Contents

1 INTRODUCTION 1
1.1 Preamble 1
1.2 Terminology 2
1.3 Historical Perspective 4
1.4 Modern Cryptography 5
2 BACKGROUND THEORY 8
2.1 Elements of Number Theory 8
2.1.1 Divisibility and the Euclid Algorithm 8
2.1.2 Primes and the Sieve of Eratosthenes 11
2.1.3 Congruences 12
2.1.4 Computing Inverses in Congruences 14
2.1.5 The Legendre and Jacobi Symbols 18
2.1.6 The Chinese Remainder Theorem 19
2.2 Algebraic Structures in Computing 20
2.2.1 Sets and Operations 21
2.2.2 Polynomial Arithmetics 23
2.2.3 Computing in Galois Fields 26
2.3 Complexity of Computing 27
2.3.1 Asymptotic Behaviour of Functions 28
2.3.2 Hierarchy of Functions 29
2.3.3 Problems and Algorithms 30
2.3.4 Classes \mathbf{P} and NP 31
2.3.5 NP Completeness 32
2.3.6 Complementary Problems in NP 32
2.3.7 NP-hard and \#P-complete Problems 34
2.3.8 Problems Used in Cryptography 34
2.3.9 Probabilistic Computations 36
2.3.10 Quantum Computing 36
2.4 Elements of Information Theory 37
2.4.1 Entropy 37
2.4.2 Huffman Codes 39
2.4.3 Redundancy of the Language 39
2.4.4 Key Equivocation and Unicity Distance 42
2.4.5 Equivocation of a Simple Cryptographic System 43
2.5 Problems and Exercises 46
3 PRIVATE-KEY CRYPTOSYSTEMS 48
3.1 Classical ciphers 48
3.1.1 Caesar Ciphers 49
3.1.2 Affine Ciphers 50
3.1.3 Monoalphabetic Substitution Ciphers 52
3.1.4 Transposition Ciphers 53
3.1.5 Homophonic Substitution Ciphers 55
3.1.6 Polyalphabetic Substitution Ciphers 57
3.1.7 Cryptanalysis of Polyalphabetic Substitution Ciphers 58
3.2 DES Family 63
3.2.1 Product Ciphers 63
3.2.2 The Lucifer Algorithm 65
3.2.3 The DES Algorithm 66
3.2.4 DES Modes of Operation 70
3.2.5 Triple DES 73
3.3 Modern Private-Key Cryptographic Algorithms 75
3.3.1 Fast Encryption Algorithm (FEAL) 75
3.3.2 The IDEA Algorithm 75
$3.3 .3 \quad \mathrm{RC}{ }^{\mathrm{TM}}$ 77
3.3.4 Rijndael 79
3.3.5 Serpent 82
3.3.6 Other Ciphers 85
3.4 Differential Cryptanalysis 86
3.4.1 XOR Profiles 86
3.4.2 DES Round Characteristics 90
3.4.3 A Cryptanalysis of 4-Round DES 91
3.4.4 A Cryptanalysis of 6-Round DES 92
3.4.5 Analysis of Other Feistel-Type Cryptosystems 94
3.5 Linear Cryptanalysis 95
3.5.1 Linear Approximation 96
3.5.2 Analysis of 3-Round DES 97
3.5.3 Linear Characteristics 100
3.6 S-box Theory 101
3.6.1 Boolean Functions 102
3.6.2 S-box Design Criteria 105
3.6.3 Bent Functions 110
3.6.4 Propagation and Nonlinearity 111
3.6.5 Constructions of Balanced Functions 113
3.6.6 S-Box Design 116
3.7 Problems and Exercises 117
4 PSEUDORANDOMNESS 120
4.1 Number Generators 120
4.2 Polynomial Indistinguishability 121
4.3 Pseudorandom Bit Generators 124
4.3.1 The RSA Pseudorandom Bit Generator 124
4.3.2 The BBS Pseudorandom Bit Generator 125
4.4 The Next Bit Test 129
4.5 Pseudorandom Function Generators 130
4.6 Pseudorandom Permutation Generators 133
4.7 Super Pseudorandom Permutation Generators 136
4.8 Problems and Exercises 136
5 PUBLIC-KEY CRYPTOSYSTEMS 138
5.1 The Concept of Public-Key Cryptography 138
5.2 The RSA Cryptosystem 140
5.2.1 Concealment of Messages 142
5.2.2 Variants of RSA 144
5.2.3 Primality Testing 145
5.2.4 Factorisation 146
5.2.5 Security of RSA 150
5.3 The Merkle-Hellman Cryptosystem 152
5.3.1 Security of Merkle-Hellman cryptosystem 154
5.4 McEliece cryptosystem 154
5.4.1 Security of the McEliece Cryptosystem 155
5.5 The ElGamal Cryptosystem 156
5.5.1 Security of ElGamal Cryptosystems 157
5.6 Elliptic Curve Cryptosystems 157
5.6.1 Elliptic Curves 157
5.6.2 Elliptic Curve Variant of RSA 158
5.6.3 Elliptic Curve Variant of ElGamal 160
5.7 Probabilistic Encryption 161
5.7.1 The GM probabilistic encryption 161
5.7.2 The BG probabilistic encryption 162
5.8 Public-Key Encryption Practice 163
5.8.1 Taxonomy of Public-Key Encryption Security 163
5.8.2 Generic OAEP Public-Key Cryptosystem 164
5.8.3 RSA Encryption Standard 165
5.8.4 Extended ElGamal Cryptosystem 166
5.9 Problems and Exercises 167
6 HASHING 170
6.1 Properties of Hashing 170
6.2 The Birthday Paradox 171
6.3 Serial and Parallel Hashing 174
6.4 Theoretic Constructions 175
6.5 Hashing Based on Cryptosystems 177
6.6 MD Family 179
6.6.1 MD5 180
6.6.2 SHA-1 183
6.6.3 RIPEMD-160 184
6.6.4 HAVAL 186
6.6.5 Hashing Based on Intractable Problems 190
6.7 Keyed Hashing 192
6.7.1 Early MACs 193
6.7.2 MACs from Keyless Hashing 194
6.8 Problems and Exercises 195
7 DIGITAL SIGN ATURES 197
7.1 Properties of Digital Signatures 197
7.2 Generic Signature Schemes 198
7.2.1 Rabin Signatures 198
7.2.2 Lamport signatures 199
7.2.3 Matyas-Meyer Signatures 199
7.3 RSA Signatures 200
7.4 ElGamal Signatures 202
7.5 Blind Signatures 204
7.6 Undeniable Signatures 205
7.7 Fail-Stop Signatures 207
7.8 Timestamping 210
7.9 Problems and Exercises 211
8 AUTHENTICATION 212
8.1 Active Opponents 212
8.2 Model of Authentication Systems 213
8.2.1 Elements of the Theory of Games 214
8.2.2 Impersonation Game 215
8.2.3 Substitution Game 217
8.2.4 Spoofing Game 218
8.3 Information Theoretic Bounds 219
8.4 Constructions of A-codes 220
8.4.1 A-codes in Projective Spaces 221
8.4.2 A-codes and Orthogonal Arrays 222
8.4.3 A-codes Based on Error Correcting Codes 223
8.5 General A-codes 223
8.6 Problems and Exercises 224
9 SECRET SHARING 226
9.1 Threshold Secret Sharing 226
9.1.1 The Shamir Scheme 226
9.1.2 The Blakley Scheme 228
9.1.3 The Modular Scheme 228
9.1.4 (t, t) Threshold Schemes 229
9.2 General Secret Sharing 230
9.2.1 The Cumulative Array Construction 231
9.2.2 The Benaloh-Leichter Construction 233
9.3 Perfectness 233
9.4 Information Rate 235
9.4.1 Upper Bounds 235
9.4.2 Ideal Schemes 237
9.4.3 Multiple Cumulative Arrays 239
9.5 Cheating 241
9.6 Problems and Exercises 242
10 GROUP ORIENTED CRYPTOGRAPHY 244
10.1 The Conditionally Secure Shamir Scheme 244
10.1.1 Description of the Scheme 244
10.1.2 Renewal of the Scheme 245
10.1.3 Non-interactive Verification of Shares 246
10.1.4 Proactive Secret Sharing 247
10.2 Threshold Decryption 249
10.2.1 ElGamal Threshold Decryption 249
10.2.2 RSA Threshold Decryption 251
10.2.3 RSA Decryption without Dealer 253
10.3 Threshold Signatures 254
10.3.1 RSA Threshold Signatures 255
10.3.2 ElGamal Threshold Signatures 256
10.3.3 Threshold DSS Signatures 258
10.4 Problems and Exercises 260
11 KEY ESTABLISHMENT PROTOCOLS 262
11.1 Classical Key Distribution Protocols 263
11.2 The Diffie-Hellman Key Agreement Protocol 265
11.2.1 The DH problem 266
11.3 Modern Key Distribution Protocols 266
11.3.1 Kerberos 268
11.3.2 SPX 269
11.3.3 Other Authentication Services 271
11.4 Key Agreement Protocols 272
11.4.1 MTI Protocols 272
11.4.2 The Station to Station Protocol 273
11.4.3 Protocols with Self-certified Public Keys 274
11.4.4 Identity-Based Protocols 275
11.5 Conference Key Establishment Protocols 275
11.6 The BAN Logic of Authentication 277
11.6.1 BAN Logical Postulates 278
11.6.2 Analysis of the Needham-Schroeder Protocol 280
11.7 Problems and Exercises 282
12 ZERO KNOWLEDGE PROOF SYSTEMS 284
12.1 Interactive Proof Systems 284
12.2 Perfect Zero Knowledge Proofs 287
12.3 Computational Zero Knowledge Proofs 292
12.4 Bit Commitment Schemes 294
12.4.1 Blobs with Unconditional Binding 295
12.4.2 Blobs with Unconditional Concealing 297
12.4.3 Multivalued Blobs 298
12.5 Problems and Exercises 299
13 IDENTIFICATION 301
13.1 Basic Identification Techniques 301
13.2 User Identification 302
13.3 Passwords 303
13.3.1 Attacks on Passwords 304
13.3.2 Weaknesses of Passwords 304
13.4 Challenge-Response Identification 305
13.4.1 Authentication of Shared Keys 305
13.4.2 Authentication of Public Keys 306
13.5 Identification Protocols 307
13.5.1 The Fiat-Shamir Identification Protocol 308
13.5.2 The Feige-Fiat-Shamir Identification Protocol 309
13.5.3 The Guillou-Quisquater Identification Protocol 311
13.6 Identification Schemes 313
13.6.1 The Schnorr Identification Scheme 313
13.6.2 The Okamoto Identification Scheme 314
13.6.3 Signatures from Identification Schemes 317
13.7 Problems and Exercises 319
14 INTRUSION DETECTION 321
14.1 Introduction 321
14.2 Anomaly Intrusion Detection 322
14.2.1 Statistical IDS 323
14.2.2 Predictive Patterns 324
14.2.3 Neural Networks 325
14.3 Misuse Intrusion Detection 325
14.4 Uncertainty in Intrusion Detection 326
14.4.1 The Probabilistic Model 326
14.4.2 Dempster-Shafer Theory 329
14.5 A Generic Intrusion Detection Model 331
14.6 Host Intrusion Detection Systems 332
14.6.1 IDES 332
14.6.2 Haystack 334
14.6.3 MIDAS 335
14.7 Network Intrusion Detection Systems 336
14.7.1 NSM 336
14.7.2 DIDS 338
14.7.3 NADIR 338
14.7.4 Cooperating Security Manager (CSM) 339
14.8 Limitations of Current Intrusion Detection Systems 340
14.8.1 General limitations 340
14.8.2 Network-IDS Shortcomings 341
14.9 The Common Intrusion Detection Framework (CIDF) 342
14.10Partial List of ID systems: Research Prototype and Commercial 343
14.11Problems and Exercises 346
15 ELECTRONIC ELECTIONS AND DIGITAL MONEY 348
15.1 Electronic Elections 348
15.1.1 A Simple Electronic Election Protocol 349
15.1.2 The Chaum Protocol 351
15.1.3 The Boyd Protocol 352
15.1.4 The Fujioka-Okamoto-Ohta Protocol 353
15.1.5 Other Protocols 355
15.2 Digital Cash 355
15.2.1 Untraceable Digital Coins 356
15.2.2 Divisible Electronic Cash 358
15.2.3 The Brands Electronic Cash Protocol 361
15.2.4 Other E-Cash Protocols 363
15.2.5 Micropayments 363
15.3 Payment Protocols 364
16 DATABASE PROTECTION AND SECURITY 366
16.1 Database Access Control 366
16.2 Security Filters 367
16.3 Encryption Methods 368
16.3.1 Privacy Homomorphisms 374
16.4 Database Machines and Architectures 376
16.4.1 Experimental Backend Database Systems 377
16.5 Database Views 378
16.5.1 Advantages and Disadvantages of Views 380
16.5.2 Completeness and Consistency of Views 381
16.5.3 Design and Implementations of Views 382
16.6 Trends in Database Security Research 384
16.6.1 Security in Distributed Databases 384
16.6.2 Security in Object-Oriented Database Systems 385
16.6.3 Security in Knowledge-Based Systems 387
17 ACCESS CONTROL 389
17.1 Mandatory Access Control 390
17.1.1 Lattice Model 390
17.1.2 The Bell-LaPadula Model 392
17.2 Discretionary Access Control 393
17.2.1 Access Matrix Model 393
17.2.2 The Harrison-Ruzzo-Ullman Model 395
17.3 Role Based Access Control Model 397
17.4 Implementations of Access Control 398
17.4.1 The Security Kernel 398
17.4.2 Multics 399
17.4.3 UNIX 401
17.4.4 Capabilities 402
17.4.5 Access Control Lists 404
18 NETWORK SECURITY 406
18.1 Internet Protocol Security (IPsec) 406
18.1.1 Security Associations 407
18.1.2 Authentication Header Protocol 408
18.1.3 Encapsulating Security Payload Protocol 409
18.1.4 Internet Key Exchange 410
18.1.5 Virtual Private Networks 412
18.2 Computer Viruses 413
18.2.1 What is a Computer Virus? 413
18.2.2 Worms and Trojan Horses 414
18.2.3 Taxonomy of Viruses 415
18.2.4 IBM-PC Viruses 416
18.2.5 Macintosh Operating System 418
18.2.6 Macintosh Viruses 421
18.2.7 Macro Viruses 423
18.2.8 Protection against Viruses 424
Bibliography 427

Chapter 1

INTRODUCTION

1.1 Preamble

Cryptology - the science concerned with communications in secure and usually secret form. It encompasses both cryptography and cryptanalysis. The former involves the study and application of the principles and techniques by which information is rendered unintelligible to all but the intended receiver, while the latter is the science and art of solving cryptosystems to recover such information (The New Encyclop\&dia Britannica, Vol.3, page 768, 1988).

Today this definition needs to be extended as the modern cryptology focuses its attention on the design and evaluation of a wide range of methods and techniques for information protection. Information protection covers not only secrecy (a traditional protection against eavesdropping) but also authentication, integrity, verifiability, non-repudiation and other more specific security countermeasures. The part of cryptology which deals with the design of algorithms, protocols and systems which are used to protect information against specific threats is called cryptography.

To incorporate information protection into a system, protocol or service, the designer needs to know:

- a detailed specification of the environment in which the system (protocol or service) is going to work,
- a list of threats together with the description of places in the system where adverse tampering with the information flow can occur,
- the level of protection expected or how powerful (in term of accessible computing resources) is an expected attacker (or adversary),
- the projected life span of the system.

Cryptography provides our designer with tools to implement the information protection requested. The collection of basic tools includes encryption algorithms, authentication codes, one-way functions, hashing functions, secret sharing schemes, signature schemes, pseudorandom bit generators, zeroknowledge proof systems, etc. From these elementary tools, it is possible to create more complex tools and services such as threshold encryption algorithms, authentication protocols, key establishment protocols and a variety of application-oriented protocols including electronic payment systems, electronic election and electronic commerce protocols. Each tool is characterised by its security specification which usually indicates the recommended configuration, its strength against specific threats (such as eavesdropping, illegal modification of information, etc.). The designer can use all the tools provided by cryptography to combine them into a single solution. Finally, the designer has to verify the quality of the solution including a careful analysis of the overall security achieved.

The second part of cryptology is cryptanalysis. Cryptanalysis uses mathematical methods to prove that the design (an implementation of information protection) cannot withstand an attack from the list of threats given in the security specification of the design. This may be possible if the claimed security parameters are grossly overestimated or more often the inter-relations among different threats are not well understood.

An attentive reader could argue that cryptography includes cryptanalysis as the designer always applies some sort of analysis of the information protection achieved. To clarify this point note that the aim of cryptography is the design of new (hopefully) secure algorithms, protocols, systems, schemes, and services while cryptanalysis concentrates on finding new attacks. Attacks (which are a part of cryptanalysis) are translated into the so-called design criteria or design properties (which are a part of cryptography). The design criteria obtained from an attack, allow to design a system which is immune against the attack.

Cryptography tries to prove that the obtained designs are secure, using all available knowledge about possible attacks. Cryptanalysis carefully examines possible and realistic threats to find new attacks and to prove that the designs are not secure (are breakable). In general, it is impossible to prove that information protection designs are unbreakable, while the opposite is possible - it is enough to show an attack.

1.2 Terminology

Cryptography has developed a quite extensive vocabulary. More complex terms will be introduced gradually throughout the book. There is however a collection of basic terms. These terms are discussed briefly now.

There is a list of basic security requirements. This list includes: secrecy (or confidentiality), authenticity, integrity and non-repudiation. Secrecy ensures that information flow between the sender and the receiver is unintelligible to outsiders. It protects information against threats based on eavesdropping. Authenticity allows the receiver of messages to determine the true identity of the sender. It guards messages against impersonation, substitution or spoofing. Integrity enables the receiver to verify whether the message has been tampered with by outsiders while in transit via an insecure channel. It ensures that any modification of the stream of messages will be detected. Any modification which results from changing the order of transmitted messages, deleting some parts of messages, replaying old messages will be detected. Non-repudiation prevents the sender of a message from denying that they sent the message.

Encryption was the first cryptographic operation used to ensure secrecy or confidentiality of information transmitted across an insecure communication channel. The encryption operation takes a piece of information (also called message, message block, or plaintext) and translates it into a cryptogram (ciphertext or codeword) using a secret cryptographic key. Decryption is the reverse operation to encryption. The receiver who holds the correct secret key can recover the message (plaintext) from the cryptogram (ciphertext).

The step-by-step description of encryption (or decryption) is called the encryption algorithm (or decryption algorithm). If there is no need to distinguish encryption from decryption, we are going to call them collectively ciphers, cryptoalgorithms or cryptosystems. Private-key or symmetric cryptosystems use the same secret key for encryption and decryption. More precisely, the encryption and decryption keys do not need to be identical - the knowledge of one of them suffices to find the other.

Public-key or asymmetric cryptosystems use different keys for encryption and decryption. The knowledge of one key does not compromise the other.

Hashing is a cryptographic operation which generates a relatively short digest for a message of arbitrary length. Hashing algorithms are required to be collision-free i.e. it is "difficult" to find two different messages with the same digest.

One-way functions are functions for which it is "easy" to compute their values from their arguments but it is "difficult" to reverse them i.e. to find their arguments knowing their values.

Electronic signature or simply signature is a public and relatively short string of characters (or bits) which can be used to verify the authorship of an electronic document (a message of arbitrary length) by anybody.

Secret sharing is the method of distribution of a secret amongst participants so every large enough subset of participants is able to recover collectively the secret by pooling their shares. The class of all such subsets is called the access structure. The secret sharing is set up by the so-called dealer who, for the given secret, generates all shares and delivers them to all participants. The recalculation of the secret is done by the so-called combiner to whom all collaborating participants entrust their shares. Any participant or any collection of participants outside the access structure is not able to find out the secret.

Cryptanalysis developed its own terminology as well. In general cryptographic designs can be either unconditionally or conditionally secure. An unconditionally secure design is immune against any attacker with an unlimited computational power. For a conditionally secure design, its security depends on the difficulty of reversing the underlying one-way function. At the best, the design can be only as strong as the one-way function.

An attack is an "efficient" and non-trivial algorithm which for a given cryptographic design, enables some protected elements of the design to be computed "substantially" quicker than specified by the designer. Some other attacks may not contradict the security specification and may concentrate on finding overlooked and realistic threats for which the design fails.

Cryptographic algorithms can be analysed using the following typical attacks:

- the ciphertext-only attack - the cryptanalyst knows encrypted messages (cryptograms) only. The task is to either find the cryptographic key applied or decrypt one or more cryptograms,
- the known-plaintext attack - the adversary has access to a collection of pairs (message and the corresponding cryptogram) and wants to determine the key or decrypt some new cryptograms not included in the collection,
- the chosen-plaintext attack - this is the known-plaintext attack for which the cryptanalyst can choose messages and read the corresponding cryptograms,
- the chosen-ciphertext attack - the enemy can select their own cryptograms and observe the corresponding messages for them. The aim of the enemy is to find out the secret key or encrypt a new message into a valid cryptogram.

Authentication algorithms can be evaluated using their resistance against the following attacks:

- the impersonation attack - the cryptanalyst knows the authentication algorithm and wants to construct a valid cryptogram for a false message, or determine the key (the encoding rule),
- the substitution attack - the enemy cryptanalyst intercepts a cryptogram and replaces it with an another cryptogram (for a false message),
- the spoofing attack of order r - the adversary knows r different cryptograms (codewords) and plans to either work out the key (encoding rule) applied or compute a valid cryptogram for a chosen false message.

Attacks on cryptographic hashing are "efficient" algorithms which allow a collision i.e. two different messages with the same digest, to be found. All hashing algorithms are susceptible to the so-called birthday attack. A weaker form of attack on hashing produces pseudo-collisions i.e. collisions with specific restrictions imposed usually on the initial vectors.

Secret sharing is analysed by measuring the difficulty of retrieving the secret by either an outsider or an unauthorised group of participants. More sophisticated attacks could be launched by a cheating participant who sends a false share to the combiner. After the reconstruction of the incorrect secret (which is communicated to all collaborating participants), the cheater tries to compute the correct one.

1.3 Historical Perspective

The beginnings of cryptography can be traced back to ancient times. Almost all ancient civilisations developed some kind of cryptography. The only exception was ancient China. This could be attributed to the Chinese complex ideogram alphabet - writing down the message made it private as few could read. In ancient Egypt secret writing was used in inscriptions on sarcophaguses to increase the mystery of the place. Ancient India used their allusive language to create a sort of impromptu cryptography. Kahn [266] gives an exciting insight into the secret communication starting from ancient to modern times.

Steganography or secret writing was probably the first widely used method for secure communication in a hostile environment. The secret text was hidden on a piece of paper by using variety of techniques. These techniques included the application of invisible ink, masking of the secret text inside an inconspicuous text, and so forth. This method of secure communication was rather weak if the document found its way to an attacker who was an expert in steganography. Cryptography in its early years resembled very much secret writing - the well-known Caesar cipher is an excellent example of concealment by ignorance. This cipher was used to encrypt military orders which were later delivered by trusted messengers. This time the ciphertext was not hidden but characters were transformed using a very simple substitution. It was reasonable to assume that the cipher was "strong" enough as most of the potential attackers were illiterate and hopefully the rest thought that the document was written in an unknown foreign language.

It was quickly realized that the assumption about an ignorant attacker was not realistic. Most early European ciphers were designed to withstand attacks of educated opponents who knew the encryption process but did not know the secret cryptographic key. Additionally it was requested that encryption and decryption processes could be done quickly usually by hand or with the aid of mechanical devices such as the cipher disk invented by Leon Battista Alberti ${ }^{1}$.

At the beginning of the nineteenth century first mechanical-electrical machines were introduced for "fast" encryption. This was the first breakthrough in cryptography. Cryptographic operations (in this case encryption and decryption) could be done automatically with a minimal involvement of the operator. Cipher machines could handle relatively large volumes of data. The German ENIGMA and Japanese PURPLE are examples of cipher machines. They were used to protect military and diplomatic information.

The basic three-wheel ENIGMA was broken by Marian Rejewski, Jerzy Różycki and Henryk Zygalski, a team of three Polish mathematicians. Their attack exploited weaknesses of the operating procedure used by the sender to communicate the settings of machine rotors to the receiver (see [96]).

[^0]The British team with Alan Turing at Bletchley perfected the attack and broke the strengthened versions of ENIGMA. Churchhouse in [97] describes the cryptanalysis of four-wheel ENIGMA. These remarkable feats were possible due to careful analysis of the cryptographic algorithms, predictable selection of cipher machine parameters (bad operational procedures), and a significant improvement in computational power. Cryptanalysis was first supported by application of the so-called crypto bombs which were copies of the original cipher machines used to test some of the possible initial settings. Later cryptanalysts applied early computers to speed up computations.

The advent of computers gave both the designers and cryptanalysts a new powerful tool for fast computations. New cryptographic algorithms were designed and new attacks were developed to break them. New impetus in cryptology was not given by new designing tools but rather by new emerging applications of computers and new requirements for the protection of information. Distributed computations and sharing information in computer networks are among those new applications which demonstrated, sometimes very dramatically, the necessity of providing tools for reliable and secure information delivery. Recent progress in the Internet applications illustrates the fact that new services can be put on the net only after a careful analysis of their security features. Secrecy is no longer the most important security issue. In the network environment, authenticity of messages and correct identification of users have become two most important requirements.

The scope of cryptology has increased dramatically. It is now seen as the field which provides the theory and a practical guide for the design and analysis of cryptographic tools which then can be used to build up complex secure protocols and services. The secrecy part of the field, traditionally concentrated around the design of new encryption algorithms, was enriched by the addition of authentication, cryptographic hashing, digital signatures and secret sharing schemes.

1.4 Modern Cryptography

Shannon in his seminal work [461] laid the theoretical foundations of modern cryptography. He used information theory to analyse ciphers. He defined the unicity distance in order to characterise the strength of a cipher against an opponent with unlimited computational power. He also considered the so-called product ciphers. Product ciphers use small substitution boxes connected by larger permutation boxes. Substitution boxes (also called S-boxes) are controlled by a relatively short cryptographic key. They provide confusion (because of the unknown secret key). Permutation boxes (P-boxes) have no key - their structure is fixed and they provide diffusion. Product ciphers are also termed substitution-permutation or S - P networks. As the decryption process applies the inverses of S-boxes and P-boxes in the reverse order, decryption in general cannot be implemented using the encryption routine. This is expensive in terms of both hardware and software.

Feistel [169] used the S-P network concept to design the Lucifer encryption algorithm. It encrypts 128-bit messages into 128 -bit cryptograms using 128-bit cryptographic key. The designer of the Lucifer algorithm was able to modify the S-P network in such a way that both the encryption and decryption algorithms could be implemented by a single program or a piece of hardware. Encryption (or decryption) is done in sixteen iterations (also called rounds). Each round acts on 128-bit input (L_{i}, R_{i}) and generates 128 -bit output (L_{i+1}, R_{i+1}) using 64 -bit partial key k_{i}. A single round can be described as

$$
\begin{align*}
R_{i+1} & =L_{i} \oplus f\left(k_{i}, R_{i}\right) \\
L_{i+1} & =R_{i} \tag{1.1}
\end{align*}
$$

where L_{i} and R_{i} are 64 -bit long sequences, $f\left(k_{i}, R_{i}\right)$ is a cryptographic function (also called the round function) which represents a simple S-P network. In the literature, the transformation defined by
(1.1) is referred to as the Feistel permutation. Note that a round in the Lucifer algorithm always is a permutation no matter what is the form of the function $f()$. Also the inverse of a round can use the original round routine with the swapped input halves. The strength of the Lucifer algorithm directly relates to the strength of the cryptographic function $f()$. Another interesting observation is that the design of a Lucifer-type cryptosystem is equivalent to the design of its $f()$ function which operates on shorter sequences.

The Data Encryption Standard (DES) was developed from Lucifer (see [379]) and very soon became a standard for encryption in banking and other non-military applications. It uses the same Feistel structure with shorter 64-bit message/cryptogram blocks and shorter 64-bit key. As a matter of fact the key contains 56 independent and 8 parity-check bits. Due to its wide utilisation, the DES was extensively investigated and analysed. The differential cryptanalysis invented by Biham and Shamir [32] was first applied to the DES. Also the linear cryptanalysis by Matsui ([320] and [317]) was tested on the DES.

Experience with the analysis of the DES gave a valuable insight into design properties of cryptographic algorithms. Successors of the DES whose structure was based on Feistel permutation are amongst many Fast Encryption Algorithm (FEAL), International Data Encryption Algorithm (IDEA), and many algorithms submitted as candidates for the Advanced Encryption Standard.

Cryptographic hashing became an important component of cryptographic primitives especially in the context of efficient generation of digital signatures. MD4 [424] and its extended version MD5 [425] are examples of the design which combines Feistel structure with C language bitwise operations for fast hashing. Although both MD4 and MD5 were shown to have security flaws, their design principles seem to be sound and can be used to develop more secure hashing algorithms.

Both encryption and hashing algorithms can be designed using one-way functions. These constructions are conditionally secure as the security of the algorithms depends upon the difficulty of reversing the underlying one-way functions. This concept was articulated by Diffie and Hellman in their visionary paper [151] in 1976. Soon after in 1978 two practical implementations of public-key cryptosystems were published. Rivest, Shamir and Adleman [423] based their algorithm (RSA system) on two one-way functions: factorisation and discrete logarithm. Merkle and Hellman [336] used the knapsack function. Unfortunately, the Merkle-Hellman cryptosystem was broken six years later.

The conventional approach to the design of cryptographic algorithms exploits Shannon S-P networks. The outcome is always a single crypto-algorithm with a fixed security parameter (the size of input or output). The DES is an example of such design. On the other hand, the number-theoretical (or conditionally secure) approach uses specific one-way functions. As the result of the design process in the number-theoretical approach, a family of cryptographic algorithms (with a variable size of its input and output) is produced. The RSA can be seen as a family of crypto-algorithms. The members can be indexed by the moduli they apply.

Conventional cryptographic algorithms have a limited life time - an algorithm "dies" if the exhaustive attack ${ }^{2}$ has become possible due to the progress in computing technology. Conditionally secure cryptographic algorithms are insensitive to the increment of computational power of the attacker. It is enough to select larger security parameters for the algorithm and be sure that the algorithm is still secure.

Note that the design and analysis of conditionally secure cryptographic algorithms have very strong links with Complexity Theory and Number Theory. Surprisingly, some fields of Number Theory are now considered parts of Cryptology (for instance factorisation algorithms, primality testing algorithms, etc.). To prove that a cryptographic algorithm based on one-way functions is secure, it is enough to

[^1]show that the attacker faces a computational problem from the class different from \mathbf{P} (see [191]) provided the well known open question: is $\mathbf{N P}=\mathbf{P}$? is not answered positively.

Chapter 2

BACKGROUND THEORY

Background theory covers main concepts and notions from Number Theory, Information Theory and Complexity Theory which are frequently used in cryptographic designs. Those readers with a good mathematical training may wish merely to browse through this chapter or skip it completely.

2.1 Elements of Number Theory

Denote the set of natural numbers as $\mathcal{N}=\{1,2, \ldots\}$, the set of integers as $\mathcal{Z}=\{\ldots,-1,0,+1, \ldots\}$, the set of rational numbers as \mathcal{Q}, the set of irrational numbers as \mathcal{I} and the set of real numbers as \mathcal{R}.

2.1.1 Divisibility and the Euclid Algorithm

Let a be a non-zero integer or simply $a \in \mathcal{Z}-\{0\}$. We can create the set $\{\ldots,-3 a,-2 a, a, 2 a, 3 a, \ldots\}$ of all integers which are multiples of a. Any integer b from the set $\{\ldots,-3 a,-2 a, a, 2 a, 3 a, \ldots\}$ is divisible by a or a divides b without a remainder. This fact can be expressed in short as $a \mid b$. All integers which are divisible by other integers with no remainder are called composites. Divisibility has the following properties [362]:

1. if $n \mid a$ and $n \mid b$, then n divides both $(a+b)$ and $(a-b)$ (the set of multiples of n is closed under addition),
2. if $a \mid b$ and $b \mid c$, then a divides c (transitivity),
3. for any non-zero $b \in \mathcal{Z}$, if $n \mid a$, then n divides $a b$,
4. for any non-zero $b \in \mathcal{Z},|a| \leq|b|$ if $a \mid b$,
5. if $a \mid b$ and $b \mid a$, then $|a|=|b|$ (antisymmetry).

Integers which are divisible by themselves and 1 are called prime numbers or simply primes. The set of all primes is denoted by \mathcal{P}.

The fundamental theorem of arithmetics states that any natural number can be uniquely factorized into primes i.e. any $n \in \mathcal{N}$ can be written as

$$
\begin{equation*}
n=\prod_{p \in \mathcal{P}} p^{e_{p}} \tag{2.1}
\end{equation*}
$$

where e_{p} is the exponent of the prime $p(p \neq 1)$. The representation of n on the right side of Equation (2.1) is called its factorisation and the primes p its factors.

Let a and b be two natural numbers. The least common multiple (lcm) of a and b is the smallest integer which is divisible by both a and b. How can we find $\operatorname{lcm}(a, b)$? Clearly, both a and b have their
unique factorisations so $a=\prod_{i} p_{i}{ }^{a_{i}}$ and $b=\prod_{i} p_{i}{ }^{b_{i}}$. Their least common multiple can be computed as

$$
\begin{equation*}
\operatorname{lcm}(a, b)=\prod_{i} p_{i}^{\max \left(a_{i}, b_{i}\right)} \tag{2.2}
\end{equation*}
$$

where $\max \left(a_{i}, b_{i}\right)$ selects the maximum exponent for the given factor and i indexes all factors of the integer. Consider $a=882$ and $b=3465$. Their factorisations are: $a=2 \times 3^{2} \times 7^{2}$ and $b=3^{3} \times 5 \times 7 \times 11$. Thus $\operatorname{lcm}(a, b)=2 \times 3^{3} \times 5 \times 7^{2} \times 11=145530$.

The greatest common divisor ($g c d$) is another integer which expresses relation between two natural numbers a and b. The greatest common divisor of a and b is the largest integer which divides with no remainder both a and b. Therefore

$$
\begin{equation*}
\operatorname{gcd}(a, b)=\prod_{i} p_{i}^{\min \left(a_{i}, b_{i}\right)} \tag{2.3}
\end{equation*}
$$

where $a=\prod_{i} p_{i}{ }^{a_{i}}$ and $b=\prod_{i} p_{i}{ }^{b_{i}}$ and i indexes all factors of the integer. The function min $\left(a_{i}, b_{i}\right)$ produces the smallest exponent for the given factor. For our two integers $a=882$ and $b=3465$, their greatest common divisor is gcd $(a, b)=3^{2} \times 7=63$. Both lcm and gcd work with an arbitrary number of arguments and can be defined recursively as follows:

$$
\begin{equation*}
\operatorname{lcm}(a, b, c)=\operatorname{lcm}(\operatorname{lcm}(a, b), c) \text { and } \operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c) \tag{2.4}
\end{equation*}
$$

Some of the properties of $l c m$ and $g c d$ are:

1. if there is an integer $d \in \mathcal{Z}$ such that $d \mid n_{i}$ for all $n_{i} \in \mathcal{N}(i=1, \ldots, k)$, then $d \mid \operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)$,
2. if $n_{1}\left|m, \ldots, n_{k}\right| m(m \in \mathcal{Z})$, then $\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right) \mid m$,
3. if $d=\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)$ and $b_{i}=\frac{n_{i}}{d}$, then $\operatorname{gcd}\left(b_{1}, \ldots, b_{k}\right)=1$,
4. $\operatorname{lcm}(a, b) \times \operatorname{gcd}(a, b)=a \times b$.

Two integers a and b are said to be coprime if their $\operatorname{gcd}(a, b)=1$. For example, $a=15$ and $b=77$ are coprime as their $\operatorname{gcd}(15,77)=1$. Their $\operatorname{lcm}(15,77)=15 \times 77$.

How can we compute the greatest common divisor ? Clearly, the gcd can be computed from factorisations of the integers. All known factorisation algorithms are not efficient especially when the factorized integers are "long". An excellent alternative not based on factorisation is the well-known Euclid algorithm which is very efficient even for very long numbers.

Euclid Algorithm - finds the greatest common divisor of two numbers $a, b \in \mathcal{N}$
E1. Initialise $r_{0}=a$ and $r_{1}=b$.
E2. Compute the following sequence of equations:

$$
\begin{align*}
r_{0} & =q_{1} r_{1}+r_{2} \\
r_{1} & =q_{2} r_{2}+r_{3} \\
& \vdots \tag{2.5}\\
r_{n-3} & =q_{n-2} r_{n-2}+r_{n-1} \\
r_{n-2} & =q_{n-1} r_{n-1}+r_{n}
\end{align*}
$$

until there is a step for which $r_{n}=0$ while $r_{n-1} \neq 0$.

E3. The greatest common divisor is equal to r_{n-1}.

Theorem 2.1 Let the sequence r_{k} be defined as in (2.5), then $r_{n-1}=\operatorname{gcd}(a, b)$ when n is the first index for which $r_{n}=0$.

Proof: We will show using induction that both $r_{n-1} \mid \operatorname{gcd}(a, b)$ and $\operatorname{gcd}(a, b) \mid r_{n-1}$ which implies that $\operatorname{gcd}(a, b)=r_{n-1}$.

Note that $r_{n-1} \mid r_{n-2}$ as $r_{n-2}=q_{n-1} r_{n-1}$. Further $r_{n-1} \mid r_{n-3}$ as $r_{n-3}=q_{n-2} q_{n-1} r_{n-1}+r_{n-1}$ and so forth. Finally, $r_{n-1} \mid a$ and $r_{n-1} \mid b$. This implies that $r_{n-1} \mid \operatorname{gcd}(a, b)$ By definition, $\operatorname{gcd}(a, b)$ divides both a and b and we conclude that $\operatorname{gcd}(a, b) \mid r_{n-1}$.

For example, assume we have two integers $a=882$ and $b=3465$. The Euclid algorithm will give the following equations:

$$
\begin{aligned}
3465 & =3 \times 882+819 \\
882 & =1 \times 819+63 \\
819 & =13 \times 63+0
\end{aligned}
$$

The remainder in the last equation is zero so the algorithms terminates and $\operatorname{gcd}(882,3465)=63$.
The Euclid algorithm can be implemented as a computer program. A C language implementation of the algorithm is given below.

A C Implementation of Euclid Algorithm

```
/* gcd finds the greatest common divisor for a and b */
long gcd(long a, long b)
{
    long r0,r1,r2;
    if(a==0 || b==0) return(0);
                /* if one is zero output zero */
    r0=a;
    r1=b; /* initialisation */
    r2=r0 % r1;
    while(r2) {
            r0=r1;
            r1=r2;
            r2=r0 % r1;
    }
    if(r1>0)
        return(r1);
    else
        return(-r1);
}
```

Observe that we do not need to compute q_{i} in the Euclid algorithm as we are looking for the last nonzero remainder.

The number of iterations n in the Euclid algorithm is proportional to $\log _{2} a$ where a is the larger integer from the pair. To justify this, it is enough to observe that the divisor in each iteration is bigger
than or equal to 2 . If the divisor were always 2 , then the number of iterations would be exactly equal to $\log _{2} a$. In other words, every iteration reduces the length of the remainder by at least one bit. How many steps are consumed by a single iteration? Let our two integers be a and $b(a>b)$. To produce two integers q and r such that $a=q \times b+r$, we will need at most $\log _{2} a$ subtractions. This can be seen if we represent a and b in binary and carry out the division. A single subtraction takes at most $\log _{2} a$ bit operations. All together the Euclid algorithm needs $O\left(\left(\log _{2} a\right)^{3}\right)$ steps. This upper bound can be refined to $O\left(\log _{2}^{2} a\right)$ after a more detailed analysis.

2.1.2 Primes and the Sieve of Eratosthenes

The fact that any integer can be uniquely represented by their prime factors, emphasises the importance of primes. They are "building blocks" for construction of all other integers.

A Mersenne number is an integer of the form $M_{p}=2^{p}-1$ where p is a prime. If a Mersenne number is itself prime then it is called a Mersenne prime. The number $M_{3}=2^{3}-1=7$ is a Mersenne prime. Two consecutive primes separated by a single even number are called twin primes. Numbers 5 and 7 are twin primes.

In cryptography most primes that are used are relatively long (typically more than a hundred decimal digits). One could ask whether is possible to generate long (or large) primes. Another question could relate to the distribution of primes or how often they occur. The answer to the first question was given by Euclid who showed that there are infinitely many primes. His proof is one of the gems of Number Theory [449].

Theorem 2.2 There are infinitely many primes.

Proof: (By contradiction) Assume that the number of primes is finite. Then there is the largest prime $p_{\text {max }}$. So we can construct a number which is the product of all primes plus "1", i.e.

$$
N=p_{1} \times \cdots \times p_{\max }+1
$$

N is bigger than $p_{\text {max }}$ so it cannot be prime. Therefore N has to be composite. But this is impossible as any of the known primes $p_{1}, \ldots, p_{\max }$ divides N leaving the remainder 1 . Thus, there is a prime N larger then $p_{\text {max }}$. This is a contradiction which leads us to the conclusion that there are infinitely many primes.

Eratosthenes gave a method which generates all primes smaller than a given number N. His method is referred to as the sieve of Eratosthenes.

The sieve of Eratosthenes - determines all primes smaller than N
S1. Create an initial set of all numbers $\mathcal{N}_{N}=\{2,3,4, \ldots, N-1\}$ smaller than N.
S2. For all integers $n<\sqrt{N}$ (which are still in the set \mathcal{N}_{N}), remove all multiples of n from the set \mathcal{N}_{N} (leaving n itself in the set).

S3. The final reduced set \mathcal{N}_{N} contains all primes smaller than N.
Let the upper limit N be 20 . The set $\mathcal{N}_{20}=\{2,3, \ldots, 19\}$. We need to remove all multiples of $2,3,4(n<\sqrt{20})$. After removing all multiples of 2, the set is

$$
\{2,3,5,7,9,11,13,15,17,19\}
$$

After removing all multiples of 3 , the set reduces itself to

$$
\{2,3,5,7,11,13,17,19\}
$$

The number 4 is not in the set so our sieving is completed. The set contains all primes smaller than 20.

Denote by $\pi(x)$ the number of all primes smaller than the number $x . \pi(x)$ is also named the prime-counting function. Gauss claimed that $\pi(x) \approx \frac{x}{\ln x}$. A better approximation $\pi(x) \approx \frac{x}{\ln x-1.08366}$ was given by Legendre. Hadamard and de la Vallée proved the prime number theorem which says that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\pi(x) \ln (x)}{x}=1 \tag{2.6}
\end{equation*}
$$

For more details, readers are referred to [362] and [449].

2.1.3 Congruences

Modular arithmetic is often introduced in school as "clock arithmetic". Fourteen hours after 3 pm is 5 am the next morning. Simply,

$$
14+3 \equiv 5 \quad(\bmod 12) \text { or } 14+3=1 \times 12+5
$$

The formula $a \equiv b \bmod N$ is a congruence and can be read as " a is congruent to b modulo N ". It holds for integers a, b and $N \neq 0$ if and only if

$$
a=b+k N \text { for some integer } k
$$

or $N \mid(a-b)$.
If $a \equiv b \bmod N, b$ is called a residue of $a \operatorname{modulo} N$. In our example, $17 \equiv 5 \bmod 12$ or 5 is a residue of 17 modulo 12 . A set $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is called a complete set of residues modulo N if for every integer a exactly one r_{i} in the set satisfies that $a \equiv r_{i} \bmod N$. For any modulus N, $\{0,1, \ldots, N-1\}$ forms a complete set of residues modulo N. For $N=12$ the set of complete residues is $\{0,1, \ldots, 11\}$. We usually prefer to use integers from $\{0, \ldots, N-1\}$ but sometimes integers in the set $\left\{-\frac{1}{2}(N-1), \ldots, \frac{1}{2}(N-1)\right\}$ may be more useful (N is odd). Note that

$$
\ldots-12 \quad(\bmod 7) \equiv-5 \quad(\bmod 7) \equiv 2 \quad(\bmod 7) \equiv 9 \quad(\bmod 7) \equiv \ldots
$$

Congruences have the following properties.

1. If $a \equiv A \bmod N$ and $b \equiv B \bmod N$, then $a+b \equiv A+B \bmod N$ and $a \times b \equiv A \times B \bmod N$.
2. $a \equiv b \bmod N$ if and only if $N \mid(a-b)$.
3. If $a b \equiv a c \bmod N$ and $\operatorname{gcd}(a, N)=1$, then $b \equiv c \bmod N$.

The rule of "casting out nines" relies on adding all the digits of a number. If they add to 9 , then ultimately the original number is divisible by 9 . For instance, is 46909818 divisible by 9 ? The sum of the digits is $4+6+9+9+8+1+8=45$ and the sum of these digits is $4+5=9$ so the number is divisible by 9 . The method relies on the fact that:

$$
\begin{aligned}
10 & \equiv 1 \quad(\bmod 9) \\
10^{2} & \equiv 10 \quad(\bmod 9) \times 10 \quad(\bmod 9) \equiv 1 \quad(\bmod 9) \\
10^{3} & \equiv 10^{2} \quad(\bmod 9) \times 10 \quad(\bmod 9) \equiv 1 \quad(\bmod 9) \\
& \vdots
\end{aligned}
$$

Any integer a is represented by the sequence of their successive decimal digits $a=\left(a_{m} \ldots a_{2} a_{1} a_{0}\right)_{10}$ and $a=a_{m} \times 10^{m}+\ldots+a_{2} \times 10^{2}+a_{1} \times 10+a_{0}$. So the integer,

$$
\begin{aligned}
a & \equiv\left(a_{m} \ldots a_{2} a_{1} a_{0}\right)_{10} \quad(\bmod 9) \\
& \equiv a_{m} \times 10^{m}+\cdots+a_{2} \times 10^{2}+a_{1} \times 10+a_{0} \quad(\bmod 9) \\
& \equiv a_{m}+\cdots+a_{2}+a_{1}+a_{0} \quad(\bmod 9)
\end{aligned}
$$

The casting out nines rule illustrates the fact that the calculation of powers of an integer in congruences can be done very efficiently. There should be no surprise that many cryptographic designs use exponentiation modulo N.

Algorithm for Fast Exponentiation - computes $a^{e} \bmod N$.

1. Find a binary representation of the exponent e. Let it be $e=e_{k} \times 2^{k}+\ldots+e_{1} \times 2+e_{0}$ where e_{i} are bits $\left(e_{i} \in\{0,1\}\right)$ for all i and $e_{k}=1$.
2. Initialise an accumulator accum (which will be used to store partial results) to 1 .
3. For $i=0, \ldots, k$, multiply modulo N the contents of accum by $a^{e_{i}}$ and save a^{2} in a.
4. The result is stored in accum.

Observe that all the computations can be done "on the fly". For every i, it is enough to square the power of a and modify the accumulator only if $e_{i}=1$. The modulus N can be represented as a string of $\ell=\left\lfloor\log _{2} N\right\rfloor+1$ bits. Exponential can be done using at most ℓ modular multiplications.

An example of the algorithm implementation in C is given below.

A C Implementation of Fast Exponentiation

```
/* fastexp returns a to the power of e modulo N */
long fastexp(long a, long e, long N)
{
    long accum=1;
    while(e) {
        while(!(e%2)) {
            e/=2;
            a = ((a % N)*(a % N)) % N;
        }
        e--;
        accum =((accum % N)*(a % N)) % N;
    }
    return(accum);
}
```

Suppose we wish to find $7^{5} \bmod 9$. We first note that 5 is $e=1 \times 2^{2}+0 \times 2+1$ or $e=(101)_{2}$ in binary. We start from the less significant (the rightmost) bit e_{0} of the exponent. As $e_{0}=1$ so $a=7$ and accum $=7$. Since the second rightmost digit is zero, we square a but do not multiply it onto accum:

$$
a=7^{2}=49 \equiv 4 \quad(\bmod 9), \text { and } \text { accum }=7
$$

The left most digit of e is 1 , so we square a and multiply it onto accum to get the result,

$$
a=7^{4} \equiv 4^{2}=16 \equiv 7 \quad(\bmod 9), \text { and } \text { accum }=7^{2}=4 .
$$

Note that if the fast exponential is used for very long integers (i.e. longer than the length of the long integer type in your C compiler), then a special care must be taken.

The inverse problem to that of finding powers of numbers in modular arithmetics is that of finding the discrete logarithm of a number. Specifically, we wish to find e where

$$
a^{e} \equiv b \quad(\bmod N)
$$

Consider an example. Find two exponents e, f such that the two following congruences are satisfied: $3^{e} \equiv 4 \bmod 13$ and $2^{f} \equiv 3 \bmod 13$. Let us compute $3^{1} \equiv 3,3^{2} \equiv 9,3^{3} \equiv 1,3^{4} \equiv 3, \ldots \bmod 13$ which clearly has no solution. On the other hand, for the congruence $2^{f} \equiv 3 \bmod 13$, we have the following sequence:

$$
\begin{array}{r}
2^{1} \equiv 2,2^{2} \equiv 4,2^{3} \equiv 8,2^{4} \equiv 3, \\
2^{5} \equiv 6,2^{6} \equiv 12,2^{7} \equiv 11,2^{8} \equiv 9 \\
2^{9} \equiv 5,2^{10} \equiv 10,2^{11} \equiv 7,2^{12} \equiv 1 \quad(\bmod 13) .
\end{array}
$$

So $f=4$.
Finding discrete logarithms is generally not an easy problem.

2.1.4 Computing Inverses in Congruences

Unlike ordinary integer arithmetic, sometimes modular arithmetic has inverses. So given $a \in\{0, \ldots, N-$ 1\} there may be a unique $x \in\{0, \ldots, N-1\}$ such that,

$$
a x \equiv 1 \quad(\bmod N)
$$

For example, $3 \times 7 \equiv 1 \bmod 10$.
Consider the following lemma.
Lemma 2.1 If $\operatorname{gcd}(a, N)=1$ then,

$$
a \times i \neq a \times j \quad(\bmod N)
$$

for all numbers $0 \leq i<j<N(i \neq j)$.

Proof: We proceed by contradiction. Assume $a \times i \equiv a \times j \bmod N$. This means that $N \mid a(i-j)$. This implies that $i-j \equiv 0 \bmod N$ as $\operatorname{gcd}(a, N)=1$. We conclude that $i=j$ which is a contradiction.

Corollary 2.1 If $\operatorname{gcd}(a, N)=1$, then the collection of numbers $a \times i \bmod N$ for $i=0,1, \ldots, N-1$ is a permutation of the numbers from 0 to $N-1$.

For example, if $a=3$ and $N=7$ then the congruence $3 \times i(\bmod 7)$ yields the following sequence of numbers $\{0,3,6,2,5,1,4\}$ for all successive $i=0,1, \ldots, 6$. The sequence is just a permutation of the set $\{0,1,2,3,4,5,6\}$. This is not true when $\operatorname{gcd}(a, N) \neq 1$. For example, if $a=2$ and $N=6$ then for $i=0,1, \ldots, 5$ the congruence $2 \times i \bmod 6$ generates all multiples of 2 smaller than 6 .

Modulus		Reduced set	$\varphi(N)$
$\begin{aligned} & N \\ & N^{2} \end{aligned}$ N^{r}	prime (N prime) (N prime)	$\begin{aligned} & \{1,2, \ldots, N-1\} \\ & \{1,2, \ldots, N-1, N+1, \ldots, \\ & \left.2 N-1,2 N+1, \ldots, N^{2}-1\right\} \\ & \vdots \\ & \left\{1,2, \ldots, N^{r}-1\right\} \\ & - \text { multiples of } N<N^{r} \end{aligned}$	$\begin{aligned} & N-1 \\ & N(N-1) \\ & \vdots \\ & \left(N^{r}-1\right)-\left(N^{r-1}-1\right) \\ & =N^{r-1}(N-1) \end{aligned}$
$p q$ $\prod_{i=1}^{t} p_{i}^{e_{i}} ;$	$\text { (} p, q \text { prime) }$ (p_{i} prime)	$\begin{aligned} & \{1,2, \ldots, p q-1\} \\ & - \text { multiples of } p \\ & - \text { multiples of } q \end{aligned}$	$\begin{aligned} & (p q-1)-(q-1)-(p-1) \\ & =(p-1)(q-1) \\ & \vdots \\ & \prod_{i=1}^{t} p_{i}^{e_{i}-1}\left(p_{i}-1\right) \end{aligned}$

Table 2.1: Euler's totient function

Theorem 2.3 If $\operatorname{gcd}(a, N)=1$, then the inverse element $a^{-1}, 0<a^{-1}<N$, exists and

$$
a \times a^{-1} \equiv 1 \quad(\bmod N)
$$

Proof: From Lemma (2.1) we know that $a \times i \bmod N$ is a permutation of $0,1, \ldots, N-1$. Thus there must be an integer i such that $a \times i \equiv 1 \bmod N$.

A reduced set of residues is a subset of the complete set of residues relatively prime to N. The complete set of residues modulo 10 is $\{0,1,2,3,4,5,6,7,8,9\}$ but of these only $1,3,7,9$ do not have a factor in common with 10 . So the reduced set of residues modulo 10 is $\{1,3,7,9\}$. The elements that have been excluded to form the reduced set are the multiples of 2 and the multiples of 5 . It is easy to see that for the modulus $N=p \times q$ (p, q are primes), the number of elements in the reduced set of residues is $(p-1)(q-1)$.

The complete set of residues modulo 11 is $\{0,1,2,3, \ldots, 10\}$. Of these, only one element, 0 , is removed to form the reduced set of residues which has 10 elements. In general, for a prime modulus, the reduced set of residues contains $(N-1)$ elements.

The reduced set of residues modulo 27 is:

$$
\{1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26\}
$$

which has 18 elements. The number 18 is obtained from the observation that the reduced set of residues modulo 3 has 2 elements " 1 " and " 2 " and all the elements are either $3 i+1$ or $3 i+2$ for $i=0,1, \ldots, 8$. In general for a prime power N^{r}, the reduced set of residues has $(N-1) \times N^{r-1}$ elements.

The Euler totient function $\varphi(N)$ is the number of elements in the reduced set of residues. This is tabulated in Table (2.1).

Theorem 2.4 (Euler's Theorem) Let $\operatorname{gcd}(a, N)=1$ then

$$
\begin{equation*}
a^{\varphi(N)} \quad(\bmod N)=1 \tag{2.7}
\end{equation*}
$$

Proof: Let $R=\left\{r_{1}, \ldots, r_{\varphi(N)}\right\}$ be a reduced set of residues modulo N. Then $\left\{a r_{1}, a r_{2}, \ldots, a r_{\varphi(N)}\right\}$ is a permutation of R for any $a=1,2, \ldots, N-1$. Thus,

$$
\prod_{i=1}^{\varphi(N)} r_{i}=\prod_{i=1}^{\varphi(N)} a r_{i}=a^{\varphi(N)} \times \prod_{i=1}^{\varphi(N)} r_{i} \equiv a^{\varphi(N)} \times \prod_{i=1}^{\varphi(N)} r_{i} \quad(\bmod N) .
$$

Hence $a^{\varphi(N)} \equiv 1 \quad(\bmod N)$.
Euler's Theorem is also called the generalisation of Fermat's theorem.
Theorem 2.5 (Fermat's Little Theorem) Let p be a prime and suppose the $\operatorname{gcd}(a, p)=1$ then

$$
\begin{equation*}
a^{p-1} \equiv 1 \quad(\bmod p) \tag{2.8}
\end{equation*}
$$

To understand the Rivest Shamir Adleman public-key algorithm, we need to study how efficiently we can find inverses in modular arithmetic.

Algorithms for finding inverses $a^{-1} \bmod N$:

- Search through $1, \ldots, N-1$ until an a^{-1} is found such that $a \times a^{-1} \bmod N=1$.
- Apply the exponentiation if $\varphi(N)$ is known i.e.

$$
a^{-1} \equiv a^{\varphi(N)-1} \quad(\bmod N)
$$

- Use the Euclid algorithm if $\varphi(N)$ is not known (see Formula (2.5)).

Consider the third algorithm from the above list. Recall Formula (2.5) which describes the Euclid algorithm. We are going to show how to adjust it to find inverses. It starts with the following initialisation: $r_{0}=N$ and $r_{1}=a$ where N is the modulus and a is the number for which the inverse is sought. The first step is $r_{0}=q_{1} r_{1}+r_{2}$. The equation can be rewritten as

$$
r_{2}=r_{0}-q_{1} r_{1}
$$

As $r_{0}=N$ so $r_{2} \equiv-q_{1} r_{1} \bmod N$. We store the coefficient against r_{1} in $x_{1}=-q_{1}$ so $r_{2}=x_{1} r_{1}$. The second step $r_{1}=q_{2} r_{2}+r_{3}$ can be presented as

$$
r_{3}=r_{1}-q_{2} r_{2}=r_{1}-q_{2} x_{1} r_{1}=\left(1-q_{2} x_{1}\right) r_{1}=x_{2} r_{1}
$$

where $x_{2}=\left(1-q_{2} x_{1}\right)$. The third step proceeds as

$$
r_{4}=r_{2}-q_{3} r_{3}=x_{1} r_{1}-q_{3} x_{2} r_{1}=x_{3} r_{1}
$$

and $x_{3}=\left(x_{1}-q_{3} x_{2}\right)$. In general, the i-th step is

$$
r_{i+1}=r_{i-1}-q_{i} r_{i}=x_{i} r_{1}
$$

where $x_{i}=\left(x_{i-2}-q_{i} x_{i-1}\right)$. The computations end when there is a step $n-1$ for which $r_{n}=0$ and $r_{n-1}=1$. The equation for the previous step is

$$
r_{n-1}=r_{n-3}-q_{n-2} r_{n-2}=x_{n-2} r_{1}=1
$$

The value of x_{n-2} is the inverse of $a=r_{1}$.

To illustrate the algorithm, consider an example. Find the inverse of 5 modulo 23 . We get the following equations:

$$
\begin{aligned}
& 3=23-4 \times 5 \equiv-4 \times 5 \quad(\bmod 23) \\
& 2=5-1 \times 3=5-1(-4 \times 5)=5 \times 5 \\
& 1=3-1 \times 2=(-4 \times 5)-1(5 \times 5)=-9 \times 5
\end{aligned}
$$

So $1 \equiv-9 \times 5 \quad(\bmod 23)$ and $-9 \equiv 14 \quad(\bmod 23)$ is the inverse.

A C Implementation of the Euclid algorithm for finding inverses

```
/* inverse returns an element x such that */
/* a*x=1 mod N */
long inverse(long N, long a)
{
        long r0,r1,r2,q1,q2,x0,x1,x2;
    r0=N; r1=a;
    x0=1; /* initialisation */
    q1=r0/r1; r2=r0 % r1;
    x1=-q1;
    while(r2){
        r0=r1; r1=r2;
        q1=r0/r1; r2=r0 % r1;
        x2=x0-q1*x1;
        x0=x1; x1=x2;
    }
        if(r1!=1){
            printf('NO INVERSE \n');
            exit(1);
    }
        if(x0>0) return(x0);
        return(N+x0);
}
```

Algorithms for finding inverses can be used to solve congruences

$$
\begin{equation*}
a x \equiv b \quad(\bmod N) \tag{2.9}
\end{equation*}
$$

To find an integer x which satisfies Congruence (2.9), first compute the inverse of a, i.e.

$$
a y \equiv 1 \quad(\bmod N)
$$

and $x \equiv y b \quad(\bmod N)$. For instance, to solve $5 x \equiv 9 \quad(\bmod 23)$, we first solve $5 y \equiv 1 \quad(\bmod 23)$ getting $y=14$ and thus $x=14 \times 9 \equiv 11 \quad(\bmod 23)$.

Theorem 2.6 If $d=\operatorname{gcd}(a, N)$ and $d \mid b$, then the congruence $a x \equiv b(\bmod N)$ has d solutions

$$
\begin{equation*}
x_{i+1} \equiv\left(\frac{b}{d} \times x_{0}+i \times \frac{N}{d}\right) \quad(\bmod N) \tag{2.10}
\end{equation*}
$$

for $i=0,1, \ldots, d-1$ and x_{0} is the solution to

$$
\frac{a}{d} x \equiv 1 \quad\left(\bmod \frac{N}{d}\right)
$$

otherwise it has no solution.

Proof: If $a x \equiv b \bmod N$ has a solution in $[1, N-1]$ then $N \mid(a x-b)$. The fact that $d \mid N$ and $d \mid a$ implies that $d \mid b$. Hence the congruence

$$
\frac{a}{d} x \equiv 1 \quad\left(\bmod \frac{N}{d}\right)
$$

has a unique solution x_{0} in $\left[1, \frac{N}{d}-1\right]$. Thus $x_{1} \equiv \frac{b}{d} x_{0} \bmod \frac{N}{d}$ is a solution of

$$
\frac{a}{d} x \equiv \frac{b}{d} \quad\left(\bmod \frac{N}{d}\right)
$$

therefore $\frac{a}{d} x_{1}-\frac{b}{d}=k \times \frac{N}{d}$ for some k. Multiplication by d gives

$$
a x_{1}-b=k N
$$

so x_{1} is a solution of $a x \equiv b \bmod N$. But any $x \in\{1, \ldots, N-1\}$ such that $x \equiv x_{1} \bmod \frac{N}{d}$ is also a solution. So all solutions are:

$$
x_{i+1}=\frac{b}{d} x_{0}+i \frac{N}{d} \text { for } i=1, \ldots, d-1
$$

Suppose we wish to solve $9 x \equiv 6 \bmod 12$. We denote $d=\operatorname{gcd}(9,12)=3$ and 3 divides 6 so there are three solutions. We first solve:

$$
3 x_{1}=2 \quad(\bmod 4)
$$

by finding the solution to :

$$
3 x_{0}=1 \quad(\bmod 4)
$$

Now $x_{0}=3$ and so $x_{1}=3 \times 2=6 \equiv 2 \bmod 4$. Thus the three solutions are:

$$
x_{i+1}=2+i \cdot 4, \quad i=0,1, \text { and } 2
$$

That is $x=2,6$ and 10 .
Diophantine equations are equations with solutions in the set of integers or natural numbers. Congruences have an intimate relation with Diophantine equations. The congruence $a \times x \equiv b \bmod N$ has its Diophantine counterpart

$$
a \times x=k \times N+b
$$

To solve it, it is enough to show pairs (x, k) which satisfy the equation for the given (a, b).

2.1.5 The Legendre and Jacobi Symbols

Consider the following quadratic congruence

$$
\begin{equation*}
x^{2} \equiv a \quad(\bmod p) \tag{2.11}
\end{equation*}
$$

where p is a prime integer. Note that squering takes two values x and $-x$ and produces the same result x^{2}. So it is obvious that the quadratic congruence (2.11) may either have two or no solutions (assuming that $a \neq 0$). More precisely, there are three possibilities. The congruence has

1. one solution if $a \equiv 0 \quad(\bmod p)$,
2. two solutions if a is a quadratic residue modulo p,
3. no solution if a is a quadratic non-residue modulo p.

The Legendre symbol is defined as follows

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{cl}
0 & \text { if } a=0 \tag{2.12}\\
1 & \text { if } a \text { quadratic residue modulo } p \\
-1 & \text { if } a \text { quadratic non-residue modulo } p
\end{array}\right.
$$

Below we list some properties of the Legendre symbol.

- The value of the Legendre symbol can be computed from the congruence

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{1}{2}(p-1)} \quad(\bmod p)
$$

- $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ - the Legendre symbol is multiplicative.
- If $a \equiv b \quad(\bmod p)$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
- The sets of non-residues and residues modulo p are of the same cardinality.

The Jacobi symbol is a generalisation of the Legendre symbol for the case when the quadratic congruence is considered for an arbitrary modulus N (N need not be a prime). The Jacobi symbol for a given quadratic congruence $x^{2}=a(\bmod N)$, where $N=p_{1} \cdots p_{r}$, is defined as

$$
\left(\frac{a}{N}\right)=\prod_{i=1}^{r}\left(\frac{a}{p_{i}}\right)
$$

where N is a composite integer, p_{i} are factors of N and $\left(\frac{a}{p_{i}}\right)$ are Legendre symbols primes p_{i}.
Jacobi symbols are easy to compute using exponentiation when the factors of N are known. If factors of N are not known, then Jacobi symbols can still be computed efficiently using the Euclid algorithm with $O\left(\log _{2}^{2} N\right)$ steps (for details see [102]).

2.1.6 The Chinese Remainder Theorem

Solving congruences for moduli which are composite is equivalent to the solution of systems of congruences. If the congruence is $a x \equiv b \bmod p \times q$, then we solve two congruences $a x \equiv b \bmod p$, $a x \equiv b \bmod q$ and combine the results. The Chinese remainder theorem (CRT) states how we can solve a single congruence modulo N by solving the system of congruences for factors of N.

Theorem 2.7 Let p_{1}, \ldots, p_{r} be pairwise coprime. Further let $N=p_{1} \times \cdots \times p_{r}$. Then,

$$
f(x) \quad(\bmod N) \equiv 0 \text { iff } f(x) \quad\left(\bmod p_{i}\right) \equiv 0
$$

for $i=1, \ldots, r$.

Proof: The p_{i} are pairwise coprime so if

$$
f(x)=k N=k \times p_{1} \times \ldots \times p_{r} \Rightarrow p_{i} \mid f(x)
$$

for any i.

Theorem 2.8 (Chinese remainder theorem) Let p_{1}, \ldots, p_{r} be pairwise coprime, where $N=p_{1} \times \ldots \times$ p_{r}. Then the system of congruences

$$
x \equiv x_{i} \quad\left(\bmod p_{i}\right) ; i=1, \ldots, r
$$

has a common solution x in $\{0, \ldots, N-1\}$.

Proof: For each $i, \operatorname{gcd}\left(p_{i}, \frac{N}{p_{i}}\right)=1$. Therefore there exists a y_{i} such that:

$$
\frac{N}{p_{i}} \times y_{i} \equiv 1 \quad\left(\bmod p_{i}\right)
$$

and

$$
\frac{N}{p_{i}} \times y_{i} \equiv 0 \quad\left(\bmod p_{j}\right)
$$

for all $j \neq i$ and $p_{j} \left\lvert\, \frac{N}{p_{i}}\right.$. Let $x \equiv \sum_{i=1}^{r} \frac{N}{p_{i}} \times x_{i} y_{i} \bmod N$. Then x is a solution of $x_{i}=x \bmod p_{i}$ because, $x=\frac{N}{p_{i}} \times x_{i} y_{i} \equiv x_{i} \bmod p_{i}$.

Solve two congruences $x \equiv 1 \bmod 5$ and $x \equiv 10 \bmod 11$ to find a solution modulo 55 . First find the inverse of 11 modulo 5

$$
\frac{55}{5} y_{1} \equiv 1 \quad(\bmod 5) \text { or } 11 y_{1} \equiv 1 \quad(\bmod 5) \Rightarrow y_{1}=1
$$

next the inverse of 5 modulo 11

$$
\frac{55}{11} y_{2} \equiv 1 \quad(\bmod 11) \text { or } 5 y_{2} \equiv 1 \quad(\bmod 11) \Rightarrow y_{2}=9
$$

Thus $x=\frac{55}{5} \times x_{1} y_{1}+\frac{55}{11} \times x_{2} y_{2} \equiv 11 \times 1 \times 1+5 \times 10 \times 9 \equiv 21 \bmod 55$.

CRT Algorithm - generates the solution for $x \bmod N$ from $x_{i} \bmod p_{i}$ where $N=p_{1} \times \ldots \times p_{r}$; $i=1, \ldots, r$

1. Precomputation - for all $i=1, \ldots, r$, find all inverses y_{i} of $\frac{N}{p_{i}}$ modulo p_{i} and store them as the vector $\left(y_{1}, \ldots, y_{r}\right)$.
2. Composition - for the given vector of residues x_{1}, \ldots, x_{r}, create the solution $x \equiv \sum_{i=1}^{r} \frac{N}{p_{i}} \times$ $x_{i} y_{i} \bmod N$.

The CRT asserts the equivalence of the representation of integers in modular arithmetics i.e. $x \bmod N$ is equivalent to the vector representation $\left(x_{1}, \ldots, x_{r}\right)$. From a cryptographic point of view, both the recovery procedure of x from its vector $\left(x_{1}, \ldots, x_{r}\right)$ and the reverse operation (i.e. finding the vector from the integer x) are very efficient only if the factors of N are known! If manipulations involve integers x modulo a large composite N, than they can be processed in parallel for every component x_{i} (see Knuth [283]).

2.2 Algebraic Structures in Computing

Cryptography exploits a variety of algebraic structures. Most computations are done in finite groups, rings, and fields. In this section, we introduce basic algebraic concepts and explore properties of basic algebraic structures frequently used in cryptography.

2.2.1 Sets and Operations

Computing always involves passive entities (numbers) and active entities (operations). Algebra provides already a well-developed theory which deals with such objects. An algebraic structure is defined as the collection of a set with one or more operations which can be performed on elements of the set. Let \mathcal{S} be a set of elements and \diamond be an operation. For any pair of elements $a, b \in \mathcal{S}$, the operation \diamond assigns an element from the set $\mathcal{S}(a \diamond b \in \mathcal{S})$.

A group $G=\langle\mathcal{S}, \diamond>$ is an algebraic structure which satisfies the following conditions:
G1. For any two elements $a, b \in \mathcal{S}, c=a \diamond b \in \mathcal{S}$. This is called closure.
G2. For any three elements $a, b, c \in \mathcal{S}$, the group operation is associative i.e.

$$
(a \diamond b) \diamond c=a \diamond(b \diamond c) .
$$

G3. There is a neutral (identity) element $e \in \mathcal{S}$ such that

$$
\forall_{a \in \mathcal{S}} \quad a \diamond e=e \diamond a=a .
$$

G4. Each element $a \in \mathcal{S}$ has its inverse, i.e.

$$
\forall_{a \in \mathcal{S}} \exists_{a-1} \in \mathcal{S} \quad a \diamond a^{-1}=a^{-1} \diamond a=e
$$

An Abelian group is a group whose group operation is commutative:
G5. For any two $a, b \in \mathcal{S}$

$$
a \diamond b=b \diamond a .
$$

The following structures are examples of groups.

- The set of integers with the addition as the group operation $<\mathcal{Z},+>$ is a group. The identity element is zero and the inverse element of $a \in \mathcal{Z}$ is $-a \in \mathcal{Z}$. The group is Abelian as $\forall_{a, b \in \mathcal{Z}} a+$ $b=b+a$. The group is infinite.
- The set of nonzero rationals \mathcal{R} under multiplication creates an Abelian group $<\mathcal{R} \backslash\{0\}, \times>$. The identity element is " 1 " and the inverse of a is $\frac{1}{a}$. The group is infinite.
- The set $\mathcal{Z}_{N}=\{0,1, \ldots, N-1\}$, where N is prime, with addition modulo N is an Abelian group $Z_{N}=<\mathcal{Z}_{N},+>$. The identity element is " 0 ". The inverse of a is $(N-a)$. The group is finite.
- The group $Z_{2}=<\mathcal{Z}_{2},+>$ has a special practical significance. It has two elements only. The group addition is equivalent to the binary Exclusive-Or operation \oplus.
- The set $\mathcal{Z}_{N}^{*}=\{1,2, \ldots, N-1\}$ with multiplication, i.e. $Z_{N}^{*}=<\mathcal{Z}_{N}^{*}, \times>$ is an Abelian group (N is prime). The identity element is " 1 ". The inverse element of a is a^{-1} such that $a \times a^{-1} \equiv 1$ $(\bmod N)$. The group is finite.

The order of a finite group is the number of elements in the group. A group $G_{1}=<\mathcal{S}_{1}, \diamond>$ is a subgroup of the group $G=<\mathcal{S}, \diamond>$ if $\mathcal{S}_{1} \subset \mathcal{S}$. The Lagrange theorem (see [231]) states that the order of any subgroup of a finite group divides the order of the group.

A cyclic group is a group whose elements are generated by a single element g (also called the generator of the group).

Consider the multiplicative group Z_{7}^{*}. Note that the identity element $1 \in Z_{7}^{*}$ generates the trivial group $<\{1\}, \times>$. The element $6 \equiv-1 \quad(\bmod 7)$ generates a bigger subgroup namely $<\{1,6\}, \times>$. The element 2 generates the following subgroup: $2^{1}=2,2^{2}=2 \times 2=4,2^{3}=2 \times 2 \times 2=8$ 三 $1(\bmod 7)$ of Z_{7}^{*}. Obviously we can rewrite $2^{3} \equiv 2^{0}(\bmod 7)$. The subgroup generated by 2 is $<\{1,2,4\}, \times>$. The element 3 yields the following:

$$
\begin{aligned}
& 3^{1}=3 \\
& 3^{2}=3 \times 3 \equiv 2 \quad(\bmod 7), \\
& 3^{3}=3 \times 3 \times 3 \equiv 6 \quad(\bmod 7) \\
& 3^{4}=3 \times 3 \times 3 \times 3 \equiv 4 \quad(\bmod 7) \\
& 3^{5}=3 \times 3 \times 3 \times 3 \times 3 \equiv 5 \quad(\bmod 7) \\
& 3^{6}=3 \times 3 \times 3 \times 3 \times 3 \times 3 \equiv 1 \quad(\bmod 7)
\end{aligned}
$$

The element 3 generates the whole group Z_{7}^{*}. Powers, of 4 are: $4^{1}=4,4^{2} \equiv 2(\bmod 7)$ and $4^{3} \equiv 1$ $(\bmod 7)$. The subgroup $<\{1,2,4\}, \times>$ is generated by 4 . Finally, the element 5 produces $5^{1}=5$, $5^{2} \equiv 4 \quad(\bmod 7), 5^{3} \equiv 6 \quad(\bmod 7), 5^{4} \equiv 2 \quad(\bmod 7), 5^{5} \equiv 3 \quad(\bmod 7)$ and $5^{6} \equiv 1 \quad(\bmod 7)$, i.e. the whole group Z_{7}^{*}. The number of elements in each subgroup is directly related to the factorisation of $\varphi(N)=6$. All the trivial and nontrivial factors are: $1,2,3,6$. If we deal with larger N and the factorisation of $\varphi(N)$ has n nontrivial factors, then the probability that a randomly selected element from \mathcal{Z}_{N}^{*} generates the whole group is $\approx \frac{1}{n+1}$.

Mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a generalisation of a function, i.e. for every element of the set \mathcal{X}, it assigns an element from the set \mathcal{Y}. Let $\langle G, \diamond\rangle$ and $\langle H, \circ\rangle$ be two groups, then the mapping $f: G \rightarrow H$ is a group homomorphism if

$$
\begin{equation*}
\forall_{a, b \in G} f(a \diamond b)=f(a) \circ f(b) \tag{2.13}
\end{equation*}
$$

If some additional conditions are imposed on the homomorphism, it is called:

- epimorphism - the image of the homomorphism covers the whole set H or $f(G)=H$,
- monomorphism - there is the inverse mapping $f^{-1}: H \rightarrow G$ such that

$$
\forall_{a \in G} \quad f^{-1}(f(a))=a
$$

- isomorphism-monomorphism with $f(G)=H$.

A ring is an algebraic structure with the set \mathcal{S} and two operations addition + and multiplication \times, i.e. $R=<\mathcal{S},+, \times>$ such that

R1. For each pair $a, b \in \mathcal{S}, a+b$ and $a \times b$ belong to \mathcal{S}.
R2. $<\mathcal{S},+>$ is an additive Abelian group.
R3. Multiplication operation is associative, i.e. for any $a, b, c \in \mathcal{S}$

$$
(a \times b) \times c=a \times(b \times c)
$$

R4. Multiplication operation is distributive with respect to addition, i.e. for any three elements $a, b, c \in \mathcal{S}$,

$$
a(b+c)=a b+a c \text { and }(a+b) c=a c+b c
$$

Let p, q are two odd primes and the modulus $N=p q$. The set $Z_{N}=\{0,1, \ldots, N-1\}$ with addition and multiplication modulo N is a ring. It is easy to check that $<Z_{N},+>$ is an Abelian group. Multiplication is associative and also is distributive with respect to addition. The ring Z_{N} describes alebraic structure of the well-known Rivest-Shamir-Adleman public-key cryptosystem. Using the CRT, any element $a \in Z_{N}$ can be equivalently represented as a vector

$$
a \equiv(a \bmod p, a \bmod q)
$$

Note that all elements $a \in Z_{N}$ whose vector components are different from zero $a_{1} \neq 0$ and $a_{2} \neq 0$ do have additive and multiplicative inverses. Under multiplication, the set of these elements forms a finite group Z_{N}^{*} of order $\varphi(N)$. The group is cyclic and any element generates a subgroup of order which divides $\varphi(N)(\varphi(N)$ is the Euler totient function). Elements with one component zero do not have multiplicative inverses. The collection of all elements $\left(0 \bmod p, a_{2} \bmod q\right)$ includes the set of all multiples of p, i.e. $\{i p \mid i=0,1, \ldots, q-1\}$. The other set of multiples is $\{i q \mid i=0,1, \ldots, p-1\}$. Those two sets have special properties: they are closed under addition and any product of their elements by an arbitrary element of Z_{N} falls back into the sets. The sets are called ideals.

More formally, an ideal in a ring R is a non-void subset $I(I \subset R)$ such that
I1. For any pair of elements $a, b \in I,(a+b) \in I$ - ideal is closed under addition.
12. For any $a \in I$ and any $b \in R$, both $a b$ and $b a$ belong to I.

The ring $Z_{N}\left(N=p q, p\right.$ and q primes) contains two ideals: $I_{1}=\{i p \mid i=0,1, \ldots, q-1\}$ and $I_{2}=\{i q \mid i=0,1, \ldots, p-1\}$.

As not all elements of rings have multiplicative inverses, computations which involve division may not be possible unless special care is exercised. To make sure that all nonzero elements have their multiplicative inverses, computations should be done in rings with division. Commutative rings with division are called fields.

A field $F=<\mathcal{S},+, \times>$ is a set \mathcal{S} with two operations: addition and multiplication with the following properties:

F1. $<\mathcal{S},+, \times>$ is a commutative ring - it satisfies all the conditions for rings and in addition multiplication is commutative, i.e. for all $a, b \in \mathcal{S}, a b=b a$.

F2. There is an identity element 1 with respect to multiplication, i.e. for all $a \in \mathcal{S}$, there is $e=1 \in \mathcal{S}$ such that $a \times 1=1 \times a=a$.

F3. Any nonzero element $a \in \mathcal{S}$ has its unique inverse and $a \times a^{-1}=a^{-1} \times a=1$.
$Z_{N}=<\{0,1, \ldots, N-1\},+, \times>$ is a field if N is prime. Some other important fields can be constructed using polynomials.

2.2.2 Polynomial Arithmetics

Let F be a field. Consider a function $f: F \rightarrow F$ of the form:

$$
\begin{equation*}
f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \tag{2.14}
\end{equation*}
$$

where $a_{i} \in F$ for $i=0,1, \ldots, n$. Any function which can be written in the form (2.14) is called a polynomial. Any polynomial has its degree - the highest power of x. For the polynomial (2.14) its degree is equal to n or in other words $\operatorname{deg}(f(x))=n$. Two polynomials $p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and $q(x)=b_{0}+b_{1} x+\ldots+b_{m} x^{m}$ can be added and subtracted

$$
\begin{equation*}
p(x) \pm q(x)=\left(a_{0} \pm b_{0}\right)+\left(a_{1} \pm b_{1}\right) x+\ldots+\left(a_{m} \pm b_{m}\right) x^{m}+a_{m+1} x^{m+1}+\ldots+a_{n} x^{n} \tag{2.15}
\end{equation*}
$$

where $n>m$. Their product is also a polynomial and

$$
\begin{equation*}
p(x) q(x)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\ldots+a_{n} b_{m} x^{n+m}=\sum_{i=0}^{n} \sum_{j=0}^{m} a_{i} b_{j} x^{i+j} \tag{2.16}
\end{equation*}
$$

It is easy to verify that the collection of all polynomials over the field F with polynomial addition (2.15) and multiplication (2.16) create a commutative ring $F[x]$.

Theorem 2.9 (Division Algorithm) Let $a(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and $b(x)=b_{0}+b_{1} x+\ldots+b_{m} x^{m}$ be two polynomials from $F[x](n>m)$. Then we can find two polynomials $q(x)$ and $r(x)$ such that

$$
\begin{equation*}
a(x)=q(x) \times b(x)+r(x), \tag{2.17}
\end{equation*}
$$

where $q(x)$ is a quotient and $r(x)$ is a remainder whose degree is smaller than m.

Proof: We apply induction on the degrees n and m.

1. $n<m$, then clearly $a(x)=0 \times b(x)+a(x)$.
2. $n \geq m$, then

$$
\begin{equation*}
a(x)=\tilde{a}(x)+\frac{a_{n}}{b_{m}} x^{n-m} b(x) . \tag{2.18}
\end{equation*}
$$

The degree of $\tilde{a}(x)$ is smaller then n and equal to k. Assume that Expression (2.17) is true for any $k>m$. From this assumption we can draw the conclusion that

$$
\tilde{a}(x)=q_{1}(x) b(x)+r_{1}(x)
$$

By putting the above expression for $\tilde{a}(x)$ into the equation (2.18), we obtain the final result (2.17).

This algorithm is an extension of the division algorithm for integers. The algorithm works for polynomials if the coefficients have multiplicative inverses - the coefficient $a_{n} b_{m}^{-1}$ in Equation (2.18) has to exist. That is why polynomial coefficients have to be from a field.

Consider the ring $Z_{7}[x]$. The division of $a(x)=2 x^{4}+x^{2}+5 x+3$ by $b(x)=4 x^{2}+3$ proceeds as follows:

$$
\begin{aligned}
2 x^{4}+x^{2}+5 x+3 & =\left(4 x^{2}+3\right) \times 4 x^{2}+\left(3 x^{2}+5 x+3\right) \\
3 x^{2}+5 x+3 & =\left(4 x^{2}+3\right) \times 6+(5 x+6)
\end{aligned}
$$

So finally, $2 x^{4}+x^{2}+5 x+3=\left(4 x^{2}+3\right)\left(4 x^{2}+6\right)+(5 x+6)$.
A polynomial $a(x)$ is irreducible over a field F if for all polynomials $b(x) \in F[x](\operatorname{deg} a(x)>$ $\operatorname{deg} b(x))$

$$
a(x)=q(x) b(x)+r(x)
$$

where $\operatorname{deg} r(x)<\operatorname{deg} b(x)$ and $r(x) \neq 0$. All reducible polynomials have two or more nontrivial factor polynomials or simply factors. Any irreducible polynomial $p(x)=p_{0}+p_{1} x+\ldots p_{n} x^{n} \in F[x]$ can be represented as $p(x)=a \times p^{\prime}(x)$ where $a \in F$. We can normalise $p(x)$ in such a way that its leading coefficient $p_{n}=1$. Such polynomial is called monic. In polynomial arithmetics, there is also the unique factorisation theorem which is equivalent to the fundamental theorem of arithmetics. It says that every polynomial over a field F can be uniquely represented as a product of a constant (an
element of the field F) and monic irreducible polynomials. Thus notions such as the greatest common divisor and the least common multiple can be extended for polynomials. The Euclid algorithm can be easily modified to generate the $g c d$ of two polynomials.

Euclid Algorithm - finds the greatest common divisor of two polynomials $a(x), b(x) \in F[x]$
E1. Initialise $r_{0}(x)=a(x)$ and $r_{1}(x)=b(x)$.
E2. Compute the following sequence of equations:

$$
\begin{align*}
r_{0}(x) & =q_{1}(x) r_{1}(x)+r_{2}(x) \\
r_{1}(x) & =q_{2}(x) r_{2}(x)+r_{3}(x) \\
& \vdots \tag{2.19}\\
r_{k-3}(x) & =q_{k-2}(x) r_{k-2}(x)+r_{k-1}(x) \\
r_{k-2}(x) & =q_{k-1}(x) r_{k-1}(x)+r_{k}(x)
\end{align*}
$$

until there is a step for which $r_{k}(x)=0$ while $r_{k-1}(x) \neq 0\left(\operatorname{deg} r_{i}(x)>\operatorname{deg} r_{i+1}(x)\right.$ for all $i=2, \ldots, k)$.

E3. The greatest common divisor is equal to $r_{k-1}(x)$.
Let $p(x)=p_{0}+p_{1} x+\ldots p_{n} x^{n} \in F[x]$ be a polynomial. Then two polynomials $a(x), b(x) \in F[x]$ are congruent modulo $p(x)$ or

$$
a(x) \equiv b(x) \quad(\bmod p(x))
$$

if $p(x) \mid(a(x)-b(x))$. For instance, consider $Z_{5}[x], 3 x^{3}+2 x+4 \equiv 4 x+4 \bmod x^{2}+1$ as $3 x^{3}+2 x+$ $4-(4 x+4)=3 x^{3}+3 x=3 x\left(x^{2}+1\right)$. Most properties discussed for congruences modulo N, hold for congruences modulo $p(x)$ including the Chinese Remainder Theorem.

Assume that $p(x)$ is an irreducible polynomial over field $F(p(x) \in F[x])$ with $\operatorname{deg} p(x)=n$. A set of residues modulo $p(x)$ is a set $F[x] / p(x)$ of all polynomials whose degree is smaller than the degree of $p(x)$. The set of residues also includes all elements of the field F. It is easy to check that the set of residues (modulo irreducible polynomial $p(x)$) with polynomial addition and multiplication modulo $p(x)$ is a field. The only point which needs some elaboration is the existence of multiplicative inverses. Let $a(x), b(x) \in F[x] / p(x)$. Consider that $a(x)$ and $p(x)$ are given, and we would like to find $b(x)=a^{-1}(x)$ such that

$$
a(x) \times b(x) \equiv 1 \quad(\bmod p(x))
$$

We apply the Euclid algorithm (2.19) for $r_{0}(x)=p(x)$ and $r_{1}(x)=a(x)$. At each step we express $r_{i}(x)$ as multiple of $a(x)$ modulo $p(x)$. Therefore $r_{0}(x)=0, r_{1}(x)=a(x), r_{2}(x)=-q_{1}(x) a(x)=m_{1}(x) a(x)$, $r_{3}(x)=\left(1+q_{1} q_{2}\right) a(x)=m_{2}(x) a(x)$ and so on. Obviously, there must be the first $r_{k}(x)=0$. If $\operatorname{gcd}(p(x), a(x))=c \in F$, the previous remainder $r_{k-1}=c$. Note that the constant $c \in F$ becomes 1 if the $p(x)$ is monic! The equation with $r_{k-1}(x)$ is

$$
r_{k-3}(x)=q_{k-2}(x) r_{k-2}(x)+c
$$

Knowing that $r_{k-3}(x)=m_{k-4}(x) a(x)$ and $r_{k-2}(x)=m_{k-3}(x) a(x)$, we obtain

$$
c^{-1} a(x)\left(m_{k-4}(x)-q_{k-2}(x) m_{k-3}(x)\right)=1
$$

The inverse of $\mathrm{a}(\mathrm{x})$ is $c^{-1}\left(m_{k-4}(x)-q_{k-2}(x) m_{k-3}(x)\right)$.

Euclid Algorithm - finds the inverse of $a(x)$ modulo $p(x)(p(x) \in F[x]$ is irreducible)

E1. Initialise $r_{0}(x)=p(x)$ and $r_{1}(x)=a(x)$.
E2. Compute the following sequence of equations:

$$
\begin{align*}
& r_{0}(x)= q_{1}(x) r_{1}(x)+r_{2}(x) \\
& \Rightarrow r_{2}(x) \equiv-q_{1}(x) a(x)=m_{1}(x) a(x) \quad(\bmod p(x)) \\
& r_{1}(x)= q_{2}(x) r_{2}(x)+r_{3}(x) \\
& \Rightarrow r_{3}(x)=r_{1}(x)-q_{2}(x) r_{2}(x)=m_{2}(x) a(x) \\
& \vdots \tag{2.20}\\
& r_{k-3}(x)= q_{k-2}(x) r_{k-2}(x)+r_{k-1}(x) \\
& \Rightarrow r_{k-1}(x)=r_{k-3}(x)-q_{k-2}(x) r_{k-2}(x)=m_{k-4}(x) a(x) \\
& r_{k-2}(x)= q_{k-1}(x) r_{k-1}(x)+r_{k}(x)
\end{align*}
$$

until there is a step for which $r_{k}(x)=0$ while $r_{k-1}(x)=c \in F\left(\operatorname{deg} r_{i}(x)>\operatorname{deg} r_{i+1}(x)\right.$ for $i=2, \ldots, k)$.

E3. The inverse is equal to $c^{-1}\left(m_{k-4}(x)-q_{k-2}(x) m_{k-3}(x)\right)$.
The field defined over the set of residues $F[x] / p(x)$ with the addition and multiplication modulo $p(x)$ where $p(x)$ is irreducible is called a Galois field. If the field F is Z_{N} (N is prime) then the corresponding Galois field over $Z_{N}[x] / p(x)$ is denoted $G F\left(N^{n}\right)(n=\operatorname{deg} p(x))$. Note that $G F(N)$ is the field of coefficients with addition and multiplication modulo N.

2.2.3 Computing in Galois Fields

Many cryptographic designs extensively use binary Galois fields $G F\left(2^{n}\right)$. Consider an example which shows how computations can be done in $G F\left(2^{3}\right)$ with an irreducible polynomial $p(x)=x^{3}+x+1 \in$ $Z_{2}[x]$ (in binary Galois fields all polynomials are monic).

The Galois field $G F\left(2^{3}\right)$ has the following elements: $0,1, x, x+1, x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1$. Zero is equivalent to any multiple of $p(x)=x^{3}+x+1$. This fact is equivalent to $x^{3}=x+1-$ this equation can be used to reduce any polynomial of degree higher than or equal to 3 to a polynomial of degree at most 2. For instance, $\left(x^{2}+1\right)^{2}$ is equal to $x^{4}+1$ and using the fact that $x^{3}=x+1$, we have

$$
x^{4}+1=x \times x^{3}+1=x \times(x+1)+1=x^{2}+x+1
$$

To do computations in the field is enough to build up two tables, one for addition and the other for multiplication (see Table 2.2).

All nonzero elements of $G F\left(2^{n}\right)$ under multiplication modulo $p(x)(p(x)$ is an irreducible polynomial of degree n) constitute a cyclic group with $2^{n}-1$ elements. The Euler totient function can also be extended for polynomials and $\varphi(p(x))=2^{n}-1$. There is a polynomial version of Fermat's theorem which states that

$$
\forall a \in G F\left(2^{x}\right) ; a \neq 0 \quad a^{\varphi(p(x))} \equiv 1 \quad(\bmod p(x))
$$

Thus exponentiation can be used to find multiplicative inverses in $G F\left(2^{n}\right)$ as

$$
\forall_{a \in G F\left(2^{n}\right) ; a \neq 0} \quad a^{-1} \equiv a^{\varphi(p(x))-1} \equiv a^{2^{n}-2} \quad(\bmod p(x))
$$

Any nonzero element of $G F\left(2^{n}\right)$ generates a cyclic group whose order j divides $\left(2^{n}-1\right)$ or in other words $j \mid\left(2^{n}-1\right)$. If for some reason, one would like all nonzero elements (different from 1) to generate the whole cyclic group, then it is enough to select a field for which $2^{n}-1$ is a Mersenne prime.

+	0	1	010	011	100	101	110	111
0	0	1	010	011	100	101	110	111
1	1	0	011	010	101	100	111	110
$x=010$	010	011	0	1	110	111	100	101
$x+1=011$	011	010	1	0	111	110	101	100
$x^{2}=100$	100	101	110	111	0	1	010	011
$x^{2}+1=101$	101	100	111	110	1	0	011	010
$x^{2}+x=110$	110	111	100	101	010	011	0	1
$x^{2}+x+1=111$	111	110	101	100	011	010	1	0
\times	1	010	011	100	101	110	111	
1	1	010	011	100	101	110	111	
$x=010$	010	100	110	011	1	111	110	
$x+1=011$	011	110	101	111	100	1	010	
$x^{2}=100$	100	011	111	110	010	101	1	
$x^{2}+1=101$	101	1	100	010	111	011	110	
$x^{2}+x=110$	110	111	1	101	011	010	100	
$x^{2}+x+1=111$	111	101	010	1	110	100	011	

Table 2.2: The addition and multiplication tables for $G F\left(2^{3}\right)$.
$G F\left(2^{3}\right)$ has its totient function $\varphi\left(x^{3}+x+1\right)=7$. Seven is a Mersenne prime. Therefore there should be no surprise to learn that any nonzero element (different from 1) in $G F\left(2^{3}\right)$ generates the whole set of nonzero elements of the field. Let $(x+1)$ be a tested element. We have the following sequence of powers; $(x+1)^{2}=x^{2}+1,(x+1)^{3}=x^{2},(x+1)^{4}=x^{2}+x+1,(x+1)^{5}=x,(x+1)^{6}=x^{2}+x$, $(x+1)^{7}=1$.

Computations in $G F\left(2^{n}\right)$ are often desirable for the following reasons:

1. Algorithms for computation in $G F\left(2^{n}\right)$ are usually more efficient than their counterparts in $G F(N)$. There is also the other side of the coin - cryptographic designs based on integer arithmetics in $G F(N)$ are usually more secure than their equivalents based on polynomial arithmetics in $G F\left(2^{n}\right)$ when both fields have similar sizes.
2. Polynomial arithmetics in $G F\left(2^{n}\right)$ is more efficient as nothing is carried and there is no need to divide by the modulus in order to perform addition or subtraction. For example the C language offers bit-by-bit Exclusive-Or (XOR) operation which gives very fast implementation of addition in $G F\left(2^{n}\right)$.
3. The cost of the hardware depends on choice of modulus. For instance, we can use trinomials $p(x)=x^{k}+x+1$ as the modulus to speed up multiplication as the string involved in the operation contain mostly zeros.

2.3 Complexity of Computing

The evaluation of security of cryptographic designs is in general a difficult business. It is not unusual to find out that the security evaluation has been upheld by a statement "as the design is based on the well-known intractable problem, a successful attack will be equivalent to showing an algorithm which solves all instances of the problem in polynomial time". Cryptanalysis is a part of cryptology whose ultimate goal is to demonstrate the existence of a polynomial-time algorithm which enables the
computation of some of the secret elements of the design. In this section we present the basic results and discuss their applicability in cryptography and cryptanalysis.

2.3.1 Asymptotic Behaviour of Functions

Assume that there are two algorithms which can be applied to solve a numerical task. To select a better algorithm we need to know how the efficiency of algorithms can be measured. One of the measurements is the so-called time complexity function. It describes how many steps (time intervals) are necessary to perform before the algorithm generates the result for an instance of length n. Time complexity functions are usually compared using their asymptotic behaviour.

Let $f(n)$ and $g(n)$ be two functions whose rates of growth are to be compared. The following notations are commonly used.

- Little "o" notation - the function $f(n)$ is little oh of $g(n)$ when the quotient of $f(n)$ by $g(n)$ converges to zero or

$$
\begin{equation*}
f(n)=o(g(n)) \text { if } \lim _{n \rightarrow \infty} \frac{f(x)}{g(x)}=0 \tag{2.21}
\end{equation*}
$$

For instance, $3 n^{3}=o\left(7 n^{4}\right)$ and $2=o(n)$.

- Big "O" notation - the function $f(n)$ is big oh of $g(n)$ or

$$
\begin{equation*}
f(n)=O(g(n)) \tag{2.22}
\end{equation*}
$$

if there is a constant $C \in \mathcal{R}$ such that $\lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|<C$. The function $3 n^{7}+n^{3}=O\left(n^{7}\right)$.

- Θ notation - the function $f(n)$ is theta of $g(n)$ if there is a pair of positive nonzero constants c_{1}, c_{2} such that

$$
c_{1} g(n)<f(n)<c_{2} g(n)
$$

for all big enough n.

- ~ notation - the function $f(n)$ is asymptotically equal to or $f(n) \sim g(n)$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

- Ω notation $-f(n)=\Omega(g(n))$ iff $g(n)=O(f(n))$

Let $g(n)$ be a fixed function. Given $o(g(n))$, the space of all functions is divided into two disjoint subsets: $\{f(n) \mid f(n)=o(g(n))\}$ and its complement. Informally, we can look at $o(g(n))$ as the set of all functions whose rate of growth is negligible with the rate of the function $g(n)$. So $x^{3}=o\left(x^{4}\right)$ but also $x^{2}=o\left(x^{4}\right)$ and $x=o\left(x^{4}\right)$. Similarly, the set $\{f(n) \mid f(n)=O(g(n))\}$ contains all functions whose rate of growth is not faster than the rate of the function $g(n)$. So $3 x^{4}=O\left(x^{4}\right)$ but also $x^{3}=O\left(x^{4}\right)$, $x^{2}=O\left(x^{4}\right)$, and $x=O\left(x^{4}\right)$.

The $\Theta\left(g(n)\right.$ is equivalent to the set $\{f(n) \mid f(n)=\Theta(g(n))\}=\left\{f(n) \mid c_{1} g(n)<f(n)<c_{2} g_{n}\right\}$. The set comprises all functions whose rate of growth is equivalent with the accuracy to a constant $c \in$ $\left[c_{1}, c_{2}\right]$. The notation $f(n) \sim g(n)$ says that the rate of growth of both functions is the same. Functions which are equal to $\Omega(g(n))$ create the set $\{f(n) \mid f(n)=\Omega(g(n))\}=\{f(n) \mid g(n)=O(f(n))\}$. The set encompasses all functions whose rate of growth is not slower than the rate of $g(n)$. For instance, $3 x^{4}=\Omega\left(x^{4}\right)$ but also $x^{5}=\Omega\left(x^{4}\right), x^{6}=\Omega\left(x^{4}\right)$, and $x^{7}=\Omega\left(x^{4}\right)$.

Consider a problem of multiplication of two $n \times n$ matrices. As the resulting product matrix contains n^{2} elements and each element involves n multiplication, we can say we can multiply two matrices in time $O\left(n^{3}\right)$. Strassen showed that it is possible to multiply matrices quicker in time $O\left(n^{2.81}\right)$. On the other hand, we cannot multiply matrices quicker than n^{2} as $2 n^{2}$ entries of matrices have to be read from the input. So multiplication of two matrices can be performed in time $\Omega\left(n^{2}\right)$. Or in other words, any algorithm for matrix multiplications has to take at least n^{2} steps. More details about the asymptotic notations together with an extensive discussion can be found in the book by Brassard and Bratley [59].

2.3.2 Hierarchy of Functions

Consider two algorithms. The first runs in time given by the polynomial $f_{1}(n)=n^{a}$ where n is an input length, and a is a fixed positive integer. The second has its time complexity function $f_{2}(n)=2^{n}$. Consider the following question. Is there any integer $N \in \mathcal{N}$ such that:

$$
\forall_{n \geq N} \exists_{a \in \mathcal{N}} n^{a} \leq 2^{n} ?
$$

In order to answer the question, take the equality $n^{a}=2^{n}$. As $n \in \mathcal{N}$, the equality can be rewritten as

$$
a=\frac{n}{\log _{2} n}
$$

The function $\frac{n}{\log _{2} n}$ grows to infinity as $n \rightarrow \infty$. So there is an integer N such that for all $n>N$, $n^{a}<2^{n}$.

So even for large exponents a, the rate of growth of polynomials is negligible to the rate of exponential functions. For instance, assume we have two algorithms. The first runs in polynomial time $f_{1}(n)=n^{1000}$, the second in exponential time $f_{2}(n)=2^{0.001 n}$. Of course, the second algorithm is much more efficient than the first for small n. But, for $n>2^{25}$, the situation changes and the polynomialtime algorithm is more efficient as it requires $\sim 2^{25000}$ steps while the exponential one needs $\sim 2^{32000}$ steps. This example is unrealistic but illustrates what we mean by asymptotic behaviour of functions.

In general, we can introduce a hierarchy of functions depending on their rates of growth [521].

1. Logarithm functions - slow growing functions. A typical representative of the class is $f(n)=$ $\log _{2}(n)$.
2. Polynomial functions - functions of the form $f(n)=n^{a}$ where a is constant and fixed $(a \in \mathcal{N})$.
3. Sub-exponential functions - functions from the following set

$$
\left\{f(n) \mid f(n)=\Omega\left(n^{a}\right) \text { for all } a \in \mathcal{N} \text { and } f(n)=o\left((1+\varepsilon)^{n}\right) \text { for all } \varepsilon \in \mathcal{R} ; \varepsilon>0 .\right\}
$$

A function $f(n)=2^{\log (n)}$ is a typical example of a member of this class.
4. Exponential functions - a function $f(n)$ is exponential if there is a constant $a \in \mathcal{N}$ such that $f(n)=\Omega\left(a^{n}\right)$ and there is another constant $b \in \mathcal{N}$ such that $f(n)=O\left(b^{n}\right)$. The function $f(n)=2^{n}$ is a typical representative of this class.
5. Super-exponential functions - all functions whose rate of growth is higher than for previous classes, i.e. $f(n)$ is super-exponential if every exponential function $g(n)=o(f(n))$. Examples of such functions include n ! and $2^{n^{2}}$.

2.3.3 Problems and Algorithms

A problem is a general question with the associated parameters and variables whose values are not specified. The definition of a problem consists of two parts. The first one gives a general setting of the problem with precise description of the problem parameters. The second part determines the requested answer or solution.

Consider the problem of finding the greatest common divisor. The problem can be defined as follows.

Name: GCD problem
Instance: Two natural numbers $a, b \in \mathcal{N}$.
Question: What is the greatest common divisor of a and b?
Clearly, any problem consists of the collection of instances whose all values are fixed. An instance of GCD problem is: what is $\operatorname{gcd}(24,16)$?

An algorithm is a step-by-step procedure which for an instance produces the correct answer. An algorithm is said to solve a problem if it produces correct answers for all instances of the problem.

Obviously, there are some instances of a problem for which the answer is generated quicker than for the rest. For example it is much easier to compute $\operatorname{gcd}(2,4)$ than $\operatorname{gcd}(1245,35820)$. The commonly accepted characterisation of the instance complexity is the size of an instance which is the length of input data needed to completely specify the instance.

The time complexity function (TCF) of an algorithm expresses how many steps (time intervals) are necessary to produce the solution for a given instance of the size n. The TCF of an algorithm depends upon:

- the encoding scheme used to represent instances, and
- the model of computer.

Assume that the TCF of an algorithm belongs to either polynomial, sub-exponential, or exponential class of functions from Section 2.3.2 hierarchy. Observe that the TCF will stay in its class even for a quite wide range of possible encoding schemes. Any encoding scheme which differs polynomially from the best encoding scheme is acceptable as it leaves the TCF in the same class.

There are many computer models. But all realistic models are polynomially equivalent to the deterministic Turing machine (DTM).

The class of all problems can be divided into two broad subclasses:

- Undecidable or provably intractable problems.
- Decidable problems.

A problem belongs to the class of undecidable problems if there is no algorithm which solves it. The existence of such problems was proved by Alan Turing in 1936. Being more specific, he showed that the Halting problem is undecidable. Another example of undecidable problem is Hilbert's tenth problem.

Name: Hilbert's tenth problem
Instance: Given a polynomial equation, with integer coefficients, in an arbitrary number of unknowns.
Question: Are there integers which are solutions of the equation?

2.3.4 Classes P and NP

There are many naturally occurring problems which have resisted a concerted effort of researchers and we know no polynomial-time algorithms for solving them. Let us concentrate on a specific kind of problems for which a sought answer is either "yes" or "no". They are called decision problems.

Name: Knapsack problem
Instance: A finite set $U=\left\{u_{i} \mid i=1, \ldots, n\right\}$, a size $s\left(u_{i}\right)$ of any element of $u_{i} \in U$, and an integer B.
Question: Is there a subset $U^{\prime} \subseteq U$ such that $\sum_{u_{i} \in U^{\prime}} \quad s\left(u_{i}\right)=B$?
The Knapsack problem given above requires a binary yes/no answer.
A class of decision problems which are solvable in polynomial time by a DTM is called the class \mathbf{P}. Note that we are not particularly concerned about efficiency of algorithms as long as they run in polynomial time. For instance, the matrix multiplication can be rephrased as a decision problem.

Name: Matrix multiplication problem
Instance: Given two $n \times n$ matrices A_{1} and A_{2}.
Question: Is there a $n \times n$ matrix A such that $A=A_{1} \times A_{2}$?
As noted in Section 2.3.1, there are at least two polynomial-time algorithms to solve this problem. Both algorithms: the straightforward one with its TCF of order $O\left(n^{3}\right)$ and the Strassen algorithm with its TCF of order $O\left(n^{2.81}\right)$ are good enough as both are polynomial.

As we have indicated the classification of problems mainly depends on the computer model used. A nondeterministic Turing machine (NDTM) is much more powerful than the deterministic Turing machine. The NDTM works in two stages: guessing and checking. Informally, the guessing stage is where the computing power of the NDTM is "concentrated". In this stage, a correct solution is guessed. The solution is verified against the parameters of the instance and the final yes/no answer is produced. A decision problem is solvable by the NDTM if the NDTM produces the "yes" answer whenever there is a solution. There is a fine point which needs to be clarified. The solvability of a problem by the NDTM requires the correct "yes" answer for all "yes" instances of the problem. On the other hand, the NDTM can either produce the correct "no" answer or run forever for "no" instances of the problem.

A class of decision problems which are solvable in polynomial time by the nondeterministic Turing machine is called the class NP. NP can be thought of as a class of decision problems whose solutions (if exist) can be verified in polynomial time.

Clearly any problem from \mathbf{P} belongs to NP. An embarrassing fact in the theory of computational complexity is that we do not know whether \mathbf{P} is really different from NP. In 1971 Cook made a major contribution to the theory of computational complexity. He showed that there is a decision problem which is the hardest in the class NP. The problem used by Cook was the Satisfiability problem.

Name: Satisfiability problem (SAT)
Instance: A set U of variables and a collection C of clauses over U.
Question: Is there a satisfying truth assignment for C ?

Figure 2.1: NP world

2.3.5 NP Completeness

The main tool used in proving the existence of equivalence subclasses in NP is the so-called polynomial reduction. Assume we have two decision problems $Q_{1}, Q_{2} \in \mathbf{N P}$ with their corresponding sets of instances I_{1} and I_{2}. Denote that I_{1}^{+}and I_{2}^{+}are subsets of all "yes" instances of I_{1} and I_{2}, respectively. We say that Q_{1} is polynomially reducible to Q_{2} if there is a function $f: I_{1} \rightarrow I_{2}$ which

1. is computable in polynomial time by a DTM,
2. for all instances $x \in I_{1}, x \in I_{1}^{+}$if and only if $f(x) \in I_{2}^{+}$.

This fact can be written shortly as $Q_{1} \leq_{\text {poly }} Q_{2}$. If we know an algorithm A_{2} which solves Q_{2} and we are able to polynomially reduce Q_{1} to Q_{2}, then we can create an algorithm A_{1} to solve Q_{1}. A_{1} is a concatenation of the function f and A_{2}, i.e. $A_{1}(x)=A_{2}(f(x))$ where f is the function which establishes the polynomial reducibility between Q_{1} and Q_{2}. If $Q_{2} \in \mathbf{P}$ then $Q_{1} \in \mathbf{P}$. If Q_{1} has a higher than polynomial-time complexity i.e. $Q_{1} \notin \mathbf{P}$ then of course also $Q_{2} \notin \mathbf{P}$.

Cook's theorem can be rephrased as; any NP problem Q is polynomially reducible to the satisfiability problem or $Q \leq_{\text {poly }} S A T$. The proof of the theorem starts from the observation that for each problem in NP, there is a NDTM program which solves it (in polynomial time). Next it is shown that any NDTM program can be polynomially reduced to an instance of the SAT problem. The construction of the function which forces the polynomial reducibility is quite complex. The reader who wishes to learn more about the proof is referred to [191].

The SAT problem is called to be NP-complete or NPC as any other problem from NP is polynomially reducible to it i.e.

$$
\forall_{Q \in \mathrm{NP}} \quad Q \leq_{\text {poly }} S A T .
$$

The class NPC is nonempty as SAT belongs to it. Are there any other problems in it? The answer is positive and we know many other NPC problems. Core problems which share the same computational complexity with SAT are: 3-satisfiability (3-SAT), 3-dimensional matching (3DM), vertex cover (VC), partition, Hamiltonian circuit (HC), etc. To prove that a given problem $Q \in \mathbf{N P}$ is in NPC is enough to show that the satisfiability problem or any other NPC problem is polynomially reducible to Q, i.e $S A T \leq_{p o l y} Q$.

If we assume that $\mathbf{P} \neq \mathbf{N P}$ then we can identify three subclasses: $\mathbf{P}, \mathbf{N P C}$, and $\mathbf{N P I}=\mathbf{N P} \backslash$ $(\mathbf{N P C} \cup \mathbf{P})$ - see Figure 2.3.5.

2.3.6 Complementary Problems in NP

Let us define the class of complementary problems as:

$$
\mathbf{c o - N P}=\left\{Q^{c} ; Q \in \mathbf{N} \mathbf{P}\right\}
$$

where Q^{c} means the complementary problem to Q. A complementary problem Q^{c} can be easily generated from Q as follows:

Name: Complementary problem Q^{c}
Instance: The same as for Q.
Question: The complementary answer required.
Consider the following two problems.
Name: Factorisation problem (FACT)
Instance: Positive integer N.
Question: Are there integers p and q such that $N=p \times q$?
and
Name: Primality problem (PRIM)
Instance: Positive integer N.
Question: Is N prime?
It is easy to notice that the FACT problem is complementary problem to the PRIM problem. In our case, PRIM $^{c}=$ FACT. So having the PRIM problem, we can create the FACT problem by putting not (Is N prime?) in the Question part. Of course, "not (Is N prime?)" is equivalent to "Is N Composite?" and it is the same as "Are there integers p, q such that: $N=p \times q$?". Consider an instance x of both PRIM and FAC. The answer is "yes" for $x \in$ PRIM if and only if the answer is "no" for the same instance x considered as the member of FACT.

In general, however, such an observation cannot be made for all problems in NP and numerous examples lead us to the conclusion that:

$$
\operatorname{co}-\mathrm{NP} \neq \mathrm{NP}
$$

In other words, the answer "yes" for an instance $x \in Q$ does not guarantee that the answer is "no" for the same instance x in Q^{c}. If we consider the class $\mathbf{P} \subset \mathbf{N P}$ then it is easy to prove that: co- \mathbf{P} $=\mathbf{P}$ that is, the class \mathbf{P} is closed under complementation.

The next question concerns the interrelation between the class NPC and the class co-NPC. The answer is given in the following theorem.

Theorem 2.10 If there exists an $N P$-complete problem Q such that $Q^{c} \in \mathbf{N P}$, then $\mathbf{N P}=\mathbf{c o - N P}$.
The proof can be found in Garey and Johnson[191, p. 156]. Our discussion is summarised in Figure 2.3 .6 (assuming that $\mathbf{P} \neq \mathbf{N P}$ and NP $\neq \mathbf{c o}-\mathbf{N P}$). Going back to the pair FACT and PRIM problems. According to Theorem 2.10 they must not belong to NPC. On the other hand there is the common consensus that the FACT problem does not belong to \mathbf{P} as all existing factorisation algorithms run in time longer than or equal to

$$
e^{\sqrt{\ln (n) \ln \ln (n)}}
$$

Thus we can conclude that both PRIM and FACT problems belong to the intersection NPI \cap co - NPI.

Figure 2.2: Classes NP and co-NP

2.3.7 NP-hard and \#P-complete Problems

The theory of NP-completeness relates to decision problems only. Most problems used in cryptography are search problems so statements which are true for the NP class are not necessarily correct if we deal with search problems. A search problem Q consists of a set of instances denoted by I. For each instance $x \in I$, we have a set $S_{Q}(x)$ of all solutions for x. An algorithm is said to solve the problem Q if it gives a solution from the set $S_{Q}(x)$ for an instance x whenever $S_{Q}(x)$ is not empty. Otherwise, the algorithm returns a "no" answer. The knapsack problem can be rewritten as a search problem.

Name: Knapsack search problem
Instance: A finite set $U=\left\{u_{i} \mid i=1, \ldots, n\right\}$, a size $s\left(u_{i}\right)$ of any element of $u_{i} \in U$, and an integer B.
Question: What is a subset $U^{\prime} \subseteq U$ such that $\sum_{u_{i} \in U^{\prime}} s\left(u_{i}\right)=B$?
Informally, a search problem Q_{s} is NP-hard if there is a decision problem $Q_{d} \in$ NPC which is polynomially reducible to it i.e. $Q_{d} \leq_{p o l y} Q_{s}$. NP-hard problems are believed to be at least as hard as NPC problems. If there existed a polynomial-time algorithm for an NP-hard problem, then all NPC problems would collapse into the class \mathbf{P}.

Another class of problems which is closely related to search problems is the class of enumeration problems. The enumeration problem based on the search problem Q (with the set $S_{Q}(x)$ of all solutions for an instance x) asks about the cardinality of $S_{Q}(x)$. The knapsack enumeration problem can be defined as follows.

Name: Knapsack enumeration problem
Instance: A finite set $U=\left\{u_{i} \mid i=1, \ldots, n\right\}$, a size $s\left(u_{i}\right)$ of any element of $u_{i} \in U$, and an integer B.
Question: How many subsets $U^{\prime} \subseteq U$ satisfy the equation $\sum_{u_{i} \in U^{\prime}} s\left(u_{i}\right)=B$?
The class \#P-complete problems comprises hardest problems of enumeration equivalents of NPC. Again if a \#P-complete problem was solvable in polynomial time, then $\mathbf{P}=\mathbf{N} \mathbf{P}$.

2.3.8 Problems Used in Cryptography

There are many problems which have been used in cryptography. We already discussed the PRIM and FACT problems. There is also another problem which shares the same computational complexity as PRIM and FACT problems. This is the discrete logarithm problem or DL problem.

Name: DL problem
Instance: Integers (g, s) that belong to $G F(N)$ determined by a prime N.
Question: Is there a positive integer $h(h=0, \ldots, N)$ such that $h=\log _{g} s(\bmod N) ?$
The DL problem or more precisely its search-problem variant is extensively used in conditionally secure cryptographic designs. There is a general purpose algorithm which solves instances of DL in sub-exponential time. Let us briefly describe a version of the algorithm which is applicable for $G F\left(2^{n}\right)$.

Assume that $g \in G F\left(2^{n}\right)$ is a primitive element of $G F\left(2^{n}\right)$. We would like to compute h such that $s=g^{h}$. The index-calculus algorithm starts from the pre-processing stage which can be done once for the given primitive element g of $G F\left(2^{n}\right)$. In the pre-processing stage, a "big" enough set D of discrete logarithms of g is being computed. The elements of D are usually irreducible polynomials of degree m where m is appropriately selected.

Once the set D is created, we can proceed with the main stage of computations in which we select repeatedly at random an integer $a=1, \ldots, 2^{n}-1$ and compute

$$
\hat{s}=s \times g^{a}
$$

Then the polynomial \hat{s} is factorized into irreducible polynomials. If all factors are in D then

$$
\hat{s}=\prod_{p \in D} p^{b_{p}(\hat{s})}
$$

As polynomials $p \in D$ are discrete logarithms of g, we know the exponents of g for any given $p \in D$. Therefore

$$
h=\log _{g} s=\sum_{p \in D} b_{p}(\hat{s})-a \quad\left(\bmod 2^{n}-1\right)
$$

The algorithm needs to be run for many random a. It will terminate once all factors of \hat{s} are in D. Probabilistic arguments can be used to prove that on average the algorithm takes the following number of steps

$$
e^{\left((1+o(1)) \frac{n}{m} \log \frac{m}{n}\right)} .
$$

The knapsack problem is also used in cryptography. Apparently, the problem was applied in cryptography to build one of the first public-key cryptosystems. Unfortunately, this application did not lead to a secure design despite the fact that the knapsack problem belongs to the NPC class ! The statement that the knapsack problem belongs to NPC does not mean that all its instances are of the same complexity. It is possible to define an easy knapsack problem whose all instances can be solved using a linear-time algorithm.

Name: Easy knapsack problem
Instance: The n-dimension vector space V over $G F(2)$ with the basis $v_{1}=(1,0, \ldots, 0), \ldots, v_{n}=$ $(0, \ldots, 0,1) \in V$, the vector of sizes $S=\left(s\left(v_{1}\right), \ldots, s\left(v_{n}\right)\right)$ such that $s_{i+1}>\sum_{j=0}^{i} s_{j}$ and an integer B.

Question: Is there a binary vector $v^{\prime} \in V$ such that $v^{\prime} \times S=B$?
In general, any NPC problem consists of easy instances which are solvable in polynomial time and difficult ones for which there is no polynomial-time algorithm unless $\mathbf{P}=\mathbf{N P}$. When an intractable problem is used in a cryptographic design to thwart some possible attacks, it is essential to make sure that almost all instances applied are difficult ones.

2.3.9 Probabilistic Computations

As mentioned before, the efficiency of algorithms depends on the encoding scheme used to represent instances and the model of computation. As there is no substantial room for improvement if you use a reasonable encoding scheme, the only way to increase efficiency of algorithms is to apply a different model of computations.

Probabilistic methods in computations are mostly used to simulate large systems which work in a probabilistic environment. By its nature probabilistic computations do not guarantee "error free" computations. Sometimes when the error rate can be made as small as required, probabilistic computations may be an attractive alternative.

The reader should be warned that there is no concensus about definitions of probabilistic algorithms discussed below. Our definitions are in line with those accepted by Brassard and Bratley [59] and and Gill [201].

Monte Carlo algorithm is a probabilistic algorithm which solves a decision problem. A yes-biased Monte Carlo algorithm never makes mistakes if it deals with "yes" instances. If the algorithm handles a "no" instance, it may make a mistake with the probability ε. A no-biased algorithm correctly solves "no" instances making mistakes for "yes" instances with probability ε.

Las Vegas algorithm is a probabilistic algorithm which for any instance of the problem may either give the correct answer with the probability $1-\varepsilon$ or fail with probability ε. If the algorithm fails, it returns "no answer".

The primality testing (the PRIM problem) calculated using DTM requires sub-exponential time. It can be run faster, as a matter of fact, in polynomial time if we are ready to accept a small chance of mistake in computations. The probabilistic algorithm for solving PRIM returns either "prime" or "composite". If the tested integer is prime, the algorithm never makes mistakes. If, however, the tested integer is composite, it returns "prime" with some probability $p<1$. The algorithm can be repeated n times for n independent inputs. If the algorithm consistently has answered "prime", we can assume that the integer is prime. The probability of mistake (i.e. the integer is in fact composite) is p^{n}.

2.3.10 Quantum Computing

A new paradigm in computation which has an explosive potential to revolutionise the theory and practice of computation is quantum computing. Unlike the classical computers, the quantum ones are based on the rules of quantum mechanics. The idea of quantum computing emerged in early 1980 when Richard Feynman [180] asked about the suitability of classical computers to simulate physics. He also gave an abstract model of quantum simulator. In 1985 David Deutsch [150] gave a model of universal quantum computer. The power of the quantum computer steams from the phenomenon of quantum parallelism. Roughly saying, a classical bit can be either " 0 " or " 1 " while a quantum bit is a superposition of both " 0 " and " 1 ". Thus a register of n quantum bits can be seen as a collection of 2^{n} potential states existing at the same time. A confirmation of extraordinary power of quantum computers came when Peter Shor showed that the factorisation and discrete logarithm problems are computable in polynomial time! This development has a dramatic impact on the RSA cryptosystem as the RSA uses both problems.

The crucial issue related to the quantum computer is its implementation. We can build some components such as negation gates and 2 -bit quantum gates. The full general-purpose quantum computer is still far away. We may expect that some specialised quantum computers will be easier to implement. These includes a factorisation engine.

Readers who would like to find out more about the topic are referred to Brassard [58].

2.4 Elements of Information Theory

It would be difficult to discuss any matter concerning cryptography without referring to the fundamental precepts of information theory. Claude Shannon, who is seen as the father of this discipline, published in 1948 the seminal work [460] in which he formulated principles of reliable communication via a noisy channel. One year later Shannon extended his information theoretic approach to secrecy systems [461] and provided the greater portion of the theoretical foundation for modern cryptography. The principal tools of secure communications across a channel are codes and ciphers. A code is a fixed predetermined "dictionary", where for every valid message there is an equivalent encoded message, called a codeword. Coding theory addresses itself to the "noisy channel" problem, where by selecting a particular code, if a message M is distorted to M^{\prime} during transmission, this error can be detected and hopefully corrected to the original message. On the other hand, ciphers are a general method of transforming messages into a format whose meaning is not apparent.

2.4.1 Entropy

An information source is one of the basic components of any communication and secrecy system. It generates messages which are later transmitted over a communication channel. In most cases, a probabilistic model of the information source seems to be adequate. So the source is represented by a random variable S with the collection of source states (also called messages) $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and associated probabilities $P\left(S=s_{i}\right)=p\left(s_{i}\right)$ for each state $i=1, \ldots, k$. The entropy of a discrete message source is defined as:

$$
\begin{equation*}
H(S)=\sum_{i=1}^{k} p\left(s_{i}\right) \log _{2} \frac{1}{p\left(s_{i}\right)} \tag{2.23}
\end{equation*}
$$

Each $\log _{2}\left(p\left(s_{i}\right)^{-1}\right)$ term represents the number of bits needed to encode the message optimally. When all the messages are equally likely, i.e. $p\left(s_{1}\right)=p\left(s_{2}\right)=\ldots=p\left(s_{k}\right)=\frac{1}{k}$, then $H(S)$ is $\log _{2} k$. If $k=2^{n}$, then n bits are needed to encode each message. The value of $H(S)$ ranges between its maximum value $\log _{2} k$ and its minimum of zero when there is a single message with the probability " 1 ". Note that this is so because there is no information as there is no choice of messages. The entropy of a source $H(S)$ also measures its uncertainty, in that it indicates the number of bits of information that must be acquired to recover a state (message). The uncertainty of a message cannot exceed $\log _{2} k$ bits, where k is the possible number of messages. ${ }^{1}$

Consider a random variable that takes on two values s_{1} and s_{2} with probabilities,

$$
p\left(s_{1}\right)=\varepsilon \quad \text { and } \quad p\left(s_{2}\right)=1-\varepsilon
$$

What is the maximum entropy of the random variable and how does the entropy behave as a function of ε ? First of all, we apply the definition of entropy to obtain,

$$
H(S)=\sum_{i=1}^{2} p\left(s_{i}\right) \log _{2} \frac{1}{p\left(s_{i}\right)}=-\varepsilon \log _{2} \varepsilon-(1-\varepsilon) \log _{2}(1-\varepsilon)
$$

As $H(S)$ is a function of ε, we find its derivative:

$$
\frac{d H(S)}{d \varepsilon}=-\log _{2} \varepsilon+\log _{2}(1-\varepsilon)
$$

[^2]

Figure 2.3: The entropy function $y=H(x)$

Clearly,

$$
\frac{d H(S)}{d \varepsilon}=0 \quad \text { for } \varepsilon=\frac{1}{2}
$$

As the second derivative,

$$
\frac{d^{2} H(S)}{d \varepsilon^{2}}=-\frac{1}{\ln 2}\left(\frac{1}{\varepsilon}+\frac{1}{1-\varepsilon}\right)
$$

is negative for $\varepsilon=\frac{1}{2}, H(S)$ can have its maximum at $\varepsilon=\frac{1}{2}$ unless it has its maximum at $\varepsilon=0$ or $\varepsilon=1$. We calculate the values of $H(S)$ at these points:

$$
\left.H(S)\right|_{\varepsilon=0}=\lim _{\varepsilon \rightarrow 0}\left(\varepsilon \log _{2} \frac{1}{\varepsilon}+(1-\varepsilon) \log _{2} \frac{1}{1-\varepsilon}\right)
$$

and,

$$
\left.H(S)\right|_{\varepsilon=1}=\lim _{\varepsilon \rightarrow 1}\left(\varepsilon \log _{2} \frac{1}{\varepsilon}+(1-\varepsilon) \log _{2} \frac{1}{1-\varepsilon}\right)
$$

Now, as $\lim _{\varepsilon \rightarrow 0}\left(\varepsilon \log _{2} \varepsilon\right)=0,\left.H(S)\right|_{\varepsilon=0}=\left.H(S)\right|_{\varepsilon=1}=0$. In other words the maximum entropy of the random variable with just two values is attained for the uniform distribution $p\left(s_{1}\right)=p\left(s_{2}\right)=\frac{1}{2}$, and then $H(S)=\log _{2} 2=1$ (see Figure 2.4.1).

Let S and X are two random variables defined over the sets $\mathcal{S}=\left\{s_{1}, \ldots, s_{k}\right\}$ and $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, respectively. Assume that for every value of $x_{j} \in \mathcal{X}$, we know conditional probabilities $p\left(s_{i} \mid x_{j}\right)=$ $P\left(S=s_{i} \mid X=x_{j}\right)$. Now we can define the entropy in S conditional on x_{j} as follows: $H\left(S \mid x_{j}\right)=$ $-\sum_{i=1}^{k} p\left(s_{i} \mid x_{j}\right) \log _{2} p\left(s_{i} \mid x_{j}\right)$. The conditional entropy

$$
H(S \mid X)=\sum_{j=1}^{n} H\left(S \mid x_{j}\right) P\left(X=x_{j}\right)
$$

is also called equivocation and characterises the uncertainty about S knowing X. The following properties hold for the entropy:

1. $H(S \mid X) \leq H(S)$ - any side information X never increases the entropy of S,
2. $H(S, X)=H(S)+H(X \mid S)=H(X)+H(S \mid X)$ - the joint entropy of the pair (S, X) is the sum of uncertainty in X and the uncertainty in S provided X is known,
3. if S and X are independent random variables then $H(S, X)=H(S)+H(X)$,
4. if $\left(X_{1}, \ldots, X_{n}\right)$ is a collection of random variables then $H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid\right.$ $\left.X_{1}\right)+\ldots+H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)$.

The properties can be easily proven and the proofs are left to the reader as an exercise.

2.4.2 Huffman Codes

Assume we have a discrete source which is represented by the random variable S. Clearly, $H(S)$ specifies the average number of bits necessary to represent messages from the set $\mathcal{S}=\left\{s_{1}, \ldots, s_{k}\right\}$. Can we encode messages in such a way that their average length is as short as possible and hopefully equal to $H(S)$? The Huffman algorithm gives the answer to this question.

The Huffman code - produces an optimal binary representation of messages of the source defined by $\mathcal{S}=\left\{s_{1}, \ldots, s_{k}\right\}$ with their probabilities $p\left(s_{1}\right), \ldots, p\left(s_{k}\right)$ (recursive algorithm)

H1. Recursive step. Assume that there are j messages ($j \leq k$). Order the messages according to their occurrence probabilities. The ordered collection of messages is $x_{1}, \ldots, x_{j}(j \leq k)$ and $p\left(x_{1}\right) \leq p\left(x_{2}\right) \leq \ldots \leq p\left(x_{j}\right)$. Suppose further that the encodings of the original messages s_{1}, \ldots, s_{k} have their partial codes b_{1}, \ldots, b_{k}. At the beginning, all b_{i} s are empty. Choose the two first messages and merge them creating a new message $x_{1,2}$ with its occurrence probability $p\left(x_{1,2}\right)=p\left(x_{1}\right)+p\left(x_{2}\right)$. If s_{i} has been merged into x_{1}, put the prefix " 0 " to the encoding i.e. b_{i} becomes $0 \| b_{i}$. If s_{i} has been merged into x_{2}, put the prefix " 1 " to the encoding i.e. b_{i} becomes $1 \| b_{i}$. Otherwise the encodings are unchanged. Note that $\|$ stands for the concatenation. Call the algorithm for the collection of $x_{1,2}, x_{3}, \ldots, x_{j}$ messages.

H2. Stopping step. There are two messages x_{1} and x_{2} only. Create the final codes by putting " 0 " at the front of all encodings of messages which have been merged into x_{1} and " 1 " otherwise.

Consider a source $\mathcal{S}=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ with their corresponding probabilities $1 / 8,1 / 2,1 / 8,1 / 4$. The messages $\left(s_{1}, s_{3}, s_{4}, s_{2}\right)$ are ordered and their probabilities are $(1 / 8,1 / 8,1 / 4,1 / 2)$. The partial encodings are $b_{1}=0$ and $b_{3}=1$ and s_{1} and s_{3} are merged into x_{1} and x_{1} occurs with the probability $1 / 4$. The messages $\left(x_{1}, s_{4}, s_{2}\right)$ are already in the requested order so x_{2} is a merge of x_{1} and s_{4}. The partial encodings are $b_{1}=00, b_{3}=01$ and $b_{4}=1$. Finally x_{2} is merged with s_{2} and the codes are: $b_{1}=000, b_{3}=001, b_{4}=01, b_{2}=1$. It is easy to check that $H(S)=\frac{14}{8}=1.75$ and the average length of the Huffman code is $L=3 \times \frac{1}{8}+3 \times \frac{1}{8}+2 \times \frac{1}{4}+\frac{1}{2}=1.75$

2.4.3 Redundancy of the Language

Any natural language can be treated as a message source of a quite complex structure. Entropy is a convenient tool that can be used to specify probabilistic behaviour of the language. Let $S^{(k)}$ be a random variable defined over the set $\underbrace{\mathcal{S} \times \mathcal{S} \times \ldots \times \mathcal{S}}$ with the corresponding probability distribution for sequences of length k where $|\mathcal{S}|=N . N$ is the number of letters in the alphabet. The rate of language $S^{(k)}$ for messages of length k is defined as

$$
r_{k}=\frac{H\left(S^{(k)}\right)}{k}
$$

which denotes the average number of bits of information in each character. For English, when k is large, r_{k} has been estimated to lie between 1.0 and 1.5 bits/letter. The absolute rate of a language is the maximum number of bits of information that could be encoded in each character assuming that all combinations of characters are equally likely. If there are $|\mathcal{S}|=N$ letters in the alphabet, then the absolute rate is given by $R=\log _{2} N$, which is the maximum entropy of the individual characters. For a 26 character alphabet this is 4.7 bits/letter. The actual rate of English is much less as it is highly redundant, like all natural languages. Redundancy stems from the underlying structure of a
language, in particular certain letters and combinations of letters occur frequently, while others have a negligible likelihood of occurring (e.g. in English the letters e, t and a occur very frequently, as do the pairs, or digram, th and $e n$, while z and x occur less frequently). ${ }^{2}$

The redundancy of a language with rate r is defined as $D=R-r$. When $r=1$ and $R=4.7$ then the ratio $\frac{D}{R}$ shows that English is about 79 percent redundant.

Consider a language which consists of the 26 letters of the set $\mathcal{S}=\{A, B, C, D, E, F, G, H, I, J, K$, $L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z\}=\left\{s_{1}, s_{2}, \ldots, s_{26}\right\}$. Suppose the language is characterised by the following sequence of probabilities:

$$
\begin{array}{llll}
P\left(s_{1}\right)=\frac{1}{2} ; & P\left(s_{2}\right)=\frac{1}{4} & \\
P\left(s_{i}\right)=\frac{1}{64} & \text { for } & i=3,4,5,6,7,8,9,10 \\
P\left(s_{i}\right)=\frac{1}{128} & \text { for } & i=11, \ldots, 26
\end{array}
$$

The entropy of our single letter language is:

$$
\begin{aligned}
r_{1} & =H(S) \\
& =\sum_{i=1}^{26} P\left(s_{i}\right) \log _{2} \frac{1}{P\left(s_{i}\right)} \\
& =\frac{1}{2} \log _{2} 2+\frac{1}{4} \log _{2} 4+8\left(\frac{1}{64} \log _{2} 64\right)+16\left(\frac{1}{128} \log _{2} 128\right) \\
& =2.625
\end{aligned}
$$

Now the language has $N=26$ letters so,

$$
R=\log _{2} 26=4.7
$$

In other words, the redundancy of the language calculated for single letter probabilities is

$$
D_{1}=R-r_{1}=4.7-2.625=2.075
$$

This example only applies to language structure which is described by the probability distribution of single letters only. This description should be treated as the very first approximation of language's statistical structure. As a matter of fact, a natural language's structure is far more complex and the second approximation of a language's structure gives better picture of statistical properties.

Let our language be defined as in the previous example and let its conditional probability distribution be given as follows:

$$
\begin{aligned}
& P\left(s_{i+1}^{\prime} \mid s_{i}\right)=P\left(s_{i+2}^{\prime} \mid s_{i}\right)=\frac{1}{2} \quad \text { for } i=1, \ldots, 24 \\
& P\left(s_{26}^{\prime} \mid s_{25}\right)=P\left(s_{1}^{\prime} \mid s_{25}\right)=\frac{1}{2} \\
& P\left(s_{1}^{\prime} \mid s_{26}\right)=P\left(s_{2}^{\prime} \mid s_{26}\right)=\frac{1}{2}
\end{aligned}
$$

where $P\left(s_{i+1}^{\prime} \mid s_{i}\right)$ means the conditional probability that the second letter is s_{i+1} provided that the first letter is s_{i}.

[^3]Now, we calculate the probability distribution of two letter sequences:

$$
\begin{array}{rlrl}
P\left(s_{1}, s_{2}^{\prime}\right) & =P\left(s_{2}^{\prime} \mid s_{1}\right) P\left(s_{1}\right) & =\frac{1}{4} \\
P\left(s_{1}, s_{3}^{\prime}\right) & =P\left(s_{3}^{\prime} \mid s_{1}\right) P\left(s_{1}\right) & =\frac{1}{4} \\
P\left(s_{2}, s_{3}^{\prime}\right) & =P\left(s_{3}^{\prime} \mid s_{2}\right) P\left(s_{2}\right) & & =\frac{1}{8} \\
P\left(s_{2}, s_{4}^{\prime}\right) & =P\left(s_{4}^{\prime}, \mid s_{2}\right) P\left(s_{2}\right) & & =\frac{1}{8} \\
P\left(s_{i}, s_{i+1}^{\prime}\right) & =P\left(s_{i+1}^{\prime} \mid s_{i}\right) P\left(s_{i}\right) & & =\frac{1}{128} \text { for } \mathrm{i}=3, \ldots, 10 \\
P\left(s_{i}, s_{i+2}^{\prime}\right) & =P\left(s_{i+2}^{\prime} \mid s_{i}\right) P\left(s_{i}\right) & & =\frac{1}{128} \text { for } \mathrm{i}=3, \ldots, 10 \\
P\left(s_{i}, s_{i+1}^{\prime}\right) & =P\left(s_{i+1}^{\prime} \mid s_{i}\right) P\left(s_{i}\right) & & =\frac{1}{256} \text { for } \mathrm{i}=11, \ldots, 24 \\
P\left(s_{i}, s_{i+2}^{\prime}\right) & =P\left(s_{i+2}^{\prime} \mid s_{i}\right) P\left(s_{i}\right) & & =\frac{1}{256} \text { for } \mathrm{i}=11, \ldots, 24 \\
P\left(s_{25}, s_{26}^{\prime}\right) & =P\left(s_{25}, s_{1}^{\prime}\right)=P\left(s_{26}, s_{1}^{\prime}\right) & =P\left(s_{26}, s_{2}^{\prime}\right)=\frac{1}{256}
\end{array}
$$

All other probabilities are equal zero and, in this case, the entropy of two-letter language sequences is equal to:

$$
\begin{aligned}
H\left(S^{(2)}\right) & =\sum_{i, j=1}^{26} P\left(s_{i}, s_{j}^{\prime}\right) \log _{2} \frac{1}{P\left(s_{i, s} s_{j}^{\prime}\right)} \\
& =2\left(\frac{1}{4} \log _{2} 4\right)+2\left(\frac{1}{8} \log _{2} 8\right)+16\left(\frac{1}{128} \log _{2} 128\right)+32\left(\frac{1}{256} \log _{2} 256\right) \\
& =3.625
\end{aligned}
$$

Consider, for the moment, the entropy $H(S)$ from the previous example and compare it to $H\left(S^{(2)}\right)$. We can immediately state that $H\left(S^{(2)}\right)-H(S)=1$. This equation means that, having the first letter, we can obtain the second one using one bit only. This results from the fact that there are two equally probable candidates. For example, if the first letter is $s_{3}=C$, then the second letter may be either $s_{4}^{\prime}=D$ or $s_{5}^{\prime}=E$.

Returning to our example, we calculate the rate of the language for messages of length 2, namely,

$$
r_{2}=\frac{1}{2} H\left(S^{(2)}\right)=1.8125
$$

As the absolute rate of our language is fixed and depends on the number of letters only, the redundancy D_{2} is:

$$
D_{2}=R-r_{2}=2.9
$$

We can now state that the language considered is 60 percent redundant.
We note that the more redundant a language is, the stronger the statistical relations between the letters in a sequence. On the other hand, if a language has no redundancy then occurrences of subsequent letters are statistically independent.

Once we have dealt with a natural language, we can easily calculate the entropy of a single letter $r_{1}=H(S)$. Also the entropy $r_{2}=H\left(S^{(2)}\right) / 2$ of two-letter words can be found relatively easily. Unfortunately, the amount of calculation for $r_{n}=H\left(S^{(n)}\right) / n$ grows exponentially as a function of n. So, the real redundancy of language which can be expressed as :

$$
r_{\infty}=\lim _{n \rightarrow \infty} \frac{H\left(S^{(n)}\right)}{n}
$$

is estimated using several earlier evaluated entropies.

Figure 2.4: Graphical presentation of the interrelations between messages and cryptograms in a binary cryptosystem

2.4.4 Key Equivocation and Unicity Distance

Consider an encryption system from Figure 2.4. The cryptosystem consists of three basic components: the message source, the key generator, and the encryption block. The message source is characterised by the random variable M and describes statistical properties of the language generated by the source. The set of all characters in the language alphabet is \mathcal{M}. The key generator selects keys randomly usually with uniform probability from the whole set \mathcal{K}. Once chosen, the key stays fixed for some time. The encryption block uses a publicly known algorithm to encrypt messages into cryptograms under the control of the secret key. The set of possible cryptograms is denoted by \mathcal{C}.

The sender applies the cryptosystem (or cipher) for n consecutive messages and produces n corresponding cryptograms (ciphertexts). An enemy cryptanalyst who does not know the secret key but can read cryptograms, may try to:

- reveal messages from cryptograms or
- recover the secret key.

The attacker is also assumed to know the statistical properties of the message source. Thus they can calculate message and key equivocation to find out the collection of most probable messages and keys. As the attacker knows n cryptograms, they can compute the message equivocation as follows:

$$
\begin{equation*}
H\left(M^{(n)} \mid C^{(n)}\right)=\sum_{c \in \mathcal{C}^{n}} p(c) \sum_{m \in \mathcal{M}^{n}} p(m \mid c) \log _{2}\left(\frac{1}{p(m \mid c)}\right) \tag{2.24}
\end{equation*}
$$

where $\mathcal{C}^{n}=\underbrace{\mathcal{C} \times \ldots \times \mathcal{C}}_{n}, \mathcal{M}^{n}=\underbrace{\mathcal{M} \times \ldots \times \mathcal{M}}_{n}$, and $p(m \mid c)$ is the conditional probability of the sequence m provided c has been observed. Similarly, the enemy can compute the key equivocation according to

$$
\begin{equation*}
H\left(K \mid C^{(n)}\right)=\sum_{c \in \mathcal{C}^{n}} p(c) \sum_{k \in \mathcal{K}} p(k \mid c) \log _{2}\left(\frac{1}{p(k \mid c)}\right) \tag{2.25}
\end{equation*}
$$

where $p(k \mid c)$ is the probability of k given c.
The unicity distance of the cryptosystem (or cipher) is the parameter n for which

$$
\begin{equation*}
H\left(K \mid C^{(n)}\right) \approx 0 \tag{2.26}
\end{equation*}
$$

In other words, the unicity distance is the amount of ciphertext needed to uniquely determine the key applied. Intuitively, as the number of observations increases, the key equivocation stays the same or decreases.

The unicity distance can be used to define two classes of cryptosystems (ciphers):

- unbreakable whose unicity distance is infinite and $\lim _{n \rightarrow \infty} H\left(K \mid C^{(n)}\right)=H(K)$.
- breakable whose unicity distance is finite.

The class of unbreakable cryptosystems is also called ideal ciphers. Ideal ciphers are immune against any attacker who knows the statistical properties of the language (message source) and has access to cryptograms (communication channel) even if the attacker has unlimited computational power !

Cryptographic designs which are secure against an enemy with unlimited computational power are called unconditionally secure.

