. P
K
$ Q { two principals P and Q share a secret key K (K is known to P and Q and other

principals trusted by them only).

7.
K
7! P { K is the public key of P (the matching secret key K�1 is not known to anyone except

P).

8. P
X
*)Q { the statement X is known to P , Q and other principals trusted by them but is secret

to the rest. The formula X can be used as a token (password) to verify identities of P and Q.

9. fXgK { X is encrypted using K.

10. hXiY { X is authenticated using Y . Y serves as a proof of origin for X. For example, hXiY

can be a concatenation of X and a password Y .

11.6.1 BAN Logical Postulates

The BAN logic is based on logical postulates (or deduction rules) which allow to derive conclusions

from the assumptions and statements of the current run of a protocol. The notation
X;Y

Z
reads: given

that X and Y hold, Z holds as well. The conjunction operator is denoted by \,". Although the list

given below do not exhaust the collection of rules provided by the creators of the BAN logic, it conveys

most of the avour of the logic.

1. The message meaning rule. There are three versions of the rule depending on the secret involved.

� For shared key, the rule takes the following form:

P believes Q
K
$ P; P sees fXgK

P believes Q said X

If P believes that the key K is shared with Q and P sees a statement encrypted under the

key K, then P believes that Q once said X.

� For public key, the rule can be represented by the following expression:

P believes
K
7! Q;P sees fXgK�1

P believes Q said X

If P believes that the public key K belongs to Q and P sees a statement encrypted under

the secret key K�1, then P believes that Q once said X.

279

� For shared secrets, the rule can be expressed by the following form;

P believes Q
Y
*) P;P sees hXiY

P believes Q said X

If P believes that the statement Y is shared with Q and P sees a statement hXiY , then P

believes that Q once said X.

2. The nonce veri�cation rule:

P believes fresh(X); P believes Q said X

P believes Q believes X

If P believes that X is fresh and P believes that Q once said X, then P believes that Q believes

X.

3. The jurisdiction rule:

P believes Q controls X;P believes Q believes X

P believes X

If P believes that Q has jurisdiction over X and P believes that Q believes that X is true, then

P believes that X is true.

4. Other rules. These rules allow to infer about components of a statement.

(4.1) If P sees a compound statement (X;Y), then P also sees its component X, that is:

P sees (X;Y)

P sees X

This rule applies also to the component Y so the following rule also holds:

P sees (X;Y)

P sees Y

(4.2) If P sees hXiY , then P sees X, that is:

P sees hXiY

P sees X

(4.3) If P and Q share a key K then P can decrypt fXgK and see X. This can be formalized

as

P believes Q
K
$ P; P sees fXgK

P sees X

(4.4) If P believes that its public key is K and P sees a cryptogram fXgK , then P sees the

message X

P believes
K
7! P; P sees fXgK

P sees X

(4.5) If P believes that K is a public key of Q and sees a cryptogram fXgK�1 , then P sees the

message X

P believes
K
7! Q;P sees fXgK�1

P sees X

(4.6) If P believes that a part X of a compound statement is fresh, then P believes that the

whole statement (X;Y) if fresh. This rule is expressed as

P believes fresh(X)

P believes fresh(X;Y)

280

(4.7) If P believes that Q believes in (X;Y), then P believes that Q believes in X and

P believes (Q believes (X;Y))

P believes (Q believes X)

If P believes that Q believes in (X;Y), then P believes that Q believes in Y and

P believes (Q believes (X;Y))

P believes (Q believes Y)

11.6.2 Analysis of the Needham-Schroeder Protocol

The BAN logic can be used to investigate the evolution of beliefs during the execution of a protocol.

We show how the Needham-Schroeder protocol can be analyzed using the logic. First the protocol

description (see Section 11.1) needs to be re-written in the BAN logic language (see also [112]).

Idealized Needham-Schroeder Protocol

Goals: 1. Beliefs for A:

(a) A
KAB
$ B

(b) B believes (A
KAB
$ B).

2. Beliefs for B:

(a) A
KAB
$ B

(b) A believes (A
KAB
$ B).

Assumptions: 1. Principal A believes:

(a) A
KAS
$ S { the key KAS is shared with S,

(b) S controls A
KAB
$ B { S has a jurisdiction over the shared key KAB ,

(c) S controls fresh(A
KAB
$ B) { S has jurisdiction over the freshness of the key KAB ,

(d) fresh(rA) { rA is fresh.

2. Principal B believes:

(a) B
KBS
$ S { the key KBS is shared with S,

(b) S controls A
KAB
$ B { S has jurisdiction over the shared key KAB ,

(c) fresh(rB) { rB is fresh.

3. Principal S believes:

(a) A
KAS
$ S { the key KAS is shared with A,

(b) B
KBS
$ S { the key KBS is shared with B,

(c) A
KAB
$ B { the key KAB is shared between A and B,

(d) fresh(A
KAB
$ B) { the key KAB is fresh.

Message Sequence: 1. A! S : A;B; rA (this step is usually omitted in the BAN idealization).

2. S ! A : frA; (A
KAB
$ B); fresh(A

KAB
$ B); fA

KAB
$ BgKBS

gKAS
.

3. A! B : fA
KAB
$ BgKBS

.

4. B ! A : frB; (A
KAB
$ B)gKAB

.

5. A! B : frB; (A
KAB
$ B)gKAB

.

281

The aim of the analysis is to determine whether the statements formulated as the goals of the

protocol can be derived from the assumptions and passes of the protocol by applying the BAN rules

(postulates). We start from pass (2) of the protocol. Let

X =

�
rA; (A

KAB
$ B); fresh(A

KAB
$ B); fA

KAB
$ BgKBS

�
:

The statements (A
KAB
$ B) and fresh(A

KAB
$ B) inserted in the idealized protocol above do not

appear in the original protocol but are apparent from the context of the protocol. According to the

message meaning rule

A believes A
KAS
$ S;A sees fXgKAS

A believes S said X

:

According to the rule (4.6)

A believes fresh(rA)

A believes fresh(X)
:

That is, A believes that the compound statement X is fresh. From the nonce veri�cation rule

A believes fresh(X); A believes S said
�
rA; (A

KAB
$ B); fresh(A

KAB
$ B)

�
A believes (S believes rA; (A

KAB
$ B); fresh(A

KAB
$ B))

we can derive the conclusion that A believes (S believes rA; (A
KAB
$ B); fresh(A

KAB
$ B)). The

rule (4.7) gives us

A believes (S believes (rA; A
KAB
$ B; fresh(A

KAB
$ B)))

A believes (S believes A
KAB
$ B)

(11.1)

and by the same rule

A believes (S believes (rA; A
KAB
$ B; fresh(A

KAB
$ B)))

A believes (S believes fresh(A
KAB
$ B))

: (11.2)

Take the assumption (1b) and Conclusion of (11.1). From the jurisdiction rule

A believes (S controls A
KAB
$ B); A believes (S believes A

KAB
$ B)

A believes A
KAB
$ B

Take the assumption (1c) and Conclusion of (11.2). Again from the jurisdiction rule

A believes (S controls fresh(A
KAB
$ B)); A believes (S believes fresh(A

KAB
$ B))

A believes fresh(A
KAB
$ B)

The principal A has achieved its goal after the pass (2), i.e. A believes that the key KAB has been

generated by S for use between A and B and is fresh.

Take the assumption (2a) and the message (3) of the protocol. We can apply the message meaning

rule

B believes B
KBS
$ S;B sees fA

KAB
$ BgKBS

B believes (S said A
KAB
$ B)

:

So B knows that S once said A
KAB
$ B but B does not know whether the statement A

KAB
$ B is fresh.

To derive the goal (2a), we make the dubious assumption that B believes fresh(A
KAB
$ B), the

282

nonce veri�cation rule would then allow us B to infer that B believes (S believes A
KAB
$ B) and

further by the jurisdiction rule, we could conclude (B believes A
KAB
$ B).

A believes (A
KAB
$ B) and sees the corresponding message (4). From the message meaning rule,

we can deduce that

A believes B said A
KAB
$ B:

A believes that KAB is fresh, so by the nonce veri�cation rule

A believes B believes A
KAB
$ B:

If we make the additional assumption that B believes fresh(A
KAB
$ B), we can repeat the same

deduction process and derive that

B believes A believes A
KAB
$ B:

To conclude the above protocol analysis, it is worth noting that the BAN logic provides a useful

tool to detect some security aws in key distribution protocols. The analysis presented above allows

us to detect a aw in the Needham-Schroeder protocol which was �rst pointed out by Denning and

Sacco [144]. There are some drawbacks of the BAN logic. An obvious one is the lack of a precise

formalism for converting a concrete protocol into its idealized form. For instance, the message (4)

in the idealized Needham-Schroeder protocol is open to di�erent interpretations. If we correct the

message (4) from frB; (A
KAB
$ B)gKAB

to frBgKAB
, then the deduction process shown above collapses

and A is not able to derive the conclusion A believes B believes A
KAB
$ B. Additionally, B selects

at random a nonce rB so A after decryption sees a meaningless number. Some other properties of the

BAN logic which may be seen as drawbacks relate to the lack of an independently motivated semantics

and are discussed in [331].

11.7 Problems and Exercises

1. Generalise the Needham-Schroeder protocol for multi-domain environment. Assume that there are two domains

D1 and D2 with two trusted servers S1 and S2, respectively. There is also a server S who keeps secret channels

(S
kSS1
$ S1) and (S

kSS2
$ S2). Implement a protocol which can be used by two principals A 2 D1 (so there is

(A
kAS1
$ S1)) and B 2 D2 (so (B

kBS2
$ S2)) to establish a secret channel (A

kAB
$ B).

2. Modify the Needham-Schroeder protocol with timestamps so it can be used to establish a secret key among more

than two principals.

3. Consider the Needham-Schroeder protocol with timestamps for public key distribution. Make necessary mod-

i�cations so the protocol is applicable for multidomain environments (domains are arranged in a hierarchical

structure).

4. Show how the common secret key can be agreed between two principals A and B using the Di�e-Hellman

protocol. Select a prime p � 10000. Exemplify the intruder-in-the-middle attack.

5. Two principals A and B wish to use the Di�e-Hellman protocol to agree on a common key. At the same time

A and B share with their trusted server S their secret channels (A
kAS
$ S) and (B

kBS
$ S). The server S has

agreed to generate a primitive element g and the modulus p and sent the pair (g; p) secretly to A and B using

the Otway-Rees protocol. Present the overall protocol which allows A and B to establish their secret key which

applies the Otway-Rees protocol (to distributed parameters g and N) and the Di�e-Hellman protocol to agree

on the secret key.

6. Take the Otway-Rees and Boyd-Mao protocols. Discuss their properties and emphesize their di�erencies.

7. Consider the following key agreement protocols: Di�e-Hellman, ElGamal, MTI, and STS. Compare the protocols

and contrast them taking their security as the base for discussion.

8. Demonstrate on simple numerical examples how two principals can agree on a secret key using

283

� key pre-distribution with self-certi�ed keys,

� two pass protocol with self-certi�ed keys.

Construct a suitable instance of the RSA cryptosystem.

9. Show how three principals P1, P2 and P3 execute the star based protocol to establish a common secret key.

Assume that the modulus p = 1879 and g = 1054.

10. The star based protocol can be seen as a variant of the Di�e-Hellman protocol. Show that the protocol is subject

to the intruder-in-the-middle attack. In particular, demonstrate how the intruder who sits between P2 and P1

(P1 plays the role of a trusted authority) can obtain the common secret key and then control the tra�c coming

to and going from P2.

11. Use the broadcast protocol to establish a common secret key among three principals P1, P2 amd P3. Accept the

modulus p = 1879 and the primitive element g = 1054.

12. Re-write the Di�e-Hellman key agreement protocol into its idealized form and analyse it using the BAN logic.

Chapter 12

ZERO KNOWLEDGE PROOF SYSTEMS

Zero knowledge (also called minimum disclosure) proof systems are indispensable wherever there is a

necessity to prove the possession of a \secret" without revealing anything about it. Zero knowledge

proofs involve two parties: the prover who possesses a secret and the veri�er who would like to be

convinced that the prover indeed holds a secret. The proof is conducted via an interaction between

the parties. At the end of the protocol, the veri�er is convinced only when the prover knows the

secret. If, however, the prover lies and does not know the secret, the veri�er will discover the lie with

an overwhelming probability. The idea sprang out of interactive proof systems. Interactive proofs

have gained a quite independent status as a part of Computational Complexity Theory.

Most books on cryptography contain some discussion of the topic. Schneier's book [445] discusses

the idea of zero knowledge proofs and describes some zero knowledge protocols. An encyclopedic

treatment of the subject can be found in [334]. Stinson's book [488] contains a comprehensive in-

troduction to zero knowledge proofs. An entertaining exposure of the idea of zero knowledge was

presented by Quisquater and Guillou at Crypto'89 [415]. Most of the presented results in this chapter

can be found in the papers [60], [207], [209].

12.1 Interactive Proof Systems

The class NP can be seen as a class of problems for which there is a polynomial time proof of

membership. An interactive proof system is a protocol which involves two parties: the prover P and

veri�er V . Sometimes P and V are called mnemonically Peggy and Vic, respectively. The veri�er

is assumed to be a polynomial time probabilistic algorithm. The prover, however, is a probabilistic

algorithmwith an unlimited computational power. Their interactions consist of a (polynomial) number

of rounds. In each round, the veri�er sends a challenge to the prover via a communication channel.

The prover sends a proof back to the veri�er. At the end of the interaction, the veri�er is either

convinced and stops in an accept state or is not convinced and halts in an reject state.

Given a decision problem Q (not necessarily in NP). Q has an interactive proof system if there is

a protocol which satis�es

� completeness { for each yes-instance x of Q, V accepts x with probability no smaller than 1�n�c

for every constant c > 0 (n means the size of the instance x),

� soundness { for each no-instance, V rejects x with probability no smaller than 1� n�c for any

prover (honest or otherwise)

whenever V follows the protocol. It turns out [206], that the error probability in the completeness

condition can be reduced to zero with no consequences for the protocol. In other words, V always

accepts any yes-instance.

284

285

Consider an interactive proof based on the quadratic residue problem. Recall that ZQ

N
is the set of

all integers in ZN whose Jacobi symbol with respect to N is equal to 1. The set ZQ

N
= Z

Q+
N

[Z
Q�

N
. An

integer x 2 ZQ

N
is a quadratic residue moduloN if there is an integer y 2 Z�

N
such that y2 � x mod N .

We simply say that x 2 ZQ+
N

. Otherwise, the integer x is a quadratic nonresidue or simply x 2 ZQ�

N
.

To decide whether x 2 Z
Q

N
is a quadratic residue modulo N or not, one would need to �nd the

factorization of N and compute Jacobi symbols of x in respect to all (nontrivial) factors of N .

Name: Quadratic Residue (QR) Problem

Instance: Given a composite integer N . The integer x 2 ZQ

N
.

Question: Does x belong to ZQ+
N

(or is x a quadratic residue) ?

An interactive proof for the QR problem proceeds as follows [209]. Both the prover and veri�er

know an instance (x;N) where x is an integer which may or may not be a quadratic residue modulo

N . The interaction takes t(n) rounds. A round is started by P who picks up at random a quadratic

residue u and sends it to V . V selects a random bit b and forwards it to P . If b = 0, the prover shows

a random square root w of u to V . Otherwise, P shows a random square root w of (x � u). As P is

assumed to be of unlimited power, the computations of square roots can be done quickly. The veri�er

checks whether w2 is either u mod N if b = 0 or u � x mod N if b = 1.

QR Interactive Proof { QR
$

Common Knowledge: an instance (x;N) of the QR problem (n is the size of the instance).

Description: Given a polynomial t(n) in n. P and V repeat the following steps t(n) times.

1. P selects at random u 2R Z
Q+
N

.

2. P ! V : u.

3. V ! P : b, where b 2R f0; 1g.

4. P ! V : w, where w is a random square root of either u if b = 0 or x � u if b = 1.

5. V checks whether

w2 ?
�

(
u mod N if b = 0;

ux mod N otherwise:

If the condition fails, V stops and rejects. Otherwise, the interaction continues.

Finally, after t(n) rounds, V halts and accepts.

The proof satis�es the completeness property as for any yes-instance of QR (or x 2 Z
Q+
N

), V

always accepts P 's proof. For any b, the prover can always compute the correct response w. Note

that for a no-instance (or x 2 ZQ�

N
), if P follows the protocol then u is a quadratic residue modulo N

but x � u is a quadratic nonresidue modulo N . If P cheats than u is a quadratic nonresidue but x � u

is a quadratic residue. Once P committed herself to u and sent it to V (does not matter if P cheats

or not), the probability that V rejects (or accepts) x is 2�1. As the protocol is executed t(n) times,

the cheating prover can succeed and convince V to accept a no-instance with the probability 2�t(n).

The proof system satis�es the soundness property.

The next interactive proof system is based on the graph isomorphism (GI) problem. Let V be a

set of n elements. Sym(V) denotes the group of permutations over the set V. The composition of two

286

permutations �; � 2 Sym(V) is denoted by � � � . Let G0 = (V0; E0) and G1 = (V1; E1) be two graphs

where Vi is the set of vertices and Ei is the set of edges (i = 0; 1).

Name: Graph Isomorphism (GI) Problem

Instance: Given two graphs G0 = (V0; E0) and G1 = (V1; E1) with j V0 j=j V1 j= n.

Question: Is there a permutation � : V0 ! V1 such that an edge (u; v) 2 E0 if and only if (�(u); �(v)) 2

E1 ?

An interactive proof system for GI is presented below [207]. The interaction takes t(n) rounds. At

each round, the prover selects a random permutation � 2R Sym(V0), computes an isomorphic copy

of G0, i.e. h = �(G0) and forwards h to the veri�er. V selects at random a bit b and communicates

it to P . P responds by sending � if b = 0 or � � � , otherwise. The permutation � establishes the

isomorphism between G0 and G1 or G0 = � (G1) and exists for yes-instance only. V checks whether the

provided permutation forces the isomorphism between h and Gb. If the check is satis�ed, V continues.

Otherwise, V stops and rejects.

GI Interactive Proof { GI$

Common Knowledge: an instance of GI, i.e. two graphs G0 = (V0; E0) and G1 = (V1; E1) (n is the

number of vertices in V0 and V1).

Description: Given a polynomial t(n) in n. P and V repeat the following steps t(n) times.

1. P selects � 2R Sym(V0) and computes an isomorphic copy h of G0 (i.e. h = �(G0)).

2. P ! V : h.

3. V ! P : b where b 2R f0; 1g.

4. P responds to the V challenge and

P ! V :

(
� if b = 0;

� � � otherwise ;

where � is the permutation which asserts the isomorphism between G0 and G1 or G0 =

� (G1) (� always exists for any yes-instance).

5. V checks whether the provided permutation establishes the isomorphism between h and

Gb. V halts and rejects the instance whenever the check fails. Otherwise, the interaction

continues.

If all t(n) rounds have been successful, V stops and accepts.

Assume that both P and V share a yes-instance. No matter how V have chosen the bit b, P always

can arbitrarily select either � or � � � as both graphs G0 and G1 are isomorphic to h. So the proof

satis�es the completeness property. What happens when P and V share a no-instance and the prover

wants to cheat ? P has to choose a random h which can be isomorphic to either G0 (h � G0) or G1

(h � G1). Once h has been sent to V , P is committed to either h � G0 or h � G1 (but not to both).

V randomly selects b and asks P to show the appropriate permutation. There is the probability of

2�1 that P will be caught. As the interaction takes t(n) rounds, the probability that V stops in an

accept state is 2�t(n). So the soundness of the proof holds.

The class IP (interactive polynomial time) contains all decision problems for which exists interac-

tive proof systems. Clearly, NP � IP.

287

12.2 Perfect Zero Knowledge Proofs

Informally, an interactive proof system is zero knowledge if during interaction the veri�er gains no

information from the prover. In particular, having a transcript of an interaction with P , V is not able

to play later a role of the prover to somebody else.

To make our discussion more formalwe need some de�nitions. A view is a transcript which contains

all messages exchanged between the prover and veri�er. Assume that during the i-th round, P sends a

random commitment Ai, V responds by sending a random challenge bit Bi and P forwards her proof

Ci. The triple (Ai; Bi; Ci) are random variables. The view is a sequence of all messages (A1; B1; C1;

: : : ; At(n); Bt(n); Ct(n)) exchanged by P and V during interaction. For an honest V all Bi are uniform

and independent random variables (i = 1; : : : :t(n)). Note that the view is de�ned for a yes-instance

only. All no-instances are not of interest to us as the prover does not know any secret. She may

merely pretend to know it but she will be caught with a high probability.

A behavior of a cheating veri�er V � can signi�cantly deviate. First the random variables Bi

may not be statistically independent. Moreover, the veri�er can use some transcripts from previous

interactions hoping that they can help him extract some information from P . So the view should also

include the past interactions �h (history). For an instance x 2 Q and an arbitrary veri�er V �, the view

is

V iewP;V � (x; �h) = (x; �h;A1; B1; C1; : : : ; At(n); Bt(n); Ct(n))

Random variables Bi are calculated by a cheating V � using a polynomial time probabilistic function

F so Bi = F (x; �h;A1; B1; C1 : : : ; Ai�1; Bi�1; Ci�1; Ai). The view is a probabilistic ensemble with a

well de�ned set of possible values and associated probabilities { see Section (4.2).

A transcript simulator SV � (x; �h) is an expected polynomial time probabilistic algorithm which

uses all the information accessible to V � (i.e. previous transcripts �h and the function F) and generates

a transcript for an instance x 2 Q without interaction with the prover P . Note that the simulator

can be seen as an ensemble generator.

Clearly, an interactive proof system is perfect zero knowledge if there is a transcript simulator

SV � (x; �h) such that its ensemble is identical to the view ensemble. In other words, the knowledge ex-

tracted from P by V can be obtained without interaction with P . Instead, V can use the corresponding

transcript simulator. More formal de�nition can be formulated as follows.

De�nition 12.1 An interactive proof system for a decision problem Q is perfect zero knowledge if

the ensemble V iewP;V �(x; �h) is identical to the ensemble generated by an expected polynomial time

probabilistic simulator SV �(x; �h) for any yes-instance of Q.

Now we can go back to the �rst interactive proof system QR
$
.

Theorem 12.1 (Goldwasser, Micali, Racko� [209]) QR
$

is perfect zero knowledge.

Proof: Let (x;N) be a yes-instance of QR. The i-th round involves the following random variables:

Ui { a quadratic residue generated by P , Bi { a bit generated by V �, and Wi { a proof of P . So the

view for an arbitrary veri�er V � is

V iewP;V �(x;N; �h) = (x;N; �h; U1; B1;W1; : : : ; Ut(n); Bt(n);Wt(n))

For simplicity, we denote Vi = (U1; B1;W1; : : : ; Ui; Bi;Wi). Note that if V � is honest, all Bi are

independent and uniform random variables over f0; 1g. However, if V � cheats, he uses some polynomial

time probabilistic algorithm F which generates bi+1 = F (x;N; �h; vi; ui+1), where Vi = vi. Now we

can use the algorithm F to construct a simulator SV �(x;N; �h) as follows.

288

Transcript Simulator SV �(x;N; �h) for QR
$

Input: (x;N) - a yes-instance of QR, �h { past transcripts, vi { transcript of the current interaction

(i rounds).

Description: Repeat the following steps for i + 1 � t(n).

1. Select bi+1 2R f0; 1g.

2. Choose wi+1 2R Z
�

N
.

3. If bi+1 = 0, then ui+1 � w2
i+1 mod N

else ui+1 � w2
i+1 � x

�1 mod N .

4. If bi+1 = F (x;N; �h; vi; ui+1), then

return (ui+1; bi+1; wi+1)

else go to (1).

Some comments about the simulator. Instead of selecting �rst a quadratic residue ui+1, the

simulator chooses wi+1 and bi+1 at random and computes ui+1. Having ui+1, the simulator can

recompute bi+1 using the function F where ui+1 is a part of an input. There is the probability of 2�1

that a randomly selected bi+1 will match the correct value indicated by F (x;N; �h; vi; ui+1). On the

average, the simulator will need two rounds per a single output (ui+1; bi+1; wi+1). So the simulator

runs in an expected polynomial time. Note also that for an honest veri�er, the function F simpli�es

to a single toss of an unbiased coin.

Now we prove that the view ensemble

V iewP;V �(x;N; �h) = (x;N; �h; U1; B1;W1; : : : ; Ut(n); Bt(n);Wt(n))

is identical to the simulator ensemble

SV � (x;N; �h) = (x;N; �h; U 01; B
0

1;W
0

1; : : : ; U
0

t(n); B
0

t(n);W
0

t(n)):

The proof proceed by induction on i. The case when i = 0 is trivial as both ensembles are constant.

In the inductive step, we assume that the ensemble

V iewP;V �(x;N; �h) = (x;N; �h; U1; B1;W1; : : : ; Ui�1; Bi�1;Wi�1)

is identical to

SV � (x;N; �h) = (x;N; �h; U 01; B
0

1;W
0

1; : : : ; U
0

i�1; B
0

i�1;W
0

i�1):

The next part of the view transcript consists of the triple (Ui; Bi;Wi). The variable Ui is independent.

Bi depends on Ui, Vi�1 and �h. Wi depends on both previous variables so

P (Ui = u;Bi = b;Wi = w) = P (Ui = u) � P (Bi = bjVi�1 = v; Ui = u; �h) � P (Wi = wjUi = u;Bi = b):

The probability P (Ui = u) = ��1 where � = jZ
Q+
N

j. Denote the probability P (Bi = bjVi�1 = v; Ui =

u; �h) = pb. Assume that
u and
xu are sets of all square roots of u and xu, respectively. There is

an integer � such that j
uj = j
xuj = �. The probability P (Wi = wjUi = u;Bi = 0) = ��1 for all

w 2
u and P (Wi = wjUi = u;Bi = 1) = ��1 for all w 2
xu. So P (Ui = u;Bi = b;Wi = w) = pb

��
.

The i-th part of the simulator transcript is (U 0
i
; B0

i
;W 0

i
). Considering the order the variables are

generated, we can write that the probability

P (U 0
i
= u;B0

i
= b;W 0

i
= w) = P (U 0

i
= ujW 0

i
= w;B0

i
= b) �P (B0

i
= bjU 0

i
= u) � P (W 0

i
= w):

289

The random variable Wi is chosen independently from the set Z�
N

so P (W 0

i
= w) = 1

��
. The

probability

P (U 0
i
= u) = P (U 0

i
= u;W 0

i
2
u [
xu; B

0

i
2 f0; 1g)

=
X
w2
u

P (U 0
i
= u;W 0

i
= w;B0

i
= 0) +

X
w2
xu

P (U 0
i
= u;W 0

i
= w;B0

i
= 1)

=
X
w2
u

P (W 0

i
= w)P (B0

i
= 0) +

X
w2
xu

P (W 0

i
= w)P (B0

i
= 1)

=
�

��
(P (B0

i
= 0) + P (B0

i
= 1))

=
1

�
:

The random variable U 0
i
has the same probability distribution as Ui. Consequently, B

0

i
has the identical

probability distribution to Bi. So, both the view and simulator probability distributions for i rounds

are identical and the corresponding ensembles are the same. Finally, we conclude that QR
$

is perfect

zero knowledge. 2

Consider our second interactive proof system GI$ for graph isomorphism.

Theorem 12.2 (Goldreich, Micali, Wigderson [207]) GI$ is perfect zero knowledge

Proof: The proof proceeds in a similar manner to the previous one. The core of the proof is the

construction of an expected polynomial time simulator which generates an ensemble identical to the

view ensemble. An honest veri�er is V while a veri�er who deviates arbitrarily from the protocol is

denoted by V �.

Let (G0; G1) be a yes-instance of GI. The view of interaction between P and V � is an ensemble

V iewP;V �(G0; G1; �h) = (G0; G1; �h;H1; B1;�1; : : : ;Ht(n); Bt(n);�t(n));

where (Hi; Bi;�i) are random variables used in the i-th round of the protocol. Hi represents an iso-

morphic copy of G0, Bi is a binary random variable generated by V �, and �i is a random permutation

sent by P . Again �h indicates the additional information accessible to V � from previous interactions

with the prover P . Note that instead of a random selection of his bit, a cheating V � may use a

polynomial time probabilistic algorithm F to generate his bits. Having F , the veri�er V � can design

a simulator SV �(G1; G2; �h) which works as follows.

Transcript Simulator SV � (G0; G1; �h) for GI$

Input: (G0; G1) - a yes-instance of QR, �h { past transcripts, vi { transcript of the current interaction

(�rst i rounds).

Description: Repeat the following steps for (i + 1) � t(n).

1. Choose bi+1 2R f0; 1g.

2. Select � 2R Sym(V1) and compute hi+1 = �(Gbi+1
).

3. If bi+1 = F (G1; G2; �h; vi; hi+1), then

return (hi+1; bi+1; �i+1)

else go to (1).

290

Note that all computations can be done in polynomial time except that bi+1 generated at the step

(1) may not match the value calculated in the step (3). The probability that they match in a single

round is 2�1. On the average it is necessary to run two rounds of the simulator to produce a single

output. So the simulator runs in expected polynomial time.

Now we prove that the view ensemble V iewP;V �(G0; G1; �h) is identical to the ensemble SV � (G0; G1; �h).

The proof proceeds by induction on the number of rounds i. When i = 0, both the simulator and the

view consists of constants so their probability distributions are identical. Now we assume that both

probability distributions are identical for (i � 1) rounds, i.e.

P (V iewP;V �(Vi�1) = vi�1) = P (SV � = vi�1):

Consider a triple of random variables (Hi; Bi;�i) which is the transcript of the i-th round of the

protocol. The probability that

P (Hi = h;Bi = b;�i = �) = P (�i = �) � P (Bi = bj�i = �) � P (Hi = hj�i = �;Bi = b):

As the permutation is selected at random so P (�i = �) = 1
n!
. The random variable Bi = F (�h; Vi;Hi)

so we can assume that P (Bi = b) = pb. The probability P (Hi = hj�i = �;Bi = b) = 1 for the

matching h and P (Hi = h;Bi = b;�i = �) = pb

n! .

Consider a triple (H0

i
; B0

i
;�0

i
) which is the i-th part of the simulator transcript. The random vari-

able P (�0
i+1 = �) = 1

n!
. As the simulator uses the same polynomial time probabilistic algorithm F

so the random variable Bi+1 has the same probability distribution as for the view. So the probability

distributions of the view and the simulator are identical and consequently, GI$ is perfect zero knowl-

edge. 2

The complement of GI is the graph non-isomorphism problem. The problem is stated below.

Name: Graph Non-isomorphism (GNI) Problem

Instance: Given two graphs G0 = (V0; E0) and G1 = (V1; E1) with j V0 j=j V1 j= n.

Question: Are the two graphs non-isomorphic ? (so there is no permutation � : V0 ! V1 such that

an edge (u; v) 2 E0 if and only if (�(u); �(v)) 2 E1).

An interactive proof system for GNI is more complex than for its relative GI and each round takes

�ve transmissions. The main idea is to allow the veri�er to construct pairs of graphs in every round.

Each pair contains an isomorphic copy of G0 and G1 in an random order. The powerful veri�er can

tell apart those copies for every yes-instance (because G0 and G1 are not isomorphic) while for any

no-instance, P can only guess the order.

GNI Interactive Proof { GNI$

Common Knowledge: an instance of GNI, i.e. two graphs G0 = (V0; E0) and G1 = (V1; E1). The

parameter n is the number of vertices in V0 and V1. Denote V = V0 = V1.

Description: Given a polynomial t(n) in n. P and V repeat the following steps t(n) times.

1. V chooses b 2R f0; 1g, a permutation � 2R Sym(V) and computes h = �(Gb). The graph

h is called a question. Further V prepares n2 pairs of graphs such that each pair contains

291

an isomorphic copy of G0 and G1 in a random order. So for j = 1; : : : ; n2, V chooses

aj 2R f0; 1g and two permutations �j;0; �j;1 2R Sym(V) and computes (Tj;0 = �j;0(Gaj
)

Tj;1 = �j;1(Gaj+1 mod 2).

V ! P : h; (T1;0; T1;1); : : : ; (Tn2;0; Tn2;1):

2. P chooses uniformly at random a subset I � f1; : : : ; n2g and

P ! V : I:

3. If I is not a subset of f1; : : : ; n2g, then V stops and rejects. Otherwise,

V ! P : f(aj; �j;1; �j;0)jj 2 Ig; f(b+ aj mod 2; �j;(b+aj) mod 2 � �
�1)jj 2 �Ig

where �I = f1; : : : ; n2g n I.

4. P checks whether �j;0 is the isomorphisms between Tj;0 and Gaj
and �j;1 { the isomorphisms

between Tj;1 and Gaj+1 mod 2 for j 2 I, Also P veri�es that �j;(b+aj) mod 2 � �
�1 is an

isomorphisms between Tj;(b+aj) mod 2 and h for every j 2 �I . If the checks fail, the prover

stops. Otherwise, P answers � 2 f0; 1g such that h is isomorphic to G�.

5. V checks whether b = �. If the condition is not satis�ed, V stops and rejects. Otherwise,

the interaction continues.

After passing through t(n) rounds without rejection, V halts and accepts.

It is easy to verify that the interactive proof satis�es both the completeness and soundness prop-

erties. It is also perfect zero knowledge (for details consult [207])

Consider the complementary problem to the quadratic residue problem This is the quadratic

nonresidue problem and is de�ned as follows.

Name: Quadratic Nonresidue (QNR) Problem

Instance: Given a composite integer N . The integer x 2 ZQ

N
.

Question: Does x belong to ZQ�

N
(or is x a quadratic nonresidue) ?

An interactive proof system for QNR is given below. At each round, the veri�er forwards to the

prover two types of elements { quadratic residues r2 mod N and products r2x mod N . If (x;N) is a

yes-instance, the prover can easily tell apart the type of an element. If (x;N) is a no-instance (i.e.

x is a quadratic residue), the prover cannot distinguish elements as they belong to the same class of

quadratic residues.

QNR Interactive Proof { QNR
$

Common Knowledge: an instance (x;N) of the QNR problem (n is the size of the instance).

Description: Given a polynomial t(n) in n. P and V repeat the following steps t(n) times.

1. V picks up r 2R Z
�

N
and � 2R f0; 1g.

2. V ! P : w � r2 � x� mod N .

292

3. For 1 � j � n, V selects rj1; rj2 2R Z�
N

and bj 2R f0; 1g. V creates aj � r2
j1 mod N and

bj � xr2
j2 mod N . Next

V ! P :

(
(aj; bj) if bj = 1;

(bj; aj) if bj = 0:

4. P ! V : (�1; : : : ; �n) where �j 2R f0; 1g for 1 � j � n.

5. V ! P : v = (v1; : : : ; vn) where vj = (rj1; rj2) if �j = 0. If �j = 1 and � = 0, then

vj � rrj1 mod N (or a square root of waj mod N). If �j = 1 and � = 1, vj � xrrj2 mod N

(or a square root of wbj mod N).

6. P veri�es that the sequence v is correct. If not, P terminates the interaction. Otherwise,

P ! V : where = 0 if w is quadratic residue modulo N or = 1, otherwise.

7. V checks whether � = . If the condition fails, V stops and rejects. Otherwise, the

interaction continues.

After passing through t(n) rounds without rejection, V halts and accepts.

Both completeness and soundness of the interactive proof can be asserted by a careful examination

of the protocol. An interesting feature of the proof system is that it satis�es a weaker zero knowledge

property called the statistical zero knowledge. Consider two probabilistic ensembles: a view (transcript

of interaction between the prover P and arbitrary veri�er V �) and a simulator SV � which is used by V �

to generate transcripts without interaction with P . Perfect zero knowledge requires the equality of two

ensembles, i.e. V iewP;V �(x;N; �h) = SV � (x;N; �h) for any yes-instance of the problem QNR. Statistical

zero knowledge is weaker as we request that limn!1 V iewP;V � (x;N; �h) = limn!1 SV � (x;N; �h) for

any yes-instance of the problem QNR, where n is the size of instance (x;N). Details of the proof can

be found in [209].

12.3 Computational Zero Knowledge Proofs

Perfect or statistical zero knowledge may still seem to be too restrictive for our polynomially bounded

veri�er V . An interactive proof is computational zero knowledge if there is a simulator SV � which is

polynomially indistinguishable from the view V iewP;V � for an arbitrary veri�er and any yes-instance.

Goldreich, Micali and Wigderson in [207] showed that there is a computational zero knowledge

proof system for the graph 3-colourability (G3C) problem. As the G3C problem is known to belong

to the NPC class, this result asserts that any NPC problem has a computational zero knowledge

proof. The G3C problem is de�ned as follows [191].

Name: Graph 3-Colourability (G3C) Problem

Instance: Given graph G = (V; E).

Question: Is G 3-colourable, that is, does there exist a function � : V ! f1; 2; 3g such that �(u) 6= �(v)

whenever (u; v) 2 E ?

This time we need to make an additional assumption that there is a secure probabilistic encryption

(see Section 5.7). Assume that the message space is M = f0; 1; 2; 3g and the key space is K. An

encryption function

E :M�K ! C

293

runs in polynomial time and for any r; s 2 K and E(x; r) 6= E(y; s) as long as x 6= y where x; y 2

f0; 1; 2; 3g and C is the cryptogram space. Note that for any message x 2 M, we can de�ne an

ensemble Cx = E(x;K). The encryption function E is secure if any two ensembles E(x;K), E(y;K)

are polynomially indistinguishable for x; y 2M (x 6= y).

An interactive proof system for G3C is presented below. We use the following notations: n = jVj

and m = jEj (note that m � n2=2).

G3C Interactive Proof { G3C$

Common Knowledge: an instance of G3C, i.e. a graph G = (V; E) (n is the number of vertices in

V).

Description: P and V repeat the following steps m2 times.

1. P picks up � 2R Sym(f1; 2; 3g) and n-bit random vector rj 2R= K = f0; 1gn for each

vertex vj 2 V; j = 1; : : : ; n. The prover computes Ej = E(�(�(vj)); rj) and

P ! V : E1; : : : ; En

where � : V ! f1; 2; 3g is a 3-coloring (always exists for a yes-instance).

2. V selects an edge (u; v) 2R E and

V ! P : (u; v):

3. If (u; v) 2 E , then P reveals the coloring of u and v or in other words

P ! V : (�(�(u)); ru); (�(�(v)); rv):

4. V checks whether the coloring

Eu

?
= E(�(�(u)); ru) and Ev

?
= E(�(�(v)); rv);

makes sure that two vertices are assigned di�erent colors �(�(u)) 6= �(�(v)) and con�rms

that the colors are valid, i.e. �(�(u)); �(�(v)) 2 Sym(f1; 2; 3g). If any of these checks fail,

V stops and rejects. Otherwise, the interaction continues.

After a successful completion of m2 rounds, V halts and accepts.

Observe that the interactive proof satis�es the completeness property. For any yes-instance, the

prover who knows the requested 3-coloring of the graph, and follows the protocol, can always convince

the veri�er. For any no-instance, at each round, the prover can convince V with probability at most

1 � 1
m

as there must be at least one edge (u; v) 2 E such that �(u) = �(v). After m2 rounds, V

accepts with the probability (1 � 1
m
)m

2

� e�m. The soundness of the proof system holds. To assert

that the interactive protocol is computationally zero knowledge, we need to show that there is a

polynomial time transcript simulator SV �(G; �h) which is polynomially indistinguishable from the view

V iewP;V �(G; �h) for any yes-instance and an arbitrary veri�er V �. As previously, the veri�er uses a

polynomial time probabilistic algorithm F to choose an edge for veri�cation.

Transcript Simulator SV � (G; �h) for G3C$

Input: A graph G(V; E) { a yes-instance of G3C, �h { past transcripts, vi�1 { transcript of the current

interaction.

294

Description: Repeat the following steps until the transcript contains m2 entries.

1. Choose an edge e = (u; v) 2R E and their colors, i.e. a pair of integers (a; b) 2R f(�; �)j� 6=

� and �; � 2 f1; 2; 3gg.

2. Select n random integers rj 2 K for j = 1; : : : ; n.

3. For j = 1; : : : ; n, compute the encryption

Ej =

8><
>:

E(a; rj) if j = u;

E(b; rj) if j = v;

E(0; rj) otherwise:

4. If e = F (G; �h; vi�1; E1; : : : ; En), then

return (E1; : : : ; En; e; a; b; ru; rv)

else go to (1).

A single round of the simulator is successful whenever the edge chosen in the step (1) equals to

the edge indicated by the algorithm F . This event happens with the probability 1
m
. The analysis in

[207] shows that the simulator runs in expected polynomial time and the expected number of rounds

(to generate a single output) is bounded from below by 2m. In the same paper, the authors also

demonstrated that the ensemble generated by the simulator is polynomially indistinguishable from

the view ensemble of G3C$.

Note that the prover has never used her unlimited power during the execution of G3C$. In fact, it

is enough to assume that the prover P is polynomially bounded provided that she knows a 3-coloring

of an yes-instance. In this context, computational zero knowledge of G3C$ assures the prover that

her secret (the 3-coloring) will not be divulged to the veri�er V during the execution of the protocol.

What V gains is the assertion that P knows a 3-coloring without revealing any details about it.

Brassard, Chaum and Crepeau [60] independently showed that the satis�ability (SAT) problem

has a computational zero knowledge protocol. Instead of probabilistic encryption, they used a bit

commitment scheme.

12.4 Bit Commitment Schemes

Consider again the protocol G3C$. The probabilistic encryption E was used there to hide the known

3-coloring into a sequence of n cryptograms Ei = E(�(�(vi)); ri) (i = 1; : : : ; n). A single cryptogram

can be seen as a locked box with a single (permuted) color �(�(vi)) of the vertex vi. The lock can be

opened by a holder of the key ri. After sending a box, the prover commits herself to the particular

color { P cannot change the contents of the box. Later the veri�er may ask P to open the box and

reveal the color.

A bit commitment scheme is a necessary ingredient for the design of computational zero knowledge

protocols for all problems fromNPC. It provides a tool to hide the structure of a yes-instance. Having

a bit commitment scheme we can encrypt bit by bit the structure or put these bits into locked boxes.

The boxes can be treated as pieces of paper covering bits of the yes-instance structure. Obviously,

the prover reveals a small part of the structure only so the veri�er learns nothing about the structure

itself but this is enough for V to be convinced (after several rounds) that the prover indeed knows the

structure.

De�nition 12.2 A bit commitment scheme is a pair of polynomial time functions (f; �). The function

f : f0; 1g � Y ! X

295

encrypts binary messages b 2 f0; 1g using a random y 2 Y. A cryptogram x = f(b; y) is called a blob.

The veri�cation function

� : X � Y ! f0; 1; �g

is used to open a blob and reveal the bit (� stands for \unde�ned"). The functions have to satisfy the

following conditions:

1. binding { for any blob x = f(b; y), the prover is not able to �nd y0 6= y such that the blob can be

opened to the di�erent bit, i.e.

�(x; y) 6= �(x; y0):

2. concealing { two ensembles ff(0;Y)g and ff(1;Y)g are indistinguishable.

The condition (1) says that once P has committed herself to a bit b by presenting a blob x = f(b; y)

to the veri�er, she is later unable to change the bit. The condition (2) ensures that there is no leakage

of information about the committed bits from the blobs which are not opened by the prover.

Commitment schemes can be divided into two major classes:

� schemes with unconditionally secure blobs for P ,

� schemes with unconditionally secure blobs for V .

A blob is unconditionally secure for P if binding holds unconditionally. So the veri�er can learn

nothing about the committed bit in the information theoretical sense (the entropy of the bit stays 1).

A blob is unconditionally secure for V if concealing holds unconditionally.

12.4.1 Blobs with Unconditional Binding

Brassard, Chaum and Crepeau [60] gave a list of such schemes. We start from a scheme based on

the factorization problem. The scheme is initialized by the veri�er who chooses at random two large

enough primes p and q and creates the modulus N = pq. Next, V picks up at random t 2R Z�
N

and computes s = t2 mod N . The pair (s;N) is made public and is used by P . The encryption and

veri�cation is described below.

A Bit Commitment Based on Factoring

Setup: V selects two large enough primes p and q, creates the modulus N = pq, picks up at random

t 2R Z�
N
, and computes s = t2 mod N . The set of blobs X = Z

Q+
N

and the set Y = Z�
N
. V

sends the public parameters of the scheme to P , that is V ! P : s;N .

Hiding: To encrypt a bit b, P chooses at random y 2 Z�
N

and creates a blob

x = f(b; y) = sby2 mod N:

Opening: P reveals her random y and V checks

�(x; y) =

8><
>:

0 if x � y2 mod N

1 if x � sy2 mod N

� otherwise:

296

Binding holds under the assumption that the factorization problem is intractable (clearly P has

to be polynomially bounded). Concealing is satis�ed unconditionally as the ensembles ff(0;Yg and

ff(1;Yg are identical.

Under the assumption that the discrete logarithm is intractable, it is possible to build a bit

commitment scheme which uses exponentiation as a one way function.

A Bit Commitment Based on Discrete Logarithm

Setup: P and V agree on a large enough prime p and a primitive element g 2 Z�
p
. The set X = Z�

p

and Y = f0; 1; : : : ; p� 2g. V chooses s 2 Z�
p
and forwards it to P .

Hiding: To encrypt a bit b, P chooses at random y 2 Y and creates a blob

x = f(b; y) = sbgy mod p:

Opening: P reveals her random y and V checks

�(x; y) =

8><
>:

0 if x � gy mod p

1 if x � sgy mod p

� otherwise:

Binding is satis�ed conditionally if the discrete logarithm is intractable. Again concealing is

satis�ed unconditionally as the ensembles ff(0;Yg and ff(1;Yg are identical.

The GI problem can also be used to construct bit commitment schemes assuming that instances

applied are intractable.

A Bit Commitment Based on GI

Setup: P and V agree on a graph G = (V; E) (n = jVj). V selects a random permutation � 2R

Sym(V) and de�nes H = �(G). The pair (G;H) of graphs is known to both P and V (while

the permutation � is kept secret by V). The set X = fHjH = �(G); � 2R Sym(V)g and

Y = Sym(V).

Hiding: To encrypt a bit b, P chooses at random 2 Y and creates a blob (a graph)

X = f(b;) =

(
(G) if b = 0;

(H) if b = 1:

Opening: P reveals her random and V checks

�(X;) =

8><
>:

0 if (G) = X;

1 if (H) = X;

� otherwise:

Note that a blob cannot be opened to a di�erent bit under the assumption that P is not able to �nd

the isomorphism � used by V (intractability of GI instances) to generate H which is an isomorphic

copy of G. The ensembles ff(0;Yg and ff(1;Yg are identical so concealing holds unconditionally.

297

12.4.2 Blobs with Unconditional Concealing

Consider the quadratic residue problem. It is assumed that for a composite modulus N = pq, the sets

Z
Q+
N

and Z
Q�

N
are polynomially indistinguishable. This property can be exploited in the design of

bit commitment schemes. This time the scheme is set up by the prover who chooses two random and

big enough primes p and q and a quadratic nonresidue s 2 ZQ�

N
.

A Bit Commitment Based on QR

Setup: P selects two large enough primes p and q, creates the modulus N = pq, picks up at random

s 2R Z
Q�

N
. The set of blobs X = Z

Q

N
and the set Y = Z�

N
. P sends the public parameters of

the scheme to V , that is V ! P : s;N .

Hiding: To encrypt a bit b, P chooses at random y 2 Z�
N

and creates a blob

x = f(b; y) = sby2 mod N:

Opening: P reveals her random y and V checks

�(x; y) =

8><
>:

0 if x � y2 mod N

1 if x � sy2 mod N

� otherwise:

The prover is unable to cheat and open a blob to the di�erent bit as there exists no y0 2 Z�
N

which would give the same blob for the di�erent bit. This is the consequence of fact that ZQ�

N
\

Z
Q+
N

= ;. Binding is unconditional. The two ensembles ff(0;Y)g and ff(0;Y)g are polynomially

indistinguishable. Concealing holds under the assumption that the testing quadratic residuosity is

intractable.

The discrete logarithm can also be used. Let p be a large enough Blum prime and g be a primitive

element of Z�
p
.

A Bit Commitment Based on Discrete Logarithm

Setup: P and V agree on a large enough Blum prime p (p � 3 mod 4) and a primitive element

g 2 Z�
p
. The set X = Z�

p
and Y = Z�

p
.

Hiding: To encrypt a bit b, P chooses at random y 2 Y. Observe that the second least signi�cant bit

of y is b or shortly b = SLB(y) or equivalently, y mod 4 2 f0; 1g if b = 0 and y mod 4 2 f2; 3g

if b = 1. P creates a blob

x = f(b; y) =

(
gy mod p if SLB(y) = b;

gp�y mod p if SLB(y) = �b

Opening: P reveals her random y and V checks

�(x; y) =

8><
>:

b = SLB(y) if x � gy mod p;
�b = SLB(y) if x � gp�y mod p

� otherwise:

Once the prover committed herself to a blob, the hidden bit cannot be changed { binding is

unconditional. On the other hand, concealing holds under the assumption that an instance used is

intractable.

Another example of a bit commitment is a probabilistic encryption discussed in Section 5.7 and

applied in Section 12.3.

298

12.4.3 Multivalued Blobs

A string commitment scheme is a generalization of bit commitment schemes. Unlike in a bit com-

mitment, the prover can hide a string of bits in a single blob. An advantage of these schemes is that

they can be tailored to a particular zero knowledge protocol making the interactions more e�cient.

We need to adjust our de�nition. The function f : f0; 1gn�X ! Y operates on n-bit sequences. The

function � : X � Y ! f0; 1; : : : ; 2n�1; �g.

Consider a multivalued blob which constitutes a commitment to an n-bit string s = (b1; : : : ; bn)

[395].

A String Commitment Based on Discrete Logarithm

Setup: P and V agree on a large enough prime p, a primitive element g 2 Z�
p
and an integer h such

that log
g
h is unknown. The set X = Z�

p
and Y = Z�

p
.

Hiding: To encrypt an n-bit string s, P chooses at random y 2 Y and creates a blob

x = f(s; y) = gshy mod p:

Opening: P reveals the pair (s0; y0) and V checks

�(x; y) =

(
s0 if x

?
� gs

0

hy
0

mod p;

� otherwise:

Blobs in the scheme are concealing unconditionally. Binding is conditional as it depends on the

assumption that the discrete logarithm is intractable. Blobs in the scheme are unconditionally secure

for the veri�er.

Claw-free permutation pairs studied in [210] can be used to build a string commitment scheme

[230]. Given two large primes p and q such that p � 3 mod 8 and q � 7 mod 8. The modulus N = pq.

De�ne a function gb(x) � 4bx mod N where b is a bit.

A String Commitment Based on Claw-free Permutations

Setup: V selects two primes p and q such that p � 3 mod 8 and q � 7 mod 8. V communicates N to

P . The set X = Z
Q+
N

and Y = Z�
N
.

Hiding: To encrypt an n-bit string s, P chooses at random y 2 Y and creates a blob

x = f(s; y) = gb1 � gb1 � : : : � gbn(y);

where s = (b1; : : : ; bn).

Opening: P reveals the pair (s0; y0) and V checks

�(x; y) =

(
s0 if x

?
� gb0

1
� : : : � gb0

n
(y);

� otherwise:

where s0 = (b01; : : : ; b
0

n
).

Binding is unconditional, concealing is conditional if the factorization of N is intractable. Blobs

in the scheme are unconditionally secure for the prover.

Let us discuss implications of the type of a bit commitment scheme on a zero knowledge proof

in which the scheme is being used. A bit commitment scheme with unconditionally secure blobs for

299

the veri�er was used to design a zero knowledge proof for G3C. The protocol works correctly for the

prover who may or may not be polynomially bounded. Moreover, the prover is not able to cheat the

veri�er when P opens some blobs. An evident disadvantage is that the security of unopened blobs

depends on the assumption of intractability. After completion of the protocol, if the veri�er is able

to break the bit commitment scheme, the secret structure of yes-instance (in the case of G3C$, a

3-coloring) can be easily revealed.

What happens when a zero knowledge proof employs a bit commitment with unconditionally secure

blobs for the prover? P cannot open a blob to two di�erent bits under some intractability assumption.

Clearly, P has to be polynomially bounded. Otherwise, P could cheat. To make the point clearer,

consider a bit commitment based on factoring. If a blob is x, then \all powerful" prover can easily �nd

factors of the modulus N and open x as bit 0 (for this she needs to �nd a square root of x) or as bit 1

(she computes a square root of xs�1). Unlike in the �rst case however, the prover has a limited time

for computations which may help her to cheat. After the execution of protocol, even if P gains some

additional computational power (either by progress in computing technology or development of new

more powerful algorithms), it is too late for cheating. Unopened blobs are unconditionally secure and

the security does not depend on the computational power of the veri�er. In literature, protocols which

use this type of bit commitment are called zero knowledge argument. Note that because unopened

blobs are unconditionally secure so the zero knowledge argument is perfect.

12.5 Problems and Exercises

1. Consider the following interactive proof system.

QNR Interactive Proof { QNR
$

Common Knowledge: an instance (x;N) of the QNR problem (n is the size of the instance).

Description: Given a polynomial t(n) in n. P and V repeat the following steps t(n) times.

1. V picks up r 2R Z
�

N and � 2R f0; 1g.

2. V ! P : w � r2 � x� mod N .

3. The prover sends to V

P ! V : � =

�
0 if w 2 Z

Q+

N ;

1 otherwise:

4. V checks whether � = �. If the check fails, V stops and rejects. Otherwise V continues.

After passing through t(n) rounds without rejection, V halts and accepts.

Prove that the protocol is complete and sound. Is the protocol zero knowledge ? Justify your answer

(see [209]).

2. Consider two protocols QR
$

and GI
$
. Assume that the veri�er follows strictly the protocol. Modify the

corresponding transcript simulators and show that both protocols are zero knowledge.

3. Consider two protocols GNI
$

and QNR$. Show that the two protocols are complete and sound.

4. Consider the following decision problem ([488]).

Name: Subgroup Membership Problem.

Instance: Given a composite integer N . Two integers g; x 2 Z�N where g generates a subgroup of order

�.

Question: Is x � gk mod N for some k � � ?

300

Consider the following interactive proof based on the problem.

Subgroup Membership Interactive Proof

Common Knowledge: an instance of the subgroup membership problem, i.e. a modulus N and two

integers g; x 2 Z�N where g has order � in Z�N .

Description: Given a polynomial t(n) in n (n is the size of the instance). For i = 1; : : : ; t(n), P and

V repeat the following steps

1. P picks up j at random (0 � j � �) and evaluates � � gj mod N .

2. P ! V : �.

3. V chooses at random a bit b and sends it to P .

4. P �nds out h � j + ik mod � where k = log� x and sends h to V .

5. V stops and rejects when gh
?

6� xi� mod N .

After passing through t(n) rounds without rejection, V halts and accepts.

Show that the protocol is complete and sound.

5. Consider G3C
$

protocol. It is assumed that the veri�er strictly obeys the protocol. Modify the corre-

sponding transcript simulator. What is the time complexity of the modi�ed simulator ?

6. Take the bit commitment scheme based on DL. Prove that concealment is unconditional. Is this still true

if the veri�er knows that the prover chooses y < p

2
?

7. Let us consider the bit commitment based on the GI problem. Show how the prover can cheat if she knows

the permutation � which establishes the isomorphism between public graphs H and G.

8. Given the bit commitment scheme based on QR. Assume that P cheats and sends s which belongs to ZQ+

N

(instead to ZQ�

N as prescribed). P also knows a square root of s. Is binding still satis�ed?

9. Recall the string commitment scheme based on DL. Prove that concealment is unconditional. Show that

if a particular instance of DL is easy, then P can always open a blob to a di�erent string.

10. Consider the bit commitment based on claw free permutations. Prove that binding is unconditional and

concealing holds only if the factoring of N is intractable.

Chapter 13

IDENTIFICATION

Identi�cation is usually one of the �rst safeguards which is used to protect computer resources against

an unauthorised access. Any access control that governs how the computer resources are accessed and

by whom, assumes that there is an identi�cation mechanism which works reliably.

There is a large volume of literature which covers di�erent aspects of entity identi�cation. A good

overview of the topic can be found in [334],[488].