2.4.5 Equivocation of a Simple Cryptographic System

Consider the cryptographic system (see Figure 2.4) which encrypts binary messages using binary keys according to the following formula:

$$
c=m \oplus k
$$

where $c \in \mathcal{C}, m \in \mathcal{M}, k \in \mathcal{K}$ are a cryptogram (ciphertext), a message, and a key, respectively $(\mathcal{C}=\mathcal{M}=\mathcal{K}=\{0,1\}$ and \oplus stands for addition modulo 2$)$. The message source is known to generate elementary messages (bits) with probabilities,

$$
P(M=0)=v \quad \text { and } P(M=1)=1-v
$$

while $0 \leq v \leq 1$. For each transmission session, a cryptographic key K is selected from equally probable binary elements, namely,

$$
P(K=0)=P(K=1)=\frac{1}{2}
$$

Our task is to calculate the cipher equivocation and estimate the unicity distance.
Assume that our cryptosystem has generated n binary cryptograms so that the probability $P(A)$, where A is the event that the ordered cryptogram sequence consists of i zeros and $n-i$ ones, is equal to:

$$
\begin{aligned}
P(A) & =P(A,(K=0 \text { or } K=1)) \\
& =P(A, K=0)+P(A, K=1) \\
& =P(A \mid K=0) P(K=0)+P(A \mid K=1) P(K=1)
\end{aligned}
$$

The conditional probability $P(A \mid K=0)$ is equal to the probability that the ordered message sequence consists of i zeros and $n-i$ ones. On the other hand, $P(A \mid K=1)$ equals the probability that the ordered message sequence contains $n-i$ zeros and i ones. Therefore,

$$
P(A \mid K=0)=v^{i}(1-v)^{n-i} \text { and } P(A \mid K=1)=(1-v)^{i} v^{n-i}
$$

As the result, we have:

$$
P(A)=\frac{1}{2}\left(v^{i}(1-v)^{n-i}+(1-v)^{i} v^{n-i}\right)
$$

Assume that $C_{i, n}$ is the event that the unordered cryptogram sequence contains i zeros and $n-i$ ones, then,

$$
P\left(C_{i, n}\right)=\frac{1}{2}\binom{n}{i}\left(v^{i}(1-v)^{n-i}+(1-v)^{i} v^{n-i}\right)
$$

Of course, the conditional key probability is equal to:

$$
P\left(K=0 \mid C_{i, n}\right)=\frac{P\left(C_{i, n} \mid K=0\right) P(K=0)}{P\left(C_{i, n}\right)}
$$

The probability $P\left(C_{i, n} \mid K=0\right)$ is equal to the probability that the unordered message sequence obtains i zeros and $n-i$ ones. Substituting values, we get the following expression:

$$
P\left(K=0 \mid C_{i, n}\right)=\frac{1}{1+a} \text { while } a=\frac{v^{n-i}(1-v)^{i}}{v^{i}(1-v)^{n-i}}
$$

Considering the second conditional probability of the key, we obtain:

$$
P\left(K=1 \mid C_{i, n}\right)=\frac{a}{1+a}
$$

Clearly, the conditional entropy $H\left(K \mid C_{i, n}\right)$ of the key can be calculated according to the following formula:

$$
\begin{aligned}
H\left(K \mid C_{i, n}\right) & =\sum_{k \in \mathcal{K}} P\left(k \mid C_{i, n}\right) \log _{2} \frac{1}{P\left(k \mid C_{i, n}\right)} \\
& =P\left(K=0 \mid C_{i, n}\right) \log _{2} \frac{1}{P\left(K=0 \mid C_{i, n}\right)}+P\left(K=1 \mid C_{i, n}\right) \log _{2} \frac{1}{P\left(K=1 \mid C_{i, n}\right)} \\
& =\log _{2}(1+a)-\frac{a}{1+a} \log _{2} a
\end{aligned}
$$

So, the equivocation of the cipher (or the average conditional entropy of the cryptographic key) can be presented as:

$$
H\left(K \mid C_{n}\right)=\sum_{i=0}^{n} P\left(C_{i, n}\right) H\left(K \mid C_{i, n}\right)
$$

Substituting values, we obtain:

$$
H\left(K \mid C_{n}\right)=\frac{1}{2} \sum_{i=0}^{n}\binom{n}{i} v^{i}(1-v)^{n-i}(1+a)\left(\log _{2}(1+a)-\frac{a}{1+a} \log _{2} a\right)
$$

Figure 2.5 shows the equivocation $E Q(n)=H\left(K \mid C_{n}\right)$ for five different parameters of v, namely, $v=0.5 ; 0.4 ; 0.3 ; 0.2 ; 0.1$

Figure 2.5: Diagram of $E Q(n)$ for different values of v
First consider the case when $v=0.5$. The equivocation is constant and equals 1 . This means that the uncertainty in the key is fixed no matter how much of the cryptogram sequence is known. In other words, the key applied can be determined by selecting from two equally probable elements from all observations of cryptograms.

The second case is for $v=0.1$. More exact values of $E Q(n)$ for $n=1, \ldots, 10$ are given in Table 2.3. Our equivocation is the entropy of two value random variables. Now consider such a variable which is characterised by two probabilities $P(a)=\varepsilon, P(b)=1-\varepsilon$. Its entropy H_{ε} is presented in

Number of observations n	$\left.E Q(n)\right\|_{v=0.1}$
1	0.47
2	0.26
3	0.14
4	0.078
5	0.043
6	0.025
7	0.014
8	0.0081
9	0.0046
10	0.0027

Table 2.3: The equivocation for $v=0.1$ with various numbers of observations

Value of probability ε	entropy H_{ε}
0.5	1
0.4	0.91
0.3	0.88
0.2	0.72
0.1	0.47
0.05	0.29
0.01	0.081

Table 2.4: Some probabilities and entropies

Table 2.4. From the two tables, we can state the equivocation $E Q(n)$ for $v=0.1$ and $n=4$ is less than H_{ε}, that is:

$$
E Q(4)=0.078<H_{\varepsilon}=0.081
$$

Therefore, in this case, the unicity distance equals 4. In other words, after observing four elementary cryptograms, we are able to discover the key applied with the probability 0.99 . Moreover, if we accept the threshold probability 0.9 instead of 0.99 , then the unicity distance equals 1 as:

$$
E Q(1)=0.47 \leq H_{\varepsilon}=0.47
$$

As you can see in the above example, the calculation of equivocation becomes more and more complicated as the number of elementary messages and keys grows. Sometimes, we can calculate (or estimate) the unicity distance of a cipher, but, unfortunately, we may not be able to use this knowledge to break the cipher.

In the above example the unicity distance stays the same only when the language (message source) has no redundancy (the case $v=0.5$). But we must not draw a conclusion that this is an ideal cipher as the infinite unicity distance results from the lack of redundancy of the language rather than the strength of the cryptosystem. The ideal cipher should keep the unicity distance infinite for all message sources no matter how redundant they are. It is possible to improve the cipher considered in the example and make it ideal. How ? It is enough to generate the cryptographic key independently and uniformly for every single message. The resulting cipher is the well-known Vernam one-time pad. Gilbert Vernam invented the cipher in 1917 for encryption of telegraphic messages. Although the one-time pad provides the perfect secrecy the price to pay for it is the length of the cryptographic key - it has to be as long as the message (or cryptogram) itself.

2.5 Problems and Exercises

1. Show that the following properties of $l \mathrm{~cm}$ and ged hold:
(a) if there is an integer $d \in \mathcal{Z}$ such that $d \mid n_{i}$ for all $n_{i} \in \mathcal{N}(i=1, \ldots, k)$, then $d \mid \operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)$,
(b) if $n_{1}\left|m, \ldots, n_{k}\right| m(m \in \mathcal{Z})$, then $\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right) \mid m$,
(c) if $d \mid \operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)$ and $b_{i}=\frac{n_{i}}{d}$, then $\operatorname{gcd}\left(b_{1}, \ldots, b_{k}\right)=1$,
(d) $l c m(a, b) \times \operatorname{gcd}(a, b)=a \times b$.
2. Apply the Euclid algorithm to find the following:

- $\operatorname{gcd} 111,141 ;$
- $\operatorname{gcd} 208,264 ;$
- $\operatorname{gcd} 57998,162432$;
- $\operatorname{gcd}(785437,543889)$;

3. Write a C program that accepts two arguments lower_bound and upper_bound and generates all twin primes between two bounds. Make any other reasonable assumptions.
4. Write a C program that produces all Mersenne primes smaller than an integer give as an argument to the program.
5. Use the sieve of Eratosthenes to determine all primes smaller than 10,000 . Write a C program to execute the computations.
6. Justify that the Euler totient function is equal to:

- $N(N-1)$ for the modulus N^{2}, and
- $(p-1)(q-1)$ for the modulus $p q$.

7. To compute inverses modulo N, it is possible to use at least the three following methods: exhaustive search through all elements, exponentiation if $\varphi(N)$ is known, or the Euclid algorithm. Analyse the efficiency of these methods.
8. Use the exponentiation to find inverses a^{-1} of

- $a=87543$ for the modulus $N=111613=239 \times 467$,
- $a=8751$ for the modulus $N=12347$.

9. Apply the Euclid algorithm to find inverses a^{-1} of the following integers:

- $a=2317$ modulo 3457,
- $a=111222$ modulo 132683 .

10. Write a C language implementation of the CRT algorithm. It should accept an arbitrary number of primes as the command line arguments (primes p_{1}, \ldots, p_{r}) and convert any vector (a_{1}, \ldots, a_{r}) given from the standard input into the corresponding integer $a\left(\right.$ where $\left.a_{i}=a \bmod p_{i}\right)$.
11. Let $p_{1}=11, p_{2}=13$ and $p_{3}=17$. Find the integer representation of the following vectors;

- $a=(5 \bmod 11,7 \bmod 13,3 \bmod 17)$,
- $a=(2 \bmod 11,11 \bmod 13,2 \bmod 17)$.

12. Implement a polynomial version of the Euclid algorithm for finding gcd. Program can be written in C or other language. Assume that coefficients are from the field $G F(N)$ where N is prime.
13. Modify your program for $g c d$ of two polynomials so it computes the inverse of a polynomial $a(x)$ modulo $p(x)$.
14. Consider polynomials $Z_{2}[x]$ over the binary field. Write a program (in C or other language) which generates all irreducible polynomials of a given degree. The degree should be an input argument passed to the program.
15. Create the multiplication and addition tables for

- $G F\left(2^{2}\right)$ generated by an irreducible polynomial $p(x)=x^{2}+x+1$,
- $G F\left(2^{3}\right)$ generated by an irreducible polynomial $p(x)=x^{3}+x^{2}+1$.

16. Take a function $g(n)=12 n^{6}+34 n^{5}+23$. Give examples of the function $f(n)$ such that

- $f(n)=o(g(n))$,
- $f(n)=O(g(n))$,
- $f(n)=\Theta(g(n))$,
- $f(n)=\Omega(g(n))$,

17. Define conditional entropy and show that

- $H(S \mid X) \leq H(S)$,
- $H(S, X)=H(S)+H(X \mid S)$,
- $H(S, X)=H(S)+H(X)$ if S and X are independent random variables.

18. Design a Huffman code for a message source $\mathcal{S}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ with the probabilities $p\left(s_{1}\right)=1 / 2 ; p\left(s_{2}\right)=$ $3 / 16 ; p\left(s_{3}\right)=1 / 8 ; p\left(s_{4}\right)=1 / 8 ; p\left(s_{5}\right)=1 / 16$. Calculate the average length of the code and compare it to the entropy of the source.
19. Design an algorithm for measuring statistical properties of English language. Your algorithm should count occurrences of single characters and output the complete statistics for all single letters. Implement the algorithm in C or any other high level programming language. Test your program for different texts and discuss the results. Compute the redundancy D_{1} of English for single letters. Modify your program so it will output statistics of two letter strings. Compute the redundancy D_{2} of English for two-letter sequences.
20. Show that the one-time pad cipher is ideal.

Chapter 3

PRIVATE-KEY CRYPTOSYSTEMS

Section 3.1 overviews some classical ciphers for which both plaintext and ciphertext are characters or strings of characters. Section 3.2 covers the theory of modern cryptosystems and describes two early ciphers: Lucifer and DES. Section 3.3 presents five private-key block ciphers: FEAL, IDEA, RC6, Rijndael and Serpent. The last three compete in the 2-nd round of the AES call. Sections 3.4 and 3.5 introduce the differential and linear cryptanalysis, respectively. Section 3.6 studies the principles for secure S-box design.

3.1 Classical ciphers

The private-key ciphers (or cryptosystems) enable two parties: the sender and receiver to talk in secrecy via an insecure channel (see Figure 3.1). Before any communication of messages takes place,

Figure 3.1: Diagram of a private-key cryptosystem
both parties must exchange the secret key $k \in \mathcal{K}$ via a secure channel. The secure channel can be implemented using a messenger or a registered mail. If the distribution of the key is done, the sender can select message $m \in \mathcal{M}$, apply the encryption algorithm $E: \mathcal{M} \times \mathcal{K} \rightarrow \mathcal{C}$, and put the corresponding cryptogram $c=E_{k}(m)$ into the insecure channel, where $\mathcal{M}, \mathcal{C}, \mathcal{K}$ are sets of messages, cryptograms and keys, respectively. The receiver recreates the message from the cryptogram using the decryption algorithm $D: \mathcal{C} \times \mathcal{K} \rightarrow \mathcal{M}$ i.e. $m=D_{k}(c)$. Clearly, the cryptosystem works correctly if $D_{k}\left(E_{k}(M)\right)=M$ for all keys $k \in \mathcal{K}$. Note that if the parties communicate using a particular language, the sender always chooses letters according to the probability distribution which characterises the language.

An enemy cryptanalyst knows the statistical properties of the message source (language) and reads all cryptograms which are being sent via the insecure channel. They want to either recreate messages
or determine the secret key from cryptograms. This is the so-called ciphertext-only attack.
Very first encryption algorithms were monoalphabetic ciphers where the encryption and decryption were done independently for each character.

3.1.1 Caesar Ciphers

Julius Caesar used a cipher which moved each letter of the alphabet to the letter three to the right in the predetermined order of the letters of the alphabet, so:

$$
\begin{array}{ll}
A & \rightarrow D \\
B & \rightarrow E \\
C & \rightarrow F
\end{array}
$$

and so on. The last three substitutions are $X \rightarrow A, Y \rightarrow B$, and $Z \rightarrow C$. It is much more convenient to convert letters of the alphabet into integers. The most natural conversion is to assign each letter an integer which indicates the position of the letter in the alphabet. This means that $A \rightarrow 0, B \rightarrow 1$, $\ldots, Z \rightarrow 25$. If we use this conversion, then encryption in the above cipher can be defined as

$$
c=E_{k}(m)=m+3 \quad(\bmod 26)
$$

The decryption is

$$
m=D_{k}(c)=c \Leftrightarrow 3 \quad(\bmod 26)
$$

Notice that the cipher does not have any key! The integer 3 which determines the shift is fixed (and perhaps known to the cryptanalyst). If we replace the integer by the key, we get the Caesar cipher.

The cryptanalysis of the cipher is easy - there are 26 possible keys only. In Figure 3.2 we have a histogram of the percentage frequency of English characters in text. In Figure 3.3 this has been shifted using the Caesar cipher with $k=3$. So if a ciphertext is given, it is easy to get frequency of characters in the ciphertext and compare it with the frequency of the language. So having the ciphertext

L FDPH L VDZ L FRQTXHUHG

it is easy to find out that $k=3$ and the plaintext is
I CAME I SAW I CONQUERED

Figure 3.2: English character frequencies

Message Space: $\mathcal{M}=\{0,1, \ldots, 25\}$ - letters converted to their positions in the alphabet.
Cryptogram Space: $\mathcal{C}=\{0,1, \ldots, 25\}$.
Key Space: $\mathcal{K}=\{0,1, \ldots, 25\},|\mathcal{K}|=26$ and $H(K) \approx 4.7$.
Encryption: $c=E_{k}(m)=m+k \quad(\bmod 26)$.
Decryption: $m=D_{k}(c)=c \Leftrightarrow k \quad(\bmod 26)$.
Unicity Distance: $N \approx \frac{H(K)}{D} \approx 1.5$ letters (assuming $D=3.2$).
Cryptanalysis: Uses letter frequency distributions. If encipherment is achieved by a simple letter shift then a frequency count of the letter distributions in the ciphertext will yield the same pattern as the original host language of the plaintext but shifted.

Figure 3.3: Encryption character frequencies with $c=m+3 \quad(\bmod 26)$

3.1.2 Affine Ciphers

This is a generalisation of the Caesar cipher obtained by numbering the letters of the alphabet and then multiplying the number of the letter to be enciphered by k_{1} where $\operatorname{gcd}\left(k_{1}, 26\right)=1$ and adding a constant k_{2}. The answer is then reduced modulo 26. Figure 3.4 shows what happens to the histogram of Figure 3.2 when the affine cipher $c=E_{k}(m)=k_{1} m+k_{2}(\bmod 26)$ is applied with $k_{1}=5$ and $k_{2}=7$.

Figure 3.4: Encryption character frequencies with $c=5 m+7$

Suppose we have to decipher:

WZDUY ZZYQB OTHTX ZDNZD KWQHI BYQBP WZDUY ZXZDSS

we note that:

Z	occurs	8 times
D	occurs	5 times
Y	occurs	4 times
W, Q, B	occurs	3 times each

Presuming the language is English, we note that the most frequently occurring letters in English text are, in order,

$$
\mathrm{E}, \mathrm{~T}, \mathrm{R}, \mathrm{I}, \mathrm{~N}, \mathrm{O}, \mathrm{~A}
$$

This leads us to try $\mathrm{Z} \rightarrow \mathrm{E}$ and $\mathrm{D} \rightarrow \mathrm{T}$ or $\mathrm{Y} \rightarrow \mathrm{T}$. That is, we try to simultaneously solve,

$$
\left.\begin{array}{|lll}
\hline 25 & \equiv & 4 k_{1}+k_{2} \\
\hline & (\bmod 26) \\
3 & \equiv & 19 k_{1}+k_{2} \\
\hline & (\bmod 26)
\end{array} \quad \text { or } \quad \begin{array}{llll|}
\hline 25 & \equiv & 4 k_{1}+k_{2} & (\bmod 26) \\
24 & \equiv & 19 k_{1}+k_{2} & (\bmod 26)
\end{array}\right]
$$

which have as solution $k_{1}=2, k_{2}=17$ in the first case (we reject it as k_{1}^{-1} does not exist) and $k_{1}=19$, $k_{2}=1$ in the second. If we try to decipher the letters WZDUY (the integers $22,25,3,20,24$) using $\left(c \Leftrightarrow k_{2}\right) \cdot k_{1}^{-1}$, which, in this case, is $(c \Leftrightarrow 1) \cdot 19^{-1}$ or $(c \Leftrightarrow 1) \cdot 11$, we will get the following plaintext

$$
23,4,22,1,7 \quad \text { or } \quad \text { XEWBH }
$$

which is not a part of any recognisable English expression or word. In fact, we could try all combinations $\mathrm{Z} \rightarrow \mathrm{E}$ with other letters and find that, in fact, Z does not map to E .

After much trial we would find that $\mathrm{Z} \rightarrow \mathrm{O}$ (we would expect the most common letter to be a vowel). Now let us try $\mathrm{Z} \rightarrow \mathrm{O}$ and $\mathrm{D} \rightarrow \mathrm{T}$ or $\mathrm{Y} \rightarrow \mathrm{T}$. That is, we simultaneously try to solve,

25	\equiv	$14 k_{1}+k_{2}$	$(\bmod 26)$					
3	\equiv	$19 k_{1}+k_{2}$	$(\bmod 26)$	or \quad	25	\equiv	$14 k_{1}+k_{2}$	$(\bmod 26)$
:---:	:---:	:---:	:---:					
24	\equiv	$19 k_{1}+k_{2}$	$(\bmod 26)$					

which have solutions $k_{1}=6$ and $k_{2}=19$ or $k_{1}=5$ and $k_{2}=7$.
Now if we use the second of these to decode,
WZDUYZ (the integers 22, 25, 3, 20, 24, 25)
using $\left(c \Leftrightarrow k_{2}\right) \cdot k_{1}^{-1}=(c \Leftrightarrow 7) \cdot 21$, we get $3,14,20,13,19,14$ or DOUNTO which is recognisable as the words $D O U N T O$. We leave the reader to decipher the remainder of the message.

The affine cipher

Message Space: $\mathcal{M}=\{0,1, \ldots, 25\}$ - letters converted to their positions in the alphabet.
Cryptogram Space: $\mathcal{C}=\{0,1, \ldots, 25\}$.
Key Space: $\mathcal{K}=\left\{k=\left(k_{1}, k_{2}\right) \mid k_{1}, k_{2} \in\{0,1, \ldots, 25\}, \operatorname{gcd}\left(k_{1}, 26\right)=1\right\},|\mathcal{K}|=312, H(K) \approx 8.3$.
Encryption: $c=E_{k}(m)=k_{1} m+k_{2}(\bmod 26)$.
Decryption: $m=D_{k}(c)=\left(c \Leftrightarrow k_{2}\right) k_{1}^{-1} \quad(\bmod 26)$
Unicity Distance: $N \approx \frac{H(K)}{D} \approx 2.6$ letters $(D=3.2)$.
Cryptanalysis: Uses letter frequency distributions. The letter frequencies are still preserved but permuted according to the secret key $k=\left(k_{1}, k_{2}\right)$.

3.1.3 Monoalphabetic Substitution Ciphers

It is a common practice to use a secret word or words, not repeating letters, and write them in a rectangle to use as a mnemonic to translate plaintext into ciphertext. Suppose the secret words were STAR WARS. We note that STAR WARS has the letters A, R and S repeated so we use only the letters S, T, A, R, W. We write these first and then fill out the rectangle with the unused letters of the alphabet:

S	T	A	R	W
B	C	D	E	F
G	H	I	J	K
L	M	N	O	P
Q	U	V	X	Y
Z				

Columns are then read off to give us the following plaintext to ciphertext transformation:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| :---: |
| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| S | B | G | L | Q | Z | T | C | H | M | U | A A | D | I | N | V | R | E | J | O | X | W | F | K | P | Y |

Thus,

I KNOW ONLY That I KNOW NOThing

becomes,

H UINF NIAP OCSO H UINF INOCHIT

The above cipher is a substitution cipher. The nice property of it is that the secret permutation can be readily reconstructed from a relatively short and easy to memorise word or sentence. A general instance of substitution cipher can be obtained if the secret word consists of a random permutation of 26 letters. Unfortunately, it is difficult to learn by heart. The secret key is the permutation $\pi: \mathcal{Z}_{26} \rightarrow \mathcal{Z}_{26}$, where $\mathcal{Z}_{26}=\{0,1, \ldots, 25\}$. A message $m \in \mathcal{Z}_{26}$ is encrypted into $c=\pi(m)$. The decryption is $m=\pi^{-1}(c)$ where π^{-1} is the inverse permutation of π.

Cryptanalysis uses frequency analysis on the letters of the alphabet. Short amounts of ciphertext can readily be attacked by computer search but even reasonable amounts of ciphertext are easy to decipher by hand. Decipher:
BRYH DRL R ITEEIA IRBS TEF CIAAXA NFR NDTEA RF FGKN RGL AOAYJNDAYA EDRE BRYH NAGE EDA IRBS NRF FMYA EK ZK TE CKIIKNAL DAY EK FXDKKI KGA LRH NDTXD NRF RZRTGFE EDA YMIAF.
We do a frequency analysis and note the following distribution of letters:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
17	4	2	10	13	10	5	3	9	1	9	4	2	9	1			15	2	6			3	6	2	

So the most frequent letters are:

$$
A, R, E, D \quad \text { or } F, I \quad \text { or } \quad \mathrm{K} \text { or } \mathrm{N}
$$

There is a one letter word so R is I or A . The two most common three letter words in English are THE and AND. So we guess EDA is one of these. Since the most common letters in English are:

$$
E, T, R, I, N, \ldots
$$

we will guess EDA is THE and that R is A so our message becomes:
BaYH HaL a ITttle IaBS TtF CIeeXe NaF NhDte aF FGKN aGL eOeYJNheYe that BaYH NeGT the IaBS NaF FMYe tK ZK Tt CKIIKNeL heY tK FXhKKI KGe LaH NhTXh NaF aZaTGFt the YMIeF.
Which resolves to:
mary had a little lamb its fleece was white as snow and everywhere that mary went the lamb was sure to go it followed her to school one day which was against the rules.

The monoalphabetic substitution cipher
Message Space: $\mathcal{M}=\{0,1, \ldots, 25\}=\mathcal{Z}_{26}$
Cryptogram Space: $\mathcal{C}=\{0,1, \ldots, 25\}=\mathcal{Z}_{26}$.
Key Space: $\mathcal{K}=\left\{\pi \mid \pi: \mathcal{Z}_{26} \rightarrow \mathcal{Z}_{26}\right\},|\mathcal{K}|=26!$, and $H(K)=\log _{2} 26!\approx 88.3$. To evaluate $\log _{2} 26!$, Sterling's approximation can be used and $\log _{2} 26!\approx 26 \log _{2} \frac{26}{e}$.

Encryption: $c=E_{k}(m)=\pi(m)$.
Decryption: $m=D_{k}(c)=\pi^{-1}(c)$.
Unicity Distance: $N \approx \frac{H(K)}{D} \approx 27.6$ letters (assuming $D=3.2$).
Cryptanalysis: Uses letter frequency distributions. The letter frequencies are still preserved but permuted according to the permutation π.

3.1.4 Transposition Ciphers

The other principal technique for use on alphabets is transposition of characters. Thus,

$$
\text { plaintext } \rightarrow \text { rearrange characters } \rightarrow \text { ciphertext }
$$

Write the plaintext CRYPTANALYST as a 3×4 matrix:

1	2	3	4
C	R	Y	P
T	A	N	A
L	Y	S	T

and read off the columns in the order $2,4,1,3$ to get,

RAYPATCTLYNS

This technique can also be used for n-dimensional arrays. Transposition ciphers often use a fixed period d. Let \mathcal{Z}_{d} be the integers from 0 to $d \Leftrightarrow 1$, and $\pi: \mathcal{Z}_{d} \rightarrow \mathcal{Z}_{d}$ be a permutation. Then the key is the pair $k=(d, \pi)$ and blocks of d characters are enciphered at a time. Thus, the sequence of letters

$$
m_{0} \cdots m_{d-1} m_{d} \cdots m_{2 d-1} \cdots
$$

is enciphered to,

$$
m_{\pi(0)} \cdots m_{\pi(d-1)} m_{d+\pi(0)} \cdots m_{d+\pi(d-1)} \cdots
$$

Suppose $d=4$ and $\pi=(\pi(0), \pi(1), \pi(2), \pi(3))=(1,2,3,0)$. Then the following shows a message broken into blocks and enciphered:

```
Plaintext: CRYP TOGR APHY
Ciphertext: PCRY RTOG YAPH.
```

Note that the frequency distribution of the characters of the ciphertext is exactly the same as for the plaintext. A knowledge of the most frequent pairs and triples in a language is used with anagraming. The most frequent pairs of letters in English, on a relative scale from 1 to 10, are:

TH	10.00	ED	4.12	OF	3.38
HE	9.50	TE	4.04	IT	3.26
IN	7.17	TI	4.00	AL	3.15
ER	6.65	OR	3.98	AS	3.00
RE	5.92	ST	3.81	HA	3.00
ON	5.70	AR	3.54	NG	2.92
AN	5.63	ND	3.52	CO	2.80
EN	4.76	TO	3.50	SE	2.75
AT	4.72	NT	3.44	ME	2.65
ES	4.24	IS	3.43	DE	2.65

We note some other salient features of English:

1. The vowel-consonant pair is most common - no high frequency pair has two vowels.
2. Letters that occur in many different pairs are probably vowels.
3. Consonants, except for N and T , occur most frequently with vowels.
4. If XY and YX both occur, one letter is likely to be a vowel.

The most frequent three letter combinations, on a scale of 1 to 10 , are:

THE	10.00	FOR	1.65	ERE	1.24
AND	2.81	THA	1.49	CON	1.20
TIO	2.24	TER	1.35	TED	1.09
ATI	1.67	RES	1.26	COM	1.08

Decipher the following ciphertext

LDWEOHETTHSESTRUHTELOBSEDEFEIVNT

We start by looking at blocks of various lengths by dividing up the text:

LD WE OH ET TH SE ST RU HT EL OB SE DE FE IV NT.

Is $d=2$? The pairs LD WE, which can only be permuted to DL EW, tell us no.
LDW EOH ETT HSE STR UHT ELO BSE DEF EIV NT
Is $d=3$? The triple LDW in any permutation tells us no.
LDWE OHET THSE STRU HTEL OBSE DEFE IVNT
Is $d=4$? This case is a bit harder because we have to try 16 permutations on the first two groups of four letters but we become convinced that none of these make sense.

LDWEO HETTH SESTR UHTEL OBSED EFEIV NT

d	$\mathrm{N}=0.3 \mathrm{~d} \log _{2}(\mathrm{~d} / \mathrm{e})$	N
3	$0.9 \log _{2}(3 / \mathrm{e})$	0.12804
4	$1.2 \log _{2}(4 / \mathrm{e})$	0.66877
5	$1.5 \log _{2}(5 / \mathrm{e})$	1.31885
6	$1.8 \log _{2}(6 / \mathrm{e})$	2.05608
7	$2.1 \log _{2}(7 / \mathrm{e})$	2.86579

Table 3.1: The period and associated unicity distance

Is $d=5$? A bit harder because we have to try 5 ! permutations on the first two groups of five letters but become convinced that none of these make sense.

LDWEOH ETTHSE STRUHT ELOBSE DEFEIV NT

Is $d=6$? The second group of six letters suggests

> THESET or TTHESE.

That means we try the following permutations for deciphering,

$$
\begin{array}{llll}
(205134), & (250134), & (405132), & (450132) \\
(501234), & (301245), & (510243), & (310245)
\end{array}
$$

When we try (450132) on the other blocks we recover the following message:

> WE HOLD THESE TRUTHS TO BE SELF EVIDENT

The transposition cipher

Message Space: $\mathcal{M}=\underbrace{\mathcal{Z}_{26} \times \ldots \mathcal{Z}_{26}}_{d}=\mathcal{Z}_{26}^{d}$ - collection of sequences with d letters.
Cryptogram Space: $\mathcal{C}=\mathcal{Z}_{26}^{d}-d$-letter sequences.
Key Space: $\mathcal{K}=\left\{\pi \mid \pi: \mathcal{Z}_{d} \rightarrow \mathcal{Z}_{d}\right\},|\mathcal{K}|=d!$ and $H(K)=\log _{2} d!\approx d \log _{2}(d / e)$.
Encryption: A message $m=\left(m_{0}, \ldots, m_{d-1}\right)$ is encrypted into cryptogram $c=E_{k}(m)=\left(c_{0}, \ldots, c_{d-1}\right)=$ $\left(m_{\pi(0)}, \ldots, m_{\pi(d-1)}\right)$.

Decryption: $m=D_{k}(c)=\left(c_{\pi^{-1}(0)}, \ldots, c_{\pi^{-1}(d-1)}\right)$.
Unicity Distance: $N \approx \frac{H(K)}{D}$ - see Table 3.1.
Cryptanalysis: Uses letter frequency distributions. First the period d needs to be guessed. Next single letter frequencies combined with the most frequent pairs and triples allows to break the cipher.

3.1.5 Homophonic Substitution Ciphers

Letters which occur frequently may be mapped into more than one letter in the ciphertext to flatten the frequency distribution. The number of cipher letters for a given character is determined by its frequency in the original language.

Suppose the alphabet is mapped into the numbers 0 to 99 then,

```
map E to 17, 19, 23, 47, and 64
map A to 8, 20, 25, and 49
map R to 1, 29,65
map T to 16, 31, and 85
```

but otherwise the i th letter maps to the the integer $3 i$. Then the plaintext,

MANY A SLIP TWIXT THE CUP AND THE LIP

will become,

08	20	16	3185	17	25	16	47
36083	205	16	9318		525	916	

If a letter is to be encrypted, a single element is chosen at random from all homophones associated with the letter.

For each message $m \in \mathcal{Z}_{26}$, the cipher assigns the set \mathcal{H}_{m} of homophones or positive integers. Each set contains at least one element. Usually the cardinality of a set \mathcal{H}_{m} is proportional to the frequency of the letter m in the language. The cryptogram space $\mathcal{C}=\bigcup_{m \in \mathcal{M}} \mathcal{H}_{m} \subset \mathcal{Z}_{H}$ where \mathcal{Z}_{H} is the smallest possible set which contains all homophones. The parameters and properties of the cipher are summarised below.

The homophonic cipher

Message Space: $\mathcal{M}=\mathcal{Z}_{26}$.
Cryptogram Space: $\mathcal{C}=\bigcup_{m \in \mathcal{M}} \mathcal{H}_{m} \subseteq \mathcal{Z}_{H}$.
Key Space: The secret key is the assignment of homophones to all messages so $k=\left(\mathcal{H}_{0}, \mathcal{H}_{1}, \ldots, \mathcal{H}_{25}\right)$. If we assume that sizes of \mathcal{H}_{i} for $i=0, \ldots, 25$ are known (or easy to guess from the statistical analysis of the language), then the number of possible keys is equal the number of possible arrangements of H elements into 26 compartments. Each compartment has to contain $n_{i}=\left|\mathcal{H}_{i}\right|$ different elements. Thus the number of all keys is $|\mathcal{K}|=\binom{H}{n_{0}}\binom{H \Leftrightarrow n_{0}}{n_{1}} \ldots$ $\binom{n_{24}+n_{25}}{n_{24}}$ where $H=\sum_{i=0}^{25} n_{i}$.

Encryption: A message $m \in \mathcal{M}$ is encrypted by random selection of a homophone from \mathcal{H}_{m}, i.e. $c=E_{k}(m)=h \in_{R} \mathcal{H}_{m}$ (where ϵ_{R} means that element is chosen randomly and uniformly).

Decryption: Knowing a cryptogram $c \in \mathcal{C}$, the decryption relies on finding the set \mathcal{H}_{m} to which c belongs - the message is m.

Unicity Distance: If sets of homophones contain single elements only, the cipher becomes a monoalphabetic substitution cipher with $|\mathcal{K}|=26!$ and the unicity distance ≈ 27.6. If each set of homophones has exactly v elements and $H=26 \cdot v$, then $|\mathcal{K}|=\frac{(26 v)!}{(v!)^{26}}$ and the unicity distance is $N \approx 38.2 \cdot v$ (note that this approximation does not work very well for small $v=1,2,3$).

Cryptanalysis: Uses homophone frequency distributions. If there is enough ciphertext, it is easy to determine the set \mathcal{C}. From the language frequency distribution, guesses about n_{i} can be made. The final stage would involve enumeration of possible assignments of homophones to messages.

3.1.6 Polyalphabetic Substitution Ciphers

Whereas homophonic substitution ciphers hide the distribution via the use of homomorphisms, polyalphabetic substitution ciphers hide it by making multiple substitutions. Leon Battista Alberti (see [266]) used two discs which were rotated according to the key. In effect this gave, for a period d, d different substitutions. Thus polyalphabetic substitution ciphers apply d different permutations

$$
\pi_{i}: \mathcal{Z}_{26} \rightarrow \mathcal{Z}_{26} \text { for } i=1, \ldots, d
$$

and the message,

$$
m=m_{1}, m_{2}, \ldots, m_{d}, m_{d+1}, m_{d+2}, \ldots m_{2 d}
$$

becomes,

$$
E_{k}(m)=\pi_{1}\left(m_{1}\right), \pi_{2}\left(m_{2}\right), \ldots, \pi_{d}\left(m_{d}\right), \pi_{1}\left(m_{d+1}\right), \ldots, \pi_{d}\left(m_{2 d}\right)
$$

Note that if $d=1$, we get back the monoalphabetic substitution cipher. We now give a few methods for obtaining polyalphabetic ciphers.

The Vigenère cipher

Message Space: $\mathcal{M}=\mathcal{Z}_{26}^{d}-d$-letter sequences.
Cryptogram Space: $\mathcal{C}=\mathcal{Z}_{26}^{d}-d$-letter sequences.
Key Space: $\mathcal{K}=\mathcal{Z}_{26}^{d}, k=\left(k_{1}, \ldots, k_{d}\right),|\mathcal{K}|=26^{d}$ and $H(K) \approx 4.7 d$.
Encryption: $c=E_{k}\left(m_{1}, \ldots, m_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$ and $c_{i}=\pi_{i}\left(m_{i}\right) \equiv m_{i}+k_{i}(\bmod 26)$ for $i=$ $1, \ldots, d$.

Decryption: $m=D_{k}\left(c_{1}, \ldots, c_{d}\right)=\left(m_{1}, \ldots, m_{d}\right)$ and $m_{i}=\pi_{i}^{-1}\left(c_{i}\right) \equiv c_{i} \Leftrightarrow k_{i} \quad(\bmod 26)$ for $i=$ $1, \ldots, d$.

Unicity Distance: $N \approx \frac{H(K)}{D} \approx 1.47 d$ (assuming $D=3.2$).
Cryptanalysis: If the period d is not known, then it can be determined using the Kasiski or index of coincidence methods. Once the period d is known, cryptanalysis reduces to the simultaneous analysis of d independent Caesar ciphers.

Let us consider how the Vigenère cipher can be used. Encipher the message INDIVIDUAL CHARACTER with the key HOST,

| m | $=$ | INDI | VIDU | ALCH | ARAC |
| :--- | :--- | :--- | :--- | :--- | :--- | TER

The Beauford cipher
Message Space: $\mathcal{M}=\mathcal{Z}_{26}^{d}-d$-letter sequences.
Cryptogram Space: $\mathcal{C}=\mathcal{Z}_{26}^{d}-d$-letter sequences.
Key Space: $\mathcal{K}=\mathcal{Z}_{26}^{d}, k=\left(k_{1}, \ldots, k_{d}\right),|\mathcal{K}|=26^{d}$ and $H(K) \approx 4.7 d$.
Encryption: $c=E_{k}\left(m_{1}, \ldots, m_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$ and $c_{i}=\pi_{i}\left(m_{i}\right) \equiv k_{i} \Leftrightarrow m_{i}(\bmod 26)$ for $i=$ $1, \ldots, d$.

Decryption: $m=D_{k}\left(c_{1}, \ldots, c_{d}\right)=\left(m_{1}, \ldots, m_{d}\right)$ and $m_{i}=\pi_{i}^{-1}\left(c_{i}\right) \equiv k_{i} \Leftrightarrow c_{i}(\bmod 26)$ for $i=$ $1, \ldots, d$.

Unicity Distance: $N \approx \frac{H(K)}{D} \approx 1.47 d$ (assuming $D=3.2$).
Cryptanalysis: If the period d is not known, then it can be determined using the Kasiski or index of coincidence methods. Once the period d is known, cryptanalysis reduces to the simultaneous analysis of d independent affine ciphers with the known multiplier.

Observe that for the Beauford cipher

$$
\pi_{i}\left(m_{i}\right) \equiv\left(k_{i} \Leftrightarrow m_{i}\right) \quad(\bmod 26) \text { and } \pi_{i}^{-1}\left(c_{i}\right) \equiv\left(k_{i} \Leftrightarrow c_{i}\right) \quad(\bmod 26),
$$

so the same algorithm can be used for encryption and decryption as $\pi_{i}=\pi_{i}^{-1}$!

3.1.7 Cryptanalysis of Polyalphabetic Substitution Ciphers

To break a polyalphabetic substitution cipher, the cryptanalyst must first determine the period of the cipher. This can be done using two main tools: the index of coincidence and the Kasiski method which is named after its inventor Friedrich Kasiski.

The Kasiski method uses repetitions in the ciphertext to give clues to the cryptanalyst about the period. For example, suppose the plaintext TO BE OR NOT TO BE has been enciphered using the key NOW then we have:

$$
\begin{array}{llll}
m & =T O B E O & R N O T T & O B E \\
k & =N O W N O & W N O W N & O W N \\
E_{k}(m) & =\text { GCXRC } & \text { NACPG } & \text { CXR }
\end{array}
$$

Since the characters that are repeated, GCXR, start nine letters apart we conclude that the period is probably 3 or 9 .

The index of coincidence (IC), introduced in the 1920s by Friedman [187] (see also [266]), measures the variation in the frequencies of the letters in a ciphertext. If the period of the cipher is one $(d=1)$, that is a simple substitution has been used, there will be considerable variation in the letter frequencies and the $I C$ will be high. As the period increases, the variation is gradually eliminated (due to diffusion) and the $I C$ is low (Table 3.2).

Assume that there is an alphabet of n letters uniquely identifiable by their positions from the set $\mathcal{Z}_{n}=\{0,1, \ldots, n \Leftrightarrow 1\}$. Each character is assigned its corresponding frequency expressed by the probability $P(M=m)=p_{m}$ where $m \in \mathcal{Z}_{n}$. Note that $\sum_{i=0}^{n} p_{i}=1$. Following Sinkov [472], we shall derive the $I C$ by first defining a measure of roughness, $(M R)$, which gives the variation of the frequencies of individual characters relative to a uniform distribution. So the measure of roughness of the language with \mathcal{Z}_{n} and $\left\{p_{i} \mid i=0,1, \ldots, n \Leftrightarrow 1\right\}$ is

$$
\begin{equation*}
M R=\sum_{i=0}^{n-1}\left(p_{i} \Leftrightarrow \frac{1}{n}\right)^{2} \tag{3.1}
\end{equation*}
$$

For English letters we have:

$$
M R=\sum_{i=0}^{25}\left(p_{i} \Leftrightarrow \frac{1}{26}\right)^{2} \approx \sum_{i=0}^{25} p_{i}^{2} \Leftrightarrow 0.038
$$

$\sum_{i=0}^{25} p_{i}^{2}$ expresses the probability that two characters generated by the language are identical. If we want to compute either $M R$ or $\sum_{i=0}^{25} p_{i}^{2}$, we have to estimate these from a limited number of observed cryptograms.

Language	IC
Arabic	0.075889
Danish	0.070731
Dutch	0.079805
English	0.066895
Finnish	0.073796
French	0.074604
German	0.076667
Greek	0.069165
Hebrew	0.076844
Italian	0.073294
Japanese	0.077236
Malay	0.085286
Norwegian	0.069428
Portuguese	0.074528
Russian	0.056074
Serbo Croatian	0.064363
Spanish	0.076613
Swedish	0.064489

Table 3.2: Languages and their indices of coincidence

Assume that we have seen ciphertext with N characters. For every character in the ciphertext, its frequency F_{i} expresses how many times it has occurred in the ciphertext. Obviously, $\sum_{i=0}^{25} F_{i}=N$. Note that F_{i} can be used to estimate p_{i} as $p_{i} \approx F_{i} / N$. It is possible to create

$$
\binom{N}{2}=\frac{N(N \Leftrightarrow 1)}{2}
$$

pairs of characters out of N observed in the ciphertext. The number of pairs (i, i) containing just the letter i is:

$$
\frac{F_{i}\left(F_{i} \Leftrightarrow 1\right)}{2}
$$

The $I C$ is defined as:

$$
\begin{equation*}
I C=\sum_{i=0}^{25} \frac{F_{i}\left(F_{i} \Leftrightarrow 1\right)}{N(N \Leftrightarrow 1)} \tag{3.2}
\end{equation*}
$$

and gives the probability that two (2) letters observed in ciphertext are, in fact, the same. It is not difficult to see that $I C \approx \sum_{i=0}^{25} p_{i}^{2}$. To prove this, it is enough to note that $F_{i} \approx p_{i} \cdot N$ and

$$
I C \approx \sum_{i=0}^{25} \frac{p_{i}^{2}\left(N \Leftrightarrow \frac{1}{p_{i}}\right)}{N \Leftrightarrow 1}
$$

$I C$ become closer and closer to $\sum_{i=0}^{25} p_{i}^{2}$ as the number of observed characters in the ciphertext increases. The $I C$ estimate can be used to compute the corresponding measure of roughness:

$$
M R \approx I C \Leftrightarrow 0.038 .
$$

The Index of Coincidence (an algorithm)

IC1. Collect N ciphertext characters.

IC2. Find the collection $\mathcal{F}=\left\{F_{i} \mid i \in \mathcal{Z}_{n}\right\}$ of frequencies for all characters. Note that $\sum_{i} F_{i}=N$.
IC3. Compute

$$
I C=\sum_{i=0}^{n} \frac{F_{i}\left(F_{i} \Leftrightarrow 1\right)}{N(N \Leftrightarrow 1)}
$$

For a flat distribution of a 26 character alphabet, all letters have the same frequency, $1 / 26$, and the sum of the squares is $(1 / 26)^{2} \times 26$. Hence the $M R$ for a flat distribution is $1 / 26 \Leftrightarrow 1 / 26=0$. When the $M R$ is 0 , corresponding to a flat distribution, we say it has infinite period $(d=\infty)$. At the other extreme we have period one $(d=1)$ for simple substitution. English with period one has $M R=0.028$. Thus we have:

$$
\begin{gathered}
0.038 \\
(\text { period } \infty)
\end{gathered} \ll \mathrm{IC}<c \begin{gathered}
0.066 \\
(\text { period } 1)
\end{gathered}
$$

For a cipher of period d, the expected value of $I C$ is given by:

$$
\exp (I C)=\frac{N \Leftrightarrow d}{d(N \Leftrightarrow 1)}(0.066)+\frac{(d \Leftrightarrow 1) N}{d(N \Leftrightarrow 1)}(0.038)
$$

Thus, while we can get an estimate of d from the ciphertext, it is not exact but statistical in nature and a particular ciphertext might give misleading results. Table 3.2 gives the index of coincidence for some other languages. For English, the relation between $I C$ and d is given in Table 3.3.

Decrypt the following ciphertext which was produced using the Vigenère cipher:

TSMVM	MPPCW	CZUGX	HPECP	REAUE	IOBQW	PPIMS
FXIPC	TSQPK	SZNUL	OPACR	DDPKT	SLVFW	ELTKR
GHIZS	FNIDF	ARMUE	NOSKR	GDIPH	WSGVL	EDMCM
SMWKP	IYOJS	TLVFA	HPBJI	RAQIW	HLDGA	IYOU

Given that the cipher was produced using a Vigenère cipher, we would first like to determine the period that has been used. The Kasiski method allows us to do that, assuming the repetitions are not coincidental. Examining the trigraphs we find two occurrences of IYO and LVF. The IYO's are 25 letters apart and the LVF's are 55 apart. The common factors are 1 and 5 .

Let us now examine the $I C$. The frequency count gives us:

$$
\begin{array}{lllll}
\mathrm{a} \rightarrow 6 & \mathrm{~g} \rightarrow 5 & 1 \rightarrow 6 & \mathrm{q} \rightarrow 3 & \mathrm{v} \rightarrow 4 \\
\mathrm{~b} \rightarrow 2 & \mathrm{~h} \rightarrow 5 & \mathrm{~m} \rightarrow 8 & \mathrm{r} \rightarrow 6 & \mathrm{w} \rightarrow 6 \\
\mathrm{c} \rightarrow 6 & \mathrm{i} \rightarrow 10 & \mathrm{n} \rightarrow 3 & \mathrm{~s} \rightarrow 10 & \mathrm{x} \rightarrow 2 \\
\mathrm{~d} \rightarrow 6 & \mathrm{j} \rightarrow 2 & 0 \rightarrow 5 & \mathrm{t} \rightarrow 5 & \mathrm{y} \rightarrow 2 \\
\mathrm{e} \rightarrow 5 & \mathrm{k} \rightarrow 5 & \mathrm{p} \rightarrow 13 & \mathrm{u} \rightarrow 5 & \mathrm{z} \rightarrow 3 \\
\mathrm{f} \rightarrow 6 & & & &
\end{array}
$$

Thus the $I C=0.04066$. From the table of IC's (see Table 3.3) it appears more likely that 10 alphabets were used than 5 , but we will proceed with an assumption of 5 . We split the ciphertext into five sections getting:
(a) TMCHRIPFTSODSEGFANGWESITHRHI
from text positions 5 i , $\mathrm{i}=0,1, \ldots, 27$.
(b) SPZPFOPXSZPDLLHNRODSDMYLPALY
from text positions $5 \mathrm{i}+1, \mathrm{i}=0,1, \ldots, 27$.

d	IC
1	0.0660
2	0.0520
3	0.0473
4	0.0450
5	0.0436
6	0.0427
7	0.0420
8	0.0415
9	0.0411
10	0.0408
11	0.0405
12	0.0403
13	0.0402
14	0.0400
15	0.0399
16	0.0397
17	0.0396
18	0.0396
19	0.0395
20	0.0394

Table 3.3: Periods and associated indices of coincidence
(c) MPUEABIIQNAPVTIIMSIGMWOVBQDO
from text positions $5 i+2, i=0,1, \ldots, 27$.
(d) VCGCUQMPPUCKFKZDUKPVCKJFJIGU
from text positions $5 \mathrm{i}+3, \mathrm{i}=0,1, \ldots, 27$.
(e) MWXPEWSCKLRTWRSFERHLMPSAIWA
from text positions $5 i+4, i=0,1, \ldots, 27$.
In Table 3.4, the frequency distribution for each of these five sections is shown. Each column of Table 3.4 corresponds to the frequency distribution of the section indicated by the text position in the heading. Thus column 4 , headed by $5 i+3$ corresponds to the fourth section which gave text positions $5 i+3$.

It would be best to consider columns 2 and 4 as their IC is 0.06614 which corresponds most closely to 'English'. In the second column of Table 3.4 we see L and P occur frequently, suggesting that they might be A and E respectively. In the fourth column we are more uncertain what initial guess to try for A so we will try the three most frequent values as guesses for A: i.e. U, C, K.

The second section is:

SPZPFOPXSZPDLLHNRODSDMYLPALY

Since P is the most common letter we are going to replace $\mathrm{P} \rightarrow \mathrm{E}, \mathrm{Q} \rightarrow \mathrm{F}, \ldots$ getting:

HEOEUDEMHOESA AWCGDSHSBNAEPAN

The fourth section is:
VCGCUQMPPUCKFKZDUKPVCKJFJIGU

text	5 i	$5 \mathbf{i}+1$	$5 \mathbf{i}+2$	$5 \mathrm{i}+3$	$5 \mathrm{i}+4$
$\mathrm{a} \rightarrow$	1	1	2	0	2
$\mathrm{~b} \rightarrow$	0	0	2	0	0
$\mathrm{c} \rightarrow$	1	0	0	4	1
$\mathrm{~d} \rightarrow$	1	3	1	1	0
$\mathrm{e} \rightarrow$	2	0	1	0	2
$\mathrm{f} \rightarrow$	2	1	0	2	1
$\mathrm{~g} \rightarrow$	2	0	1	2	0
$\mathrm{~h} \rightarrow$	3	1	0	0	1
$\mathrm{i} \rightarrow$	3	0	5	1	1
$\mathrm{j} \rightarrow$	0	0	0	2	0
$\mathrm{k} \rightarrow$	0	0	0	4	1
$\mathrm{l} \rightarrow$	0	4	0	0	2
$\mathrm{~m} \rightarrow$	1	1	3	1	2
$\mathrm{n} \rightarrow$	1	1	1	0	0
$\mathrm{o} \rightarrow$	1	2	2	0	0
$\mathrm{p} \rightarrow$	1	5	2	3	2
$\mathrm{q} \rightarrow$	0	0	2	1	0
$\mathrm{r} \rightarrow$	2	1	0	0	3
$\mathrm{~s} \rightarrow$	3	3	1	0	3
$\mathrm{t} \rightarrow$	3	0	1	0	1
$\mathrm{u} \rightarrow$	0	0	1	4	0
$\mathrm{v} \rightarrow$	0	0	2	2	0
$\mathrm{w} \rightarrow$	1	0	1	0	4
$\mathrm{x} \rightarrow$	0	1	0	0	1
$\mathrm{y} \rightarrow$	0	2	0	0	0
$\mathrm{z} \rightarrow$	0	2	0	1	0
lC	0.04233	0.06614	0.05026	0.06614	0.04843

Table 3.4: Frequency distribution for the five sections of the ciphertext

Hence replacing $\mathrm{U} \rightarrow \mathrm{A}, \mathrm{V} \rightarrow \mathrm{B}, \ldots$ we get:

BIMIAWSVVAIQLQFJAQVBIQPLFOMA

which we quickly decide is unlikely to be English because of the number of Qs. The other choices for A , from the frequency distribution are $\mathrm{C} \rightarrow \mathrm{A}$ or $\mathrm{K} \rightarrow \mathrm{A}$. Trying these gives respectively:

TAEASOKNNSAIDIXBSINTAIHDHGES
CGCEGCFFECAFAJDEAFFCADFDCGE

Of these two the first looks the most promising so we look at what we have for our five sections as rows:

$$
\begin{aligned}
& \text { H E O E U D E MHOESAAWCGDSHSBNAEPAN } \\
& \text { TAEASOKNNSAIDIXBSINTAIHDHGES }
\end{aligned}
$$

Neither row is part of a sentence so we look down the first column and decide that since the most common first word in English is THE we will start by leaving the first row as it is and replacing M $\rightarrow \mathrm{E}, \mathrm{N} \rightarrow \mathrm{F}, \ldots$ in the third row giving:

T M CHRIP FTS O D S E G F A N G W E S I T H R H I H E O E U D E M H O E S A A W C G D S HS B N A E P A N E H M W S T A A I F S H N L A A E K A Y E O G N T V G T A EASOKNNSAI DIXBSINTAIHDHEES

Hence we decide that the plaintext is:
THE TIME HAS COME THE WALRUS SAID TO SPEAK OF MANY THINGS OF SHOES AND SHIPS AND SEALING WAX OF CABBAGES AND KINGS AND WHY THE SEA IS BOILING HOT AND WHETHER PIGS HAVE WINGS.

Looking at the character which gave A in each of the five alphabets gives us the key ALICE.

3.2 DES Family

This section discusses modern cryptographic algorithms. The discussion starts from the description of Shannon's concept of product ciphers. Later Feistel transformations are studied. The Lucifer algorithm along the Data Encryption Standard (DES) are presented.

3.2.1 Product Ciphers

Shannon [461] proposed composing different kinds of simple and insecure ciphers to create complex and secure cryptosystems. These complex cryptosystems were called product ciphers. Shannon argued that to obtain secure ciphers, the designer had to operate on large message and key spaces and use simple transformations to incorporate confusion and diffusion. The concept is illustrated in Figure 3.5. The S -boxes are simple substitution ciphers and they provide confusion because of the secret keys

Figure 3.5: S-P network
used. Permutation boxes (P-boxes) diffuse partial cryptograms across the inputs to the next stage. The P-boxes have no secret key. They have a fixed topology of input-output connections. The product cipher needs to have a number of iterations or rounds. A single round consists of concatenation of a single P-box with the subsequent layer of S-boxes. The more rounds the better mixing of partial cryptograms. Consequently the probability distribution of the cryptograms becomes flatter. Product ciphers based on substitution and permutation boxes are also known as substitution-permutation networks (S-P networks). S-P networks are expected to have ([68]):

- the avalanche property - a single input bit change should force the complementation of approximately half of the output bits [169],
- the completeness property - each output bit should be a complex function of every input bit [267].

In general, to implement product ciphers, it is necessary to have two algorithms: one for encryption and the other for decryption. This can be expensive in terms of both hardware and software. Feistel [169] showed an elegant variant of S-P networks which could be implemented using a single algorithm for both encryption and decryption. A single round of this variant is shown in Figure 3.6. Note the

Figure 3.6: Feistel permutation
following interesting properties of the round

- it is always a permutation no matter what is the form of the function f,
- as $L_{i}=R_{i-1}$, the function f is evaluated for the same input for both encryption and decryption,
- the design of the round and consequently the cipher reduces to the design of the function f. So the design of a cipher $E: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$ with $\mathcal{M}=\mathcal{C}=\Sigma^{n}$ needs to design a function $f: \mathcal{K} \times \Sigma^{\frac{n}{2}} \rightarrow \Sigma^{\frac{n}{2}}$ where $\Sigma=\{0,1\}$.

Definition 3.1 A Feistel transformation is a permutation $F_{k_{i}}: \Sigma^{n} \rightarrow \Sigma^{n}$ which takes an input $L_{i-1}, R_{i-1} \in \Sigma^{\frac{n}{2}}$ and assigns the output $F_{k_{i}}\left(L_{i-1}, R_{i-1}\right)=\left(L_{i}, R_{i}\right)$ according to the following equations

$$
\begin{equation*}
L_{i}=R_{i-1} \text { and } R_{i}=L_{i-1} \oplus f\left(k_{i}, R_{i-1}\right) . \tag{3.3}
\end{equation*}
$$

where the function f is any function of the form $f: \mathcal{K} \times \Sigma^{\frac{n}{2}} \rightarrow \Sigma^{\frac{n}{2}}$ and $k_{i} \in \mathcal{K}$ is a cryptographic key used (where \oplus stands for bit-by-bit XOR operation).

A cryptographic system is called a Feistel-type cryptosystem or Feistel-type cipher if it applies ℓ rounds each based on a Feistel transformation (Feistel permutation) so the encryption is

$$
\begin{equation*}
E_{k}=F_{k_{\ell}} \circ F_{k_{\ell-1}} \circ \cdots \circ F_{k_{1}} . \tag{3.4}
\end{equation*}
$$

The decryption applies the inverse Feistel transformations in the reverse order. The cryptographic key is $k=\left(k_{1}, \ldots, k_{\ell}\right)$.

An encryption algorithm should allow a user to select an encryption function from a large enough collection of all possible functions by a random selection of a cryptographic key. Note that for a
plaintext/ciphertext block of n bits, the collection of all possible permutations contains 2^{n} ! elements and is called the symmetric group. If we assume that the size of the key block is also n bits, then the selection of permutations is restricted to 2^{n} out of 2^{n} ! by random selection of the key. To generate a random permutation efficiently, it is enough to iterate Feistel permutations many times. The single iteration is controlled by a shorter partial key which is usually generated from the cryptographic key. Therefore the iteration has to be seen as a collection of permutations each of which is indexed by the partial key.

Coppersmith and Grossman [110] studied iterations of basic permutations and their suitability to encryption. They defined the so-called k-functions. Each k-function along with its connection topology produces a single iteration permutation which can be used as a generator of other permutations by composing them. Coppersmith and Grossman proved that these generators produce at least the alternating group using a finite number of their compositions. It means that using composition and with generators of relatively simple structure, it is possible to produce at least half of all the permutations. Even and Goldreich [165] proved that the Feistel permutations can also generate the alternating group. It turns out [405] that even if the function $f(k, R)$ is restricted to one-toone mappings, the Feistel permutations still generate the alternating group. In other words, having $\left(2^{n / 2}\right)$! generators, it is possible to produce $\frac{\left(2^{n}\right)!}{2}$ different permutations. Bovey and Williamson reported in [51] that an ordered pair of generators can produce either the alternating group $A_{V_{n}}$ or the symmetric group $S_{V_{n}}$ with the probability greater than $1 \Leftrightarrow \exp \left(\Leftrightarrow \log { }^{1 / 2} 2^{n}\right)$. So if we select the pair at random, there is a high probability that it generates at least $A_{V_{n}}$.

3.2.2 The Lucifer Algorithm

The first cryptosystem developed using Feistel transformations, was the Lucifer algorithm. It was designed at the IBM Watson Research Laboratory in the early 1970s by a team including Horst Feistel, William Notz, and J. Lynn Smith (see [169],[170],[479]).

The Lucifer cryptosystem

Message Space: $\mathcal{M}=\Sigma^{128}$.
Cryptogram Space: $\mathcal{C}=\Sigma^{128}$.
Key Space: $\mathcal{K}=\Sigma^{128},|\mathcal{K}|=2^{128}, H(K)=128$. A cryptographic key is $k=\left(k_{1}, \ldots, k_{16}\right)$.
Encryption: $E_{k}=F_{k_{16}} \circ \cdots \circ F_{k_{1}}$.
Decryption: $D_{k}=F_{1}^{-1} \circ \cdots \circ F_{k_{16}}^{-1}$.
Unicity Distance: $N \approx \frac{H(K)}{D} \approx 40$ letters (assuming $D=3.2$).
The Lucifer operates on 128-bit messages and encrypts them into 128-bit cryptograms under a 128 -bit key. The general scheme of Lucifer is given in Figure 3.7. The core element is the function f (see Figure 3.8). It translates 64 -bit inputs into 64 -bit outputs using a 64 -bit partial key k_{j}; $j=1, \ldots, 16$. A 64-bit input R_{i-1} to the function f goes to eight identical S-boxes. Each S-box is a simple substitution cipher with a single bit key ("0" or " 1 "). The eight bits needed to control S-boxes are extracted from the partial key k_{j} The outputs from S-boxes are XORed with the partial key k_{j}. Finally, bits of the resulting sequence are permuted according to the fixed wire-crossing topology of the block P.

Figure 3.7: Lucifer

The key schedule of Lucifer is very regular. Partial keys are selected from 64 lower bits of the key. After every extraction of the partial key, the contents of the 128 -bit key register is rotated 56 bits to the left.

3.2.3 The DES Algorithm

The Data Encryption Standard (DES) [379] or Data Encryption Algorithm (DEA) was developed at IBM in the mid 70s and was the outgrowth of Lucifer. There is an interesting story behind the design and adoption of DES as an US encryption standard for non-military applications. Readers are referred to Schneier's book [445] for details. There is no surprise to learn that the DES algorithm repeats the Lucifer general structure. The algorithm is summarised in Figure 3.9. DES processes 64 -bit blocks of data under a 56 -bit key using 16 rounds (or iterations).

The DES cryptosystem

Message Space: $\mathcal{M}=\Sigma^{64}$.
Cryptogram Space: $\mathcal{C}=\Sigma^{64}$.
Key Space: $\mathcal{K}=\Sigma^{56},|\mathcal{K}|=2^{56}, H(K)=56$. A cryptographic key is $k=\left(k_{1}, \ldots, k_{16}\right)$.
Encryption: $E_{k}=F_{k_{16}} \circ \cdots \circ F_{k_{1}}$.
Decryption: $D_{k}=F_{1}^{-1} \circ \cdots \circ F_{k_{16}}^{-1}$.
Unicity Distance: $N \approx \frac{H(K)}{D} \approx 17.5$ letters (assuming $D=3.2$).
There was a disagreement over whether 56-bit key is sufficiently long. Diffie and Hellman [153] had predicted the DES algorithm would be vulnerable to the exhaustive search attack by a special purpose machine. Indeed, Michael Wiener [520] at the Crypto'93 rump session gave technical details

Figure 3.8: Lucifer function f
of a key search chip which can test 5×10^{7} keys per second. A search machine which uses 5760 chips will search the entire DES key space in 35 hours and cost $\$ 100,000$.

The algorithm can be used for both encryption and decryption. An input x can be either plaintext or ciphertext block. The sequence x is first transposed under an initial permutation IP. The 64 -bit output $I P(x)$ is divided into halves L_{0} and R_{0}. The pair (L_{0}, R_{0}) is subject to 16 Feistel transformations each of which uses the function $f\left(k_{i}, L_{i}\right) ; i=1, \ldots, 16$. Finally, the pair (L_{16}, R_{16}) is transposed under the inverse permutation IP^{-1} and produces the output y. The permutations IP and IP ${ }^{-1}$ are given in Table 3.5. The IP and IP ${ }^{-1}$ tables (as well as the other permutation tables described later) should be read left-to-right, top-to-bottom (e.g. IP transposes a binary string $x=\left(x_{1} x_{2} \ldots x_{64}\right)$ into $\left.\left(x_{58} x_{50} \ldots x_{7}\right)\right)$. All tables are fixed.

58	50	42	34	26	18	10	2									
60	52	44	36	28	20	12	4									
62	54	46	38	30	22	14	6									
64	56	48	40	32	24	16	8									
57	49	41	33	25	17	9	1									
59	51	43	35	27	19	11	3									
61	53	45	37	29	21	13	5									
63	55	47	39	31	23	15	7	\quad	40	8	48	16	56	24	64	32
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:								
39	7	47	15	55	23	63	31									
38	6	46	14	54	22	62	30									
37	5	45	13	53	21	61	29									
36	4	44	12	52	20	60	28									
35	3	43	11	51	19	59	27									
34	2	42	10	50	18	58	26									
33	1	41	9	49	17	57	25									
$(\mathrm{~b})$																

Table 3.5: (a) Initial permutation IP and (b) Final permutation IP $^{-1}$

Note that after the last iteration, the left and right halves are not exchanged; instead the concatenated block ($R_{16} L_{16}$) is input to the final permutation IP ${ }^{-1}$. This is necessary in order that the algorithm can be used both to encipher and decipher.

The Function f and S-boxes

Figure 3.10 shows the components of the function $f\left(k_{i}, R_{i-1}\right)$. First R_{i-1} is expanded to a 48 -bit string $E\left(R_{i-1}\right)$ using the bit-selection function E shown in Table 3.6. This table is used in the same way as the permutation tables, except that some bits of R_{i-1} are selected more than once; thus, given $R_{i-1}=r_{1} r_{2} \ldots r_{32}, \mathrm{E}\left(R_{i-1}\right)=r_{32} r_{1} r_{2} \ldots r_{32} r_{1}$. Next, XOR of $\mathrm{E}\left(R_{i-1}\right)$ and k_{i} is calculated and the

Figure 3.9: Data Encryption Standard
result broken into eight 6 -bit blocks B_{1}, \ldots, B_{8}, where,

$$
E\left(R_{i-1}\right) \oplus k_{i}=B_{1} B_{2} \ldots B_{8}
$$

Each 6-bit block B_{j} is then used as the input to a selection (substitution) function (S-box) S_{j}, which returns a 4 -bit block $S_{j}\left(B_{j}\right)$. These blocks are concatenated together, and the resulting 32 -bit block is transposed by the permutation P shown in Table 3.7 . Thus, the block returned by $f\left(k_{i}, R_{i-1}\right)$ is:

$$
P\left(S_{1}\left(B_{1}\right) \ldots S_{8}\left(B_{8}\right)\right)
$$

Each S-box S_{j} maps a 6-bit sequence $B_{j}=b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}$ into a 4 -bit sequence as defined in Table 3.8 . This is done as follows. The integer corresponding to $b_{1} b_{6}$ selects a row in the table, while the integer corresponding to $b_{2} b_{3} b_{4} b_{5}$ selects a column. The value of $S_{j}\left(B_{j}\right)$ is then the 4 -bit representation of the integer in that row and column. For example, if $B_{1}=011100$, then S_{1} returns the value in row 0 , column 14; this is 0 , which is represented as 0000 . If $B_{7}=100101$, then S_{7} returns the value in row 3 , column 2 ; this is 13 , which is represented as 1101 .

Although the DES algorithm was made public, the collection of tests used to select S-boxes and the P-box was not revealed until 1994 (see [107]). The collection of tests is equivalently referred in

Figure 3.10: DES function $f\left(k_{i}, R_{i-1}\right)$

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Table 3.6: Bit-selection function E
the literature as the design criteria/properties. A summary of the design properties used during the design of S-boxes and the P-box can be found in [68] and [375]. Some S-box design properties are

- Each row function in an S-box is a permutation (S-boxes produce sequences with balanced number of 0 s and 1 s).
- No S-box is linear or affine function of the input (S-boxes are nonlinear),
- A single-bit change on the input of an S-box changes at least two output bits (S-boxes provide "avalanche" effect).
- For each S-box $S, S(x)$ and $S(x \oplus 001100)$ must differ in at least two bits.
- $S(x) \neq S(x \oplus 11 e f 00)$ for any choice of bits e and f.
- The S-boxes minimize the difference between the number of 1's and 0's in any S-box output when any single bit is constant.

S-box design criteria can be defined using the information theory concept of mutual information. This approach was applied by Forre in [186] and Dawson and Tavares in [127]. They argued that the mutual information between inputs and outputs of S-boxes should be as small as possible. The study of the DES S-boxes gave rise to a new field called the S-box theory.

Davies [123] and Davio, Desmedt, Goubert, Hoornaert and Quisquater [124] analyzed the concatenation of the P-box and bit-selection function E. Assume that the input to an S-box is abcdef. The following observations can be made (see Brown [68]):

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

Table 3.7: Permutation P

- Each S-box input bit comes from the output of a different S-box.
- No input bit to a given S-box comes from the output of the same S-box.
- An output from S_{i-1} goes to one of the $e f$ input bits of S_{i} and further via E an output from S_{i-2} goes to one of the $a b$ input bits.
- An output of S_{i+1} goes to one of the $c d$ inputs bits of S_{i}.
- For each S-box output, two bits go to $a b$ or $e f$ input bits, the other two go to cd input bits.

The above properties allow a quick diffusion of partial cryptograms between two consecutive rounds.

DES Key Scheduling.

Each iteration uses a different 48-bit key k_{i} derived from the initial key k. Figure 3.11 illustrates how this is done. The initial key is input as a 64 -bit block, with 8 parity bits in positions $8,16, \ldots$, 64. The permutation PC1 (permuted choice 1) discards the parity bits and transposes the remaining 56 bits as shown in Table 3.9. The result, PC1 (k), is then split into halves C_{0} and D_{0} used to derive each partial key k_{i}. Subsequent values of $\left(C_{i}, D_{i}\right)$ are calculated as follows:

$$
\begin{aligned}
C_{i} & =L S_{s}\left(C_{i-1}\right) \\
D_{i} & =L S_{s}\left(D_{i-1}\right)
\end{aligned}
$$

where $L S_{s}$ is a left circular shift by the number of positions shown in Table 3.10 . Key k_{i} is then given by,

$$
k_{i}=P C 2\left(C_{i} D_{i}\right)
$$

where PC 2 is the permutation shown in Table 3.11 .
The key schedule works well for most of possible keys. Let the key be $k=0101010101010101_{x}$, then all partial keys are $k_{i}=00000000000000_{x}$ where the subscript x denotes a hexadecimal number. Note the key k has 8 parity bits which are stripped off later in the key scheduling. In general, all keys whose partial keys are the same must be avoided. These keys are termed as weak keys. DES has 16 weak keys. There is also a class of semiweak keys. A key is called semiweak if the key scheduling scheme produces two different partial keys only (instead of 16).

3.2.4 DES Modes of Operation

Encryption and decryption are usually done for larger than 64-bit blocks of data. A method of processing a large number of 64 -bit data blocks is called a mode of operation. There are four modes of operation:

Column																	
Row	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Box
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	S_{1}
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10	
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5	S_{2}
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15	
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9	
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8	
1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1	S_{3}
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7	
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12	
0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15	
1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9	S_{4}
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4	
3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14	
0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9	
1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6	S_{5}
2	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14	
3	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3	
0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11	
1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8	S_{6}
2	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6	
3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13	
0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1	
1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6	S_{7}
2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2	
3	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12	
0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7	
1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2	S_{8}
2	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8	
3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11	

Table 3.8: DES S-boxes

- electronic codebook mode (ECB),
- cipher block chaining mode (CBC),
- cipher feedback mode (CFB),
- output feedback mode (OFB).

In the ECB mode, a data block m of arbitrary length is divided into 64 -bit blocks $m_{1}, m_{2}, \ldots, m_{\ell}$. The last block, if it is shorter than 64 bits, needs to be padded to the full length of 64 bits. Later the DES algorithm is applied independently for each block using the same cryptographic key k so the ciphertext

$$
c=\left(c_{1}, \ldots, c_{\ell}\right)=\left(E_{k}\left(m_{1}\right), \ldots, E_{k}\left(m_{\ell}\right)\right)
$$

consists of ℓ independent cryptograms each related to a single message m_{i}. The decryption in the ECB mode is

$$
m=\left(m_{1}, \ldots, m_{\ell}\right)=\left(D_{k}\left(c_{1}\right), \ldots, D_{k}\left(c_{\ell}\right)\right)
$$

Figure 3.11: DES key schedule

As the blocks are independent, the receiver of ciphertext blocks is not able to determine the correct order of the blocks, or to detect duplicates or missing blocks.

The CBC mode is illustrated in Figure 3.12. The initial vector IV needs to be known at both sides but does not need to be secret. For encryption, cryptograms are created for the current message block and the previous cryptogram according to the following equation

$$
c_{i}=E_{k}\left(m_{i} \oplus c_{i-1}\right)
$$

where $c_{1}=E_{k}\left(m_{1} \oplus I V\right)$ and $i=2, \ldots, \ell$. The decryption process unravels the ciphertext

$$
m_{i}=D_{k}\left(c_{i}\right) \oplus c_{i-1}
$$

for $i=2, \ldots, \ell$ and $m_{1}=D_{k}\left(c_{1}\right) \oplus I V$.
In the CFB mode (Figure 3.13), cryptograms are equal to

$$
c_{i}=m_{i} \oplus E_{k}\left(c_{i-1}\right)
$$

where $c_{1}=m_{1} \oplus E_{k}(I V)$ and $i=2, \ldots, \ell$. The decryption uses E_{k} function as well therefore

$$
m_{i}=c_{i} \oplus E_{k}\left(c_{i-1}\right)
$$

and the decryption D_{k} is never used. Note that the sequence $E_{k}\left(c_{i}\right)$ mimics a random key in the one-time pad system. If the pseudorandom string $E_{k}\left(c_{i}\right)(i=1, \ldots, \ell)$ is simplified to the string $E_{k}^{i}(I V)$, then this mode of operation becomes OFB where $E_{k}^{i}=\underbrace{E_{k} \circ E_{k} \circ \ldots \circ E_{k}}_{i}$.

CBC and CFB modes are useful for message integrity checking as any interference with the original contents of the transmission will generate, after the decryption, a number of meaningless messages.

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

Table 3.9: Key Permutation PC1

Iteration	s	Iteration	s
1	1	9	1
2	1	10	2
3	2	11	2
4	2	12	2
5	2	13	2
6	2	14	2
7	2	15	2
8	2	16	1

Table 3.10: Key schedule of left shifts $L S_{s}$

Assume that we have received a ciphertext sequence $\left(c_{1}, \ldots, c_{j-1}, c_{j}^{\prime}, c_{j+1}, \ldots\right)$ where the cryptogram c_{j} was modified (accidently or otherwise) during the transmission. For the both modes, the messages m_{j} and m_{j+1} cannot be recovered.

3.2.5 Triple DES

Right from the very beginning when the DES algorithm was published, there was clear that the proposed cipher was intentionally weakened by the introduction of relatively short 56-bit cryptographic key [153]. The exhaustive search of the key space is possible as documented in [520].

To thwart the exhaustive search attack on the key space, the length of key must be increased. Consider double DES encryption with two independent keys or $c=E_{k_{1}}\left(E_{k_{2}}(m)\right)$ where k_{1}, k_{2} are 56 -bit independent keys. Clearly, the exhaustive search becomes infeasible as the key space contains now 2^{112} candidates. Assume that the attacker knows a valid pair (m, c) obtained under the double

14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

Table 3.11: Key Permutation PC2

Figure 3.12: CBC mode

Encryption

Figure 3.13: CFB mode

DES. The attacker can produce two sets

$$
\mathcal{E}=\left\{e=E_{k_{1}}(m) \mid k_{1} \in \mathcal{K}\right\}
$$

and

$$
\mathcal{D}=\left\{d=E_{k_{2}}^{-1}(c) \mid k_{2} \in \mathcal{K}\right\}
$$

where \mathcal{K} is the set of DES keys with 2^{56} elements, $E_{k_{2}}^{-1}$ is the DES decryption for the key k_{2}. Observe that for the correct pair of keys partial encryption/decryption must be the same or $e=d$. This also means that the pair (m, c) allows the attacker to create 2^{56} possible pairs of keys among which there must be the correct one. This obviously reduces the exhaustive search to 2^{56} candidates which is far smaller than the expected 2^{112}. Needless to say that, the second pair of (message, cryptogram) points out with a high probability the correct pair of keys.

This observation leads us to the conclusion that to expend the key space, at least the triple encryption (triple DES) must be applied. The following list shows possible implementations of the triple DES.

- $E_{k_{1}}\left(E_{k_{2}}\left(E_{k_{3}}(m)\right)\right)$ - the implementation with three independent keys (encryption is used three times - EEE triple DES).
- $E_{k_{1}}\left(E_{k_{2}}^{-1}\left(E_{k_{3}}(m)\right)\right)$ - the implementation with three independent keys. The encryption transformation uses the sequences (encrypt, decrypt and encrypt) of DES (EDE triple DES).
- $E_{k_{1}}\left(E_{k_{2}}^{-1}\left(E_{k_{1}}(m)\right)\right)$ - the triple encryption-decryption-encryption DES with two independent keys.

The triple DES with two independent keys is recommended in the ANSI X.9.17 and ISO 8732 standards for banking key management. The two-key triple DES is subject to a known-plaintext attack described in [389].

3.3 Modern Private-Key Cryptographic Algorithms

This section describes some of encryption algorithms. There have been many ciphers published so far. They can be roughly categorised into ciphers which exhibit either Feistel structure or are based on Shannon S-P network. The FEAL algorithm belongs to the DES family of ciphers with both Sboxes and key scheduling replaced by functions which can be run very fast. The IDEA algorithm uses a modified Feistel structure with cryptographic operations performed by carefully selected algebraic group operations. The RC6 algorithm again uses the Feistel structure with a heavy use of word instructions (rotation, shifting, and bit-by-bit Boolean instructions). The Rijndael algorithm uses S-P network with operations performed in GF $\left(2^{8}\right)$. The Serpent algorithm again is an example of S-P network with S-boxes derived from those used in DES with extensive use of word shift and rotation.

3.3.1 Fast Encryption Algorithm (FEAL)

The FEAL is Japanese encryption algorithm designed by the researchers from NTT Japan [462]. The main objective was to design an algorithm which would be as secure as DES but much faster. The FEAL algorithm processes 64-bit messages or cryptograms using a 64-bit key (Figure 3.14). It applies four Feistel permutations (rounds) with the function f shown in Figure 3.15. The function f uses two S-functions: $S f_{0}$ and $S f_{1}$ of the form

$$
S f_{0}(x, y)=((x+y \bmod 256) \ll 2) \text { and } S f_{1}(x, y)=((x+y+1 \bmod 256) \ll 2)
$$

where $(x \ll s)$ stands for rotation of the word $x s$ positions to the left. The key schedule applies another function f_{k} which is also based on $S f_{0}$ and $S f_{1}$ (see Figure 3.16).

In the literature the original FEAL is called FEAL-4 because it uses 4 rounds. There are also other versions with more rounds such as FEAL-8 or FEAL-32. The generic name FEAL-N refers to the FEAL with unrestricted number of rounds.

3.3.2 The IDEA Algorithm

IDEA stands for International Data Encryption Algorithm. The algorithm was designed by researchers from Swiss Federal Institute of Technology in 1990 (see [292, 293]). The algorithm uses a modified Feistel structure with eight rounds and the message (cryptogram) block size of 64-bits. Cryptographic keys are 128-bit long. All transformations used in the algorithm are based on three operations in $G F\left(2^{16}\right)$. They are

- bit-by-bit XOR operation (denoted by \oplus),
- addition modulo 2^{16} (denoted by \boxplus),
- multiplication modulo $\left(2^{n}+1\right)($ denoted by $\odot)$.

Figure 3．14：FEAL algorithm

The algorithm applies an S－box which accepts two 16 －bit input words and generates two 16－bit output words under control of two 16－bit words of the round key．The S－box is called the multiplication－ addition（MA）structure and is a permutation for a fixed key．The data flow during encryption is presented in Figure 3．17．Given a 64－bit message block $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ which is divided into four 16 －bit words．The i－th round employs 96 －bit key $k_{i}=\left(k_{i}^{(1)}, \ldots, k_{i}^{(6)}\right)$ with six 16 －bit words； $i=1, \ldots, 8$ ．

The key schedule takes the 128 －bit primary key and generates 6 －word round keys for eight rounds plus 4 words for the output transformation（all together 52 16－bit words）．First the primary key is divided into eight 16 －bit words $\left(k_{1}^{(1)}, \ldots, k_{1}^{(6)}, k_{2}^{(1)}, k_{2}^{(2)}\right)$ ．Next the primary key is rotated 25 positions to the left and partitioned into the next 8 words．This process continues until all 52 key words have been generated．

Decryption process uses the same algorithm－rounds are performed in reverse．Note that the S－box is invertible if the same keys are applied（for encryption and decryption）．Wherever mixing operations \odot are applied（keys $k_{1}^{(i)}, k_{4}^{(i)}$ ），the decryption uses their multiplicative inverses．On the other hand，if the addition $⿴ 囗 十$ is used，the additive inverse has to be used（keys $k_{2}^{(i)}, k_{3}^{(i)}$ ）．Also observe that the multiplication \odot is modified in such a way that the key $k_{i}^{(j)}=0$ has its inverse．This is done by assigning $k_{i}^{(j)}=2^{16}$ whose inverse is 2^{16} modulo $2^{16}+1$ ．

IDEA is a strong encryption algorithm．The only weakness reported so far is related to the existence of weak keys，i．e．a key is weak if it belongs to a set of keys for which their membership can be efficiently tested（see［118，238］）．

Figure 3.15: Function f

Figure 3.16: Function f_{k}

3.3.3 $\mathrm{RC}^{\mathrm{TM}}{ }^{\mathrm{TM}}$

RC6 ${ }^{\mathrm{TM}}$ was designed by researchers from MIT and RSA Laboratories and submitted as a candidate for the new Advanced Encryption Standard (AES). The description of the algorithm can be found in http://www.nist.gov/aes. RC6 is a strengthened version of the RC5 algorithm while keeping the efficiency of RC5. RC6 is in fact, a family of encryption algorithms indexed by three parameters (w, r, b), where w is the size of the word (typically forced by the underlying hardware architecture), r is the number of rounds used and specifies the tradeoff between efficiency and security, and b stands for the length of the primary cryptographic key K (in bytes).

The collection of operation used in RC6 includes

- integer addition modulo 2^{w} denoted as \boxplus,
- bit-by-bit XOR denoted by \oplus,
- integer multiplication modulo 2^{w} denoted by \otimes. The function $f(a)=a \otimes(2 a$ 田 1$)$.
- rotation: $a \ll b$ stands for rotation of the word a to the left by the least significant $\log _{2} w$ bits of b and similarly, $a \gg b$ stands for rotation of the word a to the right by the least significant $\log _{2} w$ bits of b.

Given a message in the form of four words (A, B, C, D) each of w bits (see Figure 3.18). Encryption starts from adding keys $K[0]$ and $K[1]$ to words B and D, respectively. Next the input is transformed

Figure 3.17: IDEA general structure
using r rounds each round can be described as:

$$
\begin{aligned}
& t=f(B) \ll \log w, \\
& u=f(D) \ll \log w, \\
& A=((A \oplus t) \ll u) \boxplus K[2 i], \\
& C=((C \oplus u) \ll t) \boxplus K[2 i+1] .
\end{aligned}
$$

The vector (A, B, C, D) is rotated so $(A, B, C, D)=(B, C, D, A)$. After r rounds, the output is (A 田 $K[2 r+2], B, C$ 田 $K[2 r+3], D)$.

The primary key K has b bytes. A sufficiently large array L of c words is allocated so it can hold the key. The key is stored into L and the unused bits of L are filled by zeros. So the first word $L[0]$ contains first bytes of the key and the last word $L[c \Leftrightarrow 1]$ contains the tail of the key padded with zeros to the full size of the word. RC6 uses two magic constants P_{w} and $Q_{w} . P_{w}$ is a word derived from the constant e - the base of the natural logarithm, while the word Q_{w} is obtained from binary expansion of the Golden Ratio constant. For instance for $w=32$, the words $P_{32}=0 \times 17 E 15163$ and $Q_{32}=0 \times 9$ E3779B9. Let $K[i] ; i=0, \ldots, 2 r+3$, be words of the round keys. Keys $K[i]$ are first initialised

$$
K[0]=P_{w} \text { and } K[i]=K[i \Leftrightarrow 1] \boxplus Q_{w}
$$

for $i=1, \ldots, 2 r+3$. Next the four variables A, B, i, j are set to zero and the constant $v=$ $3 \max (c, 2 r+4)$ is computed. Round keys are calculated by repeating the following sequence of

Figure 3．18：Encryption in RC6
operation v times．

$$
\begin{aligned}
& A=K[i]=(K[i] \text { 田 } A \text { 田 } B) \ll 3, \\
& B=L[j]=(L[j] \text { 田 } A \text { 田 } B) \ll(A \text { 田 } B), \\
& i=(i+1) \quad(\bmod 2 r+4), \\
& j=(j+1) \quad(\bmod c) .
\end{aligned}
$$

Decryption follows the footsteps of encryption in reverse and applies the additive inverse of the keys．Each round starts from rotation $(A, B, C, D)=(D, A, B, C)$ and

$$
\begin{aligned}
& t=f(B) \ll \log w, \\
& u=f(D) \ll \log w, \\
& A=((A \text { 田 }(\Leftrightarrow K[2 i])) \gg u) \oplus t, \\
& C=((C \text { 田 }(\Leftrightarrow K[2 i+1])) \gg t) \oplus u .
\end{aligned}
$$

There is little work on the cryptographic strength of RC6 but the fact that it went through to the second round of the AES call indicates its quality（for more details go to http：／／www．nist．gov／aes）． Some conclusions about its security can be derived from analysis done for RC5．For instance，Knudsen and Meier［282］demonstrated the existence of weak keys with respect to differential cryptanalysis and showed some weaknesses in the structure of the cipher．

3．3．4 Rijndael

The Rijndael cipher competes in the AES race and was design by the researchers from Belgium．Its description is taken from the NIST Web site http：／／www．nist．gov／aes．The cipher works for three block sizes：128， 192 and 256 bits．Rijndael applies the Shannon product cipher concept and it is not based on the Feistel structure．Cryptographic operations use heavily arithmetics in $G F\left(2^{8}\right)$ ．

Denote N_{b} and N_{k} as the number of 32 －bit words in the message（cryptogram）and the key， respectively．The cipher uses a sequence of rounds which varies depending on the length of message and key．If $N_{b}=N_{k}=4$ ，the number of rounds is $N_{r}=10$ ．If both $N_{b} \leq 6$ and $N_{k} \leq 6$ but not simultaneously equal to $4, N_{r}=12$ ．Otherwise，$N_{r}=14$ ．

The cipher applies the following transformations：

- ByteSub - the input block with $4 N_{b}$ bytes is subject to byte-by-byte transformation using the S-box,
- ShiftRow - the bytes of the input are arranged into four rows and every row is rotated the fixed number of positions,
- MixColumn - the bytes of the input are arranged into four rows and every column is transformed using polynomial multiplication over $G F\left(2^{8}\right)$,
- AddRoundKey - the input block is XOR-ed with the round key.

Figure 3.19: ByteSub transformation

The ByteSub transformation (see Figure 3.19) takes and input $A=\left(a_{0,0}, \ldots, a_{0, N_{b}-1}, \ldots, a_{3,0}, \ldots, a_{3, N_{b}-1}\right)$ and outputs $B=\left(b_{0,0}, \ldots, b_{0, N_{b}-1}, \ldots, b_{3,0}, \ldots, b_{3, N_{b}-1}\right)$ such that $b_{i, j}=S\left(a_{i, j}\right)$ for $i=0,1,2,3$ and $j=0, \ldots, N_{b-1} . S(x)$ is the S -box (permutation) described as follows:

$$
y=\left[\begin{array}{l}
10001111 \\
11000111 \\
11100011 \\
11110001 \\
11111000 \\
01111100 \\
00111110 \\
00011111
\end{array}\right] x^{-1}+\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

where $x^{-1} \in G F\left(2^{8}\right)$ is the multiplicative inverse of x if $x \neq 0$ or zero if $x=0$ (see also Figure 3.20). The S-box outputs an element from $G F\left(2^{8}\right)$. Note that for decryption $S^{-1}(x)$ must be used. In this

Inverse S-box

Figure 3.20: S-box in Rijndael
case, the inverse affine transformation is used followed by finding the multiplicative inverse in $G F\left(2^{8}\right)$.

The ShiftRow transformation (illustrated in Figure 3.21) takes the input

$$
\begin{aligned}
& a_{0}=\left(a_{0,0}, \ldots, a_{0, N_{b}-1}\right), \\
& a_{1}=\left(a_{1,0}, \ldots, a_{1, N_{b}-1}\right), \\
& a_{2}=\left(a_{2,0}, \ldots, a_{2, N_{b}-1}\right), \\
& a_{3}=\left(a_{3,0}, \ldots, a_{3, N_{b}-1}\right)
\end{aligned}
$$

and returns $a_{0} \gg C_{0}, a_{1} \gg C_{1}, a_{2} \gg C_{2}, a_{3} \gg C_{3}$ where $a \gg C$ is the rotation of the sequence a of bytes to the right by C bytes. The values of C_{i} are given below:

$$
C_{0}=0, C_{1}=1, C_{2}=\left\{\begin{array}{ll}
2 & \text { if } N_{b}=4,6 \\
3 & \text { otherwise }
\end{array} \text { and } C_{3}= \begin{cases}3 & \text { if } N_{b}=4,6 \\
4 & \text { otherwise }\end{cases}\right.
$$

In decryption mode, ShiftRow rotates the corresponding sequence of bytes the same number of positions but to the left.

Figure 3.21: ShiftRow transformation

The MixColumn transformation (see Figure 3.22) takes the input

$$
\begin{aligned}
& a_{0}=\left(a_{0,0}, \ldots, a_{0, N_{b}-1}\right), \\
& a_{1}=\left(a_{1,0}, \ldots, a_{1, N_{b}-1}\right), \\
& a_{2}=\left(a_{2,0}, \ldots, a_{2, N_{b}-1}\right), \\
& a_{3}=\left(a_{3,0}, \ldots, a_{3, N_{b}-1}\right),
\end{aligned}
$$

creates N_{b} polynomials $A_{j}(x)=a_{3, j} x^{3}+a_{2, j} x^{2}+a_{1, j} x+a_{0, j} ; j=0, \ldots, N_{b-1}$, multiplies $A_{j}(x)$ by the polynomial $C(x)=c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}$ where $c_{3}=0 \times 03, c_{2}=0 \times 01, c_{1}=0 \times 01$, and $c_{0}=0 \times 02$ $\left(c_{i} \in G F\left(2^{8}\right)\right)$. MixColumn returns $B_{j}=b_{3, j} x^{3}+b_{2, j} x^{2}+b_{1, j} x+b_{0, j}$ such that $B_{j}(x)=A_{j}(x) \times C(x)$ where

$$
\begin{aligned}
b_{0} & =\left(b_{0,0}, \ldots, b_{0, N_{b}-1}\right), \\
b_{1} & =\left(b_{1,0}, \ldots, b_{1, N_{b}-1}\right), \\
b_{2} & =\left(b_{2,0}, \ldots, b_{2, N_{b}-1}\right), \\
b_{3} & =\left(b_{3,0}, \ldots, b_{3, N_{b}-1}\right),
\end{aligned}
$$

In the decryption mode, MixColumn multiplies the respective columns by the inverse $D(x)=C(x)^{-1}$ or $D(x) \times C(x)=1 \in G F\left(2^{8}\right)$.

The key schedule procedure KeyExpansion produces key material $W=\left(W_{0}, \ldots, W_{N_{b}\left(N_{r}+1\right)-1}\right)$ from the primary key $K=\left(K_{0}, \ldots, K_{N_{k}-1}\right)$ where W_{i}, K_{i} are 32 -bit words. It applies two functions:

- SubByte (a, b, c, d) which accepts four bytes and returns $(S(a), S(b), S(c), S(d))$,
- RotByte $(a, b, c, d)=(b, c, d, a)$ - rotates bytes.

KeyExpansion has two versions: one for $N_{k} \leq 6$ and the other for $N_{k}>6$. The first version (for $\left.N_{k} \leq 6\right)$ takes two phases:

Figure 3.22: MixColumn transformation

- initialisation where $W_{i}=K_{i}$ for $i=0, \ldots, N_{K} \Leftrightarrow 1$,
- expansion phase which takes the last computed word and extends it for the next one. The steps are as follows:

$$
\begin{aligned}
& \operatorname{tmp}=W_{i-1}, \\
& \text { if } i \quad\left(\bmod N_{k}\right)=0, \text { then } \operatorname{tmp}=\operatorname{SubByte}(\operatorname{Rot} \operatorname{Byte}(\operatorname{tmp})) \oplus \operatorname{Rcon}_{\left\lfloor i / N_{k}\right\rfloor}, \\
& W_{i}=W_{i-N_{k}} \oplus \operatorname{tmp},
\end{aligned}
$$

where the constants $\operatorname{Rcon}_{i}=\left(R C_{i}, 0,0,0\right)$ and $R C_{i}=R C_{i-1}=x^{i-1}$ where x is an element of $G F\left(2^{8}\right)$.

The second version (for $N_{k}>6$) takes two phases:

- initialisation where $W_{i}=K_{i}$ for $i=0, \ldots, N_{K} \Leftrightarrow 1$,
- expansion phase which takes the last computed word and extends it for the next one. The steps are as follows:

$$
\begin{aligned}
& \operatorname{tmp}=W_{i-1}, \\
& \text { if } i \quad\left(\bmod N_{)}=0, \text { then } \operatorname{tmp}=\operatorname{SubByte}(\operatorname{RotByte}(\operatorname{tmp})) \oplus \operatorname{Rcon}_{\left\lfloor i / N_{k}\right\rfloor}\right. \\
& \text { else if } i \quad\left(\bmod N_{k}\right)=4 \text { then } \operatorname{tmp}=\operatorname{SubByte}(\operatorname{tmp}), \\
& W_{i}=W_{i-N_{k}} \oplus \mathrm{tmp} .
\end{aligned}
$$

Encryption process is illustrated in Figure 3.23. Clearly, decryption employs inverse transformation in reverse order.

3.3.5 Serpent

The Serpent cipher is an AES submission from an international team (England, Israel and Norway). The description of the cipher can be found at the AES Web site http://www.nist.gov/aes. A very first version of the algorithm called Serpent-0 was presented at the Fast Software Encryption Workshop in 1998 [31].

Serpent handles 128-bit messages and cryptograms using a cryptographic key which can be either 128 or 192 or 256-bit long. It implements a Shannon S-P network. The basic cryptographic operations are:

- S-boxes - there are 8 different S-boxes S_{0}, \ldots, S_{7}. Each S-box is a permutation mapping 4 -bit input into 4 -bit output. The i-th round applies 32 copies of the same S-box $S_{i \bmod 8} ; i=0, \ldots, 7$,

Figure 3.23: Rijndael encryption

- linear transformation L - it takes four 32 -bit words $X_{0}, X_{1}, X_{2}, X_{3}$, performs the following

$$
\begin{aligned}
& X_{0}=X_{0} \lll 13, \\
& X_{2}=X_{2} \lll 3, \\
& X_{1}=X_{1} \oplus X_{0} \oplus X_{2}, \\
& X_{3}=X_{3} \oplus X_{2} \oplus\left(X_{0} \ll 3\right), \\
& X_{1}=X_{1} \lll 1, \\
& X_{3}=X_{3} \lll 7, \\
& X_{0}=X_{0} \oplus X_{1} \oplus X_{3}, \\
& X_{2}=X_{2} \oplus X_{3} \oplus\left(X_{1} \ll 7\right), \\
& X_{0}=X_{0} \lll 5, \\
& X_{2}=X_{2} \lll 22
\end{aligned}
$$

and returns $X_{0}, X_{1}, X_{2}, X_{3}$, where $X \lll s$ stands for rotation of X by s bits to the left and $X \ll s$ means left shift of X by s bits.

S-boxes used in Serpent have the following properties:

1. probabilities of differential characteristics are no smaller than $1 / 4$ and a one-bit difference never translates into a one-bit output difference,
2. probabilities of linear characteristics are within the range $0.5 \pm 1 / 4$ and the correlation between pairs of input/output bits expressed by a probability in the range $0.5 \pm 1 / 8$,
3. the nonlinear order of the output bits is maximum.

S-boxes are generated from DES S-boxes. Given a (32×16) sbox[] []. The 32 rows are initialised by 32 permutations of the DES S-boxes. An array serpent [] with 16 four-bit entries is used to point
out the entry of sbox[][] which is chosen for modification. The array serpent [] is initialised to the least significant four bits of each of 16 ASCII characters in the string sboxesforserpent. The following procedure is used to generate the necessary eight S-boxes

```
index=0
repeat
    currentsbox=index mod 32
for i=0 to 15 do
    j=sbox[(currentsbox+1)mod32][serpent[i]]
    swapentries(sbox[currentsbox] [i],sbox[currentsbox][j])
if sbox[currentsbox] [] has the desired properties, save it
index=index+1
until eight S-boxes have been saved
```

The modification of S-boxes is based on swapping entries of the row indexed by the currentsbox index. S-boxes obtained according to the prescription described above are shown in Table 3.12. Clearly, the intention of the designers of Serpent was to convince potential users that the S-boxes have been designed with no hidden trapdoors.

| S_{0} | 3 | 8 | 15 | 1 | 10 | 6 | 5 | 11 | 14 | 13 | 4 | 2 | 7 | 0 | 9 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| S_{1} | 15 | 12 | 2 | 7 | 9 | 0 | 5 | 10 | 1 | 11 | 14 | 8 | 6 | 13 | 3 | 4 |
| S_{2} | 8 | 6 | 7 | 9 | 3 | 12 | 10 | 15 | 13 | 1 | 14 | 4 | 0 | 11 | 5 | 2 |
| S_{3} | 0 | 15 | 11 | 8 | 12 | 9 | 6 | 3 | 13 | 1 | 2 | 4 | 10 | 7 | 5 | 14 |
| S_{4} | 1 | 15 | 8 | 3 | 12 | 0 | 11 | 6 | 2 | 5 | 4 | 10 | 9 | 14 | 7 | 13 |
| S_{5} | 15 | 5 | 2 | 11 | 4 | 10 | 9 | 12 | 0 | 3 | 14 | 8 | 13 | 6 | 7 | 1 |
| S_{6} | 7 | 2 | 12 | 5 | 8 | 4 | 6 | 11 | 14 | 9 | 1 | 15 | 13 | 3 | 10 | 0 |
| S_{7} | 1 | 13 | 15 | 0 | 14 | 8 | 2 | 11 | 7 | 4 | 12 | 10 | 9 | 3 | 5 | 6 |

Table 3.12: Serpent S-boxes

The encryption commences from the initial permutation (IP), runs through 32 rounds and concludes with the final permutation (FP) which the inverse of IP (see Figure 3.24). The input to the i-th round is first XOR-ed with the round key K_{i} and next put into inputs of 32 copies of the same S -box (one of the eight generated from DES S-boxes); $i=0, \ldots, 30$. The outputs are transformed by the linear transformation L. The last (32-nd) round replaces L by XOR of the key K_{32}.

There are eight S-boxes only so the execution of 32 rounds requires that the same S-box is used in four rounds. The S-box S_{i} is used in rounds $i, 8+i, 16+i, 24+i$ for $i=0, \ldots, 7$.

Obviously the decryption requires that the inverse operations (including inverse S -boxes) have to be used in reverse order.

Key scheduling is used to produce 33128 -bit subkeys used. As we have already mentioned, the main key is expanded to the 256 -bit primary key K. Denote the key K as a sequence of eight 32 -bit words $K=\left(w_{-8}, \ldots, w_{-1}\right)$. The necessary key material is generated word by word according to the following equation:

$$
w_{i}=\left(w_{i-8} \oplus w_{i-5} \oplus w_{i-1} \oplus \phi \oplus i\right) \ll 11
$$

where ϕ is the part of decimal extension of the golden ratio ($\phi=0 \times \mathrm{x} 9 \mathrm{e} 3779 \mathrm{~b} 9$); $i=0, \ldots, 131$. The words of round keys are computed using consecutive four words pieces ($w_{4 i}, w_{4 i+1}, w_{4 i+2}, w_{4 i+3}$) for

Figure 3.24: Serpent encryption
$i=1,2, \ldots, 32$ as

$$
\begin{aligned}
K_{0} & =\left(k_{0}, k_{1}, k_{2}, k_{3}\right)=S_{3}\left(w_{0}, w_{1}, w_{2}, w_{3}\right), \\
K_{1} & =\left(k_{4}, k_{5}, k_{6}, k_{7}\right)=S_{2}\left(w_{4}, w_{5}, w_{6}, w_{7}\right), \\
K_{2} & =\left(k_{8}, k_{9}, k_{10}, k_{11}\right)=S_{1}\left(w_{8}, w_{9}, w_{10}, w_{11}\right), \\
K_{3} & =\left(k_{12}, k_{13}, k_{14}, k_{15}\right)=S_{0}\left(w_{12}, w_{13}, w_{14}, w_{15}\right), \\
K_{4} & =\left(k_{16}, k_{17}, k_{18}, k_{19}\right)=S_{7}\left(w_{16}, w_{17}, w_{18}, w_{19}\right), \\
& \vdots \\
K_{31} & =\left(k_{124}, k_{125}, k_{126}, k_{127}\right)=S_{4}\left(w_{124}, w_{125}, w_{126}, w_{127}\right), \\
K_{32} & =\left(k_{128}, k_{129}, k_{130}, k_{131}\right)=S_{3}\left(w_{128}, w_{129}, w_{130}, w_{131}\right) .
\end{aligned}
$$

The Serpent cipher is one of the five finalists chosen in the second round of the AES call. Its strength needs to be confirmed by independent tests.

3.3.6 Other Ciphers

The LOKI algorithm was designed in Australia. The first version called LOKI89 was published at AUSCRYPT'90 Conference [67]. The revised version LOKI91 can be found in the proceedings of ASIACRYPT'91 Conference [66]. Interestingly enough, LOKI applies many copies of a single S-box which is based on cubing in $\operatorname{GF}\left(2^{8}\right)$.

The GOST algorithm is a Russian cipher [380] with the Feistel structure. It applies eight S-boxes which are permutations of 4 -bit integers. The details of the S-boxes, however, are left unspecified suggesting that the algorithm was designed to force users to apply for S-boxes to the central authority.

Note that the central authority could choose weak S-boxes on purpose to be able to read encrypted data. This looks like a Russian version of key escrowing.

The 2nd round finalists of the AES call are RC6, Rijndael, Serpent, MARS and Twofish. We have described the first three. Now let as discuss briefly the remaining two.

The MARS algorithm is an IBM cipher (see http://www.nist.gov/aes). The designers differentiated between internal rounds and external ones (also called "wrapper layers"). The internal rounds are seen as "the core" of the algorithm (provide mostly confusion) while external ones are using noncryptographic mixing (diffusion).

The Twofish algorithm is an AES candidate designed by a team of researchers from Counterpane Systems, Hi/fn, Inc. and University of California, Berkeley. It is a Feistel cipher with 16 uniform rounds. The round function $F: \Sigma^{64} \rightarrow \Sigma^{64}$ consists of two copies of the function $g: \Sigma^{32} \rightarrow \Sigma^{32}$. The function g is built using four 8 -bit S-boxes. Each S-box is a permutation controlled by a cryptographic key. The outputs from the four S-boxes are mixed using maximum distance separable code. The outputs from the two copies of g are combined using modular addition.

3.4 Differential Cryptanalysis

Private-key cryptographic algorithms can be subject to the following general attacks:

- Ciphertext-only attack - the cryptanalyst knows cryptograms only. They know $E_{k}\left(m_{1}\right), E_{k}\left(m_{2}\right)$, $\ldots, E_{k}\left(m_{\ell}\right)$ and want to find out either the key k or one or more messages m_{i} for some $i=1, \ldots \ell$. This attack takes place if the cryptanalyst is able to eavesdrop the communication channel.
- Known-plaintext attack - the adversary has access to a collection of pairs $\left\{\left(m_{i}, E_{k}\left(m_{i}\right)\right) \mid i=\right.$ $1, \ldots, \ell\}$ and wants to determine the key k or to decrypt a cryptogram $E_{k}\left(m_{\ell+1}\right)$ not included in the collection. The adversary in this attack can not only eavesdrop the communication channel but also can, in some way, access to a part of the plaintext. This happens if for example, messages have a predictable structure so the attacker knows or can guess that the header of the plaintext starts from "How are you ?" or "Dear Sir/Madam" and ends with "Sincerely yours".
- Chosen-plaintext attack - this is a known-plaintext attack for which the cryptanalyst may choose messages and read the corresponding cryptograms. This scenario may happen if the encryption equipment is left without supervision for some time, and the attacker can play with it assuming they cannot access the key.
- chosen-ciphertext attack - the enemy can select their own cryptograms and observe the corresponding messages for them. The aim of the enemy is to find out the secret key or encrypt a new message into the valid cryptogram. This attack may happen if the decryption equipment is left unsupervised and the attacker can try different cryptograms (assuming that the equipment is tamper proof - the attacker cannot access the secret key).

Biham and Shamir invented the differential cryptanalysis in 1990 ([32], [34]). This is a chosenplaintext attack which is not only applicable for encryption algorithms but also can be used for other cryptographic algorithms including hashing.

3.4.1 XOR Profiles

The basic tool used in the analysis is a table which shows differences between input and output of S-boxes. This table is further referred to as the $X O R$ profile of an S-box. Assume that we have an

S-box that transforms input strings according to the following function

$$
f: \Sigma^{n} \rightarrow \Sigma^{m}
$$

For a given pair of input strings $\left(s_{1}, s_{2}\right)$, the S-box generates outputs $s_{1}^{*}=f\left(s_{1}\right)$ and $s_{2}^{*}=f\left(s_{2}\right)$. The pair of input/output tuples $\left\{\left(s_{1}, s_{1}^{*}\right),\left(s_{2}, s_{2}^{*}\right)\right\}$ is characterised by their input and output XOR differences $\delta=s_{1} \oplus s_{2}$ and $\Delta=s_{1}^{*} \oplus s_{2}^{*}$. Denote

$$
\mathcal{S}_{\Delta}^{\delta}=\left\{\left(s_{1}, s_{2} ; s_{1}^{*}, s_{2}^{*}\right) \mid s_{1} \oplus s_{2}=\delta, s_{1}^{*} \oplus s_{2}^{*}=\Delta ; s_{1}, s_{2} \in \Sigma^{n}, s_{1}^{*}, s_{2}^{*} \in \Sigma^{m}, s_{1}^{*}=f\left(s_{1}\right), s_{2}^{*}=f\left(s_{2}\right)\right\}
$$

the set consists of elements (four-tuples) whose δ and Δ are fixed. For instance, the set $\mathcal{S}_{2_{x}}^{3 C_{x}}=$ $\left\{\left(3_{x}, 3 F_{x} ; F_{x}, D_{x}\right),\left(17_{x}, 2 B_{x} ; B_{x}, 9_{x}\right),\left(2 B_{x}, 17_{x} ; 9_{x}, B_{x}\right),\left(3 F_{x}, 3_{x} ; D_{x}, F_{x}\right)\right\}$ is computed for S_{1} of DES. It means that there are four elements in the set. Note that there are actually two different elements only as the remaining two are permutations of their inputs and outputs. That is why the cardinality of $\mathcal{S}_{\Delta}^{\delta}$ is always an even number. There are also some δ and Δ for which the set $\mathcal{S}_{\Delta}^{\delta}$ is empty. Indeed, any set $\mathcal{S}_{\Delta}^{0_{x}}$ for $\Delta \neq 0$ is empty. This happens because any 4 -tuple for two identical inputs is of the form $\left(x_{i}, x_{i} ; y_{i}, y_{i}\right)$ and the corresponding Δ must be zero. The number of 4 -tuples in $\mathcal{S}_{0_{x}}^{0_{x}}$ is equal to 2^{n}.

Definition 3.2 The $X O R$ profile of an S-box defined by $f: \Sigma^{n} \rightarrow \Sigma^{m}$ is a table which has 2^{n} rows and 2^{m} columns. Each row and column is indexed by δ and Δ, respectively. Each entry $(\delta, \Delta$) of the table shows the number of elements in the set $\mathcal{S}_{\Delta}^{\delta}$.

The XOR profile of the DES S_{1} is presented in Table 3.13. For the full collection of XOR profiles of other DES S-boxes, the reader is referred to [34]. For the rest of this section we shall use S_{1} of DES in our examples.

The properties of XOR profiles can be summarised as follows:

- all entries in the table are zeros or positive even integers,
- the row for $\delta=0$ has only one nonzero entry equal to 2^{n} (n is the number of input bits of the S-box),
- the sum of entries in each row is equal to 2^{n},
- an input difference δ may cause an output difference Δ with probability $p=\frac{\alpha}{2^{n}}$ where α is the entry of (δ, Δ). This is denoted as $\delta \rightarrow \Delta$,
- if an entry (δ, Δ) is zero, then the input difference δ cannot cause the difference Δ on the output.

Suppose both δ and Δ are known. What can be said about actual values of the input ? Obviously, the input must occur in some tuples from $\mathcal{S}_{\Delta}^{\delta}$. For example, the set $\mathcal{S}_{2_{x}}^{3 C_{x}}$ computed for S_{1} of DES contains four inputs $s \in\left\{3_{x}, 3 F_{x}, 17_{x}, 2 B_{x}\right\}$. Consider the DES S_{1} with a 6 -bit partial key k XORed to the input (see Figure 3.25). The XOR profile of S_{1} with the key is identical to the XOR profile of the original S-box. This results from the fact that $\left(s_{1} \oplus k\right) \oplus\left(s_{2} \oplus k\right)=s_{1} \oplus s_{2}$. Now assume that the values s_{1}, s_{2} and Δ are known. What we can say about the key? First, observe that both $s_{1} \oplus k$ and $s_{2} \oplus k$ must occur in $\mathcal{S}_{\Delta}^{\delta}$ where $\delta=s_{1} \oplus s_{2}$. So we can extract all input values from the set $\mathcal{S}_{\Delta}^{\delta}$. Let the set of the inputs be $\mathcal{X}=\left\{s_{i_{1}}, \ldots, s_{i_{j}}\right\}$ where $j=\left|\mathcal{S}_{\Delta}^{\delta}\right|$. Then the key k must belong to the set $\mathcal{K}=\mathcal{X} \oplus s_{1}=\mathcal{X} \oplus s_{2}=\left\{s_{i_{1}} \oplus s_{1}, \ldots, s_{i_{j}} \oplus s_{1}\right\}=\left\{s_{i_{1}} \oplus s_{2}, \ldots, s_{i_{j}} \oplus s_{2}\right\}$.

Consider an example. Let an input $\left(s_{1}, s_{2}\right)=\left(21_{x}, 38_{x}\right)$ and the output difference $\Delta=1_{x}$. The set

$$
\begin{aligned}
\mathcal{S}_{1_{x}}^{19_{x}}= & \left\{\left(2_{x}, 1 B_{x} ; 4_{x}, 5_{x}\right),\right. \\
& \left(2 B_{x}, 2_{x} ; 5_{x}, 4_{x}\right), \\
& \left(3 B_{x} ; 1_{x}, 0_{x}\right), \quad\left(2 C_{x} ; 35_{x} ; 2_{x}\right), \\
& \left.\left(3 B_{x}, 22_{x} ; 3_{x}, 1_{x}\right)\right\}
\end{aligned}
$$

Table 3.13: XOR profile of DES S_{1}

Figure 3.25: Differential analysis of S1

The collection of all inputs is $\mathcal{X}=\left\{2_{x}, 1 B_{x}, 22_{x}, 3 B_{x}, 2 C_{x}, 35_{x}\right\}$. The applied key must be in the following set $\mathcal{K}_{1}=\mathcal{X} \oplus s_{1}=\mathcal{X} \oplus s_{2}=\left\{23_{x}, 3 A_{x}, 3_{x}, 1 A_{x}, D_{x}, 14_{x}\right\}$. If the second observation is done for the input $\left(s_{1}, s_{2}\right)=(14,23)$ and $\Delta=2_{x}$. The set $\mathcal{S}_{2_{x}}^{37_{x}}$ has 12 elements and is equal to

$$
\begin{array}{rlr}
\mathcal{S}_{2_{x}}^{37_{x}}= & \left\{\left(E_{x}, 39_{x} ; 8_{x}, A_{x}\right),\right. & \left(F_{x}, 38_{x} ; 1_{x}, 3_{x}\right), \\
& \left(11_{x}, 26_{x} ; A_{x}, 8_{x}\right), & \left(12_{x}, 25_{x} ; A_{x}, 8_{x}\right), \\
& \left(18_{x}, 2 F_{x} ; 5_{x}, 7_{x}\right), & \left(19_{x}, 2 E_{x} ; 9_{x}, B_{x}\right), \\
& \left(25_{x}, 12_{x} ; 8_{x}, A_{x}\right), & \left(26_{x}, 11_{x} ; 8_{x}, A_{x}\right), \\
& \left(2 E_{x}, 19_{x} ; B_{x}, 9_{x}\right), & \left(2 F_{x}, 18_{x} ; 7_{x}, 5_{x}\right), \\
& \left(38_{x}, F_{x} ; 3_{x}, 1_{x}\right), & \left.\left(39_{x}, E_{x} ; A_{x}, 8_{x}\right)\right\} .
\end{array}
$$

The set of inputs is $\mathcal{X}=\left\{E_{x}, 39_{x}, F_{x}, 38_{x}, 11_{x}, 26_{x}, 12_{x}, 25_{x}, 18_{x}, 2 F_{x}, 19_{x}, 2 E_{x}\right\}$. The key applied must be in the set $\mathcal{K}_{2}=\mathcal{X} \oplus s_{1}=\mathcal{X} \oplus s_{2}=\left\{1 A_{x}, 2 D_{x}, 2 C_{x}, 1 B_{x}, 32_{x}, 5_{x}, 31_{x}, 6_{x}, 3 B_{x}, C_{x}, 3 A_{x}, D_{x}\right\}$. The intersection of the sets $\mathcal{K}_{1} \cap \mathcal{K}_{2}=\left\{1 A_{x}, D_{x}, 3 A_{x}\right\}$. The key must be there. Yet another observation should be enough to find out the unique key. Indeed, let $\left(s_{1}, s_{2}\right)=\left(14_{x}, 1 C_{x}\right)$ and $\Delta=9_{x}$, then we have $\mathcal{X}=\left\{6_{x}, E_{x}, 20_{x}, 28_{x}, 25_{x}, 2 D_{x}\right\}$ and $\mathcal{K}_{3}=\mathcal{X} \oplus s_{1}=\mathcal{X} \oplus s_{2}=\left\{12_{x}, 1 A_{x}, 34_{x}, 3 C_{x}, 31_{x}, 39_{x},\right\}$. The only key in all sets $\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{3}$ is $1 A_{x}$.

At this stage we know how a single S-box can be analysed using input observations and the corresponding output differences. The following points summarise our considerations:

- the XOR profile of an S-box with the secret key XORed with the input is identical to the XOR profile of the S-box without the key,
- every input observation $\left(s_{1}, s_{2}\right)$ and the corresponding output difference Δ enables the cryptanalyst to find out a set \mathcal{K} of key candidates and

$$
|\mathcal{K}|=\left|\mathcal{S}_{\Delta}^{\delta}\right|
$$

where $\delta=s_{1} \oplus s_{2}$ and $\Delta=f\left(s_{1}\right) \oplus f\left(s_{2}\right)$,

- the analysis of differences for a single S-box allows to retrieve the key which is XORed to the input of an S-box.

Now we would like to extend our analysis to the DES algorithm. Consider the last round of DES. As DES uses Feistel permutations, inputs to all S-boxes used in the last round can be observed by looking at the second half of the cryptogram. The problem is that we cannot see the corresponding output differences. Fortunately, Biham and Shamir demonstrated that there is a probabilistic argument which allows to make guesses about Δ. To explain the idea, we need to introduce the so-called characteristics of DES rounds.

3.4.2 DES Round Characteristics

An important feature of XOR profiles is that the input difference $\delta=0$ forces the output difference Δ to be zero as well. Consider a single DES round with two input sequences $\left(A_{1}, 0\right)$ and $\left(A_{2}, 0\right)$. So their input difference is $\Omega_{i n}=\left(A_{1} \oplus A_{2}, 0\right)=\left(\delta_{A}, 0\right)$. The inputs to S -boxes are identical so their output differences are zero. Finally, the output difference $\Omega_{\text {out }}=\left(\delta_{A}, 0\right)$ - see Figure 3.26.

Figure 3.26: A single round characteristic of DES
Consider the XOR profile of S_{1}. Our goal now is to find a characteristic which feeds a nonzero input difference into S_{1} while other input differences of S_{2}, \ldots, S_{8} are set to zero. Additionally, the characteristic should work with a high probability. If we have a fixed input difference, then output differences happen with the probability proportional to the corresponding entries in the XOR profile. The largest entry is 14 and occurs in many places in the table. The first occurrence is in $\left(3_{x}, 0_{x}\right)$. It means that the input difference 000011 produces the output difference 0000 . The two nonzero bits on the S_{1} input have had to pass through the expansion block E so they are duplicated on the input of S_{2}. The only pair of bits which is not duplicated in other S-boxes is the pair of two middle bits (in the E table marked as bits 2 and 3). So we have to look at rows $000100=4_{x}, 001000=8_{x}$, and $001100=C_{x}$. The only row with an entry 14 is the last one $\delta=C_{x}$. The pair of differences $\left(C_{x}, E_{x}\right)$ happens with probability $\frac{14}{64}$. The characteristic is depicted in Figure 3.27. The binary string

Figure 3.27: Another single round characteristic of DES
(00808200_{x}) is obtained by permuting ($E 0000000_{x}$) according to the DES permutation block P.
The two single round characteristics can be concatenated to create 2 -round characteristic shown in Figure 3.28. Its probability is $\frac{14}{64}$ as the second round happens always (with the probability 1).

This informal discussion can be generalised for an arbitrary Feistel-type cryptosystem. The cryptosystem processes n-bit messages or cryptograms and uses a round function $f_{k}: \Sigma^{\frac{n}{2}} \rightarrow \Sigma^{\frac{n}{2}}$. The cryptographic key k is XORed to the inputs of S-boxes.
Definition 3.3 An m-round characteristic of a Feistel-type cryptosystem is a sequence

$$
\left(\Omega_{\text {in }}, \delta_{1}, \Delta_{1}, \ldots, \delta_{m}, \Delta_{m}, \Omega_{\text {out }}\right)=\left(\Omega_{\text {in }}, \Omega_{\Delta}, \Omega_{\text {out }}\right)
$$

where $\Omega_{\text {in }}$ and $\Omega_{\text {out }}$ are input and output differences. The pairs $\left(\delta_{i}, \Delta_{i}\right) ; i=1, \ldots, m$, are consecutive input and output differences for the round function f_{k}.

Figure 3.28: A two-round characteristic of DES

Characteristics can be concatenated in similar way as we have done to create 2 -round characteristic from two single ones. Let $\Omega^{1}=\left(\Omega_{i n}^{1}, \Omega_{\Delta}^{1}, \Omega_{o u t}^{1}\right)$ and $\Omega^{2}=\left(\Omega_{i n}^{2}, \Omega_{\Delta}^{2}, \Omega_{o u t}^{2}\right)$ be two characteristics. They can be concatenated if the swapped halves of $\Omega_{\text {in }}^{2}$ are equal to $\Omega_{o u t}^{1}$ and the concatenation $\Omega=\left(\Omega_{i n}^{1}, \Omega_{\Delta}^{1,2}, \Omega_{o u t}^{2}\right)$. where $\Omega_{\Delta}^{1,2}$ is the concatenation of the two sequences Ω_{Δ}^{1} and Ω_{Δ}^{2}.

Any characteristic has a probability attached to it. Let our m-round characteristic be ($\Omega_{i n}, \delta_{1}, \Delta_{1}$, $\ldots, \delta_{m}, \Delta_{m}, \Omega_{\text {out }}$. Then its probability

$$
P(\Omega)=\prod_{i=1}^{m} p_{\Delta_{i}}^{\delta_{i}}
$$

where $p_{\Delta_{i}}^{\delta_{i}}$ is the probability that input difference δ_{i} causes the output difference Δ_{i} for the function f_{k} in the i-th round.

3.4.3 A Cryptanalysis of 4-Round DES

First recall that to be able to find out keys we have to concentrate on the last round. For a given pair of plaintext, we need to know values given to the function f_{k} in the last round. These values are known as they are the right halves of the cryptograms. The main goal is to find the output differences which occur on S-boxes in the last round.

We use a characteristic given in Figure 3.26 for $\delta_{A}=20000000_{x}$ which works always (with probability 1). The general scheme of differences in the 4 -round DES is given in Figure 3.29. We start from an observation that

$$
\begin{equation*}
\Delta_{4}=\Delta_{\text {out }} \oplus \Delta_{2} \oplus \delta_{1} . \tag{3.5}
\end{equation*}
$$

$\Delta_{\text {out }}$ is known from the cryptograms (left halves) and δ_{1} is given from the input (right halves). Take a closer look at Δ_{1} and Δ_{2}. As $\delta_{1}=0, \Delta_{1}=0$ as well. On the other hand, $\delta_{2}=20000000_{x}$ so the input difference on S_{1} becomes 001000 leaving the rest of S-boxes with zero differences (notice that the two middle bits of S_{1} are not duplicated in other S-boxes by the bit-selection block E). This means that all output differences of S_{2}, \ldots, S_{8} are forced to zero - we know differences on their outputs. Thus 28 -bits of Δ_{2} are known. From Equation (3.5), we conclude that 28 bits of Δ_{4} are known. Being more specific, we know inputs of seven S-boxes and their output differences in the last round. By the differential analysis given in Section 3.4.1, we can find $7 \times 6=42$ bits out of the 48 -bit key k_{4}.

To be able to analyse S_{1} in the 4 -th round, we need another characteristic. We can use the same one but for $\delta_{A}=04444444_{x}$. As previously, $\delta_{1}=\Delta_{1}=0$ but $\delta_{2}=04444444_{x}$. As the input

Figure 3.29: Four-round DES
difference on S_{1} is zero in the second round, the output difference on S_{1} is also zero. From Equation (3.5), the 4 -bit difference on the output of S_{1} in the 4 -th round can be determined. Note that the permutation block P behind S-boxes is used in all rounds so the corresponding bits always meet. Once this is done, the missing part of the key can be recovered by the differential analysis of S_{1}.

Having the partial key k_{4}, we can strip off the last round and analyse the three round DES. After finding k_{3}, we are left with 2 -round DES which can be easily analysed. The analysis assumes that keys are independent in each round so the introduction of long randomly selected keys for each round does not protect the cryptosystem against the differential analysis. On the other hand, a "weak" key schedule may allow to deduce the initial key from the partial key used in the last round.

3.4.4 A Cryptanalysis of 6-Round DES

Figure 3.30 shows a general scheme of differences in the 6 -round DES. As previously, to be able to find the key k_{6} used in the sixth round, we have to determine the output difference Δ_{6}. The following equation can be easily established

$$
\begin{equation*}
\Delta_{6}=\Delta_{\text {out }} \oplus \Delta_{4} \oplus \delta_{3} \tag{3.6}
\end{equation*}
$$

To derive δ_{3}, we use two 3 -round characteristics given in Figures (3.31) and (3.32). The first characteristic uses

$$
\delta_{3}=04000000_{x}
$$

$\Delta_{\text {out }}$ is available as it is the difference of the left halves of the cryptograms. To determine Δ_{4}, consider $\delta_{4}=40080000_{x}$. In the fourth round, S-boxes $S_{2}, S_{5}, S_{6}, S_{7}, S_{8}$ have their input differences set to zero so their output differences are forced to zero. This means that we can find differences in the sixth

Figure 3.30: Six-round DES
round for $S_{2}, S_{5}, S_{6}, S_{7}$ and S_{8}. This time the analysis of S-boxes is not deterministic due to the fact that $\Delta_{3}=40080000_{x}$ occurs with the probability $\frac{1}{16}$. This of course complicates the analysis as we cannot reduce the set of candidate keys after every observation. Indeed, we need to count all the candidate keys. It is expected that the right key will have a higher frequency than the rest. Thus, after enough observations we can find 30 bits of k_{6}.

The second characteristic produces

$$
\delta_{4}=00200008
$$

so input differences in the fourth round are zeros for $S_{1}, S_{2}, S_{4}, S_{5}$ and S_{6}. Δ_{4} has zero output differences for these S-boxes. From Equation (3.6), we can find Δ_{6} for these S -boxes. By counting keys for S_{1} and S_{4}, we can determine the corresponding 12 bits of k_{6}. So we know 42 out of 48 bits of k_{6}.

The missing 6 bits of the key (used in S_{3}) can be determined by using 42 already recovered bits. To do this, we first identify pairs of plaintext/ciphertext which behave according to the characteristic. These pairs are called right pairs. The identification can be done by checking if the differences on the outputs of S-boxes in the fourth round are zeros. As we know 42 bits of k_{6}, we can generate the corresponding 28 bits of Δ_{6}^{\prime} (using the 7 -th round). Knowing $\Delta_{\text {out }}$, we verify whether

$$
\Delta_{6}^{\prime} \oplus \Delta_{\text {out }}=\Delta_{4} \oplus \delta_{3}
$$

Figure 3.31: First 3-round characteristic

Figure 3.32: Second 3-round characteristic

If the equation is not satisfied, we reject the pair as there is an overwhelming probability that this is not the right pair.

For every right pair, we guess the 6 -bit part of k_{6} XORed to the input of S_{3}. Now the 48 -bit k_{6} is used to determine Δ_{6}^{\prime}. Next we calculate $\delta_{5}^{\prime}=\Delta_{\text {out }} \oplus \Delta_{6}^{\prime}$ and verify whether values of differences on S_{2}, S_{3}, and S_{8} in the fifth round satisfy the equation $\Delta_{5}=\delta_{4} \oplus \delta_{6}$. After at most 2^{6} tries, we have all bits of k_{6}. The still missing $56 \Leftrightarrow 48=8$ bits, can be reconstructed by exhaustive search of $2^{8}=256$ possibilities.

3.4.5 Analysis of Other Feistel-Type Cryptosystems

The analysis can be conducted for versions of DES with more rounds. Table 3.14 shows the results. For more details see [35]. It is no surprise to find out that the more rounds a DES variant has the less efficient analysis becomes. This is due to the fact that longer characteristics have smaller probabilities associated with them.

Murphy [358] has shown that the FEAL-4 algorithm is vulnerable to the differential analysis with 20 chosen plaintexts only. Biham and Shamir [33] demonstrated that FEAL-N with N smaller than 32 is subject to the differential cryptanalysis whose efficiency is higher than the exhaustive search of

No. of rounds	Chosen plaintexts	Analysed plaintexts	Complexity of analysis
8	2^{14}	4	2^{9}
9	2^{24}	2	2^{32}
10	2^{24}	2^{14}	2^{15}
11	2^{31}	2	2^{32}
12	2^{31}	2^{21}	2^{21}
13	2^{39}	2	2^{32}
14	2^{39}	2^{29}	2^{29}
15	2^{47}	2^{7}	2^{37}
16	2^{47}	2^{36}	2^{37}

Table 3.14: Cryptanalysis of DES
the key space.
The main features of the differential analysis are summarised below.

- The differential analysis can be applied to Feistel cryptosystems with t rounds where it is possible to see inputs to the round function and deduce or guess (with high probability) the corresponding output differences.
- Characteristics are useful in guessing the correct output differences of the round function. It is enough to have ($t \Leftrightarrow 3$)-round characteristic to find out output differences in the t-round Feistel cryptosystem.
- As the differential analysis enables to find keys applied in the last round function, it by-passes the key schedule. It works under the assumption that round keys are statistically independent.
- Once the key in the last round is found, the last round can be stripped off by applying the extra round which is the inverse of the last round. The analysis can be now applied to system with $t \Leftrightarrow 1$ rounds (peeling off technique).

To make a Feistel cryptosystem immune against the differential analysis, the following points need to be addressed:

- The XOR profile must not have entries with large numbers,
- The best $(t \Leftrightarrow 3)$-round characteristics should work with the probability smaller than the probability of guessing the right key (t is the number of rounds in the cryptosystem).
- The S-boxes should depend upon the secret key in a nonlinear way. This will cause that XOR profile of S-boxes become more complex. One way of implementation of this idea would be an on-fly selection of S-boxes depending on the round key.

3.5 Linear Cryptanalysis

At Eurocrypt'93 Matsui presented a new class of general attacks which exploits a low nonlinearity of S-boxes. The attack referred to as the linear cryptanalysis is a known-plaintext attack. The linear cryptanalysis can also work as a ciphertext-only attack. The principles of the linear cryptanalysis are explained in [317]. The linear cryptanalysis of DES is described in [320].

3.5.1 Linear Approximation

A Boolean function $\ell: \Sigma^{n} \rightarrow \Sigma$ in n variables s_{1}, \ldots, s_{n}, is linear if it can be represented as $\ell(s)=$ $a_{1} s_{1} \oplus \ldots \oplus a_{n} s_{n}$ for some $a_{i} \in \Sigma=\{0,1\} ; i=1, \ldots, n$. The set of all linear Boolean functions in n variables is denoted by

$$
\mathcal{L}_{n}=\left\{\ell: \Sigma^{n} \rightarrow \Sigma \mid \ell=a_{1} s_{1} \oplus \ldots \oplus a_{n} s_{n}\right\}
$$

A Boolean function $f: \Sigma^{n} \rightarrow \Sigma$ is called affine if either $f(s)=\ell(s)$ or $f(s)=\ell(s) \oplus 1$, for some $\ell(s) \in \mathcal{L}_{n}$. The set of all affine Boolean functions in n variables is

$$
\mathcal{A}_{n}=\mathcal{L}_{n} \cup\left\{\ell \oplus 1 \mid \ell \in \mathcal{L}_{n}\right\}=\mathcal{L}_{n} \cup \overline{\mathcal{L}_{n}}
$$

i.e. \mathcal{A}_{n} consists of all linear functions and their negations. A Boolean function $f: \Sigma^{n} \rightarrow \Sigma$ is uniquely represented by the corresponding truth table. Assume that the argument $\alpha_{i} \in \Sigma^{n}$ runs through all its possible values $0,1, \ldots, 2^{n} \Leftrightarrow 1$ so $\alpha_{0}=(00 \ldots 0), \alpha_{1}=(00 \ldots 1)$ and so forth until $\alpha_{2^{n}-1}=(11 \ldots 1)$. The truth table of f is equivalent to the following vector

$$
f=\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{2^{n}-1}\right)\right)
$$

where $f\left(\alpha_{i}\right)$ specifies the value of the function for the argument expressed by the vector α_{i} ($i=$ $\left.0, \ldots, 2^{n} \Leftrightarrow 1\right)$. The Hamming distance $d(f, g)$ between two Boolean functions $f, g: \Sigma^{n} \rightarrow \Sigma$ is the number of 1 s in the vector

$$
\left(f\left(\alpha_{0}\right) \oplus g\left(\alpha_{0}\right), f\left(\alpha_{1}\right) \oplus g\left(\alpha_{1}\right), \ldots, f\left(\alpha_{2^{n}-1}\right) \oplus g\left(\alpha_{2^{n}-1}\right)\right)
$$

Definition 3.4 (Pieprzyk, Finkelstein [4027) The nonlinearity $\mathbf{N}(f)$ of a Boolean function $f: \Sigma^{n} \rightarrow$ Σ is

$$
\mathbf{N}(f)=\min _{\ell \in \mathcal{A}_{n}} d(\ell, f)
$$

i.e., it is the minimal distance between the function f and the set of affine functions \mathcal{A}_{n}.

An $(n \times m)$ S-box $S: \Sigma^{n} \rightarrow \Sigma^{m}$ is a collection of m functions $f_{i}: \Sigma^{n} \rightarrow \Sigma ; i=1, \ldots, m$, in n Boolean variables $s=\left(s_{1}, \ldots, s_{n}\right)$ for which

$$
S(s)=\left(f_{1}(s), \ldots, f_{m}(s)\right)
$$

The notion of nonlinearity can be extended as in the following definition.
Definition 3.5 (Nyberg [979]) The nonlinearity of $a(n \times m) S$-box $S=\left(f_{1}, \ldots, f_{m}\right)$ is

$$
\begin{equation*}
\mathbf{N}(S)=\min _{w=\left(w_{1}, \ldots, w_{m}\right) \in \Sigma^{m} ; v \in \Sigma} \mathbf{N}\left(w_{1} f_{1} \oplus \ldots \oplus w_{m} f_{m} \oplus v\right) \tag{3.7}
\end{equation*}
$$

Consider $f: \Sigma^{2} \rightarrow \Sigma$ of the form $f(s)=s_{1} s_{2}$. The truth table and all linear functions from $\mathcal{L}_{2}=\left\{0, s_{1}, s_{2}, s_{1} \oplus s_{2}\right\}$ are presented in Table 3.15. So distances are $d(f, 0)=d\left(f, s_{1}\right)=d\left(f, s_{2}\right)=1$

$s_{2} s_{1}$	f	0	s_{1}	s_{2}	$s_{1} \oplus s_{2}$	$f \oplus s_{1}$	$f \oplus s_{2}$	$f \oplus s_{1} \oplus s_{2}$
00	0	0	0	0	0	0	0	0
01	0	0	1	0	1	1	0	1
10	0	0	0	1	1	0	1	1
11	1	0	1	1	0	0	0	1

Table 3.15: The truth table of $f(s)=s_{1} s_{2}$ and linear functions from \mathcal{L}_{2}
and $d\left(f, s_{1} \oplus s_{2}\right)=3$.
Knowing the distance $d(f, \ell)=d_{f, \ell}$ where $\ell \in \mathcal{L}_{n}$, it is easy to obtain $d(f, \ell \oplus 1)=2^{n} \Leftrightarrow d_{f, \ell}$. So to determine the nonlinearity of a function $f: \Sigma^{n} \rightarrow \Sigma$, it is enough to find all distances between the function and the linear functions. The distances for the affine functions from the set $\overline{\mathcal{L}_{n}}$ can be computed from the distances of linear functions.

In the DES algorithm, there are eight S-boxes $S_{i}: \Sigma^{6} \rightarrow \Sigma^{4}$ for $i=1, \ldots, 8$. Each S-box can be treated as a collection of four Boolean functions. For a given S-box, we can create a table of distances as follows. Rows of the table are indexed by a linear function $\ell \in \mathcal{L}_{6}$. There are $2^{6}=64$ possible linear functions. The index of the row is a hexadecimal number which represents the linear function. So the index $31_{x}=110001$ corresponds to the linear function $\ell(s)=s_{6} \oplus s_{5} \oplus s_{1}$ where $s=$ $\left(s_{6}, s_{5}, s_{4}, s_{3}, s_{2}, s_{1}\right)$. The columns of the table are indexed by linear combinations of S-box outputs. So if the S-box function $S=\left(f_{4}, f_{3}, f_{2}, f_{1}\right)$, the linear combination $f=\left(a_{4} f_{4} \oplus a_{3} f_{3} \oplus a_{2} f_{2} \oplus a_{1} f_{1}\right)$ where $a_{4} a_{3} a_{2} a_{1}$ is the column index in the hexadecimal notation. For instance, the index 9_{x} corresponds to the linear combination of outputs $f_{4} \oplus f_{1}$. There are 15 nonzero columns. The entry (ℓ, f) gives the Hamming distance $d(\ell, f)$. This table is called the linear profile of an S-box.

The linear profile of S_{5} is given in Table 3.16. All entries are even numbers - this results from the fact that all output functions in all S-boxes have equal number of 0 s and $1 s$ (the output functions are balanced). The nonlinearity of a linear combination of outputs can be found by looking for the smallest and the biggest entry in the corresponding column f. Let the two entries be $d_{\text {min }}=d_{f, r 1}$ $d_{\max }=d_{f, r 2}$. The nonlinearity of the function f is the smaller integer from ($d_{\min }, 2^{6} \Leftrightarrow d_{\max }$). The best linear approximation of the column function is either the linear function $\ell_{r 1}$ if $d_{\text {min }}<2^{6} \Leftrightarrow d_{\text {max }}$ or the negation of the linear function $\ell_{r 2}$, i.e. the affine function $\ell_{r 2} \oplus 1$ where $\ell_{r 1}$ and $\ell_{r 2}$ are linear functions which correspond to the row $r 1$ and $r 2$, respectively.

The best linear approximation of a function $f: \Sigma^{n} \rightarrow \Sigma$ is the affine function $\ell \in \mathcal{A}_{n}$ which is closest (in the sense of Hamming distance) to the function f and the distance $d(\ell, f)$ is the nonlinearity of the function. For instance, the function $f_{8_{x}}$ has the best linear approximation $\ell_{f_{8_{x}}}=s_{6} \oplus s_{5} \oplus s_{3} \oplus$ $s_{2} \oplus s_{1}$ (the row 37_{x}) and the nonlinearity 20 . The function $f_{4_{x}}$ is best approximated by $\ell_{f_{4_{x}}}=$ $s_{6} \oplus s_{5} \oplus s_{4} \oplus s_{3} \oplus s_{2} \oplus s_{1} \oplus 1$ (the row $3 F_{x}$). The nonlinearity of $f_{4_{x}}$ is $64 \Leftrightarrow 46=18$.

The global characterisation of S-box can be done by the selection of the pair: the smallest $d_{\text {min }}^{g}$ and biggest entry $d_{\text {max }}^{g}$. The nonlinearity of the S-box is the minimum of $d_{\text {min }}^{g}$ and $2^{n} \Leftrightarrow d_{\text {max }}^{g}$. For S_{5} the nonlinearity of the S-box is 12 (the entry for the row 10_{x} and the column F_{x}) - so $f_{F_{x}}$ can be approximated by s_{5}. This is the best available approximation in S_{5} and as a matter of fact, in all S-boxes.

Let a function $f: \Sigma^{n} \rightarrow \Sigma$ and its linear approximation $\ell: \Sigma^{n} \rightarrow \Sigma$ be given. How well does ℓ approximate f ? The distance $d(\ell, f)$ gives the number of input values for which the functions differ. So if we randomly select an input, we have the probability

$$
\frac{2^{n} \Leftrightarrow d(\ell, f)}{2^{n}}
$$

that the outputs of ℓ and f will be the same. The worst case is when the best linear approximation ℓ differs for about half of the possible input values, i.e. $d(\ell, f) \approx 2^{n-1}$. The probability that $\ell(s) \neq f(s)$ or $\ell(s)=f(s)$ is ≈ 0.5 for a random $s \in \Sigma^{n}$.

3.5.2 Analysis of 3 -Round DES

The attack uses the best linear approximation of S_{5}. This approximation is

$$
s_{1}^{*} \oplus s_{2}^{*} \oplus s_{3}^{*} \oplus s_{4}^{*}=s_{5}
$$

Combinations of Outputs															
	1_{x}	2_{x}	$3 x$	4_{x}	$5{ }_{x}$	$6{ }_{x}$	7_{x}	$8 x$	9_{x}	A_{x}	B_{x}	C_{x}	D_{x}	E_{x}	F_{x}
0_{x}	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
1_{x}	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
2_{x}	36	30	34	30	34	28	32	36	32	34	30	34	30	32	28
$3 x$	32	34	26	34	34	28	36	32	32	34	26	34	34	28	36
4_{x}	34	30	32	32	34	30	32	32	34	34	36	28	30	30	32
$5{ }_{x}$	30	30	36	32	22	38	36	32	30	42	32	28	34	30	28
$6{ }_{x}$	34	36	38	34	36	30	32	32	34	32	34	38	40	30	32
$7{ }_{x}$	34	32	34	30	40	38	32	28	38	32	26	30	32	26	28
8_{x}	32	34	38	32	32	30	26	30	34	36	20	34	38	28	36
9_{x}	36	26	34	32	36	38	38	26	34	32	36	30	38	40	36
A_{x}	28	32	32	34	38	30	30	30	30	34	30	28	36	36	32
B_{x}	36	36	36	38	34	30	30	30	30	30	34	32	24	28	32
C_{x}	30	32	34	32	30	28	22	34	28	34	40	34	28	38	36
D_{x}	38	32	34	32	30	36	22	30	32	30	36	30	40	26	32
E_{x}	30	30	32	30	36	32	34	30	32	36	34	28	38	30	28
F_{x}	34	34	24	26	28	32	30	30	28	24	34	24	38	30	32
10_{x}	34	30	32	32	30	26	24	32	30	30	28	32	34	42	12
11_{x}	30	34	32	28	30	34	36	28	30	30	32	40	38	30	28
12_{x}	34	32	34	30	36	34	40	28	26	28	26	34	28	38	32
13_{x}	26	32	34	30	36	34	32	36	26	36	34	26	36	30	32
14_{x}	28	36	32	32	32	32	32	36	36	28	28	32	28	36	32
15_{x}	36	32	28	28	36	24	24	32	32	28	36	40	36	32	36
16_{x}	32	38	38	34	30	36	32	36	32	38	34	34	34	32	32
17_{x}	28	38	34	26	34	36	28	28	36	38	30	34	30	32	28
18_{x}	26	32	30	28	42	36	30	30	32	34	32	30	28	34	36
19_{x}	34	36	26	32	30	36	30	38	40	38	36	42	32	34	28
$1 \mathrm{~A}_{x}$	34	34	24	30	36	32	34	30	32	36	34	32	30	30	32
$1 \mathrm{~B}_{x}$	30	26	36	38	32	32	30	26	24	32	34	36	38	34	32
$1 \mathrm{C}_{x}$	32	30	34	36	32	26	34	30	38	28	32	34	30	32	32
$1 \mathrm{D}_{x}$	28	34	26	40	32	34	30	22	34	40	40	30	30	32	28
$1 \mathrm{E}_{x}$	36	40	32	34	34	34	30	34	30	34	26	28	28	28	32
$1 \mathrm{~F}_{x}$	28	40	24	34	26	26	30	30	34	30	30	24	32	32	28
20_{x}	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
21_{x}	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
22_{x}	28	30	34	30	34	28	40	28	32	26	38	34	30	16	20
23_{x}	32	34	34	26	34	36	28	32	32	34	34	34	26	28	36
24_{x}	30	38	36	32	38	30	36	36	26	30	36	32	46	34	32
25_{x}	26	30	32	32	26	30	32	36	38	30	40	32	34	26	36
26_{x}	30	28	34	34	32	30	36	28	34	36	34	26	32	34	32
27_{x}	22	32	30	38	36	38	28	32	38	20	34	34	32	38	28
28_{x}	36	30	30	32	36	26	34	34	26	36	32	38	30	28	32
29_{x}	32	30	26	32	32	26	30	30	34	40	32	34	38	32	32
$2 \mathrm{~A}_{x}$	32	36	40	26	26	26	38	26	30	34	34	40	28	36	28
$2 \mathrm{~B}_{x}$	40	32	36	38	30	26	38	34	38	30	38	28	32	36	36
$2 \mathrm{C}_{x}$	30	28	38	32	38	32	26	34	36	30	36	34	28	26	32
$2 \mathrm{D}_{x}$	30	28	30	32	30	24	34	30	32	26	24	30	32	30	36
$2 \mathrm{E}_{x}$	38	34	28	38	36	36	30	22	24	32	30	36	30	34	32
$2 \mathrm{~F}_{x}$	26	38	36	26	36	28	34	30	28	28	38	32	30	34	36
30_{x}	34	30	32	28	26	30	28	36	34	34	32	32	34	34	36
31_{x}	30	34	32	32	34	30	32	32	34	34	36	32	30	30	28
32_{x}	26	32	34	34	24	30	28	32	22	32	30	34	28	30	32
33_{x}	26	32	42	34	32	30	28	32	38	32	22	34	36	30	32
34_{x}	32	44	28	36	32	28	40	36	32	36	32	36	36	32	32
35_{x}	24	32	32	40	28	36	32	32	28	28	32	36	36	28	36
$36 x$	36	30	26	30	30	40	32	36	28	30	30	38	34	28	32
37_{x}	40	38	38	38	26	32	28	20	32	30	34	30	30	28	36
38_{x}	30	28	38	32	34	28	34	38	28	38	32	26	28	34	32
39_{x}	30	40	34	28	38	28	26	30	28	34	36	30	32	34	32
$3 \mathrm{~A}_{x}$	38	22	32	34	36	32	30	38	28	32	34	36	30	30	28
$3 \mathrm{~B}_{x}$	34	38	36	42	32	40	34	42	28	28	34	32	30	34	28
$3 \mathrm{C}_{x}$	24	26	30	32	28	34	34	26	34	36	32	42	30	36	36
$3 \mathrm{D}_{x}$	28	30	30	28	28	34	30	34	22	32	32	30	30	28	32
$3 \mathrm{E}_{x}$	36	28	36	30	30	34	30	30	34	34	34	28	36	32	28
$3 \mathrm{~F}_{x}$	28	28	28	46	38	26	30	34	30	38	30	32	32	28	32

Table 3.16: Linear Profile of S_{5}
where s_{i}^{*} are outputs and s_{5} is an input of S_{5}. This equation translates to (see Figure 3.33)

$$
R_{(15)} \oplus k_{(22)}=S_{(7)} \oplus S_{(18)} \oplus S_{(24)} \oplus S_{(29)} \stackrel{\text { def }}{=} S_{(7,18,24,29)}
$$

in a single round of DES.

Figure 3.33: Linear approximation in a single round of DES
For a 3 -round DES (Figure 3.34), we can establish the following equations:

$$
\begin{align*}
& R 2_{(7,18,24,29)} \oplus L 1_{(7,18,24,29)}=k 1_{(22)} \oplus R 1_{(15)} \tag{3.8}\\
& R 2_{(7,18,24,29)} \oplus L 3_{(7,18,24,29)}=k 3_{(22)} \oplus R 3_{(15)} \tag{3.9}
\end{align*}
$$

If we merge Equations (3.8) and (3.9), we obtain

Figure 3.34: Three-round linear characteristic

$$
\begin{equation*}
L 1_{(7,18,24,29)} \oplus L 3_{(7,18,24,29)} \oplus R 1_{(15)} \oplus R 3_{(15)}=k 1_{(22)} \oplus k 3_{(22)} \tag{3.10}
\end{equation*}
$$

What is the probability that Equation (3.10) is true ? Equation (3.10) is true in the two cases: (1) if Equations (3.8) and (3.9) are true, or (2) if the equations are simultaneously false. Therefore the probability is $\left(\frac{52}{64}\right)^{2}+\left(\frac{12}{64}\right)^{2} \approx 0.7$

Looking at different pairs of plaintext/ciphertext, we count how many times the right-hand side of Equation (3.10) is zero or one. The right value of $k 1_{(22)} \oplus k 3_{(22)}$ can be established after enough observations. In the result we have a first linear equation for two bits of the key. The attack could proceed by choosing other good approximations and collecting more linear equations for other key bits. If we had enough linearly independent equations, we could find the key.

3.5.3 Linear Characteristics

Take a look at Figure 3.35 that shows a 5 -round DES. In the first and fifth round the 15 -th bit coming

Figure 3.35: Five-round linear characteristic
out of the round function is approximated using the following equation

$$
\begin{equation*}
S_{(15)}=k_{(27)} \oplus k_{(28)} \oplus k_{(30)} \oplus k_{(31)} \oplus R_{(27)} \oplus R_{(28)} \oplus R_{(30)} \oplus R_{(31)} \stackrel{\text { def }}{=} k_{(27,28,30,31)} \oplus R_{(27,28,30,31)} \tag{3.11}
\end{equation*}
$$

This bit comes from S_{1} and its nonlinearity is 22 . The following two equations are derived for the 1st and 5 -th round

$$
\begin{aligned}
& R 2_{(15)}=L 1_{(15)} \oplus S 1_{(15)}=L 1_{(15)} \oplus k 1_{(27,28,30,31)} \oplus R 1_{(27,28,30,31)} \\
& R 4_{(15)}=L 5_{(15)} \oplus S 5_{(15)}=L 5_{(15)} \oplus k 5_{(27,28,30,31)} \oplus R 5_{(27,28,30,31)}
\end{aligned}
$$

The 2 -nd and 4 -th rounds use the same approximation as in the previously discussed 3 -round DES so we have

$$
\begin{aligned}
& R 3_{(7,18,24,29)}=R 1_{(7,18,24,29)} \oplus S 2_{(7,18,24,29)}=R 1_{(7,18,24,29)} \oplus k 2_{(22)} \oplus R 2_{(15)} \\
& R 3_{(7,18,24,29)}=R 5_{(7,18,24,29)} \oplus S 4_{(7,18,24,29)}=R 5_{(7,18,24,29)} \oplus k 4_{(22)} \oplus R 4_{(15)}
\end{aligned}
$$

After merging of the last two, we get

$$
R 1_{(7,18,24,29)} \oplus R 5_{(7,18,24,29)}=k 2_{(22)} \oplus R 2_{(22)} \oplus k 4_{(22)} \oplus R 4_{(22)}
$$

Now we substitute $R 2_{(22)}$ and $R 4_{(22)}$ by their linear approximations and we have the final linear characteristic

$$
\begin{gather*}
L 1_{(15)} \oplus L 5_{(15)} \oplus R 1_{(7,18,24,27,28,29,30,31)} \oplus R 5_{(7,18,24,27,28,29,30,31)}= \\
k 1_{(27,28,30,31)} \oplus k 2_{(22)} \oplus k 4_{(22)} \oplus k 5_{(27,28,30,31)} . \tag{3.12}
\end{gather*}
$$

The characteristic uses four linear approximations. Each approximation has the associated probability which expresses the accuracy of the approximation. How can we compute the probability that Equation (3.12) holds ? The answer is given in the following theorem.

Theorem 3.1 (Matsui [317]) Given n independent random variables X_{1}, \ldots, X_{n} such that $P\left(X_{i}=\right.$ $0)=p_{i}$ and $P\left(X_{i}=1\right)=1 \Leftrightarrow p_{i}$ for $i=1, \ldots, n$. Then the probability that $X_{1} \oplus \ldots \oplus X_{n}=0$ is

$$
\begin{equation*}
\frac{1}{2}+2^{n-1} \prod_{i=1}^{n}\left(p_{i} \Leftrightarrow 0.5\right) \tag{3.13}
\end{equation*}
$$

Note that to produce the characteristic from Equation (3.12), we have used four approximations whose probabilities are: $\frac{42}{64}, \frac{52}{64}, \frac{52}{64}, \frac{42}{64}$. The probability that Equation (3.12) holds, is ≈ 0.519. It means that after ≈ 2800 pairs of plaintext/ciphertext the right value of $k 1_{(27,28,30,31)} \oplus k 2_{(22)} \oplus k 4_{(22)} \oplus$ $k 5_{(27,28,30,31)}$ can be found.

Linear characteristics are linear approximations of some of the key bits by a combination of plaintext/ciphertext bits. The efficiency of a characteristic is measured by the probability that the characteristic is true (or all approximations in the characteristic hold). It can be computed from probabilities of S-box approximations by applying Theorem 3.1.

Matsui introduced also a nice improvement which speeds up the analysis. The improvement can be used in the first and last round when we can see the inputs to the round functions. Instead of approximation, we try to guess the right bits of a part of the round key (only these bits of the key which influence the characteristic). Assume that the characteristic depends on v bits of the key (in the first or last round). We can evaluate the characteristic for all possible patterns of v bits simultaneously. Due to the probabilistic nature of characteristics, it is expected that the correct value of v bits will cause a noticeable bias in counting which must be proportional to the probability of the characteristic. This allows to retrieve v bits of the key.

The analysis of 16 -round DES can be done by using two linear characteristics. The second characteristic is obtained from the first one by swapping plaintext bits with ciphertext bits in the equation. The characteristics approximate all rounds except the first and last ones. For the first and last rounds, we guess parts of the round keys. This produces 12 bits of the key plus 1 bit from the characteristic. As the attack uses 2 characteristics, we can determine 26 bits of the key. The rest 30 bits are found by the exhaustive search. To break DES, it takes 2^{43} steps and the success rate is 85% if 2^{43} pairs (plaintext, ciphertext) are known.

The FEAL algorithm was the first one which was subject to linear analysis by Matsui and Yamagishi in [319]. FEAL-4 is breakable with 5 observations and FEAL- 8 with 2^{15} observations.

How to prevent cryptographic systems against the linear cryptanalysis? The answer seems to be easy - use highly nonlinear S-boxes (see [402]). For a highly nonlinear S-box, each linear approximation of the S-box function works with low probability. However, it is also possible to increase the immunity of the system against the linear analysis by permuting S-boxes (see [318]). This is due to the fact that for a carefully chosen order of S-boxes in the round function, concatenation of linear approximations to create a characteristic with a high probability, becomes impossible.

The differential and linear analysis can be used together. There is a hope that a combination of the attacks may succeed where both attacks have failed when applied separately.

3.6 S-box Theory

Shannon's concept of product ciphers uses two basic transformations: confusion and diffusion. All modern cryptographic algorithms use in some or other way a collection of S-boxes which provide
confusion and P-boxes which spread out the output bits to different S-boxes of the next round. P-boxes have usually a fixed permutation of input and output bits. The strength of product ciphers mainly comes from the "properly" designed S-boxes. The definition of cryptographically strong S-boxes is to some extend arbitrary. It is well known fact that weaknesses of S-boxes may be compensated by the increased number of rounds. This is precisely the case with the FEAL algorithm which becomes immune against the linear cryptanalysis when the number of rounds is bigger than 32 . Note that if a cryptographic algorithm is to be both cryptographically strong and fast, then a careful design of all its components is of utmost importance.

Each general cryptographic attack on product ciphers explores some weaknesses in S-boxes. In response, a new S-box criterion is introduced. If the criterion is incorporated into S-boxes, it makes the cryptographic algorithm immune against the attack. For instance, the differential attack caused that a "good" XOR profile was added to the list of S-box criteria.

3.6.1 Boolean Functions

Recall that $\Sigma=\{0,1\}$. The simplest field which can be defined over Σ is $G F(2)=\langle\Sigma, \oplus, \times\rangle$ with the addition \oplus and multiplication $\times . G F(2)$ is called the binary field. Clearly, addition is $0 \oplus 0=1 \oplus 1=0$ and $0 \oplus 1=1 \oplus 0=1$. Multiplication is defined as $0 \times 0=1 \times 0=0 \times 1=0$ and $1 \times 1=1$.

Consider a Boolean function $f: \Sigma^{n} \rightarrow G F(2)$ which assigns a binary element $y \in \Sigma$ to a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \Sigma^{n}$ of n bits (n-tuple) so $y=f(x)$. For example, the vector space Σ^{3} consists of the following vectors:

$$
(000),(001),(010),(011),(100),(101),(110),(111)
$$

Note that we do not need to use commas to separate components of vectors. For simplicity, we will denote elements (vectors) of Σ^{n} by their decimal representations used as the subscript so

$$
\begin{gathered}
\alpha_{0}=(00 \ldots 00) \\
\alpha_{1}=(00 \ldots 01) \\
\vdots \\
\alpha_{2^{n}-1}=(11 \ldots 11)
\end{gathered}
$$

Let $f: \Sigma^{n} \rightarrow G F(2)$ be a Boolean function. The binary sequence

$$
\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{2^{n}-1}\right)\right)
$$

is called the truth table of the function f. The sequence with components from $\{1, \Leftrightarrow 1\}$ defined by

$$
\left((\Leftrightarrow 1)^{f\left(\alpha_{0}\right)},(\Leftrightarrow 1)^{f\left(\alpha_{1}\right)}, \ldots,(\Leftrightarrow 1)^{f\left(\alpha_{2}-1\right)}\right)
$$

is called the sequence of the function f. A $2^{n} \times 2^{n}$ matrix F with entries $f_{i, j}=(\Leftrightarrow 1)^{f\left(\alpha_{i} \oplus \alpha_{j}\right)}$ is called the matrix of the function f.

Let $f(x)=x_{1} x_{2} x_{3} \oplus x_{1} x_{3} \oplus x_{2} \oplus x_{3} \oplus 1$ be a function on Σ^{3}. It is easy to check that

$$
\begin{aligned}
& f(000)=1, f(001)=0, f(010)=0, f(011)=1 \\
& f(100)=1, f(101)=1, f(110)=0, f(111)=1
\end{aligned}
$$

So the truth table of f is (10011101) and the sequence of f is $(\Leftrightarrow 1,1,1, \Leftrightarrow 1, \Leftrightarrow 1, \Leftrightarrow 1,1, \Leftrightarrow 1)$ or $(\Leftrightarrow++\Leftrightarrow$
$\Leftrightarrow \Leftrightarrow+\Leftrightarrow$ where + and \Leftrightarrow stand for +1 and $\Leftrightarrow 1$, respectively. The matrix of f is

$$
F=\left[\begin{array}{llllllll}
\Leftrightarrow & + & + & \Leftrightarrow & \Leftrightarrow & \Leftrightarrow & + & \Leftrightarrow \\
+ & \Leftrightarrow & \Leftrightarrow & + & \Leftrightarrow & \Leftrightarrow & \Leftrightarrow & + \\
+ & \Leftrightarrow & \Leftrightarrow & + & + & \Leftrightarrow & \Leftrightarrow & \Leftrightarrow \\
\Leftrightarrow & + & + & \Leftrightarrow & \Leftrightarrow & + & \Leftrightarrow & \Leftrightarrow \\
\Leftrightarrow & \Leftrightarrow & + & \Leftrightarrow & \Leftrightarrow & + & + & \Leftrightarrow \\
\Leftrightarrow & \Leftrightarrow & \Leftrightarrow & + & + & \Leftrightarrow & \Leftrightarrow & + \\
+ & \Leftrightarrow & \Leftrightarrow & \Leftrightarrow & + & \Leftrightarrow & \Leftrightarrow & + \\
\Leftrightarrow & + & \Leftrightarrow & \Leftrightarrow & \Leftrightarrow & + & + & \Leftrightarrow
\end{array}\right]
$$

A Boolean function $f: \Sigma^{n} \rightarrow G F(2)$ is said to be balanced if its truth table has 2^{n-1} zeros (or ones). For instance, the function $f(x)=x_{1} x_{2} \oplus x_{3} ; x \in \Sigma^{3}$, is balanced since the truth table of f is (01010110) and the function takes the value zero the prescribed 4 times.

A Boolean function $f: \Sigma^{n} \rightarrow G F(2)$ is affine if it can be represented in the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{0} \oplus a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n}
$$

where $a_{i} \in \Sigma$ for $i=0, \ldots, n$. The set of all affine functions over Σ^{n} is denoted by \mathcal{A}_{n}. An affine function f is called linear if $a_{0}=0$. The sequence of an affine (or linear) function is called an affine (or linear) sequence. The function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{3} \oplus x_{1} \oplus 1$ is affine and the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{3} \oplus x_{1}$ is linear.

The Hamming weight of a binary vector $\alpha \in \Sigma^{n}$, denoted by $W(\alpha)$, is the number of ones it contains. For example, $W(010011)=3$. Given two functions $f, g: \Sigma^{n} \rightarrow G F(2)$, the Hamming distance between them is defined as $d(f, g)=W(f(x) \oplus g(x))$, where $W(f(x) \oplus g(x))$ is the weight of the truth table of the function $f(x) \oplus g(x)$. Let $f(x)=x_{1} x_{2}$ and $g(x)=x_{1} \oplus x_{2}$ be two Boolean functions. Then

$$
d(f, g)=W(f(x) \oplus g(x))=W\left(x_{1} x_{2} \oplus x_{1} \oplus x_{2}\right)
$$

As the truth table of the function $f \oplus g=x_{1} x_{2} \oplus x_{1} \oplus x_{2}$ is (0111), the distance $d(f, g)=3$.
Let $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ and $\beta=\left(b_{1}, \ldots, b_{n}\right)$ be two vectors (or sequences), the scalar product of α and β, denoted by $\langle\alpha, \beta\rangle$, is defined as the sum of the component-wise multiplications. In particular, when α and β are from $\Sigma^{n},\langle\alpha, \beta\rangle=a_{1} b_{1} \oplus \cdots \oplus a_{n} b_{n}$, where the addition and multiplication are over $G F(2)$. If α and β are $(1, \Leftrightarrow 1)$-sequences, the scalar product $\langle\alpha, \beta\rangle=\sum_{i=1}^{n} a_{i} b_{i}$, and the addition and multiplication is taken over the reals.

Lemma 3.1 If $\xi=\left(a_{0}, \ldots, a_{2^{n}-1}\right)$ and $\eta=\left(b_{0}, \ldots, b_{2^{n}-1}\right)$ are the sequences of functions f_{1}, f_{2} : $\Sigma^{n} \rightarrow G F(2)$, respectively, then

$$
\xi * \eta=\left(a_{0} b_{0}, a_{1} b_{1}, \ldots, a_{2^{n}-1} b_{2^{n}-1}\right)
$$

is the sequence of $f_{1}(x) \oplus f_{2}(x)$, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Proof: The two sequences are given by $a_{i}=(\Leftrightarrow 1)^{f_{1}\left(\alpha_{i}\right)}$ and $b_{i}=(\Leftrightarrow 1)^{f_{2}\left(\alpha_{i}\right)}$ for $\alpha_{i}=0, \ldots, 2^{n} \Leftrightarrow 1$. Then

$$
a_{i} b_{i}=(\Leftrightarrow 1)^{f_{1}\left(\alpha_{i}\right)}(\Leftrightarrow 1)^{f_{2}\left(\alpha_{i}\right)}=(\Leftrightarrow 1)^{f_{1}\left(\alpha_{i}\right) \oplus f_{2}\left(\alpha_{i}\right)}
$$

Let $f_{1}(x)=x_{1} x_{2}\left(x \in \Sigma^{2}\right)$ which has its sequence

$$
\xi=(\Leftrightarrow 1)^{f_{1}(0,0)},(\Leftrightarrow 1)^{f_{1}(0,1)},(\Leftrightarrow 1)^{f_{1}(1,0)},(\Leftrightarrow 1)^{f_{1}(1,1)}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
$$

where \Leftrightarrow stands for $\Leftrightarrow 1$. The function $f_{2}(x)=x_{2}\left(x \in \Sigma^{2}\right)$ which has the function sequence

$$
\eta=(\Leftrightarrow 1)^{f_{2}(0,0)},(\Leftrightarrow 1)^{f_{2}(0,1)},(\Leftrightarrow 1)^{f_{2}(1,0)},(\Leftrightarrow 1)^{f_{2}(1,1)}=(1 \Leftrightarrow 1 \Leftrightarrow) .
$$

Now $f_{1}(x) \oplus f_{2}(x)=x_{1} x_{2} \oplus x_{2}$ has the sequence $(1 \Leftrightarrow 11)$ which equals to is $\xi * \eta=(111 \Leftrightarrow) *(1 \Leftrightarrow 1 \Leftrightarrow)=$ ($1 \Leftrightarrow 11$).

An $r \times r$ matrix with entries from $\{1, \Leftrightarrow 1\}$ is called a Hadamard matrix if $H H^{T}=r I_{r}$ where H^{T} is the transpose of H and I_{r} is the $r \times r$ identity matrix. It is well known that Hadamard matrices exist when $n=1,2$ or n is multiple of 4 [510]. A Sylvester-Hadamard or Walsh-Hadamard matrix is a $2^{n} \times 2^{n}$ matrix H_{n} which is generated according to the following recursive relation:

$$
H_{0}=1, H_{n}=\left[\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & \Leftrightarrow H_{n-1}
\end{array}\right] ; n=1,2, \ldots .
$$

The way the matrix H_{n} is constructed from H_{n-1} is written shortly as $H_{n}=H_{1} \otimes H_{n-1}$ where \otimes in means the Kronecker product. For instance, let

$$
A=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right] \quad B=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3} \\
b_{4} & b_{5} & b_{6} \\
b_{7} & b_{8} & b_{9}
\end{array}\right]
$$

then

$$
A \otimes B=\left[\begin{array}{ll}
a_{1} B & a_{2} B \\
a_{3} B & a_{4} B
\end{array}\right] \text { and } B \otimes A=\left[\begin{array}{lll}
b_{1} A & b_{2} A & b_{3} A \\
b_{4} A & b_{5} A & b_{6} A \\
b_{7} A & b_{8} A & b_{9} A
\end{array}\right]
$$

An interesting relation between Walsh-Hadamard matrices and the collection of linear functions is described in the next lemma.

Lemma 3.2 The i-th row (column) of H_{n} is the sequence of linear function $\varphi_{i}(x)=\left\langle\alpha_{i}, x\right\rangle$, where $x, \alpha_{i} \in \Sigma^{n}$ and α_{i} is the binary representation of the integer $i ; i=0,1, \ldots, 2^{n} \Leftrightarrow 1$.

Proof: By induction on n. Let $n=1$. Note that $H_{1}=\left[\begin{array}{cc}+ & + \\ + & \Leftrightarrow\end{array}\right]$ where + and \Leftrightarrow stand for 1 and $\Leftrightarrow 1$, respectively. The first row of H_{1} is $\ell_{0}=(++)$ which is equal to $\langle 0, x\rangle$. The corresponding function is the constant function $f(x)=0$. The second row of H_{1} is $\ell_{1}=(+\Leftrightarrow)$ which is the same as the sequence of $\langle 1, x\rangle$ where $x \in \Sigma$. The corresponding function is $f(x)=x$.

Suppose the lemma is true for $n=1,2, \ldots, k \Leftrightarrow 1$. Since $H_{k}=H_{1} \otimes H_{k-1}$, each row of H_{n} can be written as either (ℓ, ℓ) or $(\ell, \Leftrightarrow \ell)$ where ℓ is a row in H_{k-1}. From the assumption, ℓ is the sequence of some linear function $\varphi(x)$ where $x=\left(x_{2}, \ldots, x_{k}\right) \in \Sigma^{k-1}$. Thus (ℓ, ℓ) is the sequence of the function $\phi(y)=\varphi(x)$ where $y=\left(x_{1}, \ldots, x_{k}\right) \in \Sigma^{k}$ and $(\ell, \Leftrightarrow \ell)$ is the sequence of the function $\phi(y)=\varphi(x) \oplus x_{1}$ where $y=\left(x_{1}, \ldots, x_{n}\right) \in \Sigma^{k}$. Thus the lemma is true for k. Since H_{k} is symmetric, the lemma is also true for columns.

The first four Walsh-Hadamard matrices are:

$$
\begin{aligned}
& H_{0}=[1], \quad H_{1}=\left[\begin{array}{rr}
1 & 1 \\
1 & \Leftrightarrow 1
\end{array}\right], \\
& H_{2}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & \Leftrightarrow 1 & 1 & \Leftrightarrow 1 \\
1 & 1 & \Leftrightarrow 1 & \Leftrightarrow 1 \\
1 & \Leftrightarrow 1 & \Leftrightarrow 1 & 1
\end{array}\right],
\end{aligned}
$$

$$
H_{3}=\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \Leftrightarrow 1 & 1 & \Leftrightarrow 1 & 1 & \Leftrightarrow 1 & 1 & \Leftrightarrow 1 \\
1 & 1 & \Leftrightarrow 1 & \Leftrightarrow 1 & 1 & 1 & \Leftrightarrow 1 & \Leftrightarrow 1 \\
1 & \Leftrightarrow 1 & \Leftrightarrow 1 & 1 & 1 & \Leftrightarrow 1 & \Leftrightarrow 1 & 1 \\
1 & 1 & 1 & 1 & \Leftrightarrow 1 & \Leftrightarrow 1 & \Leftrightarrow 1 & \Leftrightarrow 1 \\
1 & \Leftrightarrow 1 & 1 & \Leftrightarrow 1 & \Leftrightarrow 1 & 1 & \Leftrightarrow 1 & 1 \\
1 & 1 & \Leftrightarrow 1 & \Leftrightarrow 1 & \Leftrightarrow 1 & \Leftrightarrow 1 & 1 & 1 \\
1 & \Leftrightarrow 1 & \Leftrightarrow 1 & 1 & \Leftrightarrow 1 & 1 & 1 & \Leftrightarrow 1
\end{array}\right]
$$

Let $\delta=\left(i_{1}, i_{2}, \ldots, i_{p}\right)$ be a constant vector from Σ^{p}. Then $D_{\delta}: \Sigma^{p} \rightarrow \Sigma$ is defined as

$$
D_{\delta}\left(y_{1}, y_{2}, \ldots, y_{p}\right)=\left(y_{1} \oplus \overline{i_{1}}\right)\left(y_{2} \oplus \overline{i_{2}}\right) \cdots\left(y_{p} \oplus \overline{i_{p}}\right)
$$

where $\overline{i_{j}}$ is the complement of i_{j} for $j=1,2, \ldots, p$. The D-function of δ is useful in obtaining the function representation for the concatenation of binary sequences. Let $f_{i}: \Sigma^{q} \rightarrow G F(2) ; i=$ $0, \ldots, 2^{p} \Leftrightarrow 1$, be a collection of 2^{p} Boolean functions. Also let ξ_{i} be the sequence of $f_{i}\left(x_{1}, \ldots, x_{q}\right)$. Now we create the concatenation ξ of the sequences $\xi_{i} ; i=0 \ldots, 2^{p} \Leftrightarrow 1$ so

$$
\xi=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{2^{p}-1}\right)
$$

Obviously, the function which corresponds to ξ, is Boolean function $f: \Sigma^{p+q} \rightarrow G F(2)$ and

$$
\begin{equation*}
f(y, x)=\bigoplus_{\delta \in \Sigma^{p}} D_{\delta}(y) f_{\alpha_{\delta}}(x) \tag{3.14}
\end{equation*}
$$

where $y=\left(y_{1}, \ldots, y_{p}\right), x=\left(x_{1}, \ldots, x_{q}\right)$, and α_{δ} is the decimal representation of δ. For example, if ξ_{1}, ξ_{2} are the sequences of functions $f_{1}, f_{2}\left(f_{1}, f_{2}: \Sigma^{n} \rightarrow G F(2)\right)$ then $\xi=\left(\xi_{1}, \xi_{2}\right)$ is the sequence of the function $g: \Sigma^{n+1} \rightarrow G F(2)$ and

$$
g\left(u, x_{1}, \ldots, x_{n}\right)=(1 \oplus u) f_{1}(x) \oplus u f_{2}(x)
$$

3.6.2 S-box Design Criteria

There is a set of design criteria which are believed to be essential in the design of cryptographic algorithms. If S-boxes do not satisfy one of the criteria, the cryptographic design based on the Sboxes may be cryptographically weak (or easy to attack) or alternatively, the design may need extra rounds to compensate the weakness (resulting in an inefficient design). The collection of essential S-box design criteria includes:

- completeness,
- balance,
- nonlinearity,
- propagation criterion, and
- good XOR profile.

The completeness criterion was introduced by Kam and Davida [267]. The criterion is applicable to the whole cryptographic design (or S-P network) rather than a single S-box. Given S-boxes with a fixed structure, it is necessary to design a suitable permutation box (P-box) and compute how many rounds are necessary to build up the cross dependencies so any binary output is a complex function
of every binary input. The lack of these dependencies enables an opponent to use the "divide and conquer" strategy to analyse the design.

A Boolean function $f: \Sigma^{n} \rightarrow G F(2)$ is said to be balanced if its truth table has 2^{n-1} zeros (or ones). For instance, $f=x_{1} x_{2} \oplus x_{3}$, a Boolean function on Σ^{3}, is balanced since the truth table of f is (01010110) and the function takes the value zero $2^{3-1}=4$ times. The lack of balance in an S-box causes that each time the S-box is used, it produces outputs with a bias. So some output strings are more probable than other. Even worse as any cryptographic design uses many rounds with the same S-box, the bias tends to accumulate making the bias larger when the number of rounds grow. This opens up the design to all sort of attacks which explore a non-uniform output string probability distribution.

Given a balanced function $f: \Sigma^{n} \rightarrow G F(2)$. What are possible input transformations such that the resulting function preserves the balance.

Lemma 3.3 Let

$$
g(x)=f(x B \oplus \beta)
$$

where B is any $n \times n$ nonsingular matrix and a vector $\beta \in \Sigma^{n}$. Then g is balanced if and only if f is balanced.

Proof: Note that if B is nonsingular, then for x running through all input values from the set $\left\{\alpha_{0}, \ldots, \alpha_{2^{n}-1}\right\}, y=x B \oplus \beta$ also takes on the same collection of values. Hence if $f(x)$ is balanced so is $g(x)=f(x B \oplus \beta)$ as the output values of g are permuted values of the function f.

Let $g(x)=f(x B \oplus \beta)$ where $\beta=(1,1,1)$ and

$$
B=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Thus $g\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1} \oplus x_{2} \oplus 1, x_{1} \oplus x_{3} \oplus 1, x_{2} \oplus 1\right)$. Clearly, g is also balanced since $g\left(x_{0}\right)=0$ if and only if $f\left(x_{0} B \oplus \beta\right)=0$.

Lemma 3.4 Let $f: \Sigma^{n} \rightarrow G F(2)$ and $g: \Sigma^{m} \rightarrow G F(2)$ be Boolean functions. Then the function $h: \Sigma^{n+m} \rightarrow G F(2)$ defined as $h(x, y)=f(x) \oplus g(y)$ is balanced if f is balanced.

Proof: Observe that $g(\alpha)$ is constant for given α and the truth table of $f(x)$ is zero (one) half the time. Consequently, the truth table of $f(x) \oplus g(y)$ is zero (one) half the time.

The nonlinearity of a Boolean function can be defined as the distance between the function and the set of all affine functions (see [402]). More precisely, the nonlinearity of a Boolean function $f: \Sigma^{n} \rightarrow G F(2)$ is

$$
N_{f}=\min _{g \in \mathcal{A}_{n}} d(f, g)
$$

where \mathcal{A}_{n} is the set of all affine functions over Σ^{n}. Consider the function $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. What is its nonlinearity ? The set $\mathcal{A}_{2}=\left\{0, x_{1}, x_{2}, x_{1} \oplus x_{2}, 1, x_{1} \oplus 1, x_{2} \oplus 1, x_{1} \oplus x_{2} \oplus 1\right\}$.

$x_{1} x_{2}$	$f(x)=x_{1} x_{2}$	$\ell_{1}(x)=x_{1}$	$\ell_{2}(x)=x_{2}$	$\ell_{3}(x)=x_{1} \oplus x_{2}$
00	0	0	0	0
01	0	0	1	1
10	0	1	0	1
11	1	1	1	0

So that $d\left(f, \ell_{1}\right)=d\left(f, \ell_{2}\right)=1, d\left(f, \ell_{3}\right)=3$. For the missing affine functions the distances are either 1 or 3 , so the nonlinearity of f is 1 .

Lemma 3.5 Let $f, g: \Sigma \rightarrow G F(2)$ then

$$
d(f, g)=2^{n-1} \Leftrightarrow \frac{1}{2}\langle\xi, \eta\rangle
$$

where ξ, η are the sequences of f and g, respectively.

Proof: Denote $\xi=\left(a_{0}, a_{1}, \ldots, a_{2^{n}-1}\right)$ and $\eta=\left(b_{0}, b_{1}, \ldots, b_{2^{n}-1}\right)$. Let $\rho(+)$ denote the number of positions for which two sequences are the same $\left(a_{j}=b_{j}\right)$. The integer $\rho(\Leftrightarrow)$ gives the number of positions where the two sequences differ or $a_{j} \neq b_{j}$. Hence, $\langle\xi, \eta\rangle=\rho(+) \Leftrightarrow \rho(\Leftrightarrow)=2^{n} \Leftrightarrow 2 \rho(\Leftrightarrow)$ and $\rho(\Leftrightarrow)=2^{n-1} \Leftrightarrow \frac{1}{2}\langle\xi, \eta\rangle$. Obviously, $\rho(\Leftrightarrow)=d(f, g)$.

The next lemma can be easily verified using the definition of nonlinearity.
Lemma 3.6 Let ξ be the sequence of a function f on Σ^{n}. Then the nonlinearity of the function is expressible by

$$
N_{f}=2^{n-1} \Leftrightarrow \frac{1}{2} \max _{i=0, \ldots, 2^{n}-1}\left\{\left|\left\langle\xi, \ell_{i}\right\rangle\right|\right\}
$$

where ℓ_{i} is the i-th row of H_{n}.
Lemma 3.7 Let f be an arbitrary function on Σ^{n}. The nonlinearity of f satisfies the following relation

$$
N_{f} \leq 2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}
$$

Proof: Let ξ be the sequence of f. Let ℓ_{j} be the j th row (column) of the Walsh-Hadamard matrix $H_{n}, j=0,1, \ldots, 2^{n} \Leftrightarrow 1$. Note that

$$
\xi H_{n}=\left(\left\langle\xi, \ell_{0}\right\rangle,\left\langle\xi, \ell_{1}\right\rangle, \ldots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle\right) .
$$

Clearly, $\xi H_{n} H_{n} \xi^{T}=\sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{2}$. As $H_{n} H_{n}=2^{n} I_{2^{n}}, 2^{n} \xi \xi^{T}=\sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{2}$, where $I_{2^{n}}$ is $2^{n} \times 2^{n}$ identity matrix. The product $\xi \xi^{T}$ is always equal to 2^{n} so

$$
\begin{equation*}
\sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{2}=2^{2 n} \tag{3.15}
\end{equation*}
$$

The equation (3.15) is called Parseval's equation (see [314]). Thus there exist an index $j, 0 \leq j \leq 2^{n} \Leftrightarrow 1$, such that $\left\langle\xi, \ell_{j}\right\rangle^{2} \geq 2^{n}$ and equivalently either $\left\langle\xi, \ell_{j}\right\rangle \geq 2^{\frac{1}{2} n}$ or $\left\langle\xi, \ell_{j}\right\rangle \leq \Leftrightarrow 2^{\frac{1}{2} n}$.

From Lemma (3.2), ℓ_{j} is the sequence of some linear function φ_{j}. For the case $\left\langle\xi, \ell_{j}\right\rangle \geq 2^{\frac{1}{2} n}$, we can use Lemma 3.5 and conclude that $d\left(f, \varphi_{j}\right) \leq 2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$. For the case $\left\langle\xi, \ell_{j}\right\rangle \leq \Leftrightarrow 2^{\frac{1}{2} n}$, we have $\left\langle\xi,\left\langle\ell_{j}\right\rangle \geq 2^{\frac{1}{2} n}\right.$. Note that $\Leftrightarrow \ell_{j}$ is the sequence of affine function $1 \oplus \varphi_{j}$. From Lemma 3.5, $d\left(f, 1 \oplus \varphi_{j}\right) \leq 2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$. So finally we have that $N_{f} \leq 2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$.

The nonlinearity of a Boolean function is invariant under a nonsingular linear transformation.
Lemma 3.8 Let f be a Boolean function over Σ^{n}, B be a $n \times n$ nonsingular matrix, and β a constant vector from Σ^{n}. Then the function $g(x)=f(x B \oplus \beta)$ has the same nonlinearity as the function f so $N_{g}=N_{f}$.

Proof: From the definition of the nonlinearity, there exists an affine function $\varphi(x) \in \mathcal{A}_{n}$ such that $d(f, \varphi)=N_{f}$. Consider the function $\psi(x)=\varphi(x B \oplus \beta)$. Obviously $d(g, \psi)=d(f, \varphi)$ and the function ψ is also an affine function i.e. $\psi(x) \in \mathcal{A}_{n}$. From the definition of nonlinearity, we can deduce that $N_{g} \leq d(g, \psi)$. This proves that $N_{g} \leq N_{f}$. Since B is nonsingular, the process can be repeated (for B^{-1}) and thus derive that $N_{f} \leq N_{g}$.

The notion of nonlinearity can be generalised for a collection of Boolean functions. Let the function $f: \Sigma^{n} \rightarrow \Sigma^{m}$. The nonlinearity of the function (Nyberg [373]) is

$$
N_{f}=\min _{\alpha \in \Sigma^{m}, \alpha \neq 0} N_{f_{\alpha}}
$$

where $f_{\alpha}=\langle\alpha, f\rangle=\alpha_{1} f_{1} \oplus \cdots \oplus \alpha_{m} f_{m}$ is a linear combination of component functions $f=\left(f_{1}, \ldots, f_{m}\right)$ defined by the vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$.

Strict Avalanche Criterion or SAC was introduced by Webster and Tavares [513]. A function $f: \Sigma^{n} \rightarrow G F(2)$ satisfies the SAC if $f(x) \oplus f(x \oplus \alpha)$ is balanced for all α whose weight is 1 , i.e. $W(\alpha)=1$. In other words, the SAC characterises the output when there is a single bit change on the input. Higher order $S A C$ is generalisation of the SAC property. Both the SAC and higher order SAC are collectively called propagation criteria ([2],[411]).

We say that f satisfies the propagation criterion with respect to the vector α if $f(x) \oplus f(x \oplus \alpha)$ is a balanced function, where $x, \alpha \in \Sigma^{n}$ and α is a non-zero vector. The function which holds the propagation criterion with respect to all $\alpha \in \Sigma^{n}$ whose weight is $1 \leq W(\alpha) \leq k$, is said to satisfy the propagation criterion of degree k.

Consider the function $f=x_{1} x_{2} \oplus x_{3}$ over Σ^{3}. Let $\alpha=(1,1,0)$. It is easy to check that

$$
f(x) \oplus f(x \oplus \alpha)=\left(x_{1} x_{2} \oplus x_{3}\right) \oplus\left(\left(x_{1} \oplus 1\right)\left(x_{2} \oplus 1\right) \oplus x_{3}\right)=x_{1} \oplus x_{2} \oplus 1
$$

is balanced. So f satisfies the propagation criterion with respect to the vector $\alpha=(1,1,0)$. Take the following function over Σ^{5}

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{1} \oplus x_{1} x_{5} \oplus x_{2} x_{4} \oplus x_{2} x_{5} \oplus x_{2} x_{4} x_{5} \oplus x_{3} x_{4} x_{5}
$$

Let the vector $\alpha=(0,0,1,0,0)$ then the function

$$
f(x) \oplus f(x \oplus \alpha)=x_{3} x_{4} x_{5} \oplus\left(x_{3} \oplus 1\right) x_{4} x_{5}=x_{4} x_{5}
$$

is not balanced. In fact, f does not satisfy the propagation criterion with respect to any vector in the subset

$$
\Re=\{(0,0,0,0,0),(0,0,0,0,1),(0,0,0,1,0),(0,0,1,0,0),(0,0,1,1,1)\} .
$$

The next theorem shows how a nonsingular linear transformation can be used to obtain a function which satisfies the SAC.

Theorem 3.2 Let $f: \Sigma^{n} \rightarrow G F(2)$ be a Boolean function and A be an $n \times n$ nonsingular matrix with entries from $G F(2)$. If $f(x) \oplus f(x \oplus \gamma)$ is balanced for each row γ of A, then the function $\psi(x)=f(x A)$ satisfies the $S A C$.

For instance, consider the function $f=x_{1} x_{2} \oplus x_{3}$ which does not satisfy SAC as

$$
f(x) \oplus f\left(x \oplus e_{3}\right)=x_{1} x_{2} \oplus x_{3} \oplus x_{1} x_{2} \oplus\left(x_{3} \oplus 1\right)=1
$$

is not balanced, for the vector $e_{3}=(001)$. On the other hand,

$$
f(x) \oplus f\left(x \oplus e_{1}\right)=x_{2}, f(x) \oplus f\left(x \oplus e_{2}\right)=x_{1}, f(x) \oplus f(x \oplus \gamma)=x_{1} \oplus x_{2} \oplus 1
$$

are balanced for the vectors $e_{1}=(100), e_{2}=(010), \gamma=(111)$, respectively. Consider the matrix built from these vectors so

$$
A=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\gamma
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

From Theorem (3.2) we conclude that $g(x)=f(x A)$ satisfies the SAC.
Theorem (3.2) can be generalised and used to design a collection of functions each of which satisfying the SAC.

Theorem 3.3 Let f_{1}, \ldots, f_{m} be functions over Σ^{n} and the set of vectors over Σ^{n} be

$$
\Re=\left\{\alpha \mid f_{j}(x) \oplus f_{j}(x \oplus \alpha) \text { is not balanced for } j, 1 \leq j \leq m\right\}
$$

If $|\Re|<2^{n-1}$ then there exists a nonsingular $n \times n$ matrix with entries from $G F(2)$ such that each $\psi_{j}(x)=f_{j}(x A)$ satisfies the $S A C$.

Consider the following three functions $f_{1}=x_{1} \oplus x_{3} \oplus x_{2} x_{3}, f_{2}=x_{1} \oplus x_{2} \oplus x_{1} x_{2} \oplus x_{2} x_{3}$ and $f_{3}=x_{1} x_{2} \oplus x_{2} x_{3} \oplus x_{1} x_{3}$. The function f_{1} does not satisfy the propagation criterion with respect to the vector $(1,0,0)$ only. The function f_{2} - to $(1,0,1)$ only and $f_{3}-$ to $(1,1,1)$ only. Therefore $\Re=\{(1,0,0),(1,0,1),(1,1,1)\}$ and $|\Re|=3<2^{n-1}$, where $n=3$. From Theorem 3.3 , there exists a nonsingular 3×3 matrix A such that each function $\psi_{j}(x)=f_{j}(x A)$ satisfies the SAC. For example, A can be chosen as

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

A Boolean function may not satisfy the propagation criterion. The ultimate failure happens when the function $f(x) \oplus f(x \oplus \alpha)$ is constant. Being more precise, let f be a function over Σ^{n}. A vector, α, is called a linear structure of f if $f(x) \oplus f(x \oplus \alpha)$ is constant. Every function has at least one linear structure - the zero vector. For instance, consider the function $f=x_{1} x_{2} \oplus x_{3}$ over Σ^{3}. The vector $\beta=(0,0,1)$ is a linear structure of f as

$$
f(x) \oplus f(x \oplus \beta)=\left(x_{1} x_{2} \oplus x_{3}\right) \oplus\left(x_{1} x_{2} \oplus x_{3} \oplus 1\right)=1
$$

Needless to say, nonzero linear structures should be avoided in S-boxes as they force the corresponding differences of functions to be constant.

The XOR profile was introduced in Section (3.4.1). The criterion is not very restrictive as the designer of S-boxes needs to take care that XOR profile does not contain entries with "large" numbers. In addition, the XOR profile must be considered in the context of the best round characteristics. It is possible to trade off the largest entries of XOR profile with the number of rounds.

In some circumstances, we may request from a collection of Boolean functions to be linearly nonequivalent [81]. The collection of functions $\left\{f_{1}, \ldots, f_{m}\right\} ; f_{i}: \Sigma^{n} \rightarrow G F(2)$, is linearly nonequivalent if there is no affine transformation for which $f_{i}(x)=f_{j}(A x+\beta)$ where A is an $n \times n$ nonsingular matrix and $\beta \in \Sigma^{n}(i \neq j)$.

The function $f: \Sigma^{n} \rightarrow G F(2)$ is written in the algebraic normal form if

$$
f(x)=a_{0} \oplus \sum_{1 \leq i \leq n} a_{i} x_{i} \oplus \sum_{1 \leq i<j \leq n} a_{i j} x_{i} x_{j} \oplus \cdots \oplus a_{12 \ldots n} x_{1} x_{2} \cdots x_{n}
$$

The requirement of short algebraic normal form of a Boolean function becomes essential when the function is too big to be stored as the lookup table. So the function needs to be evaluated "on the fly". Clearly, shorter functions consume less time for their evaluation.

3.6.3 Bent Functions

In 1976 Rothaus introduced the so-called bent functions [430]. Because of their properties, they can be used as building blocks to design Boolean functions with requested properties [1, 287, 387, 532]. Bent functions from \mathcal{Z}_{q}^{n} to \mathcal{Z}_{q} are defined and studied in [288].

A Boolean function f over Σ^{n} is called bent if

$$
2^{-\frac{n}{2}} \sum_{x \in \Sigma^{n}}(\Leftrightarrow 1)^{f(x) \oplus\langle\beta, x\rangle}= \pm 1
$$

for all $\beta \in \Sigma^{n}$. The expression $f(x) \oplus\langle\beta, x\rangle$ is regarded as a real-valued function.
The following statements are equivalent.
(i) f is bent,
(ii) $\langle\xi, \ell\rangle= \pm 2^{\frac{1}{2} n}$ for any affine sequence ℓ of length 2^{n}, where ξ is the sequence of f,
(iii) $2^{-\frac{1}{2} n} H_{n} \xi^{T}$ is equal to ± 1,
(iv) $f(x) \oplus f(x \oplus \alpha)$ is balanced for any non-zero vector $\alpha \in \Sigma^{n}$, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,
(v) the matrix F of the function f is a Hadamard matrix,
(vi) the nonlinearity N_{f} satisfies $N_{f}=2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$.

The proof that the statements are equivalent can be found in [1, 451, 532]. Note that the equivalence of (i), (ii), (iii), and (iv) are easy to prove.

As an exercise, we are going to prove that (ii) \Leftrightarrow (vi).
First we prove that (ii) \Rightarrow (vi). Assume that (ii) holds, i.e. $\left\langle\xi, \ell_{j}\right\rangle= \pm 2^{\frac{1}{2} n}$ for each linear sequence ℓ_{j} of length 2^{n} and the linear function φ_{j} corresponds to the linear sequence ℓ_{j}. Note that $\left\langle\xi, 1+\ell_{j}\right\rangle=\mp 2^{\frac{1}{2} n}$ for each linear sequence of length 2^{n}. Note that $1+\ell_{j}$ is the sequence of the affine function $1 \oplus \varphi_{j}$. From Lemma 3.5 , for any linear φ_{j}, either $d\left(f, \varphi_{j}\right)=2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$ or $d\left(f, 1 \oplus \varphi_{j}\right)=2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$. This proves (vi).

Now we prove that (vi) \Rightarrow (ii). This is done by contradiction. Assume that the statement (ii) is false. From Equation (3.15), we can state that there exists a linear sequence ℓ of length 2^{n} and its linear function φ such that $|\langle\xi, \ell\rangle|>2^{\frac{1}{2} n}$. Thus either $\langle\xi, \ell\rangle>2^{\frac{1}{2} n}$ or $\langle\xi, \ell\rangle\left\langle\Leftrightarrow 2^{\frac{1}{2} n}\right.$. In the first case, by Lemma $3.5, d\left(f, \varphi_{j}\right)<2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$ so $N_{f}<2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$. In the second case, we know that $\langle\xi, \Leftrightarrow \ell\rangle>2^{\frac{1}{2} n}$. Note that $\Leftrightarrow \ell$ is the sequence of the affine function $1 \oplus \varphi$. Using the same argument, we have $d\left(f, 1 \oplus \varphi_{j}\right)<2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$ so $N_{f}<2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$. This gives the requested contradiction that $N_{f} \neq 2^{n-1} \Leftrightarrow 2^{\frac{1}{2} n-1}$ which concludes the proof.

Bent functions have some remarkable properties. Let f be a bent function over Σ^{n} and ξ be a bent sequence of the function f. Basic properties of bent functions are:

1. n must be even - bent functions exist for even values of n,
2. for $n \neq 2$, the degree of $f \leq \frac{1}{2} n$ - the degree of f written in the algebraic normal form,
3. for any affine function $\varphi, f \oplus \varphi$ is also bent,
4. $f(x A \oplus \alpha)$ is also bent where A is any nonsingular matrix of order n, and α is any vector in Σ^{n},
5. f takes the value zero $2^{n-1} \pm 2^{\frac{1}{2} n-1}$ times,
6. $2^{-\frac{1}{2} n} H_{n} \xi^{T}$ is also a bent sequence.

We now verify some of the properties for the bent function $f(x)=x_{1} x_{2}$ over Σ^{2}.

- The truth table of f has to contain $2^{1} \pm 2^{0}$ ones (or zeros). As $f(0,0)=0, f(0,1)=0, f(1,0)=$ $0, f(1,1)=1$ the truth table is (0001) so the weight of it is 1 .
- The 4×4 Sylvester-Hadamard matrix is

$$
H_{2}=\left[\begin{array}{cccc}
+ & + & + & + \\
+ & \Leftrightarrow & + & \Leftrightarrow \\
+ & + & \Leftrightarrow & \Leftrightarrow \\
+ & \Leftrightarrow & \Leftrightarrow & +
\end{array}\right]=\left[\begin{array}{l}
\ell_{1} \\
\ell_{2} \\
\ell_{3} \\
\ell_{4}
\end{array}\right] .
$$

The sequence of $f=x_{1} x_{2}$ is $\xi=(+++\Leftrightarrow)$. It is easy to compute that $\left\langle\xi, \ell_{1}\right\rangle=2,\left\langle\xi, \ell_{2}\right\rangle=2$, $\left\langle\xi, \ell_{3}\right\rangle=2$, and $\left\langle\xi, \ell_{4}\right\rangle=\Leftrightarrow 2$. This property is consistent with the statement (ii).

- The matrix of f is

$$
F=\left[\begin{array}{cccc}
+ & + & + & \Leftrightarrow \\
+ & + & \Leftrightarrow & + \\
+ & \Leftrightarrow & + & + \\
\Leftrightarrow & + & + & +
\end{array}\right],
$$

which is a Hadamard matrix as $F F^{T}=4 I_{4}$.

- According to Statement (iv), $f(x) \oplus f(x \oplus \alpha)$ has to be balanced for all nonzero $\alpha \in \Sigma^{2}$. Indeed, $f(x) \oplus f(x \oplus \alpha)=x_{1} x_{2} \oplus\left(x_{1} \oplus a_{1}\right)\left(x_{2} \oplus a_{2}\right)=a_{1} x_{2} \oplus a_{2} x_{1} \oplus a_{1} a_{2}$ is an affine function thus 0-1 balanced.

Consider another bent function $f=x_{1} x_{2} \oplus x_{3} x_{4}$ over Σ^{n}. The truth table of f is

$$
0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,0
$$

The function f takes on the value zero $2^{4-1}+2^{\frac{1}{2} 4-1}=8+2=10$ times. The function is not balanced.

3.6.4 Propagation and Nonlinearity

There is an intrinsic relation between propagation properties and the nonlinearity of Boolean functions. For instance, bent functions satisfy propagation criterion with respect to all nonzero vectors. Now we are going to investigate the relation between propagation and nonlinearity for arbitrary Boolean functions.

Let f be a function over Σ^{n} and $\xi(\alpha)$ be the sequence of the function $f(x \oplus \alpha)$. Using our notation, it is obvious that $\xi(0) * \xi(\alpha)$ is the sequence of $f(x) \oplus f(x \oplus \alpha)$. The autocorrelation of f with a shift α is defined as

$$
\Delta(\alpha)=\langle\xi(0), \xi(\alpha)\rangle
$$

Lemma 3.9 Let f be a function over Σ^{n}. Then the Hamming weight of $f(x) \oplus f(x \oplus \alpha)$ is equal to $2^{n-1} \Leftrightarrow \frac{1}{2} \Delta(\alpha)$.

Proof: Let $e_{+}\left(e_{-}\right)$denote the number of ones (minus ones) in the sequence of $\xi(0) * \xi(\alpha)$. Thus $e_{+} \Leftrightarrow e_{-}=\Delta(\alpha)$ and $\left(2^{n} \Leftrightarrow e_{-}\right) \Leftrightarrow e_{-}=\Delta(\alpha)$ so $e_{-}=2^{n-1} \Leftrightarrow \frac{1}{2} \Delta(\alpha)$. Note that e_{-}is also the number of ones in the truth table of $f(x) \oplus f(x \oplus \alpha)$. Thus the lemma holds.

The following corollary is a simple conclusion from Lemma (3.9).

Corollary $3.1 \Delta(\alpha)=0$ if and only if $f(x) \oplus f(x \oplus \alpha)$ is balanced, i.e. f satisfies the propagation criterion with respect to α.

Note that if $|\Delta(\alpha)|=2^{n}$ then $f(x) \oplus f(x \oplus \alpha)$ is constant and then α is a linear structure (see [373]). In practice, for most Boolean functions, the propagation criterion with respect to arbitrary α is not satisfied and also α is not a linear structure. For some cases, $\Delta(\alpha) \neq 0$ and is relatively small so $f(x) \oplus f(x \oplus \alpha)$ is almost balanced, and the function f has "good" propagation properties. To measure the global propagation property of a function f with respect to all vectors in Σ^{n}, we can use the number

$$
\sum_{\alpha \in \Sigma^{n}} \Delta^{2}(\alpha)
$$

Ideally, we expect the number to be as small as possible. In fact, it is smallest for bent functions and largest for affine functions.

Let F be the matrix of $f: \Sigma^{n} \rightarrow G F(2), \xi$ be the sequence of f. It is easy to verify that the first row of $F F^{T}$ is

$$
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \cdots, \Delta\left(\alpha_{2^{n}-1}\right)\right)
$$

Now consider the Fourier transform of the function f written in the form $2^{-n} H_{n} F H_{n}$. According to the result by McFarland (see Theorem 3.3 of [155]), the matrix F can be represented as

$$
\begin{equation*}
F=2^{-n} H_{n} \operatorname{diag}\left(\left\langle\xi, \ell_{0}\right\rangle, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle\right) H_{n} \tag{3.16}
\end{equation*}
$$

where ℓ_{i} is the i-th row of a Sylvester-Hadamard matrix H_{n} and $\operatorname{diag}\left(a_{0}, \cdots, a_{2^{n}-1}\right)$ is a $2^{n} \times 2^{n}$ matrix with all zero entries except for the diagonal whose entries are ($a_{0}, \cdots, a_{2^{n}-1}$). Using Equation (3.16), the matrix $F F^{T}$ takes on the form

$$
F F^{T}=2^{-n} H_{n} \operatorname{diag}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) H_{n}
$$

Note that f and H_{n} are symmetric so $F=F^{t}$ and $H_{n}=H_{n}^{t}$. The first row of $F F^{t}$ is

$$
2^{-n}\left(\left\langle\xi^{*}, \ell_{0}\right\rangle, \cdots,\left\langle\xi^{*}, \ell_{2^{n}-1}\right\rangle\right)=2^{-n} \xi^{*} H_{n}
$$

where $\xi^{*}=\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right)$. Thus

$$
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \cdots, \Delta\left(\alpha_{2^{n}-1}\right)\right)=2^{-n}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) H_{n}
$$

So the following theorem has been proved.
Theorem 3.4 Let f be a function over Σ^{n}. Then

$$
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \cdots, \Delta\left(\alpha_{2^{n}-1}\right)\right) H_{n}=\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right)
$$

As $\left\langle\xi, \ell_{i}\right\rangle$ expresses the distance between the function f and the linear function which corresponds to the sequence ℓ_{i}, Theorem (3.4) characterises the relation between the nonlinearity and the propagation. Let us investigate the relation in more details. First denote $\eta=\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \cdots, \Delta\left(\alpha_{2^{n}-1}\right)\right)$. The expression $\left\langle\xi^{*}, \xi^{*}\right\rangle=\left\langle\eta H_{n}, \eta H_{n}\right\rangle=\eta H_{n} H_{n}^{T} \eta^{T}=2^{n}\langle\eta, \eta\rangle$. As $\left\langle\xi^{*}, \xi^{*}\right\rangle=\sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{4}$, we have shown that the following corollary is true.

Corollary 3.2 Let f be a function over Σ^{n}. Then

$$
\sum_{\alpha \in \Sigma^{n}} \Delta^{2}(\alpha)=2^{-n} \sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{4}
$$

Corollary (3.2) gives an insight into the relation between propagation properties expressed by $\Delta(\alpha)$ and the nonlinearity characterised by distances of f to the set of linear functions. Clearly, the larger the nonlinearity of f the better the propagation of the function. It is convenient to describe the nonlinearity and propagation of the function f by the parameter

$$
\begin{equation*}
\sigma(f)=\sum_{\delta \in \Sigma^{n}} \Delta^{2}(\alpha)=2^{-n} \sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{4} \tag{3.17}
\end{equation*}
$$

the parameter $\sigma(f)$ is called the global propagation of the function f. It would be interesting to know how it behaves depending on the function f. The next theorem gives the answer.

Theorem 3.5 Let f be a function over Σ^{n}. Then
(i) $2^{2 n} \leq \sigma(f) \leq 2^{3 n}$,
(ii) $\sigma(f)=2^{2 n}$ if and only if f is a bent function,
(iii) $\sigma(f)=2^{3 n}$ if and only if f is an affine function.

Proof: Statement (i). By the definition, we have

$$
\sigma(f)=2^{-n} \sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{4} \leq 2^{-n}\left(\sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{2}\right)^{2}
$$

From Equation (3.15), we have

$$
\sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{2}=2^{2 n}
$$

Thus $\sigma(f) \leq 2^{-n} 2^{4 n}=2^{3 n}$.
Statement (ii). Note that always $\Delta(0)=2^{n}$. So $\sigma(f)=\sum_{\alpha \in \Sigma^{n}} \Delta^{2}(\alpha)=\Delta^{2}(0)=2^{2 n}$ happens if and only if $\Delta(\alpha)=0$ for any $\alpha \neq 0$. This means that f is bent.
Statement (iii). Denote $y_{j}=\left\langle\xi, \ell_{j}\right\rangle^{2}$. By Parseval's equation, $\sum_{j=0}^{2^{n}-1} y_{j}=2^{n}$. The following statements are equivalent: $\sigma(f)=2^{3 n} \Longleftrightarrow 2^{-n} \sum_{j=0}^{2^{n}-1} y_{j}^{2}=2^{3 n} \Longleftrightarrow \sum_{j=0}^{2^{n}-1} y_{j}^{2}=2^{4 n} \Longleftrightarrow \sum_{j=0}^{2^{n}-1} y_{j}^{2}=$ $\left(\sum_{j=0}^{2^{n}-1} y_{j}\right)^{2} \Longleftrightarrow y_{i} y_{j}=0$ if $j \neq i \Longleftrightarrow$ there exists a j_{0} such that $y_{j_{0}}=2^{2 n}$ and $y_{j}=0$ if $j \neq j_{0} \Longleftrightarrow$ there exists a j_{0} such that $\left\langle\xi, \ell_{j_{0}}\right\rangle= \pm 2^{n}$ and $\left\langle\xi, \ell_{j}\right\rangle=0$ if $j \neq j_{0} \Longleftrightarrow$ there exists a j_{0} such that $\xi= \pm \ell_{j_{0}}$ i.e. f is an affine function.

3.6.5 Constructions of Balanced Functions

Bent functions have the largest nonlinearity and good propagation properties but are not balanced. The lack of balance complicates the use of bent functions. Nevertheless, bent functions are still major building blocks for the design of cryptographically strong S-boxes. We study two methods of the construction of balanced functions. The first method concatenates bent functions. The second one applies linear functions. Readers interested in details are referred to [451, 452, 453, 454].

Concatenating Bent Functions. There are two case. The first one when we have a bent function over $\Sigma^{2 k}$ and we would like to construct balanced functions over $\Sigma^{2 k+1}$. The second case is when we want to construct balanced functions over $\Sigma^{2 k+2}$ having a bent function over $\Sigma^{2 k}$. Our considerations start from the first case.

Let $f: \Sigma^{2 k} \rightarrow G F(2)$ be a bent function and g be a function over $\Sigma^{2 k+1}$ defined by

$$
g\left(x_{1}, x_{2}, \ldots, x_{2 k+1}\right)=x_{1} \oplus f\left(x_{2}, \ldots, x_{2 k+1}\right)
$$

Incidentally, this construction is embedded in cubing permutations over $G F\left(2^{2 k+1}\right)$ (see [401]). The function g is balanced as its truth table is the concatenation of the truth tables of the original function f and its negation, i.e. the function $f \oplus 1$. The function g satisfies the propagation criterion with respect to all non-zero vectors $\alpha \in \Sigma^{2 k+1}$ and different from $(1,0, \ldots, 0)$. This happens as $g(x) \oplus g(x \oplus \alpha)$ is balanced for all $\alpha \notin\{(0, \ldots, 0),(1,0, \ldots, 0)\}$ (or $\Delta(\alpha)=0$). If $\alpha=(1,0, \ldots, 0)=\alpha_{1}$, then $g(x) \oplus g\left(x \oplus \alpha_{1}\right)=1$ for all $x \in \Sigma^{2 k+1}$ and $\Delta\left(\alpha_{1}\right)=\Leftrightarrow 2^{2 k+1}$. The vector α_{1} is a nonzero linear structure of g. The global propagation $\sigma(g)$ can be calculated and

$$
\sigma(g)=\sum_{\alpha \in \Sigma^{2 k+1}} \Delta^{2}(\alpha)=\Delta^{2}(0)+\Delta^{2}\left(\alpha_{1}\right)=2 \cdot 2^{4 k+2}=2^{4 k+3}
$$

The lower bound of $\sigma(h)$, where h is a function on $\Sigma^{2 k+1}$, is $2^{4 k+2}$. This bound is attained by bent functions only. But bent functions exist in even dimension vector spaces only.

Denote $g^{*}(x)=g(x A)$, where A is a nonsingular $(2 k+1) \times(2 k+1)$ matrix with entries from $G F(2)$. The function g^{*} is a balanced function on $\Sigma^{2 k+1}$. Note that $\sigma(g)$ is invariant under any nondegenerate linear transformation on the variables. Thus $\sigma^{*}\left(g^{*}\right)=2^{4 k+3}$. Clearly, the nonlinearity and the number of vectors for which the propagation criterion is satisfied, is the same for g^{*} and g. Unfortunately, g has a linear structure although it satisfies the propagation criterion with respect to other nonzero vectors.

Let f be a bent function over $\Sigma^{2 k-2}$ and g be a function over $\Sigma^{2 k}$ defined by

$$
g\left(x_{1}, x_{2}, \ldots, x_{2 k}\right)=x_{1} \oplus x_{2} \oplus f\left(x_{3}, \ldots, x_{2 k}\right)
$$

For any nonzero vector $\alpha \in \Sigma^{2 k}$, consider $g(x) \oplus g(x \oplus \alpha)$. Denote $\alpha_{1}=(1,0, \ldots, 0), \alpha_{2}=(0,1, \ldots, 0)$, $\alpha_{3}=(1,1, \ldots, 0)$. First assume that $\alpha \neq \alpha_{1}, \alpha_{2}, \alpha_{3}$. From the definition of the function g, it is easy to conclude that $g(x) \oplus g(x \oplus \alpha)$ is balanced and $\Delta(\alpha)=0$. On the other hand, suppose that $\alpha=\alpha_{j}$, $j=1,2,3$. From the definition of g, we have that $g(x) \oplus g\left(x \oplus \alpha_{j}\right)=1 ; j=1,2$, for all $x \in \Sigma^{2 k+1}$. Also $\Delta\left(\alpha_{j}\right)=\Leftrightarrow 2^{2 k}$ for $j=1,2$. For $\alpha_{3}, g(x) \oplus g\left(x \oplus \alpha_{3}\right)=0$ and $\Delta\left(\alpha_{3}\right)=2^{2 k}$. The global propagation $\sigma(g)$ is easy to compute and

$$
\sigma(g)=\sum_{\alpha \in \Sigma^{2 k}} \Delta^{2}(\alpha)=\Delta^{2}(0)+\sum_{j=1}^{3} \Delta^{2}\left(\alpha_{j}\right)=4 \cdot 2^{4 k}=2^{4 k+2}
$$

The collection of balanced function can be expanded by using a nonsingular linear transformation. Denote

$$
g^{*}(x)=g(x A)
$$

where A is any nonsingular $2 k \times 2 k$ matrix over $G F(2)$. It can be proved that the function g^{*} is balanced and satisfies the propagation criterion with respect to all but three non-zero vectors. The nonlinearity of g^{*} satisfies $N_{g^{*}} \geq 2^{2 k-1} \Leftrightarrow 2^{k}$. Note that $\sigma(g)$ is invariant under any nondegenerate linear transformation on the variables. Thus $\sigma\left(g^{*}\right)=2^{4 k+2}$. This value compares quite favourably with the lower bound on $\sigma(h)$ which is $2^{4 k}$. Unfortunately, the function g has three linear structures although it satisfies the propagation criterion with respect to other nonzero vectors.

Concatenating Linear Functions. Assume we have two collections of Boolean variables $y=$ $\left(y_{1}, \ldots, y_{p}\right)$ and $x=\left(x_{1}, \ldots, x_{q}\right)(p<q)$. We can build up a Boolean function over Σ^{p+q} by concatenating 2^{p} linear functions each one over Σ^{q}. The collection of non-zero linear functions used in the construction is denoted by $\Re=\left\{\varphi_{0}, \ldots, \varphi_{2^{p}-1}\right\}$ and $\varphi_{i} \neq \varphi_{j}$ for any $i \neq j, \varphi_{i}: \Sigma^{q} \rightarrow G F(2)$. More precisely, we construct balanced, nonlinear functions by combining the linear functions from \Re as follows:

$$
\begin{equation*}
g(z)=g(y, x)=\bigoplus_{\delta=0, \ldots, 2^{p}-1} D_{\delta}(y) \varphi_{\delta}(x) \tag{3.18}
\end{equation*}
$$

The properties of the resulting function are summarised below (the proof of the properties can be found in [452]).

PR1. The function g is balanced.
PR2. The nonlinearity of g satisfies $N_{g} \geq 2^{p+q-1} \Leftrightarrow 2^{q-1}$.
PR3. The function g satisfies the propagation criterion with respect to any $\gamma=(\beta, \alpha)$ with $\beta \neq 0$ where $\beta \in \Sigma^{p}$ and $\alpha \in \Sigma^{q}$.

PR4. The degree of the function g (in the algebraic normal form) can be $p+1$ if \Re is appropriately chosen.

Let ξ_{δ} is the sequence of φ_{δ} and η is the sequence of g. Clearly, from the construction, η is the concatenation of 2^{p} distinct ξ_{δ}. Note that $H_{p+q}=H_{p} \otimes H_{q}$. So each row of H_{p+q}, say L, can be represented as the Kronecker product $L=\ell^{\prime} \otimes \ell^{\prime \prime}$, where ℓ^{\prime} is a row of H_{p} and $\ell^{\prime \prime}$ is a row of H_{q}. If $\ell^{\prime}=\left(a_{0}, \ldots, a_{2^{p}-1}\right)$ then $\ell^{\prime} \otimes \ell^{\prime \prime}=\left(a_{0} \ell^{\prime \prime}, \ldots, a_{2^{p}-1} \ell^{\prime \prime}\right)$ and the string $a_{i} \ell^{\prime \prime}$ is equal to $\ell^{\prime \prime}$ if $a_{i}=1$ or $\Leftrightarrow \ell^{\prime \prime}$ if $a_{i}=\Leftrightarrow 1$. Since different rows of H_{p} are orthogonal, we have

$$
\langle\eta, L\rangle= \begin{cases}2^{q} & \text { if } f \in \Re, \text { where } L=\ell^{\prime} \otimes \ell^{\prime \prime} \tag{3.19}\\ 0 & \text { if } f \notin \Re, \text { where } L=\ell^{\prime} \otimes \ell^{\prime \prime}\end{cases}
$$

where f is the linear function corresponding to $\ell^{\prime \prime}$. There are $2^{p} \cdot 2^{p}$ different vectors $L=\ell^{\prime} \otimes \ell^{\prime \prime}$ which can be constructed from 2^{p} linear functions from \Re. From Equations (3.17) and (3.18), we can obtain that the global propagation of g is

$$
\sigma(g)=2^{-p-q} 2^{p} \cdot 2^{p} \cdot 2^{4 q}=2^{p+3 q}
$$

The parameter $\sigma(g)$ is invariant under any nondegenerate linear transformation on the variables. Thus $\sigma\left(g^{*}\right)=2^{p+3 q}$ where $g^{*}(z)=g(A z)$. The lower bound of $\sigma(f)$, where f is a function on V_{p+q}, is $2^{2 p+2 q}$. As we know this bound is reached only by bent functions. The nonlinearity and the number of vectors for which the propagation criterion is satisfied, are the same for both g and g^{*}.

The above construction applies 2^{p} different nonzero linear functions. There are no other restrictions imposed on the set \Re. We can improve the construction when we select the set \Re more carefully. The rank of the set of linear functions is the number of all linearly independent elements (functions) in the set. Assume that there is δ_{0} such that the rank of the set

$$
\begin{equation*}
\left\{\varphi_{\delta} \oplus \varphi_{\delta_{0}} \mid \delta=0, \ldots, 2^{p} \Leftrightarrow 1\right\} \tag{3.20}
\end{equation*}
$$

is equal to q. Next we are going to show that the function g defined by Equation (3.18) has no linear structure. Consider

$$
\begin{equation*}
g(z) \oplus g(z \oplus \gamma)=g(y, x) \oplus g(y \oplus \beta, x \oplus \alpha) \tag{3.21}
\end{equation*}
$$

As we know the function (3.21) is balanced for $\beta \neq 0$ (see the property PR3). So we can find linear structures only when $\beta=0$. The expression (3.21) reduces to

$$
\begin{gather*}
g(z) \oplus g(z \oplus \gamma)=g(y, x) \oplus g(y, x \oplus \alpha) \\
=\bigoplus_{\delta=0, \ldots, 2^{p}-1} D_{\delta}(y)\left(\varphi_{\delta}(x) \oplus \varphi(x \oplus \alpha)\right)=\bigoplus_{\delta=0, \ldots, 2 p-1} D_{\delta}(y) \varphi_{\delta}(\alpha) \tag{3.22}
\end{gather*}
$$

Clearly, $\gamma=(0, \alpha)$ is a linear structure if and only if (3.22) is constant or equivalently $\varphi_{\delta}(\alpha)=c$. This is true when

$$
\begin{equation*}
\varphi_{\delta}(\alpha) \oplus \varphi_{\delta_{0}}(\alpha)=0 \tag{3.23}
\end{equation*}
$$

for every $\delta=0, \ldots, 2^{p} \Leftrightarrow 1$ where $c \in \Sigma$. Since the rank of $\left\{\varphi_{\delta} \oplus \varphi \delta_{0} \mid \delta=0, \ldots, 2^{p} \Leftrightarrow 1\right\}=q$, there exists no nonzero α satisfying (3.23) which is equivalent to the set of linear equations. This proves that g has no linear structures.

The condition imposed on the set \Re is easy to satisfy. For example, the following collection of linear functions $h_{1}(x)=x_{1}, h_{2}(x)=x_{2}, \ldots, h_{q}(x)=x_{q}$ are linearly independent over Σ^{q}. Let φ_{0} be an arbitrary linear function on Σ^{q}. Denote $\varphi_{j}=h_{j} \oplus \varphi_{0}, j=1,2, \ldots, q$. Thus $\varphi_{1} \oplus \varphi_{0}, \ldots, \varphi_{q} \oplus \varphi_{0}$ are linearly independent. The set \Re has to have 2^{p} linear functions. It contains the following linear functions: $\varphi_{1}=h_{1} \oplus \varphi_{0}, \ldots, \varphi_{q}=h_{q} \oplus \varphi_{0}, \varphi_{0}$ as the $(q+1)$-th linear function. The rest can be selected arbitrarily from the other nonzero linear functions.

3.6.6 S-Box Design

Single Boolean functions are basic elements which can be used to construct more complex (and useful from a cryptographic point of view) structures called S-boxes. An $n \times k$ S-box is a mapping from Σ^{n} to Σ^{k} and

$$
S(x)=\left(f_{1}(x), \ldots, f_{k}(x)\right)
$$

where $n \geq k$ and $f_{j}: \Sigma^{n} \rightarrow G F(2)$.
The collection of cryptographically essential properties includes the following ones:
S1. Any nonzero linear combination of f_{1}, \ldots, f_{k}, i.e. $f=c_{1} f_{1} \oplus \cdots \oplus c_{k} f_{k},\left(c_{1}, \ldots, c_{k}\right) \neq(0, \ldots, 0)$, should be balanced.

S2. Any nonzero linear combination of f_{1}, \ldots, f_{k} should be highly nonlinear.
S3. Any nonzero linear combination of f_{1}, \ldots, f_{k} should satisfy the SAC.
S4. The S-box $S(x)$ should be regular, i.e. each vector in Σ^{k} should happen 2^{n-k} times while x runs through Σ^{n} once.

S5. $S(x)$ should have a good XOR profile, i.e. $S(x) \oplus S(x \oplus \alpha)$ runs through some 2^{k-1} vectors in Σ^{k} each 2^{n-k+1} times while x runs through Σ^{n} once, but does not take on other 2^{k-1} vectors.

Observe that properties S2 and S4 are equivalent. Other properties may not hold simultaneously but a "reasonable" tradeoff can always be negotiated.

To illustrate the properties, consider a simple example. Let our S-box be the mapping from Σ^{3} to Σ^{3} such that

$$
S(x)=\left(f_{1}(x), f_{2}(x), f_{3}(x)\right)
$$

where $f_{1}=x_{1} \oplus x_{3} \oplus x_{2} x_{3}, f_{2}=x_{1} \oplus x_{2} \oplus x_{1} x_{2} \oplus x_{2} x_{3}$ and $f_{3}=x_{1} x_{2} \oplus x_{2} x_{3} \oplus x_{1} x_{3}$. The properties S1-S5 can be verified as follows.

S1. Any nonzero linear combination of f_{1}, f_{2}, f_{3}, say $f=c_{1} f_{1} \oplus c_{2} f_{2} \oplus c_{3} f_{3},\left(c_{1}, c_{2}, c_{3}\right) \neq(0,0,0)$, is balanced.

S2. Any nonzero linear combination f of f_{1}, f_{2}, f_{3} has nonlinearity 2 i.e. $N_{f} \geq 2$ (the maximum for balanced functions on Σ^{3}).

S3. Any nonzero linear combination of f_{1}, f_{2}, f_{3} satisfies the propagation criterion except for a single vector.

S4. $S(x)$ is regular as it is a permutation.

S5. $S(x)$ has a good XOR profile, i.e. $S(x) \oplus S(x \oplus \alpha)$ runs through some 2^{2} vectors in Σ^{3} each twice while x runs through Σ^{3} once and does not take on other 2^{2} vectors. More precisely, let $\alpha=(001)$. Then $S(x) \oplus S(x \oplus \alpha)$ runs through vectors $(010),(011),(100),(101)$ twice while x runs through Σ^{3} once. If $\alpha=(111)$, then $S(x) \oplus S(x \oplus \alpha)$ runs through vectors (001), (011), (101), (111) twice while x runs through Σ^{3} once.

Permutations defined in $G F\left(2^{n}\right)$ can be searched for ones with good cryptographic properties. It turns out (see [401]) that exponentiation can produce cryptographically strong S-boxes. Being more specific, the S-boxes $S: \Sigma^{n} \rightarrow \Sigma^{n}$ defined as $S(x)=x^{3}, x \in G F\left(2^{n}\right)$ where n is odd, are permutations and they have the following properties ([401, 372, 373, 29]):

S1' Any nonzero linear combination of the co-ordinate functions, is balanced. This results from the fact that cubing is a permutation. Any nonzero linear combination f of the co-ordinate functions has a high nonlinearity and $N_{f} \geq 2^{n-1} \Leftrightarrow 2^{\frac{1}{2}(n-1)}$.

S3' Any nonzero linear combination of the co-ordinate functions satisfies the propagation criterion except for a single nonzero vector.

S5' $S(x)$ has a good XOR profile, i.e. $S(x) \oplus S(x \oplus \alpha)$ runs through a subset of 2^{n-1} vectors in Σ^{n} twice while x runs through Σ^{n} once. The remaining 2^{n-1} vectors do not occur.

The design of S-boxes is not free from some pitfalls. They are especially dangerous when having a cryptographically strong S-box, one would like to modify it by adding or reducing output bits. Consider the S-box $S(x)=\left(f_{1}(x), \ldots, f_{k}(x)\right)$ which is regular and has a good XOR profile where $f_{i}: \Sigma^{n} \rightarrow G F(2)$ for $i=1, \ldots, k$. It turns out (see [455]) that $S(x)=\left(f_{1}(x), \ldots, f_{t}(x)\right)$ where $t<k$ is regular but does not have a good XOR profile.

On the other hand, for any regular S-box $S(x)=\left(f_{1}(x), \ldots, f_{k}(x)\right)$ with a good XOR profile, there is a collection of functions $f_{k+1}(x), \ldots, f_{s}(x)$ such that the extended S-box $S^{\prime}(x)=\left(f_{1}(x), \ldots, f_{k}(x)\right.$, $\left.f_{k+1}(x), \ldots, f_{s}(x)\right)$ is a regular mapping from Σ^{n} to Σ^{s} but does not have a good XOR profile.

3.7 Problems and Exercises

1. Write C programs for the implementation of the following ciphers:

- the Caesar cipher,
- the affine cipher,
- the monoalphabetic substitution cipher,
- the transposition cipher,
- the homophonic substitution cipher,
- the Vigenère cipher,
- the Beauford cipher.

Your programs should include routines for both encryption and decryption.
2. The Caesar cipher is relatively easy to break. Write a C program which first is fed by a sample text to collect statistical properties of the language. The statistics is further used to cryptanalyze a given ciphertext by comparing it with the statistics computed for the ciphertext.
3. Design and implement a C program for cryptanalysis of the affine cipher. Your program must not use the enumeration of all possible keys but should use the frequencies of characters to make "optimal" guesses about the key.
4. Write a computer program which calculates the index of coincidence. Run the program for different texts. Try an English text, a text of a high level programming language and a text of random characters generated by a pseudorandom generator. Compare and discuss the results.
5. Let the message space $\mathcal{M}=\mathcal{Z}_{26}^{4}$ and $m=\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ where $m_{i} \in \mathcal{Z}_{26}$ for $i=1,2,3$, 4. Design a product cipher $c=E_{k}(m)$ such that $m, c, k \in \mathcal{Z}_{26}^{4}$ based on the network of P-boxes and S-boxes. The P-box $P: \mathcal{Z}_{26}^{4} \rightarrow \mathcal{Z}_{26}^{4}$ where $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{3}, x_{2}, x_{4}\right)$ and the S-box $S: \mathcal{Z}_{26}^{2} \rightarrow \mathcal{Z}_{26}^{2}$ is defined as

$$
S(x, y)=\left(x+k_{1} y \bmod 26, k_{2} x+y \bmod 26\right)
$$

where $k=\left(k_{1}, k_{2}\right)$ and $\operatorname{gcd}\left(k_{i}, 26\right)=1$ for $i=1,2$. Derive the encryption and decryption formulae for a cipher with n iterations. Analyse the cipher and try to break it under the known-plaintext attack. How the security depends on the number of iterations.
6. Consider the above product cipher with the S-box built using a Feistel permutation defined as

$$
S(x, y)=\left(x, y+k_{1} x^{k_{2}} \bmod 26\right)
$$

Derive encryption and decryption formulae for the cipher with n iterations. Analyse the cipher for the knownplaintext attack and discuss its strength in relation to the number of iterations.
7. Design a DES type cryptosystem which encrypts 16-bit messages into 16-bit cryptograms and applies a functions $f: \Sigma^{8} \rightarrow \Sigma^{8}$ of the form:

$$
f\left(k_{i}, R_{i-1}\right)=\left(k_{i} \oplus R_{i-1}\right)^{e}
$$

for $e=7$ in GF $\left(2^{8}\right)$. What would happen if the exponent was $e=2,3,4,5,6$? Implement the cipher. Assume a reasonable key scheduling.
8. The DES algorithm satisfies the complementation property which can be expressed as $E_{k}(m)=\overline{E_{\bar{k}}(\bar{m})}$. Give a justification why the property holds.
9. Key schedule is an essential component of any encryption algorithm. Assume that your key scheduling algorithm is to generate subkeys $k_{i} \in \Sigma^{8}$ from the key $k \in \Sigma^{16}$ for $i=1, \ldots, 16$. Consider the following key schedules:

- the key k is placed into 16 -bit register. k_{1} is the 8 -bit sequence of less significant bits. Next the contents of the register is rotated α positions to the left $-k_{2}$ is again the 8 -bit sequence of less significant bits. The process continues for the requested number of times,
- the key k is an argument of a one-way function $f: \Sigma^{512} \rightarrow \Sigma^{512}$. Subkeys are generated by applying one way function so $k_{1}=\left.f(k)\right|_{8}$ where $\left.f(k)\right|_{8}$ stands for 8 -bit string of less significant bits, $k_{2}=\left.f(f(k))\right|_{8}$ and so forth.

Assume that you happen to know the last subkey k_{16} (for instance, extracted using the differential cryptanalysis). What you can tell about the other subkeys and the key k for the two key scheduling algorithms?
10. In the ECB mode, encryption is applied independently for each message block m_{i} for $i=1,2, \ldots$. The sequence of cryptograms $c_{i}=E_{k}\left(m_{i}\right)$ is subject to many attacks which exploit the lack of links between consecutive cryptograms. Consider the following chaining scheme in which $c_{i}=E_{k}\left(m_{i}\right) \oplus c_{i-1}$ for $i=1,2, \ldots$. Is this scheme better than the ECB mode? Justify your answer.
11. Assume that encryption applies the CBC mode and during transmission a single cryptogram $c_{i}=E_{k}\left(m_{i} \oplus c_{i-1}\right)$ has been corrupted due to a noise in the communication channel. Which messages cannot be reconstructed at the receiver side? Support your answer by a detailed analysis.
12. Suppose the sender uses the CFB mode to protect the transmitted messages against tampering with the sequence of cryptograms. Let the sender transmit a sequence of cryptograms $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$. An attacker has changed the order of cryptograms so the receiver gets $c_{1}, c_{2}, c_{4}, c_{3}, c_{5}, c_{6}$. Which messages will be correctly recovered by the receiver?
13. Consider $G F\left(2^{3}\right)$ with addition and multiplication given in Table 2.2. Let an S-box be defined by $s^{*}=f(s)=s^{3}$ in $G F\left(2^{3}\right)$ where $s \in G F\left(2^{3}\right)$. Construct an XOR profile of the S-box.
14. An S-box is defined by Table (3.17). The XOR profile of the S-box is given below.

$\delta \backslash \Delta$	0	1	2	3	4	5	6	7
0	8	-	-	-	-	-	-	-
1	-	2	-	2	-	2	-	2
2	-	-	2	2	2	2	-	-
3	-	2	2	-	2	-	-	2
4	-	-	-	-	2	2	2	2
5	-	2	-	2	2	-	2	-
6	-	-	2	2	-	-	2	2
7	-	2	2	-	-	2	2	-

s	s^{*}
0	0
1	1
2	3
3	4
4	5
5	6
6	7
7	2

Table 3.17: An example of S-box

The key is XOR-ed with the input of the S-box. Given two observations $s_{1} \oplus k=3$ and $s_{2} \oplus k=7$ and their corresponding output difference $\Delta=s_{1}^{*} \oplus s_{2}^{*}=5$, what can you tell about the key k ?
15. Given a DES-type encryption algorithm which encrypts 6-bit messages into 6-bit cryptograms using four rounds. Each round applies the S-box described in Table (3.17). A subkey $k_{i}(i=1,2,3,4)$ is XOR-ed to the input of the S-box where the subkey k_{i} is used in the i-th iteration. Assume some values of the subkeys and use the differential cryptanalysis to break the algorithm.
16. Take the encryption algorithm from the previous exercise. Find the best linear approximation of the S-box outputs and derive the necessary linear characteristics. Apply the linear cryptanalysis to recover the cryptographic key.
17. Write the polynomial of a function over Σ^{3} whose truth table is (10101001).
18. Consider a Boolean function $f: \Sigma^{3} \rightarrow \Sigma$ such that $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2}$. Find out its truth table. Is the function balanced ?
19. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} \oplus x_{3} x_{4} \oplus x_{2}$. Find the truth table, sequence and matrix of $f, W(f), N_{f}$ and $\Delta(\alpha)$ for $\alpha=(1111)$.
20. Given two Boolean functions $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3} \oplus x_{2}$ and $g\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}$. What is the distance $d(f, g)$?
21. Determine all affine functions from the set \mathcal{A}_{3}.
22. Find the nonlinearity of the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \oplus x_{2} x_{3}$. The function f can be extended for arbitrary number of variables. Let $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \oplus x_{2} x_{3}$ where $n>3$, what is the nonlinearity of the extended function?
23. Assume that f, g and h be functions on Σ^{n} with $W(f)=0, W(g)=1$ and $W(h)=2^{n}$. Find the nonlinearities N_{f}, N_{g} and N_{h}.
24. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{1} x_{3} \oplus x_{2} x_{5} \oplus x_{2} x_{4} x_{5}$. Determine the set of vectors \Re for which the function does not satisfy the SAC.
25. Prove that any function of the form $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} \oplus x_{3} x_{4} \oplus \cdots \oplus x_{n-1} x_{n}$ is bent when n is even and bigger than 2.
26. Calculate the nonlinearity of $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} \oplus x_{2} x_{3} \oplus \cdots \oplus x_{n_{1}} x_{n} \oplus x_{n} x_{1}$ where $n \geq 3$ and is odd.
27. Take two functions $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} \oplus x_{2} x_{3} \oplus x_{3} x_{4} \oplus x_{4} x_{1}$ and $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}$. Compute their autocorrelation functions $\Delta_{f}(\alpha)$ and $\Delta_{g}(\alpha)$. Discuss the results.
28. Let f be a function over Σ^{n}. Consider the following statements:

- if $N_{f}=0$, then $f=0$,
- if $N_{f}=2$, then $W(f)=2$,
- $d(f, f \oplus g)=2^{n-1}$ for some linear function g,
- $N_{f \oplus g}=N_{f}$ for any linear function g.

Chapter 4

PSEUDORANDOMNESS

Most of physical processes expose some random behaviour. A good example of such random behaviour is a noise in telecommunication channels. A great irony is that when there is a need for a source of random bits or numbers, then the ever-present randomness is in a short supply. Generation of large volume of random bits is usually very expensive and requires a special hardware. Also the parameters of truly random generators can fluctuate so they need to be calibrated and tested from time to time. The major drawback of truly random generators is the lack of reproducibility of yielded bits and numbers. The reproducibility is crucial in simulations where there is a need to repeat the same experiments many times. It is also necessary in some cryptographic applications when for instance two communicating parties want to generate identical sequences from a shared secret (and short) key. From a cryptographic point of view, we are interested in deterministic algorithms that generate strings of bits efficiently and these strings cannot be distinguished from truly random ones.

4.1 Number Generators

Knuth [283] devotes the whole Chapter 3 on generation of "random" numbers. Let us review some of the classical solutions for number generation. The most popular solution applies the linear congruential method which generates a sequence of integers x_{1}, x_{2}, \ldots according to the following congruence

$$
\begin{equation*}
x_{i+1} \equiv a \cdot x_{i}+c \bmod N \tag{4.1}
\end{equation*}
$$

where N is an positive integer, $0 \leq a, c \leq N$ and $i=1,2, \ldots$. The congruence needs the so-called seed x_{0} which provides a starting point. Note that the sequence of integers is periodic. The choice of the modulus N and the multiplier a forces the length of the period. The maximum length of the period is N.

Consider an instance of the linear congruential generator for $N=7, a=3$, and $c=4$. If the starting point is $x_{0}=2$, then we get the following sequence of integers $x_{1}=3, x_{2}=6, x_{3}=1, x_{4}=0$, $x_{5}=4$ and $x_{6}=2$.

The quadratic congruential method is a generalisation of the linear one and can be described by

$$
\begin{equation*}
x_{i+1} \equiv d \cdot x_{i}^{2}+a \cdot x_{i}+c \bmod N \tag{4.2}
\end{equation*}
$$

The maximum length of the period of the sequence is N.
There is a class of number generators based on linear feedback shift registers (see for example [108],[215]). These generators can be seen as a far fetched generalisation of congruential generators. They offer an efficient method of number generation which can be a very attractive alternative for some applications. Unfortunately, a numerous examples show that generators based on linear feedback shift registers are inherently insecure (see [211],[341]).

Observe that the randomness of the sequences obtained is measured by statistical tests. We say that a number generator passes a statistical test if it behaves in the same way as a truly random generator. On the other hand, if a number generator fails a statistical test, the test can be used to distinguish the sequence generated by it from a truly random one. From a cryptographic point of view, the security of number generators could be determined by the computational efficiency of an algorithm which enables an opponent, Oscar, to find out the seed and other secret parameters from an observed output sequence. There is an intimate relation between the existence of an efficient statistical test (which can be used to distinguishes a generator from a truly random one) and the existence of a cryptographic attack which breaks the generator. Informally we can formulate the following proposition.
Given a number generator. If a generator G is polynomially indistinguishable from a truly random generator, then there is no efficient algorithm that breaks the generator.
A generator is polynomially indistinguishable if there is no efficient statistical test which can be used to tell apart G from a truly random generator. The proposition can be justified using the contradiction. Assume that there is an efficient algorithm that breaks the generator. Now we can construct a simple test to distinguish the generator from a truly random one. To do that we take a long enough output sequence of the tested generator and feed it to our algorithm. The algorithm returns the parameters of the generator. We take the computed parameters and determine the next numbers which will be generated. If the observed numbers equal to the expected ones, we can conclude that this is the generator G. Otherwise, the tested generator is the random generator. This is the requested contradiction which justifies the proposition.

4.2 Polynomial Indistinguishability

The notion of polynomial indistinguishability is central in the theory of pseudorandomness ([531]). The proof of security of a generator can be reduced to the demonstration that the generator is polynomially indistinguishable from a truly random generator.

An ensemble $\mathcal{E}=\left\{\mathcal{S}_{n}, \mathcal{P}_{n} \mid n \in \mathcal{N}\right\}$ is an infinite family of sets $\mathcal{S}_{n} ; n \in \mathcal{N}$, together with their probability distributions $\mathcal{P}_{n}=\left\{p(x) \mid x \in S_{n}\right\}$. For instance, consider a ensemble \mathcal{E} such that $\mathcal{S}_{n}=\left\{x_{1}, \ldots, x_{2^{n}}\right\}$ and

$$
\begin{equation*}
\mathcal{P}_{n}=\left\{p(x)=2^{-n} \mid x \in \mathcal{S}_{n}\right\} \tag{4.3}
\end{equation*}
$$

For any $n(n \in \mathcal{N})$, the corresponding ensemble instance generates 2^{n} strings with the uniform probability.

Definition 4.1 (Yao [531]) Let $\mathcal{E}_{1}=\left\{\mathcal{S}_{n}, \mathcal{P}_{n}^{1} \mid n \in \mathcal{N}\right\}$ and $\mathcal{E}_{2}=\left\{\mathcal{S}_{n}, \mathcal{P}_{n}^{2} \mid n \in \mathcal{N}\right\}$ be two ensembles. A distinguisher D for $\mathcal{E}_{1}, \mathcal{E}_{2}$ is a probabilistic polynomial-time algorithm such that

1. it halts in time $O\left(n^{t}\right)$ and leaves a binary output $D_{n}(\alpha) \in\{0,1\}$ for any input (n, α) where n is the size of the instance and $\alpha=\left(x_{1}, \ldots, x_{n^{k}}\right)$ is a sequence of n^{k} elements of \mathcal{S}_{n}. Denote

$$
P_{D_{n}}\left(\mathcal{E}_{1}\right)=\sum_{\alpha \in \mathcal{S}_{n}^{k}} p_{1}(\alpha) p\left(D_{n}(\alpha)=1\right)
$$

and

$$
P_{D_{n}}\left(\mathcal{E}_{2}\right)=\sum_{\alpha \in \mathcal{S}_{n}^{k}} p_{2}(\alpha) p\left(D_{n}(\alpha)=1\right)
$$

where $p_{1}(\alpha)$ and $p_{2}(\alpha)$ are probabilities induced from \mathcal{P}_{1} and \mathcal{P}_{2}, respectively,
2. there exists an infinite sequence of n such that

$$
\begin{equation*}
\left|P_{D_{n}}\left(\mathcal{E}_{1}\right)-P_{D_{n}}\left(\mathcal{E}_{2}\right)\right|>\epsilon \tag{4.4}
\end{equation*}
$$

for fixed t, k and $\epsilon>0$.
Consider Figure 4.2 with two ensembles. Assume that we would like to identify which ensemble is currently used. We can observe the output of the ensemble. A witness algorithm can be used to

Figure 4.1: Illustration of the distinguishability problem
identify the ensemble. Clearly the witness algorithm can process only a polynomial samples of output elements and has to make its decision in polynomial time. Also its decisions may not always be correct but if it is run for along enough $\alpha \in \mathcal{S}_{n}^{k}$, there is a significant (larger than ϵ) difference between the probabilities $\left|P_{D_{n}}\left(\mathcal{E}_{1}\right)-P_{D_{n}}\left(\mathcal{E}_{2}\right)\right|$. If this difference persists for infinite sequence of n, we say that the witness algorithm distinguishes the two ensembles.

Consider two ensembles over the space $\mathcal{S}_{n}=\left\{1,2, \ldots, 2^{n}\right\}$

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{\mathcal{S}_{n}, \left.\left\{\left.p_{1}(x)=\frac{1}{2^{n}} \right\rvert\, x \in \mathcal{S}_{n}\right\} \right\rvert\, n \in \mathcal{N}\right\} \\
& \mathcal{E}_{2}=\left\{\mathcal{S}_{n}, \left.\left\{\left.p_{2}(x)=\frac{x}{2^{n-1}} \right\rvert\, x \in \mathcal{S}_{n}\right\} \right\rvert\, n \in \mathcal{N}\right\}
\end{aligned}
$$

Assume that we have a probabilistic polynomial time algorithm D which takes a polynomial size sequence α generated by an unknown ensemble (either \mathcal{E}_{1} or \mathcal{E}_{2}) and outputs its guess about the ensemble. Consider the two probabilities

$$
\begin{aligned}
& P_{D_{n}}\left(\mathcal{E}_{1}\right)=\sum_{\alpha \in \mathcal{S}_{n}^{k}} p_{1}(\alpha) p\left(D_{n}(\alpha)=1\right) \\
& P_{D_{n}}\left(\mathcal{E}_{2}\right)=\sum_{\alpha \in \mathcal{S}_{n}^{k}} p_{2}(\alpha) p\left(D_{n}(\alpha)=1\right)
\end{aligned}
$$

Assuming that $x_{i} \in \mathcal{S}_{n}$ are independent we can compute the probabilities $p_{1}(\alpha)=p_{1}\left(\alpha_{1}\right) \cdots p_{1}\left(\alpha_{k}\right)$ and $p_{2}(\alpha)=p_{2}\left(\alpha_{1}\right) \cdots p_{2}\left(\alpha_{k}\right)$ where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and $\alpha_{i} \in \mathcal{S}_{n}$. Their difference is

$$
\left|P_{D_{n}}\left(\mathcal{E}_{1}\right)-P_{D_{n}}\left(\mathcal{E}_{2}\right)\right|=\sum_{\alpha \in \mathcal{S}_{n}^{k}}\left|p_{1}\left(\alpha_{1}\right) \cdots p_{1}\left(\alpha_{k}\right)-p_{2}\left(\alpha_{1}\right) \cdots p_{2}\left(\alpha_{k}\right)\right| p\left(D_{n}(\alpha)=1\right)
$$

Note that the difference

$$
\left|p_{1}\left(\alpha_{1}\right) \cdots p_{1}\left(\alpha_{k}\right)-p_{2}\left(\alpha_{1}\right) \cdots p_{2}\left(\alpha_{k}\right)\right| \leq \frac{1}{2^{n k}}
$$

for all $\alpha \in \mathcal{S}_{n}^{k}$. This implies that

$$
\begin{equation*}
\left|P_{D_{n}}\left(\mathcal{E}_{1}\right)-P_{D_{n}}\left(\mathcal{E}_{2}\right)\right|<\frac{1}{2^{n k}} \sum_{\alpha \in \mathcal{S}_{n}^{k}} p\left(D_{n}(\alpha)=1\right) \tag{4.5}
\end{equation*}
$$

Note that α goes through all possible sequences of the set \mathcal{S}_{n}^{k} - there are exponentially many such sequences. As the witness algorithm D is polynomially bounded, it means that for any n it can investigate a polynomial sample of the whole space \mathcal{S}_{n}^{k}. Denote the sample by $\mathcal{S}_{\gamma(n)}$ where the polynomial $\gamma(n)$ indicates the size of the sample for a given n. Therefore Inequality (4.5) becomes

$$
\begin{equation*}
\left|P_{D_{n}}\left(\mathcal{E}_{1}\right)-P_{D_{n}}\left(\mathcal{E}_{2}\right)\right|<\frac{\gamma(n)}{2^{n k}} \tag{4.6}
\end{equation*}
$$

The ratio $\frac{\gamma(n)}{2^{n k}}$ can be made as small as required by the selection of a big enough n - see our discussion in Section (2.3.2). So the two ensembles are polynomially indistinguishable as Inequality (4.6) holds for any witness algorithm D. This kind of indistinguishability is also called statistical as it does not depend upon any number theoretic assumptions. In fact, two ensembles are statistically indistinguishable if their probability distributions converge. The statistical indistinguishability implies the polynomial indistinguishability but not vice versa.

Definition 4.2 Two ensembles are said to be polynomially indistinguishable if there exists no distinguisher for them.

To denote that two ensembles $\mathcal{E}_{1}, \mathcal{E}_{2}$ are polynomially indistinguishable, we simply write $\mathcal{E}_{1} \asymp \mathcal{E}_{2}$. It is easy to verify that the polynomial indistinguishability is an equivalence relation, i.e. it is reflexive, symmetric and transitive. The relation is reflexive $\mathcal{E} \asymp \mathcal{E}$ as there is no witness algorithm that distinguishes two identical ensembles. It is symmetric as $\mathcal{E}_{1} \asymp \mathcal{E}_{2} \Rightarrow \mathcal{E}_{2} \asymp \mathcal{E}_{1}$. To show that the relation is transitive, assume that we have three ensembles $\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3}$ and (1) $\mathcal{E}_{1} \asymp \mathcal{E}_{2}$ and (2) $\mathcal{E}_{2} \asymp \mathcal{E}_{3}$. Now we have to prove that $\mathcal{E}_{1} \asymp \mathcal{E}_{3}$. From the assumption (1) and (2), we know that for any probabilistic polynomial time algorithm D

$$
\left|P_{D_{n}}\left(\mathcal{E}_{1}\right)-P_{D_{n}}\left(\mathcal{E}_{2}\right)\right| \leq \epsilon_{1}
$$

and

$$
\left|P_{D_{n}}\left(\mathcal{E}_{2}\right)-P_{D_{n}}\left(\mathcal{E}_{3}\right)\right| \leq \epsilon_{2}
$$

respectively. Take

$$
\begin{aligned}
\left|P_{D_{n}}\left(\mathcal{E}_{1}\right)-P_{D_{n}}\left(\mathcal{E}_{3}\right)\right| & =\left|P_{D_{n}}\left(\mathcal{E}_{1}\right)-P_{D_{n}}\left(\mathcal{E}_{2}\right)+P_{D_{n}}\left(\mathcal{E}_{2}\right)-P_{D_{n}}\left(\mathcal{E}_{3}\right)\right| \\
& \leq\left|P_{D_{n}}\left(\mathcal{E}_{1}\right)-P_{D_{n}}\left(\mathcal{E}_{2}\right)\right|+\left|P_{D_{n}}\left(\mathcal{E}_{2}\right)-P_{D_{n}}\left(\mathcal{E}_{3}\right)\right| \\
& \leq \epsilon_{1}+\epsilon_{2}=\epsilon
\end{aligned}
$$

This proves our claim.
Definition 4.3 An ensemble $\mathcal{E}=\left\{\Sigma^{n}, \mathcal{P}_{n} \mid n \in \mathcal{N}\right\}$ which generates binary strings of length n (the set of all n-bit strings is Σ^{n}) with the uniform probability distributions \mathcal{P}_{n} is said to be the reference ensemble or truly random generator G_{R}.

There is a class of ensembles which are polynomially indistinguishable from the truly random generator G_{R}. As a matter of fact, any member of this class can be used as a reference ensemble.

4.3 Pseudorandom Bit Generators

Bit generators are often defined as deterministic algorithms which produce long bit sequences from random and short seeds (see [46],[531]).

Definition 4.4 Given an ensemble $\mathcal{E}=\left\{\Sigma^{n}, \mathcal{P} \mid n \in \mathcal{N}\right\}$. A bit generator $B G$ over \mathcal{E} is a deterministic polynomial time function g that upon receiving an n-bit input as a seed from \mathcal{E}, extends the seed into a sequence of n^{k} bits where $k \in \mathcal{N}$. The seed is selected randomly and uniformly from Σ^{n}.

A bit generator consists of two layers. The probabilistic one is given by the uniform ensemble $\mathcal{E}=$ $\left\{\Sigma^{n}, \mathcal{P} \mid n \in \mathcal{N}\right\}$ used to produce the seed. The deterministic one defined by the function g which extends an n-bit seed to n^{k}-bit output string. The generator induces a new ensemble

$$
\mathcal{E}_{g}=\left\{\Sigma^{n^{k}}, \mathcal{P} \mid n \in \mathcal{N}\right\}
$$

which reflects both the probabilistic and deterministic nature of the bit generator. We simplify the notation of an ensemble to \mathcal{E}_{g} if the set and the probability distribution can be derived from the definition of the generator.

Definition 4.5 A bit generator g over \mathcal{E} is pseudorandom if for large enough n and for any probabilistic polynomial time (witness) algorithm D

$$
\begin{equation*}
\left|P_{D_{n}}\left(\mathcal{E}_{g}\right)-P_{D_{n}}\left(G_{R}\right)\right| \leq \frac{1}{\gamma(n)} \tag{4.7}
\end{equation*}
$$

where $\gamma(n)$ is a polynomial in n.
Pseudorandom bit generators (PRBG) cannot be distinguished from a truly random generator G_{R} by any polynomially bounded attacker. They can be used as a secure substitute of a truly random generator whenever there is a need. But how can PRBGs be constructed ?

The natural candidates for implementation of PRBGs are problems from complexity classes higher than \mathbf{P}. The confirmation of this came when Levin [299] proved the following important result.

Theorem 4.1 A pseudorandom bit generator exists if and only if there exists a one-way function.
The problem of the PRBG construction has been converted into the problem of finding a one-way function. Informally, a one-way function is "easy" (in polynomial time) to compute but "hard" to invert. Now we are going to describe some constructions for PRBG. Evidently, the generators are pseudorandom under the assumption that the underlying function is one-way. That is why all the constructions are conditionally secure.

4.3.1 The RSA Pseudorandom Bit Generator

Alexi, Chor, Goldreich, and Schnorr [5] used the RSA exponentiation as a one-way function.

The RSA Generator - outputs pseudorandom bits
Initialisation: For an instance n, select at random an instance of exponentiation function $g \in_{R} \mathcal{E}_{N, K}$ where N is the product of two random primes $p, q \in_{R}\left[2^{n / 2-1}, 2^{n / 2}\right]$ and $K \in_{R}[1, \varphi(N)]$ such that $\operatorname{gcd}(K, \varphi(N))=1$. The seed $x_{0} \in_{R}[1, N]$. Recall that $\alpha \in_{R} \mathcal{S}$ means that α is selected randomly and uniformly from \mathcal{S}.

Expansion: For an input sequence $x_{i}\left(i=0,1, \ldots, n^{k}\right)$, generate

$$
x_{i+1}=g\left(x_{i}\right) \equiv x_{i}^{K} \bmod N
$$

Output: For $i=1,2, \ldots$, extract $\ell(n)$ least significant bits of x_{i} where $\ell(n)$ is polynomial in n. So the output is $\left.y_{i}=x_{i}\right\rfloor_{\ell(n)}$.

Theorem 4.2 (Alexi et al, [5]) If the RSA exponentiation is one-way and $\ell(n)=O(\log n)$, then the following ensembles are polynomially indistinguishable:

- $\left.(g, x, y=g(x)\rfloor_{\ell(n)}\right)$ where $g \in_{R} \mathcal{E}_{N, K}, x \in_{R}[1, N]$,
- (g, r, z) where $g \in_{R} \mathcal{E}_{N, K}, r \in_{R}[1, N]$, and $z \in_{R} \Sigma^{\ell(n)}$

Clearly, for a polynomially bounded attacker output bits y_{i} are indistinguishable from truly random bits $z_{i} \in_{R} \Sigma^{\ell(n)}$. The conclusion from this theorem can be formulated as follows.

Corollary 4.1 (Alexi et al, [5]) If the RSA exponentiation is one-way and $\ell(n)=O(\log n)$, then the sequence $y_{1}, \ldots, y_{n k}$ is pseudorandom.

There are two interesting issues for the RSA generator. The first one is: how to extract more bits per iteration and make the generator more efficient? The second issue is: how to design an RSA generator so the extracted bits are not used in further generation. These issues were studied by Micali and Schnorr in [340].

Consider an instance of the RSA generator for a small $n=20$. The two primes p, q are chosen at random from $\left[2^{9}, 2^{10}\right]$. Let them be $p=719$ and $q=971$. The modulus $N=p q=698149$. The public exponent $K \in_{R}[1, \varphi(N)=348230]$. Let it be $K=176677$. The random seed $x_{0}=371564$ is chosen from [1, 698149]. The first five elements of the sequence are:

$$
\begin{aligned}
& x_{1}=x_{0}^{K} \equiv 612281 \bmod 698149 \\
& x_{2}=x_{1}^{K} \equiv 421586 \bmod 698149 \\
& x_{3}=x_{2}^{K} \equiv 359536 \bmod 698149 \\
& x_{4}=x_{3}^{K} \\
& \equiv 580029 \bmod 698149 \\
& x_{5}=x_{4}^{K}
\end{aligned} \equiv 210375 \bmod 698149
$$

If we decide to extract 4 least significant bits from each number $x_{i}\left(\log _{2} 20>4\right)$, then the first 20 bits of the output is:

$$
10010010000011010111
$$

4.3.2 The BBS Pseudorandom Bit Generator

Blum, Blum, and Shub [44] studied two bit generators. One of them based on squaring is pseudorandom provided the quadratic residuacity problem is intractable. The generator is further referred as the BBS generator.

The BBS Generator - outputs pseudorandom bits
Initialisation: For an instance n, select at random two primes $p, q \in \in_{R}\left[2^{n / 2-1}, 2^{n / 2}\right]$ such that $p \equiv$ $q \equiv 3 \bmod 4$. The seed $x_{0} \in_{R}[1, N]$ such that its Jacobi symbols $\left(\frac{x_{0}}{p}\right)=\left(\frac{x_{0}}{q}\right)=1\left(\right.$ so x_{0} is a quadratic residue).

Expansion: For an input sequence $x_{i}\left(i=0,1, \ldots, n^{k}\right)$, generate

$$
x_{i+1} \equiv x_{i}^{2} \bmod N
$$

Output: For $i=1,2, \ldots, n^{k}$, extract the least significant bit (the parity) of x_{i} i.e.

$$
y_{i}=x_{i} \bmod 2
$$

First we investigate some algebraic properties of Jacobi symbol and the BBS generator.
Lemma 4.1 Let N be a product of two primes p, q such that $p \equiv q \equiv 3 \bmod 4$. Then $\left(\frac{a}{N}\right)=\left(\frac{-a}{N}\right)$.

Proof: From the definition of the Jacobi symbol we have

$$
\left(\frac{a}{N}\right)=\left(\frac{a}{p}\right)\left(\frac{a}{q}\right)
$$

and

$$
\left(\frac{-a}{N}\right)=\left(\frac{a}{p}\right)\left(\frac{a}{q}\right)\left(\frac{-1}{p}\right)\left(\frac{-1}{q}\right)
$$

Primes p, q can be represented as $p=4 \alpha+3$ and $q=4 \beta+3$ for some integers α, β so

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}=(-1)^{2 \alpha+1} \equiv-1 \bmod p
$$

Similarly, $\left(\frac{-1}{q}\right)=-1$. So $\left(\frac{-1}{p}\right)\left(\frac{-1}{q}\right)=1$ and the conclusion follows.

Lemma 4.2 Let N be a product of two primes p, q such that $p \equiv q \equiv 3 \bmod 4$. Then each quadratic residue modulo N has exactly one square root which is a quadratic residue.

Proof: Squaring $x^{2} \bmod N$ where N is a product of two primes, has four roots. To find them, it is enough to find roots of two congruences $\left(x^{2} \bmod p\right)$ and $\left(x^{2} \bmod q\right)$. Each congruence has two solutions. Let them be $\pm a$ and $\pm b$ for the first and the second congruence, respectively. The Chinese Remainder Theorem allows to combine them giving the four possible roots: $r_{1}=(a \bmod p, b \bmod q)$, $-r_{1}=(-a \bmod p,-b \bmod q), r_{2}=(-a \bmod p, b \bmod q)$ and $-r_{2}=(a \bmod p,-b \bmod q)$. According to Lemma 4.1 the Jacobi symbols $\left(\frac{r_{1}}{N}\right)=\left(\frac{-r_{1}}{N}\right)$ and and $\left(\frac{r_{2}}{N}\right)=\left(\frac{-r_{2}}{N}\right)$. The Jacobi symbols $\left(\frac{r_{1}}{N}\right) \neq$ $\left(\frac{r_{2}}{N}\right)$. This is true as

$$
\left(\frac{r_{1}}{N}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{q}\right)
$$

and

$$
\left(\frac{r_{2}}{N}\right)=\left(\frac{-a}{p}\right)\left(\frac{b}{q}\right)=\left(\frac{-1}{p}\right)\left(\frac{a}{p}\right)\left(\frac{b}{q}\right) .
$$

In Lemma 4.1 we showed that $\left(\frac{-1}{p}\right)=-1$. So we have eliminated two roots, say $\pm r_{2}$, with their Jacobi symbols with respect to N equal to -1 . There is only one root (either r_{1} or $-r_{1}=N-r_{1}$) whose both Jacobi symbols (with respect to p and q) are positive.

Lemma 4.2 shows that if the seed is a quadratic residue $\left(\left(\frac{x_{0}}{p}\right)=\left(\frac{x_{0}}{q}\right)=1\right)$, then there is a one-to-one correspondence of generated elements. The knowledge of factors of N and a generated x_{i}, allows to identify the unique predecessor x_{i-1} (which is also a quadratic residue). If the factorisation of N is unknown, there are two possible roots each of which generates a different output bit.

The set of quadratic residues is

$$
\mathcal{Z}_{N}^{Q+}=\left\{x \in \mathcal{Z}_{N} \left\lvert\,\left(\frac{x}{p}\right)=\left(\frac{x}{q}\right)=1\right.\right\}
$$

and the set

$$
\mathcal{Z}_{N}^{Q-}=\left\{x \in \mathcal{Z}_{N} \left\lvert\,\left(\frac{x}{p}\right)=\left(\frac{x}{q}\right)=-1\right.\right\}
$$

The set $\mathcal{Z}_{N}^{Q}=\mathcal{Z}_{N}^{Q+} \cup \mathcal{Z}_{N}^{Q-}$ is the set of all integers in \mathcal{Z}_{N} whose Jacobi symbols with respect to N are equal to 1 . The cardinality of \mathcal{Z}_{N}^{Q} is $\frac{\varphi(N)}{2}$. The both sets \mathcal{Z}_{N}^{Q+} and \mathcal{Z}_{N}^{Q-} are of the same size so their cardinality is $\frac{\varphi(N)}{4}$.

The security of BBS generator depends on how efficiently an opponent can decide which of two possible roots r or $-r$ is the quadratic residue or whether $r \in \mathcal{Z}_{N}^{Q+}$ or $-r \in \mathcal{Z}_{N}^{Q+}$ provided the factors of N are unknown.

Name: Quadratic Residue Problem
Instance: Given a composite integer N with two unknown factors p and q. The integer $x \in \mathcal{Z}_{N}^{Q}$.
Question: Does x belong to \mathcal{Z}_{N}^{Q+} (or is x a quadratic residue) ?

Definition 4.6 Let N and x_{0} be selected as in the $B B S$ generator. Given a probabilistic polynomial time algorithm A which for an input $\left(N, x_{0}\right)$ (of size $2 n$) guesses the parity bit of $x_{-1}\left(x_{-1}\right.$ is a predecessor of x_{0}). We say that A has an ϵ-advantage for N in guessing a parity bit of x_{-1} if and only if

$$
\sum_{x_{0} \in \mathcal{Z}_{N}^{Q+}} p\left(x_{0}\right) p\left(A\left(N, x_{0}\right)=\left(x_{-1} \bmod 2\right)\right)>\frac{1}{2}+\epsilon
$$

where $0<\epsilon<\frac{1}{2}$.
Note that the space \mathcal{Z}_{N}^{Q+} has $\varphi(N) / 4$ different elements so $p\left(x_{0}\right)=\frac{4}{\varphi(N)}$ for all $x_{0} \in \mathcal{Z}_{N}^{Q+}$.
Definition 4.7 Let N be selected as in the $B B S$ generator. Given a probabilistic polynomial time algorithm B which for an input (N, x) (of size $2 n$) guesses whether $x \in \mathcal{Z}_{N}^{Q+}$ or $x \in \mathcal{Z}_{N}^{Q-}$. We say that B has an ϵ-advantage for N in guessing quadratic residuacity of x if and only if

$$
\sum_{x \in \mathcal{Z}_{N}^{Q}} p(x) p(B(N, x)=1)>\frac{1}{2}+\epsilon
$$

where $0<\epsilon<\frac{1}{2}$ and the algorithm makes binary decision: $B(N, x)=1$ if $x \in \mathcal{Z}_{N}^{Q+}$ or $B(N, x)=0$ otherwise.

An algorithm A which has an ϵ-advantage for N in guessing a parity bit of x_{-1} can be converted into an algorithm B which has an ϵ-advantage for N in guessing quadratic residuacity of x.

The algorithm B takes as an input N and $x \in \mathcal{Z}_{N}^{Q}$ and calls the algorithm A as a subroutine.
$B(N, x)\{$

1. let $x_{0} \equiv x^{2} \bmod N$,
2. call $A\left(N, x_{0}\right)=b \in\{0,1\}$,
3. if $b \equiv x \bmod 2$, then $x \in \mathcal{Z}_{N}^{Q+}$
otherwise $\left.x \in \mathcal{Z}_{N}^{Q-}\right\}$.
Clearly the complexity of B is equivalent to the complexity of A as the overhead involved in the construction is polynomial in n. So we have proved the following lemma.

Lemma 4.3 [44] An algorithm A which has an ϵ-advantage for N in guessing parity of x_{-1} can be converted efficiently into an algorithm B which has an ϵ-advantage for N in guessing quadratic residuacity of x.

Lemma 4.4 [208] An algorithm B which has an ϵ-advantage for guessing quadratic residuacity can be efficiently converted into a probabilistic polynomial time algorithm C which guesses quadratic residuacity with an arbitrary small error $\delta>0$.

Proof: First we describe the C algorithm which calls B as a subroutine.
$C(N, x)\{$

1. let $c_{1} \in \mathcal{N}$ and $c_{2} \in \mathcal{N}$ be two counters initialised to zero,
2. for $i=1, \ldots, u$ do $\{$

- select a random $r_{i} \in_{R} \mathcal{Z}_{N}^{Q}$,
- compute $r_{i}^{2} \bmod N\left(\right.$ clearly $r_{i}^{2} \in \mathcal{Z}_{N}^{Q+}$ and $\left.-r_{i}^{2} \in \mathcal{Z}_{N}^{Q-}\right)$,
- choose at random $\bar{r}_{i} \in_{R}\left\{r_{i}^{2},-r_{i}^{2}\right\}$,
- call $B\left(N, x \cdot \bar{r}_{i}\right)=b_{i} \in\{0,1\}$ (if $b_{i}=1$, then $x \cdot \bar{r}_{i} \in \mathcal{Z}_{N}^{Q+}$),
- if $\bar{r}_{i}=r_{i}^{2}$ and $x \cdot \bar{r}_{i} \in \mathcal{Z}_{N}^{Q+}$ or $\bar{r}_{i}=-r_{i}^{2}$ and $x \cdot \bar{r}_{i} \in \mathcal{Z}_{N}^{Q-}$, then increment c_{1} by 1 otherwise increment c_{2} by 1$\}$,

3. if $c_{1}>c_{2}$ then $x \in \mathcal{Z}_{N}^{Q+}$ otherwise $\left.x \in \mathcal{Z}_{N}^{Q-}\right\}$.

Now we discuss the probability of error of the algorithm C assuming that B give correct answers with the probability at least $\frac{1}{2}+\epsilon$ and the number of iterations is $u=2 v+1$. So we have u Bernoulli trials with two probabilities $a=\frac{1}{2}+\epsilon$ and $b=1-a=\frac{1}{2}-\epsilon$. The probability that j answers are correct in u trails is

$$
\binom{u}{j} a^{j} b^{u-j}
$$

The algorithm C errs if there are more than v incorrect answers of the subroutine B in the sequence of u trials, so

$$
\begin{align*}
p(C \text { errs }) & \leq \sum_{j=0}^{v}\binom{u}{j} a^{j} b^{2 v+1-j} \\
& =\sum_{j=0}^{v}\binom{u}{j} \frac{a^{v}}{a^{v-j}} b^{v+1} b^{v-j} \\
& =a^{v} b^{v+1} \sum_{j=0}^{v}\binom{u}{j} \frac{b^{v-j}}{a^{v-j}} \\
& \leq a^{v} b^{v+1} \sum_{j=0}^{v}\binom{u}{j} \\
& =a^{v} b^{v+1} 2^{2 v} \\
& =\left(\frac{1}{4}-\epsilon\right)^{v} 4^{v} b \\
& \leq \frac{\left(1-4 \epsilon^{2}\right)^{v}}{2} \tag{4.8}
\end{align*}
$$

Note that any fixed $\epsilon(0<\epsilon<0.5)$, it is possible to select big enough $u=2 v+1 \leq n^{t}$ so $p(C$ errs $)$ can be make as small as requested (in particular, smaller than δ).

Now we can formulate the theorem that asserts the security of the BBS generator.
Theorem 4.3 ([44]) Suppose that the quadratic residuacity problem is intractable (there is no probabilistic polynomial time algorithm that solves it), then the BBS is pseudorandom (there is no probabilistic polynomial time distinguisher for it).

Proof: We need to prove that the ensemble $\mathcal{E}_{B B S}$ induced by the BBS generator is indistinguishable from the ensemble G_{R}. The proof proceeds by contradiction. Assume that there is a distinguisher D which tells apart $\mathcal{E}_{B B S}$ from G_{R}. It turns out (see [44]), that the distinguisher D can be efficiently converted into a probabilistic polynomial time algorithm A which guesses the parity of x_{-1} given arbitrary $x_{0} \in \mathcal{Z}_{N}^{Q+}$. Lemma (4.3) asserts that A can be converted into an algorithm B which guesses quadratic residuacity. Lemma (4.4) shows that B can be used to determine a polynomial time algorithm C which guesses quadratic residuacity with arbitrary small error δ. This is the contradiction.

Consider an instance of BBS generator for $n=20$. Primes $p, q \in_{R}\left[2^{9}, 2^{10}\right]$. Let them be $p=811$, $q=967(p \equiv q \equiv 3 \bmod 4)$. The modulus is $N=784237$. Let the seed be $x_{0}=345137$ which is a quadratic residue. The sequence of $x_{i} \equiv x_{i-1}^{2} \bmod N$ is:

$$
\begin{array}{ll}
x_{1}=222365, & x_{2}=50375, \\
x_{3}=633930, & x_{4}=678990, \\
x_{5}=367621, & x_{6}=774379, \\
x_{7}=719013, & x_{8}=468688, \\
x_{9}=520696, & x_{10}=261487, \\
x_{11}=179850, & x_{12}=167435, \\
x_{13}=359186, & x_{14}=537963, \\
x_{15}=346207, & x_{16}=424954,
\end{array}
$$

The first sixteen parity bits are $(1,1,0,0,1,1,1,0,0,1,0,1,0,1,1,0)$.

4.4 The Next Bit Test

Any witness algorithm applies a (statistical) test. As a witness algorithm has to run in polynomial time, the statistical test used in the witness algorithm has to be polynomial. The statement " a bit generator is pseudorandom" can be equivalently rephrased as "a bit generator passes all polynomial time (statistical) tests". Among all polynomial time tests, one can define the subclass of next bit tests.

Definition 4.8 Given a bit generator which produces n^{k}-bit sequences. Let T be a probabilistic polynomial time test which takes first i bits of $a n^{k}$-bit output sequence and guesses the $(i+1)$-th bit. The bit generator passes the next-bit test if for any probabilistic polynomial time test T, for all polynomials $\gamma(n)$, for all sufficiently large n, and for all integers $i \in\left\{1, \ldots, n^{k}\right\}$

$$
\left|p\left(T_{n}\left(b_{1}, \ldots, b_{i}\right)=b_{i+1}\right)-\frac{1}{2}\right|<\frac{1}{\gamma(n)}
$$

where $p\left(T_{n}\left(b_{1}, \ldots, b_{i}\right)=b_{i+1}\right)$ is the probability that the test correctly guesses the $(i+1)$-th bit of the output sequence $\left(b_{1}, \ldots, b_{n^{k}}\right)$.

The importance of next bit tests is confirmed by the following theorem.
Theorem 4.4 [531] Given a bit generator. Then the following two statements are equivalent:

- the bit generator passes the next-bit test,
- the bit generator passes all probabilistic polynomial time statistical tests for output sequences.

Blum and Micali defined cryptographically strong pseudorandom bit generators as bit generators which pass the next bit test. Clearly, the two notions: cryptographically strong pseudorandom bit generators and pseudorandom bit generators (PRBG) are equivalent. The next-bit test is universal in a sense that if a PRBG passes the next-bit test, it also passes all other probabilistic polynomial time tests. Some extensions of universal tests can be found in [323] and [448].

4.5 Pseudorandom Function Generators

We are going to describe a construction of pseudorandom function due to Goldreich, Goldwasser, and Micali [205]. The starting ingredient is a function ensemble. A function ensemble is $\mathcal{F}=\left\{\mathcal{F}_{n} \mid n \in \mathcal{N}\right\}$ where

$$
\mathcal{F}_{n}=\left\{f \mid f: \Sigma^{n} \rightarrow \Sigma^{n}\right\}
$$

is a collection of functions together with the probability distribution. We assume the uniform probability distribution unless another distribution is explicitly given.

Definition 4.9 A function ensemble $\mathcal{F}=\left\{\mathcal{F}_{n} \mid n \in \mathcal{N}\right\}$ is called polynomial if the ensemble is:

1. polynomial time samplable, i.e. there is a probabilistic polynomial time algorithm which returns a description of function $f \in_{R} \mathcal{F}_{n}$ which is chosen randomly and uniformly from the set \mathcal{F}_{n}. This usually is done by an introduction of indexing (a function is chosen by a random selection of its unique index),
2. polynomial time computable, i.e. there is a probabilistic polynomial time algorithm which on the input $x \in \Sigma^{n}$, outputs $f(x)$ for any $f \in \mathcal{F}_{n}$.

To clarify the definition, consider the well known DES encryption algorithm. The DES can be seen as an instance ensemble $\mathcal{F}_{64}=\left\{f \mid \Sigma^{64} \rightarrow \Sigma^{64}\right\}$. The polynomial sampling amounts to the requirement that a function can be randomly, uniformly and efficiently chosen by a random selection of the secret key (index). The polynomial time computability (or evaluation) requests the function to generate the corresponding cryptogram efficiently for any message (input) and any secret key (index).

A random function ensemble $\mathcal{R}=\left\{\mathcal{R}_{n} \mid n \in \mathcal{N}\right\}$ is an infinite family of functions where $\mathcal{R}_{n}=\{f \mid$ $\left.f: \Sigma^{n} \rightarrow \Sigma^{n}\right\}$ is the collection of all functions on Σ^{n}. The probability distribution is uniform for a fixed n.

A probabilistic polynomial time algorithm (Turing machine) can be equivalently defined as a probabilistic polynomial size acyclic circuit with Boolean gates AND, OR, NOT and constant gates " 0 " and " 1 ". The main difference is that the circuit produces output in one step while its Turing counterpart needs a polynomial number of steps. The complexity of computation using the circuit model is expressed by the size of the circuit which is measured by the total number of connections inside the circuit. Any probabilistic polynomial size circuit can be implemented by a probabilistic polynomial time Turing machine and vice versa.

Definition 4.10 A witness circuit C_{n} is a probabilistic polynomial size acyclic circuit with Boolean gates AND, OR, NOT, constant gates " 0 " and " 1 " and oracle gates. Oracle gates accept inputs of length n and generate outputs of the same length. Each oracle gate can be evaluated using some function $f: \Sigma^{n} \rightarrow \Sigma^{n}$.

Witness circuits can be used to tell apart a polynomial function ensemble \mathcal{F} from the random function ensemble \mathcal{R}.

Definition 4.11 An infinite sequence of witness circuits $C=\left\{C_{n} \mid n \in \mathcal{N}\right\}$ is called a distinguisher for \mathcal{F} if for two arbitrary constants $t, k \in \mathcal{N}$ and for each large enough parameter n, there exists a circuit C_{n} whose size is bounded by a polynomial n^{t} and

$$
\left|p_{n}(\mathcal{F})-p_{n}(\mathcal{R})\right|>\frac{1}{n^{k}}
$$

where $p_{n}(\mathcal{F})=\sum_{f \epsilon_{R} \mathcal{F}_{n}} p_{\mathcal{F}}(f)\left(C_{n}(f)=1\right)$ and $p_{n}(\mathcal{R})=\sum_{f \epsilon_{R} \mathcal{R}_{n}} p_{\mathcal{R}}(f)\left(C_{n}(f)=1\right)$ provided that f is used to evaluate the oracle gates.

Definition 4.12 A polynomial function ensemble \mathcal{F} is pseudorandom if there is no distinguisher for it (the ensemble \mathcal{F} is also called a pseudorandom function or PRF).

An instance witness circuit C_{n} can query the tested function f using the oracle gates. Oracle gates can be implemented as calls to a subroutine which evaluates the tested function $f . C_{n}$ can freely choose the input values $x \in \Sigma^{n}$ for which the function f is to be evaluated. C_{n} collects the corresponding outputs $f(x) \in \Sigma^{n}$ from the oracle gates. The number of pairs ($x, f(x)$) is equal to the number of oracle gates and it has to be polynomial in n.

Now we are ready to describe the construction by Goldreich, Goldwasser and Micali. The construction applies a pseudorandom bit generator that extends n-bit seed into $2 n$-bit sequence. So the PRBG g takes an n-bit seed and produces $2 n$-bit output $g(x)=g_{0}(x) \| g_{1}(x)$ where $g_{0}(x)$ and $g_{1}(x)$ are n-bit substrings and $\|$ stands for the concatenation of two strings. Strings $g_{0}(x)$ and $g_{1}(x)$ are next used as seeds for the second level - see Figure 4.5. After the PRBG is used n times it produces

Figure 4.2: The construction of a function ensemble
$g_{y}(x)$ where y is n-bit string which marks the unique path from the top to the bottom (in Figure 4.5 $y=01 z$). Our function ensemble is $\mathcal{F}_{n}=\left\{f_{x} \mid f_{x}(y)=g_{y}(x) ; f_{x}: \Sigma^{n} \rightarrow \Sigma^{n}\right\}$ where $g_{\alpha}(x)$ is defined recursively

$$
\begin{aligned}
g(x) & =g_{0}(x) \| g_{1}(x) \\
g_{b_{1} \ldots b_{\ell}}(x) & =g_{b_{1} \ldots b_{\ell} 0}(x) \| g_{b_{1} \ldots b_{\ell} 1}(x)
\end{aligned}
$$

for $\ell=2, \ldots, n-1$ where $b_{1} \ldots b_{\ell}$ is an ℓ-bit string. The parameter x is an index of \mathcal{F}_{n} as the random selection of a function from \mathcal{F}_{n} is done by the random choice of $x \in_{R} \Sigma^{n}$. It is easy to verify that the ensemble \mathcal{F}_{n} is polynomial time samplable and computable. The next theorem asserts that the ensemble is also pseudorandom.

Theorem 4.5 If the underlying $P R B G g$ is pseudorandom, then the function ensemble $\mathcal{F}=\left\{\mathcal{F}_{n} \mid\right.$ $n \in \mathcal{N}\}$ constructed from g, that is $\mathcal{F}_{n}=\left\{f_{x} \mid f_{x}(y)=g_{y}(x) ; f_{x}: \Sigma^{n} \rightarrow \Sigma^{n}\right\}$, is pseudorandom.

Proof: (by contradiction) We assume that there is a distinguisher for \mathcal{F}, i.e. an infinite sequence of probabilistic polynomial size witness circuits C_{n} which can tell apart \mathcal{F} from \mathcal{R} with an arbitrary large probability. We are going to show that this assumption leads us the conclusion that the underlying bit generator is not pseudorandom. Further we are going to use a probabilistic polynomial time algorithm $A_{i}(n, y)$ where n indicates the current instance size, $y \in \Sigma^{n}$ is an input (argument) for which a function from A_{i} is to be evaluated, and $i=1, \ldots, n$.
$A_{i}(n, y)\{$

1. if the prefix $\left(y_{1} \ldots y_{i}, r\right)$ of $y=y_{1} \ldots y_{n}$ has been used before retrieve the stored pair $\left(y_{1} \ldots y_{i}, r\right)$,
2. otherwise, select $r \in_{R} \Sigma^{n}$ and store ($y_{1} \ldots y_{i}, r$),
3. return $\left.g_{y_{i+1} \ldots y_{n}}(r)\right\}$.

The algorithm A_{i} operates on a tree $g_{y}(x)$-Figure 4.5. It places random n-bit strings in all nodes on the i-th level and returns $g_{y_{i+1} \ldots y_{n}}(r)$. We use the following notations:

- $p_{n}\left(A_{i}\right)$ is the probability that the distinguisher C_{n} outputs "1" when all C_{n} 's queries are answered by A_{i} (or in other words, oracle gates apply A_{i} to evaluate their outputs for inputs given by C_{n}),
- $p_{n}(\mathcal{F})$ is the probability that the distinguisher C_{n} outputs "1" when all C_{n} 's queries are answered by oracle gates which use $f \in_{R} \mathcal{F}_{n}$,
- $p_{n}(\mathcal{R})$ is the probability that the distinguisher C_{n} outputs " 1 " when all C_{n} 's queries are answered by oracle gates which use $f \in_{R} \mathcal{R}_{n}$,

Observe that $p_{n}(\mathcal{F})=p_{n}\left(A_{0}\right)$ and $p_{n}(\mathcal{R})=p_{n}\left(A_{n}\right)$.
As the ensemble is not pseudorandom, there is a family of probabilistic polynomial size circuits C_{n} such that for infinitely many n

$$
\left|p_{n}(\mathcal{F})-p_{n}(\mathcal{R})\right|>\frac{1}{n^{k}}
$$

Now we construct a probabilistic polynomial time witness algorithm D for the underlying bit generator. It calls C_{n} as a subroutine. The input parameters to the algorithm D are the instance size n and a sequence $U_{n}=\left(u_{1}, u_{2}, \ldots, u_{n} \ell\right)$ where each u_{i} is a $2 n$-bit string. The sequence U_{n} is the sequence is needs to be decided whether it is truly random or comes from the bit generator.
$D\left(n, U_{n}\right)\{$

1. choose at random $i \in_{R}\{0,1, \ldots, n-1\}$,
2. call the distinguisher C_{n},
3. for $j=1, \ldots, n^{\ell}$, do $\{$

- pick the next $u_{j}=u_{j_{0}} \| u_{j_{1}}$ from the sequence $U_{n}\left(u_{j_{0}}, u_{j_{1}} \in \Sigma^{n}\right)$,
- C_{n} queries about the output of the j-th oracle gate for an n-bit input $y=y_{1} \ldots y_{n}$ of its choice,
- take y and store the pairs $\left(y_{1} \ldots y_{i} 0, u_{j_{0}}\right)$ and ($y_{1} \ldots y_{i} 1, u_{j_{1}}$),
- if y is the first query with the prefix $y_{1} \ldots y_{i}$ and $y_{i+1}=0$, return $g_{y_{i+2} \ldots y_{n}}\left(u_{j_{0}}\right)$ to C_{n} or
- if y is the first query with the prefix $y_{1} \ldots y_{i}$ and $y_{i+1}=1$, return $g_{y_{i+2} \ldots y_{n}}\left(u_{j_{1}}\right)$ to C_{n},
- otherwise, retrieve the pair $\left(y_{1} \ldots y_{i+1}, u\right)$ and return $\left.g_{y_{i+2} \ldots y_{n}}(u)\right\}$ to C_{n},

4. return the binary output of C_{n} as the final guess $\}$.

There are two cases when U_{n} is

- a string generated by the bit generator g on random selected n-bit seeds so $u_{i}=g\left(x_{i}\right)$ for $x_{i} \in_{R} \Sigma^{n}$. The probability that $D\left(n, U_{n}\right)$ outputs " 1 " is

$$
\sum_{i=0}^{n-1} \frac{1}{n} p_{n}\left(A_{i}\right)
$$

This case can be illustrated by a tree (see Figure 4.5) with random seeds on the i-th level and strings from U_{n} on the $(i+1)$-th level,

- a sequence of randomly selected $2 n$ bits. The probability that $D\left(n, U_{n}\right)$ outputs" " is

$$
\sum_{i=0}^{n-1} \frac{1}{n} p_{n}\left(A_{i+1}\right)
$$

The function tree in Figure 4.5 holds random strings on the $(i+1)$-th level.
Note that the algorithm D distinguishes random strings from string generated by the bit generator g as

$$
\begin{aligned}
\left|\sum_{i=0}^{n-1} \frac{1}{n} p_{n}\left(A_{i}\right)-\sum_{i=0}^{n-1} \frac{1}{n} p_{n}\left(A_{i+1}\right)\right| & =\frac{1}{n}\left|p_{n}\left(A_{0}\right)-p_{n}\left(A_{n}\right)\right| \\
& =\frac{1}{n}\left|p_{n}(\mathcal{F})-p_{n}(\mathcal{R})\right|>\frac{1}{n^{k+1}}
\end{aligned}
$$

This is the contradiction which proves the theorem.
The construction of pseudorandom function generators is universal and works for any PRBG.

4.6 Pseudorandom Permutation Generators

Clearly a one-to-one pseudorandom function is a pseudorandom permutation or PRP. Now we are going to describe how pseudorandom permutations can be generated. Recall from Section 3.2 the definition of Feistel permutation.

Definition 4.13 Given a function $f: \Sigma^{n} \rightarrow \Sigma^{n}$. A Feistel permutation $F_{2 n, f}: \Sigma^{2 n} \rightarrow \Sigma^{2 n}$ associated with the function f is

$$
F_{2 n, f}(L, R)=(R \oplus f(L), L)
$$

where L and R are n-bit strings.

A truly random permutation is a permutation ensemble $\Pi=\left\{\Pi_{n} \mid n \in \mathcal{N}\right\}$ where Π_{n} contains all n ! permutations and the probability distribution is uniform for all $n \in \mathcal{N}$.

Having a set of functions $f_{1}, \ldots, f_{i} \in \mathcal{R}_{n}$, we can define the composition of the corresponding Feistel permutations as

$$
\begin{equation*}
\psi_{2 n}\left(f_{1}, \ldots, f_{i}\right)=F_{2 n, f_{i}} \circ \ldots \circ F_{2 n, f_{1}} \tag{4.9}
\end{equation*}
$$

Consider a permutation $\psi_{2 n}(f, g)$ for some $f, g \in \mathcal{R}_{n}$ illustrated in Figure 4.6. It turns out [304], that

Figure 4.3: Permutation generator $\Psi_{R}(f, g)$
$\Psi_{R}(f, g)=\left\{\psi_{2 n}(f, g) \mid f, g \in_{R} \mathcal{R}_{n}, n \in \mathcal{N}\right\}$ can be told apart from a truly random permutation by a polynomial size witness circuit $C_{2 n}$. The structure of the circuit is given in Figure 4.6. The circuit

Figure 4.4: A distinguishing circuit for $\Psi_{R}(f, g)$
employs two oracle gates O_{1} and O_{2}. In order to decide whether a tested permutation is truly random or is an instance of $\Psi_{R}(f, g)$, the witness circuit

- selects $L_{1}, L_{2}, R \in_{R} \Sigma^{n}$,
- queries oracle gates O_{1} and O_{2} for two strings $\left(L_{1}, R\right)$ and $\left(L_{2}, R\right)$, respectively,
- collects the answers $\left(S_{1}, T_{1}\right)$ and $\left(S_{2}, T_{2}\right)$ from the oracle gates,
- there are two possible cases:

1. a tested permutation is an instance of $\Psi_{R}(f, g)$, then $S_{1}=L_{1} \oplus R$ and $S_{2}=L_{2} \oplus R$ so $L_{1} \oplus L_{2}$ is equal to $S_{1} \oplus S_{2}$,
2. otherwise S_{1} and S_{2} are n-bit random string and $L_{1} \oplus L_{2} \neq S_{1} \oplus S_{2}$ with the probability 2^{-n}.

- returns the result from the comparator as its guess.

Luby and Rackoff [304] analysed permutation generators based on Feistel transformations. In particular, they defined a permutation generator $\Psi_{R}(f, g, h)=\left\{\psi_{2 n}(f, g, h) \mid f, g, h \in_{R} \mathcal{R}, n \in \mathcal{N}\right\}$ which uses three Feistel permutations and three random functions. They proved the following theorem.

Theorem 4.6 Let $f, g, h \in_{R} \mathcal{R}$ be three independent random functions and $C_{2 n}$ be a probabilistic circuit with $m<2^{n}$ oracle gates, then

$$
\begin{equation*}
\left|p_{2 n}(\Pi)-p_{2 n}\left(\Psi_{R}(f, g, h)\right)\right| \leq \frac{m^{2}}{2^{n}} \tag{4.10}
\end{equation*}
$$

As the number m has to be polynomially bounded (the witness circuit has to be of a polynomial size), the two generators cannot be told apart by any polynomial witness. Note that the permutation generator $\Psi_{R}(f, g, h)$ can be implemented by no polynomial time algorithm as it uses three random functions $f, g, h \in_{R} \mathcal{R}$. But if the functions f, g, h are chosen from a pseudorandom function, then the resulting permutation generator is pseudorandom. Let our pseudorandom function ensemble be $\mathcal{F}=\left\{\mathcal{F}_{n} \mid n \in \mathcal{N}\right\}$. The permutation generator $\Psi(f, g, h)=\left\{\psi_{2 n}(f, g, h) \mid f, g, h \in_{R} \mathcal{F}, n \in \mathcal{N}\right\}$.

Theorem 4.7 ([304]) Let $\mathcal{F}=\left\{\mathcal{F}_{n} \mid n \in \mathcal{N}\right\}$ be a pseudorandom function generator. A permutation generator $\Psi(f, g, h)=\left\{\psi_{2 n}(f, g, h) \mid f, g, h \in_{R} \mathcal{F}, n \in \mathcal{N}\right\}$ is pseudorandom so for any probabilistic polynomial size witness circuit $C_{2 n}$ (the number of oracle gates is polynomially bounded)

$$
\begin{equation*}
\left|p_{2 n}(\Pi)-p_{2 n}(\Psi(f, g, h))\right| \leq \frac{1}{n^{k}} \tag{4.11}
\end{equation*}
$$

for some constant k.
An interesting observation is that the pseudorandom permutation $\Psi(f, g, h)$ is immune against the chosen plaintext attack. Oracle gates allow the circuit to query about cryptograms for messages chosen by the circuit.

Another interesting issue is the number of pseudorandom functions used in the permutation generator. Ohnishi [381] proved that both $\Psi(f, g, g)$ and $\Psi(f, f, g)$ are pseudorandom. Rueppel [432] showed that $\Psi_{R}(f, f, f)$ can be efficiently distinguished from Π. The distinguisher is depicted in Figure 4.6. It employs two oracle gates O_{1} and O_{2} only. The circuit chooses $L, R \in_{R} \Sigma^{n}$ and queries the

Figure 4.5: A distinguishing circuit for $\Psi_{R}(f, f, f)$
oracle gate O_{1}. The two n-bit strings of the answer are swapped and the oracle gate O_{2} is queried for the swapped answer. If the oracle gates are evaluated using a function from $\Psi_{R}(f, f, f)$, then O_{2}
has to return a string which is equal to (L, R) as O_{2} undo the process done by O_{1}. Otherwise, if the oracle gates are evaluated using a function from Π, O_{2} returns a random string which is different from (L, R) with the probability $2^{-2 n}$. Zheng, Matsumoto and Imai showed in [536] that $\Psi\left(f^{i}, f^{j}, f^{k}\right)$ is not pseudorandom where $i, j, k \in \mathcal{N}$ and $f^{i}=\underbrace{f \circ \ldots \circ f^{i}}$. They gave a construction of a probabilistic polynomial size witness circuit which efficiently tells apart $\Psi_{R}\left(f^{i}, f^{j}, f^{k}\right)$ from Π. Pieprzyk [404] demonstrated that $\Psi\left(f, f, f, f^{i}\right)$ is pseudorandom for $i \geq 2$.

4.7 Super Pseudorandom Permutation Generators

One can ask to allow witness circuits to not only query about cryptograms (for chosen messages) but also about messages (for chosen cryptograms). The power of such circuits increases as there are two kinds of oracle gates: normal and inverse. For a string x provided by a witness circuit, a normal gate returns $f(x)$. An inverse gate for the same string, returns $f^{-1}(x)$ where f is a tested permutation. The notion of pseudorandomness can be extended to super pseudorandomness if a probabilistic polynomial size witness circuit applies both normal and inverse oracle gates. Luby and Rackoff proved that $\Psi(e, f, g, h)$ where $e, f, g, h \in_{R} \mathcal{F}$ are pseudorandom functions, is super pseudorandom so there is no probabilistic polynomial size witness circuit with normal and inverse oracle gates which can tell apart $\Psi(e, f, g, h)$ from Π. A super pseudorandom permutation generator is immune against both the chosen plaintext and chosen ciphertext attacks.