13.1 Basic Identi�cation Techniques

Identi�cation of a person, host, intelligent terminal, program, system, etc. can be seen as a two-

party protocol. The two players involved are: the prover and veri�er. The prover P also called

mnemonically Peggy, wish to introduce herself to the veri�er V , say Victor, in such a way that Victor

is convinced that he is indeed dealing with Peggy. An identi�cation protocol can go wrong in two

di�erent ways. Firstly the failure can occur when an opponent, say Oscar, manages to convince Victor

that he is Peggy. This is a false acceptance. Secondly the failure occurs when Peggy fails to convince

Victor about her identity. This is a false rejection. An identi�cation protocol is characterised by two

probabilities (also called rates). The probability of false acceptance Pfa and the probability of false

rejection Pfr.

Consider two trivial identi�cation protocols. In the �rst protocol, Victor asks Peggy for her name

and always accepts her under the given name. The probability of false acceptance Pfa = 1 and the

probability of false rejection Pfr = 0. In the second protocol, Victor always rejects Peggy's proofs

of identity. The probabilities of false acceptance Pfa = 0 and false rejection Pfr = 1. A \good"

identi�cation protocol should achieve both Pfa and Pfr as small as possible.

Identity of an entity (person, host, intelligent terminal, program, etc.) can be asserted by the

veri�cation of what the entity:

� is,

� has, or

� knows.

The veri�cation of \what the entity is" is traditionally referred to as user identi�cation mainly because

in a computer environment, hardly any entity displays unique and non-transferable identi�cation

characteristics. On the contrary, due to the ease of copying, all digital information can be duplicated

making it impossible to distinguish copies from the original. Typically, a user identi�cation mechanism

uses unique and non-transferable characteristics such as �ngerprints, retinal prints, hand signature,

etc.

301

302

The veri�cation of \what the entity has" makes sure that the entity has a unique token such as a

smart card with some secret information which can be used to prove the identity of the holder. The

proof of identity is based on the assumption that the owner never looses its token. If a token is lost,

it can be used by some other entity to falsely claim the identity of the owner of the token.

The veri�cation of \what the entity knows" exploits a piece of secret informationwhich is known to

a given entity only. A common identi�cation mechanism in this class applies passwords. The security

of the identi�cation relies on the security of the secret. Secrets which are compromised (revealed)

can be used by unauthorised entities. On the other hand, forgotten secrets cannot be used by an

authorised entity.

The identi�cation based on what the entity has and knows uses a secret and unique information.

The di�erence is in the storage of the information. The secret can be stored away from the entity on

a token (the token is owned by the entity) or just be stored within the entity (the entity knows the

secret).

13.2 User Identi�cation

Fingerprints are commonly considered as a unique characteristic of a person. The reliability of �nger-

print identi�cation is so high that it is legally admissible in court. Fingerprint identi�cation systems

use ridge and valley patterns. The patterns are classi�ed into a collection of minutiae. The minutiae

are stored as an individual �ngerprint template. Currently available automated �ngerprint identi�-

cation machines (AFIMs) verify persons with false acceptance/rejection probabilities approximately

10�3 or better. The enrolment time necessary to store an individual �ngerprint template is usually

below 10 seconds and requires about 1 kbyte memory storage. The veri�cation time, typically takes

around few seconds. However, AFIMs are still expensive and their prices range close to or above

US$1,000. Because of the cost, their application in the computer environment is limited.

Similarly both the iris and retina can be used as the base for identi�cation. Retinal scan technology

applies the capillary pattern of the retina and converts it to a digital pattern template. The template

takes about 40 bytes of storage. The probability of false acceptance/rejection is smaller than 10�6.

The enrollment time is approximately 30 seconds and the veri�cation can be done in less than 2

seconds. Again this technology requires a dedicated hardware and is expensive.

Hand geometry and face images fall in the same category of biometric identi�cation. Hand geom-

etry identi�cation uses key geometric features of the topography of a hand. The features are encoded

into a template which needs 10 bytes only. Face recognition is rapidly growing due to a non-invasive

nature of the method. It can also be used for massive scanning for instance in the search for terrorists

in airports. The false acceptance/rejection probabilities are smaller than 10�4.

The handwritten signature is a common method of authenticating paper documents. There are

some features of the signature which tend to be di�erent for each signature. More importantly, there

are also features that do not change at all. They are related to habitual aspects of signing. To capture

these unique signing patterns, signature veri�cation systems uses analysis of the pen pressure, style,

stroke direction, acceleration and speed. A typical template which characterizes the unique signing

features of an individual, takes about 1 kbyte. To create a template for a new person, the person is

required to sign from �ve to eight times. The veri�cation time is less than 1 second. An attractive

characteristic of signature is that a simple veri�cation system can be implemented for all computer

systems with a mouse with no additional hardware. The mouse can be used as a pen.

Voice veri�cation can also be an option for person identi�cation. Voice recognition devices are

probably the least reliable in terms of their high false acceptance/rejection probabilities. Their useful

303

feature is, however, that a voice sample can be taken remotely using a telephone only (no additional

hardware).

When a person types on a keyboard, the keystroke characteristics (typing rhythms) also contain

some unique features of the person. This veri�cation method is the most \computer" friendly. Exper-

iments showed that the false acceptance/rejection rate is still too high for any practical and reliable

identi�cation. To make this technique reliable for identi�cation keyboards need to be equipped with

special sensors to measure not only a typing rhythm but also some other typing features as speed,

acceleration, key pressure, etc.

For the sake of completeness, the DNA identi�cation needs to be added to the list of available

identi�cation methods. In theory, this method o�ers the false acceptance/rejection rate equal to zero.

The only exception is when the method is used to identify one of two identical twins. In practice, the

identi�cation service is provided by specialized laboratories only. The veri�cation is time consuming

and requires a sample of the tested person genetic material. Because of these properties, the method

is not used for personal identi�cation in the computer environment.

Biometric identi�cation is vulnerable to all kinds of replay attacks. For example voice could be

recorded and later replayed unless the tested person has to repeat a randomly selected sentence.

13.3 Passwords

The most popular single identi�cation technique used in computer environment is via what a person

knows. The piece of information memorized by a person is a password or personal identi�cation

number (PIN). PINs are passwords which are sequences of digits. This restriction is imposed by a

speci�c technology used in for example automated teller machines (ATMs) where the keypad has digit

keys only. As the main requirement for passwords is that they have to be memorized by persons, their

length has to restricted. Typically, the length varies from 4 to 9 alphanumerical characters.

Given a password of n characters. If the number of letters is 26 (upper and lower case letters are

considered to be identical), the probability of guessing of the password is 26�n provided the password

is selected independently and uniformly from the set of 26n possible words. If upper and lower case

letters are considered di�erent, the guessing probability drops to 52�n. Further reduction can be

achieved if a password can contain not only letters but also digits, and other printable characters such

as $,%,<,f,;,", etc.

Typically password identi�cation takes place every time a user, Peggy, wishes to login to a host

computer V . Peggy knows her password while the host V maintains a password �le in which V stores

passwords of all registered users. Peggy types her login name and her password. Having the pair:

login name, password, the host V checks whether there is an entry for Peggy and if so, compares the

password submitted by Peggy with the one stored in the password �le. If there is a match, Peggy can

access the host otherwise Peggy is identi�ed as an illegal user and the access is denied. Note that the

password �le in the host has to be protected not only against users but preferably against a superuser

as well. Usually, password �les are protected by storing either encrypted or hashed passwords. The

veri�cation process would involve the same steps except that a password provided by Peggy is �rst

encrypted (or hashed) and then compared. Hashing has an advantage over encryption as it applies

no cryptographic key.

Every time a password is used, its security is decreasing. The simple remedy would be to introduce

password aging. A password is valid for its life time which usually is any time between 20 days and 3

months. In extreme, the life-time of a password can by a single login attempt. These passwords are

called one-time passwords. Implementation of one-time passwords can be done simply by generation

304

of list of passwords and applying them in some order. The main problem is now memorizing them by a

user. A way out would be to store passwords on a token { this obviously shifts the identi�cation from

what a person knows to what a person possesses. One-time passwords could be created by repetitive

application of a one-way function. Given a one-way function f and a password p0. The sequence of

passwords is pi = f(pi�1) for i = 1; : : : ; n. The passwords are used by their holder in reverse order so

the �rst password to be used is pn and the last one is p0.

13.3.1 Attacks on Passwords

A password can be compromised every time it is used. An outsider may look over Peggy's shoulder

when she is typing her password and learn it. To thwart the attack is required to put a keyboard in

such position that the movement of hands cannot be observed. Also the use of one-time password

may be a possibility. After Peggy has typed her password, the password needs to be veri�ed by the

host. If Peggy access her host via remote terminal, her password may travel in clear via unprotected

communication channels to the host. The security risk becomes even higher if Peggy uses the Internet

for a remote login.

Selection of passwords is crucial. Ideally, Peggy should choose her password at random. The

problem with this is that random passwords are di�cult to learn by heart. Consequently, users tend

to choose passwords in a non-random way making their passwords vulnerable to the exhaustive search

attack. Knowing Peggy's habits, favourite movies, songs, etc. a potential attacker Oscar may restrict

the search for Peggy's password to: her name, names of her friends, names of her relatives, names of

her pets, names of her favourite actors, singers, sportwomen. If this fails, Oscar may try the name of

Peggy's host computer, her phone numbers, her car registration number, the number of her passport,

her address details, her birthday and so on. Oscar may also try some easy to memorize combination

of digits/letters such as a sequence of \000000". In general, Oscar may apply the so called dictionary

attack. In this attack, Oscar tries all words (in lower and upper cases, written also backwards) in

a typical (around 100,000 words) dictionary. To limit the e�ciency of the dictionary attack, it is

desirable to put the upper bound on the number of unsuccessful password guesses after which the

system terminates the login session with extra delays between subsequent attempts. This may not

work when Oscar can access the encrypted password �le.

Passwords may be easier to memorized and more di�cult to guess if Peggy obeys the following

rules when she selects her password:

1. passwords should use the full allowed length of the password,

2. password should contain special characters as $,%,&,@,f,[,(, etc. digits, lower and upper case

letters,

3. words in passwords should not be part of any dictionary (words should be composed from parts

of an easy to memorize and long sequence with inserted digits and special characters).

Again we emphasize that only long and truly random passwords are immune against the exhaustive

search and against any dictionary attack.

13.3.2 Weaknesses of Passwords

Identi�cation based on passwords su�ers from the following inherent weaknesses:

� the password veri�cation process requires Peggy to show her password to Victor. After learning

her password, Victor can try to impersonate Peggy.

305

� Victor never proves his identity to Peggy. Oscar may try to impersonate Victor to learn Peggy's

password.

� the password communicated by Peggy to Victor does not depend on the current time. Oscar

may use the replay attack.

The impact of the �rst weakness can be reduced by encrypting or hashing passwords at the point of

entry and handling them in an encrypted or hashed form. Typing of passwords itself on a keyboard is

still a potential hazard for security of a password. This weakness also rises the following question: is

it possible to verify a piece of secret information without telling the secret ? The answer is a�rmative

and examples of such veri�cation techniques are given in the next sections.

The prover-veri�er relation is highly asymmetrical. Victor veri�es Peggy's credentials but Peggy

knows nothing about Victor's identity. The lack of mutual authentication is a major hurdle for

extending the password-based identi�cation to peer entities such as collaborating concurrent processes.

Moreover, the two �rst weaknesses can be used to launch a variety of masquerade attacks. Typically in

the attack, an intelligent remote terminal (disconnected from the host) is applied to collect passwords

from unsuspected users who want to login to the host. After typing the prescribed user name and

password by a user, the terminal aborts the session displaying a message

``the host temporarily unavailable due to scheduled maintenance -

try again in 30 minutes''.

The attacker may even connect the terminal back to its host after 30 minutes making users to believe

that the message was true. Some other variants of the above attack may include a forged login

program. The program asks a user for their name and password, stores the pair: user name, password

and displays

``wrong password, try again''.

After that it calls the original login program making the user to believe that he or she has made

a typing mistake. In these attack, most users will not even realize that their passwords have been

compromised.

Notice that passwords do not depend on time so consequently Victor does not know whether the

current password has been sent now or perhaps it is a copy of a password sent some time ago. This

property can also be exploited to design an attack on the password identi�cation mechanism.

13.4 Challenge-Response Identi�cation

Challenge-response identi�cation is also termed as strong entity authentication or handshaking protocol.

The identi�cation takes the form of a dialog between Peggy and Victor in which the password is never

exchanged between them. Instead, the password known to both P and V, is used to generate \proper"

responses to random challenges. In this context, passwords are playing the role of secret cryptographic

keys used to perform computations on challenges. The challenge-response protocol can also be used

by P and V to assert that they have been successful in running their key establishment protocol. In

other words, P and V wish to verify whether they possess the right collection of keys.

13.4.1 Authentication of Shared Keys

Assume that two peer entities A and B (mnemonically Alice and Bob) are supposed to know the same

cryptographic key k. Now they would like to verify whether they indeed share the same key. A typical

challenge-response dialog for this case may proceed as follows.

306

Challenge-Response Protocol (a shared key)

Goal: Mutual authentication of A and B by checking whether they share a key k.

Assumptions: A and B choose two random challenges (nonces) rA and rB, respectively, and they

use the same encryption algorithm.

Message Sequence: The protocol consists of the following sequence of messages:

1. A! B : rA.

2. B ! A : frA; rBgk.

3. A! B : frBgk.

where frA; rBgk is the cryptogram for message (rA; rB) under the key k.

The protocol works as follows. Firstly, A sends her challenge to B in clear. In response, B takes

her challenge rA, concatenates it with his challenge rB and encrypts the pair using the key k. The

cryptogram frA; rBgk is sent to A. A decrypts the cryptogram, retrieves the pair of nonces and checks

whether one of them is equal to her nonce rA. If there is a match, A knows that B holds the same key.

Now, A encrypts B's challenge and forwards frBgk to B. Now B veri�es the validity of A's response

by comparing the nonce recovered from the cryptogram with the original rB. If there is a match, B

is convinced that A applied the correct key for encryption so she knows the key. The security of the

challenge-response protocol depends on the length of the key k, strength of the encryption algorithm,

and freshness of the challenges. The protocol can be easily adopted for an unilateral authentication

where A authenticates B only. The step (1) is the same while in the step (2) B communicates frAgk

to A. A veri�es whether B knows the key k.

The encryption algorithm can be replaced by any one-way function including a collision-free hash

function. If both A and B decide to used the same hash function h, then the message exchange in the

above protocol may proceed as follows:

1. A! B : rA.

2. B ! A : rB; h(rA; rB; k).

3. A! B : h(rB; rA; k).

A �rst communicates rA toB in clear. B hashes the triple rA; rB; k and forwards the pair (rB; h(rA; rB; k))

to A. A veri�es the hash value and sends h(rB; rA; k) to B. Note that A swops the order of challenges

h(rA; rB; k) 6= h(rB; rA; k) to make the protocol immune against the replay attack.

13.4.2 Authentication of Public Keys

Suppose that A and B know each other's authentic public key. So A knows KB and B knows KA.

Clearly, A has to know her own secret key kA and B has to know his secret key kB . Assume that they

wish to verify whether the other entity indeed holds the corresponding secret key. Note that a public

key cryptosystem can be used for con�dentiality or authenticity (signature). A challenge-response

protocol for unilateral authentication of B by A when B uses his public key for con�dentiality is

described below.

Challenge-Response Protocol (public encryption)

307

Goal: A identi�es B by checking whether B holds the secret key kB which matches his public key

KB .

Assumptions: A chooses a random challenge (nonce) rA. B applies his public key system for con�-

dentiality.

Message Sequence: The protocol consists of the following sequence of messages:

1. A! B : [rA; A]KA
.

2. B ! A : rA.

where [rA; A]KA
stands for cryptogram of (rA; A) obtained using the key KB .

A knowing the public key of B encrypts her nonce rA together with her name A and sends the

cryptogram to B. Only B can recover the nonce and the name of A from the cryptogram. B

communicates rA to A. If the returned nonce is equal to rA, A accepts that she is dealing with B.

The protocol needs some modi�cations when B uses his public key cryptosystem for authentication.

Challenge-Response Protocol (authentication)

Goal: A identi�es B by checking whether B holds the secret key kB which matches the public key

KB .

Assumptions: A chooses a random challenge (nonce) rA, B uses his random nonce rB. B applies

his public key system for authentication.

Message Sequence: The protocol consists of the following sequence of messages:

1. A! B : rA.

2. B ! A : rB; hrA; rBikB .

A sends her random challenge to B. B takes a fresh nonce rB and signs the pair. The signature

hrA; rBikB is sent to A who veri�es its validity in the usual way. Note that the nonce rB may not

need to be transmitted in clear if the signature hrA; rBikB allows the recovery of the message.

13.5 Identi�cation Protocols

Recall that zero-knowledge proof systems considered in Chapter 12 allow the prover P to demonstrate

to the veri�er V the knowledge of her secret without revealing any information about it. Clearly, they

are ideal vehicles for identi�cation. Note that a direct use of a zero-knowledge proof system allows

unilateral authentication of P (Peggy) by V (Victor) and the identi�cation protocol will need to consist

of a large enough number of iterations. The completeness, soundness and zero knowledge properties

de�ned for interactive proof systems, have their own interpretation in the context of identi�cation. An

identi�cation protocol is complete if a legitimate prover (who follows the protocol) is always correctly

identi�ed by V . In other words, the probability of false rejection is zero. An identi�cation protocol is

sound if the veri�er detects an impostor with an overwhelming probability. This can be translated into

the requirement that the probability of false acceptance be 2�t, where t is the number of iterations.

A zero knowledge identi�cation protocol reveals no information about the secret held by the prover

under some reasonable computational assumptions.

In this section we are going to discuss the Fiat-Shamir identi�cation protocol and its more e�cient

variant given by Feige, Fiat and Shamir. We next study an identity-based identi�cation protocol by

308

Guillou and Quisquater. Schnorr presented very e�cient identi�cation protocol designed especially

for smart card applications. We describe the Schnorr scheme together with its variant given by

Okamoto. Other identi�cation protocols not discussed here include several variants based on error

correcting codes (see [482] and [94] for example). One of more exotic intractable problems used to

design identi�cation protocols is an NPC problem from learning machines, called the perceptrons

problem (see [407]).

13.5.1 The Fiat-Shamir Identi�cation Protocol

Fiat and Shamir [181] designed an identi�cation protocol whose security hinges on the assumption

that �nding square roots modulo N is di�cult provided the factorization of N is unknown. This is

equivalent to the di�culty of factoring N . The FS protocol is described as follows.

FS Identi�cation Protocol

TA Precomputations: A trusted authority TA holds its public modulus N where N = pq and

primes p and q are secret.

Registration: P selects her secret s 2 Z�N such that gcd (N; s) = 1. P registers the integer � � s2

(mod N) with TA as her public identi�cation information.

Message Sequence: P proves to V that she knows the secret s by performing the following iterations

t times:

1. P ! V : u � r2 mod N where r 2R Z
�

N .

2. V ! P : b 2R f0; 1g.

3. P ! V : v � r � sb mod N

4. Veri�cation: V checks whether

v2
?
� u� �b mod N

V stops on failure or continues otherwise.

After t successful iterations V accepts.

TA keeps identi�cation information of all registered users. The registration of P has to be per-

formed at the setup stage. Registration has to proceed after the mutual authentication of TA and P

which is typically done by physical exchange of their credentials (passports, identi�cation cards with

photos, etc.). This step is crucial from a security point of view.

Assume that a veri�er V would like to make sure that P is indeed the same person whose public

information � is published by TA. V asks P to prove herself to him. The identi�cation protocol

takes t iterations. Each iteration is independent of each other in the sense that an iteration starts

from selection of a random r by Peggy who then squares it and forwards the commitment u to Victor.

Next V chooses his binary challenge b and communicates it to P . Peggy replies by sending v = r� sb.

Finally, Victor squares the response v and veri�es whether the result is equal to u � �b. If the check

fails V stops and rejects P 's identity, otherwise the protocol continues. If P and V passed t iterations

without rejection, then V accepts P .

An impostor, Oscar, may cheat Victor if he is able to guess his binary challenge. Let g 2 f0; 1g

be Oscar's guess of Victor's challenge. Oscar selects at random r and sends his commitment

u � r2��g mod N

309

Victor replies by sending his challenge b 2R f0; 1g. Oscar now has to dispatch

v � r � sb�g mod N

to pass the check v2
?
� u� �b mod N . The veri�cation can be rewritten as

v2 = r2�b�g
?
� u� �b�g

Note that when g 6= b then Oscar is unable to produce the proper v � r � sb�g mod N as he needs

to now either s or s�1. So he will fail each iteration with probability 2�1. If the protocol is run for

t iterations, Oscar is detected as an impostor by Victor with probability 1 � 2�t. The probability of

false acceptance is 2�t.

Consider an example. TA has published the modulusN = 46161041 (p = 4787 and q = 9643). The

prover has selected her secret s = 21883917 and registered her public information � = s2 � 25226214

(mod 46161041). The identi�cation protocol runs t times. At each run, P selects at random r. Let it

be r = 41435437. P sends her commitment

P ! V : u = r2 � 6360246 (mod 46161041):

V replies by sending his random challenge b = 1. P sends response

P ! V : v = rs � 39085596 (mod 46161041):

V checks whether v2 � 42178320 (mod 46161041) is equal to u� � 42178320 (mod 46161041).

Indeed two integers are the same, so P continues the protocol.

13.5.2 The Feige-Fiat-Shamir Identi�cation Protocol

The FS identi�cation protocol requires a large number of iterations consequently the identi�cation

process is slow and computationally expensive for both the prover and veri�er. Feige, Fiat, and Shamir

came up with a more e�cient protocol ([168]). The security of the protocol relies on the assumption

that factoring is di�cult.

FFS Identi�cation Protocol

TA Precomputations: TA holds its public modulus N where N = pq and primes p � 3 mod 4 and

q � 3 mod 4 are kept secret.

Registration: P performs the following steps:

1. selects at random ` integers s1; : : : ; s` 2R Z
�

N ,

2. chooses a binary vector (e1; : : : ; e`) at random,

3. computes wi � (�1)eis�2i (mod N) for i = 1; : : : ; `,

4. registers (w1; : : : ; w`) with TA as P 's identi�cation public information while keeping inte-

gers (s1; : : : ; s`) secret.

Message Sequence: P proves to V that she knows the secret vector s1; : : : ; s` by performing the

following iterations t times.

1. P ! V : u � �r2 (mod N) where r 2R Z
�

N .

2. V ! P : (b1; : : : ; b`) 2R f0; 1g
`.

310

3. P ! V : v � r
Q`

i=1 s
bi
i (mod N).

4. Veri�cation: V checks whether

u
?
� �v2

Ỳ

i=1

wbi
i (mod N):

V stops on failure or continues otherwise.

After t successful iterations, V accepts.

Oscar who would like to impersonate P , can succeed if he can guess V 's challenge. Denote

Oscar's guess by (g1; : : : ; g`). Oscar generates a random r 2R Z
�

N and sends his commitment modi�ed

according to the guessed challenge (g1; : : : ; g`) as

u � r2
Ỳ

i=1

w
gi
i (mod N)

Now V sends his challenge. If the challenge (b1; : : : ; b`) = (g1; : : : ; g`). Oscar now replies by sending

simply v = r. V now checks whether u � v2
Q`

i=1w
bi
i mod N which holds.

Assume that Oscar has made his guess (g1; : : : ; g`) and sent his commitment u � r2
Q`

i=1w
gi
i

(mod N). In response, V sends his challenge (b1; : : : ; b`) such that bi = gi for all except for i = 1. It

means that Oscar has failed to guess b1 and g1 is its negation. Oscar now has to respond by sending

rs1 if (g1 = 0 and b1 = 1) or rs�11 if (g1 = 1 and b1 = 0). In either case, Oscar has to know s1. As

s1 is secret and it is computationally intractable to compute it from w1, Oscar will be detected as an

impostor. The probability of false acceptance is 2�`t.

Consider an example. TA selects p = 1367 and q = 1103 (p � 3 mod 4 and q � 3 mod 4). The

modulus N = 1507801. Let k = 4 so P selects four random integers. Let them be

s1 = 1281759

s2 = 63306

s3 = 100742

s4 = 647983

Next V chooses a binary vector e = (1; 1; 0; 1) and computes

w1 = (�1)s�21 � 559476 mod 1507801

w2 = (�1)s�22 � 1445404 mod 1507801

w3 = s�23 � 663524 mod 1507801

w2 = (�1)s�22 � 120740 mod 1507801

The vector (w1; w2; w3; w4) is the public identi�cation information of P and is registered with TA.

When P wishes to prove herself to V , both parties execute t iterations of the protocol. We are going

to show a single iteration only. P starts by choosing at random r = 736113 and sends her commitment

u = r2 � 887797 mod 1507801. V replies with his 4-bit challenge, let it be (1; 0; 1; 0). P responds

with v = rs1s3 � 1045302 mod 1507801. Next V veri�es whether

u
?
� �v2w1w3 mod N:

Clearly �v2w1w3 � �620004 � 887797 (mod 1507801). The check holds so V goes to the next

iteration.

311

13.5.3 The Guillou-Quisquater Identi�cation Protocol

The Guillou-Quisquater (GQ) identi�cation protocol is a modi�cation of the FS protocol and it is

described in [226]. The security of the protocol relies on the assumption that factoring is di�cult. An

attractive feature of the protocol is that it is identity based so the veri�er need not use any certi�ed

elements except the publicly accessible identity of the prover and public key of the trusted authority.

GQ Identi�cation Protocol

TA Precomputations: TA holds its public modulus N where N = pq and primes p and q are

secret. Next TA generates two exponents K and k such that K � k � 1 mod '(N) where '(N)

is Euler's totient function. The modulus N and exponent K are public. The factors of N and

the exponent k are secret.

Registration: 1. P is assigned an unique identity IDP . The identity is converted into an integer

JP (1 � JP � N � 1) which is called the shadowed identity. The conversion is public and

one-to-one.

2. TA takes JP and signs it using its secret key k. The signature

� � J�kP (mod N)

is communicated to P . P veri�es the signature by checking �K
?
� J�1P mod N . The integer

� is kept secret by P and TA.

Message Sequence: P introduces herself to V as an entity with IDP . V converts her identity to

the corresponding numerical shadowed identity JP . The identi�cation process takes t iterations.

A single iteration runs as follows.

1. P ! V : u � rK mod N where r 2R f1; : : : ; N � 1g.

2. V ! P : b where b 2R f1; : : : ;Kg.

3. P ! V : v � r � �b mod N .

4. Veri�cation: V checks whether

JbP � vK
?
� u mod N:

V stops on failure or continues otherwise.

After t successful iterations V accepts.

TA sets up an RSA system with public elements (K;N). TA uses its secret key k to sign JP . The

certi�cate � is kept secret by both TA and P as it is further used by P to prove herself to V . The

public information accessible to Victor is Peggy's IDP and her shadowed identity JP .

A single iteration starts from the random selection of r by Peggy. She next sends her commitment

u = rK to Victor. Victor chooses his challenge b at random and communicates it to Peggy. Peggy

responds by sending v = r � �b. Victor checks whether JbP � vK is equal to rK .

Assume that an opponent Oscar tries to impersonate Peggy. First he introduces himself as Peggy

with Peggy's IDP . Next Oscar selects at random r and tries to guess Victor's challenge. Let his guess

be g. Oscar sends his commitment

O ! V : u � rK � J
g
P mod N

312

V sends his challenge b. Oscar has to reply

O! V : v � r�g�b mod N

Victor checks whether

JbP � (r�g�b)K
?
� rK � J

g

P mod N

Victor fails to detect impostor if Oscar either has guessed g correctly i.e. g � b mod N or has

computed �. The �rst case may happen with the probability K�1 per iteration. The retrieval of �

is assumed to be computationally intractable. If the identi�cation takes t iterations, the probability

of false acceptance is equal to K�t. Note that if P and V follow the protocol the probability of false

rejection is zero.

The GQ protocol is design with the e�ciency in mind. It is recommended to keep the public

exponent K short preferably smaller than 220. For K � 220, most practical GQ protocols would

require one iteration only (t = 1). The shorter K the more e�cient computations for both P and

V . On the other hand, a too short K will force P and V to do many iterations to attain an agreed

probability of false acceptance.

Consider a toy example. Let TA set up its RSA system with p = 563, q = 719. The modulus is

N = 404797 and the Euler's totient function '(N) = 403516. Let K = 23 then k = 298251. The

modulus N and K are public. Peggy is assigned her identity IDP and let her shadowed identity be

JP = 123456. TA gives P her secret � � J�kP � 79833 mod 404797. P veri�es it by checking

JP = 123456
?
� ��K = 123456 (mod 404797):

The check holds so P is sure that � is valid.

If V now asks P to identify herself, she �rst presents her IDP to V and later P and V execute

t iterations of the protocol. Consider a single iteration only. P selects r = 133504 and sends her

commitment u = rK � 172296 mod 404797. V chooses his challenge b = 11 and forwards it to P . As

expected P sends back her response v = r�b � 41169 mod 404797. Now V computes

JbP � vK � 172296 mod 404797

which equals to u. P and V have completed successfully an iteration of the protocol.

Identi�cation protocols use zero knowledge proof systems. The Fiat-Shamir protocol is a classical

example of direct application of a zero knowledge proof system. To reduce the number of interactions

between P and V , a commonmethod used in the Feige-Fiat-Shamir and Guillou-Quisquater protocols

is to allow the veri�er to challenge the prover by sending `-bit sequence (instead of binary). This

increases the e�ciency of the protocol but causes some problems. The most important is that the zero

knowledge property becomes harder to prove. Recall that the starting point in proving zero knowledge

is the design of an e�cient transcript simulator which is indistinguishable from the view ensemble

generated by the interactions of the real protocol. Such transcript simulator can be constructed by

using the original protocol. The simulator runs in an expected polynomial time only if the length

of the challenge string is �xed. If the challenge string is variable (grows proportionally with the size

of the instance), the zero knowledge property seems to be no longer useful. This becomes apparent

when an identi�cation protocol consists of a single iteration which involves three passes only (P ! V :

commitment (or witness), V ! P : challenge and P ! V : response). The single challenge used needs

to be long enough so the false acceptance rate can be selected arbitrarily low. This clearly precludes

the existence of an e�cient transcript simulator.

313

13.6 Identi�cation Schemes

Consider \three pass" protocols. To indicate the di�erence, we call them schemes. The zero knowledge

property is no longer appropriate for identi�cation schemes. Some authors introduced other measure-

ments to indicate that identi�cation schemes do not \leak" any information about the secrets held

by the provers. These measurements include no useful information transfer [168] or no transferable

information with security level [384]. An alternative approach is to prove that breaking an identi�ca-

tion scheme is equivalent to �nding a polynomial time algorithm which solves an intractable problem

(such as the discrete logarithm). If this can be done, the scheme is called provably secure under some

plausible computational assumptions.

13.6.1 The Schnorr Identi�cation Scheme

Schnorr [446] designed an identi�cation scheme which is intended to be suitable for smart cards where

both memory and computing power are in short supply. The security of the scheme relies on the

assumption that the selected instance of the discrete logarithm problem is intractable.

Schnorr Identi�cation Scheme

TA Pre-computations: TA sets up the parameters of the protocol and TA

1. chooses the modulus p such that p is prime and p � 2512,

2. selects a prime q which is a divisor of (p� 1) and q � 2140,

3. takes an integer � 2 Z�p such that it is a generator of Z�q , i.e. �
q � 1 mod p,

4. determines the collection of possible challenges f0; 1; : : :; 2t � 1g,

5. applies its secret key to issue certi�cates while the corresponding public key is used to verify

them,

6. publishes p; q; �; t and its public key.

Registration: The following steps are undertaken by P to get the certi�cate from TA.

1. P selects at random her private key s 2R Z
�

q and computes her public key K � ��s mod p,

2. P registers her public key K with TA so TA publishes a certi�cate (signature) S for

(IDP ;K).

Message Sequence: P proves to V her identity in three passes.

1. P ! V : IDP ;K; S; u where S is the certi�cate generated by TA for (IDP ;K) and u �

�r mod p for a random integer r 2R Z
�

q .

2. V veri�es the certi�cate S.

3. V ! P : b 2R f0; : : : ; 2
t � 1g

4. P ! V : y � r + sb mod q.

5. Veri�cation:

u
?
� �yKb mod p:

If the check fails V rejects otherwise V accepts.

314

TA provides public parameters of the system. The public key of TA is used to verify the prover's

certi�cate S. The protocol in the scheme takes three passes. P picks a random r 2R Zq and computes

her commitment u � �r mod p and sends IDP ;K; S; u; S to V . V checks whether (IDP ;K) and the

corresponding certi�cate S match. If so, V chooses his random challenge b and dispatches it to P . P

replies by sending y � r + sb mod q. V �nally veri�es whether the response u
?
� �yKb mod p.

Clearly if P follows the protocol, she is always correctly identi�ed by V . On the other hand, an

impostor Oscar can cheat if he is able to guess V 's challenge. Let his guess be g. Instead of the

prescribed u = �r, Oscar sends his commitment

u � �r �Kg mod p:

V sends his challenge b and Oscar has to respond with

y � r + (b� g)s mod q

He will get away if g � b mod q as he is able to send a valid response y � r mod q. The probability

of Oscar's correct guess of b is 2�t. In other words, the false acceptance rate is 2�t.

Let us illustrate the protocol using small parameters (the protocol is not secure). TA has the

following parameters: p = 285457, q = 313, � = 146159. Peggy chooses private key s = 237 and

computes her public key K = ��s � 166428 mod 285457. P registers her identity plus her public key

with TA. TA publishes its public key and certi�cate S of Peggy's (IDP ;K).

Assume that V wishes P to identify herself to him. P selects at random r, let it be r = 133,

computes her commitment u = r2 � 36157 mod 285457 and forwards IDP ;K; S; u to V . V veri�es

whether the pair (IDP ;K) and the certi�cate match (this step is skipped). If the check holds, V

sends his challenge b, say b = 167, to P . P �nds y � r + sb mod q which is y = 274 and sends it to

V . V calculates

�yKb = 146159274166428167 � 36157 mod 285457

which is equal to Peggy's commitment u. V accepts Peggy.

The Schnorr scheme is indeed very e�cient. The prover (a smart card) needs a single exponentia-

tion modulo p to generate her commitment. The response y involves single multiplication and addition

modulo q. The main drawback of the scheme is that its security has not been proved.

13.6.2 The Okamoto Identi�cation Scheme

A modi�cation of the Schnorr scheme which is as secure as the corresponding discrete logarithm

instance, was given by Okamoto in [384]. The scheme is provably secure. The scheme works as

follows.

Okamoto Identi�cation Scheme

TA Precomputations: TA sets up the parameters of the scheme. In particular, TA

1. chooses a modulus p where p is prime and p � 2512,

2. takes a factor q of (p� 1) (q is prime and q � 2140),

3. picks up two integers �1 and �2 of order q in the group Z�p ,

4. selects an integer t = O(p), say t � 20,

5. uses its secret key to issue certi�cates while its public key is used to verify them,

315

6. publishes p; q; �1; �2; t and its public key.

Registration: The following steps are undertaken by P to get the certi�cate from TA.

1. P selects at random her private key (s1; s2) 2R Z�q � Z�q and computes her public key

K � ��s11 ��s22 mod p.

2. P registers her public key K with TA so TA publishes a certi�cate (signature) S for

(IDP ;K).

Message Sequence: P proves to V her identity.

1. P ! V : IDP ;K; S; u where S is the certi�cate generated by TA for (IDP ;K) and u �

�r11 �
r2
2 mod p for random integers r1; r2 2R Z

�

q .

2. V veri�es the certi�cate S.

3. V ! P : e 2R f0; : : : ; 2
t � 1g.

4. P ! V : y1; y2, where

y1 � r1 + es1 (mod q);

y2 � r2 + es2 (mod q):

5. Veri�cation: Victor checks whether

u
?
� �

y1
1 �

y2
2 Ke mod p:

If the check holds, V accepts otherwise rejects.

First we make some general observations.

Lemma 13.1 Assume that impostor Oscar tries to convince Victor that he is Peggy. Then if Victor

is honest (i.e. generates his challenges at random), the probability of Oscar's success is 2�t.

Proof: Oscar picks at random r1 and r2 and computes his commitment u = �r11 �
r2
2 K

g where g is

Oscar's guess for Victor's challenge. After receiving u, Victor communicates his challenge e to Oscar.

Oscar now has to reply with

y1 � r1 + (e � g)s1 (mod q) and

y2 � r2 + (e � g)s2 (mod q)

to pass the veri�cation. As he does not know (s1; s2), he is able to send correct reply only if g = e as

then he forwards y1 = r1 and y2 = r2 as the valid response. Oscar succeeds with the probability 2�t.

So the probability of false acceptance is 2�t. 2

Now we are going to prove that the Okamoto scheme is secure if and only if the discrete logarithm

� � log�1 �2 mod p is intractable. First consider the following implication.

Theorem 13.1 If the Okamoto scheme is secure, then the discrete logarithm � � log�1 �2 mod p is

intractable.

Proof: By contradiction. Assume that there is a polynomial time probabilistic algorithm A which

returns � � log�1 �2 mod p with a non-negligible probability. Having �, it is possible to represent the

public key as

K � ��s11 �
��s2
1 = �

�(s1+�s2)

1 mod p:

316

The application of the algorithm A produces b � log�1 K mod p. Any pair (s�1; s
�

2) such that

b � �(s�1 + �s�2) (mod q)

can be used to make Victor accept, where s�1 2 Z
�

q and s�2 �
b�s�

1

�
mod q. There are q possible pairs

each of which is \good" in the sense that the veri�er will always accept. To show this, assume that

Oscar selects at random one pair. Let it be (s�1; s
�

2). Oscar and Victor follow the protocol and at the

end Victor checks whether

�r11 �
r2
2

?
� �

y1
1 �

y2
2 Ke mod p

where y1 � r1 + es�1 mod q and y2 � r2 + es�2 mod q. Clearly, the check holds if K = �
�s�

1

1 �
�s�

2

2 = �b1.

2

The other implication, that is: if the discrete logarithm is intractable then the Okamoto scheme

is secure is proved by contradiction. So we are going to prove that if the Okamoto scheme is insecure,

then the discrete logarithm problem de�ned in the scheme is easy.

We assume that the Okamoto scheme is insecure. This means that there is a polynomial proba-

bilistic algorithm A (run by Oscar) which can interact with the veri�er in such a way that the honest

veri�er Victor accepts Oscar with an overwhelming probability " � 2�(t�1).

Lemma 13.2 Assume that Oscar can impersonate Peggy with probability " � 2�(t�1). Then he can

�nd two integers s�1 and s�2 such that K = �
�s�

1

1 �
�s�

2

2 .

Proof: Oscar runs the algorithmA. The algorithmA selects three random integers r1, r2 and g and

computes u. A is able to make Victor accept with the probability better than ". There is always the

probability 2�t that A will be able to impersonate Peggy if the guess g is equal to the challenge e.

Note that A makes Victor accept even if g 6= e and this happens with the probability "� 2�t. In this

case,

y1 � r1 + (e � g)s�1 (mod q)

y2 � r2 + (e � g)s�2 (mod q)

This allows A (and Oscar) to reconstruct the public key K = g
�s�

1

1 �
�s�

2

2 where s�1 = y1�r1
e�g

and

s�2 =
y2�r2
e�g

. 2

Theorem 13.2 If the DL problem de�ned in the Okamoto scheme is intractable then the Okamoto

scheme is secure.

Proof: By contradiction. Assume that the Okamoto scheme is insecure. From this assumption we

will show that there is a polynomial time algorithm which solves the instance of DL of the form

� � log�1 �2 (mod p):

So there is a polynomial time algorithmA which with a non-negligible probability makes Victor accept.

The algorithmA selects two secret elements s1; s2 2R Z
�

q , computes K � ��s11 ��s22 mod p. According

to Lemma (13.2), A is able to �nd a pair s�1; s
�

2 such that

K = ��s11 ��s22 = g
�s�

1

1 �
�s�

2

2 :

If s1 6= s�1 and s2 6= s�2 then

� = log�1 �2 �
s1 � s�1
s2 � s�2

(mod p):

317

Now we show that s1 6= s�1 and s2 6= s�2 occurs with the probability q�1

q
. Note that the same public

key K corresponds to q possible pairs of secret elements (s1; s2). These pairs belong to the set

X = f(s�1; s
�

2) : s
�

1 2 Z
�

q and s�2 = ��1(s1 � s�1 + �s2) mod qg

where � � log�1 �2 mod p. Even in�nitely powerful attacker cannot distinguish which particular pair

is being used on the base of the public information K and at the same time the knowledge of a

single pair enables A to generate correct responses y1 and y2 (see Lemma 13.1). As A has selected

s1; s2 2R Z
�

q so the probability that s1 6= s�1 and s2 6= s�2 is
q�1

q
. 2

Finally we have reached the following conclusion.

Theorem 13.3 The Okamoto scheme is secure if and only if the discrete logarithm problem de�ned

in the scheme is intractable.

Paradoxically, the proof of security for the Okamoto scheme give also a simple prescription how

the TA may cheat. Note that TA can select �1 at random while computing �2 � �
�
1 mod p for some

� of its choice. In e�ect, TA knows � = log�1 �2 so the authority can compute a pair (s�1; s
�

2) and

divulge it to Oscar. Note that this kind of cheating is impossible in the Schnorr scheme.

Let us illustrate the scheme on a simple example. The scheme has the following parameters:

p = 6491, q = 59, �1 = 1764, �2 = 4269, t = 5. P chooses her two secret elements s1 = 21, s2 = 47.

The public key

K = ��s11 ��s22 = 1764�214269�47 � 5196 (mod 6491):

P selects at random r1 = 13, r2 = 33, computes her commitment

u = �r11 �
r2
2 = 176413426933 � 1131 (mod 6491)

and sends it to V . V replies with his challenge e = 12. P solves the congruences

y1 = r1 + es1 � 29 (mod 59)

y2 = r2 + es2 � 7 (mod 59)

On arrival of y1 and y2, V computes

�
y1
1 �

y2
2 Ke = 17642942697519612 � 1131 (mod 6491)

which is the same as the commitment. V accepts.

13.6.3 Signatures from Identi�cation Schemes

Identi�cation schemes can be converted into signature schemes [181]. To convert an identi�cation

scheme, it is enough to replace the veri�er by a hash function. The hash function takes two arguments:

a message to be signed and a commitment and produces a digest (challenge) which is later signed.

Consider the Schnorr identi�cation scheme [446]. The signature scheme based on it is presented below.

Schnorr Signature Scheme

Initialization: The TA sets up the scheme and

1. chooses the parameters as in the Schnorr identi�cation scheme so the modulus p is prime

(p � 2512), a prime q is a divisor of (p� 1) (q � 2140), and an integer � 2 Z�p is a generator

of Z�q ,

318

2. picks up a hash function h : Zp � Z ! f0; 1; : : :; 2t � 1g,

3. applies its secret key to issue certi�cates while the corresponding public key is used to verify

them,

4. publishes p; q; �; h and its public key.

The following steps are undertaken by the signer S to get the certi�cate from TA.

1. S selects at random her private key s 2R Z
�

q and computes her public key K � ��s mod p,

2. S registers her public keyK with TA so TA publishes a certi�cate (signature) for (IDS ;K).

Signing: To sign a message m, S selects a random integer r 2R Z�q , computes u � �r mod p,

and calculates the digest b = h(u;m) for the message m 2 Z. The signature is the pair

SGs(m) = (b; y) where

y � r + sb mod q:

Veri�cation: The veri�er V takes the message ~m, its signature (~b; ~y) and collects the authentic public

key K from TA (together with the necessary public elements). V next reconstructs

~u � �~yK
~b mod p

and checks whether
~b

?
� h(~u; ~m)

If the check holds, V accepts the signature, otherwise rejects.

Similarly, the Okamoto identi�cation scheme can be converted for signing [384].

Okamoto Signature Scheme

Initialization: TA sets up the scheme and of the scheme. In particular, TA

1. chooses the parameters as in the Okamoto identi�cation scheme. In particular, the modulus

p is prime (p � 2512), a prime q divides (p� 1) (q � 2140), and �1 and �2 are two integers

of order q in the group Z�p ,

2. selects a hash function h : Zp � Z ! f0; 1; : : :; 2t � 1g,

3. uses its secret key to issue certi�cates while its public key is used to verify them,

4. publishes p; q; �1; �2; h and its public key.

The following steps are undertaken by the signer S to get the certi�cate from TA.

1. S selects at random her private key (s1; s2) 2R Z�q � Z�q and computes her public key

K � ��s11 ��s22 mod p.

2. S registers her public keyK with TA so TA publishes a certi�cate (signature) for (IDP ;K).

Signing: To sign a message m 2 Z, S picks up two random integers r1; r2 2R Z�q , computes u �

�r11 �
r2
2 mod p, �nds out

e = h(u;m)

and solves two congruences

y1 � r1 + es1 (mod q);

y2 � r2 + es2 (mod q):

The signature for message m is (e; y1; y2).

319

Veri�cation: Victor is given a message ~m and a signature (~e; ~y1; ~y2). V collects public elements from

TA, calculates

~u � �
~y1
1 �

~y2
2 K~e (mod p)

and checks whether

~e
?
� h(~u; ~m)

If the check holds, V accepts the signature, otherwise rejects.

Okamoto proved that the above scheme is secure against any adaptive chosen message attacks if

the discrete logarithm problem is intractable and h is a correlation free one way hash function. The

existence of correlation free hash functions is a stronger requirement than the existence of collision

free hash functions (for details consult [384]).

13.7 Problems and Exercises

1. Consider the following identi�cation protocol. Peggy gives her name to Victor. Victor tosses an unbiased

coin. If the coin comes up heads, Victor accepts Peggy, otherwise he rejects. Compute the false

rejection/acceptance rates. Is the protocol practical ?

2. Victor has bought two personal identi�cation machines. One machine uses �ngerprints for identi�cation

and is characterized by the false rejection and acceptance rates Pfa1 and Pfr1, respectively. The second

machine applies face image to identify a person. Its false rejection and acceptance rates are Pfa2 and

Pfr2, respectively. Victor is not sure how to combine the machines. But he thinks about the two

following schemes.

1. In the �rst scheme, a person is accepted only if the person is accepted by both identi�cation

machines,

2. In the second scheme, a person is accepted if at least one machine has accepted the person.

Compute the false rejection/acceptance rates for both schemes (make reasonable probabilistic assump-

tions if necessary).

3. Assume an identi�cation scheme based on PINs of the length of 4 digits. What is the probability of guessing

the PIN if the attacker is allowed to enter three consecutive guesses ?

4. Suppose that passwords have the length of 10 characters. Characters are chosen randomly from a given

set of elements. Consider that the set of possible elements consists of

1. all lower case letters (i.e. a; b; c; : : : ; z),

2. all letters (i.e. both lower and upper case letters),

3. all alphanumerical characters (i.e. all letters plus all digits),

4. all characters accessible on a typical keyboard (i.e. the set has 96 lower/upper case letters, digits,

and special characters).

What is the probability of guessing a password in a single attempt for each the cases mentioned above?

What is the time necessary to exhaustively search the whole password space for the above cases if it is

possible to check 1000 passwords per second.

5. Let passwords be of length of 7 characters. The password space contains 267 possible elements. Assume

that an attacker can access a hashed password �le and can run a program which tests 1000 passwords

per second. What would be the lifetime of a password selected at random from the password space

provided the owner will change the password if the probability of breaking it by the attacker becomes

equal to 10�3 (attacker continuously runs his program starting from the last change of password).

320

6. Modify the challenge-response protocol for a shared (secret) key in such a way that it allows to use

timestamps by both interacting parties.

7. Assume that two parties A and B have collected their corresponding public keys from their TA. Design

the challenge-response protocol which allows mutual authentication of both A and B. Consider two

possible cases: when the public keys are used for encryption and when the public keys are used for

authentication.

8. Show that the Fiat-Shamir protocol is sound and complete. Write a transcript simulator for the protocol

and evaluate its e�ciency.

9. A prover P and a veri�er V apply the Fiat-Shamir protocol for identi�cation. They have been using it

for some time. An attacker Oscar has collected a transcript of their interactions and discovered that

Victor does not select his challenges with uniform probability. In fact Victor's selection of challenge

is described by two probabilities P (b = 0) = " and P (b = 1) = 1 � " where " < 0:5. Oscar wants to

impersonate Peggy and knows that he will be successful if he guesses Victor's challenge. To guess the

challenge, Oscar may apply the two following strategies:

1. he chooses his guess according to the same probability distribution as Victor,

2. he chooses his guess to be always \1".

What are the probabilities of Oscar's successful impersonation for the two strategies? Which of the

strategies is better? What would be the best possible strategy for Oscar?

10. An attacker Oscar has collected a transcript of Peggy and Victor interactions in the Fiat-Shamir iden-

ti�cation protocol. Looking through the transcript, Oscar has discovered that there are two entries

(u1; b1; v1) and (u2; b2; v2) for which u1 = u2 and b1 6= b2. What is the probability of the event? Can

Oscar use the discovery to break the protocol?

11. Consider the Feige-Fiat-Shamir protocol. Prove that it is sound and complete. Design a transcript

simulator for the protocol. Discuss its e�ciency and show how it depends on the size of the parameter

` (` is the length of the challenge).

12. Given the Feige-Fiat-Shamir protocol. An attacker Oscar has noticed that the veri�er V chooses his �rst

challenge according to the protocol (randomly and uniformly from the set f0; 1g`). But the rest t� 1

challenges are \recycled" from the previous ones. A recycled challenge in the i-th iteration, is created

as follows. Let a challenge in the (i� 1)-th iteration be bi�1 = (a1; : : : ; a`), then a recycled challenge is

bi = (a2; : : : ; a`; a`+1) where the bit a`+1 is randomly chosen with the uniform probability. What is the

probability of false acceptance in the protocol with the recycled challenges.

13. Convert both the FFS and GQ identi�cation protocols into corresponding signature schemes. Discuss

their security.

14. Modify the Schnorr identi�cation scheme for the case when the arithmetics is performed in GF (2521) and

q = 2521 � 1 is a Mersenne prime. Discuss its e�ciency.

15. Consider the Schnorr identi�cation scheme. Let the set of challenges be binary, i.e. b 2R f0; 1g. Modify

the scheme accordingly so the probability of false acceptance is 2�t. Show that the resulting protocol

is sound and complete. Design a transcript simulator for it and discuss its e�ciency.

16. In the Okamoto scheme, Peggy selected s1 at random and assigned s2 = s1. Discuss the repercussions of

her choice of parameters on the scheme. Is the scheme still secure if an attacker knows that s1 = s2?

17. Consider the Okamoto scheme again. Assume that the trusted authority TA displayed the public param-

eters with two generators �1 = �2. Is the scheme secure? Justify your answer.

Chapter 14

INTRUSION DETECTION

14.1 Introduction

Distributed systems emerged as a consequence of rapid progress in both computing and communication

technology. A distributed system combines all computing resources into one \super" computer in

which the underlying network provides the necessary communication facilities. The main advantage

and ironically the major problem of distributed systems is its openness. The openness of the system

permits sharing of all resources among users independently of their locations. At the same time,

a distributed system is much more vulnerable to a potential attacker due to a distributed nature

of the system. The communication network is typically too large to even attempt to protect it via

some physical means. Widely used cryptographic methods may either detect illegal activity or render

the transmitted data non-intelligent to an attacker. Some channels due to their characteristics may

be subject to some speci�c attacks. For example, all broadcasting channels used for mobile and

satellite communication are inherently vulnerable to eavesdropping. An attacker may be aware of

some weaknesses in the security guards and choose them to compromise a part or the whole system.

In general, the designers of the security guards try to prevent any illegal user to access the system. A

numerous examples showed that even the best protection mechanism may fail because: there is a aw

in the design, or more often because the mechanism was not designed to withstand some \exotic" yet

practical attacks. So if the security guards fail, should we succumb and do nothing ?

The absolutely last line of defence is an intrusion detection system (IDS). The system assumes

that an attacker has outsmarted the security guards and gained an (unauthorised) access. It tries to

identify attackers by scanning the behaviour of active users. This is possible if an intrusion exhibits

distinctive characteristics from these typical for a non-intrusive activity. A non-intrusive activity is

characterised by users' behaviour pro�les. A crucial component of any IDS is a database in which

these pro�les are stored. Auditing which primarily provides information about how and by whom

di�erent computing resources are being used, also can be used to establish user behaviour pro�les.

Pro�les should be continually updated to reect the current behaviour of users. The IDS is in fact an

identi�cation system and as such can be characterised by probabilities of false acceptance and false

rejection. False acceptance results that the IDS allows an intruder to continue their activity. While

false rejection typically causes that the IDS stops an activity of a legitimate user.

Attackers are classi�ed into three broad categories:

1. clandestine { attackers who avoid the IDS or auditing system,

2. masqueraders { attackers who impersonate legitimate users,

3. misfeasors { legitimate users who abuse their privileges.

321

322

Note that misfeasors are just authorised users who are trying to circumvent the access control mech-

anism. Masqueraders are intruders who somehow manage to convince the identi�cation mechanism

that they are legitimate users. A typical example of a masquerader is an attacker who has guessed

somebody's password. Clandestine are attackers who are usually trying to unmobilize the IDS (and

consequently the audit system) so they can act with no trace of their activity in the audit trail.

The IDS works on the presumption that it is possible to identify an abnormal behaviour of a user.

A behaviour observed by the IDS can be abnormal for a user although it may not be harmful and may

be typical for some body else. An abnormal behaviour indicates that the user may be a masquerader.

In contrast, the IDS may detect a user behaviour which violates the rules of the game (the security

policy). In this case, the IDS does not need to use the behaviour pro�le to detect the intrusion {

the decision is made on the based of the de�nition of misuse of computer resources. So there are two

possible intrusion detection strategies:

� anomaly detection when the observed behaviour deviates from the expected one for the user,

� misuse detection when the observed behaviour indicates an intention to abuse the computer

resources.

Anomaly intrusion detection requires the IDS to keep information about typical behaviour pro�les

for each legitimate user. For instance, if a user always accesses his computer from his o�ce during

working hours from 8am to 6pm and sometimes remotely via modem from 7pm to 10pm, then an

abnormal behaviour would be an access to computer from his o�ce at midnight. On the other hand,

misuse intrusion detection demands from the IDS to store information about attacks on the security of

the system known so far. Note that a user will be marked as an intruder as soon as the IDS comes to

the conclusion that he tries to compromise the security using one of the known attack scenarios. Note

that the IDS cannot detect intrusions if the applied attack scenarios are not recorded in its database.

Normally, managers of the computer systems should update their attack scenario databases as soon

as a new attack becomes known.

14.2 Anomaly Intrusion Detection

An IDS based on anomaly intrusion detection is in fact an identi�cation system which uses some

measurable characteristics of users activities. A user activity can be characterised by its:

1. intensity { this is reected by sheer volume of audit records produced for a user per a time unit.

A better granulation can be achieved if the intensity is measured in the context of a particular

type of activity,

2. mix of di�erent types of activity { this includes not only the collection of di�erent types of activity

but also other more speci�c information as to the order in which the particular activities take

place and the context in which a particular sequence of activities occurs.

The intensity measure is very much related to the type of activity and may be described by many

speci�c parameters. In general, it is possible to use two major intensity characteristics: the number

of times a given activity occurs per a time unit, or the average amount of time consumed by a single

activity. Typical intensity measures for a user are the amount of CPU time, the number of active

processes, the number of I/O operations, the number of opened �les, etc.

User identity can be characterised by types of activity (for instance, sending e-mail, calling an

editor, compiling a program, creating a window, etc.), the order of activities (for example, after login,

323

a user normally �rst reads the e-mail, sends e-mail, saves e-mail copies, uses the web browser and

prints out some web pages), and the context in which the speci�c order of activities takes place (i.e.

di�erentiation of a user activity pro�le depending on whether the user accesses the system from his

workstation or from a remote terminal).

14.2.1 Statistical IDS

Implementation of an IDS starts from choosing an appropriate collection of user activity measures.