The number of necessary pseudorandom functions can be reduced to two only as $\Psi(f, f, g, g)$ is super pseudorandom (see [393]). Now consider the design of a super pseudorandom permutation generator from a single pseudorandom function. A permutation generator $\Psi\left(f^{i}, f^{j}, f^{k}, f^{\ell}\right)$ is not pseudorandom and there is a distinguisher for it. Its construction is given in [435]. Patarin in [393] argued that $\Psi(f, f, f, f \circ \varsigma \circ f)$ is super pseudorandom if ς is a "well chosen" public permutation and f is a pseudorandom function. Sadeghiyan and Pieprzyk [434] showed that $\Psi\left(f, 1, f^{2}, f, 1, f^{2}\right)$ is super pseudorandom where f is pseudorandom function and 1 stands for the identity permutation. The construction was based on the so called optimal perfect randomiser [403].

4.8 Problems and Exercises

1. The congruence $x_{i+1} \equiv a x_{i}+c \bmod N$ is used to generate a sequence of pseudorandom numbers. Compute first 10 numbers assuming the following parameters: $N=347, a=34, c=23$ and $x_{0}=1$. What is the period of the sequence?
2. Given $\mathcal{S}_{n}=\left\{1, \ldots, 2^{n}\right\}$ and two ensembles $\mathcal{E}_{1}=\left\{\mathcal{S}_{n},\left\{\left.p_{1}(x)=\frac{1}{2^{n}} \right\rvert\, x \in \mathcal{S}_{n}\right\}\right\}$ and $\mathcal{E}_{2}=\left\{\mathcal{S}_{n},\left\{p_{2}(x) \mid x \in \mathcal{S}_{n}\right\}\right\}$ where the probability distribution

$$
p_{2}(x)= \begin{cases}\frac{3}{2^{n+1}} & \text { for } x \in \mathcal{S}_{n-1} \\ \frac{1}{2^{n+1}} & \text { for } x \in \mathcal{S}_{n} \backslash \mathcal{S}_{n-1}\end{cases}
$$

Are the two ensembles statistically indistinguishable?
3. Consider two ensembles

$$
\mathcal{E}_{1}=\left\{\mathcal{S}_{n},\left\{\left.p_{1}(x)=\frac{1}{2^{n}} \right\rvert\, x \in \mathcal{S}_{n}\right\}\right.
$$

and $\mathcal{E}_{2}=\left\{\mathcal{S}_{n},\left\{p_{2}(x) \mid x \in \mathcal{S}_{n}\right\}\right.$ where the probability distribution

$$
p_{2}(x)= \begin{cases}\frac{1}{2^{n-1}} & \text { for } x \in \mathcal{S}_{n-1} \\ 0 & \text { for } x \in \mathcal{S}_{n} \backslash \mathcal{S}_{n-1}\end{cases}
$$

Are the two ensembles statistically indistinguishable?
4. Compute first ten integers using an instance of the RSA pseudorandom bit generator for the following parameters: the modulus $N=313 \cdot 331$, the seed $x_{0}=83874$ and $K=23113$. Create a sequence of bits by extracting three less significant bits from each integer.
5. Discuss the behaviour of the period of integers generated from the RSA pseudorandom bit generator. How to select parameters of the generator to maximise the period?
6. In calculations modulo a prime p, the Jacobi symbol can be used to judge whether a given integer a is a quadratic residue or in other words, whether there is an integer $x=\sqrt{a}$ such that $x^{2} \equiv a \bmod p$. Take $p=11$ and find all quadratic residues (and quadratic non-residues). Show that the quadratic residue constitute an algebraic group under multiplication modulo p.
7. Two smallest primes congruent to 3 modulo 4 are 7 and 11. Find the set of quadratic residues \mathcal{Z}_{N}^{Q+} and the set of quadratic non-residues \mathcal{Z}_{N}^{Q-}. Note that both sets have $\varphi(N) / 4=15$ elements.
8. Construct an instance of BBS generator for $p=7$ and $q=11$. Generate a sequence of bits for a random selected seed x_{0} (x_{0} has to be a quadratic residue). What is the period of the sequence?
9. The GM probabilistic encryption rests on the assumption that Jacobi symbols cannot be effectively computed if the factoring of the modulus N is unknown. Elements of \mathcal{Z}_{N} are used to carry single bit messages which are Jacobi symbols. The receiver is always able to compute the message (Jacobi symbol) as he knows the factors of N. Design an instance of the GM encryption for $p=101, q=103, u=5646$.
10. The BG probabilistic encryption uses BBS pseudorandom bit generator. Use an instance of the BBS generator for $p=7$ and $q=11$ to construct the BG encryption. Make necessary assumption. Show encryption and decryption processes.

Chapter 5

PUBLIC-KEY CRYPTOSYSTEMS

In 1976 Diffie and Hellman [152] in their pioneer paper set up the framework for public-key cryptography. In 1978 three designs were published. Rivest, Shamir and Adleman [426] showed how the discrete logarithm and factorisation problems could be used to construct a public-key cryptosystem. This is the well-known RSA cryptosystem. Merkle and Hellman [336] used the knapsack problem in their construction. McEliece [326] built a system which applied error correcting codes. Later in 1985 ElGamal [163] designed a public-key cryptosystem using the discrete logarithm problem. Koblitz [284] and Miller [343] suggested to use elliptic curves to design public-key cryptosystems.

5.1 The Concept of Public-Key Cryptography

In private-key cryptosystems, both encryption and decryption keys are secret and either the same or the knowledge of one of them is enough to determine the other. That is why private-key systems are also called symmetric. Public-key cryptosystems use two different keys. One is public while the other is kept secret. Clearly, it is required that computing one key from the other has to be intractable. Public-key cryptosystems are also called asymmetric. As public-key cryptosystems use two keys, it is possible to make public either the encryption or decryption key. If the encryption key is public, we deal with cryptosystem in which anybody can encrypt a message (plaintext) into a cryptogram (ciphertext) but only the receiver can decrypt the cryptogram. The system can be used for secrecy only. If the decryption key is public, anybody can read cryptograms but only the holder of the secret encryption key can generate meaningful cryptograms - the system can be used for authenticity only. In this chapter we will concentrate on secrecy systems in which encryption keys are public.

A cryptosystem with a public encryption key is depicted in Figure 5.1. Sets of messages, cryp-

Figure 5.1: Diagram of a public-key cryptosystem
tograms and keys are \mathcal{M}, \mathcal{C} and \mathcal{K}, respectively. The setup of the system is done by the receiver Bob
who generates a pair of keys $(K, k) \in \mathcal{K}$. Bob broadcasts the encryption key K and keeps the decryption key k secret. Assume that Alice wants to communicate secretly a message $m \in \mathcal{M}$ to Bob. She uses the known encryption algorithm $E: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$ and the public key to compute the cryptogram $c=E_{K}(m) \in \mathcal{C}$. The cryptogram is sent over the insecure channel to Bob. Bob now applies his secret key k together with the decryption algorithm $D: \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}$ to recover the message $m=D_{k}(c)$. The cryptosystem has to be efficient and secure. The efficiency requirement can be translated into the following conditions:

1. Calculation of the pair (the public key K, the secret key k) should be easy, that is, it can be done by the receiver in polynomial time.
2. The sender, knowing the public key K and a message m, can easily determine (in polynomial time) the corresponding cryptogram,

$$
\begin{equation*}
c=E_{K}(m) \tag{5.1}
\end{equation*}
$$

3. The receiver, knowing the cryptogram c and the secret key k, can compute the original form of m in polynomial time,

$$
\begin{equation*}
m=D_{k}(c)=D_{k}\left(E_{K}(m)\right) \tag{5.2}
\end{equation*}
$$

The security requirement is equivalent to the following conditions:

1. The task of computing the secret key k from the public key K must be intractable for any instance of the public key.
2. Any attempt to recover the message m from the pair (K, c) must be equivalent to solving an intractable instance of a suitable problem.

Assume that for a parameter $n \in \mathcal{N}$, we have a set of encryption functions

$$
E^{(n)}=\left\{E_{K} \mid E_{K}: \Sigma^{n} \rightarrow \Sigma^{\beta(n)}\right\}
$$

where $\beta(n)$ is a polynomial in n. Every element of the set $E^{(n)}$ is indexed by the public key $K \in \mathcal{K}$. So the set $E^{(n)}$ comprises of all encryption functions which can be used in the system for the fixed n. The family

$$
\begin{equation*}
E=\left\{E^{(n)} \mid n \in \mathcal{N}\right\} \tag{5.3}
\end{equation*}
$$

describes the public encryption. The integer n is also called the security parameter as it indicates the size of the message and cryptogram spaces. Now we can define two search problems. The first problem called the public encryption has the following form:

Name: Public encryption
Instance: Given a security parameter $n \in \mathcal{N}$, public-key scheme with the family $E=\left\{E^{(n)} \mid n \in \mathcal{N}\right\}$ of encryption functions, public key $K \in \mathcal{K}$ and message $m \in \Sigma^{n}$.

Question: What is the cryptogram $c=E_{K}(m) \in \Sigma^{\beta(n)}$ where $E_{K} \in E^{(n)}$?
The second problem called the public decryption has the form:
Name: Public decryption
Instance: Given a security parameter $n \in \mathcal{N}$, public-key scheme with the family $E=\left\{E^{(n)} \mid n \in \mathcal{N}\right\}$ of encryption functions, public key $K \in \mathcal{K}$ and cryptogram $c \in \Sigma^{\beta(n)}$.

Question: What is the message $m=E_{K}^{-1}(c) \in \Sigma^{n}$?
Clearly, the public encryption must belong to the class \mathbf{P} while the public decryption should belong to NP-hard. Ideally, for a large enough n, we would hope that all instances of the public decryption are intractable or hard. In practice, we may have to accept that some instances of the public decryption are easy but we have to make sure that the probability of occurrence of such instances is negligible. The pair of the public encryption and decryption problems uses the family of encryption functions E. The family is an example of a one-way function. For a large enough security parameter n and a message m, it is easy to compute $c=E_{K}(m)$ while computing $m=E_{K}^{-1}(c)$ is hard.

Unlike private-key cryptosystems, public-key cryptosystems are immune against a progress in computing technology. To keep an adequate safety margin, it is enough to choose a higher security parameter n. The major drawback of public-key cryptography is its reliance on numerical problems whose difficulty is not rigorously proven.

There must be a trusted public registry (or White Pages) that keeps an up-to-date list of all active public-key cryptosystems. An entry of the list has to include the name of the receiver along with their original public keys. The lack of the registry causes that an attacker instead of breaking existing public-key cryptosystems, may set up their own system and try to convince senders that the system is someone else's (a typical masquerading scenario). Needless to say, the public registry allows the read only access when a potential sender browses entries. Any insertion or modification of entries is done by the trusted authority who verifies their originality.

5.2 The RSA Cryptosystem

The RSA system applies two numerical problems, namely the discrete logarithm and factorisation problems. In the system, messages, cryptograms and keys (public and secret) belong to the set \mathcal{Z}_{N}. The integer N is the product of two primes p and q, i.e. $N=p \times q$. The set \mathcal{Z}_{N} along with addition and multiplication modulo N creates a ring as there is a subset of elements which do not have their multiplicative inverses. All multiples of p and q belong to the subset. For a given public key K and message m, the encryption function is

$$
\begin{equation*}
c=E_{K}(m) \equiv m^{K} \quad(\bmod N) \tag{5.4}
\end{equation*}
$$

The decryption function applies the secret key $k \in \mathcal{Z}_{N}$ for the cryptogram $c \in \mathcal{Z}_{N}$ as follows:

$$
\begin{equation*}
m=D_{k}(c) \equiv c^{k} \quad(\bmod N) \tag{5.5}
\end{equation*}
$$

Clearly, the encryption and decryption process should allow to recover the original message m so

$$
m=D_{k}\left(E_{K}(m)\right)
$$

Substituting (5.4) and (5.5), we get:

$$
\begin{equation*}
\left(m^{K}\right)^{k} \equiv m \quad(\bmod N) \tag{5.6}
\end{equation*}
$$

It is known that if the integer N was prime, the congruence (5.6) would have solution if and only if, $K \cdot k \equiv 1(\bmod N \Leftrightarrow 1)$. In the case in question, however, $N=p q(p, q$ are primes) therefore (5.6) has a solution if and only if

$$
\begin{equation*}
K \cdot k \equiv 1 \quad(\bmod \varphi(N)) \tag{5.7}
\end{equation*}
$$

where $\varphi(N)=(p \Leftrightarrow 1)(q \Leftrightarrow 1)$ is Euler's totient function. Equation (5.7) has a solution if K is coprime to $\varphi(N)$.

The system is set up by the receiver Bob who

- chooses two large enough primes p and q,
- announces the modulus $N=p \cdot q$ while keeping the factors p, q secret,
- selects at random the key $K \in_{R} \mathcal{Z}_{N}$ which is coprime to $\varphi(N)$ and makes it public,
- computes the secret key k according to Congruence (5.7).

The sender, Alice, encrypts a message m using Congruence 5.4 and sends the corresponding cryptogram to Bob. Upon receiving the cryptogram, Bob applies Congruence 5.5 to recover the message.

The RSA cryptosystem

Problems Used: Factorisation and Discrete Logarithm.
The modulus $N=p \times q$ is public, the primes p, q are secret.
Message Space: $\mathcal{M}=\mathcal{Z}_{N}$.
Cryptogram Space: $\mathcal{C}=\mathcal{Z}_{N}$.
Public Key: A random integer $K \in \mathcal{Z}_{N} ; \operatorname{gcd}(K, \varphi(N))=1$.
Secret Key: An integer $k \in \mathcal{Z}_{N}$ such that $k \cdot K \equiv 1 \quad(\bmod (p \Leftrightarrow 1)(q \Leftrightarrow 1))$.
Encryption: $c=E_{K}(m) \equiv m^{K} \quad(\bmod N)$.
Decryption: $m=D_{k}(c) \equiv c^{k} \quad(\bmod N)$.
Consider a simple example. Assume that Bob intends to create an instance of the RSA cryptosystem. First, Bob selects integers $p=7$ and $q=11$. Next, he calculates $\varphi(N)=60$, and randomly selects the public key $K=13$. Subsequently, he finds the secret key by solving the congruence (5.7) so,

$$
13 \cdot k \equiv 1 \quad(\bmod 60) \Rightarrow k=37
$$

The above congruence can be solved using the Euclid algorithm (see Section 2.1.1). The pair ($N=$ $77, K=13$) is published. If Alice now wants to transmit the message $m=36$, she calculates the cryptogram,

$$
c=m^{K}=36^{13} \equiv 71 \quad(\bmod 77)
$$

and forwards it to the receiver. Having c and the secret key k, Bob recreates the message according to the following congruence:

$$
m=c^{k}=71^{37} \equiv 36 \quad(\bmod 77)
$$

The above system is an instance with a very low security parameter and is insecure as anybody can guess the factors of the modulus.

To have a "secure" instance of the RSA system, we have to pick up large modulus N so both (1) an instance of the public decryption problem and (2) an instance of the factorisation problem (factorisation of N), are intractable. Note that in the RSA system, The public decryption is equivalent to the discrete logarithm problem. The primes p and q used in the RSA system have to be at least 100 decimal digit long. Thus the modulus N has 200 decimal digits and the best known factoring and discrete logarithm algorithms take $\approx 10^{23}$ steps each.

On the other hand, the implementation of public encryption and secret decryption can be done by using the fast exponentiation from Section 2.1.3. The computation of secret keys knowing public ones, can be done using Euclid's algorithm from Section 2.1.1.

There are many RSA implementations in hardware. Their speed depends on the length of the moduli used. A typical VLSI chip for RSA handles 512-bit long moduli and processes plaintext/ciphertext at the rate 64 kilobits per second which is roughly 1000 times slower than for DES. More secure hardware implementations use moduli of the length 768 or 1024 bits [445].

5.2.1 Concealment of Messages

The RSA system has a characteristic feature, pointed out by Blakley and Borosh in [41] that it does not always hide the message. Clearly, if $m \in\{0,1, \Leftrightarrow 1\}$ then the encryption does not change the form of a cryptogram. Consider RSA with $p=97$ and $q=109$. If the public key is $K=865$, then this cryptosystem provides no concealment, since $m^{865} \equiv m(\bmod 97 \times 109)$ for all m. Changing the public key to 169 provides concealment of about 96 percent of all possible messages [41].

Any arithmetic modulo $N=p q$ (p, q are primes) always comprises at least nine messages which when raised to a positive odd integer K do not change their form, that is,

$$
\begin{equation*}
m^{K} \equiv m \quad(\bmod N) \tag{5.8}
\end{equation*}
$$

As $N=p q$, Congruence(5.8) can be rewritten as a pair of congruences as follows:

$$
\begin{align*}
m^{K} & \equiv m \quad(\bmod p) \\
m^{K} & \equiv m \quad(\bmod q) \tag{5.9}
\end{align*}
$$

For any K, Congruences (5.9) have at least three solutions from the set $\{0,1, \Leftrightarrow 1\}$. That is three integers in \mathcal{Z}_{p} yield the set for the first congruence, and three integers in \mathcal{Z}_{q} yield the set for the second congruence. The set of all messages which satisfy (5.8) is equal to,

$$
\begin{equation*}
\left\{m \in \mathcal{Z}_{N} \mid m_{1} \equiv m \quad(\bmod p), m_{2} \equiv m \quad(\bmod q) ; m_{1}, m_{2} \in\{0,1, \Leftrightarrow 1\}\right\} \tag{5.10}
\end{equation*}
$$

Elements m_{1} and m_{2} of the set (5.10) can easily be presented as integers of \mathcal{Z}_{N} using the Chinese Remainder Theorem.

Consider arithmetic modulo $N=35(p=5, q=7)$. The congruence $m^{K} \equiv m(\bmod 5)$ has three solutions, $0,1,4$. The second congruence $m^{K} \equiv m(\bmod 7)$ has also three solutions, $0,1,6$. The set of all messages which are not altered during encryption is;

$$
\begin{aligned}
0 & \equiv(0 \bmod 5,0 \bmod 7) \\
1 & \equiv(1 \bmod 5,1 \bmod 7) \\
34 & \equiv(\Leftrightarrow 1 \bmod 5, \Leftrightarrow 1 \bmod 7) \\
15 & \equiv(0 \bmod 5,1 \bmod 7) \\
21 & \equiv(1 \bmod 5,0 \bmod 7) \\
20 & \equiv(0 \bmod 5, \Leftrightarrow 1 \bmod 7) \\
14 & \equiv(\Leftrightarrow 1 \bmod 5,0 \bmod 7) \\
29 & \equiv(\Leftrightarrow 1 \bmod 5,1 \bmod 7) \\
6 & \equiv(1 \bmod 5, \Leftrightarrow 1 \bmod 7)
\end{aligned}
$$

The exact number of unconcealable messages is given in the following theorem.
Theorem 5.1 If messages are encrypted using the RSA system, determined for the modulus $N=p q$ (p, q are primes), and the public key K, then there are:

$$
\begin{equation*}
\sigma_{u}=(1+\operatorname{gcd}(K \Leftrightarrow 1, p \Leftrightarrow 1))(1+\operatorname{gcd}(K \Leftrightarrow 1, q \Leftrightarrow 1)) \tag{5.11}
\end{equation*}
$$

messages which are unconcealable.

Proof: A message is unconcealable if and only if $m^{K} \equiv m(\bmod N)$. The congruence is equivalent to the pair $m^{K} \equiv m \quad(\bmod p)$ and $m^{K} \equiv m \quad(\bmod q)$. These can be rewritten as:

$$
\begin{array}{llllll}
m^{K-1} & \equiv 1 & (\bmod p) & \text { or } & m^{K-1} & \equiv 0 \\
m^{K-1} & \equiv 1 & (\bmod q) & \text { or } & m^{K-1} & \equiv 0
\end{array} \quad(\bmod q)
$$

As the congruence $m^{K-1} \equiv 1 \quad(\bmod p)$ has $\operatorname{gcd}(K \Leftrightarrow 1, p \Leftrightarrow 1)$ solutions, the result follows.
Let $p=5, q=7(N=35)$. Consider the following cases: If $K=5$, then $\sigma_{u}=15$ and the required set is:

$$
\{0,1,6,7,8,13,14,15,20,21,22,27,28,29,34\}
$$

If $K=7$, then $\sigma_{u}=21$ and the required set is:

$$
\{0,1,4,5,6,9,10,11,14,15,16,19,20,21,24,25,26,29,30,31,34\}
$$

Note that any set of unconcealable messages must contain the set $\{0,1,15,21\}$. This set contains idempotent elements only. An element $x \in \mathcal{Z}_{N}$ is idempotent if and only if $x^{2} \equiv x(\bmod N)$).

Thus the following general observations can be made:

- There are four unconcealable messages if $\operatorname{gcd}(K \Leftrightarrow 1, p \Leftrightarrow 1)=\operatorname{gcd}(K \Leftrightarrow 1, q \Leftrightarrow 1)=1$. This case never happens in RSA. As K and $\varphi(N)$ have to be coprime, K is always odd - this implies that $K \Leftrightarrow 1$ is even.
- There are nine unconcealable messages if $\operatorname{gcd}(K \Leftrightarrow 1, p \Leftrightarrow 1)=\operatorname{gcd}(K \Leftrightarrow 1, q \Leftrightarrow 1)=2$. This is the best case in RSA.
- If $K \equiv 3 \quad(\bmod \varphi(N))$, then $\operatorname{gcd}(2, p \Leftrightarrow 1)=\operatorname{gcd}(2, q \Leftrightarrow 1)=2$, and the number σ_{u} is equal to 9 regardless of the choice of p and q.

Observe that if the public key is selected carelessly, the congruence (5.8) may be valid for more than 50 percent of message space. As the receiver does not know the sender's messages in advance, they have to avoid keys which do not generate real cryptograms. The situation becomes worse once we realize that the attacker can easily discover such a lack of protection. It suffices that the attacker computes $c^{K}(\bmod N)$ and discovers that the result is the same c. If we assume that:

$$
\begin{align*}
& p=2 p^{\prime}+1 \\
& q=2 q^{\prime}+1 \tag{5.12}
\end{align*}
$$

where p^{\prime}, q^{\prime} are primes, then $\operatorname{gcd}(K \Leftrightarrow 1, p \Leftrightarrow 1)=\operatorname{gcd}\left(K \Leftrightarrow 1,2 p^{\prime}\right)$ can take on three values, namely 1,2 , and p^{\prime}. We know that the value 1 does not happen in RSA as $K \Leftrightarrow 1$ has to be even. When $\operatorname{gcd}\left(K \Leftrightarrow 1,2 p^{\prime}\right)$ is equal to 2 , there are nine unconcealable messages. However, when $\operatorname{gcd}\left(K \Leftrightarrow 1,2 p^{\prime}\right)=p^{\prime}$, there are at least $2\left(p^{\prime}+1\right)$ unconcealable messages.

Obviously, the selection of the primes p and q is crucial for the security of the RSA system. Thus we observe that both primes should be of about the same length. Simultaneously, the following conditions should be fulfilled:

- The integers $p \Leftrightarrow 1, q \Leftrightarrow 1$ should contain large factors (preferably $p \Leftrightarrow 1=2 \cdot p^{\prime}$ and $q \Leftrightarrow 1=2 \cdot q^{\prime}$ where p^{\prime}, q^{\prime} are primes).
- The greatest common divisor of $p \Leftrightarrow 1$ and $q \Leftrightarrow 1$ should be a small number (preferably 2).

5.2.2 Variants of RSA

In some circumstances, senders may have a limited computational power. This usually happens when the encryption is being done by a smart card which has a limited memory and CPU power. Clearly, we can reduce a number of computations by restricting the value of the public key.

Rabin [417] suggested a RSA variant with the public key $K=2$. This is the smallest nontrivial exponent. The public encryption is

$$
\begin{equation*}
c=m^{2} \quad(\bmod N) \tag{5.13}
\end{equation*}
$$

where N as before is the product of two primes p and q. The receiver, who knows the factorisation of N, can decrypt c by solving two following congruences: $\sqrt{c} \equiv m_{1} \quad(\bmod p)$ and $\sqrt{c} \equiv m_{2} \quad(\bmod q)$. In fact, the first congruence has two possible solutions $\pm m_{1}$ and so does the second $\pm m_{2}$. To compose the original message m using the Chinese Remainder Theorem, the receiver needs to guess correctly signs against m_{1} and m_{2}. Rabin's system has $4: 1$ ambiguity in the decrypted message.

Williams [523] showed how to improve Rabin's scheme. He observed that the decryption process can be simplified for all messages m whose Jacobi symbol ${ }^{1}$ is $\left[\frac{m}{N}\right]=1$ where $N=p \cdot q$ and the primes are chosen such that $p \equiv \Leftrightarrow 1 \quad(\bmod 4)$ and $q \equiv \Leftrightarrow 1(\bmod 4)$. In other words, p and q have to be Blum integers. If the modulus p is a Blum integer $(p \equiv \Leftrightarrow 1 \quad(\bmod 4))$, there is no polynomial-time algorithm to calculate square roots of quadratic residues modulo p. The deciphering process is expressed by the following congruence:

$$
\begin{equation*}
c^{k} \equiv \pm m \quad(\bmod N) \tag{5.14}
\end{equation*}
$$

where the secret key k is equal to:

$$
\begin{equation*}
k=\frac{1}{2}\left(\frac{(p \Leftrightarrow 1)(q \Leftrightarrow 1)}{4}+1\right) \tag{5.15}
\end{equation*}
$$

In William's modification, the receiver Bob selects two Blum primes p and q and computes the modulus $N=p \cdot q$ and a small integer S such that $\left[\frac{S}{N}\right]=\Leftrightarrow 1$. Next, he publishes N and S but keeps secret the key k determined by (5.15). For a message m, the sender Alice calculates $c_{1}\left(c_{1} \in\{0,1\}\right)$ such that $\left[\frac{m}{N}\right]=(\Leftrightarrow 1)^{c_{1}}$ and creates the message,

$$
\begin{equation*}
m^{\prime} \equiv S^{c_{1}} \cdot m \quad(\bmod N) ; \quad m^{\prime} \in \mathcal{Z}_{N} \tag{5.16}
\end{equation*}
$$

Finally, the cryptogram is computed for m^{\prime} according to (5.13), and Alice forwards the triple $\left(c, c_{1}, c_{2}\right)$, where $c_{2} \equiv m^{\prime} \quad(\bmod 2)$.

To recover the clear message, Bob computes $m_{t} \equiv c^{k}(\bmod N)$ according to Congruence (5.14). The proper sign of m_{t} is given by c_{2} (i.e. $m=m_{t}$ if $c_{2} \equiv m_{t}(\bmod N)$ or $m=\Leftrightarrow m_{t}$, otherwise). It is easy to verify that the original message m is equal to:

$$
\begin{equation*}
m \equiv S^{-c_{1}}(\Leftrightarrow 1)^{c_{1}} m_{t} \quad(\bmod N) \tag{5.17}
\end{equation*}
$$

as the message m^{\prime} is even. The enciphering and deciphering processes described above are illustrated in the following example.

Suppose the receiver Bob has selected $p=7, q=11($ note $p \equiv \Leftrightarrow 1(\bmod 4)$, and $q \equiv \Leftrightarrow 1$ $(\bmod 4))$. Bob next chooses the small integer $S=2$ for which the Jacobi symbol is $\left[\frac{S}{N}\right]=\left[\frac{2}{77}\right]=\Leftrightarrow 1$. The values ($N=77, S=2$) are sent to the sender Alice while the key $k=8$ is kept secret.

[^4]If Alice wishes to transmit the message $m=54$, she first calculates the Jacobi symbol $\left[\frac{M}{N}\right]=$ $\left[\frac{54}{77}\right]=1$. It implies that the binary number $c_{1}=0$. According to (5.16), the message $m^{\prime}=m=54$, and the cryptogram c is equal to:

$$
c=m^{2}=54^{2} \equiv 67 \quad(\bmod 77)
$$

Finally, Alice forwards the triple $\left(c, c_{1}, c_{2}\right)=(67,0,0)$ as the cryptogram.
After obtaining the triple, Bob computes:

$$
m_{t}=c^{k}=67^{8} \equiv 23 \quad(\bmod 77)
$$

As $c_{2}=0$, the message m must be even so $m=N \Leftrightarrow m_{t}=54$.
Williams [524] considered the cryptosystem for which the public key is fixed and equal to 3 ($K=3$). He showed its construction and proved that it is as difficult to break as it is to factor the modulus N. Another modification of the basic RSA system for $K \equiv 3(\bmod 18)$ has been presented by Loxton, Khoo, Bird and Seberry [303] who recommend that it should be used for those K whose binary representation has many zeros. Their cryptosystem is defined in the ring $Z[\omega]$, where ω is a primitive cube root. They also showed that their system is as difficult to break as it is to factor N.

5.2.3 Primality Testing

To set up RSA, the receiver has to generate two long primes p and q. In Section 2.1.2 the primecounting function $\pi(x)$ was introduced. It approximates the number of primes in the interval $(0, x]$. If we want to choose prime at random from the interval $\left(0,10^{100}\right]$, then the probability that the selected integer is prime, is

$$
\frac{\pi\left(10^{100}\right)}{10^{100}}=\frac{1}{100 \ln 10} \approx \frac{1}{230}
$$

It means that on the average, every 230 -th integer is prime. There is a good chance that after 230 consecutive tries, there is at least one prime. Now we need an efficient primality test.

From Section 2.3.6, we know that both Primality and Factorisation problems belong to NPI \cap coNPI. This means that there is no polynomial-time deterministic algorithm for primality testing. There is, however, a class of probabilistic algorithms which can be used if we accept a small probability of mistake (see Section 2.3.9).

We start from Fermat's Little Theorem (see Section 2.1.4) that could be used to design a simple primality test algorithm. The theorem asserts that if the modulus p is prime than the following congruence is true

$$
\begin{equation*}
a^{p-1} \equiv 1 \quad(\bmod p) \tag{5.18}
\end{equation*}
$$

for any nonzero integer $a \in \mathcal{Z}_{p}$. A Monte Carlo algorithm based upon the congruence will always generate the correct answer if the tested integer is indeed prime no matter what is the value of a. Unfortunately, if p is composite Congruence 5.18 may also be satisfied for some integers. These numbers are called pseudoprimes. For example, each of the Fermat numbers $F_{n}=2^{2^{n}}+1$ satisfies Congruence (5.18) but not all these are primes. The situation becomes hopeless when the tested number p is a Carmichael number. Carmichael numbers satisfy (5.18) for every a which is coprime to p (i.e. $\operatorname{gcd}(a, p)=1$). In other words, we need a stronger primality test.

Fermat's Little Theorem can still be useful for primality testing. However, to avoid problems with pseudoprimes, it is necessary to modify the testing procedure. Note that we do not need to use congruence $a^{p-1} \equiv 1 \quad(\bmod p)$. Instead we may apply the congruence

$$
a^{\frac{p-1}{2}} \quad(\bmod p)
$$

If p is prime the congruence is equal to either 1 or $\Leftrightarrow 1$. A fast test which looks into factors of $p \Leftrightarrow 1$ in order to determine the primality of the modulus p, was developed by Miller [342] and Rabin [418]. In the Miller-Rabin test, first $p \Leftrightarrow 1$ is represented in the form $2^{r} \times s$ where s is an odd number. As the tested integer p is odd, $p \Leftrightarrow 1$ is even so this representation is always valid. The testing starts from checking if $a^{s} \equiv \pm 1(\bmod p)$ for a random nonzero $a \in \mathcal{Z}_{p}$. If the congruence is true, we conclude that p is prime. Otherwise, we check whether $a^{2^{2} s} \equiv \Leftrightarrow 1(\bmod p)$ for $i=1, \ldots, r \Leftrightarrow 1$. If there is some i for which the congruence is true, the test returns " p is prime" otherwise it returns " p is composite".

The Miller-Rabin Primality Test - checks whether an integer p is prime
T1. Find and odd integer s such that $p \Leftrightarrow 1=2^{r} \times s$.
T2. Select at random a nonzero integer $a \in_{R} \mathcal{Z}_{p}$.
T3. Compute

$$
b=a^{s} \quad(\bmod p)
$$

If $b= \pm 1$, return " p is prime" and quit.
T4. For $i=1, \ldots, r \Leftrightarrow 1$, calculate

$$
c \equiv b^{2^{i}} \quad(\bmod p)
$$

If $c=\Leftrightarrow 1$, return " p is prime" and quit.
t5. Otherwise return " p is composite".
The test always gives the correct answer if the integer p is indeed prime. For the p composite, the following theorem characterises the test.

Theorem 5.2 (Rabin [418]) If p is composite, then the Miller-Rabin test fails for at least one quarter of integers a where $0<a \leq p \Leftrightarrow 1$.

So now we have a fast Monte Carlo algorithm for primality testing. It never makes mistakes when p is prime. If p is composite, it returns " p is prime" with probability $\frac{1}{4}$. For instance, if we expect the probability of mistake to be smaller than 2^{-50}, it is enough to use the Miller-Rabin test 25 times.

5.2.4 Factorisation

The most obvious attack on RSA is to try to factor the public modulus N. Knowing the factors of N, it is easy to recover the secret key. The factorisation problem is believed to be intractable so we may not hope for a polynomial time algorithm. But certainly we need to know how efficient the existing factoring algorithms are.

The sieve of Eratosthenes (see Section 2.1.2) is a factorisation algorithm whose efficiency is $O(\sqrt{N})$ or $O\left(2^{\frac{n}{2}}\right)$ where $n=\left\lfloor\log _{2} N\right\rfloor$. For moduli $\approx 10^{200}$, the sieve of Eratosthenes would take $O\left(10^{100}\right)$ steps. It is easy to check, that this algorithm starts to be unworkable for moduli larger than 10^{20}.

More efficient algorithms take advantage of the following theorem.
Theorem 5.3 Let N be a composite natural number and X, Y be a pair of integers such that $X+Y \neq$ N. If $X^{2} \equiv Y^{2} \quad(\bmod N)$, then $\operatorname{gcd}(X+Y, N)$ and $\operatorname{gcd}(X \Leftrightarrow Y, N)$ are nontrivial factors of N.

The following example shows how Theorem 5.3 can be used to factor $N=77$. We start with the two following congruences: $72 \equiv \Leftrightarrow 5(\bmod 77)$ and $45 \equiv \Leftrightarrow 32(\bmod 77)$. Multiplying the separate sides gives:

$$
2^{3} \times 3^{4} \times 5 \equiv(\Leftrightarrow 1)^{2} \times 5 \times 2^{5} \quad(\bmod 77)
$$

which yields upon reduction $9^{2}=2^{2} \quad(\bmod 77)$. Hence $\operatorname{gcd}(9+2,77)$ and $\operatorname{gcd}(9 \Leftrightarrow 2,77)$ give the primes $p=11$ and $q=7$.

Quadratic Sieve (QS)

Let us discuss briefly the basic Quadratic Sieve algorithm for factorisation of an integer N. The algorithms proceeds as follows.

The Quadratic Sieve Algorithm - finds factors of integer N
F1. Initialisation - a sequence of quadratic residues $Q(x)=(m+x)^{2} \Leftrightarrow N$ is generated for small values of x where $m=\lfloor\sqrt{N}\rfloor$.

F2. Forming the factor base - the base consists of a small collection of small primes. The set is $F B=\left\{\Leftrightarrow 1,2, p_{1}, \ldots, p_{t-1}\right\}$.

F3. Sieving - the quadratic residues $Q(x)$ are now factorized using the factor base. The sieving stops when t full factorisations of $Q(x)$ have been found.

F4. Forming and solving the matrix - for the collection of fully factorized $Q(x)$, a matrix F is constructed. The matrix contains information about the factors. The goal of this stage is to find a linear combination of $Q(x)$ s which gives the quadratic congruence from Theorem 5.3. The congruence gives a nontrivial factor of N with the probability $\frac{1}{2}$.

Let us illustrate steps of the algorithm using a simple numerical example. Assume that we wish to find factors of $N=4841$. First we generate a sequence of quadratic residues $Q(x)$. To keep $Q(x)$ as small as possible, we find $m=\lfloor\sqrt{N}\rfloor=69$ and compute

$$
\begin{equation*}
Q(x)=(m+x)^{2} \Leftrightarrow N \tag{5.19}
\end{equation*}
$$

for $x=\Leftrightarrow 8, \ldots, \Leftrightarrow 1,0,1, \ldots, 8$. The sequence of $Q \mathrm{~s}$ is as follows

$$
\begin{aligned}
x=\Leftrightarrow 8 \rightarrow Q(x)=\Leftrightarrow 120 & =(\Leftrightarrow 1) \cdot 2^{5} \cdot 5 \cdot 7 \\
x=\Leftrightarrow 7 \rightarrow Q(x)=\Leftrightarrow 997 & =(\Leftrightarrow 1) \cdot 997 \\
x=\Leftrightarrow 6 \rightarrow Q(x)=\Leftrightarrow 872 & =(\Leftrightarrow 1) \cdot 2^{3} \cdot 109 \\
x=\Leftrightarrow 6 \rightarrow Q(x)=\Leftrightarrow 745 & =(\Leftrightarrow 1) \cdot 5 \cdot 149 \\
x=\Leftrightarrow 4 \rightarrow Q(x)=\Leftrightarrow 16 & =(\Leftrightarrow 1) \cdot 2^{3} \cdot 7 \cdot 11 \\
x=\Leftrightarrow 3 \rightarrow Q(x)=\Leftrightarrow 485 & =(\Leftrightarrow 1) \cdot 5 \cdot 97 \\
x=\Leftrightarrow 2 \rightarrow Q(x)=\Leftrightarrow 352 & =(\Leftrightarrow 1) \cdot 2^{5} \cdot 11 \\
x=\Leftrightarrow 1 \rightarrow Q(x)=\Leftrightarrow 217 & =(\Leftrightarrow 1) \cdot 7 \cdot 31 \\
x=0 \rightarrow Q(x)=\Leftrightarrow 80 & =2^{4} \cdot 5 \\
x=1 \rightarrow Q(x)=59 & =59 \\
x=2 \rightarrow Q(x)=200 & =2^{3} \cdot 5^{2} \\
x=3 \rightarrow Q(x)=343 & =7^{3} \\
x=4 \rightarrow Q(x)=488 & =2^{3} \cdot 61 \\
x=5 \rightarrow Q(x)=635 & =5 \cdot 127 \\
x=6 \rightarrow Q(x)=784 & =2^{4} \cdot 7^{2} \\
x=7 \rightarrow Q(x)=935 & =5 \cdot 11 \cdot 17 \\
x=8 \rightarrow Q(x)=1088 & =2^{6} \cdot 17
\end{aligned}
$$

A factor base can be a collection of the smallest consecutive primes so $F B=\{\Leftrightarrow 1,2,3,5,7,11\}$. Note that $Q(\Leftrightarrow 8), Q(\Leftrightarrow 4), Q(\Leftrightarrow 2), Q(0), Q(2), Q(3)$ and $Q(6)$ have all their factors in the set $F B$. These are the required full factorisations. There are eight fully factorized $Q \mathrm{~s}$ and the number of elements in the set $F B$ is six so there is a good chance to find a quadratic congruence $X^{2} \equiv Y^{2}(\bmod N)$ as required in Theorem 5.3.

For a fully factorized $Q(x)$, we create a binary vector $F(x)$ of the length $\ell=|F B|$ whose coordinates indicate the presence or absence of the factor from $F B$. Thus, for $Q(\Leftrightarrow 8)$, the vector $F(\Leftrightarrow 8)=[1,1,0,1,1,0]$ as its factorisation contains primes $-1,2,5$ and 7 and primes 3 and 11 are missing. The collection of all vectors F for fully factorized $Q \mathrm{~s}$, is:

$$
\begin{aligned}
Q(\Leftrightarrow 8) \rightarrow F(\Leftrightarrow 8) & =[1,1,0,1,1,0] \\
Q(\Leftrightarrow 4) \rightarrow F(\Leftrightarrow 4) & =[1,1,0,0,1,1] \\
Q(\Leftrightarrow 2) \rightarrow F(\Leftrightarrow 2) & =[1,1,0,0,0,1] \\
Q(0) \rightarrow F(0) & =[0,1,0,1,0,0] \\
Q(2) \rightarrow F(2) & =[0,1,0,1,0,0] \\
Q(3) \rightarrow F(3) & =[0,0,0,0,1,0] \\
Q(6) \rightarrow F(6) & =[0,1,0,0,1,0]
\end{aligned}
$$

Vectors $F(x)$ are rows of our matrix F which is

$$
F=\left[\begin{array}{c}
F(\Leftrightarrow 8) \tag{5.20}\\
F(\Leftrightarrow 4) \\
F(\Leftrightarrow 2) \\
F(0) \\
F(2) \\
F(3) \\
F(6)
\end{array}\right]=\left[\begin{array}{c}
1,1,0,1,1,0 \\
1,1,0,0,1,1 \\
1,1,0,0,0,1 \\
0,1,0,1,0,0 \\
0,1,0,1,0,0 \\
0,0,0,0,1,0 \\
0,1,0,0,1,0
\end{array}\right]
$$

Now we look for a collection of rows such that

$$
F\left(i_{1}\right) \oplus F\left(i_{2}\right) \oplus \ldots \oplus F\left(i_{r}\right)=0
$$

Observe that $F(\Leftrightarrow 4) \oplus F(\Leftrightarrow 2) \oplus F(3)=0$. Take the corresponding $Q(\Leftrightarrow 4), Q(\Leftrightarrow 2)$ and $Q(3)$, they are

$$
\begin{aligned}
& Q(\Leftrightarrow 4) \equiv(69 \Leftrightarrow 4)^{2} \quad(\bmod 4841) \\
& Q(\Leftrightarrow 2) \equiv(69 \Leftrightarrow 2)^{2} \quad(\bmod 4841) \\
& Q(3) \equiv(69+3)^{2} \quad(\bmod 4841)
\end{aligned}
$$

On the other hand, we can use their factorisations and

$$
\begin{aligned}
& Q(\Leftrightarrow 4) \equiv(\Leftrightarrow 1) \cdot 2^{3} \cdot 7 \cdot 11 \quad(\bmod 4841) \\
& Q(\Leftrightarrow 2) \equiv(\Leftrightarrow 1) \cdot 2^{5} \cdot 11 \quad(\bmod 4841) \\
& Q(3) \equiv 7^{3} \quad(\bmod 4841)
\end{aligned}
$$

Therefore, the requested congruence $X^{2} \equiv Y^{2}(\bmod N)$ can be constructed. The left integer

$$
X=(69 \Leftrightarrow 4)(69 \Leftrightarrow 2)(69+3) \equiv 3736 \quad(\bmod 4841)
$$

and the right integer

$$
Y=\sqrt{(\Leftrightarrow 1) 2^{3} \cdot 7 \cdot 11 \times(\Leftrightarrow 1) 2^{5} \cdot 11 \times 7^{3}}=2^{4} \times 7^{2} \times 11 \equiv 3783 \quad(\bmod 4841) .
$$

As $X+Y \neq i \times N$, we obtain the factors of N. Indeed, $\operatorname{gcd}(3736 \Leftrightarrow 3783,4841)=47$ and $\operatorname{gcd}(3736+$ $3783,4841)=103$. So $N=47 \times 103$.

Concept of Number Field Sieve (NFS)

The main idea is to produce two integers X and Y such that $X^{2} \equiv Y^{2} \bmod N$, where N is an integer to be factored. Unlike QS, NFS uses two algebraic structures

- the ring \mathcal{Z}_{N} - this is the algebraic structure where quadratic equations are sieved to find factors,
- the number field $\mathcal{K}=\mathcal{R}(\alpha)$ for some algebraic integer α that is the root of an irreducible monic polynomial $p(x) \in \mathcal{R}[x]$ of degree d or $p(\alpha)=0$. Assume that an integer m is known such that

$$
\begin{equation*}
p(m)=\ell \cdot N \tag{5.21}
\end{equation*}
$$

for some integer ℓ.
In both algebraic bodies we look for quadratic equations. Suppose that we have found two such equations:

$$
a+b \cdot m=X^{2} \bmod N \text { in the ring } \mathcal{Z}_{N}
$$

and

$$
a+b \cdot \alpha=\beta^{2} \text { in the field } \mathcal{R}(\alpha)
$$

for some integers a, b. Clearly, to use the second equation, we have to transform it into \mathcal{Z}_{N}. For this purpose, we define a homomorphism

$$
\psi: \mathcal{Z}_{\mathcal{K}} \rightarrow \mathcal{Z}_{N}
$$

where $\mathcal{Z}_{\mathcal{K}}$ denotes all integers in \mathcal{K} and $\psi(\alpha)=m \bmod N$ while $\psi(a)=a \bmod N$ for all $a \in \mathcal{Z}_{N}$.
Consider an example. Given $N=161$ which is to be factored. Define the number field $\mathcal{K}=\mathcal{R}(\alpha)$ where α is the root of the polynomial $p(x)=x^{2} \Leftrightarrow 2$ or $(p(\alpha)=0)$. Note that the condition in Equation 5.21 holds, i.e.

$$
p(18)=2 \cdot 161
$$

for $m=18$. Now we take element $\beta \in \mathcal{K}$ and compute their squares $\beta^{2}=a+b \cdot \alpha$ and check whether the corresponding equation $a+b \cdot m \stackrel{?}{=} Y^{2} \bmod N$. If the second equation holds, then we transform the first equation using the homomorphism ψ. Here we need to extend our homomorphism so it works for elements of the form $(a+b \cdot \alpha)$ where $a, b \in \mathcal{Z}_{N}$. The extended homomorphism is defined as follows:

$$
\psi(b \cdot \alpha)= \begin{cases}m \bmod N & \text { if } b=1 \\ b\left(b^{-1} a+m\right) \bmod N & \text { if } b \text { has its inverse in } \mathcal{Z}_{N}\end{cases}
$$

If the element b does not its inverse then a non-trivial factor of N is found. The computations are as follows

Field \mathcal{K}	a, b	Ring Z_{N}
$(\alpha+1)^{2}=3+2 \alpha$	$(3,2)$	$3+2 \cdot 18=39$
$(\alpha+2)^{2}=6+4 \alpha$	$(6,4)$	$4+4 \cdot 18=78$
$(2 \alpha+1)^{2}=9+4 \alpha$	$(9,4)$	$9+4 \cdot 18=81=9^{2}$

The last row gives us two quadratic equations one in \mathcal{K} and the other in \mathcal{Z}_{N}. Now we transform the equation in \mathcal{K} into \mathcal{Z}_{N} using the homomorphism ψ, i.e.

$$
\psi(9+4 \alpha)=9+4 \cdot m \text { and } \psi(2 \alpha+1)=37
$$

We combine the two equations and get

$$
9^{2} \equiv 37^{2} \bmod N
$$

and two non-trivial factors $\operatorname{gcd}(37 \Leftrightarrow 9,161)=7$ and $\operatorname{gcd}(37+9,161)=23$.
Clearly, for factoring a large integer, guessing a and b will not lead to an efficient implementation of NFS. Like in QS, NFS apply the factor bases. What differs QS from NFS is the fact that NFS uses two different factor bases, one in Z_{N} and the other in $\mathcal{Z}_{\mathcal{K}}$. The factor base in Z_{N} can be easily generated and typically includes all primes not exceeding some bound B. Generation of the factor base in $\mathcal{Z}_{\mathcal{K}}$ is more complicated as it involves the selection of the so-called prime ideals of $\mathcal{Z}_{\mathcal{K}}$. The description of the NFS algorithm is beyond the scope of the book and the reader is referred to [102] for details.

Factorisation is considered to be a part of cryptanalysis as the progress in factoring tends to weaken the existing RSA hardware implementations. There are several classes of factorisation algorithms

- Quadratic sieve ([125],[126], [408], [464]),
- Residue list sieve [111],
- Number field sieve [297],
- Continued fraction [349],
- Elliptic curve [298].

QS has been very extensively used as it is the fastest known algorithm to factor integers shorter than 130 decimal digits. In 1994 Atkins, Graff, Lenstra and Leyland successfully factorized 129 decimal digit long modulus of RSA (known as RSA-129 on the RSA factoring challenge list). The factorisation was done using computing resources donated from around the world. As the whole communication was done by electronic mail, the project was called "factoring by e-mail". For details see [10]. This proved that 512 -bit moduli of RSA are no longer secure against a powerful attacker who can match the resources used in the factorisation.

NFS is the newest algorithm and the fastest as its asymptotic running time is

$$
O\left(e^{(1.92+o(1))(\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}}\right)
$$

which compares favourably with the asymptotic running time of the QS algorithm which is

$$
O\left(e^{(1+o(1))(\ln n \ln \ln n)^{\frac{1}{2}}}\right)
$$

The NFS algorithm overtakes QS if factored integers are longer than 130 decimal digits.

5.2.5 Security of RSA

An instance of RSA can be compromised if the corresponding instances of discrete logarithm and factorisation problems are easy to compute. Interestingly enough, the security of some versions of RSA are equivalent to the difficulty of factoring the modulus.

Consider the Rabin scheme. Assume that there is a polynomial-time algorithm A which for a given ciphertext c and modulus N returns a message $m=A(c, N)$ such that $m^{2} \equiv c(\bmod N)$. This is a chosen ciphertext attack. We could use the algorithm to factor N as follows:

1. Select at random a message $m \in \mathcal{Z}_{N}$.
2. Calculate the cryptogram $c=m^{2}(\bmod N)$.
3. Apply the algorithm $m^{\prime}=A(c, N)$.
4. If $m= \pm m^{\prime}$, go to step (1) and select another message. Otherwise, compute $\operatorname{gcd}\left(m \Leftrightarrow m^{\prime}, N\right)$ which is either p or q.

The Rabin scheme is insecure against a chosen ciphertext attack but it is immune against a chosen plaintext attack.

Simmons and Norris [471] showed that RSA is breakable if the multiplicative group contains short cycles. Let the opponent know the public elements (N, K) and a cryptogram $c \in \mathcal{Z}_{N}$. Clearly, the opponent can generate the following sequence

$$
c_{i} \equiv c_{i-1}^{K} \quad(\bmod N)
$$

where $c_{1}=c$ and $i=2,3, \ldots$. If there is an element c_{j} such that $c=c_{j}$, then the message used to generate c is c_{j-1}. To avoid the iteration attack is enough to select the primes p and q so $p \Leftrightarrow 1=2 \times p^{\prime}$ and $q \Leftrightarrow 1=2 \times q^{\prime}$ where p^{\prime} and q^{\prime} are primes.

Assume that Euler's totient function $\varphi(N)$ has been made public. Is it possible to compute factors of N from it? Take a closer look at $\varphi(N)$ which is

$$
\varphi(N)=(p \Leftrightarrow 1)(q \Leftrightarrow 1)=N \Leftrightarrow p \Leftrightarrow q+1=N \Leftrightarrow p \Leftrightarrow \frac{N}{p}+1
$$

This equation can be rewritten as

$$
p^{2}+p(\varphi(N) \Leftrightarrow N \Leftrightarrow 1)+N=0
$$

Clearly, the equation has two solutions: the factors p and q. The conclusion is that revealing $\varphi(N)$ allows to factor N.

Can the modulus N be shared amongst of several RSA schemes? This can be an attractive solution when a single user would like to use the same N after the decryption key has been compromised. Or perhaps several co-operating users would like to use the same modulus N to establish their public schemes. To be more precise, assume that two pairs of keys have been compromised and made public. Is it possible to find factors of N or equivalently $\varphi(N)$? Denote the two pairs as (k_{1}, K_{1}) and (k_{2}, K_{2}). All key have to be odd numbers. They can be represented as

$$
\begin{aligned}
& k_{1} K_{1} \Leftrightarrow 1 \equiv \alpha_{1} 2^{r_{1}} p^{\prime} q^{\prime} \\
& k_{2} K_{2} \Leftrightarrow 1 \equiv \alpha_{2} 2^{r_{2}} p^{\prime} q^{\prime}
\end{aligned}
$$

where $p \Leftrightarrow 1=2 p^{\prime}$ and $q \Leftrightarrow 1=2 q^{\prime}$ and α_{1}, α_{2} are two odd numbers. It is easy to compute $\operatorname{gcd}\left(k_{1} K_{1} \Leftrightarrow\right.$ $\left.1, k_{2} K_{2} \Leftrightarrow 1\right)=\gamma 2^{\left|r_{1}-r_{2}\right|}$. Note that if $\gamma=1$, then $\varphi(N)$ can be determined as $p^{\prime} q^{\prime}$ is easy to calculate. This happens if α_{1} and α_{2} are co-prime. As pairs of keys are randomly chosen, we may assume that α_{1} and α_{2} are also two odd random integers. What is the probability that two odd integers smaller than N selected randomly and uniformly are co-prime?

To answer the question consider the following collection of sets: D_{3} - the set of all odd integers smaller than N and divisible by $3, D_{5}$ - the set of all odd integers smaller than N and divisible by 5 and not divisible by $3, D_{7}$ - the set of all odd integers smaller than N and divisible by 7 and not divisible by 3 or 5 . In general D_{i} is the set of all odd integers smaller than N and divisible by i (i is prime and $i<\sqrt{N}$) and not divisible by any prime smaller than i. Now two random odd integers are not co-prime if both of them belong to some D_{i}, thus

$$
P\left(\alpha_{1}, \alpha_{2} \text { are not co-prime }\right)=\sum_{i<\sqrt{N}} P\left(\alpha_{1}, \alpha_{2} \in D_{i}\right)=\sum_{i<\sqrt{N}} P\left(\alpha_{1} \in D_{i} \mid \alpha_{2} \in D_{i}\right) P\left(\alpha_{2} \in D_{i}\right)
$$

where i is a prime. The conditional probability $P\left(\alpha_{1} \in D_{3} \mid \alpha_{2} \in D_{3}\right)$ is the biggest so we can substitute it for all other conditional probabilities and

$$
P\left(\alpha_{1}, \alpha_{2} \text { are not co-prime }\right)<P\left(\alpha_{1} \in D_{3} \mid \alpha_{2} \in D_{3}\right)=\frac{1}{3}
$$

Therefore, $P\left(\alpha_{1}, \alpha_{2}\right.$ are co-prime $) \geq \frac{2}{3}$. A single pair of keys will enable to compute $\varphi(N)$ and subsequently factor N with the probability greater than $2 / 3$.

5.3 The Merkle-Hellman Cryptosystem

The knapsack decision problem belongs to the class NPC and its search equivalent to the class NPhard so it is a very attractive candidate for cryptographic designs. Merkle and Hellman [336] based their public-key cryptosystem on the knapsack problem. The Merkle-Hellman cryptosystem or MH system encrypts an n-bit message $m=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathcal{M}$ using a public key $K=\left(\beta_{1}, \ldots, \beta_{n}\right)$ where $\alpha_{i} \in\{0,1\}$ and $\beta_{i} \in \mathcal{Z}_{q} ; i=1, \ldots, n$ and q is prime. The cryptogram $c \in \mathcal{C}$ is calculated as

$$
\begin{equation*}
c=\sum_{i=1}^{n} \alpha_{i} \beta_{i} \tag{5.22}
\end{equation*}
$$

The enciphering is simple and very efficient.
The public key and secret elements are generated by the receiver Bob who sets up the whole system. Bob first selects a sequence of superincreasing integers $w=\left(\omega_{1}, \ldots, \omega_{n}\right)$ where

$$
\begin{equation*}
\omega_{i}>\sum_{j=1}^{i-1} \omega_{j} \tag{5.23}
\end{equation*}
$$

Note that initial condition w defines an instance of the easy knapsack problem which is solvable in linear time. Now Bob selects a big enough field \mathcal{Z}_{q} (q is prime) and a multiplier $r \in \mathcal{Z}_{q}$. Both the prime q and r can be chosen at random provided that,

$$
q>\sum_{i=1}^{n} \omega_{i}
$$

Next Bob transforms the superincreasing vector w according to the following congruence

$$
\begin{equation*}
\beta_{i} \equiv \omega_{i} \times r \quad(\bmod q) \tag{5.24}
\end{equation*}
$$

for $i=1, \ldots, n$. The sequence $\left(\beta_{1}, \ldots, \beta_{n}\right)$ constitutes the public key of the system. Note that the vector w, multiplier r, and prime q are kept secret by the receiver.

Assume that Bob has received a cryptogram c created according to Equation (5.22). Bob converts the cryptogram as follows:

$$
c^{\prime} \equiv c \times r^{-1} \quad(\bmod q)
$$

Using Equations (5.22) and (5.24), we have

$$
c^{\prime} \equiv \sum_{i=1}^{n} \alpha_{i} \beta_{i} r^{-1} \equiv \sum_{i=1}^{n} \alpha_{i} \omega_{i} \quad(\bmod q)
$$

The transformed cryptogram c^{\prime} corresponds to an instance of the easy knapsack so Bob finds bits α_{i} of the message m.

Problems Used: Knapsack.

The secret easy knapsack is a superincreasing sequence of integers $w=\left(\omega_{1}, \ldots, \omega_{n}\right)$ such that $\omega_{i}>\sum_{j=1}^{i-1} \omega_{j}$.

Message Space: $\mathcal{M}=\Sigma^{n}$
Cryptogram Space: $\mathcal{C}=\mathcal{Z}$.
Public Key: $K=\left(\beta_{1}, \ldots, \beta_{n}\right)$ where $\beta_{i} \equiv \omega_{i} \times r \quad(\bmod q)$.
Both the modulus q and the multiplier r are secret.
Secret Key: The easy knapsack $w=\left(\omega_{1}, \ldots, \omega_{n}\right), q$ and r.
Encryption: $c=E_{K}(m)=\sum_{i=1}^{n} \alpha_{i} \times \beta_{i}$ where $m=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
Decryption: Conversion of the cryptogram c into an instance of easy knapsack $c^{\prime}=c \times r^{-1} \quad(\bmod q)$.
To illustrate the MH system, assume that 5-bit messages are to be transmitted. Bob initiates the algorithm by choosing the vector,

$$
w=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}\right)=(2,3,6,12,25)
$$

Note that:

$$
\begin{array}{ll}
\omega_{2} & >\omega_{1} \\
\omega_{3} & >\omega_{1}+\omega_{2} \\
\omega_{4} & >\omega_{1}+\omega_{2}+\omega_{3} \\
\omega_{5} & >\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}
\end{array}
$$

Next he chooses the pair (r, q) at random provided that q is prime and $q>\sum_{i=1}^{5} \omega_{i}=48$. Let $q=53$ and $r=46$. It is easy to check that $r^{-1}=15(\bmod 53)$. Subsequently, the receiver calculates the public key using Congruence (5.24), namely,

$$
\begin{aligned}
& \beta_{1} \equiv \omega_{1} r \quad(\bmod q) \equiv 39 \quad(\bmod 53) \\
& \beta_{2} \equiv \omega_{2} r \quad(\bmod q) \equiv 32 \quad(\bmod 53) \\
& \beta_{3} \equiv \omega_{3} r \quad(\bmod q) \equiv 11 \quad(\bmod 53) \\
& \beta_{4} \equiv \omega_{4} r \quad(\bmod q) \equiv 22 \quad(\bmod 53) \\
& \beta_{5} \equiv \omega_{5} r \quad(\bmod q) \equiv 37 \quad(\bmod 53)
\end{aligned}
$$

So, the public key $K=\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right)=(39,32,11,22,37)$ is sent to the sender Alice. Suppose now that Bob has received the cryptogram $c=119$. To decrypt it, he first transforms it as follows:

$$
c^{\prime}=c \times r^{-1}=119 \times 15=36 \quad(\bmod 53)
$$

and next solves the easy knapsack instance:

$$
\begin{array}{rlll}
c^{\prime}=36 & >\omega_{5}=25 & \Rightarrow \alpha_{5}=1 \\
c^{\prime} \Leftrightarrow \omega_{5}=11 & <\omega_{4} & \Rightarrow \alpha_{4}=0 \\
c^{\prime} \Leftrightarrow \omega_{5}=11 & >\omega_{3}=6 & \Rightarrow \alpha_{3}=1 \\
c^{\prime} \Leftrightarrow \omega_{5} \Leftrightarrow \omega_{3}=5 & >\omega_{2}=3 & \Rightarrow \alpha_{2}=1 \\
c^{\prime} \Leftrightarrow \omega_{5} \Leftrightarrow \omega_{3} \Leftrightarrow \omega_{2}=2 & =\omega_{1} & =2 & \Rightarrow \alpha_{1}=1 .
\end{array}
$$

In other words, the receiver has recreated the message $m=(1,1,1,0,1)$.

5.3.1 Security of Merkle-Hellman cryptosystem

The MH system was broken by Shamir [459] who showed a polynomial-time algorithm which calculates easy knapsack from the public key. Shamir used the superincreasing property of easy knapsack integers to derive a system of linear inequalities. The system was later efficiently solved using Lenstra's integer programming algorithm.

There is also a version of the MH system which applies multiple modular multiplications to hide easy knapsacks. This version of the system is called the iterated MH system. Adleman [3] used the L^{3} algorithm [296] to analyse a doubly iterated knapsack system. Brickell [61] and Lagarias and Odlyzko [291] showed that any low density knapsack are solvable in polynomial time. Finally, Brickell [62] invented a polynomial time algorithm which for k-iterated MH systems, extracts easy knapsack integers from the public key. Readers interested in details of breaking the Merkle-Hellman system are referred to the review paper by Brickell and Odlyzko [63] and the book by O'Connor and Seberry [374].

5.4 McEliece cryptosystem

McEliece suggested [326] that error correcting codes are excellent candidates for designing public-key cryptosystems. His work has not received the prominence or detailed study it deserves, because error correcting codes are effective by virtue of their redundancy, which leads to data expansion, which has not usually been considered desirable in cryptography. Other cryptosystems related to the McEliece design include the Niederreiter scheme and the Stern scheme - see [504].

Assume we have a message space $G F\left(2^{k}\right)$ and a codeword space $G F\left(2^{n}\right)$. For any message $a \in$ $G F\left(2^{k}\right)$, a code assigns a codeword $b \in G F\left(2^{n}\right)$ and $b=L(a)$. A code L is linear if the sum of any two codewords $b_{1}+b_{2}$ is equivalent to the codeword of the sum of their messages $a_{1}+a_{2}$, i.e. $L\left(a_{1}+a_{2}\right)=L\left(a_{1}\right)+L\left(a_{2}\right)=b_{1}+b_{2}$. Any linear code can be described as

$$
b=a \times G
$$

where $a \in G F\left(2^{k}\right), b \in G F\left(2^{n}\right)$, and G is the $(k \times n)$ generating matrix.
McEliece based his cryptosystem on the Goppa codes, a superset of the BCH or the Hamming codes, because they are easy to implement in hardware and a fast decoding algorithm exists for the general Goppa codes while no such fast decoding algorithm exists for a general linear code. Goppa codes can be defined by their generating polynomial

$$
p(x)=x^{t}+p_{t-1} x^{t-1}+\cdots+p_{1} x+1
$$

of degree t over $G F\left(2^{m}\right)$. For messages of length k, the Goppa code produces codewords of length $n=2^{m}$ and the code is capable of correcting any pattern of t or fewer errors.

The receiver Bob chooses a desirable value of n and t and then randomly picks an irreducible polynomial of degree t over $G F\left(2^{m}\right)$. The probability that a randomly selected polynomial of degree t is irreducible is about $1 / t$ and Berlekamp [26] describes a fast algorithm for testing irreducibility of polynomials. Next Bob produces a $k \times n$ generator matrix G for the code, which could be in canonical form, that is:

$$
G=\left[\begin{array}{ll}
I_{k} & F_{k(n-k)}
\end{array}\right]
$$

where I_{k} is the identity matrix.
The usual error correction method would now multiply a message vector $a=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ onto G to form the codeword b which is transmitted via a noisy channel which usually corrupts the codeword
to b^{\prime} which must then be corrected and then the message recovered. If a were multiplied onto G in the canonical form, b would be:

$$
b=\left(\alpha_{1}, \ldots, \alpha_{k}, f_{1}(a), \ldots, f_{n-k}(a)\right)
$$

and if there was no corruption, the message is trivially recovered as the first k bits of b.
Thus McEliece "scrambles" G by selecting a random dense $k \times k$ non-singular matrix S, and a random $n \times n$ permutation matrix P. He then computes,

$$
G^{\prime}=S G P
$$

which generates a linear code with the same rate and minimum distance as the code generated by G. G^{\prime} is called the public generator matrix and constitutes the public key.

To encrypt a binary message $m \in G F\left(2^{k}\right)$, Alice uses the public key G^{\prime} and computes the corresponding cryptogram

$$
c=m \times G^{\prime}+e
$$

where e is a locally generated random vector of length n and weight t. The vector e is kept secret by Alice. The decryption is done by Bob who calculates

$$
c^{\prime}=c \times P^{-1}
$$

where P^{-1} is the inverse of the permutation matrix $P . c^{\prime}$ will then be a codeword of the Goppa code previously chosen. The decoding algorithm is then used to find $m=m^{\prime} S^{-1}$.

The McEliece cryptosystem

Problems Used: General Coding.
A Goppa code characterised by its generating matrix G which specifies an instance.
Message Space: $\mathcal{M}=G F\left(2^{k}\right)$.
Cryptogram Space: $\mathcal{C}=G F\left(2^{n}\right)$.
Public Key: Public key $G^{\prime}=S G P$.
Secret Key: Matrices S, G, P.
Encryption: $c=E_{K}(m)=m \times G^{\prime}+e$
where e is a secret random binary string of weight t generated by Alice.
Decryption: Bob computes $c^{\prime}=c \times P^{-1}$, decodes c^{\prime} and obtains m^{\prime}.
Finally, Bob translates m^{\prime} into m applying $m=m^{\prime} S^{-1}$.

5.4.1 Security of the McEliece Cryptosystem

We need to determine the security of the system. If an opponent knows G^{\prime} and intercepts c, can they recover m ? There are two possible attacks:

1. to try to recover G from G^{\prime} and so be able to use the decoding algorithm,
2. to attempt to recover m from c without knowing G.

The first attack appears hopeless if n and t are large enough because there are so many possibilities for G, not to mention the possibilities for S and P.

The second attack seems more promising but the basic problem to be solved is that of decoding a more or less arbitrary (n, k) linear code in the presence of up to t errors. Berlekamp, McEliece and van Tilborg [25] have proved that the general coding problem for linear codes is NP-complete, so one can certainly expect that, if the code parameters are large enough, this attack will also be infeasible.

If $n=1024=2^{10}$ and $t=50$ there are about 10^{149} possible Goppa polynomials and a vast number of choices for S and P. The dimensions of the code will be about 524 . Hence, a brute-force approach to decoding based on comparing C to each codeword has a work factor of about $2^{524}=10^{158}$, and a brute-force approach based on coset leaders has a work factor of about $2^{500}=10^{151}$.

A more promising attack is to select k of the co-ordinates randomly and hope none are in error and then calculate m. The probability of no error, however, is about $(1 \Leftrightarrow t / n)^{k}$, and the amount of work involved in solving k simultaneous equations in k unknowns is about k^{3}. Hence before finding m using this attack one expects a work factor of $k^{3}(1 \Leftrightarrow t / n)^{-k}$. For $n=1024, k=524, t=50$ this is about $10^{19} \approx 2^{65}$.

On the other hand, this cryptosystem is not suitable for producing 'signatures' as the algorithm is truly asymmetric and not one to one.

5.5 The ElGamal Cryptosystem

In 1985 ElGamal [163] published a public-key cryptosystem which uses the discrete logarithm problem. Bob the designer of the system chooses a large enough prime q which is used as the modulus. He randomly selects a primitive element $g \in G F(q)$ and an integer $k<q$. Bob computes $K=g^{k}$ $(\bmod q)$ and publishes the modulus q, primitive element g and integer K. The exponent k is kept secret.

To encrypt a message $m \in G F(q)$, Alice selects first her secret element s at random from $G F(q)$ and prepares a cryptogram which consists of two parts $c=\left(c_{1}, c_{2}\right)$ where

$$
\begin{aligned}
c_{1} & \equiv m \times K^{s} \quad(\bmod q) \\
c_{2} & \equiv g^{s} \quad(\bmod q)
\end{aligned}
$$

The pair is dispatched to Bob. On receiving the cryptogram, Bob computes $K^{s}=c_{2}^{k} \equiv g^{s k} \quad(\bmod q)$ using c_{2} and his secret integer k. Next he finds the inverse K^{-s} and computes the message

$$
m \equiv c_{1} \times K^{-s} \quad(\bmod q)
$$

The steps in ElGamal systems are summarised below.

The ElGamal cryptosystem

Problems Used: Discrete logarithm.
Bob selects the modulus q, primitive element g, and the exponent k. The modulus q and element g are public.

Message Space: $\mathcal{M}=G F(q)$.
Cryptogram Space: $\mathcal{C}=G F(q) \times G F(q)$.
Public Key: Public key $K \equiv g^{k} \quad(\bmod q)$.

Secret Key: $k \in G F(q)$
Encryption: Alice selects at random an exponent $s \in G F(q)$. The exponent s is secret. The cryptogram is $c=E_{K}(m)=\left(c_{1}, c_{2}\right)$ where $c_{1} \equiv m \times K^{s} \quad(\bmod q)$ and $c_{2} \equiv g^{s} \quad(\bmod q)$.

Decryption: Bob computes $K^{s}=c_{2}^{k} \equiv g^{s k}(\bmod q)$, its inverse K^{-s} and the message $m=$ $D_{k}(c)=\equiv c_{1} \times K^{-s} \quad(\bmod q)$.

5.5.1 Security of ElGamal Cryptosystems

To have a secure instance of the ElGamal system, the modulus needs to be larger than 200 decimal digits or 660 bits. The security of the system is intimately tied with the difficulty of solving instances of the discrete logarithm problem. The modulus q must be selected in such a way that $q \Leftrightarrow 1$ has at least one large factor preferably $q \Leftrightarrow 1=2 p$ where p is a prime. For $q=2^{n}$, it is recommended to use Mersenne numbers as $q \Leftrightarrow 1$ is prime. Readers interested in algorithms for solving discrete logarithm problem are directed to Odlyzko's paper [376].

5.6 Elliptic Curve Cryptosystems

Both the RSA and ElGamal cryptosystems extensively use the cyclic groups which exist in the underlying algebraic structure. Elliptic curves can be used to define cyclic groups which are suitable for cryptographic applications. The idea of applying elliptic curves in cryptography was first spelt out by Koblitz [284] and Miller [343]. Readers who want to study the subject in more details are directed to the book by Menezes [332].

5.6.1 Elliptic Curves

Let $p>3$ be a prime and a and b be two integers satisfying the condition $4 a^{3}+27 b^{2} \not \equiv 0(\bmod p)$. The elliptic curve $\mathcal{E}_{p}(a, b)$ is a collection of points $P=(x, y) \in \mathcal{Z}_{p} \times \mathcal{Z}_{p}$ such that

$$
\begin{equation*}
y^{2} \equiv x^{3}+a x+b \quad(\bmod p) \tag{5.25}
\end{equation*}
$$

together with a point \mathcal{O} in infinity. Two points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ can be added and the result is the point $R=P+Q=\left(x_{3}, y_{3}\right)$ with the co-ordinates

$$
\begin{align*}
x_{3} & \equiv \lambda^{2} \Leftrightarrow x_{1} \Leftrightarrow x_{2} \quad(\bmod p) \\
y_{3} & \equiv \lambda\left(x_{1} \Leftrightarrow x_{3}\right) \Leftrightarrow y_{1} \quad(\bmod p) \tag{5.26}
\end{align*}
$$

where

$$
\lambda=\left\{\begin{array}{l}
\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \text { if } P \neq Q \\
\frac{3 x_{1}^{2}+a}{2 y_{1}} \text { if } P=Q
\end{array}\right.
$$

The identity element is \mathcal{O} as $P+\mathcal{O}=\mathcal{O}+P=P$. The point $P=\left(x_{1}, y_{1}\right)$ has the inverse element $Q=\Leftrightarrow P=\left(x_{1}, \Leftrightarrow y_{1}\right)$ and $P+Q=\mathcal{O}$. It can be proved that the collection of points (5.25) with the addition defined by (5.26) creates an Abelian group.

Consider an elliptic curve $\mathcal{E}_{7}(1,6)$ with points satisfying the congruence $y^{2} \equiv x^{3}+x+6 \quad(\bmod 7)$. The collection of all points is

$$
\mathcal{E}_{7}(1,6)=\{(1,1),(1,6),(2,3),(2,4),(3,1),(3,6),(4,2),(4,5),(6,2),(6,5), \mathcal{O}\}
$$

As the order of the group is prime and equals to 11 so the group is isomorphic to \mathcal{Z}_{11}^{*} and any point different from \mathcal{O} generates the group. For instance

$$
\begin{gathered}
2 \times(2,3)=(4,2), \\
3 \times(2,3)=(3,1), \\
4 \times(2,3)=(6,5), \\
5 \times(2,3)=(1,1), \\
6 \times(2,3)=(1,6), \\
7 \times(2,3)=(6,2), \\
8 \times(2,3)=(3,6), \\
9 \times(2,3)=(4,5), \\
10 \times(2,3)=(2,4), \\
11 \times(2,3)=\mathcal{O} .
\end{gathered}
$$

5.6.2 Elliptic Curve Variant of RSA

Koyama, Maurer, Okamoto, and Vanstone [285] presented an implementation of RSA using elliptic curves. Demytko [132] showed a variant which is less restrictive as to the types of elliptic curves used in the cryptosystem.

We describe the first system by Koyama, Maurer, Okamoto and Vanstone. Let the number of points in $\mathcal{E}_{p}(a, b)$ or the order of the group be $\# \mathcal{E}_{p}(a, b)$. In general, we know that

$$
\# \mathcal{E}_{p}(a, b)=p+1+t
$$

where $|t| \leq 2 \sqrt{p}$. Schoof [447] invented an algorithm which computes the order of an elliptic curve in $O\left((\log p)^{8}\right)$ steps. The algorithm becomes impractical for large p. The order of elliptic curves is known explicitly in the two cases:
(1) if the modulus p is an odd prime $p \equiv 2(\bmod 3)$ and the parameter $a=0$. The group $\mathcal{E}_{p}(0, b)$ is cyclic with the order $p+1(0<b<p)$,
(2) if the modulus p is a prime satisfying $p \equiv 3(\bmod 4)$ and $b=0$. The group $\mathcal{E}_{p}(a, 0)$ is cyclic with the order $p+1$ if a is a quadratic residue modulo $p(0<a<p)$.

The RSA variant based on elliptic curves is described below. It is based on the elliptic curve $\mathcal{E}_{N}(0, b)$ with $N=p \times q$ and $p \equiv q \equiv 2(\bmod 3)$. Note that $\# \mathcal{E}_{N}(0, b)=\operatorname{lcm}(p+1, q+1)$.

The elliptic curve RSA cryptosystem

Problems Used: Factorisation and Discrete Logarithm.
The modulus $N=p \times q$ is public, the primes p, q are secret. The elliptic curve used is $\mathcal{E}_{N}(0, b)$ (or $\mathcal{E}_{N}(a, 0)$).

Message Space: $\mathcal{M}=\mathcal{E}_{N}(0, b)$.
Cryptogram Space: $\mathcal{C}=\mathcal{E}_{N}(0, b)$.
Public Key: $K \in_{R}\left\{1, \ldots, \# \mathcal{E}_{N}(0, b)\right\}$ and $\operatorname{gcd}\left(K, \# \mathcal{E}_{N}(0, b)\right)=1$.
Secret Key: $k \in\left\{1, \ldots, \# \mathcal{E}_{N}(0, b)\right\}$ such that $k \cdot K \equiv 1\left(\bmod \# \mathcal{E}_{N}(0, b)\right)$.
Encryption: Let $m=\left(m_{x}, m_{y}\right)$ be a point on the elliptic curve $E_{N}(0, b)$.
$c=E_{K}(m)=K \times m$ over $E_{N}(0, b)$.

Decryption: $m=D_{k}(c)=k \times c$ over $E_{N}(0, b)$.
The security of elliptic curve RSA systems is related to the difficulty of factorisation of the modulus N. Kurosawa, Okada, and Tsujii reported that elliptic curve RSA is not secure with low exponents [290].

Let us illustrate the system for small parameters. The receiver Bob selects two primes $p=239$ and $q=401$. Note that the primes are congruent to 2 modulo 3 . In other words, Bob have decided to use the group $\mathcal{E}_{N}(0, b)$. Next he computes $N=p \times q=95839$, \# $\mathcal{E}_{N}(0, b)=\operatorname{lcm}(p+1, q+1)=16080$ and selects at random a public key K. Let it be $K=5891(\operatorname{gcd}(N . K)=1)$. A secret key $k=12971$ satisfies the congruence $k \times K \equiv 1 \bmod 16080$. Bob announces the modulus N and the public key K.

Alice takes her message $m=\left(m_{x}, m_{y}\right)=(66321,24115)$ which is a point on the elliptic curve $\mathcal{E}_{N}(0, b)$. Alice may even compute b as for all points (x, y) on the curve $y^{2} \equiv x^{3}+b \bmod N(b \equiv$ $\left.y^{2} \Leftrightarrow x^{3} \bmod N\right)$. Addition in $\mathcal{E}_{N}(0, b)$ does not depend on b. Sender computes the cryptogram $c=$ $K \times m \bmod N$ which for the assumed values is the point $c=(79227,19622)$. Bob can easily decrypt the cryptogram by multiplying it by the secret key so $m=k \times c=12971(79227,19622)=(66321,24115)$.

Multiplication of points on elliptic curves may be conveniently implemented using any system for algebraic computations such as MAPLE, MATHEMATICA or MAGMA which supports multiprecision arithmetics. An example of a MAPLE program for addition and multiplication over an elliptic curve in given below.

```
# To load it into MAPLE, type:
# read'<namefile>';
# ⿴here <namefile> is a file ⿴ith the code in the same directory
# MAPLE softrare is run.
#------------------------------------------------------------------------------
# Program adds tro points on the elliptic curve y^2 = x^3 + b modulo N
# Point in infinity is represented by (0,0) and the inverse of
# any point (x,y) is (x,-y)
ad := proc(x1,y1,x2,y2, IN)
        local lambda, x3, y3, result;
        if x1=x2 then
            if modp(y1+y2, N)=0 then RETURN( 0, 0); fi;
        fi;
        if x1=0 then
            if y1=0 then RETURN( x2, y2 ); fi;
        fi;
        if x2=0 then
            if y2=0 then
            result[1] := x1; result[2] := y1;
            RETURN( x1, y1 );
            fi;
        fi;
        if x1<> x2 then
            lambda := modp((y1-y2)/(x1-x2), II);
            else
            lambda := modp((3*(x1~2))/(2*y1), \mathbb{I});
        fi;
        x3 := modp(lambda^2-x1-x2,NI);
        y3 := modp(lambda*(x1-x3)-y1,NI);
        RETURN( x3, y3 );
end;
#--------------------------------------------------------------------------------
```

```
# mult function multiplies a point ( }\textrm{x},\textrm{y}\mathrm{ ) by k modulo IN on the
# curve (the function calls ad function).
#-------------------------------------------------------------------------------
mult := proc( k, x, y, N
    local a,i,j,alpha,beta,base,s,accum ;
    a := array ( 1 .. 1000 , sparse );
    base := array( 1 .. 1000, 1..2, sparse);
    if k=0 then RETURN( 0,0 ); fi;
    if k=1 then RETURN( x,y ); fi;
    i := k; j := 1;
    *hile i > 0 do
                alpha := irem(i,2,'q');
                beta := iquo(i,2,'r');
                i := beta; a[j] := alpha; j := j+1;
    od;
    base[1,1] := x; base[1,2] := y;
    accum[1] := 0; accum[2] := 0;
    if a[1]=1 then
                accum[1] := x; accum[2] := y;
    fi;
    for i from 2 to j-1 do
                s := ad( base[i-1,1],base[i-1,2],base[i-1,1],base[i-1,2],NI);
                base[i,1] := s[1]; base[i,2] := s[2];
                if a[i]=1 then accum := ad( base[i,1],base[i,2],accum[1],accum[2],N);
                fi;
    od;
    RETURN( accum );
end;
```

The function mult () can be used directly for encryption and decryption. Note that the function performs an operation which is equivalent to the RSA exponentiation. It works relatively fast for the modulus N up to several hundreds of bits making computations quite realistic.

5.6.3 Elliptic Curve Variant of ElGamal

Menezes, Okamoto, and Vanstone [333] demonstrated that the discrete logarithm problem on a supersingular elliptic curve can be reduced to the discrete logarithm problem in a finite field. So the discrete logarithm problem on elliptic curves is suitable for cryptographic applications. The system described below was invented by Menezes and Vanstone [335].

The elliptic curve ElGamal cryptosystem

Problems Used: Discrete Logarithm.
Bob selects a large prime $p>3$ (the modulus), an elliptic curve \mathcal{E}_{p} (the corresponding discrete logarithm problem has to be intractable), and a point $P \in \mathcal{E}_{p}$. \mathcal{E}_{p}, the modulus and the point P are public.

Message Space: $\mathcal{M}=\mathcal{Z}_{p} \times \mathcal{Z}_{p}$.
Cryptogram Space: $\mathcal{C}=\mathcal{E}_{p} \times \mathcal{Z}_{p} \times \mathcal{Z}_{p}$.
Public Key: $K=k \times P \in \mathcal{E}_{p}$.
Secret Key: $k \in \mathcal{Z}$ (k smaller than the order of the cyclic group).

Encryption: Alice selects at random a multiplier $s \in \mathcal{Z}$, calculates the point $R=s P \in \mathcal{E}$, and finds a point $Q=s K=s k P=\left(\alpha_{x}, \alpha_{y}\right) \in \mathcal{E}_{p}$. For the message $m=\left(m_{x}, m_{y}\right)$, she computes the cryptogram $c=E_{K}(m)=\left(R, c_{x}, c_{y}\right)$ where $c_{x}=\alpha_{x} m_{x}(\bmod p)$ and $c_{y}=\alpha_{y} m_{y} \quad(\bmod p)$. The multiplier s is kept secret by Alice.

Decryption: Bob uses the point R to recover the point Q as $Q=k R=k s P=\left(\alpha_{x}, \alpha_{y}\right) \in \mathcal{E}_{p}$. Next $m=D_{k}(c)=\left(c_{x} \alpha_{x}^{-1} \quad(\bmod p), c_{y} \alpha_{y}^{-1} \quad(\bmod p)\right)$.

Consider an ElGamal system on an elliptic curve $\mathcal{E}_{p}(0, b)$ for $p=71(71 \equiv 2 \bmod 3)$. Bob publishes p and a point on the curve $P=(25,33)$ and the public key $K=k P=(33,39)$ for his secret key $k=43$.

To encrypt a message $m=\left(m_{x}, m_{y}\right)=(22,44)$, Alice first selects her secret s at random - let it be $s=29$ and finds two points $R=s P=(33,32)$ and $Q=s K=(25,38)$. The message m is encrypted using co-ordinates of the point Q so $c_{x} \equiv m_{x} \times 25 \equiv 53 \bmod 71$ and $c_{y} \equiv m_{y} \times 38 \equiv 39 \bmod 71$. The cryptogram $c=(R, 53,39)$ is communicated to Bob.

Bob reconstructs the point Q using his secret integer k as $Q=k R=(25,38)$, computes $25^{-1} \equiv$ $54 \bmod 71$ and $38^{-1} \equiv 43 \bmod 71$. Clearly $m_{x} \equiv 53 \times 54 \equiv 22 \bmod 71$ and $m_{y} \equiv 39 \times 43 \equiv 44 \bmod 71$.

5.7 Probabilistic Encryption

In some circumstances, one could wish to encrypt single bits instead of messages selected from a large set. A public key cryptosystem would generate only two meaningful cryptograms allowing an opponent, Oscar, to recover the bit by a simple enumeration of two possible cases. A solution to this problem would be to split the space of all messages defined in the public key cryptosystem into two subspaces \mathcal{R}_{0} and \mathcal{R}_{1}. To encrypt a single bit b, the sender, Alice, first selects $r \in_{R} \mathcal{R}_{b}$ and next encrypts the message. The receiver, Bob, decrypts the cryptogram and knowing the two subsets, recovers the bit.

The concept of probabilistic encryption was introduced and studied by Goldwasser and Micali in [208]. A probabilistic public key cryptosystem applies the set of messages $\mathcal{M}=\{0,1\}$, the set of keys \mathcal{K}, the set of cryptograms \mathcal{C}, and the set $\mathcal{R}=\mathcal{R}_{0} \cup \mathcal{R}_{1}$. The encryption proceeds using the encryption function $c=E_{K}(m, r)$ where $r \in_{R} \mathcal{R}_{m}$ and $m \in\{0,1\}$. During the decryption process, the message $m=0$ if $D_{k}(c) \in \mathcal{R}_{0}$ or $m=1$, otherwise. The encryption function induces a pair of two ensembles: $\mathcal{C}_{0}=E_{K}\left(\mathcal{R}_{0}\right)$ and $\mathcal{C}_{1}=E_{K}\left(\mathcal{R}_{1}\right)$. The proof of security of a probabilistic public key cryptosystem can be reduced to the assertion that the two ensembles \mathcal{C}_{0} and \mathcal{C}_{1} are polynomially indistinguishable.

5.7.1 The GM probabilistic encryption

The Goldwasser-Micali (GM) probabilistic encryption assumes that the quadratic residuacity problem is intractable.

The GM Probabilistic Encryption

Problems Used: The quadratic residuacity problem. Given a composite integer N with two factors p and q. The modulus N is public but the factors are secret. An element $u \in \mathcal{Z}_{N}^{Q-}$ is public.

Message Space: $\mathcal{M}=\{0,1\}$.
Cryptogram Space: $\mathcal{C}=\mathcal{Z}_{N}$.
Encryption: For a message $m \in \mathcal{M}$, select $r \in \mathcal{Z}_{N}$ and compute $c=E_{K}(m, r)=u^{m} r^{2} \bmod N$.

Decryption:

$$
m=D_{k}(c)= \begin{cases}0 & \text { if } c \in \mathcal{Z}_{N}^{Q+} \\ 1 & \text { if } c \in \mathcal{Z}_{N}^{Q-}\end{cases}
$$

Clearly, all cryptograms c have their Jacobi symbol equal to 1 . To distinguish which one carries 0 bit, the receiver has to know the factorisation of N and calculate $\left[\frac{c}{p}\right]=(c)^{(p-1) / 2}$. If this is equal to $1, u^{m}=1$ so $m=0$.

5.7.2 The BG probabilistic encryption

Blum and Goldwasser [45] generalised the GM public key encryption. They used the BBS pseudorandom generator to design a probabilistic public key encryption for short binary messages (not necessarily single bits). Their system is further referred as the BG probabilistic encryption.

The BG Probabilistic Encryption

Problems Used: The quadratic residuacity problem. Given a composite integer N with two factors p and q such that $p \equiv q \equiv 3 \bmod 4$. The modulus N is public. The factors p and q are secret.

Message Space: $\mathcal{M}=\Sigma^{t}$.
Cryptogram Space: $\mathcal{C}=\mathcal{Z}_{N}$.
Encryption: 1. for a given seed x_{0}, generate $\left(x_{1}, \ldots, x_{t}\right)$ using the BBS generator,
2. for a given message $m=\left(m_{1} \ldots m_{t}\right) \in \mathcal{M}$, compute $c_{i} \equiv x_{i}+m_{i} \bmod 2, i=1, \ldots, t$,
3. calculate $c_{t+1}=x_{0}^{2^{t+1}} \bmod N$,
4. send the cryptogram $c=\left(c_{1}, \ldots, c_{t+1}\right)$.

Decryption: 1. recover the seed x_{0} from c_{t+1},
2. for the seed x_{0}, generate $\left(x_{1}, \ldots, x_{t}\right)$ using the BBS generator,
3. recreate the message string $m_{i} \equiv c_{i}+x_{i} \bmod 2$ for $i=1, \ldots, t$.

The retrieval of x_{0} from c_{t+1} needs some clarification. Assume that $\alpha \in \mathcal{Z}_{N}^{Q+}$, then α has two square roots, namely, $\pm \sqrt{\alpha}= \pm \alpha^{\frac{p+1}{4}}$. Indeed,

$$
\left(\alpha^{\frac{p+1}{4}}\right)^{2}=\alpha^{\frac{p+1}{2}}=\alpha^{\frac{p-1}{2}} \alpha
$$

as $\alpha \in \mathcal{Z}_{N}^{Q+}$ so $\left[\frac{\alpha}{p}\right]=\alpha^{(p-1) / 2}=1$ and $\left(\alpha^{\frac{p+1}{4}}\right)^{2}=\alpha$. So the squaring has its inverse $2^{-1} \equiv$ $\frac{p+1}{4} \bmod p \Leftrightarrow 1$. To recover x_{0} from c_{t+1}, we need first compute

$$
\begin{aligned}
& 2^{-(t+1)} \equiv\left(\frac{p+1}{4}\right)^{t+1} \quad(\bmod p \Leftrightarrow 1) \\
& 2^{-(t+1)} \equiv\left(\frac{q+1}{4}\right)^{t+1} \quad(\bmod q \Leftrightarrow 1)
\end{aligned}
$$

and later find x_{0} such that

$$
\begin{aligned}
& x_{0} \equiv c_{t+1}^{2^{-(t+1)}} \bmod p \\
& x_{0} \equiv c_{t+1}^{2^{-(t+1)}} \bmod q
\end{aligned}
$$

using the Chinese Remainder Theorem.

5.8 Public-Key Encryption Practice

Public-key cryptography traditionally is used to provide confidentiality of data via encryption under a standard assumption that the attacker is an outsider. The experience demonstrates that in many applications, the attacker is more likely to be an insider who apart from public encryption, may access decryption algorithm. In the so-called lunch-time or midnight attack, an insider can for some time play with the decryption device asking for messages which correspond to a collection of cryptograms chosen by the attacker. The device is assumed to be tamper-proof so the attacker is not able to see the secret key.

5.8.1 Taxonomy of Public-Key Encryption Security

Given an adversary whose computing resources are polynomially bounded. A public-key cryptosystem can be used to provide the following general security goals:

- one-wayness (OW) - the adversary who sees a cryptogram is not able to compute the corresponding message (plaintext),
- indistinguishability (IND) - observing a cryptogram, the adversary learns nothing about the plaintext,
- non-malleability (NM) - the adversary observing a cryptogram for a message m, cannot derive another cryptogram for a meaningful plaintext m^{\prime} related to m.

The goals OW and IND relate to the confidentiality of encrypted messages. The IND goal is, however, much more difficult to achieve than the one-wayness. Note that probabilistic encryption presented in Section 5.7 provides indistinguishability (also termed semantic security). Non-malleability guarantees that any attempt to manipulate the observed cryptogram to obtain a valid cryptogram, will be unsuccessful (with a high probability). For example, the RSA cryptosystem is malleable. The adversary knowing a cryptogram $c=m^{K}$, can for the message $m^{\prime}=2 m$, create the valid cryptogram $c^{\prime}=c \times 2^{K}$.

The power of a polynomial attacker (with polynomial computing resources) very much depends on his access to the information about the public-key system. The weakest attacker is an outsider who knows the public encryption algorithm together with other public information about the setup of the system. The strongest attacker seems to be an insider who can access the decryption device in regular intervals (lunch-time and midnight attacks). The access to the decryption key is not possible as the decryption device is assumed to be tamper-proof.

A decryption oracle is a formalism which mimics the attacker access to the decryption device - the attacker can experiment with it giving cryptograms and collecting corresponding message from the oracle (the attacker cannot access the decryption key). In general, the public-key cryptosystem can be subject to

- chosen plaintext attack (CPA) - the attacker knows the encryption algorithm and the public elements including the public key (the encryption oracle is publicly accessible),
- non-adaptive chosen ciphertext attack (CCA1) - the attacker has access to the decryption oracle before he sees a cryptogram which he wishes to manipulate,
- adaptive chosen ciphertext attack (CCA2) - the attacker has access to the decryption oracle before and after he observes a cryptogram c which he wish to manipulate (assuming that he is not allowed to query the oracle about the cryptogram c).

The security level a public-key system achieves, can be specified by the pair: (goal, attack) where goal can be either OW or IND or NM, attack can be either CPA or CCA1 or CCA2. For example the level (NM, CPA) assigned to a public-key system says that the system is non-malleable under the chosen plaintext attack. There are two sequences of trivial implications:

$$
\begin{aligned}
(\mathrm{NM}, \mathrm{CCA} 2) & \Rightarrow(\mathrm{NM}, \mathrm{CCA} 1)
\end{aligned} \Rightarrow(\mathrm{NM}, \mathrm{CPA})
$$

which are true because the amount of information available to the attacker in CPA, CCA1 and CCA2 grows. Figure 5.2 shows the inter-relation among different security notions. It turns out (see [21]) that the following equivalence holds

$$
(\mathrm{NM}, \mathrm{CPA}) \Leftrightarrow(\mathrm{IND}, \mathrm{CCA} 1)
$$

Figure 5.2: Relations among security notions

5.8.2 Generic OAEP Public-Key Cryptosystem

Most public-key encryption systems exhibit strong algebraic properties which may be exploited by an attacker. Clearly, it would be desirable to "destroy" relations among messages and their cryptograms by the introduction of a redundancy. Bellare and Rogaway [22] introduced the concept of optimal asymmetric encryption padding or OAEP for short. OAEP is a probabilistic encoding of messages before they are encrypted by a public-key cryptosystem. The construction uses random oracles.

A random oracle $H: \Sigma^{n} \rightarrow \Sigma^{\ell}$ is a function which for an argument $x \in \Sigma^{n}$ returns a value y which is selected randomly, uniformly and independently from Σ^{ℓ}. Random oracles are very useful because

- their well formulated probabilistic properties allow to derive conclusions about security. The conclusions are said to be valid in the random oracle (RO) model,
- they can be replaced by hashing algorithms (see Section devoted on hashing) for implementation. The price to pay is, however, that the security conclusions obtained for the RO model do not hold.

The following components are used:

- an instance of a public-key cryptosystem with public encryption algorithm E and secret decryption algorithm $D=E^{-1}$ where $E: \Sigma^{n+\ell} \rightarrow \Sigma^{n+\ell}$. It is assumed that E is one-way permutation so a polynomial attacker cannot reverse it,
- two random oracles $G: \Sigma^{\ell} \rightarrow \Sigma^{n}$ and $H: \Sigma^{n} \rightarrow \Sigma^{\ell}$.

Encryption of a message $m \in \Sigma^{n}$ proceeds as follows (see Figure 5.3):

1. generate a random value $r \in_{R} \Sigma^{\ell}$,
2. calculate

$$
s=m \oplus G(r) \quad \text { and } \quad t=r \oplus H(s)
$$

Figure 5.3: Optimal asymmetric encryption padding
3. compute the corresponding cryptogram

$$
c=E(s, t) \in \Sigma^{n+\ell}
$$

Decryption first recovers the pair $(s, t)=E^{-1}(c)$, the random value $r=t \oplus H(s)$ and the message $m=s \oplus G(r)$. The security of the system meets (IND,CPA).

5.8.3 RSA Encryption Standard

RSA Security introduced their public-key encryption standard known as PKCS\#1. The early version 1.5 was shown to be subject to the CCA2 attack (see [43]). We describe the version 2.1 which can be found in http://www.rsasecurity.com/rsalabs/pkcs. This version also called PKCS-OAEP is recommended for new applications.

The message M to be encrypted is first encoded using the function EME-OAEP-ENCODE (M, P, emLen) where P indicates encoding parameters specifying the choice of hashing algorithms (random oracles) and emLen gives the requested length of encoded message (EM) in octets. The encoding procedure is

Figure 5.4: PKCS\#1 version 2.1
illustrated in Figure 5.4. The input consists of four strings: seed, pHash, PS and M. Both seed, pHash are hLen octets long. The message can be at most emLen-1-2hLen octets long. The string seed is randomly chosen. pHash=Hash (P) is a string obtained from transforming P by the chosen Hash function. PS consists of emLen-mLen-2hLen-1 zero octets. The encoding ENE-OAEP-ENCODE (M,P,emLen) takes the following steps:

1. concatenate strings pHash, PS and M and form the string DB in the form

$$
\mathrm{DB}=(\mathrm{pHash}\|\mathrm{PS}\| 01 \| \mathrm{M})
$$

2. compute

$$
\text { maskedDB }=\mathrm{DB} \oplus \mathrm{MGF}(\text { seed, emLen-hLen), }
$$

where $\operatorname{MGF}()$ is the mask generation function (random oracle),
3. calculate
maskedSeed $=$ seed \oplus MGF (maskedDB,hLen),
4. output EM=(maskedSeed,maskedDB).

The encryption runs through the following steps:

1. encode the message M by invoking the function $E M=E M E-O A E P-E N C O D E(M, P, e m L e n)$,
2. convert the message EM into an integer representation, i.e. $m=0 S 2 I P(E M)$,
3. apply the RSA encryption primitive or $c=\operatorname{RSAEP}((N, K), m)$ where N is the modulus and K public key,
4. convert the cryptogram c into its octet equivalent C and output it.

The decryption reverses the operations and first the encoded message EM is recovered. The decoding procedure allows to verify the correctness of the cryptogram when

- the recovered string $D B^{\prime}$ does not contain the string PS of zeros separated by the 01 octet,
- the string pHash' which is a part of DB^{\prime} ' is not equal to the pHash determined by the encoding parameters P.

PKCS-OAEP is a variant of the generic OAEP public-key encryption and its security is expected to be (IND,CPA) assuming the RO model (if MGF are replaced by random oracles).

5.8.4 Extended ElGamal Cryptosystem

Cramer and Shoup [115] designed a cryptosystem whose security is based on the presumed difficulty of the Diffie-Hellman problem.

Name: Diffie-Hellman problem (DH problem).
Instance: Given \mathcal{Z}_{q}, q is prime, a primitive element $g \in \mathcal{Z}_{q}$ and three nonzero elements $g_{1}=g^{\alpha}$, $g_{2}=g^{\beta}$, and $g_{3}=g^{\gamma}\left(g_{1}, g_{2}, g_{3} \in Z_{p}\right)$.

Question: Is $\gamma=\alpha \beta$?
The cryptosystem is interesting as it allows to identify cryptograms which have not been created according to the encryption algorithm. Moreover, the identification procedure can be skipped and then the system becomes the original ElGamal.

Extended ElGamal Cryptosystem

Problems Used: Diffie-Hellman.
Given \mathcal{Z}_{q} for prime q and a public random oracle $H: \mathcal{Z}_{q}^{3} \rightarrow \mathcal{Z}_{q}$.
Message Space: $\mathcal{M}=\mathcal{Z}_{q}$.
Cryptogram Space: $\mathcal{C}=\mathcal{Z}_{q}^{4}$.

Key generation: Random nonzero elements $g_{1}, g_{2}, x_{1}, x_{2}, y_{1}, y_{2}, z \in_{R} \mathcal{Z}_{q}$ are chosen, The following elements are computed

$$
c=g_{1}^{x_{1}} g_{2}^{x_{2}}, \quad d=g_{1}^{y_{1}} g_{2}^{y_{2}}, \quad \text { and } h=g_{1}^{z} .
$$

Public Key: $\left(g_{1}, g_{2}, c, d, h, H\right)$.
Secret Key: $\left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)$.
Encryption: Given a message $m \in \mathcal{Z}_{q}$, perform the following steps;

1. choose random $r \in_{R} \mathcal{Z}_{q}$,
2. compute

$$
u_{1}=g_{1}^{r} u_{2}=g_{2}^{r} e=h^{r} m \quad \alpha=H\left(u_{1}, u_{2}, e\right) \quad v=c^{r} d^{r \alpha} .
$$

The cryptogram $c=\left(u_{1}, u_{2}, e, v\right)$.
Decryption: Given a cryptogram $c=\left(u_{1}, u_{2}, e, v\right)$, do the following

1. compute $\alpha=H\left(u_{1}, u_{2}, e\right)$,
2. check whether

$$
u_{1}^{x_{1}+y_{1} \alpha} u_{2}^{x_{2}+y_{2} \alpha} \stackrel{?}{=} v
$$

If the equation does not hold, reject the cryptogram otherwise continue and output the message

$$
m=e \cdot u_{1}^{-z}
$$

Note that the decryption can be done by the original ElGamal system from the pair (u_{1}, e). The whole cryptogram is used to verify its validity. The system is provably secure against CCA2 attack or more precisely meets (IND, CCA2) and using the equivalence from Figure 5.2 satisfies (NM, CCA2).

5.9 Problems and Exercises

1. Name main components of the public-key cryptosystem and formulate security requirements. Discuss the usage of the system for secrecy and authenticity.
2. Given a modulus $\varphi(N)$ and a public key K, write a C program which calculates a secret key k for the RSA system. Assume that both $\varphi(N)$ and K are long integers.
3. Assume that $p=467$ and $q=479$. Calculate the secret key in the RSA system, knowing that the public key is equal to $K_{B}=73443$.
4. Suppose you want to design an RSA system in which the modulus $N=p_{1} \cdot p_{2} \cdot p_{3}$ (p_{i} is prime for $i=1,2,3$). Is it possible? If so, what is the main difference between this modification and the original RSA system? Derive necessary expressions for encryption, decryption and keys.
5. Consider the RSA system for $N=2773(p=47, q=59)$. Compute numbers of unconcealable messages while applying the following public keys: $K_{1}=668, K_{2}=1174, K_{3}=1043, K_{4}=878$.
6. Given a Rabin scheme for $p=179$ and $q=191$ with the decryption based on the Williams modification. Compute the deciphering key. What are cryptograms for two messages $M_{1}=33001$ and $M_{2}=18344$?
7. Write a primality testing algorithm which incorporates both the test based on Fermat's Little Theorem (see Equation 5.18) and the Miller-Rabin test.
8. Find all primes from the interval $(45700,45750)$ using the Miller-Rabin test.
9. Implement the sieve of Eratosthenes as a C language program.
10. Suppose that you have an efficient probabilistic algorithm A which computes square roots (modulo N). More precisely, the algorithm takes an integer x and returns a single integer which is a square root $\sqrt{x} \bmod N$. Show how the algorithm can be applied to factor integers.
11. Use the quadratic sieve algorithm to factor $N=29591$. First do the factorisation by hand. Next implement the algorithm in C (or other high level programming language) assuming that N is a long integer.
12. Apply the iteration attack to recreate the original message for six different pairs (cryptogram, public key) while the RSA system uses the modulus $N=2773$. The pairs are as follows:
(a) $c=1561, K=573$;
(b) $c=1931, K=861$;
(c) $c=2701, K=983 ;$
(d) $c=67, K=1013$;
(e) $c=178, K=1579$;
(f) $c=2233, K=791$.
13. Consider two strong primes $p=23$ and $q=47$. How effective is the iteration attack in this case ? Select some cryptograms and compute the cycle. Justify your findings and express the relation between the length of cycles and the particular selection of primes.
14. Design the Merkle-Hellman system which encrypts 7 -bit messages. Suppose that $w=\left(\omega_{1}, \ldots, \omega_{7}\right)=(2,3,6,12$, $24,49,100), q$ is the smallest integer which is bigger than $\sum_{i=1}^{7} \omega_{i}$ and $r=119$. What is the cryptogram for the message $M=1011011$? Show the deciphering process.
15. Consider the easy knapsack vector $w=(1,2,4,8,16,32,64,128,256,512)$. Produce the public key using four iterations defined by the following pairs $\left(q_{1}, r_{1}\right),\left(q_{2}, r_{2}\right),\left(q_{3}, r_{3}\right),\left(q_{4}, r_{4}\right)$. Choose primes $q_{i} ; i=1,2,3,4$, as small as possible. Accept $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(233,671,322,157)$.
16. Given an ElGamal cryptosystem with the modulus $q=1283$ and $g=653$. Let the receiver choose $k=977$. Compute the public key and a cryptogram for the message $m=751$.
17. The ElGamal system works under the assumption that the sender always selects her secret exponent s randomly and independently for each single message. Show how can the security of the system be compromised when the sender has generated two cryptograms (for two different messages) using the same secret s.
18. It is highly recommended for the modulus q to be selected in such a way that $q-1$ has at least one large factor. Formulate an argument and derive an algorithm which efficiently solves any instance of the discrete logarithm whenever $q-1$ has small factors only.
Hint: It is requested to calculate a knowing $g^{a} \bmod q$ when $q-1=p_{1} \cdots p_{n}$. Observe that a can be represented by a vector $\left(a_{1}, \ldots a_{n}\right)$ where $a_{i} \equiv a \bmod p_{i}$. The component a_{i} can be readily recovered by computing $\left(g^{a}\right)^{e_{i}} \bmod q$ where e_{i} is an integer $e_{i} \equiv 0 \bmod p_{j}(i \neq j)$ and $e_{i} \equiv 1 \bmod p_{i}$.
19. Suppose that q is a Mersenne number so $q-1$ is prime. Implement the ElGamal system when $q=2^{13}$ and $q-1=8191$. Do all computations in GF(2^{13}) using the modulus $p(x)=x^{13}+x^{11}+x^{8}+x^{4}+1(p(x)$ is an irreducible polynomial over GF(2)). Write C programs for addition and multiplication.
20. Assume an elliptic curve $\mathcal{E}_{11}(2,5)$ with points whose coordinates $P=(x, y)$ satisfy the following congruence $y^{2} \equiv x^{3}+2 x+5 \bmod 11$. Given two points $P=(3,4)$ and $Q=(8,7)$. What are the points $P+Q, P+P$ and $Q+Q$?
21. Let our elliptic curve RSA system apply the group $\mathcal{E}_{N}(0, b)$ where N is product of two suitable primes p and q. Decrypt the following cryptograms:

- $c=(20060,21121)$ for $p=257$ and $q=131$ and the decrypting key $k=4163$,
- $c=(1649684061,291029961)$ for $p=65537, q=65543$ and decrypting key $k=354897809$.

What are the encrypting keys in the two cases ?
22. Implement the RSA encryption on an elliptic curve $\mathcal{E}_{N}(a, 0)$ using an accessible multiprecision arithmetics system such as MAPLE.
23. Consider the ElGamal cryptosystem on an elliptic curve $\mathcal{E}_{p}(0, b 0$. Assume that $p=233$, a point P on the curve is $P=(135,211)$, the secret key is a multiplier $k=176$, and the public key is $K=k P=(107,127)$. Encrypt the following messages:

- $m=(23,223)$ for a secret multiplier $s=97$,
- $m=(120,37)$ for a secret multiplier $s=200$.

Decrypt the following cryptograms:

- $c=\left(R, c_{x}, c_{y}\right)=((26,34), 76,13)$,
- $c=\left(R, c_{x}, c_{y}\right)=((26,199), 123,118)$.

24. The GM probabilistic encryption rests on the assumption that Jacobi symbols cannot be effectively computed if the factoring of the modulus N is unknown. Elements of \mathcal{Z}_{N} are used to carry single bit messages which are Jacobi symbols. The receiver is always able to compute the message (Jacobi symbol) as he knows the factors of N. Design an instance of the GM encryption for $p=101, q=103, u=5646$.
25. The BG probabilistic encryption uses BBS pseudorandom bit generator. Use an instance of the BBS generator for $p=7$ and $q=11$ to construct the BG encryption. Make necessary assumption. Show encryption and decryption processes.

Chapter 6

HASHING

In many cryptographic applications, it is necessary to produce a relatively short fingerprint of a much longer message or electronic document. The fingerprint is also called a digest of the message. Cryptographic applications of hashing include, amongst others, the generation of digital signatures.

6.1 Properties of Hashing

A hash function is required to produce a digest of a fixed length for a message of an arbitrary length. Let the hash function be $h: \Sigma^{*} \rightarrow \Sigma^{n}$, where $\Sigma^{*}=\bigcup_{i \in \mathcal{N}} \Sigma^{i}$. It is said that two different messages m_{1}, m_{2} collide if $h\left(m_{1}\right)=h\left(m_{2}\right)$. It is obvious that there are infinitely many collisions for the hash function h. The main requirement of a secure hashing is that it should be collision free in the sense that finding two colliding messages is computationally intractable. This requirement must hold not only for long messages but also for short ones. Observe that short messages (for example single bits) must also be hashed to an n-bit digest. In practice, this is done by first padding the message and later by hashing the padded message. Clearly, a padding scheme is typically considered as a part of the hash function.

Given a hash function $h: \Sigma^{*} \rightarrow \Sigma^{n}$. We say that the function is

- preimage resistant if for (almost) any digest d, its is computationally intractable to find the preimage (message m) such that $d=h(m)$. This means that the function is one-way,
- $2 n d$ preimage resistant if given the description of the function h and a chosen message m, it is computationally intractable to find another message m^{\prime} which collides with m, i.e. $h(m)=$ $h\left(m^{\prime}\right)$. 2nd preimage resistance is also equivalently termed weak collision resistance,
- collison resistant if given the description of the function h, it is computationally infeasible to find two distinct messages m_{1}, m_{2} which collide, i.e. $h\left(m_{1}\right)=h\left(m_{2}\right)$. Collison resistance is equivalent to strong collision resistance.

There are many different definitions of hash functions depending on what properties are required from them. There are, however, two major classes of hash function defined as follows.

1. A one-way hash function (OWHF) compresses messages of arbitrary length into digests of fixed length. The computation of the digest for a message is easy. The function is preimage and 2 nd preimage resistant. Equivalently, the function is termed weak one-way hash function.
2. A collision resistant hash function (CRHF) compresses messages of arbitrary length into digests of fixed length. The computation of the digest for a message is easy. The function is collision resistant. Equivalently, the function is termed strong one-way hash function.

Collision resistant hash functions can be used without special care if the finding collision must be always an intractable task. On the other hand, one-way hash functions do not guarantee that a given selection of two messages is collision resistant.

Note that a collision resistant hash function is also a one-way hash function. The first implication is trivial, i.e. collison resistance implies 2nd preimage resistance. The statement that a collision resistant hash function is one-way, can be proved by contradiction (see [488]). Assume that a hash function h is not one-way, i.e. there is a probabilistic polynomial time algorithm R which for a given digest d returns a message $m=R(d)$ such that $d=h(m)$. The algorithm R can be used to generate collisions in the following way. Select at random m and find its digest d. Next call the algorithm which returns $m^{\prime}=R(d)$ such that $d=h\left(m^{\prime}\right)$. If $m \neq m^{\prime}$, then this is a collision otherwise select other random message and repeat the process. Note that probability of finding collision is proportional to the cardinality of all messages which collide with the chosen one.

6.2 The Birthday Paradox

For secure hashing, it must be intractable to find collisions. In general, it is assumed that the adversary knows the hashing algorithm. It is also assumed that the adversary can perform an adaptive chosen message attack, where they may choose messages, ask for their digests, and try to compute colliding messages. There are many methods of attack on a hash scheme. Some methods are general and can be applied against any hash scheme. The so-called birthday attack is a general method and can be applied against any type of hash function. Other methods are applicable against only special groups of hash schemes. Some of these special attacks can be launched against a wide range of hash functions. The so-called meet-in-the-middle attack can be launched against any scheme that uses some sort of block chaining. Others can be launched only against smaller groups.

The idea behind the birthday attack originates from a famous problem from Probability Theory, called the birthday paradox. The paradox can be stated as follows. What is the minimum number of pupils in a classroom so the probability that at least two pupils have the same birthday, is greater than 0.5 ? The answer to this question is 23 , which is much smaller than the value suggested by intuition. The explanation is as follows. Suppose that the pupils are entering the classroom one at a time. The probability that the birthday of the first pupil falls on a specific day of the year is equal to $\frac{1}{365}$. The probability that the birthday of the second pupil is not the same as the first one is equal to $1-\frac{1}{365}$. If the birthdays of the first two pupils are different, the probability that the birthday of the third pupil is different from the first one and the second one is equal to $1-\frac{2}{365}$. Consequently, the probability that t students have different birthdays is equal to $\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \ldots\left(1-\frac{t-1}{365}\right)$. So the probability that at least two of them have the same birthday is

$$
P=1-\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \ldots\left(1-\frac{t-1}{365}\right)
$$

It can be easily computed that for $t \geq 23$, this probability is bigger than 0.5 .
The birthday paradox can be employed to attack hash functions. Suppose that the number of bits in the digest is n. Any message m can be represented (written) in many different ways. A single representation of the message is called a variant. For instance, the message

On November 5, 1998, I sold my PC to Mr John Brown for 1,000 dollars.
can be equivalently written as
On November 5, 1998, I have sold my PC to John Brown for $\$ 1,000$.

Due to the natural flexibility of a language, it is always possible to generate many variants of the same message. The variants can be created by adding blanks and empty lines, using equivalent words, abbreviations, and full wording, or removing some words whose existence is not essential. In the attack, an adversary generates r_{1} variants of an original message and r_{2} variants of a bogus message (Figure 6.1). The probability of finding a pair of variants (one of the genuine and one of the bogus

Figure 6.1: Birthday attack
message) which hash to the same digest is

$$
\begin{equation*}
P \approx 1-e^{-\frac{r_{1} r_{2}}{2^{n}}} \tag{6.1}
\end{equation*}
$$

where $r_{2} \gg 1$ (see [382]). When $r_{1}=r_{2}=2^{\frac{n}{2}}$, the above probability is about 0.63 . Therefore any hashing algorithm which produces digests of the length around 64 bits is insecure as the time complexity function for the corresponding birthday attack is $\approx 2^{32}$. It is usually recommended that the hash value should be longer than 128 bits to achieve a sufficient security against the attack.

This method of attack does not take advantage of structural properties of the hash scheme or its algebraic weaknesses. It can be launched against any hash scheme. In addition, it is assumed that the hash scheme assigns to a message a value which is chosen with a uniform probability among all the possible hash values. Note that if there is any weakness in the structure or certain algebraic properties of the hash function so digests do not have a uniform probability distribution, then generally it would be possible to find colliding messages with a better probability and fewer message-digest pairs.

The birthday attack may also be modified to fit a particular structure of the hash scheme. Consider a variant called the meet-in-the-middle attack. Instead of comparing the digests, the intermediate results in the chain are compared. The attack can be launched against schemes which employ some sort of block chaining in their structure. In contrast to birthday attack, the meet-in-the-middle attack
enables an attacker to construct a bogus message with a digest selected by the attacker. In this attack the message is divided into two parts. The attacker generates r_{1} variants of the first part of a bogus message. He starts from the initial value and goes forward to the intermediate stage. He also generates r_{2} variants on the second part of the bogus message. He starts from the desired target digest and goes backwards to the intermediate stage. The probability of a match in the intermediate stage is the same as the probability of success in the birthday attack.

Consider a hash scheme which uses an encryption function $E: \mathcal{K} \times \mathcal{M} \rightarrow \Sigma^{n}$ where $\mathcal{K}=\mathcal{M}=\Sigma^{n}$. For a message $m=\left(m_{1}, m_{2}\right)$, the digest is computed in two steps: $h_{1}=E\left(m_{1}, I V\right)=E_{m_{1}}(I V)$ and $d=h(m)=E\left(m_{2}, h_{1}\right)=E_{m_{2}}\left(h_{1}\right)$. Where $I V$ is a public initial vector. This scheme can be subject to the meet-in-the-middle attack. Let the opponent want to find a bogus message $m^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}\right)$ which collides with m with the digest d. The opponent chooses r_{1} variants of m_{1}^{\prime} and r_{2} variants of m_{2}^{\prime} (see Figure 6.2). Let the two sets of variants be: $\left\{m_{1, i}^{\prime} \mid i=1, \ldots, r_{1}\right\}$ and $\left\{m_{2, j}^{\prime} \mid j=1, \ldots, r_{2}\right\}$. Next,

Figure 6.2: The meet-in-the-middle attack
the opponent computes r_{1} variants of $h_{1, i}^{\prime}=E\left(m_{1, i}^{\prime}, I V\right)$ and r_{2} variants of $h_{2, j}^{\prime}=E^{-1}\left(m_{2, j}^{\prime}, d\right)=$ $D\left(m_{2, j}^{\prime}, d\right)$. Note that $D\left(m_{2, j}^{\prime}, d\right)$ is the decryption function. The probability of a match in the sets $\left\{h_{1, i}^{\prime} \mid i=1, \ldots, r_{1}\right\}$ and $\left\{h_{2, i}^{\prime} \mid i=1, \ldots, r_{2}\right\}$ is the same as the probability of success in the birthday attack if the encryption algorithm E behaves as a truly random function.

The meet-in-the-middle attack was thought to be thwarted when the hashing uses the same chain several times (so called iterated hashing). Coppersmith [109] showed how the attack can be generalised so it is applicable for iterated hashing.

6.3 Serial and Parallel Hashing

The design of hash functions with arbitrarily long inputs poses some difficulties related to their implementation and evaluation. Arbitrarily long messages can be compressed using a fixed input-size hash function by applying two general methods:

- serial and
- parallel.

The serial method [119] (also called by Merkle meta method [338]) applies the fixed input-size hash function $h: \Sigma^{2 n} \rightarrow \Sigma^{n}$ - Figure 6.3. To hash an arbitrary long message $m \in \Sigma^{*}$, it is first split into

Figure 6.3: Serial hashing
blocks of the size n so $m=\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$ and each $m_{i} \in \Sigma^{n}$ for $i=1, \ldots, \ell$. If the last block is shorter than n bits, it is padded with zeros to the full length. Next, the function h is used repeatedly

$$
\begin{equation*}
h_{1}=h\left(m_{1}, m_{2}\right), \quad h_{2}=h\left(m_{3}, h_{1}\right), \ldots, h_{i}=h\left(m_{i+1}, h_{i-1}\right), \ldots, d=h\left(m_{\ell}, h_{\ell-2}\right) \tag{6.2}
\end{equation*}
$$

The result d is the digest of the whole message m. Damgård proved [119] that the hashing induced by the serial method is collision resistant if the underlying fixed input-size hash function $h: \Sigma^{2 n} \rightarrow \Sigma^{n}$ is collision resistant.

Figure 6.4: Parallel hashing

The parallel method is illustrated in Figure 6.4. The hashing in this method starts from splitting the message $m \in \Sigma^{*}$ into ℓ blocks of size n, i.e. $m=\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$. The last block is padded to the full length if necessary. Assume that the number of blocks is $2^{k-1}<\ell \leq 2^{k}$. The number of $2^{k}-\ell$ blocks all with zero bits are appended to the message m. The resulting message $\tilde{m}=$
$\left(m_{1}, \ldots, m_{\ell}, \ldots, m_{2^{k}}\right)$ is processed as follows:

$$
\begin{align*}
h_{i}^{1} & =h\left(m_{2 i-1}, m_{2 i}\right) \text { for } i=1, \ldots, 2^{k-1} \\
h_{i}^{j} & =h\left(h_{2 i-1}^{j-1}, h_{2 i}^{j-1}\right) \text { for } i=1, \ldots, 2^{k-i} \text { and } j=2, \ldots, k-1 \tag{6.3}\\
d(m) & =h\left(h_{1}^{k-1}, h_{2}^{k-1}\right) .
\end{align*}
$$

The final result of hashing is $d(m)$. Again Damgård proved [119] that the parallel hashing is collision resistant if the underlying fixed input-size hash function $h: \Sigma^{2 n} \rightarrow \Sigma^{n}$ is collision resistant.

Needless to say that parallel hashing is faster than the serial one as the layers of intermediate digests can be generated independently. Also the extra blocks padded with zeros can be preprocessed so their digests enter the hashing process when needed.

6.4 Theoretic Constructions

It is interesting to investigate the relation of hash functions to other cryptographic primitives such as one-way functions (including one-way permutations), signature schemes, and pseudorandom bit generators. The main result in this area was obtained by Rompel [427] who proved that universal one-way hash functions can be constructed from any one-way function.

The notion of one-way function is central in the theoretical computer science. It is the basic cryptographic primitive which can be used to construct other cryptographic primitives. Intuitively, a one-way function f is a family of instance functions f_{n} indexed by the size of the function domain. The computation of $y=f_{n}(x)$ is easy while finding the preimage x knowing $y=f_{n}(x)$ is difficult. Formally, the instance functions are

$$
f_{n}: \Sigma^{n} \rightarrow \Sigma^{\ell(n)}
$$

where $\ell(n)$ is a polynomial in n. The family of functions is a collection $f=\left\{f_{n} \mid n \in \mathcal{N}\right\}$. The family f is said to be polynomially computable if the evaluation of $f_{n}(x) ; x \in \Sigma^{n}$ can be done in time $O\left(n^{t}\right)$ for some $t \in \mathcal{N}$.

Definition 6.1 Let the family $f=\left\{f_{n} \mid n \in \mathcal{N}\right\}$ be polynomially computable. We say that f is one-way function if for each probabilistic polynomial time algorithm A, for each polynomial Q and for all sufficiently large n, the probability

$$
\begin{equation*}
P\left[f_{n}\left(A\left(f_{n}(x)\right)\right)=f_{n}(x)\right]<\frac{1}{Q(n)} \tag{6.4}
\end{equation*}
$$

where x is chosen randomly and uniformly from the set Σ^{n}.
Hash functions can now be formally defined. For any index n, there is a collection of hash functions $H_{n}: \Sigma^{\ell(n)} \rightarrow \Sigma^{n}$ where $\ell(n)$ is a polynomial in n. The family H of hash functions is $H=\left\{H_{n} \mid n \in\right.$ $\mathcal{N}\}$. The family H is accessible if there is a probabilistic polynomial time algorithm that on input $n \in \mathcal{N}$ returns a description of $h \in H_{n}$ chosen randomly and uniformly from all instance functions of H_{n}. The family H is polynomially computable if there is a polynomial time algorithm which evaluates any function $h \in H$.

Let F be a collision finder, i.e. a probabilistic polynomial time algorithm F such that on an input $x \in \Sigma^{\ell(n)}$ and for a given hash function $h \in H_{n}$ returns either "?" (cannot find) or a string $y \in \Sigma^{\ell(n)}$ which collides with x (i.e. $x \neq y$ and $h(x)=h(y)$). The universal one-way hash function (UOWHF) is defined as follows.

Definition 6.2 Let H be a polynomially computable and accessible hash function compressing $\ell(n)$-bit input into n-bit output strings and F be a collision finder. H is a universal one-way hash function if for each F, for each polynomial Q, and for all sufficiently large n

$$
\begin{equation*}
P(F(x, h) \neq ?)<\frac{1}{Q(n)} \tag{6.5}
\end{equation*}
$$

where $x \in \Sigma^{\ell(n)}$ and $h \in_{R} H_{n}$. The probability is computed over all $h \in_{R} H_{n}, x \in \Sigma^{\ell(n)}$ and the random choice of all finite strings that F could have chosen.

Note that UOWHF is 2nd preimage resistant. The main difference between UOWHF and OWHF is the way hash function is chosen. In the case of OWHF, the hash function is fixed. For UOWHF, the hash function is randomly chosen.

Let R be a probabilistic polynomial time algorithm that on an input $h \in H_{n}$ returns either "?" (cannot find) or a pair of colliding strings $x, y \in \Sigma^{\ell(n)}$. The algorithm R is called the collision-pair finder. The collision resistant hash function is defined below.

Definition 6.3 H is a collision resistant hash function if for each R, for each polynomial Q, and for sufficiently large n

$$
\begin{equation*}
P(R(h) \neq ?)<\frac{1}{Q(n)} \tag{6.6}
\end{equation*}
$$

where $h \in_{R} H_{n}$. The probability is computed over all $h \in_{R} H_{n}$, and the random choice of all finite strings that R could have chosen.

Naor and Yung [361] introduced the concept of a UOWHF and suggested a construction based on a one-way permutation. In their construction, they took advantage of the universal hash function family with collision accessibility property [514] - see the definitions given below.

Definition 6.4 Let $G=\{g \mid \mathcal{A} \rightarrow \mathcal{B}\}$ be a family of functions. G is a strongly universal ${ }_{r}$ hash function family if given any r distinct elements $a_{1}, \ldots, a_{r} \in \mathcal{A}$, and any r elements $b_{1}, \ldots, b_{r} \in \mathcal{B}$, there are $\frac{(\# G)}{(\# \mathcal{B})^{2}}$ functions which take a_{1} to b_{1}, a_{2} to b_{2} and so on. Where $\# G$ and $\# B$ stand for the cardinality of sets G and \mathcal{B}, respectively.

Definition 6.5 A strongly universal hash function family G has the collision accessibility property if it is possible to generate in polynomial time a function $g \in G$ that satisfies the following equations:

$$
\begin{aligned}
g\left(a_{1}\right) & =b_{1} \\
g\left(a_{2}\right) & =b_{2} \\
& \vdots \\
g\left(a_{r}\right) & =b_{r}
\end{aligned}
$$

An example of strongly universal l_{r} family of hash functions with collision accessibility property, is a collection of polynomials of degree $r-1$ over $G F(q)$.

Naor and Yung showed that the existence of a secure signature scheme reduces to the existence of a UOWHF. They also used the serial method to construct UOWHF which hashes arbitrary long messages using a UOWHF with a fixed size input. Their family of UOWHFs is constructed by the composition of a one-way permutation and a family of strongly universal ${ }_{2}$ hash functions with the collision accessibility property. In Naor and Yung's construction, the one-way permutation provides the one-wayness of the UOWHF. While the strongly universal ${ }_{2}$ family of hash functions compresses the input. When a member is chosen randomly and uniformly from the family, the output is distributed randomly and uniformly over the output space. The construction is given in the following theorem.

Theorem 6.1 Let $f: \Sigma^{n} \rightarrow \Sigma^{n}$ be a one-way permutation and let G_{n} be a strongly universal ${ }_{2}$ family $G_{n}: \Sigma^{n} \rightarrow \Sigma^{n-1}$, then $H_{n}=\left\{h=g \circ f \mid g \in G_{n}\right\}$ is a UOWHF compressing n-bit input strings into ($n-1$)-bit output strings.

The above construction is not very efficient as it compresses a single bit only. This can be improved when a strongly universal $(t>2)$ family of hash functions is used.

Zheng, Matsumoto and Imai [537] defined a hashing scheme which was based on the composition of a pairwise independent uniformizer and a strongly universal hash function with a quasi-injection one-way function. De Santis and Yung [444] built up a hash function assuming the existence of a one-way function with an almost-known preimage size.

Rompel managed to construct a UOWHF from any one-way function [427]. His construction is rather complicated and elaborate, and a detailed explanation is beyond the scope of this book. However, the idea is to transform any one-way function into a UOWHF through a sequence of complicated procedures. First, the one-way function is transformed into another one-way function such that for most elements of the domain it is easy to find a collision, except for a fraction of them. Next another one-way function is constructed such that for most of the elements it is hard to find a collision. Subsequently, a length increasing one-way function is constructed such that it is almost everywhere hard to find any collision. Finally this is turned into a UOWHF, which compresses the input such that it is difficult to find a collision.

In some applications, it may be useful to have a hash scheme with an easy to find collection of colliding messages. The calculation of other collisions should be computationally intractable. The construction given in [535] called sibling intractable function families or SIFF provides hashing with a controlled number of easy-to-find collisions.

6.5 Hashing Based on Cryptosystems

To minimise the effort, many designers of hash functions tend to base their schemes on existing encryption algorithms. Hashing is done using the serial method by applying encryption algorithm on blocks of the message. The message block size has to be equal to the input size of the encryption algorithm. If the length of the message is not a multiple of the block size, then the last block is usually padded with some redundant bits. To provide a randomising element, an initial vector (IV) is normally used. The vector $I V$ is public. The encryption algorithm is $E: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$. The security of such schemes relies on the collision resistance of the underlying encryption algorithm and the immunity of the scheme against the birthday attack and its variants.

Rabin [419] argued that any private-key cryptosystem $E: \Sigma^{2 n} \rightarrow \Sigma^{n}$ can be used for hashing. The Rabin scheme is depicted in Figure 6.5. First the message is divided into blocks whose size is n.

Figure 6.5: The Rabin hashing scheme
Suppose that we wish to hash a message $m=\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$. The hashing is performed according to

$$
\begin{aligned}
h_{0} & =I V \\
h_{i} & =E\left(m_{i}, h_{i-1}\right) \text { for } i=1,2, \ldots, \ell
\end{aligned}
$$

$$
d=h_{\ell}
$$

where h_{i} are intermediate results of hashing, and d is the final digest of m. Although the Rabin scheme is simple and elegant, it is susceptible to the birthday and meet-in-the-middle attacks when the size of the hash value is 64 bits. This scheme can be used only if the size of inputs in the encryption algorithm is larger or equal to 128 bits (see Equation 6.1).

The meet-in-the-middle attack in the Rabin scheme works because it is possible to reverse hashing by using the decryption function. Winternitz [528] suggested to design a one-way function from a block cryptosystem E. The one-way function

$$
\begin{equation*}
E^{*}(k \| m)=E(k, m) \oplus m \tag{6.7}
\end{equation*}
$$

Davies used the one-way function E^{*} to design the following hash scheme (Figure 6.6)

$$
\begin{aligned}
h_{0} & =I V \\
h_{i} & =E\left(m_{i}, h_{i-1}\right) \oplus h_{i-1} \text { for } i=1,2, \ldots, \ell \\
d & =h_{\ell}
\end{aligned}
$$

The Davies scheme is immune against the meet-in-the-middle attack but may be subject to attacks

Figure 6.6: The Davies hashing scheme
based on key collision search [416] and weak keys [410].
Based on the one-way function E^{*}, Merkle proposed several schemes [337, 338, 339]. These schemes use DES and produce digests of the size ≈ 128 bits. The construction of these schemes follows the serial method. The message to be hashed is first divided into blocks of 106 bits. Each 106-bit block m_{i} of data is concatenated with the 128 -bit block h_{i-1}. The concatenation $x_{i}=m_{i} \| h_{i-1}$ contains 234 bits. Each block x_{i} is further divided into halves, $x_{i 1}$ and $x_{i 2}$. The description of the method is as follows

$$
\begin{aligned}
h_{0}= & I V \\
x_{i}= & m_{i} \| h_{i-1} \\
h_{i}= & E^{*}\left(00 \| \text { first } 59 \text { bits of }\left\{E^{*}\left(100 \| x_{i 1}\right)\right\} \|\right. \\
& \text { first } \left.59 \text { bits of }\left\{E^{*}\left(101 \| x_{i 2}\right)\right\}\right) \| \\
& E^{*}\left(01 \| \text { first } 59 \text { bits of }\left\{E^{*}\left(110 \| x_{i 1}\right)\right\} \|\right. \\
& \text { first } \left.59 \text { bits of }\left\{E^{*}\left(111 \| x_{i 2}\right)\right\}\right) \\
d= & h_{\ell}
\end{aligned}
$$

In this scheme, E^{*} is a one-way function defined by Equation (6.7) and the strings 00, 01, 100, 101, 110 and 111 have been included to prevent against attacks based on weak keys.

As most encryption algorithms have weak keys and possible colliding keys, the key input of encryption systems E should be used for partial hash values rather than for messages. If we modify the

Davies scheme accordingly we get the following scheme

$$
\begin{aligned}
h_{0} & =I V \\
h_{i} & =E\left(h_{i-1}, m_{i}\right) \oplus m_{i} \text { for } i=1,2, \ldots, \ell \\
d & =h_{\ell}
\end{aligned}
$$

Another variant used by Miyaguchi, Ohta, and Iwata [344] in their N-hash algorithm applies different chaining method $h_{i}=E\left(h_{i-1}, m_{i}\right) \oplus m_{i} \oplus h_{i-1}$. Other two possible chaining methods are: $h_{i}=$ $E\left(h_{i-1}, m_{i} \oplus h_{i-1}\right) \oplus m_{i} \oplus h_{i-1}$ and $h_{i}=E\left(h_{i-1}, m_{i} \oplus h_{i-1}\right) \oplus m_{i}$. For discussion of other less secure chaining methods, the reader is referred to [410].

6.6 MD Family

Hashing algorithms can also be designed from scratch. Typically, it is required the design to be
(1) secure, i.e. collision resistant - this immediately forces the digest to be at least 128 bits long (see Equation 6.1),
(2) fast and easy to implement both in software and hardware.

Feistel permutations can be used as the basic component in the design. Clearly, it needs some modification. Let the n-bit input and output be divided into ℓ blocks of r bits such that $\ell \cdot r=n$. Our Feistel permutation modified for hashing is $\mathcal{F}_{m}: \underbrace{\Sigma^{r} \times \ldots \times \Sigma^{r}}_{\ell} \rightarrow \underbrace{\Sigma^{r} \times \ldots \times \Sigma^{r}}_{\ell}$ where m is a message (or its part) to be hashed. Let the input $A=\left(A_{1}, \ldots, A_{\ell}\right) \in \Sigma^{n}$ and the output $B=\left(B_{1}, \ldots, B_{\ell}\right) \in \Sigma^{n}$, then $\mathcal{F}_{m}(A)$ is described as (Figure 6.7)

$$
\begin{aligned}
& B_{1}=A_{1}+f_{m}\left(A_{2}, \ldots, A_{\ell}\right) \bmod 2^{r} \\
& B_{2}=A_{2}, \ldots, B_{\ell}=A_{\ell}
\end{aligned}
$$

The function $f_{m}\left(A_{2}, \ldots, A_{\ell}\right)$ is indexed by the message m. The hash scheme would employ many

Figure 6.7: A modified Feistel permutation
rounds each based on the modified Feistel permutation. To prevent the birthday attack the size $n \geq 128$. If we use 32 -bit machines for a software implementation, it is reasonable to assume that $r=32$.

Rivest used the above approach to design his MD4 [424] and MD5 [425] hashing algorithms (MD stands for Message Digest). The other members of MD family are the Secure Hash Algorithm (SHA)
also called Secure Hash Standard (SHS) [363] RIPEMD [50] and HAVAL [538]. We will describe MD5, SHA-1, RIPEMD-160 and HAVAL.

6.6.1 MD5

MD5 is a strengthened version of MD4. It compresses 512 -bit messages into 128 -bit digests using the 128 -bit chaining input. A message of arbitrary length is first appended bit 1 and enough 0 's so it is congruent 448 modulo 512. A 64 -bit string $\ell=\ell_{1} 2^{32}+\ell_{0}$ which is the binary representation of the length of the original message, is appended to the padded message (Figure 6.8). Now the message length is a multiple of 512 . Hashing is done as in the serial method - block by block and each block is 512 bits long.

Figure 6.8: Padding of a message
The hashing of a single message block proceeds as follows. First the message block m is divided into sixteen 32 -bit long words so $m=\left(m_{0}, \ldots, m_{15}\right)$. The chaining input contains four 32 -bit registers (A, B, C, D). They are initialised as

$$
\begin{aligned}
& A=0 x 67452301 \\
& B=0 x e f c d a b 89 \\
& C=0 x 98 b a d c f e \\
& D=0 x 10325476
\end{aligned}
$$

where the strings are written in hexadecimal. Next the four rounds of MD5 are executed (see Figure 6.9). The four outputs of the last round is added modulo 2^{32} to initial values of the registers A, B, C, D giving the final digest for a 512 -bit message m.

MD5 applies four Boolean functions:

$$
\begin{aligned}
f(x, y, z) & =x y \vee \bar{x} z \\
g(x, y, z) & =x z \vee y \bar{z} \\
h(x, y, z) & =x \oplus y \oplus z \\
k(x, y, z) & =y \oplus(x \vee \bar{z})
\end{aligned}
$$

where \vee is OR, \oplus is XOR and $x y$ stands for x AND y. To make the algorithm fast, bitwise operations are used to evaluate the Boolean functions in parallel. The four bitwise functions used in the four rounds are:

$$
\begin{aligned}
F(X, Y, Z) & =(X \wedge Y) \vee((\neg X) \wedge Z) \\
G(X, Y, Z) & =(X \wedge Z) \vee(Y \wedge(\neg Z)) \\
H(X, Y, Z) & =X \oplus Y \oplus Z \\
K(X, Y, Z) & =Y \oplus(X \vee(\neg Z))
\end{aligned}
$$

where \wedge is bitwise AND, \vee is bitwise OR, \oplus is bitwise XOR, \neg is bitwise complement, and X, Y, Z are 32 -bit words. The functions F, H, G, and K are used to define four Feistel permutations $F F, G G, H H, K K$:

Figure 6．9：MD5 hashing algorithm
$\Sigma^{128} \rightarrow \Sigma^{128}$ ．The permutations are identical except the fact that they use different functions．The permutation based on function F is depicted in Figure 6．10．The Feistel permutations used in MD5

Figure 6．10：A single iteration in MD5
are：

$$
\begin{aligned}
& F F\left(A, B, C, D \mid m_{j}, s, t\right)=\left(B \text { 田 }\left(\left(A \text { 田 } F(B, C, D) \boxplus m_{j} \boxplus t\right) \ll s\right), B, C, D\right), \\
& G G\left(A, B, C, D \mid m_{j}, s, t\right)=\left(B \text { 田 }\left(\left(A \boxplus G(B, C, D) \boxplus m_{j} \boxplus t\right) \ll s\right), B, C, D\right), \\
& H H\left(A, B, C, d \mid m_{j}, s, t\right)=\left(B \text { 田 }\left(\left(A \text { 田 } H(B, C, D) \boxplus m_{j} \boxplus t\right) \ll s\right), B, C, D\right), \\
& K K\left(A, B, C, D \mid m_{j}, s, t\right)=\left(B \text { 田 }\left(\left(A \boxplus K(B, C, D) \boxplus m_{j} \boxplus t\right) \ll s\right), B, C, D\right),
\end{aligned}
$$

where $(A, B, C, D) \in \Sigma^{128}$ is an input while $\left(m_{j}, s, t\right)$ are current parameters which determine the form of the permutation and $⿴ 囗 十$ stands for addition modulo 2^{32} ．The first parameter is the current message block $m_{j} ; j=0, \ldots, 15$ ．The second parameter s specifies the number of positions in the
rotation. The third parameter t is a constant. $(A \ll s)$ means that the binary string A is rotated to the left by s positions. The hashing proceeds through the four rounds.
Round 1:
(1) $F F\left(A, B, C, D \mid m_{0}, 7,0 x d 76 a a 478\right)$,
(2) $F F\left(D, A, B, C \mid m_{1}, 12,0 x e 8 c 7 b 756\right)$,
(3) $F F\left(C, D, A, B \mid m_{2}, 17,0 x 242070 d b\right)$,
(4) $F F\left(B, C, D, A \mid m_{3}, 22,0 x c 1 b d c e \epsilon e\right)$,
(5) $F F\left(A, B, C, D \mid m_{4}, 7,0 x f 57 c 0 f a f\right)$,
(6) $F F\left(D, A, B, C \mid m_{5}, 12,0 x 4787 c 62 a\right)$,
(7) $F F\left(C, D, A, B \mid m_{6}, 17,0 x a 8304613\right)$,
(8) $F F\left(B, C, D, A \mid m_{7}, 22,0 x f d 469501\right)$,
(9) $F F\left(A, B, C, D \mid m_{8}, 7,0 x 698098 d 8\right)$,
(10) $F F\left(D, A, B, C \mid m_{9}, 12,0 x 8 b 44 f 7 a f\right)$,
(11) $F F\left(C, D, A, B \mid m_{10}, 17,0 x f f f f 5 b b 1\right)$,
(12) $F F\left(B, C, D, A \mid m_{11}, 22,0 x 895 c d 7 b e\right)$,
(13) $F F\left(A, B, C, D \mid m_{12}, 7,0 x 6 b 901122\right)$,
(14) $F F\left(D, A, B, C \mid m_{13}, 12,0 x f d 987193\right)$,
(15) $F F\left(C, D, A, B \mid m_{14}, 17,0 x a 679438 e\right)$,
(16) $F F\left(B, C, D, A \mid m_{15}, 22,0 x 49 b 40821\right)$.

Round 2:

(17) $G G\left(A, B, C, D \mid m_{1}, 5,0 x f 61 e 2562\right)$,	(25) $G G\left(A, B, C, D \mid m_{9}, 5,0 x 21 e 1 c d e 6\right)$,
(18) $G G\left(D, A, B, C \mid m_{6}, 9,0 x c 040 b 340\right)$,	(26) $G G\left(D, A, B, C \mid m_{14}, 9,0 x c 33707 d 6\right)$,
(19) $G G\left(C, D, A, B \mid m_{11}, 14,0 x 265 e 5 a 51\right)$,	(27) $G G\left(C, D, A, B \mid m_{3}, 14,0 x f 4 d 50 d 87\right)$,
(20) $G G\left(B, C, D, A \mid m_{0}, 20,0 x e 966 c 7 a a\right)$,	(28) $G G\left(B, C, D, A \mid m_{8}, 20,0 x 455 a 14 e d\right)$,
(21) $G G\left(A, B, C, D \mid m_{5}, 5,0 x d 62 f 105 d\right)$,	(29) $G G\left(A, B, C, D \mid m_{13}, 5,0 x a 9 e 3 e 905\right)$,
(22) $G G\left(D, A, B, C \mid m_{10}, 9,0 x 02441453\right)$,	(30) $G G\left(D, A, B, C \mid m_{2}, 9,0 x f c e f a 3 f 8\right)$,
(23) $G G\left(C, D, A, B \mid m_{15}, 14,0 x d 8 a 1 e 681\right)$,	(31) $G G\left(C, D, A, B \mid m_{7}, 14,0 x 676 f 02 d 9\right)$,
$(24) G G\left(B, C, D, A \mid m_{4}, 20,0 x e 7 d 3 f b c 8\right)$,	(32) $G G\left(B, C, D, A \mid m_{12}, 20,0 x 8 d 2 a 4 c 8 a\right)$.

Round 3:
(33) $H H\left(A, B, C, D \mid m_{5}, 4,0 x f f f a 3942\right)$,
(34) $H H\left(D, A, B, C \mid m_{8}, 11,0 x 8771 f 681\right)$,
(35) $H H\left(C, D, A, B \mid m_{11}, 16,0 x 6 d 9 d 6122\right)$,
(36) $H H\left(B, C, D, A \mid m_{14}, 23,0 x f d e 5380 c\right)$,
(37) $H H\left(A, B, C, D \mid m_{1}, 4,0 x a 4 b e e a 44\right)$,
(38) $H H\left(D, A, B, C \mid m_{4}, 11,0 x 4 b d e c f a 9\right)$,
(39) $H H\left(C, D, A, B \mid m_{7}, 16,0 x f 6 b b 4 b 60\right)$,
(40) $H H\left(B, C, D, A \mid m_{10}, 23,0 x b e b f b c 70\right)$,
(41) $H H\left(A, B, C, D \mid m_{13}, 4,0 x 289 b 7 e c 6\right)$,
(42) $H H\left(D, A, B, C \mid m_{0}, 11,0 x e a a 127 f a\right)$,
(43) $H H\left(C, D, A, B \mid m_{3}, 16,0 x d 4 e f 3085\right)$,
(44) $H H\left(B, C, D, A \mid m_{6}, 23,0 x 04881 d 05\right)$,
(45) $H H\left(A, B, C, D \mid m_{9}, 4,0 x d 9 d 4 d 039\right)$,
(46) $H H\left(D, A, B, C \mid m_{12}, 11,0 x e 6 d b 99 e 5\right)$,
(47) $H H\left(C, D, A, B \mid m_{15}, 16,0 x 1 f a 27 c f 8\right)$,
(48) $H H\left(B, C, D, A \mid m_{2}, 23,0 x c 4 a c 5665\right)$.

Round 4:

MD5 was meant to be fast on machines with a little-endian architecture. By the way, for a 32 -bit word $\left(a_{0}, \ldots, a_{31}\right)$, a machine with little-endian architecture converts the string into integer $a_{31} 2^{31}+$ $\ldots+a_{1} \cdot 2+a_{0}$. In big-endian architecture, the same integer is $a_{0} 2^{31}+\ldots+a_{30} \cdot 2+a_{31}$.

As MD4 is a weaker version of MD5, it was apparent that the main effort will be concentrated around analysis of MD4. den Boer and Bosselaers [133] successfully analysed two last rounds of MD4. Merkle successfully attacked the first two rounds of MD4. In 1996 Dobbertin [156] broke the whole MD4. He also extended his attack on MD5 [157] and showed that MD5 is not collision resistant.

6．6．2 SHA－1

SHA－1 is closely related to MD5 and shares with MD5 many common features．It is a standard recommended by the US National Institute for Standard and Technology（NIST）．SHA－1 hashes arbitrarily long messages using the serial method．The message block of 512 －bits is compressed into 160 －bit digest using a 160 －bit chaining input．

SHA－1 main features includes the following．
－Padding is identical to that in MD5 except the lenght of the original message $\ell=\left(\ell_{1} 2^{32}+\ell_{0}\right)$ is appended as 64 －bit sequence in the order $\left(\ell_{1}, \ell_{0}\right)$－compare with the Figure 6．8．
－The chaining input is initialised as in MD5 with the additional input $E=0 x c 3 d 2 e 1 f 0$ ．
－The collection of round functions includes

$$
\begin{aligned}
f(x, y, z) & =x y \vee \bar{x} z \\
g(x, y, z) & =x y \vee x z \vee y z, \\
h(x, y, z) & =x \oplus y \oplus z .
\end{aligned}
$$

Denote F, G, H as the word equivalents of functions f, g, h ，respectively．The function F is used in the first round（iterations from 0 to 19）．The function H is used in the round 2 and 4 （iterations from 20 to 39 and from 60 to 79 ）．The function G is used in the round 3 （iterations 40 to 59）．
－The message buffer $\left(X_{0}, \ldots, X_{79}\right)$ of 80 words $(80 \times 32$ bits $)$ is initialised by storing the 512 －bit message into first 16 entries and the remainder words are computed according to

$$
X_{j}=X_{j-3} \oplus X_{j-8} \oplus X_{j-14} \oplus X_{j-16}
$$

for $j=16, \ldots, 79$ ．Note that the word X_{j} is used in the i－th iteration；$j=0, \ldots, 79$ ．
－The j－th iteration is based on a Feistel permutation controlled by the message word X_{j} and the constant t where

$$
t=\left\{\begin{array}{cl}
0 x 5 a 827999 & \text { Round 1, } \\
0 x 6 e d 9 e b a 1 & \text { Round 2, } \\
0 x 8 f 1 b b c d c & \text { Round 3, } \\
0 x c a 62 c 1 d 6 & \text { Round 4. }
\end{array}\right.
$$

The Feistel permutation $\mathcal{F}_{\alpha}: \Sigma^{160} \rightarrow \Sigma^{160}$ takes the 5 －word input and outputs the 5 －word output or

$$
(A, B, C, D, E):=\mathcal{F}_{\alpha}(A, B, C, D, E)
$$

where α indicates the currently employed round function（either F, G or H ）．The form of the iteration is as follows（Figure 6．11）

$$
\mathcal{F}_{\alpha}(A, B, C, D, E)=\left(\alpha(B, C, D) \boxplus X_{j} \text { 田 } \mathrm{\boxplus} E \text { 田 }(A \ll 5), A,(B \ll 30), C, D\right),
$$

where $(A \ll s)$ stands for rotation s bits to the left and $⿴ 囗 十$ is addition modulo 2^{32} ．
Hashing of a single message block runs through 4 rounds each containing 20 iterations as shown in Figure 6．12．More precisely，the round 1 （iterations $j=0, \ldots, 19$ ）applies the function F so

$$
(A, B, C, D, E):=\mathcal{F}_{F}(A, B, C, D, E)
$$

Figure 6.11: An iteration in SHA-1

The rounds 2 and 4 (iterations $j=20, \ldots, 39,60, \ldots, 79$) use the function H. Thus

$$
(A, B, C, D, E):=\mathcal{F}_{H}(A, B, C, D, E)
$$

The round 3 (iterations $j=40, \ldots, 59$) employ the function G or

Figure 6.12: General diagram of SHA-1

$$
(A, B, C, D, E):=\mathcal{F}_{G}(A, B, C, D, E) .
$$

Clearly, SHA-1 is believed to be more secure than MD5. Note that the digest space is larger than this offered by MD5 (note additional word E in the chaining variable).

6.6.3 RIPEMD-160

RIPEMD is an outcome of the European RACE Integrity Primitives evaluation (RIPE) project. RIPEMD-160 is a strenthened version of the RIPEMD algorithm [158]. It applies 5 rounds (instead
of 3 in RIPEMD) and the size of digest (and the chaining variable) is 160 bits (instead of 128 bits). Unlike other algorithms in the MD family, RIPE and RIPE-160 use two parallel lines of executions.

Parameters and structure of RIPE-160 are defined as follows.

- Padding is identical to that in MD5.
- The chaining input is initialised as in MD5.
- The collection of round functions is:

$$
\begin{aligned}
f(x, y, z) & =x \oplus y \oplus z \\
g(x, y, z) & =x y \vee \bar{y} z \\
h(x, y, z) & =(x \vee \bar{y}) \oplus z \\
k(x, y, z) & =x z \vee y \bar{z} \\
l(x, y, z) & =u \oplus(y \vee \bar{z})
\end{aligned}
$$

Denote F, G, H, K, L their word versions of functions f, g, h, k, l, respectively.

- There are two parallel lines of execution. Both lines use their own message buffers $X[0, \ldots, 79]$ in the left line and $Y[0, \ldots, 79]$ in the right line. The first 16 words of the buffer X is initialised to the 16 words of the message $\left(m_{0}, \ldots, m_{15}\right)$. So
$\left.\begin{array}{lcccccccccccccccc}X[0, \ldots, 15]= & \left(\begin{array}{l}0\end{array}\right) & 1, & 2, & 3, & 4, & 5, & 6, & 7, & 8, & 9, & 10, & 11, & 12, & 13, & 14, & 15\end{array}\right)$,

The message buffer Y is initialised as follows.

$$
\begin{aligned}
& Y[0, \ldots, 15]= \\
& \left(\begin{array}{llrllllllllllllll}
5, & 14, & 7, & 0, & 9, & 2, & 11, & 4, & 13, & 6, & 15, & 8, & 1, & 10, & 3, & 12
\end{array}\right), \\
& Y[16, \ldots, 31]=
\end{aligned}\left(\begin{array}{lrrr}
6, & 11, & 3, & 7, \\
0, & 13, & 5, & 10, \\
14, & 15, & 8, & 12, \\
4, & 9, & 1, & 2
\end{array}\right),
$$

- Rounds in the left and right lines apply the following constants:

Round	left line t_{ℓ}	right line t_{r}
1	0	$0 x 50 a 28 b e 6$
2	$0 x 5 a 827999$	$0 x 5 c 4 d d 124$
3	$0 x 6 e d 9 e b a 1$	$0 x 6 d 703 e f 3$
4	$0 x 8 f 1 b b c d c$	$0 x 7 a 6 d 76 e 9$
5	$0 x a 953 f d 4 e$	0

- The i-th iteration (Feistel permutatation) is controlled by a message word M (from either X if the iteration is used in the left line or Y - in the right line) (see Figure 6.13). The value

$$
v=((\alpha(B, C, D) \boxplus M \text { 田 } A \text { 田 } t) \ll s) \boxplus E
$$

is generated and the input (A, B, C, D, E) is transformed according to

$$
(A, B, C, D, E):=\mathcal{F}(A, B, C, D, E, \alpha, t, s)=(E, v, B, C \ll 10, D)
$$

where the constant t is either t_{ℓ} or t_{r}.

Figure 6.13: An iteration in RIPEMD-160

The hashing process is depicted in Figure 6.14. The input vector (initialised to the fixed values for the first message block or taking on digests obtained from the previous message block) is used in both lines of execution. Each line includes 5 rounds each round has 16 iterations. The rounds in the left line of execution apply functions F, G, H, K and L while the rounds in the right line of execution use functions in the reverse order. Constants t_{ℓ}, t_{r} and the rotation parameters s_{ℓ}, s_{r} are used accordingly. The parameters s_{ℓ} and s_{r} are chosen as follows.

6.6.4 HAVAL

HAVAL or a one-way hashing algorithm with variable length of output was design by a team from University of Wollongong [538]. It compresses an arbitrarily long message into a digest of the length either $128,160,192,224$, or 256 bits. HAVAL allows to trade speed versus security by the optional number of passes: 3 (fast and least secure), 4 (moderate speed and security), and 5 (slowest and highly secure). HAVAL uses a 3 -bit VERSION field which indicates the version number of HAVAL the current number is 1 . A 3-bit PASS field specifies the number of passes chosen by the user. A 10 -bit FPTLEN field defines the requested length of the digest. A 64-bit MSGLEN field is used to store the length of the processed message.

Hashing starts from padding. A message is appended bit 1 followed by enough 0's so it becomes congruent 944 modulo 1024. An 80-bit string (VERSION, PASS,FPTLEN, MSGLEN) is appended to the padded message. The resulting message is a multiple of 1024 bits. The hashing proceeds in a block-by-block fashion - Figure 6.15. The folding tailors the length of the digest to the requested one.

A 1024-bit message m is divided into thirty two 32 -bit message blocks (words) so $m=\left(m_{0}, \ldots, m_{31}\right)$.

Figure 6.14: General diagram of RIPEMD-160

The general steps executed in HAVAL are depicted in Figure 6.16. The addition modulo 2^{32} performed on corresponding words, completes the process. Each pass $H_{1}, H_{2}, H_{3}, H_{4}$ and H_{5} employs a Boolean function in seven variables. They are:

$$
\begin{aligned}
F_{1}\left(X_{0}, \ldots, X_{6}\right)= & X_{0} \oplus\left(X_{0} \wedge X_{1}\right) \oplus\left(X_{1} \wedge X_{4}\right) \oplus\left(X_{2} \wedge X_{5}\right) \oplus\left(X_{3} \wedge X_{6}\right), \\
F_{2}\left(X_{0}, \ldots, X_{6}\right)= & X_{0} \oplus\left(X_{0} \wedge X_{2}\right) \oplus\left(X_{1} \wedge X_{2}\right) \oplus\left(X_{1} \wedge X_{4}\right) \oplus\left(X_{2} \wedge X_{6}\right) \oplus \\
& \left(X_{3} \wedge X_{5}\right) \oplus\left(X_{4} \wedge X_{5}\right) \oplus\left(X_{1} \wedge X_{2} \wedge X_{3}\right) \oplus\left(X_{2} \wedge X_{4} \wedge X_{5}\right), \\
F_{3}\left(X_{0}, \ldots, X_{6}\right)= & X_{0} \oplus\left(X_{0} \wedge X_{3}\right) \oplus\left(X_{1} \wedge X_{4}\right) \oplus\left(X_{2} \wedge X_{5}\right) \oplus\left(X_{3} \wedge X_{6}\right) \oplus \\
& \left(X_{1} \wedge X_{2} \wedge X_{3}\right), \\
F_{4}\left(X_{0}, \ldots, X_{6}\right)= & X_{0} \oplus\left(X_{0} \wedge X_{4}\right) \oplus\left(X_{1} \wedge X_{4}\right) \oplus\left(X_{2} \wedge X_{6}\right) \oplus\left(X_{3} \wedge X_{4}\right) \oplus \\
& \left(X_{3} \wedge X_{5}\right) \oplus\left(X_{3} \wedge X_{6}\right) \oplus\left(X_{4} \wedge X_{5}\right) \oplus\left(X_{4} \wedge X_{6}\right) \oplus \\
& \left(X_{1} \wedge X_{2} \wedge X_{3}\right) \oplus\left(X_{2} \wedge X_{4} \wedge X_{5}\right) \oplus\left(X_{3} \wedge X_{4} \wedge X_{6}\right), \\
F_{5}\left(X_{0}, \ldots, X_{6}\right)= & X_{0} \oplus\left(X_{0} \wedge X_{5}\right) \oplus\left(X_{1} \wedge X_{4}\right) \oplus\left(X_{2} \wedge X_{5}\right) \oplus\left(X_{3} \wedge X_{6}\right) \oplus \\
& \left(X_{0} \wedge X_{1} \wedge X_{2} \wedge X_{3}\right) .
\end{aligned}
$$

The Boolean functions chosen are balanced, highly nonlinear, linearly nonequivalent and all satisfy SAC. For each pass, the message words $\left(m_{0}, \ldots, m_{31}\right)$ enter the hashing iterations in different order given in Table 6.1. HAVAL uses ϕ permutations to modify functions $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$. The aim of the modification is to create 3 "independent" variants of HAVAL depending on the chosen number of passes. The permutations are shown in Table 6.2. HAVAL uses the chaining vector $D=\left(D_{0}, \ldots, D_{7}\right) \in \Sigma^{256}$, where D_{i} is a 32 -bit word. It applies 16 Feistel permutations in each pass. Pass 1 - Figure 6.17

Figure 6.15: Hashing with HAVAL
(1) Let $T_{i}=D_{i}(i=0, \ldots, 7)$
(2) For $j=0, \ldots, 15$

$$
P=\left\{\begin{array}{r}
F_{1} \circ \phi_{3,1}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=3 \\
F_{1} \circ \phi_{4,1}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=4, \\
F_{1} \circ \phi_{5,1}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=5, \\
R=(P \ggg) \text { 田 }\left(T_{7} \gg 11\right) \text { 田 } m_{j} \\
T_{1}=T_{0} ; T_{2}=T_{1} ; T_{3}=T_{2} ; T_{4}=T_{3} \\
T_{5}=T_{4} ; T_{6}=T_{5} ; T_{7}=T_{6} ; T_{0}=R
\end{array}\right.
$$

where $(A \gg s)$ means rotation of A by s positions to the right. The addition \boxplus is modulo 2^{32}.

Pass 2.

(1) The sequence T_{0}, \ldots, T_{7} comes from Pass 1.
(2) For $j=0, \ldots, 15$, repeat the following

$$
P=\left\{\begin{array}{l}
F_{2} \circ \phi_{3,2}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=3, \\
F_{2} \circ \phi_{4,2}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=4, \\
F_{2} \circ \phi_{5,2}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=5, \\
R=(P \gg 7) \boxplus\left(T_{7} \gg 11\right) \boxplus m_{\text {ord } d_{2}(j)} \not \pi_{2, j}, \\
T_{1}=T_{0} ; T_{2}=T_{1} ; T_{3}=T_{2} ; T_{4}=T_{3}, \\
T_{5}=T_{4} ; T_{6}=T_{5} ; T_{7}=T_{6} ; T_{0}=R,
\end{array}\right.
$$

Figure 6.16: General scheme of HAVAL
where $\pi=\left(\pi_{2,0}, \ldots \pi_{2,15}\right)$ are constants generated from the fraction part of π.

Pass 3.

(1) The sequence T_{0}, \ldots, T_{7} comes from Pass 2.
(2) For $j=0, \ldots, 15$, repeat the following

$$
P=\left\{\begin{array}{r}
F_{3} \circ \phi_{3,3}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=3, \\
F_{3} \circ \phi_{4,3}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=4, \\
F_{3} \circ \phi_{5,3}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=5, \\
R=(P \gg 7) \boxplus\left(T_{7} \gg 11\right) \boxplus m_{o r d_{3}(j)} \boxplus \pi_{3, j}, \\
T_{1}=T_{0} ; T_{2}=T_{1} ; T_{3}=T_{2} ; T_{4}=T_{3}, \\
T_{5}=T_{4} ; T_{6}=T_{5} ; T_{7}=T_{6} ; T_{0}=R,
\end{array}\right.
$$

where $\pi=\left(\pi_{3,0}, \ldots \pi_{3,15}\right)$ are constants generated from the fraction part of π.

Pass 4.

(1) The sequence T_{0}, \ldots, T_{7} comes from Pass 3 .
(2) For $j=0, \ldots, 15$, repeat the following

$$
\begin{array}{r}
P=\left\{\begin{array}{r}
F_{4} \circ \phi_{4,4}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=4, \\
F_{4} \circ \phi_{5,4}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right) \text { if PASS }=5, \\
R=(P \gg 7) \boxplus\left(T_{7} \gg 11\right) \boxplus m_{\text {ord } 4(j)} \boxplus \pi_{4, j},
\end{array}\right. \\
T_{1}=T_{0} ; T_{2}=T_{1} ; T_{3}=T_{2} ; T_{4}=T_{3}, \\
T_{5}=T_{4} ; T_{6}=T_{5} ; T_{7}=T_{6} ; T_{0}=R,
\end{array}
$$

ord $_{2}$	5	14	26	18	11	28	7	16	0	23	20	22	1	10	4	8
	30	3	21	9	17	24	29	6	19	12	15	13	2	25	31	27
ord $_{3}$	19	9	4	20	28	17	8	22	29	14	25	12	24	30	16	26
	31	15	7	3	1	0	18	27	13	6	21	10	23	11	5	2
ord $_{4}$	24	4	0	14	2	7	28	23	26	6	30	20	18	25	19	3
	22	11	31	21	8	27	12	9	1	29	5	15	17	10	16	13
ord $_{5}$	27	3	21	26	17	11	20	29	19	0	12	7	13	8	31	10
	5	9	14	30	18	6	28	24	2	23	16	22	4	1	25	15

Table 6.1: Message word processing order

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
$\phi_{3,1}$	x_{4}	x_{2}	x_{6}	x_{5}	x_{3}	x_{0}	x_{1}
$\phi_{3,2}$	x_{6}	x_{3}	x_{5}	x_{0}	x_{1}	x_{2}	x_{4}
$\phi_{3,3}$	x_{0}	x_{5}	x_{4}	x_{3}	x_{2}	x_{1}	x_{6}
$\phi_{4,1}$	x_{0}	x_{3}	x_{5}	x_{4}	x_{1}	x_{6}	x_{2}
$\phi_{4,2}$	x_{4}	x_{6}	x_{1}	x_{0}	x_{2}	x_{5}	x_{3}
$\phi_{4,3}$	x_{5}	x_{2}	x_{0}	x_{6}	x_{3}	x_{4}	x_{1}
$\phi_{4,4}$	x_{3}	x_{1}	x_{2}	x_{5}	x_{0}	x_{4}	x_{6}
$\phi_{5,1}$	x_{6}	x_{2}	x_{5}	x_{0}	x_{1}	x_{4}	x_{3}
$\phi_{5,2}$	x_{5}	x_{4}	x_{3}	x_{0}	x_{1}	x_{2}	x_{6}
$\phi_{5,3}$	x_{5}	x_{1}	x_{3}	x_{4}	x_{0}	x_{6}	x_{2}
$\phi_{5,4}$	x_{6}	x_{4}	x_{0}	x_{2}	x_{3}	x_{5}	x_{1}
$\phi_{5,5}$	x_{1}	x_{3}	x_{4}	x_{6}	x_{0}	x_{5}	x_{2}

Table 6.2: HAVAL ϕ permutations
where $\pi=\left(\pi_{4,0}, \ldots \pi_{4,15}\right)$ are constants generated from the fraction part of π.

Pass 5.

(1) The sequence T_{0}, \ldots, T_{7} comes from Pass 4.
(2) For $j=0, \ldots, 15$, repeat the following

$$
\begin{array}{r}
P=F_{5} \circ \phi_{5,5}\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right), \\
R=(P \gg 7) \boxplus\left(T_{7} \gg 11\right) \boxplus m_{\text {ord } d_{5}(j)} \boxplus \pi_{5, j}, \\
T_{1}=T_{0} ; T_{2}=T_{1} ; T_{3}=T_{2} ; T_{4}=T_{3}, \\
T_{5}=T_{4} ; T_{6}=T_{5} ; T_{7}=T_{6} ; T_{0}=R,
\end{array}
$$

where $\pi=\left(\pi_{5,0}, \ldots \pi_{5,15}\right)$ are constants generated from the fraction part of π.
After hashing, the sequence T is shortened to the requested length of digest (for details see [538]). HAVAL is much stronger than MD5. There is no attack reported on the system.

6.6.5 Hashing Based on Intractable Problems

Gibson [199] based his hashing scheme on the factorisation problem. Assume that an integer $N=p \times q$ where p and q are two large enough primes so the factoring N is intractable. Additionally $p-1=2 \times p^{\prime}$

Figure 6.17: A single pass in HAVAL
and $q-1=2 \times q^{\prime}$ where p^{\prime}, q^{\prime} are primes. The hashing function $h: \mathcal{Z}_{N}^{*} \times \mathcal{Z}_{N}^{*} \rightarrow \mathcal{Z}_{N}^{*}$ compresses the message m according the congruence

$$
\begin{equation*}
h(m)=g^{m} \quad(\bmod N) \tag{6.12}
\end{equation*}
$$

where g is a generator of the cyclic group \mathcal{Z}_{N}^{*}. The modulus N and the generator g are public. Note that if a collision can be found, then N can be factored. Let $m, m^{\prime} \in \mathcal{Z}_{N}^{*} \times \mathcal{Z}_{N}^{*}$ collide, i.e. $g^{m}=g^{m^{\prime}}$ $(\bmod N)$ for $m \neq m^{\prime}$. This implies that $g^{m-m^{\prime}}=1 \quad(\bmod N)$ so $m-m^{\prime}$ is a multiple of the order of the cyclic group \mathcal{Z}_{N}^{*} and the factors can be found (see Section 5.2.5). On the other hand, knowing factors of N it is easy to produce collisions.

An example of hashing whose collision-freeness relies on intractability of the discrete logarithm problem was given by Chaum, van Heijst, and Pfitzmann in [90]. Assume we have a large enough prime $N \in \mathcal{Z}$ such that $N-1=2 \times p$ (p is prime). The designer of the scheme chooses two primitive elements $g_{1}, g_{2} \in \mathcal{Z}_{N}^{*}\left(g_{1} \neq g_{2}\right)$. The hash function $h: \mathcal{Z}_{p} \times \mathcal{Z}_{p} \rightarrow \mathcal{Z}_{N}^{*}$ translates a message $m=\left(m_{1}, m_{2}\right)$ into its digest

$$
\begin{equation*}
h(m)=g_{1}^{m_{1}} \cdot g_{2}^{m_{2}} \quad(\bmod N) \tag{6.13}
\end{equation*}
$$

The generators g_{1}, g_{2} and the modulus N are public. It can be proved that if a collision is found, then the corresponding instance of discrete logarithm can be solved (see [488]).

Knapsack can also be used for hashing. The first such scheme reported in [119] was broken in [73]. Impagliazzo and Naor proposed the scheme which is theoretically sound. The scheme $h: \Sigma^{n} \rightarrow \Sigma^{\ell}$ where obviously $\ell<n$. To design a scheme, n integers $a_{i}(i=1, \ldots, n)$ are chosen randomly and uniformly from the set $\left\{0, \ldots, 2^{\ell}\right\}$ where $\ell<n$. Next, for an n-bit message $m=\left(b_{1}, \ldots, b_{n}\right)$, a subset $\mathcal{S}_{m}=\left\{a_{i} \mid b_{i}=1\right\}$ is created. The digest of m is

$$
\begin{equation*}
h(m)=\sum_{a \in \mathcal{S}_{m}} a \quad\left(\bmod 2^{\ell}\right) \tag{6.14}
\end{equation*}
$$

Tillich and Zémor [498] designed a hash scheme based on $S L\left(2,2^{n}\right)$ - the group of two-dimensional unimodular matrices with entries in the Galois field $G F\left(2^{n}\right)$. In other words, elements of $S L\left(2,2^{n}\right)$ are matrices

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

whose determinant is equal to 1 and $a, b, c, d \in G F\left(2^{n}\right)$. The hash function h operates on arbitrarily long binary messages and returns an element of $S L\left(2,2^{n}\right)$ so $h: \Sigma^{*} \rightarrow S L\left(2,2^{n}\right)$. The core elements of the hash scheme are two public elements of $S L\left(2,2^{n}\right)$, namely

$$
A=\left[\begin{array}{ll}
x & 1 \\
1 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
x & x+1 \\
1 & 1
\end{array}\right]
$$

An r-bit message $m=\left(b_{1}, \ldots, b_{r}\right)$ is first converted into the corresponding sequence of A 's and B 's according to the function $\pi: \Sigma \rightarrow\{A, B\}$ which takes 0 to A and 1 to B. The digest of m is

$$
\begin{equation*}
h(m)=\pi\left(b_{1}\right) \pi\left(b_{2}\right) \ldots \pi\left(b_{r}\right) \tag{6.15}
\end{equation*}
$$

Finding collisions in the function h is equivalent to the difficulty of finding short factorisations in the groups $S L\left(2,2^{n}\right)$ which is known to be intractable. To be collision free, the hash function has to be determined for n in the range 130-170. If $n<130$, the security may be compromised. On the other hand, schemes with $n>170$ become slow. To do computations in $G F\left(2^{n}\right)$, the modulus - an irreducible polynomial $p(x)$ (over $G F(2)$) of degree n - is chosen at random and made public.

Charnes and Pieprzyk showed in [83] that a careless selection of n or $p(x)$ can result in the scheme which is not collision free. The order of the group $S L\left(2,2^{n}\right)$ is $2^{4 n}\left(2^{2 n}-1\right)\left(2^{2 n}+1\right)$. The scheme is believed to be collision free if both $\left(2^{2 n}-1\right)$ and $\left(2^{2 n}+1\right)$ have very large factors only. Ideally, one would prefer to choose n such that the integers are twin primes. Incidentally, integers p, q are twins if $p-q= \pm 2$. There are no twin primes in the recommended range of n.

6.7 Keyed Hashing

A message authentication code (MAC) is a relative short string which is attached to a message to enable a receiver to decide whether the message comes from the original sender. Clearly, to perform this role, the MAC must match the message and the sender. As the message can be long and the MAC is relatively short, it must directly or indirectly employ hashing. Additionally, the pair of communicating parties is uniquely identified by a secret key shared by them. To produce or verify a MAC, the parties must know the message and the shared key. An adversary, on the other hand, knows the message only. Application of MACs allows to create authentication channel where the contents of messages is public but the message source can be verified (the sender must share the same secret key with the receiver). Other names for MAC include integrity check value, cryptographic checksum or authentication tag.

Keyed hash schemes produce digests which depend on not only messages but also secret keys which are shared between the sender and receiver. Consequently, hashing can be done only by the holders of the secret key.

Given a family of hash functions

$$
\bar{H}_{n}=\left\{h_{k}: \Sigma^{*} \rightarrow \Sigma^{n} \mid k \in \Sigma^{n}\right\}
$$

Any instance function h_{k} is indexed by a secret key k shared by two parties. A keyed hash function $H=\left\{\bar{H}_{n} \mid n \in \mathcal{N}\right\}$ is collision resistant if

1. any instance function h_{k} can be applied for messages of arbitrary length,
2. the function H is a trapdoor one-way function, that is

- given a key k and message m, it is easy (in polynomial time) to compute the digest $d=$ $h_{k}(m)$,
- for any polynomial size collection of pairs $\left(m_{i}, d_{i}=h_{k}\left(m_{i}\right)\right) ; i=1, \ldots, \ell(n)$, it is intractable to find the key $k \in \Sigma^{n}$, where $\ell(n)$ is a polynomial in n.

3. without the knowledge of k, it is computationally difficult to find a collision, that is, two distinct messages $m, m^{\prime} \in \Sigma^{*}$ with the same digest $d=h_{k}(m)=h_{k}\left(m^{\prime}\right)$.

Hashing arbitrarily long messages can be done using either the serial or parallel methods (see Section 6.3). For a given n, the family of instance hash functions compresses $\ell \times n$-bit messages into n-bit digest so

$$
H_{n}=\left\{h_{k}: \Sigma^{\ell \times n} \rightarrow \Sigma^{n} \mid k \in \Sigma^{n}\right\}
$$

Again, finding a collision for $h_{k} \in \bar{H}_{n}$ indicates that $h_{k} \in H_{n}$ is not collision resistant.
For an ideal collision resistant keyed hashing scheme, finding a collision could be done by applying either the exhaustive search through the key space which takes on the average 2^{n-1} operations, or by employing a variant of the birthday attack which takes $O\left(2^{n / 2}\right)$ steps.

6.7.1 Early MACs

First implementations of keyed hashing were based on encryption algorithms in CBC or CFB modes. An example of keyed hashing in CBC mode is given in Figure 6.18. For a message $m=\left(m_{1}, \ldots, m_{r}\right)$,

Figure 6.18: Keyed hashing with CBC
hashing involves r iterations and

$$
\begin{aligned}
h_{0} & =I V \\
h_{i} & =E_{k}\left(h_{i-1} \oplus m_{i}\right) ; \quad i=1, \ldots, r-1 \\
d & =E_{k}\left(h_{r-1} \oplus m_{r}\right)
\end{aligned}
$$

where $I V$ is an initial value, E_{k} encryption function, and d digest. To prevent the meet-in-the-middle attack, the message block size must be at least 128 bits. Note that most encryption algorithms (including DES) work with 64-bit message blocks. Another problem is the speed - most encryption algorithms are relatively slow.

The Message Authenticator Algorithm (MAA) is probably the first dedicated MAC which is also an ISO $8731-2$ standard. MAA takes a message $m=\left(m_{1}, \ldots m_{\ell}\right)\left(m_{i}\right.$ is a 32 -bit word) and a 64 -bit key $k=\left(k_{1}, \ldots, k_{8}\right)$ and produces 32 -bit digest. The algorithm runs through the following steps:

- Key expansion which takes the key k and produces six 32 -bit words (A, B, C, D, E, F). Bytes 0×00 and $0 x f f$ in k are replaced according to
$\mathrm{x}=0$;
for i from 1 to 8 (
$\mathrm{x}=2 \mathrm{x}$;
if $k_{i}=0 \times 00$ or $0 \times f f$ then $\left(\mathrm{x}=\mathrm{x}+1 ; k_{i}=k_{i} \mathrm{OR} \mathrm{x} ;\right)$
)

Now, the key bytes are clustered into 32 -bit words. Let $k=(L, R)$ then

$$
\begin{aligned}
& A=L^{4} \quad\left(\bmod 2^{32}-1\right) \oplus L^{4} \quad\left(\bmod 2^{32}-2\right) ; \\
& \left.\left.B=R^{5} \quad\left(\bmod 2^{32}-1\right) \oplus R^{5} \quad\left(\bmod 2^{32}-2\right)\right)(1+x)^{2} \quad\left(\bmod 2^{32}-2\right)\right) ; \\
& C=L^{6} \quad\left(\bmod 2^{32}-1\right) \oplus L^{6} \quad\left(\bmod 2^{32}-2\right) ; \\
& D=R^{7} \quad\left(\bmod 2^{32}-1\right) \oplus R^{7} \quad\left(\bmod 2^{32}-2\right) ; \\
& E=L^{8} \quad\left(\bmod 2^{32}-1\right) \oplus L^{8} \quad\left(\bmod 2^{32}-2\right) ; \\
& F=R^{9} \quad\left(\bmod 2^{32}-1\right) \oplus R^{9} \quad\left(\bmod 2^{32}-2\right) ;
\end{aligned}
$$

The pairs $(A, B),(C, D)$ and (E, F) are checked whether they contain $0 x 00$ or $0 x f f$. If so, they are replaced as shown above.

- Message processing proceeds as follows:

```
h=A;g=B;v=C.
for i from 1 to \ell (
    v=(v<< 1); u=(v\oplus E);
    t}=(\textrm{h}\oplus\mp@subsup{m}{i}{})\times\mp@subsup{\times}{1}{\prime}(((g\oplus\mp@subsup{m}{i}{})+\textrm{u})0\textrm{R}0x02040801)AND 0xbfef7fdf)
    t
```

where x_{i} stands for multiplication modulo $\left(2^{32}-i\right),+$ is addition modulo 2^{32}. The final result is $h=h \oplus g$.

6.7.2 MACs from Keyless Hashing

"Keyless" hashing such as MD5 seems to be an attractive option of MAC generation. Tsudik [502] suggested to use a hashing algorithm which compresses arbitrary long messages into n-bit digests under control of n-bit chaining blocks so $H: \Sigma^{*} \times \Sigma^{n} \rightarrow \Sigma^{n}$. The hash scheme H uses a hashing function (such as MD5) $h: \Sigma^{\ell} \times \Sigma^{n} \rightarrow \Sigma^{n}$ applied in the serial method. H also pads the message and appends the length so the resulting message is a multiple of ℓ. For instance in MD5 $\ell=512$ and $n=128$ bits. For a given message $m \in \Sigma^{*}$, keyed hashing can be built on the top of H using

- secret prefix $k \in \Sigma^{\ell}$. The digest is $d=H(k \| m)$,
- secret suffix $k \in \Sigma^{\ell}$. The digest is $d=H(m \| k)$,
- secret envelop $k_{1}, k_{2} \in \Sigma^{\ell}$. the digest is $d=M D\left(k_{1}\|m\| k_{2}\right)$.
where \|| stands for concatenation. The secret prefix is equivalent to the keyless hashing with a secret initial value. For both secret prefix and suffix, if the underlying hash algorithm is not collision resistant, the keyed hashing scheme is not collision resistant either [11].

Consider the secret prefix MAC. Let an attacker know a pair the message m and its MAC of the form $H(k \| m)$. Clearly, she can produce arbitrary many valid MACs for the message (m, m^{\prime}) with $H\left(k \|\left(m, m^{\prime}\right)\right)$ where m^{\prime} is an arbitrary message selected by the attacker. Even if the padding of the message includes the length of the message, the security of MACs is determined by the collision resistance of the hash algorithm H rather than the length of the secret prefix.

Again security of the secret sufix MAC is determined by the length of digest rather than by the length of the secret. The attacker knows the message m and the MAC of the form $H(m \| k)$. If the hash function is not collision resistant, then she may find 2 nd preimages for the chaining variables and produce the valid MAC for arbitrarily many messages.

The secret envelop offers a far smaller profit than expected from the length of the secret key material used in the scheme [412]. Having a message m and a secret $k=\left(k_{p}, k_{s}\right)$, the MAC is computed as $H\left(k_{p}\|m\| k_{s}\right)$. One would expect that the attack on the MAC should involve exhaustive search of the keys space \mathcal{K}^{2} if $k_{s}, k_{s} \in_{R} \mathcal{K}$. This is not true and now we show why.

Assume that an attacker can make enquires about the envelop MAC by composing her messages and collecting corresponding digests. The birthday paradox guarantees that if the attacker knows $O\left(2^{n / 2}\right)$ observations $\left\{\left(m, H\left(k_{p}\|m\| k_{s}\right) ; m \in \mathcal{M}\right\}\right.$ where the set $|\mathcal{M}| \approx 2^{n / 2}$, then there is at least one internal collision (n is the size of the digest). To identify the pair, the attacker

- composes messages $\left(m^{\prime}, r, m^{\prime \prime}\right) ; m=\left(m^{\prime}, m^{\prime \prime}\right) \in \mathcal{M}$ where r is a random message block and asks for their MACs,
- two messages $m_{1}, m_{2} \in \mathcal{M}$ have internal collision if their $H\left(k_{p}\left\|m_{1}^{\prime}, r, m_{1}^{\prime \prime}\right\| k_{s}\right)=H\left(k_{p} \|\right.$ $\left.m_{2}^{\prime}, r, m_{2}^{\prime \prime} \| k_{s}\right)$ where $m_{i}=\left(m_{i}^{\prime}, m_{i}^{\prime \prime}\right)$, for $i=1,2$.

Having two messages with internal collisions, the attacker now can exhaustively search the key space to identify k_{p}. If $|\mathcal{K}|=n$, then one pair of such messages is enough to identify k_{p} with a high probability. In other words, $k=k_{p}$ if

$$
H\left(k \| m_{1}\right)=H\left(k \| m_{2}\right)
$$

Having identified k_{p}, the second key k_{s} can be also exhaustively searched through.
Note that keyed hashing should use the secret key repeatedly throughout the whole hashing process. The keyed hash scheme MDx-MAC [412] uses a modified secret envelop and applies secret keys every time the underlying hashing algorithm is called. MDx-MAC can be based on any hashing algorithm (such as MD4, MD5, HAVAL, SHA) which uses internal constants (for example HAVAL uses π in all iterations in the passes $2,3,4$, and 5). The secret key is added to the constant in each iteration of the underlying hash algorithm. The advantage of this scheme is that it can be collision free even is the underlying hash algorithm is not. The main drawback of MDx-MAC is its speed - it is always slower than its keyless underlying algorithm.

6.8 Problems and Exercises

1. Explain the difference between strong and weak one-way hash function.
2. Prove that strong collision freeness of a function implies that the function is one-way.
3. Consider the birthday paradox. Let p be the probability that there are at least two pupils with the same birthday. What is the minimum size of the class so

- $p=0.1$,
- $p=0.9$.

What is the probability p when the class has 100 students?
4. To see how the birthday attack works, let us model a hashing function by a probabilistic algorithm. For a given message, the algorithm chooses at random its digest from the set \mathcal{Z}_{N} where N is an integer. Implement the hash function using the accessible pseudorandom number generator. Prepare two collections of digests (one for the original message the other for the bogus message). Each collection should have \sqrt{N} random numbers. Rum your program several times and count how many times it is possible to find colliding messages.
5. Let the encryption algorithm be based on exponentiation modulo a prime p so $E_{k}(m)=c^{k} \bmod p$. Use the algorithm to hash messages $\left(m_{1}, m_{2}\right) \in \mathcal{Z}_{p}^{2}$ according to the following

$$
h_{1}=E_{m_{1}}(I V) \text { and } d=E_{m_{2}}\left(h_{1}\right)
$$

Implement the meet-in-the-middle attack on the scheme using the MAPLE programming environment. To generate variants of bogus messages use a pseudorandom number generator.
6. Suppose a hash function is defined using a good quality encryption algorithm $E_{k}(m)$. For an arbitrary message $m=\left(m_{1}, \ldots, m_{n}\right)$, the digest is computed as $d=E_{m_{i}}(I V) \oplus \ldots \oplus E_{m_{n}}(I V)$. Discuss advantages and drawbacks of the function.
7. In the Gibson scheme, the modulus $N=p \times q$ is public while its factors are secret. The hashing function is defined as $h(m)=g^{m} \bmod N$ where g is a generator of the cyclic group \mathcal{Z}_{N}^{*}. Let $N=4897$ and $g=2231$. Compute digests for the following two messages: $m=132748$ and $m^{\prime}=75676$. Assume that you have two colliding messages, show that it is possible to find factors of N. Demonstrate that the knowledge of factors of N, allows to find colliding messages.
8. Define a hash function $h\left(m_{1}, m_{2}\right)=g_{1}^{m_{1}} \times g_{2}^{m_{2}} \bmod p$ where p is a prime and $g_{1}, g_{2} \in \mathcal{Z}_{p}^{*}$ are two primitive elements such that $\log _{g_{1}} g_{2} \bmod p$ is not known. Assume that $p=65867, g_{1}=11638$ and $g_{2}=22770$. Find digests of the following two messages:

- $m=(33123,11789)$,
- $m^{\prime}=(55781,9871)$.

Prove that finding collisions is equivalent to solving the corresponding instance of discrete logarithm problem i.e. $\alpha \equiv \log _{g_{1}} g_{2} \bmod p$.
9. Consider the knapsack hashing which generates a digest

$$
h(m)=\sum_{a \in \mathcal{S}_{m}} a \quad\left(\bmod 2^{\ell}\right)
$$

for $\ell=16$ and the vector $A=\left(a_{1}, \ldots, a_{20}\right)=(38434,29900,51969,11915,44806,40745,58466,34082,51216,29628$, $45210,37681,13804,57494,13287,43391,28827,6822,51901,3782)$. Produce the digest for $m=(1,1,1,0,0$, $1,0,1,1,0,0,1,0,1,0,1,0,0,0,1)$. Write a program which finds collisions. Analyse the efficiency of your program.
10. Implement a hashing scheme based on $S L\left(2,2^{3}\right)$ which operates on arbitrary long messages and produces 12 -bit digests (four binary polynomials of degree 2).

Chapter 7

DIGITAL SIGNATURES

Digital signatures should be in a sense similar to hand-written ones. Unlike a written one, an electronic document is not tied up to any particular storage media. Thus it can be easily copied, transmitted, and manipulated. Digital signatures have to create a some sort of digital "encapsulation" for the document so any interference with either its contents or the signature will be detected with a very high probability. Typically, a signed document is requested to be verifiable by anyone using some publicly accessible information.

Most books on public-key cryptography also include a chapter or section on digital signatures. Stinson in [488], Menezes et al. in [334], and Schneier in [445] provide good text for introductory reading. The book [397] by Pfitzmann is useful for more advanced study of digital signatures.

7.1 Properties of Digital Signatures

One would expect that digital signatures should be legally binding in the same way as the hand-written ones. To design a signature scheme, it is necessary to determine two algorithms: one for signing and the other for signature verification. The verification algorithm has to be accessible to all potential receivers. The signing algorithm is executed by a signer, Sally, who for a message $m \in \mathcal{M}$ determines a signature $s \in \mathcal{S}$. The signature s is next attached to the message. A verifier, Victor, takes the pair (m, s) and some public information about the alleged signer and performs the corresponding verification algorithm. The algorithm returns a binary result: "yes" if the signature is Sally's or "no" otherwise.

A digital signature scheme is a collection of two algorithms.

1. The signing algorithm $S G: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{S}$ assigns a signature s to a pair: the secret key $k \in \mathcal{K}$ of the signer and the message $m \in \mathcal{M}$, that is $s=S G(k, m)=S G_{k}(m)$.
2. The verification algorithm $V E R: \mathcal{K}^{\prime} \times \mathcal{M} \times \mathcal{S} \rightarrow\{$ yes,no $\}$ takes a public information $K \in \mathcal{K}^{\prime}$ of the signer and the message $m \in \mathcal{M}$ and checks whether the pair (K, m) matches the signature $s \in \mathcal{S}$. If there is a match, the algorithm returns "yes". Otherwise, it outputs "no".
3. The signing algorithm executes in polynomial time when the secret key k is known. For an opponent, Oscar, who does not know the secret key, it should be computationally intractable to forge a signature, that is to find a valid signature for the message.
4. The verification algorithm is public - anyone can use it and check whether the message m matches the signature s. Verification should be easy (takes polynomial time).

The crucial issue for security of signature scheme is the meaning of forged signatures. Clearly, Oscar is successful in forging a signature if the verification algorithm fails to detect the forgery. The verification
algorithm takes three variables: the identity of the alleged signer (equivalent to K), the message m and the signature s. Oscar can tamper with all of them. Consider the identity of the alleged signer. Oscar can always apply the masquerade attack in which he selects the secret key $k \in \mathcal{K}$, sets up the scheme and try to register the scheme under Sally's name with the matching public $K \in \mathcal{K}^{\prime}$. To protect the signature schemes against the masquerade attack, there has to be a trusted registry, say White Pages, which keeps the list of all signers with their public verification algorithm $V E R_{K}()$ in the public read-only memory. New entries are included after a proper identification of the signer.

If White Pages are set up and work correctly, Oscar can only manipulate messages and signatures. His aim is to find collisions for verification algorithm so $V E R_{K}(m, s)=V E R_{K}\left(m^{\prime}, s^{\prime}\right)$ where m, s are original elements and m^{\prime}, s^{\prime} are forged. Thus the verification algorithm has to be collision free for any $K \in \mathcal{K}^{\prime}$. This implies that the signing algorithm has to be collision free too.

Note that the requirement about public verifiability of signatures many times throughout their life time, can be satisfied when signatures are generated using conditionally secure schemes.

Signature schemes are requested to provide a relatively short signature for a document of an arbitrary length. We assume that the document (of arbitrary length) is first hashed and later the signature is produced for its digest. Clearly, the hashing employed has to be collision free. Moreover, hashing and signing must be analysed together to avoid attacks which exploit existing algebraic structures in both schemes. For instance, Coppersmith showed that hashing based on squaring together with an RSA based signature scheme is not collision free [106].

7.2 Generic Signature Schemes

This class of signature schemes can be implemented from any one-way function. Historically, these schemes were first developed using block private key cryptosystems. We will follow the original notation. The applied one-way function is an encryption algorithm. The signer sets up her signature scheme by choosing a one-way function (encryption algorithm). Next she selects an index k (secret key) randomly and uniformly from the set \mathcal{K}. The index determines an instance of the one-way function, that is, $E_{k}: \Sigma^{n} \rightarrow \Sigma^{n}$. Note that n has to be large enough to thwart possible birthday attacks. Also the index (secret key) k is known to the signer only.

7.2.1 Rabin Signatures

Rabin [419] designed a scheme in which the signer uses many secret keys (or indices) and later in the verification stage Sally reveals a part of her keys. In the Rabin scheme verification is done with the help of the signer.
Initialisation. The scheme is set up by Sally who generates $2 r$ random keys

$$
k_{1}, k_{2}, \ldots, k_{2 r} \in \Sigma^{n}
$$

They are secret and known to Sally only. Next, she creates two sequences which are needed in the verification stage. The first sequence is chosen at random

$$
S=\left(S_{1}, S_{2}, \ldots, S_{2 r}\right)
$$

where $S_{i} \in \Sigma^{n}$ for $i=1, \ldots, 2 r$. The second sequence

$$
R=\left(R_{1}, R_{2}, \ldots, R_{2 r}\right)
$$

consists of cryptograms of the sequence S, that is

$$
R_{i}=E_{k_{i}}\left(S_{i}\right) \quad \text { for } \quad i=1, \ldots, 2 r
$$

The sequences S and R are stored in the public registry.
Signing. For a message $m \in \Sigma^{n}$, Sally creates her signature as follows:

$$
\begin{equation*}
S G_{k}(m)=\left(E_{k_{1}}(m), \ldots, E_{k_{2 r}}(m)\right) \tag{7.1}
\end{equation*}
$$

Verification. Verifier selects at random a $2 r$-bit sequence of r ones and r zeros. A copy of the binary sequence is forwarded to the signer. Using this $2 r$-bit sequence, Sally forms an r-element subset of the keys. The key k_{i} belongs to the subset if the i-th element of the $2 r$-bit sequence is " 1 "; $i=1, \ldots, 2 r$. The subset of keys is then communicated to Victor. To verify the key subset, Victor generates and compares suitable r cryptograms of S to the originals kept in the public registry.

7.2.2 Lamport signatures

The scheme invented by Lamport [294] allows verification to be conducted without any help from the signer - this is what is expected from signature schemes. More efficient version can be found in [49]. Initialisation. The signer first chooses at random n key pairs, namely,

$$
\begin{equation*}
\left(k_{10}, k_{11}\right),\left(k_{20}, k_{21}\right), \ldots,\left(k_{n 0}, k_{n 1}\right) \tag{7.2}
\end{equation*}
$$

each element $k_{i j} \in \Sigma^{n} ; i=1, \ldots, n, j=0,1$. The pairs of keys are kept secret and are known to Sally only. Next, she generates a sequence S at random and encrypts it using the secret keys so

$$
\begin{aligned}
S & =\left(\left(S_{10}, S_{11}\right),\left(S_{20}, S_{21}\right), \ldots,\left(S_{n 0}, S_{n 1}\right)\right) \\
R & =\left(\left(R_{10}, R_{11}\right),\left(R_{20}, R_{21}\right), \ldots,\left(R_{n 0}, R_{n 1}\right)\right)
\end{aligned}
$$

and

$$
R_{i j}=E_{k_{i j}}\left(S_{i j}\right) \quad \text { for } \quad i=1, \ldots, n \quad \text { and } \quad j=0,1
$$

where $S_{i j}, R_{i j} \in \Sigma^{n}$ and E_{k} is the encryption algorithm used. Now S and R are sent to the public registry.
Signing. The signature of a n-bit message $m=\left(b_{1}, \ldots, b_{n}\right), b_{i} \in\{0,1\}$ for $i=1, \ldots, n$, is a sequence of cryptographic keys:

$$
S G_{k}(m)=\left(k_{1 i_{1}}, k_{2 i_{2}}, \ldots, k_{n i_{n}}\right)
$$

where $i_{j}=0$ if $b_{j}=0$ otherwise $i_{j}=1 ; j=1, \ldots, n$.
Verification. Victor validates the signature $S G_{k}(m)$ by checking whether suitable pairs of S and R match each other for the keys known.

7.2.3 Matyas-Meyer Signatures

Matyas and Meyer [322] designed a signature scheme based on the DES algorithm. Clearly, any one-way function can be used in the scheme. In the description we use $E_{k}: \Sigma^{n} \rightarrow \Sigma^{n}$.
Initialisation. Sally first generates a random matrix $U=\left[u_{i, j}\right] i=1, \ldots, 30, j=1, \ldots, 31$ and $u_{i, j} \in \Sigma^{n}$. Next she constructs 31×31 matrix $K E Y=\left[k_{i, j}\right]$ where $k_{i, j} \in \Sigma^{n}$. The first row of the $K E Y$ matrix is chosen at random but the rest is generated as follows:

$$
k_{i+1, j}=E_{k_{i, j}}\left(u_{i, j}\right)
$$

for $i=1, \ldots, 30$ and $j=1, \ldots, 31$. Finally, Sally communicates the matrix U and the vector $\left(k_{31,1}, \ldots, k_{31,31}\right)$ (the last row of $K E Y$) to the public registry.

Signing. Sally takes a message $m \in \Sigma^{n}$ and computes cryptograms

$$
c_{i}=E_{k_{31, i}}(m) \text { for } i=1, \ldots, 31
$$

Cryptograms are treated as integers and ordered according to their values so $c_{i_{1}}<c_{i_{2}}<\ldots<c_{i_{31}}$. The signature of m is the sequence of keys

$$
S G_{k}(m)=\left(k_{i_{1}, 1}, k_{i_{2}, 2}, \ldots, k_{i_{31}, 31}\right) .
$$

Verification. Victor takes the message m recreates the cryptograms c_{i}, orders them according to increasing order. Next he puts keys of the signature in the "empty" matrix $K E Y$ in the places indicated by the ordered sequence of c_{i} 's. Victor then repeats Sally's steps and computes all keys below the keys of the signature. He accepts the signature if the last row of $K E Y$ is identical to the row stored in the registry.

Note that the Lamport and Matyas-Meyer generic signature schemes can be verified many times. However, signing a new message requires the secret key(s) to be regenerated. This is why they are called one-time signatures.

7.3 RSA Signatures

Due to its algebraic structure, the RSA cryptosystem can be easily modified for signing documents [426]. It is enough to let Sally initialise the system. Again White Pages keep public elements of Sally's RSA scheme.

One-time RSA Signatures

Initialisation. Sally chooses two strong primes p, q and calculates the modulus $N=p \times q$. Next she selects at random a public key $K \in \mathcal{Z}_{N}$ such that $\operatorname{gcd}(K, N)=1$. The secret key $k \in \mathcal{Z}_{N}$ satisfies the following congruence

$$
k \times K \equiv 1 \bmod (p-1)(q-1)
$$

The signer lodges both the modulus N and the key K with the public registry.
Signing. Given a message $m \in \mathcal{Z}_{N}$, Sally creates

$$
s=S G_{k}(m)=m^{k} \quad(\bmod N)
$$

The signature is attached to the message.
Verification. Victor looks up White Pages for Sally's public entry with her modulus N and public key K. Subsequently, he takes the pair (\tilde{m}, \tilde{s}) and checks whether

$$
V E R_{K}(\tilde{m}, \tilde{s})=\left(\tilde{s}^{K} \stackrel{?}{\equiv} \tilde{m} \quad(\bmod N)\right)
$$

If the congruence is satisfied the signature is accepted as authentic.
An opponent, Oscar, can always circumvent potential verifiers using the following attack. He first selects at random a false signature $s^{\prime} \in \mathcal{Z}_{N}$. Next he computes the matching false message $m^{\prime} \equiv s^{\prime K}$ $(\bmod N)$. This attack is always successful if there is no redundancy of the message source or all messages in \mathcal{Z}_{N} are meaningful. The other feature of the attack is that Oscar has no control over forged messages. To prevent the scheme against the attack, it is enough to introduce a sufficiently large redundancy in the message source so all forged messages will be meaningless with a high probability.

The RSA signature scheme may be subject to variety of attacks which exploit the commutativity of exponentiation [128, 347] if the RSA signature scheme is meant to be used many times. Assume that Oscar knows two original documents $\left(m_{1}, s_{1}\right)$ and $\left(m_{2}, s_{2}\right)$ signed by Sally. He can sign a new document $m=m_{1} m_{2}$ as its valid signature is $s=s_{1} s_{2}$. Even the knowledge of a single document (m, s) signed by Sally, can be used to sign message $m^{\prime}=m^{-1}$ as its valid signature is $s^{\prime}=s^{-1}$.

Multiple use of the RSA scheme tends to weaken it. The way out is to make subsequent signatures dependent on the previously generated. Cramer and Damgard [113] proposed an RSA scheme for multiple use which is secure against the chosen message attack under the assumption that the factoring is difficult. Clearly, an additional component is needed to keep track of previous signatures. This component is an algorithm $T R$ which builds up a full ℓ-ary tree of depth d by random selection of its nodes x_{i}. The root of the tree is an integer x_{0}. Every time Sally wants to sign a new message, she invokes $T R$. The algorithm creates a new leaf x_{d} and returns its full path ($x_{1}, i_{1}, \ldots, x_{d}, i_{d}$) where the integer i_{j} tells that the node x_{j} is the i_{j}-th child of x_{j-1}. $T R$ can be used to sign up to ℓ^{d} messages.

Multiple RSA Signatures

Initialisation. The scheme is set up as previously; the modulus is $N=p \times q$ where p, q are two strong primes. The scheme uses also set of distinct primes

$$
L=\left\{q, p_{0}, \ldots, p_{\ell-1}\right\}
$$

All primes are co-prime to $(p-1)(q-1)$. Let e be the smallest integer such that

$$
w=q^{e}>N
$$

and e_{i} be the smallest integer such that

$$
v_{i}=p_{i}^{e_{i}}>N \text { for } i=0, \ldots, \ell-1
$$

Finally, Sally chooses h and x_{0} at random from \mathcal{Z}_{N}^{*}. The triple (N, h, x_{0}) is stored in the public registry.
Signing. The signature generation can be done up to ℓ^{d} times. For the i-th signature, Sally calls $T R(i)$ which returns $\left(x_{1}, i_{1}, \ldots, x_{d}, i_{d}\right)$. Next, she computes

$$
\begin{equation*}
y_{j} \equiv\left(x_{j-1} h^{x_{j}}\right)^{\frac{1}{v_{i}}} \quad(\bmod N) \text { for } j=1, \ldots, d . \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
z \equiv\left(x_{d} h^{m}\right)^{1 / w} \quad(\bmod N) \tag{7.4}
\end{equation*}
$$

Finally, the signature is $S G_{k}(m)=\left(z, y_{1}, i_{1}, \ldots, y_{d}, i_{d}\right)$.
Verification. Victor takes $\left(\tilde{z}, \tilde{y}_{1}, i_{1}, \ldots, \tilde{y}_{d}, i_{d}\right)$ and first calculates

$$
\begin{equation*}
\tilde{x}_{d} \equiv \tilde{z}^{w} h^{-m} \quad(\bmod N) \tag{7.5}
\end{equation*}
$$

and goes backwards

$$
\begin{equation*}
\tilde{x}_{j-1} \equiv \tilde{y}_{j}^{v_{i_{j}}} h^{-\tilde{x}_{j}} \quad(\bmod N) \text { for } j=1, \ldots, d \tag{7.6}
\end{equation*}
$$

At last, if $\tilde{x}_{0} \equiv x_{0}(\bmod N)$ the signature is authentic.
Consider Equations (7.3) and (7.4). To get rid of commutativity, the message appears as an exponent and a sequence of random elements x_{j} is used. Each element plays a double role as a multiplier and exponent.

To compute Equations (7.3) and (7.4), Sally needs to know $v_{i_{j}}^{-1}$ and w^{-1} which can be found from the congruences $v_{i_{j}}^{-1} \times v_{i_{j}} \equiv 1 \bmod (p-1)(q-1)$ and $w^{-1} \times w \equiv 1 \bmod (p-1)(q-1)$, respectively.

Victor reverses Sally's computations using public w and $v_{i_{j}}$. If the signature is authentic, he must always end up with x_{0} in the last step of his computations. Victor can also update his copy of the tree from $T R$. Note that any two valid signature never traverse through the same path in the tree.

7.4 ElGamal Signatures

The scheme is based on the discrete logarithm problem [190].
Initialisation. Sally chooses a finite field $G F(p)$ where p is a long enough prime so the corresponding instance of discrete logarithm is intractable. She selects a primitive element $g \in G F(p)$ and a random integer $k \in G F(p)$. Sally then computes

$$
\begin{equation*}
K \equiv g^{k} \quad(\bmod p) \tag{7.7}
\end{equation*}
$$

and communicates K, g and p to the public registry. The element k is kept secret.
Signing. For a message $m \in G F(p)$, Sally selects a random integer $r \in G F(p)$ such that $\operatorname{gcd}(r, p-1)=$ 1 and calculates

$$
\begin{equation*}
x \equiv g^{r} \quad(\bmod p) \tag{7.8}
\end{equation*}
$$

Later, she solves the following congruence

$$
\begin{equation*}
m \equiv k \cdot x+r \cdot y \quad(\bmod p-1) \tag{7.9}
\end{equation*}
$$

for y using Euclid's algorithm. The signature is

$$
s=S G_{k}(m)=(x, y)
$$

Note that k and r are kept secret by Sally.
Verification. Upon reception of \tilde{m} and $\tilde{s}=(\tilde{x}, \tilde{y})$, Victor checks whether

$$
\begin{equation*}
V E R_{K}(\tilde{m}, \tilde{s})=\left(g^{\tilde{m}} \stackrel{?}{\equiv} K^{\tilde{x}} \times \tilde{x}^{\tilde{y}} \quad(\bmod p)\right) \tag{7.10}
\end{equation*}
$$

It is worth noting that possessing the pair (x, y), does not allow the message m to be recreated. In fact, there are many pairs which match the message - for every random pair (k, r) there is a pair (x, y).

Oscar may

1. try to break the system by solving two instances of discrete $\operatorname{logarithm}: k=\log K(\bmod p)$ and $r=\log x \quad(\bmod p)$. From our assumption, this is intractable,
2. choose his own forged message m^{\prime} and modify y^{\prime} while keeping x unchanged. This is equivalent to solving the following instance of discrete logarithm $y^{\prime} \equiv \log _{x} g^{m^{\prime}} K^{-x} \quad(\bmod p)$,
3. take a forged message m^{\prime} and try to find x^{\prime} while keeping the same y. In this attack Oscar has to solve $g^{m^{\prime}} \equiv K^{x^{\prime}} \cdot x^{\prime y} \quad(\bmod p)$ for x^{\prime}. There is no known efficient algorithm to do that,
4. manipulate with all three elements: $m^{\prime}, x^{\prime}, y^{\prime}$. The successful verification is when $g^{m^{\prime}} \equiv K^{x^{\prime}} \times$ $x^{\prime y^{\prime}} \bmod p$. The congruence can be satisfied if we select $x^{\prime} \equiv g^{\alpha} K^{\beta}$ as we are going to get powers of g and K only $\left(\alpha, \beta \in \mathcal{Z}_{p}\right)$. Indeed

$$
g^{m^{\prime}} \equiv K^{g^{\alpha} K^{\beta}} \cdot g^{\alpha y^{\prime}} K^{\beta y^{\prime}} \quad(\bmod p)
$$

This implies that $y^{\prime} \equiv-g^{\alpha} k^{\beta} \beta^{-1} \quad(\bmod p-1)$ and $m^{\prime} \equiv \alpha y^{\prime}(\bmod p-1)$. Clearly, this attack allows to sign random messages only. To prevent the attack, it is enough to introduce a redundancy in the message source.

The elements (K, g, p) stored in the public registry are fixed for the life time of the scheme. The scheme can be used to sign many signatures. The signer, however, has to select a new secret integer $r \in G F(q)$ every time she signs. What happens if Sally signs two messages using the same r ? Let us consider the repercussions. Suppose Sally has signed two messages: m_{1} with (x, y_{1}) and m_{2} with $\left(x, y_{2}\right)$. The two signatures produce (see Congruence 7.9):

$$
\begin{aligned}
m_{1} & \equiv k \cdot x+r \cdot y_{1} \quad(\bmod p-1) \\
m_{2} & \equiv k \cdot x+r \cdot y_{2} \quad(\bmod p-1)
\end{aligned}
$$

The integer r which was supposed to be secret can now be computed from

$$
m_{1}-m_{2} \equiv r\left(y_{1}-y_{2}\right) \quad(\bmod p-1)
$$

(see Section 2.1.4). If the congruence does not have the unique solution, it can be found by testing possible candidates and calling the verification algorithm. After finding r, it is easy to compute the secret

$$
k=\left(m_{1}-r y_{1}\right) x^{-1} \quad(\bmod p-1) .
$$

Consider a simple example of the ElGamal signature scheme. First Sally sets up the scheme. She selects a modulus $p=359$, a random secret $k=215$ and a primitive element $g=152$. She computes $K=g^{k}=152^{215} \equiv 293 \quad(\bmod 359)$. The triple $(K, g, p)=(293,152,359)$ is Sally's public registry entry. To sign a message $m=312$, Sally selects a "one-time" random integer $r=175$, finds $x=g^{r}=152^{175} \equiv 58 \quad(\bmod 359)$, and computes y from the following congruence

$$
\begin{aligned}
m & \equiv k \cdot x+r \cdot y \quad(\bmod p-1) \\
312 & \equiv 215 \cdot 58+175 \cdot y \quad(\bmod 358)
\end{aligned}
$$

It is easy to check that $y=86$. The signature on $m=312$ is $s=(58,86)$. Knowing Sally's public elements, Victor verifies the signature by computing first $g^{m} \equiv 74(\bmod 359)$ and next $K^{x} \cdot x^{y} \equiv 74$ (mod 359). So Victor assumes that the signature is authentic.

A modification of the ElGamal signature was proposed as Digital Signature Standard (DSS) in 1991 (see [185]). DSS is also known as Digital Signature Algorithm or DSA.

Digital Signature Standard

Initialisation. A large enough prime p is selected as one of the moduli used in the system. The modulus p is recommended to be of length at least 512 bits. The second modulus q is a 160 -bit prime factor of $p-1$. An integer g is a q-th root of 1 modulo p, that is, $g^{q} \equiv 1(\bmod p)$ and $g^{\alpha} \not \equiv 1$ $(\bmod p)$ for $\alpha<q$. Sally selects her secret $k<q$ and computes the public key $K \equiv g^{k}(\bmod p)$. The sequence (K, g, p, q) is deposited in the public registry.
Signing. Sally generates a "one-time" random integer $r<q$ and the corresponding $x \equiv$ (g^{r} mod $p) \bmod q$. For a message $m \in \mathcal{Z}_{q}^{*}$, she computes

$$
\begin{equation*}
y \equiv r^{-1}(m+k \cdot x) \quad(\bmod q) \tag{7.11}
\end{equation*}
$$

The signature on the message m is $s=S G_{k}(m)=(x, y)$.

Verification. Victor takes the signature $\tilde{s}=(\tilde{x}, \tilde{y})$, the message \tilde{m} and Sally's public entry and computes two integers

$$
\begin{array}{rlr}
\alpha & \equiv \tilde{m} \cdot \tilde{y}^{-1} \quad(\bmod q) \\
\beta & \equiv \tilde{x} \cdot \tilde{y}^{-1} \quad(\bmod q)
\end{array}
$$

and checks whether

$$
\begin{equation*}
V E R_{K}(\tilde{m}, \tilde{s})=\left(\tilde{x} \stackrel{?}{\equiv}\left(g^{\alpha} \cdot K^{\beta} \bmod p\right) \bmod q\right) \tag{7.12}
\end{equation*}
$$

Consider a toy DSS scheme. Sally takes two moduli $p=2011$ and $q=67(p-1=67 \cdot 30)$. To get an integer g with required properties, we first choose a primitive element $e=1570 \in G F(p)$ and next compute $g \equiv e^{(p-1) / q}(\bmod p)$ so $g=1570^{30} \equiv 948(\bmod 2011)$. It is easy to check that $g^{q} \equiv 1 \quad(\bmod p)$. Next Sally chooses her secret $k=37<67$ and computes $K=g^{k}=948^{37} \equiv 857$ $(\bmod 2011)$. Sally's public entry is $(K, g, p, q)=(857,948,2011,67)$.

To sign, Sally generates a "one-time" random integer $r=49<67$ and computes

$$
x=60 \equiv\left(948^{49} \bmod 2011\right) \bmod 67
$$

For a message $m=65$, she finds $y=49^{-1}(65+37 \cdot 60) \equiv 48(\bmod 67)$. The signature $S G_{k}(65)=$ $(60,48)$.

Victor verifies the signature $s=(60,48)$ by calculating

$$
\begin{aligned}
& \alpha=65 \cdot 48^{-1} \equiv 53 \quad(\bmod 67) \\
& \beta=60 \cdot 48^{-1} \equiv 18 \quad(\bmod 67)
\end{aligned}
$$

Finally he substitutes values to $g^{\alpha} \cdot K^{\beta}=948^{53} 857^{18} \equiv 462 \quad(\bmod 2011)$. This results is congruent to 60 modulo 67 . Thus the result is equal to $x=60$ so the signature is authentic.

DSS signatures are shorter than ElGamal's. Also messages signed have to be smaller than q. Otherwise, if $m \in \mathcal{Z}_{p}^{*}$, any valid signature $S G_{k}(m)=(x, y)$ can be used to produce a sequence of other valid signatures for messages from the set $\{\tilde{m} \mid \tilde{m} \equiv m(\bmod q) ; \tilde{m}<p\}$. Generation of signatures using DSS is substantially faster than RSA ones (when both schemes use moduli of the same size). Additionally, the first element of signature x can be precomputed as it does not depend upon the message signed [445].

7.5 Blind Signatures

Sometimes the signer should be prevented from reading messages to be signed. For instance, in a notary system the validation of documents can be done for documents kept in sealed envelopes. Electronic election protocols use a central authority who authenticates voting ballots without being able to read their contents. Chaum developed a cryptographic scheme which can be applied to produce blind signatures [91]. There are three active parties in the scheme. Sally is the signer who has agreed to sign documents blindly. Henry is the holder of the message he wants Sally to sign. Victor is our verifier who checks whether the signature is Sally's.

A blind signature scheme works as follows. Henry takes a message and blinds it. The blinded message is sent to Sally who signs it and sends it back to Henry. Henry unblinds the message. Victor now can verify the signature. A blind signature is a collection of four algorithms: blinding, signing, unblinding, and verifying. Note that blinding and signing operations have to commute. The RSA signature can be used to design a blind signature scheme.

RSA Blind Signatures

Initialisation. Sally sets up a RSA scheme with the public modulus N and key K. Primes p, q $(N=p \times q)$ and key $k(k \times K \equiv 1 \bmod (p-1)(q-1))$ are secret.
Blinding. Henry looks up the public registry for Sally's N and K, chooses a random integer $r \in \mathcal{Z}_{N}^{*}$, takes his message $m \in \mathcal{Z}_{N}^{*}$, and computes the blinded message

$$
c \equiv m \times r^{K} \quad(\bmod N)
$$

Signing. Sally simply signs the blinded message c as

$$
\breve{s}=S G_{k}(c) \equiv c^{k} \quad(\bmod N)
$$

The blind signature \breve{s} is sent to Henry.
Unblinding. Henry removes the random integer r by

$$
s=S G_{k}(m)=c \times r^{-1} \equiv m^{k} \quad(\bmod N)
$$

and gets Sally's signature.
Verification. Victor takes Sally's public information (N, K), the message \tilde{m}, and the signature \tilde{s} and checks whether

$$
V E R_{K}(\tilde{m}, \tilde{s})=\left(\tilde{s}^{K} \stackrel{?}{\equiv} \tilde{m} \quad(\bmod N)\right)
$$

Blind signatures can be generated without any special signature schemes. It is enough for Henry to use a secure hash function $h()$. To get a (blind) signature from Sally, Henry first compresses the message m. The digest $d=h(m)$ is sent to Sally. After signing the digest, Sally communicates the signature $S G_{k}(d)$ to Henry who attaches the message m to Sally's signature $S G_{k}(d)$. Note that knowing the digest, Sally cannot recover the message m as the hash function is one way. Also Henry cannot cheat by attaching a "false" message unless he can find collisions in the hash function.

7.6 Undeniable Signatures

Chaum and van Antwerpen [92] introduced undeniable signatures. Their main feature is that Victor cannot verify a signature without Sally's co-operation. The co-operation takes form of a challengeresponse interaction. Victor sends a challenge to Sally. Sally answers with her response. Victor takes Sally's response and verifies the signature. If the signature is authentic the process ends.

What happens if the verification fails ? There are two possibilities: (1) the signature is indeed a fraud, or (2) Sally cheats by giving an "incorrect" response. To eliminate the case (2), undeniable signatures have to have a disavowal protocol which is run only after verification failures.

Chaum-van Antwerpen Signatures

Initialisation. The security of the scheme is based on intractability of discrete logarithm. Sally selects a large prime modulus p such that $p-1=2 q$ where q is prime. She also takes an element g which generates the cyclic group G of order q. Next she chooses at random her secret $k(0<k<q)$ and computes the public key $K \equiv g^{k}(\bmod p)$. The triple (K, g, p) is Sally's entry stored in the public registry.
Signing. For a message $m \in G$, Sally computes

$$
s=S G_{k}(m) \equiv m^{k} \quad(\bmod p)
$$

Verification.

Challenge. Victor selects two random integers $a, b \in \mathcal{Z}_{q}^{*}$ and sends the challenge

$$
c=s^{a} K^{b} \quad(\bmod p)
$$

to Sally.
Response. Sally computes $k^{-1}\left(k \times k^{-1} \equiv 1 \quad(\bmod q)\right)$ and sends back

$$
r=c^{k^{-1}} \equiv m^{a} \times g^{b} \quad(\bmod p)
$$

to Victor.
Test. Victor checks whether

$$
V E R_{K}(\tilde{m}, \tilde{r})=\left(\tilde{r} \stackrel{?}{\equiv} \tilde{m}^{a} g^{b} \quad(\bmod p)\right)
$$

If the test fails, Victor runs the disavowal protocol. Otherwise, the signature is accepted.

Disavowal Protocol.

- $(\mathrm{V} \rightarrow \mathrm{S})$ Victor selects randomly two $a_{1}, b_{1} \in \mathcal{Z}_{q}^{*}$ and sends $c_{1} \equiv s^{a_{1}} K^{b_{1}} \quad(\bmod p)$.
- $(\mathrm{S} \rightarrow \mathrm{V})$ Sally replies by sending $r_{1}=c_{1}^{k^{-1}}$.
- (TEST) Victor checks whether $r_{1} \not \equiv m^{a_{1}} g^{b_{1}}(\bmod p)$. If that is the case, the same process is repeated.
- $(\mathrm{V} \rightarrow \mathrm{S})$ Victor selects randomly two $a_{2}, b_{2} \in \mathcal{Z}_{q}^{*}$ and sends $c_{2} \equiv s^{a_{2}} K^{b_{2}}(\bmod p)$.
- $(\mathrm{S} \rightarrow \mathrm{V})$ Sally replies by sending $r_{2}=c_{2}^{k^{-1}}$.
- (TEST) Victor checks whether $r_{2} \not \equiv m^{a_{2}} g^{b_{2}}(\bmod p)$. He concludes that signature is a forgery if

$$
\left(r_{1} g^{-b_{1}}\right)^{a_{2}} \equiv\left(r_{2} g^{-b_{2}}\right)^{a_{1}} \quad(\bmod p)
$$

Otherwise, Sally cheats by giving inconsistent responses.
After signing the message, Sally may have second thoughts and try to modify either the message or the signature. The next theorem characterises her chances of success.

Theorem 7.1 If $s \not \equiv m^{k}(\bmod p)$, then Sally can provide a valid response with the probability q^{-1}.

Proof: We start from an observation that any two pairs $(a, b),\left(a^{\prime}, b^{\prime}\right)$ where $a \not \equiv a^{\prime}(\bmod q)$ or $b \not \equiv b^{\prime}$ $(\bmod q)$ create different challenges c and c^{\prime}. This statement can be proved by contradiction. Assume that $c \equiv c^{\prime} \quad(\bmod p)$. This implies that $s^{a} K^{b} \equiv s^{a^{\prime}} K^{b^{\prime}} \quad(\bmod p)$ or $s^{a-a^{\prime}} \equiv K^{b^{\prime}-b} \quad(\bmod p)$. If we represent $s=g^{\alpha}$ and $K=g^{\beta}$, then

$$
g^{\alpha\left(a-a^{\prime}\right)} \equiv g^{\beta\left(b^{\prime}-b\right)} \quad(\bmod p)
$$

and

$$
\alpha\left(a-a^{\prime}\right) \equiv \beta\left(b^{\prime}-b\right) \quad(\bmod q)
$$

So the above congruence is satisfied if $a \equiv a^{\prime}(\bmod q)$ and $b \equiv b^{\prime}(\bmod q)$. This is the requested contradiction.

For the challenge $c \equiv s^{a} K^{b} \quad(\bmod p)$, Sally has to reply with her response $r \equiv m^{a} g^{b} \quad(\bmod p)$. Because $s \not \equiv m^{k}(\bmod p)$ she cannot use c to produce the response according to the algorithm. As Sally does not know (a, b) and for any possible choice of (a, b) the response is different, her best strategy would be to select a random $x=0, \ldots, q-1$ and try to send $r \equiv g^{x} \quad(\bmod p)$ with the probability of success q^{-1}.

Consider the case when Sally follows the algorithm but the signature is a forgery, that is $s \not \equiv m^{k}$ $(\bmod p)$.

$$
\left(r_{1} g^{-b_{1}}\right)^{a_{2}} \equiv\left(r_{2} g^{-b_{2}}\right)^{a_{1}} \quad(\bmod p)
$$

Proof: Sally follows the algorithm and for Victor's challenges $c_{1} \equiv s^{a_{1}} K^{b_{1}} \quad(\bmod p)$ and $c_{2} \equiv s^{a_{2}} K^{b_{2}}$ $(\bmod p)$ replies with

$$
\begin{aligned}
& r_{1} \equiv s^{a_{1} k^{-1}} g^{b_{1}} \quad(\bmod p) \text { and } \\
& r_{2} \equiv s^{a_{2} k^{-1}} g^{b_{2}} \quad(\bmod p),
\end{aligned}
$$

respectively. After simple transformations we get

$$
\begin{aligned}
& s^{a_{1} k^{-1}} \equiv r_{1} g^{-b_{1}} \quad(\bmod p) \\
& s^{a_{2} k^{-1}} \equiv r_{2} g^{-b_{2}} \quad(\bmod p)
\end{aligned}
$$

Now if we rise the sides of the first congruence to the power a_{2} and the second congruence to the power a_{1}, we obtain the requested result.

Clearly, when Sally cheats by giving an invalid response she may succeed with the probability g^{-1}. So with the probability $\left(1-q^{-1}\right)$, she fails and Victor will run the disavowal protocol.

Theorem 7.3 Let Sally give responses inconsistent with the algorithm, then Victor will detect the lack of consistency with the probability $\left(1-q^{-1}\right)$ by running the disavowal protocol.

Proof: It is enough to note that first inconsistent response forces Sally to guess the unknown pair of $\left(a_{2}, b_{2}\right)$ in the second response. By Theorem (7.1) the result follows.

Consider an example. Sally initialises the scheme choosing the modulus $p=983$ with $q=491$. The primitive element of $G F(983)$ is $e=7$. This element gives a requested $g=e^{(p-1) / q}=7^{2}=49$. Finally, Sally randomly selects $k=375<491$, calculates $K=g^{k}=49^{375} \equiv 100(\bmod 983)$, and puts the triple $(K, g, p)=(100,49,983)$ into the public registry.
To sign, Sally takes her message $m=413$ and computes $s=S G_{k}(m)=413^{375} \equiv 349 \quad(\bmod 983)$. The pair (m, s) is published.
Victor picks up two random numbers $a=119$ and $b=227$ smaller than 491 and prepares his challenge $c=s^{a} K^{b}=349^{119} 375^{227} \equiv 884 \quad(\bmod 983)$.
Sally follows the algorithm and replies with $r=c^{k^{-1}}=884^{182} \equiv 32 \quad(\bmod 983)$ where $k^{-1}=182$. Victor computes $m^{a} g^{b}=413^{119} 49^{227} \equiv 32 \quad(\bmod 983)$ which matches Sally's response. The signature is authentic.

7.7 Fail-Stop Signatures

The concept was introduced by Pfitzmann and Waidner in [398]. Fail-stop signatures allow to protect the signatures against an opponent with unlimited computational power. The trick is that the signature is produced by a signer who has a single secret key. There are however many other keys which can be used to produce the same signature and match the public key. Thus there is a high probability that the key computed or guessed by powerful Oscar will be different from the one held by Sally.

Let k be a secret key known to Sally only and K be the public key. Then Sally's signature is $s=S G_{k}(m)$ for the message m. A fail-stop signature must satisfy the following conditions:
(1) An opponent with unlimited power can forge signature with a negligible probability. More precisely, if Oscar knows the pair $\left(s=S G_{k}(m), m\right)$ and Sally's public key K, he can create a collection of all keys $\mathcal{K}_{s, m}$ such that $k^{*} \in \mathcal{K}_{s, m}$ iff $s=S G_{k^{*}}(m)=S G_{k}(m)$. The size of $\mathcal{K}_{s, m}$ has to be exponential with the security parameter n. As Oscar does not know the secret k, he may only guess an element from $\mathcal{K}_{s, m}$. Let this element be k^{*}. Now if Oscar signs another message $m^{*} \neq m$, it is required that $s^{*}=S G_{k^{*}}\left(m^{*}\right) \neq S G_{k}\left(m^{*}\right)$ with an overwhelming probability.
(2) There is a polynomial-time algorithm which for the input: a secret key k, a public key K, a message m, a valid signature s and a forged signature s^{*}, returns a proof of forgery.
(3) Sally with polynomially bounded computing power cannot construct a valid signature which she can later deny by proving it to be a forgery.

Clearly, after Sally has provided a proof of forgery, the scheme is considered to be compromised and is no longer used. That is why it is called "fail-stop".

We are going to discuss a scheme invented by van Heyst and Pedersen [242]. Their scheme can be used to sign a single message and verify the signature many times.
Initialisation. The security of the scheme is based on intractability of discrete logarithm. Sally chooses a prime modulus $p\left(p-1=2 q\right.$ where q is prime) and an element $g \in \mathcal{Z}_{p}$ of order q. She further chooses at random $k=\left(r, a_{1}, a_{2}, b_{1}, b_{2}\right) \in \mathcal{Z}_{q}^{5}$ and computes

$$
\begin{aligned}
R & \equiv g^{r} \quad(\bmod p) \\
A & \equiv g^{a_{1}} R^{a_{2}} \quad(\bmod p) \\
B & \equiv g^{b_{1}} R^{b_{2}} \quad(\bmod p)
\end{aligned}
$$

Next she sends $K=(g, p, R, A, B)$ to the public registry while k is kept secret.
Signing. For a message m, Sally produces

$$
s=S G_{k}(m)=\left(\beta_{1}, \beta_{2}\right)
$$

where $\beta_{1} \equiv a_{1}+m b_{1}(\bmod q)$ and $\beta_{2} \equiv a_{2}+m b_{2} \quad(\bmod q)$.
Verification. Victor takes the signature $\tilde{s}=\left(\tilde{\beta_{1}}, \tilde{\beta_{2}}\right)$, message \tilde{m}, and the public key K and checks whether

$$
V E R_{K}(\tilde{m}, \tilde{s})=\left(A B^{\tilde{m}} \stackrel{?}{\equiv} g^{\tilde{\beta_{1}}} R^{\tilde{\beta_{2}}} \quad(\bmod p)\right)
$$

Proof of Forgery. Sally gets a forged signature $s^{\prime}=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)$ on message m. Then she computes

$$
\operatorname{PROOF}\left(s^{\prime}\right) \equiv\left(\beta_{1}-\beta_{1}^{\prime}\right)\left(\beta_{2}^{\prime}-\beta_{2}\right)^{-1} \quad(\bmod q)
$$

where $s=\left(\beta_{1}, \beta_{2}\right)$ is the original signature for m. After the proof is generated the scheme is no longer used.

Theorem 7.4 Let Oscar have an unlimited computational power. Then public information $K=$ (g, p, R, A, B) and the signature $s=\left(\beta_{1}, \beta_{2}\right)$ on a message m gives a system of four linear equations with q possible solutions for $\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$.

Proof: Denote $A=g^{e_{1}}$ and $B=g^{e_{2}}$ so

$$
\begin{aligned}
g^{e_{1}} & \equiv g^{a_{1}} g^{r a_{2}} \quad(\bmod p) \\
g^{e_{2}} & \equiv g^{b_{1}} g^{r b_{2}} \quad(\bmod p)
\end{aligned}
$$

which gives the first two congruences in the system given below.

$$
\begin{aligned}
e_{1} & \equiv a_{1}+r a_{2} \quad(\bmod q) \\
e_{2} & \equiv b_{1}+r b_{2} \quad(\bmod q) \\
\beta_{1} & \equiv a_{1}+m b_{1} \quad(\bmod q) \\
\beta_{2} & \equiv a_{2}+m b_{2} \quad(\bmod q)
\end{aligned}
$$

The system can be rewritten as

$$
\left[\begin{array}{l}
e_{1} \\
e_{2} \\
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & r & 0 & 0 \\
0 & 0 & 1 & r \\
1 & 0 & m & 0 \\
0 & 1 & 0 & m
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
b_{1} \\
b_{2}
\end{array}\right]
$$

Clearly, Oscar knows r as he has unlimited power and can solve the corresponding discrete logarithm instance. The coefficient matrix in the system has rank three - it means that Oscar deals with q possible solutions.

Theorem 7.5 Let $s=\left(\beta_{1}, \beta_{2}\right)$ be a signature on m and $s^{\prime}=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)$ - on a message $m^{\prime}\left(m \neq m^{\prime}\right)$. Then there is a single solution for $\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$.

Proof: As before we can get the following system of linear equations over $G F(q)$:

$$
\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\beta_{1} \\
\beta_{2} \\
\beta_{1}^{\prime} \\
\beta_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & r & 0 & 0 \\
0 & 0 & 1 & r \\
1 & 0 & m & 0 \\
0 & 1 & 0 & m \\
1 & 0 & m^{\prime} & 0 \\
0 & 1 & 0 & m^{\prime}
\end{array}\right] \times\left[\begin{array}{l}
a_{1} \\
a_{2} \\
b_{1} \\
b_{2}
\end{array}\right]
$$

This time the coefficient matrix has rank 4 and the system has a single solution.

Theorem 7.6 Let Sally get a forged signature $s^{\prime}=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)$ on the message m which passes the verification test $A B^{m} \equiv g^{\beta_{1}^{\prime}} R^{\beta_{2}^{\prime}}$ but $s^{\prime} \neq s=S G_{k}(m)$, then she can compute $\log _{g} R$.

Proof: The forged signature s^{\prime} passes the test

$$
A B^{m} \equiv g^{\beta_{1}^{\prime}} R^{\beta_{2}^{\prime}} \quad(\bmod p)
$$

but also the original signature

$$
A B^{m} \equiv g^{\beta_{1}} R^{\beta_{2}} \quad(\bmod p)
$$

so $g^{\beta_{1}^{\prime}} R^{\beta_{2}^{\prime}} \equiv g^{\beta_{1}} R^{\beta_{2}} \quad(\bmod p)$ which translates to

$$
g^{\beta_{1}-\beta_{1}^{\prime}} \equiv R^{\beta_{2}^{\prime}-\beta_{2}} \quad(\bmod p)
$$

Note that $\beta_{1}-\beta_{1}^{\prime} \not \equiv 0 \quad(\bmod q)$ and $\beta_{2}^{\prime}-\beta_{2} \not \equiv 0 \quad(\bmod q)$. This implies that

$$
r=\log _{g} R \equiv\left(\beta_{1}-\beta_{1}^{\prime}\right)\left(\beta_{2}^{\prime}-\beta_{2}\right)^{-1} \quad(\bmod q)
$$

and concludes our proof.

Take a simple example. Sally sets up the scheme for $p=9743$ with $q=4871$. A primitive element of $G F(9743)$ is $e=5$ so $g=5^{2}=25$. Let $r=3176$, then $R=g^{r}=5052$. Further she chooses four random integers from \mathcal{Z}_{q} so

$$
a_{1}=1953 ; a_{2}=2711 ; b_{1}=3998 ; b_{2}=833
$$

The public $A=25^{1953} 5052^{2711} \equiv 4299 \quad(\bmod 9743)$ and $B=25^{3998} 5052^{833} \equiv 6058(\bmod 9743)$. For a message $m=2164$, Sally computes $s=\left(\beta_{1}, \beta_{2}\right)=(2729,3053)$.
Victor takes message, signature and Sally's public information and checks whether $A B^{m}=4299$. $6058^{2164} \equiv 7528 \quad(\bmod 9743)$ is equal to $g^{\beta_{1}} R^{\beta_{2}}=25^{2729} 5052^{3053} \equiv 7528 \quad(\bmod 9743)$. Indeed the expressions are equal - the signature on the message is authentic.
Let Sally be given a forged signature $s^{\prime}=(1179,1529)$ on the message $m=2164$. Note that the signature passes the verification test as $g^{\beta_{1}^{\prime}} R^{\beta_{2}^{\prime}}=25^{1179} 5052^{1529} \equiv 7528 \quad(\bmod 9743)$. Sally should now be able to compute her secret key

$$
(2729-1179)(1529-3053)^{-1} \equiv 3176 \quad(\bmod 4871)
$$

This constitutes the proof that someone powerful enough has attacked the scheme.

7.8 Timestamping

In practice, legal documents have to have a clear timestamp to be legally valid. This apply especially when the documents are related to patents, copyrights, and in general to all cases where the time is an important factor to make a legal or other judgement. Without timestamp digital signatures can be subject to manipulations either by Oscar or Sally. A simple example of such manipulation is replay attack when an original message is repeated by an opponent. Timestamps provide

- the time when the document was seen, signed or processed. In this case, timestamps indicate the unique time intervals (time of the day, day, month and year),
- the logical time when the document was processed in the context of processing order of other documents. Logical clock provides integers which can be used to recover the correct order of messages processed. A logical clock can be implemented as a long enough counter which is incremented (or decremented) after processing each document,
- the unique label which can be attached to a document so the receiver always accepts only documents with different labels. Labels can be implemented using truly random number generators or pseudorandom number generators. Labels are also called nouns.

Obviously, the mentioned above classes of timestamps have different characteristics. The first class of timestamps indicates the precise point of time when the message was handled. These timestamps are generated from local clocks. Clearly, in distributed environment with many local (usually not synchronised) clocks it is difficult to compare two timestamps from two different local clocks.

The second class of timestamps gets around the problem of synchronisation by using a single logical clock which is used to mark the correct processing order of documents. This time all documents have to be handled by a single centre or alternatively a distributed handler of a document has to apply for a timestamp to the centre where the logical clock resides.

The third class of timestamps provides the receiver with a noun which can be used to detect copies of a document. Only the first occurrence of message with a noun is considered to be legal. All other copies are discarded. A random selection of a noun from a large enough population of integers is
enough to guarantee with a high probability that a given document will never be assigned the same timestamp. This method of timestamping is very popular in distributed environments. It does not require synchronisation. The uniqueness of timestamp hinges on a probabilistic argument. Nouns provide a convenient tool to distinguish the past from the present which is sufficient to detect replay attacks.

7.9 Problems and Exercises

1. Let the Rabin signature be produced using the DES encryption algorithm. Discuss the following points:

- what is the length of signatures for messages $m \in \Sigma^{64}$ and the parameter $r=80$?
- what is the probability that all keys will be revealed by the signer after ℓ independent verifications (verifiers select independently and randomly $\ell 2 r$-bit sequences) ?

2. Consider the Lamport signature which allows to $\operatorname{sign} n$-bit messages. The signature is the sequence of n secret keys corresponding to the particular pattern of bits in the message. Suppose that the signer was careless and signed two different messages using the same key setting. Show how the opponent, Oscar, can use the two signatures to sign other (forged) messages.
3. Take an instance of the RSA signature scheme with $p=839, q=983$ and $N=p \times q=824737$. Assume that the secret key is $k=132111$. Compute the public key K and sign the message $m=23547$.
4. Assume that signatures are produced using the RSA scheme with the modulus $N=824737$ and the public key $K=26959$.

- recover the message m from the signature $s=8798$,
- is the pair $(m, s)=(167058,366314)$ valid ?
- knowing two pairs $(m, s)=(629489,445587)$ and $\left(m^{\prime}, s^{\prime}\right)=(203821,229149)$, compute the signatures for $m \times m^{\prime}$.

5. Given an instance of the ElGamal signature scheme for the modulus $p=45707$, the primitive element $g=41382$.

- Sign the message $m=12705$ for the secret key $k=38416$ and the random $r=3169$,
- Verify the triple $(m, x, y)=(12705,16884,13633)$.

6. Show how Oscar can break the ElGamal signature if Sally has produced two signatures for two different messages using the same random integer r.
7. Consider an instance of the DSS scheme for the following parameters: the modulus $p=35023$ with $q=449$ and an integer $g=4781$ (a q-th root of 1 modulo p).

- Compute the signature for the message $m=401$ provided $k=277$ and $r=168$.
- Verify whether $s=(x, y)=(262,266)$ is a signature of $m=401$ for $K=24937$?

8. Given an instance of the RSA blind signature. The public parameters of the signer are the modulus $N=17869$ and the public key $K=10117$.

- What is the secret key if you know that $p=107$ and $q=167$?
- Compute the blinded message $c \equiv m \times r^{K} \bmod N$ for $m=17040$ and $r=5593$, sign the blinded message c and extract the signature $s \equiv m^{k} \bmod N$ from c.
- Verify whether $s=13369$ is the signature of $m=17040$.

9. Modify the RSA blind signature when the holder of the message computes $c \equiv m \times r^{-K} \bmod N$. How does the holder extract the signature?
10. Suppose that Henry (the holder of messages) wishes to obtain RSA blind signatures for a sequence of messages (m_{1}, \ldots, m_{n}) where $m_{i} \in \mathcal{Z}_{N}^{*}$. What are security implications when Henry uses the same blinding integer r for all messages (instead of the prescribed random integer r selected independently for each message m_{i}) ?
11. Consider an instance of the Chaum-van Antwerpen signature for $p=1019, q=509, g=475, k=200$ and $K=807 \equiv g^{k} \bmod p$.

- sign the message $m=555$,
- assuming that the message $m=555$ and its signature is $s=842$, verify the pair . Generate a challenge c for the random pair $(a, b)=(20,411)$ and produce a suitable response.

Chapter 8

AUTHENTICATION

Authentication is one of basic cryptographic techniques. Its aim is to provide a receiver with some kind of a proof that the information comes from by the intended sender. In this chapter we are going to discuss authentication whose security is unconditional, i.e. its security is independent of the computational power of a potential attacker. Simmons wrote a good review on the subject in [468]. Stinson treated authentication in Chapter 10 of his book [488].

8.1 Active Opponents

Authentication systems involve three active parties: the sender (Alice), the receiver (Bob) and the opponent (Oscar). Alice transmits messages to Bob using a communication channel. The opponent, Oscar, controls the channel. Recall that in secrecy systems, Oscar is assumed to eavesdrop the conversation between Alice and Bob. He is a passive attacker who does not modify the stream of cryptograms sent over the channel. It is not difficult to realize that once Oscar has gained the control over the channel, he may become "active". Active opponents interfere with the contents of cryptograms transmitted via the channel. Here is the list of threats which may be launched by an active attacker:

1. Impersonation attack - Oscar initiates a communication with Bob by sending a forged cryptogram trying to convince Bob that the cryptogram has come from Alice.
2. Substitution attack - Oscar intercepts a cryptogram sent by Alice and replaces it by a different cryptogram which is subsequently transmitted to Bob. Again Oscar tries to deceive Bob by pretending that the forged cryptogram comes from Alice.
3. Spoofing attack - Oscar observes r different valid cryptograms sent by Alice and forms a forged cryptogram hoping that the cryptogram will be accepted by Bob as a valid one. This attack is also called spoofing of order r.

Authentication is used to thwart the above threats. Being more specific, we are going to investigate authentication systems which enable Bob to detect Oscar's attacks listed above with an overwhelming probability. Note that authentication systems we are going to consider in this Chapter, does not allow Bob to detect other possible active attacks such as replay of valid cryptograms, interference with the order of the transmitted valid cryptograms, duplication of one or more valid cryptograms, deletion of one or more valid cryptograms, delay of transmission, etc.

Because of the similarity between secrecy and authentication systems, there may be a temptation to use encryption for authentication. Assume that a message source (Alice) generates 64-bit messages and each message occurs with the probability 2^{-64}. Further, let the DES be used for encryption in the electronic codebook mode. The cryptographic key is known to Alice and Bob only. Cryptograms are conveyed via the channel to Bob who decrypts them. Oscar obviously does not know the cryptographic
key but can launch either impersonation, substitution or spoofing attack. Clearly, Oscar will be successful in any of these attacks - it is enough for him to choose a cryptogram at random and communicate it to Bob. Bob decrypts it and has to accept it as a genuine one! Oscar has attained his goal although he does not know the message which corresponds to the forged cryptogram.

The above scheme can be salvaged if Alice introduces a redundancy to the message source. Given the message source which generates 64 -bit messages. Assume that only 2^{32} messages are meaningful. The rest $2^{64}-2^{32}$ messages are meaningless. The meaningful messages occur with the uniform probability. The meaningless messages never occur. Now Oscar faces a harder task. If he applies the same strategy, that is, the random selection of a fraudulent cryptogram from the set of 2^{64} elements, the probability of Oscar's success is 2^{-32}. On the other hand, Bob detects with the probability $1-2^{-32}$ that Oscar cheats.

8.2 Model of Authentication Systems

The authentication theory emerged in late 1970's as a parallel branch to Shannon's theory of secrecy systems. The model described here follows Simmon's authentication model [470] and deals with authentication without secrecy. The set of all source states (messages) generated by the message

Figure 8.1: Diagram of authentication system
source is \mathcal{S}. The set of all codewords (cryptograms) is denoted by \mathcal{M}. The set of all encoding rules (keys) is \mathcal{E}. The set of all authentication tags is \mathcal{T}.
An authentication code or A -code is the collection $\langle\mathcal{S}, \mathcal{M}, \mathcal{E}\rangle$ such that for each source state $s \in \mathcal{S}$, an encoding rule $e \in \mathcal{E}$ assigns a tag $t \in \mathcal{T}$ or simply $t=e(s)$. The cryptogram $m=(s, t)$ so $\mathcal{M}=\mathcal{S} \times \mathcal{T}$. Denote also $|\mathcal{S}|=S,|\mathcal{E}|=E,|\mathcal{M}|=M$ and $|\mathcal{T}|=T$. A-codes with $\mathcal{M}=\mathcal{S} \times \mathcal{T}$ are also called Cartesian A-codes.

The authentication system described in Figure 8.1 works as follows. First, Alice and Bob agree on the encoding rule $e \in \mathcal{E}$ they are going to use. The rule is kept secret by the two parties. Let Alice want to send a message $s \in \mathcal{S}$ to Bob. She computes the tag $t=e(s)$ and sends the cryptogram $m=(s, t)$ to Bob via the insecure channel. Bob takes $m^{\prime}=\left(s^{\prime}, t^{\prime}\right)$ which may be modified during transmission, computes his tag $t^{\prime \prime}=e\left(s^{\prime}\right)$ using the message s^{\prime} and accepts the message s^{\prime} only if $t^{\prime \prime}=t^{\prime}$.

As the cryptograms are pairs of a clear message and a tag, Oscar can successfully attack the system if he finds the correct tag for a false message. Note that in the impersonation attack, Oscar knows the A-code only. His knowledge increases in the substitution attack as he additionally sees a single valid cryptogram. In the spoofing of order r, Oscar knows the A-code and r distinct valid cryptograms. In

$\mathcal{E} \backslash \mathcal{S}$	s_{1}	s_{2}
e_{1}	0	0
e_{2}	1	0
e_{3}	0	1
e_{4}	1	1

Table 8.1: Authentication matrix
all these attacks, Oscar's goal is to form a valid cryptogram (or tag) for a false message.
An A-code can be equivalently represented by an authentication matrix $B=\left[b_{i j}\right]$ with E rows and S columns. Rows are indexed by encoding rules. Columns are labeled by source states (messages). The entry in the intersection of the row e and the column s contains the $\operatorname{tag} t=e(s)$. The corresponding cryptogram is $m=(s, t)$.

Consider an A-code with $\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}, \mathcal{S}=\left\{s_{1}, s_{2}\right\}$ and $\mathcal{T}=\{0,1\}$. Clearly $\mathcal{M}=$ $\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$ with $m_{1}=\left(s_{1}, 0\right), m_{2}=\left(s_{1}, 1\right), m_{3}=\left(s_{2}, 0\right), m_{4}=\left(s_{2}, 1\right)$. The authentication matrix is presented in Table 8.1.

8.2.1 Elements of the Theory of Games

The theory of games ([39],[272]) investigates possible game strategies for two competing players A and B. Each player can make their move independently. For the player A, the collections of moves is \mathcal{X} and for B - the set \mathcal{Y}. The cardinality of sets \mathcal{X} and \mathcal{Y} are n_{1} and n_{2}, respectively. For every pair $(x, y) ; x \in \mathcal{X}, y \in \mathcal{Y}$, there is a value $g(x, y)$ which characterizes how much the player A wins or equivalently how much the player B looses. The matrix $G=\left[g_{x y}\right]$ is the matrix of the game.

The game processes as follows. The player A selects a row x of the matrix G while B (at the same time) chooses a column y. The value $g_{x y}$ is the gain of A (or the loss of B). Assume that the player A wants to gain as much as possible. If A is prudent he may first compute the smallest entry in each row and select the one which gives the biggest gain, that is the row with the gain at least

$$
\begin{equation*}
\max _{x} \min _{y} g_{x y} \tag{8.1}
\end{equation*}
$$

On the other hand, B may first calculate the largest value in each column and select the one with the smallest value. This choice guarantees that no matter what A selects, B will never loose more than

$$
\begin{equation*}
\min _{y} \max _{x} g_{x y} \tag{8.2}
\end{equation*}
$$

When the matrix of the game G is such that

$$
\max _{x} \min _{y} g_{x y}=\min _{y} \max _{x} g_{x y}=v
$$

then the game has the point of equilibrium and the value v is the value of the game. A player who apply a pure strategy always decides on the single move (row/column).

Players may choose moves in more complex way using so-called mixed strategies. This time players attach probabilities (or weights) to each their moves and select the current move probabilistically. Assume that the strategy of A is determined by the probability distribution $\pi=\left\{\pi_{x_{1}}, \ldots, \pi_{x_{n_{1}}}\right\}$ and the strategy of Y - by $\eta=\left\{\eta_{y_{1}}, \ldots, \eta_{y_{n_{2}}}\right\}$, where $\pi_{x_{i}}=P\left(x_{i}\right)$ and $\eta_{y_{j}}=P\left(y_{j}\right)$. It is easy to get an expression for the expected gain/loss

$$
\begin{equation*}
\text { payoff }_{\pi \eta}=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \pi_{x} \eta_{y} g_{x y} \tag{8.3}
\end{equation*}
$$

$\mathcal{E} \backslash \mathcal{M}$	m_{1}	m_{2}	m_{3}	m_{4}
e_{1}	1	0	1	0
e_{2}	0	1	1	0
e_{3}	1	0	0	1
e_{4}	0	1	0	1

Table 8.2: Incidence matrix
when the players A and B apply their strategies π and η, respectively. Denote

$$
v_{1}=\max _{\eta} \min _{\pi} \text { payoff }_{\pi \eta}
$$

and

$$
v_{2}=\min _{\pi} \max _{\eta} \text { payoff }_{\pi \eta}
$$

The fundamental theorem of rectangular games says that if $v_{1}=v_{2}$, then there are two mixed optimal strategies π^{*} and η^{*} such that

$$
v=\operatorname{payoff}_{\pi^{*} \eta^{*}}=v_{1}=v_{2}
$$

The value v is called the value of the game and the two strategies $\left(\pi^{*}, \eta^{*}\right)$ is the saddle point of the game.

8.2.2 Impersonation Game

An authentication system can be looked at as a game between two players. The first player consists of two communicants Alice and Bob. The second player is Oscar. Alice and Bob can select encoding rules to minimize Bob's chances for deception. On the other hand, Oscar can choose cryptograms according to a strategy which maximizes his chances for a successful deception of Bob. Communicants' strategy for the selection of encoding rules is determined by the probability distribution $\pi=\left\{\pi_{e} \mid\right.$ $e \in \mathcal{E}\}$ where π_{e} is the probability that Alice and Bob choose the encoding rule e (the row of the authentication matrix). Obviously, $\sum_{e \in \mathcal{E}} \pi_{e}=1$. Oscar's strategy is described by the probability distribution $\eta=\left\{\eta_{m} \mid m \in \mathcal{M}\right\}$ where η_{m} is the probability that Oscar selects cryptogram m (where $\sum_{m \in \mathcal{M}} \eta_{m}=1$).

After both the communicants and opponent have made their choices about the encoding rule e and the fraudulent cryptogram $m=(s, t)$, Oscar wins only if the $\operatorname{tag} t^{\prime}$ in the row e and the column s of the authentication matrix B is equal to t. While considering the game model of authentication, it is convenient to define the so-called incidence matrix.
An incidence matrix is a binary matrix $A=\left[a_{e m}\right]\left(a_{e m} \in\{0,1\}\right)$ with E rows and M columns $(e \in \mathcal{E}$ and $m \in \mathcal{M}$). The entry $a_{e m}=1$ only if the cryptogram m is valid under the encoding rule e. Otherwise, the entry is zero.

For example, the incidence matrix of the authentication system illustrated in Table 8.1 is given in Table 8.2. Clearly, knowing the authentication matrix it is easy to construct the corresponding incidence matrix and vice versa.

Consider the impersonation attack where Oscar knows the A-code i.e. the incidence matrix. After the communicants (Alice and Bob) agree on their strategy π, it is possible to compute the conditional probability of Oscar's success provided he has chosen the fraudulent cryptogram m so

$$
\begin{equation*}
\operatorname{payoff}_{\pi}(m)=\sum_{e \in \mathcal{E}} \pi_{e} a_{e m} \tag{8.4}
\end{equation*}
$$

The probability of Oscar's success never exceeds the values

$$
p_{0}^{\pi}=\max _{\eta} \sum_{m \in \mathcal{M}} \eta_{m} \text { payoff }_{\pi}(m) .
$$

Therefore, the optimal strategy π^{*} for Alice and Bob should minimize p_{0}^{π} that is

$$
\begin{aligned}
p_{0}^{\pi^{*}} & =\min _{\pi}\left(\max _{\eta} \sum_{m \in \mathcal{M}} \eta_{m} \text { payoff }_{\pi}(m)\right) \\
& =\min _{\pi}\left(\max _{\eta} \sum_{m \in \mathcal{M}} \sum_{e \in \mathcal{E}} \pi_{e} \eta_{m} a_{e m}\right)
\end{aligned}
$$

Similarly, Oscar can compute the conditional probability of his success provided the communicants have selected the encoding rule $e \in \mathcal{E}$ which is

$$
\operatorname{payoff}_{\eta}(e)=\sum_{m \in \mathcal{M}} \eta_{m} a_{e m}
$$

The probability never drops below the value

$$
p_{o}^{\eta}=\min _{\pi} \sum_{e \in \mathcal{E}} \pi_{e} \text { payoff }_{\eta}(e) .
$$

The optimal strategy η^{*} for Oscar should maximize p_{o}^{η} so

$$
\begin{aligned}
p_{0}^{\eta^{*}} & =\max _{\eta}\left(\min _{\pi} \sum_{e \in \mathcal{E}} \pi_{e} \operatorname{payoff}_{\eta}(e)\right) \\
& =\max _{\eta}\left(\min _{\pi} \sum_{m \in \mathcal{M}} \sum_{e \in \mathcal{E}} \pi_{e} \eta_{m} a_{e m}\right) .
\end{aligned}
$$

Note that $A=\left[a_{e m}\right]$ is the incidence matrix of the game. According to the fundamental theorem of rectangular games if there is the saddle point of the game then $p_{0}=p_{0}^{\pi^{*}}=p_{0}^{\eta^{*}}=p_{0}^{\pi^{*} \eta^{*}}$.

An A-code is perfect under the impersonation if the value p_{0} of the impersonation game is independent of Oscar's strategy η.

Theorem 8.1 (Simmons [465] [466]) An A-code is perfect under the impersonation if and only if there is a communicants' strategy π such that

$$
p_{0}=\text { payoff }_{\pi}(m)=\frac{S}{M}=\frac{1}{T}
$$

Consider the A-code given by Table 8.1. Assume that the strategy $\pi=\left\{\pi_{e_{1}}, \pi_{e_{2}}, \pi_{e_{3}}, \pi_{e_{4}}\right\}=$ $\{1 / 2,1 / 4,1 / 8,1 / 8\}$. The conditional probabilities are equal to

$$
\begin{aligned}
& \operatorname{payoff}_{\pi}\left(m_{1}\right)=1 / 2+1 / 8=5 / 8 \\
& \text { payoff }_{\pi}\left(m_{2}\right)=1 / 4+1 / 8=3 / 8 \\
& \text { payoff }_{\pi}\left(m_{3}\right)=1 / 2+1 / 4=3 / 4 \\
& \text { payoff }_{\pi}\left(m_{4}\right)=1 / 8+1 / 8=1 / 4
\end{aligned}
$$

The probability of success for Oscar is at most $5 / 8$. If the communicants use another strategy, say $\pi^{*}=\{1 / 4,1 / 4,1 / 4,1 / 4\}$, then all conditional probabilities payoff $\pi_{\pi^{*}}\left(m_{i}\right)=1 / 2$ for $i=1,2,3,4$. Note that the strategy π^{*} is optimal as the payoff does not depend on the Oscar's strategy.

8.2.3 Substitution Game

In the substitution attack, Oscar knows the A-code and a single valid cryptogram m. He tries to deceive Bob by sending him a fraudulent cryptogram m^{\prime}. The probability of Oscar's success called payoff is

$$
\begin{align*}
\operatorname{payoff}_{\pi}\left(m, m^{\prime}\right) & =P\left(m^{\prime} \text { valid } \mid m \text { received }\right) \\
& =\frac{P\left(m^{\prime} \text { valid, } m \text { received }\right)}{P(m \text { received })} \tag{8.5}
\end{align*}
$$

For simplicity, denote that $P(m)=P(m$ received $)$. This probability can be computed as follows:

$$
P(m)=\sum_{e \in \mathcal{E}} P(m, e)
$$

Some pairs (m, e) never happen - this can be conveniently expressed using the entries of the incidence matrix so $P(m)=\sum_{e \in \mathcal{E}} a_{e m} P(m, e)$. Note that $P(m, e)=P(e) P(m \mid e)=\pi_{e} P(m \mid e)$. The probability $P(m \mid e)$ is equal to the probability $P_{\mathcal{S}}(s)$ that the message source has generated a message s such that $m=(s, e(s))$. Therefore $P(m)=\sum_{e \in \mathcal{E}} a_{e m} \pi_{e} P_{\mathcal{S}}(m, e)$. The probability $P(m \mid$ $e)=P_{\mathcal{S}}(m, e)$ as the pair (m, e) uniquely determines the message s.

The probability $P\left(m^{\prime}\right.$ valid, m received) can be transformed in similar way and

$$
\begin{aligned}
P\left(m^{\prime} \text { valid, } m \text { received }\right) & =\sum_{e \in \mathcal{E}} P\left(m^{\prime} \text { valid, } m \text { received }, e\right)= \\
& =\sum_{e \in \mathcal{E}} \pi_{e} P\left(m^{\prime} \text { valid, } m \text { received } \mid e\right) \\
& =\sum_{e \in \mathcal{E}} \pi_{e} a_{e m} a_{e m^{\prime}} P_{\mathcal{S}}(m, e)
\end{aligned}
$$

Finally, we get

$$
\begin{equation*}
\operatorname{payoff}_{\pi}\left(m, m^{\prime}\right)=\frac{\sum_{e \in \mathcal{E}} \pi_{e} a_{e m} a_{e m^{\prime}} P_{\mathcal{S}}(m \mid e)}{P(m)} \tag{8.6}
\end{equation*}
$$

After interception of cryptogram m, Oscar can choose a fraudulent cryptogram m^{\prime} from ($M-1$) possibilities. His choice can be described in the form of an assignment $z: \mathcal{M} \rightarrow \mathcal{M}$. The assignment can be represented as

intercepted cryptogram		fraudulent cryptogram
m_{1}	\rightarrow	$m_{1}^{\prime}\left(m_{1}^{\prime} \neq m_{1}\right)$
\vdots		\vdots
m_{M}		$m_{M}^{\prime}\left(m_{M}^{\prime} \neq m_{M}\right)$

or briefly $z(m)=m^{\prime}$. There are $(M-1)^{M}$ possible assignments. Let the set $\mathcal{Z}=\left\{z_{i} \mid i=1, \ldots,(M-\right.$ 1) $\left.{ }^{M}\right\}$ contain all assignments Oscar may ever apply. Obviously, he will have some preferences for some assignments. His strategy (preferences) is determined by the probability distribution

$$
\begin{equation*}
\eta=\left\{\eta_{z} \mid z \in \mathcal{Z}\right\} \tag{8.7}
\end{equation*}
$$

where η_{z} is the probability that Oscar chooses z as his substitution assignment (note that $\sum_{z \in \mathcal{Z}} \eta_{z}=$ 1). The probability of Oscar's success when he uses the assignment $z \in \mathcal{Z}$ is

$$
\begin{equation*}
p_{1}^{\pi}(z)=\sum_{m \in \mathcal{M}} P(m) \operatorname{payoff}_{\pi}\left(m, m^{\prime}\right) \tag{8.8}
\end{equation*}
$$

where $m^{\prime}=z(m)$. The probability of Oscar's success when he applies the strategy η is

$$
\begin{equation*}
p_{1}^{\eta \pi}=\sum_{z \in \mathcal{Z}} \eta_{z} p_{1}^{\pi}(z)=\sum_{z \in \mathcal{Z}} \eta_{z} \sum_{m \in \mathcal{M}} P(m) \text { payoff }_{\pi}\left(m, m^{\prime}\right) \tag{8.9}
\end{equation*}
$$

Substituting payoff by equation (8.6), we obtain

$$
p_{1}^{\eta \pi}=\sum_{z \in \mathcal{Z}} \sum_{m \in \mathcal{M}} \sum_{e \in \mathcal{E}} \eta_{z} \pi_{e} a_{e m} a_{e m^{\prime}}^{\prime} P_{\mathcal{S}}(m, e)=\sum_{z \in \mathcal{Z}} \sum_{e \in \mathcal{E}} \eta_{z} \pi_{e} \sum_{m \in \mathcal{M}} a_{e m} a_{e m} P_{\mathcal{S}}(m, e)
$$

Note that $g(e, z)=\sum_{m \in \mathcal{M}} a_{e m} a_{e m} P_{\mathcal{S}}(m, e)$ are entries of the game matrix G with E rows and $(M-1)^{M}$ columns, where $m^{\prime}=z(m)$ and $A=\left[a_{e m}\right]$ is the incidence matrix of the A-code. Thus the optimal strategy for Oscar would be η^{*} such that

$$
\begin{equation*}
p_{1}^{\eta^{*}}=\max _{\eta}\left(\min _{\pi} \sum_{e \in \mathcal{E}} \sum_{z \in \mathcal{Z}} \pi_{e} \eta_{z} g(e, z)\right) \tag{8.10}
\end{equation*}
$$

On the other hand the optimal Alice and Bob's strategy would be π^{*} and

$$
\begin{equation*}
p_{1}^{\pi^{*}}=\min _{\pi}\left(\max _{\eta} \sum_{e \in \mathcal{E}} \sum_{z \in \mathcal{Z}} \pi_{e} \eta_{z} g(e, z)\right) \tag{8.11}
\end{equation*}
$$

If $p_{1}^{\eta^{*}}=p_{1}^{\pi^{*}}$, then the fundamental theorem of rectangular games assures the existence of two optimal strategies for the players (the saddle point). The value of the game for these two strategies is $p_{1}=$ $p_{1}^{\eta^{*}}=p_{1}^{\pi^{*}}$. The value p_{1} expresses also the probability of substitution by Oscar.

An authentication code is perfect for the substitution attack if the value of the substitution game for the optimal communicants' strategy does not depend on Oscar's strategy. The next theorem characterizes perfect A-codes.

Theorem 8.2 (Massey [316]) An A-code is perfect under substitution if and only if there is a communicants' strategy π such that payoff $\left(m, m^{\prime}\right)$ is constant for every pair $\left(m, m^{\prime}\right) \in \mathcal{M}^{2}$. The value of the substitution game is $p_{1}=\operatorname{payoff}_{\pi}\left(m, m^{\prime}\right)$.

As we deal with authentication without secrecy, the requirement that $m \neq m^{\prime}$ translates to $s \neq s^{\prime}$ where $m=(s, t)$ and $m^{\prime}=\left(s^{\prime}, t^{\prime}\right)$. It is not difficult to observe that if the payoff function is constant for every pair $s \neq s^{\prime}$, all tags are equally probable and $p_{1}=T^{-1}$.

8.2.4 Spoofing Game

The substitution game can be generalized to a spoofing game. In the spoofing game, the communicants, Alice and Bob, play against the opponent Oscar. Oscar knows the A-code applied and sees r different valid cryptograms sent over the channel. He chooses a fraudulent cryptogram m^{\prime} (the cryptogram has to be different from all cryptograms observed) and tries to deceive Bob so he will accept m^{\prime} as the valid cryptogram. The spoofing game can be analysed in similar way to the analysis of the substitution game. If the spoofing game has a saddle point, then the value of the game denoted by p_{r} is determined by the following theorem.

Theorem 8.3 If the spoofing game is defined by an A-code, then

$$
\begin{equation*}
p_{r} \geq \frac{1}{T} . \tag{8.12}
\end{equation*}
$$

The equality holds if and only if for any sequence of r observed cryptograms ($m^{r} \in \mathcal{M}^{r}$) and any fraudulent cryptogram m^{\prime} (m^{\prime} is different from the observed cryptograms)

$$
\begin{equation*}
\operatorname{payoff}\left(m^{r}, m^{\prime}\right)=\frac{1}{T} \tag{8.13}
\end{equation*}
$$

An A-code is r-fold secure against spoofing if the game values for impersonation, substitution and all spoofing games are

$$
p_{i}=\frac{1}{T}
$$

where $i=0,1, \ldots, r$. Recall that game values are equivalent to the probability of deception or Oscar's success.

8.3 Information Theoretic Bounds

Bounds for probabilities $p_{i}(i=0,1, \ldots, r)$ can be derived using entropies. Let $H(E)=-\sum_{e \in \mathcal{E}} P(e)$ $\log _{2} P(e)$ is the entropy of the random variable with the probability distribution $\{P(e) \mid e \in \mathcal{E}\}$ over the set \mathcal{E}. Similarly, $H(M)$ and $H(S)$ are entropies of cryptograms and messages, respectively.

Simmons [465] proved that the impersonation probability

$$
\begin{equation*}
p_{0} \geq 2^{-(H(E)-H(E \mid M))} \tag{8.14}
\end{equation*}
$$

This bound was refined by Johansson and Sgarro in [263] and

$$
\begin{equation*}
p_{0} \geq 2^{-i n f(H(E)-H(E \mid M))} \tag{8.15}
\end{equation*}
$$

where inf stands for infimum that is the greatest lower bound. The infimum is taken over all source statistics that do not change the set of pairs (m, e) for which $P(m, e) \neq 0$.

In 1974 Gilbert, MacWilliams, and Sloane [200] considered a general class of A-codes without secrecy and proved that the probability of substitution

$$
\begin{equation*}
p_{1} \geq E^{-1 / 2} \tag{8.16}
\end{equation*}
$$

Now we are going to generalize the bound (8.16) for the case of spoofing of order r. To simplify our considerations we assume that

1. the message source generates source states with the uniform probability i.e. $P(s)=1 / S$ for $s \in \mathcal{S}$,
2. Oscar selects the fraudulent cryptogram m^{\prime} that maximizes the probability $P\left(m^{\prime}\right.$ is valid $\left.\mid m^{r}\right)$. The average probability p_{r} of Oscar's success is

$$
p_{r}=\sum_{m^{r} \in \mathcal{M}^{r}} P\left(m^{r}\right) \max _{m^{\prime}} P\left(m^{\prime} \text { is valid } \mid m^{r}\right)
$$

First we observe that

$$
\begin{equation*}
p_{r} \geq 2^{-H\left(M^{\prime} \mid M^{r}\right)} \tag{8.17}
\end{equation*}
$$

where $H\left(M^{\prime} \mid M^{r}\right)$ is the conditional entropy of that the fraudulent cryptogram is valid provided r cryptograms have been seen. From the definition of the conditional entropy and properties of the logarithm, we get the following sequence of inequalities

$$
\begin{aligned}
H\left(M^{\prime} \mid M^{r}\right) & =-\sum_{m^{r} \in \mathcal{M}^{r}} \sum_{m^{\prime} \in \mathcal{M}} P\left(m^{\prime} \text { is valid, } m^{r}\right) \log _{2} P\left(m^{\prime} \text { is valid } \mid m^{r}\right) \\
& \geq-\sum_{m^{r} \in \mathcal{M}^{r}} \sum_{m^{\prime} \in \mathcal{M}} P\left(m^{\prime} \text { is valid, } m^{r}\right) \log _{2} \max _{m^{\prime}} P\left(m^{\prime} \text { is valid } \mid m^{r}\right) \\
& \geq-\log _{2} \sum_{m^{r} \in \mathcal{M}^{r}} \sum_{m^{\prime} \in \mathcal{M}} P\left(m^{\prime} \text { is valid, } m^{r}\right) \max _{m^{\prime}} P\left(m^{\prime} \text { is valid } \mid m^{r}\right) \\
& =-\log _{2} p_{r}
\end{aligned}
$$

This sequence produces the requested inequality (8.17).
Secondly, we will show that

$$
H\left(M^{\prime} \mid M^{r}\right) \leq \frac{H(E)}{r+1}
$$

Note that $H(E) \geq H\left(E \mid S^{r}\right)$. As the pair: message and encoding rule, assigns the unique cryptogram so $H\left(E \mid S^{r}\right)=H\left(E, M^{r} \mid S^{r}\right)$ so

$$
H(E) \geq H\left(E, M^{r} \mid S^{r}\right)
$$

Using the properties of the entropy, we obtain

$$
H\left(E, M^{r} \mid S^{r}\right)=H\left(M^{r} \mid S^{r}\right)+H\left(E \mid M^{r}, S^{r}\right)
$$

The knowledge of r cryptograms is sufficient to determine the corresponding r messages so $H(E \mid$ $\left.M^{r}, S^{r}\right)=H\left(E \mid M^{r}\right)$ and $H\left(E \mid M^{r}\right) \leq H(E)-H\left(M^{r} \mid S^{r}\right)$ Clearly,

$$
H\left(M^{\prime} \mid M^{r}\right) \leq H\left(E \mid M^{r}\right)
$$

as the uncertainty of encoding rules must be equal or bigger than the uncertainty associated with the decision about the fraudulent cryptogram. In other words, if the encoding rule is known so is the valid cryptogram. This means that

$$
\begin{equation*}
H\left(M^{\prime} \mid M^{r}\right) \leq H\left(E \mid M^{r}\right) \leq H(E)-H\left(M^{r} \mid S^{r}\right) \tag{8.18}
\end{equation*}
$$

The messages are independently and uniformly selected from the set \mathcal{S} so

$$
\begin{equation*}
H\left(M^{r} \mid S^{r}\right)=r H(M \mid S) \tag{8.19}
\end{equation*}
$$

There are two possible cases:
(1) $H(M \mid S) \geq \frac{H(E)}{r+1}$, then according to (8.18) and (8.19) we get

$$
\begin{equation*}
H\left(M^{\prime} \mid M^{r}\right) \leq \frac{H(E)}{r+1} \tag{8.20}
\end{equation*}
$$

(2) $H(M \mid S) \leq \frac{H(E)}{r+1}$, then $H\left(M^{\prime} \mid M^{r}\right)=H\left(M^{\prime} \mid M^{r}, S\right) \leq H(M \mid S) \leq \frac{H(E)}{r+1}$. This give the final bound for p_{r} and

$$
\begin{equation*}
p_{r} \geq 2^{-\frac{H(E)}{r+1}} \tag{8.21}
\end{equation*}
$$

This bound was proved independently by Fak [166] and Pieprzyk [400]. If the inequality (8.21) becomes equality then

- $E=2^{H(E)}$ and all encoding rules are equally probable,
- probabilities of deception $p_{0}=p_{1}=\ldots=p_{r}=\frac{1}{T}$,

More details about entropy bounds for spoofing can be found in ([166][400][428][439]).

8.4 Constructions of A-codes

Gilbert, MacWilliams, and Sloane [200] demonstrated that A-codes can be constructed using combinatorial designs. Projective spaces are combinatorial objects which may be used to construct A-codes. Also orthogonal arrays and error correcting codes provide tools for the design of A-codes.

\mathcal{M}	s_{1}		s_{2}		s_{3}			s_{4}	
$\mathcal{E} \backslash \mathcal{S}$	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}	m_{7}	m_{8}	
e_{1}	1	0	1	0	1	0	1	0	
e_{2}	0	1	1	0	1	0	0	1	
e_{3}	1	0	0	1	1	0	0	1	
e_{4}	0	1	0	1	1	0	1	0	
e_{5}	1	0	1	0	0	1	0	1	
e_{6}	0	1	1	0	0	1	1	0	
e_{7}	1	0	0	1	0	1	1	0	
e_{8}	0	1	0	1	0	1	0	1	

Table 8.3: The incidence matrix of an A-code designed in $P G(3,2)$

8.4.1 A-codes in Projective Spaces

An n-dimensional projective space $P G(n, q)$ over Galois field $G F(q)$ is a collection of points, lines, planes, and subspaces $P G(i, q)(i<n)$ such that

1. the number of all points in the space $P G(n, q)$ is $\kappa(n)=\frac{q^{n+1}-1}{q-1}=q^{n}+q^{n-1}+\ldots+q+1$,
2. each subset of $(n-r)$ linearly independent equations constitutes a projective subspace $P G(r, q)$. The number of all different subspaces of dimension r contained in $P G(n, q)$ is

$$
\kappa(r, n)=\frac{\kappa(n) \kappa(n-1) \cdots \kappa(n-r)}{\kappa(r) \kappa(r-1) \cdots \kappa(2) \kappa(1) \kappa(0)}
$$

The implementation of $\langle\mathcal{S}, \mathcal{M}, \mathcal{E}\rangle$ A-code using the projective space $P G(N, q)$ applies the following assignments ([400]):

- messages $s \in \mathcal{S}$ are projective subspaces $P G(N-2, q)$ of $P G(N, q)$. Note that the message spaces are chosen so the intersection of any two arbitrary message spaces is a projective space $P G(N-3, q)$ and in general the intersection of every ℓ message spaces creates a projective space $P G(N-(\ell+1), q)$,
- encoding rules $e \in \mathcal{E}$ are points,
- cryptograms $m \in \mathcal{M}$ are projective spaces $P G(N-1, q)$ spanned over the corresponding message space containing the point corresponding to the encoding rule,

The properties of the implementation are:

- the number of encoding rules $E=q^{N}$,
- the number of tags is $T=q$,
- N different pairs (message, cryptogram) uniquely determine the encoding rule applied and break the A-code,
- probabilities of deception are $p_{0}=p_{1}=\ldots=p_{r}=q^{-1}$ for $r=1,2, \ldots, N-1$,

The projective space $P G(3,2)$ can be used to construct a simple A-code with four messages, eight cryptograms, two tags whose incidence matrix is given in Table 8.3. If Oscar sees the cryptogram m_{4}, he knows that the encoding rule $e \in\left\{e_{3}, e_{4}, e_{7}, e_{8}\right\}$. If he wants to send a fraudulent cryptogram for

$\mathcal{E} \backslash \mathcal{M}$	s_{1}	s_{2}	s_{3}	s_{4}
e_{1}	0	0	0	0
e_{2}	0	1	1	2
e_{3}	0	2	2	1
e_{4}	1	0	1	1
e_{5}	1	1	2	0
e_{6}	1	2	0	2
e_{7}	2	0	2	2
e_{8}	2	1	0	1
e_{9}	2	2	1	0

Table 8.4: The authentication matrix of an A-code based on $O A_{1}(2,4,3)$
s_{4}, he has to choose either m_{7} or m_{8} - both cryptograms are equally probable. If Oscar observes the second cryptogram m_{5}, he knows that the encoding rule is in the set $e \in\left\{e_{3}, e_{4}\right\}$. This observation does not help him in deciding what is the cryptogram for s_{4} - he still has two equally probable candidates. Any other third observation breaks the A-code and allows Oscar to determine the encoding rule used.

8.4.2 A-codes and Orthogonal Arrays

Orthogonal arrays $(O A)$ are combinatorial designs which are ideally suited for the design of A-codes without secrecy (Cartesian A-codes). There is also a strong relation between orthogonal arrays and projective spaces. Indeed, one of the general methods used to construct orthogonal arrays applies projective spaces.

Definition 8.1 An orthogonal array $O A_{\lambda}(t, n, k)$ is a $\lambda k^{t} \times n$ array of k symbols such that for any t columns of the array, every one of the possible k^{t} ordered t-tuples of symbols occurs in exactly λ rows.

Assume we assign elements of an A-code to components of $O A$ as follows:

- an encoding rule identifies the unique row,
- a message (source state) labels the unique column,
- a tag is a symbol.

Clearly, we can conclude that for every $O A$ there is the corresponding Cartesian A-code.
Theorem 8.4 (Stinson [487]) Given an orthogonal array $O A_{\lambda}(t, n, k)$, then there is a Cartesian A code $\langle\mathcal{S}, \mathcal{M}, \mathcal{E}\rangle$ such that $E=\lambda k^{t}, S=n, T=k, M=n k$, and the probabilities of deception $p_{i}=T^{-1}=k^{-1}$ for $i=0,1, \ldots, t-1$.

Consider $O A_{1}(2,4,3)$. It can be used to design an A-code of the form given in Table 8.4. If Oscar observes the cryptogram $\left(s_{3}, 2\right)$, he can deduce that the applied encoding rule $e \in\left\{e_{3}, e_{5}, e_{7}\right\}$. His chances of success are no better than random selection of a tag from the set $\{0,1,2\}$ for any fraudulent cryptogram. Any other second observation breaks the A-code.

Theorem (8.4) asserts that any orthogonal array corresponds to an A-code. In many practical situations we would like to know whether a given A-code can be obtained from an orthogonal array. More precisely, we know the set of source states \mathcal{S} and require the deception probabilities to be smaller than $\varepsilon\left(p_{i} \leq \varepsilon\right.$ for $\left.i=0,1, \ldots, r\right)$. We are looking for an $O A$ which produces an A-code whose construction is in a sense "minimal" i.e. contains the smallest possible collection of tags and
encoding rules and satisfies the imposed conditions. This problem can be translated into the language of Combinatorics. Given the parameter n and conditions $t \geq r+1$, and $k \geq \varepsilon^{-1}$. What is the "smallest" $O A_{\lambda}(t, n, k)$? A discussion of this problem can be found in [488].

8.4.3 A-codes Based on Error Correcting Codes

Error correcting codes (E-codes) were invented to detect and hopefully correct errors that occurred during the transmission of messages via a noisy channel ([314]).

Given a vector space \mathcal{V}_{n} over $G F(q)$. A vector $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{V}_{n}$ contains n co-ordinates from $G F(q)\left(v_{i} \in G F(q)\right.$ for $\left.i=1, \ldots, n\right)$. The Hamming distance between two vectors $x, y \in \mathcal{V}_{n}$ is the number of co-ordinates in which the two vectors differ. The number is denoted by $d(x, y)$.
An $(n, \ell, d) E$-code is a set of ℓ vectors from \mathcal{V}_{n} such that the Hamming distance between any two vectors is at least d. The set of all codewords is denoted \mathcal{C}. Clearly $|\mathcal{C}|=\ell$.

Johansson, Smeets, and Kabatianskii [264] investigated the relation between A-codes and E-codes. Their observations are summarized in the following two theorems. The first theorem indicates how A-codes with the requested probability of substitution p_{1} can be implemented using E-codes.

Theorem 8.5 Given a $\langle\mathcal{S}, \mathcal{M}, \mathcal{E}\rangle A$-code with uniform selection of both messages and encoding rules and with the probabilities $p_{0}=T^{-1}$ and $p_{1}=\varepsilon$. Then there exists a corresponding $(n, \ell, d) E$-code with the parameters $n=E, \ell=q(q-1) S+q$ and $d=E(1-\varepsilon)$.

The next theorem identifies a class of E-codes which corresponds to A-codes with protection against substitution.

Theorem 8.6 Assume there is an E-code \mathcal{C} over $G F(q)$ with parameters (n, ℓ, d) such that if $c \in \mathcal{C}$ then $c+\lambda \mathbf{1} \in \mathcal{C}$ for all $\lambda \in G F(q)$. Then there exists a corresponding Cartesian A-code $\langle\mathcal{S}, \mathcal{M}, \mathcal{E}\rangle$ with parameters $S=\ell q^{-1}, E=n q$ and probabilities $p_{0}=q^{-1}, p_{1}=1-\frac{d}{n}$.

In contrast to combinatorial designs, E-codes offer an relatively efficient implementation tool for A-codes that are perfect under substitution.

8.5 General A-codes

If we drop the restriction on the set of cryptograms then the general A-code is a collection $\langle\mathcal{S}, \mathcal{M}, \mathcal{E}\rangle$ with $M \geq S$. As previously, the active opponent Oscar has access to the communication channel. Alice sends to Bob pairs: a message s and the corresponding cryptogram m. After receiving the pair (s^{\prime}, m^{\prime}) from the channel and knowing the secret encoding rule, Bob recovers the message from the cryptogram m^{\prime} and compares it with the message s^{\prime}. If they are equal, he accepts the pair as genuine. Oscar may try impersonation, substitution, or spoofing attacks. General A-codes can also be analysed using the game model. As previously, the spoofing game (which covers also impersonation and substitution) is played between communicants (Alice and Bob) and the opponent (Oscar). Oscar knows the A-code (the authentication matrix is public) and observes r pairs of (message, cryptogram).

An A-code is r-fold secure against spoofing if the values of the games p_{i} (or probabilities of deception) are

$$
p_{i}=\frac{S-i}{M-i}
$$

for $i=0, \ldots, r$. Readers interested in details of game model are referred to ([465],[466], [468]). The combinatorial nature of A-codes is studied in ([438], [483], [484], [485]). Bounds for probabilities of deception are investigated in ([30], [263], [262], [428], [474], [509]). A-codes and their resistance against spoofing are examined in ([436], [437], [499]).

$\mathcal{E} \backslash \mathcal{S}$	s_{1}	s_{2}	s_{3}
e_{1}	1	2	3
e_{2}	2	3	1
e_{3}	3	1	2
e_{4}	1	3	2
e_{5}	3	2	1
e_{6}	2	1	3

Table 8.5: Authentication matrix

$\mathcal{E} \backslash \mathcal{M}$	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}
e_{1}	0	0	0	1	1	1
e_{2}	0	0	1	0	1	1
e_{3}	0	0	1	1	0	1
e_{4}	0	1	0	0	1	1
e_{5}	0	1	0	1	0	1
e_{6}	0	1	1	0	1	0
e_{7}	0	1	1	1	0	0
e_{8}	1	0	0	1	1	0
e_{9}	1	0	1	0	0	1
e_{10}	1	0	1	0	1	0
e_{11}	1	0	1	1	0	0
e_{12}	1	1	0	0	0	1
e_{13}	1	1	0	0	1	0
e_{14}	1	1	0	1	0	0

Table 8.6: Incidence matrix

8.6 Problems and Exercises

1. Given an A-code in the form of its authentication matrix shown in Table 8.5. Determine the set of encoding rules \mathcal{E}, the set of tags \mathcal{T}, the set of source states \mathcal{S} and the set of cryptograms \mathcal{M}. Assume that the communicants have agreed to use the encoding rule e_{3}. What are cryptograms for all possible messages ? Is the cryptogram $\left(s_{1}, 2\right)$ valid ?
2. Write an incidence matrix for the A-code given in Table 8.5.
3. Consider again the code in Table 8.5. Suppose that an attacker, Oscar knows that communicants' use the strategy

$$
\pi=\left(\pi_{e_{1}}, \ldots, \pi_{e_{6}}\right)=\left(\frac{1}{12}, \frac{3}{12}, \frac{1}{12}, \frac{4}{12}, \frac{2}{12}, \frac{1}{12}\right)
$$

What are conditional probabilities payoff ${ }_{\pi}\left(m_{i}\right)$ for all possible cryptograms m_{i} ? What are conditional probabilities payoff $\pi^{*}\left(m_{i}\right)$ when Alice and Bob select encoding rules with uniform probabilities (so $\pi^{*}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$) ? Disuss the results in the context of impersonation attack.
4. Table 8.2 shows an A-code with four cryptograms and four encoding rules. Analyse the code under the substitution attack. In particular, compute conditional probabilities payoff $\pi\left(m, m^{\prime}\right)$ for the two following strategies: $\pi=$ $\left(\frac{1}{8}, \frac{1}{8}, \frac{2}{8}, \frac{4}{8}\right)$ and $\pi^{*}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. Discuss possible strategies for Oscar.
5. The incidence matrix in Table 8.6 shows an A-code with fourteen encoding rules and six cryptograms. Analyse the code under the spoofing attack of order 2. Compute conditional probabilities payoff $\left(m, m^{\prime}, m^{\prime \prime}\right)=P\left(m^{\prime \prime}\right.$ valid \mid (m, m^{\prime}) received) for the strategy π^{*} in which communicants choose an encoding rule randomly and uniformly from all the candidates. Discuss Oscar's chances in the attack.
6. Design an A-code over the projective plane $P G(2,2)$. Note that number of points is 7 in $P G(2,2)$. Points are used as messages and encoding rules. If the number of encoding rules is 4 , the number of messages must be 3. Represent the A-code as the authentication and incidence matrices. Discuss the properties of the code for
the impersonation and substitution attacks. How many observations allow Oscar to find out the encoding rule applied?
7. Show that it is always possible to design an orthogonal array $O A_{1}(2, p, p)$ with p^{2} rows and p columns.

Hint: Let a row be labelled by a pair $(a, b) \in \mathcal{Z}_{p}^{2}$ and a column by an integer $c \in \mathcal{Z}_{p}$. For the row (a, b) and column c, define the array entry $a \cdot c+b$. Prove that the array is orthogonal (see [488] page 317). Design an orthogonal array $O A_{1}(2,5,5)$ and investigate its properties in the context of impersonation, substitution and spoofing attacks.

Chapter 9

SECRET SHARING

Secret sharing becomes indispensable whenever a secret information needs to be kept in n pieces so any t pieces allow to recreate the secret $(t<n)$. This is especially true if the storage is not reliable so there is a high likelihood that some pieces of information will be lost. Secret sharing is also useful if the owner of the secret does not trust any single person. Instead, the owner is ready to deposit the secret with a group so only a large enough subgroup of members can reconstruct the secret.

Secret sharing schemes were independently invented by George Blakley [40] and Adi Shamir [458]. Blakley used projective spaces while Shamir applied the Lagrange interpolation.

9.1 Threshold Secret Sharing

A (t, n) threshold secret sharing scheme distributes a secret among n participants in such a way that any t of them can recreate the secret. But any $t-1$ or fewer members gain no information about it. The piece held by a single participant is called a share or shadow of the secret. Secret sharing schemes are set up by a trusted authority who computes all shares and distributes them to participants via secure channels. The trusted authority who sets up the scheme is called a dealer. The participants hold their shares until some of them decide to pool their shares and recreate the secret. The recovery of the secret is done by the so-called combiner who on behalf of the co-operating group computes the secret. The combiner is successful only if the group has at least t members.

Assume that secrets belong to the set \mathcal{K} and shares are from the set \mathcal{S}.
Definition 9.1 $A(t, n)$ threshold scheme is a collection of two algorithms. The first algorithm called the dealer

$$
D: \mathcal{K} \rightarrow \mathcal{S}_{1} \times \mathcal{S}_{2} \times \cdots \times \mathcal{S}_{n}
$$

assigns shares to the participants for a random secret $k \in \mathcal{K}$. The participant $P_{i} \in \mathcal{P}$ gets their share $s_{i} \in \mathcal{S}_{i}$. If all share sets \mathcal{S}_{i} are equal we simply say that $s_{i} \in \mathcal{S}$. The second algorithm (the combiner)

$$
C: \mathcal{S}_{i_{1}} \times \mathcal{S}_{i_{2}} \times \cdots \times \mathcal{S}_{i_{j}} \rightarrow \mathcal{K}
$$

takes shares and computes the secret. The combiner recovers the secret only if the number j of different shares is equal to or bigger than $t(j \geq t)$. It fails if the number j of shares is smaller than $t(j<t)$.

A (t, n) threshold scheme is perfect if any $(t-1)$ shares provide no information about the secret. Note that secret sharing schemes are used one time only - once the secret has been recreated the scheme is no longer in existence.

9.1.1 The Shamir Scheme

Shamir [458] used the Lagrange polynomial interpolation to design (t, n) threshold schemes. All calculations are done in $G F(p)$ where the prime p is selected to satisfy the security requirements.

A (t, n) Shamir scheme is constructed by the dealer Don. First Don chooses n different points $x_{i} \in G F(p)$ for $i=1, \ldots, n$. These points are public. Next Don selects at random coefficients a_{0}, \ldots, a_{t-1} from $G F(p)$. The polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{t-1} x^{t-1}$ is of degree at most $(t-1)$. The shares are $s_{i}=f\left(x_{i}\right)$ for $i=1, \ldots, n$, and the secret is $k=f(0)$. The share s_{i} is distributed to the participant $P_{i} \in \mathcal{P}$ via a secure channel and is kept secret.

When t participants agree to co-operate, the combiner Clara takes their shares and tries to recover the secret polynomial $f(x)$. She knows t points on the curve $f(x)$:

$$
s_{i_{j}}=f\left(x_{i_{j}}\right) \text { for } j=1, \ldots, t
$$

These points produce the following system of equations

$$
\begin{align*}
s_{i_{1}} & =a_{0}+a_{1} x_{i_{1}}+\ldots a_{t} x_{i_{1}}^{t-1} \\
s_{i_{2}} & =a_{0}+a_{1} x_{i_{2}}+\ldots a_{t} x_{i_{2}}^{t-1} \tag{9.1}\\
& \vdots \\
s_{i_{t}} & =a_{0}+a_{1} x_{i_{t}}+\ldots a_{t} x_{i_{t}}^{t-1}
\end{align*}
$$

The system (9.1) has the unique solution for $\left(a_{0}, \ldots, a_{t}\right)$ as

$$
\Delta=\left|\begin{array}{cccc}
1 & x_{i_{1}} & \ldots & x_{i_{1}}^{t-1} \\
1 & x_{i_{2}} & \ldots & x_{i_{2}}^{t-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{i_{t}} & \ldots & x_{i_{t}}^{t-1}
\end{array}\right|
$$

is a Vandermonde determinant different from zero. The Lagrange interpolation formula gives the secret

$$
k=a_{0}=\sum_{j=1}^{t} s_{i_{j}} b_{j}
$$

where

$$
b_{j}=\prod_{\substack{1 \leq k \leq t \\ k \neq j}} \frac{x_{i_{k}}}{x_{i_{k}}-x_{i_{j}}} .
$$

If Clara knows $(t-1)$ shares, she cannot find the unique solution for $k=a_{0}$ as the system (9.1) contains $(t-1)$ equations with t unknowns.