The selection depends on many factors such as: the required probabilities of false acceptance and

false rejection, the required memory to store users' pro�les, the e�ciency of the IDS, etc. Assume

that the measures chosen are: m1; : : : ;mn. Each user therefore is assigned the collection of random

variables M1; : : : ;Mn. Each random variable can be stored in the form of its probability distribution

(an expensive option) or in a compressed form which includes the name of the probability distribution

together with parameters describing it. The pro�le of a given user consists of the sequence of random

variables (M1; : : : ;Mn) evaluated from the audit trail and stored by the IDS usually in a compressed

form. The security policy determines which of the chosen measures are more important and which are

less signi�cant. To express the current security policy, the manager provides the IDS with a sequence

of weights (w1; : : : ; wn) which need be used together with the corresponding measures to determine

the IDS decision about intrusion.

IDS Based on Statistical Measures

Setup: Manager selects a collection of measures (m1; : : : ;mn) and a vector of weights (w1; : : : ; wn).

For each user, IDS computes and stores the user pro�le described by (M1; : : : ;Mn) from the

audit trail.

Processing: For a given time interval, the IDS takes the corresponding audit trail and computes

the actual pro�le of the user de�ned by (~M1; : : : ; ~Mn). The IDS uses a distance functions

di = di(Mi; ~Mi) to determine the extend of abnormal behaviour in respect to the measure mi.

The distance functions need be treated as functions which operate on the pairs of probability

distributions and return an integer which makes sense of the distance.

Decision: If
nX
i=1

widi � dt

then the behaviour in the time interval is considered to be normal, otherwise the behaviour is

abnormal (an intrusion detected). The integer dt is the threshold value which determines the

boundary between normal and abnormal behaviour of a user.

Action: If an intrusion is detected, the user activities are suspended or/and the manager is immediate

noti�ed. Otherwise, the pro�le of the user is updated.

While designing a statistical IDS, the following questions need be considered:

� how to select a collection of measures (m1; : : : ;mn),

� how to de�ne distances di = di(Mi; ~Mi),

� how to determine the threshold dt.

324

The measure selection also called feature choice is crucial to the quality of intrusion detection. Typi-

cally, the designer identi�es �rst a collection of all measures accessible in the system. Let the collection

be (m1; : : : ;m`), then the designer tries di�erent (if ` is small the designer may try all) combinations

of features which are most sensitive (a good discrimination of user) and stable (features do not change

over time).

Once a collection of good features have been selected, the designer has to de�ne the corresponding

collection of distances between two probability distributions (for normal and abnormal behaviour).

This works well if the accepted measures are statistically independent. In most cases this assumption

does not hold. A typical solution is to combine related features into one anomaly measure using

covariance matrices (see IDES [307]). The value of the threshold dt is selected experimentally as it

directly inuences the two false rejection and false acceptance probabilities. It is also a matter of the

security policy.

Statistical intrusion detection assumes that each user can be assigned the unique pro�le which can

be e�ectively compared with the current approximation of the pro�le. In general, a user is modelled

by a stochastic process which is stationary or whose parameters do not vary dramatically so the

update of the pro�le can cope with the changes of behaviour (the process is quasi stationary). More

precise models include non-stationary stochastic processes or generalised Markov chains. Building

such models is too expensive to be practical.

14.2.2 Predictive Patterns

Predictive pattern anomaly detection is based on the assumption that it is possible to identify normal

and abnormal behaviour of users from ordered sequences of events generated by them. So a pro�le

of a user is a collection of \typical" sequences. A probabilistic nature of patterns of events generated

by users can be reected by assigning conditional probabilities to transitions to other events provided

a given typical sequence has occurred. For instance, a typical pattern can be an ordered sequence of

events

he1; e2; e3i

with P (e4 j he1; e2; e3i) = 0:1 and P (e5 j he1; e2; e3i) = 0:9. This reads: if a user generates the sequence

he1; e2; e3i then only two events e4 and e5 may follow it with the probabilities 0.1 and 0.9, respectively.

A typical sequence he1; : : : ; eni together with associated conditional probabilities P (ei j he1; : : : ; eni)

for some i is called a rule. Note that the rule can be used only if a user applies the correct event pre�x

he1; : : : ; eni.

IDS Based on Predictive Patterns

Setup: For each user, the IDS computes and stores the user pro�le described by a collection of rules

fR1; : : : ; Rng computed from the audit trail.

Processing: For a given time interval, the IDS takes the corresponding audit trail and computes

conditional probabilities associated with the rules stored in the user pro�le. The IDS uses a

distance functions di (i = 1; : : : ; n) to determine the extend of abnormal behaviour in respect to

the rule Ri. The distance functions need be treated as functions which operate on the pairs of

conditional probability distributions and return an integer which makes sense of the distance.

Decision: For a chosen by manager weights wi if

nX
i=1

widi � dt

325

then the behaviour in the time interval is considered to be normal, otherwise the behaviour is

abnormal (an intrusion detected). The integer dt is the threshold value which determines the

boundary between normal and abnormal behaviour of a user.

Action: If an intrusion is detected, the user activities are suspended or/and the manager is immediate

noti�ed. Otherwise, the pro�le of the user is updated.

A major problem with this approach is that the rules can be only used if they are triggered by

their event pre�x. If none or few of the event pre�xes were generated by a user, it is impossible to

make any reasonable decision and the IDS simply fails.

Advantages of this approach include the ability of the system to be adapted for misuse detection.

A nice property of the system is that it works very well for users whose behaviour exhibits a strong

sequential pattern (see [495]).

14.2.3 Neural Networks

Neural networks sometimes o�er a simple and e�cient solution in situations when other approaches

fail. To use a neural network for intrusion detection, it is enough �rst to train the neural net on a

sequence of events generated by a user and later to use the net as a predictor of the next event.

IDS Based on Neural Networks

Setup: For each user, the IDS maintains a neural net. The neural net is being trained on a sequence

of events generated by the user.

Processing: The IDS repeatedly considers sequences of n events generated by the user. Each se-

quence is fed to the neural net. The network predicts the next event ~e and compares it with the

event e issued by the user.

Decision: If

~e = e

then the behaviour of the user is considered to be normal, otherwise the behaviour is abnormal

(an intrusion detected).

Action: If an intrusion is detected, the user activities are suspended or/and the manager is immediate

noti�ed.

The selection of the parameter n is an important issue. If n is too small, the network will not be

able to predict the next event (a lot of false alarms). On the other hand, if n is too large, then there

is no relations between the events at the beginning and at the end of sequence. Evidently, the IDS

will fail if a user selects the next event nondeterministically. To �x this, the neural net needs to exit

a number of typical events.

14.3 Misuse Intrusion Detection

Note that anomaly intrusion detection always compares the current activity with the expected one

de�ned for a user and can be seen as a user identi�cation. Misuse intrusion detection does not care

whether users can be properly identi�ed as long as they do not try to abuse the computer resources.

From the IDS point of view, there are only two classes of users: friends and foes. To de�ne the class

of foes, it is necessary to determine precisely the meaning of intrusion. This is done by providing a

list of intrusion scenarios or attacks (also called intrusion signatures). An intrusion signature de�nes

326

� order of events (typically, commands),

� resources involved (�les, processes, CPU, memory, etc.),

� conditions on resources and events,

which compromises the security of the system. Intrusion signatures can be categorised into the fol-

lowing classes:

1. simple signatures { the existence of a single event in the audit trail or/and the existence of a

trace of intrusion attempt is enough to detect intrusion,

2. event-based signatures { the existence of an ordered sequence of events is enough to conclude

that the user is an intruder,

3. structured signatures { the signature can be written as a regular expression,

4. unstructured signatures { all signatures which do not fall into one of the above classes.

Having a collection of intrusion signatures, the IDS may apply a variety of di�erent methods to detect

that a user attempts to attack the system using some intrusion scenario recorded in the system as the

corresponding intrusion signature. Some typical approaches involve the application of

� expert systems and

� �nite state machines.

An expert system implementation of the IDS encodes the collection of intrusion signatures into

if-then rules. A rule not only reects a single intrusion signature (if part) but also speci�es what

action needs to be undertaken when an intrusion is detected (then part). The IDS takes an audit trail

and investigates it to check whether or not some of the rules are active (or an attack is under way).

In the �nite state machine approach, it is required for signatures to be translated into corresponding

state transitions of the underlying machine. The states of the machine are divided into three classes:

save (no intrusion detected), suspicious (advanced in one of the signatures), intrusion (an intrusion

detected and the corresponding signature is active).

14.4 Uncertainty in Intrusion Detection

The most important issue related to an e�ective intrusion detection is the adoption of an appropriate

mathematical model which allows to generate user pro�les e�ciently and facilitates an e�ective and

accurate decision making process for intrusion detection. Due to an non-deterministic nature of a user

behaviour, the decision about intrusive or non-intrusive behaviour must take into account all evidences

for and against the claim. There are several mathematical models to choose from. Two most popular

are: the probabilistic model and the Dempster-Shafer model [131, 457]. In the probabilistic model,

the decision about intrusion is based on the probabilistic assessment of the body of evidence. The

Dempster-Shafer theory of evidence can be seen as a generalisation of the probability theory.

14.4.1 The Probabilistic Model

Given an event space
 over random events e1; : : : ; en such that P (e1 [: : :[en) = 1 or
Sn

i=1 ei =
.

The Bayes theorem asserts that for any random event B 2
 (P (B) > 0)

P (ei j B) =
P (ei; B)

P (B)
=

P (B j ei)P (ei)P
ej2

P (B j ej)P (ej)
: (14.1)

327

P (ei j B) is called a posteriori probability and P (ej) are a priori probabilities. From an intrusion

detection point of view, the space
 de�nes a collection of events which are occurring with di�erent

probabilities for normal and intrusive behaviour. De�ne a hypothesis I \there is an intrusion". The

complement �I reads \there is NO intrusion". Clearly, P (I [�I) = 1. From Equation (14.1), we can

obtain

P (I j e) =
P (I; e)

P (e)
=

P (e j I)P (I)

P (e j I)P (I) + P (e j �I)P (�I)
(14.2)

To characterise evolution of validity of hypothesis I, we introduce four parameters: priori and

posteriori odds and positive and negative likelihoods. A priori odds for I are the following ratio

O(I) =
P (I)

P (�I)

A posteriori odds are de�ned as

O(I j e) =
P (I j e)

P (�I j e)

An odds ratio O(I) is a positive rational. For a hypothesis I such that P (I) = P (�I) = 0:5, the a priori

odds O(I) = 1. If the value O(I) > 1, then P (I) > P (�I). If the value O(I) < 1, then P (I) < P (�I). A

posteriori odds provide a quantitative measurements of validity of hypothesis I after the observation

of a random event e.

The positive likelihood is the ratio

S(e j I) =
P (e j I)

P (e j �I)

and similarly the negative likelihood is the ratio

N (e j I) =
P (�e j I)

P (�e j �I)

The positive likelihood characterises the event e in terms of its relation to intrusion. If S(e j I) > 1

then the event e con�rms the hypothesis I, otherwise the event is consistent with the anti-hypothesis
�I . If S(e j I) � 1, the event is neutral.

Consider some properties of the parameters.

Theorem 14.1 Given an event space
 and an event e 2
. Then

O(I j e) = S(e j I)O(I); (14.3)

where I is the hypothesis that there is an intrusion.

Proof: According to the de�nitions, we have the following sequence of equations

S(e j I)O(I) =
P (e j I)

P (e j �I)

P (I)

P (�I)
=

P (e j I)P (I)

P (e j �IP (�I)

=
P (e; I)

P (e; �I)
=

P (I j e)P (e)

P (�I j e)P (e)

=
P (I j e)

P (�I j e)
= O(I j e)

which proves the theorem. 2

328

Theorem 14.2 Assume that there is a collection of events e1; : : : ; en such that P (e1; : : : ; en j I) =Qn

i=1 P (ei j I) and P (e1; : : : ; en j �I) =
Qn

i=1 P (ei j
�I), then

O(I j e1; : : : ; en) = O(I)
nY
i=1

S(ei j I): (14.4)

Proof: Consider the following sequence of transformations

O(I j e1; : : : ; en) =
P (I j e1; : : : ; en)

P (�I j e1; : : : ; en)
=

P (I; e1; : : : ; en)

P (�I; e1; : : : ; en)

=
P (e1; : : : ; en j I)P (I)

P (e1; : : : ; en j �I)P (�I)
=

nY
i=1

P (ei j I)

P (ei j �I)
O(I)

= O(I)
nY
i=1

S(ei j I)

which proves Equation (14.4). If one observes that

P (ei j I)

P (ei j �I)
=

P (I j ei)

P (�I j ei)

P (�I)

P (I)
=

O(I j ei)

O(I)

then Equation (14.4) can be rewritten as

O(I j e1; : : : ; en) =
1

O(I)(n�1)

nY
i=1

O(I j ei)

2

Consider an example. Let the space
 = fe0; e1g = f0; 1g. Time is tied up by de�ning a sequence

of random variables E1; E2; : : : for the corresponding time instances. We assume that users generate

events for every time instance i so P (Ei = e) is the probability that the user generated event e 2

at the time i. We also assume that P (I) = P (�I) = 1=2 and P (E1 = 0 j I) = P (E1 = 1 j I) = 1=2,

P (E1 = 0 j �I) = P (E1 = 1 j �I) = 1=2.

Normal behaviour is characterised by the following conditional probabilities:

P�I(Ei+1 = 0 j Ei = 0) = 1=4;

P�I(Ei+1 = 1 j Ei = 0) = 3=4;

P�I(Ei+1 = 1 j Ei = 1) = 3=4;

P�I(Ei+1 = 0 j Ei = 1) = 1=4;

for i = 1; 2; : : :. Intrusive behaviour di�ers from the normal one and is characterised by the following

conditional probabilities:

PI(Ei+1 = 0 j Ei = 0) = 1=4 + ";

PI(Ei+1 = 1 j Ei = 0) = 3=4� ";

PI(Ei+1 = 1 j Ei = 1) = 3=4� ";

PI(Ei+1 = 0 j Ei = 1) = 1=4 + ";

for i = 1; 2; : : :.

The initial odds O(I) = P (I)

P (�I)
= 1 can be computed from the assumed probability distribution

for I. Similarly O(I j E1 = 0) = O(I j E1 = 1) = 1. In fact, the probability P (I) can be selected

329

arbitrarily and the IDS uses the initial odds as a benchmark for further evaluation of validity of the

hypothesis I. Compute the following probabilities

P (E2 = 0 j I) = P (E1 = 0 j I)PI(E2 = 0 j E1 = 0) + P (E1 = 1 j I)PI(E2 = 0 j E1 = 1) =
1

4

P (E2 = 1 j I) = 1� P (E2 = 0 j I) =
3

4
P (E2 = 0 j �I) = P (E1 = 0 j �I)P�I(E2 = 0 j E1 = 0) + P (E1 = 1 j �I)P�I(E2 = 0 j E1 = 1)

=
1

2
(
1

4
+ ") +

1

2
(
1

4
+ ") =

1

4
+ "

P (E2 = 1 j �I) = 1� P (E2 = 0 j �I) =
3

4
� "

P (E2 = 0) = P (E2 = 0 j I)P (I) + P (E2 = 0 j �I)P (�I) =
1 + 2"

4

P (E2 = 1) = 1� P (E2 = 0) =
3� 2"

4

P (I j E2 = 0) =
P (E2 = 0 j I)P (I)

P (E2 = 0)
=

1

2 + 4"

P (�I j E2 = 0) = 1� P (I j E2 = 0) =
1 + 4"

2 + 4"

P (I j E2 = 1) =
P (E2 = 1 j I)P (I)

P (E2 = 1)
=

3

6� 4"

P (�I j E2 = 1) = 1� P (I j E2 = 0) =
3� 4"

6� 4"

A posteriori odds are

O(I j E2 = 0) =
1

1 + 4"
and O(I j E2 = 1) =

3

3� 4"

So if " > 0, the event E2 = 0 con�rms the anti-hypothesis �I and the event E2 = 1 is consistent

with the hypothesis I. Knowing a sequence of observations (E2; E3; : : : ; En), we can compute the

corresponding odds to see whether or not they con�rm or contradict the hypothesis I.

14.4.2 Dempster-Shafer Theory

The theory is a generalisation of the probability theory. Dempster [131] laid the foundations and

Shafer [457] later generalised it so it can be used for evaluation of uncertainty. The theory is especially

applicable for intrusion detection using expert systems ([305]).

Let
 = fe1; : : : ; eng be a set of elements. All elements ei are disjoint for i = 1; : : : ; n. Given a

function

m : 2
 ! [0; 1]

such that m(;) = 0 and
P

!�
m(!) = 1. The function m is called basic probability assignment or

mass distribution. From an IDS point of view, the collection
 can be seen as the set of all elementary

events (also called hypothesis). The observations ! 2 2
 accessible to the IDS are predominantly

complex events involving more than one elementary event. The IDS wants to evaluate the validity of

some hypotheses (elementary events).

The belief function Bel : 2
 ! [0; 1] is de�ned as

Bel(!) =
X
��!

m(�) (14.5)

for ! �
. The belief function measures the probability that a given subset ! 2 2
 occurs as a

separate event or as the superset. The belief function Bel(!) = 0 if and only if m(�) = 0 for all

� � !. In other words, the event ! never happens.

330

The plausibility function P l : 2
 ! [0; 1] is de�ned as

P l(!) =
X

!\�6=;

m(�) (14.6)

for ! 2 2
. The plausibility function P l(!) indicates the probability of all events � that relate to !

(! \ � 6= ;). It is easy to observe that P l(!) � Bel(!) as each � � ! implies that � \ ! 6= ;. The

belief function Bel(!) de�nes the lower bound on the con�dence in ! while the plausibility function

determines the upper bound.

Let
 = fa; b; cg. Then a possible mass distribution can be expressed by the function m such that

m(fa; b; cg) = 4
16 ;

m(fa; bg) = 4
16
; m(fa; cg) = 2

16
; m(fb; cg) = 1

16
;

m(fag) = 2
16 ; m(fbg) = 1

16 ; m(fcg) = 2
16 ; m(;) = 0:

The belief and plausibility function for fa; bg is

Bel(fa; bg) = m(fag) +m(fbg) +m(fa; bg) =
7

16

P l(fa; bg) = m(fag) +m(fbg) +m(fa; bg) +m(fa; cg) +m(fb; cg) +m(fa; b; cg) =
14

16

Consider two Bel(!) and P l(!). If we de�ne the complement of ! as �! =
 n!, then it is easy to

show that

P l(!) = 1� Bel(�!)

In other words, Bel(�!) = 1 � P l(!) measures the amount of evidence against the hypothesis (event)

! while Bel(!) evaluates evidence in favour of !. There are the following possible cases:

1. P l(!) � Bel(!) = 1. This means that P l(!) = 1 and Bel(!) = 0 or in other words, all events

for which ! is a superset never happen and for the rest of events, ! is a proper subset. So every

single observation contains ! as the constant { it is impossible to say anything about ! itself.

There is no evidence against and for !.

2. P l(!) = 0 (this implies that Bel(!) = 0). Any event which intersects ! never happens. The

hypothesis (event) is false.

3. Bel(!) = 1 (this implies that P l(!) = 1). Any event must be a subset of !. The hypothesis

(event) is true.

4. P l(!) = "1 and Bel(!) = "2 ("1 > "2 and "1; "2 2 [0; 1]). There is an evidence in favour of !

(Bel(!) = "2) and there is an evidence against ! (Bel(�!) = 1� "1).

Observe that in the probability theory always P (�!) = 1 � P (!). In the Dempster-Shafer theory this

could be translated into the requirement that P l(!) = Bel(!).

The center piece of the theory is the Dempster rule of combination. Let
 be the set of elementary

events and m1;m2 be two basic probability assignments. Then the combined probability assignment

is a function m1 �m2 : 2

 ! [0; 1] such that

m1 �m2(!) =

P
�\�=! m1(�)m2(�)P
�\� 6=;m1(�)m2(�)

for all ! 6= ;. Briey, the rule allows to construct a combined probability assignment from two pieces

of evidence (two basic probability assignments).

The more \relaxed" setting which allows to measure to some extend independently evidence against

and for a hypothesis, provides a convenient tool for IDS systems based on expert systems. For

more information on the Dempster-Shafer theory and its applicability to reasoning in the presence of

uncertainty, the reader is referred to [305].

331

14.5 A Generic Intrusion Detection Model

One of the earliest proposals of using audit trails and system logs for intrusion detection was presented

in [143] in the form of an intrusion detection model. Although dated, the model is still valuable since

it is accurate in describing the architecture of many current IDSs (Figure 14.1).

Audit Trail/Network Packets/Application Trails

Rule SetActivity Profile

Event Generator

Clock

Generate Anomaly Records

Update Profile

Generate New
Profile Dynamically

Assert New Rule
Modify Existing Rules

Figure 14.1: A generic intrusion detection model

The Event Generator in the model is purposely generic, and the events may include audit records,

network packets or other observable activities. The Activity Pro�le represents the global state of

the intrusion detection system, and it contains variables that are used to calculate the behaviour of

the system based on some prede�ned statistical measures. The variables are associated with certain

pattern speci�cations, which come into play when �ltering the event records. During �ltering, any

matching records will then provide data to update the values stored in these variables. Furthermore,

each variable is associated with one of the statistical measures built into the system, and is therefore

responsible for updating the system state based on the information obtained from the matching record.

Using a history of common activities conducted by a typical user, the Activity Pro�le can develop

pattern templates which are then applied to newly created subjects (eg. users) and objects (eg. �les).

When new users of new �les are introduced into the system, these templates can be used to instantiate

new pro�les for them. The Rule Set represents a generic inferencing mechanism, such as a rule-based

system. It uses event records, anomaly records and other data to control the activity of the other

components of the IDS and to update their state.

Although the above model of [143] is generic, it does provide the basic framework for the compo-

nents of an intrusion detection system. Most IDSs follow the basic concept of formulating statistical

metric for identifying intrusions, computing their values, and recognising the anomalies in the resulting

values. IDSs di�er typically in three aspects, namely:

� in how the rules making-up the Rule Set are determined,

� on whether the Rule Set is �xed a priori or if it can adapt itself depending on the type of

intrusion,

� on the nature of the interaction between the Rule Set and the Activity Pro�le.

The notion that the Activity Pro�le module detects anomalies and that the Rule Set performs misuse

detection will remain the same in most IDSs. Di�ering techniques may be employed in each of the

modules without changing the conceptual view of the model.

332

Audit trails and system logs represent the main source of input data for IDSs. A wide of range

of audit data and log types can be obtained, many of which are dependent on the particular host or

network which generated them. Such data can be used in a number of ways [77] in order to:

� review the access-patterns to individual objects,

� provide access histories of speci�c users and speci�c processes,

� initiate the use of protection mechanisms o�ered by the system,

� discover repeated attempts by users and outsiders to bypass the protection mechanisms,

� reveal the exercise of privileges when a user takes-on a functionality or role with privileges higher

than the usual user privileges,

� deter penetrators from repeatedly trying (successfully or otherwise) to bypass the system pro-

tection mechanisms,

� provide assurance to honest users that attempts to bypass the protection mechanisms are being

recorded and discovered, and thus are being addressed by system administration.

For the development of trusted systems [145] auditable events are monitored in order to gather

auditable data. Events that are typically monitored include (but are not limited to):

� the start and end of user identi�cation and user authentication mechanisms,

� the introduction (deletion) of objects into (from) the user address space,

� actions by system administrators (including operators and security administrators),

� invocation and use of external services (eg. printer servers and printer devices),

� all security-related events (depending on the de�nition of these events in a given environment).

The information collected about events are wide ranging, but at the very least should include the

date and time of the event, the type of event, the identi�er of the subject (user/process triggering

the event), the success/failure indication, the name/identity of the objects (introduced or deleted),

and the description of the actions taken by the system administrator. In the case of speci�c security-

related events, the origin of the request for user identi�cation/authentication must also be noted.

14.6 Host Intrusion Detection Systems

Most host-IDSs follow the basic model described in Section 14.5. In the following we briey review

some of the major e�orts in host-based intrusion detection. The motivation of this review is gain

an overall understanding of the basic elements that are common in most, if not all, major intrusion

detection systems.

14.6.1 IDES

The Intrusion Detection Expert System (IDES) is one of the earliest projects on intrusion detection.

Developed in 1985 at SRI International, IDES employs user pro�les and an expert system to decide on

intrusion events. The general goal of IDES is to provide a system-independent mechanism to the real-

time detection of intrusions, hence its focus on providing an expert system that detects anomalous

behaviours based on complex statistical methods.

IDES is designed to run continuously, and is based on two beliefs [307]:

333

1. intrusions, whether successful or attempted, can be detected by agging departures from histor-

ically established norms of behaviour for individual users,

2. known intrusion scenarios, know system vulnerabilities, and other violations of a system intended

security policy (that is, a priori de�nition of what is to be considered suspicious) are best detected

through the use of an expert system rule base.

These two basic assumptions of thought have prevailed in the subsequent prototypes of IDES.

Audit
Data

Anomaly
Detector

Profile
Data

Active
Data

Profile
Updater

Active Data
Collector

Administrative
Interface

Anomaly
Data

Expert
System

ReceiverAudit Records

Figure 14.2: The Intrusion Detection Expert System (IDES)

The components of IDES are shown in Figure 14.2. The Receiver module parses the received audit

records and validates it, with the results being deposited in the collection of Audit Data. The two

main subsystems of IDES consist of the components related to the anomaly detection and those within

the expert system. In the statistical anomaly detector, the audit data is �rst used by the Active Data

Collector which produces Active Data, which consists of information about all user activities, group

activities and remote host activities since the last time the pro�les were updated. This data is then

used by the Anomaly Detector which compares the data against the existing Pro�le Data [261]. If

an anomaly is found, an anomaly record is created and deposited in the Anomaly Data database,

which is accessible through the Security Administrator Interface. Daily updates on the pro�les are

conducted by the Pro�le Updater. In the mean time, the Expert System works in parallel with the

Active Data Collector, receiving the Audit Data as input. The Expert System checks for actions that

can be considered intrusions, based the user's pro�le. Although the initial versions of the Expert

System su�ers from the limitation of working only on known attack methods and vulnerabilities,

subsequent versions of IDES have extended its functions to a networked environment, where several

interconnected hosts send the audit information to a central site that performs the intrusion analysis.

IDES was developed by SRI over a number of years. An initial prototype system was developed

for Sun/2 and Sun/3 systems to monitor a DEC 2065 which was running SRI's modi�ed version of

TOPS-20. The Intrusion Detection Model [143] framework is the basis for the initial IDES prototype

334

system [306]. This early prototype system was modi�ed over many years to incorporate new and more

sophisticated detection techniques, interfaces and allows for scalability. Furthermore, it was later

migrated from an Oracle relational database system using (Pro*C, C and SQL on IBM/DEC/Sun

systems with SunView graphical interface environment) to a C based Sun Unix environment using an

object-oriented X graphical interface library.

14.6.2 Haystack

Haystack is an intrusion detection system developed by the Los Alamos National Laboratories (LANL),

with the initial design and system prototyping carried out by Tracor Applied Sciences and Haystack

Laboratories. Haystack was not designed to work in a real-time environment, but rather as an o�-

line batch system. Its aim was to aid the US Air Force computer system security o�cers (SSO) in

analysing data by reducing the voluminous audit data on the Air Force's Unisys 1100/60 mainframes.

Initially Haystack existed as two components, one part running on the Unisys mainframe and the

other on the Zenith Z-248 PC [473]. The model followed by Haystack was that of [143].

CAT
file

Audit
Data

Preprocessor

Unisys 1100

Statistical
Analysis

Reports

Z-248 PC

Figure 14.3: Haystack components

The goals of Haystack were:

� to enable a computer security policy to be enforced by improving the ability to detect and

respond to security policy violations,

� to develop a software solution that conforms to POSIX and ANSI standards,

� to enable the SSO to monitor large volumes of raw audit data by summarising and reporting

events deemed suspicious.

The components of Haystack are shown in Figure 14.3. Here the audit data on the Unisys mainframe

is given as input to a Preprocessor which extract the relevant details. The result is written to a

Canonical Audit Trail (CAT) �le and the �le written to a 9-track tape. At a later time the PC will

then read the �le from the tape, logging any obvious anomalies. A new session history record is created

for any users appearing in the �le. This history is also used to update a database that contains the

user's past behaviour. Haystack looks for misuses in the following ways:

Pattern based analysis. This is used to select important events that occur in the users session. The

audit records are selected based on the following behaviours:

335

1. Modify Events: these include all successful and unsuccessful events that modify system

security.

2. Tagged Events: these are system subjects and objects that have been marked by the security

o�cer as needing more detail logging and analysis.

Statistical based analysis. The statistical analysis is based on two computations (the Cumulative

Weighted Multinomial method and the Wilcoxon-Mann-Whitney Rank Test). The �rst is com-

puted by comparing a user's session with the expected ranges of behaviour, resulting in a \sus-

picion quotient". Any user whose quotient is outside the acceptable range is reported to the

security o�cer. The second is computed by comparing the user's session behaviour with previ-

ous sessions, with the aim of detecting users who are slowly trying to adapt their pro�les over

time, e�ectively modifying a normal behaviour pattern to one that is unauthorised.

Although Haystack has provided considerable aid to the security o�cers in analysing the audit

data, one of its shortcomings is precisely its lack of real-time capabilities. This opens a gap in time

between the data collection and auditing, which may allow an intruder to break into the system.

14.6.3 MIDAS

MIDAS or Multics Intrusion Detection and Alerting System is an expert system that provides intrusion

and misuse detection in real-time. It was designed by the National Computer Security Center (NCSC)

for their networked mainframe (called Dockmaster), which is a Honeywell DPS 8/70. The expert

system itself has several components, some of which are actually running on a separate Symbolics List

machine [456]. Figure 14.4 shows the components of MIDAS.

Symbolics Lisp Machine

Statistical
Database

Fact
Base

Rule Base

Multics

Preprocessor

Command
Monitor

Audit
Records

Network Interface

Security
Monitor

Figure 14.4: MIDAS components

When Multics system generates an audit record, the Preprocessor �lters data which are not needed

by MIDAS. It then formats the remaining data into an assertion for the Fact-Base, which is sent to

the Fact-Base through the Network Interface which links the two computer systems. The Statistical

Database contains statistics for users and the system, and de�nes the normal state for Dockmaster.

The new assertion that is introduced into the Fact-Base may result in a binding between the new fact

and an existing rule in the Rule-Base, and may even cause the �ring of several other rules. Thus, the

new assertion may change the state of the system and cause a system response to a suspected intruder.

Clearly, the performance of MIDAS as a whole is largely dependent on the rules in the Rule-Base.

Three di�erent types of rules exist, namely immediate attack heuristics, user anomaly heuristics

and system state heuristics. The immediate attack rules only super�cially examines a small amount

of data items without applying any statistical analysis. The aim is to �nd auditable events that are

abnormal enough to raise suspicions. The user anomaly rules employ statistical analysis to detect

336

deviations in a user's pro�le as compared to previous histories. The system state rules are similar to

the user anomaly rules, except these are applied to the system itself.

14.7 Network Intrusion Detection Systems

Network-IDSs are intrusion detection systems that work on the basis of monitoring tra�c within a

network segment. In contrast to host-IDSs that monitor and detect intrusions within a host, network-

IDSs observe raw network tra�c and detect intrusions from that tra�c information. Unlike host-IDSs

that are in e�ect insulated from the low-level network events, network-IDSs can correlate attacks

occurring against multiple machines within the monitored network segment. Typically, network-IDSs

passively monitors the network, copying packets as they pass-by regardless of the packet's destination.

One major advantage of network-IDSs that carry-out passive protocol analysis is that the action

of monitoring occurs at the lowest levels of a network's operation, thereby they are both unobtrusive

and di�cult to evade. In fact, unless an external attacker uses other means to �nd-out the existence

of a network-IDS, typically the attacker will be unaware of the network-IDS.

14.7.1 NSM

The Network Security Monitor (NSM) was developed at UC-Davis and performs tra�c analysis on a

broadcast LAN in order to detect unusual behaviour and tra�c patterns, and therefore detect possible

intrusions (Figure 14.5). In contrast to host-based intrusion detection systems running on a host {

Traffic
Archive

Network
Traffic

Packet
Collector

Filter
Object Detector

and Analyzer
Report

Generator

Figure 14.5: The Network Security Monitor

which consume the host's resources { NSM runs independently of the hosts being monitored in the

LAN. These monitored hosts are in fact unaware of the passive monitoring behaviour of NSM. Hence,

intruders will also be unaware of the tra�c monitoring that is occurring.

NSM is based on the Interconnected Computing Environment Model (ICEM) [356] which consists

six layers arranged in a hierarchic fashion. These layers are briey as follows (bottom to top) with

one layer providing input for the next layer above it:

� Packet layer: accepts bit-stream input from the broadcast LAN, divides input into complete

packets and attaches a timestamp to each packet.

� Thread layer: accepts time-augmented packets and correlates them into unidirectional data

streams. Each stream represents data transferred from one host to another using a particular

protocol (eg. TCP/IP or UDP/IP) through a given port. The stream or thread is then mapped

to a thread-vector.

� Connection layer: attempts to pair one thread with another to represent a bi-directional stream

or host-to-host connection. The pairs are then represented by a connection-vector consisting

337

of combinations of thread vectors. After the connection-vectors are analysed, their reduced

representation is passed up to the next layer.

� Host layer: builds a host-vector from the reduced connection vector, representing the network

activities of a host.

� Connected-network layer: creates a graph from the host-vectors representing the various connec-

tions between hosts in the network. Sub-graphs (or connected-network-vector) can be generated

and compared against historical connected sub-graphs. Here, the user can begin to query the

system about the resulting graph (eg. existence of path between 2 hosts through intermediate

hosts).

� System layer: creates a single system vector from the collection of connected-network-vectors,

representing the entire network.

The host vectors and connected-network vectors are used as the �rst type of input to an expert

system within NSM. The components of these vectors which are of interest to the expert system are

host ID, host address, security state (an evaluation value of a given host), number of data paths to a

host, and the data path tuples. A tuple has four elements representing a data path to/from a host

(other-host address, service ID, initiator tag and security state).

The second type of input is the expected tra�c pro�le, which are the expected data paths (or

connections) between hosts, and a corresponding service pro�le (that is, the expected behaviour things

like telnet, mail, �nger and others). The next type of input is a representation of the knowledge of the

system regarding the capabilities of the services (for example, a telnet service has more capabilities

than ftp). The fourth input is the level of authentication needed for each service. The �fth is the level

of security for each of the machines in the host (based, for example, on the ratings by the National

Computer Security Center (NCSC)). The last input to the expert system is the signatures of past

attacks to hosts.

NSM employs the notion of the security state which represents the \suspicion level" associated

with particular network connection. When deciding on the security state for a connection, four factors

are taken into consideration:

1. Abnormality of a connection: this refers to the probability of the connection occurring (ie. often

or rare) and the behaviour (ie. tra�c volume). This is established by comparing against the

pro�le for that connection. Thus, for example, if a connection is rare (abnormality high) and

tra�c is unusually high in one direction, then the abnormality of the connection is high.

2. Security level used for the connection: this is based on the capabilities of the service and the

authentication typically required for that service. For example, TFTP (high capability, no

authentication) is given a high security level. Telnet (high capability, requires authentication)

has lower security level than TFTP.

3. Direction of connection sensitivity level: this is based on the sensitivity level of the connected

hosts and which host initiated the connection. Example: if a low-level host attempts to connect

to a high-level host, then the direction of connection sensitivity is high.

4. Matched signatures of previous attacks.

NSM has been used with interesting results. During a two-month period at UC Davis, NSM

analysed over 110,000 connections. Within these, NSM correctly detected 300 intrusions, whereas

only 1 percent of the intrusions were detected independently by the system administrators.

338

14.7.2 DIDS

The Distributed Intrusion Detection System (DIDS) [475, 476] is a project representing an extension

of the NSM, with the aim of adding two features missing from NSM. These are the ability to monitor

the behaviour of a user who is connected directly to the network using a dial-up line (and who

therefore may not generate observable network tra�c), and the ability to allow intrusion detection

over encrypted data tra�c. The DIDS project is sponsored by UC Davis, the Lawrence Livermore

National Labs (LLNL), Haystack Laboratory and the US Air Force.

DIDS
Director

M

Host
LAN

Monitor

(unmonitored)

Host

M

Host

M

Host

Figure 14.6: The Distributed Intrusion Detection System (DIDS)

The architecture of DIDS consists of three components (Figure 14.6), namely Host Monitors, the

LAN Monitor and the DIDS Director. Each host in the monitored domain runs the Host Monitor,

scanning their individual audit trails for suspicious events and other events relevant to the network

(eg. rlogin and rsh attempts). The data from these Hosts Monitors augment the data received from

the LAN Monitor, which are the reported to the DID Director. The LAN Monitor is used for each

broadcast LAN segment. The DIDS Director contains an expert system which analyses all incoming

data related to the monitored domain.

DIDS allows the tracking of users who move around within the domain. It does so by introducing

a network-user identi�cation (NID) for all users within the network. This tracking, however, can only

been done when users move across monitored hosts. The issue of movements to unmonitored hosts

was not addressed by DIDS.

The Host Monitor has two main components, namely the host event generator and the host agent.

The host event generator collects audit records from the host operating system, and scans them

for notable or unusual events. These are forwarded to the Director. The host agent is responsible

for all communications between the Host Monitor and the Director. The LAN Monitor also has a

LAN event generator (currently a subset of NSM) and a LAN agent. The LAN monitor observes

all tra�c on a given LAN segment, noting network related events, such as host connections, tra�c

volumes and services invoked over the network. The DIDS Director has three components on a single

dedicated workstation, namely an expert system, a communications manager and a user interface for

the security o�cer. The communicationsmanager handles all communications with the Host Monitors

and the LAN Monitor. The Director may in fact request more data from these monitors, through the

communications manager.

14.7.3 NADIR

The Network Anomaly Detector and Intrusion Reporter (NADIR) [247] is a system for network in-

trusion detection developed and tailored for the Integrated Computing Network (ICN) at the Los

339

Alamos National Laboratory (LANL). NADIR employs an expert system which analyses audit data

as a supplementary method to the manual audit done by the security o�cer. From the network audit

records, it generates weekly summaries of the activities of the network and of individual users.

NADIR is tailored for the compartmentalised or \multilevel" arrangement of security classi�ca-

tions in the ICN network. Following the Bell La Padula model [20], a computer system may only

access computer systems within the same compartment or partition, and those at a lower-classi�ed

compartment (nb. the \read-down" rule of the model). The compartments are linked by a collection

of dedicated service nodes which carry-out many security-related tasks (eg. access control, �le access,

�le storage, �le movements).

Each user account is associated with a value called the level of interest, which indicates the current

level of suspicion regarding that account being compromised by an intruder. The weekly summary is

generated from data which includes the user's activities. The parameters reported include the host

compartment or partition, the host ICN machine number, the destination partition, the destination

host classi�cation level, and others. NADIR has a graphical interface, which highlights the suspicious

activities and users, bringing them to the security o�cer's attention.

14.7.4 Cooperating Security Manager (CSM)

Another e�orts towards developing network intrusion detection is the Cooperating Security Manager

(CSM) system developed at the Texas A&M University [518]. One of the primary goals of the CSM

project was to go away from the centralised intrusion detection system (as in DIDS). Instead, each

host would run the CSM and together the hosts would set up a mesh of intrusion detection system

which share information in a cooperative manner. Hence, intrusion detection would be achieved in a

distributed manner.

The distributed nature of the intrusion detection makes the e�ort scalable (as compared to the

centralised approach). For the distributed intrusion detection to work, however, each of the hosts in

the networked environment must be running CSM. When a user at a host in the network connects

to another host (both running CSM) the CSM at both hosts would cooperate in monitoring the

user's behaviour. Hence, if an attacker decides to use one host as a platform for further attacks in a

hop-by-hop fashion, the CSMs on the linked hosts would work together to detect the intruder.

Command
Monitor

Local IDS
Security
Manager

Intruder
Handler

Admin
Interface

Other
CSMs

Figure 14.7: The Cooperating Security Manager (CSM)

The basic components of the CSM is shown in Figure 14.7. The Command Monitor captures

the user's input and passes them to the Local IDS which has the task of detection intrusion for

that host. Network-related activities are reported to the Security Manager which communicates with

340

other CSMs at other hosts. In e�ect, the Security Managers coordinate the distributed interaction

among the CSMs. When a host communicates to another host, all the user actions at the �rst host

is considered to be occurring in parallel at the second host. Thus, intrusion detection processes occur

on both hosts. If a user is connected over several hosts in a chain and one of the CSM in that

chain determines that an intrusion activity is occurring, that CSM will notify all other CSMs along

the chain. The Administrative Interface is used by the security o�cer to query the CSM about the

security status of the current host, and to further query a (suspect) user's origin and trails. A level

of suspicion can be requested for a given user.

Again, for the concept to succeed all the hosts within the network must run the CSM. It is unclear

how the concept of the CSM can be implemented in the near future where not all hosts run the CSM

and where the origin (or destination) of a connection to (from) a CSM-based host does not itself

run the CSM. That is, the issue of the interaction at the boundary of a CSM- base network and a

non-CSM network remains to be seen.

14.8 Limitations of Current Intrusion Detection Systems

Although a number of research prototypes and commercial IDSs have been developed, in general there

are some aspects of IDSs which need to be addressed.

14.8.1 General limitations

� Lack of generic development methodology: Current costs for developing IDSs are substantial due

to the lack of a structured methodology to develop such systems. Although there is a growing

body of knowledge about IDSs, not much structuring insights have emerged (at least within the

public literature). This may be due the fact that the �eld of IDSs is still relatively young, that it is

an area which borders on several �elds (eg. arti�cial intelligence, operating systems, networking)

and that there is a lack of agreement on the suitable techniques for intrusion detection.

� E�ciency: Some IDSs have attempted to detect every conceivable intrusion, which in many

circumstances is impractical. Thus, in reality expensive computations, such as that for anomaly

detection, need not be done for every event. Some systems employ an expert system shell which

encode and match cases or attack signatures. Unfortunately these shells are typically interpret

their rule set, and thus present a substantial runtime overhead.

� Portability: Many IDSs are developed for a particular target environment, often in ad-hoc and

custom-design fashion. This is largely true because many of the systems are dependent on OS-

speci�c functions and therefore tailor their detection to that OS. Reuse of an IDS for a di�erent

environment is di�cult to perform, unless the system was designed in a generic manner (in which

case it would probably be ine�cient and have limited capabilities).

� Upgradability: Retro�tting an existing IDS with newer and improved detection techniques re-

quires a considerable e�ort in re-implementation. This aspect is related to the lack of develop-

ment methodology for IDSs.

� Maintainability: Maintaining an IDS typically requires skills in �elds other than security. Often

modifying or upgrading the rule set requires specialised knowledge about expert systems, the

rule language and some familiarity with how the system manipulates the rules. Such expertise

is necessary in order to prevent the added rules from creating undesirable interactions with the

rules already present. Similarly, modi�cation of the statistical metrics within the statistical

341

component of the IDS requires equal expertise. This aspect, unfortunately, is di�cult to address

due to the inherent complexity of AI-based systems.

� Benchmarking: Hardly any data on IDS benchmarks exist in the literature, and very little data

on the performance of IDSs for a realistic set of vulnerability-data and operating environment

have been published. Similarly, little coverage data exist about any system. Such coverage data

reports the percentage of intrusions detected by an IDS in a real environment. This aspect is

di�cult to solve due to the inherent di�culty in accurately verifying the types of frequencies of

intrusions in large environments. Related to this issue is the di�culty of testing IDSs using a

developed set of attack scenarios.

14.8.2 Network-IDS Shortcomings

One major drawback of network-IDSs is their lack of ability in knowing (or determining) the events

within a computer system that results from that system receiving a message or packet. That is,

although a network-IDS observes (and copies) a packet destined to a particular computer system,

there is no direct way for the network-IDS to discover whether the packet was accepted (or rejected),

and if accepted, what reaction it had on the recipient computer system.

When an attacker (internal or external) is aware that an IDS is monitoring his or her activities, the

IDS itself can instead become the main target of attack. In the case of a network-IDS, an intelligent

attacker will realize that although he or she may not be able to directly attack the network-IDS to

disable it, he or she may still have the ability to cheat or mislead the detection system within the

network-IDS. Assuming that an internal attacker has a valid account on the machines in the network

(eg. malicious valid user or external attacker that created an undiscovered account), the attacker can

send dummy tra�c to himself/herself through a valid session. In this manner, the detection system

may gradually modify its rule-set (if it is dynamic), e�ectively being cheated by the internal attacker.

There are two main shortcomings of network-IDS [414, 394]:

� Lack of information: Typically a network-IDS is a separate machine from those that it monitors.

Through passive monitoring, the network-IDS aims to predict the behaviour of the networked

machines using protocol analysis and its rule-set. Although the network-IDS obtains a copy of

every packet sent to a machine, it does so at a slightly di�erent time frame and it is never sure

of how that packet was treated by the machine. Hence, a discrepancy can occur between the

detection system and the machines it monitors. As an example, consider an IP packet with a

bad UDP checksum. Although most machines will reject this packet, some may ignore the bad

checksum and accept the packet. The network-IDS must be able to know whether each machine

will accept/reject the packet.

� Denial of Service: Denial-of-service attacks are aimed at reducing the level of availability of a

computer system, and if possible to disable the system (ie. system crash). When discussing the

failure of a security system, the issue of the mode (fail-open or fail-closed) of the system after

it fails becomes important. In fail-open, the disabled system cases to provide any protection,

while in fail-closed the disabled system leaves the environment still protected. Clearly, a good

network-IDS must be fail-closed. As an analogy, consider the �rewall. A fail-open �rewall that

crashes will leave the network available, and thus will leave it open to attacks. From a security

perspective, a good �rewall must be fail-closed, closing the entire network when it crashes.

There are a variety of possible attacks that can result in the detection system of a network-IDS

becoming misled. When an attacker can exploit the use of dummy packets which the valid destination

342

rejects (but which the network-IDS thinks it accepted), the attacker can e�ectively insert data into

the network-IDS. This problem is due to the network-IDS being less strict than the destination system

in its packet processing. To solve this problem, the network-IDS can be tuned to be maximally strict.

This approach, however, may lead to the opposite situation where a packet accepted by the destination

system is rejected by the network-IDS, leading to an evasion attack.

14.9 The Common Intrusion Detection Framework (CIDF)

The Common Intrusion Detection Framework (CIDF) is a recent standardisation e�ort which began

in early 1997 among all the DARPA-funded intrusion detection projects. The idea of a common

framework arose when a desire arose on the part of DARPA to make all the intrusion detection

systems that it was funding to inter-operate, and to make the bene�ts arising from these projects

therefore more useful and accessible to the wider community.

Although initially con�ned within these DARPA projects, in April 1998 the work of the CIDF

community was put forward to the IETF (LA Meeting) with the aim of creating an IETF working

group on CIDF. As mentioned in the CIDF speci�cation document, the goal of the CIDF speci�cation

is two fold [223]:

1. The speci�cation should allow di�erent IDSs to inter-operate and share information as richly as

possible.

2. The speci�cation should allow components of IDSs to be easily reused in the context di�erent

from those they were designed for.

All CIDF components deal in GIDOs (Generalised Intrusion Detection Objects) which are represented

via a standard common format. GIDOs are data that is moved around in the intrusion detection

system. GIDOs can represent events that occurred in the system, analysis of those events, prescriptions

to be carried out, or queries about events.

The CIDF speci�cation covers a number of issues related to the creation of a framework:

� A set of architectural conventions for how di�erent parts of IDSs can be modelled as CIDF

components.

� A way to represent GIDOs, where GIDOs can:

{ describe events that occurred in the system.

{ instruct an IDS to carry out some action.

{ query an IDS as to what has occurred.

{ describe an IDS component.

� A way to encode GIDOs into streams of bytes suitable for transmission over a network or storage

in a �le.

� Protocols for CIDF components to �nd each other over a network and exchange GIDOs.

� Application Programming Interfaces to re-use CIDF components.

The CIDF architecture consists of four (4) main types of components: Event Generators, Analysers,

Databases and Response units (Figure 14.8). Correspondingly, the CIDF speci�cation talks in terms

of E boxes, A boxes, D boxes and R boxes. Event countermeasures are also introduced in the form of

C boxes.

343

E1 E2 E3

C

A1

A2

D
R

Figure 14.8: The CIDF Architecture

The E-box has the task of supplying information about events to the rest of the system. Events act

as the sensory organs within an IDS, and an event itself has a wide range of meanings, from high-level

complex events to low-level network protocol events. Their role is to obtain events from the larger

computational environment outside the IDS and provide them in the CIDF standard GIDO format

to the rest of the system. For example, event generators might be simple �lters that take C2 audit

trails and convert them into the standard format, or another event generator may passively monitor

a network and generate events based on the tra�c on the network.

Input from the event generators are then analysed by the A-box, using the analysis method de�ned

in the A- box of the given IDS. These analysis method can be based on statistical anomaly detection,

graph-based methods and others. A-boxes obtain GIDOs from other components, analyse them, and

return new GIDOs.

The outputs from the A-box and E-boxes are stored in the D-box component, which acts as the

storage mechanism for the data to be available at a later time. D-boxes exist to give persistence to

CIDF GIDOs where that is necessary. The interfaces allow other components to pass GIDOs to the

database, and to query the database for GIDOs that it is holding. Databases are not expected to

change or process the GIDOs in any way. Responses are produced by the R-boxes, which carry out

prescriptions, namely GIDOs that instruct them to act on behalf of other CIDF components. This is

where functionality such as killing processes, resetting connections, etc. would reside. Response units

are not expected to produce output except as acknowledgements [223].

14.10 Partial List of ID systems: Research Prototype and

Commercial

The following is a list of IDS prototypes and commercial systems. The list is not meant to be compre-

hensive, and the reader is directed to the COAST web pages at Purdue University (http://www.cs.-

purdue.edu/coast) for more information.

344

Name Source/Organisation Attributes References

ADS (Attack University College [268, 269]

Detection System) Dublin, Ireland

AID (Adaptive Brandenburg University Multi-host based [478]

Intrusion Detection of Technology at misuse detection http://www-

system) Cottbus, Germany rnks.informatik.tu-

cottbus.de/�sobirey/aid.e.html

ALVA (Audit Log General Electric Host based, limited [345]

Viewer and anomaly detection

Analyser tool)

APA (Automated University of Maryland [228]

Penetration at College Park

Analysis tool)

ASAX (Advanced University of Namur, Mult-host based, [80, 229, 350, 351, 352, 353]

Security audit trail Belgium, and Siemens- misuse detection http://www.info.foundp.ac.be

Analysis on uniX) Nixdorf Software S.A. /�amo/publications.html

Autonomous COAST Laboratory Mult-host based, [116, 117]

Agents for Purdue University anomaly detection http://www.cs.pudue.edu

Intrusion Detection /coast/projects/autonomous-

agents.html

CMDS (Computer Science Applications Multi-host based, [413]

Misuse Detection International anomaly and misuse http://www.saic.com

System) Corporation detection. Commercial /it/cmds/index.html

Computer Watch AT&T Bell Laboratories Host based, limited [160]

misuse detection. http://www.att.com

Commercial

CyberCop Network General Network based, misuse http://www.ngc.com

Corporation detection. Commercial /product info/cybercop

Discovery TRW Information Host based, anomaly [494]

Services detection

EMERALD (Event SRI International Network based, [409]

Monitoring anomaly and misuse http://www.csl.sri.com

Enabling Response detection /emerald/index.html

to Anomalous Live

Disturbances)

ESSENSE Digital Equipment [503]

Corporation

GASSATA (Genetic SUPELEC, Cesson [329, 330]

Algorithm for Sevigne, France http://www.supelec-rennes.fr

Simpli�ed Security /rennes/si/equipe/lme

Audit Trail Analysis) /these/these-lm.html

GrIDS (Graph-based University of California Network based, misuse [480]

Intrusion Detection at Davis detection http://olympus.cs.ucdavis.edu

System) /arpa/grids

Hyperview CS Telecom, GRoupe [129, 130]

CSEE, Paris, France

IDA (Intrusion Motorola, Rolling [396]

Detection Alert) Meadows, IL

345

IDA (Intrusion University of Hamburg, [182, 477]

Detection and Germany

Avoidance system)

IDIOT (Intrusion Purdue University Misuse detection [289]

Detection In Our http://www.cs.purdue.edu

Time) /coast/coast-tools.html

INSA/Network Touch Technologies Network based, http://www.ttisms.com

Security Agent Inc. anomaly and misuse /tti/nsa www.html

detection. Commercial

ISOA (information Planning Research Multi-host based, [526, 527]

Security O�cer's Corporation, McLean, anomaly and misuse

Assistant) VA detection

ITA (Intruder AXENT Technologies, Multi-host based, http://www.axent.com

Alert) Inc. misuse detection.

Commercial

Kane Security Intrusion Detection, Inc. Commercial http://www.intrusion.com

Monitor (KSM)

NAURS (Network SRI International [368, 369]

Auditing Usage

Reporting System)

NetRanger WheelGroup, Inc., San Network based, misuse http://www.wheelgroup.com

Antonio, TX detection. Commercial

NetStalker Haystack Laboratories, Host and network http://www.haystack.com

Inc.,Austin, TX based, misuse detection.

Commercial

NetSTAT University of California Multi-host based, http://www.cs.ucsb.edu

(Network-based at Santa Barbara misuse detection /�kemm/netstat.html

State Transition

Analysis Tool)

NID (Network Computer Security Network based, Continuation of NSM [356]

Intrusion Detector) Technology Center, anomaly and misuse http://ciac.llnl.gov/cstc

LLNL detection /nid/niddes.html

NIDES (Next- SRI International Multi-host based, Continuation of IDES [261, 306].

Generation anomaly and misuse See also [6, 7] and

Intrusion-Detection detection http://www.csl.sri.com

Expert System) /nides/index.html

NIDX (Network Bell Communications [16]

Intrusion Detection Research, Inc.,

eXpert system) Piscataway, NJ

OmniGuard/ AXENT Technologies Multi-host based, http://www.axent.com

Intruder Alert Inc. misuse and anomaly /product/ita/ita.html

detection. Commercial

PDAT (Protocol Siemens AG, Munich, [515]

Data Analysis Tool) Germany

POLYCENTER Digital Equipment Host based, misuse http://www.digital.com

Security Intrusion Corporation detection /info/security/id.html

Detector

RealSecure Internet Security Network based, misuse http://www.iss.net

Systems, Inc., detection. Commercial /prod/rs.html

Atlanta, GA

346

RETISS (REal-TIme University of Milano, [75]

expert Security System) Italy

SAINT (Security National Autonomous Multi-host based, [533]

Analysis University of Mexico misuse detection

INtegration Tool)

SecureDetector ODS Networks Network based http://www.ods.com

SecureNet PRO MimeStar, Inc. Commercial http://www.mimestar.com

Stalker Haystack Laboratories, Multi-host based, Evolved from Haystack [473].

Inc.,Austin, TX misuse detection. http://www.haystack.com

Commercial /stalk.html

Swatch Stanford University Multi-host based, [232]

limited misuse detection

TIM (Time-based University of Illinois at [495, 496]

Inductive Machine) Urbana-Champaign

UNICORN (Unicos Los Alamos National Commercial Evolution from NADIR [247].

Realtime NADIR) Laboratory See [95] and http://www.

EnGarde.com

/�mcn/unicorn.html

USTAT (State University of California Host based, misuse [251]

Transition Analysis Santa Barbara detection http://www.cs.ucsb.edu

Tool for UNIX) /TRs/TRCS93-26.html

WebStalker Pro Heystack Laboratories, Host based, misuse http://www.haystack.com

Inc., Austin, TX detection /webstalk.html

Wisdom and Sense Los Alamos national Host based, anomaly [301]

Laboratory & Oak Ridge detection

National Laboratory

14.11 Problems and Exercises

1. Discuss possible intrusion detection strategies. Clearly de�ne two broad classes of strategies. What are

advantages and shortcomings of the two strategies ?

2. Describe some measurable characteristics which can be used to de�ne an anomaly intrusion detection

system.

3. Consider the three anomaly IDS implementations, namely statistical, predictive pattern and neural network

IDS. Contrast them, specify their advantages and point out their limitations.

4. De�ne intrusion signatures and show how they can be used for intrusion detection.

5. Assume an IDS system based on the probabilistic model. The event space is binary
 = f0; 1g. The

behaviour of a legitimate user is described by the collection of conditional probabilities (to simplify the

calculations, assume the uniform probability distributions). The behaviour of an illegal user is charac-

terised by the collection of conditional probabilities which are di�erent by some constant " from those for

the legitimate user. Make the rest of necessary assumptions. Show the dependency between the length

of event sequence after which the decision about intrusion is made, and the false acceptance/rejection

probabilities.