Consider a simple $(3,6)$ Shamir scheme over $G F(7)$. The dealer selects six public numbers $x_{i}=i$ for $i=1, \ldots, 6$ and a random polynomial of degree at most 2 . Let it be $f(x)=5+3 x+2 x^{2}$. Shares are

$$
\begin{array}{ll}
s_{1}=f\left(x_{1}\right)=3 ; & s_{2}=f\left(x_{2}\right)=5 \\
s_{3}=f\left(x_{3}\right)=4 ; & s_{4}=f\left(x_{4}\right)=0 \\
s_{5}=f\left(x_{5}\right)=0 ; & s_{6}=f\left(x_{6}\right)=4
\end{array}
$$

The shares are sent to the corresponding participants in a secure way.
Assume that three participants P_{1}, P_{3} and P_{6} co-operate and have revealed their shares to the combiner. Clara solves the following system of equations

$$
\begin{aligned}
& 3=a_{0}+a_{1}+a_{2} \\
& 4=a_{0}+3 a_{1}+2 a_{2} \\
& 4=a_{0}+6 a_{1}+a_{2}
\end{aligned}
$$

According to the Lagrange interpolation formula, the coefficients $b_{1}=6, b_{2}=6$, and $b_{3}=3$ and the secret $k=a_{0}=b_{1} s_{1}+b_{2} s_{3}+b_{3} s_{6}=5$. The arithmetics is done in $G F(7)$.

9.1.2 The Blakley Scheme

Blakley [40] used projective spaces to construct a secret sharing scheme. To design (t, n) threshold scheme, the dealer chooses the projective space $P G(t, q)$ over $G F(q)$. The parameter t is the dimension of the space. Next Don selects at random a point $p \in P G(t, q)$. There are $\frac{\left(q^{t}-1\right)}{(q-1)}$ subspaces of dimension $(t-1)$. A subspace of dimension $(t-1)$ is called a hyperplane. Shares are different hyperplanes $P G(t-1, q)$ which contain the point p. The shares are distributed to all participants.

At the pooling time, the combiner takes the provided collection of hyperplanes and finds their intersection - the point p. The secret cannot be reconstructed when Clara has $t-1$ or fewer hyperplanes as the intersection is a subspace containing p.

A modification of the scheme based on affine spaces was suggested by Simmons in [467].

9.1.3 The Modular Scheme

Asmuth and Bloom used congruence classes to define threshold schemes [9].
Assume that every participant $P_{i} \in \mathcal{P}$ is assigned a public modulus $p_{i} ; i=1, \ldots, n$. The moduli can be primes or co-primes. The secret k belongs to $\mathcal{Z}_{p_{0}}$ where the modulus p_{0} is public. Let the moduli be such that $p_{0}<p_{1}<\ldots<p_{n}$. The dealer selects at random an integer s such that $0<s<\prod_{i=1}^{t} p_{i}$. The secret $k \equiv s \quad\left(\bmod p_{0}\right)$. Next the dealer distributes shares

$$
s_{i} \equiv s \quad\left(\bmod p_{i}\right)
$$

to the participants $P_{i}(i=1, \ldots, n)$ via secure channels.
Assume that there are t or more participants who want to recreate the secret. The combiner takes their shares $s_{i_{1}}, \ldots, s_{i_{t}}$ and solves the following system of congruences

$$
\begin{align*}
s_{i_{1}} & \equiv s \quad\left(\bmod p_{i_{1}}\right) \\
& \vdots \tag{9.2}\\
s_{i_{t}} & \equiv s \quad\left(\bmod p_{i_{t}}\right)
\end{align*}
$$

According to the Chinese Remainder Theorem, the system (9.2) has the unique solution which is $0<s<\prod_{j=1}^{t} p_{i_{j}}$. The secret is $k \equiv s \quad\left(\bmod p_{0}\right)$.

Note that the condition $0<s<\prod_{i=1}^{t} p_{i}$ is necessary for the combiner to be able to recompute the unique s and find the correct secret $k . s$ is always smaller than any product of t moduli as $p_{1}<\ldots<p_{n}$.

Let us build a $(2,4)$ threshold scheme. The moduli are: $p_{0}=17, p_{1}=19, p_{2}=23, p_{3}=29$, and $p_{4}=31$. They are public. The dealer selects a secret number s randomly from $\mathcal{Z}_{19 \times 23}=\mathcal{Z}_{437}$. Let it be $s=241$. Then the secret $k=3 \equiv 241(\bmod 17)$. The shares are $s_{1}=13 \equiv 241(\bmod 19)$, $s_{2}=11 \equiv 241 \quad(\bmod 23), s_{3}=9 \equiv 241 \quad(\bmod 29)$, and $s_{4}=24 \equiv 241 \quad(\bmod 31)$. The shares are communicated securely to all four participants. Assume that the combiner has received two shares from P_{2} and P_{4}. Clara can easily solve the following system of congruences

$$
\begin{aligned}
& 11 \equiv s \quad(\bmod 29) \\
& 24 \equiv s \quad(\bmod 31)
\end{aligned}
$$

According to the Chinese Remainder Theorem, there is the solution $s=241$. Clearly, the secret $k=3 \equiv 241 \quad(\bmod 17)$.

The modular scheme can be modified to work with polynomials instead of integers. Assume that we would like to construct a (t, n) threshold scheme. Each participant P_{i} is assigned a public polynomial modulus $p_{i}(x) ; i=1, \ldots, n$, of degree u. There is also a polynomial modulus $p_{0}(x)$. All moduli are different irreducible (or coprime) polynomials. The integer u is the security parameter of the scheme ($u=\operatorname{deg} p_{i}(x)$ for $i=0, \ldots, n$). The dealer selects randomly and uniformly a polynomial $s(x)$ from all polynomials of degree at most $u t-1$. The secret is $k(x) \equiv s(x)\left(\bmod p_{0}(x)\right)$. Finally, Don computes shares $s_{i}(x) \equiv s(x) \quad\left(\bmod p_{i}(x)\right)$ and distributes them to the participants via secure channels $(i=1, \ldots, n)$.

The combiner collects at least t shares. Let them be $\left(s_{i_{1}}(x), \ldots, s_{i_{t}}(x)\right)$. Clara considers the following system of congruences

$$
\begin{align*}
s_{i_{1}}(x) & \equiv s(x) \quad\left(\bmod p_{i_{1}}(x)\right) \\
& \vdots \tag{9.3}\\
s_{i_{t}}(x) & \equiv s(x) \quad\left(\bmod p_{i_{t}}(x)\right)
\end{align*}
$$

According to the Chinese Remainder Theorem, the system (9.3) has the unique solution $s(x)$ where $\operatorname{deg} s(x)<u t$. The combiner recovers the secret $k(x) \equiv s(x)\left(\bmod p_{0}(x)\right)$ and distributes it to all co-operating participants.

Consider a $(2,3)$ threshold scheme. $G F\left(2^{5}\right)$ is the smallest Galois field for which it is possible to find enough irreducible polynomials. Let

$$
\begin{aligned}
& p_{0}(x)=x^{5}+x^{2}+1 \\
& p_{1}(x)=x^{5}+x^{3}+1 \\
& p_{2}(x)=x^{5}+x^{3}+x^{2}+x+1 \\
& p_{3}(x)=x^{5}+x^{4}+x^{2}+x+1
\end{aligned}
$$

be the requested public moduli. The dealer first selects at random a polynomial $s(x)$ of degree at most 9 - let it be $s(x)=x^{9}+x^{8}+x^{5}+x+1$. The secret $k(x) \equiv s(x) \quad\left(\bmod p_{0}\right)$ so $k(x)=x^{4}+1$ or $k=17$. Shares are

$$
\begin{aligned}
& s_{1}(x)=x^{3}+x^{2}+1 \equiv s(x) \quad\left(\bmod p_{1}(x)\right) \\
& s_{2}(x)=x^{4}+x^{2}+x+1 \equiv s(x) \quad\left(\bmod p_{2}(x)\right) \\
& s_{3}(x)=x^{3}+x+1 \equiv s(x) \quad\left(\bmod p_{3}(x)\right)
\end{aligned}
$$

Shares can also be represented as $s_{1}=13, s_{2}=23$ and $s_{3}=11$.
Having $s_{1}(x)$ and $s_{3}(x)$, the combiner solves the following system of congruences

$$
\begin{aligned}
x^{3}+x^{2}+1 & \equiv s(x) \quad\left(\bmod p_{1}(x)\right) \\
x^{3}+x+1 & \equiv s(x) \quad\left(\bmod p_{3}(x)\right)
\end{aligned}
$$

The solution is $s(x)=x^{9}+x^{8}+x^{5}+x+1$. The secret $k(x)=x^{4}+1 \equiv s(x) \quad\left(\bmod p_{0}(x)\right)$.

9.1.4 (t, t) Threshold Schemes

Karnin, Greene, and Hellman [270] studied (t, t) threshold sharing. The secret can be recovered only when all participants co-operate. The implementation of (t, t) schemes can be done as follows.

Let the secret integer k be given. The dealer chooses a modulus p which can be any integer bigger than k. Its value determines the security parameter. Next Don selects randomly, uniformly and
independently $(t-1)$ elements s_{1}, \ldots, s_{t-1} from \mathcal{Z}_{p}. The share s_{t} is

$$
\begin{equation*}
s_{t}=k-\sum_{i=1}^{t-1} s_{i} \quad(\bmod p) . \tag{9.4}
\end{equation*}
$$

The shares are distributed securely to the participants from the set $\mathcal{P}=\left\{P_{1}, \ldots, P_{t}\right\}$.
At the pooling time, the combiner can reconstruct the secret only if she is given all shares as

$$
k=\sum_{i=1}^{t} s_{i} \quad(\bmod p)
$$

Obviously, any $(t-1)$ or fewer shares provide no information about the secret k.

9.2 General Secret Sharing

The set of all participants is $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$. The class $2^{\mathcal{P}}$ of all subsets of \mathcal{P} splits into two disjoint subclasses: the class, of all authorised subsets of \mathcal{P}, and the class $2^{\mathcal{P}} \backslash$, of all unauthorised subsets of \mathcal{P}. Clearly, any authorised subset of participants is able to recover the secret $k \in \mathcal{K}$ while any unauthorised subset is not. The access structure, is the class of all authorised subsets of \mathcal{P}. For instance, the access structure of (t, n) threshold schemes is

$$
,=\left\{\mathcal{A} \in 2^{\mathcal{P}}:|\mathcal{A}| \geq t\right\}
$$

Benaloh and Leichter observed in [23] that any reasonable access structure has to satisfy the monotone property.

Definition 9.2 An access structure, is monotone if for any subset $\mathcal{A} \in$, all its supersets \mathcal{B} are contained in, that is

$$
\text { if } \mathcal{A} \in, \text { and }(\mathcal{A} \subseteq \mathcal{B}), \text { then } \mathcal{B} \in,
$$

Take a closer look at, Among the elements (subsets) of, we can identify minimal subsets. A subset $\mathcal{A} \in$, is minimal if for all $\mathcal{B} \subset \mathcal{A}$, the subset \mathcal{B} does not belong the the access structure , . The collection of all minimal subset of, is called the access structure basis, 0 and

$$
, 0=\left\{\mathcal{A} \in, \mid \forall_{\mathcal{B} \subset \mathcal{A}} \mathcal{B} \notin,\right\} .
$$

Consider (t, n) threshold scheme. Its basis, 0 is

$$
,_{0}=\left\{\mathcal{A} \in 2^{\mathcal{P}}:|\mathcal{A}|=t\right\}
$$

so it consists of all subsets with precisely t elements. Because of the monotone property, access structure basis, o can always be expanded to, by including all supersets generated from the sets of , 0, i.e.

$$
,=\operatorname{cl}\left(,{ }_{0}\right)=\{\mathcal{A}: \mathcal{A} \supseteq \mathcal{B} ; \mathcal{B} \in, 0\}
$$

where $\operatorname{cl}(, 0)$ is the closure of, 0 .
A general secret sharing over the access structure, is defined as follows.
Definition 9.3 A secret sharing scheme over a (monotone) access structure, with n participants is a collection of two algorithms: dealer and combiner. For a random secret $k \in \mathcal{K}$, the dealer algorithm

$$
D: \mathcal{K} \rightarrow \mathcal{S}_{1} \times \mathcal{S}_{2} \times \cdots \times \mathcal{S}_{n}
$$

assigns shares to participants. The participant $P_{i} \in \mathcal{P}$ gets their share from the set \mathcal{S}_{i}. The combiner algorithm

$$
C: \mathcal{S}_{i_{1}} \times \mathcal{S}_{i_{2}} \times \cdots \times \mathcal{S}_{i_{j}} \rightarrow K
$$

takes shares and computes the secret. The combiner recovers the secret only if the set of co-operating participants $\left\{P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{j}}\right\} \in$, It fails if the set of active participants is not in, .

9.2.1 The Cumulative Array Construction

Ito, Saito, and Nishizeki showed how a monotone access structure can be realized as a perfect secret sharing scheme ([257]). We are going to show their method using the so-called cumulative array.

Definition 9.4 A cumulative array $C_{\Gamma}=(\mathcal{S}, f)_{\Gamma}$ for the access structure, is a pair comprising of the share set \mathcal{S} and the dealer function $f: \mathcal{P} \rightarrow 2^{\mathcal{S}}$ which assigns a subset of shares to each participant. The secret k can only be recalculated if all shares are known.

Consider the following access structure

$$
,=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{3}, P_{4}\right\}\right\}\right)
$$

where $\mathcal{P}=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$. It says that P_{1} and P_{2} or P_{3} and P_{4} or any other their superset can recover the secret. A cumulative array for this access structure is: $f\left(P_{1}\right)=\left\{s_{1}, s_{2}\right\}, f\left(P_{2}\right)=\left\{s_{3}, s_{4}\right\}$, $f\left(P_{3}\right)=\left\{s_{1}, s_{3}\right\}$, and $f\left(P_{4}\right)=\left\{s_{2}, s_{4}\right\}$. The array is equivalently represented by the matrix

$\mathcal{P} \backslash \mathcal{S}$	s_{1}	s_{2}	s_{3}	s_{4}
P_{1}	1	1	0	0
P_{2}	0	0	1	1
P_{3}	1	0	1	0
P_{4}	0	1	0	1

By combining cumulative arrays with the Karnin-Greene-Hellman threshold scheme, we obtain a straight forward implementation of general secret sharing schemes. Thus the task of designing a secret sharing scheme for an arbitrary access structure, is reduced to the design of a cumulative array C_{Γ}.

Every access structure, is associated with a Boolean function , $\left(P_{1}, \ldots, P_{n}\right)$ defined as follows:

$$
,\left(P_{1}=p_{1}, \ldots, P_{n}=p_{n}\right)=\left\{\begin{array}{cc}
1 & \text { if }\left\{P_{i} \mid p_{i}=1 ; i=1, \ldots, n\right\} \in, \\
0 & \text { otherwise }
\end{array}\right.
$$

From now on, we assume that the function,$\left(P_{1}, \ldots, P_{n}\right)$ is always in the canonical sum-of-product form (or disjunctive normal form).

For instance, if,$=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{3}, P_{4}\right\}\right\}\right)$ the corresponding Boolean function is,$\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=$ $P_{1} P_{2}+P_{3} P_{4}$.

Definition 9.5 The representative matrix M_{Γ} of a Boolean function,$\left(P_{1}, \ldots, P_{n}\right)$ expressed as a disjunctive sum of r products of n variables, is an $n \times r$ matrix whose (i, j) entry is " 1 " if P_{i} is a factor of the j-th product, and is " 0 " otherwise.

The representative matrix of,$\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=P_{1} P_{2}+P_{3} P_{4}$ is given in Table (9.1).
Let, $\left(P_{1}, \ldots, P_{n}\right)$ be a Boolean function and M_{Γ} be its representative matrix, if v_{i} and v_{j} are rows in M_{Γ} corresponding to P_{i} and P_{j} respectively, then $P_{i} \vee P_{j}$ (or $P_{i}+P_{j}$) corresponds to the row vector $v_{i} \vee v_{j}$ in M_{Γ}.

$\mathcal{P} \backslash$ products	$P_{1} P_{2}$	$P_{3} P_{4}$
P_{1}	1	0
P_{2}	1	0
P_{3}	0	1
P_{4}	0	1

Table 9.1: The representative matrix for,$\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=P_{1} P_{2}+P_{3} P_{4}$

Definition 9.6 A subset $\left\{P_{i_{1}}, P_{i_{2}}, \ldots\right\}$ of the variables of,$\left(P_{1}, \ldots, P_{n}\right)$ is a relation set if $P_{i_{1}} \vee P_{i_{2}} \vee \ldots$ is represented in M_{Γ} by the all ones vector.

Consider again the Boolean function, $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=P_{1} P_{2}+P_{3} P_{4}$ and its representative matrix given by Table (9.1). Clearly, $\left\{P_{1}, P_{3}\right\},\left\{P_{1}, P_{4}\right\},\left\{P_{2}, P_{3}\right\}$, and $\left\{P_{2}, P_{4}\right\}$ are relation sets.

Now we are ready to establish the connection between the representative matrix M_{Γ} and the cumulative array C_{Γ}.

Theorem 9.1 ([82]) Let,$\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a Boolean formula which corresponds to the access structure, and M_{Γ} its representative matrix. Let \mathcal{R} be the collection of minimal relation sets of M_{Γ}, i.e. a collection of product terms obtained from \mathcal{R} by uniformly inserting $O R$ or $A N D$ operators, which are not contained in any product term of,$\left(P_{1}, P_{2}, \ldots, P_{n}\right)$. Then the representative matrix with rows indexed by the variables P_{i} and columns by product terms derived from \mathcal{R} is a cumulative array for, .

In our example, $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=P_{1} P_{2}+P_{3} P_{4}$ and its minimal relation set is $\mathcal{R}=\left\{\left\{P_{1}, P_{3}\right\}\right.$, $\left.\left\{P_{1}, P_{4}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{2}, P_{4}\right\}\right\}$. A Boolean function associated with \mathcal{R} is $\mathcal{R}\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=P_{1} P_{3}+$ $P_{1} P_{4}+P_{2} P_{3}+P_{2} P_{4}$. The representative matrix $M_{\mathcal{R}}$ is

$\mathcal{P} \backslash$ products	$P_{1} P_{3}$	$P_{1} P_{4}$	$P_{2} P_{3}$	$P_{2} P_{4}$
	s_{1}	s_{2}	s_{3}	s_{4}
P_{1}	1	1	0	0
P_{2}	0	0	1	1
P_{3}	1	0	1	0
P_{4}	0	1	0	1

which is a cumulative array C_{Γ}.
Given access structure, and its Boolean function , $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$. Define the dual Boolean function,${ }^{*}\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ which is generated from,$\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ by swapping OR with AND operators.

Theorem 9.2 ([469]) Given access structure, and its Boolean functions, $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ and, * $\left(P_{1}, P_{2}\right.$, \ldots, P_{n}), then the representative matrix $M_{\Gamma^{*}}$ is a cumulative array C_{Γ}.

For the access structure,$=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{3}, P_{4}\right\}\right\}\right)$, the function,$\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=P_{1} P_{2}+P_{3} P_{4}$ and,${ }^{*}\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=\left(P_{1}+P_{2}\right)\left(P_{3}+P_{4}\right)=P_{1} P_{3}+P_{1} P_{4}+P_{2} P_{3}+P_{2} P_{4}$.

Both methods outlined by Theorems (9.1) and (9.2) produce a cumulative array which in general, is neither unique nor the smallest (contains the smallest number of shares). Finding the smallest cumulative array amounts to looking for the smallest set \mathcal{R} or equivalently for a Boolean function, * with the smallest number of product terms (minimisation of Boolean functions [197]). Even if the cumulative array is the smallest, there is no guarantee that the resulting secret sharing scheme is "good". To illustrate the point, consider a $(2,3)$ threshold scheme.,$=\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{1}, P_{3}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{1}, P_{2}, P_{3}\right\}\right\}$.

The Boolean functions are

$$
,\left(P_{1}, P_{2}, P_{3}\right)=P_{1} P_{2}+P_{1} P_{3}+P_{2} P_{3}+P_{1} P_{2} P_{3}=P_{1} P_{2}+P_{1} P_{3}+P_{2} P_{3}
$$

and

$$
{ }^{*}\left(P_{1}, P_{2}, P_{3}\right)=\left(P_{1}+P_{2}\right)\left(P_{1}+P_{3}\right)\left(P_{2}+P_{3}\right)=P_{1} P_{2}+P_{1} P_{3}+P_{2} P_{3}
$$

The cumulative array $C_{\Gamma}=M_{\Gamma^{*}}$ is

$\mathcal{P} \backslash$ products	$P_{1} P_{2}$	$P_{1} P_{3}$	$P_{2} P_{3}$
	s_{1}	s_{2}	s_{3}
P_{1}	1	1	0
P_{2}	1	0	1
P_{3}	0	1	1

Clearly, any two participants are able to recover all three shares (and the secret). Any single one cannot as there is always a missing share. Note that each participant has two shares. In contrast, the Shamir scheme which implements $(2,3)$ sharing, requires a single share for each participant!

9.2.2 The Benaloh-Leichter Construction

Benaloh and Leichter [23] gave a simple construction for arbitrary monotone access structures. Their construction applies (t, t) threshold schemes.

Given a monotone access structure, over the set $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ of n participants. A Boolean function,$\left(P_{1}, \ldots, P_{n}\right)$ associated with the access structure is presented in the minimal disjunctive normal form. Let

$$
,\left(P_{1}, \ldots, P_{n}\right)=\sum_{i=1}^{\alpha} \gamma_{i}
$$

where γ_{i} is a product term. The number of factors in the term γ_{i} is t_{i}. The construction uses α threshold schemes - each for the given product term γ_{i}. All threshold schemes share the same secret $k \in \mathcal{K}$. The shares in α threshold schemes are selected independently.

Consider an example. Let,$=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}, P_{3}\right\},\left\{P_{1}, P_{4}\right\},\left\{P_{2}, P_{4}\right\}\right\}\right)$. The Boolean function , $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=P_{1} P_{2} P_{3}+P_{1} P_{4}+P_{2} P_{4}$. The first product $P_{1} P_{2} P_{3}$ has three factors so the corresponding threshold scheme is $(3,3) . P_{1}$ is assigned a share $s_{1,1} ; P_{2}-$ a share $s_{1,2}$ and $P_{3}-$ a share $\left(k-s_{1,1}-s_{1,2}\right)$. The second and third product terms have two factors each so their threshold schemes are $(2,2)$. For the second threshold scheme, P_{1} gets a share $s_{2,1}$ and $P_{4}-$ a share $\left(k-s_{2,1}\right)$. For the third threshold scheme, P_{2} obtains a share $s_{3,1}$ and P_{4} - a share ($k-s_{3,1}$). In summary, P_{1} holds two shares $\left\{s_{1,1}, s_{2,1}\right\}, P_{2} \mapsto\left\{s_{1,2}, s_{3,1}\right\}, P_{3} \mapsto\left\{k-s_{1,1}-s_{1,2}\right\}$, and $P_{4} \mapsto\left\{k-s_{2,1}, k-s_{3,1}\right\}$.

Note that P_{i} possesses many shares - each share for different scheme to which P_{i} belongs. At the pooling time, participants have to know other co-operating participants as they should provide correct shares for the given "active" threshold scheme.

9.3 Perfectness

The notion of perfect secret sharing is defined as follows.
Definition 9.7 A secret sharing scheme over the access structure, is perfect if for any subset of participants $\mathcal{A} \notin$, , the entropy of the secret is

$$
H\left(K \mid S_{\mathcal{A}}\right)=\left\{\begin{array}{cc}
H(K) & \text { if } \mathcal{A} \notin \\
0 & \text { otherwise }
\end{array}\right.
$$

where $S_{\mathcal{A}}$ is a random variable representing the shares assigned to the set \mathcal{A} of participants.
Theorem 9.3 The (t, t) Karnin-Greene-Hellman threshold scheme is perfect.

Proof: Recall that $(t-1)$ shares are selected randomly, uniformly and independently from \mathcal{Z}_{p} that is $P\left(S_{i}=s_{i}\right)=\frac{1}{p}$ for $i=1, \ldots, t-1$ and S_{1}, \ldots, S_{t-1} are independent random variables. The random variable $S_{t}=K-\sum_{i=1}^{t-1} S_{i}$. Without the loss of generality, assume that we have $t-1$ random variables $S_{1}, S_{2}, \ldots, S_{t-2}, S_{t}$. Clearly, first $(t-2)$ variables are independent. S_{t} is independent as $S_{t}=K-\sum_{i=1}^{t-2} S_{i}-S_{t-1}$ includes S_{t-1} which is independent from $S_{1}, S_{2}, \ldots, S_{t-2}$.

From Theorem (9.3), it is possible to conclude that both the cumulative array and the BenalohLeichter constructions produce perfect secret sharing schemes.

Consider the Shamir scheme. In our definition, the dealer selects at random a polynomial $f(x)$ of degree at most $(t-1)$, that is Don chooses independently and uniformly at random coefficients a_{0}, \ldots, a_{t-1} from $G F(p)$. What happens if the polynomial $f(x)$ is chosen randomly from all polynomials of degree $(t-1)$?

Theorem 9.4 $A(t, n)$ Shamir scheme with a random polynomial $f(x)$ of degree $(t-1)$ is not perfect.

Proof: Let $(t-1)$ participants co-operate with their shares s_{1}, \ldots, s_{t-1}. Certainly, they can find the unique polynomial $g(x)$ of degree at most $(t-2)$ such that $s_{i}=g\left(x_{i}\right)$ for all $i=1, \ldots, t-1$, where $g(x)=b_{0}+b_{1} x+\ldots+b_{t-2} x^{t-2}$. At the same time from the construction of the scheme, it is possible to write $s_{i}=f\left(x_{i}\right)$ for $i=1, \ldots, t-1$. So we have the following system of equations

$$
\begin{aligned}
s_{1} & =g\left(x_{1}\right)=f\left(x_{1}\right) \\
& \vdots \\
s_{t-1} & =g\left(x_{t-1}\right)=f\left(x_{t-1}\right)
\end{aligned}
$$

The system can be transformed to

$$
\begin{aligned}
&\left(a_{0}-b_{0}\right)+\left(a_{1}-b_{1}\right) x_{1}+\ldots+\left(a_{t-2}-b_{t-2}\right) x_{1}^{t-2}+a_{t-1} x_{1}^{t-1}=0 \\
& \vdots \\
&\left(a_{0}-b_{0}\right)+\left(a_{1}-b_{1}\right) x_{t-1}+\ldots+\left(a_{t-2}-b_{t-2}\right) x_{t-1}^{t-2}+a_{t-1} x_{t-1}^{t-1}=0
\end{aligned}
$$

Now we show by contradiction that $a_{0} \neq b_{0}$. Suppose that $a_{0}=b_{0}$. This implies that the system becomes

$$
\begin{aligned}
\left(a_{1}-b_{1}\right) x_{1}+\ldots+\left(a_{t-2}-b_{t-2}\right) x_{1}^{t-2}+a_{t-1} x_{1}^{t-1} & =0 \\
& \vdots \\
\left(a_{1}-b_{1}\right) x_{t-1}+\ldots+\left(a_{t-2}-b_{t-2}\right) x_{t-1}^{t-2}+a_{t-1} x_{t-1}^{t-1} & =0
\end{aligned}
$$

As the Vandermonde determinant of the system is different from zero, there is only one solution in which $a_{t-1}=0$. This contradicts that $f(x)$ is of degree $t-1$ and proves that $a_{0} \neq b_{0}$. Clearly, the $(t-1)$ participants has been successful in finding an integer b_{0} which is not the secret - the scheme is not perfect.

To make the Shamir scheme perfect, it is enough to choose all coefficients a_{i} independently and randomly with the uniform probability from $G F(p)$ (i.e. $a_{i} \in_{R} G F(p)$ for $i=0, \ldots, t-1$). In this case, any $(t-1)$ participants face the system of $(t-1)$ equations in t unknowns.

Corollary 9.1 The Shamir scheme based on a random polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{t-1} x^{t-1}$ of degree at most $(t-1)$ with $a_{i} \in_{R} G F(p)$ for $i=0, \ldots, t-1$ is perfect.

9.4 Information Rate

The most important efficiency measure of secret sharing is the length of shares assigned to each participant by the dealer. This measure is also called the information rate.

Definition 9.8 Assume there is a secret sharing scheme with its dealer function $D: \mathcal{K} \rightarrow \mathcal{S}_{1} \times \mathcal{S}_{2} \times$ $\cdots \times \mathcal{S}_{n}$ over the access structure, . The information rate for $P_{i} \in \mathcal{P}$ is

$$
\rho_{i}=\frac{\log _{2}|\mathcal{K}|}{\log _{2}\left|\mathcal{S}_{i}\right|}
$$

The average information rate of the scheme is

$$
\tilde{\rho}=\frac{1}{n} \sum_{i=1}^{n} \rho_{i}
$$

The information rate of the scheme is

$$
\rho=\min _{i=1, \ldots, n} \rho_{i}
$$

Shamir threshold schemes assign always single shares to every participant so their information rate is one. On the other hand, secret sharing based on cumulative arrays tends to produce much longer shares. This especially visible in the case of the access structure,$=\{\mathcal{A}:|\mathcal{A}| \leq n\}$ as each participants is given $n-1$ shares so the information rate of the scheme is $\frac{1}{n-1}$.

Definition 9.9 A secret sharing scheme is ideal if its information rate $\rho=1$ so the length of the secret equals to the length of a share held by a participant.

9.4.1 Upper Bounds

Given an access structure, , we may build a secret sharing scheme using different methods. None of the known methods guarantees that the resulting scheme is unique. As a matter of fact, two designers may come up with two schemes with different information rates. Clearly, the design with the smaller information rate is better. But there is always a question: Is there any design with a smaller information rate ? Now we are going to answer the question.

Benaloh and Leichter [23] observed that there are some access structure for which there is no perfect and ideal scheme. The access structure with the base, ${ }_{0}=\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{3}, P_{4}\right\}\right\}$ falls in this category. Capocelli, De Santis, Gargano, and Vaccaro showed in [74] how to get upper bounds on information rates using the entropy language. To simplify our notations, we are going to denote the entropy of the random variable which represents the share associated with the participant $P \in \mathcal{P}$ as $H(P)$ instead of $H\left(S_{P}\right)$. The entropy of the secret is $H(K)$. First we prove two lemmas.

Lemma 9.1 Let $\mathcal{Y} \notin$, and $\mathcal{X} \cup \mathcal{Y} \in$, . Then

$$
H(\mathcal{X} \mid \mathcal{Y})=H(K)+H(\mathcal{X} \mid \mathcal{Y}, K)
$$

Proof: Note that $H(\mathcal{X}, K \mid \mathcal{Y})$ can be written in two ways (see Section 2.4.1):

$$
H(\mathcal{X}, K \mid \mathcal{Y})=H(\mathcal{X} \mid \mathcal{Y})+H(K \mid \mathcal{X}, \mathcal{Y})
$$

or

$$
H(\mathcal{X}, K \mid \mathcal{Y})=H(K \mid \mathcal{Y})+H(\mathcal{X} \mid \mathcal{Y}, K)
$$

Thus we get the following sequence:

$$
\begin{align*}
& H(\mathcal{X} \mid \mathcal{Y})+H(K \mid \mathcal{X}, \mathcal{Y})=H(K \mid \mathcal{Y})+H(\mathcal{X} \mid \mathcal{Y}, K) \\
& H(\mathcal{X} \mid \mathcal{Y})=H(K \mid \mathcal{Y})+H(\mathcal{X} \mid \mathcal{Y}, K)-H(K \mid \mathcal{X}, \mathcal{Y}) \tag{9.5}
\end{align*}
$$

As $\mathcal{X} \cup \mathcal{Y} \in$, so $H(K \mid \mathcal{X}, \mathcal{Y})=0$. On the other hand the scheme is perfect and $\mathcal{Y} \notin$, so $H(K \mid \mathcal{Y})=H(K)$ and the final result follows.

Lemma 9.2 Let $\mathcal{X} \cup \mathcal{Y} \notin$, , then

$$
H(\mathcal{Y} \mid \mathcal{X})=H(\mathcal{Y} \mid \mathcal{X}, K)
$$

Proof: According to Equation 9.5 from Lemma (9.1), we have

$$
H(\mathcal{X} \mid \mathcal{Y})=H(K \mid \mathcal{Y})+H(\mathcal{X} \mid \mathcal{Y}, K)-H(K \mid \mathcal{X}, \mathcal{Y})
$$

Note that $H(K \mid \mathcal{Y})=H(K)$ and $H(K \mid \mathcal{X}, \mathcal{Y})=H(K)$ so $H(\mathcal{Y} \mid \mathcal{X})=H(\mathcal{Y} \mid \mathcal{X}, K)$.
Now we are ready to prove the main result.
Theorem 9.5 Given access structure

$$
,=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{3}, P_{4}\right\}\right\}\right)
$$

for four participants $P_{1}, P_{2}, P_{3}, P_{4}$. Then the inequality

$$
H\left(P_{2}\right)+H\left(P_{3}\right) \geq 3 H(K)
$$

has to be satisfied for any perfect secret sharing over, .

Proof: First observe that secret sharing is perfect so the following equations are true:

1. $H\left(K \mid P_{1}, P_{2}\right)=H\left(K \mid P_{2}, P_{3}\right)=H\left(K \mid P_{3}, P_{4}\right)=0$;
2. $H\left(K \mid P_{1}\right)=H\left(K \mid P_{2}\right)=H\left(K \mid P_{3}\right)=H\left(K \mid P_{1}, P_{3}\right)=H\left(K \mid P_{1}, P_{4}\right)=H\left(K \mid P_{2}, P_{4}\right)=$ $H(K)$.

Consider the set $\left\{P_{1}, P_{3}, P_{4}\right\} \in$, The set $\left\{P_{1}, P_{4}\right\} \notin$, so from Lemma 9.1, we have

$$
H\left(P_{3} \mid P_{1}, P_{4}\right)=H(K)+H\left(P_{3} \mid P_{1}, P_{4}, K\right)
$$

This is a starting point of the following sequence of inequalities:

$$
\begin{array}{rlr}
H(K) & =H\left(P_{3} \mid P_{1}, P_{4}\right)-H\left(P_{3} \mid P_{1}, P_{4}, K\right) & \\
& \leq H\left(P_{3} \mid P_{1}, P_{4}\right) & \\
& \leq H\left(P_{3} \mid P_{1}\right) & \\
& =H\left(P_{3} \mid P_{1}, K\right) & \\
& =H\left(P_{2}, P_{3} \mid P_{1}, K\right)-H\left(P_{2} \mid P_{1}, P_{3}, K\right) & \\
& \leq H\left(P_{2}, P_{3} \mid P_{1}, K\right) & \\
& =H\left(P_{2} \mid P_{1}, K\right)+H\left(P_{3} \mid P_{1}, P_{2}, K\right) & \\
& \leq H\left(P_{2} \mid P_{1}, K\right)+H\left(P_{3} \mid P_{2}, K\right) & \\
& =H\left(P_{2} \mid P_{1}\right)-H(K)+H\left(P_{3} \mid P_{2}\right)-H(K) & \text { as } H\left(P_{3} \mid P_{1}, P_{2}, K\right) \leq H\left(P_{3} \mid P_{2}, K\right) \\
& \leq H\left(P_{2}\right)+H\left(P_{3} \mid P_{2}\right)-2 H(K) & \text { from Lemma } 9.2 \\
& =H\left(P_{2}\right)+H\left(P_{2}, P_{3}\right)-H\left(P_{2}\right)-2 H(K) & \text { as noma } H\left(P_{2}, P_{3}\right)=H\left(P_{2}\right)+H\left(P_{3} \mid P_{2}\right) \\
& =H\left(P_{2}, P_{3}\right)-2 H(K) &
\end{array}
$$

Thus we have

$$
3 H(K) \leq H\left(P_{2}, P_{3}\right)=H\left(P_{2}\right)+H\left(P_{3} \mid P_{2}\right) \leq H\left(P_{2}\right)+H\left(P_{3}\right)
$$

which concludes our proof.

Corollary 9.2 Given access structure,$\quad=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{3}, P_{4}\right\}\right\}\right)$. Then for any secret sharing, the information rate $\rho \leq \frac{2}{3}$.

Proof: From Theorem 9.5 we have that $H\left(P_{2}\right)+H\left(P_{3}\right) \geq 3 H(K)$. Clearly, $H\left(P_{2}\right)=\log _{2}\left|\mathcal{S}_{P_{2}}\right|$, $H\left(P_{3}\right)=\log _{2}\left|\mathcal{S}_{P_{3}}\right|$ and $H(K)=\log _{2}|\mathcal{K}|$. The inequality becomes

$$
\frac{\log _{2}\left|\mathcal{S}_{P_{2}}\right|}{\log _{2}|\mathcal{K}|}+\frac{\log _{2}\left|\mathcal{S}_{P_{3}}\right|}{\log _{2}|\mathcal{K}|} \geq 3
$$

According to the definition of the information rate $\frac{\log _{2}\left|\mathcal{S}_{P_{2}}\right|}{\log _{2}|\mathcal{K}|} \leq \rho^{-1}$ and $\frac{\log _{2}\left|\mathcal{S}_{P_{3}}\right|}{\log _{2}|\mathcal{K}|} \leq \rho^{-1}$. Therefore

$$
2 \rho^{-1} \geq 3
$$

or equivalently $\rho \leq \frac{2}{3}$.
Consider the following collection of access structures:

$$
\begin{aligned}
, 1 & =\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{3}, P_{4}\right\},\left\{P_{2}, P_{4}\right\}\right\}\right) \\
, 2 & =\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{1}, P_{3}, P_{4}\right\}\right\}\right) \\
, 3 & =\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{1}, P_{3}, P_{4}\right\},\left\{P_{2}, P_{4}\right\}\right\}\right)
\end{aligned}
$$

A closer scrutiny of Theorem 9.5 leads us to the conclusion that its hypotheses are valid also for the access structures $, 1,, 2,, 3$. So their information rates are also smaller or equal to $2 / 3$.

9.4.2 Ideal Schemes

Ideal secret sharing schemes attain the best possible information rate $\rho=1$. Now we are going to discuss the construction of ideal schemes using a linear vector space by Brickell [64].

Recall the Shamir scheme with the polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{t-1} x^{t-1}$ over $G F(p)$. The share is

$$
s_{i}=f\left(x_{i}\right)=a_{0}+a_{1} x_{i}+\ldots+a_{t-1} x_{i}^{t-1}
$$

This can be equivalently rewritten as

$$
s_{i}=\left(a_{0}, a_{1}, \ldots, a_{t-1}\right) \cdot\left(1, x_{i}, \ldots, x_{i}^{t-1}\right)=\bar{a} \cdot \bar{x}_{i}
$$

where vectors \bar{a} and \bar{x}_{i} belong to the vector space $G F^{t}(p)$. Each participant P_{i} is assigned the public vector \bar{x}_{i} and the secret share $s_{i}=\bar{a} \cdot \bar{x}_{i}$ - the inner product of the two vectors.

Brickell [64] observed that ideal secret sharing schemes can be designed in a vector space $G F^{t}(p)$. His method generalises the Shamir approach. Given a vector space $G F^{t}(p)$. Let a function $\tau: \mathcal{P} \rightarrow$ $G F^{t}(p)$ assigns a public vector \bar{x}_{i} to $P_{i} \in \mathcal{P}$ in such a way that

$$
\begin{equation*}
\forall_{\mathcal{B} \in \Gamma}(1,0, \ldots, 0)=b_{1} \bar{x}_{1}+b_{2} \bar{x}_{2}+\ldots+b_{t} \bar{x}_{t} \tag{9.6}
\end{equation*}
$$

for some $\bar{b}=\left(b_{1}, b_{2}, \ldots, b_{t}\right) \in G F^{t}(p)$. The vector $(1,0, \ldots, 0)$ cannot be expressed as a linear combination of vectors \bar{x}_{i} if the subset $\mathcal{B} \notin$,

The dealer first determines the vector space, the function τ and the collection of public vectors $\bar{x}_{1}=\tau\left(P_{1}\right), \ldots, \bar{x}_{n}=\tau\left(P_{n}\right)$ where $n=|\mathcal{P}|$. Don also selects at random $t-1$ elements of $G F(p)-$ let them be a_{2}, \ldots, a_{t}. The vector $\bar{a}=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ and the secret $k=\bar{a} \cdot(1,0, \ldots, 0)=a_{1}$. The share assigned to P_{i} is

$$
\begin{equation*}
s_{i}=\bar{a} \cdot \bar{x}_{i} \tag{9.7}
\end{equation*}
$$

for $i=1, \ldots, n$.
At the pooling time, participants submit their shares to the combiner.

1. If the subset $\mathcal{B} \in$, , then Clara can find a vector $\bar{b}=\left(b_{1}, \ldots, b_{t}\right)$ such that

$$
(1,0, \ldots, 0)=b_{1} \bar{x}_{1}+b_{2} \bar{x}_{2}+\ldots+b_{t} \bar{x}_{t}
$$

Let us multiply both sides of the equation by the vector \bar{a} so

$$
k=\sum_{i=1}^{t} b_{i} \bar{a} \cdot \bar{x}_{i}
$$

The Equation 9.7 guarantees that Clara gets the secret

$$
k=\sum_{i=1}^{t} b_{i} s_{i}
$$

2. If the subset $\mathcal{B} \notin$, and $|\mathcal{B}|=r$, then Clara gets r linear equations

$$
\bar{x}_{i} \cdot \bar{a}=s_{i} \text { for } P_{i} \in \mathcal{B}
$$

in the t unknowns $\left(a_{1}, \ldots, a_{t}\right)$. The solution subspace has the dimension $\ell \geq t-r$ (the dimension $\ell=t-r$ if all r linear equations are independent). The secret $k=a_{1}$ cannot be found as $(1,0, \ldots, 0) \neq b_{1} \bar{x}_{1}+b_{2} \bar{x}_{2}+\ldots+b_{t} \bar{x}_{t}$ for any vector $\bar{b}=\left(b_{1}, \ldots, b_{t}\right)$.

For a general access structure, the vector space construction has to be treated as a general guide without a precise implementation methodology. The construction is intuitive but can be used to cover some special classes of access structures.

Consider the access structure,$=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}, P_{3}\right\},\left\{P_{1}, P_{4}\right\}\right\}\right)$ over four participants. Let $G F^{t}(p)$ be selected for $t=3$ and for some big enough p. Assume the following assignment of public vectors

$$
\begin{aligned}
\tau\left(P_{1}\right) & =\bar{x}_{1}=(0,1,1) \\
\tau\left(P_{2}\right) & =\bar{x}_{2}=(0,1,0) \\
\tau\left(P_{3}\right) & =\bar{x}_{3}=(1,0,1) \\
\tau\left(P_{4}\right) & =\bar{x}_{4}=(-1,-1,-1)
\end{aligned}
$$

First we check whether any minimal authorised set $\mathcal{B} \in$, can get the vector $(1,0,0)$ by a linear combination of its public vectors.

- if $\mathcal{B}=\left\{P_{1}, P_{2}, P_{3}\right\}$, then

$$
(1,0,0)=\bar{x}_{3}+\bar{x}_{2}-\bar{x}_{1}=(1,0,1)+(0,1,0)-(0,1,1) ;
$$

- if $\mathcal{B}=\left\{P_{1}, P_{4}\right\}$, then

$$
(1,0,0)=-\bar{x}_{4}-\bar{x}_{1}=(1,1,1)-(0,1,1)
$$

Next we have to verify that any $\mathcal{B} \notin$, is not able to determine the vector $(1,0,0)$. We choose the maximal unauthorised subsets, i.e. those which become authorised after adding a single participant to them. These subsets are $\left\{P_{1}, P_{2}\right\},\left\{P_{1}, P_{3}\right\}$, and $\left\{P_{2}, P_{3}, P_{4}\right\}$.

- if $\mathcal{B}=\left\{P_{1}, P_{2}\right\}$, then we are looking for $b_{1}, b_{2} \in G F(p)$ such that

$$
b_{1} \bar{x}_{1}+b_{2} \bar{x}_{2}=b_{1}(0,1,1)+b_{2}(0,1,0) \stackrel{?}{=}(1,0,0)
$$

which clearly has no solution.

- if $\mathcal{B}=\left\{P_{1}, P_{3}\right\}$, then we are looking for $b_{1}, b_{3} \in G F(p)$ such that

$$
b_{1} \bar{x}_{1}+b_{3} \bar{x}_{3}=b_{1}(0,1,1)+b_{3}(1,0,1)=\left(b_{3}, b_{1}, b_{1}+b_{3}\right) \stackrel{?}{=}(1,0,0)
$$

To satisfy the equation, $b_{3}=1$ and $b_{1}=0$ so the third component $b_{1}+b_{3}=1 \neq 0$. So there is no such pair.

- if $\mathcal{B}=\left\{P_{2}, P_{3}, P_{4}\right\}$, then we have to find $b_{2}, b_{3}, b_{4} \in G F(p)$ such that

$$
b_{2} \bar{x}_{2}+b_{3} \bar{x}_{3}+b_{4} \bar{x}_{4} \stackrel{?}{=}(1,0,0)
$$

This is equivalent to the system

$$
\begin{aligned}
& b_{3}-b_{4}=1 \\
& b_{2}-b_{4}=0 \\
& b_{3}-b_{4}=0
\end{aligned}
$$

which has no solution.
Finally, knowing the public vectors \bar{x}_{i}, the dealer selects at random a vector \bar{a}. Let it be $\bar{a}=(12,17,6)$ over GF(19). The collection of shares are: $s_{1}=\bar{a} \cdot \bar{x}_{1}=(12,17,6)(0,1,1)=23, s_{2}=\bar{a} \cdot \bar{x}_{2}=$ $(12,17,6)(0,1,0)=17, s_{3}=\bar{a} \cdot \bar{x}_{3}=(12,17,6)(1,0,1)=18, s_{4}=\bar{a} \cdot \bar{x}_{4}=(12,17,6)(-1,-1,-1)=3$. The secret $k=\bar{a} \cdot(1,0,0)=12$. Recovery of the secret is possible only when the vector $(1,0,0)$ is a linear combination of public vectors \bar{x}_{i} for some i. So for $\mathcal{B}=\left\{P_{1}, P_{2}, P_{3}\right\}$, we know that $(1,0,0)=$ $\bar{x}_{3}+\bar{x}_{2}-\bar{x}_{1}$. If a combiner knows the shares s_{1}, s_{2} and s_{3}, the secret $k=\bar{a}(1,0,0)=\bar{a}\left(\bar{x}_{3}+\bar{x}_{2}-\bar{x}_{1}\right)=$ $s_{3}+s_{2}-s_{1}=18+17-23 \equiv 12 \bmod 19$.

9.4.3 Multiple Cumulative Arrays

We have discussed upper bounds on the information rate of some secret sharing schemes. An implementation of secret sharing which attains the upper bound is called optimal. Our goal now is to study optimal or close to optimal implementations of secret sharing using multiple cumulative arrays [84].

Consider the access structure,$=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{3}, P_{4}\right\}\right\}\right)$ whose upper bound on information rate is $\rho \leq 2 / 3$. The scheme can be easily implemented in the form of a cumulative array

$\mathcal{P} \backslash \boldsymbol{S}$	s_{1}	s_{2}	s_{3}
P_{1}	1	0	0
P_{2}	0	1	1
P_{3}	1	1	0
P_{4}	0	0	1

The information rate of the scheme is $\rho=\frac{1}{2}$ which is smaller then the optimal.
Assume that a participant P_{i} is assigned two shares $s_{i_{1}}, s_{i_{2}} \in \mathcal{S}$, then the composite share is $s_{i}=\left(s_{i_{1}} \wedge s_{i_{2}}\right) \in \mathcal{S}$ such that any authorised subset with P_{i} in it can recover the secret when P_{i} uses their composite share instead of the elementary ones.

In our cumulative array we can define the composite share $s_{1,2}=s_{1} \wedge s_{2}$ for P_{3} and the modified cumulative array is

$\mathcal{P} \backslash \boldsymbol{S}$	s_{1}	s_{2}	s_{3}	$s_{1,2}$
P_{1}	1	0	0	0
P_{2}	0	1	1	0
P_{3}	0	0	0	1
P_{4}	0	0	1	0

Note that P_{3} is provided with a single share (instead of two) and the secret can be recovered when P_{3} co-operates with P_{2} or P_{4}. Similarly, another modified cumulative array can be obtained if the composite share is given to P_{2}. These two copies of (modified) cumulative arrays form the following multiple cumulative array

$\mathcal{P} \backslash \boldsymbol{S}$	s_{11}	s_{12}	s_{13}	$s_{11,12}$	s_{21}	s_{22}	s_{23}	$s_{22,23}$
P_{1}	1	0	0	0	1	0	0	0
P_{2}	0	1	1	0	0	0	0	1
P_{3}	0	0	0	1	1	1	0	0
P_{4}	0	0	1	0	0	0	1	0

The secret $k=\left(k_{1}, k_{2}\right)$. The first copy of cumulative array determines the first part of the secret k_{1} and the second gives $k_{2}\left(k_{1}, k_{2} \in \mathcal{K}\right)$. So P_{1} is assigned shares $\left\{s_{11}, s_{21}\right\}, P_{2} \rightarrow\left\{s_{12}, s_{13}, s_{22,23}\right\}, P_{3}$ $\rightarrow\left\{s_{11,12}, s_{21}, s_{22}\right\}$, and $P_{4} \rightarrow\left\{s_{13}, s_{23}\right\}$. All shares (elementary and composite) are selected from \mathcal{S}. So if $|\mathcal{K}|=|\mathcal{S}|$, the information rate is $\rho=2 / 3-$ the construction attains the upper bound so is optimal. If the computations of the secret are done for the Karnin-Greene-Hellman threshold scheme, then $s_{11}+s_{12}+s_{13}=k_{1}, s_{21}+s_{22}+s_{23}=k_{2}$, and the composite shares $s_{11,12}=s_{11}+s_{12}$ and $s_{22,23}=s_{22}+s_{23}$.

Let the access structure be

$$
,=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{1}, P_{3}, P_{4}\right\}\right\}\right)
$$

A cumulative array for, is

$\mathcal{P} \backslash \mathcal{S}$	s_{1}	s_{2}	s_{3}	s_{4}
P_{1}	1	1	0	0
P_{2}	0	1	1	1
P_{3}	1	0	1	0
P_{4}	0	0	0	1

Using three copies of the above array with composite shares, we obtain the multiple array

$\mathcal{P} \backslash \mathcal{S}$	1	2	3	4	$(1,2)$	$(3,4)$	1	2	3	4	$(1,3)$	$(2,4)$	1	2	3	4	$(2,3,4)$
P_{1}	0	0	0	0	1	0	1	1	0	0	0	0	1	1	0	0	0
P_{2}	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	0	1
P_{3}	1	0	1	0	0	0	0	0	0	0	1	0	1	0	1	0	0
P_{4}	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0

The secret $k=\left(k_{1}, k_{2}, k_{3}\right)$ where each copy of cumulative array generates the corresponding component of the secret vector. Participants are provided with their shares:

$$
\begin{aligned}
& P_{1} \rightarrow\left\{s_{1(1,2)}, s_{21}, s_{22}, s_{31}, s_{32}\right\} \\
& P_{2} \rightarrow\left\{s_{12}, s_{1(3,4)}, s_{23}, s_{2(2,4)}, s_{3(2,3,4)}\right\} \\
& P_{3} \rightarrow\left\{s_{11}, s_{13}, s_{2(1,3)}, s_{31}, s_{33}\right\} \\
& P_{4} \rightarrow\left\{s_{14}, s_{24}, s_{34}\right\}
\end{aligned}
$$

where $s_{i 1}+s_{i 2}+s_{i 3}+s_{i 4}=k_{i}$ for $i=1,2,3$ and $s_{i(j, k, \ell)}=s_{i j}+s_{i k}+s_{i \ell}$ in the i-th copy of cumulative array. The information rate of the scheme is $\rho=3 / 5<2 / 3$. This is the best possible information rate achievable using the ideal decomposition or the linear programming method [486].

Given the access structure

$$
,=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{1}, P_{3}, P_{4}\right\},\left\{P_{2}, P_{4}\right\}\right\}\right)
$$

A cumulative array for, is

$\mathcal{P} \backslash \boldsymbol{S}$	s_{1}	s_{2}	s_{3}	s_{4}
P_{1}	1	1	0	0
P_{2}	0	1	1	1
P_{3}	1	0	1	0
P_{4}	1	0	0	1

A multiple cumulative array consists of four copies of the cumulative array with composite shares and has the following form:

$\mathcal{P} \backslash \mathcal{S}$	1	2	3	4	$(1,2)$	$(3,4)$	1	2	3	4	$(1,3)$	$(2,4)$
P_{1}	0	0	0	0	1	0	1	1	0	0	0	0
P_{2}	0	1	0	0	0	1	0	0	1	0	0	1
P_{3}	1	0	1	0	0	0	0	0	0	0	1	0
P_{4}	1	0	0	1	0	0	1	0	0	1	0	0

$\mathcal{P} \backslash \boldsymbol{S}$	1	2	3	4	$(1,4)$	$(2,3)$	1	2	3	4	$(2,3,4)$
P_{1}	1	1	0	0	0	0	1	1	0	0	0
P_{2}	0	0	0	1	0	1	0	0	0	0	1
P_{3}	1	0	1	0	0	0	1	0	1	0	0
P_{4}	0	0	0	0	1	0	1	0	0	1	0

The secret is $k=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ where each k_{i} is generated by the corresponding copy of the cumulative array. The information rate $\rho=4 / 7<2 / 3$ is the best possible information rate achievable using the ideal decomposition or the linear programming method [486].

9.5 Cheating

So far we have assumed that all participants are honest and follow the recovery protocol of the secret. Tompa and Woll [500] studied the problem of cheaters who do not obey the protocol. Although they analysed the susceptibility of the Shamir scheme to cheating, their results can be easily extended for many other secret sharing schemes.

Given a (t, n) Shamir scheme with a polynomial $f(x)=a_{0}+a_{1} x+\ldots, a_{t-1} x^{t-1}$ over $G F(p)$. The points $x_{1}, \ldots, x_{n} \in G F(p)$ are public. Each participant P_{i} holds their secret share $s_{i}=f\left(x_{i}\right)$, $i=1, \ldots, n$. The secret $k=f(0)$. Assume that at the pooling time, there is t co-operating participants who wish to reconstruct the secret. Let the participants be P_{1}, \ldots, P_{t}. Among them there is a cheater, say P_{1}, who wants to submit a false share. The share is modified in a such way that after the combiner announces the reconstructed (incorrect) secret, P_{1} can correct it and recreate the correct value of the secret.

How the cheater P_{1} can modify their share ? Assume that P_{1} knows all co-operating participants so he knows the set $\left\{P_{1}, P_{2}, \ldots, P_{t}\right\}$. P_{1} can now use the public information to determine a polynomial
$\Delta(x)$ such that

$$
\Delta(0)=-1, \Delta\left(x_{2}\right)=0, \ldots, \Delta\left(x_{t}\right)=0
$$

This can be easily done using interpolation. As there are t different points on $\Delta(x)$, the degree of $\Delta(x)$ is at most $t-1$. The cheater computes $\Delta\left(x_{1}\right)$ and creates their false share

$$
\tilde{s}_{1}=s_{1}+\Delta\left(x_{1}\right) .
$$

P_{1} submits \tilde{s}_{1} to the combiner. Clara takes all shares $\tilde{s}_{1}, s_{2}, \ldots, s_{t}$ and determines the polynomial $f(x)+\Delta(x)$ and the secret $\tilde{k}=f(0)+\Delta(0)=k-1$ which is clearly different from the original. Nobody except the cheater can get the true secret k. Cheating will be undetected.

How to modify the Shamir scheme so it is immune against cheating ? The solution is simple. The points x_{1}, \ldots, x_{n} have to be secret as well. So the share is the pair $s_{i}=\left(x_{i}, f\left(x_{i}\right)\right.$ and is kept secret by P_{i}. The selection of x_{1}, \ldots, x_{n} is done by the dealer at random from all permutations of n distinct elements from $G F(p) \backslash\{0\}$. Now if ℓ participants cheat $(\ell \leq t-1)$, there is an overwhelming probability that the recovered secret is a random value which cannot be corrected by the cheaters.

9.6 Problems and Exercises

1. Design a $(4,5)$ Shamir threshold scheme over GF(787). Choose at random all coefficients of the polynomial $f(x)$ and determine shares for the participants.
2. Assume that you are a combiner. A collection of three participants P_{2}, P_{4} and P_{5} provided their shares so you know three points on the parabola. Let them be $(2,123),(4,345)$ and $(5,378)$. Find out the polynomial and the secret assuming that the threshold is 3 and arithmetics is done in GF (787).
3. Consider the modular threshold scheme with the parameters $p_{0}=97, p_{1}=101, p_{2}=103, p_{3}=107, p_{4}=109$.

- Given the secret $k=72$ and $s_{1}=54$. Compute the rest of shares providing the threshold $t=2(n=4)$.
- A combiner is given two shares $s_{2}=51$ and $s_{4}=66$ and the threshold is 2 , what is the secret ?

4. Given a $(2,3)$ modular threshold scheme in GF $\left(2^{3}\right)$.

- Apply the following collection of co-prime polynomials over GF(2): $p_{0}(x)=x^{3}+x+1, p_{1}(x)=x^{3}+x^{2}+1$, $p_{2}(x)=x^{3}+x^{2}+x, p_{3}(x)=x^{3}+x^{2}+x+1$. Check whether the polynomials are really co-prime. Compute shares knowing that the secret $k(x)=x^{2}+1$ (or equivalently $k=5$).
- What is the secret $k(x)$ knowing $s_{1}(x)=x^{2}$ and $s_{3}=x^{2}+x+1$?

5. Take an instance of the Karnin-Greene-Hellman scheme.

- Design a system for $t=7$ over GF(101).
- What is the secret if $t=5$ and shares are $s_{1}=23, s_{2}=75, s_{3}=13, s_{4}=86$ and $s_{5}=56$ in GF(101).

6. Let $\mathcal{P}=\left\{P_{1}, P_{2}, P_{3}\right\}$. Write down all the subsets of $2 \mathcal{P}$. Given the access structure, $=\left\{\left\{P_{1}\right\},\left\{P_{1}, P_{2}, P_{3}\right\},\left\{P_{2}\right\},\left\{P_{3}\right\}\right\}$ and its complement $2^{\mathcal{P}} \backslash,=\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{1}, P_{3}\right\},\left\{P_{2}, P_{3}\right\}\right\}$. Is the access structure, monotone ?
7. Suppose that $\mathcal{P}=\{A, B, C, D\}$ and the access structure basis, $0=\{\{A, B\},\{B, C\},\{C, D\}\}$. Write down a full expression for the access structure, (or , $\left.=c l\left(,,_{0}\right)\right)$.
8. Construct cumulative arrays for the following access structure bases:

- ${ }_{0}=\{\{A, B\},\{B, C\},\{B, D\},\{C, D\}\} ;$
-, $0=\{\{A, B\},\{B, C\},\{C, D\}\} ;$
-, $0=\{\{A, B, C\},\{A, B, D\}\}$.
Using the share assignments provided by the corresponding cumulative arrays and the Karnin-Greene-Hellman scheme, show how to design secret sharing schemes for the above access structures.

9. The Benaloh-Leichter construction allows to design a secret sharing for an arbitrary access structure straight from the expression for , . Design the secret sharing schemes for

- , $0=\{\{A, B\},\{B, C\},\{B, D\},\{C, D\}\} ;$
- , $0=\{\{A, B\},\{B, C\},\{C, D\}\} ;$
-, $0=\{\{A, B, C\},\{A, B, D\}\}$.
Compare the resulting schemes with the schemes obtained using cumulative arrays.

10. The Brickell vector space construction allows to design ideal secret sharing schemes. Let $\mathcal{P}=\{A, B, C, D\}$. Use the Brickell method to design ideal schemes for the following access structures:

- , $0=\{\{A, B, C\},\{A, B, D\}\}$. Hint: Apply a function $\tau: \mathcal{P} \rightarrow G F^{3}(103) . \tau(A)$ and $\tau(B)$ must assign two linear independent vectors while $\tau(C)$ and $\tau(D)$ must assign two linear dependent vectors ($\operatorname{try} \tau(C)=$ $\tau(D))$. Check whether the vector $(1,0,0)$ can be expressed by linear combination of the vectors assigned to participants from the access structure while the vector ($1,0,0$) is not a linear combination of vectors assigned to participants from unauthorised subsets.
$\bullet, 0=\{\{A, B, D\},\{A, C, D\},\{B, C\}\}$. Hint: Consider the following vectors $(0,0,1),(0,1,0),(1,1,0),(1,2,1)$. Can you find an assignment τ which satisfies the necessary conditions?

What are shares for $\bar{a}=(45,3,56)$ over $G F(57)$?
11. Take the access structure, $=\operatorname{cl}\left(\left\{\left\{P_{1}, P_{2}\right\},\left\{P_{2}, P_{3}\right\},\left\{P_{3}, P_{4}\right\},\left\{P_{2}, P_{4}\right\}\right\}\right)$ whose information rate is no better that $2 / 3$.

- Find cumulative arrays for , .
- Combine the arrays into a multiple cumulative array and compute information rates for resulting secret sharing schemes.

12. Consider a $(3,6)$ Shamir threshold scheme over GF(47). A dishonest participant P_{1} can cheat the rest of cooperating participants by providing a modified share \tilde{s}_{1}. Assume that the participant holds his share $s_{1}=24$ and modifies it in such way that $\Delta(0)=13, \Delta(2)=0, \ldots \Delta(6)=0$. What is the modified share \tilde{s}_{1} ?
13. Elaborate how a dishonest participant can cheat in the Karnin-Greene-Hellman scheme.
14. Given a (t, n) modular threshold scheme. Derive appropriate equations which can be used by a dishonest participant to cheat. How to prevent cheating in the modular scheme?

Chapter 10

GROUP ORIENTED CRYPTOGRAPHY

It may be required that the power to execute some operations is to be shared among members of a group. The recognition of such needs came when NIST tried to introduce the controversial Clipper Chip [364] with key escrowing to achieve legal wiretapping. The proposed Escrowed Encryption Standard (EES) uses two parties (called Key Escrow Agencies) to deposit the valid cryptographic key. Only if the two parties pooled their partial keys together, ciphertext could be decrypted.

This Chapter is devoted to the group oriented (also called society oriented) cryptography. The security of the presented solutions is conditional as it depends on the assumption of intractability of underlying numerical problems. The group oriented cryptography emerged as a natural consequence of embedding secret sharing schemes into a single user cryptography. Unlike in secret sharing, the secret shares held by participants should never be given to the combiner - shares are used to produce partial results. The combiner collects partial results and merges them into the final result.

Readers who want to study the subject, are recommended a review by Desmedt [147].

10.1 The Conditionally Secure Shamir Scheme

The Shamir scheme described previously is one time. Once shares have been pooled, the secret is recovered and used. The scheme dies. Also if a participant looses their share, the whole scheme needs to be regenerated and new shares redistributed. This can be avoided if the Shamir scheme is combined with exponentiation in $G F(q)$ in which discrete logarithm instances are intractable.

10.1.1 Description of the Scheme

The conditionally secure Shamir scheme is defined by two algorithms: dealer and combiner. The dealer Don selects at random a polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{t-1} x^{t-1}$ of degree at most $(t-1)$ and distributes permanent shares $s_{i}=f\left(x_{i}\right)$ to participants $P_{i}(i=1, \ldots, n)$ via a secure channel. The values $x_{i} \in G F(q)$ are public. Don also chooses at random a primitive element $g \in G F(q)-\mathrm{a}$ generator of the cyclic group of the field, and broadcasts it to all participants via a public channel. We also require that $q=2^{\ell}$ so that $q-1=p$ is a prime, i.e., p is a Mersenne prime. Note that if p is prime then all nonzero elements of $G F(q)$ have their multiplicative inverses. The secret is

$$
k=g^{f(0)}
$$

and each participant P_{i} can easily calculate their transient share

$$
c_{i}=g^{s_{i}}=g^{f(i)}
$$

The transient shares c_{i} in our scheme are like the public communications in the Diffie-Hellman [152] protocol. The scheme is based on the function

$$
F(x)=g^{f(x)}=g^{a_{0}}\left(g^{a_{1}}\right)^{x} \ldots\left(g^{a_{t-1}}\right)^{x^{t-1}}
$$

$$
=g_{0} g_{1}^{x} \ldots g_{t-1}^{x^{t-1}}
$$

where $g_{i}=g^{a_{i}}$ for $i=0, \ldots,(t-1)$ and $k=F(0)$.
At the pooling time, the combiner, Clara, collects t transient shares $\left(c_{i_{1}}=g^{f\left(x_{i_{1}}\right)}, \ldots, c_{i_{t}}=g^{f\left(x_{i_{i}}\right)}\right)$ from participants $\left(P_{i_{1}}, \ldots, P_{i_{t}}\right)$, and sets up the following systems of equations in $G F(q)$

$$
\begin{align*}
c_{i_{1}} & =g_{0} g_{1}^{x_{i_{1}}} \ldots g_{t-1}^{x_{i-1}^{t-1}} \\
c_{i_{2}} & =g_{0} g_{1}^{x_{i_{2}}} \ldots g_{t-1}^{x_{i_{2}}^{t-1}} \\
\vdots & \tag{10.1}\\
c_{i_{t}} & =g_{0} g_{1}^{x_{i_{t}}} \ldots g_{t-1}^{x_{i t}^{t-1}} .
\end{align*}
$$

The following theorem asserts that the system of equations (10.1) has a unique solution.
Theorem 10.1 ([85]) The system of equations (10.1) has a unique solution for the variables g_{i} in Galois fields $G F(q)$ for $q=2^{\ell}$, such that $q-1=p$ is a prime and $p>3$. The secret

$$
\begin{equation*}
k=g^{f(0)}=\prod_{j=1}^{t}\left(c_{i_{j}}\right)^{b_{j}} \tag{10.2}
\end{equation*}
$$

where $c_{i}=g^{s_{i}}$ and

$$
b_{j}=\prod_{\substack{1 \leq \ell \leq t \\ \ell \\ \ell \neq j}} \frac{x_{i_{\ell}}}{x_{i_{\ell}}-x_{i_{j}}}(\bmod p) .
$$

Equation (10.2) is equivalent to the Lagrange interpolation formula for polynomials.
Note that the permanent shares are never revealed to the combiner by their owners. They are used to generate transient shares by participants. The combiner never sees the polynomial $f(x)$. Instead she works with the function $F(x)$ in order to recalculate the secret k. This is certainly true only if the corresponding instances of discrete logarithm are intractable.

10.1.2 Renewal of the Scheme

Suppose that some of transient shares have been compromised so there is a possibility that they could be used by unauthorised persons. We also assume that the permanent shares remain secret and unknown to the other participants throughout the life time of the scheme. If a transient share c_{j} is invalidated, the owner - the participant P_{j}, notifies the combiner. The combiner invalidates all the shares of the participants, and distributes to the participants a new primitive element \hat{g} via a public channel. This channel has the property that any one can read it but the transmitted messages cannot be modified without detection of such modifications. After authentication of the new primitive element, the participants use \hat{g} to regenerate their transient shares using

$$
\hat{c}_{i}=\hat{g}^{s_{i}} \text { for } i=1, \ldots, n .
$$

Renewal Algorithm - regenerates lost transient shares
R1. Participant P_{i} notifies the combiner that their share c_{i} has been compromised. At this stage the combiner ignores requests from other participants to reconstruct the secret key.

R2. The combiner generates at random a $R(1<R<q-1)$ such that $\hat{g}=g^{R}$ is another primitive element. The element \hat{g} is distributed via a public channel to all participants, and the pair (R, R^{-1}) is kept by the combiner for a further reference. The combiner now accepts requests from participants who would like to reconstruct the secret key.

R3. The participants who would like to reconstruct the secret, calculate their new transient shares

$$
\hat{c}_{i}=\hat{g}^{s_{i}}=g^{R s_{i}}
$$

and send these to the combiner.
R4. The combiner computes $\hat{k}=\hat{g}^{f(0)}$ using Expression (10.2). Now $k=g^{f(0)}$ can be readily recovered from \hat{k} since

$$
k=g^{f(0)}=g^{R f(0) R^{-1}}=(\hat{k})^{R^{-1}}
$$

Only the combiner knows the pair (R, R^{-1}), hence only the combiner can recreate the secret.
Assuming that solving an instance of discrete logarithm problem is intractable, the above algorithm will regenerate the shares securely provided that R is chosen randomly by the combiner.

The combiner can recreate the secret only if she knows t transient shares (t is the threshold value of the scheme). On the other hand an opponent who knows only r shares ($r<t$), cannot solve the suitable system of equations and is unable to recreate the secret.

Once the scheme is created by the dealer, the secret $k=g^{f(0)}$ remains the same for the life-time of the scheme. New primitive elements are generated from the initial primitive element by combiner at the time when there is a group of participants who are willing to cooperate to recreate the secret.

10.1.3 Non-interactive Verification of Shares

We now describe a verification protocol which allows all participants to check whether the secret sharing scheme parameters are consistent, i.e., the shares s_{i} are consistent with the polynomial $f(x)$. The verification protocol due to Pedersen [395] is based on the commitment function:

$$
E(s, u)=g^{s} h^{s+u}
$$

where g is a randomly chosen primitive element in $G F(q)$, and h is a randomly selected integer such that $\log _{g} h$ is unknown.

Definition 10.1 A secret sharing with verification protocol has to satisfy the following two conditions

1. if all parties: the dealer and participants, follow the protocol, then each participant P_{i} accepts their share s_{i} with probability $1(i=1, \ldots, n)$,
2. any subset $\mathcal{A}_{i} \in$, of t or more different participants who have accepted their shares using the verification protocol recovers the secret $k^{\prime} \neq k=f(0)$ with an negligible probability.

Verification Protocol - checks consistency of shares
V1. The dealer first designs a (t, n) Shamir scheme with a polynomial $f(x)=k+a_{1} x+\ldots+a_{t-1} x^{t-1}$ of degree at most $(t-1)$ with shares $s_{i}=f\left(x_{i}\right)$ assigned to participants $P_{i}(i=1, \ldots, n)$. The secret $k=f(0)$. Shares are communicated to corresponding participants secretly. The dealer publishes two random integers $g, h \in G F(q)$ where g is a primitive element and $\log _{g} h$ is not known.

V2. Don calculates $E_{0}=E(k, u)$ for a random $u \epsilon_{R} G F(q)$. E_{0} is a commitment to the secret k. Next he chooses at random a sequence of $t-1$ elements $b_{1}, \ldots, b_{t-1} \in G F(q)$ and computes commitments $E_{i}=E\left(a_{i}, b_{i}\right)$ to coefficients of the polynomial $f(x)$ for $i=1, \ldots, t-1$. All commitments E_{i} are broadcast.

V3. Don creates a polynomial $B(x)=u+b_{1} x_{1}+\ldots+b_{t-1} x^{t-1}$ and sends $u_{i}=B\left(x_{i}\right)$ to the participant P_{i} via a secure channel $(i=1, \ldots, n)$.

V4. Each participant P_{i} verifies whether

$$
\begin{equation*}
E\left(s_{i}, u_{i}\right) \equiv \prod_{j=0}^{t-1} E_{j}^{x_{i}^{j}} \bmod q \tag{10.3}
\end{equation*}
$$

Equation (10.3) is true for each index $i=1, \ldots, n$ as the left side of the equation can be derived from the right one as

$$
\begin{aligned}
\prod_{j=0}^{t-1} E_{j}^{x_{i}^{j}} & \equiv E_{0} \prod_{j=1}^{t-1}\left(g^{a_{j}} h^{a_{j}+b_{j}}\right)^{x_{i}^{j}} \\
& \equiv g^{k} h^{k+u} \cdot g^{a_{1} x_{i}} h^{\left(a_{1}+b_{1}\right) x_{i}} \ldots g^{a_{t-1} x_{i}^{t-1}} h^{\left(a_{t-1}+b_{t-1}\right) x_{i}^{t-1}} \\
& \equiv g^{k+a_{1} x_{i}+\ldots+a_{t-1} x_{i}^{t-1}} h^{k+a_{1} x_{i}+\ldots+a_{t-1} x_{i}^{t-1}+u+b_{1} x_{i}+\ldots+b_{t-1} x_{i}^{t-1}} \\
& \equiv g^{f\left(x_{i}\right)} h^{f\left(x_{i}\right)+B\left(x_{i}\right)} \\
& \equiv g^{s_{i}} h^{s_{i}+u_{i}} \\
& \equiv E\left(s_{i}, u_{i}\right) \bmod q
\end{aligned}
$$

The above transformations prove that the first condition of Definition (10.1) is satisfied. The proof of the second condition is left as an exercise.

10.1.4 Proactive Secret Sharing

Herzberg, Jarecki, Krawczyk, and Yung came up with a concept of proactive secret sharing [241]. It is expected that throughout the life-time of the system, shares may be either compromised by revealing some of them or corrupted by deleting some shares. Clearly, any (t, n) threshold scheme tolerates $(t-1)$ revealed and $(n-t)$ lost shares. If we assume that shares are being compromised (revealed or lost) gradually, then it is possible to divide the life-time of the system into relatively short periods of time. At the beginning of each consecutive period, a share renewal protocol is run. The protocol is always successful if the deterioration of shares does not exceed the bounds for revealed and lost shares. As the result all compromised (lost or revealed) shares are regenerated while the secret stays the same. An important characteristics of proactive secret sharing is that the share renewal protocol does not change the value of the secret.

Definition 10.2 A proactive secret sharing is a collection of two algorithms: dealer and combiner with a share renewal protocol which keeps the secret unchanged throughout the life-time of the scheme.

Consider an implementation of proactive secret sharing using Shamir (t, n) threshold scheme. The scheme is initialised by the dealer. Shares are $s_{i}^{(0)}=f^{(0)}\left(x_{i}\right)$ for $i=1, \ldots, n$ and the secret is $k=f^{(0)}(0)$ for some polynomial $f^{(0)}(x)$. The share renewal protocol run at the beginning of ℓ-th period, switches the scheme from the polynomial $f^{(\ell-1)}(x)$ to $f^{(\ell)}(x)$. New shares are $s_{i}^{(\ell)}=f^{(\ell)}\left(x_{i}\right)$ but secret stays the same $k=f^{(\ell)}(0)$. The switch between two polynomials is done by using a polynomial $\delta(x)$ such that $\delta(0)=0$. In other words, $f^{(\ell)}(x)=f^{(\ell-1)}(x)+\delta(x)$ for $\ell=1, \ldots$.

We now assume that all participants are honest or in other words, they follow the protocol and opponents are passive. The share renewal protocol is run concurrently by all participants $P_{i} ; i=$ $1, \ldots, n$ at the beginning of each time period ℓ. Each participant P_{i} executes the following steps:

1. P_{i} chooses at random a polynomial $\delta_{i}(x)=d_{i, 1} x+\ldots+d_{i, t-1} x^{t-1}$ in $\mathcal{Z}_{q}\left(d_{i, j} \in_{R} \mathcal{Z}_{q}\right.$ for $j=1, \ldots, t-1)$. Note that $\delta_{i}(0)=0$.
2. P_{i} communicates to each $P_{j}(j \neq i)$ a correction $c_{i j}=\delta_{i}\left(x_{j}\right)$. Communication is done via secure channels (providing secrecy).
3. P_{i} collects all corrections $\delta_{j}\left(x_{i}\right)$ for $j=1, \ldots, n$ and computes their new share $s_{i}^{\ell}=s_{i}^{\ell-1}+$ $\sum_{j=1}^{n} \delta_{j}\left(x_{i}\right)$. The old share is discarded.

Let us illustrate the protocol on a simple example. Given $(3,4)$ threshold scheme with the polynomial $f^{(0)}(x)=3+5 x+12 x^{2}$ over GF (13). After the initialisation, the collection of shares is $s_{1}^{0}=f^{(0)}(1)=7, s_{2}^{0}=f^{(0)}(2)=9, s_{3}^{0}=f^{(0)}(3)=9, s_{4}^{0}=f^{(0)}(4)=7$. The participants P_{1}, P_{2}, P_{3} and P_{4} generate their random polynomials $\delta_{1}(x)=2 x+6 x^{2}, \delta_{2}(x)=x, \delta_{3}(x)=5 x+7 x^{2}, \delta_{4}(x)=9 x^{2}$, respectively. Next they compute values $c_{i j}$. In particular, P_{1} calculates $c_{11}=\delta_{1}(1)=8, c_{12}=\delta_{1}(2)=2$, $c_{13}=\delta_{1}(3)=8, c_{14}=\delta_{1}(4)=0, P_{2}$ computes $c_{21}=\delta_{2}(1)=1, c_{22}=\delta_{2}(2)=2, c_{23}=\delta_{2}(3)=3$, $c_{24}=\delta_{2}(4)=4, P_{3}$ obtains $c_{31}=\delta_{3}(1)=12, c_{32}=\delta_{3}(2)=12, c_{33}=\delta_{3}(3)=0, c_{34}=\delta_{3}(4)=2$, and P_{4} finds out $c_{41}=\delta_{4}(1)=9, c_{42}=\delta_{4}(2)=10, c_{43}=\delta_{4}(3)=3, c_{44}=\delta_{4}(4)=1$. The participant P_{i} forwards the corrections $c_{i j}$ to the corresponding participants P_{j} via secure channels. The value $c_{i i}$ stays with P_{i}. New shares are $s_{1}^{1}=s_{1}^{0}+c_{11}+c_{21}+c_{31}+c_{41}=11, s_{2}^{1}=s_{2}^{0}+c_{12}+c_{22}+c_{32}+c_{42}=9$, $s_{3}^{1}=s_{3}^{0}+c_{13}+c_{23}+c_{33}+c_{43}=10, s_{4}^{1}=s_{4}^{0}+c_{14}+c_{24}+c_{34}+c_{44}=1$. It is easy to check that the secret stays the same.

The share renewal protocol needs to be modified if potential opponents are assumed to be active. After the exchange of shares, all participants engage themselves in a non-interactive verification of shares described in Section (10.1.3). The initialisation of secret sharing includes also calculation and announcement of public parameters necessary for verification of shares. The commitment function used is $E(s, u)=g^{s} h^{s+u}$ where g is a primitive element and h is a random integer whose $\log _{g} h$ is unknown ($g, h \in G F(p)$). Public elements are: the function $E()$ and integers g, h, p. The protocol runs at the beginning of ℓ-th time period and consists of the following steps:

1. P_{i} chooses at random a polynomial $\delta_{i}(x)=d_{i, 1} x+\ldots+d_{i, t-1} x^{t-1}$ in $\mathcal{Z}_{q}\left(d_{i, j} \in_{R} \mathcal{Z}_{q}\right.$ for $j=1, \ldots, t-1)$. Note that $\delta_{i}(0)=0$. Next the participant generates a collection of parameters for verification of the corrections $c_{i j}=\delta_{i}\left(x_{j}\right)$. They are $E_{i, j}=E\left(d_{i}, b_{i, j}\right)$ where $B_{i}(x)=$ $b_{i, 0}+b_{i, 1} x+\ldots+b_{i, t-1} x^{t-1}$ is a random polynomial selected by P_{i} and $j=1, \ldots, t-1$.
2. P_{i} calculates the corrections $c_{i j}=\delta_{i}\left(x_{j}\right) ; j=1, \ldots, n(j \neq i)$, and a proper share of the polynomial $B_{i}(x)$ that is $u_{i, j}=B_{i}\left(x_{j}\right)$. The pair $\left(c_{i j}, u_{i, j}\right)$ is encrypted using public-key cryptosystems of the corresponding participants P_{j}, i.e. $v_{i j}=E_{K_{j}}\left(c_{i j}, u_{i, j}\right)$ where K_{j} is the authentic public key of P_{j}.
3. P_{i} broadcasts the message $\left(P_{i}, \ell,\left\{E_{i, j} \mid j=0, \ldots, t-1\right\},\left\{v_{i j} \mid j=1, \ldots, n ; j \neq i\right\}\right.$ and appends the signature to eliminate tampering with the contents of the message.
4. After all participants finished broadcasting, P_{i} decrypts the cryptograms $v_{j i}$ where $j=1, \ldots, n$; $j \neq i$ and verifies correctness of shares $c_{j i}$ and $u_{j, i}$ generated by P_{j} by checking

$$
E\left(c_{j i}, u_{j, i}\right) \stackrel{?}{=} \prod_{\alpha=0}^{t-1} E_{j, \alpha}^{x_{i}{ }^{\alpha}} \quad(\bmod p)
$$

where $E_{j, 0}=E\left(0, b_{i, 0}\right)$. Note that P_{i} has to verify $n-1$ shares (corrections) generated by other participants. If all checks are OK, P_{i} broadcasts a signed acceptance message. If P_{i} discovers that some checks have failed, P_{i} sends a signed accusation in which they specify misbehaving participants.
5. If all participants have sent their acceptance messages, then each participant P_{i} updates their shares to $s_{i}^{\ell}=s_{i}^{\ell-1}+\sum_{j=1}^{n} c_{j i}$. The old share is discarded.
6. If there are some accusations, then the protocol resolves them (for details see [241]). As all messages are broadcast, it is reasonable to assume that all honest participants will come up with the same list of misbehaving participants. Honest participant update their shares ignoring corrections from misbehaving participants.

The above protocol has no provision for dealing with lost shares. We have assumed that in any point of time there must be a large enough set \mathcal{D} of participants whose shares are valid $(|\mathcal{D}| \geq t)$. The rest of participants $\mathcal{P} \backslash \mathcal{D}$ either lost their shares or hold invalid ones. To determine the set \mathcal{D}, participants employ a non-interactive verification of shares (see Section (10.1.3). As the verification may be triggered by any participant at any time, the verification parameters must be generated at the initialisation stage and updated after each renewal of shares. The next protocol allows to recover shares and it is run be concurrently by all participants $P_{i} \in \mathcal{D}$. Before we describe the protocol, first note that the participants from \mathcal{D} want to recover a share $s_{r}^{(\ell)}=f^{(\ell)}\left(x_{r}\right)$ of participant $P_{r} \in \mathcal{P} \backslash \mathcal{D}$. Instead of revealing their shares to P_{r} (and compromising the secret), they randomise the polynomial $f^{(\ell)}(x)$ so $s_{r}^{(\ell)}$ stays the same. Finally they supply their shares of the randomised polynomial to P_{r} so P_{r} can recover $s_{r}^{(\ell)}$ using the Lagrange interpolation formula.

The share recovery protocol has to be run for each lost share and involves all participants from the set \mathcal{D}. It takes the following steps:

1. Each $P_{i} \in \mathcal{D}$ selects a random polynomial $\delta_{i}(x)$ of degree $(t-1)$ over \mathcal{Z}_{q} such that $\delta_{i}\left(x_{r}\right)=0$.
2. P_{i} broadcasts shares to other participants from \mathcal{D}, i.e. sends $E_{K_{j}}\left(\delta_{i}\left(x_{j}\right)\right)$ for $P_{j} \in \mathcal{D}$.
3. P_{i} ensembles their new share of the lost share, i.e. $s_{i}^{\prime}=s_{i}^{(\ell)}+\sum_{P_{j} \in \mathcal{D}} \delta_{i}\left(x_{j}\right)$ and broadcasts it to P_{r} (for instance by cryptogram $E_{K_{r}}\left(s_{i}^{\prime}\right)$).
4. P_{r} decrypts the cryptograms and uses the Lagrange interpolation to reconstruct $s_{r}^{(\ell)}$ from the shares s_{i}^{\prime} of all participants from \mathcal{D}.

10.2 Threshold Decryption

The (t, n) threshold decryption allows a group of n participants to extract the message from a cryptogram only if the active subgroup \mathcal{B} consists of t or more participants or $\mathcal{B} \in$, If the collaborating subgroup is smaller, it learns nothing about the message. The cryptogram is generated by a single sender and is assumed to be public.

10.2.1 ElGamal Threshold Decryption

The group decryption based on the ElGamal system was described by Desmedt and Frankel in [149]. The system is set up by the dealer, Don, who first chooses a proper Galois field $G F(q)$ such that $(p=q-1)$ is a Mersenne prime, $p=2^{\ell}$ and discrete logarithm instances are intractable. Further Don selects a primitive element $g \in G F(q)$ and a nonzero random integer $k \in G F(q)$. Next Don computes
$y=g^{k} \bmod q$ and publishes the triple (g, q, y) as the public parameters of the system. The triple is stored in read-only White Pages so any potential sender has the access to the authentic parameters of the given receiver - here the receiver is a group \mathcal{P} of n participants. The dealer then uses the Shamir (t, n) threshold scheme over $G F(p)$ to distribute the secret k among the participants. The scheme uses $f(x)$ with the public sequence of x_{1}, \ldots, x_{n}. The shares are $s_{i}=f\left(x_{i}\right)$ for $i=1, \ldots n$, and the secret $k=f(0)$.

Suppose that a sender Sue wants to send a message $m \in G F(q)$ to the group \mathcal{P}. Sue first collects the public parameters from White Pages, chooses at random an integer $r \in G F(q)$ and computes the cryptogram $c=\left(g^{r}, m y^{r}\right)$ for the message m.

Assume that $\mathcal{B} \in$, is the authorised subset so it contains at least t participants. Let it be $\mathcal{B}=\left\{P_{1}, \ldots, P_{t}\right\}$. The first stage of decryption is executed separately by each participant $P_{i} \in \mathcal{B}$. P_{i} takes the first part of the cryptogram and computes $\left(g^{r}\right)^{s_{i}} \bmod q$. The results are sent to the combiner.

Having t values $g^{r s_{i}}$, Clara "corrects" the values by computing

$$
\left(g^{r s_{i}}\right)^{b_{i}} \bmod q
$$

where $b_{i} \mathrm{~s}$ are computed from the public elements x_{j} of the active set \mathcal{B} and

$$
b_{i} \equiv \prod_{P_{j} \in \mathcal{B} ; j \neq i} \frac{x_{j}}{x_{j}-x_{i}} \bmod p
$$

Then Clara computes $\prod_{P_{i} \in \mathcal{B}}\left(g^{r s_{i}}\right)^{b_{i}}=g^{k r}=y^{r}$, and decrypts the cryptogram

$$
m \equiv m y^{r} \times y^{-r} \bmod q
$$

using the multiplicative inverse y^{-r} modulo q.
Note that shares are never communicated in clear to the combiner. Instead values $\left(g^{r}\right)^{s_{i}}$ are transmitted via a public channel to Clara. Scheme can be used repeatedly. Assuming that the ElGamal system is secure, the threshold ElGamal is also secure.

(t, n) ElGamal Threshold Decryption

Initialisation: 1. The dealer selects a big enough prime q, two elements $g, k \in_{R} G F(q)$, and computes $y=g^{k} \bmod q$. Don deposits (q, g, y) in White Pages.
2. Don designs a (t, n) Shamir scheme over $G F(p)$ with a polynomial $f(x)$ of degree at most $(t-1)$. The secret $k=f(0)$. Shares $s_{i}=f\left(x_{i}\right)$ are communicated to $P_{i} \in \mathcal{P}$ secretly (x_{i} are public $i=1, \ldots, n)$.

Encryption: Sue takes the triple of authentic elements from White Pages. For a message $m \in G F(q)$, she prepares the cryptogram $C=\left(g^{r}, m y^{r}\right)$ where $r \in_{R} G F(q)$.

Decryption: 1. Each participant $P_{i} \in \mathcal{B} ;|\mathcal{B}|=t$, calculates $\left(g^{r}\right)^{s_{i}} \bmod q$ and sends the result to the combiner.
2. The combiner first finds out $y^{r} \equiv \prod_{P_{i} \in \mathcal{B}}\left(g^{r s_{i}}\right)^{b_{i}} \bmod q$ and $m \equiv m y^{r} \times y^{-r} \bmod q$

Suppose the modulus $q=263$. The integer $p=q-1=262$, a primitive element $g=193$, the secret $k=161$ and $y=g^{k} \equiv 257 \bmod q$. The triple (g, q, y) is public. An instance of $(3,4)$ Shamir secret sharing is defined by the polynomial $f(x)=161+88 x+211 x^{2}$ over $G F(p)$. Participants are $\mathcal{P}=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ with public coordinates $x_{1}=1, x_{2}=2, x_{3}=3$ and $x_{4}=4$. Their shares
are $s_{1}=f(1)=198, s_{2}=f(2)=133, s_{3}=f(3)=228, s_{1}=f(1)=221$, and $k=f(0)=161$. To send a message $m=157$, Sue selects a random integer $r=95$ and forwards the cryptogram $c=\left(g^{r}, m y^{r}\right)=(247,139)$ over $G F(q)$.

Assume that our active set is $\mathcal{B}=\left\{P_{1}, P_{2}, P_{4}\right\}$. On arrival of the cryptogram c, each participant $P_{i} \in \mathcal{B}$ their correction b_{i}. The corrections are: $b_{1}=\frac{x_{2}}{x_{2}-x_{1}} \frac{x_{4}}{x_{4}-x_{1}}=90 \bmod 262, b_{2}=\frac{x_{1}}{x_{1}-x_{2}} \frac{x_{4}}{x_{4}-x_{2}}=$ $260 \bmod 262, b_{4}=\frac{x_{1}}{x_{1}-x_{4}} \frac{x_{2}}{x_{2}-x_{4}}=175 \bmod 262$. Note that calculations of b_{i} involves finding the inverse elements modulo p which is not prime. To fix the problem with inverses, it is enough to choose g as an element of order $p / 2=131$ and to perform all exponent computations modulo $p=131$. Next each $P_{i} \in \mathcal{B}$ takes the first part of the cryptogram and finds $g^{r s_{i} b_{i}}$ so

$$
g^{r s_{1} b_{1}} \equiv 49 \quad(\bmod q), \quad g^{r s_{2} b_{2}} \equiv 102 \quad(\bmod q), \quad g^{r s_{4} b_{4}} \equiv 155 \quad(\bmod q) .
$$

The above integers are communicated to Clara who multiplies them, finds $y^{r} \equiv 155 \bmod q$ and retrieves the message $m=157$.

10.2.2 RSA Threshold Decryption

Desmedt and Frankel [148] showed how the RSA public key cryptosystem can be combined with the Shamir scheme for group decryption.

All public computations in RSA are done modulo N where $N=p q$ (p, q are strong primes). The secret computations are done in the multiplicative (cyclic) group of invertible elements of the ring \mathcal{Z}_{N}, and can be performed when $\varphi(N)=\operatorname{lcm}(p-1, q-1)$ is known $\left(\varphi(N)=2 p^{\prime} q^{\prime}\right.$ where p^{\prime} and q^{\prime} are primes). Suppose we use a (t, n) Shamir threshold scheme defined by a polynomial $f(x)$ of the degree at most $(t-1)$. The polynomial can be reconstructed by every subset \mathcal{B} of t participants using the Lagrange interpolation formula

$$
\begin{equation*}
f(x)=\sum_{P_{i} \in \mathcal{B}} f\left(x_{i}\right) \prod_{\substack{j \neq i \\ P_{j} \in \mathcal{B}}} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)} \bmod \varphi(N) \tag{10.4}
\end{equation*}
$$

Computations modulo $\varphi(N)=2 p^{\prime} q^{\prime}$ can be done by applying the Chinese Remainder Theorem - this involves calculations for the following three moduli: $2, p^{\prime}$, and q^{\prime}. Multiplicative inverses of ($x_{i}-x_{j}$) in Equation (10.4) exist only if they are co-prime to $\left\{2, p^{\prime}, q^{\prime}\right\}$. It is impossible to satisfy these conditions when the number of participants is greater than two. For example it is impossible to select three x_{1}, x_{2}, x_{3} such that all their differences are odd. The way out is to set $f\left(x_{i}\right)(i=1, \ldots, n)$ and all differences $\left(x_{i}, x_{j}\right)(i \neq j)$ to even numbers, so that all computations yield integers which can be represented as vectors: $a=\left(0 \bmod 2, a \bmod p^{\prime}, a \bmod q^{\prime}\right)$. This implies that all $x_{i}(i=1, \ldots, n)$ have to be odd (including the coordinate for the secret). Therefore we assume that the secret is $f(-1)$ (instead of the usual ' 0 ').

Consider the denominator of Equation (10.4)

$$
\prod_{P_{j} \in \mathcal{B} ; j \neq i} \frac{1}{\left(x_{i}-x_{j}\right)}=\frac{\prod_{P_{j} \in \mathcal{P} \backslash \mathcal{B} ; j \neq i}\left(x_{i}-x_{j}\right)}{\prod_{P_{j} \in \mathcal{P} ; j \neq i}\left(x_{i}-x_{j}\right)}
$$

Note that $\alpha_{i}=\prod_{P_{j} \in \mathcal{P}_{; j \neq i}}\left(x_{i}-x_{j}\right)$ does not depend upon the currently active set of participants \mathcal{B} and is known to the dealer at the setup time. So Equation (10.4) can be equivalently represented as

$$
\begin{equation*}
f(x)=\sum_{P_{i} \in \mathcal{B}} \frac{f\left(x_{i}\right)}{\alpha_{i}} \prod_{P_{j} \in \mathcal{P} \backslash \mathcal{B} ; j \neq i}\left(x_{i}-x_{j}\right) \prod_{P_{j} \in \mathcal{B} ; j \neq i}\left(x-x_{j}\right) \bmod \varphi(N) . \tag{10.5}
\end{equation*}
$$

Now we are ready to describe the RSA threshold decryption. The dealer first designs an RSA system with public elements: the modulus N and the public exponent K. The secret key is k and $k \cdot K=$
$1 \bmod \varphi(N)$. Don next sets up a Shamir (t, n) threshold scheme with polynomial $f(x)$. All public coordinates x_{i} are odd numbers. The secret $k-1=f(-1)$ and all shares $s_{i}=\frac{f\left(x_{i}\right)}{\alpha_{i}}$ are even numbers. The shares are distributed to participants of \mathcal{P} secretly.

For a message $m \in \mathcal{Z}_{N}$, a sender creates the cryptogram $c=m^{K} \quad(\bmod N)$ and broadcast it to the group. On receipt, each participant P_{i} of a subgroup $\mathcal{B}=\left\{P_{1}, \ldots, P_{t}\right\} \in$, computes

$$
c_{i} \equiv c^{s_{i}} \bmod N
$$

and dispatches the result to a trusted combiner.
Clara collects partial cryptograms $c_{i} ; i=1, \ldots, t$ and knowing the currently active subset $\mathcal{B}=$ $\left\{P_{1}, \ldots, P_{t}\right\}$, modifies them

$$
\begin{equation*}
\hat{c}_{i} \equiv c_{i}^{\prod_{P_{j} \in \mathcal{P} \backslash \mathcal{B} ; j \neq i}\left(x_{i}-x_{j}\right) \prod_{P_{j} \in \mathcal{B} ; j \neq i}\left(-1-x_{j}\right)} \bmod N \tag{10.6}
\end{equation*}
$$

Finally, she recovers the message

$$
\prod_{P_{i} \in \mathcal{B}} \hat{c}_{i} \cdot c=c^{f(-1)+1}=c^{k} \equiv m \quad(\bmod N)
$$

(t, n) RSA Threshold Decryption

Initialisation: 1. The dealer designs an RSA system with the modulus N, the public key K, and the secret key k. Public elements (N, K) are deposited with White Pages.
2. Don sets up a (t, n) Shamir scheme with a polynomial $f(x)$ of degree at most $(t-1)$ over $\mathcal{Z}_{\varphi(N)}$. The coordinates x_{i} are odd and public. Shares $s_{i}=\frac{f\left(x_{i}\right)}{\alpha_{i}}$ are even where $\alpha_{i}=\prod_{P_{j} \in \mathcal{P} ; j \neq i}\left(x_{i}-x_{j}\right)$. The secret $f(-1)=k-1$.

Encryption: Sue takes public elements N, K from White Pages. For a message $m \in \mathcal{Z}_{N}$, the cryptogram $c \equiv m^{K} \bmod N$.

Decryption: 1. Each participant $P_{i} \in \mathcal{B} ;|\mathcal{B}|=t$, computes $c_{i} \equiv c^{s_{i}} \bmod N$.
2. The combiner corrects the partial decryptions getting \hat{c}_{i} according to Congruence (10.6) and recovers the message m.

Let us illustrate the scheme on a simple example. The dealer selects two primes $p=11$ and $q=23$. The modulus $N=p q=253$ and $\varphi(N)=110$. The dealer also creates an instance of Shamir secret sharing for four participants $\mathcal{P}=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ with the threshold $t=3$ using a random polynomial of degree at most 2 over $\mathcal{Z}_{\varphi(N)}$. Let it be $f(x)=6+15 x+81 x^{2}$. Public coordinates are $x_{1}=1$, $x_{2}=3, x_{3}=5$ and $x_{4}=7$. The secret key $k=f(-1)+1=73$ and the public key $K=107$. Public information is (K, N) and coordinates x_{i} for $P_{i} \in \mathcal{P}$. Don computes parameters α_{i} and

$$
\begin{aligned}
& \alpha_{1}=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right) \equiv 62 \quad(\bmod 110) \\
& \alpha_{2}=\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right) \equiv 16 \quad(\bmod 110) \\
& \alpha_{3}=\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right) \equiv 94 \quad(\bmod 110) \\
& \alpha_{4}=\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right) \equiv 48 \quad(\bmod 110)
\end{aligned}
$$

Clearly, α_{i} does not have its inverse modulo 110 as they are even and divisible by 2. Take α_{1}. It can be represented in the vector form as $\alpha_{1}=(0 \bmod 2,2 \bmod 5,7 \bmod 11)$. We compute $\alpha_{1}^{-1}=$ $\left(0 \bmod 2,2^{-1} \bmod 5,7^{-1} \bmod 11\right)=(0,3,8)=8$ and

$$
\begin{aligned}
& \alpha_{2}^{-1}=(0 \bmod 2,1 \bmod 5,9 \bmod 11)=86 \\
& \alpha_{3}^{-1}=(0 \bmod 2,4 \bmod 5,2 \bmod 11)=24 \\
& \alpha_{4}^{-1}=(0 \bmod 2,2 \bmod 5,3 \bmod 11)=102
\end{aligned}
$$

Don prepares shares for participants

$$
\begin{aligned}
& s_{1}=f\left(x_{1}\right) \alpha_{1}^{-1} \equiv 46 \quad(\bmod 110), \\
& s_{2}=f\left(x_{2}\right) \alpha_{2}^{-1} \equiv 90 \quad(\bmod 110), \\
& s_{3}=f\left(x_{3}\right) \alpha_{3}^{-1} \equiv 54 \quad(\bmod 110), \\
& s_{4}=f\left(x_{4}\right) \alpha_{4}^{-1} \equiv 30 \quad(\bmod 110)
\end{aligned}
$$

and sends them to corresponding participants via secret channels.
A sender, Sue, takes her message $m=67$ and public elements and computes the cryptogram $c=m^{K}=67^{107} \equiv 89 \bmod 253$. The cryptogram is broadcast to all participants. Let an active set be $\mathcal{B}=\left\{P_{1}, P_{3}, P_{4}\right\}$. Each participant from \mathcal{B} computes their partial cryptogram and

$$
\begin{aligned}
& c_{1}=c^{s_{1}} \equiv 78 \quad(\bmod 253) \\
& c_{3}=c^{s_{3}} \equiv 100 \quad(\bmod 253) \\
& c_{4}=c^{s_{4}} \equiv 144 \quad(\bmod 253)
\end{aligned}
$$

The partial cryptograms are sent to the combiner. Clara corrects the cryptograms

$$
\begin{aligned}
& \hat{c_{1}}=c_{1}^{\left(x_{1}-x_{2}\right)\left(-1-x_{3}\right)\left(-1-x_{4}\right)} \equiv 177 \quad(\bmod 253), \\
& \hat{c_{3}}=c_{3}^{\left(x_{3}-x_{2}\right)\left(-1-x_{1}\right)\left(-1-x_{4}\right)} \equiv 210 \quad(\bmod 253), \\
& \hat{c_{4}}=c_{4}^{\left(x_{4}-x_{2}\right)\left(-1-x_{1}\right)\left(-1-x_{3}\right)} \equiv 100 \quad(\bmod 253) .
\end{aligned}
$$

and recovers the message

$$
m=\prod_{P_{i} \in \mathcal{B}} \hat{c_{i}} \cdot c=\hat{c_{1}} \hat{c_{3}} \hat{c_{4}} c \equiv 67 \quad(\bmod 253)
$$

10.2.3 RSA Decryption without Dealer

It may happen that participants fail to agree on who can be a trusted dealer. The way out is to allow the sender to set up the system and to compose the requested group of receivers at the time when there is a need for communication. Also the sender can exercise her discretion in the selection of the threshold parameter t. A scheme which does not need a trusted dealer was published by Ghodosi, Pieprzyk, and Safavi-Naini in [198].

Suppose that all participants have established their own RSA public key cryptosystems and registered their systems with White Pages. The registry provides the authentic public parameters of all registered RSA systems. Now we will show how the sender constructs a group decryption system on the top of single user RSA systems. The sender, Sue, creates the group $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ and looks up White Pages for their public parameters - let them be N_{i} and K_{i} for $i=1, \ldots, n$, ordered in the increasing order so $N_{i}<N_{i+1}$. Next Sue selects at random a polynomial $f(x)$ of degree at most $(t-1)$ over $G F(p)$ where $p<N_{1}$. She further computes the collection of shares

$$
s_{i}=f\left(x_{i}\right)
$$

for a public coordinates $x_{i} ; i=1, \ldots, n$ and the secret $k=f(0)$. The shares are hidden using RSA encryption so

$$
c_{i}=s_{i}^{K_{i}} \bmod N_{i}
$$

The first part of the cryptogram C_{1} is the merge of all encrypted shares using the Chinese Remainder Theorem

$$
C_{1}=\left(c_{1} \bmod N_{1}, \ldots, c_{n} \bmod N_{n}\right)
$$

For a message $m\left(m \leq \prod_{i=1}^{t} N_{i}\right)$, the sender computes $m_{i} \equiv m \bmod N_{i}$ and $m_{i}^{k} \bmod N_{i}$. The results create

$$
C_{2}=\left(m_{1}^{k} \bmod N_{1}, \ldots, m_{n}^{k} \bmod N_{n}\right)
$$

The cryptogram $C=\left(\mathcal{P}, p, t, C_{1}, C_{2}\right)$ is broadcast.
Each participant $P_{i} \in \mathcal{P}$ performs the following operations. First P_{i} gets $c_{i} \equiv C_{1} \bmod N_{i}$ and $m_{i}^{k} \equiv C_{2} \bmod N_{i}$. Next using their secret key k_{i} recovers the share $s_{i} \equiv c_{i}^{k_{i}} \bmod N_{i}$. The share s_{i} is broadcast to all other participants. After receiving $t-1$ shares each participant in the group can reconstruct the secret $k \in G F(p)$ and compute

$$
m_{i} \equiv\left(m_{i}^{k}\right)^{k^{-1}} \bmod N_{i}
$$

Although k is public only the participant P_{i} is able to find the inverse k^{-1} as P_{i} knows the factors of N_{i} and can calculate $k \cdot k^{-1} \equiv 1 \bmod \varphi\left(N_{i}\right)$. Now if t participants have sent their partial messages m_{i}, the combiner can recreate the message m using the Chinese Remainder Theorem.

The decryption process involves two stages: the recovery of the secret k and the reconstruction of the message. If at least t participants have collaborated at each stage, the message m is reconstructed. If fewer than $t-1$ participants broadcast their shares s_{i} at the first stage, then the exponent k is unknown and the message cannot be recovered. An interesting case is when, the requested number of $t-1$ participants have broadcast their shares but fewer than t deposited their partial message to the combiner. More formally, let the combiner know (m_{1}, \ldots, m_{t-1}). Then the recovery of the message m is reduced to a guess of a single partial message, say m_{t}. The guess is equivalent to finding the inverse of k for some $N_{i} ; i=t, \ldots, n$.

(t, n) RSA Threshold Decryption without Dealer

Initialisation: 1. The sender creates a group $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$. She collects the public parameters of their RSA systems (K_{i}, N_{i});i=1, \ldots, n from White Pages.
2. Sue constructs a (t, n) Shamir scheme with a polynomial $f(x)$ over $G F(p)$ where $p<N_{1}$. The secret $k=f(0)$ and shares $s_{i}=f\left(x_{i}\right)$. Coordinates x_{i} are public.

Encryption: 1. Sue computes $c_{i} \equiv s_{i}^{K_{i}} \bmod N_{i} ; i=1, \ldots, n$. The first part of cryptogram is $C_{1}=\left(c_{1} \bmod N_{1}, \ldots, c_{n} \bmod N_{n}\right)$.
2. For a message $m \leq \prod_{i=1}^{t} N_{i}$, she creates $C_{2}=\left(m_{1}^{k} \bmod N_{1}, \ldots, m_{n}^{k} \bmod N_{n}\right)$.
3. The cryptogram $C=\left(\mathcal{P}, p, t, C_{1}, C_{2}\right)$ is broadcast.

Decryption: 1. Each participant $P_{i} \in \mathcal{B} ;|\mathcal{B}|=t$, gets c_{i} and m_{i}^{k}. Next P_{i} recovers $s_{i}=c_{i}^{k_{i}} \bmod$ N_{i}. The shares s_{i} are broadcast.
2. After receiving $t-1$ shares, participant P_{i} reconstructs $k \in G F(p)$ and compute their partial messages m_{i}.
3. The combiner recreate the message m having any t partial messages.

10.3 Threshold Signatures

Group signatures appeared as so-called multisignatures. The concept of multisignatures was introduced independently by Boyd in [52], and Okamoto [383]. A group of n participants generates a multisignatures if all n members have to contribute to sign documents. Desmedt and Frankel in [149]
generalised the concept of multisignatures to the case when each t out of n participants are able to sign a document - these are threshold signatures. Note that any $(t-1)$ or fewer participants fail to sign a document. The verification of signatures can be done by any single person who knows the document and the signature (and perhaps some additional public information). The threshold signature system is initialised by a trusted dealer who creates all necessary secret parameters used by the participants. The signing algorithm is executed independently by the participants. The results are given to not necessarily trusted combiner who generates the signature. The signature is attached to the message. The verification algorithm can be executed by any body.

10.3.1 RSA Threshold Signatures

RSA group signature can be implemented in a similar fashion to the RSA threshold decryption. The group of signers is $\mathcal{P}=\left\{P_{1}, \ldots, p_{n}\right\}$ and the threshold parameter is t. The necessary adjustments are presented below.

A (t, n) RSA Threshold Signature

Initialisation: 1. The dealer designs an RSA system with the modulus N, the public key K, and the secret key k. The collection of public elements are stored in White Pages.
2. Don sets up a (t, n) Shamir scheme with a polynomial $f(x)$ of degree at most $(t-1)$ over $\mathcal{Z}_{\varphi(N)}$. The coordinates x_{i} are odd and public. Shares $s_{i}=\frac{f\left(x_{i}\right)}{\alpha_{i}}$ are even where $\alpha_{i}=\prod_{P_{j} \in \mathcal{P}_{i j \neq i}}\left(x_{i}-x_{j}\right)$. The secret $f(-1)=k-1$. The shares are secretly communicated to \mathcal{P}.

Signing: For a given message $m \in \mathcal{Z}_{N}$, the group $\mathcal{B} \subset \mathcal{P}$ of t participants wants to sign the message.

1. Each participant $P_{i} \in \mathcal{B}$ computes their partial signature

$$
c_{i} \equiv m^{s_{i}} \bmod N
$$

2. The combiner, Clara, collects t partial signatures and modifies them according to the currently active group \mathcal{B}

$$
\hat{c}_{i} \equiv c_{i} \prod_{P_{j} \in \mathcal{P} \backslash \mathfrak{B} ; j \neq i}\left(x_{i}-x_{j}\right) \prod_{P_{j} \in \mathcal{B}_{i j \neq i}\left(-1-x_{j}\right)} \bmod N
$$

3. Clara assembles the signature

$$
\sigma=\prod_{P_{i} \in \mathcal{B}} \hat{c}_{i}=m^{f(-1)} \equiv m^{k-1} \bmod N
$$

Verification: The verifier, Victor, looks up White Pages for the public parameters (N, K) of the RSA system used by the group \mathcal{P}. Next Victor takes a pair ($\tilde{m}, \tilde{\sigma}$) and checks whether

$$
\begin{equation*}
\operatorname{VER}(\tilde{m}, \tilde{\sigma})=\left((\tilde{\sigma} \cdot \tilde{m})^{K} \stackrel{?}{\equiv} \tilde{m} \bmod N\right) \tag{10.7}
\end{equation*}
$$

If the congruence is true the signature is accepted otherwise it is rejected.

Note that the signature is anonymous as the currently active subset \mathcal{B} of t co-signers cannot be identified by the verifier.

Recall the example from Section (rsa-threshold-decryption-section). we are going to use the setting to illustrate the RSA threshold signature. The primes $p=11$ and $q=23$, the modulus $N=253$,
and $\varphi(N)=110$. The set of participants is $\mathcal{P}=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ with the $(3,4)$ threshold secret sharing based on the polynomial $f(x)=6+15 x+81 x^{2}$ over $\mathcal{Z}_{\varphi(N)}$. Public coordinates are $x_{1}=1$, $x_{2}=3, x_{3}=5$ and $x_{4}=7$. The secret key $k=f(-1)+1=73$ and the public key $K=107$. Public information is (K, N) and coordinates x_{i} for $P_{i} \in \mathcal{P}$. Don computes parameters $\alpha_{1}=62, \alpha_{2}=16$, $\alpha_{3}=94$ and $\alpha_{4}=48$. Their "false" inverses are $\alpha_{1}^{-1}=8, \alpha_{2}^{-1}=86, \alpha_{3}^{-1}=24, \alpha_{4}^{-1}=102$. Shares are $s_{1}=46, s_{2}=90, s_{3}=54$ and $s_{4}=30$. Shares are held by corresponding participants.

Assume that the active set of participants who want collectively to sign a message $m=67$, is $\mathcal{B}=\left\{P_{1}, P_{3}, P_{4}\right\}$. Their partial signatures are

$$
\begin{aligned}
& c_{1}=m^{s_{1}} \equiv 188 \quad(\bmod 253) \\
& c_{3}=m^{s_{3}} \equiv 12 \quad(\bmod 253) \\
& c_{4}=m^{s_{4}} \equiv 210 \quad(\bmod 253)
\end{aligned}
$$

The combiner collects the partial signatures modifies them accordingly, i.e.

$$
\begin{aligned}
& \hat{c_{1}}=c_{1}^{\left(x_{1}-x_{2}\right)\left(-1-x_{3}\right)\left(-1-x_{4}\right)} \equiv 177 \quad(\bmod 253), \\
& \hat{c_{3}}=c_{3}^{\left(x_{3}-x_{2}\right)\left(-1-x_{1}\right)\left(-1-x_{4}\right)} \equiv 210 \quad(\bmod 253), \\
& \hat{c_{4}}=c_{4}^{\left(x_{4}-x_{2}\right)\left(-1-x_{1}\right)\left(-1-x_{3}\right)} \equiv 100 \quad(\bmod 253) .
\end{aligned}
$$

and creates the signature

$$
\sigma=\prod_{P_{i} \in \mathcal{B}} \hat{c_{i}}=\hat{c_{1}} \hat{c_{3}} \hat{c_{4}} c \equiv 133 \quad(\bmod 253)
$$

A verifier, Victor, takes the pair $(\tilde{m}, \tilde{\sigma})=(67,133)$ and the public key $K=107$ and computes

$$
(\tilde{\sigma} \tilde{m})^{K}=(133 \cdot 67)^{107} \equiv 67 \quad(\bmod 253)
$$

The result equals to the message $m=67$ so the signature is considered to be valid.

10.3.2 ElGamal Threshold Signatures

The scheme we present is due to Li, Hwang, and Lee [300]. The signature scheme is set up by a trusted dealer, Don who on behalf of the group $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$, sets up the scheme. The scheme allows to sign a message by every subset $\mathcal{B} \subset \mathcal{P}$ of t participants (co-signers).

Don first chooses a collision free one-way function H, a prime modulus q from the range [$2^{511}, 2^{512}$], and a prime divisor p of $q-1$ from [$\left.2^{159}, 2^{160}\right]$. Also Don selects at random element $h \in_{R} G F(q)$ and compute an element $g=h^{(q-1) / p} \bmod q-g$ is a generator of a cyclic group of order p. Next Don determines a polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{t-1} x^{t-1}$ with $a_{i} \in_{R} G F(p)$.

The group secret is $k=f(0)$ and the group public key is $y=g^{k} \bmod q$. The shares are

$$
s_{i}=u_{i}+f\left(x_{i}\right)
$$

where $u_{i} \in_{R} G F(p) \backslash 0$ and coordinates x_{i} are public $(i=1, \ldots, n)$. Further Don calculates public elements associated with each participant $P_{i} \in \mathcal{P}$. They are $y_{i} \equiv g^{s_{i}} \bmod q$ and $z_{i} \equiv g^{u_{i}} \bmod q$. The parameters (H, p, q, g, y) together with $\left\{\left(y_{i}, z_{i}\right) \mid P_{i} \in \mathcal{P}\right\}$ are public and accessible for authentication purposes from White Pages.

To sign a message, each participant P_{i} first chooses their secret integer $k_{i} \leq p-1$ and computes $r_{i} \equiv g^{k_{i}} \bmod q$. The element r_{i} is broadcast. Once the active subset \mathcal{B} of t participants is known, each P_{i} computes

$$
\begin{align*}
R & =\prod_{P_{i} \in \mathcal{B}} r_{i} \equiv g^{\sum_{P_{i} \in \mathcal{B}} k_{i}} \bmod q \tag{10.8}\\
E & \equiv H(m, R) \bmod p \tag{10.9}
\end{align*}
$$

Having their $\left(s_{i}, k_{i}\right), P_{i}$ generates their partial signature

$$
\begin{equation*}
c_{i} \equiv s_{i} \prod_{P_{j} \in \mathcal{B} ; j \neq i} \frac{-x_{j}}{x_{i}-x_{j}}+k_{i} E \bmod p \tag{10.10}
\end{equation*}
$$

The partial signatures $\left(m, c_{i}\right)$ are sent to the combiner.
The combiner can verify partial signatures by checking whether

$$
\begin{equation*}
g^{c_{i}} \stackrel{?}{=} \prod_{i} \prod_{P_{j} \in \mathcal{B}_{; j} \neq i} \frac{-x_{j}}{x_{i}-x_{j}} \cdot r_{i}^{E} \bmod q \tag{10.11}
\end{equation*}
$$

If all partial signatures are genuine, Clara creates the signature as

$$
\sigma \equiv \sum_{P_{i} \in \mathcal{B}} c_{i} \bmod p
$$

The triple (\mathcal{B}, R, σ) is the signature of m.
The verifier, Victor, takes ($\mathcal{B}, \tilde{R}, \tilde{\sigma}, \tilde{m})$ and computes

$$
\begin{align*}
& T \equiv \prod_{P_{i} \in \mathcal{B}} \tilde{z}_{i} \prod_{P_{j} \in \mathcal{B} ; j \neq i} \frac{-x_{j}}{x_{i}-x_{j}} \tag{10.12}\\
& \bmod q \tag{10.13}\\
& \tilde{E} \equiv H(\tilde{m}, \tilde{R}) \bmod p
\end{align*}
$$

Next Victor looks up White Pages for the public parameters of the group and checks

$$
g^{\tilde{\sigma}} \stackrel{?}{\equiv} \tilde{y} T \tilde{R}^{\tilde{E}}
$$

If the congruence holds then the signature is valid.

A (t, n) ElGamal Threshold Signature

Initialisation: 1. The dealer selects: a collision free hashing algorithm H, a prime modulus q with its prime factor p, the generator g of a cyclic group of order p and the polynomial $f(x)$ of degree at most $(t-1)$ with public coordinates associated with each $P_{i} \in \mathcal{P}$.
2. The secret of the group is $k=f(0)$. The public key of the group is $y \equiv g^{k} \bmod q$. The shares assigned to participants are $s_{i}=u_{i}+f\left(x_{i}\right)$.
3. Don publishes (H, p, q, g, y) together with $\left\{\left(y_{i}, z_{i}\right) \mid P_{i} \in \mathcal{P}\right\}$ where $y_{i} \equiv g^{s_{i}} \bmod q$ and $z_{i} \equiv g^{u_{i}} \bmod q$.

Signing: 1. Each active participant P_{i} chooses a secret $k_{i} \leq p-1$ and computes $r_{i} \equiv g^{k_{i}} \bmod q$. The element r_{i} is broadcast.
2. Once the active subset $\mathcal{B} \subset \mathcal{P}$ is known, each participant $P_{i} \in \mathcal{B}$ computes R and E according to Congruence (10.8) and (10.9), respectively.
3. P_{i} computes their partial signature c_{i} by using Equation (10.10) and sends (m, c_{i}) to the combiner.
4. The combiner, Clara, verifies the partial signatures by checking Congruence (10.11). If the congruence holds for all participants, she computes $\sigma=\sum_{P_{i} \in \mathcal{B}} c_{i} \bmod p$. The triple (\mathcal{B}, R, σ) is the signature of m.

Verification A verifier, Victor, checks whether

$$
g^{\tilde{\sigma}} \stackrel{?}{\equiv} \tilde{y} T \tilde{R}^{\tilde{E}}
$$

where T is defined by Congruence (10.12) and \tilde{E} by (10.13). If the check is true the signature is accepted.

The verifier accepts always a genuine signature. This observation flows from the following sequence of congruences

$$
\begin{aligned}
& g^{\tilde{\sigma}} \equiv g^{\sum_{P_{i} \in \mathcal{B}} \tilde{\mathcal{c}}_{i}} \\
& \equiv g^{\sum_{P_{i} \in \mathfrak{B}} \tilde{s}_{i}} \prod_{P_{j} \in \mathbb{B}_{; j} ; i} \frac{-x_{j}}{x_{i}-x_{j}}+\tilde{k}_{i} \tilde{E} \\
& \equiv g^{\sum_{P_{i} \in \mathcal{B}}\left(\tilde{u}_{i}+\tilde{f}\left(x_{i}\right)\right)} \prod_{P_{j} \in \mathbb{B}_{i} ; \neq i} \frac{-x_{j}}{x_{i}-x_{j}} g^{\sum_{P_{i} \in \mathcal{B}} \tilde{\bar{k}}_{i} \tilde{E}} \\
& \equiv g^{\sum_{P_{i} \in \mathcal{B}} \tilde{u}_{i} \prod_{P_{j} \in \mathbb{B}_{;} ; \neq i} \frac{-x_{j}}{\bar{x}_{i}-x_{j}} \times} \\
& g^{\left.\sum_{P_{i} \in \mathcal{B}} \tilde{f}\left(x_{i}\right)\right)} \prod_{P_{j} \in \mathcal{B} ; j \neq i} \frac{-x_{j}}{x_{i}-x_{j}} \times \prod_{P_{i} \in \mathcal{B} \tilde{r}_{i}^{\tilde{B}}} \\
& \equiv \prod_{P_{i} \in \mathcal{B}} \hat{z}_{i} \prod_{P_{j} \in \mathcal{B} ; j \neq i} \frac{-x_{j}}{x_{i}-x_{j}} \times g^{\tilde{f}(0)} \times \tilde{R}^{\tilde{E}} \\
& \equiv \tilde{T} \tilde{y} \tilde{R}^{E} \bmod q
\end{aligned}
$$

The scheme has some interesting properties:

- the signature is not anonymous. The currently active subset \mathcal{B} must be known to a verifier and the specification of \mathcal{B} is attached to the signature. That is why the signature resembles a multisignature,
- partial signatures c_{i} can be verified by a combiner. This allows to detect and disregard faulty partial signatures,
- the length of the signature σ is determined by the value of prime p and is no longer than 160 bits.

Security depends on the intractability of discrete logarithm. Some possible attacks are discussed in [300]. Also the authors studied a variant of their signature which works with no dealer.

10.3.3 Threshold DSS Signatures

Gennaro, Jarecki, Krawczyk and Rabin designed a threshold DSS signature in [196]. Recall that the regular DSS signature was described in Section 7.4. The signature uses two prime moduli: p and q where q is a large enough factor of $(p-1) . g \in G F(p)$ is an element of order q. The secret key is $k(1 \geq k \geq q)$ and the public key is $K=g^{k}$. Elements (K, g, p, q) are public. To generate a signature for a message m, the signer picks up a random integer $r(1 \geq r \geq q)$ and computes $x \equiv\left(g^{r^{-1}} \bmod p\right) \bmod q$ and $y=r(m+k \cdot x) \bmod q$. The signature of m is the pair (x, y). Note a slight modification in the definition of x for which we use r^{-1} instead of prescribed r. To verify the triple $(\tilde{m}, \tilde{x}, \tilde{y})$, we check whether $\tilde{x} \stackrel{?}{\equiv}\left(g^{m y^{-1}} K^{x y^{-1}} \bmod p\right) \bmod q$.

Before we describe a distributed version of DSS signature scheme, we show how to compute $r^{-1} \bmod q$ collectively by participants $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ when they know shares of r (each P_{i} knows their share r_{i}). To simplify our notation, we are going to use

$$
\left(r_{1}, \ldots, r_{n}\right) \stackrel{(t, n)}{\leftrightarrow} r
$$

to indicate that integer r is shared by \mathcal{P} with the threshold t. The algorithm for computing reciprocals of r when its shares are distributed among participants from \mathcal{P}, is:

1. Participants collectively generate a (t, n) secret sharing of a random element $a \in \mathcal{Z}_{q}$. In other words, each participant P_{i} selects a random polynomial $\delta_{i}(x)$ of degree at most $(t-1)$ and sends corresponding shares via secret channel to the rest of participants so every P_{j} gets $\delta_{i}\left(x_{j}\right)(i \neq j)$. The polynomial $A(x)=\sum_{i=1}^{n} \delta_{i}(x)$ defines our requested (t, n) secret sharing with $A(0)=a$ and shares $a_{j}=A\left(x_{j}\right)=\sum_{i=1}^{n} \delta_{i}\left(x_{j}\right)$, or $\left(a_{1}, \ldots, a_{n}\right) \stackrel{(t, n)}{\longleftrightarrow} a$.
2. Participants collectively generate a $(2 t, n)$ secret sharing of " 0 ", that is, each participant P_{i} selects a random polynomial $\delta_{i}(x)$ (such that $\delta_{i}(0)=0$) of degree at most ($2 t-1$) and sends corresponding shares via secret channels to the rest of participants. The polynomial $B(x)=$ $\sum_{i=1}^{n} \delta_{i}(x)$ defines the requested $(2 t, n)$ secret sharing and each P_{i} holds the share $b_{i}=B\left(x_{i}\right)$. Shortly, $\left(b_{1}, \ldots, b_{n}\right) \stackrel{(2 t, n)}{\longleftrightarrow} 0$.
3. Participants broadcast their values $r_{i} a_{i}+b_{i}$, and each participant recreates the value $\nu=r a$. Observe that assuming that $R(x)$ is the polynomial which distributes r among \mathcal{P}, then the polynomial $R(x) A(x)+B(x)$ becomes $r a$ for $x=0$.
4. P_{i} computes ν^{-1} in $G F(q)$ and sets their share $u_{i} \equiv \nu^{-1} a_{i}$. It can be shown that $\left(u_{1}, \ldots, u_{n}\right) \stackrel{(t, n)}{\longleftrightarrow}$ r^{-1}.

An algorithm for a distributed DSS signature is described below. The signature is secure under the assumption that the opponent is passive (can eavesdrop only) and can prevent up to a third of participants to collaborate in the signing process. To simplify the description, we call Joint-Shamir-RSS a protocol in which all participants collectively generate a (t, n) Shamir secret sharing with a random secret. Each participant P_{i} chooses their random polynomial $\delta_{i}(x)=d_{i, 0}+d_{i, 1} x+$ $\ldots+d_{i, t-1} x^{t-1}$ where $d_{i, j} \in_{R} G F(q)$. Each P_{i} communicates secretly shares of the polynomial $\delta_{i}(x)$ to other participants. Finally, the participant P_{j} holds a share $\sum_{i=1}^{n} \delta_{i}\left(x_{j}\right)$ of the polynomial $f(x)=\sum_{i=1}^{n} \delta_{i}(x)$. We denote Joint-Zero-SS a protocol similar to Joint-Shamir-RSS except for all participants select their polynomials such that $\delta_{i}(0)=0$.

(t, n) DSS Signature

Initialisation: 1. The dealer distributes shares of the group secret k, i.e. $\left(k_{1}, \ldots, k_{n}\right) \stackrel{(t, n)}{\longleftrightarrow} k$ using a polynomial $f(x)$.
2. The dealer announces the public information (K, g, p, q) where $K=g^{k}$ is the public key, $g \in G F(p)$ is an element of order q and p, q are two primes such that q is a large factor of $p-1$.

Signing: 1. Participants \mathcal{P} collectively generate a random integer $r(1 \geq r \geq q)$ by running Joint-Shamir-RSS protocol, i.e. $\left(r_{1}, \ldots, r_{n}\right) \stackrel{(t, n)}{\longleftrightarrow} r$.
2. Participants run twice the Joint-Zero-SS protocol and obtain two schemes:

$$
\left(b_{1}, \ldots, b_{n}\right) \stackrel{(2 t, n)}{\leftrightarrow} b \text { and }\left(c_{1}, \ldots, c_{n}\right) \stackrel{(2 t, n)}{\leftrightarrow} c .
$$

3. Participants jointly compute $x=g^{r^{-1}} \bmod q$.
(a) Participants collectively execute Joint-Shamir-RSS so

$$
\left(a_{1}, \ldots, a_{n}\right) \stackrel{(t, n)}{\longleftrightarrow} a .
$$

(b) Participant P_{i} broadcasts $v_{i} \equiv r_{i} a_{i}+b_{i} \bmod q$ and $w_{i} \equiv g^{a_{i}} \bmod p$. The elements v_{i}, w_{i} are public for $i=1, \ldots, n$.
(c) P_{i} calculates the secret $\ni=r a \bmod q u s i n g$ the Lagrange interpolation of $\left(v_{1}, \ldots, v_{n}\right)$. Similarly, P_{i} computes $g^{a} \bmod p$ using $\left(w_{1}, \ldots, w_{n}\right)$. Clearly, $x \equiv\left(g^{a}\right)^{\ni^{-1}} \bmod p \bmod$ q. The first part of signature x is published.
4. Participants collectively calculate $y \equiv r(m+k \cdot x) \bmod q$.
(a) P_{i} broadcasts $y_{i} \equiv r_{i}\left(m+k_{i} x\right)+c_{i} \bmod q$. Note that

$$
\left(y_{1}, \ldots, y_{n}\right) \stackrel{(2 t, n)}{\leftrightarrow} y=r(m+k x) .
$$

(b) P_{i} individually interpolates y from public $y_{i} ; i=1, \ldots, n$.

5 . The signature of message m is (x, y).
Verification: Proceeds as in the regular DSS signature. To verify the triple ($\tilde{m}, \tilde{x}, \tilde{y}$), Victor checks whether

$$
\tilde{x} \xlongequal{\equiv}\left(g^{m y^{-1}} K^{x y^{-1}} \bmod p\right) \bmod q
$$

The above signature tolerates up to $(t-1)$ lost shares with the total number of $n \geq 2 t+1$ participants.

A version of the threshold DSS signature which allows to sign messages in the presence of malicious opponents, is described in [196].

10.4 Problems and Exercises

1. Given a $(2,3)$ conditionally secure Shamir scheme over $G F(23)$ with $f(x)$ where P_{i} is assigned $x_{i}=i$ for $i=1,2,3$. Assume some primitive element $g \in G F(23)$ and take $s_{1}=f(1)=4$ and $s_{2}=f(2)=19$. What is the missing s_{3} ? Retrieve the secrets $k=f(0)$ and $k^{\prime}=g^{k}$. Show how the computation of k^{\prime} can be done when participants pool their transient shares $g^{s_{i}}$.
2. Design a $(2,3)$ conditionally secure Shamir scheme over $G F\left(2^{3}\right)$. Show the reconstruction process of the secret when transient shares are pooled by participants.
3. Feldman [171] suggested a non-interactive verification of shares for a (t, n) Shamir scheme with the polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{t-1} x^{t-1}$ over $G F(p)$ such that $p=\alpha q+1$ (α is small integer while q is a large prime). The dealer after distribution of shares $s_{i}=f\left(x_{i}\right)$ to the corresponding participants via secret channels, broadcasts public elements $g^{a_{i}} \bmod p$ for $i=0,1, \ldots, t-1$. Show how P_{i} can use their secret s_{i} together with the public information to verify the consistency of the share with the public information.
4. Prove that the non-interactive verification of shares in Section (10.1.3) fails with an negligible probability.
5. The concept of proactive secret sharing employs a protocol which allows participants to jointly share "0". First each participant P_{i} generates their own random polynomial $\delta_{i}(x)$ such that $\delta(0)=0$. Next P_{i} plays a role of the dealer and distributes shares $\delta_{i}\left(x_{j}\right)$ to other participants. Prove that the polynomial $\delta(x)=\sum_{i=1}^{n} \delta_{i}(x)$ becomes 0 for $x=0$. Show that $\sum_{i=1}^{n} \delta_{i}\left(x_{j}\right)$ is a share of " 0 " of P_{j}.
6. Given the modular secret sharing. Demonstrate how participants can collectively share "0" by random selection of individual schemes and by distribution of the corresponding shares via secret channels to other participants. Generalise the concept for any linear code.
7. Consider the sequence of threshold schemes indexed by their polynomials $\left\{f^{\ell}(x) \mid \ell=1,2, \ldots\right\}$ in the proactive secret sharing. Discuss the perfectness of secret sharing for consecutive periods of time.
8. A $(3,5)$ Shamir secret sharing is defined by the polynomial $f(x)=38+57 x+112 x^{2}$ over $G F(131)$ with public coordinates assigned in typical way $x_{i}=i$ for $i=1,2,3,4,5$. Assume that an active set of participants is $\mathcal{B}=\left\{P_{2}, P_{3}, P_{5}\right\}$. Compute shares s_{i} and corrections b_{i} for $i=2,3,5$. Show encryption and (3,5) ElGamal threshold decryption by the active set \mathcal{B} for $q=263, p=131$ and $g=166$ (g is an element of order 131).
9. Consider an instance of $(3,4)$ ElGamal threshold decryption scheme. Public computations should be performed over $G F\left(2^{3}\right)$ while secret computations (including secret sharing) should be executed modulo $p=7$. Make all necessary assumptions.
10. In the ElGamal threshold decryption, the final retrieval of message from a cryptogram is done by the combiner. Discuss how the combiner can handle participants who instead of the prescribed $g^{r s_{i}}$, have sent $g^{r s_{i} b_{i}}$.
11. In Section (rsa-threshold-decryption-section), the RSA threshold decryption is presented for small parameters where the modulus $N=253$ and any 3 out of 4 participant can decrypt jointly a cryptogram. Show how the following active sets \mathcal{B} can decrypt the cryptogram when

- $\mathcal{B}=\left\{P_{2}, P_{3}, P_{4}\right\}$,
- $\mathcal{B}=\left\{P_{1}, P_{2}, P_{3}\right\}$,
- $\mathcal{B}=\left\{P_{1}, P_{2}, P_{4}\right\}$.

12. Design an instance of the RSA threshold decryption where every 2 out of 5 participants can jointly decrypt a cryptogram. Select two strong primes p and q smaller than 100 . Make necessary assumptions.
13. The RSA threshold decryption uses the Shamir secret sharing to allow to construct any (t, n) threshold decryption. The system can be considerably simplified for (n, n) threshold decryption. Modify the general (t, n) RSA threshold decryption for the case when $t=n$. Hint. Apply the Karnin-Greene-Hellman secret sharing.
14. Reconsider the example from Section (10.3.1) Show how the combiner assembles the signature for the following active sets:

- $\mathcal{B}=\left\{P_{2}, P_{3}, P_{4}\right\}$,
- $\mathcal{B}=\left\{P_{1}, P_{2}, P_{3}\right\}$,
- $\mathcal{B}=\left\{P_{1}, P_{2}, P_{4}\right\}$.

15. Simplify the ElGamal threshold signature when $t=n$ by using the Karnin-Greene-Hellman secret sharing.

Chapter 11

KEY ESTABLISHMENT PROTOCOLS

So far we have tacitly assumed that all cryptographic algorithms can be readily used assuming that a suitable collection of secret and public keys is already distributed and known to the parties. For instance, secrecy systems based on secret key encryption require the same key to be shared by both the sender and receiver. In this Chapter we focus our attention on how keys needed to enable cryptographic protection can be exchanged among the parties. The key establishment becomes a major hurdle in computer networks with many users. To show the scale of the problem, assume that a computer network encompasses n users. If we allow any pair of users to communicate in a secure way using symmetric key encryption, then we may need to generate and distribute

$$
\binom{n}{2}=\frac{n(n-1)}{2}
$$

different keys. If some network (cryptographic) services involve more than two users (for example a secure conferencing with i users where $i=2, \ldots, n$), the number of possible keys to be distributed can grow exponentially in n as

$$
2^{n}=\sum_{i=0}^{n}\binom{n}{i}
$$

If we cannot pre-distribute keys, then we have to establish them on request whenever there is a collection of parties who want to share the same key.

There are two major categories of key establishment protocols, depending on who is responsible for the key generation. In the first category, there is a trusted authority $T A$ (also called a server) which generates the requested key material and distributes it among the parties. This category includes key distribution protocols. The important ingredient of any $T A$ is trust. For our purposes, trust can be translated into an assumption that a $T A$ will follow the course of action prescribed by the key distribution protocol and will not divulge any secret information to unauthorized users. In particular, we exclude any hostile activity by a $T A$ towards any user. Also any potential attacker is not able to corrupt or collude with $T A$.

The second category consists of key agreement protocols in which a key is established collectively as a result of some prescribed interaction among the parties involved in the protocol. This is the class of decentralized key establishment protocols where there is no need for a trusted authority to generate and distribute cryptographic keys.

The design of key establishment protocols has to be done with extreme caution mainly because the interaction is being done via an insecure public network. Usually the interaction involves the transmission of several messages or protocol passes. It is assumed that a potential attacker can

- record messages and replay them later,
- change their order,
- modify part or the whole message,
- repeat some messages,
- delete some messages.

Apart from an abundance of potential threats, large computer networks provide no global public trusted read-only registry (White Pages) which could be used to verify identities of the parties involved. The parties are usually called principals. A principal is understood to be any active entity. So it can be a user, a computer process, a terminal, a node in computer network, etc.

The main goal of key establishment protocols is to enable two or more principals to obtain some cryptographic key. Some other desirable goals may include

- key freshness,
- entity authentication,
- key confirmation,
- implicit key authentication, and
- explicit key authentication.

A key is fresh if it has never been generated and used before. Entity authentication is a corroboration process which allows one principal to correctly identify the other involved in the protocol. Typically, it allows a party to check whether an other party is active (alive) at the time when the protocol is being executed. Key confirmation is a property of protocol which allows one principal to make sure that the other party possesses a given key. Implicit key authentication provides an assurance to one principal that no one except a specific other party could have gained access to a given key. Implicit key authentication can be also viewed as key confidentiality. By explicit key authentication we mean that both implicit key authentication and key confirmation hold.

A treatment of key establishment protocols can be found in [488] and [334]. For a variety of other interpretations of entity authentication, see [212].

11.1 Classical Key Distribution Protocols

An atomic event in a key establishment protocol is a single transmission of a message from one principal to another. This is also called a pass of a protocol. To indicate that a principal A sends a message m to a principal B, we write ($A \rightarrow B: m$). Note that m may consist of plaintext or ciphertext or both. For example, if A wants to use encryption to ensure the confidentiality of a plaintext ptxt, the transmission would be written as $\left(A \rightarrow B:\{p t x t\}_{k_{A B}}\right.$), where $\{p t x t\}_{k_{A B}}$ denotes the message obtained by encrypting ptxt using a (secret) cryptographic key $k_{A B}$ shared by A and B.

In 1978 Needham and Schroeder [366] published their key exchange protocols. The aim of the protocol is to establish a secret key between two principals A and B with the help of a trusted server S.

Needham-Schroeder Protocol (Private Key Case)

Goal: To distribute a fresh secret key to A and B using a trusted server S.
Assumptions: S shares a common secret key $k_{A S}$ with A and a common secret key $k_{B S}$ with B. A and B choose two random challenges (nonces) r_{A} and r_{B}, respectively.

Message Sequence: The protocol consists of the following sequence of messages:

1. $A \rightarrow S: A, B, r_{A}$.
2. $S \rightarrow A:\left\{r_{A}, B, k_{A B},\left\{k_{A B}, A\right\}_{k_{B S}}\right\}_{k_{A S}}$.
3. $A \rightarrow B:\left\{k_{A B}, A\right\}_{k_{B S}}$.
4. $B \rightarrow A:\left\{r_{B}\right\}_{k_{A B}}$.
5. $A \rightarrow B:\left\{r_{B}-1\right\}_{k_{A B}}$.

The protocol is initiated by A who sends its name A, B 's name and its challenge r_{A} in clear to the server S. The server replies with the cryptogram $\left\{r_{A}, B, k_{A B},\left\{k_{A B}, A\right\}_{k_{B S}}\right\}_{k_{A S}}$, where $k_{A B}$ is the shared key to be used by A and B (also called a session key). A decrypts the cryptogram and checks whether r_{A} and B match the originals. This check enables A to make sure that the message has come from the holder of the secret key $k_{A S}$ in response to A 's request. If the check is successful, A accepts $k_{A B}$ and forwards $\left\{k_{A B}, A\right\}_{k_{B S}}$ to B.
B decrypts the cryptogram, learns who wants to talk to it and stores the key $k_{A B}$. The last two steps allow B to verify whether A knows the key $k_{A B}$. B takes his random challenge r_{B} and encrypts it using $k_{A B}$. Since A knows the key, she extracts r_{B} from the cryptogram, decrements r_{B} by 1 , encrypts the result and communicates $\left\{r_{B}-1\right\}_{k_{A B}}$ to B. B decrypts the cryptogram and verifies whether the challenge has been decremented as required.

First, some general observations. The protocol uses three secure channels (each channel provides both the confidentiality and authentication). The two channels between the server and $A\left(k_{A S}\right)$ and between the server and $B\left(k_{B S}\right)$ are set up before hand. The third one is created as a result of the protocol execution. All communication is done via these three channels except the first message which is sent in clear.

Suppose that an opponent, Oscar, copies the message forwarded by A to B in the above protocol (see [144]) and that somehow obtains the corresponding session key $k_{A B}$. Perhaps, this key was used sometime ago and as a waste was carelessly discarded. Now he can trick B to accept an old session key $k_{A B}$. Oscar replays the copied message in step (3) and successfully completes the rest of the protocol. B cannot detect Oscar's impersonation. Observe that the attack shows that the protocol fails to provide key freshness from the point of view of B. Denning and Sacco [144] suggest to use timestamps to thwart the attack.

Needham-Schroeder Protocol with Timestamps(Denning and Sacco [144])
Goal: To distribute a fresh secret key to A and B using a trusted server S.
Assumptions: S shares a common secret key $k_{A S}$ with A and a common secret key $k_{B S}$ with $B . T$ denotes a timestamp value generated at S.

Message Sequence: The parties exchange the following sequence of messages:

1. $A \rightarrow S: A, B$.
2. $S \rightarrow A:\left\{B, k_{A B}, T,\left\{A, k_{A B}, T\right\}_{k_{B S}}\right\}_{k_{A S}}$.
3. $A \rightarrow B:\left\{A, k_{A B}, T\right\}_{k_{B S}}$.
A and B can make sure that messages are fresh by checking whether the transmission is within the permitted time interval.

In public key cryptography, users need to know authentic public keys. The server S distributes authentic public keys provided that every user within the server domain knows the authentic public
key K_{S} of the server S. The original Needham-Schroeder protocol consists of seven steps. The version given below is a modification with timestamps by Denning and Sacco [144]. The protocol does not use confidentiality channels at all. All messages are transmitted in clear or in the form of public timestamped certificates (signatures). A certificate $\langle m\rangle_{k}$ signed using a secret key k allows anybody who knows the matching public key K to extract the message m. This is a usual way of providing an authentication channel under the assumption that K is an authentic public key of the sender and matches its secret key k.

Modified Needham-Schroeder Protocol (Public Key Case)

Goal: To distribute the authentic public keys K_{A} and K_{B} of A and B, respectively.
Assumptions: A and B know the authentic public key K_{S} of the server. The timestamp is T. The key k_{S} is the secret key of S.

Message Sequence: The protocol consists of the following sequence of messages:

1. $A \rightarrow S: A, B$.
2. $S \rightarrow A:\left\langle A, K_{A}, T\right\rangle_{k_{S}},\left\langle B, K_{B}, T\right\rangle_{k_{S}}$.
3. $A \rightarrow B:\left\langle A, K_{A}, T\right\rangle_{k_{S}},\left\langle B, K_{B}, T\right\rangle_{k_{S}}$.

11.2 The Diffie-Hellman Key Agreement Protocol

Diffie and Hellman [152] in their seminal paper made several breakthroughs in cryptology. Apart from introducing the notion of public key cryptography, they showed how two parties A and B can establish a secret key via an insecure network using a public discussion.

Diffie-Hellman Key Agreement Protocol

Goal: To establish a secret key k between A and B.
Assumptions: A and B use a modulus p (p is a large enough prime) and a primitive element $g \in \mathcal{Z}_{p}^{*}$. Both integers p and g are public. The integers α and β are randomly chosen from \mathcal{Z}_{p}^{*} by A and B, respectively.