6. Consider the set of events
 = fe; f; I; �Ig with two basic probability assignments m1 and m2 de�ned as

follows

m1(!) =

8<
:

0:8 if ! = f�Ig

0:2 if ! = fIg

0 otherwise

347

and

m1(!) =

8>><
>>:

0:3 if ! = feg

0:2 if ! = ffg

0:5 if ! = fe; fg

0 otherwise

Compute the combined probability assignment m1 �m2.

7. Choose three IDS implementations published in the literature or electronically. Specify their features,

compare their e�ciency versus the false acceptance/rejection rates. What are your recommendations

as to applicability of the systems chosen ?

Chapter 15

ELECTRONIC ELECTIONS AND DIGITAL
MONEY

Electronic banking, commerce and elections are examples of services which are already accessible or

will be in the near future on the Internet. Without an exaggeration, one can say that most services

which require a face-to-face contact will be replaced by their network versions with remote interaction

between a client and the parties involved in the service. A distributed system provides the medium for

interaction. By its nature, the distributed system allows to perform the requested services (banking,

voting, etc.) by exchange of information only. Needless to say, all stages of service must be converted

into protocols each of which achieves a well de�ned goal (such as client-server mutual identi�cation,

establishing a secure communication channel, veri�cation of client request, etc.). Network services

can be seen as a collection of elementary protocols executed by the parties in order to provide the

well de�ned service to the client(s).

15.1 Electronic Elections

As soon as computers became widely available, they were used during election to help prepare and run

election campaigns, support pooling centers with databases of eligible voters, collect and count votes

and produce the �nal tally. The media (press, radio, TV) observing election process use computers

to gather and store statistical information about voters and their voting tendencies making guesses

as to the election results.

In order to computerise elections from start to �nish, there are many legal and technical prob-

lems which must be addressed. Most of the published protocols for electronic elections are generic

protocols which may not satisfy some legal requirements present in the given country or state. For

instance, in countries where voting is compulsory, the election protocol must enable the administrator

(government) to identify who did not cast their votes. There are, however, some general properties

of election protocols which must always hold. For instance, counting votes during the election has to

be error free. It means that all votes of the voters who follow the correct voting procedure must be

counted. The votes cast during election must be anonymous so nobody can associate a given voter

with their vote. All partisan voters must be prevented from casting their ballots if they deviate from

the correct voting procedure. Clearly, noneligible voters must not be allowed to cast their ballots at

all and eligible voters must not be allowed to cast their ballots more than once.

In general, the whole election process consists of several stages such as registration, casting ballots

(voting), counting votes, and displaying results. To design a protocol for electronic elections, the

following di�culties must be overcome:

� ballots must be authentic yet untraceable,

348

349

� each voter must be able to check whether or not their ballot has been counted without compro-

mising their privacy,

� election protocol must be protected against illegal activity of both eligible voters and dishonest

outsiders.

A typical collection of requirements for secure electronic election protocol includes [188]:

� completeness { all valid votes must be counted correctly,

� soundness { dishonest voter cannot disrupt voting process,

� privacy { all ballots must be secret,

� un-reusability { no voter can cast their ballot more than once,

� eligibility { only those who are allowed to vote can vote,

� veri�ability { nobody can falsify the result of the voting process,

� fairness { nothing must e�ect the voting.

Chaum [86] was the �rst who suggested a practical electronic election protocol. Many other protocols

have been published. Some are more theoretical as the underlying assumptions are di�cult to meet

in practice and some are designed to be practical for large scale elections (see [24, 53, 87, 103, 188,

258, 399]). There are two approaches to implement anonymity (untraceability). The �rst one uses

encryption (see [24, 258, 440]) and the other uses anonymous channel (for instance [53, 86, 87, 188]).

15.1.1 A Simple Electronic Election Protocol

The protocol is described in Peeger [399] and can be used for small elections where all interactions

and processing are handled by voters themselves. It is a boardroom voting in which voters pass

encrypted messages from one to another while performing encryption and decryption operations till

all are con�dent of the outcome of the election. A characteristic feature of the protocol is that all

voters must be known in advance and if one voter stops following the protocol, the protocol fails. As

it is possible that two people may have identical ballots, the protocol must allow people to recognise

their own ballots without being able to recognise other people ballots. For that reason the protocol

uses two public key cryptosystems. Each voter Vi owns two public key cryptosystems. The �rst is

speci�ed by the pair (Ei; Di) and the other by (Ri; Qi), where Ei and Ri are public encryption and

Di and Qi are private decryption functions.

Now we outline the protocol for three voters only. The reader may easily generalise it for arbitrary

number of voters. Let the three voters be Joan, Keith and Leo. Their public cryptosystems are

described by (Ej ; Dj; Rj; Qj) for Joan, (Ek; Dk; Rk; Qk) for Keith and (E`; D`; R`; Q`) for Leo.

Registration Stage. Voters agree to follow the protocol and collectively decide who is eligible to

vote and what is the order in which the voters will interact. Consequently, each voter knows the

ordered list of all eligible voters including their public encryption functions.

Voting Stage. A voter Vi prepares a vote vi and computes RjRkR`(ri; EjEkE`(qi; vi)) where ri; qi

are two random integers chosen by the voter Vi. Being more speci�c, each voter takes their vote vi

and the random number qi and creates the cryptogram EjEkE`(qi; vi). Next the voter concatenates

the cryptogram with the random string ri and encrypts it using Rj, Rk and R`. All voters send their

350

encrypted ballots to the �rst voter Joan. Joan has got the following cryptograms:

RjRkR`(rj; EjEkE`(qj ; vj))

RjRkR`(rk; EjEkE`(qk; vk))

RjRkR`(r`; EjEkE`(q`; v`))

Veri�cation Stage. Joan removes one level of encryption from all cryptograms by applying her

private decryption algorithm (note that composition of Qj � Rj is the identity permutation). She

obtains the cryptograms:

RkR`(rj ; EjEkE`(qj; vj))

RkR`(rk; EjEkE`(qk; vk))

RkR`(r`; EjEkE`(q`; v`))

and forwards them in a random order to Keith. Keith veri�es whether his ballot is among the

cryptograms and removes one level of encryption using his private decryption Qk. In result, he gets

the following cryptograms:

R`(rj ; EjEkE`(qj; vj))

R`(rk; EjEkE`(qk; vk))

R`(r`; EjEkE`(q`; v`))

Keith dispatches the cryptograms (in a random order) to Leo. Leo checks whether his ballot is among

the cryptograms, removes the encryption R` using his private decryption algorithm Q` and extracts

the ballots:
EjEkE`(qj; vj)

EjEkE`(qk; vk)

EjEkE`(q`; v`)

The random integers rj ; rk; r` are discarded.

Opening Stage. Leo signs all ballots and sends the signature to Joan and Keith and the ballots to

Joan. Joan removes the encryption Ej and signs the ballots. The ballots

EkE`(qj; vj); EkE`(qk; vk); EkE`(q`; v`)

are communicated to Keith, the signature is given to both Keith and Leo. In turn, Keith peels o� his

public encryption, gets

E`(qj; vj); E`(qk; vk); E`(q`; v`)

and signs the ballots. The ballots are sent to Leo while the signature is forwarded to Joan and Leo.

Finally, Leo strips o� the last encryption, extracts random number and votes, publishes the results

(together with random numbers qj; qk; q` for veri�cation).

The protocol uses two cycles of interactions. The �rst provides anonymity and the other allows to

recover the clear form of votes. Note that Joan who collects all the encrypted ballots at the beginning

of the protocol may trace the origin of each of the ballots. This is impossible for Keith and Leo as

they got all ballots in a random order. Leo after removing random numbers rj; rk; r` breaks any link

between double encrypted and single encrypted ballots so Joan cannot identify ballots unless she can

try all possible random numbers for rj; rk; r` or collude with Leo. The protocol is complete as the

�nal result of elections can be trusted if all voters are honest. To prove that the protocol is sound we

need to de�ne possible actions of a dishonest voter. The voter can

1. refuse to vote { this will be detected by �rst honest voter,

2. cast multiple votes { this will be also detected by honest voters as the number of ballots will be

greater than the number of voters (this is the unreusability property),

351

3. substitute ballots { any voter can do this during �rst cycle for their own ballots, if an attacker

substitutes a ballot of some other voter, this will be detected with high probability unless the

attacker has broken the corresponding public key cryptosystem (this is the veri�ability property).

Note that the protocol has some drawbacks including:

� an excessive computation overhead when the number of voters is getting bigger (the protocol is

not practical for large scale elections),

� a di�culty with the initialisation of the protocol. The agreement about the list of voters must

be done collectively as there is no central trusted authority,

� all voters must be present at the same time to execute the protocol,

� the protocol fails if there is a voter who refuses to follow it.

15.1.2 The Chaum Protocol

In 1981 Chaum designed a protocol which used a trusted mix to implement an anonymous channel

and digital pseudonyms to ensure voter privacy [86].

In most cases, any message sent over communication network could be traced back to its origin

(for instance, in any packet switching network, it is possible to identify the sender from headings of

the packets). To thwart traceability, Chaum suggested to use an anonymous channel. The main part

of it is an active entity called the mix. The mix is a trusted authority which plays the same role as

Joan for both Keith and Leo in the previous protocol at the very beginning of the voting stage.

The mix sets up its service by announcing its public encryption algorithm Ex and keeping the

decryption algorithm Dx secret. Needless to say, anybody can get authentic Ex. If a voter Vi wants

to send a message m anonymously to other voter, say Vj , Vi follows the following steps.

1. Vi gets the authentic Ex of the mix.

2. Vi creates a cryptogram

Ex(r;m; aj)

where m 2 M is the message, r is a random integer used to prevent exhaustive attacks if the

message space M is small and aj is the address of voter Vj (the destination).

3. Vi forwards the cryptogram to the mix which decrypts it using its private Dx.

4. The mix sends the message m to the destination ai.

If Vi cares about privacy of m, Vi may send m encrypted using the public encryption algorithm of Vj.

To prevent attacks based on the knowledge of the sequence of cryptograms coming to the mix, the

mix changes the order of outcoming messages. The mix may also prevent reply attacks by keeping

the random strings r and checking subsequent cryptograms against it.

A digital pseudonym is a public key used to verify the signature made by an anonymous voter

(who holds the matching private key).

The Chaum protocol is based on the following assumptions:

1. there is a trusted administrator (authority) TA,

2. voters and administrator communicate via an anonymous channel (there are at least one trusted

mix),

352

3. each voter has got a pseudonym.

Initialisation Stage.

1. TA prepares the information for voting including bundle of cryptograms (one cryptogram per

voter). Any cryptogram Ex(r;K; �) includes the public key K and the pseudonym �.

2. TA!Mix : fEx(ri;Ki; �i) j i = 1; : : : ; ng,

where n is the number of eligible voters.

3. The mix shu�es the cryptograms and

Mix! Vi : Ex(ri;Ki; �i)

for i = 1; : : : ; n. The mix also conveys general information about how to vote (encrypted using

the voter's public key). TA does not know which cryptogram goes to which voter. Clearly, the

mix has to have the list of all eligible voters.

Voting and Counting Stage.

1. Each registered voter Vi prepares their ballot of the form

Ex(ri; �i; EKi
(qi; vi))

where ri; qi are random integers, vi is the vote and �i;Ki is the pseudonym and the public key

given by the mix to Vi, respectively.

2. Vi sends their ballot to the mix.

3. The mix collects all ballots and processes them as a single batch and outputs a complete list of

valid entries (�i; EKi
(qi; vi)).

4. The mix communicates the list via a secure channel to TA.

5. TA veri�es whether �i are valid. If so, TA decrypts the second part, recovers votes vi and counts

them. All ballots with an invalid pseudonym are rejected.

In 1988 Chaum published a modi�ed version of the protocol [87]. That version uses blind signatures

and sender untreceability. For security analysis, we direct the reader to the original papers [86, 87].

15.1.3 The Boyd Protocol

The Boyd protocol [52] uses exponentiation modulo a prime p. The security and anonymity depends

on the di�culty of computing the discrete logarithmmodulo p. The protocol involves registered voters

Vi and a trusted administrator TA.

Initialisation Stage.

1. TA selects three complementary keys a; b; c. Two of them, say a and b are picked at random

and are coprime to p� 1. The third one c satis�es the following congruence

a� b� c � 1 (mod p� 1):

2. TA makes the key a public and publishes a primitive element e coprime to p� 1.

Registration Stage.

353

1. Each voter Vi creates a message mi = (c; ri; vi) where a string c provides redundancy and should

be the same for all voters, ri is individually chosen by Vi and vi is the vote.

2. Vi creates

Bi � emi (mod p);

takes the public exponent a, randomly selects ai0 and calculates ai1 such that

ai0 � ai1 � a (mod p� 1):

Further, Vi blinds Bi by computing B
ai0
i and sends B

ai0
i to TA,

3. TA checks the voter identity. If the check holds, TA records that Vi has registered and returns

B
ai0�b

i to Vi.

Voting and Counting Stage.

1. Voters complete their ballots by using the key ai1 so they compute

(B
ai0�b

i)ai1 � Bab
i (mod p):

The ballot Bab
i is sent to TA via an anonymous channel together with the original message mi.

2. TA retrieves Bi using c as

(Bab
i)c � Bi (mod p):

Next TA computes ~Bi = emi mod p and veri�es whether Bi
?
= ~Bi. If the redundancy constant

is correct, TA accepts the vote vi.

3. Finally, TA publishes all messages mi together with the result of the election. At this stage each

voter can check their random number which clearly identi�es the message mi.

The protocol ensures privacy and authenticity of voters (see [52]). The main drawback of the

protocol is that TA can see the votes and produce a false tally by adding votes of its own choice. The

�nal result of casting is not veri�able.

15.1.4 The Fujioka-Okamoto-Ohta Protocol

Fujioka, Okamoto and Ohta described a protocol which is more suitable for large scale elections [188].

The players in the protocol are voters, an administrator A and a counter C. The assumptions are:

1. the counter communicates with voters via an anonymous channel,

2. ballots are computed using a bit commitment scheme,

3. every voter has their own digital signature scheme SG, and

4. the administrator uses a blind signature scheme.

The bit commitment scheme uses two functions (f; g). The function f encrypts binary strings into

cryptograms (blobs) and the function g decrypt cryptograms (open blobs) and reveals the bits. The

blind signature uses two functions (B;U), The function B takes the ballot x and a random integer r

and computes the blind message e = B(x; r). The blind message e is then given to the administrator

who signs the blind message and returns the blind signature d. The function U allows to unblind the

signature and to retrieve signature of the administrator as SGA(x) = U (d; r).

Registration Stage.

354

1. Vi selects their vote vi which is typically a binary string and creates a blob for it, i.e.

xi = f(vi; ki):

for a random ki.

2. Vi blinds xi, i.e. computes

ei = B(xi; ri)

using a random integer ri.

3. Vi signs ei by calculating si = SGi(ei) and sends the triple hIDi; ei; sii to A, i.e.

Vi ! A : hIDi; ei; sii:

where IDi is the identity or name of voter Vi.

4. A veri�es whether

(a) Vi is eligible to vote,

(b) Vi has not already applied for registration and

(c) si is valid.

If the three conditions hold, A generates the certi�cate di = SGA(ei) and

A! Vi : di:

If any of the three conditions is violated, the registration of Vi is declined.

5. When the deadline for registration has passed, the administrator announces the number of voters

and publishes the list hIDi; ei; sii of all registered voters.

Voting Stage.

1. Vi retrieves A's signature for xi by unbliding di so yi = SGA(xi) = U (di; ri).

2. Vi checks whether yi is a signature generated by A. If the check fails, Vi complains by showing

the pair (xi; yi). Otherwise, Vi sends the pair (xi; yi) to the counter C via an anonymous channel.

3. C veri�es the signature yi of the ballot xi. If the check holds, C puts the triple h`; xi; yii into a

list where ` is the consecutive number assigned to the ballot.

4. C publishes the list after all voters have cast their ballots, i.e.

C ! ? : fh`; xi; yii j i = 1; : : : ; �g

where � is the number of ballot cast.

Opening and Counting Stage. Each voter Vi checks whether

1. the number of ballots on the list is equal to the number of voters. If the check fails, voters may

reveal their secret random numbers ri and indirectly indicate which ballots are forged.

2. the ballot xi is on the list. If not, Vi complains by showing the valid pair (xi; yi).

355

If the checks are successful, Vi sends the key ki with the number ` to C via an anonymous channel. C

opens the blob xi using the key ki and retrieves the vote vi = g(xi; ki). The pair (ki; vi) is appended

to the entry (xi; yi) on the list. Finally C counts the tally and announces the results.

It is easy to check that if all parties honestly follow the protocol than the result of elections

is correct. The protocol is complete. A dishonest voter can disrupt election process by sending

invalid ballots but this will be detected in the counting stage (soundness holds). There is a problem

when a voter sends an illegal key at the opening stage as in this case it is impossible to distinguish

dishonest voter from dishonest counter. The privacy of voters is ensured by the blind signature as

the administrator never sees voters' ballot. As the voters blinds the ballot using a random string,

the privacy is unconditionally secure. Unreusability property holds as each voter can legally obtain

one blindly signed ballot by the administrator. Ability to create two di�erent and signed by the

administrator ballots is equivalent to breaking the blind signature used by the administrator. Note

that an outsider cannot vote unless they are able to to break the signature scheme used by voters

(eligibility is satis�ed). Fairness holds as counting ballots does not a�ect the voting (votes are hidden

by the bit commitment scheme). The results of voting is veri�able as even if both the administrator

and counter collude, they cannot change the result of the voting process. The main problem with

the protocol is that it requires all registered voters to cast their votes and no voter can abstain from

voting. In fact, the failure of a single voter will disrupt the whole election process.

15.1.5 Other Protocols

Iversen [258] designed an electronic election protocol based on privacy homomorphisms. Players in

the protocol are voters, candidates and the government. The communication between voters and

candidates is done over a broadcast channel. Voters may cast their ballots with no need for \syn-

chronisation" and there is no need for global computation. The protocol preserves the privacy of

votes against a collusion of dishonest voters or any proper subset of dishonest candidates including

the government.

Sako and Kilian [440] proposed a voting protocol based on families of homomorphic encryptions

which have a partial compatibility property, generalising a method of Benaloh and Yung [24]. The

protocol has a much lower complexity than protocols using anonymous communication channel. It

preserves the privacy of voters as long as the centers are honest. The drawback of the protocol is

that if all centers conspire, the privacy of voters is violated. Even worse if a center accidentally or

otherwise produces incorrect sub-tally then the veri�cation fails and consequently the entire election

will collapse.

Niemi and Renvall described a protocol [370] which prevents buying votes. In traditional voting

protocols, the buying is prevented as voters cannot prove that they have voted as agreed. In other

words, the buyer has no means to verify how the voter has voted. This is mimicked by attaching

to the vote vi an eligibility token ei. Each ballot must consist of the pair (vi; ei). The token ei is

generated collectively by all candidates and the voter. Although the voter Vi is con�dent as to the

authenticity of ei, Vi does not have any means to prove its validity to anybody. Sako and Kilian in

[441] present an receipt free protocol which also prevents buying votes. Other protocols for electronic

elections can be found in [15, 114].

15.2 Digital Cash

Traditional cash has the following properties

� it is di�cult to forge,

356

� it is untraceable (more precisely coins are untraceable but paper currency can be traced because

of their unique serial number),

� it is issued centrally by a mint,

� its lifetime extends beyond s single transaction (coins from ten to twenty years, banknotes several

years).

Cash transactions involve directly two parties: the seller and the buyer. The third party usually is

the bank where the buyer withdraws a suitable amout of money to pay for goods o�ered by the buyer

and the seller deposits the money after a transaction. Any single transaction takes three operations:

withdrawal of money by the seller, selling/buying process and deposit of money. If a transaction

between buyer and seller can proceeds successfully without the direct involvement of the bank, we are

dealing with o�-line electronic money. If a payment protocol requires all three parties (buyer, seller,

bank) to interact at the same time, it is called on-line electronic money.

The requested properties of electronic money include:

� unforgeability { money cannot be forged, i.e. money tokens (coins, bills) cannot be generated

illegally,

� unreuseability { the same money must not be spent twice,

� untraceability { the bank is not able to identify the buyer from the money deposited by the

seller,

� transferability { money can be transferred from person to person,

� divisibility { a money token can be divided into tokens of smaller values.

The next section describes a electronic money protocol which satis�es: unforgeability, unreuseability,

untraceability and transferability. The interesting feature is that two characteristics: unreuseability

and untraceability are connected together, i.e. any double payment of the same coin, reveals the

identity of the spender. The protocol is an example of o�-line payment.

15.2.1 Untraceable Digital Coins

In computer environment, electronic cash (money) must be of the form of binary string. Unforgeability

requires that nobody can produce valid digital cash except a bank who knows some secret so it can

identify its money. Chaum, Fiat and Naor [88] showed how to get untraceability when the seller is

honest (spends digital money once). If, however, the seller spends the same money more than once,

his or her identity will be revealled. Their electronic money takes form of $1 coins. Each coin is a pair

(x; f(x)
1

3) mod N

where f(x) is a one-way function, N is an RSA modulus (N = pq, p and q are large enough primes)

and x is some integer. Note that the factorization of N is known to the bank which has issued the

coin. Coins can be forged if calculation of the cube root is feasible. In other words, unforgeability

rests on the assumption that computation of the cube root modulo N is intractable. Assume that we

have three parties. Alice who wants to buy an item from Bob. The item costs $1. Both Alice and

Bob use the same bank. The purchuse involves three phases. In the �rst phase, Alice withdraws $1

from her account u. In the second phase, Alice purcheses the item from Bob and pays $1. Finally,

Bob deposits $1 to the bank.

Issuing a Coin (Alice $ Bank).

357

1. Alice chooses n triples (ai; bi; ci) at random (i = 1; : : : ; n) where n is the security parameter.

2. Alice computes n blind elements

Bi = r3i f(xi; yi)

where ri is a random integer used for blinding, g and f are two collision free hash functions,

xi = g(ai; ci)

and

yi = g(ai � (ukv + i); di);

where k stands for the concatenation, v is a counter associated with the account u. Finally,

A! Bank : fBi j i = 1; : : : ; ng.

3. Bank picks up a random subset of n=2 indices. Let them be R = fij j j = 1; : : : ; n=2g.

Bank! Alice : R.

4. Alice! Bank : fri; ai; ci; di j i 2 Rg.

Bank checks their consistency with Bi. If there is any attempt to cheat, Bank aborts.

5. Otherwise (checks hold)

Bank! Alice :
Q

i=2RB
1

3

i

and charges one dollar against her account.

6. Alice extracts the coin C

C =
Y
i=2R

r�1i �B
1

3

i �
Y
i=2R

f(xi; yi)
1

3 (mod N):

To simplify our notation, we further assume that the indices which were not in the R belong to

the set f1; : : : ; n=2g so

C =
Y

i=1;:::;n=2

f(xi; yi)
1

3 :

In the withdrawal protocol, Bank checks whether or not Alice follows the protocol. After Alice

computes her blind elements and commits herself by sending them to Bank, Bank randomly selects

half of them and asks her to show all parameters. If Alice cheats she will be caught with a high

probability. Note that if Alice does not follow protocol for a single blind element, the probability of

not being (or being) caught is 0.5 and equals to the probability that the element will be selected by

Bank for checking.

Payment (Alice $ Bob).

1. Alice! Bob : C.

2. Bob! Alice : e

where e = (e1; : : : ; en=2) and each ei 2R f0; 1g. The string e is a challenge.

3. Alice has to reply to the challenge and

Alice! Bob :

(
ai; ci; yi if ei = 1

xi; ai � (ukv + i); di otherwise.

4. Bob veri�es whether C has the form consistent with the reponce provided by Alice.

358

Deposit (Bob $ Bank).

1. Bob deposits the coin C with Bank and forwards his string e together with Alice's responce.

2. Bank veri�es the correctness and credits $1 to Bob's account. Bank must keep e and Alice's

responce for future references (in the case when the coin is spent more than once).

Untraceability is tied up with prevention against multiple spending. A single spending of a coin

does not allow Bank to identify the spender. If Alice, however, spends the same coin many times,

then there is an overwhelming probabability that there is at least one bit ei for which the buyers

have recorded both (ai; ci; yi) (when ei = 1) and (xi; ai � (u; v + i); di) (when ei = 0). After the coin

is deposited with Bank twice, Bank knows both ai and ai � (u; v + i) so it can recover the account

number u and identify the double spender.

There is a problem, however, when both Alice and Bob conspire and Bob uses the same challenge

string e for two di�erent transactions or equivalently Bob tries to deposit the same coin twice. Another

face of this problem is the case when Alice spends the same coin twice with di�erent sellers who agreed

to use the same challenge string e. A simple solution would be to divide the challenge string e into

two parts: �xed and random. Each seller would have di�erent �xed part (imposed by the bank). This

would exclude the collusion among buyers and sellers.

15.2.2 Divisible Electronic Cash

The protocol was invented by Okamoto and Ohta [386]. The bank applies a collection of RSA schemes

determined by triples (ej ; dj; Nj) for j = 0; : : :, where ej ; dj is the encryption and decryption keys,

respectively and Ni is an RSA modulus. The RSA system (e0; d0; N0) is used to generate electronic

licences for Bank clients. Other RSA systems are used to generate electronic banknotes (coins) of

speci�c values. For example, the RSA system (e1; d1; n1) is being used to generate electronic coins

each of value $100, the RSA system (e2; d2; n2) to issue $50 bills and so on. Needless to say, the bank

announces public parameters (ej ; Nj) of the RSA schemes. Also there is a public knowledge about

which RSA scheme is to be used to produce coins of given value.

A buyer Alice has an account uA with the bank and generates her RSA scheme (eA; dA; NA). The

pair (eA; NA) is public.

An important ingredient of the payment system is a tree structure of coins (bills). Before we show

how to design such a tree, we need to introduce some Number Theory facts. Let z 2 ZN be an

arbitrary integer and the modulus N = pq such that p � 3 mod 8 and q � 7 (mod 8). Such N is

called a Williams integer. Then it is relatively easy to show that among the elements of the set

fz;�z; 2z;�2zg

one, say z1, is a quadratic residue (denoted as z1 = hziQ) one, say z2, is a quadratic nonresidue with

its Jacobi symbol
�
z2
N

�
= 1 (written as z2 = hzi+) and one, say z3, is a quadratic nonresidue with its

Jacobi symbol
�
z3
N

�
= �1 (or simply z3 = hzi�).

The coin structure is a binary tree with the top node (a coin) �0 = hziQ (at level 0). At level 1,

there are two children �00 and �01. The left child �00 = h�
1=2
0 iQ. The right child �01 = h
0��

1=2
0 iQ,

where
0 is an integer generated by a suitable hash function f
. Now, children become parents and

generate their own pairs of children in the same way. Process continues until the necessary depth of

the tree is achieved. Note that all nodes in the tree are quadratic residues (belong to Z
Q+
N).

Registration (Alice $ Bank).

This stage of the protocol is executed once only when Alice wishes to open her account with the bank.

The bank issues a license B.

359

1. Alice picks up at random (ai; �i) for i = 1; : : : ; n where n is the security parameter, �i is an RSA

modulus (i.e. �i = pi � qi is a Williams integer or pi � 3 mod 8 and qi � 7 mod 8).

2. Alice! Bank : fwi; i = 1; : : : ; ng,

where

wi � re0i � g(�ik�i) (mod N0)

where ri is a blinding random integer, g a collison-free hash function and �i is generated as

follows. First Alice creates a sequence si = uAkaikg(uAkai)
dA mod NA. Next the sequence si

is split into two substrings so si = si0ksi1 . Finally, �i = �i0k�i1 where �i0 � s2i0 mod �i and

�i1 � s2i1 mod �i.

3. Bank chooses at random n=2 indices. Let the collection of indices be R and

Bank ! Alice: R.

4. Alice displays all the parameters used to generate wi for which i 2 R. In other words, Alice

shows ai; pi; qi; g(uAkai)
dA ; ri for all i 2 R.

5. Bank veri�es the correctness of all wi for i 2 R. If they are not valid, Bank aborts the protocol.

Otherwise, the protocol is continued.

6. Bank ! Alice:
Q

i=2Rwd0
i mod N0.

7. Alice extracts her licence by using inverses r�1i so

B =
Y
i=2R

g(�ik�i)
d0 mod N0:

We simplify our notation by assuming that B =
Qn=2

i=1 g(�ik�i)
d0 mod N0.

Issuing a Coin (Alice $ Bank).

Assume that Alice wishes Bank to issue a bill of value $x. Bank �nds the RSA scheme associated

with this value, let it be determined by the triple (ex; dx; Nx).

1. Alice selects two random integers b and r and

Alice! Bank : Z � rexg(Bkb) mod Nx.

2. Bank ! Alice: Zdx mod Nx

and charges Alice's account x dollars.

3. Alice extracts the coin

C = r�1Zdx � g(Bkb)dx (mod Nx):

Payment (Alice $ Bob). Parties use three public collision free hash functions: f�, f� and f
.

1. Alice computes top nodes (at the level 0) of her coin trees

�i;0 = hf�(C k 0 k �i)iQ mod �i

for i = 1; : : : ; n=2. Next she computes two children of �i;0. The left child is

�i;00 � h�
1

2

i;0iQ mod �i

and the right child is

�i;01 � h
i;0�
1

2

i;0iQ mod �i

360

where
i;0 = hf
(C k 0 k �i)i+. The process continues in the same way. The node �i;00 has two

children �i;000 and �i;001 and �i;01 has its children �i;010 and �i;011.

For the sake of clarity, the rest of the protocol is described for a case when Alice wants to pay

$75 using a $100 coin C. Instead of �nding the whole coin trees, Alice needs to �nd two nodes

(in independent tree paths) whose sum is equal to $75. Let those nodes be

�i;00 � h�
1

2

i;0iQ mod �i worth $50

�i;010 � h�
1

2

i;01iQ mod �i worth $25

Next she computes their square roots whose Jacobi symbols are equal to �1 thus

Xi;00 = h�
1

2

i;00i� � h�
1

4

i;0i� mod �i;

Xi;010 = h�
1

2

i;010i� � h
2i;0�
1

8

i;0i� mod �i

2. Alice ! Bob: (B;C; f(�i; �i; Xi;00; Xi;010); i = 1; : : : ; n=2g)

3. Bob veri�es the licence B and the coin C. Further Bob checks whether for all i = 1; : : : ; n=2,

the following conditions hold:

(a) Jacobi symbols of Xi;00 and Xi;010 are equal to �1,

(b) X4
i;00

?
= di�i;0; di 2 f�1;�2g,

(c) X8
i;010

?
= d0i

2
i;0�i;0; d

0

i 2 f�1;�2g,

If any of the checks fails, Bob aborts the protocol. Otherwise, Bob continues.

4. Bob ! Alice: f(Ei;00; Ei;010); i = 1; : : : ; n=2g

where Ei;00; Ei;010 2R f0; 1g for all i.

5. Alice calculates

Yi;00 =

(
h�

1

2

i;00i� mod �i if Ei;00 = 1

h�
1

2

i;00i+ mod �i if Ei;00 = 0

and

Yi;010 =

(
h�

1

2

i;010i� mod �i if Ei;010 = 1

h�
1

2

i;010i+ mod �i if Ei;010 = 0

where �i;s = hf�(C k s k �i)iQ mod �i for s = 00 and s = 010.

6. Bob checks whether

(a) Jacobi symbols of Yi;00 and Yi;010 are equal to �1,

(b) Y 2
i;00 � dif�(C k 00 k �i) mod �i, where di 2 f�1;�2g,

(c) Y 2
i;010 � d0if�(C k 010 k �i) mod �i where d

0

i 2 f�1;�2g.

If the checks hold Bob accepts the payment of $75.

Deposit (Bob $ Bank).

1. To deposits $75, Bob sends a transcript of interactions with Alice. The transcript (history) is

veri�ed by Bank and if the checks hold, then Bank credits $75 to Bob's account. If the payment

is invalid, Bank reveals Alice's secret information si.

The major problem of the payment scheme is its low e�ciency. The payment involves transmission

of a large volume of data. Okomoto [385] suggested a modi�cation which is more e�cient. In this

protocol, however, Alice can cheat at the registration stage (see [79]).

361

15.2.3 The Brands Electronic Cash Protocol

Brands [56] used the intractibility of Discrete Logarithm to design an electronic cash. The protocol

handles coins of the same value, say $1. All computations are done in the group Z�q ; q is a large

enough prime. Bank sets up the protocol. It picks up at random three generators (g; g1; g2) of Z
�

q and

selects a secret x 2R Z�q together with two collision-free hash functions H and H0. Bank publishes

(g; g1; g2), q and the descriptions of the hash functions. The integer x is kept secret but its exponent

h = gx is a public key of the bank.

Registration (Alice $ Bank).

1. Alice identi�es herself to Bank.

2. She generates her secret integer u1 2R Z
�

q and computes her account number

I = gu11

If Ig2 6= 1, Alice gives I to Bank while keeping u1 secret.

3. Bank ! Alice: z = (Ig2)
x.

Issuing a Coin (Alice $ Bank).

1. Alice identi�es herself to Bank.

2. Bank ! Alice: (a = gw; b = (Ig2)
w)

for w 2R Z
�

q .

3. Alice chooses at random (s; x1; x2) and computes

A = (Ig2)
s; B = gx11 gx22 and z0 = zs:

Next, Alice selects two integers u; v and computes

a0 = augv and b0 = bsuAv:

Then she �nds out c0 = H(A;B; z0; a0; b0).

4. Alice ! Bank: c � c0

u
mod q

where u is a blinding integer.

5. Bank ! Alice: r = cx+ w

and withdraws $1 from Alice account.

6. Alice veri�es whether

gr
?
= hca and (Ig2)

r ?
= zcb:

If the checks hold, Alice computes

r0 � ru+ v mod q

The coin is the sequence C = (A;B; z0; a0; b0; r0).

Note that everybody can verify the coin by checking whether

� gr
0 ?
= hc

0

a0 and

� Ar0 ?
= z0

c0

b0.

362

For this reason the sequence (z0; a0; b0; r0) can be considered to be a signature of (A;B). The signature

is created by Alice with a collaboration with Bank who contributes by sending r = cx+w (and charges

for this $1) where c is a blinded version of c0 = H(A;B; z0; a0; b0). Alice publishes r0 so Bank knowing

the coin is not able to trace Alice provided the discrete logarithm instances are intractable.

Payment (Alice $ Bob).

1. Alice ! Bob: C

or Alice pays Bob by sending the coin C.

2. Bob ! Alice: d = H0(A;B; IBob; date/time).

3. Alice ! Bob: r1; r2

where r1 � dsu1 + x1 mod q and r2 � ds+ x2 mod q.

4. Bob veri�es whether Alice's responce is correct, i.e.

gr11 g
r2
2

?
= AdB:

Bob saves (C; r1; r2; date/time).

Deposit (Bob $ Bank).

1. Bob ! Bank: (C; r1; r2; date/time).

2. Bank recalculates d from the information given by Bob and veri�es whether gr11 g
r2
2

?
= AdB. If

the check holds and

(a) the coin has never been spent before, Bank stores the transcript (C; r1; r2; date/time) in its

database for future references and credits $1 to Bob's account,

(b) otherwise, the coin has been deposited already. In this case Bank takes the current tran-

script (C; r1; r2; date/time) and the previous (C; r01; r
0

2; date'/time'), recomputes d and d0,

creates a system of four equations in four unknows in GF(q):

r1 � du1s+ x1;

r2 � ds+ x2;

r01 � d0u1s + x01;

r02 � d0s+ x02:

After easy transaformations, Bank is able to �nd the secret key of Alice

u1 �
r1 � r01
r2 � r02

mod q

and identify her as I = gu1 .

The above protocol can be modi�ed for electronic wallets with observers [56]. An electronic wallet is

an collection of a user controlled computer with a tamper-proof unit (such as a smart card) also called

an observer [89]. It can be argued that the collection is more secure than the computer or observer

individually. It is assumed that an organization communicates with the computer and accepts only

those messages which have been approved by the observer. Observer cannot directly talk to the

organization. The concept of electronic wallets can be used to design cryptographic protocols which

are secure against:

1. Inow { if the computer follows the protocol, the organization cannot send any extra information

to the observer no matter how the organization and the observer deviate from the protocol.

2. Outow { if the computer follows the protocol, the observer cannot send any extra information

to the organization no matter how the organization and the observer deviate from the protocol.

363

15.2.4 Other E-Cash Protocols

The Brands e-cash drops the cut and choose method to formulate coins. This obviously is reected in

increased e�ciency. Similar concept of e-cash was also designed by Ferguson [177].

Anonimity the e-cash discussed so far is tied up with prevention against multiple spending. It can

be argued that in some circumstances anonimity can be a problem especially when criminals try to

exploit it to their advantage. von Solm and Naccache [505] discussed such scenarios including perfect

blackmailing and money laundering. To relax anonimity of e-cash, Brickell, Gemmell and Kravitz [65]

introduced a trusted party who collaborates during the generation of coins. The party together with

Bank can later cooperate to trace the origin of coins. This is e-cash with escrowing. Jakobsson and

Yung [260] showed how an Ombudsman may be involved in the e-cash protocol to ensure tracability.

M'Raihi [354] presented an e�cient e-cash with a blinding o�ce which plays the role of independent

(from Bank) party who on a valid court order can together with Bank suppress anonymity of coins.

15.2.5 Micropayments

E-cash requires a substantial computational overhead which is an over-kill for payments of small

charges, say cents per transaction. An example of such transactions includes reading a page from

a WWW site, sending a short e-mail or using white or yellow pages on the Internet. To support

micropayment, the cash generation, withdrawal and deposit must be signi�cantly simpli�ed so the

computational overhead is not expensive. Typically, generation of a one-cent coin should not cost

more than several percent of its nominal value. The most expensive operations are digital signatures

so micropayment protocols substitute digital signatures by a much cheaper hashing whenever it is

possible.

Parties involved in a micropayment protocol are clients, vendors and a bank. Vendors provide

services for which clients pay small fees. The bank registers clients and vendors, maintains their

accounts and debits/credits their accounts. Consider a micropayment protocol, called PayWord,

introduced by Rivest and Shamir in [421]. Clients, vendors and Bank have their secret and public

keys used for digital signatures. H is a collision-free hash function. The PayWord protocol involves a

client (Alice) a vendor (Bob) and Bank.

Registration (Alice $ Bank).

1. Alice identi�es herself to Bank, opens her account and applies for a PayWord certi�cate.

2. Bank ! Alice: CR = (m;SGB(m))

where m = (Bank-ID, Alice-ID, KA, expiry date), SGB(m) is a signature generated by Bank

for the message m and KA is the public key of Alice.

Payment (Alice $ Bob).

1. Alice creates a chain of paywords (each payword is worth 1 cent) w1; w2; : : : ; wn where

wi = H(wi+1)

and wn is a random payword. The element w0 is a commitment or root of the chain.

2. Alice ! Bob: (w0; SGA(Alice-ID, Bob-ID,w0, time))

where SGA(Alice-ID, Bob-ID,w0, time) is a signature for the root generated by Alice.

3. Bob veri�es the signature and stores the root.

364

4. Alice ! Bob: (wi; i).

Alice pays by revealing the next paywords in the chain.

5. Bob veri�es consecutive paywords by checking whether wi = H(wi�1).

Deposit (Bob $ Bank).

1. Bob ! Bank: (w`; `); (w0; SGA(Alice-ID, Bob-ID,w0, time)

where w` is the last payword obtained from Alice.

2. Bank veri�es the correctness of the last payword. If the chain of paywords generate the root

and the signature is correct, then Bank charges Alice's account ` cents and deposit this amount

to Bob's account.

The security of the protocol depends on the strength of the digital signature and collision-freeness

of the hash algorithm. Payments in the PayWord protocol are very e�cient. Time-consuming digital

signatures are only applied at the begining of a payment session. Partial payments by paywords do

not need digital signatures. Instead they employ much faster hashing algorithms such as MD5 or

HAVAL. The second protocol MicroMint considered in [421] completely relies on hashing. Some other

micropayment protocols can be found in [8, 355].

15.3 Payment Protocols

We are going to review some implementations of e-cash. For more details, we refer the reader to the

book by Furche and Wrightson [189] or alternatively to the suitable Web site.

CAFE. CAFE stands for Conditional Access for Europe and it is a project within the European

Community's ESPRIT program ([47]). CAFE uses smart cards and electronic devices called wallets.

The wallet is a portable computer with its own power supply, keyboard and display. The wallet

can house a tamper-proof smart card (observer) but can be used with or without it. Stores have

their points-of-sale (POS) terminals. The communication between wallets and terminals is done using

infrared light. Smart cards may also be inserted directly into terminals. CAFE is an o�-line e-cash

protocol based on blind signatures to ensure anonymity. To protect against multiple spending of

e-cash, an observer (smart card) is included in the wallet. When the observer is not present or is

disabled, the identity of the client is incorporated into e-cash. If the wallet is lost or stolen, the owner

can get a refund by revealing some information about their identity but only after the e-cash has

expired.

eCashTM . Digicash commercialised Chaums's anonymous electronic cash and called it eCash.

DigiCash maintains its web site at http://www.digicash.com. eCash is a protocol which enables a

user to withdraw e-cash and to store it on his local computer. The user can spend his e-cash at any

shop which accepts eCash money. The shop can later deposit the money to its account. The following

banks o�er eCash: Mark Twain Bank of St. Louis (US), Deutsche Bank (Germany), St. George

(Australia), Den norske Bank (Norway), and Bank Austria.

Mondex. Mondex implements e-cash using smart cards (http://www.mondex.com). E-cash is stored

on a smart card. Transfer of cash is possible from one card to another. The devices used in the

protocol are a smart card, a balance reader, a wallet and a phone set with a reader for the card. The

wallet supports card-to-card money transfer. The phone set enables money ow between the card and

the bank or can be used to make payments. Payments can be done in exact amounts. For security

reasons, the card can be locked using a password-like code. The protocol does not use cryptographic

techniques.

365

NetCash. The protocol was developed by the Information Science Institute at the University of

Southern California and is documented at http://nii-server.isi.edu:80/info/netcash. The protocol

uses e-mail as the communication medium. Electronic cash is a simple token (serial number) which is

issued by a bank. The holder of a token can spent it by sending it to the shop via e-mail. The shop

deposits the token with the bank. The security of NetCash is low and the protocol can be used for

micropayments.

There is also a class of protocols which use credit cards as the main payment facility. Some of the

existing protocols are briey discussed.

CyberCash. CyberCash provides a secure credit card transaction service (available at http://www.cybercash.com).

CyberCash supplies software for customers and merchants. The customer package is called wallet.

Information ow is protected by using 1024-bit RSA encryption. After the customer has downloaded

the software, his ID must be attached to the wallet and his credit card number must be binded to it.

This information is conveyed via a secure channel to CyberCash. On its side, CyberCash veri�es the

user identity and his card number.

Assume that a customer has decided to buy some goods from a merchant. The merchant sends

an information about the purchase to the customer. The information are fed to the customer wallet.

The customer indicates to his wallet which credit card to use so the wallet sends the card number

to the merchant using encryption. The merchant then contacts a CyberCash server which takes the

transaction information and sends the payment order to the merchant's bank. The merchant's bank

talks to the customer's bank and provides details of the payment. The result of the talk is sent back

the CyberCash server which forwards it in encrypted form to the merchant. A single payment takes

no more than 20 seconds.

CyberCash also supports CyberCoin service. This service is aimed to handle small credit card

payments below $10. A customer can transfer coins from his credit account to his wallet and make

payments. Transfer of CyberCoins is done using encryption. The banks involved and the wallet keeps

a record of all transactions.

First Virtual. This is an electronic fund transfer for credit card payments (see http://www.fv.com).

To use the facility, a user has to open an account with First Virtual. The account consists of user

name, e-mail address and credit card details. A user buying goods from a First Virtual shop gives

the shop their name and e-mail address. The shop ships the goods and sends the bill to First Virtual

who charges the buyer's credit card.

SET. Secure Electronic Transaction (SET) is a protocol developed by MasterCard and VISA with the

cooperation of many companies including IBM, Microsoft and Netscape. The SET protocol supports

credit card payments over the Internet. SET is similar to the CyberCash protocol. The communication

of messages in the protocol is encrypted. The encryption keys are distributed by trusted certi�cate

authorities.

A typical payment in SET is initialised by a customer who asks the merchant for both her public key

and the public key of her bank payment gateway. The merchant provides the certi�cates of both keys.

The customer �rst veri�es the keys and after successful veri�cation, he generates two messages: order

information (OI) and purchase instructions (PI). The OI message is encrypted using the merchant's

key. The PI message is encrypted using the payment gateway key. The merchant decrypts OI and

forwards PI together with his certi�cate. The gateway decrypts PI veri�es other payment information

and sends the payment authorization to the customer's bank. The bank approves or declines the

payment and communicates this to the gateway which relays it to the merchant.

Chapter 16

DATABASE PROTECTION AND SECURITY

Database management systems are an important part of the operations of most computerized orga-

nizations. In many instances the data held within database carry more value than the hardware and

software used to manage and maintain the data. Consequently the privacy and security of data stored

within database systems represents a major concern for organizations relying heavily on database

management systems.

The subject of database security has been investigated by researchers for a number of years. This

chapter aims at providing a general overview of such research and other related developments, following

the broad lines of Hinke in [246] and expanding further on some of the more relevant topics.

16.1 Database Access Control

A database can be seen as a reservour of information that is necessary for a continued successful

operation of the organization. The organization wants to be sure that data items are accessible

to authorized persons only (access control) and the data correctly reect the reality (update and

protection against illegal modi�cation). A careful analysis of security threats and associated with

them risks, is essential to work out an acceptable security policy. The security policy can be further

be divided into [14]:

� access control policy { it de�nes the collection of access priviledges and access rules. There

are two broad classes of access control policy: mandatory and discretionary. A discretionary

access control policy speci�es users' privileges to di�erent system resources. A mandatory access

control policy de�nes user access to system resources using the user security clearence and the

security classi�cation of the resource,

� inference policy { it determines which data items have to be protected to eliminate a leakage or

disclosure of con�dential information (this is important in statistical data bases),

� user identi�cation policy { it speci�es the requirements for proper user identi�cation,

� accountability and audit policy { it indicates a collection of requirements for the audit control,

� consistency policy { it de�nes the meaning of operational integrity, semantc integrity and physical

integrity of databases.

A security mechanism is an implementation of security policy. It is crucial to verify to what degree the

security features have been incorporated into the mechanism. The process of veri�cation of security

mechanisms can be performed according to some existing evaluation criteria (see the Orange Book

[145], the White Book [378], or Canadian Book [377]).

366

367

All resources in a computer system can be divided into active subjects and passive objects. The way

a subject acts on an object is called the access priviledge or right. Access priviledges can allow an user

to manipulate objects (read, write, execute, delete, modify, etc.) or to modify the access permissions

(transfer ownership, grant and revoke privileges, etc.). Note that for each pair (subject, object),

access control policy assigns a collection of access rights. The assignment can be explicit (positive

authorization) or implicit (negative authorization). In positive authorization, an entry (subject, object)

consists of priviledges which are explicitly allowed. In negative authorization, an entry (subject,

object) contains a collection of priviledges which are explicitly denied.

There are three types of access control: discretionary access control (DAC), mandatory access

control (MAC), and role based access control (RBAC). The discretionary access control relates to

general problem of access control enforced by an operating system. The mandatory access control

is applicable in databases where information can be classi�ed on di�erent security levels (so-called

multilevel databases). The role based access control makes sure that the requested access is consistent

with the current role of the user. Roughly speaking, a user is assigned a collection of access priviledges

to an object on the basis of the role they play rather than who they are.

Now we briey introduce basic vacabulary. The smallest identi�able entity in a database is a data

item. Typically it is a number or a string of characters which express some information (distance

between cities, surename of a person, etc.). An entity in the real world is described by providing more

speci�c information about its attributes such as colour, shape, length, etc. An ordered sequence of

data items is called a physical record. Physical records de�ned over the same collection of attributes

may be arranged and stored in the form of an array (or table). If a row of the table indicates a single

physical record, then each column contains data items from the same attribute. Columns are called

�elds and the array constitues a logical record.

16.2 Security Filters

The idea of a �lter mechanism for database security is probably one of the earliest to appear because

of its simplicity. Given a database system to be protected, it is only natural to initially think of an

intermediary between the user and the database system, in the form of a �lter that simply screens-out

data according to some policy for labelling data. This simple notion of a �lter breaks down when

more complicated problems, such as trojan horses and user inference is taken into account.

Out of this simple idea of a �lter which is external to the database system, other security mecha-

nisms have been developed. These mechanisms initially exists within the �lter and are independent of

the database system. Recent developments in multilevel security for database systems have indicated

further limitations of the stand-alone �lter, and it is increasingly common to �nd �lters or trusted

front-ends as one of the many components of a secure database system or trusted computing base.

One of the earliest extensions of the idea of a �lter was the integrity lock approach, which was

suggested initially by the U.S. Air Force Summer Study on Data Base Security in 1982. The notion of

a \spray paint" to label elements in the database system was also suggested by the Study [104]. The

integrity lock approach applied a checksum function to the contents of each record, and maintained

this checksum for each record to detect illegal tampering by opponents who by-passed the �lter.

Ideally, the checksum should be a cryptographic hash function or encryption algorithm which is

resistant to plaintext and ciphertext attacks. The checksum is calculated each time data is to be stored

in the database system, and it is re-computed and compared with the stored checksum to detect illegal

changes since the last modi�cation of the data. The data in the records are not encrypted to allow

record processing by the database system. Note that the correct labelling of data is still the task of

368

the �lter. Furthermore, checksums only provide error detection, and not error correction.

Following the work by Denning [139] the granularity for the classi�cation of data can be whole

records, whole attributes or individual data elements. The granularity of the input to the checksum

function can also vary depending on the space available and the required security, as discussed by

Denning in [138].

The major work on the integrity lock approach was by Graubart [219], where it was applied to

a commercial \o�-the-shelf" database management system. The components of the integrity lock

design in [219] are the Untrusted Front End (UTFE), the Trusted Front End (TFE) and the untrusted

database management system. The UTFE performed query parsing and the formatting of output

to the user. The TFE performed tasks such as user authentication, tuple formatting, projections

of data, and the calculations and veri�cation of the checksums. The untrusted database system

performs the usual tasks of record searching, tuple selection, insertion and deletions, and also database

recon�guration. The tuple in the database is left as plaintext for performance reasons, while the label

and checksum is encrypted. As expected, the use of encryption expands the storage requirements of

the database. The implementation of the integrity lock design was done on the MISTRESS database

management system running on the Unix operating system [220]. A description of the operating system

support environment for the integrity lock approach is given by Graubart and Kramer in [221].

In discussing the use of �lters with checksums to provide integrity of data in the database it must

be understood that only detection of illegal modi�cation is possible, and the remedy for this problem

is simply to use the backups of the database �les. The idea of a �lter and that of the integrity lock

does not address the following problems:

� The problem of undetected modi�cation for long periods of time. If the illegally modi�ed data is

hardly ever used, and thus its checksum never veri�ed, it can remain in the database for a long

period of time and will be present in every backup since the time of the unnoticed modi�cation.

This renders the backup as a useless solution to the problem of illegal modi�cation. The solution

to this problem is to perform checksum veri�cation of all modi�ed data before a backup is created.

� The problem of high occurrence of illegal tampering. If the backup solution is used to remedy

this problem, then a high level of occurrence of illegal tampering means that the backup must

be brought to use more often. In real time systems, this results in an intolerable performance

degradation.

Although the �lter idea for database security is too simple to be useful against complex attacks from

illegal users and trojan horses, it has been a useful testing environment for other security mechanisms

such as database encryption schemes and data labelling routines. The security �lter represents one

useful way to increase the security of commercial \o�-the-shelf" database management systems which

often have very poor security features. It is fair to say that the simple idea of security �lters paved

the way for more recent developments, such as the Trusted Computing Base (TCB). The reader is

directed to the work by Peeger [399] for a brief discussion on the con�guration of security �lters,

trusted front-ends and trusted database managers.

16.3 Encryption Methods

The use of cryptographic techniques or encryption for database systems represents another important

security mechanism. Data is stored in the database system in an encrypted form, hence illegal users

cannot read or modify the data. Encryption should be done in a lower level security mechanism

which is applicable independent of the type of policy used in the database system. Although some

369

authors have suggested that because encryption is very secure then the database system need not be

a trusted one (see for example, the discussion by Denning [140]), encryption should be used together

with other security components in an integrated manner. Encryption on its own does not secure the

database system since many loopholes may still exist within the operating system and the database

system itself. Hence the e�ective use of encryption depends on the architecture or con�guration of

the database system which incorporates it. In general, encryption in database systems have other

advantages, some among which are:

� Encryption provides the last line of defence against any attack by an opponent.

� Encryption of data in the database presents a \deterrent" to attackers. Access to the encrypted

data without knowledge of some suitable cryptographic information is equivalent to access by an

attacker to an insecure communications line. Without the suitable cryptographic information it

may be very di�cult or impossible to convert the cryptograms into plaintext.

The disadvantage of encrypted databases is that record searching, particularly in the case of partial-

match and range queries, becomes inexible unless secure auxiliary information which maintains the

positions of records or �elds in the database is kept.

Encryption can be applied to three levels of data granularity, namely to whole tuples (records),

whole attributes (�elds) and to individual data elements. The encryption of whole attributes results

in the need to decrypt the entire column or attribute in the relation if a single tuple is selected, hence

it can be immediately dismissed as being to inexible and resource consuming. The next alternative

would be to encrypt whole tuples, in which case every record needs to be decrypted during projections

of certain attributes. In general, given an unconditionally secure cryptosystem, the best alternative is

to encrypt individual data elements. This will allow selections and projections in the normal manner.

This alternative may result in the expansion of the tuples, and thus the database. With the continual

decrease in the cost of storage medium this issue will not be a problem. In the following, the various

database encryption schemes that have been designed by researchers in the area of database security

will be presented.

DES-based Encryption

In [137] Denning has used the DES algorithm [379] for the encryption and authentication of �elds

within a record. Each �eld is encrypted using a distinct cryptographic key. The scheme assumes

that the unique record identi�er in the �rst �eld of each record is at most 8 bytes long and is left as

plaintext. This ensures that record searching can be performed without loss of exibility.

The encryption key for each �eld j of record i with a unique record identi�er Ri and �eld identi�er

Fj is Kij = g(Ri; Fj;K), where g is a key generating function based on a secret database key K. Five

ways are proposed to create the key generator g:

� Kij = EKj
(Ri) with Kj = EK(Fj)

� Kij = Ri �Kj with Kj = EK(Fj)

� Kij = EKi
(Fj) with Ki = EK(Ri)

� Kij = Ki � Fj with Ki = EK(Rj)

� Kij = EK(Ri � Fj)

where � is the exclusive-OR operator and EK denotes encryption using key K. In using any of the

�ve key generating functions the unique identi�ers are padded until the whole 8 bytes (64 bits) are

370

�lled. Out of the �ve generators the �rst and the second provides the highest level of security but are

the least e�cient. The third and the fourth generators are the most e�cient but su�ers the problem

of multiple key exposures due to key compromises. In addition, all �ve generators su�er from the

possibility of producing weak keys, in which case unused bits in the identi�er can be set to 1 or 0

randomly to increase its security.

The encryption and decryption of a �eld Mij uses the DES cryptosystem, and in the case that it

is less than 8 bytes long, it is simply replicated until the whole 8 bytes is full. In the case that Mij

is longer than 8 bytes, it is encrypted using cipher block chaining with initialization block I. Since

the keys are secret and never repeat, block I need not be distinct for every record, and in this scheme

it is proposed that I be set to the all zero block. This produces the e�ect of having a single block

encrypted in standard block mode being equivalent to that block encrypted in cipher block chaining

with it as the �rst block.

Note that �eld encryption may cause expansion in the �eld size. Furthermore, in searching for a

particular �eld j, all the �elds must be decrypted �rst. A possible modi�cation of this scheme is to

incorporate a checksum to detect illegal record or �eld substitution. The checksum for �eld Mij is

computed using a key which is a function of the record identi�er Ri, �eld identi�er Fi and the secret

database key K.

The Subkeys Encryption Model

Davida, Wells and Kam [121] have used a subkeys model or method which is based on the Chinese

Remainder Theorem. The theorem asserts that given r positive integers m1;m2; : : : ;mr which are

relatively coprime and given r integers a1; a2; : : : ; ar then the congruence x � ai modmi (i = 1; : : : ; r)

has a common solution. The idea in the subkeys model is that the equation Ci � aj mod dj is

associated to records and �elds. Ci corresponds to the encrypted records, aj corresponds to the �elds

within a record, and dj corresponds to the decrypting keys for �eld j. Here dj are large primes and aj

is any integer. Hence dj becomes the subkeys in the system and the �eld values aj can be recovered

by calculating:

Ci �

nX

j=1

ej(xj jj fji) modD

where

D =

nY

j=1

dj

and fji is the value for �eld j of record i (fji is a data item). A random number xj is generated for �eld

j and is concatenated to fji. This concatenation must result in a number less than dj. Encryption is

performed by using the key ej where

ej � (D=dj)bj mod dj

and where

bj � (D=dj)
'(dj)�1 mod dj

is the inverse of (D=dj) modulo dj and '(dj) is the Euler totient function of dj.

In order to decrypt �eld j in a record Ci using key dj the following calculation is performed:

Ci � (xj jj fji) mod dj

(j = 1; : : : ; n). That is, we calculate Ci mod dj to get (xj jj fji) and we remove the random bits xj

to get the actual data item fji.

371

One disadvantage of the system is that the whole record must be re-encrypted after any �eld is

updated. This is done to counter the known plaintext attack by a malicious user. The subkeys method

for record encryption has been shown to permit some database operations, such as project and join in

further work by Davida and Yeh [122]. The realization of the subkeys method and further extensions

and improvements to increase its security can be found in the results of Omar and Wells [388]. The

extensions consists of placing an encryption/decryption (E/D) unit at the user's terminal and a locator

unit between the database management software and the encrypted database. The subkeys and a user-

�eld capability matrix exists inside the locator. Users are allowed to access the database vertically

(�elds) and horizontally (records or tuples). Before any interaction with the database management

system, a public key scheme is used to ensure the security of key transfers between the locator and

the E/D unit. The work by Wells and Eastman in [516] is related to the research into the subkeys

model, and represents e�ort into tra�c analysis of encrypted databases. The reader is directed to the

last three cited works for further information on the model.

Composed Encryption Functions

A method put forward by Wagner [507] consists of a two stage encryption method for databases where

no single agency or device can encrypt or decrypt data directly. It allows users to choose their own

keys while all data in the database are �nally encrypted using a secret key. The system employs a

trusted central authority or Data Distributor (DD) which holds a complementary key for each user.

Before accessing any part of the database a user n must cooperate with another user i (i < n) who

acts as a sponsor to user n. In this scheme the �rst user (user 1) has a special position in that he or

she chooses half or the random key for the database encryption (user 1 is preferably a trusted user,

such as the database administrator). User 1 then becomes the sponsor of user 2, and so on. The

model requires a cryptosystem to be closed under composition. The RSA cryptosystem and DES is

suitable as a cryptosystem for this model.

The �rst step in the method is to perform key distribution where user 1 chooses a random secret X

and the Data Distributor chooses also a random secret Y . User 1 then chooses his or her encryption

key K1 and �nds its inverse (decryption key K�1
1) modulo '(N), where N is a large prime (public).

User 1 then calculates

Z1 � K�1
1 X mod '(N)

and sends Z1 to the Data Distributor who calculates

L1 � Z1Y mod '(N)

secretly. Note that L1 is in fact

L1 � K�1
1 XY mod '(N)

and all data M is later encrypted as MXY mod N . The value Li � K�1
i XY mod '(N) is stored in

secret and is used later for access to the database by the user i. Also note that user 1 does not require

a sponsor, hence he or she should be a trusted user or database administrator.

The key distribution for user n is the following. User n chooses a secret random pair U and V and

calculates his or her key Kn = UV . He or she then sends V to the Data Distributor. User n then

chooses a sponsor user i (i < n) and sends U to user i. User i calculates the inverse U�1 of U modulo

'(N) and calculates

Zn � U�1Ki mod '(N)

on behalf of user n. In this step the sponsor has attached his or her own key Ki. The sponsor then

sends Zn to the Data Distributor. The Data Distributor now has both V and Zn, and proceeds to

372

�nd the inverse V �1 of V modulo '(N). Next, the Data Distributor calculates

Ln � V �1ZnLi mod '(N)

and stores Ln in a secure place. This means that in fact Ln reduces to

Ln � K�1
n XY mod '(N)

The storage and retrieval of a dataM is performed as follows. User n stores dataM by encrypting

it using his or her key Kn and forms cryptogram C0 � MKn mod N . This cryptogram is then given

to the Data Distributor who further encrypts it using Ln giving C where C � (C0)Ln mod N . Thus:

C � (C0)Ln � (MKn)
ZnY

�MXY mod N

User n can retrieve data M by asking the Data Distributor to decrypt C into C00. The Data

Distributor �rst fetches the secret value Ln corresponding to user n and computes the inverse L�1n of

Ln modulo '(N). Then the cryptogram C00 is calculated by:

C00 � CL�1
n mod N

and the Data Distributor passes C00 to user n. User n then �nds M from C00 using K�1
n by the

following:

M � (C00)K
�1

n � (CL�1
n)K

�1

n � ((MXY)(K
�1

n
XY)�1)K

�1

n mod N

One advantage of this method is the ease in changing the user keys. When user n wants to get a

new key, he or she must choose a random secret V and send it to the Data Distributor who calculates

its inverse V �1 modulo �(N). The Data Distributor then updates the secret Ln corresponding to user

n and generates

Ln
0 � V �1Ln mod '(N)

and user n updates his or her key Kn into

Kn
0 � V Kn mod '(N)

Another advantage is the restructuring of the list of Li values when that list is compromised. The

Data Distributor simply chooses a secret randomW and for each Li in the list a new one is generated

as:

Li
0 � WLi mod '(N)

All ciphertext C in the database is then encrypted into C by performing C � CW mod N . Encryption

and decryption of data by users then proceed as before.

Polynomial-based Encryption

Cooper, Hyslop and Patterson [105] suggested a method for database encryption based on polynomials

in the �eld GF(p), where p is prime. The contents of the database is viewed as consisting of �xed-

length character strings. These are in turn made up of substrings and users can have access to a select

subset of these substrings, as in the usual situation where users may only have access to a subset of

the records in the database.

Let the substrings Si (i = 1; : : : ; n) be concatenated into a single long string S. The long string

is then encrypted using the following procedure. For the selected plaintext alphabet, a prime p � c

is chosen, where c is the number of characters in the alphabet. A bijection is then constructed from

the plaintext alphabet to the integers in �eld GF(p). Hence, under the bijection the representative

373

substring belonging to users will correspond to the set of integers between 0 and p�1. Each sequence

of integers Sk is then used to form a polynomial Sk(x) in x of degree at most d = l � 1 where l is

the length of the representative sequence Sk. A �nite �eld GFk = GF (pl) is then generated using an

irreducible polynomial Ik(x) such that it contains the Sk(x) as its element. Following this, a secret

polynomial Rk(x) is calculated for each �nite �eld GFk, and is multiplied to produce the polynomial

Tk(x) as follows:

Tk(x) � Sk(x)Rk(x) mod Ik(x)

Encryption for the representative record S is equivalent to �nding a polynomial A(x) using the

Chinese Remainder Theorem where:

A(x) � Tk(x) mod Ik(x)

for k = 1; : : : ; n. Decryption of a sequence Sk is performed by dividing A(x) by Ik(x), resulting in

the remainder Tk(x). This remainder is further multiplied by R�1k (x), producing the required Sk(x)

which can be inverted back to the original plaintext using the initial bijection.

In [42] Blakley and Meadows presents an encryption scheme that allows the encrypted data to

be used in some statistical computation involving counts, sums and higher-order moments. Given

a Galois Field GF(�) where � is a large prime, the i-th record of the database is encrypted as the

polynomial pi, where each pi is constructed so that pi(cj) is the j-th data element of the i-th record

(i = 1; : : : ; d). Here the k �elds are represented by the elements c1; : : : ; ck of the Galois Field GF(�).

A user who is authorized to access all the �elds in a record can be given one polynomial and all cj

(j = 1; : : : ; k). A user with access to a given number of �elds of all the records gets all polynomials

but only one cj . A user who is authorized to know the sum or the average value of the projection of

the j-th �eld can calculate

p =

dX

i=1

pi

and evaluate it at cj , and divide by d. Here the division by d is over the reals and the summation is

over GF(�). The reader is directed to [42] for further notes on how to encrypt the polynomials and

how to do other statistical computations.

Joint Encryption and Error-Control

In [360] Nam and Rao presents a database encryption scheme which allows decryption and control

of errors in the database. The scheme is called Residue-Coded Cryptosystem (RCC) and is based on

residue codes which presents an error-detection capability based on (n; k) residue codes. The idea of

error-detection is very attractive to distributed databases in which data in the form of records must be

sent between sites through communications mediumwhich is subject to noise and to illegal tampering.

Given a plaintextM which is one �eld per record, the encrypted ciphertext C consists of n residues,

including (n� k) error-control residues. Thus,

C = C1; : : : ; Ck; Ck+1; : : : ; Cn

where C1; : : : ; Ck are the information residues and Ck+1; : : : ; Cn are the error-control residues. The

encryption stage consists of the selection of n encryption keys d1; : : : ; dn (relatively prime integers)

for each of C1; : : : ; Cn respectively, where

kY

i=1

di � max(M) � Zc

374

and

dk+j > di

for j = 1; : : : ; n� k and i = 1; : : : ; k, where Zc is an integer employed for security and max(M) is the

maximum value of M . Thus, the n pieces of information takes the following form:

Ci � (Z jjM) mod di

for i = 1; : : : ; n where Z is a �xed length random number less that Zc and \jj" denotes concatenation.

The decryption stage consists of the calculation of Z concatenated to M as follows:

Z jjM � (

kX

i=1

eiCi) modD

where

D =

kY

i=1

di

The decryption key ei is calculated as:

ei =
D

di
bi

where bi is the inverse of D=di modulo di and

D

di
� bi � 1 mod di

The value M can then be retrieved from the concatenation Z jjM .

The syndrome computation and error control can be done depending on the set-up of the scheme.

Thus, for a single residue error correction capability the ciphertext would then require two error-control

residue. The syndrome vector can be computed in the following manner:

Si � (C �M) mod di

for i = k+1; n. Here M = Z jjM before the M is abstracted out of the concatenation. The assurance

that no errors have occurred is gained when Si = 0 for all the syndrome vectors. The reader is directed

to the work by Nam and Rao [360] for further information on the scheme and a comparison of the

scheme with the Subkeys Model in [121].

16.3.1 Privacy Homomorphisms

A major hustle with encryption for information protection in databases is the necessity of decryption

every time information is needed for either processing or retrieval. It can be argued that during

processing, the decryption can be eliminated if operations can be performed on cryptograms. In other

words, instead of clear data, the operation uses ciphertext and generates a cryptogram of the result

which can be then decrypted in the time of retrieval.

Given an operation OP : Mn ! M which takes n arguments and produces result from the set

M and a cryptographic algorithm de�ned by its encryption and decryption functions Ek and Dk,

respectively. It is said that a cryptographic transformation preserves an operation OP on n variables

if

OP (m1; : : : ;mn) = Dk(OP (Ek(m1); : : : ; Ek(mn)))

for each cryptogra�c key k 2 K. This concept can be extended to algebraic �elds when a cryptographic

algorithm preserves both �eld operations h+;�i. Di�erent candidates for cryptographic transforma-

tion preserving �eld operations are discussed in [450]. If processing involves not only addition and

375

multiplication but other operation such as comparison operations, then the class of cryptographic

transformations preserving the operations is rather small and thus its practical usage is limited.

Rivest, Adleman and Dertouzos [422] de�ned a broader class of cryptographic transformations

which preserve operations and called them privacy homomorphisms. The class of privacy homomor-

phisms is de�ned as the quadruple:

(EK; DK ; OP;OP
�)

such that:

OP (m1; : : : ;mn) = Dk(OP
�(Ek(m1); : : : ; Ek(mn)))

for each cryptographic key k and any sequence of m1; : : : ;mn in the message space M. OP and OP�

are operations that are permissible in the message and cryptogram spaces, respectively. Notice that

the de�nition says that we get the same result either applying the operation OP� in the cryptogram

space C, or using the operation OP in the message space M.

Recall that the enciphering transformation in the RSA system is EK(m) = mKpmodN , where K

is the enciphering key, m is the message, and the modulus N = pq (p; q are primes). Note that:

EK(m1 �m2) = (m1 �m2)
K = mK

1 �mK
2 = EK(m1) �EK(m2)

Thus, the enciphering transformation of the RSA system has the multiplication property. In other

words, it is possible to de�ne the multiplicative homomorphism (EK , DK , OP, OP
�) for which

EK ; Dk are cryptographic transformations de�ned in the RSA system and OP = OP�. This privacy

homomorphism is as secure as the RSA system.

Other Research E�orts

There are a number of other research e�orts which have a direct or indirect relevance to encryption in

database systems. An interesting idea was presented by Brandt, Damgard and Landrock [57] whereby

individuals could submit data concerning themselves to a centralized database without the need to

trust the register of the database. The data of each individual is protected from one another, and

each individual has the power to ensure that data about him or her in the register database is correct

and not modi�ed illegally. This scheme applies very attractively to scenarios such as in centralized

medical databases with data from various hospitals, and in centralized government taxation databases.

Given a number of institution which have to send data about a particular individual to the centralized

database the scheme aims at keeping the individual anonymous and making the registration veri�able.

The work by Carroll and Jurgensen [76] presents a relational database structure in which access

is controlled by cryptographic means, while data in the database are stored in an encrypted format.

Information about the clearance of users are placed in individual user pro�les which can be hierarchical

and non-hierarchical. A number of rules concerning read, write and read/write operations is also

suggested. The results of a simulation is also provided which indirectly points out the practical

di�culties of the ?-property of the Bell-La Padula security model [18, 19]. Based on the access control

mechanism and the database encryption scheme a formal model of systems security is also provided.

For other works, the reader is directed to Wagner, Putter and Cain [508] for a description of

homophonic encrypted databases, to Gudes [225] for the use of encryption in �le systems, and �nally

to Eriksson and Beckman [164] for a description of experiences in using encryption for the security of

a police database systems.

376

16.4 Database Machines and Architectures

Database machines or database computers provides some advantages in security depending on their

con�guration with respect to the host operating system. Following the work by Hsiao [250] and by

Henning and Walker [239], the four database machine architectures which may provide security are:

� Intelligent disk controller. Here the database management system resides on the host computer

and employs the main memory of the host, but interacts with the intelligent controller. The

controller usually has built into it enough processing logic so that raw data can be pre-processed

before it is placed in the main memory of the host [250]. The security of the database provided

by this architecture depends heavily on the security mechanisms provided by the host operating

system. This includes user authentication which is performed by the host operating system.

The advantage of this con�guration comes from the increase in performance due to the speed

of data retrieval by the controller, independent of the data storage mechanisms of the host. In

this case it is required that the path between the controller and the host be a trusted one.

� Host independent hardware backend database machine. All security responsibilities belong to the

database machine. All access can be controlled by the machine since it is physically separated

from the host (frontend) computer. The database management routines and the on-line I/O

capabilities are built into hardware, thus o�ering an increase in performance during normal

database operations. The backend machine only receives the queries and returns answers to the

host computer [250]. User authentication may be performed independent of the authentication

by the host operating system. The backend machine must rely on the operating system to pass

to it data and queries from users, hence a trusted path must exist between the backend and the

host. Such a database machine would be trusted to a level at least equal to the highest level of

trust in the host operating system.

� Software backend database machine. A software approach can be taken in the implementation

of a backend database system, in which all database management tasks and online I/O routines

are performed by software residing in a stand-alone general purpose computer. In this manner

the resources of the host operating system is free from any database functions. The security

of the database system in this con�guration follows the security of the operating system, hence

portability to di�erent hosts may prove to be di�cult. Additional security measures can be

implemented on the backend computer independent of the security measures of the host.

� Multibackend software database machine. The software-based backend database machines can

be adapted to a multiprocessor multibackend con�guration. The same piece of software can

be used in all instances of the backend without requiring any modi�cations to the hardware.

A software control module is located between the single host and the multiple backends. In a

multilevel security classi�cation of data each backend can be used to stored data of di�ering

sensitivity. The software control module can then route queries to these backends depending

on the security clearance of the user. In terms of performance this con�guration allows queries

to be processed in parallel. However, the very nature of replicated data makes the control of

these backends di�cult. The security of this con�guration is no di�erent from that of the single

backend software database machine. However, the fact that one backend may interact with

another in the course of processing a query means that a covert channel may also exists between

the backends.

377

16.4.1 Experimental Backend Database Systems

Two of the early experimental systems using backend database systems are the Data Base Computer

(DBC) [13] developed at the Ohio State University, and MULTISAFE [501] developed by Virginia

Tech and the University of South Carolina.

MULTISAFE

In MULTISAFE [501] the data management system is divided functionally into three major hardware-

software module. The are the User and Application Module UAM, the data Storage and Retrieval

Module (SRM) and the Protection and Security Module (PSM). Logically, each of these modules

are separated, but physically they may be implemented on the same underlying hardware. However,

performance needs suggest that each module should be implemented on physically di�erent processors.

Although the three modules are treated as a separate and independent processes, they are precisely

connected to achieve a combination of multiprocessing, pipelining and parallelism.

The UAM is essentially the interface between the user and the system. The UAM can be realized

in a number of ways. It can be seen as a large conventional multiprogrammed processor with disjoint

user address space or it can be viewed as a collection of intelligent terminals, each with a private

memory and processor. Independent of its actual implementation, the UAM has the task of analyzing

user queries and formatting results, and providing working storage and computation abilities to the

user. The UAM does not provide any security or I/O tasks to the user.

The PSM encapsulates the security mechanism away from the other modules. It makes access

decisions based on three dependency classes:

� Data-independent access. This access condition depends on user and/or terminal identi�cation

information and dynamic system variables.

� Data-de�nition-dependent access. This access depends on attribute names and relations, inde-

pendent of their actual value.

� Data-value-dependent access. This requires the checking of attribute values before any access.

The PSM is dedicated to security-related tasks and is free from any operating system or database

system functions. This includes audit-trail maintenance, integrity checking, cryptographic functions

and the control of backup and recovery.

The SRM is dedicated to perform database accesses on behalf of the UAM and PSM. The SRM

processor can be realized in terms of conventional computer hardware and/or a conventional DBMS

software. Alternatively, a backend processor or a database machine can be employed. The SRM

can perform other additional tasks, such as data manipulation operations and the materialization of

database views. Furthermore, it can maintain private �les associated with other non-DBMS applica-

tions belonging to the user. The reader is directed to [501] for more information on the communication

of messages between the modules of MULTISAFE and other security-related issues.

Data Base Computer (DBC)

The Ohio State University Data Base Computer (DBC) [13] employs the idea of back-end computers

and associative processors. The developers of DBC recognized a number of problems found in common

database systems in relation to data security. Some of the problems they set out to solve are:

� The complexity of name-mapping operations in answering queries.

378

� The performance bottleneck caused by di�erent functional software modules being implemented

on the same underlying hardware.

� The data security overhead due to the need to perform multiple name-mapping operations in

order to enforce security.

The key design concepts employed in the DBC to overcome these problems include the use of

a partitioned content-addressable memory (PCAM), the use of structure and mass memories, area

pointers, functional speci�cation, look aside bu�ering and the integration of security into the design.

The aim of the PCAM is to reduce the need for name-mapping data structures. This allows data to

be moved anywhere in the database without the need to modify the name-mapping data structures.

The PCAM is implemented by splitting a storage system into many blocks or partitions.

Name-mapping data structures for these blocks is based on the structure memory concept, in which

a mass memory holds the information making up the database and contains only update invariant

name-mapping data structures. The structure memory and the mass memory in the DBC are imple-

mented as PCAMs. Name-mapping data structures are simpli�ed using the concept of area pointers.

A given area pointer shows which PCAM partitions holds a required data item, and no modi�cation

needs to be done on an area pointer in the case that data items are moved.

In order to minimize the di�culties met during the modi�cation of name-mapping data structures

a fast look aside bu�er is employed. Before any chance is recorded permanently in the structure

memory, it is �rst recorded in this bu�er and is used to satisfy subsequent commands.

To overcome the bottleneck found on many database system which employ software modules, the

DBC has taken the approach of functional specialization. Here, components are designed individually

to adapt to their speci�ed functions. The DBC has seven major specialized components. These are

the keyword transformation unit (KXU), the structure memory (SM), the mass memory (MM), the

structure memory information processor (SMIP), the index translation unit (IXU), the database com-

mand and control processor (DBCCP) and the security �lter processor (SFP). The system operation

consist of two \loops", namely the structure loop and the data loop, which have the the DBCCP in

common. The incoming request from the Program Execution Unit (PES) is passed through the KXU

which converts keywords into their internal form, and structural information about the database is

retrieved and maintained by the SM. Set operations on the structural information is performed by the

SMIP. Both the SM and the SMIP are implemented using PCAMs. The structural information from

the SMIP is then decoded by the IXU and the results returned to the DBCCP. The data retrieval and

update is then performed in the data loop. The MM contains the database and the SFP performs the

necessary security checks.

Although the DBC initially employed the relational model, simulation studies shows that it is also

suitable for the network and hierarchical data models [237].

16.5 Database Views

The concept and implementation of views in the broad area of database systems has been a topic

of research for a number of years [78, 489, 431, 534, 274]. Interest in the use of views for purely

security purposes only began in the early 1980's. One of the earliest uses of views was by Gri�ths and

Wade [222] in IBM's System R as a form of access control. This early work, however, concentrated

on a single security classi�cation and attempted mainly to solve the problem of grant propagation

in a multiuser database system. The use of views for multilevel security in database systems was

independently suggested in 1983 by Claybrook [98] and by the Summer Study on Multilevel Database

Management System coordinated by the U.S. Air Force Summer Studies Board [104].

379

In order to understand the possible uses of views as security objects, it is useful to de�ne views and

to briey look at its related terminology. Although views are not strictly de�ned over the relational

data model, the best examples can be given using the relational data model using the syntax of the

Structured Query Language or SQL [120]. The general form of an SQL query is the following:

select att1; att2; : : : ; attn

from rel1; rel2; : : : ; relm

where pred

Here atti are the attributes, reli the database relations and pred is the predicate. The attributes

can also be replaced by a *" meaning that the whole tuple (record) with all its attributes are to be

retrieved.

A view can be de�ned to be a pre-set or prede�ned named retrieval query that creates a virtual

relation over base relations. The view or virtual relation is not stored in the database, whereas the

base relations are the underlying data stored in the database. Once created, a view can be queried

as if it were a true relation. Views can be built upon other views, and so on. For example, in [98]

Claybrook presents an architecture whereby an internal view is de�ned over the database, then a

conceptual view is in turn de�ned over the internal view and �nally the multiple user-de�ned views

are de�ned over the conceptual view.

Using the SQL notation, the following is an example of the creation of a view V which is then

queried by a user:

create view V as

select att1; att2; : : : ; attn

from rel1; rel2; : : : ; relm

where predview�def

select atti1; atti2; : : : ; attik

from V

where preduser

During query processing, the user query over view V is resolved internally into:

select atti1; atti2; : : : ; attik

from rel1; rel2; : : : ; relm

where predview�def and preduser

There are a number of concepts and terminology that are often used in discussing views and

database security in general. Following the notations found in Wilson [525] and Denning et al. [141]

these are the following:

� A security level is a pair (H;S) where H is a hierarchical security classi�cation and S is a set of

categories or compartments [525].

Examples of the classi�cation are Confidential < Secret < TopSecret, and examples of cate-

gories are Crypto, NATO and others. An alternate notation is given in [141] where a security

level is the pair

< SecrecyLevel; SecurityCategory >

which is also de�ned to be the secrecy component of an access class. The integrity component of

an access class is given as

< IntegrityLevel; IntegrityCategory >

.

380

� The security level (H1; S1) dominates the security level (H2; S2) or

(H1; S1) � (H2; S2)

when H1 � H2 and S2 � S1.

That is, a given security level L1 dominates the security level L2 when level L1 is used classify

data that is at least as sensitive as data classi�ed as L1. When L1 strictly dominates L2 (L1 > L2)

we have that (L1 � L2) and (L1 6= L2). Hence the symbol \�" denotes partial ordering [525].

Equivalently, access classes [141] can be seen as an element of a lattice structure having the \�"

partial ordering, where access class L1 dominates (or strictly dominates) another access class

L2.

� A subject is an active entity that accesses objects in accordance with a security policy.

In the case of views in databases, the subject may be a process executing on behalf of a user and

the objects are various views de�ned over the base relations and other views [525]. The subject

or user has clearance or an associated access class [141] and the clearance (or access class) of

a subject must dominate the classi�cation (or access class) of the data before the subject has

access to the data.

16.5.1 Advantages and Disadvantages of Views

There are a number advantages of using views for security objects in database systems. The �rst

and foremost is the fact that views express the context of the data over which it is de�ned, and it is

important that both the context and the data itself need to be protected. In its simplest form views

present a subset of the database to the user, be it whole tuples or whole �elds attributes. Any change in

the underlying base relation does not require a corresponding modi�cation to the view de�nition over

that base relation. Thus views are very much static even while the database is dynamically changing.

This advantage is derived from the fact that views can be de�ned independent of the logical structure

and design of the database [98].

Views also provide content-dependent security where certain �eld (or attribute) values can be

placed in the view de�nitions and the records (or tuples) containing those values can be suppressed

from certain users or group of users. The opposite e�ect can be achieved by allowing only tuples

containing certain attribute values to be displayed to the user. Content-dependent security further

implies that only correct values or values within a given range can be inserted into the database via

views. In this way users have less chance of inserting inappropriate values by chance or deliberately.

Another advantage of views is that labelling of attributes and tuples can be done by creating a

separate attribute containing the security labels. Thus the labels can be stored as part of a relation

or as a separate relation, and its existence can be hidden away from the user through the use of views.

Hence it is clear that the database system need not have any special mechanism to coordinate labelling

of attributes and tuples. An example of an attribute to store labels is the following [525]:

create view Vlevel�L as

select *

from R

where LabelAttribute � L

In this example R is the relation while LabelAttribute is the attribute of R containing the labels

of the tuples in R. If the views are de�ned using the SQL syntax then conditional expressions can be

included in the view de�nition:

381

create view Salariesunclassified as

select Name, DepartmentNumber,

UnclassifiedSalary =

if Salary � 10000

then Salary

else F (Salary)

from Employees

where F can be a function that performs some operation on the Salary attribute. F can also be a

sanitization operation or function [141] which is de�ned to be a computation that takes input from

a source and outputs data that is less sensitive that the source. Besides sanitization functions, other

built-in functions can also be used inside the view de�nition. Example of these are functions that

return machine time and date, and user identi�cation.

Although views have many advantages, there are some shortcomings. View de�nitions may contain

errors and the database upon which the views are de�ned may also contain errors [525]. If content-

dependence is used in the de�nition, then errors in the database may cause the down-grade of whole

tuples which are accessed by the users. The complexity of view de�nitions may also result in the

overhead in computing resource usage. Another possible threat comes from user or trojan horses

which attempts to deduce the view de�nition of data of higher security classi�cation by doing various

insert operations and retrievals through the views. If an inserted data cannot be retrieved again by

the user due to the view de�nition, then the user has gained some information through inference about

the view de�nition. In general, the advantages of views out-number its disadvantages, and views do

present some possibilities for high level protection.

16.5.2 Completeness and Consistency of Views

Although views may contain visible errors in the syntax of their de�nition, of more concern and

interest are the errors arising from the conict of two or more syntactically correct view de�nitions.

In such cases, one view de�nition may present some conditions or constraints which must be observed

in order for data to be accessed through that view, while another view de�nition may relax or even

contradict the constraints of the �rst view de�nition.

Denning et al. [141] distinguishes between a view which retrieves or updates data and a view

which classi�es data. The �rst type is referred to as access views while the later is refered to as

classi�cation constraints. Access views can be used to retrieve data through the user's clearance.

The base relation that contains the required data is permitted to have a higher security clearance.

Classi�cation constraints are views which specify access classes and the relationship between actual

data in the relation and other data derived from it. In this way views as classi�cation constraints

can be used to manage content-dependencies and context-dependencies, to control inference by the

users and to perform sanitization of data. A sanitization rule ensures that the access class of the view

output (target) is dominated by the least upper bound of the access class of the view input (source).

Classi�cation constraints must be consistent and complete. A set of classi�cation constraints is

consistent when no two constraints de�ne conicting classes and they both must be simultaneously

satis�ed. A set of classi�cation constraints is complete when an access class is de�ned for each valid

data element. A more speci�c de�nition is given in Akl and Denning [4] is the following.

Assume that a multilevel relation R is modeled by the schema

R(A1; C1; A2; C2; : : : ; An; Cn)

382

where Ci is the classi�cation attribute holding the access class labels of data attribute Ai. A clas-

si�cation constraint is then a rule of the form S = (R;A;E; L) which is interpreted as if E then

class(R:A) = L, where R is the relation, A is one or more data attributes in R, E is an optional

expression and L is the access class.

A set of classi�cation constraints is consistent when any two pair of constraints Si and Sj are

consistent, which in turn requires one of the following four conditions to be true:

1. Li = Lj , which is when both constraints assign the same access class.

2. Ai \Aj = 0, which is when Si and Sj apply on disjoint attribute sets.

3. Ei \Ej = 0, which occurs when Si and Sj cannot be simultaneously satis�ed.

4. Ei \Ej \D = 0, which is when Si and Sj never simultaneously satisfy all integrity constraints.

Here D is the intersection of allm integrity constraints I1; : : : ; Im in the database. A set of classi�cation

constraints is complete when for every instance of the database inD, each element is assigned an access

class by at least one constraint.

Akl and Denning [4] also presents an algorithm based on computational geometry to check for

consistency, with a complexity of the order of O(Nn2(g +m2)), where N is the number of relations,

n the number of classi�cation constraints, m the number of integrity constraints, and g is the number

of attributes in each relation. An algorithm to check for completeness is also presented in [4], with a

complexity of the order O(Mn), with M being the number of attributes in the database.

The algorithms in [4] for secure views are computationally feasible when the constraints are simple,

and deals only with numeric data. In [525] Wilson proposed the idea of atomic views which is a small

set of views on which secure views can be built. For a relation R, a view R=L is de�ned for each security

level L that includes exactly the tuples of the relation R classi�ed at level L. Similarly view R�L

is de�ned to include tuples of R that are dominated by L. Then, for each hierarchical classi�cation

and for each category Ci, an atomic view R�Ci
is de�ned to consists of the set of tuples whose

levels dominate Ci. Wilson proposes that atomic views should be de�ned by the trusted database

administrators, while the DBMS should automatically create secure views based on the atomic views.

Atomic views guarantees that completeness and consistency are achieved in de�ning secure views.

Atomic views in [525] is more general that secure views in [4] in that they are not restricted to only

numerical values.

16.5.3 Design and Implementations of Views

Although interest in the use of views and research into formal methods of describing views and its

problems started in the 1980's, only few projects have dedicated completely to investigating views for

database security. One major project whose results have shaped much of the opinion on secure views

is the SeaView project.

SeaView

The SeaView project has its roots in the Summer Study on Multilevel Data Management Security held

by the Committee on Multilevel Data Management Security of the U. S. Air Force Studies Board [104].

The project was a three year joint work by SRI International and Gemini Computers, sponsored by

the U. S. Air Force, Rome Air Force Development Centre. Its aim is to design a multilevel secure

database system ful�lling the A1 class of secure systems as speci�ed by the U. S. Department of

Defense Trusted Computer Systems Evaluation Criteria [146].

383

Within the three year period of its design, the project by Denning et al. has completed a security

policy and interpretation [134], a multilevel relational data model [142, 310] which is an extension of

the standard relational data model to accommodate labelling, a formal security policy model [135] and

a formal top-level speci�cations [312] with its veri�cation [519]. The project also contributed ideas on

the assurance of multilevel database systems [309]. The SeaView models extends the relational data

model by including in it mandatory security requirements and by supporting data consistency through

application-dependent constraints. Data in the base relations and views are hidden from unauthorized

users, with di�erent users seeing di�erent instances of a given relation. This multiple instances of the

same objects or polyinstantiations have di�erent access classes. Thus multiple tuples with the same

primary key but di�erent access classes can exist. Similarly, tuples may have multiple values, each

having a di�erent access class.

With respect to its architecture SeaView has ensured that all components of the system which

enforces mandatory security are to be isolated in a security kernel. The whole database system with

all its support for multilevel relations is to be implemented on a general-purpose operating system

kernel enforcing mandatory security policy at the single-level �le and segments [309]. Each multilevel

real relation is decomposed into the single-level relations de�ned as single-level kernel objects. These

single level relations are then combined later to provide the multilevel relations for the users. The

reader is directed to Lunt et al. [312] for a detailed discussion on the architecture and components of

the SeaView implementation.

ASD Views

Another project on the implementationof views is ASD Views by the TRWDefense Systems Group [192].

The main aim in ASD Views is to achieve a suitably-sized Trusted Computing Base (TCB) that meets

the criteria for evaluation of class B2 and above. ASD Views is an attempt to solve the problem met

when views are de�ned to be objects of both mandatory and discretionary security in multilevel secure

DBMSs. In particular, the major di�culty in a view-based DBMS is that the TCB tends to become

very large because views involves a great deal of the DBMS code. The requirement of a class B2

certi�cation as speci�ed in [146] is that only a small size TCB can be used. Thus, most view-based

DBMS will face di�culty in achieving certi�cation above class B1.

The approach in SeaView [141] is to place the view mechanism over a reference monitor together

with a trusted kernel. Each level of data is then physically stored on its own disk segment and the

reference monitor must guarantee that only data with clearance dominated by the user's clearance

is released. The main problem with this con�guration is that the overall performance of the system

degrades due to overhead required for every view that is accessed to collect various data for the view

from di�erent locations and to join them.

ASD Views takes the simpler solution of restricting the query language that can be used in the

view de�nition. This limits the complexity of the view de�nition but ensures that the TCB remains

small. The view de�nition only allows a subset of rows (tuples) and columns (attributes) from only

one underlying base relation. Joins, aggregate functions and arithmetic expressions are excluded.

These restrictions allow the processing of the query which de�nes a secure view to be done within

the TCB perimeters without the need of the creation of other data structures commonly associated

with queries. Thus within the TCB only a small number of data structures are created for any

view de�nition. Another important point is that ASD Views does not allow polyinstantiations, hence

reducing the complexity of its implementation.

The architecture of ASD Views consists of three general parts. The SQL Processor resides outside

the TCB boundary, and it decomposes user queries into requests to read rows (tuples) from the secure

384

views de�ned by the TCB. These reduced queries are then handled by the Restricted View Processor

followed by the Read/Write Row Interface, both of which reside inside the TCB boundary. The reader

is directed to the work by Garvey and Wu [192] for more details.

16.6 Trends in Database Security Research

In this section current research that has received considerable new interest will be discussed. The

security of distributed database systems has long been realized as being lacking. The security of such

systems represents a more complex problem that the simple interconnection of individually secure

sites of database systems. Besides being secure on its own, a local database must also ensure that its

behaviour does not endanger the security of the other databases in the distributed database system.

The needs of a secure network also placed additional burden on the overall problem of security.

Object-oriented database systems and knowledge-based systems are two recent areas of research

within the broad area of database research. Similar to distributed database systems, their security

has received little or almost no attention until only recently. Thus, it would be useful to briey look

into the possible ways of making such systems secure.

16.6.1 Security in Distributed Databases

Although there is a considerable amount of research material dealing with aspects of distributed

database systems and their design, research into the security aspects of distributed database systems

and distributed systems in general have only began to take serious form and de�nition during the

last �ve years. The amount of available research results which directly address security in distributed

database systems is small due not to the lack of interest in the topic on the part of researchers, but

rather to the complexity of distributed systems in itself and the necessary groundwork in the security of

centralized database systems before any consideration can be given to security in distributed databases.

Currently some researchers have begin to address the individual security needs of distributed

databases as compared to the security of distributed systems in general [406, 327, 313]. The security

of some issues and features of distributed databases have began to be analyzed, particularly those

which have solid research background from the pure database research point of view.

Such an analysis is exempli�ed by the work by Downing, Greenberg and Lunt [161] where the

security of serializable transactions have been considered. Two general assumptions that have been

suggested in this work and which is useful for all distributed transactions are the following:

� The ?-property. This simply requires that a transaction must write only data whose access

class equals the transaction class. This is a direct derivation from the Bell-La Padula security

model [18, 19].

� The Simple Security Property. This requires that transactions must read only data whose access

class is dominated by the transaction class. That is, the \read-down" rule must be observed.

Following these two assumptions the work in [161] proceeds to compare three concurrency control

techniques that have been suggested in the pure database research literature, namely two-phase lock-

ing, time-stamp ordering and optimistic concurrency control. Out of these three concurrency control

techniques only optimistic concurrency control satis�es the two assumptions, and together with some

modi�cations presents the most suitable algorithm for secure transactions, both in centralized and

distributed databases.

385

These research conclusions represents initial steps towards the full understanding of the security

requirements in distributed database systems. Such research provides the foundation on which further

work and specialized designs can be done in the area of database security.

From the point of view of the use of cryptography for distributed database security, most of the pro-

tocols involving cryptography had communications and computer networks in mind (such as the work

in [365], [506] and [265]), and they were not geared to solve other more complex security problems in

distributed database systems. One notable initiative has been taken by Herlihy and Tyger [240] where

the application of cryptographic secret sharing schemes to data replication in distributed systems have

been considered. The parallel between secret sharing and quorum formation for the determination of

updates to replicated data is very clear, but successful practical secret sharing algorithms suitable for

distributed databases have yet to be found. Another notable work in cryptographic considerations for

distributed systems is by Dolev and Wigderson [159] where the security of multi-party protocols in

distributed systems is discussed.

Another approach from the point of view of design methodology has been taken by Bussolati and

Martella [72, 71]. The work presents a multiphase methodology for the design of security systems in

an integrated and aggregated distributed environment. The approach is a high-level initiative which

is suitable for the expression of security policies governing the distributed database system. The use

of views in distributed database systems have been considered by Bertino and Haas in [28]. Views

over base relations represents a high-level approach to the security of database systems independent

of any low-level physical design and constraints of the system. One can easily conclude that if the

view approach at individual sites are secure, then views over the distributed database are also secure.

However, the proofs and veri�cation of the security of views at a high level does not necessarily

eliminate the di�culties and complexities in the underlying design and implementation of the views.

Another approach to secure distributed database would be to employ an underlying secure dis-

tributed operating system, with the database application running on top of the operating system

at each site. This approach may prove rewarding since there may be many common mechanisms to

control distributed processes in both distributed databases and distributed operating systems. An im-

mediate consequence of this approach would be the increase in complexity in the distributed operating

system due to the di�erent nature of data in the two systems. These di�erences include granularity,

the life-span and the sheer volume of data. Thus, it is probably more useful in the long term to design

distributed database systems which infuses security in the whole design, rather than to depend on

external components, such as a secure distributed operating system, to achieve a veri�able level of

security. The reader is directed to [172, 203, 529] for more interesting work towards the security of

distributed databases and distributed systems.

16.6.2 Security in Object-Oriented Database Systems

Object-oriented systems have recently received increasing attention, and from the point of view of

database research many researchers have began to develop Object-oriented database systems for vari-

ous applications. Historically, the idea of objects as a programming construct came from the language

Simula. The fact that it has a programming language background has resulted in the notations and

meanings of the terms in object-oriented systems having programming connotations. Thus it is advan-

tageous to maintain a loose de�nition of object-oriented systems, and to use more precise de�nitions

in more speci�c contexts [371]. In this section the notation for object-oriented database systems will

follow that by Banerjee et al. [12], and the reader is directed to this reference and to the work by Kim

and Lochovsky [281] for more details on object-oriented systems.

386

Background

Each entity in an object-oriented system is represented as an object. The information about the state

of a given object is represented in the instance variables, while the behaviour of an object is represented

by messages to which the object responds. The values of the instance variables are objects themselves,

and the recursive de�nition only terminates when primitive objects are used. The primitive objects

immediately represent their state (they do not have instance variables).

The behaviour or actions de�ned on objects are referred to as methods, and a given method

performs its actions by sending messages to the objects. Methods themselves can be seen as some

code which manipulates or returns the state of a given object, and methods are in fact part of the

de�nition of objects. Usually, a message consists of the name of the method to be invoked, together

with a list of objects involved. Thus, sending a message to an object means that the method is to be

executed. Objects also communicate with each other using messages. The messages and object name

arguments become the interface of the outside world to the objects. Primitive methods are used to

represent simple actions that can be carried out without the need of messages.

To prevent the consummation of large storage space for objects with their own instance variables

and methods, it is natural to group \similar" objects in a class. Objects that belong to one class or

type are described by the same instance variables and methods, and they all respond to the same set

of messages. Each object may have a di�erent state, but the computation type, which is the result of a

method activation, is uniform throughout the class. Thus, objects that belong to a class are instances

of the class, and so a class describes the form (instance variables) of its instances and the applicable

operations (methods) to its instances. Note that the class of an object is itself an object, and a class

object can create new instances of its own type.

Related to the idea of a class is the notion of a class hierarchy and inheritance of properties (which

are the instance variables and messages) following along the hierarchy. A class and its subclass (or

superclass) are related through a is-a relationship. Subclasses of a class inherit all properties de�ned

for the class, and in addition can have their own local properties. Another possible relationship is

the is-part-of hierarchy which is used to de�ne composite objects, which can consist of objects from

di�erent classes [12, 273]

Research in Security

The area of object-oriented systems is a relatively new one, and only very recently has attention been

given by researchers to the security needs of object-oriented systems. In discussing the security of

object-oriented database systems it is important to realize that security is very di�cult or impossible to

achieve without an underlying mandatory security kernel. This fact refers more to the implementation

aspects of object-oriented database systems rather than to the conceptual and high-level use of objects

in a database system.

The work by Lunt [308] and by Lunt and Millen [311] represents an e�ort to investigate the

problems in de�ning the meaning of security as applied to object-oriented database systems. Security

classi�cation as described in the work by Lunt [308] are associated with objects and classes. An

alternative way to look at the classi�cation of objects is to take the classi�cation itself as being

applied to the fact that an object or class exists in the database with that given security classi�cation.

Similarly, the security classi�cation of the properties (or facet in [308]) of an object, which consists

of instance variables, messages, methods and constraints, does not actually apply to the properties

themselves, but more to the association that exists between the property and the object.

The \read-down-write-up" rule or "?-property" of the Bell-La Padula security model [18, 19] can

be transferred quite readily to the object-oriented model of database systems. The following points

387

de�ne more precisely the \read-down-write-up" rule for objects and classes (where L denotes the

security classi�cation) [308]:

� all system-de�ned classes should be classi�ed at system-low.

� if object O1 is a superclass of O2 , then L(O1) � L(O2).

� If V is a property (facet) of an object O, then L(V) � L(O). This is true for all properties of

that object.

� If property (facet) V2 of object O2 is inherited from object O1 with the corresponding property

(facet) V1, then L(V2) � L(V1).

� If two or more of an object's classes have a property (facet) named V , then the object must

inherit the property (facet) V having the lowest security classi�cation.

� If a subject S sends a message m to an object O to execute method M , then L(S) � L(M) �

L(O) and L(S) = L(m).

� Assume that class O1 has property (facet) V (which is inherited by its subclasses). If object

O2 belongs to class O1 and if L(V) in O1 is dominated by L(O2), then L(V) in O2 must be

dominated by L(O2). This is to prevent inference when V in O1 is visible, yet V in O2 is

invisible, implying that L(V) in O2 dominates L(O2).

The above rules show that the notion of security and its associated ideas are applicable to object-

oriented database systems. The reader is directed to the following references for further discussion on

this area:

� The work by Keefe, Tsai and Thuraisingham [273] presents the SODA (Secure Object-Oriented

Database System) model.

� The work by Fernandez, Gudes and Song [178] discusses an authorization model for object-

oriented database system.

� The work by Thuraisingham [497] gives a multilevel secure object-oriented data model called

SO2.

� The work in [12, 280, 279] and the work in [184, 183, 522] present two implementations of

object-oriented database systems, namely the ORION and Iris object-oriented database systems

respectively.

An overview of research on access control in object-oriented databases can be found in [14].

16.6.3 Security in Knowledge-Based Systems

The area of arti�cial intelligence and the application of expert systems have received an explosion of

interest during the last decade. Various expert systems have been designed, from research prototypes

to commercial versions to be used in real life situations. Both the business community and the military

have found increasing uses of expert system in daily tasks.

One aspect of expert systems and knowledge-bases in general which has received hardly any at-

tention is that of the security of such systems. Although the di�erences between the security of

knowledge-base systems and database systems are not immediately obvious, further consideration

into the di�erent nature of the data in both systems and the use of rules in knowledge-base systems

388

will indicate that it presents a somewhat more complex and un-researched problem compared with

database systems.

The term production systems is best used to represent a model that partitions intelligent processes

into rules, data and a control strategy [27]. Thus, in a multilevel secure production system both data

and rules need to be classi�ed, which in turn may require modi�cations to be done on the existing

control strategy.

The work by Berson and Lunt [27] and by Morgenstern [348] represents one of the earlier attempts

to consider the application of multilevel security concepts to production systems and knowledge-bases.

In [27] Berson and Lunt analyse the use of the noninterference condition �rst proposed by Goguen

and Meseguer [204] to production systems. The condition requires that besides higher level data being

invisible to lower clearance users, the e�ects of the actions, such as the �ring of rules, by higher level

users, should also be invisible to lower clearance users. From this condition emerges four important

points that must be taken into consideration when designing secure production systems [27]:

� Rules and data which is classi�ed at a high level must be invisible to lower clearance users and

their lower level processes.

� The inference engine should function independent of the security classi�cation of the rules and

data. Thus, the inference engine should function at a given security level with only the available

rules and data of the same (or lower) security level without the need to reference or know of the

existence of higher level rules and data.

� To satisfy knowledge engineering requirements the rules must be created such that they are

complete and make sense to any user with a given security clearance. Thus, the user must not

be aware of the existence of other rules which have higher security classi�cation. Immediately

related to this point is the need for the lower level subsets of rules to be closed so that users or

processes cannot infer the existence of higher level rules.

� Any intermediate results of the �ring of rules by a user must be classi�ed at the same level as

the user's clearance.

The above discussion only represents an introductory note and an example of the direct application

of multilevel security policies in database systems to knowledge-based systems. The reader is directed

to other studies such as [348] and to the e�orts by Garvey and Lunt [193, 194] for more recent works

in multilevel security for knowledge-based systems.

Chapter 17

ACCESS CONTROL

A computing environment can be seen as a collection of resources which are shared by user processes

under a watchful eye of the operating system. The collection typically includes hardware resources

(the CPU, the main memory, disk space, I/O devices, etc.) and software resources (editors, compilers,

debugging tools, etc.). Sharing of resources can take on di�erent forms and each form of sharing

requires di�erent degree of the operating system attention or control. For example, resources such

as printers may be accessed by every process as long as the operating system puts the interested

processes in a queue so they can access the printer sequentially in some order. An editor can be

accessed concurrently by many processes as long as each process does not modify it. Normally,

personal data �les can be accessed by their owners only. The main task of the operating system (OS)

is to control the access to system resources. The classi�cation of computer entities into resources

(passive) and processes (active) is not disjoint as a process can be also a resource to which another

process would like to have an access. In the access control vocabulary, passive entities or resources

are called objects and active entities or processes are called subjects.

Any type of resource (object) has the well de�ned collection of access operations specifying how

the object can be manipulated by a subject. A subject can usually be granted a small subset of all

possible access operations. This subset de�nes access privileges (permissions) assigned to the subject.

Whenever a subject wishes to access an object to perform some speci�c operation (read, write, execute,

etc.), OS checks whether the subject has the corresponding access permissions to the object. If the

subject holds the appropriate permissions, OS grants the access, otherwise denies the access to the

object.

The access control can be based on di�erent policies. The choice of a security policy is crucial

as it determines the performance, exibility, and availability of the computer system. The policy is

normally de�ned by the organisation and reects restrictions imposed on access control by the legal

and business requirements. Consider the following aspects of access control policy.

1. Minimum versus maximum collection of privileges. The assignment of access permissions can be

done using the minimum privilege principle where a subject gets assigned the smallest possible

collection of access permissions which is enough for the subject to function normally. The

other extreme is the maximum privilege principle which de�nes widest range of permissions for

subjects.

2. Open versus closed access control. OS has to verify each access request generated by a subject.

There are two possibilities. All access requests are allowed unless they are explicitly forbidden.

This is an open access control. In a closed access control, all access requests are forbidden unless

explicitly authorised.

3. Granulation of access control. Each object has to be well de�ned together with its basic collection

of access permissions such as: read, write, delete, execute, and create. The permissions may be

389

390

ordered so if a subject is assigned a privilege of a higher order to an object then the subject

implicitly holds all lower-order privileges to the object.

There are three major types of access control:

� Mandatory access control (MAC). Objects (information) are classi�ed on hierarchical levels of

security sensitivity (typically, top secret, secret, con�dential, unclassi�ed). Subjects (users) are

assigned their security clearance. Access of a subject to an object is granted or denied depending

on the relation between the clearance of the subject and the security classi�cation of the object.

� Discretionary access control (DAC). Each object has its unique owner. The owner exercises their

discretion over the assignment of access permissions.

� Role based access control (RBAC). Rather than to subjects, permissions are assigned to roles.

A subject always acts according to the currently delegated role and therefore acquires the ap-

propriate permissions relevant to the current role. The subject can hold di�erent permissions

to objects depending on the role assigned to it.

Role based access control is gaining attention as a viable alternative to MAC and DAC ([179, 442]).

Access permissions are associated with roles rather than with subjects. Note that most institutions

and organisations are role driven. A person who today is the manager of a branch may be asked to be

the chair of a selection committee to appoint new sta� or to be the acting chief manager for a day or

perhaps, the person may be suspended as the manager for some time due to a pending investigation.

Depending on circumstances, a person may become a member of new roles or may cease to be a

member of other roles.

17.1 Mandatory Access Control

Mandatory access control also called multilevel access control originated from the research in military

security models and deals with the problem of information ow control. The aim of MAC is to ensure

that information ows in one direction. Note that most attacks involve interaction between an attacker

(a hostile process or Trojan Horse) and a victim process. To thwart the attacks, it is enough to enforce

the ow of information in one direction.

17.1.1 Lattice Model

Denning [136] developed a formal model of MAC using lattices. In the model, there is a collection

of objects O (typically, �les, program variables, data items, records, etc.), a collection of subjects S

(processes) and a collection of security levels L. Security levels are assigned to both subjects and

objects.

� Security clearance is a level assigned to a subject.

� Security classi�cation is a level associated with an object.

Although levels are shared by both subjects and objects their interpretation is di�erent. The decision

about whether or not a subject s 2 S can access an object o 2 O is made after looking at the relation

between the clearance of the subject and the classi�cation of the object. If the clearance dominates

the classi�cation, the access is permitted, otherwise denied.

The key issue now is the de�nition of a relation � which can be used to compare two security

levels (clearance with classi�cation). If the relation � introduces a partial ordering so it is

391

� transitive, i.e. if a � b and b � c, then a � c and

� antisymmetric, i.e. if a � b and b � a, then a = b,

then the pair hL;�i constitutes a lattice. Lattices demonstrate many interesting properties. Any two

security levels `1; `2 2 L has a least upper bound `up such that `up dominates both `1 and `2 or simply,

`up � `1 and `up � `2:

Similarly, a greatest lower bound `down is the biggest element which is dominated by both `1 and `2

or

`1 � `down and `2 � `down:

There are also two distinguished elements: the largest and the smallest in the lattice.

Consider the security levels L for the case when users are working on di�erent projects and they

(their processes) will need to access objects (data) with di�erent sensitivity levels: top secret (TS),

secret (S), con�dential (C) and unclassi�ed (U). There is a natural ordering among the sensitivity

levels, namely, TS > S > C > U . It is obvious that for any project, there is a speci�c collection of

necessary objects so for each project, there are corresponding clusters of objects called compartments.

Let the collection of object sensitivity be R = fTS; S;C; Ug and the collection of compartments be

T . Then L = R � T and a security level ` 2 L is a pair of (`R; `T) where `R 2 R and `T 2 T . A

relation � can be de�ned as

(` � `
0), (`R � `

0
R) and (`T � `

0
T)

for `; `0 2 L. The relation can be used to control the access. A subject s 2 S with its clearance `s 2 L

is granted access to an object o 2 O with its classi�cation `o if and only if

`s � `o

If this happens we say that the subject s dominates the object o or simply s � o. Note that the

comparison of subject and object is performed using their labels (security levels).

Consider an example. Given a computer system which is working within a university environment.

Let S = fs1; s2; s3g and O = fo1; o2; o3g. Security levels are de�ned as L = R� T where R de�nes

information sensitivity levels R = fTS; S;C; Ug with the order TS > S > C > U and T is a collection

of the following compartments: �; �; ; �. The compartment � consists of all objects related to student

data, � { to academic sta�, { to visiting scholars, � { to executives of the university.

Assume the following clearance levels:

s1 $ (TS; T);

s2 $ (S; f�; �; g);

s3 $ (C; f�; g):

The notation s2 $ (S; f�; �; g) reads that s2 has the clearance on the level S and can access objects

from �, � and compartments. The information classi�cation levels are:

o1 $ (U; f�; g);

o2 $ (TS; f�; �g);

o3 $ (S; f�; �g:

The object o3 is classi�ed on the level S and is stored in two compartments � and �. Denote that

the clearance level assigned to s as (sR; sT) and the information classi�cation level assigned to o as

(oR; oT). The relation � can be de�ned as follows:

(s � o), (sR � oR) and (sT � oT):

392

The lattice hL;�i has two distinguished elements. The smallest is (U; ;) and the largest is (TS; T).

The subject s1 can access all objects as its label equals to the largest element in the lattice. The

subject s2 can access o1 and o3. The subject s3 is permitted to access o1 only.

17.1.2 The Bell-LaPadula Model

Bell and LaPadula [20] introduced a simple model for the information ow control which can be

considered as a special case of the general lattice model. The collection of subjects is S and objects

{ O. The security levels are simply sensitivity levels or L = R = fTS; S;C; Ug with the order �. A

request generated by a subject is granted if the information ows from lower security levels to higher

security levels. The model concentrates on two access permissions: read and write. Note that when

� a subject reads an objects, the information ows from the object to the subject or

s
r
 o;

� a subject writes into an object, the information ows from the subject to the object or

s
w
! o:

It is not di�cult to conclude that a subject s1 with low clearance should be allowed to write into an

object o1 with high classi�cation and a subject s2 with high clearance should be permitted to read

object o2 with low security classi�cation. If the two subjects are happened to be the same; s = s1 = s2,

then we have

o2
r
! s

w
! o1:

The rules for information ow control are formulated as follows:

1. simple security property { a subject can read information from an object if the clearance level

of the subject dominates the security classi�cation of the object,

2. ?-property { a subject can write into an object if the clearance level of the subject is dominated

by the security classi�cation of the object.

In other words, the simple security property indicates that read down property while the ?-property

is termed as write up property.

The existence of so-called covert channels makes possible the information to ow in prohibited

directions. Consider an example. Assume that there are two subjects with di�erent security clearances.

Two subjects may conspire to create a covert channel which will be used by the process sL with lower

security clearance to read some information from the process sH with higher security clearance. Both

processes can agree before hand on an objects which is rightfully accessible for both of them. Process

sL can write into the objects and sH can read it. Every time sH wants to communicate a single bit to

sL, sH puts or releases read lock on the object. sL at the agreed instance of time attempts to write

into the object. If the attempt

� succeeds, sL reads a covert bit 1 (the object is not locked),

� fails, the covert bit is 0 (the object has been locked by sH).

In general, the elimination of covert channels is expensive. In addition, the progress in hardware

causes that covert channels become faster.