Message Sequence: The parties exchange the following sequence of messages:

1. $A \rightarrow B: g^{\alpha} \bmod p$.
2. $B \rightarrow A: g^{\beta} \bmod p$.
A and B compute a common secret key as

$$
k=\left(g^{\beta}\right)^{\alpha}=\left(g^{\alpha}\right)^{\beta}=g^{\alpha \beta} \bmod p
$$

Consider a toy example. Let the modulus $p=2447$ and the primitive element $g=1867$. A and B choose their secret elements at random from \mathcal{Z}_{2447}^{*}. Let $\alpha=1347$ and $\beta=2186$. In step (1), A communicates to B the integer $g^{\alpha}=1867^{1347} \equiv 1756 \bmod 2447$. In step (2), B sends to A the integer $g^{\beta}=1867^{2186} \equiv 848 \bmod 2447$. A computes the secret key $k=\left(g^{\beta}\right)^{\alpha}=848^{1347} \equiv 2177 \bmod 2447 . B$ calculates the key $k=\left(g^{\alpha}\right)^{\beta}=1756^{2186} \equiv 2177 \bmod 2447$.

The protocol suffers from the intruder-in-the-middle attack. Suppose that our attacker, Oscar, sits between A and B. In the step (1), after A sends B a message ($g^{\alpha} \bmod p$), Oscar intercepts it and forwards to B his own message $\left(g^{\gamma} \bmod p\right)$, where $\gamma \in \mathcal{Z}_{p}^{*}$ is an integer chosen by Oscar. B responds as in the prescribed pass (2) by conveying the message $\left(g^{\beta} \bmod p\right)$ to A. Again, Oscar intercepts the message and sends $\left(g^{\gamma} \bmod p\right)$ to A. Finally, A computes its secret key $k_{A}=\left(g^{\gamma}\right)^{\alpha}$ and B calculates its $k_{B}=\left(g^{\gamma}\right)^{\beta}$. Clearly, the secret keys computed by A and B are different. Note that Oscar knows both keys k_{A} and k_{B} and controls the message exchange between A and $B . A$ and B.

Another manifestation of the same security problem emerges when A receives two (or more) replies $g^{\beta_{1}}, g^{\beta_{2}}$ from two different persons. A cannot identify the senders of these messages. The parties can establish a secret key but they do not know with whom they share it! The protocol provides no key authentication and no key confirmation.

11.2.1 The DH problem

Security of the Diffie-Hellman key exchange depends upon the difficulty of finding $g^{\alpha \beta}$ from two public messages g^{α} and g^{β}. This is known as the Diffie-Hellman problem.

Name: DH problem
Instance: Given a prime modulus p, a primitive element $g \in \mathcal{Z}_{p}^{*}$ and two integers a and b such that $a \equiv g^{\alpha} \bmod p$ and $b \equiv g^{\beta} \bmod p$.

Question: What is the integer c such that $c \equiv g^{\alpha \beta} \bmod p$?
Let us recall the definition of the discrete logarithm (search) problem.
Name: DL problem
Instance: Integers (g, s) that belong to $G F(p)$ determined by a prime p.
Question: What is the integer $h(h=0, \ldots, p)$ such that $h=\log _{g} s(\bmod p)$ (or equivalently $g^{h} \equiv$ $s \bmod p) ?$

Note that the DL problem is not easier than the DH problem. In other words, the DL problem could be harder or as hard as the DH problem. To see this, it is enough to assume the existence of an algorithm which solves the DL problem. This algorithm also solves all instances of the DH problem. It is unknown what would have happened with complexity of the DL problem if the DH problem had been shown to be solvable in polynomial time.

It is easy to show that breaking the ElGamal encryption is equivalent to solving the DH problem (see [488]). For further study of the DH problem, the reader is referred to [325] and [324].

11.3 Modern Key Distribution Protocols

Modern key distribution protocols are assumed to pass some sort of security scrutiny. Verification can proceeds using formal methods. The algebraic approach to protocol verification applies a finite state machine analysis with a definition of bad states (a protocol failure) [275]. Burrows, Abadi and Needham have developed a logic which can analyze the evolution of beliefs during the execution of cryptographic protocols [70]. This is the well known BAN logic. Gong, Needham and Yahalom have extended the BAN logic [216]. Their extension is often referred to as the GNY logic. A comprehensive review of formal verification methods for cryptographic protocols can be found in a survey paper by Meadows [331].

A different approach to the design of key distribution protocols has been suggested by Boyd and Mao [54], [55]. They argue that instead of verifying the protocol security after the design stage, it is better to formulate a rigorous design procedure so that the final product is always a secure protocol. To achieve this, the designer needs to establish the minimum cryptographic requirements imposed on a protocol and identify how these requirements are to be realized.

Otway and Rees [392] designed a protocol which was intended to provide a secure alternative for the Needham and Schroeder protocol. The protocol presented below is a modification of the original (see [55] for further details). Challenges r_{A} and r_{B} play a role of timestamps and are used to prevent the replay attack.

Modified Otway-Rees Protocol (Boyd and Mao [55])

Goals: (1) Establishment of a fresh secret key $k_{A B}$ between two principals A and B.
(2) Mutual key authentication.

Assumptions: S shares a common secret key $k_{A S}$ with A and a common key $k_{B S}$ with $B . A$ and B choose two random challenges (nonces) r_{A} and r_{B}, respectively.

Message Sequence: The parties send the following sequence of messages:

1. $A \rightarrow B: A, r_{A}$.
2. $B \rightarrow S: A, B, r_{A}, r_{B}$.
3. $S \rightarrow B:\left\{A, B, r_{B}, k_{A B}\right\}_{k_{B S}},\left\{A, B, r_{A}, k_{A B}\right\}_{k_{A S}}$.
4. $B \rightarrow A:\left\{A, B, r_{A}, k_{A B}\right\}_{k_{A S}}$.

The Otway-Rees protocol uses the secure channels (defined by two secret keys $k_{A S}$ and $k_{B S}$) for both message confidentiality and authentication. These two roles can be clearly separated as is shown in the following alternative protocol designed by Boyd and Mao [55].

Boyd-Mao Split Channel Protocol

Goals: (1) Establishment of a fresh secret key $k_{A B}$ between two principals A and B.
(2) Mutual key authentication.

Assumptions: S shares a common secret key $k_{A S}$ with A and a common key $k_{B S}$ with B. A and B choose two random challenges (nonces) r_{A} and r_{B}, respectively. $M A C_{k}\{m\}$ stands for the message authentication code of the message m generated under the control of the secret key k.

Message Sequence: The parties send the following sequence of messages:

1. $A \rightarrow B: A, r_{A}$.
2. $B \rightarrow S: A, B, r_{A}, r_{B}$.
3. $S \rightarrow B:\left\{k_{A B}\right\}_{k_{B S}}, M A C_{k_{B S}}\left\{A, B, r_{B}, k_{A B}\right\}$, $\left\{k_{A B}\right\}_{k_{A S}}, M A C_{k_{A S}}\left\{A, B, r_{A}, k_{A B}\right\}$.
4. $B \rightarrow A:\left\{k_{A B}\right\}_{k_{A S}}, M A C_{k_{A S}}\left\{A, B, r_{A}, k_{A B}\right\}$.

Note that $M A C_{k}\{m\}$ provides an authentication channel, whereas $\{m\}_{k}$ provides a confidentiality channel. $M A C_{k}\{m\}$ can be also generated using a keyed hashing algorithm. Only these messages which need to be recovered are encrypted. Messages sent over the authentication channel are short and of a fixed length (as determined by the length of the MAC). The advantage of the above protocol is that messages are relatively short.

11.3.1 Kerberos

Kerberos is an authentication system developed at the Massachusetts Institute of Technology (MIT) as part of the Athena project ([481]). The aim of the project was to provide a broad range of computing services to students across the campus. Kerberos provides authentication services for principals over an open computer network. There are two trusted authorities: the authentication server $A S$ and the ticket granting server $T G S$. The pre-distributed cryptographic key between a principal A and the authentication server is computed from A 's password (passwd A_{A}) using a one-way function f as $k_{A, A S}=f\left(\operatorname{passwd}_{A}\right)$. The password and the secret key $k_{A, A S}$ are stored in the Kerberos database. The system is based on a private-key encryption (such as DES).

Kerberos uses two main protocols: credential initialization and client-server authentication. The first protocol is executed every time a principal $A \operatorname{logs}$ on a host H. Note that the exchange of messages between A and the host H are performed via a secure channel.

Kerberos Credential Initialization Protocol (Version V)

Goals: (1) Verification of password of a principal A who logs on a host H.
(2) Distribution of a fresh secret key to host H (acting on behalf of the principal A) for use with $T G S$.

Assumptions: The principal A and the authentication server $A S$ share the secret key $k_{A, A S}$. The authentication server $A S$ and $T G S$ share $k_{T G S}$.

Message Sequence: The parties exchange the following sequence of messages:

1. $A \rightarrow H: A$.
2. $H \rightarrow A S: A, T G S, L_{1}, N_{1}$.
L_{1} is a lifespan of the ticket and N_{1} is a nonce. The authentication server $A S$ undertakes the following steps:

- retrieves the keys $k_{A, A S}$ and $k_{T G S}$ from the database.
- generates a fresh session key k and composes a ticket ${ }_{T G S}=\{A, H, T G S, k, T, L\}_{k_{T G S}}$, where T is a timestamp and L is the lifetime of the ticket.

3. $A S \rightarrow H: A, \operatorname{ticket}_{T G S},\left\{T G S, k, T, L, N_{1}\right\}_{k_{A, A S}}$.
4. $H \rightarrow A$: request for password.
5. $A \rightarrow H:$ passwd.

- H computes $\tilde{k}_{A, A S}=f($ passwd $)$ and uses the computed key to decrypt the message $\left\{T G S, k, T, L, N_{1}\right\}_{k_{A, A S}}$. If the decryption is successful, H concludes that the keys $k_{A, A S}=\tilde{k}_{A, A S}$ and the password provided by A is valid. In this case, H stores the session key k, the timestamp T, the ticket lifetime L and the ticket tas_{G}. If the decryption fails ($k_{A, A S} \neq \tilde{k}_{A, A S}$), login is aborted.

The next protocol is executed between a client C and a server S. The client C is a process run by a principal A on a host H. The server S provides computing resources to C. The client C runs the protocol to establish a secure channel with the server S. It is assumed that the host and the principal who resides in it, have completed successfully a run of the credential initialization protocol.

Kerberos Client-Server Authentication Protocol (Version V)

Goal: To distribute a fresh session key $k_{C S}$ generated by $T G S$ for use between a client C and a server S. To confirm the key $k_{C S}$.

Assumptions: The client C holds a valid ticket ${ }_{G S}$ and shares a key k with $T G S$. The server S shares k_{S} with $T G S$.

Message Sequence: The parties exchange the following sequence of messages:

1. $C \rightarrow T G S: S, N, L, \operatorname{ticket}_{T G S},\left\{C, T_{1}\right\}_{k}$,
where N is a nonce, L is a lifespan of the ticket T_{1} is a timestamp. The ticket granting server TGS

- retrieves the key k from $\operatorname{ticket}_{T G S}$,
- checks the timeliness of the ticket,
- recovers the timestamp T_{1} from $\left\{C, T_{1}\right\}_{k}$,
- checks timeliness of T_{1},
- generates a fresh session key $k_{C S}$,
- creates a server ticket ${ }_{S}=\left\{A, C, S, k_{C S}, T_{s}, L_{s}\right\}_{k_{s}}$, where T_{s} is a timestamp and L_{s} is a lifetime of the ticket.

2. TGS $\rightarrow C: A$, $\operatorname{ticket}_{S},\left\{S, k_{C S}, T_{s}, L_{s}, N\right\}_{k}$.

The client C

- extracts $k_{C S}$, timestamp T_{s}, the lifetime L_{s} and the nonce N,
- checks the timeliness of the message.

3. $C \rightarrow S:$ ticket $_{S},\left\{C, T_{2}\right\}_{k_{C S}}$.

The server S

- retrieves $k_{C S}$ from ticket ${ }_{S}$,
- checks the timeliness of the ticket,
- recovers the timestamp T_{2} from $\left\{C, T_{2}\right\}_{k_{C S}}$,
- checks timeliness of T_{2},

4. $S \rightarrow C:\left\{T_{2}\right\}_{k_{C S}}$

An authentication server is responsible for a a single domain (in Kerberos called a realm). To support authentication services across different realms, authentication servers need to hold interrealm keys which provide secure inter-realm communication channels. A principal A can obtain a granting ticket to contact a remote TGS from its local TGS [390].

11.3.2 SPX

SPX is an authentication system for large distributed systems [493]. It is a part of Digital Distributed System Security Architecture [195]. SPX uses both secret and public key cryptography. We are going to use the following notation:

- $\{m\}_{k}$ - message m encrypted under a secret key k using a private-key cryptosystem; it is assumed that encryption preserves both confidentiality and integrity of m,
- $\langle m\rangle_{k}$ - message m signed using a private key k; anyone who knows the matching public key K can verify the signed message m,
- $[m]_{K}$ - message m encrypted using a public key K; only the holder of the matching secret key k can read the message m.

There are two authentication servers: a login enrollment agent facility ($L E A F$) and a certificate distribution center $(C D C)$. There is also a collection of certification authorities ($C A$) organized in a hierarchical structure. A single $C A$ has a jurisdiction over a subset of principals and is assumed to be trusted. The main goal of a $C A$ is to issue public key certificates. $L E A F$ is a trusted authority, whereas $C D C$ does not need to be trusted as all the information stored in the CDC is encrypted. Like Kerberos, SPX provides several authentication protocols. We are going to describe two basic ones: credential initialization and client-server authentication. The credential initialization protocol is initiated by a principal A who wants to login to their host H. The host exchanges messages with its local $L E A F$ and $C D C$.

SPX Credential Initialization Protocol

Goals: (1) Delivery of the public key $K_{C A}$ of the local $C A$ to host H of the principal A. (2) Verification of A 's password.

Assumptions: Principal A holds a valid password $\left(\right.$ passwd $\left._{A}\right)$. $L E A F$ has generated its pair of secret and public keys ($k_{L E A F}, K_{L E A F}$). Every host knows the authentic public key $K_{L E A F}$ of its local $L E A F$. $C D C$ keeps the secret key k_{A} of principal A in the form of a record $\left(\left\{k_{A}\right\}_{h_{2}\left(\operatorname{passwd}_{A}\right)}, h_{1}\left(\operatorname{passwd}_{A}\right)\right)$, where h_{1} and h_{2} are two suitably chosen one-way functions.

Message Sequence: The parties exchange the following sequence of messages:

1. $A \rightarrow H: A$, passwd.
2. $H \rightarrow L E A F: A,\left[T, r, h_{1}(\text { passwd })\right]_{K_{L E A F}}$,
where r is a nonce and T is a timestamp.
3. $L E A F \rightarrow C D C: A$.
$C D C$

- retrieves the record for A,
- chooses a fresh key k,
- uses a private-key encryption to create $\left\{\left\{k_{A}\right\}_{h_{2}\left(\operatorname{passwd}_{A}\right)}, h_{1}\left(\operatorname{passwd}_{A}\right)\right\}_{k}$,
- encrypts k using $K_{L E A F}$ for confidentiality.

4. $C D C \rightarrow L E A F:\left\{\left\{k_{A}\right\}_{h_{2}\left(\operatorname{passwd}_{A}\right)}, h_{1}\left(\operatorname{passwd}_{A}\right)\right\}_{k},[k]_{K_{L E A F}}$.

LEAF now proceeds as follows:

- LEAF retrieves the key k from $[k]_{K_{L E A F}}$,
- extracts $\left\{k_{A}\right\}_{h_{2}\left(\text { passwd }_{A}\right)}$ and $h_{1}\left(\right.$ passwd $\left._{A}\right)$,
- verifies whether $h_{1}($ passwd $)=h_{1}\left(\operatorname{passwd}_{A}\right)$,
- aborts A 's login attempt if the two passwords are different.

5. LEAF $\rightarrow H:\left\{\left\{k_{A}\right\}_{h_{2}\left(\operatorname{passwd}_{A}\right)}\right\}_{r}$.

The host H

- decrypts the message using the key (nonce) r,
- recovers the secret key k_{A},
- generates a pair of RSA delegation keys (d, e),
- creates a ticket $t i c k_{A}=\langle L, A, d\rangle_{k_{A}}$ (a certificate of $\left.d\right)$.

6. $H \rightarrow C D C: A$.
7. $C D C \rightarrow H:\left\langle C A, K_{C A}\right\rangle_{k_{A}}$

Now A can run a client program C which may wish to establish a secure channel (a secret key) to a server S. It is assumed that the client C has already completed a successful run of the credential initialization protocol.

SPX Client-Server Authentication Protocol

Goals: To distribute of a fresh session key k to a client C and the server S for use in a private-key cryptosystem.

Assumptions: The $C A$ of the client C keeps C 's public key K_{C}. The client C holds a ticket tick $_{C}=\langle L, C, d\rangle_{k_{C}}$. The client knows the valid public key of its CA, i.e. $K_{C A_{C}}$, and the server knows the valid public key of its CA, i.e. $K_{C A_{S}}$.

Message Sequence: 1. $C \rightarrow C D C: S$.
$C D C$ retrieves the public-key certificate of K_{S}.
2. $C D C \rightarrow C:\left\langle S, K_{S}\right\rangle_{k_{C A}}$.

The client C

- recovers the public key K_{S} of S from the certificate using the public key $K_{C A_{C}}$,
- generates a fresh session key k to be shared with S,
- encrypts the session key using the public key K_{S} of the server,
- encrypts a delegation key e using the session key,

3. $C \rightarrow S: C,[k]_{K_{S}}$, tick $_{C}=\langle L, C, d\rangle_{k_{C}},\{e\}_{k}$.
4. $S \rightarrow C D C: C$.
5. $C D C \rightarrow S:\left\langle C, K_{C}\right\rangle_{k_{C A S}}$.

The server S

- retrieves the key k from $[k]_{K_{S}}$ using its private key k_{S},
- recovers e from $\{e\}_{k}$,
- gets the public key K_{C} from the certificate $\left\langle C, K_{C}\right\rangle_{k_{C A_{S}}}$,
- extracts L, C, d from the ticket $t i c k_{C}$ using the public key K_{C},
- checks whether e and d form a valid pair of delegation keys (i.e. for a random number $\alpha,\left(\alpha^{e}\right)^{d} \equiv \alpha$ using the RSA system $)$.

6. $S \rightarrow C:\{T+1\}_{k}$.

11.3.3 Other Authentication Services

SELANE (SEcure Local Area Network Environment) was developed at the European Institute for System Security (EISS) in Karlsruhe as an authentication service for distributed systems ([17],[214]). Security operations are based on modular exponentiation. In particular, signature scheme is based on on the ElGamal public key scheme. Trusted authorities called SKIAs (Secure Key Issuing Authorities) supply certificates which are used by principals to establish a common secret session key. The key can be later used to ensure confidentiality or authentication.

The RHODOS distributed operating system incorporates a number of authentication services which allow to verify user passwords at the login stage (similar to the Kerberos credential initialization
protocol). One-way (unilateral) and two-way (mutual) authentication of principals is also provided ([511]).

KryptoKnight or network security program (NetSP) is an authentication service designed in IBM. Protocols in KryptoKnight make an extensive use of collision free hash functions and MACs to provide authentication channels [36, 37, 38].

Some other authentication systems are the SESAME project (a secure European system for applications in a multivendor environment), the Open Software Foundation's (OSF) distributed computing environment [390], and Kuperee [233, 234].

11.4 Key Agreement Protocols

The basic Diffie-Hellman (DH) key agreement protocol was discussed in Section 11.2. The protocol provides no entity authentication. This problem is partially fixed in a modification of the DH protocol due to ElGamal [190]. It is assumed that there is a trusted authority $T A$ which keeps authentic (certified) public keys of principals. A principal P generates its secret $\gamma \in \mathcal{Z}_{p}^{*}$ and deposits its public key $g^{\gamma} \bmod p$ with $T A$, where p is a large enough prime and g is a primitive element $g \in \mathcal{Z}_{p}^{*}$.

ElGamal Key Agreement Protocol

Goal: Agreement of A and B on a secret key k.
Assumptions: $T A$ keeps a certified public key of B. The modulus p is a large enough prime and a primitive element $g \in \mathcal{Z}_{p}^{*}$. Both integers p and g are public.

Message Sequence: A collects an authentic copy of B 's public key (g^{β}) from $T A$, generates a random integer $\alpha \in_{R} \mathcal{Z}_{p}^{*}$ and sends

1. $A \rightarrow B: g^{\alpha} \bmod p$.
A calculates the secret key $k \equiv\left(g^{\beta}\right)^{\alpha} \bmod p$ and B derives $k \equiv\left(g^{\alpha}\right)^{\beta} \bmod p$.
The protocol takes a single pass and both A and B can establish the common secret key. A knows that the key can be shared with B only so the protocol ensures implicit key authentication of B. There is no provision for key confirmation. A can be sure of key freshness as long as A selected a fresh α. On the other side, B derives a key but B does not know with whom it is shared.

The ElGamal protocol can be upgraded to a protocol where both A and B obtain their corresponding certified public keys from $T A$. This protocol involves no exchange of message between A and B at all and is called the DH key predistribution. It provides mutual implicit key authentication. There is no entity authentication or key confirmation as there is no interaction between A and B.

11.4.1 MTI Protocols

Matsumoto, Takashima, and Imai designed a family of key agreement protocols [321]. Their main idea is to use the DH predistribution protocol with two passes.

MTI Protocol (version A0)

Goal: Agreement of A and B on a fresh secret key k.
Assumptions: $T A$ keeps certified public keys $K_{A} \equiv g^{\alpha} \bmod p$ and $K_{B} \equiv g^{\beta} \bmod p$ of A and B, respectively. The modulus p is a large enough prime and a primitive element $g \in \mathcal{Z}_{p}^{*}$. Both integers p and g are public.

Message Sequence: A selects a random integer $a \in_{R} \mathcal{Z}_{p}^{*}$.

1. $A \rightarrow B: g^{a} \bmod p$.
B chooses its own random integer $b \in_{R} \mathcal{Z}_{p}^{*}$.
2. $B \rightarrow A: g^{b} \bmod p$.

A can compute a common secret key

$$
k \equiv K_{B}^{a} \cdot\left(g^{b}\right)^{\alpha} \bmod p
$$

B can compute the same key

$$
k \equiv K_{A}^{b} \cdot\left(g^{a}\right)^{\beta} \bmod p
$$

The protocol provides mutual implicit key authentication and key freshness. There is no provision for entity authentication or key confirmation. Readers interested in other versions of MTI protocols are referred to the original paper [321].

11.4.2 The Station to Station Protocol

The station to station (STS) protocol was designed by Diffie, Van Oorschot, and Wiener [154]. The protocol combines the basic Diffie-Hellman protocol with certificates. Recall that a certificate $\langle m\rangle_{k_{A}}$ denotes message m signed using the secret key of A. Anyone who knows the matching public key K_{A} can read the message m.

STS Protocol

Goals: (1) Agreement of A and B on a fresh secret key k.
(2) Mutual entity authentication.
(3) Explicit key authentication.

Assumptions: $T A$ keeps certified public keys K_{A} and K_{B} of A and B, respectively. The modulus p is a large enough prime and $g \in \mathcal{Z}_{p}^{*}$ is a primitive element. Both integers p and g are public. H denotes a public one-way hash algorithm.

Message Sequence: A collects a certified copy of B 's public key K_{B} from $T A$, generates a random integer $\alpha \in_{R} \mathcal{Z}_{p}^{*}$. B collects a certified copy of A 's public key K_{A} from $T A$, generates a random integer $\beta \in_{R} \mathcal{Z}_{p}^{*}$.

1. $A \rightarrow B: g^{\alpha} \bmod p$.

Principal B chooses at random $\beta \in_{R} \mathcal{Z}_{p}^{*}$ and computes

$$
k=\left(g^{\alpha}\right)^{\beta} \bmod p
$$

2. $B \rightarrow A: g^{\beta},\left\{\left\langle H\left(g^{\beta}, g^{\alpha}\right)\right\rangle_{k_{B}}\right\}_{k}$.

Principal A computes its version of the shared key $\tilde{k}=\left(g^{\beta}\right)^{\alpha}$, decrypts the cryptogram and uses K_{B} to retrieve $\tilde{H}\left(g^{\beta}, g^{\alpha}\right)$ from the certificate. Next A calculates the hash value $H\left(g^{\beta}, g^{\alpha}\right)$. If $H=\tilde{H}, A$ accepts the key k.
3. $A \rightarrow B:\left\{\left\langle H\left(g^{\alpha}, g^{\beta}\right)\right\rangle_{k_{A}}\right\}_{k}$.
B verifies the hash values in similar way.
The protocol can be simplified by dropping hashing at the expense of efficiency (see [488]). Some other variants are discussed in [154]. For a purported attack on the above protocol see [302].

11.4.3 Protocols with Self-certified Public Keys

Girault [202] suggested a family of key agreement protocols using so-called self-certified public keys. Let a trusted authority $T A$ set up a RSA cryptosystem with the public modulus $N=p \cdot q$ (p and q are strong primes). An integer g generates the multiplicative group \mathcal{Z}_{N}^{*}. TA generates a pair of keys $\left(k_{T A}, K_{T A}\right)$,

Any principal is assumed to possess its identifying string. For instance, the identifying string $I D_{A}$ is A 's name and address. The principal A selects its secret key k_{A} and computes the public key $K_{A} \equiv g^{-k_{A}} \bmod N$. The public integer $g^{-k_{A}}$ and $I D_{A}$ are communicated to $T A$ via an authentication channel. $T A$ computes A 's public key certificate

$$
\sigma_{A} \equiv\left(g^{-k_{A}}-I D_{A}\right)^{k_{T A}} \quad(\bmod N)
$$

Anyone who knows the public key $K_{T A}, I D_{A}$ and A 's certificate σ_{A} can compute the public key of A as

$$
K_{A} \equiv \sigma_{A}^{K_{T A}}+I D_{A} \quad(\bmod N)
$$

Key Pre-distribution with Self-certified Keys

Goal: Agreement of A and B on a secret key k.
Assumptions: $T A$ applies a RSA cryptosystem with public modulus N and a primitive element $g \in \mathcal{Z}_{N}^{*}$. TA keeps public key certificates σ_{A} and σ_{B} of A and B, respectively. Both A and B hold their pairs of keys $\left(k_{A}, K_{A}\right)$ and (k_{B}, K_{B}), respectively.

Message Sequence: A and B independently compute the common secret key. A calculates

$$
k \equiv\left(\sigma_{B}^{K_{T A}}+I D_{B}\right)^{k_{A}} \bmod N
$$

and B computes

$$
k \equiv\left(\sigma_{A}^{K_{T A}}+I D_{A}\right)^{k_{B}} \bmod N
$$

This protocol needs no interaction between principals A and B. It provides mutual implicit key authentication but not key freshness.

Two Pass Protocol with Self-certified Keys

Goal: Agreement of A and B on a fresh secret key k.
Assumptions: $T A$ applies a RSA cryptosystem with public modulus N and a primitive element $g \in \mathcal{Z}_{N}^{*}$. TA keeps public key certificates σ_{A} and σ_{B} of A and B, respectively. Both A and B hold their pairs of keys $\left(k_{A}, K_{A}\right)$ and $\left(k_{B}, K_{B}\right)$, respectively.

Message Sequence: A selects at random integer α.

1. $A \rightarrow B: g^{\alpha} \bmod N$.
B chooses its own random integer β.
2. $B \rightarrow A: g^{\beta} \bmod N$.

A calculates

$$
k \equiv\left(g^{\beta}\right)^{\alpha}\left(\sigma_{B}^{K_{T A}}+I D_{B}\right)^{k_{A}} \bmod N
$$

and B calculates

$$
k \equiv\left(g^{\alpha}\right)^{\beta}\left(\sigma_{A}^{K_{T A}}+I D_{A}\right)^{k_{B}} \bmod N .
$$

The protocol provides mutual implicit key authentication as well as key freshness.

11.4.4 Identity-Based Protocols

Günter [227] proposes identity-based protocols in which a trusted authority $T A$ is assumed to set up all the required parameters. All secret elements are generated by $T A$ and communicated to the corresponding principals via confidentiality channels.

During the setup phase, $T A$ selects a large enough prime modulus p and a generator g of \mathcal{Z}_{p}^{*} (p and g are public). It chooses a secret key $k_{T A}$ and computes its public key $K_{T A} \equiv g^{k_{T A}} \bmod p$. For each principal $A, T A$ assigns a unique identity $I D_{A}$, generates a random integer $r_{A}\left(\operatorname{gcd}\left(r_{A}, p-1\right)=1\right)$ and calculates A 's certificate $\sigma_{A} \equiv g^{r_{A}} \bmod p$. Next $T A$ finds a value k_{A} satisfying the following congruence:

$$
H\left(I D_{A}\right) \equiv \sigma_{A} \cdot k_{T A}+r_{A} \cdot k_{A} \quad(\bmod p-1)
$$

where H is a collision-free one-way hash function. The pair $\left(\sigma_{A}, k_{A}\right)$ is sent via a confidentiality channel to A. The certificate σ_{A} is made public, whereas k_{A} serves as the secret key of A. Further the public key of A is $\sigma_{A}^{k_{A}} \equiv g^{r_{A} k_{A}} \bmod p$.

Anyone can reconstruct A 's public key from the public information. First note that $k_{A} \equiv$ $\left(H\left(I D_{A}\right)-\sigma_{A} \cdot k_{T A}\right) r_{A}^{-1} \bmod (p-1)$, which implies that

$$
\sigma_{A}^{k_{A}} \equiv g^{H\left(I D_{A}\right)} \cdot K_{T A}^{-\sigma_{A}} \bmod p
$$

Identity-Based Key Agreement Protocol

Goal: Agreement of A and B on a fresh secret key k.
Assumptions: $T A$ publishes the prime modulus p, a generator g of \mathcal{Z}_{p}^{*} and its public key $K_{T A}$. Any principal A with identity $I D_{A}$ holds its secret key k_{A} and public certificate σ_{A}.

Message Sequence: A starts the protocol.

1. $A \rightarrow B: I D_{A}, \sigma_{A}$. B chooses a random integer β.
2. $B \rightarrow A: I D_{B}, \sigma_{B},\left(\sigma_{A}\right)^{\beta} \bmod p$. A selects its fresh integer α.
3. $A \rightarrow B:\left(\sigma_{B}\right)^{\alpha} \bmod p$.

A calculates

$$
k \equiv\left(\sigma_{A}^{\beta}\right)^{k_{A}}\left(\sigma_{B}^{k_{B}}\right)^{\alpha} \bmod p
$$

and similarly B computes

$$
k \equiv\left(\sigma_{A}^{k_{A}}\right)^{\beta}\left(\sigma_{B}^{\alpha}\right)^{k_{B}} \bmod p
$$

The protocol guarantees mutual implicit key authentication and key freshness. Other variants of the protocols are discussed in [334, 433].

11.5 Conference Key Establishment Protocols

In multiuser cryptography, there are more than two principals who may need to establish a common secret key. Conference key establishment is an umbrella name for these applications. Burmester and Desmedt [69] describe several conference key distribution protocols. Assume that there are n principals P_{1}, \ldots, P_{n} who wish to establish a common secret key. The principal P_{1} plays the role of
a trusted authority and after an initial interaction with the rest of the principals, creates a fresh key and distributes it among them.

Star Based Protocol

Goal: Distribution of a (fresh) secret key among n principals P_{1}, \ldots, P_{n}.
Assumptions: There is a public prime modulus p and a generator g of \mathcal{Z}_{p}^{*} commonly known to all principals. P_{1} is a trusted authority.

Message Sequence: Each P_{i} selects a random integer $r_{i} \in_{R} \mathcal{Z}_{p-1}^{*}$ and computes $z_{i}=g^{r_{i}} \bmod p$ for $i=1, \ldots, n$.

1. $P_{1} \rightarrow P_{i}: z_{1}$ for $i=2, \ldots, n$.
2. $P_{i} \rightarrow P_{1}: z_{i}$ for $i=2, \ldots, n$.

Now P_{1} computes common secret keys $k_{i} \equiv z_{i}^{r_{1}} \bmod p$ between P_{1} and $P_{i} . P_{1}$ chooses at random a fresh key $k \in_{R} \mathcal{Z}_{p-1}^{*}$.
3. $P_{1} \rightarrow P_{i}: y_{i} \equiv k \cdot k_{i} \bmod p$.

Each principal computes its secret key $k_{i} \equiv z_{1}^{r_{i}} \bmod p$ and finds $k \equiv y_{i} \cdot k_{i}^{-1} \bmod p ; i=2, \ldots, n$.
The next protocol needs no trusted principal.

Broadcast Protocol

Goal: Agreement on a (fresh) secret key by n principals P_{1}, \ldots, P_{n}.
Assumptions: There is a public prime modulus p and a generator g of \mathcal{Z}_{p}^{*} agreed to be used by all principals.

Message Sequence: Each P_{i} selects a random integer $r_{i} \in_{R} \mathcal{Z}_{p-1}$, computes $z_{i}=g^{r_{i}} \bmod p$ and broadcasts

1. $P_{i} \rightarrow \star: z_{i}$ for $i=1, \ldots, n$.

Each P_{i} computes $x_{i} \equiv\left(\frac{z_{i+1}}{z_{i-1}}\right)^{r_{i}} \bmod p$.
2. $P_{i} \rightarrow \star: x_{i} ; i=2, \ldots, n$.

Each principal P_{i} computes the secret key

$$
k \equiv z_{i-1}^{n r_{i}} \cdot x_{i}^{n-1} \cdot x_{i+1}^{n-2} \cdots x_{i-2} \bmod p
$$

Note that $P_{i} \rightarrow \star$ means that principal P_{i} uses a broadcast channel.
Chen and Hwang [93] proposed an identity based conference key distribution using a broadcast channel. As in the identity based setting, a trusted authority $T A$ generates all secrets for all principals. $T A$ uses the RSA system with modulus $N=p_{1} p_{2} p_{3} p_{4}$ where p_{i} are distinct strong primes for $i=$ $1,2,3,4$. It has a pair (e, d) of secret and public keys, respectively. Clearly

$$
e \cdot d \equiv 1 \quad\left(\bmod \operatorname{lcm}\left(p_{1}-1, p_{2}-1, p_{3}-1, p_{4}-1\right)\right)
$$

$T A$ publishes $K \equiv g^{-d} \bmod N$ where g is a generator of \mathcal{Z}_{N}^{*}. Further, $T A$ computes a secret key k_{i} for principal P_{i} according to the congruence:

$$
g^{k_{i}} \equiv I D_{i}^{2} \bmod N
$$

where $I D_{i}$ is identity of principal $P_{i} ; i=1, \ldots n$. The secret key k_{i} is communicated to P_{i} via a confidentiality channel. One principal from the group plays the role of a chair who generates a fresh conference key. Let this principal be P_{1}.

Identity-Based Conference Key Distribution Protocol

Goal: Distribution of a (fresh) secret key among n principals.
Assumptions: $T A$ sets up a RSA cryptosystem. The modulus N, the key e, primitive element $g \in \mathcal{Z}_{N}^{*}, K \equiv g^{-d} \bmod N$, and a one-way hashing function H are public. The key d and factorization of N are secret. Each principal P_{i} has its secret key $k_{i} ; i=1, \ldots, n$. Any body knows the identity $I D_{i}$ of principal $P_{i} . P_{1}$ is trusted.

Message Sequence: P_{1} chooses a fresh conference key $k \in_{R} \mathcal{Z}_{N-1}$, an element $r \in_{R} \mathcal{Z}_{N-1}$ and computes a hash value $H(t)$ of the current time and date t. Further P_{1} calculates

$$
\sigma_{1} \equiv\left(K^{k_{1}}\right)^{H(t)} g^{r} \bmod N
$$

and

$$
\alpha_{1, i} \equiv\left(I D_{i}^{2}\right)^{r e} \equiv g^{k_{i} r e} \bmod N
$$

for $i=2, \ldots, n$. Subsequently, P_{1} constructs a polynomial $p(x)$ of degree at most $(n-2)$ and

$$
p(x) \equiv \sum_{i=1}^{n}\left(k+I D_{i}\right) \prod_{j=2 ; j \neq i}^{n} \frac{x-\alpha_{1, j}}{\alpha_{1, i}-\alpha_{1, j}} \bmod N
$$

1. $P_{1} \rightarrow \star:\left(\sigma_{1}, p(x), t\right)$.

Each principal P_{i} performs the following transformations:

$$
\begin{aligned}
\alpha_{1, i} & \equiv\left(\sigma_{1}^{e}\left(I D_{1}^{2}\right)^{H(t)}\right)^{k_{i}} \\
& \equiv g^{-d k_{1} H(t) e k_{i}} \cdot g^{r e k_{i}} \cdot\left(I D_{1}^{2}\right)^{H(t) k_{i}} \\
& \equiv I D_{1}^{-2 H(t) k_{i}} \cdot g^{r e k_{i}} \cdot\left(I D_{1}^{2}\right)^{H(t) k_{i}} \\
& \equiv g^{r e k_{i}} \bmod N
\end{aligned}
$$

and recovers the conference key

$$
k \equiv p\left(\alpha_{1, i}\right)-I D_{i} \bmod N
$$

Other conference key distribution protocols were also investigated, see [256] and [286].

11.6 The BAN Logic of Authentication

Burrows, Abadi and Needham [70] have developed a formalism for analyzing authentication protocols. The formalism is referred to as the BAN logic. It investigates the evolution of principal beliefs throughout the execution of the protocol. The BAN logic operates on the following objects

- principals,
- cryptographic keys, and
- statements (or formulas).

Typically, the symbols P, Q range over principals; X, Y range over statements; and K ranges over keys. The BAN logic uses the following constructs:

1. P believes $X-P$ is persuaded of the truth of X. This construct is central to the logic.
2. P sees $X-P$ receives a message containing $X . P$ can read and repeat X.
3. P said X - a some time ago, P sent a message X.
4. P controls $X-P$ has jurisdiction over X; that is P is an authority on X. Typically, a server is assumed to have jurisdiction over the generation of fresh session keys.
5. $\operatorname{fresh}(X)-X$ has never been sent in any message in the past (nonces are fresh; timestamped messages are also fresh for their lifetime).
6. $P \stackrel{K}{\leftrightarrow} Q$ - two principals P and Q share a secret key $K(K$ is known to P and Q and other principals trusted by them only).
7. $\stackrel{K}{\longmapsto} P-K$ is the public key of P (the matching secret key K^{-1} is not known to anyone except $P)$.
8. $P \stackrel{X}{=} Q$ - the statement X is known to P, Q and other principals trusted by them but is secret to the rest. The formula X can be used as a token (password) to verify identities of P and Q.
9. $\{X\}_{K}-X$ is encrypted using K.
10. $\langle X\rangle_{Y}-X$ is authenticated using Y. Y serves as a proof of origin for X. For example, $\langle X\rangle_{Y}$ can be a concatenation of X and a password Y.

11.6.1 BAN Logical Postulates

The BAN logic is based on logical postulates (or deduction rules) which allow to derive conclusions from the assumptions and statements of the current run of a protocol. The notation $\frac{X, Y}{Z}$ reads: given that X and Y hold, Z holds as well. The conjunction operator is denoted by ",". Although the list given below do not exhaust the collection of rules provided by the creators of the BAN logic, it conveys most of the flavour of the logic.

1. The message meaning rule. There are three versions of the rule depending on the secret involved.

- For shared key, the rule takes the following form:

$$
\frac{P \text { believes } Q \stackrel{K}{\leftrightarrow} P, P \text { sees }\{X\}_{K}}{P \text { believes } Q \text { said } X}
$$

If P believes that the key K is shared with Q and P sees a statement encrypted under the key K, then P believes that Q once said X.

- For public key, the rule can be represented by the following expression:

$$
\frac{P \text { believes } \stackrel{K}{\mapsto} Q, P \text { sees }\{X\}_{K^{-1}}}{P \text { believes } Q \text { said } X}
$$

If P believes that the public key K belongs to Q and P sees a statement encrypted under the secret key K^{-1}, then P believes that Q once said X.

- For shared secrets, the rule can be expressed by the following form;

$$
\frac{P \text { believes } Q \stackrel{Y}{=} P, P \text { sees }\langle X\rangle_{Y}}{P \text { believes } Q \text { said } X}
$$

If P believes that the statement Y is shared with Q and P sees a statement $\langle X\rangle_{Y}$, then P believes that Q once said X.
2. The nonce verification rule:

$$
\frac{P \text { believes fresh }(X), P \text { believes } Q \text { said } X}{P \text { believes } Q \text { believes } X}
$$

If P believes that X is fresh and P believes that Q once said X, then P believes that Q believes X.
3. The jurisdiction rule:

$\frac{P \text { believes } Q \text { controls } X, P \text { believes } Q \text { believes } X}{P \text { believes } X}$

If P believes that Q has jurisdiction over X and P believes that Q believes that X is true, then P believes that X is true.
4. Other rules. These rules allow to infer about components of a statement.
(4.1) If P sees a compound statement (X, Y), then P also sees its component X, that is:

$$
\frac{P \operatorname{sees}(X, Y)}{P \operatorname{see} X}
$$

This rule applies also to the component Y so the following rule also holds:

$$
\frac{P \operatorname{sees}(X, Y)}{P \operatorname{sees} Y}
$$

(4.2) If P sees $\langle X\rangle_{Y}$, then P sees X, that is:

$$
\frac{P \operatorname{sees}\langle X\rangle_{Y}}{P \operatorname{sees} X}
$$

(4.3) If P and Q share a key K then P can decrypt $\{X\}_{K}$ and see X. This can be formalized as

$$
\frac{P \text { believes } Q \stackrel{K}{\leftrightarrow} P, P \text { sees }\{X\}_{K}}{P \text { sees } X}
$$

(4.4) If P believes that its public key is K and P sees a cryptogram $\{X\}_{K}$, then P sees the message X

$$
\frac{P \text { believes } \stackrel{K}{\mapsto} P, P \text { sees }\{X\}_{K}}{P \text { sees } X}
$$

(4.5) If P believes that K is a public key of Q and sees a cryptogram $\{X\}_{K^{-1}}$, then P sees the message X

$$
\frac{P \text { believes } \stackrel{K}{\mapsto} Q, P \text { sees }\{X\}_{K-1}}{P \text { sees } X}
$$

(4.6) If P believes that a part X of a compound statement is fresh, then P believes that the whole statement (X, Y) if fresh. This rule is expressed as

$$
\frac{P \text { believes } \operatorname{fresh}(X)}{P \text { believes } \operatorname{fresh}(X, Y)}
$$

(4.7) If P believes that Q believes in (X, Y), then P believes that Q believes in X and

$$
\frac{P \text { believes }(Q \text { believes }(X, Y))}{P \text { believes }(Q \text { believes } X)}
$$

If P believes that Q believes in (X, Y), then P believes that Q believes in Y and

$$
\frac{P \text { believes }(Q \text { believes }(X, Y))}{P \text { believes }(Q \text { believes } Y)}
$$

11.6.2 Analysis of the Needham-Schroeder Protocol

The BAN logic can be used to investigate the evolution of beliefs during the execution of a protocol. We show how the Needham-Schroeder protocol can be analyzed using the logic. First the protocol description (see Section 11.1) needs to be re-written in the BAN logic language (see also [112]).

Idealized Needham-Schroeder Protocol

Goals: 1. Beliefs for A :
(a) $A \stackrel{K_{A B}}{\hookrightarrow} B$
(b) B believes $\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)$.
2. Beliefs for B :
(a) $A \stackrel{K_{A B}}{\leftrightarrow} B$
(b) A believes $\left(A \stackrel{K_{A B}}{\hookrightarrow} B\right)$.

Assumptions: 1. Principal A believes:
(a) $A \stackrel{K_{A S}}{\hookrightarrow} S$ - the key $K_{A S}$ is shared with S,
(b) S controls $A \stackrel{K_{A B}}{\leftrightarrow} B-S$ has a jurisdiction over the shared key $K_{A B}$,
(c) S controls fresh $\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)-S$ has jurisdiction over the freshness of the key $K_{A B}$,
(d) $\operatorname{fresh}\left(r_{A}\right)-r_{A}$ is fresh.
2. Principal B believes:
(a) $B \stackrel{K_{B S}}{\hookrightarrow} S$ - the key $K_{B S}$ is shared with S,
(b) S controls $A \stackrel{K_{A B}}{\leftrightarrow} B-S$ has jurisdiction over the shared key $K_{A B}$,
(c) $\operatorname{fresh}\left(r_{B}\right)-r_{B}$ is fresh.
3. Principal S believes:
(a) $A \stackrel{K_{A S}}{\leftrightarrows} S$ - the key $K_{A S}$ is shared with A,

(c) $A \stackrel{K_{A B}}{\leftrightarrow} B$ - the key $K_{A B}$ is shared between A and B,
(d) $\operatorname{fresh}\left(A \stackrel{K_{A B}}{\longleftrightarrow} B\right)$ - the key $K_{A B}$ is fresh.

Message Sequence: 1. $A \rightarrow S: A, B, r_{A}$ (this step is usually omitted in the BAN idealization).
2. $S \rightarrow A:\left\{r_{A},\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right), \operatorname{fresh}\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right),\left\{A \stackrel{K_{A B}}{\leftrightarrow} B\right\}_{K_{B S}}\right\}_{K_{A S}}$.
3. $A \rightarrow B:\left\{A \stackrel{K_{A B}}{\leftrightarrow} B\right\}_{K_{B S}}$.
4. $B \rightarrow A:\left\{r_{B},\left(A \stackrel{K_{A B}}{\leftrightarrows} B\right)\right\}_{K_{A B}}$.
5. $A \rightarrow B:\left\{r_{B},\left(A \stackrel{K_{A B}}{\leftrightarrows} B\right)\right\}_{K_{A B}}$.

The aim of the analysis is to determine whether the statements formulated as the goals of the protocol can be derived from the assumptions and passes of the protocol by applying the BAN rules (postulates). We start from pass (2) of the protocol. Let

$$
X=\left(r_{A},\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right), \operatorname{fresh}\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right),\left\{A \stackrel{K_{A B}}{\leftrightarrow} B\right\}_{K_{B S}}\right) .
$$

The statements $\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)$ and $\operatorname{fresh}\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)$ inserted in the idealized protocol above do not appear in the original protocol but are apparent from the context of the protocol. According to the message meaning rule

$$
\frac{A \text { believes } A \stackrel{K_{A S}}{\leftrightarrow} S, A \text { sees }\{X\}_{K_{A S}}}{A \text { believes } S \text { said } X}
$$

According to the rule (4.6)

$$
\frac{A \text { believes fresh }\left(r_{A}\right)}{A \text { believes fresh }(X)}
$$

That is, A believes that the compound statement X is fresh. From the nonce verification rule

$$
\frac{A \text { believes } \operatorname{fresh}(X), A \text { believes } S \text { said }\left(r_{A},\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right), \operatorname{fresh}\left(A{ }^{K_{A B}} B\right)\right)}{A \text { believes }\left(S \text { believes } r_{A},\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right), \operatorname{fresh}\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)\right)}
$$

we can derive the conclusion that A believes $\left(S\right.$ believes $r_{A},\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)$, fresh $\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)$). The rule (4.7) gives us

$$
\begin{equation*}
\frac{A \text { believes }\left(S \text { believes }\left(r_{A}, A \stackrel{K_{A B}}{K_{A}} B, \text { fresh }\left(A^{K_{A B}} B\right)\right)\right)}{A \text { believes }\left(S \text { believes } A \stackrel{K_{A B}}{\leftrightarrow} B\right)} \tag{11.1}
\end{equation*}
$$

and by the same rule

$$
\begin{equation*}
\frac{A \text { believes }\left(S \text { believes }\left(r_{A}, A \stackrel{K_{A B}}{\leftrightarrow} B, \text { fresh }\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)\right)\right)}{A \text { believes }\left(S \text { believes } \operatorname{fresh}\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)\right)} . \tag{11.2}
\end{equation*}
$$

Take the assumption (1b) and Conclusion of (11.1). From the jurisdiction rule

$$
\frac{A \text { believes }\left(S \text { controls } A \stackrel{K_{A B}}{\leftrightarrow} B\right), A \text { believes }\left(S \text { believes } A \stackrel{K_{A B}}{\leftrightarrow} B\right)}{A \text { believes } A \stackrel{K_{A B}}{\leftrightarrow} B}
$$

Take the assumption (1c) and Conclusion of (11.2). Again from the jurisdiction rule

$$
\text { A believes }\left(S \text { controls fresh }\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)\right), A \text { believes }\left(S \text { believes fresh }\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)\right)
$$

$$
A \text { believes fresh }\left(A \stackrel{K_{A B}}{\leftrightarrows} B\right)
$$

The principal A has achieved its goal after the pass (2), i.e. A believes that the key $K_{A B}$ has been generated by S for use between A and B and is fresh.

Take the assumption (2a) and the message (3) of the protocol. We can apply the message meaning rule

$$
\frac{B \text { believes } B \stackrel{K_{B S}}{\leftrightarrow} S, B \text { sees }\left\{A^{K_{A B}} B\right\}_{K_{B S}}}{B \text { believes }\left(S \text { said } A \stackrel{K_{A B}}{\leftrightarrow} B\right)} .
$$

 To derive the goal (2a), we make the dubious assumption that B believes $\operatorname{fresh}\left(A \xrightarrow{K_{A B}} B\right.$), the
nonce verification rule would then allow us B to infer that B believes (S believes $A \stackrel{K_{A B}}{\leftrightarrow} B$) and further by the jurisdiction rule, we could conclude (B believes $A \stackrel{K_{A B}}{\leftrightarrow} B$).
A believes $\left(A \stackrel{K_{A B}}{\hookrightarrow} B\right)$ and sees the corresponding message (4). From the message meaning rule, we can deduce that

$$
A \text { believes } B \text { said } A \stackrel{K_{A B}}{\leftrightarrows} B
$$

A believes that $K_{A B}$ is fresh, so by the nonce verification rule

$$
A \text { believes } B \text { believes } A \stackrel{K_{A B}}{\leftrightarrow} B
$$

If we make the additional assumption that B believes $\operatorname{fresh}\left(A \stackrel{K_{A B}}{\leftrightarrow} B\right)$, we can repeat the same deduction process and derive that

B believes A believes $A \stackrel{K_{A B}}{\leftrightarrow} B$.

To conclude the above protocol analysis, it is worth noting that the BAN logic provides a useful tool to detect some security flaws in key distribution protocols. The analysis presented above allows us to detect a flaw in the Needham-Schroeder protocol which was first pointed out by Denning and Sacco [144]. There are some drawbacks of the BAN logic. An obvious one is the lack of a precise formalism for converting a concrete protocol into its idealized form. For instance, the message (4) in the idealized Needham-Schroeder protocol is open to different interpretations. If we correct the message (4) from $\left\{r_{B},\left(A \stackrel{K_{A B}}{\hookrightarrow} B\right)\right\}_{K_{A B}}$ to $\left\{r_{B}\right\}_{K_{A B}}$, then the deduction process shown above collapses and A is not able to derive the conclusion A believes B believes $A \stackrel{K_{A B}}{\leftrightarrow} B$. Additionally, B selects at random a nonce r_{B} so A after decryption sees a meaningless number. Some other properties of the BAN logic which may be seen as drawbacks relate to the lack of an independently motivated semantics and are discussed in [331].

11.7 Problems and Exercises

1. Generalise the Needham-Schroeder protocol for multi-domain environment. Assume that there are two domains \mathcal{D}_{1} and \mathcal{D}_{2} with two trusted servers S_{1} and S_{2}, respectively. There is also a server S who keeps secret channels $\left(S \stackrel{k_{S S}}{\leftrightarrow} S_{1}\right)$ and $\left(S \stackrel{k_{S S}}{\leftrightarrow} S_{2}\right)$. Implement a protocol which can be used by two principals $A \in \mathcal{D}_{1}$ (so there is $\left.\left(A \stackrel{k_{A S}}{\longleftrightarrow} S_{1}\right)\right)$ and $B \in \mathcal{D}_{2}\left(\right.$ so $\left.\left(B \stackrel{k_{B S}}{\leftrightarrow} S_{2}\right)\right)$ to establish a secret channel $\left(A \stackrel{k_{A B}}{\leftrightarrow} B\right)$.
2. Modify the Needham-Schroeder protocol with timestamps so it can be used to establish a secret key among more than two principals.
3. Consider the Needham-Schroeder protocol with timestamps for public key distribution. Make necessary modifications so the protocol is applicable for multidomain environments (domains are arranged in a hierarchical structure).
4. Show how the common secret key can be agreed between two principals A and B using the Diffie-Hellman protocol. Select a prime $p \leq 10000$. Exemplify the intruder-in-the-middle attack.
5. Two principals A and B wish to use the Diffie-Hellman protocol to agree on a common key. At the same time A and B share with their trusted server S their secret channels $\left(A \stackrel{k_{A S} S}{\hookrightarrow} S\right)$ and $\left(B \stackrel{k_{B S} S}{\hookrightarrow} S\right)$. The server S has agreed to generate a primitive element g and the modulus p and sent the pair (g, p) secretly to A and B using the Otway-Rees protocol. Present the overall protocol which allows A and B to establish their secret key which applies the Otway-Rees protocol (to distributed parameters g and N) and the Diffie-Hellman protocol to agree on the secret key.
6. Take the Otway-Rees and Boyd-Mao protocols. Discuss their properties and emphesize their differencies.
7. Consider the following key agreement protocols: Diffie-Hellman, ElGamal, MTI, and STS. Compare the protocols and contrast them taking their security as the base for discussion.
8. Demonstrate on simple numerical examples how two principals can agree on a secret key using

- key pre-distribution with self-certified keys,
- two pass protocol with self-certified keys.

Construct a suitable instance of the RSA cryptosystem.
9. Show how three principals P_{1}, P_{2} and P_{3} execute the star based protocol to establish a common secret key. Assume that the modulus $p=1879$ and $g=1054$.
10. The star based protocol can be seen as a variant of the Diffie-Hellman protocol. Show that the protocol is subject to the intruder-in-the-middle attack. In particular, demonstrate how the intruder who sits between P_{2} and P_{1} (P_{1} plays the role of a trusted authority) can obtain the common secret key and then control the traffic coming to and going from P_{2}.
11. Use the broadcast protocol to establish a common secret key among three principals P_{1}, P_{2} amd P_{3}. Accept the modulus $p=1879$ and the primitive element $g=1054$.
12. Re-write the Diffie-Hellman key agreement protocol into its idealized form and analyse it using the BAN logic.

Chapter 12

ZERO KNOWLEDGE PROOF SYSTEMS

Zero knowledge (also called minimum disclosure) proof systems are indispensable wherever there is a necessity to prove the possession of a "secret" without revealing anything about it. Zero knowledge proofs involve two parties: the prover who possesses a secret and the verifier who would like to be convinced that the prover indeed holds a secret. The proof is conducted via an interaction between the parties. At the end of the protocol, the verifier is convinced only when the prover knows the secret. If, however, the prover lies and does not know the secret, the verifier will discover the lie with an overwhelming probability. The idea sprang out of interactive proof systems. Interactive proofs have gained a quite independent status as a part of Computational Complexity Theory.

Most books on cryptography contain some discussion of the topic. Schneier's book [445] discusses the idea of zero knowledge proofs and describes some zero knowledge protocols. An encyclopedic treatment of the subject can be found in [334]. Stinson's book [488] contains a comprehensive introduction to zero knowledge proofs. An entertaining exposure of the idea of zero knowledge was presented by Quisquater and Guillou at Crypto'89 [415]. Most of the presented results in this chapter can be found in the papers [60], [207], [209].

12.1 Interactive Proof Systems

The class NP can be seen as a class of problems for which there is a polynomial time proof of membership. An interactive proof system is a protocol which involves two parties: the prover P and verifier V. Sometimes P and V are called mnemonically Peggy and Vic, respectively. The verifier is assumed to be a polynomial time probabilistic algorithm. The prover, however, is a probabilistic algorithm with an unlimited computational power. Their interactions consist of a (polynomial) number of rounds. In each round, the verifier sends a challenge to the prover via a communication channel. The prover sends a proof back to the verifier. At the end of the interaction, the verifier is either convinced and stops in an accept state or is not convinced and halts in an reject state.

Given a decision problem Q (not necessarily in NP). Q has an interactive proof system if there is a protocol which satisfies

- completeness - for each yes-instance x of Q, V accepts x with probability no smaller than $1-n^{-c}$ for every constant $c>0$ (n means the size of the instance x),
- soundness - for each no-instance, V rejects x with probability no smaller than $1-n^{-c}$ for any prover (honest or otherwise)
whenever V follows the protocol. It turns out [206], that the error probability in the completeness condition can be reduced to zero with no consequences for the protocol. In other words, V always accepts any yes-instance.

Consider an interactive proof based on the quadratic residue problem. Recall that \mathcal{Z}_{N}^{Q} is the set of all integers in \mathcal{Z}_{N} whose Jacobi symbol with respect to N is equal to 1 . The set $\mathcal{Z}_{N}^{Q}=\mathcal{Z}_{N}^{Q+} \cup \mathcal{Z}_{N}^{Q-}$. An integer $x \in \mathcal{Z}_{N}^{Q}$ is a quadratic residue modulo N if there is an integer $y \in \mathcal{Z}_{N}^{*}$ such that $y^{2} \equiv x \bmod N$. We simply say that $x \in \mathcal{Z}_{N}^{Q+}$. Otherwise, the integer x is a quadratic nonresidue or simply $x \in \mathcal{Z}_{N}^{Q-}$. To decide whether $x \in \mathcal{Z}_{N}^{Q}$ is a quadratic residue modulo N or not, one would need to find the factorization of N and compute Jacobi symbols of x in respect to all (nontrivial) factors of N.

Name: Quadratic Residue (QR) Problem
Instance: Given a composite integer N. The integer $x \in \mathcal{Z}_{N}^{Q}$.
Question: Does x belong to \mathcal{Z}_{N}^{Q+} (or is x a quadratic residue) ?
An interactive proof for the QR problem proceeds as follows [209]. Both the prover and verifier know an instance (x, N) where x is an integer which may or may not be a quadratic residue modulo N. The interaction takes $t(n)$ rounds. A round is started by P who picks up at random a quadratic residue u and sends it to V. V selects a random bit b and forwards it to P. If $b=0$, the prover shows a random square root w of u to V. Otherwise, P shows a random square root w of $(x \cdot u)$. As P is assumed to be of unlimited power, the computations of square roots can be done quickly. The verifier checks whether w^{2} is either $u \bmod N$ if $b=0$ or $u \cdot x \bmod N$ if $b=1$.

QR Interactive Proof $-Q R_{\leftrightarrow}$

Common Knowledge: an instance (x, N) of the QR problem (n is the size of the instance).
Description: Given a polynomial $t(n)$ in $n . P$ and V repeat the following steps $t(n)$ times.

1. P selects at random $u \in_{R} \mathcal{Z}_{N}^{Q+}$.
2. $P \rightarrow V: u$.
3. $V \rightarrow P: b$, where $b \in_{R}\{0,1\}$.
4. $P \rightarrow V: w$, where w is a random square root of either u if $b=0$ or $x \cdot u$ if $b=1$.
5. V checks whether

$$
w^{2} \stackrel{?}{\equiv} \begin{cases}u \bmod N & \text { if } b=0 \\ u x \bmod N & \text { otherwise }\end{cases}
$$

If the condition fails, V stops and rejects. Otherwise, the interaction continues.
Finally, after $t(n)$ rounds, V halts and accepts.
The proof satisfies the completeness property as for any yes-instance of QR (or $x \in \mathcal{Z}_{N}^{Q+}$), V always accepts P 's proof. For any b, the prover can always compute the correct response w. Note that for a no-instance (or $x \in \mathcal{Z}_{N}^{Q-}$), if P follows the protocol then u is a quadratic residue modulo N but $x \cdot u$ is a quadratic nonresidue modulo N. If P cheats than u is a quadratic nonresidue but $x \cdot u$ is a quadratic residue. Once P committed herself to u and sent it to V (does not matter if P cheats or not), the probability that V rejects (or accepts) x is 2^{-1}. As the protocol is executed $t(n)$ times, the cheating prover can succeed and convince V to accept a no-instance with the probability $2^{-t(n)}$. The proof system satisfies the soundness property.

The next interactive proof system is based on the graph isomorphism (GI) problem. Let \mathcal{V} be a set of n elements. $\operatorname{Sym}(\mathcal{V})$ denotes the group of permutations over the set \mathcal{V}. The composition of two
permutations $\pi, \tau \in \operatorname{Sym}(\mathcal{V})$ is denoted by $\pi \circ \tau$. Let $G_{0}=\left(\mathcal{V}_{0}, \mathcal{E}_{0}\right)$ and $G_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ be two graphs where \mathcal{V}_{i} is the set of vertices and \mathcal{E}_{i} is the set of edges $(i=0,1)$.

Name: Graph Isomorphism (GI) Problem
Instance: Given two graphs $G_{0}=\left(\mathcal{V}_{0}, \mathcal{E}_{0}\right)$ and $G_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ with $\left|\mathcal{V}_{0}\right|=\left|\mathcal{V}_{1}\right|=n$.
Question: Is there a permutation $\pi: \mathcal{V}_{0} \rightarrow \mathcal{V}_{1}$ such that an edge $(u, v) \in \mathcal{E}_{0}$ if and only if $(\pi(u), \pi(v)) \in$ \mathcal{E}_{1} ?

An interactive proof system for GI is presented below [207]. The interaction takes $t(n)$ rounds. At each round, the prover selects a random permutation $\pi \in_{R} \operatorname{Sym}\left(\mathcal{V}_{0}\right)$, computes an isomorphic copy of G_{0}, i.e. $h=\pi\left(G_{0}\right)$ and forwards h to the verifier. V selects at random a bit b and communicates it to P. P responds by sending π if $b=0$ or $\pi \circ \tau$, otherwise. The permutation τ establishes the isomorphism between G_{0} and G_{1} or $G_{0}=\tau\left(G_{1}\right)$ and exists for yes-instance only. V checks whether the provided permutation forces the isomorphism between h and G_{b}. If the check is satisfied, V continues. Otherwise, V stops and rejects.

GI Interactive Proof $-G I_{\leftrightarrow}$
Common Knowledge: an instance of GI, i.e. two graphs $G_{0}=\left(\mathcal{V}_{0}, \mathcal{E}_{0}\right)$ and $G_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)(n$ is the number of vertices in \mathcal{V}_{0} and \mathcal{V}_{1}).

Description: Given a polynomial $t(n)$ in $n . P$ and V repeat the following steps $t(n)$ times.

1. P selects $\pi \in_{R} \operatorname{Sym}\left(\mathcal{V}_{0}\right)$ and computes an isomorphic copy h of G_{0} (i.e. $h=\pi\left(G_{0}\right)$).
2. $P \rightarrow V: h$.
3. $V \rightarrow P: b$ where $b \in_{R}\{0,1\}$.
4. P responds to the V challenge and

$$
P \rightarrow V: \begin{cases}\pi & \text { if } b=0 \\ \pi \circ \tau & \text { otherwise }\end{cases}
$$

where τ is the permutation which asserts the isomorphism between G_{0} and G_{1} or $G_{0}=$ $\tau\left(G_{1}\right)$ (τ always exists for any yes-instance).
5. V checks whether the provided permutation establishes the isomorphism between h and $G_{b} . V$ halts and rejects the instance whenever the check fails. Otherwise, the interaction continues.

If all $t(n)$ rounds have been successful, V stops and accepts.
Assume that both P and V share a yes-instance. No matter how V have chosen the bit b, P always can arbitrarily select either π or $\pi \circ \tau$ as both graphs G_{0} and G_{1} are isomorphic to h. So the proof satisfies the completeness property. What happens when P and V share a no-instance and the prover wants to cheat? P has to choose a random h which can be isomorphic to either $G_{0}\left(h \sim G_{0}\right)$ or G_{1} ($h \sim G_{1}$). Once h has been sent to V, P is committed to either $h \sim G_{0}$ or $h \sim G_{1}$ (but not to both). V randomly selects b and asks P to show the appropriate permutation. There is the probability of 2^{-1} that P will be caught. As the interaction takes $t(n)$ rounds, the probability that V stops in an accept state is $2^{-t(n)}$. So the soundness of the proof holds.

The class IP (interactive polynomial time) contains all decision problems for which exists interactive proof systems. Clearly, $\mathbf{N P} \subseteq \mathbf{I P}$.

12.2 Perfect Zero Knowledge Proofs

Informally, an interactive proof system is zero knowledge if during interaction the verifier gains no information from the prover. In particular, having a transcript of an interaction with P, V is not able to play later a role of the prover to somebody else.

To make our discussion more formal we need some definitions. A view is a transcript which contains all messages exchanged between the prover and verifier. Assume that during the i-th round, P sends a random commitment A_{i}, V responds by sending a random challenge bit B_{i} and P forwards her proof C_{i}. The triple $\left(A_{i}, B_{i}, C_{i}\right)$ are random variables. The view is a sequence of all messages $\left(A_{1}, B_{1}, C_{1}\right.$, $\left.\ldots, A_{t(n)}, B_{t(n)}, C_{t(n)}\right)$ exchanged by P and V during interaction. For an honest V all B_{i} are uniform and independent random variables $(i=1, \ldots t(n))$. Note that the view is defined for a yes-instance only. All no-instances are not of interest to us as the prover does not know any secret. She may merely pretend to know it but she will be caught with a high probability.

A behavior of a cheating verifier V^{*} can significantly deviate. First the random variables B_{i} may not be statistically independent. Moreover, the verifier can use some transcripts from previous interactions hoping that they can help him extract some information from P. So the view should also include the past interactions \hbar (history). For an instance $x \in Q$ and an arbitrary verifier V^{*}, the view is

$$
\operatorname{View}_{P, V^{*}}(x, \hbar)=\left(x, \hbar, A_{1}, B_{1}, C_{1}, \ldots, A_{t(n)}, B_{t(n)}, C_{t(n)}\right)
$$

Random variables B_{i} are calculated by a cheating V^{*} using a polynomial time probabilistic function F so $B_{i}=F\left(x, \hbar, A_{1}, B_{1}, C_{1} \ldots, A_{i-1}, B_{i-1}, C_{i-1}, A_{i}\right)$. The view is a probabilistic ensemble with a well defined set of possible values and associated probabilities - see Section (4.2).

A transcript simulator $S_{V^{*}}(x, \hbar)$ is an expected polynomial time probabilistic algorithm which uses all the information accessible to V^{*} (i.e. previous transcripts \hbar and the function F) and generates a transcript for an instance $x \in Q$ without interaction with the prover P. Note that the simulator can be seen as an ensemble generator.

Clearly, an interactive proof system is perfect zero knowledge if there is a transcript simulator $S_{V^{*}}(x, \hbar)$ such that its ensemble is identical to the view ensemble. In other words, the knowledge extracted from P by V can be obtained without interaction with P. Instead, V can use the corresponding transcript simulator. More formal definition can be formulated as follows.

Definition 12.1 An interactive proof system for a decision problem Q is perfect zero knowledge if the ensemble View $P_{V^{*}}(x, \hbar)$ is identical to the ensemble generated by an expected polynomial time probabilistic simulator $S_{V^{*}}(x, \hbar)$ for any yes-instance of Q.

Now we can go back to the first interactive proof system $Q R_{\leftrightarrow}$.
Theorem 12.1 (Goldwasser, Micali, Rackoff [209]) $Q R_{\leftrightarrow}$ is perfect zero knowledge.

Proof: Let (x, N) be a yes-instance of $Q R$. The i-th round involves the following random variables: U_{i} - a quadratic residue generated by P, B_{i} - a bit generated by V^{*}, and $W_{i}-$ a proof of P. So the view for an arbitrary verifier V^{*} is

$$
\text { View }_{P, V^{*}}(x, N, \hbar)=\left(x, N, \hbar, U_{1}, B_{1}, W_{1}, \ldots, U_{t(n)}, B_{t(n)}, W_{t(n)}\right)
$$

For simplicity, we denote $V_{i}=\left(U_{1}, B_{1}, W_{1}, \ldots, U_{i}, B_{i}, W_{i}\right)$. Note that if V^{*} is honest, all B_{i} are independent and uniform random variables over $\{0,1\}$. However, if V^{*} cheats, he uses some polynomial time probabilistic algorithm F which generates $b_{i+1}=F\left(x, N, \hbar, v_{i}, u_{i+1}\right)$, where $V_{i}=v_{i}$. Now we can use the algorithm F to construct a simulator $S_{V^{*}}(x, N, \hbar)$ as follows.

Transcript Simulator $S_{V^{*}}(x, N, \hbar)$ for $Q R_{\leftrightarrow}$
Input: (x, N) - a yes-instance of QR, \hbar - past transcripts, v_{i} - transcript of the current interaction (i rounds).

Description: Repeat the following steps for $i+1 \leq t(n)$.

1. Select $b_{i+1} \in_{R}\{0,1\}$.
2. Choose $w_{i+1} \in_{R} \mathcal{Z}_{N}^{*}$.
3. If $b_{i+1}=0$, then $u_{i+1} \equiv w_{i+1}^{2} \bmod N$ else $u_{i+1} \equiv w_{i+1}^{2} \cdot x^{-1} \bmod N$.
4. If $b_{i+1}=F\left(x, N, \hbar, v_{i}, u_{i+1}\right)$, then return $\left(u_{i+1}, b_{i+1}, w_{i+1}\right)$ else go to (1).

Some comments about the simulator. Instead of selecting first a quadratic residue u_{i+1}, the simulator chooses w_{i+1} and b_{i+1} at random and computes u_{i+1}. Having u_{i+1}, the simulator can recompute b_{i+1} using the function F where u_{i+1} is a part of an input. There is the probability of 2^{-1} that a randomly selected b_{i+1} will match the correct value indicated by $F\left(x, N, \hbar, v_{i}, u_{i+1}\right)$. On the average, the simulator will need two rounds per a single output ($u_{i+1}, b_{i+1}, w_{i+1}$). So the simulator runs in an expected polynomial time. Note also that for an honest verifier, the function F simplifies to a single toss of an unbiased coin.

Now we prove that the view ensemble

$$
\operatorname{View}_{P, V^{*}}(x, N, \hbar)=\left(x, N, \hbar, U_{1}, B_{1}, W_{1}, \ldots, U_{t(n)}, B_{t(n)}, W_{t(n)}\right)
$$

is identical to the simulator ensemble

$$
S_{V^{*}}(x, N, \hbar)=\left(x, N, \hbar, U_{1}^{\prime}, B_{1}^{\prime}, W_{1}^{\prime}, \ldots, U_{t(n)}^{\prime}, B_{t(n)}^{\prime}, W_{t(n)}^{\prime}\right)
$$

The proof proceed by induction on i. The case when $i=0$ is trivial as both ensembles are constant. In the inductive step, we assume that the ensemble

$$
\operatorname{View}_{P, V^{*}}(x, N, \hbar)=\left(x, N, \hbar, U_{1}, B_{1}, W_{1}, \ldots, U_{i-1}, B_{i-1}, W_{i-1}\right)
$$

is identical to

$$
S_{V^{*}}(x, N, \hbar)=\left(x, N, \hbar, U_{1}^{\prime}, B_{1}^{\prime}, W_{1}^{\prime}, \ldots, U_{i-1}^{\prime}, B_{i-1}^{\prime}, W_{i-1}^{\prime}\right)
$$

The next part of the view transcript consists of the triple $\left(U_{i}, B_{i}, W_{i}\right)$. The variable U_{i} is independent. B_{i} depends on U_{i}, V_{i-1} and $\hbar . W_{i}$ depends on both previous variables so

$$
P\left(U_{i}=u, B_{i}=b, W_{i}=w\right)=P\left(U_{i}=u\right) \cdot P\left(B_{i}=b \mid V_{i-1}=v, U_{i}=u, \hbar\right) \cdot P\left(W_{i}=w \mid U_{i}=u, B_{i}=b\right)
$$

The probability $P\left(U_{i}=u\right)=\alpha^{-1}$ where $\alpha=\left|\mathcal{Z}_{N}^{Q+}\right|$. Denote the probability $P\left(B_{i}=b \mid V_{i-1}=v, U_{i}=\right.$ $u, \hbar)=p_{b}$. Assume that Ω_{u} and $\Omega_{x u}$ are sets of all square roots of u and $x u$, respectively. There is an integer β such that $\left|\Omega_{u}\right|=\left|\Omega_{x u}\right|=\beta$. The probability $P\left(W_{i}=w \mid U_{i}=u, B_{i}=0\right)=\beta^{-1}$ for all $w \in \Omega_{u}$ and $P\left(W_{i}=w \mid U_{i}=u, B_{i}=1\right)=\beta^{-1}$ for all $w \in \Omega_{x u}$. So $P\left(U_{i}=u, B_{i}=b, W_{i}=w\right)=\frac{p_{b}}{\alpha \beta}$.

The i-th part of the simulator transcript is $\left(U_{i}^{\prime}, B_{i}^{\prime}, W_{i}^{\prime}\right)$. Considering the order the variables are generated, we can write that the probability

$$
P\left(U_{i}^{\prime}=u, B_{i}^{\prime}=b, W_{i}^{\prime}=w\right)=P\left(U_{i}^{\prime}=u \mid W_{i}^{\prime}=w, B_{i}^{\prime}=b\right) \cdot P\left(B_{i}^{\prime}=b \mid U_{i}^{\prime}=u\right) \cdot P\left(W_{i}^{\prime}=w\right)
$$

The random variable W_{i} is chosen independently from the set \mathcal{Z}_{N}^{*} so $P\left(W_{i}^{\prime}=w\right)=\frac{1}{\alpha \beta}$. The probability

$$
\begin{aligned}
P\left(U_{i}^{\prime}=u\right) & =P\left(U_{i}^{\prime}=u, W_{i}^{\prime} \in \Omega_{u} \cup \Omega_{x u}, B_{i}^{\prime} \in\{0,1\}\right) \\
& =\sum_{w \in \Omega_{u}} P\left(U_{i}^{\prime}=u, W_{i}^{\prime}=w, B_{i}^{\prime}=0\right)+ \\
& \sum_{w \in \Omega_{x u}} P\left(U_{i}^{\prime}=u, W_{i}^{\prime}=w, B_{i}^{\prime}=1\right) \\
& \sum_{w \in \Omega_{u}} P\left(W_{i}^{\prime}=w\right) P\left(B_{i}^{\prime}=0\right)+\sum_{w \in \Omega_{x u}} P\left(W_{i}^{\prime}=w\right) P\left(B_{i}^{\prime}=1\right) \\
= & \frac{\beta}{\alpha \beta}\left(P\left(B_{i}^{\prime}=0\right)+P\left(B_{i}^{\prime}=1\right)\right) \\
& =\frac{1}{\alpha} .
\end{aligned}
$$

The random variable U_{i}^{\prime} has the same probability distribution as U_{i}. Consequently, B_{i}^{\prime} has the identical probability distribution to B_{i}. So, both the view and simulator probability distributions for i rounds are identical and the corresponding ensembles are the same. Finally, we conclude that $Q R_{\leftrightarrow}$ is perfect zero knowledge.

Consider our second interactive proof system $G I_{\leftrightarrow}$ for graph isomorphism.
Theorem 12.2 (Goldreich, Micali, Wigderson [207]) GI↔ is perfect zero knowledge

Proof: The proof proceeds in a similar manner to the previous one. The core of the proof is the construction of an expected polynomial time simulator which generates an ensemble identical to the view ensemble. An honest verifier is V while a verifier who deviates arbitrarily from the protocol is denoted by V^{*}.

Let $\left(G_{0}, G_{1}\right)$ be a yes-instance of $G I$. The view of interaction between P and V^{*} is an ensemble

$$
\text { View }_{P, V^{*}}\left(G_{0}, G_{1}, \hbar\right)=\left(G_{0}, G_{1}, \hbar, H_{1}, B_{1}, \Phi_{1}, \ldots, H_{t(n)}, B_{t(n)}, \Phi_{t(n)}\right)
$$

where $\left(H_{i}, B_{i}, \Phi_{i}\right)$ are random variables used in the i-th round of the protocol. H_{i} represents an isomorphic copy of G_{0}, B_{i} is a binary random variable generated by V^{*}, and Φ_{i} is a random permutation sent by P. Again \hbar indicates the additional information accessible to V^{*} from previous interactions with the prover P. Note that instead of a random selection of his bit, a cheating V^{*} may use a polynomial time probabilistic algorithm F to generate his bits. Having F, the verifier V^{*} can design a simulator $S_{V *}\left(G_{1}, G_{2}, \hbar\right)$ which works as follows.

Transcript Simulator $S_{V^{*}}\left(G_{0}, G_{1}, \hbar\right)$ for $G I_{\leftrightarrow}$
Input: $\left(G_{0}, G_{1}\right)$ - a yes-instance of $\mathrm{QR}, ~ \hbar$ - past transcripts, v_{i} - transcript of the current interaction (first i rounds).

Description: Repeat the following steps for $(i+1) \leq t(n)$.

1. Choose $b_{i+1} \in_{R}\{0,1\}$.
2. Select $\pi \in_{R} \operatorname{Sym}\left(\mathcal{V}_{1}\right)$ and compute $h_{i+1}=\pi\left(G_{b_{i+1}}\right)$.
3. If $b_{i+1}=F\left(G_{1}, G_{2}, \hbar, v_{i}, h_{i+1}\right)$, then
return ($h_{i+1}, b_{i+1}, \pi_{i+1}$)
else go to (1).

Note that all computations can be done in polynomial time except that b_{i+1} generated at the step (1) may not match the value calculated in the step (3). The probability that they match in a single round is 2^{-1}. On the average it is necessary to run two rounds of the simulator to produce a single output. So the simulator runs in expected polynomial time.

Now we prove that the view ensemble View P, $^{*}\left(G_{0}, G_{1}, \hbar\right)$ is identical to the ensemble $S_{V^{*}}\left(G_{0}, G_{1}, \hbar\right)$. The proof proceeds by induction on the number of rounds i. When $i=0$, both the simulator and the view consists of constants so their probability distributions are identical. Now we assume that both probability distributions are identical for $(i-1)$ rounds, i.e.

$$
P\left(\text { View }_{P, V^{*}}\left(V_{i-1}\right)=v_{i-1}\right)=P\left(S_{V^{*}}=v_{i-1}\right)
$$

Consider a triple of random variables $\left(H_{i}, B_{i}, \Phi_{i}\right)$ which is the transcript of the i-th round of the protocol. The probability that

$$
P\left(H_{i}=h, B_{i}=b, \Phi_{i}=\pi\right)=P\left(\Phi_{i}=\pi\right) \cdot P\left(B_{i}=b \mid \Phi_{i}=\pi\right) \cdot P\left(H_{i}=h \mid \Phi_{i}=\pi, B_{i}=b\right) .
$$

As the permutation is selected at random so $P\left(\Phi_{i}=\pi\right)=\frac{1}{n!}$. The random variable $B_{i}=F\left(\hbar, V_{i}, H_{i}\right)$ so we can assume that $P\left(B_{i}=b\right)=p_{b}$. The probability $P\left(H_{i}=h \mid \Phi_{i}=\pi, B_{i}=b\right)=1$ for the matching h and $P\left(H_{i}=h, B_{i}=b, \Phi_{i}=\pi\right)=\frac{p_{b}}{n!}$.

Consider a triple $\left(H_{i}^{\prime}, B_{i}^{\prime}, \Phi_{i}^{\prime}\right)$ which is the i-th part of the simulator transcript. The random variable $P\left(\Phi_{i+1}^{\prime}=\pi\right)=\frac{1}{n!}$. As the simulator uses the same polynomial time probabilistic algorithm F so the random variable B_{i+1} has the same probability distribution as for the view. So the probability distributions of the view and the simulator are identical and consequently, $G I_{\leftrightarrow}$ is perfect zero knowledge.

The complement of GI is the graph non-isomorphism problem. The problem is stated below.

Name: Graph Non-isomorphism (GNI) Problem
Instance: Given two graphs $G_{0}=\left(\mathcal{V}_{0}, \mathcal{E}_{0}\right)$ and $G_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ with $\left|\mathcal{V}_{0}\right|=\left|\mathcal{V}_{1}\right|=n$.
Question: Are the two graphs non-isomorphic ? (so there is no permutation $\pi: \mathcal{V}_{0} \rightarrow \mathcal{V}_{1}$ such that an edge $(u, v) \in \mathcal{E}_{0}$ if and only if $\left.(\pi(u), \pi(v)) \in \mathcal{E}_{1}\right)$.

An interactive proof system for GNI is more complex than for its relative GI and each round takes five transmissions. The main idea is to allow the verifier to construct pairs of graphs in every round. Each pair contains an isomorphic copy of G_{0} and G_{1} in an random order. The powerful verifier can tell apart those copies for every yes-instance (because G_{0} and G_{1} are not isomorphic) while for any no-instance, P can only guess the order.

GNI Interactive Proof - GNI
Common Knowledge: an instance of GNI, i.e. two graphs $G_{0}=\left(\mathcal{V}_{0}, \mathcal{E}_{0}\right)$ and $G_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$. The parameter n is the number of vertices in \mathcal{V}_{0} and \mathcal{V}_{1}. Denote $\mathcal{V}=\mathcal{V}_{0}=\mathcal{V}_{1}$.

Description: Given a polynomial $t(n)$ in $n . P$ and V repeat the following steps $t(n)$ times.

1. V chooses $b \in_{R}\{0,1\}$, a permutation $\pi \in_{R} \operatorname{Sym}(\mathcal{V})$ and computes $h=\pi\left(G_{b}\right)$. The graph h is called a question. Further V prepares n^{2} pairs of graphs such that each pair contains
an isomorphic copy of G_{0} and G_{1} in a random order. So for $j=1, \ldots, n^{2}, V$ chooses $a_{j} \in_{R}\{0,1\}$ and two permutations $\tau_{j, 0}, \tau_{j, 1} \in_{R} \operatorname{Sym}(\mathcal{V})$ and computes $\left(T_{j, 0}=\tau_{j, 0}\left(G_{a_{j}}\right)\right.$ $T_{j, 1}=\tau_{j, 1}\left(G_{a_{j}+1 \bmod 2}\right)$.

$$
V \rightarrow P: h,\left(T_{1,0}, T_{1,1}\right), \ldots,\left(T_{n^{2}, 0}, T_{n^{2}, 1}\right) .
$$

2. P chooses uniformly at random a subset $I \subseteq\left\{1, \ldots, n^{2}\right\}$ and

$$
P \rightarrow V: I .
$$

3. If I is not a subset of $\left\{1, \ldots, n^{2}\right\}$, then V stops and rejects. Otherwise,

$$
V \rightarrow P:\left\{\left(a_{j}, \tau_{j, 1}, \tau_{j, 0}\right) \mid j \in I\right\},\left\{\left(b+a_{j} \bmod 2, \tau_{j,\left(b+a_{j}\right) \bmod 2} \circ \pi^{-1}\right) \mid j \in \bar{I}\right\}
$$

where $\bar{I}=\left\{1, \ldots, n^{2}\right\} \backslash I$.
4. P checks whether $\tau_{j, 0}$ is the isomorphisms between $T_{j, 0}$ and $G_{a_{j}}$ and $\tau_{j, 1}$ - the isomorphisms between $T_{j, 1}$ and $G_{a_{j}+1 \bmod 2}$ for $j \in I$, Also P verifies that $\tau_{j,\left(b+a_{j}\right) \bmod 2} \circ \pi^{-1}$ is an isomorphisms between $T_{j,\left(b+a_{j}\right) \bmod 2}$ and h for every $j \in \bar{I}$. If the checks fail, the prover stops. Otherwise, P answers $\beta \in\{0,1\}$ such that h is isomorphic to G_{β}.
5. V checks whether $b=\beta$. If the condition is not satisfied, V stops and rejects. Otherwise, the interaction continues.

After passing through $t(n)$ rounds without rejection, V halts and accepts.
It is easy to verify that the interactive proof satisfies both the completeness and soundness properties. It is also perfect zero knowledge (for details consult [207])

Consider the complementary problem to the quadratic residue problem This is the quadratic nonresidue problem and is defined as follows.

Name: Quadratic Nonresidue (QNR) Problem
Instance: Given a composite integer N. The integer $x \in \mathcal{Z}_{N}^{Q}$.
Question: Does x belong to \mathcal{Z}_{N}^{Q-} (or is x a quadratic nonresidue)?
An interactive proof system for QNR is given below. At each round, the verifier forwards to the prover two types of elements - quadratic residues $r^{2} \bmod N$ and products $r^{2} x \bmod N$. If (x, N) is a yes-instance, the prover can easily tell apart the type of an element. If (x, N) is a no-instance (i.e. x is a quadratic residue), the prover cannot distinguish elements as they belong to the same class of quadratic residues.

QNR Interactive Proof - $Q N R_{\hookrightarrow}$
Common Knowledge: an instance (x, N) of the QNR problem (n is the size of the instance).
Description: Given a polynomial $t(n)$ in $n . P$ and V repeat the following steps $t(n)$ times.

1. V picks up $r \in_{R} \mathcal{Z}_{N}^{*}$ and $\beta \in_{R}\{0,1\}$.
2. $V \rightarrow P: w \equiv r^{2} \cdot x^{\beta} \bmod N$.
3. For $1 \leq j \leq n, V$ selects $r_{j 1}, r_{j 2} \in_{R} \mathcal{Z}_{N}^{*}$ and $b_{j} \in_{R}\{0,1\}$. V creates $a_{j} \equiv r_{j 1}^{2} \bmod N$ and $b_{j} \equiv x r_{j 2}^{2} \bmod N$. Next

$$
V \rightarrow P: \begin{cases}\left(a_{j}, b_{j}\right) & \text { if } b_{j}=1, \\ \left(b_{j}, a_{j}\right) & \text { if } b_{j}=0\end{cases}
$$

4. $P \rightarrow V:\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{j} \in_{R}\{0,1\}$ for $1 \leq j \leq n$.
5. $V \rightarrow P: v=\left(v_{1}, \ldots, v_{n}\right)$ where $v_{j}=\left(r_{j 1}, r_{j 2}\right)$ if $\alpha_{j}=0$. If $\alpha_{j}=1$ and $\beta=0$, then $v_{j} \equiv r r_{j 1} \bmod N\left(\right.$ or a square root of $\left.w a_{j} \bmod N\right)$. If $\alpha_{j}=1$ and $\beta=1, v_{j} \equiv \operatorname{xr} r_{j 2} \bmod N$ (or a square root of $w b_{j} \bmod N$).
6. P verifies that the sequence v is correct. If not, P terminates the interaction. Otherwise, $P \rightarrow V: \gamma$ where $\gamma=0$ if w is quadratic residue modulo N or $\gamma=1$, otherwise.
7. V checks whether $\beta=\gamma$. If the condition fails, V stops and rejects. Otherwise, the interaction continues.

After passing through $t(n)$ rounds without rejection, V halts and accepts.
Both completeness and soundness of the interactive proof can be asserted by a careful examination of the protocol. An interesting feature of the proof system is that it satisfies a weaker zero knowledge property called the statistical zero knowledge. Consider two probabilistic ensembles: a view (transcript of interaction between the prover P and arbitrary verifier V^{*}) and a simulator $S_{V^{*}}$ which is used by V^{*} to generate transcripts without interaction with P. Perfect zero knowledge requires the equality of two ensembles, i.e. $\operatorname{View}_{P_{,} V^{*}}(x, N, \hbar)=S_{V^{*}}(x, N, \hbar)$ for any yes-instance of the problem QNR. Statistical zero knowledge is weaker as we request that $\lim _{n \rightarrow \infty} V i e w_{P_{,} V^{*}}(x, N, \hbar)=\lim _{n \rightarrow \infty} S_{V^{*}}(x, N, \hbar)$ for any yes-instance of the problem QNR, where n is the size of instance (x, N). Details of the proof can be found in [209].

12.3 Computational Zero Knowledge Proofs

Perfect or statistical zero knowledge may still seem to be too restrictive for our polynomially bounded verifier V. An interactive proof is computational zero knowledge if there is a simulator $S_{V} *$ which is polynomially indistinguishable from the view V iew $w_{P, V^{*}}$ for an arbitrary verifier and any yes-instance.

Goldreich, Micali and Wigderson in [207] showed that there is a computational zero knowledge proof system for the graph 3-colourability (G3C) problem. As the G3C problem is known to belong to the NPC class, this result asserts that any NPC problem has a computational zero knowledge proof. The G3C problem is defined as follows [191].

Name: Graph 3-Colourability (G3C) Problem
Instance: Given graph $G=(\mathcal{V}, \mathcal{E})$.
Question: Is $G 3$-colourable, that is, does there exist a function $\phi: \mathcal{V} \rightarrow\{1,2,3\}$ such that $\phi(u) \neq \phi(v)$ whenever $(u, v) \in \mathcal{E}$?

This time we need to make an additional assumption that there is a secure probabilistic encryption (see Section 5.7). Assume that the message space is $\mathcal{M}=\{0,1,2,3\}$ and the key space is \mathcal{K}. An encryption function

$$
E: \mathcal{M} \times \mathcal{K} \rightarrow \mathcal{C}
$$

runs in polynomial time and for any $r, s \in \mathcal{K}$ and $E(x, r) \neq E(y, s)$ as long as $x \neq y$ where $x, y \in$ $\{0,1,2,3\}$ and \mathcal{C} is the cryptogram space. Note that for any message $x \in \mathcal{M}$, we can define an ensemble $\mathcal{C}_{x}=E(x, \mathcal{K})$. The encryption function E is secure if any two ensembles $E(x, \mathcal{K}), E(y, \mathcal{K})$ are polynomially indistinguishable for $x, y \in \mathcal{M}(x \neq y)$.

An interactive proof system for G3C is presented below. We use the following notations: $n=|\mathcal{V}|$ and $m=|\mathcal{E}|$ (note that $m \leq n^{2} / 2$).

G3C Interactive Proof - G3C -
Common Knowledge: an instance of G3C, i.e. a graph $G=(\mathcal{V}, \mathcal{E})(n$ is the number of vertices in $\mathcal{V})$.

Description: P and V repeat the following steps m^{2} times.

1. P picks up $\pi \in_{R} \operatorname{Sym}(\{1,2,3\})$ and n-bit random vector $r_{j} \in_{R}=\mathcal{K}=\{0,1\}^{n}$ for each vertex $v_{j} \in \mathcal{V} ; j=1, \ldots, n$. The prover computes $E_{j}=E\left(\pi\left(\phi\left(v_{j}\right)\right), r_{j}\right)$ and

$$
P \rightarrow V: E_{1}, \ldots, E_{n}
$$

where $\phi: \mathcal{V} \rightarrow\{1,2,3\}$ is a 3 -coloring (always exists for a yes-instance).
2. V selects an edge $(u, v) \in_{R} \mathcal{E}$ and

$$
V \rightarrow P:(u, v) .
$$

3. If $(u, v) \in \mathcal{E}$, then P reveals the coloring of u and v or in other words

$$
P \rightarrow V:\left(\pi(\phi(u)), r_{u}\right),\left(\pi(\phi(v)), r_{v}\right) .
$$

4. V checks whether the coloring

$$
E_{u} \stackrel{?}{=} E\left(\pi(\phi(u)), r_{u}\right) \text { and } E_{v} \stackrel{?}{=} E\left(\pi(\phi(v)), r_{v}\right),
$$

makes sure that two vertices are assigned different colors $\pi(\phi(u)) \neq \pi(\phi(v))$ and confirms that the colors are valid, i.e. $\pi(\phi(u)), \pi(\phi(v)) \in \operatorname{Sym}(\{1,2,3\})$. If any of these checks fail, V stops and rejects. Otherwise, the interaction continues.

After a successful completion of m^{2} rounds, V halts and accepts.
Observe that the interactive proof satisfies the completeness property. For any yes-instance, the prover who knows the requested 3 -coloring of the graph, and follows the protocol, can always convince the verifier. For any no-instance, at each round, the prover can convince V with probability at most $1-\frac{1}{m}$ as there must be at least one edge $(u, v) \in \mathcal{E}$ such that $\phi(u)=\phi(v)$. After m^{2} rounds, V accepts with the probability $\left(1-\frac{1}{m}\right)^{m^{2}} \approx e^{-m}$. The soundness of the proof system holds. To assert that the interactive protocol is computationally zero knowledge, we need to show that there is a polynomial time transcript simulator $S_{V^{*}}(G, \hbar)$ which is polynomially indistinguishable from the view $V i e w_{P_{, ~} V^{*}}(G, \hbar)$ for any yes-instance and an arbitrary verifier V^{*}. As previously, the verifier uses a polynomial time probabilistic algorithm F to choose an edge for verification.

Transcript Simulator $S_{V^{*}}(G, \hbar)$ for $G 3 C_{\leftrightarrow}$
Input: A graph $G(\mathcal{V}, \mathcal{E})$ - a yes-instance of G3C, \hbar - past transcripts, v_{i-1} - transcript of the current interaction.

Description: Repeat the following steps until the transcript contains m^{2} entries.

1. Choose an edge $e=(u, v) \in_{R} \mathcal{E}$ and their colors, i.e. a pair of integers $(a, b) \in_{R}\{(\alpha, \beta) \mid \alpha \neq$ β and $\alpha, \beta \in\{1,2,3\}\}$.
2. Select n random integers $r_{j} \in \mathcal{K}$ for $j=1, \ldots, n$.

3 . For $j=1, \ldots, n$, compute the encryption

$$
E_{j}= \begin{cases}E\left(a, r_{j}\right) & \text { if } j=u \\ E\left(b, r_{j}\right) & \text { if } j=v \\ E\left(0, r_{j}\right) & \text { otherwise }\end{cases}
$$

4. If $e=F\left(G, \hbar, v_{i-1}, E_{1}, \ldots, E_{n}\right)$, then
return $\left(E_{1}, \ldots, E_{n}, e, a, b, r_{u}, r_{v}\right)$
else go to (1).
A single round of the simulator is successful whenever the edge chosen in the step (1) equals to the edge indicated by the algorithm F. This event happens with the probability $\frac{1}{m}$. The analysis in [207] shows that the simulator runs in expected polynomial time and the expected number of rounds (to generate a single output) is bounded from below by 2 m . In the same paper, the authors also demonstrated that the ensemble generated by the simulator is polynomially indistinguishable from the view ensemble of $G 3 C_{\leftrightarrow}$.

Note that the prover has never used her unlimited power during the execution of $G 3 C_{\leftrightarrow}$. In fact, it is enough to assume that the prover P is polynomially bounded provided that she knows a 3 -coloring of an yes-instance. In this context, computational zero knowledge of $G 3 C_{\leftrightarrow}$ assures the prover that her secret (the 3-coloring) will not be divulged to the verifier V during the execution of the protocol. What V gains is the assertion that P knows a 3 -coloring without revealing any details about it.

Brassard, Chaum and Crepeau [60] independently showed that the satisfiability (SAT) problem has a computational zero knowledge protocol. Instead of probabilistic encryption, they used a bit commitment scheme.

12.4 Bit Commitment Schemes

Consider again the protocol $G 3 C_{\leftrightarrow}$. The probabilistic encryption E was used there to hide the known 3 -coloring into a sequence of n cryptograms $E_{i}=E\left(\pi\left(\phi\left(v_{i}\right)\right), r_{i}\right)(i=1, \ldots, n)$. A single cryptogram can be seen as a locked box with a single (permuted) color $\pi\left(\phi\left(v_{i}\right)\right)$ of the vertex v_{i}. The lock can be opened by a holder of the key r_{i}. After sending a box, the prover commits herself to the particular color - P cannot change the contents of the box. Later the verifier may ask P to open the box and reveal the color.

A bit commitment scheme is a necessary ingredient for the design of computational zero knowledge protocols for all problems from NPC. It provides a tool to hide the structure of a yes-instance. Having a bit commitment scheme we can encrypt bit by bit the structure or put these bits into locked boxes. The boxes can be treated as pieces of paper covering bits of the yes-instance structure. Obviously, the prover reveals a small part of the structure only so the verifier learns nothing about the structure itself but this is enough for V to be convinced (after several rounds) that the prover indeed knows the structure.

Definition 12.2 A bit commitment scheme is a pair of polynomial time functions (f, v). The function

$$
f:\{0,1\} \times \mathcal{Y} \rightarrow \mathcal{X}
$$

encrypts binary messages $b \in\{0,1\}$ using a random $y \in \mathcal{Y}$. A cryptogram $x=f(b, y)$ is called a blob. The verification function

$$
v: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1, \bullet\}
$$

is used to open a blob and reveal the bit (• stands for "undefined"). The functions have to satisfy the following conditions:

1. binding - for any blob $x=f(b, y)$, the prover is not able to find $y^{\prime} \neq y$ such that the blob can be opened to the different bit, i.e.

$$
v(x, y) \neq v\left(x, y^{\prime}\right)
$$

2. concealing - two ensembles $\{f(0, \mathcal{Y})\}$ and $\{f(1, \mathcal{Y})\}$ are indistinguishable.

The condition (1) says that once P has committed herself to a bit b by presenting a blob $x=f(b, y)$ to the verifier, she is later unable to change the bit. The condition (2) ensures that there is no leakage of information about the committed bits from the blobs which are not opened by the prover.

Commitment schemes can be divided into two major classes:

- schemes with unconditionally secure blobs for P,
- schemes with unconditionally secure blobs for V.

A blob is unconditionally secure for P if binding holds unconditionally. So the verifier can learn nothing about the committed bit in the information theoretical sense (the entropy of the bit stays 1). A blob is unconditionally secure for V if concealing holds unconditionally.

12.4.1 Blobs with Unconditional Binding

Brassard, Chaum and Crepeau [60] gave a list of such schemes. We start from a scheme based on the factorization problem. The scheme is initialized by the verifier who chooses at random two large enough primes p and q and creates the modulus $N=p q$. Next, V picks up at random $t \in \mathcal{E}_{R} \mathcal{Z}_{N}^{*}$ and computes $s=t^{2} \bmod N$. The pair (s, N) is made public and is used by P. The encryption and verification is described below.

A Bit Commitment Based on Factoring

Setup: V selects two large enough primes p and q, creates the modulus $N=p q$, picks up at random $t \in_{R} \mathcal{Z}_{N}^{*}$, and computes $s=t^{2} \bmod N$. The set of blobs $\mathcal{X}=\mathcal{Z}_{N}^{Q+}$ and the set $\mathcal{Y}=Z_{N}^{*} . V$ sends the public parameters of the scheme to P, that is $V \rightarrow P: s, N$.

Hiding: To encrypt a bit b, P chooses at random $y \in \mathcal{Z}_{N}^{*}$ and creates a blob

$$
x=f(b, y)=s^{b} y^{2} \bmod N
$$

Opening: P reveals her random y and V checks

$$
v(x, y)= \begin{cases}0 & \text { if } x \equiv y^{2} \bmod N \\ 1 & \text { if } x \equiv s y^{2} \bmod N \\ \bullet & \text { otherwise }\end{cases}
$$

Binding holds under the assumption that the factorization problem is intractable (clearly P has to be polynomially bounded). Concealing is satisfied unconditionally as the ensembles $\{f(0, \mathcal{Y}\}$ and $\{f(1, \mathcal{Y}\}$ are identical.

Under the assumption that the discrete logarithm is intractable, it is possible to build a bit commitment scheme which uses exponentiation as a one way function.

A Bit Commitment Based on Discrete Logarithm

Setup: P and V agree on a large enough prime p and a primitive element $g \in \mathcal{Z}_{p}^{*}$. The set $\mathcal{X}=\mathcal{Z}_{p}^{*}$ and $\mathcal{Y}=\{0,1, \ldots, p-2\}$. V chooses $s \in \mathcal{Z}_{p}^{*}$ and forwards it to P.

Hiding: To encrypt a bit b, P chooses at random $y \in \mathcal{Y}$ and creates a blob

$$
x=f(b, y)=s^{b} g^{y} \bmod p .
$$

Opening: P reveals her random y and V checks

$$
v(x, y)= \begin{cases}0 & \text { if } x \equiv g^{y} \bmod p \\ 1 & \text { if } x \equiv s g^{y} \bmod p \\ \bullet & \text { otherwise }\end{cases}
$$

Binding is satisfied conditionally if the discrete logarithm is intractable. Again concealing is satisfied unconditionally as the ensembles $\{f(0, \mathcal{Y}\}$ and $\{f(1, \mathcal{Y}\}$ are identical.

The GI problem can also be used to construct bit commitment schemes assuming that instances applied are intractable.

A Bit Commitment Based on GI

Setup: P and V agree on a graph $G=(\mathcal{V}, \mathcal{E})(n=|\mathcal{V}|)$. V selects a random permutation $\pi \in_{R}$ $\operatorname{Sym}(\mathcal{V})$ and defines $H=\pi(G)$. The pair (G, H) of graphs is known to both P and V (while the permutation π is kept secret by $V)$. The set $\mathcal{X}=\left\{H \mid H=\pi(G), \pi \in_{R} S y m(\mathcal{V})\right\}$ and $\mathcal{Y}=\operatorname{Sym}(\mathcal{V})$.

Hiding: To encrypt a bit b, P chooses at random $\gamma \in \mathcal{Y}$ and creates a blob (a graph)

$$
X=f(b, \gamma)= \begin{cases}\gamma(G) & \text { if } b=0 \\ \gamma(H) & \text { if } b=1\end{cases}
$$

Opening: P reveals her random γ and V checks

$$
v(X, \gamma)= \begin{cases}0 & \text { if } \gamma(G)=X \\ 1 & \text { if } \gamma(H)=X \\ \bullet & \text { otherwise }\end{cases}
$$

Note that a blob cannot be opened to a different bit under the assumption that P is not able to find the isomorphism π used by V (intractability of GI instances) to generate H which is an isomorphic copy of G. The ensembles $\{f(0, \mathcal{Y}\}$ and $\{f(1, \mathcal{Y}\}$ are identical so concealing holds unconditionally.

12.4.2 Blobs with Unconditional Concealing

Consider the quadratic residue problem. It is assumed that for a composite modulus $N=p q$, the sets \mathcal{Z}_{N}^{Q+} and \mathcal{Z}_{N}^{Q-} are polynomially indistinguishable. This property can be exploited in the design of bit commitment schemes. This time the scheme is set up by the prover who chooses two random and big enough primes p and q and a quadratic nonresidue $s \in \mathcal{Z}_{N}^{Q-}$.

A Bit Commitment Based on QR

Setup: P selects two large enough primes p and q, creates the modulus $N=p q$, picks up at random $s \in_{R} \mathcal{Z}_{N}^{Q-}$. The set of blobs $\mathcal{X}=\mathcal{Z}_{N}^{Q}$ and the set $\mathcal{Y}=Z_{N}^{*}$. P sends the public parameters of the scheme to V, that is $V \rightarrow P: s, N$.

Hiding: To encrypt a bit b, P chooses at random $y \in \mathcal{Z}_{N}^{*}$ and creates a blob

$$
x=f(b, y)=s^{b} y^{2} \bmod N
$$

Opening: P reveals her random y and V checks

$$
v(x, y)= \begin{cases}0 & \text { if } x \equiv y^{2} \bmod N \\ 1 & \text { if } x \equiv s y^{2} \bmod N \\ \bullet & \text { otherwise }\end{cases}
$$

The prover is unable to cheat and open a blob to the different bit as there exists no $y^{\prime} \in \mathcal{Z}_{N}^{*}$ which would give the same blob for the different bit. This is the consequence of fact that $\mathcal{Z}_{N}^{Q-} \cap$ $\mathcal{Z}_{N}^{Q+}=\emptyset$. Binding is unconditional. The two ensembles $\{f(0, \mathcal{Y})\}$ and $\{f(0, \mathcal{Y})\}$ are polynomially indistinguishable. Concealing holds under the assumption that the testing quadratic residuosity is intractable.

The discrete logarithm can also be used. Let p be a large enough Blum prime and g be a primitive element of \mathcal{Z}_{p}^{*}.

A Bit Commitment Based on Discrete Logarithm

Setup: P and V agree on a large enough Blum prime $p(p \equiv 3 \bmod 4)$ and a primitive element $g \in \mathcal{Z}_{p}^{*}$. The $\operatorname{set} \mathcal{X}=\mathcal{Z}_{p}^{*}$ and $\mathcal{Y}=\mathcal{Z}_{p}^{*}$.

Hiding: To encrypt a bit b, P chooses at random $y \in \mathcal{Y}$. Observe that the second least significant bit of y is b or shortly $b=S L B(y)$ or equivalently, $y \bmod 4 \in\{0,1\}$ if $b=0$ and $y \bmod 4 \in\{2,3\}$ if $b=1$. P creates a blob

$$
x=f(b, y)= \begin{cases}g^{y} \bmod p & \text { if } S L B(y)=b \\ g^{p-y} \bmod p & \text { if } S L B(y)=\bar{b}\end{cases}
$$

Opening: P reveals her random y and V checks

$$
v(x, y)= \begin{cases}b=S L B(y) & \text { if } x \equiv g^{y} \bmod p \\ \bar{b}=S L B(y) & \text { if } x \equiv g^{p-y} \bmod p \\ \bullet & \text { otherwise }\end{cases}
$$

Once the prover committed herself to a blob, the hidden bit cannot be changed - binding is unconditional. On the other hand, concealing holds under the assumption that an instance used is intractable.

Another example of a bit commitment is a probabilistic encryption discussed in Section 5.7 and applied in Section 12.3.

12.4.3 Multivalued Blobs

A string commitment scheme is a generalization of bit commitment schemes. Unlike in a bit commitment, the prover can hide a string of bits in a single blob. An advantage of these schemes is that they can be tailored to a particular zero knowledge protocol making the interactions more efficient. We need to adjust our definition. The function $f:\{0,1\}^{n} \times \mathcal{X} \rightarrow \mathcal{Y}$ operates on n-bit sequences. The function $v: \mathcal{X} \times \mathcal{Y} \rightarrow\left\{0,1, \ldots, 2^{n-1}, \bullet\right\}$.

Consider a multivalued blob which constitutes a commitment to an n-bit string $s=\left(b_{1}, \ldots, b_{n}\right)$ [395].

A String Commitment Based on Discrete Logarithm

Setup: P and V agree on a large enough prime p, a primitive element $g \in \mathcal{Z}_{p}^{*}$ and an integer h such that $\log _{g} h$ is unknown. The set $\mathcal{X}=\mathcal{Z}_{p}^{*}$ and $\mathcal{Y}=\mathcal{Z}_{p}^{*}$.

Hiding: To encrypt an n-bit string s, P chooses at random $y \in \mathcal{Y}$ and creates a blob

$$
x=f(s, y)=g^{s} h^{y} \bmod p
$$

Opening: P reveals the pair $\left(s^{\prime}, y^{\prime}\right)$ and V checks

$$
v(x, y)= \begin{cases}s^{\prime} & \text { if } x \stackrel{?}{=} g^{s^{\prime}} h^{y^{\prime}} \bmod p \\ \bullet & \text { otherwise }\end{cases}
$$

Blobs in the scheme are concealing unconditionally. Binding is conditional as it depends on the assumption that the discrete logarithm is intractable. Blobs in the scheme are unconditionally secure for the verifier.

Claw-free permutation pairs studied in [210] can be used to build a string commitment scheme [230]. Given two large primes p and q such that $p \equiv 3 \bmod 8$ and $q \equiv 7 \bmod 8$. The modulus $N=p q$. Define a function $g_{b}(x) \equiv 4^{b} x \bmod N$ where b is a bit.

A String Commitment Based on Claw-free Permutations

Setup: V selects two primes p and q such that $p \equiv 3 \bmod 8$ and $q \equiv 7 \bmod 8 . V$ communicates N to P. The set $\mathcal{X}=\mathcal{Z}_{N}^{Q+}$ and $\mathcal{Y}=\mathcal{Z}_{N}^{*}$.

Hiding: To encrypt an n-bit string s, P chooses at random $y \in \mathcal{Y}$ and creates a blob

$$
x=f(s, y)=g_{b_{1}} \circ g_{b_{1}} \circ \ldots \circ g_{b_{n}}(y)
$$

where $s=\left(b_{1}, \ldots, b_{n}\right)$.
Opening: P reveals the pair $\left(s^{\prime}, y^{\prime}\right)$ and V checks

$$
v(x, y)= \begin{cases}s^{\prime} & \text { if } x \stackrel{?}{=} g_{b_{1}^{\prime}} \circ \ldots \circ g_{b_{n}^{\prime}}(y) \\ \bullet & \text { otherwise } .\end{cases}
$$

where $s^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$.
Binding is unconditional, concealing is conditional if the factorization of N is intractable. Blobs in the scheme are unconditionally secure for the prover.

Let us discuss implications of the type of a bit commitment scheme on a zero knowledge proof in which the scheme is being used. A bit commitment scheme with unconditionally secure blobs for
the verifier was used to design a zero knowledge proof for G3C. The protocol works correctly for the prover who may or may not be polynomially bounded. Moreover, the prover is not able to cheat the verifier when P opens some blobs. An evident disadvantage is that the security of unopened blobs depends on the assumption of intractability. After completion of the protocol, if the verifier is able to break the bit commitment scheme, the secret structure of yes-instance (in the case of $G 3 C_{\leftrightarrow}$, a 3 -coloring) can be easily revealed.

What happens when a zero knowledge proof employs a bit commitment with unconditionally secure blobs for the prover? P cannot open a blob to two different bits under some intractability assumption. Clearly, P has to be polynomially bounded. Otherwise, P could cheat. To make the point clearer, consider a bit commitment based on factoring. If a blob is x, then "all powerful" prover can easily find factors of the modulus N and open x as bit 0 (for this she needs to find a square root of x) or as bit 1 (she computes a square root of $x s^{-1}$). Unlike in the first case however, the prover has a limited time for computations which may help her to cheat. After the execution of protocol, even if P gains some additional computational power (either by progress in computing technology or development of new more powerful algorithms), it is too late for cheating. Unopened blobs are unconditionally secure and the security does not depend on the computational power of the verifier. In literature, protocols which use this type of bit commitment are called zero knowledge argument. Note that because unopened blobs are unconditionally secure so the zero knowledge argument is perfect.

12.5 Problems and Exercises

1. Consider the following interactive proof system.

QNR Interactive Proof - $Q N R_{\leftrightarrow}$
Common Knowledge: an instance (x, N) of the QNR problem (n is the size of the instance).
Description: Given a polynomial $t(n)$ in $n . P$ and V repeat the following steps $t(n)$ times.

1. V picks up $r \in_{R} \mathcal{Z}_{N}^{*}$ and $\beta \in_{R}\{0,1\}$.
2. $V \rightarrow P: w \equiv r^{2} \cdot x^{\beta} \bmod N$.
3. The prover sends to V

$$
P \rightarrow V: \alpha= \begin{cases}0 & \text { if } w \in \mathcal{Z}_{N}^{Q+}, \\ 1 & \text { otherwise } .\end{cases}
$$

4. V checks whether $\alpha=\beta$. If the check fails, V stops and rejects. Otherwise V continues.

After passing through $t(n)$ rounds without rejection, V halts and accepts.
Prove that the protocol is complete and sound. Is the protocol zero knowledge ? Justify your answer (see [209]).
2. Consider two protocols $Q R_{\hookrightarrow}$ and $G I_{\hookrightarrow}$. Assume that the verifier follows strictly the protocol. Modify the corresponding transcript simulators and show that both protocols are zero knowledge.
3. Consider two protocols $G N I_{\hookrightarrow}$ and $Q N R \leftrightarrow$. Show that the two protocols are complete and sound.
4. Consider the following decision problem ([488]).

Name: Subgroup Membership Problem.
Instance: Given a composite integer N. Two integers $g, x \in \mathcal{Z}_{N}^{*}$ where g generates a subgroup of order α.
Question: Is $x \equiv g^{k} \bmod N$ for some $k \leq \alpha$?

Consider the following interactive proof based on the problem.

Subgroup Membership Interactive Proof
Common Knowledge: an instance of the subgroup membership problem, i.e. a modulus N and two integers $g, x \in \mathcal{Z}_{N}^{*}$ where g has order α in \mathcal{Z}_{N}^{*}.
Description: Given a polynomial $t(n)$ in n (n is the size of the instance). For $i=1, \ldots, t(n), P$ and V repeat the following steps

1. P picks up j at random $(0 \leq j \leq \alpha)$ and evaluates $\beta \equiv g^{j} \bmod N$.
2. $P \rightarrow V: \beta$.
3. V chooses at random a bit b and sends it to P.
4. P finds out $h \equiv j+i k \bmod \alpha$ where $k=\log _{\alpha} x$ and sends h to V.
5. V stops and rejects when $g^{h} \not \equiv x^{i} \beta \bmod N$.

After passing through $t(n)$ rounds without rejection, V halts and accepts.
Show that the protocol is complete and sound.
5. Consider $G 3 C_{\hookrightarrow}$ protocol. It is assumed that the verifier strictly obeys the protocol. Modify the corresponding transcript simulator. What is the time complexity of the modified simulator ?
6. Take the bit commitment scheme based on DL. Prove that concealment is unconditional. Is this still true if the verifier knows that the prover chooses $y<\frac{p}{2}$?
7. Let us consider the bit commitment based on the $G I$ problem. Show how the prover can cheat if she knows the permutation π which establishes the isomorphism between public graphs H and G.
8. Given the bit commitment scheme based on QR . Assume that P cheats and sends s which belongs to \mathcal{Z}_{N}^{Q+} (instead to \mathcal{Z}_{N}^{Q-} as prescribed). P also knows a square root of s. Is binding still satisfied?
9. Recall the string commitment scheme based on DL. Prove that concealment is unconditional. Show that if a particular instance of DL is easy, then P can always open a blob to a different string.
10. Consider the bit commitment based on claw free permutations. Prove that binding is unconditional and concealing holds only if the factoring of N is intractable.

Chapter 13

IDENTIFICATION

Identification is usually one of the first safeguards which is used to protect computer resources against an unauthorised access. Any access control that governs how the computer resources are accessed and by whom, assumes that there is an identification mechanism which works reliably.

There is a large volume of literature which covers different aspects of entity identification. A good overview of the topic can be found in [334],[488].

13.1 Basic Identification Techniques

Identification of a person, host, intelligent terminal, program, system, etc. can be seen as a twoparty protocol. The two players involved are: the prover and verifier. The prover P also called mnemonically Peggy, wish to introduce herself to the verifier V, say Victor, in such a way that Victor is convinced that he is indeed dealing with Peggy. An identification protocol can go wrong in two different ways. Firstly the failure can occur when an opponent, say Oscar, manages to convince Victor that he is Peggy. This is a false acceptance. Secondly the failure occurs when Peggy fails to convince Victor about her identity. This is a false rejection. An identification protocol is characterised by two probabilities (also called rates). The probability of false acceptance $P_{f a}$ and the probability of false rejection $P_{f r}$.

Consider two trivial identification protocols. In the first protocol, Victor asks Peggy for her name and always accepts her under the given name. The probability of false acceptance $P_{f a}=1$ and the probability of false rejection $P_{f r}=0$. In the second protocol, Victor always rejects Peggy's proofs of identity. The probabilities of false acceptance $P_{f a}=0$ and false rejection $P_{f r}=1$. A "good" identification protocol should achieve both $P_{f a}$ and $P_{f r}$ as small as possible.

Identity of an entity (person, host, intelligent terminal, program, etc.) can be asserted by the verification of what the entity:

- is,
- has, or
- knows.

The verification of "what the entity is" is traditionally referred to as user identification mainly because in a computer environment, hardly any entity displays unique and non-transferable identification characteristics. On the contrary, due to the ease of copying, all digital information can be duplicated making it impossible to distinguish copies from the original. Typically, a user identification mechanism uses unique and non-transferable characteristics such as fingerprints, retinal prints, hand signature, etc.

The verification of "what the entity has" makes sure that the entity has a unique token such as a smart card with some secret information which can be used to prove the identity of the holder. The proof of identity is based on the assumption that the owner never looses its token. If a token is lost, it can be used by some other entity to falsely claim the identity of the owner of the token.

The verification of "what the entity knows" exploits a piece of secret information which is known to a given entity only. A common identification mechanism in this class applies passwords. The security of the identification relies on the security of the secret. Secrets which are compromised (revealed) can be used by unauthorised entities. On the other hand, forgotten secrets cannot be used by an authorised entity.

The identification based on what the entity has and knows uses a secret and unique information. The difference is in the storage of the information. The secret can be stored away from the entity on a token (the token is owned by the entity) or just be stored within the entity (the entity knows the secret).

13.2 User Identification

Fingerprints are commonly considered as a unique characteristic of a person. The reliability of fingerprint identification is so high that it is legally admissible in court. Fingerprint identification systems use ridge and valley patterns. The patterns are classified into a collection of minutiae. The minutiae are stored as an individual fingerprint template. Currently available automated fingerprint identification machines (AFIMs) verify persons with false acceptance/rejection probabilities approximately 10^{-3} or better. The enrolment time necessary to store an individual fingerprint template is usually below 10 seconds and requires about 1 kbyte memory storage. The verification time, typically takes around few seconds. However, AFIMs are still expensive and their prices range close to or above US $\$ 1,000$. Because of the cost, their application in the computer environment is limited.

Similarly both the iris and retina can be used as the base for identification. Retinal scan technology applies the capillary pattern of the retina and converts it to a digital pattern template. The template takes about 40 bytes of storage. The probability of false acceptance/rejection is smaller than 10^{-6}. The enrollment time is approximately 30 seconds and the verification can be done in less than 2 seconds. Again this technology requires a dedicated hardware and is expensive.

Hand geometry and face images fall in the same category of biometric identification. Hand geometry identification uses key geometric features of the topography of a hand. The features are encoded into a template which needs 10 bytes only. Face recognition is rapidly growing due to a non-invasive nature of the method. It can also be used for massive scanning for instance in the search for terrorists in airports. The false acceptance/rejection probabilities are smaller than 10^{-4}.

The handwritten signature is a common method of authenticating paper documents. There are some features of the signature which tend to be different for each signature. More importantly, there are also features that do not change at all. They are related to habitual aspects of signing. To capture these unique signing patterns, signature verification systems uses analysis of the pen pressure, style, stroke direction, acceleration and speed. A typical template which characterizes the unique signing features of an individual, takes about 1 kbyte. To create a template for a new person, the person is required to sign from five to eight times. The verification time is less than 1 second. An attractive characteristic of signature is that a simple verification system can be implemented for all computer systems with a mouse with no additional hardware. The mouse can be used as a pen.

Voice verification can also be an option for person identification. Voice recognition devices are probably the least reliable in terms of their high false acceptance/rejection probabilities. Their useful
feature is, however, that a voice sample can be taken remotely using a telephone only (no additional hardware).

When a person types on a keyboard, the keystroke characteristics (typing rhythms) also contain some unique features of the person. This verification method is the most "computer" friendly. Experiments showed that the false acceptance/rejection rate is still too high for any practical and reliable identification. To make this technique reliable for identification keyboards need to be equipped with special sensors to measure not only a typing rhythm but also some other typing features as speed, acceleration, key pressure, etc.

For the sake of completeness, the DNA identification needs to be added to the list of available identification methods. In theory, this method offers the false acceptance/rejection rate equal to zero. The only exception is when the method is used to identify one of two identical twins. In practice, the identification service is provided by specialized laboratories only. The verification is time consuming and requires a sample of the tested person genetic material. Because of these properties, the method is not used for personal identification in the computer environment.

Biometric identification is vulnerable to all kinds of replay attacks. For example voice could be recorded and later replayed unless the tested person has to repeat a randomly selected sentence.

13.3 Passwords

The most popular single identification technique used in computer environment is via what a person knows. The piece of information memorized by a person is a password or personal identification number (PIN). PINs are passwords which are sequences of digits. This restriction is imposed by a specific technology used in for example automated teller machines (ATMs) where the keypad has digit keys only. As the main requirement for passwords is that they have to be memorized by persons, their length has to restricted. Typically, the length varies from 4 to 9 alphanumerical characters.

Given a password of n characters. If the number of letters is 26 (upper and lower case letters are considered to be identical), the probability of guessing of the password is 26^{-n} provided the password is selected independently and uniformly from the set of 26^{n} possible words. If upper and lower case letters are considered different, the guessing probability drops to 52^{-n}. Further reduction can be achieved if a password can contain not only letters but also digits, and other printable characters such as $\$, \%,<,\{, ;, "$, etc.

Typically password identification takes place every time a user, Peggy, wishes to login to a host computer V. Peggy knows her password while the host V maintains a password file in which V stores passwords of all registered users. Peggy types her login name and her password. Having the pair: login name, password, the host V checks whether there is an entry for Peggy and if so, compares the password submitted by Peggy with the one stored in the password file. If there is a match, Peggy can access the host otherwise Peggy is identified as an illegal user and the access is denied. Note that the password file in the host has to be protected not only against users but preferably against a superuser as well. Usually, password files are protected by storing either encrypted or hashed passwords. The verification process would involve the same steps except that a password provided by Peggy is first encrypted (or hashed) and then compared. Hashing has an advantage over encryption as it applies no cryptographic key.

Every time a password is used, its security is decreasing. The simple remedy would be to introduce password aging. A password is valid for its life time which usually is any time between 20 days and 3 months. In extreme, the life-time of a password can by a single login attempt. These passwords are called one-time passwords. Implementation of one-time passwords can be done simply by generation
of list of passwords and applying them in some order. The main problem is now memorizing them by a user. A way out would be to store passwords on a token - this obviously shifts the identification from what a person knows to what a person possesses. One-time passwords could be created by repetitive application of a one-way function. Given a one-way function f and a password p_{0}. The sequence of passwords is $p_{i}=f\left(p_{i-1}\right)$ for $i=1, \ldots, n$. The passwords are used by their holder in reverse order so the first password to be used is p_{n} and the last one is p_{0}.

13.3.1 Attacks on Passwords

A password can be compromised every time it is used. An outsider may look over Peggy's shoulder when she is typing her password and learn it. To thwart the attack is required to put a keyboard in such position that the movement of hands cannot be observed. Also the use of one-time password may be a possibility. After Peggy has typed her password, the password needs to be verified by the host. If Peggy access her host via remote terminal, her password may travel in clear via unprotected communication channels to the host. The security risk becomes even higher if Peggy uses the Internet for a remote login.

Selection of passwords is crucial. Ideally, Peggy should choose her password at random. The problem with this is that random passwords are difficult to learn by heart. Consequently, users tend to choose passwords in a non-random way making their passwords vulnerable to the exhaustive search attack. Knowing Peggy's habits, favourite movies, songs, etc. a potential attacker Oscar may restrict the search for Peggy's password to: her name, names of her friends, names of her relatives, names of her pets, names of her favourite actors, singers, sportwomen. If this fails, Oscar may try the name of Peggy's host computer, her phone numbers, her car registration number, the number of her passport, her address details, her birthday and so on. Oscar may also try some easy to memorize combination of digits/letters such as a sequence of " 000000 ". In general, Oscar may apply the so called dictionary attack. In this attack, Oscar tries all words (in lower and upper cases, written also backwards) in a typical (around 100,000 words) dictionary. To limit the efficiency of the dictionary attack, it is desirable to put the upper bound on the number of unsuccessful password guesses after which the system terminates the login session with extra delays between subsequent attempts. This may not work when Oscar can access the encrypted password file.

Passwords may be easier to memorized and more difficult to guess if Peggy obeys the following rules when she selects her password:

1. passwords should use the full allowed length of the password,
2. password should contain special characters as $\$, \%, \&, @,\{,[,($, etc. digits, lower and upper case letters,
3. words in passwords should not be part of any dictionary (words should be composed from parts of an easy to memorize and long sequence with inserted digits and special characters).

Again we emphasize that only long and truly random passwords are immune against the exhaustive search and against any dictionary attack.

13.3.2 Weaknesses of Passwords

Identification based on passwords suffers from the following inherent weaknesses:

- the password verification process requires Peggy to show her password to Victor. After learning her password, Victor can try to impersonate Peggy.
- Victor never proves his identity to Peggy. Oscar may try to impersonate Victor to learn Peggy's password.
- the password communicated by Peggy to Victor does not depend on the current time. Oscar may use the replay attack.

The impact of the first weakness can be reduced by encrypting or hashing passwords at the point of entry and handling them in an encrypted or hashed form. Typing of passwords itself on a keyboard is still a potential hazard for security of a password. This weakness also rises the following question: is it possible to verify a piece of secret information without telling the secret? The answer is affirmative and examples of such verification techniques are given in the next sections.

The prover-verifier relation is highly asymmetrical. Victor verifies Peggy's credentials but Peggy knows nothing about Victor's identity. The lack of mutual authentication is a major hurdle for extending the password-based identification to peer entities such as collaborating concurrent processes. Moreover, the two first weaknesses can be used to launch a variety of masquerade attacks. Typically in the attack, an intelligent remote terminal (disconnected from the host) is applied to collect passwords from unsuspected users who want to login to the host. After typing the prescribed user name and password by a user, the terminal aborts the session displaying a message

```
''the host temporarily unavailable due to scheduled maintenance -
    try again in 30 minutes''.
```

The attacker may even connect the terminal back to its host after 30 minutes making users to believe that the message was true. Some other variants of the above attack may include a forged login program. The program asks a user for their name and password, stores the pair: user name, password and displays

```
''wrong password, try again''.
```

After that it calls the original login program making the user to believe that he or she has made a typing mistake. In these attack, most users will not even realize that their passwords have been compromised.

Notice that passwords do not depend on time so consequently Victor does not know whether the current password has been sent now or perhaps it is a copy of a password sent some time ago. This property can also be exploited to design an attack on the password identification mechanism.

13.4 Challenge-Response Identification

Challenge-response identification is also termed as strong entity authentication or handshaking protocol. The identification takes the form of a dialog between Peggy and Victor in which the password is never exchanged between them. Instead, the password known to both P and V, is used to generate "proper" responses to random challenges. In this context, passwords are playing the role of secret cryptographic keys used to perform computations on challenges. The challenge-response protocol can also be used by P and V to assert that they have been successful in running their key establishment protocol. In other words, P and V wish to verify whether they possess the right collection of keys.

13.4.1 Authentication of Shared Keys

Assume that two peer entities A and B (mnemonically Alice and Bob) are supposed to know the same cryptographic key k. Now they would like to verify whether they indeed share the same key. A typical challenge-response dialog for this case may proceed as follows.

Challenge-Response Protocol (a shared key)

Goal: Mutual authentication of A and B by checking whether they share a key k.
Assumptions: A and B choose two random challenges (nonces) r_{A} and r_{B}, respectively, and they use the same encryption algorithm.

Message Sequence: The protocol consists of the following sequence of messages:

1. $A \rightarrow B: r_{A}$.
2. $B \rightarrow A:\left\{r_{A}, r_{B}\right\}_{k}$.
3. $A \rightarrow B:\left\{r_{B}\right\}_{k}$.
where $\left\{r_{A}, r_{B}\right\}_{k}$ is the cryptogram for message $\left(r_{A}, r_{B}\right)$ under the key k.
The protocol works as follows. Firstly, A sends her challenge to B in clear. In response, B takes her challenge r_{A}, concatenates it with his challenge r_{B} and encrypts the pair using the key k. The cryptogram $\left\{r_{A}, r_{B}\right\}_{k}$ is sent to A. A decrypts the cryptogram, retrieves the pair of nonces and checks whether one of them is equal to her nonce r_{A}. If there is a match, A knows that B holds the same key. Now, A encrypts B 's challenge and forwards $\left\{r_{B}\right\}_{k}$ to B. Now B verifies the validity of A 's response by comparing the nonce recovered from the cryptogram with the original r_{B}. If there is a match, B is convinced that A applied the correct key for encryption so she knows the key. The security of the challenge-response protocol depends on the length of the key k, strength of the encryption algorithm, and freshness of the challenges. The protocol can be easily adopted for an unilateral authentication where A authenticates B only. The step (1) is the same while in the step (2) B communicates $\left\{r_{A}\right\}_{k}$ to A. A verifies whether B knows the key k.

The encryption algorithm can be replaced by any one-way function including a collision-free hash function. If both A and B decide to used the same hash function h, then the message exchange in the above protocol may proceed as follows:

1. $A \rightarrow B: r_{A}$.
2. $B \rightarrow A: r_{B}, h\left(r_{A}, r_{B}, k\right)$.
3. $A \rightarrow B: h\left(r_{B}, r_{A}, k\right)$.
A first communicates r_{A} to B in clear. B hashes the triple r_{A}, r_{B}, k and forwards the pair ($r_{B}, h\left(r_{A}, r_{B}, k\right)$) to A. A verifies the hash value and sends $h\left(r_{B}, r_{A}, k\right)$ to B. Note that A swops the order of challenges $h\left(r_{A}, r_{B}, k\right) \neq h\left(r_{B}, r_{A}, k\right)$ to make the protocol immune against the replay attack.

13.4.2 Authentication of Public Keys

Suppose that A and B know each other's authentic public key. So A knows K_{B} and B knows K_{A}. Clearly, A has to know her own secret key k_{A} and B has to know his secret key k_{B}. Assume that they wish to verify whether the other entity indeed holds the corresponding secret key. Note that a public key cryptosystem can be used for confidentiality or authenticity (signature). A challenge-response protocol for unilateral authentication of B by A when B uses his public key for confidentiality is described below.

Challenge-Response Protocol (public encryption)

Goal: A identifies B by checking whether B holds the secret key k_{B} which matches his public key K_{B}.

Assumptions: A chooses a random challenge (nonce) $r_{A} . B$ applies his public key system for confidentiality.

Message Sequence: The protocol consists of the following sequence of messages:

1. $A \rightarrow B:\left[r_{A}, A\right]_{K_{A}}$.
2. $B \rightarrow A: r_{A}$.
where $\left[r_{A}, A\right]_{K_{A}}$ stands for cryptogram of $\left(r_{A}, A\right)$ obtained using the key K_{B}.
A knowing the public key of B encrypts her nonce r_{A} together with her name A and sends the cryptogram to B. Only B can recover the nonce and the name of A from the cryptogram. B communicates r_{A} to A. If the returned nonce is equal to r_{A}, A accepts that she is dealing with B.

The protocol needs some modifications when B uses his public key cryptosystem for authentication.

Challenge-Response Protocol (authentication)

Goal: A identifies B by checking whether B holds the secret key k_{B} which matches the public key K_{B}.

Assumptions: A chooses a random challenge (nonce) r_{A}, B uses his random nonce r_{B}. B applies his public key system for authentication.

Message Sequence: The protocol consists of the following sequence of messages:

1. $A \rightarrow B: r_{A}$.
2. $B \rightarrow A: r_{B},\left\langle r_{A}, r_{B}\right\rangle_{k_{B}}$.
A sends her random challenge to $B . B$ takes a fresh nonce r_{B} and signs the pair. The signature $\left\langle r_{A}, r_{B}\right\rangle_{k_{B}}$ is sent to A who verifies its validity in the usual way. Note that the nonce r_{B} may not need to be transmitted in clear if the signature $\left\langle r_{A}, r_{B}\right\rangle_{k_{B}}$ allows the recovery of the message.

13.5 Identification Protocols

Recall that zero-knowledge proof systems considered in Chapter 12 allow the prover P to demonstrate to the verifier V the knowledge of her secret without revealing any information about it. Clearly, they are ideal vehicles for identification. Note that a direct use of a zero-knowledge proof system allows unilateral authentication of P (Peggy) by V (Victor) and the identification protocol will need to consist of a large enough number of iterations. The completeness, soundness and zero knowledge properties defined for interactive proof systems, have their own interpretation in the context of identification. An identification protocol is complete if a legitimate prover (who follows the protocol) is always correctly identified by V. In other words, the probability of false rejection is zero. An identification protocol is sound if the verifier detects an impostor with an overwhelming probability. This can be translated into the requirement that the probability of false acceptance be 2^{-t}, where t is the number of iterations. A zero knowledge identification protocol reveals no information about the secret held by the prover under some reasonable computational assumptions.

In this section we are going to discuss the Fiat-Shamir identification protocol and its more efficient variant given by Feige, Fiat and Shamir. We next study an identity-based identification protocol by

Guillou and Quisquater. Schnorr presented very efficient identification protocol designed especially for smart card applications. We describe the Schnorr scheme together with its variant given by Okamoto. Other identification protocols not discussed here include several variants based on error correcting codes (see [482] and [94] for example). One of more exotic intractable problems used to design identification protocols is an NPC problem from learning machines, called the perceptrons problem (see [407]).

13.5.1 The Fiat-Shamir Identification Protocol

Fiat and Shamir [181] designed an identification protocol whose security hinges on the assumption that finding square roots modulo N is difficult provided the factorization of N is unknown. This is equivalent to the difficulty of factoring N. The FS protocol is described as follows.

FS Identification Protocol

TA Precomputations: A trusted authority $T A$ holds its public modulus N where $N=p q$ and primes p and q are secret.

Registration: P selects her secret $s \in \mathcal{Z}_{N}^{*}$ such that $\operatorname{gcd}(N, s)=1$. P registers the integer $\sigma \equiv s^{2}$ $(\bmod N)$ with $T A$ as her public identification information.

Message Sequence: P proves to V that she knows the secret s by performing the following iterations t times:

1. $P \rightarrow V: u \equiv r^{2} \bmod N$ where $r \in_{R} \mathcal{Z}_{N}^{*}$.
2. $V \rightarrow P: b \in_{R}\{0,1\}$.
3. $P \rightarrow V: v \equiv r \times s^{b} \bmod N$
4. Verification: V checks whether

$$
v^{2} \stackrel{?}{\equiv} u \times \sigma^{b} \bmod N
$$

V stops on failure or continues otherwise.
After t successful iterations V accepts.
$T A$ keeps identification information of all registered users. The registration of P has to be performed at the setup stage. Registration has to proceed after the mutual authentication of $T A$ and P which is typically done by physical exchange of their credentials (passports, identification cards with photos, etc.). This step is crucial from a security point of view.

Assume that a verifier V would like to make sure that P is indeed the same person whose public information σ is published by $T A . V$ asks P to prove herself to him. The identification protocol takes t iterations. Each iteration is independent of each other in the sense that an iteration starts from selection of a random r by Peggy who then squares it and forwards the commitment u to Victor. Next V chooses his binary challenge b and communicates it to P. Peggy replies by sending $v=r \times s^{b}$. Finally, Victor squares the response v and verifies whether the result is equal to $u \times \sigma^{b}$. If the check fails V stops and rejects P 's identity, otherwise the protocol continues. If P and V passed t iterations without rejection, then V accepts P.

An impostor, Oscar, may cheat Victor if he is able to guess his binary challenge. Let $g \in\{0,1\}$ be Oscar's guess of Victor's challenge. Oscar selects at random r and sends his commitment

$$
u \equiv r^{2} \sigma^{-g} \bmod N
$$

Victor replies by sending his challenge $b \in_{R}\{0,1\}$. Oscar now has to dispatch

$$
v \equiv r \times s^{b-g} \bmod N
$$

to pass the check $v^{2} \stackrel{?}{=} u \times \sigma^{b} \bmod N$. The verification can be rewritten as

$$
v^{2}=r^{2} \sigma^{b-g} \stackrel{?}{\equiv} u \times \sigma^{b-g}
$$

Note that when $g \neq b$ then Oscar is unable to produce the proper $v \equiv r \times s^{b-g} \bmod N$ as he needs to now either s or s^{-1}. So he will fail each iteration with probability 2^{-1}. If the protocol is run for t iterations, Oscar is detected as an impostor by Victor with probability $1-2^{-t}$. The probability of false acceptance is 2^{-t}.

Consider an example. $T A$ has published the modulus $N=46161041$ ($p=4787$ and $q=9643$). The prover has selected her secret $s=21883917$ and registered her public information $\sigma=s^{2} \equiv 25226214$ $(\bmod 46161041)$. The identification protocol runs t times. At each run, P selects at random r. Let it be $r=41435437$. P sends her commitment

$$
P \rightarrow V: u=r^{2} \equiv 6360246 \quad(\bmod 46161041)
$$

V replies by sending his random challenge $b=1 . P$ sends response

$$
P \rightarrow V: v=r s \equiv 39085596 \quad(\bmod 46161041)
$$

V checks whether $v^{2} \equiv 42178320(\bmod 46161041)$ is equal to $u \sigma \equiv 42178320(\bmod 46161041)$. Indeed two integers are the same, so P continues the protocol.

13.5.2 The Feige-Fiat-Shamir Identification Protocol

The FS identification protocol requires a large number of iterations consequently the identification process is slow and computationally expensive for both the prover and verifier. Feige, Fiat, and Shamir came up with a more efficient protocol ([168]). The security of the protocol relies on the assumption that factoring is difficult.

FFS Identification Protocol

TA Precomputations: $T A$ holds its public modulus N where $N=p q$ and primes $p \equiv 3 \bmod 4$ and $q \equiv 3 \bmod 4$ are kept secret.

Registration: P performs the following steps:

1. selects at random ℓ integers $s_{1}, \ldots, s_{\ell} \in_{R} \mathcal{Z}_{N}^{*}$,
2. chooses a binary vector $\left(e_{1}, \ldots, e_{\ell}\right)$ at random,
3. computes $w_{i} \equiv(-1)^{e_{i}} s_{i}^{-2}(\bmod N)$ for $i=1, \ldots, \ell$,
4. registers $\left(w_{1}, \ldots, w_{\ell}\right)$ with $T A$ as P 's identification public information while keeping integers $\left(s_{1}, \ldots, s_{\ell}\right)$ secret.

Message Sequence: P proves to V that she knows the secret vector s_{1}, \ldots, s_{ℓ} by performing the following iterations t times.

1. $P \rightarrow V: u \equiv \pm r^{2} \quad(\bmod N)$ where $r \in_{R} \mathcal{Z}_{N}^{*}$.
2. $V \rightarrow P:\left(b_{1}, \ldots, b_{\ell}\right) \in_{R}\{0,1\}^{\ell}$.
3. $P \rightarrow V: v \equiv r \prod_{i=1}^{\ell} s_{i}^{b_{i}} \quad(\bmod N)$.
4. Verification: V checks whether

$$
u \stackrel{?}{\equiv} \pm v^{2} \prod_{i=1}^{\ell} w_{i}^{b_{i}} \quad(\bmod N)
$$

V stops on failure or continues otherwise.
After t successful iterations, V accepts.
Oscar who would like to impersonate P, can succeed if he can guess V 's challenge. Denote Oscar's guess by $\left(g_{1}, \ldots, g_{\ell}\right)$. Oscar generates a random $r \in_{R} \mathcal{Z}_{N}^{*}$ and sends his commitment modified according to the guessed challenge $\left(g_{1}, \ldots, g_{\ell}\right)$ as

$$
u \equiv r^{2} \prod_{i=1}^{\ell} w_{i}^{g_{i}} \quad(\bmod N)
$$

Now V sends his challenge. If the challenge $\left(b_{1}, \ldots, b_{\ell}\right)=\left(g_{1}, \ldots, g_{\ell}\right)$. Oscar now replies by sending simply $v=r$. V now checks whether $u \equiv v^{2} \prod_{i=1}^{\ell} w_{i}^{b_{i}} \bmod N$ which holds.

Assume that Oscar has made his guess $\left(g_{1}, \ldots, g_{\ell}\right)$ and sent his commitment $u \equiv r^{2} \prod_{i=1}^{\ell} w_{i}^{g_{i}}$ $(\bmod N)$. In response, V sends his challenge $\left(b_{1}, \ldots, b_{\ell}\right)$ such that $b_{i}=g_{i}$ for all except for $i=1$. It means that Oscar has failed to guess b_{1} and g_{1} is its negation. Oscar now has to respond by sending $r s_{1}$ if $\left(g_{1}=0\right.$ and $\left.b_{1}=1\right)$ or $r s_{1}^{-1}$ if $\left(g_{1}=1\right.$ and $\left.b_{1}=0\right)$. In either case, Oscar has to know s_{1}. As s_{1} is secret and it is computationally intractable to compute it from w_{1}, Oscar will be detected as an impostor. The probability of false acceptance is $2^{-\ell t}$.

Consider an example. TA selects $p=1367$ and $q=1103(p \equiv 3 \bmod 4$ and $q \equiv 3 \bmod 4)$. The modulus $N=1507801$. Let $k=4$ so P selects four random integers. Let them be

$$
\begin{aligned}
& s_{1}=1281759 \\
& s_{2}=63306 \\
& s_{3}=100742 \\
& s_{4}=647983
\end{aligned}
$$

Next V chooses a binary vector $e=(1,1,0,1)$ and computes

$$
\begin{array}{ll}
w_{1}=(-1) s_{1}^{-2} & \equiv 559476 \bmod 1507801 \\
w_{2}=(-1) s_{2}^{-2} & \equiv 1445404 \bmod 1507801 \\
w_{3}=s_{3}^{-2} & \equiv 663524 \bmod 1507801 \\
w_{2}=(-1) s_{2}^{-2} & \equiv 120740 \bmod 1507801
\end{array}
$$

The vector $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ is the public identification information of P and is registered with $T A$. When P wishes to prove herself to V, both parties execute t iterations of the protocol. We are going to show a single iteration only. P starts by choosing at random $r=736113$ and sends her commitment $u=r^{2} \equiv 887797 \bmod 1507801$. V replies with his 4-bit challenge, let it be $(1,0,1,0) . P$ responds with $v=r s_{1} s_{3} \equiv 1045302 \bmod 1507801$. Next V verifies whether

$$
u \stackrel{?}{=} \pm v^{2} w_{1} w_{3} \bmod N
$$

Clearly $\pm v^{2} w_{1} w_{3} \equiv \pm 620004 \equiv 887797(\bmod 1507801)$. The check holds so V goes to the next iteration.

13.5.3 The Guillou-Quisquater Identification Protocol

The Guillou-Quisquater (GQ) identification protocol is a modification of the $F S$ protocol and it is described in [226]. The security of the protocol relies on the assumption that factoring is difficult. An attractive feature of the protocol is that it is identity based so the verifier need not use any certified elements except the publicly accessible identity of the prover and public key of the trusted authority.

GQ Identification Protocol

TA Precomputations: $T A$ holds its public modulus N where $N=p q$ and primes p and q are secret. Next $T A$ generates two exponents K and k such that $K \times k \equiv 1 \bmod \varphi(N)$ where $\varphi(N)$ is Euler's totient function. The modulus N and exponent K are public. The factors of N and the exponent k are secret.