393

Table 17.1: An access matrix

o1 = s1 o2 = s2 o3 = s3 o4 o5

s1 wait read read, write

s2 signal execute send, receive delete write

s3 control signal, wait control execute read

17.2 Discretionary Access Control

Discretionary access control assumes that the owner of an object controls access permissions to it. It

is in the owner discretion to assign access permissions to objects. Most of access control models use

a matrix to describe the current protection state.

17.2.1 Access Matrix Model

Lampson [295] introduced the access matrix model for DAC. The model was extended by Graham

and Denning [218]. The core of this model is a matrix whose rows are indexed by subjects S and

columns by objects O. A single matrix entry (s; o) contains all access permissions held by the subject

s to the object o. Usually, the collection of objects contains all subjects or O � S. The access matrix

describes the current protection state de�ned by the pattern of permissions in the matrix entries. An

example of an access matrix is given in Table 17.1. For instance, s1 is permitted to read the object

o4. The subject s3 can execute the object o2 which is, in fact, the subject s2.

Since the contents of the access matrix reect the current state of protection privileges in computer

system, it must be changed whenever a new privilege has been granted to a speci�c subject or an

existing one has been removed from a speci�c matrix entry. To modify protection state, Graham and

Denning [218] identi�es the following collection of protection commands:

� Create object() { create an object (or a subject). Note that O � S.

� Delete object() { delete an object (or a subject).

� Grant permission(�; si; oj) { grant the permission � to the subject si for object oj.

� Delete permission(�; si; oj) { delete the permission � to object oj held by the subject si.

� Transfer permission(�; oj; si) { for the speci�ed object oj , the command allows one subject

to transfer permission � to another subject si.

� Read() { display the contents of selected entries of the access matrix.

Create object() can be called by any subject sj to create either an object or a subject. The

creator sj becomes the owner of the object onew (subject snew) and has exclusive rights to control

the distribution of permissions to that object (subject). In e�ect, a new column onew is added to the

matrix with the owner in the entry (sj ; onew) if the object is passive. If, however, the new object is

active, a new column onew = snew and a new row snew is added to the matrix. The entry (sj ; onew)

contains the owner permission and the entry (snew; onew) { the control permission.

Delete object() is reverse to Create object(). The command can be invoked by the owner of

the object oj (subject) only and it causes that the object oj ceases to exist. This implies that the

corresponding column (in the case of passive object) or both the corresponding column and row (in

the case of active object) are removed from the matrix.

394

Grant permission(�; si; oj) can be executed by the owner of the object oj and it grants the

permission � to the subject si. Granted permissions must be di�erent from the owner permission.

Delete permission(�; si; oj) may be executed in two situations. The owner of the object oj can

delete any permission from any entry of the access matrix column oj . A subject sk which controls si

(the entry (sk; sj) contains the control permission) can remove any permission from any entry of the

row sj .

Transfer permission(�; oj; si) involves two subjects sk which intends to transfer the permission

� and executes the command and si which is a grantee to whom the permission is to be assigned.

The command is executed only if the subject sk has a copy ag associated with the permission �

(denoted by �
�). In other words, if a matrix entry (sk; oj) contains �

�, the subject sk may transfer

the permission � to si.

Read() allows a subject to read current entries of the access matrix.

Needless to say, any choice of permissions and protection commands is to some extend arbitrary.

There is a natural tradeo� between protection and openness of computer resources. If we accept a very

limited set of protection commands with a small number of possible permissions, we will presumably

get better protection but sharing computer objects will be very restricted. Eventually, if the collection

of protection commands allows to create and destroy objects only, then we get a protection mechanism

which provides complete isolation among subjects. The mechanism is extremely inexible but it is

secure.

Protection commands directly inuence the way subjects may share their resources. There are

three main levels of sharing:

1. no sharing (complete isolation),

2. sharing data objects,

3. sharing untrusted subjects.

The �rst and second level can be implemented using the access matrix model presented above. The

third level of resource sharing requires new protection commands. Consider the following scenario.

Given three subjects s0, s1 and s2. The subject s0 owns the subject s2 and the subject s2 uses an

object o according the some permission �. For some reasons, the subject s0 needs to share with s1 the

object accessible to s2. Although s1 and s0 may trust each other, s1 may not trust s2. This problem

was formulated by Graham and Denning [218] and can be solved by introduction of a new indirect

access permission. The permission indirect is de�ned as follows:

� Given three subjects: the subject s2, its owner s0 and the acquirer s1.

� The indirect access to s2 can be granted to the acquirer s1 by the owner s0 only.

� The acquirer s1 can access all objects which are accessible to s2 in the same way as the subject

s2 (in other words, s1 holds the same collection of permissions as the subject s2).

� An indirect permission can be revoked by the owner s0 at any time.

In general, the more exible access control the more protection commands have to be de�ned.

Unfortunately, some access control problems cannot be solved using the access matrix model. For

example

1. if a permission �
� is transferred from one subject to another, then the second subject can

propagate the permission � with no agreement of the �rst one,

395

2. the read permission allows a reader to copy the object and to grant friend subjects the read

access to the copy,

3. if two or more untrustworthy processes conspire, they may exercise their permissions collectively,

17.2.2 The Harrison-Ruzzo-Ullman Model

The access control model de�ned by Harrison, Ruzzo and Ullman in [236] deals with the set of subjects

S, the set of objects O and the set of generic rights P which de�ne access permissions held by a subject

s 2 S to an object o 2 O. M is an access matrix with rows and columns labelled by subjects and

objects, respectively. An entry M (s; o) is a subset of P and de�nes access right of s 2 S to o 2 O.

There are six primitive operations opi which are used to modify the sets S and O together with

the entries of the matrix M . They are:

� enter r into M (s; o) { put an access right r into the entry (s; o) of the matrix M ;

� delete r from M (s; o) { remove an access right r from M (s; o);

� create subject s { create a new subject and append a new row and column to the matrixM

labelled by subject s with empty entries;

� create object o { create a new object and append a new column to the matrixM labelled by

subject o;

� destroy subject s { destroy the subject s and remove the corresponding row and column from

M ;

� destroy object o { destroy the object o and remove the corresponding column from M ;

Obviously, subjects do not have direct access to the primitive operations. Instead, they can be invoked

indirectly via the so-called protection commands. The generic form of a protection command is:

command c(X)

if r1 in M (s1; o1) and

r2 in M (s2; o2) and

...

rm in M (sm; om)

then

op1;

op2;

...

opn;

end

where X is a collection of formal parameters and ri 2 P for i = 1; : : : ;m.

A con�guration of a protection system is a triple (S;O;M) where the sets S and O are current

subjects and objects, respectively, together with the current access matrix M .

The UNIX access control mechanism allows to manipulate �les by providing protection commands

equivalent to the following ones.

396

command create file(s; f)

create file f;

enter own into M (s; f);

end

The command create file �rst creates a �le and adds a single column in the matrix M labelled

by f and puts the right own into M (s; f). The owner s of an object o can grant the read r access

right to a friendly subject s0 by invoking

command grant read(s; o; s0)

if own in M (s; o)

then

enter r in M (s0; o);

end

The owner s of an object o can withdraw the access right r from a subject s0 by invoking

command delete read(s; o; s0)

if own in M (s; o) and

r in M (s0; o)

then

delete r from M (s0; o);

end

Given an initial con�guration Q0 = (S;O;M) of the protection system and a collection of pro-

tection commands C = fc1; : : : ; cug, the protection state will change after application of a protection

command c 2 C. The evolution of protection states can be captured by the sequence of con�gurations

resulting by execution of protection commands (c1; c2; : : :), i.e.

Q0 `c1 Q1 `c2 Q2 : : :

We say that a protection system leaks access right r from a con�guration Q if a command c 2 C leads

to a con�guration Q
0 such that the access matrix contains r in some entry (or r 2 M (s; o)) which

previously did not contain it (or r =2M (s; o)).

A protection system is safe in respect to r if there is no con�guration Q which leaks r. This leads

us to the following decision problem [191].

Safety of �le protection systems

Instance: Given a protection system with set of subject S, set of objects O, set of access rights P and

collection of protection command c 2 C.

Question: Is there any sequence of commands from C and an access right r 2 P such that the system

leaks r ?

It turns out [236], this problem is undecidable or in other words, there is no algorithm which could

be used to solve it. Typically, undecidability appears whenever the problem in hand has too many

free variables and parameters. If we restrict the form of commands so they consists of no more than a

single primitive operation, then the safety problem becomes NP-complete. If additional restrictions

are imposed, then the resulting problem may be solvable in polynomial time.

397

17.3 Role Based Access Control Model

An alternative to the MAC and DAC access control models is the role based access control (RBAC)

model. The RBAC model streamlines the access control by �rst de�ning roles which are given access

permissions to objects and later assigning roles to subjects. In most organisations and institutions,

the access permissions do not depend on who the persons are but rather where their positions are

in the management hierarchy. Normally, the position uniquely identi�es a collection of jobs which

is associated with it. RBAC allows for a nice packaging of access control permissions necessary to

perform speci�c roles. Roles are treated as subjects whose identity is unde�ned until speci�c persons

assume them.

The RBAC model allows to de�ne relations among roles and users. As argued in [443], two roles

may be mutually exclusive so they cannot be assumed at the same time by a single user. Roles may

exhibit a hierarchical structure in which a higher level role inherits permissions of lower level roles.

RBAC directly supports the following security policy principles [443]:

� Minimum privilege { a job de�nes a collection of objects (resources) and access rights which are

necessary to perform duties associated with the job.

� Separation of duties { if the collaboration of two users is required to complete a job, it is possible

to enforce this by de�ning two mutually exclusive roles for the job.

� Data abstraction { low-level access rights (such as read, write, delete, etc.) can be encapsulated

into high-level access rights (such as send invoice and receive invoice).

Sandhu, Coyne, Feinstein and Youman in [443] presented a general RBACmodel with role hierarchy

and constrains. Given the set of users U , the set of access permissions P, the set of roles R and the

set of sessions S. A user u 2 U is identi�ed with a person. A role r 2 R is a well de�ned job function

which describes the duty and authority imposed on the person who takes on the role. A session s 2 S

is an assignment of di�erent roles to a given user. Users can start up a session during which they

assume one or more roles they belong to. A session is always associated with a single user who has

started it up. The same user can run many sessions concurrently. The notion of session is equivalent

to the notion of subject in the DAC model. A user simply accesses a subset of all roles he or she

belongs to. The RBAC model uses the two following relations:

1. a permission-to-role assignment PA � P � R and

2. a user-to-role assignment UA � U �R.

There are two functions:

1. user: S ! U { each session s is assigned to a single user user(s),

2. roles: S ! 2R { each session s is assigned to a subset of roles, i.e. roles(s) � frjuser(s); r) 2 UAg.

In e�ect, the session s has the permissions
S
r2roles(s)fpj(p; r) 2 PAg.

The basic RBAC model includes the above de�ned components (U ;R;P; PA; UA; user(); roles()).

Consider the set of roles R. If the roles are partially ordered, i.e. there is a relation RH � R�R

with the role hierarchy imposed by �, then the role() functions can be more conveniently de�ned

knowing that if a user belongs to a role r, then he or she must belong to all roles r
0 which are

dominated by r or r � r
0. Constraints can be imposed on the assignments PA and UA and on the

roles and user functions. For more details refer to [443].

398

17.4 Implementations of Access Control

Now we are going to consider implementation of access control. The starting point is always a security

policy which needs to be enforced by a properly designed access control mechanism. Depending on

the environment in which the mechanism is to be incorporated, the designer considers which of the

known access control mechanisms could be adopted as the base for implementation. Let us review

some of implementations. For alternative discussions on the subjects refer to [213, 217, 463].

17.4.1 The Security Kernel

This implementation is based on the so-called reference monitor concept [295]. The reference monitor

is an abstract system which:

1. mediates all access requests,

2. functions correctly, and is tamper-proof.

Any access request must go through the reference monitor which grants or denies the access. There

must be no way to bypass the monitor. The monitor must work correctly and the correctness must

be veri�able. It must also be tamper-proof so it must be impossible to modify its functions by an

unauthorised persons or processes. Note that the reference monitor concept is policy neutral { it can

implement any access control policy (MAC, DAC, RBAC).

It is no surprise to learn that most access control mechanisms based on the reference monitor

concept are incorporated as an integral part of operating system kernel [217]. This part is called

security kernel. The Orange Book [145] de�nes the Trusted Computing Base (TCB) which includes all

protection mechanisms (including the security kernel) which enforce security policy (including access

control policy).

To protect the operating system from untrusted processes, the computer system must have at least

two distinct modes of operations:

� user mode and

� monitor mode.

All components of OS are run in the monitor (supervisor) mode. All user processes are executed in

the user mode. To enforce two-mode operation, the underlying hardware must have an additional bit

called bit mode which indicates the current mode { \0" for monitor mode and \1" for user mode. The

Intel 80386/486 microprocessors support four modes of operation (protection rings) with two mode

bits.

� The kernel is assigned the mode \0".

� The remainder of the operating system { mode \1".

� I/O routines { mode \2".

� User processes { mode \3".

Clearly, the most privileged mode is \0" and the least { mode \3".

Modes of operation alternate from monitor to user and from user to monitor. The switch from

monitor to user mode is safe as long as the kernel works correctly. The switch from user to monitor

mode must be controlled. To facilitate this, users (or more precisely their processes) are allowed to

switch to monitor mode indirectly invoking privileged instructions. Privileged instructions can only be

399

run in monitor mode. When a user invokes a privileged instruction, the hardware does not execute it

but generates a trap to the operating system. The operating system starts running from the address

given in the trap vector. The address determines the place where the corresponding trap service

routine is.

Assume for a while that a user is able to modify the contents of the trap vector. In this case, a

user process may replace the address of the trap service routine by an address from the user program

space. When the trap occurs, then the hardware switches to the monitor mode and transfers control

to the user process. In e�ect the user process is run in the privileged mode [463].

As a matter of principle, the operating system never allows user processes for direct access to I/O

routines. It also means that all I/O routines are part of the operating system and are run in monitor

mode. Whenever a user process needs to print, it issues a privileged I/O instruction which traps to

the operating system or more precisely to the proper I/O routine.

As the CPU executes a user process, all the CPU references to main memory must be checked

whether they are within the address space of the program in execution. Any attempt to access

instructions of other processes should result in an error and trap to the operating system. To implement

memory protection, a hardware support is again required. The hardware consists of two registers and

additional comparison gates. One register stores the base (the memory address where the currently

executed program starts). This is the base register. The other also called the limit register indicates

the size of the range. Both registers uniquely identify the (legal) address space of the process.

Assume that the CPU is running a process whose code resides in the memory [a;A] where a is the

smallest address and A is the largest address of the process. The current contents of the base register

is a and the limit register contains a + A. When the CPU tries to access a memory address x, then

the hardware

� �rst checks whether x � a. If so, go to the next step. Otherwise, it traps to the operating

system,

� next compares whether x � a +A. If the check holds, the reference is valid. Otherwise, a trap

to the operating system is generated by the hardware.

Needless to say that the kernel only can load to the base and limit registers.

The most precious resource in computer system is the CPU. Once the control over the CPU is

passed to a user process, there is no way to take it back until the process either voluntarily releases

it or has generated an interrupt. This may never happen if, for example, the process has entered an

in�nite loop. To prevent the CPU from being taken over by a single process, a piece of hardware called

timer is necessary. The timer can be accessed by the operating system only. Before a user process

gets control over the CPU, the timer is initialised to the amount of time for which the process will

be allowed to run. Every clock cycle decreases the contents of the timer until eventually the contents

becomes zero. This causes an interrupt and switch to monitor mode.

17.4.2 Multics

This section is based on the description of Multics given in [391]. The Multics system is an operating

system whose access control shows many similarities with the Bell-LaPadula model. In fact, the

Bell-LaPadula model evolved from the Multics access control mechanism. Multics is a fully edged

operating system and its description goes beyond the the scope of the book. We give a brief account

of the Multics access control.

All resources are organised in hierarchy of concentric rings of protection. The innermost ring is

D0. The outermost ring is DN . A single ring Di constitutes a protection domain. D0 is the most

400

privileged and DN is the least privileged domain. Multics treats all resources uniformly as segments

(�les) arranged into a hierarchical �le system. Executable �les are subjects (or procedures). Passive

objects are data �les (data segments). The relation between the protection rings and the hierarchy of

�les is de�ned by the security policy. Assume that a process s 2 Di invokes a process s0 2 Dj. The

general rule for access control is:

� if j � i, the access is permitted { a more privileged process s can always call a less privileged

one,

� if j < i, the access is either denied or controlled, i.e. it is possible via so-called entry points or

gates.

The gate notion is a generalisation of system calls. Any attempt by s 2 Di to invoke s0 2 Dj; when

i > j, will be treated as an error and will generate a trap into s0. The process s0 may deliver a service

to s only if the process s has suitable permissions.

Multics de�nes two possible implementations of access control using:

1. access brackets,

2. call brackets.

Instead of a single ring, a resource is assigned a band of rings (k; `) where k � `. The pair (k; `)

constitutes the access brackets of the resource.

Assume that a process s 2 Di wishes to access a data �le f with its access brackets (k; `). The

access control rules are:

� if i � k, then the access is granted;

� if k+1 � i � `, then reading/execution access is granted while writing/append access is denied;

� if i > `, the access is denied.

If the process s 2 Di wishes to access a process s
0 with its access brackets (k; `), then the access

control rules are slightly di�erent and are:

� if i < k, then the access is granted and a ring-crossing fault is induced;

� if k � i � `, then the access is granted;

� if i > `, the access is denied.

Note that in the above access control, if i > `, all access is denied. To relax this, Multics introduced

call brackets. A process is assigned three integers (k; `;m) where (k; `) is access brackets and m is call

bracket (or range). Call brackets are de�ned for subjects (procedure segments) only. The access rules

are as above with the following addition:

� if ` < i � m, then access is granted via speci�c entry points (gates),

� if i > m, the access is denied.

The Multics project was aiming to design a secure and e�cient multi-user operating system. The

access control was an integral part of the overall security. The ring structure of protection domains

although conceptually elegant, puts restrictions on access control. Any subject in an inner ring Di

can access any object from all outer rings Dj for i < j no matter whether the subject needs the object

or not. In other words, the need-to-know principle is not supported in Multics.

401

17.4.3 UNIX

The UNIX access control evolved from Multics and some of Multics features are still present in UNIX.

One of them is the tree structure of the �le system. There are two basic types of elements in the �le

system: directories and �les. Files can be further classi�ed into data �les and executable �les. The

tree structure is relaxed by the presence of the so-called links which are pointers to �les in some other

sub-directories. The collection of permissions supported by UNIX are write (w), read (r) and execute

(x).

Users are assigned their home directories. It is the user responsibility to build and maintain their

own sub-tree rooted in the user home directory. This responsibility includes permission assignment

to all �les owned by the user. Subjects in UNIX are de�ned into three broad categories:

1. owner,

2. group the owner is in,

3. universe (all other users).

Listing of a typical subdirectory is given in Figure 17.1. To descibe access permissions to a �le or

$ ls -l
drwxr-xr-x 1 josef cs-uow 3552 Jun 16 14:06 LIBRARY

-rw-r----- 1 josef cs-uow 2349 Jun 16 08:43 form

-rwxr-xr-x 1 josef cs-uow 3292 Jun 18 13:05 shell script

Figure 17.1: Listing of �les in UNIX

directory, it is enough to give collection of triplets of the form rwx to the owner, the group and the

universe. So each �le may have up to 9 permissions. For instance, the form �le can be read and

written by the owner (this is indicated by rw-), can be read by the group (see the next triplet r--),

and is not accessible to the universe (the last triplet ---). By the way, the �rst character in the listing

speci�es the type of �le (data �le indicated by - or directory denoted by d). To grant or deny access

to a �le, the UNIX system checks whether the user who asks for access

� is the owner of the �le. If she is, then UNIX considers the owner permissions,

� belongs to the group. If she does, then UNIX compares the requested access with the group

permissions,

� otherwise, the UNIX compares the requested access with the universe permissions.

UNIX allows a single user to be a member of di�erent groups. In System V, the command newgrp

allows users to switch between groups. The owner of a �le is always able to set permissions to the �le.

The command chmod can be used for this purpose. Also the ownership of a �le can be transferred by

the current owner to other user by using the chown command.

While creating new �les (by copying, editing or running a process which creates new �les), UNIX

assigns permissions according to default permissions. They can be controlled by the umask command.

To modify the default to the requested permission pattern, it is enough to call the command umask

abc where a,b,c are integers from 0 to 7. So if you execute umask 037, then

owner group universe

rwx rwx rwx

000 011 111

rw- r-- ---

402

By default, any new �le created by the owner gets full range of permissions speci�ed by the application.

If the application is an editor, this is typically rw-. for executable �les, the default is rwx. The group

can read the new �le, i.e. their permissions are r--. The universe gets no access or ---.

Unlike data �les, directories play a di�erent role { they are used to partition the �le system into

sub-trees and keep information about them (who can use them and where they are stored on the

disks). Consequently, a directory is a list of �lenames together with addresses to their inodes where

the information about their owners, permissions and location on the disks is kept. Clearly, access

permissions for directories are de�ned di�erently and [167]

� r-- means that the contents of directory can be listed,

� -wx means that �les in the directory are allowed to be renamed or deleted,

� --x means that �les in the directory are permitted to be executed.

The UNIX access control uses owners, groups and the universe to de�ne access permissions. This

resembles a three ring structure { the owner is in the center, the group creates the �rst ring and the

universe sits in the outer ring. The current list of permissions to an object (�le) may be assigned

independently by the owner. Some obvious restrictions in access control is a weak granulity of the

group and the universe. If the owner of a �le wishes to allow sharing it with another user, then the

owner must allow the same access to the group the user is in. UNIX also de�nes the all-powerful

superuser who is typically the administrator responsible for maintainance and smooth operation of

the system. More details about UNIX and its security can be found in [167].

17.4.4 Capabilities

Consider an access matrix from Section 17.2.1 with rows and columns indexed by subjects and objects,

respectively. Note that the access matrix normally is sparse as most objects are not accessible to many

subject. It is, therefore, reasonable to split the matrix into smaller and more manageable units. One

of the possibilities is to assign to each subject the corresponding row of the access matrix. For a given

subject (or protection domain), the capability list speci�es the collection of accessible objects together

with permissions to them. A capability is an object representation usually in the form of its name or

identi�er together with permissions.

It is said that a subject can access an object if the subject possesses an object capability. Capa-

bilities are protected objects themselves and they must be protected against modi�cation by users.

There are three basic solutions which have been used to protect capabilities [492]:

� tagged architecture { capabilities are stored in memory with a tag bit switched on indicating

that it can be modi�ed by the kernel only,

� isolation from users { capabilities are kept by the operating system so user can refer to them

only,

� cryptographic techniques { users are allowed to hold capabilities but any modi�cation will be

detected by the operating system.

A capability-based access control has an obvious advantage { it is easy to decide whether to grant or

deny the access as subjects must present valid capabilities. Note that it is the subject responsibility

to store and maintain capabilities. Operating system generates and veri�es capabilities. For a given

object, however, it is di�cult to

� determine which subjects are allowed to access it and what permissions they have to the object,

403

� revoke permissions to the object.

The above mentioning di�culties relate to the fact that capabilities are scattered around di�erent

subjects.

Let us illustrate how capabilities can be used for access control. The Amoeba distributed operating

system was designed at the Vrije University [357, 491]. The Amoeba access control is capability based.

The format of capabilities in Amoeba is shown in Figure 17.2. The �rst two �elds uniquely identify

Server Port Object Permissions Check

Figure 17.2: The Amoeba capability

an object. They, in fact, constitute the object name. The last two are used for access control. The

permission �eld is a binary string (8-bit long) which speci�es the collection of operations allowed to be

performed by the capability holder. The check �eld (48-bit long) is used for validation of capabilities.

The integrity of a capability is enforced cryptographically.

The following operations on capabilities are de�ned in Amoeba.

� Creation of an owner capability. This operation is performed when a new object is created.

The owner of the object asks the server (who is a part of OS) to issue an owner capability. In

response, the server creates the capability with all permission bits turned on and with a random

string in the check �eld. The information about the capability is also stored by the server in the

�le tables for further references. In e�ect, the owner holds a valid capability and the server has

registered the new capability.

� Veri�cation of an owner capability. The holder of a capability presents it to the server who

retrieves its registration information. Next the server compares the registration information

with this provided by the capability.

� creation of a derivative capability. Assume that a user holds a valid owner capability and asks

the server to create a restricted capability with the permission bit pattern p. First the server

veri�es whether the capability held by the user is valid. If it is, the server takes the random

check number x from the owner capability adds exclusive-or to p and the result is input to a

one-way function f(). The result is the new check string which is returned to the user. In other

words, the new check string x0 = f(x � p) and the matching permission pattern is p.

� veri�cation of a derivative capability. Given a derivative capability with the permissions p and

the check value ~x. A holder of a derivative capability asks the server for veri�cation. The

server retrieves the information about the owner capability, takes the check value of the owner

capability x adds to it the permissions p from the derivative capability and calculates the valid

check string x0 = f(x � p). If the value x0 is equal to ~x, the capability is considered valid.

Note that capabilities resemble tokens. The access is granted when a user is able to present to the

server a valid capability. The resitance of capabilities against forgery rests on the di�culty of reversing

the one-way function and the length of the check �eld.

The Amoeba access control has the following interesting features:

� garbage collection { when an object is no longer accessible because all capabilities have been

lost. This is done by removing all objects which have not been used for the last n garbage

collection cycles,

404

� revocation of access { the holder of a capability can always propagate copies of the capability.

To revoke the access, the owner can ask the server to invalidate all capabilities by changing the

check number stored in the �le table.

� controlled propagation of capabilities { a holder of a derivative capability can ask the server to

create a capability with more resticted permissions.

There are many operating systems whose access control applies capabilities. Hydra [530] allows

users to de�ne their own (access) operations using the basic ones provided by the system. Those new

permissions are called auxiliary rights. The CAP system [367] uses two types of capabilities: data and

software. Data capabilities are standard permissions provided by the system (read, write, execute).

Software capabilities, on other hand, allow users to de�ne their own access operations.

17.4.5 Access Control Lists

An alternative to capabilities is the concept of access control lists (ACL). Instead of slicing the access

matrix by rows, the matrix is divided by columns. So every object is asssigned its ACL which speci�es

who (which subject or protection domain) and how (access permissions) can use the object. This idea

have been adopted in UNIX { see Section 17.4.3.

Consider how ACLs are implemented in the DCE distributed operating system. DCE which stands

for Distributed Computing Environment was a project initiated by a group led by IBM, DEC and

Hewlett Packard. The goal of the project was to develop a version of UNIX for distributed environment

[429, 491].

The DCE operating system follows the client/server paradigm. Users are identi�ed by their client

processes and services by server processes. All computing resources are clustered together into so-

called cells. A cell typically covers resources of a department or division so can be identi�ed by

resources hooked to a single LAN.

Unlike in capability-oriented access control where the fact of possessing a valid capability is enough

to grant the access, ACL-oriented access control requires identi�cation of users (subjects) who issue

access requests. The indenti�cation used in DCE are based on the Kerberos system. For identi�cation

purposes, users are given so-called privilege attribute certi�cates (PAC) which are simply cryptograms

of the message which includes: the user identity, group and organization memberships. ACLs are

protected entities kept by ACL managers. ACL managers are privileged library routines present in

every server.

Objects are divided into two categories: simple objects such as �les, and complex objects called

containers such as directories. The collection of permissions is an extension of those present in UNIX

and includes:

� read (r),

� write (w),

� execute (x),

� change-ACL (c),

� container-insert (i),

� container-delete (d)

� and test (t).

405

The only not-selfexplanatory permission is test. The test permission allows to check whether or not

the value stored in the protected object is equal to some value without revealing the protected value.

For instance, a user who has t permission to the password �le, can verify whether the password in

hand is equal to the password stored in the �le without getting any additional information about the

stored password. An example of ACL is given in Figure 17.3. The �rst row indicates the type of the

sample data

/: : :/C=AU/O=UOW/OU=ITACS

user:josef:rwxcidt

user:jennie:rwxidt

user:thomas:rwxidt

group:staff:rxt

other:t

foreign user:john@/: : :/cs.qut.edu.au:rwxt

foreign group:staff@/: : :/cs.qut.edu.au:rt

Figure 17.3: An example of ACL in the DCE system

object. The second row identi�es the default cell. Next the table speci�es permissions of three users

and of the group staff existing in the cell. All other local users can test the object (row 7). Finally,

there are two foreign subjects (user and group) whose permissions are given in the last two rows.

Assume that a client (user) wishes to access a �le. First the client contacts the suitable server

and presents her PAC together with her access request. The server decrypts the PAC, retrieves her

identity and memberships and looks up the appropriate ACL. If her name or groups she belongs

appear on ACL, the server check permissions and grants the access if the request is consistent with

the permissions. Otherwise, the request is denied.

The owner (creator) of an object typically retains all permissions. The DCE system provides

also the ACL editor which can be called by clients to create new objects and subjects, manipulate

the contents of ACLs, etc. Clearly, any call to the ACL editor is scrutinized against the caller's

permissions.

Windows NT provide another example of access control based on ACLs. Readers interested in this

subject are referred to the book by Gollmann [213].

Let us compare capabilities with ACLs. First consider how the access control is performed.

� Capabilities { access is granted if a valid capability is presented. The identity of the capability

holder is not veri�ed. The fact that a user holds a valid capability is enough to grant the access.

Capabilities, however, have to be protected against modi�cation.

� ACLs { access is granted to a user if the name of the user together with suitable permissions

appears on the object ACL. Every time users request access, they have to be identi�ed by the

operating system.

Capabilities seem to be more suitable for distributed environment. The protection mechanism and

naming can be merged making the access control more exible. Capabilities can be easier incorporated

into programming languages. On the other hand, ACLs o�er better protection as users are always

identi�ed before allowing the access. It is easier to keep track who have been using what objects.

Chapter 18

NETWORK SECURITY

First works on Computer Networks technology was initiated by the famous ARPANET project that

started in the late 1960s. The main focus at that time was the design principles and implementation

of communication networks. Unfortunately, the security aspect of communication was totally ignored

mainly because it was not perceived as a \real problem". The discovery of malicious software such

as viruses, worms or Trojan horses in the 1980s has changed the perception. In particular, computer

viruses have become the major security problem especially for personal computers.

The Chapter consists of two parts. The �rst one deals with the recent developments in Internet

protocol security. The second part investigates the nature of malicious software with the stress on

viruses.

18.1 Internet Protocol Security (IPsec)

The \discovery" of the Internet in the early 1990's by the public was very much related to a growing

popularity of the World Wide Web and its ever expanding applications. The computer network

infrastructure has been seen by some as a new vehicle for conducting trade and commerce in an

open manner, reaching millions of people connected to the Internet. These demands has brought to

the foreground the issues of security, and consequently, forced the designers of computer networks to

amend Internet Protocols so they provide con�dentiality and authenticity of messages.

Since the Internet spans the globe, crossing national boundaries, the issues of transborder data ow

and national security { from the defence and from the economic point of view { have also come to the

foreground. A computer network can be regarded as a single \super computer", whose hardware and

Figure 18.1: A typical computer network

406

407

software resources are distributed over a given geographic area. An especially important component of

this super computer is the communication network (see Figure 18.1) that connects computers together.

It is susceptible to illegal activity by unfriendly users. The large physical dimensions of the network

make it impossible to protect the network resources by physical security measures (see [112], [490],

[491]). The application of access control methods in the computer network has obvious limitations, for

example, they cannot be used to protect information that is being sent through the communication

network. The only class of protection methods which can be applied is the class of cryptographic

methods. It is worth noting that cryptographic protection does not exclude illegal user activity. Its

main bene�t is the protection of the computer network against the e�ects of such activity.

Recent advances in communications try to reconcile two seemingly impossible requirements: unre-

stricted global access to all communication end-points and isolation of some parts of the network. The

requested isolation is typically temporary and the con�guration of the network may uctuate from

time to time. This dilemma can be solved by designing two or more computer environments isolated

from each other. For example, this solution is often applied in military. One computer environment is

dedicated to military purposes while the other is integrated with the public Internet for unclassi�ed

information. Although quite e�ective, this solution is also expensive and in most institutions may not

be acceptable.

Firewalls can be deployed to control incoming tra�c to a protected site (or a local area network).

Modern �rewalls are fairly sophisticated combining an extensive range of tra�c control mechanisms.

The decision about whether the tra�c is friendly, unwanted or simply hostile, is made using variety

of message identi�cation techniques. Typically, �rewalls either allow the tra�c to pass or the tra�c

is blocked. Note that the con�dentiality aspect is ignored by �rewalls.

When �rst networks were constructed and suitable standards for Internet communication devel-

oped, the security aspect was overlooked. The Internet Engineering Task Force (IETF) tries to �x

this by development of new standards for secure Internet communications. For more details about

IETF see http://www.ietf.org. In November 1998, Network Working Group of IETF published their

request for comment RFC2401 [276] in which a security architecture for the Internet Protocol (IP) is

detailed. The Internet Protocol security (IPsec) is based on the following two protocols:

1. Authentication Header protocol (AH) and

2. Encapsulating Security Payload protocol (ESP).

The AH protocol provides integrity and authentication services while the ESP protocol delivers mainly

con�dentiality. These services are implemented on the network layer as speci�ed by the ISO OSI

reference model [491]. Being more speci�c, IPsec can be implemented as

� an integral part of the underlying Internet protocol (this is the case for IP version 6 or IPv6),

� an interface between the IP layer and the network driver. This is also called the bump-in-the-

stack implementation,

� a separate crypto engine. This is also called the bump-in-the-wire implementation.

18.1.1 Security Associations

A security association (SA) is a unidirectional secure channel which o�ers either con�dentiality (ESP

protocol) or authenticity (AH protocol). If both con�dentiality and authenticity are required, two

security associations, say SAESP and SAAU , must be used. The sequence in which these two asso-

ciations are applied is important. Always the unprotected (clear) message (packet) is �rst input to

408

SAESP and later the result is sent to SAAU . In other words, if the clear message is M then M !

SAESP ! SAAU . Note that this order of channels saves time and computing resources when the

receiving side deals with corrupted packets { they are discarded after failing the authentication checks

(which is typically less expensive than decryption). Note also that to establish a two-way channel with

con�dentiality and authenticity, one would need four security associations. Each security association

is identi�ed by the triple: destination IP address, security parameter index and security protocol used

(either AH or ESP).

A security association may be applied in ether tunnel and transport mode. In the tunnel mode, an

SA takes an incoming datagram and encapsulates it in a new datagram with a new header. This mode

is used for con�dentiality services when the incoming datagram is encrypted and the new header is

added to enable the destination point to decrypt it. The transport mode typically leaves the basic

structure of a datagram intact with some extra �elds attached to it.

In other words, the tunnel mode resembles a postal service in which a post card is put into an

envelop at the sender's post o�ce. The destination address on the envelop indicates the post o�ce

of the receiver. On the arrival at the receiver's post o�ce, the envelop is removed and the postcard

delivered to the destination address. The transport mode can be compared to registered mail service.

A post card is time-stamped and a number attached to it. The card still looks the same but some

extra information is attached to it.

18.1.2 Authentication Header Protocol

The AH protocol (detailed in [277]) provides authentication of IP datagrams. The Authentication

Header is placed directly after the IP header and is structured as shown in Table 18.1. The Next

Table 18.1: Authentication Header

Next Header Payload Length Reserved

Security Parameters Index (SPI)

Sequence Number Field

Authentication Data

Header �eld is 8 bits long and speci�es the type of the next payload which follows the AH. The

Payload Length (8 bits) �eld gives the length of the AH in 32-bit words. The 16-bit Reserved �eld is

dedicated for future usage. The SPI �eld (32 bits) uniquely identi�es the security association. The

Sequence Number indicates position of the datagram within the stream of packets sent via the security

association. This number is used to prevent the reply attack. The Authentication Data contains the

Integrity Check Value (ICV) which is used by the receiver to verify the authenticity of the packet.

The ICV is, in fact, a message authentication code (MAC) generated using

1. a keyed hashing based on a private-key cryptosystem (such as DES or LOKI),

2. a collision-free hashing algorithm such as MD5 or SHA-1,

3. a signature based on a public-key cryptosystem.

For point-to-point communication, hashing is recommended while for multicast communication sig-

natures are preferred. In general, the ICV is computed for all immutable parts of the packet. In

409

particular, these parts include: IP header �elds which are immutable or those whose values can be

predicted, the AH header and the upper level protocol immutable data.

The AH provides also protection against the reply attack. Any packet transmitted for an active

SA has a unique (fresh) sequence number. The sequence number inserted into AH is always initialised

to zero at the initialisation stage of a new SA and incremented by one for each consecutive datagram

{ the �rst packet is assigned 1 as its sequence number. As the sequence number �eld contains 32 bits,

it is possible to send 232 packets before the sequence number will cycle. To prevent cycles, the SA

with sequence number set to zero (�rst full cycle is completed) causes the SA to be closed and a new

SA is created.

It is interesting to note that a SA with the AH protocol only is typically used in the transport

mode. If, however, it is used in combination with the ESP protocol, it can be applied in either

transport or tunnel mode.

18.1.3 Encapsulating Security Payload Protocol

The ESP protocol is described in [278]. Unlike the AH protocol, the main service delivered by the

ESP protocol is con�dentiality of transmitted data. A SA based on the ESP protocol can be used in

either transport or tunnel mode { see Table 18.2.

Table 18.2: Datagram structure for (a) transport and (b) tunnel modes

IP Header Datagram Payload

(a) IP Header ESP Header Datagram Payload ESP Footer

(b) New IP Header ESP Header IP Header Datagram Payload ESP Footer

The ESP packet format is given in Table 18.3. The �rst two �elds: SPI and Sequence Number create

the ESP header. The padding section together with Pad Length, Next Header and Authentication

Data constitute the ESP footer. The SPI (32 bits) identi�es uniquely the security association of

Table 18.3: ESP Packet Format

Security Parameters Index (SPI)

Sequence Number Field

Datagram Payload

Padding

Pad Length Next Header

Authentication Data

this datagram. For the �rst datagram sent via the SA, the Sequence Number (32 bits) is initialised

to 1 and increased by one for each consecutive packet. If the sequence number overows (is equal to

410

232), then this SA is closed and the remaining packets are sent over a new SA. This �eld is used for

reply prevention. The Datagram Body (also called Payload Data) contains the data carried by the

original packet. The Padding is necessary to adjust the length of the encrypted data to be a multiple

of 32-bit words. The padding cannot be longer than 255 bytes. The Pad Length (8 bits) speci�es

the number of bytes in the Padding �eld. The Next Header (8 bits) indicates the type of data in the

Datagram Body �eld. The Authentication Data �eld contains a MAC (or ICV) calculated for the

whole datagram (excluding the Authentication Data).

The ESP protocol is designed for private-key encryption (such as DES) as it is typically faster

than its public-key counterparts. The authentication is supported by the same algorithms as in the

case of the AH protocol.

18.1.4 Internet Key Exchange

The Internet Key Exchange (IKE) is described in [235]. Two parties called Initiator and Responder

who wish to establish a common SA (secure channel), call the Internet Security Association Key Man-

agement Protocol (ISAKMP). The protocol runs in two stages. In the �rst stage, two peers negotiate

a common secure channel further called a ISAKMP Security Association or a ISAKMP SA for short.

The negotiated attributes include: encryption algorithm, hashing function, authentication method,

and the algebraic group for exponentiation (Di�e-Hellman key agreement). Additionally, a pseudo-

random bit generator can be negotiated. An ISAKMP SA is a bi-directional channel and provides

both con�dentiality and authenticity. Note that a normal SA used to transmit data, is unidirectional

and can provide either authentication or con�dentiality. In the second stage, the ISAKMP SA is used

to exchange key material for a SA.

The key material SKEYID necessary to establish the ISAKMP SA is derived di�erently depending

upon an authentication method used. The collection of options is

SKEYID = PBG(NijNr ; g
xixr) for signatures,

SKEYID = PBG(H(NijNr); CKYijCKYr) for public-key encryption,

SKEYID = PBG(key;NijNr) for pre-shared keys,

where Ni; Nr are payloads of nonce datagrams generated by the initiator and responder, respectively,

g
xi ; g

xr are public keys of the initiator and responder, respectively, gxixr is the Di�e-Hellman key

(common for both parties), CKYi and CKYr are tokens (also called cookies) for the initiator and

responder, respectively. The tokens provide a source address identi�cation of two parties. The pair

of tokens uniquely identi�es the currently valid cryptographic key SKEYID used by the two parties.

PBG is an agreed pseudorandom bit generator and H is a hash function. The key SKEYID now is

used to generate the following three variants:

SKEYIDd = PBG(SKEYID; gxixr jCKYijCKYrj0);

SKEYIDa = PBG(SKEYID; SKEYIDdjg
xixr jCKYijCKYrj1);

SKEYIDe = PBG(SKEYID; SKEYIDajg
xixr jCKYijCKYrj2);

where SKEYIDd is the key used to derive keys for non-ISAKMP SAs (or simply session keys), and

SKEYIDa; SKEYIDe are the keys used by the ISAKMP SA for authentication and con�dentiality,

respectively. The exchange of information is authenticated using two strings:

Hi = PBG(SKEYID; gxi jgxr jCKYijCKYrjSAijIDii);

Hr = PBG(SKEYID; gxr jgxijCKYrjCKYijSAijIDir);

411

where SAi is the entire body of the SA payload minus the ISAKMP header, and IDii; IDir are the

identi�cation payloads for the initiator and responder, respectively. The IKE has two distinct phases:

negotiation and establishment. In the �rst phase two parties negotiate attributes for the SA and the

key material used to establish a common ISAKMP SA.

Negotiation Phase of IKE with Signatures

Assume that the parties know their true public keys for signature veri�cation. Initiator and

Responder are two parties who would like to establish a secure channel. The communication between

the parties is as follows:

Initiator Responder

(1) HDR, SA !

(2) HDR, SA

(3) HDR,KE, Ni !

(4) HDR, KE, Nr

(5) HDR�, IDii, SIGi !

(6) HDR�, IDir , SIGr

HDR is an ISAKMP header and SA is an negotiation payload. The negotiation payload can contain

many options if the SA is sent by Initiator. It must have a single option when the SA is sent by

Responder. KE is a key exchange payload with the public exponents used in the DH key agreement.

Ni and Nr are nonce payloads generated by the parties. HDR� is an ISAKMP header with encrypted

payload which follows the header. IDii and IDir are identi�cation payloads for the ISAKMP initiator

and responder. SIGi and SIGr are the signature payloads for Hi and Hr, respectively. In the �rst

two steps, parties negotiate security attributes. In steps (3) and (4), parties exchange their nonces

and public parameters of the DH key agreement. Now the two parties can calculate the main key

SKEYID and its variants SKEYIDd; SKEYIDa; SKEYIDe. The two last variants are used in steps (5)

and (6) to provide con�dentiality and authentication. The exchange can be compressed by allowing

the initiator to send messages in steps (1) and (3) in a one go and the responder to send messages (2)

and (4) in one packet { this is the so-called aggressive mode of the IKE protocol.

Negotiation Phase of IKE with Public-Key Encryption

This option works under the assumption that the parties know their mutual public keys PKi and

PKr. The data exchange is given below.

Initiator Responder

(1) HDR, SA !

(2) HDR, SA

(3) HDR,KE,

fIDiigPKr
, fNigPKr

!

(4) HDR, KE, fIDirgPKi
, fNrgPKi

(5) HDR�, Hi !

(6) HDR�, Hr

where PKi and PKr are the public key of the initiator and responder, respectively, and fmgPK means

the cryptogram of message m encrypted using public key PK.

Negotiation Phase of IKE with Pre-Shared Key

Assume that the parties share the same secret key. The phase take the form of the following steps.

412

Initiator Responder

(1) HDR, SA !

(2) HDR, SA

(3) HDR,KE, Ni !

(4) HDR, KE, Nr

(5) HDR�, IDii Hi !

(6) HDR�, IDir Hr

Final Phase

This phase is used to obtain a key material for non-ISAKMP security associations (or simply

session keys). The information exchange is performed via the ISAKMP SA established in the �rst

phase. In other words, the payloads, except the ISAKMP header, are encrypted. The parties involved

in the �rst phase may act on behalf of their clients. In this case, the identities of the clients may

be used together with the identities of the Initiator and Responder. Typically, the internal security

policy determines whether or not this is required. To simplify our considerations we assume that the

Initiator and Responder do not have the clients. The exchange of messages is as follows.

Initiator Responder

(1) HDR�, H(1), SA, Ni !

(2) HDR�, H(2), SA, Nr

(3) HDR�, H(3) !

where H(1)=PBG(SKEYIDa;MIDjSAjNi), H(2)=PBG(SKEYIDa;MIDjSAjNr), and

H(3)=PBG(SKEYIDa; 0jMIDjSAjNijNr). MID is the message identity from ISAKMP header. If the

KE payloads are not exchanged, the key material is

KEYMAT = PBG(SKEYIDd; protocoljSPIjNijNr);

otherwise

KEYMAT = PBG(SKEYIDd; g
xixr jprotocoljSPIjNijNr):

Note that the keys materials KEYMAT are di�erent at both sides as the SPIs used by Initiator and

Responder are di�erent. If the key material is too short, the IKE protocol expends it by applying the

following iterative procedure

K1 = PBG(SKEYIDd; protocoljSPIjNijNr); : : :

Ki+1 = PBG(SKEYIDd;KijprotocoljSPIjNijNr); : : :

18.1.5 Virtual Private Networks

The Internet is a driving force for new network-based applications and services. It spans over the

globe and connects most organisations, institutions, and private users. The main weakness of the

Internet is the lack of security. The concept of a virtual private network (VPN) repeats a well known

idea of a private network built over insecure leased communication lines. The Internet provides

(insecure) communication links which can be used to build a secure and private subnetwork using

IPsec. IPsec can be used directly (IPv6) or indirectly (jointly with IPv4) to provide authentication

and con�dentiality.

Consider a collection of basic VPN con�gurations.

� The host-to-host secure communication.

� The gateway-to-gateway secure communication.

413

� The multiple nested secure communication.

The host-to-host con�guration is used to create a bidirectional secure channel (with authentication

or privacy or both). To implement an authentication channel, two security associations (in each

direction) with the AH protocol must be used. To provide authentication and privacy, four security

associations have to be applied. This con�guration is the basic one which is used for other more

complex once.

Most of international companies and organisations have many branches or divisions each of which

is typically supported by one or more LANs with the access to the Internet. It is reasonable to assume

that the company needs to establish from time to time a secure communication between two or more

LANs. Consider the simplest case when two LANs are to be integrated into a single VPN. If the

LANs have already access to the Internet, then the tra�c to and from the Internet is passing through

a nominated host called gateway. It is enough to establish a secure channel between two security

gateways in order to integrate the two LANs into a VPN.

Assume that we have already two LANs integrated into a VPN. It can be expected that two

hosts residing in two di�erent LANs may need to establish a secure channel. In this case, the tra�c

between the two hosts will be protected locally (within the LANs) and externally (outside their

LANs). The local protection is provided by the host-to-host secure channel. The external security is

guaranteed jointly by the host-to-host and gateway-to-gateway secure channels. This kind of nested

secure channels makes sense if, for example, the authentication channel is requested within the VPN

while the transmitted information between LANs is to be kept secret from the outside world.

18.2 Computer Viruses

Discovery of computer viruses was one of the most important factors which put the network security

issues in the spotlight. It turns out that users of personal computers are all at risk from computer

virus infections. Recent developments in the computer virus technology, in particular the macro virus

that spreads through the exchange of documents prepared using, for example, certain word processing

packages, mean that more computer users than ever before will be a�ected at some time by a computer

virus.

The reader who wish to further study the topic is referred to [101, 420]. While working on this

chapter, the authors were helped by Je� Horton who made accessible a draft of his PhD thesis [248].

He also read this part and corrected the text. The authors gratefully acknowledge this.

18.2.1 What is a Computer Virus ?

Computer viruses, computer worms and Trojan horses are all di�erent forms of malicious software or

malware. Cohen in [99] informally de�nes a computer virus as

a program that can \infect" other programs by modifying them to include a possibly evolved

copy of itself.

Viruses infect computer programs by modifying them. The modi�cation can take di�erent forms

including:

� destroying data. The Brain virus [243] targeted the IBM PC and was capable of destroying of

data describing the location of sectors making up �les on a diskette and might even overwrite

part of a �le in the process of infection,

414

� stealing CPU time. Consider a virus that asks permissions before infecting an executable �le.

The creator of the virus can see it as a useful tool while users whose work is interrupted by the

virus, can perceive it as a time-wasting nuisance,

� reducing the functionality of the infected program,

� adding new, not necessarily, malicious capabilities to the infected program. Cohen in [99] dis-

cusses a virus that compresses executable �les on infection and which decompresses the �le on

execution.

There is an increased research activity related to the problem of detection and removal of computer

viruses. Detection of viruses is not easy as viruses tend to mutate after infection. That is why Cohen

used \possibly evolved" in his de�nition. Designers of computer viruses intentionally create viruses that

are able to mutate after infection, to make detection of viruses by anti-virus software more di�cult.

Cohen's de�nition is too restrictive as it fails to include a program that is able to attach itself

to a host program by some means other than altering the code of the host program, but otherwise

would seem well-described by the tag of \computer virus". The companion strategy of infection is an

excellent example of this. For this reason, the above de�nition can be extended as follows:

A computer \virus" is a program that can \infect" other programs by modifying either host

programs or the environment in which host programs exist. A possibly mutated copy of the

virus gets attached to host programs.

The above de�nition can be further extended by requiring from viruses to be capable of further

replication. A formal de�nition of a computer virus is given in [100].

18.2.2 Worms and Trojan Horses

Informally, a computer worm can be de�ned as

a self-replicating and self-contained program that is capable of spreading itself to other

machines.

Unlike a virus, a worm does not infect or otherwise depend on a host program { it is self-contained.

The Internet Worm unleashed in November 1988 is, probably, the most famous example of a worm.

The worm exploited a number of known security holes in the UNIX operating system. It consisted of

two programs: a grappling hook (or bootstrap) program and the main program [463]. The grappling

hook was a short C program. Once established in a foreign machine, the grappling hook compiled

and executed. During the execution, it connected to the machine from which it had originated and

uploaded a copy of the main program. The task of the main program was to search the Internet for

other machines which could be easy victims i.e. machines which would allow remote execution of the

grappling hook without proper authorisation.

Recently, the Autostart worm for the Macintosh was reported and is described in [259]. The worm

exploited the ability to designate a program on a diskette or hard disk to be executed when the disk

was mounted by the operating system. Unlike the Internet Worm, it spread via the transfer of infected

disk from one machine to another.

A Trojan horse program can be de�ned as

a program that claims to perform a particular function, su�ciently attractive to the com-

puter user to ensure that the user executes the program. Instead of or perhaps in addition

to performing this function, the Trojan horse takes some form of undocumented action,

often malicious, that was intended by the programmer.

415

Note that this de�nition excludes programs which cause destruction is a result of bugs in the program.

Trojan horses, unlike viruses and worms, do not replicate themselves. Malicious actions undertaken by

a Trojan horse can range from a relatively simple action such as deleting �les to more subtle activities

such as gathering private information about users. It is not di�cult to imagine a Trojan horse that

collects secret session keys from a user hard disk and sends this information out over the Internet for

collection at a remote site.

18.2.3 Taxonomy of Viruses

The risk of infection greatly depends on the hardware platform in use. Consider the three following

platforms:

� IBM PC { users of this platform are the worst a�ected. It is reported in [359] that more than

10,000 DOS-based computer viruses having been created as at November 1996.

� Macintosh { users have also been a�ected by the computer virus problem, but not to the same

degree as users of IBM PCs. Estimates vary, but there are certainly fewer than 100 viruses

speci�cally designed for the Macintosh platform.

� UNIX { users are fortunate as there is no common virus threats against this platform. However,

the potential exists for viruses to be written for this platform (see [99, 101, 162, 328]).

Any computer platform where programs are stored on modi�able media is subject to attack by com-

puter viruses. In general, viruses can be divided into two broad classes:

� platform dependent,

� platform independent.

Platform dependent viruses normally exploit a speci�c hardware/software con�guration characteristic

for the platform. Macro viruses are a newcomer in the area and are platform independent. Macro

viruses are written in interpreted languages supplied by some common programs (applications) that

are available across multiple platforms. A good example such an application is Microsoft Word. It is

available for both IBM PC and Macintosh computers.

Viruses infect only executable �les. To activate them, the host program must be executed. A virus

can be either

� memory resident { the virus remains active even after its host program has terminated,

� non-memory resident { the virus becomes active only if its host program is executing.

Writers of computer viruses use two main strategies to make the detection of viruses more di�cult.

The strategies are:

� polymorphism { a virus changes its form using variety of techniques including encryption,

� stealth { a virus tries to conceal its presence in infected objects when executing.

A sequence of bytes considered characteristic of a virus is called the virus signature. To detect a

virus, it is enough to scan the program for a virus signature. Polymorphism attempts to minimise the

number of bytes available for use in a virus signature. There are two parts to the strategy.

� The virus encrypts the main body of the virus code using a variable key when infecting. A range

of di�erent simple schemes would be used. Before the encrypted virus can be executed, it must

be decrypted.

416

� In addition to choosing between a variety of di�erent encryption and, hence, decryption schemes,

the virus applies equivalent machine instructions, reordering instructions (if the new order of

instructions leads to equivalent operation), inserting dummy instructions (for instance, no oper-

ation instruction), building up a code during runtime (once constructed, the code performs the

required task), and using intermixing operations (see [101]).

18.2.4 IBM-PC Viruses

This class of viruses is the biggest and can be divided into three groups:

� �le infecting viruses,

� boot sector infecting viruses, and

� multipartite viruses (infecting both executable �les and boot sectors).

File Infecting Viruses

The simplest type of �le infecting virus overwrites part of the host program and does not store the code

that was overwritten. The host program before and after infection is illustrated in Figure 18.2. The

Program Code

Program Code

������
������
������
������Viral Code

1. Program before infection by overwriting virus.

2. Program after infection by overwriting virus.

Figure 18.2: Host program before and after infection by overwriting virus

virus overwrites the beginning of the �le so the virus will get executed every time the host program

is invoked. The host program is likely to be so badly damaged that it is unable to function correctly.

The viral code may also be placed elsewhere in the �le hoping that it gets executed every time the

host program is called leaving most of the host program functions intact.

More sophisticated viruses attach to a host program in such a way that the host program is

repairable by the virus. A simple way of infecting an executable �le so that any changes made are

repairable is to append the virus code to the end of the �le, save the �rst few bytes of code for later

restoration, and replace them with a jump to the appended viral code. When the host program is

executed, the viral code receives control �rst, can repair the code of its host and call it (see Figure

18.3). It is also possible to prepend the viral code to the host �le (see Figure 18.4).

If a virus avoids overwriting, it means that the infected program (the host with the virus) has

increased its size. This fact can be noticed by a user or a program monitoring the sizes of executable

�les. There are, however, ways in which a �le can be infected without changing its size, yet the host

code can be repaired by the virus at time of execution.

� A cavity virus �nds an area of constant data within the host program that is large enough to

accommodate itself, records the value that was originally stored there and replaces the constant

data with itself. The Lehigh virus [101] operated in this way.

� A cavity virus might also store itself inside unused spaces within an executable �le that exist as

a consequence of the format of the �le. The CIH virus applies this technique [512].

417

Program Code

Program Code

������
������
������
������Viral Code

Jump to start of viral code

������
������
������
������Viral CodeProgram Code

������
������
������
������Viral CodeProgram Code

1. Program before infection by appending virus.

2. Program after infection by appending virus.

3. On execution, control passes to viral code. Virus repairs program code.

4. Virus executes original program.

Figure 18.3: An appending virus

� A compression virus compresses all or part of the host �le contents so it can hide inside the host

program without changing the size of the �le. The compressed component can be uncompressed

at runtime.

Boot Sector Infecting Viruses

Every time a computer is switched on, the operating system is loaded from a oppy or hard disk.

This process is called bootstrapping. The bootstrapping process proceeds in several stages. When the

operating system is loaded from a oppy disk, the �rst sector on the disk, referred to as the boot sector

or DOS boot sector, consists of a small program that is responsible for starting the next stage. If the

disk does not contain an operating system, this sector includes a program which informs the user that

this is not bootable disk prompting for the insertion of another disk.

Hard disks are, because of their large size, often divided into a number of smaller logical parts

called partitions. The �rst physical sector of a hard disk is referred to as the master boot record

(MBR) or master boot sector (MBS) and contains a record of the partitions into which the disk has

been divided, together with a small program responsible for locating a bootable partition and booting

from that partition. The �rst logical sector of a bootable partition is then the boot sector that is used

to load the operating system (see Figure 18.5).

Boot sector viruses infect the code found in the master boot record for hard disks or in the DOS

boot sector for oppy and hard disks. The infection process normally looks like this. A virus

� �nds the target sector and stores it elsewhere so the virus can continue the boot process,

� loads a copy of itself into the sector.

Examples of this type of viruses are

� AntiCMOS viruses { a virus from this family discards the code from the infected sector and

attempts to perform the boot functions itself [271],

� Brain viruses { a virus infects oppy disks only [243],

� Monkey viruses { they infect boot sector and store the partition tables elsewhere so that infected

hard disks are inaccessible if computers are not booted from the virus-infected hard disk [346],

418

Program Code

������
������
������
������Viral Code Program Code

������
������
������
������Viral Code P. Code #2 P. Code #1

P. Code #1 P. Code #2

1a. Program before infection by prepending virus.

2a. Viral code prepended, program code shifted.

1b. Program before infection by prepending virus.

2b. Viral code prepended; only overwritten program code shifted.

Figure 18.4: A prepending virus

ROM Bootstrap Master Boot Record DOS Boot Sector OS-specific startup

OS-specific startupDOS Boot SectorROM Bootstrap

Hard Disk Startup:

Floppy Disk Startup:

Figure 18.5: Illustration of boot process for oppy and hard disks

� Hare Krsna { they tamper with location of the partition tables [517].

Companion Viruses

Companion viruses do not modify host programs they infect. Instead, they create their copies as

separate executable �les. There are two basic types of companion viruses under MS-DOS [48, 249, 315].

� Regular companion { a virus of this type create a �le in the same directory as the host program

but with a �lename extension which gets usually executed before the extension used by the host

program. For example, a .COM �le with the same name as a .EXE �le and in the same directory

is executed before the .EXE �le if the �le extension is not speci�ed.

� Path companion { a virus creates a �le with any executable extension in a directory that is

searched for executable �les before the directory containing the host program

� Surrogate companion { a virus renames the host program and replaces it with a copy of itself.

18.2.5 Macintosh Operating System

To discuss viruses a�ecting Macintosh platform, we need �rst introduce necessary background about

Macintosh operating system. For more details the reader is referred to [252, 253, 254, 255].

Any Macintosh �le has two components;

419

� data fork,

� resource fork (or resource �le).

A characteristic feature of the Macintosh OS is that each �le has its

� type, for example, application (APPL) or ASCII text (TEXT),

� creator or the application program which owns the �le.

Resources within a resource �le are described by

� a resource type (four letter code),

� an ID number (two-byte integer),

� a name (string of characters).

To identify a particular resource, it is enough to specify a resource type and either an ID number or

a resource name. An application resource �le stores variety of information including: MENU { stores

information about the list of options in a particular application menu, MBAR { lists the menus that are

present in an application's menu bar, WIND { describes the dimensions and other characteristics of a

window created by an application, CNTL { de�nes a control which is a user interface element such as a

button or scrollbar created by an application, and CODE { contains main components of an application

executable code.

Loading resource may involve many resource forks. A search path is followed to locate requested

resources. The starting point is always the current resource �le and the search ends in the System �le

that contains resources which are part of the operating system.

Consider the graphical user interface presented by an application. Many of the interface elements

such as menus, windows, buttons, etc. are drawn by de�nition procedure (DP). The executable code

of a de�nition procedure is stored in a resource and loaded by the OS when required to draw a user

interface element. The OS provides a default implementation and it can be customised by a user.

Examples of de�nition procedures include

� a menu DP { it is stored in an MDEF resource and is responsible for drawing menu items within

a menu,

� a menu bar DP { it is stored in an MBDF resources and is responsible for drawing activities related

to the display of menus,

� a window DP { it is stored in a WDEF resource and is responsible for such tasks as drawing frame

or resizing a window,

� a control DP { it is stored in a CDEF resource and is responsible among many tasks for drawing

the control and testing for where the mouse has been clicked by the user within a control.

The INIT is another important type of resource containing executable code. These are resources

that contain code that is intended to be executed at system startup. INIT resources can be located

within the System �le itself or in �les of particular types.

The Finder is an application which is a part of the Macintosh operating system. The Finder

� manages the display of the user desktop,

� keeps track of the location (both on the screen and on the disk directory structure) of �les and

folders,

420

� ensures that the appropriate application is used to work with a �le created when the �le is

double-clicked by the user.

Under Macintosh system software prior to System 7 (System 6), \Finder" refers to a version of the

software that would permit only one application at a time to execute. That is, users could run the

Finder or some other application but not both at once. MultiFinder was a re�nement of the Finder

that would permit more than one application, including MultiFinder itself, to execute at a time.

System 7 and later use \Finder" to refer to a version of the software descended from MultiFinder {

more than one application at a time, including the Finder, may be executed.

Application developers are able to designate an icon for each type of �le that is created or owned

by the application. These icons will be displayed by the Finder to represent the user documents. Icon

information is given by resources from the application resource fork. The Finder extracts this and

other information from the application resource fork and stores it in a database for easy access. The

location of the application on disk is also stored.

To display the icon for a document, the Finder checks its database for an icon corresponding to

the document type provided by the application with the same creator code as the document. When

a document is double-clicked, the Finder searches its database for an application whose creator code

is the same as the document creator code. If found, the Finder executes that application to process

the document.

Macintosh Hardware

First Macintosh models were based on Motorola 68000 microprocessors. We collectively name Mac-

intoshes based on the 680x0 series of microprocessors as \68K Macintoshes" and code intended to

run on these microprocessors as \68K code". The PowerPC series of microprocessors replaced 680x0

microprocessors in new Macintosh models. Models with the PowerPC microprocessor are collectively

referred to as \PPC Macintoshes" and code { \PPC code". Needless to say, the machine code for

the 680x0 microprocessors is not compatible with the newer PowerPC microprocessors. Apple has

addressed this problem by supplying a 68LC040 emulator as a part of the operating system for PPC

Macintoshes.

The executable of an application can be stored within the application �le using the following three

basic methods:

� application based on 68K code is split into a number of code segments. These applications can

run under emulation on a PPC Macintosh.

� application based on 68K code is split into code fragments and also contains a small code

segments responsible for starting up the code fragment component on versions of the OS that

are not able to automatically perform this task. These applications cannot run under emulation

on a PPC Macintosh.

� application based on PPC code is split into code fragments.

Macintosh viruses known so far work by modifying an application based on 68K code segments.

This, however, also makes PPC Macintoshes vulnerable as

� most PPC applications contain at least a small component based on 68K code which informs a

user that the application cannot be run on a 68K Macintosh,

� not all viruses attempt to modify the application code directly. Some viruses add executable

resources like the MDEF resource to an application. 68K de�nition procedures added to a PPC

application by a virus will still work in a PPC environment,

421

� there is every reason to expect that such viruses will be written in the future.

Code fragments are typically stored in the data fork of an application �le but may also be stored

in resources in the resource fork. A resource known as the code fragment resource or cfrg resource

with identity 0 is used to index the fragments. Applications based on code fragments can also import

shared libraries. The code fragments within a shared library could potentially be infected by a virus

(although no such viruses for the Macintosh are currently known). A code fragment based environment

is much more exible and programmer friendly than the 68K code segment environment.

The structure of an application based on code segments is much simpler. Figure 18.6 illustrates

it. The executable code of a 68K application is divided into a number of segments and each segment

is stored in a CODE resource. This has the advantage that not all resources are required in memory at

a particular time to execute programs.

���
���
���
���

CODE Resource #2

CODE Resource #3

Resource #0
(Jump Table)

CODE

CODE Resource #1

Figure 18.6: Illustration of a code segment based 68K application

A mechanism is needed to enable a routine located in one code segment to call another routine.

Intersegment calls are handled with the aid of a so-called jump table. To invoke a routine in another

segment, a jump is executed to the jump table where the addresses of routines are stored. The jump

table is stored in the CODE resource with ID 0. The �rst entry in the table contains the address of

the routine which gets executed �rst. Not all compilers maintain the entire jump table in the CODE 0

resource. Instead, a jump table is constructed in memory on execution.

18.2.6 Macintosh Viruses

Most Macintosh viruses modify the executable code of an application program in some way so that

when the program is run, the viral code gets executed. There are two major techniques to achieve

this

� a virus modi�es the code segments of the application,

� a virus adds new resources containing de�nition procedure that will be invoked implicitly during

application execution.

Consider a typical 68K application illustrated in Figure 18.6. A virus can infect the application by

changing the code segments in three ways.

� The virus adds a code segment to the application in the form of an additional CODE resource

modifying the �rst entry of the jump table so it refers to the viral CODE resource. In result, the

422

viral code gets control when the application starts executing. The original �rst jump table entry

is saved by the virus so that it can return control to the application once it has completed its

task. The application original code segments are not modi�ed except from the jump table. The

infection process is illustrated in Figure 18.7. The viruses: nVIR [174], and the INIT29 [173]

are good examples of viruses of this type [175].

������
������
������

������
������
������

Viral Code

CODE Resource #1

CODE Resource #2

CODE Resource #3

�
�
�
�
�

�
�
�
�
�

Jump Table

Original entry point saved.

Figure 18.7: Modi�cations made by virus that adds an additional CODE resource to an application

� Rather than adding a new code segment to the application, the virus adds its code to the end

of an existing CODE resource. The virus need not touch the jump table. Instead, it modi�es the

�rst few bytes of a routine in the CODE resource so that when the routine is invoked, the viral

code is called. The bytes replaced by the virus can be saved and restored after execution of the

viral code. Figure 18.8 presents how the virus works.

��
��
��
��

CODE Resource #2

CODE Resource #3

CODE Resource #1
������
������
������
������Viral Code

Original code bytes saved

Jump Table

Figure 18.8: Modi�cations made by virus that adds its code to an existing CODE resource and modi�es
a routine to jump to the viral code

� The virus appends its body to an existing CODE resource and modi�es the jump table. When

the application is executed, the viral code gains control �rst. The original jump table entry is

saved so that control can be returned to the application. This strategy of infection is depicted

in Figure 18.9.

There are several ways in which an application can be infected by the addition of a resource

containing the code for a de�nition procedure. A typical relationship of an application menu with a

default de�nition procedure is given in Figure 18.10. Consider the following infection strategies for

this case.

423

CODE Resource #2

CODE Resource #3

CODE Resource #1
�������
�������
�������
�������Viral Code

��
��
��
��

��
��
��
��

Original entry point saved

Jump Table

Figure 18.9: Modi�cations made by virus that adds its code to an existing CODE resource and modi�es
a jump table entry

� the virus adds a viral de�nition procedure with the same type and identity as a standard DP

resource from the System �le { see Figure 18.11,

� the virus adds a viral de�nition procedure with a changed identity { see Figure 18.12.

Save

.....

MENU

MDEF 0

OpenOther
Resources

Other
Resources

MDEF 0

Application System File

Figure 18.10: Typical relationship of application MENU and System MDEF

Other
Resources

Other
Resources

MDEF 0Save

.....

MENU

MDEF 0

Open

Viral
MDEF 0

Application System File

Figure 18.11: Relationship between an application MENU, viral MDEF and System MDEF

The WDEF virus [176] deserves a special attention. This virus infects using a de�nition resource.

However, the de�nition resource is not added to an executable �le ! The WDEF virus adds a WDEF

0 resource containing the viral code to the resource �le on each disk in which the Finder stores its

desktop database, the Desktop �le. This �le is opened by the Finder when a disk is mounted. When

the user subsequently opens a window within the Finder, the operating system will search for a WDEF

0 resource to perform drawing operation. As the most recently opened resource �les are searched �rst

for resources, the viral WDEF 0 resource stored within the Desktop �le will be found and executed in

place of the original WDEF 0 resource. All operating systems since System 7 are immune to this attack.

18.2.7 Macro Viruses

A macro is a collection of statements in some language that performs a task when interpreted. Many

application packages allow users to automate tasks which are common and repetitive, by de�ning their

424

Other
Resources

Other
Resources

MDEF 0

Viral
MDEF 16

Save

.....

MENU

MDEF 16

Open

Application System File

Figure 18.12: Relationship between an application MENU, viral MDEF and System MDEF

own macros. Some application packages provide not only a simple scripting language that can be used

to control the application usage but also supply an interpreter for a complete programming language.

Microsoft Word is probably the best-known of these applications. Microsoft Word 6 provided as

its macro language a version of BASIC that was called WordBasic. Microsoft Word 6 was the �rst

multi-platform implementation for both Macintosh and IBM PC.

The concept of macro virus { a virus written in the macro language { is not new. The possibility

of a macro virus was predicted by Highland in 1989 [244]. It is not until 1995 that the �rst of macro

viruses, Concept, emerged. In March 1999, researchers at Virus Test Center, University of Hamburg

reported almost 600 known macro virus strains (for details contact ftp://agn-www.informatik.uni-

hamburg.de/pub/texts/macro). Most of these macro viruses target at versions of Microsoft Word.

Macro viruses are typically embedded within a document �le as a viral macro. Because the macros

are interpreted by the application package rather than compiled into machine-speci�c executable code,

they can execute within their host application an any computer hardware platform to which the

application package has been ported. Macro viruses are potentially more infectious than other viruses

especially when the infected documents are distributed via e-mail.

18.2.8 Protection against Viruses

There are two main strategies to combat viruses:

� preventing viruses from becoming established in a computer system,

� detecting and removing them.

There are many non-technical solutions to reduce the risk of virus infection and hopefully limit the

consequences should it occur, including [245]:

� careful design of sequence in which the operating system looks for a bootable device,

� recon�guration of e-mail system so an received mail item is opened \safely",

� removal of all executable programs that have been received from untrusted sources (without

executing them),

� systematic backups of the system.

The anti-virus techniques can be classi�ed into three major categories:

� Scanners,

� Integrity checkers,

� Behaviour blockers or activity monitors.

425

Scanners

A virus scanner tries to detect the presence of a virus in a �le by looking for the signature of the virus.

As a virus tends to change its code, scanners need to search a �le for parts of the signature which are

characteristic for the virus. Once a virus is detected, scanners may attempt to disinfect the infected

�le by removing the virus. However, in some cases, the original form of the �le cannot be restored

(when the virus destroyed a part of the �le, for example). A better way is to replace the infected �le

from a backup. Scanners exhibit some drawbacks including [101]:

� they can only detect viruses with known signatures,

� scanners have to be updated every time a new virus is released,

� polymorphic viruses are di�cult to detect by scanners,

� users must regularly run scanners to check disks for infection.

The �rst weakness can be partially eliminated by the introduction of heuristic analysis [224]. Heuristics

are a set of rules that can be applied to executable code to determine whether or not it is infected by

a virus. Heuristics can be

� positive { code performing operations suggestive to a virus,

� negative { code performing operations not likely to occur in virus code.

The di�culties with the detection of polymorphic viruses can be addressed by customising scanners

so they work well for a speci�c family of polymorphic viruses. A better approach seems to be the

application of so-called generic decryption [359]. This approach works for viruses which use encryption

to change their form. Such a virus must decrypt the main body of its code before execution. Generic

decryption attempts to emulate the program under investigation past the point at which the virus

code has been decrypted so the virus can be identi�ed from its signature.

To relieve users from the burden of running scanners at regular intervals, a memory-resident

scanner component might be provided. This component scans automatically �les and disks for viruses

when accessed.

Integrity Checkers

It is reasonable to assume that a virus must change something when it infects a �le. Hashing can be

used for integrity checking. Once a �le has been created, its hash value is computed. Any modi�cation

to it will cause a change of the hash value. Note that integrity checkers detect any change in a �le

not only this created by a virus. So if the hash value has changed, a �le may be infected. Obvious

limitations of integrity checkers are as follows.

� Viruses introduced before an integrity checker computed hash values for �les, will not be de-

tected.

� Integrity checkers fail to detect infection if a �le was at the same time modi�ed by the user and

infected by a virus.

� Viruses can only be detected after they have spread and inicted some damage.

The main advantage of integrity checkers seems to be that they are able to detect unknown viral

infections including notorious polymorphic viruses. The reader who wish to pursue this topic, is

referred to [48, 101, 420].

426

Behaviour Blockers and Activity Monitors

These anti-virus programs monitor the computer activity and attempt to detect the presence of a

virus. The rationale behind behaviour blockers and activity monitors is the hope that it is possible

to distinguish somehow between abnormal (viral) and normal behaviour. Clearly, this approach has

the following drawbacks:

� Most viruses perform entirely legitimate actions rather than exploiting operating system weak-

nesses.

� Some viruses may try to bypass the anti-virus programs. For instance, some Macintosh viruses

contain code which redirects traps generated by the virus to ROM code. If successful, the

anti-virus program will be bypassed { it fails to detect the virus.

� Blocking a suspicious action may result in undesired consequences. For example, �les may be

left in inconsistent states after a suspicious operation.

� After detecting a suspicious activity, the anti-virus program may leave the decision about what

needs to be done to the user. This can be irritating especially when it happens frequently.

Bibliography

[1] C. Adams and S. Tavares. Generating and counting binary bent sequences. IEEE Transactions

on Information Theory, IT-36 No. 5:1170{1173, 1990.

[2] C. Adams and S. Tavares. The structured design of cryptographically good S-boxes. Journal of

Cryptology, 3:27{41, 1990.

[3] L. M. Adleman. On breaking generalized knapsack public key cryptosystems. In Proc. 15th ACM

Symposium on Theory of Computing, pages 402{412, Boston, 1983. "Association for Computing

Machinery (ACM)".

[4] S. G. Akl and D. E. Denning. Checking classi�cation constraints for consistency and complete-

ness. In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages 196{201,

Oakland, CA, 1987. IEEE Computer Society.

[5] W. B. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA and Rabin functions: certain parts

are as hard as the whole. SIAM Journal of Computing, 17:194{208, 1988.

[6] D. Anderson, Th. Frivold, and A. Valdes. Next-generation intrusion detection expert system

(nides): A summary. SRI-CSL-95-07, SRI International, Menlo Park, CA, 1995.

[7] D. Anderson, T.F Lunt, H. Javitz, A. Tamaru, and A. Valdes. Detecting unusual program be-

havior using the stastistical component of the next-generation intrusion detection expert system

(nides). SRI-CSL-95-06, SRI International, Menlo Park, CA, 1995.

[8] R. Anderson, H. Manifavas, and C. Sutherland. Netcard { a practical electronic cash system.

Technical Report Available at: http://www.cl.cam.ac.uk/users/rja14, Computer Laboratory,

University of Cambridge, 1996.

[9] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Transactions on

Information Theory, IT-29 No. 2:208{211, 1983.

[10] D. Atkins, M. Gra�, A.K. Lenstra, and P.C. Leyland. The magic words are squeamish ossifrage.

In J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT94, pages

263{277. Springer, 1995. Lecture Notes in Computer Science No. 917.

[11] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Practical and secure message authentication. In

Proceedings, Workshop on Selected Areas in Cryptography, pages 55{68, 1995. SAC95, Carleton

University, Canada, May 18-19.

[12] J. Banerjee, H. Chou, J. F. Garza, W. Kim, D.Woelk, N. Ballou, and H. Kim. Data model issues

for object-oriented applications. ACM Transactions on O�ce Information Systems, 5(1):3{26,

1987.

427

Bibliography 428

[13] J. Banerjee, D. K. Hsiao, and K. Kannan. DBC - a database computer for very large databases.

IEEE Transactions on Computers, C-28(6):414{429, 1979.

[14] A. Baraani-Dastjerdi. Access control in object-oriented databases. PhD thesis, Department of

Computer Science, University of Wollongong, New South Wales, Australia, 1996.

[15] A. Baraani-Dastjerdi, J. Pieprzyk, and R. Safavi-Naini. A secure voting protocol using threshold

schemes. In Eleventh Annual Computer Security Applications Conference, pages 143{148. IEEE

Computer Society Press, 1995. New Orleans, Luisiana, Dec. 11-15, 1995.

[16] D.S. Bauer and M.E. Koblentz. NIDX - an expert system for real-time network intrusion

detection. In Proceedings of the IEEE Computer Networking Symposium, pages 98{106, 1988.

[17] F. Bauspiess. SELANE: an approach to secure networks. In SECURICOM90 Proceedings, pages

159{164, 1990.

[18] D. E. Bell and L. J. La Padula. Secure computer systems: Mathematical foundations and model.

Technical Report M74-244, Mitre Corp., Bedford, MA, 1973.

[19] D. E. Bell and L. J. La Padula. Secure computer systems (vols.1-3). Technical Report ESD-

TR-73-278, Air Force Electronic Systems Division, Hanscom AFB, MA, 1973-1974.

[20] D.E. Bell and L.J. La Padula. Secure computer systems. Technical Report ESD-TR-73-278, Air

Force Electronic Systems Division, Hanscom AFB, MA, 1974.

[21] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations amnog notions of security for

public-key encryption schemes. In H. Krawczyk, editor, Advances in Cryptology - CRYPTO'98,

pages 26{45. Springer, 1998. Lecture Notes in Computer Science No. 1462.

[22] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. De Santis, editor, Advances

in Cryptology - EUROCRYPT'94, pages 92{111. Springer, 1995. Lecture Notes in Computer

Science No. 950.

[23] J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In S. Goldwasser,

editor, Advances in Cryptology - CRYPTO'88, pages 27{36. Springer-Verlag, 1988. Lecture

Notes in Computer Science No. 403.

[24] J. Benaloh and M. Yung. Distributing the power of a government to enhance the privacy of

votes. In Proceedings of the 5th ACM Symposium on Principles of Distributed Computing, pages

52{62, 1986.

[25] E. Berlekamp, R. McEliece, and H. van Tiborg. On the inherent intractibility of certain coding

problems. IEEE Trans. Inform. Theory, IT-24:384{386, 1978.

[26] Elwyn Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.

[27] T. A. Berson and T. F. Lunt. Security considerations for knowledge-based systems. In Proceed-

ings of the Third Expert Systems in Government Conference, October 1987. (preprint).

[28] E. Bertino and L. M. Haas. Views and security in distributed database management systems. In

J. W. Schmidt, S. Ceri, and M. Missiko�, editors, Advances in Database Technology - Proceedings

of EDBT'88 (Lecture Notes in Computer Science No. 303), pages 155{169. Springer-Verlag,

1988.

Bibliography 429

[29] T. Beth and C. Ding. On permutations immune against di�erential cryptanalysis. In Advances

in Cryptology - EUROCRYPT'93, volume 765, Lecture Notes in Computer Science, pages 65{76.

Springer-Verlag, Berlin, Heidelberg, New York, 1994.

[30] J/"urgen Bierbrauer, K. Gopalakrishnan, and D. R. Stinson. Bounds for resilient functions

and orthogonal arrays. In Y. Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages

247{256. Springer, 1994. Lecture Notes in Computer Science No. 839.

[31] E. Biham, R. Anderson, and L. Knudsen. Serpent: a new block cipher proposal. In S. Vaude-

nay, editor, 5th International Workshop on Fast Software Encryption, pages 222{238. Springer-

Verlag, 1998. Lecture Notes in Computer Science No. 1372.

[32] E. Biham and A. Shamir. Di�erential cryptanalysis of DES-like cryptosystems. In A.J. Menezes

and S. A. Vanstone, editors, Advances in Cryptology - CRYPTO'90, pages 2{21. Springer-Verlag,

1991. Lecture Notes in Computer Science No. 537.

[33] E. Biham and A. Shamir. Di�erential cryptanalysis of FEAL and N-Hash. In D.W. Davies,

editor, Advances in Cryptology | Eurocrypt '91, pages 1{16, Berlin, 1991. Springer-Verlag.

[34] E. Biham and A. Shamir. A Di�erential Cryptanalysis of the Data Encryption Standard.

Springer-Verlag, 1993.

[35] Eli Biham and Adi Shamir. Di�erential cryptanalysis of the full 16-round DES. In Ernest F.

Brickell, editor, Advances in Cryptology - CRYPTO'92, pages 487{496. Springer-Verlag, 1992.

Lecture Notes in Computer Science No. 740.

[36] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systematic

design of two-party authentication protocols. In J. Feigenbaum, editor, Advances in Cryptology

- CRYPTO'91, pages 44{61. Springer, 1992. Lecture Notes in Computer Science No. 576.

[37] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systematic

design of a family of attack-resistant authentication protocols. IEEE Journal of Selected Areas

in Communications, 11:679{693, 1993.

[38] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. The kryp-

toknight family of light-weighted protocols for authentication and key distribution. IEEE/ACM

Transactions on Networking, 3:31{41, 1995.

[39] D. Blackwell and M.A. Girshick. Theory of Games and Statistical Decisions. Wiley & Sons,

Inc., New York, 1966.

[40] G. R. Blakley. Safeguarding cryptographic keys. In Proc. AFIPS 1979 National Computer

Conference, pages 313{317. AFIPS, 1979.

[41] G. R. Blakley and I. Borosh. Rivest-Shamir-Adleman public key cryptosystems do not always

conceal messages. Computers & Mathematics with Applications, 5(3):169{178, 1979.

[42] G. R. Blakley and C. Meadows. A database encryption scheme which allows the computation

of statistics using encrypted data. In Proceedings of the 1985 IEEE Symposium on Security and

Privacy, pages 116{122, Oakland, CA, April 1985. IEEE Computer Society.

[43] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption

standard PKCS#1. In H. Krawczyk, editor, Advances in Cryptology - CRYPTO'98, pages 1{12.

Springer, 1998. Lecture Notes in Computer Science No. 1462.

Bibliography 430

[44] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator.

SIAM Journal of Computing, 15(2):364{383, May 1986.

[45] M. Blum and S. Goldwasser. An e�cient probabilistic public-key encryption scheme which hides

all partial information. In G. R. Blakley and D. C. Chaum, editors, Advances in Cryptology -

CRYPTO'84, pages 289{302. Springer, 1985. Lecture Notes in Computer Science No. 196.

[46] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random

bits. SIAM Journal of Computing, 13(4):850{863, November 1984.

[47] J-P. Boly, A. Bosselaers, R. Cramer, R. Michelsen, S. Mjolsnes, F. Muller, T. Pedersen, B. P�tz-

mann, P. de Rooij, B. Schoenmakers, M. Schunter, L. Vallee, and M. Waidner. The ESPRIT

project CAFE { high security digital payment systems. In D. Gollmann, editor, Proceedings of

the Third European Symposium on Research in Computer Security, ESORICS94, pages 217{230.

Springer-Verlag, 1994. Lecture Notes in Computer Science No. 875.

[48] V. Bontchev. Possible virus attacks against integrity programs and how to prevent them. In

Proceedings of the Second International Virus Bulletin Conference, pages 131{141, 1992.

[49] Jurjen N.E. Bos and David Chaum. Provable unforgeable signatures. In Ernest F. Brickell,

editor, Advances in Cryptology - CRYPTO'92, pages 1{14. Springer-Verlag, 1992. Lecture Notes

in Computer Science No. 740.

[50] A. Bosselaers and B. Preneel. Integrity primitives for secure information systems, volume 1007

of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[51] J. Bovey and A. Williamson. The probability of generating the symmetric group. Bull. London

Math. Soc., 10:91{96, 1978.

[52] C. Boyd. Digital multisignatures. In H. Beker and F. Piper, editors, Proceedings Cryptography

and Coding, pages 241{246. Claredon Press, 1989.

[53] C. Boyd. A cryptographic scheme for computerized general elections. In J-J. Quisquater and

J. Vanderwalle, editors, Advances in Cryptology - EUROCRYPT'89, pages 617{625. Springer-

Verlag, 1990. Lecture Notes in Computer Science No. 434.

[54] C. Boyd. A framework for design of key establishment protocols. In J. Pieprzyk and J. Seberry,

editors, Proceedings of the First Australasian Conference on Information Security and Privacy

(ACISP96), pages 146{157. Springer, 1996. Lecture Notes in Computer Science No. 1172.

[55] C. Boyd and W. Mao. Design and analysis of key exchange protocols via secure channel identi�-

cation. In J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT'94,

pages 171{181. Springer, 1995. Lecture Notes in Computer Science No. 917.

[56] S. Brands. Untraceable o�-line cash in wallets with observers. In D. R. Stinson, editor, Advances

in Cryptology - CRYPTO'93, pages 302{318. Springer, 1994. Lecture Notes in Computer Science

No. 773.

[57] J. Brandt, I. B. Damgard, and P. Landrock. Anonymous and veri�able registration in databases.

In C. G. Gunther, editor, Advances in Cryptology - Proceedings EUROCRYPT '88 (Lecture Notes

in Computer Science No. 330), pages 167{176. Springer-Verlag, 1988.

[58] G. Brassard. Cryptology column - quantum computing: The end of classical cryptography.

Sigact News, 25(4):15{21, 1994.

Bibliography 431

[59] G. Brassard and P. Bratley. Fundamentals of Algorithms. Prentice Hall, Englewood Cli�s, New

Jersey, 1996.

[60] G. Brassard, D. Chaum, and C. Cr�epeau. Minimum disclosure proofs of knowledge. Journal of

Computer and System Science, 37(2):156{189, 1988.

[61] E. F. Brickell. Solving low density knapsacks. In D. Chaum, editor, Advances in Cryptology -

CRYPTO'83, pages 25{37, New York, 1984. Plenum Press.

[62] E. F. Brickell. Breaking iterated knapsacks. In G. R. Blakley and D. C. Chaum, editors, Advances

in Cryptology - CRYPTO'84, pages 342{358. Springer, 1985. Lecture Notes in Computer Science

No. 196.

[63] E. F. Brickell. Some ideal secret sharing schemes. Journal of Computer and Systems Science,

37:156{189, 1988.

[64] E.F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial Mathematics and

Combinatorial Computing, 6:105{113, 1989.

[65] E.F. Brickell, P. Gemmel, and D. Kravitz. Trusted-based tracing extensions to anonymous

cash and the making of anonymous change. In Proceedings of the 6th Annual Symposium on

Distributed Algorithms (SODA), pages 457{466. ACM Press, 1995.

[66] L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry. Improving resistance to di�erential cryptanal-

ysis and the redesign of LOKI. In R.L. Rivest H. Imai and T. Matsumoto, editors, Advances in

Cryptology - ASIACRYPT'91, pages 36{50. Springer Verlag, 1993. Lecture Notes in Computer

Science, Vol.739.

[67] L. Brown, J. Pieprzyk, and J. Seberry. LOKI: A cryptographic primitive for authentication and

secrecy applications. In J. Seberry and J. Pieprzyk, editors, Advances in Cryptology | Auscrypt

'90, pages 229{236, Berlin, 1990. Springer Verlag.

[68] L.P. Brown. Analysis of the DES and the design of the LOKI encryption scheme. PhD Thesis,

University of New South Wales, Canberra, Australia, 1991.

[69] M. Burmester and Y. Desmedt. A secure and e�cient conference key distribution system. In

A. De Santis, editor, Advances in Cryptology - EUROCRYPT'94, pages 275{286. Springer, 1995.

Lecture Notes in Computer Science No. 950.

[70] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions in

Computer Systems, 8(1):18{36, 1990.

[71] U. Bussolati and G. Martella. The design of secure distributed systems. In Digest of papers

spring COMPCON 83: Intellectual Leverage for the Information Society, pages 492{499. IEEE

Computer Society, February 1983.

[72] U. Bussolati and G. Martella. Security design in distributed database systems. Journal of

Systems and Software (USA), 3(3):219{229, 1983.

[73] P. Camion and J. Patarin. The knapsack hash function proposed at CRYPTO89 can be broken.

In ???, editor, Advances in Cryptology - EUROCRYPT'91, pages 39{53. Springer, 1991. Lecture

Notes in Computer Science No. ???

Bibliography 432

[74] R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. On the size of shares for secret

sharing schemes. Journal of Cryptology, 6:157{167, 1993.

[75] F. Carettoni, S. Castano, G. Martella, and P. Samaratti. RETISS: a real time security system

for threat detection using fuzzy logics. In Proceedings of the 25th Annual IEEE International

Carnahan Conference on Security Technology, pages 161{167, 1991.

[76] J. M. Carroll and H. Jurgensen. Design of a secure relational database. In J. B. Grimson and

H. J. Kugler, editors, Computer Security: the Practical Issues in a Troubled World, Proceedings

of the Third IFIP International Conference on Computer Security, IFIP/Sec '85, pages 1{16,

Dublin, Ireland, August 1985. North-Holland.

[77] National Computer Security Center. A guide to andestanding audit in trusted systems, 1988.

[78] D. D. Chamberlin, J. N. Gray, and I. L. Traiger. Views, authorization, and locking in a relational

data base system. In Proceedings of AFIPS NCC Vol. 44, pages 425{430, 1975.

[79] A. Chan, Y. Frankel, P. MacKenzie, and Y. Tsiounis. Mis-representation of identities in e-cash

schemes and how to prevent it. In K. Kim and T. Matsumoto, editors, Advances in Cryptology -

ASIACRYPT'96, pages 276{285. Springer, 1996. Lecture Notes in Computer Science No. 1163.

[80] B. Le Charlier, A. Mounji, and M. Swimmer. Dynamic detection and classi�cation of computer

viruses using general behaviour patterns. In Proceedings of Fifth International Virus Bulletin

Conference, pages 20{22, 1995.

[81] C. Charnes and J. Pieprzyk. Linear nonequivalence versus nonlinearity. In Avances in Cryptology

- AUSCRYPT'92, Lecture Note s in Computer Science, Vol. 718, J.Seberry, Y.Zheng (Eds.),

pages 156{164. Springer-Verlag, 1993.

[82] C. Charnes and J. Pieprzyk. Cumulative arrays and generalised Shamir secret sharing schem es.

In Seventeenth Annual Computer Science Conference, ACSC-17, Au stralian Computer Science

Communications, Vol 16, No 1, Part C, Christchurch, Ne w Zealand, pages 519{528, 1994.

[83] C. Charnes and J. Pieprzyk. Attacking the sl2 hashing scheme. In J. Pieprzyk and R. Safavi-

Naini, editors, Advances in Cryptology - ASIACRYPT'94, pages 322{330. Springer, 1995. Lec-

ture Notes in Computer Science No. 917.

[84] C. Charnes and J. Pieprzyk. Generalised cumulative arrays and their applications to secret

sharing schemes. In Proceedings of the Eighteenth Australasian Computer Science Conference,

Australian Computer Science Communications, Vol.17, No.1,, pages 61{65, 1995.

[85] C. Charnes, J. Pieprzyk, and R. Safavi-Naini. Conditionally secure secret sharing schemes with

disenrollment capability. In Proceedings of the 2nd ACM Conference on Computer and Commu

nication Security, November 2-4, 1994, Fairfax, Virginia, pages 89{95, 1994.

[86] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communi-

cations of the ACM, 24:84{88, February 1981.

[87] D. Chaum. Elections with unconditionally secret ballots and distruption equivalent to breaking

RSA. In Advances in Cryptology - EUROCRYPT'88, pages 177{182. Springer-Verlag, 1988.

Lecture Notes in Computer Science No. 330.

Bibliography 433

[88] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser, editor,

Advances in Cryptology - CRYPTO'88, pages 319{327. Springer-Verlag, 1988. Lecture Notes in

Computer Science No. 403.

[89] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell, editor,

Advances in Cryptology - CRYPTO'92, pages 89{105. Springer-Verlag, 1992. Lecture Notes in

Computer Science No. 740.

[90] D. Chaum, E. van Heijst, and B. P�tzmann. Cryptographically strong undeniable signatures,

unconditionally secure for the signer. In J. Feigenbaum, editor, Advances in Cryptology -

CRYPTO'91, pages 470{484. Springer, 1992. Lecture Notes in Computer Science No. 576.

[91] David Chaum. Blind signatures for untraceable payments. In R. L. Rivest, A. Sherman, and

D. Chaum, editors, Advances in Cryptology - CRYPTO'82, pages 199{203, New York, 1983.

Plenum Press.

[92] David Chaum and Hans Van Antwerpen. Undeniable signatures. In G. Brassard, editor, Ad-

vances in Cryptology - CRYPTO'89, pages 212{217. Springer-Verlag, 1990. Lecture Notes in

Computer Science No. 435.

[93] J.L. Chen and T. Hwang. Identity-based conference key broadcast schemes with user authenti-

cation. Computers & Security, 13:53{57, 1994.

[94] K. Chen. A new identi�cation algorithm. In E. Dowson and J. Goli�c, editors, Cryptography:

Policy and Algorithms, pages 244{249. Springer, 1995. Lecture Notes in Computer Science,

Vol.1029.

[95] G.G. Christoph, K.A. Jackson, M.C. Neumann, C.L.B. Siciliano, D.D. Simmonds, C.A. Stallings,

and J.L. Thompson. UNICORN: Misuse detection for UNICOS. In Proceedings of Supercom-

puting '95, 1995.

[96] R.F. Churchhouse. The ENIGMA { some aspects of its history and solution. IMA Bulletin,

27:129{137, 1991.

[97] R.F. Churchhouse. The Achilles heel of the ENIGMA cipher machine, and some of its conse-

quences. IMA Bulletin, 1993.

[98] B. G. Claybrook. Using views in a multilevel secure database management system. In Proceedings

of the 1983 IEEE Symposium on Security and Privacy, pages 4{17, Oakland, CA, 1983. IEEE

Computer Society.

[99] F. Cohen. Computer viruses: theory and experiments. Computers & Security, 6:22{35, 1987.

[100] F. Cohen. Computational aspects of computer viruses. Computers & Security, 8:325{344, 1989.

[101] F. Cohen. A Short Course on Computer Viruses. John Wiley & Sons, 1994.

[102] H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1995.

[103] J. D. Cohen and M. J. Fischer. A robust and veri�able cryptographically secure election scheme.

In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, pages 372{

382, Portland, 1985. IEEE.

Bibliography 434

[104] Committee on Multilevel Data Management Security. Multilevel Data Management Security.

Air Force Studies Board, National Research Council, National Academy Press, Washington, D.

C., 1983.

[105] R. H. Cooper, W. Hyslop, and W. Patterson. An application of the chinese remainder theorem

to multiple-key encryption in data base systems. In J. H. Finch and E. G. Dougall, editors,

Proceedings of the Second IFIP International Conference on Computer Security, IFIP/Sec '84,

pages 553{556. North-Holland, 1984.

[106] D. Coppersmith. Analysis of ISO/CCITT Document X.509 Annex D. Internal Memo, IBM T.J.

Watson Center, June 11, 1989.

[107] D. Coppersmith. The Data Encryption Standard (DES) and its strength against attacks. IBM

J. Res. Dev., 38(3):243{250, 1994.

[108] D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking generator. In D.R. Stinson,

editor, Advances in Cryptology - CRYPTO'93, pages 22{39. Springer, 1994. Lecture Notes in

Computer Science No. 773.

[109] Don Coppersmith. Another birthday attack. In H. C. Williams, editor, Advances in Cryptology

- CRYPTO'85, pages 14{17. Springer, 1986. Lecture Notes in Computer Science No. 218.

[110] Don Coppersmith and E. Grossman. Generators for certain alternating groups with applications

to cryptology. SIAM Journal on Applied Mathematics, 29:624{627, 1975.

[111] Don Coppersmith, Andrew Odlyzko, and Richard Schroeppel. Discrete logarithms in GF(p).

Algorithmica, 1:1{15, 1986.

[112] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems Concepts and design. Addison-

Wesley, 1995.

[113] R. Cramer and I. Damg�ard. New generation of secure and practical RSA-based signatures.

In Koblitz N., editor, Advances in Cryptology - CRYPTO'96, pages 173{185. Springer, 1996.

Lecture Notes in Computer Science No. 1109.

[114] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally e�cient multi-authority

election scheme. In W. Fumy, editor, Advances in Cryptology - EUROCRYPT'97, pages 103{118.

Springer, 1997. Lecture Notes in Computer Science No. 1233.

[115] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive

chosen ciphertext attack. In H. Krawczyk, editor, Advances in Cryptology - CRYPTO'98, pages

13{25. Springer, 1998. Lecture Notes in Computer Science No. 1462.

[116] M. Crosbie and E. Spa�ord. Active defense of a computer system using autonomous agents.

In Proceedings of the 18th National Information Systems Security Conference, pages 549{558,

1995.

[117] M. Crosbie and E. Spa�ord. Applying genetic programming to intrusion detection. In Proceed-

ings of the 1995 AAAI Fall Symposium on Genetic Programming, 1995.

[118] Joan Daemen, Ren�e Govaerts, and Joos Vandewalle. Weak keys for IDEA. In D. Stinson,

editor, Advances in Cryptology - CRYPTO'93, pages 224{231. Springer, 1994. Lecture Notes in

Computer Science No. 773.

Bibliography 435

[119] Ivan Damg�ard. A design principle for hash functions. In G. Brassard, editor, Advances in

Cryptology - CRYPTO'89, pages 416{427. Springer-Verlag, 1990. Lecture Notes in Computer

Science No. 435.

[120] C. J. Date. An Introduction to Database Systems, volume 1. Addison-Wesley, 1986.

[121] G. I. Davida, D. L. Wells, and J. B. Kam. A database encryption system with subkeys. ACM

Transactions on Database System, 6(2):312{328, 1981.

[122] G. I. Davida and Y. Yeh. Cryptographic relational algebra. In Proceedings of the 1982 IEEE

Symposium on Security and Privacy, pages 111{116, Oakland, CA, April 1982. IEEE Computer

Society.

[123] Donald W. Davies. Some regular properties of the `Data Encryption Standard' algorithm. In

R. L. Rivest, A. Sherman, and D. Chaum, editors, Advances in Cryptology - CRYPTO'82, pages

89{96, New York, 1983. Plenum Press.

[124] Marc Davio, Yvo Desmedt, Marc Foss�eprez, Ren�e Govaerts, Jan Hulsbosch, Patrik Neutjens,

Philippe Piret, Jean-Jacques Quisquater, Joos Vandewalle, and Pascal Wouters. Analytical

characteristics of the DES. In D. Chaum, editor, Advances in Cryptology | Crypto '83, pages

171{202, New York, 1984. Plenum Press.

[125] J.A. Davis and D.B. Holdridge. Factorization using the quadratic sieve algorithm. In D. Chaum,

editor, Advances in Cryptology - CRYPTO'83, pages 103{113, New York, 1984. Plenum Press.

[126] James A. Davis, Diane B. Holdridge, and Gustavus J. Simmons. Status report on factoring (at

the Sandia National Laboratories). In T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in

Cryptology - EUROCRYPT'84, pages 183{215, Paris, 1985. Springer. Lecture Notes in Computer

Science No. 209.

[127] M.H. Dawson and S.E. Tavares. An expanded set of S-box design criteria based on information

theory and its relation to di�erential-like attacks. In D.W.Davies, editor, Advances in Cryptology

| Eurocrypt '91, pages 352{367, Berlin, 1991. Springer-Verlag.

[128] Wiebren de Jonge and David Chaum. Attacks on some RSA signatures. In H. C. Williams,

editor, Advances in Cryptology - CRYPTO'85, pages 18{27. Springer, 1986. Lecture Notes in

Computer Science No. 218.

[129] H. Debar, M. Becker, and D. Siboni. A neural network component for an intrusion detection

system. In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages

1{11, 1992.

[130] H. Debar and B. Dorizzi. An application of a recurrent network to an intrusion detection system.

In Proceedings of the International Joint Conference on Neural Networks, pages 478{483, 1992.

[131] A. Dempster. A generalization of bayesian inference. Journal of the Royal Statistical Society,

30:205{247, 1968.

[132] N. Demytko. A new elliptic curve based analogue of RSA. In Helleseth T., editor, Advances

in Cryptology - EUROCRYPT'93, pages 40{49. Springer, 1994. Lecture Notes in Computer

Science No. 765.

Bibliography 436

[133] B. denBoer and A. Bosselaers. An attack on the last two rounds of MD4. In J. Feigenbaum,

editor, Advances in Cryptology - CRYPTO'91, pages 194{203. Springer, 1992. Lecture Notes in

Computer Science No. 576.

[134] D. D. Denning, T. F. Lunt, P. G. Neumann, R. R. Schell, M. Heckman, and W. R. Shockley.

Secure distributed data views: Security policy and interpretation for a class A1 multilevel se-

cure relational database system. Interim Report A002, SRI International, Computer Science

Laboratory, November 1986.

[135] D. D. Denning, T. F. Lunt, R. R. Schell, M. Heckman, and W. R. Shockley. Secure distributed

data views (SeaView): The SeaView formal security policy model. Interim Report A003, SRI

International, Computer Science Laboratory, July 1987.

[136] D. E. Denning. A lattice model of secure information ow. Communications of the ACM,

19(5):236{ 243, 1976.

[137] D. E. Denning. Field encryption and authentication. In D. Chaum, editor, Advances in Cryp-

tology: Proceedings of CRYPTO 83, pages 231{247, Santa Barbara, CA, 1983. Plenum Press,

New York.

[138] D. E. Denning. Cryptographic checksums for multilevel data security. In Proceedings of the

1984 IEEE Symposium on Security and Privacy, pages 52{61, Oakland, CA, April 1984. IEEE

Computer Society.

[139] D. E. Denning. Commutative �lters for reducing inference threats in multilevel database systems.

In Proceedings of the 1985 IEEE Symposium on Security and Privacy, pages 134{146, Oakland,

CA, April 1985. IEEE Computer Society.

[140] D. E. Denning. Database security. In Ann. Rev. Comput. Sci. Vol. 3, pages 1{22. Annual

Reviews Inc., 1988.

[141] D. E. Denning, S. G. Akl, M. Heckman, T. F. Lunt, M. Morgenstern, P. G. Neumann, and

R. G. Schell. Views for multilevel database security. IEEE Transactions Software Engineering,

SE-13(2):129{140, 1987.

[142] D. E. Denning, T. F. Lunt, R. R. Schell, M. Heckman, and W. Shockley. A multilevel relational

data model. In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages 220{

234, Oakland, CA, 1987. IEEE Computer Society.

[143] D.E. Denning. An intrusion-detection model. In Proceedings of the 1986 IEEE Symposium on

Security and Privacy, pages 118{131. IEEE Computer Society Press, 1986.

[144] D.E. Denning and G.M. Sacco. Timestamps in key distribution protocols. Communications of

the ACM, 24(8):533{536, 1981.

[145] Department of Defense. DoD 5200.28-STD: Department of Defense (DoD) Trusted Computer

System Evaluation Criteria (TCSEC), 1985.

[146] Department of Defense. Trusted Computer System Evaluation Criteria { Orange Book. Pub.

DOD 5200.28-STD, U.S. Department of Defense, 1985.

[147] Y. Desmedt. Threshold cryptography. European Transactions on Telecommunication and Re-

lated Technologies, 5(4):449{457, 1994.

Bibliography 437

[148] Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures. In J. Feigen-

baum, editor, Advances in Cryptology - CRYPTO'91, pages 457{469. Springer, 1992. Lecture

Notes in Computer Science No. 576.

[149] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In G. Brassard, editor, Advances in

Cryptology - CRYPTO'89, pages 307{315. Springer-Verlag, 1990. Lecture Notes in Computer

Science No. 435.

[150] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer.

Proceedings of the Royal Society, A400:97{117, 1985.

[151] W. Di�e and M. E. Hellman. New directions in cryptography. IEEE Transactions on Informa-

tion Theory, 22:644{654, 1976.

[152] W. Di�e and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory,

IT-22:644{654, November 1976.

[153] W. Di�e and M. E. Hellman. Exhaustive cryptanalysis of the NBS data encryption standard.

Computer, 10:74{84, June 1977.

[154] W. Di�e, P. Van Oorschot, and M. Wiener. Authentication and authenticated key exchanges.

Designs, Codes, and Cryptography, 2:107{125, 1992.

[155] J. F. Dillon. A survey of bent functions. The NSA Technical Journal, pages 191{215, 1972.

(unclassi�ed).

[156] H. Dobbertin. Cryptanalysis of MD4. In Fast Software Encryption, Lecture Notes in Comp uter

Science, Vol. 1039, D.Gollmann (Ed.), pages 53{69. Springer-Verlag, 1996.

[157] H. Dobbertin. Cryptanalysis of MD5 compress. Announcement on Internet, May 1996.

[158] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: a stengthened versionj of RIPEmd.

In Fast Software Encryption, Lecture Notes in Comp uter Science, Vol. 1039, D.Gollmann

(Ed.), pages 71{79. Springer-Verlag, 1996.

[159] D. Dolev and A. Wigderson. On the security of multi-party protocols in distributed systems. In

D. Chaum, R. L. Rivest, and A. T. Sherman, editors, Advances in Cryptology - Proceedings of

Crypto 82, pages 167{175, Santa Barbara, August 1982. Plenum Press, NY.

[160] C. Dowell and P. Ramstedt. The Computer Watch data reduction toll. In Proceedings of the

13th National Computer Security Conference, pages 99{108, 1990.

[161] A. R. Downing, I. B. Greenberg, and T. F. Lunt. Issues in distributed database security. In

Proceedings of the Fifth Aerospace Computer Security Applications Conference, pages 196{203,

Tucson, AZ, December 1989.

[162] T. Du�. Experience with viruses on UNIX systems. Computing Systems, 2:155{171, 1989.

[163] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

IEEE Transactions on Information Theory, 31:469{472, 1985.

[164] R. Eriksson and K. Beckman. Protection of databases using �le encryption. In V. Fak, editor,

Proceedings of IFIP/Sec '83, pages 217{221, Stockholm, Sweden, May 1983.

Bibliography 438

[165] S. Even and O. Goldreich. Des-like functions can generate the alternating group. IEEE Trans.

on Information Theory, IT-29(6):863{865, 1983.

[166] V. Fak. Repeated use of codes which detect deception. IEEE Trans. on Information Theory,

25(2):233{234, 1979.

[167] R. Farrow. UNIX System Security. Addison-Wesley, 1991.

[168] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of Cryptology,

1(2):77{94, 1988.

[169] H. Feistel. Cryptography and computer privacy. Scienti�c American, 228:15{23, May 1973.

[170] Horst Feistel, WilliamA. Notz, and J. Lynn Smith. Some cryptographic techniques for machine-

to-machine data communications. Proc. IEEE, 63(11):1545{1554, November 1975.

[171] P. Feldman. A practical scheme for non-interactive veri�able secret sharing. In Proceedings of

the 28th IEEE Symposium on Foundations of Computer Science, pages 427{437. IEEE, 1987.

[172] J. Fellows and J. Hemenway. The architecture of a distributed trusted computing base. In

Proceedings of the 10th National Computer Security Conference, pages 68{77, Baltimore, MD,

September 1987. NBS/NCSC.

[173] D. Ferbrache. INIT29 { infections but your data is safe. Virus Bulletin, December 1989.

[174] D. Ferbrache. Virus analysis: nVIR and its clones. Virus Bulletin, October 1989.

[175] D. Ferbrache. Mac threats. Virus Bulletin, December 1990.

[176] D. Ferbrache. Virus report: WDEF { the hidden virus. Virus Bulletin, January 1990.

[177] N. Ferguson. Extensions of single-term coins. In D. R. Stinson, editor, Advances in Cryptology

- CRYPTO'93, pages 292{301. Springer, 1994. Lecture Notes in Computer Science No. 773.

[178] E. B. Fernandez, E. Gudes, and H. Song. A security model for object-oriented databases. In

Proceedings of the 1989 IEEE Symposium on Security and Privacy, pages 110{115, Oakland,

CA, 1989. IEEE Computer Society.

[179] D. Ferraiolo and R. Kuhn. Role based access controls. In Proceedings of the 15th National

Computer Security Conference, pages 554{563, 1992. NIST, Gaithersburg.

[180] R. Feynman. Simulating physics with computers. International Journal of Theoretical Physics,

21(6-7):467{488, 1982.

[181] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identi�cation and signature

problems. In A. M. Odlyzko, editor, Advances in Cryptology - CRYPTO'86, pages 186{194.

Springer, 1987. Lecture Notes in Computer Science No. 263.

[182] S. Fischer-H�ubner and K. Brunnstein. Combining veri�ed and adaptive system components

towards more secure computer architectures. In Proceedings of the International Workshop on

Computer Architectures to Support Security and Persistence of Information, pages 1{7, 1990.

Section 14.

Bibliography 439

[183] D. H. Fishman, J. Annevelink, D. Beech, E. C. Chow, T. Connors, J. W. Davis, W. Hasan, C. G.

Hoch, W. Kent, S. Leichner, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. Risch, M. C. Shan, and

W. K. Wilkinson. Overview of the Iris DBMS. In W. Kim and F. H. Lochovsky, editors, Object-

Oriented Concepts, Databases and Applications, chapter 10, pages 219{250. Addison-Wesley,

New York, 1989.

[184] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors, J. W. Davis, N. Derrett, C. G.

Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. A. Ryan, and M. C. Shan. Iris:

An object-oriented database management system. ACM Transactions on O�ce Information

Systems, 5(1):48{69, 1987.

[185] National Institute for Standards and Technology. Digital Signature Standard (DSS). Federal

Register, 56(169), August 30 1991.

[186] R. Forre. Methods and instruments for designing S-boxes. Journal of Cryptology, 2(3):115{130,

1990.

[187] W.F. Friedman. The index of coincidence and its application in cryptography. Riverbank

Laboratories, 1920. Publication No. 22.

[188] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for alrge scale elections.

In J. Seberry and Y. Zheng, editors, Advances in Cryptology - AUSCRYPT'92, pages 244{251.

Springer, 1993. Lecture Notes in Computer Science No. 718.

[189] A. Furche and G. Wrightson. Computer Money A Systematic Overview of Electronic Payment

Systems. dpunkt, 1996.

[190] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

IEEE Trans. Inform. Theory, 31:469{472, 1985.

[191] M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, 1979.

[192] C. Garvey and A. Wu. ASD Views. In Proceedings of the 1988 IEEE Symposium on Security

and Privacy, pages 85{95, Washington, 1988. IEEE Computer Society.

[193] T. D. Garvey and T. F. Lunt. Multilevel security for knowledge-based systems. In Proceedings

of the Workshop on Object-Oriented Database Security, University of Karlsruhe, W. Germany,

1990. European Institute for System Security. (preprint).

[194] T. D. Garvey and T. F. Lunt. Multilevel security for knowledge-based systems. In Proceed-

ings of the Sixth Computer Security Applications Conference, Tucson, Arizona, December 1990.

(preprint).

[195] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital distributed system security

architecture. In Proceedings of 12th National Computer Security Conference, pages 305{319,

1989. Baltimore, Maryland.

[196] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. In

U. Maurer, editor, Advances in Cryptology - EUROCRYPT'96, pages 354{371. Springer, 1996.

Lecture Notes in Computer Science No. 1070.

[197] J.L. Gersting. Mathematical Structures for Computer Science. W.H. Freeman and Company,

New York, 1987.

Bibliography 440

[198] H. Ghodosi, J. Pieprzyk, and R. Safavi-Naini. Dynamic threshold cryptosystem: a new scheme

in group oriented cryptography. In J. Pribyl, editor, Proceedings of PRAGOCRYPT96, pages

370{379. CTU Publishing House, 1996.

[199] J.K. Gibson. Discrete logarithm hash function that is collision free and one way. In IEE

Proceedings-E, pages 407{410. Springer-Verlag, 1991. No. 138.

[200] E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane. Codes which detect deception. Bell

System Tech. J., 53:405{424, 1974.

[201] J. Gill. Computational complexity of probabilistic Turing machines. Society of Industrial and

Applied Mathematicians (SIAM), 6:675{695, December 1977.

[202] M. Girault. Self-certi�ed public keys. In D. Davies, editor, Advances in Cryptology - EU-

ROCRYPT'91, pages 490{497. Springer-Verlag, 1991. Lecture Notes in Computer Science No.

547.

[203] J. I. Glasgow, G. H. MacEwen, T. Mercouris, and F. Ouabdesselam. Specifying multi-level secu-

rity in a distributed system. In Proceedings of the 7th DOD/NBS Computer Security Conference,

pages 319{340, September 1984.

[204] J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proceedings of the 1984 IEEE

Symposium on Security and Privacy, pages 75{86, Oakland, CA, April 1984. IEEE Computer

Society.

[205] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the

ACM, 33(4):792{807, 1986.

[206] O. Goldreich, Y. Mansour, and M. Sipser. Interactive proof systems: provers that never fail and

random selection. In Proceedings of the 28th IEEE Symposium on Foundations of Computer

Science, pages 449{460, Toronto, 1987. IEEE.

[207] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity

or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(1):691{729,

1991.

[208] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Science,

28(2):270{299, April 1984.

[209] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interactive proof-systems.

SIAM. J. Computing, 18(1):186{208, February 1989.

[210] Sha� Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive

chosen-message attacks. Society of Industrial and Applied Mathematicians (SIAM), 17(2):281{

308, April 1988.

[211] J.D. Goli�c. Intristic statistical weakness of keystream generators. In J. Pieprzyk and R. Safavi-

Naini, editors, Advances in Cryptology - ASIACRYPT'94, pages 91{103. Springer-Verlag, 1995.

Lecture Notes in Computer Science No. 917.

[212] D. Gollmann. What do we mean by entity authentication. In IEEE Symposium on Research in

Security and Privacy, pages 46{54, 1996.

[213] D. Gollmann. Computer Security. Wiley, 1999.

Bibliography 441

[214] D. Gollmann,T. Beth, and F. Damm.Authentication services in distributed systems. Computers

& Security, 12:753{764, 1993.

[215] D. Gollmann and W.G. Chambers. Clock-controlled shift registers: a review. IEEE Journal of

Selected Areas of Comm., 7(4):525{533, May 1989.

[216] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols. In

IEEE Symposium on Security and Privacy, pages 234{248. IEEE Computer Society Press, 1990.

[217] A. Goscinski. Distributed Operating Systems The logical Design. Addison-Wesley, 1991.

[218] G.S. Graham and P.J. Denning. Protection: principles and practices. In Proceedings of the

AFIPS Spring Joint Computer Conference, pages 417{429, 1972.

[219] R. D. Graubart. The integrity-lock approach to secure database management. In Proceedings

of the 1984 IEEE Symposium on Security and Privacy, pages 62{74, Oakland, CA, April 1984.

IEEE Computer Society.

[220] R. D. Graubart and K. J. Du�y. Design overview for retro�tting integrity-lock architecture onto

a commercial DBMS. In Proceedings of the 1985 IEEE Symposium on Security and Privacy,

pages 147{159, Oakland, CA, April 1985. IEEE Computer Society.

[221] R. D. Graubart and S. Kramer. The integrity-lock support environment. In J. H. Finch and E. G.

Dougall, editors, Proceedings of the 2nd IFIP International Conference on Computer Security,

IFIP/Sec '84, pages 249{268. North-Holland, 1984.

[222] P. P. Gri�ths and B. W. Wade. An authorization mechanism for a relational database system.

ACM Transactions on Database Systems, 1(3):242{255, 1976.

[223] CIDF Working Group. the common intrusion detection framework. Version 0.6, available at

http://seclab.cs.ucdavis.edu/cidf, 1999.

[224] D. Gryaznov. Scanners for the year 2000: Heuristics. In Proceedings of the Fifth International

Virus Bulletin Conference, pages 225{234, 1995.

[225] E. Gudes. The design of a cryptography based secure �le system. IEEE Transactions on Software

Engineering, SE-6(5):411{420, 1980.

[226] Louis Guillou and Jean-Jacques Quisquater. E�cient digital public-key signature with shadow.

In Carl Pomerance, editor, Advances in Cryptology - CRYPTO'87, pages 223{223. Springer-

Verlag, 1988. Lecture Notes in Computer Science No. 293.

[227] C. G�unter. An identity-based key-exchange protocol. In J.-J. Quisquater and J. Vandewalle,

editors, Advances in Cryptology - EUROCRYPT'89, pages 29{37. Springer-Verlag, 1990. Lecture

Notes in Computer Science No. 434.

[228] S. Gupta and V.D. Gligor. Experience with a penetration analysis method and tool. In Pro-

ceedings of the 15th National Computer Security Conference, pages 165{183, 1992.

[229] N. Habra, B.L. Charlierand, A. Mounji, and I. Mathieu. ASAX: software architecture and

rule-based language for universal audit trial analysis. In Y. Deswarte, G. Eizenberg, and J.-J.

Quisquater, editors, Proceedings of ESORICS'92, European Symposium on Research in Com-

puter Security, pages 435{450. Springer-Verlag, 1992. Lecture Notes in Computer Science No.

648.

Bibliography 442

[230] S. Halevi. E�cient commitment schemes with bounded sender and unbounded receiver. In

D. Coppersmith, editor, Advances in Cryptology - CRYPTO'95, pages 84{966. Springer, 1995.

Lecture Notes in Computer Science No. 963.

[231] F.M. Hall. An Introduction to Abstract Algebra. Cambridge University Press, Cambridge, 1969.

[232] S.E Hansen and T. Atkins. Automated system monitoring and noti�cation with swatch. In

Proceedings of the USENIX Systems Administration (LISA VII) Conference, pages 145{155,

1993.

[233] T. Hardjono and J. Seberry. Authentication via multi-service tickets in the KUPEREE server.

In D. Gollmann, editor, Proceedings of the Third European Symposium on Research in Com-

puter Security, ESORICS94, pages 143{160. Springer-Verlag, 1994. Lecture Notes in Computer

Science No. 875.

[234] T. Hardjono and J. Seberry. Replicating the KUPEREE authentication server for increased se-

curity and reliability. In J. Pieprzyk and J. Seberry, editors, Proceedings of the First Australasian

Conference on Information Security and Privacy, ACISP96, pages 14{27. Springer-Verlag, 1996.

Lecture Notes in Computer Science No. 1172.

[235] D. Harkins and D. Carrel. RFC 2409: The Internet Key Exchange (IKE), November 1998.

http://www.ietf.org.

[236] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems. Communications

of the ACM, 19(8):461{471, 1976.

[237] H. R. Hartson. Database security - system architectures. Information Systems (GB), 6:1{22,

1981.

[238] P. Hawkes. Di�erential-linear weak key classes of IDEA. In K. Nyberg, editor, Advances in

Cryptology - EUROCRYPT'98, pages 112{126. Springer, 1998. Lecture Notes in Computer

Science No. 1403.

[239] R. R. Henning and S. A. Walker. Computer architecture and database security. In Proceedings of

the 9th National Computer Security Conference, pages 216{230, Gaithersburg, MD, September

1986. National Bureau of Standarad/ National Computer Security Center.

[240] M. P. Herlihy and J. D. Tyger. How to make replicated data secure. In C. Pomerance, editor,

Advances in Cryptology - Proceedings of CRYPTO '87 (Lecture Notes in Computer Science No.

293), pages 380{391. Springer-Verlag, 1987.

[241] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: how to cope

with perpetual leakage. In D. Coppersmith, editor, Advances in Cryptology - CRYPTO'95,

pages 339{352. Springer, 1995. Lecture Notes in Computer Science No. 963.

[242] E. Heyst, T.P. Pedersen, and B. P�tzmann. New constructions of fail-stop signatures and lower

bounds. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO'92, pages 15{30.

Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740.

[243] H. Highland. The BRAIN virus: facts and fantasy. Computers & Security, 7:367{370, 1988.

[244] H. Highland. A macro virus. Computers & Security, 8:178{188, 1989.

Bibliography 443

[245] H. Highland. Procedure to reduce the computer virus threat. Computers & Security, 16:439{449,

1997.

[246] T. H. Hinke. DBMS technology vs. threats. In C. E. Landwehr, editor, Database Security:

Status and Prospects (Results of the IFIP WG 11.3 Initial Meeting), pages 57{87, Annapolis,

Maryland, October 1987. IFIP, North-Holland.

[247] J. Hochberg, K. Jackson, C. Stallings, J.F. McClary, D. DuBois, and J. Ford. NADIR: An

automated system for detecting network intrusion and misuse. Computers & Security, 12:235{

248, 1993.

[248] J. Horton. Introduction to viruses. PhD draft, School of IT and CS, University of Wollongong,

1999.

[249] J. Horton and J. Seberry. Companion viruses and the Macintosh: threats and countermea-

sures. In Proceedings of the Fourth Australasian Conference on Information Security and Privacy

(ACISP99), volume 1587, pages 202{212. Springer-Verlag, 1999.

[250] D. K. Hsiao. Data base computers. In M. C. Yovits, editor, Advances in Computers, pages 1{64.

Academic Press, New York, 1980.

[251] K. Ilgun. USTAT: a real-time intrusion detection system for UNIX. In IEEE Symposium on

Research in Security and Privacy, pages 16{28, 1993.

[252] Apple Computer Inc. Inside Macintosh: Files. Addison-Wesley, 1992.

[253] Apple Computer Inc. Inside Macintosh: Macintosh Toolbox Essentials. Addison-Wesley, 1992.

[254] Apple Computer Inc. Inside Macintosh: More Macintosh Toolbox. Addison-Wesley, 1993.

[255] Apple Computer Inc. Inside Macintosh: Operating System Utilities. Addison-Wesley, 1994.

[256] I. Ingemarsson, D. Tang, and C. Wong. A conference key distribution system. IEEE Trans.

Information Theory, IT-28:714{720, 1982.

[257] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access structure. In

Proceedings IEEE Globecom '87, pages 99{102. IEEE, 1987.

[258] K. Iversen. A cryptographic scheme for computerized general elections. In J. Feigenbaum, editor,

Advances in Cryptology - CRYPTO'91, pages 405{419. Springer-Verlag, 1992. Lecture Notes in

Computer Science 576.

[259] C. Jackson. Worms in the ripe apple. Virus Bulletin, July 1998. see

http://www.virusbtn.com/VirusInformation/autostart9805.html.

[260] M. Jakobsson and M. Yung. Revokable and versatile electronic money. In Third ACM Conference

on Computer and Communication Security, pages 76{87. ACM Press, 1996.

[261] H.S. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. In Proceedings of the

1991 IEEE Symposium on Security and Privacy, pages 316{326. IEEE Computer Society Press,

1991.

[262] T. Johansson. Lower bounds on the probability of deception in authentication with arbitration.

IEEE Trans. on Information Theory, 40(5):1573{1585, 1994.

Bibliography 444

[263] T. Johansson and A. Sgarro. Strengthening simmons bound on impersonation. IEEE Trans. on

Information Theory, 37(4):1182{1185, 1991.

[264] T. Johansson, B. Smeets, and G. Kabatianskii. On the relation between a-codes and codes cor-

recting indpendent errors. In T. Helleseth, editor, Advances in Cryptology - EUROCRYPT'93,

pages 1{11. Springer, 1994. Lecture Notes in Computer Science No. 765.

[265] R. W. Jones and M. S. J. Baxter. The role of encipherment services in distributed systems. In

F. Pichler, editor, Advances in Cryptology - EUROCRYPT'85, pages 214{220, Linz, Austria,

April 1985.

[266] D. Kahn. The Codebreakers. Macmillian, New York, 1967.

[267] J. Kam and G. Davida. Structured design of substitution-permutation networks. IEEE Trans-

actions on Computers, C-28:747{753, 1979.

[268] I. Kantzavelou and S. Katsikas. An attack detection system for secure computer systems - outline

of the solution. In Proceedings of the 13th International Information Security Conference, pages

123{135, 1997.

[269] I. Kantzavelou and A. Patel. An attack detection system for secure computer systems - design

of ads. In Proceedings of the 12th International Information Security Conference, pages 1{16,

1996.

[270] E.D. Karnin, J.W. Greene, and M.E. Hellman. On secret sharing systems. IEEE Transactions

on Information Theory, IT-29:35{41, 1983.

[271] D. Karpinski. AntiCMOS { brain damage. Virus Bulletin, August 1994.

[272] A. Kaufmann. Graphs, Dynamic Programming, and Finite Games. Mathematics in Science and

Engineering. Academic Press, New York, 1967.

[273] T. F. Keefe, W. T. Tsai, and M. B. Thuraisingham. SODA: A secure object-oriented database

system. Computers & Security, 8(6):517{533, 1989.

[274] A. M. Keller. Updates to relational databases through views involving joins. In P. Scheuermann,

editor, Improving Database Usability and Responsiveness, pages 363{384. Academic Press, New

York, 1982.

[275] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis.

Journal of Cryptology, 7(2):79{130, 1994.

[276] S. Kent and R. Atkinson. RFC 2401: Security architecture for the Internet Security. Network

Working Group, IETF, November 1998. http://www.ietf.org.

[277] S. Kent and R. Atkinson. RFC 2402: IP Authentication Header, November 1998.

http://www.ietf.org.

[278] S. Kent and R. Atkinson. RFC 2406: IP Encapsulating Security Payload (ESP), November

1998. http://www.ietf.org.

[279] W. Kim, N. Ballou, H. Chou, J. F. Garza, and D. Woelk. Features of the ORION object-oriented

database system. In W. Kim and F. H. Lochovsky, editors, Object-Oriented Concepts, Databases

and Applications, chapter 11, pages 251{282. Addison-Wesley, New York, 1989.

Bibliography 445

[280] W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architecture of the ORION next-generation

database system. IEEE Transaction on Knowledge and Data Engineering, 2(1):109{124, 1990.

[281] W. Kim and F. H. Lochovsky. Object-Oriented Concepts, Databases and Applications. ACM

Press Frontier Series. Addison-Wesley, New York, 1989.

[282] L. Knudsen and W. Meier. Improved di�erential attacks on RC5. In Koblitz N., editor, Advances

in Cryptology - CRYPTO'96, pages 216{236. Springer, 1996. Lecture Notes in Computer Science

No. 1109.

[283] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.

Addison-Wesley, 1969. Second edition, 1981.

[284] N. Koblitz. Elliptic curve cryptosytems. Mathematics of Computation, 48(177):203{209, 1987.

[285] K. Koyama, U.M. Maurer, T. Okamoto, and S.A. Vanstone. New public-key schemes based on

elliptic curves over the ring zn. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO'91,

pages 252{266. Springer, 1992. Lecture Notes in Computer Science No. 576.

[286] K. Koyama and K. Ohta. Identity-based conference key distribution systems. In C. Pomerance,

editor, Advances in Cryptology - CRYPTO'87, pages 175{184. Springer-Verlag, 1988. Lecture

Notes in Computer Science No. 293.

[287] P. Kumar and R. Scholtz. Bounds on the linear span of bent sequences. IEEE Transactions on

Information Theory, IT-29 No. 6:854{862, 1983.

[288] P. Kumar, R. Scholtz, and L. Welch. Generalized bent functions and their properties. Journal

of Combinatorial Theory, Ser. A, 40:90{107, 1985.

[289] S. Kumar and E. Spa�ord. A pattern matching model for misuse intrusion detection. In

Proceedings of the 17th National Computer Security Conference, pages 11{21, 1994.

[290] K. Kurosawa, K. Okada, and S. Tsujii. Low exponent attack against elliptic curve RSA. In

J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT'94, pages 376{

383. Springer, 1995. Lecture Notes in Computer Science No. 917.

[291] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. In Proceedings

of the 24th IEEE Symposium on Foundations of Computer Science, pages 1{10, Tucson, 1983.

IEEE.

[292] X. Lai and J. Massey. A proposal for a new block encryption standard. In I.B. Damg�ard, editor,

Advances in Cryptology - EUROCRYPT'90, pages 389{404. Springer, 1990. Lecture Notes in

Computer Science No. 473.

[293] X. Lai, J. Massey, and S. Murphy. Markov ciphers and di�erential cryptanalysis. In D.W. Davies,

editor, Advances in Cryptology - EUROCRYPT'91, pages 17{38. Springer, 1991. Lecture Notes

in Computer Science No. 547.

[294] L. Lamport. Constructing digital signatures from a one-way function. Technical Report CSL-98,

SRI International, October 1979.

[295] B. Lampson. Protection. In 5th Princeton Conference on Information and System Sciences,

pages 437{443, 1971.

Bibliography 446

[296] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov�asz. Factoring polynomials with rational coe�-

cients. Mathematische Ann., 261:513{534, 1982.

[297] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number �eld sieve.

In Proc. 22nd ACM Symposium on Theory of Computing, pages 564{572, Baltimore, Maryland,

1990. "Association for Computing Machinery (ACM)".

[298] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics, 126:649{673,

1987.

[299] L.A. Levin. One-way function and pseudorandom generators. Combinatorica, 7(4):357{363,

1987.

[300] C. M. Li, T. Hwang, and N. Y. Lee. Threshold-multisignature schemes where suspected forgery

implies tracebility of adversarial shareholders. In A. De Santis, editor, Advances in Cryptology -

EUROCRYPT'94, pages 194{204. Springer, 1995. Lecture Notes in Computer Science No. 950.

[301] G.E Liepins and H.S. Vaccaro. Intrusion detection: Its role and validation. Computers &

Security, 11:347{355, 1992.

[302] G. Lowe. Some new attacks upon security protocols. In IEEE Computer Security Foundations

Workshop, pages 162{169. IEEE, 1996.

[303] J. Loxton, D. Khoo, G. Bird, and J. Seberry. A cubic RSA code equivalent to factorization.

Journal of Cryptology, 5:139{150, 1992.

[304] M. Luby and C. Racko�. How to construct pseudorandom permutations and pseudorandom

functions. SIAM Journal of Computing, 17(2):373{386, April 1988.

[305] P. Lucas and L. Van Der Gaag. Principles of Expert Systems. Addison-Wesley Publishing

Company, 1991.

[306] T. Lunt and R. Jagannathan. A prototype real-time intrusion detection expert system. In

Proceedings of the 1988 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 1988.

[307] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neumann, and C. Jalali. IDES: a progress

report. In Proceedings of the 6-th Annual Computer Security Applications Conference, pages

273{285. IEEE Computer Society Press, 1990.

[308] T. F. Lunt. Multilevel security for object-oriented database systems. In D. L. Spooner and

C. Landwehr, editors, Database Security III: Status and Prospects (Results of the IFIP WG

11.3 Workshop on Database Security), pages 199{209, Monterey, CA, 5-7 September 1989. IFIP,

North-Holland.

[309] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. Element-level

classi�cation with A1 assurance. Computers & Security, 7(1):73{82, 1988.

[310] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. The SeaView

security model. IEEE Transactions on Software Engineering, SE-16(6):593{607, 1990.

[311] T. F. Lunt and J. K. Millen. Secure knowledge-based systems. Technical Report SRI-CSL-90-04,

SRI International, Menlo Park, CA, August 1989.

Bibliography 447

[312] T. F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman, and D. Warren. A near-term design

for the SeaView multilevel database system. In Proceedings of the 1988 IEEE Symposium on

Security and Privacy, pages 234{244, Washington, 1988. IEEE Computer Society.

[313] G. H. MacEwen. E�ects of distributed system technology on database security: A survey. In

C. E. Landwehr, editor, Database Security: Status and Prospects (Results of the IFIP WG 11.3

Initial Meeting), pages 253{261, Annapolis, Maryland, October 1987. IFIP, North-Holland.

[314] F.J. MacWilliams and N.J.A. Sloane. The theory of error-correcting codes. North-Holland,

Amsterdam, 1977.

[315] S. Magruder. High-level language computer viruses - a new threat ? Computers & Security,

13:263{269, 1994.

[316] J. Massey. Contemporary cryptology, an introduction. Proceedings of the IEEE, 76:533{549,

1988.

[317] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor, Advances in

Cryptology | Eurocrypt '93, volume 765 of Lecture Notes in Computer Science, pages 386{397,

Berlin, 1994. Springer-Verlag.

[318] M. Matsui. On correlation between the order of S-boxes and the strength of DES. In A. De

Santis, editor, Advances in Cryptology | Eurocrypt'94, volume 950 of Lecture Notes in Computer

Science, pages 366{376, Berlin, 1995. Springer-Verlag.

[319] M. Matsui and A. Yamagishi. A new method for known plaintext attack of FEAL cipher. In

R.A. Rueppel, editor, Advances in Cryptology | Eurocrypt '92, volume 658, pages 81{91, Berlin,

1992. Springer-Verlag.

[320] Mitsuru Matsui. The �rst experimental cryptanalysis of the data encryption standard. In Yvo G.

Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages 1{11. Springer, 1994. Lecture

Notes in Computer Science No. 839.

[321] T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key distribution systems.

Trans. IECE Japan, 69(2):99{106, 1986.

[322] S.M. Matyas and C.H. Meyer. Electronic signature for data encryption standard. IBM Tech.

Disc. Bull., 24(5):2332{24, 1981.

[323] U. Maurer. A universal statistical test for random bit generators. Journal of Cryptology, 5(2):89{

105, 1992.

[324] U. Maurer and S. Wolf. Di�e-Hellman oracles. In Koblitz N., editor, Advances in Cryptology -

CRYPTO'96, pages 268{282. Springer, 1996. Lecture Notes in Computer Science No. 1109.

[325] Ueli M. Maurer. Towards the equivalence of breaking the Di�e-Hellman protocol and computing

discrete algorithms. In Yvo G. Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages

271{281. Springer, 1994. Lecture Notes in Computer Science No. 839.

[326] R. J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages 114{116. Jet

Propulsion Lab, 1978. DSN Progress Report 44.

[327] J. McHugh and B. M. Thuraisingham. Multilevel security issues in distributed database man-

agement systems. Computers & Security, 7(4):387{396, 1988.

Bibliography 448

[328] M. McIlroy. Virology 101. Computing Systems, 2:173{181, 1989.

[329] L. Me. Security audit trail analysis using genetic algorithms. In Proceedings of the 12th Inter-

national Conference on Computer Safety, Reliability and Security, pages 329{340, 1993.

[330] L. Me. Genetic algorithms, a biologically inspired approach for security audit trails analysis. In

short presentaion, 1996 IEEE Symposium on Security and Privacy, 1996.

[331] C. Meadows. Formal veri�cation of cryptographic protocols: a survey. In J. Pieprzyk and

R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT'94, pages 135{150. Springer,

1995. Lecture Notes in Computer Science No. 917.

[332] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,

Boston/Dordrecht/London, 1993.

[333] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms in

a �nite �eld. IEEE Trans. on Inf. Theory, 39:1639{1646, 1993.

[334] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,

Boca Raton, 1997.

[335] A. Menezes and S. Vanstone. Elliptic curve cryptosystems and their implementation. Journal

of Cryptology, 6:209{224, 1993.

[336] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE

Trans. Inform. Theory, IT-24:525{530, September 1978.

[337] Ralph C. Merkle. A certi�ed digital signature. In G. Brassard, editor, Advances in Cryptology

- CRYPTO'89, pages 218{238. Springer-Verlag, 1990. Lecture Notes in Computer Science No.

435.

[338] Ralph C. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances in

Cryptology - CRYPTO'89, pages 428{446. Springer, 1990. Lecture Notes in Computer Science

No. 435.

[339] R.C. Merkle. A fast software one-way hash function. Journal of Cryptology, 3(1):43{58, 1989.

[340] S. Micali and C.P. Schnorr. E�cient, perfect polynomial random number generators. Journal

of Cryptology, 3(3):157{172, 1991.

[341] M. Mihaljevi�c. A faster cryptanalysis of the self-shrinking generator. In J. Pieprzyk and

J. Seberry, editors, Information Security and Privacy, Proceedings of ACISP96, pages 182{189,

Berlin, 1996. Springer Verlag.

[342] Gary L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and System

Science, 13(3):300{317, 1976.

[343] Victor S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Advances in

Cryptology - CRYPTO'85, pages 417{426. Springer, 1986. Lecture Notes in Computer Science

No. 218.

[344] S. Miyaguchi, K. Ohta, and M. Iwata. 128-bit hash function (N-Hash). In SECURICOM '90,

pages 123{137, 1990.

Bibliography 449

[345] A. Moitra. Real-time audit log viewer and analyzer. In Proceedings of the 4th Workshop on

Computer Security Incident Handling, 1992. Incident Response and Security Teams - FIRST.

[346] Computer Virus Information Pages Monkey. http:// www.datafellows.com/.

[347] J.H. Moore. Protocol failures in cryptosystems. In G.J. Simmons, editor, Contemporary Cryp-

tology: The Science of Information Integrity, pages 541{558. IEEE Press, 1992.

[348] M. Morgenstern. Security and inference in multilevel database and knowledge-base systems. In

Proceedings of the ACM International conference on the Management of Data (SIGMOD-87),

pages 357{373, San Francisco, May 1987. ACM-SIGMOD.

[349] M. A. Morrison and J. Brillhart. A method of factoring and the factorization of f7. Mathematics

of Computation, 29:183{205, 1975.

[350] A. Mounji and B. Le Charlier. Detecting breaches in computer security: A pragmatic sys-

tem with a logic programming avor. In Proceedings of the Eight Benelux Workshop on Logic

Programming, 1996.

[351] A. Mounji and B. Le Charlier. Continuous assessment of a unix con�guration: Integrating

intrusion detection and con�guration analysis. In Proceedings of the ISOC' 97 Symposium on

Network and Distributed System Security, 1997.

[352] A. Mounji, B. Le

Charlier, D. Zampunieris, and N. Habra. Preliminary report on distributed asax. Research

Report, May 1994, 36 pages. See http://www.info.fundp.ac.be/ amo/publications.html, 1994.

[353] A. Mounji, B. Le Charlier, D. Zampunieris, and N. Habra. Distributed audit trail analysis. In

Proceedings of the ISOC '95 Symposium on Network and Distributed System Security, 1995.

[354] D. M'Raihi. Cost-e�ective payment schemes with privacy regulation. In K. Kim and T. Mat-

sumoto, editors, Advances in Cryptology - ASIACRYPT'96, pages 266{275. Springer, 1996.

Lecture Notes in Computer Science No. 1163.

[355] Y. Mu, V. Varadharajan, and Y-X. Lin. New micropayment schemes based on PayWords. In

V. Varadharajan, J. Pieprzyk, and Y. Mu, editors, Information Security and Privacy, ACSIP'97,

LNCS vol. 1270, pages 283{293. Springer, 1997.

[356] B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion detection. IEEE Network,

8:26{41, 1994.

[357] S. Mullender, G. Van Rossum, A. Tanenbaum, R. Van Renesse, and H. Van Staveren. Amoeba:

a distributed operating system for the 1990s. IEEE Computer, 23:44{53, 1990.

[358] S. Murphy. The cryptoanalysis of FEAL-4 with 20 chosen plaintexts. Journal of Cryptology,

2:145{154, 1990.

[359] C. Nachenberg. Computer virus-antivirus coevolution. Communications of the ACM, 40:46{51,

1997.

[360] K. Nam and T. R. N. Rao. Cryptographic models for DBMS communications. In K. H. Kim,

K. Chon, and C. V. Ramamoorthy, editors, Proceedings of Paci�c Computer Communications

'85, pages 277{283. North-Holland, 1985.

Bibliography 450

[361] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In

Proc. 21th ACM Symposium on Theory of Computing, pages 33{43, Seattle, 1989. "Association

for Computing Machinery (ACM)".

[362] W. Narkiewicz. Number Theory. World Scienti�c, Singapore, 1983.

[363] National Institute of Standards and Technology (NIST). FIPS Publication 180: Secure Hash

Standard (SHS), May 11, 1993.

[364] National Institute of Standards and Technology (NIST). NIST FIPS PUB 185, Escrowed En-

cryption Standard, February 1994.

[365] R. M. Needham and M. D. Schroeder. Using encryption for authentication in a large network

of computers. Communications of the ACM, 21(12):993{999, 1978.

[366] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks of

computers. Communications of the ACM, 21(12):993{999, December 1978.

[367] R. M. Needham and R.D. Walker. The Cambridge CAP computer and its protection system.

In Proceedings of the 6th Symposium on Operating System Principles, pages 1{10, 1990.

[368] P.G. Neumann. Audit trail analysis and usage data collection and processing. Part 1. Computer

Science Laboratory, SRI International, 1985.

[369] P.G. Neumann and F. Ostapik. Audit trail analysis and usage data collection and processing.

Part 2. Computer Science Laboratory, SRI International, 1987.

[370] V. Niemi and A. Renvall. How to prevent buying of votes in computer elections. In

J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT'94, pages

164{170. Springer, 1995. Lecture Notes in Computer Science No. 917.

[371] O. Nierstrasz. A survey of object-oriented concepts. In W. Kim and F. H. Lochovsky, editors,

Object-Oriented Concepts, Databases and Applications, chapter 1, pages 3{21. Addison-Wesley,

New York, 1989.

[372] K. Nyberg. Perfect nonlinear S-boxes. In D.W. Davies, editor, Advances in Cryptology |

Eurocrypt '91, pages 378{386, Berlin, 1991. Springer-Verlag.

[373] K. Nyberg. On the construction of highly nonlinear permutations. In R.A. Rueppel, editor,

Advances in Cryptology | Eurocrypt '92, pages 92{98, Berlin, 1993. Springer-Verlag.

[374] L. OConnor and J. Seberry. Cryptographic Signi�cance of the Knapsack Problem. Aegean Park

Press, 1988.

[375] L.J. O'Connor. An analysis of product ciphers based on the properties of Boo lean functions.

PhD thesis, the University of Waterloo, 1992. Waterloo, Ontario, Canada.

[376] A. M. Odlyzko. Discrete logarithms in �nite �elds and their cryptographic signi�cance. In

T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in Cryptology - EUROCRYPT'84, pages

224{314, Paris, 1985. Springer. Lecture Notes in Computer Science No. 209.

[377] Canadian System Security Center Communication Security Establishment Government

of Canada. The Canadian Trusted Computer Product Evaluation Criteria. Version 3.0e, January

1993.

Bibliography 451

[378] Commision of European Communities. Information Technology Security Evaluation Criteria.

Technical Report, Brussels, September 1992.

[379] National Bureau of Standards. Announcing the data encryption standard. Technical Report

FIPS Publication 46, National Bureau of Standards, January 1977.

[380] National Soviet Bureau of Standards. Cryptographic algorithm. GOST 28147-89, 1989.

[381] Y. Ohnishi. A study on data security. Master's thesis, Tohoku University, Japan, 1988.

[382] K. Ohta and K. Koyama. Meet-in-the-middle attack on digital signature schemes. In J. Seberry

and J. Pieprzyk, editors, Proceedings of AUSCRYPT 90, pages 110{121. Springer, 1990. Lecture

Notes in Computer Science No. 453.

[383] T. Okamoto. A digital multisignature scheme using bijective public-key cryptosystems. ACM

Transactions on Computer Systems, 6(8):432{441, 1988.

[384] T. Okamoto. Provably secure and practical identi�cation schemes and corresponding signature

schemes. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO'92, pages 31{53.

Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740.

[385] T. Okamoto. An e�cient divisible electronic cash system. In D. Coppersmith, editor, Advances

in Cryptology - CRYPTO'95, pages 438{451. Springer, 1995. Lecture Notes in Computer Science

No. 963.

[386] T. Okamoto and K. Ohta. Universal electronic cash. In J. Feigenbaum, editor, Advances in

Cryptology - CRYPTO'91, pages 324{337. Springer, 1992. Lecture Notes in Computer Science

No. 576.

[387] J. D. Olsen, R. A. Scholtz, and L. R. Welch. Bent-function sequences. IEEE Transactions on

Information Theory, IT-28 No. 6:858{864, 1982.

[388] K. A. Omar and D. L. Wells. Modi�ed architecture for the sub-keys model. In Proceedings of

the 1983 IEEE Symposium on Security and Privacy, pages 79{86, Oakland, CA, April 1983.

IEEE Computer Society.

[389] P.C. van Oorschot and M.J. Wiener. A known-plaintext attack on two-key triple encryption. In

I.B. Damg�ard, editor, Advances in Cryptology | Eurocrypt '90, pages 318{325, Berlin, 1991.

Springer-Verlag.

[390] R. Oppliger. Authentication Systems for Secure Networks. Artech House, Boston, London, 1996.

[391] E.I. Organick. The Multics System: An Examination of Its Structure. MIT Press, 1972.

[392] D. Otway and O. Rees. E�cient and timely mutual authentication. ACM Operating Systems

Review, 21(1):8{10, 1987.

[393] J. Patarin. How to construct pseudorandom and super pseudorandom permutations fromone sin-

gle pseudorandom function. In R. Rueppel, editor, Advances in Cryptology - EUROCRYPT'92,

pages 256{266. Springer, 1993. Lecture Notes in Computer Science No. 658.

[394] V. Paxson. Bro: A system for detecting network intruders in real-time. In Proceedings of the

7th Annual USENIX Security Symposium, Usenix, 1998.

Bibliography 452

[395] T.P. Pedersen. Non-interactive and information-theoretic secure veri�able secret sharing. In

J. Feigenbaum, editor, Advances in Cryptology - CRYPTO'91, pages 129{140. Springer, 1992.

Lecture Notes in Computer Science No. 576.

[396] K.L. Petersen. IDA - intrusion detection alert. In Poroceedings of the Sixth Annual International

Computer Software and Application Conference, pages 306{311. IEEE Computer Society Press,

1992.

[397] B. P�tzmann. Digital Signature Schemes. LNCS, 1100, Springer, New York, 1996.

[398] B. P�tzmann and Waidner M. Fail-stop signatures and their applications. In SECURICOM91,

pages 338{350, 1991.

[399] C. P. Peeger. Security in Computing. Prentice-Hall, Englewood Cli�s, NJ, 1989.

[400] J. Pieprzyk. Ciphers detecting illegal substitution of messages. Archiwum Elektrotechniki,

XXIX(112-2):419{435, 1980. (in Polish).

[401] J. Pieprzyk. Bent permutations. In G. Mullen and P. Shiue, editors, Lecture Notes in Pure and

Applied Mathematics, Vol 141, Proceedings of 1st International Conference on Finite Fields,

Coding Theory, and Advances in Communications and Computing, Las Vegas, 1991, 1992.

[402] J. Pieprzyk and G. Finkelstein. Towards e�ective nonlinear cryptosystem design. IEE Proceed-

ings, 135(6):325{335, November 1988.

[403] J. Pieprzyk and B. Sadeghiyan. Optimal perfect randomizers. In H. Imai, R. Rivest, and

T. Matsumoto, editors, Proceedings of ASIACRYPT 91, pages 225{236. Springer, 1993. Lecture

Notes in Computer Science No. 739.

[404] J.P. Pieprzyk. How to construct pseudorandom permutations from single pseudorandom func-

tions. In Advances in Cryptology - EUROCRYPT'90, Lecture Notes in Computer Science,

Vol.473, pages 140{150. Springer Verlag, May 1991.

[405] J.P. Pieprzyk and Xian-Mo Zhang. Permutation generators of alternating groups. In Advances

in Cryptology - AUSCRYPT'90, J. Seberry, J. Pieprz yk (Eds), Lecture Notes in Computer

Science, Vol.453, pages 237{244. Springer Verlag, 1990.

[406] G. M. J. Pluimakers. Some notes on authorization and transaction management in distributed

database systems. Computers & Security, 7(3):287{298, 1988.

[407] D. Pointcheval. A new identi�cation scheme based on the perceptrons problem. In L. Guillou

and J. Quisquater, editors, Advances in Cryptology - EUROCRYPT'95, pages 319{328. Springer,

1995. Lecture Notes in Computer Science No. 9921.

[408] Carl Pomerance. The quadratic sieve factoring algorithm. In T. Beth, N. Cot, and I. Inge-

marrson, editors, Advances in Cryptology, volume 209 of Lecture Notes in Computer Science,

pages 169{182. Springer-Verlag, 1984.

[409] A. Porras and P.G. Neumann. Emerald: Event monitoring enabling responses to anomalous live

disturbances. In Proceedings of the National Information Systems Security Conference, 1997.

[410] B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis, Katholieke Uni-

versiteit Leuven, 1993.

Bibliography 453

[411] B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, and J. Vandewalle. Propagation

characteristics of Boolean functions. In I.B. Damg�ard, editor, Advances in Cryptology | Euro-

crypt '90, pages 161{173, Berlin, 1991. Springer-Verlag.

[412] B. Preneel and P. van Oorschot. MDx-MAC and building fast MACs from hash functions. In

D. Coppersmith, editor, Advances in Cryptology - CRYPTO'95, pages 1{14. Springer, 1995.

Lecture Notes in Computer Science No. 963.

[413] P. Proctor. Audit reduction and misuse detection in heterogeneous environments: framework

and application. In Proceedings of the 10th Annual Computer Security Application Conference,

pages 117{125, 1994.

[414] T.H. Ptacek and T.N. Newsham. Insertion, evasion and denial of service: Eluding network

intrusion detection. Technical Report, Secure Networks Inc. http://www.secnet.com, January

1998.

[415] J.-J. Quisquater, M. Quisquater, M. Quisquater, M. Quisquater, L. Guillou, M. A. Guillou,

G. Guillou, A. Guillou, G. Guillou, S. Guillou, and T. Berson. How to explain zero-knowledge

protocols to your children. In G. Brassard, editor, Advances in Cryptology - CRYPTO'89, pages

628{631. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.

[416] Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search. new results

and applications to DES. In G. Brassard, editor, Advances in Cryptology - CRYPTO'89, pages

408{415. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.

[417] M. Rabin. Digitalized signatures as intractable as factorization. Technical Report

MIT/LCS/TR-212, MIT Laboratory for Computer Science, January 1979.

[418] M. Rabin. Probabilistic algorithms for testing primality. J. Number Theory, 12:128{138, 1980.

[419] M. O. Rabin. Digitalized signatures. In Richard A. DeMillo, David P. Dobkin, Anita K. Jones,

and Richard J. Lipton, editors, Foundations of Secure Computation, pages 155{168. Academic

Press, 1978.

[420] Y. Radai. Integrity checking for anti-viral purposes: Theory and practice.

http://www.virusbtn.com/OtherPapers/, 1994.

[421] R. Rivest and A. Shamir. PayWord and MicroMint: two simple micropayment schemes. In

Proceedings of RSA'96 Conference. Available at: http://theory.lcs.mit.edu/�rivest, 1996.

[422] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomorphisms.

In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure

Computation, pages 169{177. Academic Press, New York, 1978.

[423] Ronald Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures

and public key cryptosystems. Communications of the ACM, 21:120{126, 1978.

[424] Ronald L. Rivest. The MD4 message digest algorithm. In A.J. Menezes and S. A. Vanstone,

editors, Advances in Cryptology - CRYPTO'90, pages 303{311. Springer, 1991. Lecture Notes

in Computer Science No. 537.

[425] Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Comments, April

1992. RFC 1321.

Bibliography 454

[426] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2):120{126, 1978.

[427] John Rompel. One-way functions are necessary and su�cient for secure signatures. In Proc.

22nd ACM Symposium on Theory of Computing, pages 387{394, Baltimore, Maryland, 1990.

"Association for Computing Machinery (ACM)".

[428] U. Rosenbaum. A lower bound on authentication after having observed a sequence of messages.

Journal of Cryptology, 6(3):135{156, 1993.

[429] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O'Reilly, 1992.

[430] O.S. Rothaus. On bent functions. Journal of Combinatorial Theory, Series A, 20:300{305, 1976.

[431] L. A. Rowe and K. A. Shoens. Data abstractions, views and updates in RIGEL. In P. A.

Bernstein, editor, Proceedings of ACM SIGMOD 1979 International Conference on Management

of Data, pages 71{81, Boston, 1979. ACM SIGMOD.

[432] R.A. Rueppel. On the security of Schnorr's pseudo random generator. In Advances in Cryptol-

ogy - EUROCRYPT'89, Lecture Notes in Computer Science, Vol.434, pages 423{428. Springer

Verlag, April 1990.

[433] R.A. Rueppel and P.C. Van Oorschot. Modern key agreement techniques. Computer Commu-

nications, 17:458{465, 1994.

[434] B. Sadeghiyan and J. Pieprzyk. A construction for super pseudorandom permutations from a sin-

gle pseudorandom function. In R. Rueppel, editor, Advances in Cryptology - EUROCRYPT'92,

pages 267{284. Springer, 1993. Lecture Notes in Computer Science No. 658.

[435] B. Sadeghiyan and J. Pieprzyk. On necessary and su�cient conditions for the construction of

super pseudorandom permutations. In H. Imai, R. Rivest, and T. Matsumoto, editors, Proceed-

ings of ASIACRYPT 91, pages 194{209. Springer, 1993. Lecture Notes in Computer Science

No. 739.

[436] R. Safavi-Naini and L. Tombak. Optimal authentication codes. In T. Helleseth, editor, Advances

in Cryptology - EUROCRYPT'93, pages 12{27. Springer, 1994. Lecture Notes in Computer

Science No. 765.

[437] R. Safavi-Naini and L. Tombak. Authentication codes in plaintext and chosen-content attacks.

In A. De Santis, editor, Advances in Cryptology - EUROCRYPT'94, pages 254{265. Springer,

1995. Lecture Notes in Computer Science No. 950.

[438] R. Safavi-Naini and L. Tombak. Combinatorial structure of a-codes with r-fold security. In

J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT'94, pages 211{

223. Springer, 1995. Lecture Notes in Computer Science No. 917.

[439] R. Safavi-Naini, L. Tombak, and J. Pieprzyk. Perfect authenticity and optimal a-codes. In

IEEE International Symposium on Information Theory and Its Applications, pages 235{238,

1994. Sydney, Australia, November 20-25.

[440] K. Sako and J. Kilian. Secure voting using partially compatible homomorphisms. In Y. Desmedt,

editor, Advances in Cryptology - CRYPTO'94, pages 411{424. Springer, 1994. Lecture Notes in

Computer Science No. 839.

Bibliography 455

[441] K. Sako and J. Kilian. Receipt-free mix-type voting scheme. In L. Guillou and J-J. Quisquater,

editors, Advances in Cryptology - EUROCRYPT'95, pages 393{403. Springer, 1995. Lecture

Notes in Computer Science No. 921.

[442] R. Sandhu. Access control: the neglected frontier. In J. Pieprzyk and J. Seberry, editors, Pro-

ceedings of the First Australasian Conference on Information Security and Privacy (ACISP96),

pages 219{227. Springer, 1996. Lecture Notes in Computer Science No. 1172.

[443] R.S. Sandhu, E.J. Coyne, H.L Feinstein, and C.E. Youman. Role-based access control models.

IEEE Computer, 29(2):38{47, 1996.

[444] A. De Santis and M. Yung. On the design of provably-secure cryptographic hash functions.

In I.B. Damg�ard, editor, Advances in Cryptology - EUROCRYPT'90, pages 377{397. Springer,

1990. Lecture Notes in Computer Science No. 473.

[445] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[446] C.P. Schnorr. E�cient signature generation by smart cards. Journal of Cryptology, 4:161{174,

1991.

[447] R. Schoof. Elliptic curves over �nite �elds and the computation of square roots mod p. Mathe-

matics of Computations, 44:483{494, 1985.

[448] A.W. Schrift and A. Shamir. Universal tests for nonuniform distributions. Journal of Cryptology,

6(3):119{133, 1993.

[449] M.R. Schroeder, editor. Number Theory in Science and Communication. Springer Series in

Information Sciences. Springer-Verlag, 1984.

[450] J. Seberry and J. Pieprzyk. Cryptography: An Introduction to Computer Security. Prentice

Hall, Sydney, 1989.

[451] J. Seberry, X. M. Zhang, and Y. Zheng. Highly nonlinear 0-1 balanced functions satisfying strict

avalanche criterion. In Advances in Cryptology - AUSCRYPT'92, volume 718, Lecture Notes in

Computer Science, pages 145{155. Springer-Verlag, Berlin, Heidelberg, New York, 1993.

[452] J. Seberry, X. M. Zhang, and Y. Zheng. Systematic generation of cryptographically robust S-

boxes. In Proceedings of the �rst ACM Conference on Computer and Communications Security,

pages 172 { 182. The Association for Computing Machinery, New York, 1993.

[453] J. Seberry, X. M. Zhang, and Y. Zheng. Improving the strict avalanche characteristics of cryp-

tographic functions. Information Processing Letters, 50:37{41, 1994.

[454] Jennifer Seberry, Xian-Mo Zhang, and Yuliang Zheng. Nonlinearly balanced boolean functions

and their propagation characteristics. In Douglas R. Stinson, editor, Advances in Cryptology -

CRYPTO'93, pages 49{60. Springer, 1994. Lecture Notes in Computer Science No. 773.

[455] Jennifer Seberry, Xian-Mo Zhang, and Yuliang Zheng. Pitfalls in designing substitution boxes.

In Yvo G. Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages 383{396. Springer,

1994. Lecture Notes in Computer Science No. 839.

[456] M. Sebring, E. Shellhouse, M.E. Hanna, and R.A. Whitehurst. Systems in intrusion detection:

A case study. In Proceedings of the 11th National Computer Security Conference, Gaithersburg,

MD, pages 74{81, 1988.

Bibliography 456

[457] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, New Jersay, 1976.

[458] A. Shamir. How to share a secret. Communications of the ACM, 22:612{613, November 1979.

[459] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem.

IEEE Transactions on Information Theory, IT-30(5):699{704, Sept. 1984.

[460] C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:623{656, 1948.

[461] C. E. Shannon. Communication theory of secrecy systems. Bell Sys. Tech. J., 28:657{715, 1949.

[462] A. Shimizu and S. Miyaguchi. Fast data encipherment algorithm FEAL. In D. Chaum and

W.L. Price, editors, Advances in Cryptology | Eurocrypt '87, pages 267{280, Berlin, 1988.

Springer-Verlag.

[463] A. Silberschatz and P. Galvin. Operating System Concepts. Addison-Wesley, 1998.

[464] R.D. Silverman. The multiple polynomial quadratic sieve. Mathematics of Computation, 48:329{

339, 1987.

[465] G. J. Simmons. A game theory model of digital message authentication. Congressus Numeran-

tium, 34:413{424, 1982.

[466] G. J. Simmons. Message authentication: game on hepergraphs. Congressus Numerantium,

45:161{192, 1984.

[467] G.J. Simmons. Geometric shared secret and/or shared control schemes. In A.J. Menezes and

S. A. Vanstone, editors, Advances in Cryptology - CRYPTO'90, pages 216{241. Springer-Verlag,

1991. Lecture Notes in Computer Science No. 537.

[468] G.J. Simmons. A survey of information authentication. In G.J. Simmons, editor, Contemporary

Cryptology, The Science of Information Integrity, pages 379{420. IEEE Press, 1992.

[469] G.J. Simmons, W. Jackson, and K. Martin. The geometry of shared secret schemes. Bulletin of

the ICA, 1:71{88, 1991.

[470] Gustavus J. Simmons. Authentication theory/coding theory. In G. R. Blakley and D. C. Chaum,

editors, Advances in Cryptology - CRYPTO'84, pages 411{431. Springer, 1985. Lecture Notes

in Computer Science No. 196.

[471] Gustavus J. Simmons and Michael J. Norris. Preliminary comments on the MIT public-key

cryptosystem. Cryptologia, 1(4):406{414, October 1977.

[472] A. Sinkov. Elementary Cryptanalysis. Mathematical Association of America, 1968.

[473] S.E. Smaha. Haystack: an intrusion detection system. In Proceedings of the Fourth Aerospace

Computer Security Applications Conference, pages 37{44. IEEE, 1988.

[474] B. Smeets. Bounds on the probability of deception in multiple authentication. IEEE Trans. on

Information Theory, 40(5):1586{1591, 1994.

[475] S.R. Snapp. A system for distributed intrusion detection scheme. In Proceedings of IEEE

COMPCON'91, pages 170{176, 1991.

Bibliography 457

[476] S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, L.T. Heberlein, C. Ho, K.N. Levitt, B. Mukher-

jee, S.E. Smaha, T. Grance, D.M. Teal, and D. Mansur. Distributed intrusion detection system

{ motivation, architecture and an early prototype. In Proceedings of 14th National Computer

Security Conference, 1991.

[477] M. Sobirey, S. Fischer-H�ubner, and K. Rannenberg. Pseudonymous audit for privacy enhanced

intrusion detection. In Proceedings of the 13th International Information Security Conference,

1997.

[478] M. Sobirey, B. Richter, and H. Konig. The intrusion detection system aid. architecture, and

experiences in automated audit analysis. In Proceedings of the IFIP TC6/TC11 International

Conference on Communications and Multimedia Security, pages 278{290, 1996.

[479] A. Sorkin. Lucifer, a cryptographic algorithm. Cryptologia, 8(1):22{41, 1984. Erratum: ibid. 7,

p. 118, 1978.

[480] S. Staniford-Chen, S. Cheung, R. M. Dilger R. Crawford, J. Frank, J. Hoagland, K. Levitt,

C. Wee, R. Yip, and D. Zerkle. GrIDS - a graph based intrusion detection system for large

networks. In Proceedings of the 19th National Information Systems Security Conference, pages

361{370, 1996.

[481] J.G. Steiner, B.C. Neuman, and J.I. Schiller. Kerberos: an authentication service for open

network systems. In Usenix Conference Proceedings, pages 191{202, Dallas, Texas, February

1988.

[482] Jacques Stern. A new identi�cation scheme based on syndrome decoding. In Douglas R. Stinson,

editor, Advances in Cryptology - CRYPTO'93, pages 13{21. Springer, 1994. Lecture Notes in

Computer Science No. 773.

[483] D.R. Stinson. Some constructions and bounds for authentication codes. In A.M. Odlyzko, editor,

Advances in Cryptology - CRYPTO'86, pages 418{425. Springer-Verlag, 1987. Lecture Notes in

Computer Science No. 263.

[484] D.R. Stinson. A construction for authentication/secrecy codes from certain combinatorial

designs. In Carl Pomerance, editor, Advances in Cryptology - CRYPTO'87, pages 355{366.

Springer-Verlag, 1988. Lecture Notes in Computer Science No. 293.

[485] D.R. Stinson. Combinatorial characterizations of authentication codes. In J. Feigenbaum, editor,

Advances in Cryptology - CRYPTO'91, pages 62{73. Springer, 1992. Lecture Notes in Computer

Science No. 576.

[486] D.R. Stinson. An explication of secret sharing schemes. Designs, Codes and Cryptography,

2:357{390, 1992.

[487] D.R. Stinson. Combinatorial designs and cryptography. In Surveys in Combinatorics, pages

257{287. Cambridge University Press, 1993. London Mathematical Society Lecture Notes Series,

vol.187.

[488] D.R. Stinson. Cryptography: Theory and Practice. CRC Press, 1995.

[489] M. Stonebraker. Implementation of integrity constraints and views by query modi�cation. In

Proceedings of ACM SIGMOD 1975 International Conference on Management of Data, pages

65{78, San Jose, 1975. ACM SIGMOD.

Bibliography 458

[490] A. Tanenbaum. Computer Networks. Prentice Hall, 1981.

[491] A. Tanenbaum. Distributed Operating Systems. Prentice Hall, Englewood Cli�s, 1995.

[492] A. Tanenbaum and A. Woodhull. Operating Systems: Design and Implementation. Prentice

Hall, Englewood Cli�s, 1997.

[493] J. Tardo and K. Alagappan. SPX: global authentication using public key certi�cates. In Pro-

ceedings of 12th IEEE Symposium on Research in Security and Privacy, pages 232{244, 1991.

Oakland, California.

[494] W.T. Tener. Discovery: An expert system in the commercial data security environment. In

Proceedings of the 4th IFIP TC11 International Conference on Security, pages 261{268, 1989.

[495] H. Teng, K. Chen, and S. Lu. Security audit trail analysis using inductively generated predictive

rules. In Proceedings of the Sixth Conference on Arti�cial Intelligence Applications, pages 24{29.

IEEE Computer Society Press, 1990.

[496] H.S. Teng, K. Chen, and S.C. Lu. Adaptive real-time anomaly detection using inductively

generated sequential patterns. In Proceedings of the IEEE Symposium on Research in Security

and Privacy, pages 278{284, 1990.

[497] M. B. Thuraisingham. A multilevel secure object-oriented data model. In Proceedings of the

12th National Computer Security Conference, pages 579{590, Baltimore, MD, October 1989.

NIST/NCSC.

[498] Jean-Pierre Tillich and Gilles Z�emor. Hashing with sl2. In Yvo G. Desmedt, editor, Advances

in Cryptology - CRYPTO'94, pages 40{49. Springer, 1994. Lecture Notes in Computer Science

No. 839.

[499] L. Tombak. New results on uncoditionally secure authentication systems. PhD thesis, Depart-

ment of Computer Science, University of Wollongong, Australia, 1995.

[500] M. Tompa and H. Woll. How to share a secret with cheaters. Journal of Cryptology, 1(2):133{

138, 1988.

[501] R. P. Trueblood, H. R. Hartson, and J. J. Martin. MULTISAFE - a modular multiprocessing

approach to secure database management. ACM Transactions on Database Systems, 8(3):382{

409, 1983.

[502] G. Tsudik. Message authentication with one-way hash functions. ACM SIGCOMM, Computer

Communication Review, 22(5):29{38, October 1992.

[503] E.M. Valcarce, G.W. Hoglund, L. Jansen, and L. Baillie. Essense: An experiment in knowledge-

based security monitoring and control. In Proceedings of the 3rd USENIX Unix Security Sym-

posium, pages 155{170, 1992.

[504] J. van Tilburg. Security-Analysis of a Class of Cryptosystems Based on Linear Error-Correcting

Codes. Royal PTT Nederland NV, PTT Research, Leidschendam, 1994.

[505] S. von Solms and D. Naccache. On blind signatures and perfect crimes. Computers and Security,

11:581{583, 1992.

[506] V. L. Voydock and S. T. Kent. Security mechanism in high-level network protocols. ACM

Computing Surveys, 15(2):135{171, 1983.

Bibliography 459

[507] N. R. Wagner. Shared database access using composed encryption keys. In Proceedings of the

1982 IEEE Symposium on Security and Privacy, pages 104{110, Oakland, CA, April 1982. IEEE

Computer Society.

[508] N. R. Wagner, P. S. Putter, and M. R. Cain. Encrypted database design: specialized approaches.

In Proceedings of the 1986 IEEE Symposium on Security and Privacy, pages 148{153, Oakland,

CA, April 1986. IEEE Computer Society.

[509] M. Walker. Information-theoretic bounds for authentication systems. Journal of Cryptology,

3(2):131{143, 1990.

[510] W. D. Wallis, A. Penfold Street, and J. Seberry Wallis. Combinatorics: Room Squares, sum-free

sets, Hadamard Matrices, volume 292 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,

Heidelberg, New York, 1972.

[511] M. Wang and A. Goscinski. The development and testing of the identity-based conference

key distribution system for the RHODOS distributed system. In Y. Deswarte, G. Eizenberg,

and J.-J. Quisquater, editors, Proceedings of the Second European Symposium on Research in

Computer Security { ESORICS92, pages 209{228. Springer-Verlag, 1992. Lecture Notes in

Computer Science No. 648.

[512] R. Wang. Flash in the pan ? Virus Bulletin, August 1998. see

http://www.virusbtn.com/VirusInformation/cih.html.

[513] A.F. Webster and S.E. Tavares. On the design of S-boxes. In H.C. Williams, editor, Advances

in Cryptology | Crypto '85, pages 523{534, New York, 1986. Springer-Verlag.

[514] M.N. Wegman and J.L. Carter. New hash functions and their use in authentication and set

equality. Journal of Computer and System Sciences, 22:265{279, 1981.

[515] W.R.E. Weiss and A. Baur. Analysis of audit and protocol data using methods from arti�cial

intelligence. In Proceedings of the 13th National Computer Security Conference, pages 109{114,

1990.

[516] D. L. Wells and C. M. Eastman. A preliminary study of tra�c analysis in encrypted databases.

In E. L. Gallizzi, J. Elam, and R. H. Sprague Jr. , editors, Proceedings of the Eighteenth Hawaii

International Conference on System Sciences 1985, pages 373{382, Honolulu, HI, 2-4 January

1985. Hawaii International Conference on System Sciences, Honolulu.

[517] I. Whalley. Hare krsna: ISKCON too far! Virus Bulletin, August 1996.

[518] G.B.White, E.A. Fish, and U.W. Pooch. Cooperating security managers: A peer-based intrusion

detection system. IEEE Network, 10(1):20{23, 1996.

[519] R. A. Whitehurst and T. F. Lunt. The SeaView veri�cation. In Proceedings of the Second

Workshop on Foundations of Computer Security, pages 125{132, Franconia, NH, 1989. IEEE

Computer Society.

[520] M.J. Wiener. E�cient DES key search. Presented at Crypto '93 rump session, August 20, 1993.

[521] H. S. Wilf. Algorithms and Complexity. Prentice-Hall Inc., Englewood Cli�s, New Jersey, 1986.

[522] K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris architecture and implementation. IEEE

Transaction on Knowledge and Data Engineering, 2(1):63{75, 1990.