Registration: 1. P is assigned an unique identity $I D_{P}$. The identity is converted into an integer $J_{P}\left(1 \leq J_{P} \leq N-1\right)$ which is called the shadowed identity. The conversion is public and one-to-one.
2. $T A$ takes J_{P} and signs it using its secret key k. The signature

$$
\sigma \equiv J_{P}^{-k} \quad(\bmod N)
$$

is communicated to P. P verifies the signature by checking $\sigma^{K} \stackrel{?}{\equiv} J_{P}^{-1} \bmod N$. The integer σ is kept secret by P and $T A$.

Message Sequence: P introduces herself to V as an entity with $I D_{P} . V$ converts her identity to the corresponding numerical shadowed identity J_{P}. The identification process takes t iterations. A single iteration runs as follows.

1. $P \rightarrow V: u \equiv r^{K} \bmod N$ where $r \in_{R}\{1, \ldots, N-1\}$.
2. $V \rightarrow P: b$ where $b \in_{R}\{1, \ldots, K\}$.
3. $P \rightarrow V: v \equiv r \times \sigma^{b} \bmod N$.
4. Verification: V checks whether

$$
J_{P}^{b} \times v^{K} \stackrel{?}{\equiv} u \bmod N
$$

V stops on failure or continues otherwise.
After t successful iterations V accepts.
$T A$ sets up an RSA system with public elements (K, N). TA uses its secret key k to sign J_{P}. The certificate σ is kept secret by both $T A$ and P as it is further used by P to prove herself to V. The public information accessible to Victor is Peggy's $I D_{P}$ and her shadowed identity J_{P}.

A single iteration starts from the random selection of r by Peggy. She next sends her commitment $u=r^{K}$ to Victor. Victor chooses his challenge b at random and communicates it to Peggy. Peggy responds by sending $v=r \times \sigma^{b}$. Victor checks whether $J_{P}^{b} \times v^{K}$ is equal to r^{K}.

Assume that an opponent Oscar tries to impersonate Peggy. First he introduces himself as Peggy with Peggy's $I D_{P}$. Next Oscar selects at random r and tries to guess Victor's challenge. Let his guess be g. Oscar sends his commitment

$$
O \rightarrow V: u \equiv r^{K} \times J_{P}^{g} \bmod N
$$

V sends his challenge b. Oscar has to reply

$$
O \rightarrow V: v \equiv r \sigma^{g-b} \bmod N
$$

Victor checks whether

$$
J_{P}^{b} \times\left(r \sigma^{g-b}\right)^{K} \stackrel{?}{\equiv} r^{K} \times J_{P}^{g} \bmod N
$$

Victor fails to detect impostor if Oscar either has guessed g correctly i.e. $g \equiv b \bmod N$ or has computed σ. The first case may happen with the probability K^{-1} per iteration. The retrieval of σ is assumed to be computationally intractable. If the identification takes t iterations, the probability of false acceptance is equal to K^{-t}. Note that if P and V follow the protocol the probability of false rejection is zero.

The GQ protocol is design with the efficiency in mind. It is recommended to keep the public exponent K short preferably smaller than 2^{20}. For $K \approx 2^{20}$, most practical GQ protocols would require one iteration only $(t=1)$. The shorter K the more efficient computations for both P and V. On the other hand, a too short K will force P and V to do many iterations to attain an agreed probability of false acceptance.

Consider a toy example. Let $T A$ set up its RSA system with $p=563, q=719$. The modulus is $N=404797$ and the Euler's totient function $\varphi(N)=403516$. Let $K=23$ then $k=298251$. The modulus N and K are public. Peggy is assigned her identity $I D_{P}$ and let her shadowed identity be $J_{P}=123456 . T A$ gives P her secret $\sigma \equiv J_{P}^{-k} \equiv 79833 \bmod 404797 . P$ verifies it by checking

$$
J_{P}=123456 \stackrel{?}{=} \sigma^{-K}=123456 \quad(\bmod 404797)
$$

The check holds so P is sure that σ is valid.
If V now asks P to identify herself, she first presents her $I D_{P}$ to V and later P and V execute t iterations of the protocol. Consider a single iteration only. P selects $r=133504$ and sends her commitment $u=r^{K} \equiv 172296 \bmod 404797$. V chooses his challenge $b=11$ and forwards it to P. As expected P sends back her response $v=r \sigma^{b} \equiv 41169 \bmod 404797$. Now V computes

$$
J_{P}^{b} \times v^{K} \equiv 172296 \bmod 404797
$$

which equals to $u . P$ and V have completed successfully an iteration of the protocol.
Identification protocols use zero knowledge proof systems. The Fiat-Shamir protocol is a classical example of direct application of a zero knowledge proof system. To reduce the number of interactions between P and V, a common method used in the Feige-Fiat-Shamir and Guillou-Quisquater protocols is to allow the verifier to challenge the prover by sending ℓ-bit sequence (instead of binary). This increases the efficiency of the protocol but causes some problems. The most important is that the zero knowledge property becomes harder to prove. Recall that the starting point in proving zero knowledge is the design of an efficient transcript simulator which is indistinguishable from the view ensemble generated by the interactions of the real protocol. Such transcript simulator can be constructed by using the original protocol. The simulator runs in an expected polynomial time only if the length of the challenge string is fixed. If the challenge string is variable (grows proportionally with the size of the instance), the zero knowledge property seems to be no longer useful. This becomes apparent when an identification protocol consists of a single iteration which involves three passes only ($P \rightarrow V$: commitment (or witness), $V \rightarrow P:$ challenge and $P \rightarrow V$: response). The single challenge used needs to be long enough so the false acceptance rate can be selected arbitrarily low. This clearly precludes the existence of an efficient transcript simulator.

13.6 Identification Schemes

Consider "three pass" protocols. To indicate the difference, we call them schemes. The zero knowledge property is no longer appropriate for identification schemes. Some authors introduced other measurements to indicate that identification schemes do not "leak" any information about the secrets held by the provers. These measurements include no useful information transfer [168] or no transferable information with security level [384]. An alternative approach is to prove that breaking an identification scheme is equivalent to finding a polynomial time algorithm which solves an intractable problem (such as the discrete logarithm). If this can be done, the scheme is called provably secure under some plausible computational assumptions.

13.6.1 The Schnorr Identification Scheme

Schnorr [446] designed an identification scheme which is intended to be suitable for smart cards where both memory and computing power are in short supply. The security of the scheme relies on the assumption that the selected instance of the discrete logarithm problem is intractable.

Schnorr Identification Scheme

TA Pre-computations: $T A$ sets up the parameters of the protocol and $T A$

1. chooses the modulus p such that p is prime and $p \geq 2^{512}$,
2. selects a prime q which is a divisor of $(p-1)$ and $q \geq 2^{140}$,
3. takes an integer $\alpha \in \mathcal{Z}_{p}^{*}$ such that it is a generator of \mathcal{Z}_{q}^{*}, i.e. $\alpha^{q} \equiv 1 \bmod p$,
4. determines the collection of possible challenges $\left\{0,1, \ldots, 2^{t}-1\right\}$,
5. applies its secret key to issue certificates while the corresponding public key is used to verify them,
6. publishes p, q, α, t and its public key.

Registration: The following steps are undertaken by P to get the certificate from $T A$.

1. P selects at random her private key $s \in_{R} \mathcal{Z}_{q}^{*}$ and computes her public key $K \equiv \alpha^{-s} \bmod p$,
2. P registers her public key K with $T A$ so $T A$ publishes a certificate (signature) S for $\left(I D_{P}, K\right)$.

Message Sequence: P proves to V her identity in three passes.

1. $P \rightarrow V: I D_{P}, K, S, u$ where S is the certificate generated by $T A$ for ($I D_{P}, K$) and $u \equiv$ $\alpha^{r} \bmod p$ for a random integer $r \in_{R} \mathcal{Z}_{q}^{*}$.
2. V verifies the certificate S.
3. $V \rightarrow P: b \in_{R}\left\{0, \ldots, 2^{t}-1\right\}$
4. $P \rightarrow V: y \equiv r+s b \bmod q$.
5. Verification:

$$
u \stackrel{?}{=} \alpha^{y} K^{b} \bmod p
$$

If the check fails V rejects otherwise V accepts.
$T A$ provides public parameters of the system. The public key of $T A$ is used to verify the prover's certificate S. The protocol in the scheme takes three passes. P picks a random $r \in_{R} \mathcal{Z}_{q}$ and computes her commitment $u \equiv \alpha^{r} \bmod p$ and sends $I D_{P}, K, S, u, S$ to $V . V$ checks whether ($I D_{P}, K$) and the corresponding certificate S match. If so, V chooses his random challenge b and dispatches it to P. P replies by sending $y \equiv r+s b \bmod q . V$ finally verifies whether the response $u \stackrel{?}{\equiv} \alpha^{y} K^{b} \bmod p$.

Clearly if P follows the protocol, she is always correctly identified by V. On the other hand, an impostor Oscar can cheat if he is able to guess V 's challenge. Let his guess be g. Instead of the prescribed $u=\alpha^{r}$, Oscar sends his commitment

$$
u \equiv \alpha^{r} \times K^{g} \bmod p
$$

V sends his challenge b and Oscar has to respond with

$$
y \equiv r+(b-g) s \bmod q
$$

He will get away if $g \equiv b \bmod q$ as he is able to send a valid response $y \equiv r \bmod q$. The probability of Oscar's correct guess of b is 2^{-t}. In other words, the false acceptance rate is 2^{-t}.

Let us illustrate the protocol using small parameters (the protocol is not secure). TA has the following parameters: $p=285457, q=313, \alpha=146159$. Peggy chooses private key $s=237$ and computes her public key $K=\alpha^{-s} \equiv 166428 \bmod 285457$. P registers her identity plus her public key with $T A$. TA publishes its public key and certificate S of Peggy's $\left(I D_{P}, K\right)$.

Assume that V wishes P to identify herself to him. P selects at random r, let it be $r=133$, computes her commitment $u=r^{2} \equiv 36157 \bmod 285457$ and forwards $I D_{P}, K, S, u$ to V. V verifies whether the pair $\left(I D_{P}, K\right)$ and the certificate match (this step is skipped). If the check holds, V sends his challenge b, say $b=167$, to P. P finds $y \equiv r+s b \bmod q$ which is $y=274$ and sends it to V. V calculates

$$
\alpha^{y} K^{b}=146159^{274} 166428^{167} \equiv 36157 \bmod 285457
$$

which is equal to Peggy's commitment $u . V$ accepts Peggy.
The Schnorr scheme is indeed very efficient. The prover (a smart card) needs a single exponentiation modulo p to generate her commitment. The response y involves single multiplication and addition modulo q. The main drawback of the scheme is that its security has not been proved.

13.6.2 The Okamoto Identification Scheme

A modification of the Schnorr scheme which is as secure as the corresponding discrete logarithm instance, was given by Okamoto in [384]. The scheme is provably secure. The scheme works as follows.

Okamoto Identification Scheme

TA Precomputations: $T A$ sets up the parameters of the scheme. In particular, $T A$

1. chooses a modulus p where p is prime and $p \geq 2^{512}$,
2. takes a factor q of $(p-1)\left(q\right.$ is prime and $\left.q \geq 2^{140}\right)$,
3. picks up two integers α_{1} and α_{2} of order q in the group \mathcal{Z}_{p}^{*},
4. selects an integer $t=O(p)$, say $t \geq 20$,
5. uses its secret key to issue certificates while its public key is used to verify them,
6. publishes $p, q, \alpha_{1}, \alpha_{2}, t$ and its public key.

Registration: The following steps are undertaken by P to get the certificate from $T A$.

1. P selects at random her private key $\left(s_{1}, s_{2}\right) \in_{R} \quad \mathcal{Z}_{q}^{*} \times \mathcal{Z}_{q}^{*}$ and computes her public key $K \equiv \alpha_{1}^{-s_{1}} \alpha_{2}^{-s_{2}} \bmod p$.
2. P registers her public key K with $T A$ so $T A$ publishes a certificate (signature) S for $\left(I D_{P}, K\right)$.

Message Sequence: P proves to V her identity.

1. $P \rightarrow V: I D_{P}, K, S, u$ where S is the certificate generated by $T A$ for ($I D_{P}, K$) and $u \equiv$ $\alpha_{1}^{r_{1}} \alpha_{2}^{r_{2}} \bmod p$ for random integers $r_{1}, r_{2} \in_{R} \mathcal{Z}_{q}^{*}$.
2. V verifies the certificate S.
3. $V \rightarrow P: e \in_{R}\left\{0, \ldots, 2^{t}-1\right\}$.
4. $P \rightarrow V: y_{1}, y_{2}$, where

$$
\begin{aligned}
& y_{1} \equiv r_{1}+e s_{1} \quad(\bmod q), \\
& y_{2} \equiv r_{2}+e s_{2} \quad(\bmod q)
\end{aligned}
$$

5. Verification: Victor checks whether

$$
u \stackrel{?}{\equiv} \alpha_{1}^{y_{1}} \alpha_{2}^{y_{2}} K^{e} \bmod p
$$

If the check holds, V accepts otherwise rejects.
First we make some general observations.
Lemma 13.1 Assume that impostor Oscar tries to convince Victor that he is Peggy. Then if Victor is honest (i.e. generates his challenges at random), the probability of Oscar's success is 2^{-t}.

Proof: Oscar picks at random r_{1} and r_{2} and computes his commitment $u=\alpha_{1}^{r_{1}} \alpha_{2}^{r_{2}} K^{g}$ where g is Oscar's guess for Victor's challenge. After receiving u, Victor communicates his challenge e to Oscar. Oscar now has to reply with

$$
\begin{aligned}
& y_{1} \equiv r_{1}+(e-g) s_{1} \quad(\bmod q) \text { and } \\
& y_{2} \equiv r_{2}+(e-g) s_{2} \quad(\bmod q)
\end{aligned}
$$

to pass the verification. As he does not know $\left(s_{1}, s_{2}\right)$, he is able to send correct reply only if $g=e$ as then he forwards $y_{1}=r_{1}$ and $y_{2}=r_{2}$ as the valid response. Oscar succeeds with the probability 2^{-t}. So the probability of false acceptance is 2^{-t}.

Now we are going to prove that the Okamoto scheme is secure if and only if the discrete logarithm $\beta \equiv \log _{\alpha_{1}} \alpha_{2} \bmod p$ is intractable. First consider the following implication.

Theorem 13.1 If the Okamoto scheme is secure, then the discrete logarithm $\beta \equiv \log _{\alpha_{1}} \alpha_{2} \bmod p$ is intractable.

Proof: By contradiction. Assume that there is a polynomial time probabilistic algorithm A which returns $\beta \equiv \log _{\alpha_{1}} \alpha_{2} \bmod p$ with a non-negligible probability. Having β, it is possible to represent the public key as

$$
K \equiv \alpha_{1}^{-s_{1}} \alpha_{1}^{-\beta s_{2}}=\alpha_{1}^{-\left(s_{1}+\beta s_{2}\right)} \bmod p
$$

The application of the algorithm A produces $b \equiv \log _{\alpha_{1}} K \bmod p$. Any pair $\left(s_{1}^{*}, s_{2}^{*}\right)$ such that

$$
b \equiv-\left(s_{1}^{*}+\beta s_{2}^{*}\right) \quad(\bmod q)
$$

can be used to make Victor accept, where $s_{1}^{*} \in \mathcal{Z}_{q}^{*}$ and $s_{2}^{*} \equiv \frac{b-s_{1}^{*}}{\beta} \bmod q$. There are q possible pairs each of which is "good" in the sense that the verifier will always accept. To show this, assume that Oscar selects at random one pair. Let it be $\left(s_{1}^{*}, s_{2}^{*}\right)$. Oscar and Victor follow the protocol and at the end Victor checks whether

$$
\alpha_{1}^{r_{1}} \alpha_{2}^{r_{2}} \stackrel{?}{\equiv} \alpha_{1}^{y_{1}} \alpha_{2}^{y_{2}} K^{e} \bmod p
$$

where $y_{1} \equiv r_{1}+e s_{1}^{*} \bmod q$ and $y_{2} \equiv r_{2}+e s_{2}^{*} \bmod q$. Clearly, the check holds if $K=\alpha_{1}^{-s_{1}^{*}} \alpha_{2}^{-s_{2}^{*}}=\alpha_{1}^{b}$.

The other implication, that is: if the discrete logarithm is intractable then the Okamoto scheme is secure is proved by contradiction. So we are going to prove that if the Okamoto scheme is insecure, then the discrete logarithm problem defined in the scheme is easy.

We assume that the Okamoto scheme is insecure. This means that there is a polynomial probabilistic algorithm A (run by Oscar) which can interact with the verifier in such a way that the honest verifier Victor accepts Oscar with an overwhelming probability $\varepsilon \geq 2^{-(t-1)}$.

Lemma 13.2 Assume that Oscar can impersonate Peggy with probability $\varepsilon \geq 2^{-(t-1)}$. Then he can find two integers s_{1}^{*} and s_{2}^{*} such that $K=\alpha_{1}^{-s_{1}^{*}} \alpha_{2}^{-s_{2}^{*}}$.

Proof: Oscar runs the algorithm A. The algorithm A selects three random integers r_{1}, r_{2} and g and computes u. A is able to make Victor accept with the probability better than ε. There is always the probability 2^{-t} that A will be able to impersonate Peggy if the guess g is equal to the challenge e. Note that A makes Victor accept even if $g \neq e$ and this happens with the probability $\varepsilon-2^{-t}$. In this case,

$$
\begin{aligned}
& y_{1} \equiv r_{1}+(e-g) s_{1}^{*} \quad(\bmod q) \\
& y_{2} \equiv r_{2}+(e-g) s_{2}^{*} \quad(\bmod q)
\end{aligned}
$$

This allows A (and Oscar) to reconstruct the public key $K=g_{1}^{-s_{1}^{*}} \alpha_{2}^{-s_{2}^{*}}$ where $s_{1}^{*}=\frac{y_{1}-r_{1}}{e-g}$ and $s_{2}^{*}=\frac{y_{2}-r_{2}}{e-g}$.

Theorem 13.2 If the DL problem defined in the Okamoto scheme is intractable then the Okamoto scheme is secure.

Proof: By contradiction. Assume that the Okamoto scheme is insecure. From this assumption we will show that there is a polynomial time algorithm which solves the instance of DL of the form

$$
\beta \equiv \log _{\alpha_{1}} \alpha_{2} \quad(\bmod p)
$$

So there is a polynomial time algorithm A which with a non-negligible probability makes Victor accept. The algorithm A selects two secret elements $s_{1}, s_{2} \in_{R} \mathcal{Z}_{q}^{*}$, computes $K \equiv \alpha_{1}^{-s_{1}} \alpha_{2}^{-s_{2}} \bmod p$. According to Lemma (13.2), A is able to find a pair s_{1}^{*}, s_{2}^{*} such that

$$
K=\alpha_{1}^{-s_{1}} \alpha_{2}^{-s_{2}}=g_{1}^{-s_{1}^{*}} \alpha_{2}^{-s_{2}^{*}} .
$$

If $s_{1} \neq s_{1}^{*}$ and $s_{2} \neq s_{2}^{*}$ then

$$
\beta=\log _{\alpha_{1}} \alpha_{2} \equiv \frac{s_{1}-s_{1}^{*}}{s_{2}-s_{2}^{*}} \quad(\bmod p) .
$$

Now we show that $s_{1} \neq s_{1}^{*}$ and $s_{2} \neq s_{2}^{*}$ occurs with the probability $\frac{q-1}{q}$. Note that the same public key K corresponds to q possible pairs of secret elements $\left(s_{1}, s_{2}\right)$. These pairs belong to the set

$$
\mathcal{X}=\left\{\left(s_{1}^{*}, s_{2}^{*}\right): s_{1}^{*} \in \mathcal{Z}_{q}^{*} \text { and } s_{2}^{*}=\beta^{-1}\left(s_{1}-s_{1}^{*}+\beta s_{2}\right) \bmod q\right\}
$$

where $\beta \equiv \log _{\alpha_{1}} \alpha_{2} \bmod p$. Even infinitely powerful attacker cannot distinguish which particular pair is being used on the base of the public information K and at the same time the knowledge of a single pair enables A to generate correct responses y_{1} and y_{2} (see Lemma 13.1). As A has selected $s_{1}, s_{2} \in_{R} \mathcal{Z}_{q}^{*}$ so the probability that $s_{1} \neq s_{1}^{*}$ and $s_{2} \neq s_{2}^{*}$ is $\frac{q-1}{q}$.

Finally we have reached the following conclusion.
Theorem 13.3 The Okamoto scheme is secure if and only if the discrete logarithm problem defined in the scheme is intractable.

Paradoxically, the proof of security for the Okamoto scheme give also a simple prescription how the $T A$ may cheat. Note that $T A$ can select α_{1} at random while computing $\alpha_{2} \equiv \alpha_{1}^{\beta} \bmod p$ for some β of its choice. In effect, $T A$ knows $\beta=\log _{\alpha_{1}} \alpha_{2}$ so the authority can compute a pair (s_{1}^{*}, s_{2}^{*}) and divulge it to Oscar. Note that this kind of cheating is impossible in the Schnorr scheme.

Let us illustrate the scheme on a simple example. The scheme has the following parameters: $p=6491, q=59, \alpha_{1}=1764, \alpha_{2}=4269, t=5 . P$ chooses her two secret elements $s_{1}=21, s_{2}=47$. The public key

$$
K=\alpha_{1}^{-s_{1}} \alpha_{2}^{-s_{2}}=1764^{-21} 4269^{-47} \equiv 5196 \quad(\bmod 6491)
$$

P selects at random $r_{1}=13, r_{2}=33$, computes her commitment

$$
u=\alpha_{1}^{r_{1}} \alpha_{2}^{r_{2}}=1764^{13} 4269^{33} \equiv 1131 \quad(\bmod 6491)
$$

and sends it to V. V replies with his challenge $e=12 . P$ solves the congruences

$$
\begin{aligned}
& y_{1}=r_{1}+e s_{1} \equiv 29 \quad(\bmod 59) \\
& y_{2}=r_{2}+e s_{2} \equiv 7 \quad(\bmod 59)
\end{aligned}
$$

On arrival of y_{1} and y_{2}, V computes

$$
\alpha_{1}^{y_{1}} \alpha_{2}^{y_{2}} K^{e}=1764^{29} 4269^{7} 5196^{12} \equiv 1131 \quad(\bmod 6491)
$$

which is the same as the commitment. V accepts.

13.6.3 Signatures from Identification Schemes

Identification schemes can be converted into signature schemes [181]. To convert an identification scheme, it is enough to replace the verifier by a hash function. The hash function takes two arguments: a message to be signed and a commitment and produces a digest (challenge) which is later signed. Consider the Schnorr identification scheme [446]. The signature scheme based on it is presented below.

Schnorr Signature Scheme

Initialization: The TA sets up the scheme and

1. chooses the parameters as in the Schnorr identification scheme so the modulus p is prime $\left(p \geq 2^{512}\right)$, a prime q is a divisor of $(p-1)\left(q \geq 2^{140}\right)$, and an integer $\alpha \in \mathcal{Z}_{p}^{*}$ is a generator of \mathcal{Z}_{q}^{*},
2. picks up a hash function $h: \mathcal{Z}_{p} \times \mathcal{Z} \rightarrow\left\{0,1, \ldots, 2^{t}-1\right\}$,
3. applies its secret key to issue certificates while the corresponding public key is used to verify them,
4. publishes p, q, α, h and its public key.

The following steps are undertaken by the signer S to get the certificate from $T A$.

1. S selects at random her private key $s \in_{R} \mathcal{Z}_{q}^{*}$ and computes her public key $K \equiv \alpha^{-s} \bmod p$,
2. S registers her public key K with $T A$ so $T A$ publishes a certificate (signature) for ($I D_{S}, K$).

Signing: To sign a message m, S selects a random integer $r \in_{R} \mathcal{Z}_{q}^{*}$, computes $u \equiv \alpha^{r} \bmod p$, and calculates the digest $b=h(u, m)$ for the message $m \in \mathcal{Z}$. The signature is the pair $S G_{s}(m)=(b, y)$ where

$$
y \equiv r+s b \bmod q
$$

Verification: The verifier V takes the message \tilde{m}, its signature (\tilde{b}, \tilde{y}) and collects the authentic public key K from $T A$ (together with the necessary public elements). V next reconstructs

$$
\tilde{u} \equiv \alpha^{\tilde{y}} K^{\tilde{b}} \bmod p
$$

and checks whether

$$
\tilde{b} \stackrel{?}{=} h(\tilde{u}, \tilde{m})
$$

If the check holds, V accepts the signature, otherwise rejects.
Similarly, the Okamoto identification scheme can be converted for signing [384].

Okamoto Signature Scheme

Initialization: $T A$ sets up the scheme and of the scheme. In particular, $T A$

1. chooses the parameters as in the Okamoto identification scheme. In particular, the modulus p is prime $\left(p \geq 2^{512}\right)$, a prime q divides $(p-1)\left(q \geq 2^{140}\right)$, and α_{1} and α_{2} are two integers of order q in the group \mathcal{Z}_{p}^{*},
2. selects a hash function $h: \mathcal{Z}_{p} \times \mathcal{Z} \rightarrow\left\{0,1, \ldots, 2^{t}-1\right\}$,
3. uses its secret key to issue certificates while its public key is used to verify them,
4. publishes $p, q, \alpha_{1}, \alpha_{2}, h$ and its public key.

The following steps are undertaken by the signer S to get the certificate from $T A$.

1. S selects at random her private key $\left(s_{1}, s_{2}\right) \in_{R} \mathcal{Z}_{q}^{*} \times \mathcal{Z}_{q}^{*}$ and computes her public key $K \equiv{\alpha_{1}^{-s_{1}} \alpha_{2}^{-s_{2}} \bmod p . ~ . ~ . ~}_{\text {. }}$
2. S registers her public key K with $T A$ so $T A$ publishes a certificate (signature) for ($I D_{P}, K$).

Signing: To sign a message $m \in \mathcal{Z}, S$ picks up two random integers $r_{1}, r_{2} \in_{R} \mathcal{Z}_{q}^{*}$, computes $u \equiv$ $\alpha_{1}^{r_{1}} \alpha_{2}^{r_{2}} \bmod p$, finds out

$$
e=h(u, m)
$$

and solves two congruences

$$
\begin{aligned}
& y_{1} \equiv r_{1}+e s_{1} \quad(\bmod q), \\
& y_{2} \equiv r_{2}+e s_{2} \quad(\bmod q)
\end{aligned}
$$

The signature for message m is $\left(e, y_{1}, y_{2}\right)$.

Verification: Victor is given a message \tilde{m} and a signature $\left(\tilde{e}, \tilde{y_{1}}, \tilde{y_{2}}\right) . V$ collects public elements from $T A$, calculates

$$
\tilde{u} \equiv \alpha_{1}^{\tilde{y_{1}}} \alpha_{2}^{\tilde{y_{2}}} K^{\tilde{e}} \quad(\bmod p)
$$

and checks whether

$$
\tilde{e} \stackrel{?}{=} h(\tilde{u}, \tilde{m})
$$

If the check holds, V accepts the signature, otherwise rejects.
Okamoto proved that the above scheme is secure against any adaptive chosen message attacks if the discrete logarithm problem is intractable and h is a correlation free one way hash function. The existence of correlation free hash functions is a stronger requirement than the existence of collision free hash functions (for details consult [384]).

13.7 Problems and Exercises

1. Consider the following identification protocol. Peggy gives her name to Victor. Victor tosses an unbiased coin. If the coin comes up heads, Victor accepts Peggy, otherwise he rejects. Compute the false rejection/acceptance rates. Is the protocol practical?
2. Victor has bought two personal identification machines. One machine uses fingerprints for identification and is characterized by the false rejection and acceptance rates $P_{f a 1}$ and $P_{f r 1}$, respectively. The second machine applies face image to identify a person. Its false rejection and acceptance rates are $P_{f a 2}$ and $P_{f r 2}$, respectively. Victor is not sure how to combine the machines. But he thinks about the two following schemes.
3. In the first scheme, a person is accepted only if the person is accepted by both identification machines,
4. In the second scheme, a person is accepted if at least one machine has accepted the person.

Compute the false rejection/acceptance rates for both schemes (make reasonable probabilistic assumptions if necessary).
3. Assume an identification scheme based on PINs of the length of 4 digits. What is the probability of guessing the PIN if the attacker is allowed to enter three consecutive guesses?
4. Suppose that passwords have the length of 10 characters. Characters are chosen randomly from a given set of elements. Consider that the set of possible elements consists of

1. all lower case letters (i.e. a, b, c, \ldots, z),
2. all letters (i.e. both lower and upper case letters),
3. all alphanumerical characters (i.e. all letters plus all digits),
4. all characters accessible on a typical keyboard (i.e. the set has 96 lower/upper case letters, digits, and special characters).

What is the probability of guessing a password in a single attempt for each the cases mentioned above? What is the time necessary to exhaustively search the whole password space for the above cases if it is possible to check 1000 passwords per second.
5. Let passwords be of length of 7 characters. The password space contains 26^{7} possible elements. Assume that an attacker can access a hashed password file and can run a program which tests 1000 passwords per second. What would be the lifetime of a password selected at random from the password space provided the owner will change the password if the probability of breaking it by the attacker becomes equal to 10^{-3} (attacker continuously runs his program starting from the last change of password).
6. Modify the challenge-response protocol for a shared (secret) key in such a way that it allows to use timestamps by both interacting parties.
7. Assume that two parties A and B have collected their corresponding public keys from their $T A$. Design the challenge-response protocol which allows mutual authentication of both A and B. Consider two possible cases: when the public keys are used for encryption and when the public keys are used for authentication.
8. Show that the Fiat-Shamir protocol is sound and complete. Write a transcript simulator for the protocol and evaluate its efficiency.
9. A prover P and a verifier V apply the Fiat-Shamir protocol for identification. They have been using it for some time. An attacker Oscar has collected a transcript of their interactions and discovered that Victor does not select his challenges with uniform probability. In fact Victor's selection of challenge is described by two probabilities $P(b=0)=\varepsilon$ and $P(b=1)=1-\varepsilon$ where $\varepsilon<0.5$. Oscar wants to impersonate Peggy and knows that he will be successful if he guesses Victor's challenge. To guess the challenge, Oscar may apply the two following strategies:

1. he chooses his guess according to the same probability distribution as Victor,
2. he chooses his guess to be always " 1 ".

What are the probabilities of Oscar's successful impersonation for the two strategies? Which of the strategies is better? What would be the best possible strategy for Oscar?
10. An attacker Oscar has collected a transcript of Peggy and Victor interactions in the Fiat-Shamir identification protocol. Looking through the transcript, Oscar has discovered that there are two entries $\left(u_{1}, b_{1}, v_{1}\right)$ and (u_{2}, b_{2}, v_{2}) for which $u_{1}=u_{2}$ and $b_{1} \neq b_{2}$. What is the probability of the event? Can Oscar use the discovery to break the protocol?
11. Consider the Feige-Fiat-Shamir protocol. Prove that it is sound and complete. Design a transcript simulator for the protocol. Discuss its efficiency and show how it depends on the size of the parameter ℓ (ℓ is the length of the challenge).
12. Given the Feige-Fiat-Shamir protocol. An attacker Oscar has noticed that the verifier V chooses his first challenge according to the protocol (randomly and uniformly from the set $\{0,1\}^{\ell}$). But the rest $t-1$ challenges are "recycled" from the previous ones. A recycled challenge in the i-th iteration, is created as follows. Let a challenge in the $(i-1)$-th iteration be $b_{i-1}=\left(a_{1}, \ldots, a_{\ell}\right)$, then a recycled challenge is $b_{i}=\left(a_{2}, \ldots, a_{\ell}, a_{\ell+1}\right)$ where the bit $a_{\ell+1}$ is randomly chosen with the uniform probability. What is the probability of false acceptance in the protocol with the recycled challenges.
13. Convert both the FFS and GQ identification protocols into corresponding signature schemes. Discuss their security.
14. Modify the Schnorr identification scheme for the case when the arithmetics is performed in $\operatorname{GF}\left(2^{521}\right)$ and $q=2^{521}-1$ is a Mersenne prime. Discuss its efficiency.
15. Consider the Schnorr identification scheme. Let the set of challenges be binary, i.e. $b \in_{R}\{0,1\}$. Modify the scheme accordingly so the probability of false acceptance is 2^{-t}. Show that the resulting protocol is sound and complete. Design a transcript simulator for it and discuss its efficiency.
16. In the Okamoto scheme, Peggy selected s_{1} at random and assigned $s_{2}=s_{1}$. Discuss the repercussions of her choice of parameters on the scheme. Is the scheme still secure if an attacker knows that $s_{1}=s_{2}$?
17. Consider the Okamoto scheme again. Assume that the trusted authority $T A$ displayed the public parameters with two generators $\alpha_{1}=\alpha_{2}$. Is the scheme secure? Justify your answer.

Chapter 14

INTRUSION DETECTION

14.1 Introduction

Distributed systems emerged as a consequence of rapid progress in both computing and communication technology. A distributed system combines all computing resources into one "super" computer in which the underlying network provides the necessary communication facilities. The main advantage and ironically the major problem of distributed systems is its openness. The openness of the system permits sharing of all resources among users independently of their locations. At the same time, a distributed system is much more vulnerable to a potential attacker due to a distributed nature of the system. The communication network is typically too large to even attempt to protect it via some physical means. Widely used cryptographic methods may either detect illegal activity or render the transmitted data non-intelligent to an attacker. Some channels due to their characteristics may be subject to some specific attacks. For example, all broadcasting channels used for mobile and satellite communication are inherently vulnerable to eavesdropping. An attacker may be aware of some weaknesses in the security guards and choose them to compromise a part or the whole system. In general, the designers of the security guards try to prevent any illegal user to access the system. A numerous examples showed that even the best protection mechanism may fail because: there is a flaw in the design, or more often because the mechanism was not designed to withstand some "exotic" yet practical attacks. So if the security guards fail, should we succumb and do nothing ?

The absolutely last line of defence is an intrusion detection system (IDS). The system assumes that an attacker has outsmarted the security guards and gained an (unauthorised) access. It tries to identify attackers by scanning the behaviour of active users. This is possible if an intrusion exhibits distinctive characteristics from these typical for a non-intrusive activity. A non-intrusive activity is characterised by users' behaviour profiles. A crucial component of any IDS is a database in which these profiles are stored. Auditing which primarily provides information about how and by whom different computing resources are being used, also can be used to establish user behaviour profiles. Profiles should be continually updated to reflect the current behaviour of users. The IDS is in fact an identification system and as such can be characterised by probabilities of false acceptance and false rejection. False acceptance results that the IDS allows an intruder to continue their activity. While false rejection typically causes that the IDS stops an activity of a legitimate user.

Attackers are classified into three broad categories:

1. clandestine - attackers who avoid the IDS or auditing system,
2. masqueraders - attackers who impersonate legitimate users,
3. misfeasors - legitimate users who abuse their privileges.

Note that misfeasors are just authorised users who are trying to circumvent the access control mechanism. Masqueraders are intruders who somehow manage to convince the identification mechanism that they are legitimate users. A typical example of a masquerader is an attacker who has guessed somebody's password. Clandestine are attackers who are usually trying to unmobilize the IDS (and consequently the audit system) so they can act with no trace of their activity in the audit trail.

The IDS works on the presumption that it is possible to identify an abnormal behaviour of a user. A behaviour observed by the IDS can be abnormal for a user although it may not be harmful and may be typical for some body else. An abnormal behaviour indicates that the user may be a masquerader. In contrast, the IDS may detect a user behaviour which violates the rules of the game (the security policy). In this case, the IDS does not need to use the behaviour profile to detect the intrusion the decision is made on the based of the definition of misuse of computer resources. So there are two possible intrusion detection strategies:

- anomaly detection when the observed behaviour deviates from the expected one for the user,
- misuse detection when the observed behaviour indicates an intention to abuse the computer resources.

Anomaly intrusion detection requires the IDS to keep information about typical behaviour profiles for each legitimate user. For instance, if a user always accesses his computer from his office during working hours from 8 am to 6 pm and sometimes remotely via modem from 7 pm to 10 pm , then an abnormal behaviour would be an access to computer from his office at midnight. On the other hand, misuse intrusion detection demands from the IDS to store information about attacks on the security of the system known so far. Note that a user will be marked as an intruder as soon as the IDS comes to the conclusion that he tries to compromise the security using one of the known attack scenarios. Note that the IDS cannot detect intrusions if the applied attack scenarios are not recorded in its database. Normally, managers of the computer systems should update their attack scenario databases as soon as a new attack becomes known.

14.2 Anomaly Intrusion Detection

An IDS based on anomaly intrusion detection is in fact an identification system which uses some measurable characteristics of users activities. A user activity can be characterised by its:

1. intensity - this is reflected by sheer volume of audit records produced for a user per a time unit. A better granulation can be achieved if the intensity is measured in the context of a particular type of activity,
2. mix of different types of activity - this includes not only the collection of different types of activity but also other more specific information as to the order in which the particular activities take place and the context in which a particular sequence of activities occurs.

The intensity measure is very much related to the type of activity and may be described by many specific parameters. In general, it is possible to use two major intensity characteristics: the number of times a given activity occurs per a time unit, or the average amount of time consumed by a single activity. Typical intensity measures for a user are the amount of CPU time, the number of active processes, the number of I/O operations, the number of opened files, etc.

User identity can be characterised by types of activity (for instance, sending e-mail, calling an editor, compiling a program, creating a window, etc.), the order of activities (for example, after login,
a user normally first reads the e-mail, sends e-mail, saves e-mail copies, uses the web browser and prints out some web pages), and the context in which the specific order of activities takes place (i.e. differentiation of a user activity profile depending on whether the user accesses the system from his workstation or from a remote terminal).

14.2.1 Statistical IDS

Implementation of an IDS starts from choosing an appropriate collection of user activity measures. The selection depends on many factors such as: the required probabilities of false acceptance and false rejection, the required memory to store users' profiles, the efficiency of the IDS, etc. Assume that the measures chosen are: m_{1}, \ldots, m_{n}. Each user therefore is assigned the collection of random variables M_{1}, \ldots, M_{n}. Each random variable can be stored in the form of its probability distribution (an expensive option) or in a compressed form which includes the name of the probability distribution together with parameters describing it. The profile of a given user consists of the sequence of random variables (M_{1}, \ldots, M_{n}) evaluated from the audit trail and stored by the IDS usually in a compressed form. The security policy determines which of the chosen measures are more important and which are less significant. To express the current security policy, the manager provides the IDS with a sequence of weights $\left(w_{1}, \ldots, w_{n}\right)$ which need be used together with the corresponding measures to determine the IDS decision about intrusion.

IDS Based on Statistical Measures

Setup: Manager selects a collection of measures $\left(m_{1}, \ldots, m_{n}\right)$ and a vector of weights $\left(w_{1}, \ldots, w_{n}\right)$. For each user, IDS computes and stores the user profile described by (M_{1}, \ldots, M_{n}) from the audit trail.

Processing: For a given time interval, the IDS takes the corresponding audit trail and computes the actual profile of the user defined by $\left(\tilde{M}_{1}, \ldots, \tilde{M}_{n}\right)$. The IDS uses a distance functions $d_{i}=d_{i}\left(M_{i}, \tilde{M}_{i}\right)$ to determine the extend of abnormal behaviour in respect to the measure m_{i}. The distance functions need be treated as functions which operate on the pairs of probability distributions and return an integer which makes sense of the distance.

Decision: If

$$
\sum_{i=1}^{n} w_{i} d_{i} \leq d_{t}
$$

then the behaviour in the time interval is considered to be normal, otherwise the behaviour is abnormal (an intrusion detected). The integer d_{t} is the threshold value which determines the boundary between normal and abnormal behaviour of a user.

Action: If an intrusion is detected, the user activities are suspended or/and the manager is immediate notified. Otherwise, the profile of the user is updated.

While designing a statistical IDS, the following questions need be considered:

- how to select a collection of measures $\left(m_{1}, \ldots, m_{n}\right)$,
- how to define distances $d_{i}=d_{i}\left(M_{i}, \tilde{M}_{i}\right)$,
- how to determine the threshold d_{t}.

The measure selection also called feature choice is crucial to the quality of intrusion detection. Typically, the designer identifies first a collection of all measures accessible in the system. Let the collection be (m_{1}, \ldots, m_{ℓ}), then the designer tries different (if ℓ is small the designer may try all) combinations of features which are most sensitive (a good discrimination of user) and stable (features do not change over time).

Once a collection of good features have been selected, the designer has to define the corresponding collection of distances between two probability distributions (for normal and abnormal behaviour). This works well if the accepted measures are statistically independent. In most cases this assumption does not hold. A typical solution is to combine related features into one anomaly measure using covariance matrices (see IDES [307]). The value of the threshold d_{t} is selected experimentally as it directly influences the two false rejection and false acceptance probabilities. It is also a matter of the security policy.

Statistical intrusion detection assumes that each user can be assigned the unique profile which can be effectively compared with the current approximation of the profile. In general, a user is modelled by a stochastic process which is stationary or whose parameters do not vary dramatically so the update of the profile can cope with the changes of behaviour (the process is quasi stationary). More precise models include non-stationary stochastic processes or generalised Markov chains. Building such models is too expensive to be practical.

14.2.2 Predictive Patterns

Predictive pattern anomaly detection is based on the assumption that it is possible to identify normal and abnormal behaviour of users from ordered sequences of events generated by them. So a profile of a user is a collection of "typical" sequences. A probabilistic nature of patterns of events generated by users can be reflected by assigning conditional probabilities to transitions to other events provided a given typical sequence has occurred. For instance, a typical pattern can be an ordered sequence of events

$$
\left\langle e_{1}, e_{2}, e_{3}\right\rangle
$$

with $P\left(e_{4} \mid\left\langle e_{1}, e_{2}, e_{3}\right\rangle\right)=0.1$ and $P\left(e_{5} \mid\left\langle e_{1}, e_{2}, e_{3}\right\rangle\right)=0.9$. This reads: if a user generates the sequence $\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ then only two events e_{4} and e_{5} may follow it with the probabilities 0.1 and 0.9 , respectively. A typical sequence $\left\langle e_{1}, \ldots, e_{n}\right\rangle$ together with associated conditional probabilities $P\left(e_{i} \mid\left\langle e_{1}, \ldots, e_{n}\right\rangle\right)$ for some i is called a rule. Note that the rule can be used only if a user applies the correct event prefix $\left\langle e_{1}, \ldots, e_{n}\right\rangle$.

IDS Based on Predictive Patterns

Setup: For each user, the IDS computes and stores the user profile described by a collection of rules $\left\{R_{1}, \ldots, R_{n}\right\}$ computed from the audit trail.

Processing: For a given time interval, the IDS takes the corresponding audit trail and computes conditional probabilities associated with the rules stored in the user profile. The IDS uses a distance functions $d_{i}(i=1, \ldots, n)$ to determine the extend of abnormal behaviour in respect to the rule R_{i}. The distance functions need be treated as functions which operate on the pairs of conditional probability distributions and return an integer which makes sense of the distance.

Decision: For a chosen by manager weights w_{i} if

$$
\sum_{i=1}^{n} w_{i} d_{i} \leq d_{t}
$$

then the behaviour in the time interval is considered to be normal, otherwise the behaviour is abnormal (an intrusion detected). The integer d_{t} is the threshold value which determines the boundary between normal and abnormal behaviour of a user.

Action: If an intrusion is detected, the user activities are suspended or/and the manager is immediate notified. Otherwise, the profile of the user is updated.

A major problem with this approach is that the rules can be only used if they are triggered by their event prefix. If none or few of the event prefixes were generated by a user, it is impossible to make any reasonable decision and the IDS simply fails.

Advantages of this approach include the ability of the system to be adapted for misuse detection. A nice property of the system is that it works very well for users whose behaviour exhibits a strong sequential pattern (see [495]).

14.2.3 Neural Networks

Neural networks sometimes offer a simple and efficient solution in situations when other approaches fail. To use a neural network for intrusion detection, it is enough first to train the neural net on a sequence of events generated by a user and later to use the net as a predictor of the next event.

IDS Based on Neural Networks

Setup: For each user, the IDS maintains a neural net. The neural net is being trained on a sequence of events generated by the user.

Processing: The IDS repeatedly considers sequences of n events generated by the user. Each sequence is fed to the neural net. The network predicts the next event \tilde{e} and compares it with the event e issued by the user.

Decision: If

$$
\tilde{e}=e
$$

then the behaviour of the user is considered to be normal, otherwise the behaviour is abnormal (an intrusion detected).

Action: If an intrusion is detected, the user activities are suspended or/and the manager is immediate notified.

The selection of the parameter n is an important issue. If n is too small, the network will not be able to predict the next event (a lot of false alarms). On the other hand, if n is too large, then there is no relations between the events at the beginning and at the end of sequence. Evidently, the IDS will fail if a user selects the next event nondeterministically. To fix this, the neural net needs to exit a number of typical events.

14.3 Misuse Intrusion Detection

Note that anomaly intrusion detection always compares the current activity with the expected one defined for a user and can be seen as a user identification. Misuse intrusion detection does not care whether users can be properly identified as long as they do not try to abuse the computer resources. From the IDS point of view, there are only two classes of users: friends and foes. To define the class of foes, it is necessary to determine precisely the meaning of intrusion. This is done by providing a list of intrusion scenarios or attacks (also called intrusion signatures). An intrusion signature defines

- order of events (typically, commands),
- resources involved (files, processes, CPU, memory, etc.),
- conditions on resources and events,
which compromises the security of the system. Intrusion signatures can be categorised into the following classes:

1. simple signatures - the existence of a single event in the audit trail or/and the existence of a trace of intrusion attempt is enough to detect intrusion,
2. event-based signatures - the existence of an ordered sequence of events is enough to conclude that the user is an intruder,
3. structured signatures - the signature can be written as a regular expression,
4. unstructured signatures - all signatures which do not fall into one of the above classes.

Having a collection of intrusion signatures, the IDS may apply a variety of different methods to detect that a user attempts to attack the system using some intrusion scenario recorded in the system as the corresponding intrusion signature. Some typical approaches involve the application of

- expert systems and
- finite state machines.

An expert system implementation of the IDS encodes the collection of intrusion signatures into if-then rules. A rule not only reflects a single intrusion signature (if part) but also specifies what action needs to be undertaken when an intrusion is detected (then part). The IDS takes an audit trail and investigates it to check whether or not some of the rules are active (or an attack is under way).

In the finite state machine approach, it is required for signatures to be translated into corresponding state transitions of the underlying machine. The states of the machine are divided into three classes: save (no intrusion detected), suspicious (advanced in one of the signatures), intrusion (an intrusion detected and the corresponding signature is active).

14.4 Uncertainty in Intrusion Detection

The most important issue related to an effective intrusion detection is the adoption of an appropriate mathematical model which allows to generate user profiles efficiently and facilitates an effective and accurate decision making process for intrusion detection. Due to an non-deterministic nature of a user behaviour, the decision about intrusive or non-intrusive behaviour must take into account all evidences for and against the claim. There are several mathematical models to choose from. Two most popular are: the probabilistic model and the Dempster-Shafer model [131, 457]. In the probabilistic model, the decision about intrusion is based on the probabilistic assessment of the body of evidence. The Dempster-Shafer theory of evidence can be seen as a generalisation of the probability theory.

14.4.1 The Probabilistic Model

Given an event space Ω over random events e_{1}, \ldots, e_{n} such that $P\left(e_{1} \cup \ldots \cup e_{n}\right)=1$ or $\bigcup_{i=1}^{n} e_{i}=\Omega$. The Bayes theorem asserts that for any random event $B \in \Omega(P(B)>0)$

$$
\begin{equation*}
P\left(e_{i} \mid B\right)=\frac{P\left(e_{i}, B\right)}{P(B)}=\frac{P\left(B \mid e_{i}\right) P\left(e_{i}\right)}{\sum_{e_{j} \in \Omega} P\left(B \mid e_{j}\right) P\left(e_{j}\right)} . \tag{14.1}
\end{equation*}
$$

$P\left(e_{i} \mid B\right)$ is called a posteriori probability and $P\left(e_{j}\right)$ are a priori probabilities. From an intrusion detection point of view, the space Ω defines a collection of events which are occurring with different probabilities for normal and intrusive behaviour. Define a hypothesis I "there is an intrusion". The complement \bar{I} reads "there is NO intrusion". Clearly, $P(I \cup \bar{I})=1$. From Equation (14.1), we can obtain

$$
\begin{equation*}
P(I \mid e)=\frac{P(I, e)}{P(e)}=\frac{P(e \mid I) P(I)}{P(e \mid I) P(I)+P(e \mid \bar{I}) P(\bar{I})} \tag{14.2}
\end{equation*}
$$

To characterise evolution of validity of hypothesis I, we introduce four parameters: priori and posteriori odds and positive and negative likelihoods. A priori odds for I are the following ratio

$$
O(I)=\frac{P(I)}{P(\bar{I})}
$$

A posteriori odds are defined as

$$
O(I \mid e)=\frac{P(I \mid e)}{P(\bar{I} \mid e)}
$$

An odds ratio $O(I)$ is a positive rational. For a hypothesis I such that $P(I)=P(\bar{I})=0.5$, the a priori odds $O(I)=1$. If the value $O(I)>1$, then $P(I)>P(\bar{I})$. If the value $O(I)<1$, then $P(I)<P(\bar{I})$. A posteriori odds provide a quantitative measurements of validity of hypothesis I after the observation of a random event e.

The positive likelihood is the ratio

$$
S(e \mid I)=\frac{P(e \mid I)}{P(e \mid \bar{I})}
$$

and similarly the negative likelihood is the ratio

$$
N(e \mid I)=\frac{P(\bar{e} \mid I)}{P(\bar{e} \mid \bar{I})}
$$

The positive likelihood characterises the event e in terms of its relation to intrusion. If $S(e \mid I)>1$ then the event e confirms the hypothesis I, otherwise the event is consistent with the anti-hypothesis \bar{I}. If $S(e \mid I) \approx 1$, the event is neutral.

Consider some properties of the parameters.
Theorem 14.1 Given an event space Ω and an event $e \in \Omega$. Then

$$
\begin{equation*}
O(I \mid e)=S(e \mid I) O(I) \tag{14.3}
\end{equation*}
$$

where I is the hypothesis that there is an intrusion.

Proof: According to the definitions, we have the following sequence of equations

$$
\begin{aligned}
S(e \mid I) O(I) & =\frac{P(e \mid I)}{P(e \mid \bar{I})} \frac{P(I)}{P(\bar{I})}=\frac{P(e \mid I) P(I)}{P(e \mid \bar{I} P(\bar{I})} \\
& =\frac{P(e, I)}{P(e, \bar{I})}=\frac{P(I \mid e) P(e)}{P(\bar{I} \mid e) P(e)} \\
& =\frac{P(I \mid e)}{P(\bar{I} \mid e)}=O(I \mid e)
\end{aligned}
$$

which proves the theorem.

Theorem 14.2 Assume that there is a collection of events e_{1}, \ldots, e_{n} such that $P\left(e_{1}, \ldots, e_{n} \mid I\right)=$ $\prod_{i=1}^{n} P\left(e_{i} \mid I\right)$ and $P\left(e_{1}, \ldots, e_{n} \mid \bar{I}\right)=\prod_{i=1}^{n} P\left(e_{i} \mid \bar{I}\right)$, then

$$
\begin{equation*}
O\left(I \mid e_{1}, \ldots, e_{n}\right)=O(I) \prod_{i=1}^{n} S\left(e_{i} \mid I\right) \tag{14.4}
\end{equation*}
$$

Proof: Consider the following sequence of transformations

$$
\begin{aligned}
O\left(I \mid e_{1}, \ldots, e_{n}\right) & =\frac{P\left(I \mid e_{1}, \ldots, e_{n}\right)}{P\left(\bar{I} \mid e_{1}, \ldots, e_{n}\right)}=\frac{P\left(I, e_{1}, \ldots, e_{n}\right)}{P\left(\bar{I}, e_{1}, \ldots, e_{n}\right)} \\
& =\frac{P\left(e_{1}, \ldots, e_{n} \mid I\right) P(I)}{P\left(e_{1}, \ldots, e_{n} \mid \bar{I}\right) P(\bar{I})}=\prod_{i=1}^{n} \frac{P\left(e_{i} \mid I\right)}{P\left(e_{i} \mid \bar{I}\right)} O(I) \\
& =O(I) \prod_{i=1}^{n} S\left(e_{i} \mid I\right)
\end{aligned}
$$

which proves Equation (14.4). If one observes that

$$
\frac{P\left(e_{i} \mid I\right)}{P\left(e_{i} \mid \bar{I}\right)}=\frac{P\left(I \mid e_{i}\right)}{P\left(\bar{I} \mid e_{i}\right)} \frac{P(\bar{I})}{P(I)}=\frac{O\left(I \mid e_{i}\right)}{O(I)}
$$

then Equation (14.4) can be rewritten as

$$
O\left(I \mid e_{1}, \ldots, e_{n}\right)=\frac{1}{O(I)^{(n-1)}} \prod_{i=1}^{n} O\left(I \mid e_{i}\right)
$$

Consider an example. Let the space $\Omega=\left\{e_{0}, e_{1}\right\}=\{0,1\}$. Time is tied up by defining a sequence of random variables E_{1}, E_{2}, \ldots for the corresponding time instances. We assume that users generate events for every time instance i so $P\left(E_{i}=e\right)$ is the probability that the user generated event $e \in \Omega$ at the time i. We also assume that $P(I)=P(\bar{I})=1 / 2$ and $P\left(E_{1}=0 \mid I\right)=P\left(E_{1}=1 \mid I\right)=1 / 2$, $P\left(E_{1}=0 \mid \bar{I}\right)=P\left(E_{1}=1 \mid \bar{I}\right)=1 / 2$.

Normal behaviour is characterised by the following conditional probabilities:

$$
\begin{aligned}
& P_{\bar{I}}\left(E_{i+1}=0 \mid E_{i}=0\right)=1 / 4, \\
& P_{\bar{I}}\left(E_{i+1}=1 \mid E_{i}=0\right)=3 / 4, \\
& P_{I}\left(E_{i+1}=1 \mid E_{i}=1\right)=3 / 4, \\
& P_{\bar{I}}\left(E_{i+1}=0 \mid E_{i}=1\right)=1 / 4,
\end{aligned}
$$

for $i=1,2, \ldots$. Intrusive behaviour differs from the normal one and is characterised by the following conditional probabilities:

$$
\begin{aligned}
& P_{I}\left(E_{i+1}=0 \mid E_{i}=0\right)=1 / 4+\varepsilon, \\
& P_{I}\left(E_{i+1}=1 \mid E_{i}=0\right)=3 / 4-\varepsilon, \\
& P_{I}\left(E_{i+1}=1 \mid E_{i}=1\right)=3 / 4-\varepsilon, \\
& P_{I}\left(E_{i+1}=0 \mid E_{i}=1\right)=1 / 4+\varepsilon,
\end{aligned}
$$

for $i=1,2, \ldots$.
The initial odds $O(I)=\frac{P(I)}{P(I)}=1$ can be computed from the assumed probability distribution for I. Similarly $O\left(I \mid E_{1}=0\right)=O\left(I \mid E_{1}=1\right)=1$. In fact, the probability $P(I)$ can be selected
arbitrarily and the IDS uses the initial odds as a benchmark for further evaluation of validity of the hypothesis I. Compute the following probabilities

$$
\begin{aligned}
P\left(E_{2}=0 \mid I\right) & =P\left(E_{1}=0 \mid I\right) P_{I}\left(E_{2}=0 \mid E_{1}=0\right)+P\left(E_{1}=1 \mid I\right) P_{I}\left(E_{2}=0 \mid E_{1}=1\right)=\frac{1}{4} \\
P\left(E_{2}=1 \mid I\right) & =1-P\left(E_{2}=0 \mid I\right)=\frac{3}{4} \\
P\left(E_{2}=0 \mid \bar{I}\right) & =P\left(E_{1}=0 \mid \bar{I}\right) P_{\bar{I}}\left(E_{2}=0 \mid E_{1}=0\right)+P\left(E_{1}=1 \mid \bar{I}\right) P_{\bar{I}}\left(E_{2}=0 \mid E_{1}=1\right) \\
& =\frac{1}{2}\left(\frac{1}{4}+\varepsilon\right)+\frac{1}{2}\left(\frac{1}{4}+\varepsilon\right)=\frac{1}{4}+\varepsilon \\
P\left(E_{2}=1 \mid \bar{I}\right) & =1-P\left(E_{2}=0 \mid \bar{I}\right)=\frac{3}{4}-\varepsilon \\
P\left(E_{2}=0\right) & =P\left(E_{2}=0 \mid I\right) P(I)+P\left(E_{2}=0 \mid \bar{I}\right) P(\bar{I})=\frac{1+2 \varepsilon}{4} \\
P\left(E_{2}=1\right) & =1-P\left(E_{2}=0\right)=\frac{3-2 \varepsilon}{4} \\
P\left(I \mid E_{2}=0\right) & =\frac{P\left(E_{2}=0 \mid I\right) P(I)}{P\left(E_{2}=0\right)}=\frac{1}{2+4 \varepsilon} \\
P\left(\bar{I} \mid E_{2}=0\right) & =1-P\left(I \mid E_{2}=0\right)=\frac{1+4 \varepsilon}{2+4 \varepsilon} \\
P\left(I \mid E_{2}=1\right) & =\frac{P\left(E_{2}=1 \mid I\right) P(I)}{P\left(E_{2}=1\right)}=\frac{3}{6-4 \varepsilon} \\
P\left(\bar{I} \mid E_{2}=1\right) & =1-P\left(I \mid E_{2}=0\right)=\frac{3-4 \varepsilon}{6-4 \varepsilon}
\end{aligned}
$$

A posteriori odds are

$$
O\left(I \mid E_{2}=0\right)=\frac{1}{1+4 \varepsilon} \text { and } O\left(I \mid E_{2}=1\right)=\frac{3}{3-4 \varepsilon}
$$

So if $\varepsilon>0$, the event $E_{2}=0$ confirms the anti-hypothesis \bar{I} and the event $E_{2}=1$ is consistent with the hypothesis I. Knowing a sequence of observations ($E_{2}, E_{3}, \ldots, E_{n}$), we can compute the corresponding odds to see whether or not they confirm or contradict the hypothesis I.

14.4.2 Dempster-Shafer Theory

The theory is a generalisation of the probability theory. Dempster [131] laid the foundations and Shafer [457] later generalised it so it can be used for evaluation of uncertainty. The theory is especially applicable for intrusion detection using expert systems ([305]).

Let $\Omega=\left\{e_{1}, \ldots, e_{n}\right\}$ be a set of elements. All elements e_{i} are disjoint for $i=1, \ldots, n$. Given a function

$$
m: 2^{\Omega} \rightarrow[0,1]
$$

such that $m(\emptyset)=0$ and $\sum_{\omega \subseteq \Omega} m(\omega)=1$. The function m is called basic probability assignment or mass distribution. From an IDS point of view, the collection Ω can be seen as the set of all elementary events (also called hypothesis). The observations $\omega \in 2^{\Omega}$ accessible to the IDS are predominantly complex events involving more than one elementary event. The IDS wants to evaluate the validity of some hypotheses (elementary events).

The belief function $\operatorname{Bel}: 2^{\Omega} \rightarrow[0,1]$ is defined as

$$
\begin{equation*}
\operatorname{Bel}(\omega)=\sum_{\alpha \subseteq \omega} m(\alpha) \tag{14.5}
\end{equation*}
$$

for $\omega \subseteq \Omega$. The belief function measures the probability that a given subset $\omega \in 2^{\Omega}$ occurs as a separate event or as the superset. The belief function $\operatorname{Bel}(\omega)=0$ if and only if $m(\alpha)=0$ for all $\alpha \subseteq \omega$. In other words, the event ω never happens.

The plausibility function $\mathrm{Pl}: 2^{\Omega} \rightarrow[0,1]$ is defined as

$$
\begin{equation*}
P l(\omega)=\sum_{\omega \cap \alpha \neq \emptyset} m(\alpha) \tag{14.6}
\end{equation*}
$$

for $\omega \in 2^{\Omega}$. The plausibility function $P l(\omega)$ indicates the probability of all events α that relate to ω $(\omega \cap \alpha \neq \emptyset)$. It is easy to observe that $\operatorname{Pl}(\omega) \geq \operatorname{Bel}(\omega)$ as each $\alpha \subseteq \omega$ implies that $\alpha \cap \omega \neq \emptyset$. The belief function $\operatorname{Bel}(\omega)$ defines the lower bound on the confidence in ω while the plausibility function determines the upper bound.

Let $\Omega=\{a, b, c\}$. Then a possible mass distribution can be expressed by the function m such that

$$
\begin{array}{lll}
m(\{a, b, c\})=\frac{4}{16} ; & & \\
m(\{a, b\})=\frac{4}{16} ; & m(\{a, c\})=\frac{2}{16} ; & m(\{b, c\})=\frac{1}{16} ; \\
m(\{a\})=\frac{2}{16} ; & m(\{b\})=\frac{1}{16} ; & m(\{c\})=\frac{2}{16} ; \quad m(\emptyset)=0 .
\end{array}
$$

The belief and plausibility function for $\{a, b\}$ is

$$
\begin{aligned}
\operatorname{Bel}(\{a, b\}) & =m(\{a\})+m(\{b\})+m(\{a, b\})=\frac{7}{16} \\
\operatorname{Pl}(\{a, b\}) & =m(\{a\})+m(\{b\})+m(\{a, b\})+m(\{a, c\})+m(\{b, c\})+m(\{a, b, c\})=\frac{14}{16}
\end{aligned}
$$

Consider two $\operatorname{Bel}(\omega)$ and $P l(\omega)$. If we define the complement of ω as $\bar{\omega}=\Omega \backslash \omega$, then it is easy to show that

$$
\operatorname{Pl}(\omega)=1-\operatorname{Bel}(\bar{\omega})
$$

In other words, $\operatorname{Bel}(\bar{\omega})=1-P l(\omega)$ measures the amount of evidence against the hypothesis (event) ω while $\operatorname{Bel}(\omega)$ evaluates evidence in favour of ω. There are the following possible cases:

1. $P l(\omega)-\operatorname{Bel}(\omega)=1$. This means that $P l(\omega)=1$ and $\operatorname{Bel}(\omega)=0$ or in other words, all events for which ω is a superset never happen and for the rest of events, ω is a proper subset. So every single observation contains ω as the constant - it is impossible to say anything about ω itself. There is no evidence against and for ω.
2. $P l(\omega)=0$ (this implies that $\operatorname{Bel}(\omega)=0$). Any event which intersects ω never happens. The hypothesis (event) is false.
3. $\operatorname{Bel}(\omega)=1$ (this implies that $\operatorname{Pl}(\omega)=1$). Any event must be a subset of ω. The hypothesis (event) is true.
4. $\operatorname{Pl}(\omega)=\varepsilon_{1}$ and $\operatorname{Bel}(\omega)=\varepsilon_{2}\left(\varepsilon_{1}>\varepsilon_{2}\right.$ and $\left.\varepsilon_{1}, \varepsilon_{2} \in[0,1]\right)$. There is an evidence in favour of ω $\left(\operatorname{Bel}(\omega)=\varepsilon_{2}\right)$ and there is an evidence against $\omega\left(\operatorname{Bel}(\bar{\omega})=1-\varepsilon_{1}\right)$.

Observe that in the probability theory always $P(\bar{\omega})=1-P(\omega)$. In the Dempster-Shafer theory this could be translated into the requirement that $\operatorname{Pl}(\omega)=\operatorname{Bel}(\omega)$.

The center piece of the theory is the Dempster rule of combination. Let Ω be the set of elementary events and m_{1}, m_{2} be two basic probability assignments. Then the combined probability assignment is a function $m_{1} \oplus m_{2}: 2^{\Omega} \rightarrow[0,1]$ such that

$$
m_{1} \oplus m_{2}(\omega)=\frac{\sum_{\alpha \cap \beta=\omega} m_{1}(\alpha) m_{2}(\beta)}{\sum_{\alpha \cap \beta \neq \emptyset} m_{1}(\alpha) m_{2}(\beta)}
$$

for all $\omega \neq \emptyset$. Briefly, the rule allows to construct a combined probability assignment from two pieces of evidence (two basic probability assignments).

The more "relaxed" setting which allows to measure to some extend independently evidence against and for a hypothesis, provides a convenient tool for IDS systems based on expert systems. For more information on the Dempster-Shafer theory and its applicability to reasoning in the presence of uncertainty, the reader is referred to [305].

14.5 A Generic Intrusion Detection Model

One of the earliest proposals of using audit trails and system logs for intrusion detection was presented in [143] in the form of an intrusion detection model. Although dated, the model is still valuable since it is accurate in describing the architecture of many current IDSs (Figure 14.1).

Figure 14.1: A generic intrusion detection model
The Event Generator in the model is purposely generic, and the events may include audit records, network packets or other observable activities. The Activity Profile represents the global state of the intrusion detection system, and it contains variables that are used to calculate the behaviour of the system based on some predefined statistical measures. The variables are associated with certain pattern specifications, which come into play when filtering the event records. During filtering, any matching records will then provide data to update the values stored in these variables. Furthermore, each variable is associated with one of the statistical measures built into the system, and is therefore responsible for updating the system state based on the information obtained from the matching record.

Using a history of common activities conducted by a typical user, the Activity Profile can develop pattern templates which are then applied to newly created subjects (eg. users) and objects (eg. files). When new users of new files are introduced into the system, these templates can be used to instantiate new profiles for them. The Rule Set represents a generic inferencing mechanism, such as a rule-based system. It uses event records, anomaly records and other data to control the activity of the other components of the IDS and to update their state.

Although the above model of [143] is generic, it does provide the basic framework for the components of an intrusion detection system. Most IDSs follow the basic concept of formulating statistical metric for identifying intrusions, computing their values, and recognising the anomalies in the resulting values. IDSs differ typically in three aspects, namely:

- in how the rules making-up the Rule Set are determined,
- on whether the Rule Set is fixed a priori or if it can adapt itself depending on the type of intrusion,
- on the nature of the interaction between the Rule Set and the Activity Profile.

The notion that the Activity Profile module detects anomalies and that the Rule Set performs misuse detection will remain the same in most IDSs. Differing techniques may be employed in each of the modules without changing the conceptual view of the model.

Audit trails and system logs represent the main source of input data for IDSs. A wide of range of audit data and log types can be obtained, many of which are dependent on the particular host or network which generated them. Such data can be used in a number of ways [77] in order to:

- review the access-patterns to individual objects,
- provide access histories of specific users and specific processes,
- initiate the use of protection mechanisms offered by the system,
- discover repeated attempts by users and outsiders to bypass the protection mechanisms,
- reveal the exercise of privileges when a user takes-on a functionality or role with privileges higher than the usual user privileges,
- deter penetrators from repeatedly trying (successfully or otherwise) to bypass the system protection mechanisms,
- provide assurance to honest users that attempts to bypass the protection mechanisms are being recorded and discovered, and thus are being addressed by system administration.

For the development of trusted systems [145] auditable events are monitored in order to gather auditable data. Events that are typically monitored include (but are not limited to):

- the start and end of user identification and user authentication mechanisms,
- the introduction (deletion) of objects into (from) the user address space,
- actions by system administrators (including operators and security administrators),
- invocation and use of external services (eg. printer servers and printer devices),
- all security-related events (depending on the definition of these events in a given environment).

The information collected about events are wide ranging, but at the very least should include the date and time of the event, the type of event, the identifier of the subject (user/process triggering the event), the success/failure indication, the name/identity of the objects (introduced or deleted), and the description of the actions taken by the system administrator. In the case of specific securityrelated events, the origin of the request for user identification/authentication must also be noted.

14.6 Host Intrusion Detection Systems

Most host-IDSs follow the basic model described in Section 14.5. In the following we briefly review some of the major efforts in host-based intrusion detection. The motivation of this review is gain an overall understanding of the basic elements that are common in most, if not all, major intrusion detection systems.

14.6.1 IDES

The Intrusion Detection Expert System (IDES) is one of the earliest projects on intrusion detection. Developed in 1985 at SRI International, IDES employs user profiles and an expert system to decide on intrusion events. The general goal of IDES is to provide a system-independent mechanism to the realtime detection of intrusions, hence its focus on providing an expert system that detects anomalous behaviours based on complex statistical methods.

IDES is designed to run continuously, and is based on two beliefs [307]:

1. intrusions, whether successful or attempted, can be detected by flagging departures from historically established norms of behaviour for individual users,
2. known intrusion scenarios, know system vulnerabilities, and other violations of a system intended security policy (that is, a priori definition of what is to be considered suspicious) are best detected through the use of an expert system rule base.

These two basic assumptions of thought have prevailed in the subsequent prototypes of IDES.

Figure 14.2: The Intrusion Detection Expert System (IDES)
The components of IDES are shown in Figure 14.2. The Receiver module parses the received audit records and validates it, with the results being deposited in the collection of Audit Data. The two main subsystems of IDES consist of the components related to the anomaly detection and those within the expert system. In the statistical anomaly detector, the audit data is first used by the Active Data Collector which produces Active Data, which consists of information about all user activities, group activities and remote host activities since the last time the profiles were updated. This data is then used by the Anomaly Detector which compares the data against the existing Profile Data [261]. If an anomaly is found, an anomaly record is created and deposited in the Anomaly Data database, which is accessible through the Security Administrator Interface. Daily updates on the profiles are conducted by the Profile Updater. In the mean time, the Expert System works in parallel with the Active Data Collector, receiving the Audit Data as input. The Expert System checks for actions that can be considered intrusions, based the user's profile. Although the initial versions of the Expert System suffers from the limitation of working only on known attack methods and vulnerabilities, subsequent versions of IDES have extended its functions to a networked environment, where several interconnected hosts send the audit information to a central site that performs the intrusion analysis.

IDES was developed by SRI over a number of years. An initial prototype system was developed for Sun/2 and Sun/3 systems to monitor a DEC 2065 which was running SRI's modified version of TOPS-20. The Intrusion Detection Model [143] framework is the basis for the initial IDES prototype
system [306]. This early prototype system was modified over many years to incorporate new and more sophisticated detection techniques, interfaces and allows for scalability. Furthermore, it was later migrated from an Oracle relational database system using (Pro* C, C and SQL on IBM/DEC/Sun systems with SunView graphical interface environment) to a C based Sun Unix environment using an object-oriented X graphical interface library.

14.6.2 Haystack

Haystack is an intrusion detection system developed by the Los Alamos National Laboratories (LANL), with the initial design and system prototyping carried out by Tracor Applied Sciences and Haystack Laboratories. Haystack was not designed to work in a real-time environment, but rather as an offline batch system. Its aim was to aid the US Air Force computer system security officers (SSO) in analysing data by reducing the voluminous audit data on the Air Force's Unisys 1100/60 mainframes. Initially Haystack existed as two components, one part running on the Unisys mainframe and the other on the Zenith Z-248 PC [473]. The model followed by Haystack was that of [143].

Figure 14.3: Haystack components

The goals of Haystack were:

- to enable a computer security policy to be enforced by improving the ability to detect and respond to security policy violations,
- to develop a software solution that conforms to POSIX and ANSI standards,
- to enable the SSO to monitor large volumes of raw audit data by summarising and reporting events deemed suspicious.

The components of Haystack are shown in Figure 14.3. Here the audit data on the Unisys mainframe is given as input to a Preprocessor which extract the relevant details. The result is written to a Canonical Audit Trail (CAT) file and the file written to a 9 -track tape. At a later time the PC will then read the file from the tape, logging any obvious anomalies. A new session history record is created for any users appearing in the file. This history is also used to update a database that contains the user's past behaviour. Haystack looks for misuses in the following ways:

Pattern based analysis. This is used to select important events that occur in the users session. The audit records are selected based on the following behaviours:

1. Modify Events: these include all successful and unsuccessful events that modify system security.
2. Tagged Events: these are system subjects and objects that have been marked by the security officer as needing more detail logging and analysis.

Statistical based analysis. The statistical analysis is based on two computations (the Cumulative Weighted Multinomial method and the Wilcoxon-Mann-Whitney Rank Test). The first is computed by comparing a user's session with the expected ranges of behaviour, resulting in a "suspicion quotient". Any user whose quotient is outside the acceptable range is reported to the security officer. The second is computed by comparing the user's session behaviour with previous sessions, with the aim of detecting users who are slowly trying to adapt their profiles over time, effectively modifying a normal behaviour pattern to one that is unauthorised.

Although Haystack has provided considerable aid to the security officers in analysing the audit data, one of its shortcomings is precisely its lack of real-time capabilities. This opens a gap in time between the data collection and auditing, which may allow an intruder to break into the system.

14.6.3 MIDAS

MIDAS or Multics Intrusion Detection and Alerting System is an expert system that provides intrusion and misuse detection in real-time. It was designed by the National Computer Security Center (NCSC) for their networked mainframe (called Dockmaster), which is a Honeywell DPS 8/70. The expert system itself has several components, some of which are actually running on a separate Symbolics List machine [456]. Figure 14.4 shows the components of MIDAS.

Figure 14.4: MIDAS components

When Multics system generates an audit record, the Preprocessor filters data which are not needed by MIDAS. It then formats the remaining data into an assertion for the Fact-Base, which is sent to the Fact-Base through the Network Interface which links the two computer systems. The Statistical Database contains statistics for users and the system, and defines the normal state for Dockmaster. The new assertion that is introduced into the Fact-Base may result in a binding between the new fact and an existing rule in the Rule-Base, and may even cause the firing of several other rules. Thus, the new assertion may change the state of the system and cause a system response to a suspected intruder. Clearly, the performance of MIDAS as a whole is largely dependent on the rules in the Rule-Base.

Three different types of rules exist, namely immediate attack heuristics, user anomaly heuristics and system state heuristics. The immediate attack rules only superficially examines a small amount of data items without applying any statistical analysis. The aim is to find auditable events that are abnormal enough to raise suspicions. The user anomaly rules employ statistical analysis to detect
deviations in a user's profile as compared to previous histories. The system state rules are similar to the user anomaly rules, except these are applied to the system itself.

14.7 Network Intrusion Detection Systems

Network-IDSs are intrusion detection systems that work on the basis of monitoring traffic within a network segment. In contrast to host-IDSs that monitor and detect intrusions within a host, networkIDSs observe raw network traffic and detect intrusions from that traffic information. Unlike host-IDSs that are in effect insulated from the low-level network events, network-IDSs can correlate attacks occurring against multiple machines within the monitored network segment. Typically, network-IDSs passively monitors the network, copying packets as they pass-by regardless of the packet's destination.

One major advantage of network-IDSs that carry-out passive protocol analysis is that the action of monitoring occurs at the lowest levels of a network's operation, thereby they are both unobtrusive and difficult to evade. In fact, unless an external attacker uses other means to find-out the existence of a network-IDS, typically the attacker will be unaware of the network-IDS.

14.7.1 NSM

The Network Security Monitor (NSM) was developed at UC-Davis and performs traffic analysis on a broadcast LAN in order to detect unusual behaviour and traffic patterns, and therefore detect possible intrusions (Figure 14.5). In contrast to host-based intrusion detection systems running on a host -

Figure 14.5: The Network Security Monitor
which consume the host's resources - NSM runs independently of the hosts being monitored in the LAN. These monitored hosts are in fact unaware of the passive monitoring behaviour of NSM. Hence, intruders will also be unaware of the traffic monitoring that is occurring.

NSM is based on the Interconnected Computing Environment Model (ICEM) [356] which consists six layers arranged in a hierarchic fashion. These layers are briefly as follows (bottom to top) with one layer providing input for the next layer above it:

- Packet layer: accepts bit-stream input from the broadcast LAN, divides input into complete packets and attaches a timestamp to each packet.
- Thread layer: accepts time-augmented packets and correlates them into unidirectional data streams. Each stream represents data transferred from one host to another using a particular protocol (eg. TCP/IP or UDP/IP) through a given port. The stream or thread is then mapped to a thread-vector.
- Connection layer: attempts to pair one thread with another to represent a bi-directional stream or host-to-host connection. The pairs are then represented by a connection-vector consisting
of combinations of thread vectors. After the connection-vectors are analysed, their reduced representation is passed up to the next layer.
- Host layer: builds a host-vector from the reduced connection vector, representing the network activities of a host.
- Connected-network layer: creates a graph from the host-vectors representing the various connections between hosts in the network. Sub-graphs (or connected-network-vector) can be generated and compared against historical connected sub-graphs. Here, the user can begin to query the system about the resulting graph (eg. existence of path between 2 hosts through intermediate hosts).
- System layer: creates a single system vector from the collection of connected-network-vectors, representing the entire network.

The host vectors and connected-network vectors are used as the first type of input to an expert system within NSM. The components of these vectors which are of interest to the expert system are host ID, host address, security state (an evaluation value of a given host), number of data paths to a host, and the data path tuples. A tuple has four elements representing a data path to/from a host (other-host address, service ID, initiator tag and security state).

The second type of input is the expected traffic profile, which are the expected data paths (or connections) between hosts, and a corresponding service profile (that is, the expected behaviour things like telnet, mail, finger and others). The next type of input is a representation of the knowledge of the system regarding the capabilities of the services (for example, a telnet service has more capabilities than ftp$)$. The fourth input is the level of authentication needed for each service. The fifth is the level of security for each of the machines in the host (based, for example, on the ratings by the National Computer Security Center (NCSC)). The last input to the expert system is the signatures of past attacks to hosts.

NSM employs the notion of the security state which represents the "suspicion level" associated with particular network connection. When deciding on the security state for a connection, four factors are taken into consideration:

1. Abnormality of a connection: this refers to the probability of the connection occurring (ie. often or rare) and the behaviour (ie. traffic volume). This is established by comparing against the profile for that connection. Thus, for example, if a connection is rare (abnormality high) and traffic is unusually high in one direction, then the abnormality of the connection is high.
2. Security level used for the connection: this is based on the capabilities of the service and the authentication typically required for that service. For example, TFTP (high capability, no authentication) is given a high security level. Telnet (high capability, requires authentication) has lower security level than TFTP.
3. Direction of connection sensitivity level: this is based on the sensitivity level of the connected hosts and which host initiated the connection. Example: if a low-level host attempts to connect to a high-level host, then the direction of connection sensitivity is high.
4. Matched signatures of previous attacks.

NSM has been used with interesting results. During a two-month period at UC Davis, NSM analysed over 110,000 connections. Within these, NSM correctly detected 300 intrusions, whereas only 1 percent of the intrusions were detected independently by the system administrators.

14.7.2 DIDS

The Distributed Intrusion Detection System (DIDS) [475, 476] is a project representing an extension of the NSM, with the aim of adding two features missing from NSM. These are the ability to monitor the behaviour of a user who is connected directly to the network using a dial-up line (and who therefore may not generate observable network traffic), and the ability to allow intrusion detection over encrypted data traffic. The DIDS project is sponsored by UC Davis, the Lawrence Livermore National Labs (LLNL), Haystack Laboratory and the US Air Force.

Figure 14.6: The Distributed Intrusion Detection System (DIDS)

The architecture of DIDS consists of three components (Figure 14.6), namely Host Monitors, the LAN Monitor and the DIDS Director. Each host in the monitored domain runs the Host Monitor, scanning their individual audit trails for suspicious events and other events relevant to the network (eg. rlogin and rsh attempts). The data from these Hosts Monitors augment the data received from the LAN Monitor, which are the reported to the DID Director. The LAN Monitor is used for each broadcast LAN segment. The DIDS Director contains an expert system which analyses all incoming data related to the monitored domain.

DIDS allows the tracking of users who move around within the domain. It does so by introducing a network-user identification (NID) for all users within the network. This tracking, however, can only been done when users move across monitored hosts. The issue of movements to unmonitored hosts was not addressed by DIDS.

The Host Monitor has two main components, namely the host event generator and the host agent. The host event generator collects audit records from the host operating system, and scans them for notable or unusual events. These are forwarded to the Director. The host agent is responsible for all communications between the Host Monitor and the Director. The LAN Monitor also has a LAN event generator (currently a subset of NSM) and a LAN agent. The LAN monitor observes all traffic on a given LAN segment, noting network related events, such as host connections, traffic volumes and services invoked over the network. The DIDS Director has three components on a single dedicated workstation, namely an expert system, a communications manager and a user interface for the security officer. The communications manager handles all communications with the Host Monitors and the LAN Monitor. The Director may in fact request more data from these monitors, through the communications manager.

14.7.3 NADIR

The Network Anomaly Detector and Intrusion Reporter (NADIR) [247] is a system for network intrusion detection developed and tailored for the Integrated Computing Network (ICN) at the Los

Alamos National Laboratory (LANL). NADIR employs an expert system which analyses audit data as a supplementary method to the manual audit done by the security officer. From the network audit records, it generates weekly summaries of the activities of the network and of individual users.

NADIR is tailored for the compartmentalised or "multilevel" arrangement of security classifications in the ICN network. Following the Bell La Padula model [20], a computer system may only access computer systems within the same compartment or partition, and those at a lower-classified compartment (nb . the "read-down" rule of the model). The compartments are linked by a collection of dedicated service nodes which carry-out many security-related tasks (eg. access control, file access, file storage, file movements).

Each user account is associated with a value called the level of interest, which indicates the current level of suspicion regarding that account being compromised by an intruder. The weekly summary is generated from data which includes the user's activities. The parameters reported include the host compartment or partition, the host ICN machine number, the destination partition, the destination host classification level, and others. NADIR has a graphical interface, which highlights the suspicious activities and users, bringing them to the security officer's attention.

14.7.4 Cooperating Security Manager (CSM)

Another efforts towards developing network intrusion detection is the Cooperating Security Manager (CSM) system developed at the Texas A\&M University [518]. One of the primary goals of the CSM project was to go away from the centralised intrusion detection system (as in DIDS). Instead, each host would run the CSM and together the hosts would set up a mesh of intrusion detection system which share information in a cooperative manner. Hence, intrusion detection would be achieved in a distributed manner.

The distributed nature of the intrusion detection makes the effort scalable (as compared to the centralised approach). For the distributed intrusion detection to work, however, each of the hosts in the networked environment must be running CSM. When a user at a host in the network connects to another host (both running CSM) the CSM at both hosts would cooperate in monitoring the user's behaviour. Hence, if an attacker decides to use one host as a platform for further attacks in a hop-by-hop fashion, the CSMs on the linked hosts would work together to detect the intruder.

Figure 14.7: The Cooperating Security Manager (CSM)

The basic components of the CSM is shown in Figure 14.7. The Command Monitor captures the user's input and passes them to the Local IDS which has the task of detection intrusion for that host. Network-related activities are reported to the Security Manager which communicates with
other CSMs at other hosts. In effect, the Security Managers coordinate the distributed interaction among the CSMs. When a host communicates to another host, all the user actions at the first host is considered to be occurring in parallel at the second host. Thus, intrusion detection processes occur on both hosts. If a user is connected over several hosts in a chain and one of the CSM in that chain determines that an intrusion activity is occurring, that CSM will notify all other CSMs along the chain. The Administrative Interface is used by the security officer to query the CSM about the security status of the current host, and to further query a (suspect) user's origin and trails. A level of suspicion can be requested for a given user.

Again, for the concept to succeed all the hosts within the network must run the CSM. It is unclear how the concept of the CSM can be implemented in the near future where not all hosts run the CSM and where the origin (or destination) of a connection to (from) a CSM-based host does not itself run the CSM. That is, the issue of the interaction at the boundary of a CSM- base network and a non-CSM network remains to be seen.

14.8 Limitations of Current Intrusion Detection Systems

Although a number of research prototypes and commercial IDSs have been developed, in general there are some aspects of IDSs which need to be addressed.

14.8.1 General limitations

- Lack of generic development methodology: Current costs for developing IDSs are substantial due to the lack of a structured methodology to develop such systems. Although there is a growing body of knowledge about IDSs, not much structuring insights have emerged (at least within the public literature). This may be due the fact that the field of IDSs is still relatively young, that it is an area which borders on several fields (eg. artificial intelligence, operating systems, networking) and that there is a lack of agreement on the suitable techniques for intrusion detection.
- Efficiency: Some IDSs have attempted to detect every conceivable intrusion, which in many circumstances is impractical. Thus, in reality expensive computations, such as that for anomaly detection, need not be done for every event. Some systems employ an expert system shell which encode and match cases or attack signatures. Unfortunately these shells are typically interpret their rule set, and thus present a substantial runtime overhead.
- Portability: Many IDSs are developed for a particular target environment, often in ad-hoc and custom-design fashion. This is largely true because many of the systems are dependent on OSspecific functions and therefore tailor their detection to that OS. Reuse of an IDS for a different environment is difficult to perform, unless the system was designed in a generic manner (in which case it would probably be inefficient and have limited capabilities).
- Upgradability: Retrofitting an existing IDS with newer and improved detection techniques requires a considerable effort in re-implementation. This aspect is related to the lack of development methodology for IDSs.
- Maintainability: Maintaining an IDS typically requires skills in fields other than security. Often modifying or upgrading the rule set requires specialised knowledge about expert systems, the rule language and some familiarity with how the system manipulates the rules. Such expertise is necessary in order to prevent the added rules from creating undesirable interactions with the rules already present. Similarly, modification of the statistical metrics within the statistical
component of the IDS requires equal expertise. This aspect, unfortunately, is difficult to address due to the inherent complexity of AI-based systems.
- Benchmarking: Hardly any data on IDS benchmarks exist in the literature, and very little data on the performance of IDSs for a realistic set of vulnerability-data and operating environment have been published. Similarly, little coverage data exist about any system. Such coverage data reports the percentage of intrusions detected by an IDS in a real environment. This aspect is difficult to solve due to the inherent difficulty in accurately verifying the types of frequencies of intrusions in large environments. Related to this issue is the difficulty of testing IDSs using a developed set of attack scenarios.

14.8.2 Network-IDS Shortcomings

One major drawback of network-IDSs is their lack of ability in knowing (or determining) the events within a computer system that results from that system receiving a message or packet. That is, although a network-IDS observes (and copies) a packet destined to a particular computer system, there is no direct way for the network-IDS to discover whether the packet was accepted (or rejected), and if accepted, what reaction it had on the recipient computer system.

When an attacker (internal or external) is aware that an IDS is monitoring his or her activities, the IDS itself can instead become the main target of attack. In the case of a network-IDS, an intelligent attacker will realize that although he or she may not be able to directly attack the network-IDS to disable it, he or she may still have the ability to cheat or mislead the detection system within the network-IDS. Assuming that an internal attacker has a valid account on the machines in the network (eg. malicious valid user or external attacker that created an undiscovered account), the attacker can send dummy traffic to himself/herself through a valid session. In this manner, the detection system may gradually modify its rule-set (if it is dynamic), effectively being cheated by the internal attacker.

There are two main shortcomings of network-IDS [414, 394]:

- Lack of information: Typically a network-IDS is a separate machine from those that it monitors. Through passive monitoring, the network-IDS aims to predict the behaviour of the networked machines using protocol analysis and its rule-set. Although the network-IDS obtains a copy of every packet sent to a machine, it does so at a slightly different time frame and it is never sure of how that packet was treated by the machine. Hence, a discrepancy can occur between the detection system and the machines it monitors. As an example, consider an IP packet with a bad UDP checksum. Although most machines will reject this packet, some may ignore the bad checksum and accept the packet. The network-IDS must be able to know whether each machine will accept/reject the packet.
- Denial of Service: Denial-of-service attacks are aimed at reducing the level of availability of a computer system, and if possible to disable the system (ie. system crash). When discussing the failure of a security system, the issue of the mode (fail-open or fail-closed) of the system after it fails becomes important. In fail-open, the disabled system cases to provide any protection, while in fail-closed the disabled system leaves the environment still protected. Clearly, a good network-IDS must be fail-closed. As an analogy, consider the firewall. A fail-open firewall that crashes will leave the network available, and thus will leave it open to attacks. From a security perspective, a good firewall must be fail-closed, closing the entire network when it crashes.

There are a variety of possible attacks that can result in the detection system of a network-IDS becoming misled. When an attacker can exploit the use of dummy packets which the valid destination
rejects (but which the network-IDS thinks it accepted), the attacker can effectively insert data into the network-IDS. This problem is due to the network-IDS being less strict than the destination system in its packet processing. To solve this problem, the network-IDS can be tuned to be maximally strict. This approach, however, may lead to the opposite situation where a packet accepted by the destination system is rejected by the network-IDS, leading to an evasion attack.

14.9 The Common Intrusion Detection Framework (CIDF)

The Common Intrusion Detection Framework (CIDF) is a recent standardisation effort which began in early 1997 among all the DARPA-funded intrusion detection projects. The idea of a common framework arose when a desire arose on the part of DARPA to make all the intrusion detection systems that it was funding to inter-operate, and to make the benefits arising from these projects therefore more useful and accessible to the wider community.

Although initially confined within these DARPA projects, in April 1998 the work of the CIDF community was put forward to the IETF (LA Meeting) with the aim of creating an IETF working group on CIDF. As mentioned in the CIDF specification document, the goal of the CIDF specification is two fold [223]:

1. The specification should allow different IDSs to inter-operate and share information as richly as possible.
2. The specification should allow components of IDSs to be easily reused in the context different from those they were designed for.

All CIDF components deal in GIDOs (Generalised Intrusion Detection Objects) which are represented via a standard common format. GIDOs are data that is moved around in the intrusion detection system. GIDOs can represent events that occurred in the system, analysis of those events, prescriptions to be carried out, or queries about events.

The CIDF specification covers a number of issues related to the creation of a framework:

- A set of architectural conventions for how different parts of IDSs can be modelled as CIDF components.
- A way to represent GIDOs, where GIDOs can:
- describe events that occurred in the system.
- instruct an IDS to carry out some action.
- query an IDS as to what has occurred.
- describe an IDS component.
- A way to encode GIDOs into streams of bytes suitable for transmission over a network or storage in a file.
- Protocols for CIDF components to find each other over a network and exchange GIDOs.
- Application Programming Interfaces to re-use CIDF components.

The CIDF architecture consists of four (4) main types of components: Event Generators, Analysers, Databases and Response units (Figure 14.8). Correspondingly, the CIDF specification talks in terms of E boxes, A boxes, D boxes and R boxes. Event countermeasures are also introduced in the form of C boxes.

Figure 14.8: The CIDF Architecture

The E-box has the task of supplying information about events to the rest of the system. Events act as the sensory organs within an IDS, and an event itself has a wide range of meanings, from high-level complex events to low-level network protocol events. Their role is to obtain events from the larger computational environment outside the IDS and provide them in the CIDF standard GIDO format to the rest of the system. For example, event generators might be simple filters that take C2 audit trails and convert them into the standard format, or another event generator may passively monitor a network and generate events based on the traffic on the network.

Input from the event generators are then analysed by the A-box, using the analysis method defined in the A-box of the given IDS. These analysis method can be based on statistical anomaly detection, graph-based methods and others. A-boxes obtain GIDOs from other components, analyse them, and return new GIDOs.

The outputs from the A-box and E-boxes are stored in the D-box component, which acts as the storage mechanism for the data to be available at a later time. D-boxes exist to give persistence to CIDF GIDOs where that is necessary. The interfaces allow other components to pass GIDOs to the database, and to query the database for GIDOs that it is holding. Databases are not expected to change or process the GIDOs in any way. Responses are produced by the R-boxes, which carry out prescriptions, namely GIDOs that instruct them to act on behalf of other CIDF components. This is where functionality such as killing processes, resetting connections, etc. would reside. Response units are not expected to produce output except as acknowledgements [223].

14.10 Partial List of ID systems: Research Prototype and Commercial

The following is a list of IDS prototypes and commercial systems. The list is not meant to be comprehensive, and the reader is directed to the COAST web pages at Purdue University (http://www.cs.purdue.edu/coast) for more information.

Name	Source/Organisation	Attributes	References
ADS (Attack Detection System)	University College Dublin, Ireland		[268, 269]
AID (Adaptive Intrusion Detection system)	Brandenburg University of Technology at Cottbus, Germany	Multi-host based misuse detection	```[478] http://www- rnks.informatik.tu- cottbus.de/~sobirey/aid.e.html```
ALVA (Audit Log Viewer and Analyser tool)	General Electric	Host based, limited anomaly detection	[345]
APA (Automated Penetration Analysis tool)	University of Maryland at College Park		[228]
ASAX (Advanced Security audit trail Analysis on uniX)	University of Namur, Belgium, and SiemensNixdorf Software S.A.	Mult-host based, misuse detection	$\begin{aligned} & \text { [80, 229, 350, 351, 352, 353] } \\ & \text { http://www.info.foundp.ac.be } \\ & \text { /~amo/publications.html } \end{aligned}$
Autonomous Agents for Intrusion Detection	COAST Laboratory Purdue University	Mult-host based, anomaly detection	$\begin{aligned} & \hline[116,117] \\ & \text { http://www.cs.pudue.edu } \\ & \text { /coast/projects/autonomous- } \\ & \text { agents.html } \end{aligned}$
CMDS (Computer Misuse Detection System)	Science Applications International Corporation	Multi-host based, anomaly and misuse detection. Commercial	[413] http://www.saic.com /it/cmds/index.html
Computer Watch	AT\&T Bell Laboratories	Host based, limited misuse detection. Commercial	$\begin{aligned} & {[160]} \\ & \text { http://www.att.com } \end{aligned}$
CyberCop	Network General Corporation	Network based, misuse detection. Commercial	http://www.ngc.com /product_info/cybercop
Discovery	TRW Information Services	Host based, anomaly detection	[494]
EMERALD (Event Monitoring Enabling Response to Anomalous Live Disturbances)	SRI International	Network based, anomaly and misuse detection	[409] http://www.csl.sri.com /emerald/index.html
ESSENSE	Digital Equipment Corporation		[503]
GASSATA (Genetic Algorithm for Simplified Security Audit Trail Analysis)	SUPELEC, Cesson Sevigne, France		$\begin{aligned} & \hline[329,330] \\ & \text { http://www.supelec-rennes.fr } \\ & \text { /rennes/si/equipe/lme } \\ & \text { /these/these-lm.html } \\ & \hline \end{aligned}$
GrIDS (Graph-based Intrusion Detection System)	University of California at Davis	Network based, misuse detection	[480] http://olympus.cs.ucdavis.edu /arpa/grids
Hyperview	CS Telecom, GRoupe CSEE, Paris, France		[129, 130]
IDA (Intrusion Detection Alert)	Motorola, Rolling Meadows, IL		[396]

IDA (Intrusion Detection and Avoidance system)	University of Hamburg, Germany		[182, 477]
IDIOT (Intrusion Detection In Our Time)	Purdue University	Misuse detection	[289] http://www.cs.purdue.edu /coast/coast-tools.html
INSA/Network Security Agent	Touch Technologies Inc.	Network based, anomaly and misuse detection. Commercial	http://www.ttisms.com /tti/nsa_www.html
ISOA (information Security Officer's Assistant)	Planning Research Corporation, McLean, VA	Multi-host based, anomaly and misuse detection	[526, 527]
ITA (Intruder Alert)	AXENT Technologies, Inc.	Multi-host based, misuse detection. Commercial	http://www.axent.com
Kane Security Monitor (KSM)	Intrusion Detection, Inc.	Commercial	http://www.intrusion.com
NAURS (Network Auditing Usage Reporting System)	SRI International		[368, 369]
NetRanger	WheelGroup, Inc., San Antonio, TX	Network based, misuse detection. Commercial	http://www.wheelgroup.com
NetStalker	Haystack Laboratories, Inc.,Austin, TX	Host and network based, misuse detection. Commercial	http://www.haystack.com
NetSTAT (Network-based State Transition Analysis Tool)	University of California at Santa Barbara	Multi-host based, misuse detection	http://www.cs.ucsb.edu /~kemm/netstat.html
NID (Network Intrusion Detector)	Computer Security Technology Center, LLNL	Network based, anomaly and misuse detection	$\begin{aligned} & \text { Continuation of NSM [356] } \\ & \text { http://ciac.1lnl.gov/cstc } \\ & \text { /nid/niddes.html } \end{aligned}$
NIDES (Next- Generation Intrusion-Detection Expert System)	SRI International	Multi-host based, anomaly and misuse detection	```Continuation of IDES [261, 306]. See also [6, 7] and http://www.csl.sri.com /nides/index.html```
NIDX (Network Intrusion Detection eXpert system)	Bell Communications Research, Inc., Piscataway, NJ		[16]
OmniGuard/ Intruder Alert	AXENT Technologies Inc.	Multi-host based, misuse and anomaly detection. Commercial	http://www.axent.com /product/ita/ita.html
PDAT (Protocol Data Analysis Tool)	Siemens AG, Munich, Germany		[515]
POLYCENTER Security Intrusion Detector	Digital Equipment Corporation	Host based, misuse detection	http://www.digital.com /info/security/id.html
RealSecure	Internet Security Systems, Inc., Atlanta, GA	Network based, misuse detection. Commercial	http://www.iss.net /prod/rs.html

RETISS (REal-TIme expert Security System)	University of Milano, Italy		$[75]$
SAINT (Security Analysis INtegration Tool)	National Autonomous University of Mexico	Multi-host based, misuse detection	$[533]$
SecureDetector	ODS Networks	Network based	http://www.ods.com
SecureNet PRO	MimeStar, Inc.	Commercial	http://www.mimestar.com
Stalker	Haystack Laboratories, Inc.,Austin, TX	Multi-host based, misuse detection. Commercial	Evolved from Haystack [473]. http://www.haystack.com $/$ stalk.html
Swatch	Stanford University	Multi-host based, limited misuse detection	$[232]$
TIM (Time-based Inductive Machine)	University of Illinois at Urbana-Champaign	Los Alamos National Laboratory Realtime NADIR)	Commercial

14.11 Problems and Exercises

1. Discuss possible intrusion detection strategies. Clearly define two broad classes of strategies. What are advantages and shortcomings of the two strategies ?
2. Describe some measurable characteristics which can be used to define an anomaly intrusion detection system.
3. Consider the three anomaly IDS implementations, namely statistical, predictive pattern and neural network IDS. Contrast them, specify their advantages and point out their limitations.
4. Define intrusion signatures and show how they can be used for intrusion detection.
5. Assume an IDS system based on the probabilistic model. The event space is binary $\Omega=\{0,1\}$. The behaviour of a legitimate user is described by the collection of conditional probabilities (to simplify the calculations, assume the uniform probability distributions). The behaviour of an illegal user is characterised by the collection of conditional probabilities which are different by some constant ε from those for the legitimate user. Make the rest of necessary assumptions. Show the dependency between the length of event sequence after which the decision about intrusion is made, and the false acceptance/rejection probabilities.
6. Consider the set of events $\Omega=\{e, f, I, \bar{l}\}$ with two basic probability assignments m_{1} and m_{2} defined as follows

$$
m_{1}(\omega)= \begin{cases}0.8 & \text { if } \omega=\{\bar{I}\} \\ 0.2 & \text { if } \omega=\{I\} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
m_{1}(\omega)= \begin{cases}0.3 & \text { if } \omega=\{\epsilon\} \\ 0.2 & \text { if } \omega=\{f\} \\ 0.5 & \text { if } \omega=\{\epsilon, f\} \\ 0 & \text { otherwise }\end{cases}
$$

Compute the combined probability assignment $m_{1} \oplus m_{2}$.
7. Choose three IDS implementations published in the literature or electronically. Specify their features, compare their efficiency versus the false acceptance/rejection rates. What are your recommendations as to applicability of the systems chosen ?

Chapter 15

ELECTRONIC ELECTIONS AND DIGITAL MONEY

Electronic banking, commerce and elections are examples of services which are already accessible or will be in the near future on the Internet. Without an exaggeration, one can say that most services which require a face-to-face contact will be replaced by their network versions with remote interaction between a client and the parties involved in the service. A distributed system provides the medium for interaction. By its nature, the distributed system allows to perform the requested services (banking, voting, etc.) by exchange of information only. Needless to say, all stages of service must be converted into protocols each of which achieves a well defined goal (such as client-server mutual identification, establishing a secure communication channel, verification of client request, etc.). Network services can be seen as a collection of elementary protocols executed by the parties in order to provide the well defined service to the client(s).

15.1 Electronic Elections

As soon as computers became widely available, they were used during election to help prepare and run election campaigns, support pooling centers with databases of eligible voters, collect and count votes and produce the final tally. The media (press, radio, TV) observing election process use computers to gather and store statistical information about voters and their voting tendencies making guesses as to the election results.

In order to computerise elections from start to finish, there are many legal and technical problems which must be addressed. Most of the published protocols for electronic elections are generic protocols which may not satisfy some legal requirements present in the given country or state. For instance, in countries where voting is compulsory, the election protocol must enable the administrator (government) to identify who did not cast their votes. There are, however, some general properties of election protocols which must always hold. For instance, counting votes during the election has to be error free. It means that all votes of the voters who follow the correct voting procedure must be counted. The votes cast during election must be anonymous so nobody can associate a given voter with their vote. All partisan voters must be prevented from casting their ballots if they deviate from the correct voting procedure. Clearly, noneligible voters must not be allowed to cast their ballots at all and eligible voters must not be allowed to cast their ballots more than once.

In general, the whole election process consists of several stages such as registration, casting ballots (voting), counting votes, and displaying results. To design a protocol for electronic elections, the following difficulties must be overcome:

- ballots must be authentic yet untraceable,
- each voter must be able to check whether or not their ballot has been counted without compromising their privacy,
- election protocol must be protected against illegal activity of both eligible voters and dishonest outsiders.

A typical collection of requirements for secure electronic election protocol includes [188]:

- completeness - all valid votes must be counted correctly,
- soundness - dishonest voter cannot disrupt voting process,
- privacy - all ballots must be secret,
- un-reusability - no voter can cast their ballot more than once,
- eligibility - only those who are allowed to vote can vote,
- verifiability - nobody can falsify the result of the voting process,
- fairness - nothing must effect the voting.

Chaum [86] was the first who suggested a practical electronic election protocol. Many other protocols have been published. Some are more theoretical as the underlying assumptions are difficult to meet in practice and some are designed to be practical for large scale elections (see $[24,53,87,103,188$, $258,399]$). There are two approaches to implement anonymity (untraceability). The first one uses encryption (see [24, 258, 440]) and the other uses anonymous channel (for instance [53, 86, 87, 188]).

15.1.1 A Simple Electronic Election Protocol

The protocol is described in Pfleeger [399] and can be used for small elections where all interactions and processing are handled by voters themselves. It is a boardroom voting in which voters pass encrypted messages from one to another while performing encryption and decryption operations till all are confident of the outcome of the election. A characteristic feature of the protocol is that all voters must be known in advance and if one voter stops following the protocol, the protocol fails. As it is possible that two people may have identical ballots, the protocol must allow people to recognise their own ballots without being able to recognise other people ballots. For that reason the protocol uses two public key cryptosystems. Each voter V_{i} owns two public key cryptosystems. The first is specified by the pair (E_{i}, D_{i}) and the other by (R_{i}, Q_{i}), where E_{i} and R_{i} are public encryption and D_{i} and Q_{i} are private decryption functions.

Now we outline the protocol for three voters only. The reader may easily generalise it for arbitrary number of voters. Let the three voters be Joan, Keith and Leo. Their public cryptosystems are described by ($E_{j}, D_{j}, R_{j}, Q_{j}$) for Joan, ($E_{k}, D_{k}, R_{k}, Q_{k}$) for Keith and ($E_{\ell}, D_{\ell}, R_{\ell}, Q_{\ell}$) for Leo.
Registration Stage. Voters agree to follow the protocol and collectively decide who is eligible to vote and what is the order in which the voters will interact. Consequently, each voter knows the ordered list of all eligible voters including their public encryption functions.
Voting Stage. A voter V_{i} prepares a vote v_{i} and computes $R_{j} R_{k} R_{\ell}\left(r_{i}, E_{j} E_{k} E_{\ell}\left(q_{i}, v_{i}\right)\right)$ where r_{i}, q_{i} are two random integers chosen by the voter V_{i}. Being more specific, each voter takes their vote v_{i} and the random number q_{i} and creates the cryptogram $E_{j} E_{k} E_{\ell}\left(q_{i}, v_{i}\right)$. Next the voter concatenates the cryptogram with the random string r_{i} and encrypts it using R_{j}, R_{k} and R_{ℓ}. All voters send their
encrypted ballots to the first voter Joan. Joan has got the following cryptograms:

$$
\begin{aligned}
& R_{j} R_{k} R_{\ell}\left(r_{j}, E_{j} E_{k} E_{\ell}\left(q_{j}, v_{j}\right)\right) \\
& R_{j} R_{k} R_{\ell}\left(r_{k}, E_{j} E_{k} E_{\ell}\left(q_{k}, v_{k}\right)\right) \\
& R_{j} R_{k} R_{\ell}\left(r_{\ell}, E_{j} E_{k} E_{\ell}\left(q_{\ell}, v_{\ell}\right)\right)
\end{aligned}
$$

Verification Stage. Joan removes one level of encryption from all cryptograms by applying her private decryption algorithm (note that composition of $Q_{j} \circ R_{j}$ is the identity permutation). She obtains the cryptograms:

$$
\begin{aligned}
& R_{k} R_{\ell}\left(r_{j}, E_{j} E_{k} E_{\ell}\left(q_{j}, v_{j}\right)\right) \\
& R_{k} R_{\ell}\left(r_{k}, E_{j} E_{k} E_{\ell}\left(q_{k}, v_{k}\right)\right) \\
& R_{k} R_{\ell}\left(r_{\ell}, E_{j} E_{k} E_{\ell}\left(q_{\ell}, v_{\ell}\right)\right)
\end{aligned}
$$

and forwards them in a random order to Keith. Keith verifies whether his ballot is among the cryptograms and removes one level of encryption using his private decryption Q_{k}. In result, he gets the following cryptograms:

$$
\begin{aligned}
& R_{\ell}\left(r_{j}, E_{j} E_{k} E_{\ell}\left(q_{j}, v_{j}\right)\right) \\
& R_{\ell}\left(r_{k}, E_{j} E_{k} E_{\ell}\left(q_{k}, v_{k}\right)\right) \\
& R_{\ell}\left(r_{\ell}, E_{j} E_{k} E_{\ell}\left(q_{\ell}, v_{\ell}\right)\right)
\end{aligned}
$$

Keith dispatches the cryptograms (in a random order) to Leo. Leo checks whether his ballot is among the cryptograms, removes the encryption R_{ℓ} using his private decryption algorithm Q_{ℓ} and extracts the ballots:

$$
\begin{aligned}
& E_{j} E_{k} E_{\ell}\left(q_{j}, v_{j}\right) \\
& E_{j} E_{k} E_{\ell}\left(q_{k}, v_{k}\right) \\
& E_{j} E_{k} E_{\ell}\left(q_{\ell}, v_{\ell}\right)
\end{aligned}
$$

The random integers r_{j}, r_{k}, r_{ℓ} are discarded.
Opening Stage. Leo signs all ballots and sends the signature to Joan and Keith and the ballots to Joan. Joan removes the encryption E_{j} and signs the ballots. The ballots

$$
E_{k} E_{\ell}\left(q_{j}, v_{j}\right), E_{k} E_{\ell}\left(q_{k}, v_{k}\right), E_{k} E_{\ell}\left(q_{\ell}, v_{\ell}\right)
$$

are communicated to Keith, the signature is given to both Keith and Leo. In turn, Keith peels off his public encryption, gets

$$
E_{\ell}\left(q_{j}, v_{j}\right), E_{\ell}\left(q_{k}, v_{k}\right), E_{\ell}\left(q_{\ell}, v_{\ell}\right)
$$

and signs the ballots. The ballots are sent to Leo while the signature is forwarded to Joan and Leo. Finally, Leo strips off the last encryption, extracts random number and votes, publishes the results (together with random numbers q_{j}, q_{k}, q_{ℓ} for verification).

The protocol uses two cycles of interactions. The first provides anonymity and the other allows to recover the clear form of votes. Note that Joan who collects all the encrypted ballots at the beginning of the protocol may trace the origin of each of the ballots. This is impossible for Keith and Leo as they got all ballots in a random order. Leo after removing random numbers r_{j}, r_{k}, r_{ℓ} breaks any link between double encrypted and single encrypted ballots so Joan cannot identify ballots unless she can try all possible random numbers for r_{j}, r_{k}, r_{ℓ} or collude with Leo. The protocol is complete as the final result of elections can be trusted if all voters are honest. To prove that the protocol is sound we need to define possible actions of a dishonest voter. The voter can

1. refuse to vote - this will be detected by first honest voter,
2. cast multiple votes - this will be also detected by honest voters as the number of ballots will be greater than the number of voters (this is the unreusability property),
3. substitute ballots - any voter can do this during first cycle for their own ballots, if an attacker substitutes a ballot of some other voter, this will be detected with high probability unless the attacker has broken the corresponding public key cryptosystem (this is the verifiability property).

Note that the protocol has some drawbacks including:

- an excessive computation overhead when the number of voters is getting bigger (the protocol is not practical for large scale elections),
- a difficulty with the initialisation of the protocol. The agreement about the list of voters must be done collectively as there is no central trusted authority,
- all voters must be present at the same time to execute the protocol,
- the protocol fails if there is a voter who refuses to follow it.

15.1.2 The Chaum Protocol

In 1981 Chaum designed a protocol which used a trusted mix to implement an anonymous channel and digital pseudonyms to ensure voter privacy [86].

In most cases, any message sent over communication network could be traced back to its origin (for instance, in any packet switching network, it is possible to identify the sender from headings of the packets). To thwart traceability, Chaum suggested to use an anonymous channel. The main part of it is an active entity called the mix. The mix is a trusted authority which plays the same role as Joan for both Keith and Leo in the previous protocol at the very beginning of the voting stage.

The mix sets up its service by announcing its public encryption algorithm E_{x} and keeping the decryption algorithm D_{x} secret. Needless to say, anybody can get authentic E_{x}. If a voter V_{i} wants to send a message m anonymously to other voter, say V_{j}, V_{i} follows the following steps.

1. V_{i} gets the authentic E_{x} of the mix.
2. V_{i} creates a cryptogram

$$
E_{x}\left(r, m, a_{j}\right)
$$

where $m \in \mathcal{M}$ is the message, r is a random integer used to prevent exhaustive attacks if the message space \mathcal{M} is small and a_{j} is the address of voter V_{j} (the destination).
3. V_{i} forwards the cryptogram to the mix which decrypts it using its private D_{x}.
4. The mix sends the message m to the destination a_{i}.

If V_{i} cares about privacy of m, V_{i} may send m encrypted using the public encryption algorithm of V_{j}. To prevent attacks based on the knowledge of the sequence of cryptograms coming to the mix, the mix changes the order of outcoming messages. The mix may also prevent reply attacks by keeping the random strings r and checking subsequent cryptograms against it.

A digital pseudonym is a public key used to verify the signature made by an anonymous voter (who holds the matching private key).

The Chaum protocol is based on the following assumptions:

1. there is a trusted administrator (authority) $T A$,
2. voters and administrator communicate via an anonymous channel (there are at least one trusted mix),
3. each voter has got a pseudonym.

Initialisation Stage.

1. TA prepares the information for voting including bundle of cryptograms (one cryptogram per voter). Any cryptogram $E_{x}(r, K, \pi)$ includes the public key K and the pseudonym π.
2. $T A \rightarrow M i x:\left\{E_{x}\left(r_{i}, K_{i}, \pi_{i}\right) \mid i=1, \ldots, n\right\}$,
where n is the number of eligible voters.
3. The mix shuffles the cryptograms and
$M i x \rightarrow V_{i}: E_{x}\left(r_{i}, K_{i}, \pi_{i}\right)$
for $i=1, \ldots, n$. The mix also conveys general information about how to vote (encrypted using the voter's public key). TA does not know which cryptogram goes to which voter. Clearly, the mix has to have the list of all eligible voters.

Voting and Counting Stage.

1. Each registered voter V_{i} prepares their ballot of the form

$$
E_{x}\left(r_{i}, \pi_{i}, E_{K_{i}}\left(q_{i}, v_{i}\right)\right)
$$

where r_{i}, q_{i} are random integers, v_{i} is the vote and π_{i}, K_{i} is the pseudonym and the public key given by the mix to V_{i}, respectively.
2. V_{i} sends their ballot to the mix.
3. The mix collects all ballots and processes them as a single batch and outputs a complete list of valid entries $\left(\pi_{i}, E_{K_{i}}\left(q_{i}, v_{i}\right)\right)$.
4. The mix communicates the list via a secure channel to $T A$.
5. TA verifies whether π_{i} are valid. If so, $T A$ decrypts the second part, recovers votes v_{i} and counts them. All ballots with an invalid pseudonym are rejected.

In 1988 Chaum published a modified version of the protocol [87]. That version uses blind signatures and sender untreceability. For security analysis, we direct the reader to the original papers $[86,87]$.

15.1.3 The Boyd Protocol

The Boyd protocol [52] uses exponentiation modulo a prime p. The security and anonymity depends on the difficulty of computing the discrete logarithm modulo p. The protocol involves registered voters V_{i} and a trusted administrator $T A$.

Initialisation Stage.

1. TA selects three complementary keys a, b, c. Two of them, say a and b are picked at random and are coprime to $p-1$. The third one c satisfies the following congruence

$$
a \times b \times c \equiv 1 \quad(\bmod p-1)
$$

2. TA makes the key a public and publishes a primitive element e coprime to $p-1$.

Registration Stage.

1. Each voter V_{i} creates a message $m_{i}=\left(c, r_{i}, v_{i}\right)$ where a string c provides redundancy and should be the same for all voters, r_{i} is individually chosen by V_{i} and v_{i} is the vote.
2. V_{i} creates

$$
B_{i} \equiv e^{m_{i}} \quad(\bmod p)
$$

takes the public exponent a, randomly selects $a_{i_{0}}$ and calculates $a_{i_{1}}$ such that

$$
a_{i_{0}} \times a_{i_{1}} \equiv a \quad(\bmod p-1)
$$

Further, V_{i} blinds B_{i} by computing $B_{i}^{a_{i 0}}$ and sends $B_{i}^{a_{i_{0}}}$ to $T A$,
3. $T A$ checks the voter identity. If the check holds, $T A$ records that V_{i} has registered and returns $B_{i}^{a_{i_{0}} \times b}$ to V_{i}.

Voting and Counting Stage.

1. Voters complete their ballots by using the key $a_{i_{1}}$ so they compute

$$
\left(B_{i}^{a_{i_{0}} \times b}\right)^{a_{i_{1}}} \equiv B_{i}^{a b} \quad(\bmod p) .
$$

The ballot $B_{i}^{a b}$ is sent to $T A$ via an anonymous channel together with the original message m_{i}.
2. $T A$ retrieves B_{i} using c as

$$
\left(B_{i}^{a b}\right)^{c} \equiv B_{i} \quad(\bmod p)
$$

Next $T A$ computes $\tilde{B}_{i}=e^{m_{i}} \bmod p$ and verifies whether $B_{i} \stackrel{?}{=} \tilde{B}_{i}$. If the redundancy constant is correct, $T A$ accepts the vote v_{i}.
3. Finally, $T A$ publishes all messages m_{i} together with the result of the election. At this stage each voter can check their random number which clearly identifies the message m_{i}.

The protocol ensures privacy and authenticity of voters (see [52]). The main drawback of the protocol is that $T A$ can see the votes and produce a false tally by adding votes of its own choice. The final result of casting is not verifiable.

15.1.4 The Fujioka-Okamoto-Ohta Protocol

Fujioka, Okamoto and Ohta described a protocol which is more suitable for large scale elections [188]. The players in the protocol are voters, an administrator A and a counter C. The assumptions are:

1. the counter communicates with voters via an anonymous channel,
2. ballots are computed using a bit commitment scheme,
3. every voter has their own digital signature scheme $S G$, and
4. the administrator uses a blind signature scheme.

The bit commitment scheme uses two functions (f, g). The function f encrypts binary strings into cryptograms (blobs) and the function g decrypt cryptograms (open blobs) and reveals the bits. The blind signature uses two functions (B, U), The function B takes the ballot x and a random integer r and computes the blind message $e=B(x, r)$. The blind message e is then given to the administrator who signs the blind message and returns the blind signature d. The function U allows to unblind the signature and to retrieve signature of the administrator as $S G_{A}(x)=U(d, r)$.

Registration Stage.

1. V_{i} selects their vote v_{i} which is typically a binary string and creates a blob for it, i.e.

$$
x_{i}=f\left(v_{i}, k_{i}\right) .
$$

for a random k_{i}.
2. V_{i} blinds x_{i}, i.e. computes

$$
e_{i}=B\left(x_{i}, r_{i}\right)
$$

using a random integer r_{i}.
3. V_{i} signs e_{i} by calculating $s_{i}=S G_{i}\left(e_{i}\right)$ and sends the triple $\left\langle I D_{i}, e_{i}, s_{i}\right\rangle$ to A, i.e.

$$
V_{i} \rightarrow A:\left\langle I D_{i}, e_{i}, s_{i}\right\rangle
$$

where $I D_{i}$ is the identity or name of voter V_{i}.
4. A verifies whether
(a) V_{i} is eligible to vote,
(b) V_{i} has not already applied for registration and
(c) s_{i} is valid.

If the three conditions hold, A generates the certificate $d_{i}=S G_{A}\left(e_{i}\right)$ and

$$
A \rightarrow V_{i}: d_{i}
$$

If any of the three conditions is violated, the registration of V_{i} is declined.
5. When the deadline for registration has passed, the administrator announces the number of voters and publishes the list $\left\langle I D_{i}, e_{i}, s_{i}\right\rangle$ of all registered voters.

Voting Stage.

1. V_{i} retrieves A 's signature for x_{i} by unbliding d_{i} so $y_{i}=S G_{A}\left(x_{i}\right)=U\left(d_{i}, r_{i}\right)$.
2. V_{i} checks whether y_{i} is a signature generated by A. If the check fails, V_{i} complains by showing the pair $\left(x_{i}, y_{i}\right)$. Otherwise, V_{i} sends the pair $\left(x_{i}, y_{i}\right)$ to the counter C via an anonymous channel.
3. C verifies the signature y_{i} of the ballot x_{i}. If the check holds, C puts the triple $\left\langle\ell, x_{i}, y_{i}\right\rangle$ into a list where ℓ is the consecutive number assigned to the ballot.
4. C publishes the list after all voters have cast their ballots, i.e.

$$
C \rightarrow \star:\left\{\left\langle\ell, x_{i}, y_{i}\right\rangle \mid i=1, \ldots, \alpha\right\}
$$

where α is the number of ballot cast.
Opening and Counting Stage. Each voter V_{i} checks whether

1. the number of ballots on the list is equal to the number of voters. If the check fails, voters may reveal their secret random numbers r_{i} and indirectly indicate which ballots are forged.
2. the ballot x_{i} is on the list. If not, V_{i} complains by showing the valid pair (x_{i}, y_{i}).

If the checks are successful, V_{i} sends the key k_{i} with the number ℓ to C via an anonymous channel. C opens the blob x_{i} using the key k_{i} and retrieves the vote $v_{i}=g\left(x_{i}, k_{i}\right)$. The pair (k_{i}, v_{i}) is appended to the entry $\left(x_{i}, y_{i}\right)$ on the list. Finally C counts the tally and announces the results.

It is easy to check that if all parties honestly follow the protocol than the result of elections is correct. The protocol is complete. A dishonest voter can disrupt election process by sending invalid ballots but this will be detected in the counting stage (soundness holds). There is a problem when a voter sends an illegal key at the opening stage as in this case it is impossible to distinguish dishonest voter from dishonest counter. The privacy of voters is ensured by the blind signature as the administrator never sees voters' ballot. As the voters blinds the ballot using a random string, the privacy is unconditionally secure. Unreusability property holds as each voter can legally obtain one blindly signed ballot by the administrator. Ability to create two different and signed by the administrator ballots is equivalent to breaking the blind signature used by the administrator. Note that an outsider cannot vote unless they are able to to break the signature scheme used by voters (eligibility is satisfied). Fairness holds as counting ballots does not affect the voting (votes are hidden by the bit commitment scheme). The results of voting is verifiable as even if both the administrator and counter collude, they cannot change the result of the voting process. The main problem with the protocol is that it requires all registered voters to cast their votes and no voter can abstain from voting. In fact, the failure of a single voter will disrupt the whole election process.

15.1.5 Other Protocols

Iversen [258] designed an electronic election protocol based on privacy homomorphisms. Players in the protocol are voters, candidates and the government. The communication between voters and candidates is done over a broadcast channel. Voters may cast their ballots with no need for "synchronisation" and there is no need for global computation. The protocol preserves the privacy of votes against a collusion of dishonest voters or any proper subset of dishonest candidates including the government.

Sako and Kilian [440] proposed a voting protocol based on families of homomorphic encryptions which have a partial compatibility property, generalising a method of Benaloh and Yung [24]. The protocol has a much lower complexity than protocols using anonymous communication channel. It preserves the privacy of voters as long as the centers are honest. The drawback of the protocol is that if all centers conspire, the privacy of voters is violated. Even worse if a center accidentally or otherwise produces incorrect sub-tally then the verification fails and consequently the entire election will collapse.

Niemi and Renvall described a protocol [370] which prevents buying votes. In traditional voting protocols, the buying is prevented as voters cannot prove that they have voted as agreed. In other words, the buyer has no means to verify how the voter has voted. This is mimicked by attaching to the vote v_{i} an eligibility token e_{i}. Each ballot must consist of the pair (v_{i}, e_{i}). The token e_{i} is generated collectively by all candidates and the voter. Although the voter V_{i} is confident as to the authenticity of e_{i}, V_{i} does not have any means to prove its validity to anybody. Sako and Kilian in [441] present an receipt free protocol which also prevents buying votes. Other protocols for electronic elections can be found in $[15,114]$.

15.2 Digital Cash

Traditional cash has the following properties

- it is difficult to forge,
- it is untraceable (more precisely coins are untraceable but paper currency can be traced because of their unique serial number),
- it is issued centrally by a mint,
- its lifetime extends beyond s single transaction (coins from ten to twenty years, banknotes several years).

Cash transactions involve directly two parties: the seller and the buyer. The third party usually is the bank where the buyer withdraws a suitable amout of money to pay for goods offered by the buyer and the seller deposits the money after a transaction. Any single transaction takes three operations: withdrawal of money by the seller, selling/buying process and deposit of money. If a transaction between buyer and seller can proceeds successfully without the direct involvement of the bank, we are dealing with off-line electronic money. If a payment protocol requires all three parties (buyer, seller, bank) to interact at the same time, it is called on-line electronic money.

The requested properties of electronic money include:

- unforgeability - money cannot be forged, i.e. money tokens (coins, bills) cannot be generated illegally,
- unreuseability - the same money must not be spent twice,
- untraceability - the bank is not able to identify the buyer from the money deposited by the seller,
- transferability - money can be transferred from person to person,
- divisibility - a money token can be divided into tokens of smaller values.

The next section describes a electronic money protocol which satisfies: unforgeability, unreuseability, untraceability and transferability. The interesting feature is that two characteristics: unreuseability and untraceability are connected together, i.e. any double payment of the same coin, reveals the identity of the spender. The protocol is an example of off-line payment.

15.2.1 Untraceable Digital Coins

In computer environment, electronic cash (money) must be of the form of binary string. Unforgeability requires that nobody can produce valid digital cash except a bank who knows some secret so it can identify its money. Chaum, Fiat and Naor [88] showed how to get untraceability when the seller is honest (spends digital money once). If, however, the seller spends the same money more than once, his or her identity will be revealled. Their electronic money takes form of $\$ 1$ coins. Each coin is a pair

$$
\left(x, f(x)^{\frac{1}{3}}\right) \bmod N
$$

where $f(x)$ is a one-way function, N is an RSA modulus ($N=p q, p$ and q are large enough primes) and x is some integer. Note that the factorization of N is known to the bank which has issued the coin. Coins can be forged if calculation of the cube root is feasible. In other words, unforgeability rests on the assumption that computation of the cube root modulo N is intractable. Assume that we have three parties. Alice who wants to buy an item from Bob. The item costs $\$ 1$. Both Alice and Bob use the same bank. The purchuse involves three phases. In the first phase, Alice withdraws $\$ 1$ from her account u. In the second phase, Alice purcheses the item from Bob and pays $\$ 1$. Finally, Bob deposits $\$ 1$ to the bank.
Issuing a Coin (Alice \leftrightarrow Bank).

1. Alice chooses n triples $\left(a_{i}, b_{i}, c_{i}\right)$ at random $(i=1, \ldots, n)$ where n is the security parameter.
2. Alice computes n blind elements

$$
B_{i}=r_{i}^{3} f\left(x_{i}, y_{i}\right)
$$

where r_{i} is a random integer used for blinding, g and f are two collision free hash functions,

$$
x_{i}=g\left(a_{i}, c_{i}\right)
$$

and

$$
y_{i}=g\left(a_{i} \oplus(u \| v+i), d_{i}\right)
$$

where \| stands for the concatenation, v is a counter associated with the account u. Finally, $A \rightarrow$ Bank : $\left\{B_{i} \mid i=1, \ldots, n\right\}$.
3. Bank picks up a random subset of $n / 2$ indices. Let them be $\mathcal{R}=\left\{i_{j} \mid j=1, \ldots, n / 2\right\}$.

Bank \rightarrow Alice : \mathcal{R}.
4. Alice \rightarrow Bank : $\left\{r_{i}, a_{i}, c_{i}, d_{i} \mid i \in \mathcal{R}\right\}$.

Bank checks their consistency with B_{i}. If there is any attempt to cheat, Bank aborts.
5. Otherwise (checks hold)

Bank \rightarrow Alice $: \prod_{i \notin \mathcal{R}} B_{i}^{\frac{1}{3}}$
and charges one dollar against her account.
6. Alice extracts the coin C

$$
C=\prod_{i \notin \mathcal{R}} r_{i}^{-1} \cdot B_{i}^{\frac{1}{3}} \equiv \prod_{i \notin \mathcal{R}} f\left(x_{i}, y_{i}\right)^{\frac{1}{3}} \quad(\bmod N)
$$

To simplify our notation, we further assume that the indices which were not in the \mathcal{R} belong to the set $\{1, \ldots, n / 2\}$ so

$$
C=\prod_{i=1, \ldots, n / 2} f\left(x_{i}, y_{i}\right)^{\frac{1}{3}}
$$

In the withdrawal protocol, Bank checks whether or not Alice follows the protocol. After Alice computes her blind elements and commits herself by sending them to Bank, Bank randomly selects half of them and asks her to show all parameters. If Alice cheats she will be caught with a high probability. Note that if Alice does not follow protocol for a single blind element, the probability of not being (or being) caught is 0.5 and equals to the probability that the element will be selected by Bank for checking.
Payment (Alice \leftrightarrow Bob).

1. Alice \rightarrow Bob : C.
2. Bob \rightarrow Alice $: e$
where $e=\left(e_{1}, \ldots, e_{n / 2}\right)$ and each $e_{i} \in_{R}\{0,1\}$. The string e is a challenge.
3. Alice has to reply to the challenge and

$$
\text { Alice } \rightarrow \text { Bob }: \begin{cases}a_{i}, c_{i}, y_{i} & \text { if } e_{i}=1 \\ x_{i}, a_{i} \oplus(u \| v+i), d_{i} & \text { otherwise }\end{cases}
$$

4. Bob verifies whether C has the form consistent with the reponce provided by Alice.
5. Bob deposits the coin C with Bank and forwards his string e together with Alice's responce.
6. Bank verifies the correctness and credits $\$ 1$ to Bob's account. Bank must keep e and Alice's responce for future references (in the case when the coin is spent more than once).

Untraceability is tied up with prevention against multiple spending. A single spending of a coin does not allow Bank to identify the spender. If Alice, however, spends the same coin many times, then there is an overwhelming probabability that there is at least one bit e_{i} for which the buyers have recorded both $\left(a_{i}, c_{i}, y_{i}\right)$ (when $e_{i}=1$) and ($\left.x_{i}, a_{i} \oplus(u, v+i), d_{i}\right)$ (when $e_{i}=0$). After the coin is deposited with Bank twice, Bank knows both a_{i} and $a_{i} \oplus(u, v+i)$ so it can recover the account number u and identify the double spender.

There is a problem, however, when both Alice and Bob conspire and Bob uses the same challenge string e for two different transactions or equivalently Bob tries to deposit the same coin twice. Another face of this problem is the case when Alice spends the same coin twice with different sellers who agreed to use the same challenge string e. A simple solution would be to divide the challenge string e into two parts: fixed and random. Each seller would have different fixed part (imposed by the bank). This would exclude the collusion among buyers and sellers.

15.2.2 Divisible Electronic Cash

The protocol was invented by Okamoto and Ohta [386]. The bank applies a collection of RSA schemes determined by triples $\left(e_{j}, d_{j}, N_{j}\right)$ for $j=0, \ldots$, where e_{j}, d_{j} is the encryption and decryption keys, respectively and N_{i} is an RSA modulus. The RSA system ($\left.e_{0}, d_{0}, N_{0}\right)$ is used to generate electronic licences for Bank clients. Other RSA systems are used to generate electronic banknotes (coins) of specific values. For example, the RSA system $\left(e_{1}, d_{1}, n_{1}\right)$ is being used to generate electronic coins each of value $\$ 100$, the RSA system $\left(\epsilon_{2}, d_{2}, n_{2}\right)$ to issue $\$ 50$ bills and so on. Needless to say, the bank announces public parameters $\left(e_{j}, N_{j}\right)$ of the RSA schemes. Also there is a public knowledge about which RSA scheme is to be used to produce coins of given value.

A buyer Alice has an account u_{A} with the bank and generates her RSA scheme $\left(e_{A}, d_{A}, N_{A}\right)$. The pair $\left(e_{A}, N_{A}\right)$ is public.

An important ingredient of the payment system is a tree structure of coins (bills). Before we show how to design such a tree, we need to introduce some Number Theory facts. Let $z \in \mathcal{Z}_{N}$ be an arbitrary integer and the modulus $N=p q$ such that $p \equiv 3 \bmod 8$ and $q \equiv 7(\bmod 8)$. Such N is called a Williams integer. Then it is relatively easy to show that among the elements of the set

$$
\{z,-z, 2 z,-2 z\}
$$

one, say z_{1}, is a quadratic residue (denoted as $z_{1}=\langle z\rangle_{Q}$) one, say z_{2}, is a quadratic nonresidue with its Jacobi symbol $\left[\frac{z_{2}}{N}\right]=1$ (written as $z_{2}=\langle z\rangle_{+}$) and one, say z_{3}, is a quadratic nonresidue with its Jacobi symbol $\left[\frac{z_{3}}{N}\right]=-1$ (or simply $z_{3}=\langle z\rangle_{-}$).

The coin structure is a binary tree with the top node (a coin),$_{0}=\langle z\rangle_{Q}$ (at level 0). At level 1 , there are two children, 00 and, 01 . The left child, $00=\left\langle,{ }_{0}^{1 / 2}\right\rangle_{Q}$. The right child, $01=\left\langle\Omega_{0} \times,{ }_{0}^{1 / 2}\right\rangle_{Q}$, where Ω_{0} is an integer generated by a suitable hash function f_{Ω}. Now, children become parents and generate their own pairs of children in the same way. Process continues until the necessary depth of the tree is achieved. Note that all nodes in the tree are quadratic residues (belong to \mathcal{Z}_{N}^{Q+}). Registration (Alice \leftrightarrow Bank).
This stage of the protocol is executed once only when Alice wishes to open her account with the bank. The bank issues a license B.

1. Alice picks up at random $\left(a_{i}, \eta_{i}\right)$ for $i=1, \ldots, n$ where n is the security parameter, η_{i} is an RSA modulus (i.e. $\eta_{i}=p_{i} \times q_{i}$ is a Williams integer or $p_{i} \equiv 3 \bmod 8$ and $q_{i} \equiv 7 \bmod 8$).
2. Alice \rightarrow Bank : $\left\{w_{i} ; i=1, \ldots, n\right\}$, where

$$
w_{i} \equiv r_{i}^{e_{0}} \times g\left(\alpha_{i} \| \eta_{i}\right) \quad\left(\bmod N_{0}\right)
$$

where r_{i} is a blinding random integer, g a collison-free hash function and α_{i} is generated as follows. First Alice creates a sequence $s_{i}=u_{A}\left\|a_{i}\right\| g\left(u_{A} \| a_{i}\right)^{d_{A}} \bmod N_{A}$. Next the sequence s_{i} is split into two substrings so $s_{i}=s_{i_{0}} \| s_{i_{1}}$. Finally, $\alpha_{i}=\alpha_{i_{0}} \| \alpha_{i_{1}}$ where $\alpha_{i_{0}} \equiv s_{i_{0}}^{2} \bmod \eta_{i}$ and $\alpha_{i_{1}} \equiv s_{i_{1}}^{2} \bmod \eta_{i}$.
3. Bank chooses at random $n / 2$ indices. Let the collection of indices be \mathcal{R} and Bank \rightarrow Alice: \mathcal{R}.
4. Alice displays all the parameters used to generate w_{i} for which $i \in \mathcal{R}$. In other words, Alice shows $a_{i}, p_{i}, q_{i}, g\left(u_{A} \| a_{i}\right)^{d_{A}}, r_{i}$ for all $i \in \mathcal{R}$.
5. Bank verifies the correctness of all w_{i} for $i \in \mathcal{R}$. If they are not valid, Bank aborts the protocol. Otherwise, the protocol is continued.
6. Bank \rightarrow Alice: $\prod_{i \notin \mathcal{R}} w_{i}^{d_{0}} \bmod N_{0}$.
7. Alice extracts her licence by using inverses r_{i}^{-1} so

$$
B=\prod_{i \notin \mathcal{R}} g\left(\alpha_{i} \| \eta_{i}\right)^{d_{0}} \bmod N_{0}
$$

We simplify our notation by assuming that $B=\prod_{i=1}^{n / 2} g\left(\alpha_{i} \| \eta_{i}\right)^{d_{0}} \bmod N_{0}$.
Issuing a Coin (Alice \leftrightarrow Bank).
Assume that Alice wishes Bank to issue a bill of value $\$ \mathrm{x}$. Bank finds the RSA scheme associated with this value, let it be determined by the triple $\left(e_{x}, d_{x}, N_{x}\right)$.

1. Alice selects two random integers b and r and

Alice \rightarrow Bank $: Z \equiv r^{e_{x}} g(B \| b) \bmod N_{x}$.
2. Bank \rightarrow Alice: $Z^{d_{x}} \bmod N_{x}$ and charges Alice's account x dollars.
3. Alice extracts the coin

$$
C=r^{-1} Z^{d_{x}} \equiv g(B \| b)^{d_{x}} \quad\left(\bmod N_{x}\right)
$$

Payment (Alice \leftrightarrow Bob). Parties use three public collision free hash functions: f_{Γ}, f_{Λ} and f_{Ω}.

1. Alice computes top nodes (at the level 0) of her coin trees

$$
, i_{i, 0}=\left\langle f_{\Gamma}\left(C\|0\| \eta_{i}\right)\right\rangle_{Q} \bmod \eta_{i}
$$

for $i=1, \ldots, n / 2$. Next she computes two children of, ${ }_{i, 0}$. The left child is

$$
, i, 00 \equiv\left\langle, \frac{1}{\frac{1}{2}}\right\rangle_{Q, 0} \bmod \eta_{i}
$$

and the right child is

$$
{ }_{i, 01} \equiv\left\langle\Omega_{i, 0},{ }_{i, 0}^{\frac{1}{2}}\right\rangle_{Q} \bmod \eta_{i}
$$

where $\Omega_{i, 0}=\left\langle f_{\Omega}\left(C\|0\| \eta_{i}\right)\right\rangle_{+}$. The process continues in the same way. The node, $i, 00$ has two children, $i, 000$ and, $, i, 001$ and, $, i, 01$ has its children , $i, 010$ and, $, i, 011$.
For the sake of clarity, the rest of the protocol is described for a case when Alice wants to pay $\$ 75$ using a $\$ 100$ coin C. Instead of finding the whole coin trees, Alice needs to find two nodes (in independent tree paths) whose sum is equal to $\$ 75$. Let those nodes be

$$
\begin{array}{ll}
,{ }_{i, 00} \equiv\left\langle, \frac{i_{i, 0}^{2}}{\frac{1}{2}}\right\rangle_{Q} \bmod \eta_{i} & \text { worth } \$ 50 \\
,{ }_{i, 010} \equiv\left\langle,,_{i, 01}^{2}\right\rangle_{Q} \bmod \eta_{i} & \text { worth } \$ 25
\end{array}
$$

Next she computes their square roots whose Jacobi symbols are equal to -1 thus

$$
\begin{aligned}
& X_{i, 00}=\left\langle{ }_{i}^{\frac{1}{i}}{ }_{i, 00}\right\rangle-\equiv\left\langle, \frac{1}{i}{ }_{i, 0}^{1}\right\rangle-\bmod \eta_{i}, \\
& X_{i, 010}=\left\langle, \frac{1}{i}, 010\right\rangle-\equiv\left\langle\Omega_{i, 0}^{2},{ }_{i, 1}^{\frac{1}{i}, 0}\right\rangle_{-} \bmod \eta_{i}
\end{aligned}
$$

2. Alice \rightarrow Bob: $\left(B, C,\left\{\left(\alpha_{i}, \eta_{i}, X_{i, 00}, X_{i, 010}\right) ; i=1, \ldots, n / 2\right\}\right)$
3. Bob verifies the licence B and the coin C. Further Bob checks whether for all $i=1, \ldots, n / 2$, the following conditions hold:
(a) Jacobi symbols of $X_{i, 00}$ and $X_{i, 010}$ are equal to -1 ,
(b) $X_{i, 00}^{4} \stackrel{?}{=} d_{i},{ }_{i, 0} ; d_{i} \in\{ \pm 1, \pm 2\}$,
(c) $X_{i, 010}^{8} \stackrel{?}{=} d_{i}^{\prime} \Omega_{i, 0}^{2}, i, 0 ; d_{i}^{\prime} \in\{ \pm 1, \pm 2\}$,

If any of the checks fails, Bob aborts the protocol. Otherwise, Bob continues.
4. $\mathrm{Bob} \rightarrow$ Alice: $\left\{\left(E_{i, 00}, E_{i, 010}\right) ; i=1, \ldots, n / 2\right\}$
where $E_{i, 00}, E_{i, 010} \in_{R}\{0,1\}$ for all i.
5. Alice calculates

$$
Y_{i, 00}=\left\{\begin{array}{l}
\left\langle\Lambda_{i, 00}^{\frac{1}{2}}\right\rangle_{-} \bmod \eta_{i} \text { if } E_{i, 00}=1 \\
\left\langle\Lambda_{i, 00}^{\frac{1}{2}}\right\rangle_{+} \bmod \eta_{i} \text { if } E_{i, 00}=0
\end{array}\right.
$$

and

$$
Y_{i, 010}=\left\{\begin{array}{l}
\left\langle\Lambda_{i, 010}^{\frac{1}{2}}\right\rangle-\bmod \eta_{i} \text { if } E_{i, 010}=1 \\
\left\langle\Lambda_{i, 010}^{\frac{1}{2}}\right\rangle+\bmod \eta_{i} \text { if } E_{i, 010}=0
\end{array}\right.
$$

where $\Lambda_{i, s}=\left\langle f_{\Lambda}\left(C\|s\| \eta_{i}\right)\right\rangle_{Q} \bmod \eta_{i}$ for $s=00$ and $s=010$.
6. Bob checks whether
(a) Jacobi symbols of $Y_{i, 00}$ and $Y_{i, 010}$ are equal to -1 ,
(b) $Y_{i, 00}{ }^{2} \equiv d_{i} f_{\Lambda}\left(C\|00\| \eta_{i}\right) \bmod \eta_{i}$, where $d_{i} \in\{ \pm 1, \pm 2\}$,
(c) $Y_{i, 010}^{2} \equiv d_{i}^{\prime} f_{\Lambda}\left(C\|010\| \eta_{i}\right) \bmod \eta_{i}$ where $d_{i}^{\prime} \in\{ \pm 1, \pm 2\}$.

If the checks hold Bob accepts the payment of $\$ 75$.

Deposit (Bob \leftrightarrow Bank).

1. To deposits $\$ 75$, Bob sends a transcript of interactions with Alice. The transcript (history) is verified by Bank and if the checks hold, then Bank credits $\$ 75$ to Bob's account. If the payment is invalid, Bank reveals Alice's secret information s_{i}.

The major problem of the payment scheme is its low efficiency. The payment involves transmission of a large volume of data. Okomoto [385] suggested a modification which is more efficient. In this protocol, however, Alice can cheat at the registration stage (see [79]).

15.2.3 The Brands Electronic Cash Protocol

Brands [56] used the intractibility of Discrete Logarithm to design an electronic cash. The protocol handles coins of the same value, say $\$ 1$. All computations are done in the group $\mathcal{Z}_{q}^{*} ; q$ is a large enough prime. Bank sets up the protocol. It picks up at random three generators $\left(g, g_{1}, g_{2}\right)$ of \mathcal{Z}_{q}^{*} and selects a secret $x \in_{R} \mathcal{Z}_{q}^{*}$ together with two collision-free hash functions H and H_{0}. Bank publishes $\left(g, g_{1}, g_{2}\right), q$ and the descriptions of the hash functions. The integer x is kept secret but its exponent $h=g^{x}$ is a public key of the bank.
Registration (Alice \leftrightarrow Bank).

1. Alice identifies herself to Bank.
2. She generates her secret integer $u_{1} \in_{R} \mathcal{Z}_{q}^{*}$ and computes her account number

$$
I=g_{1}^{u_{1}}
$$

If $I g_{2} \neq 1$, Alice gives I to Bank while keeping u_{1} secret.
3. Bank \rightarrow Alice: $z=\left(I g_{2}\right)^{x}$.

Issuing a Coin (Alice \leftrightarrow Bank).

1. Alice identifies herself to Bank.
2. Bank \rightarrow Alice: $\left(a=g^{w}, b=\left(I g_{2}\right)^{w}\right)$
for $w \in_{R} \mathcal{Z}_{q}^{*}$.
3. Alice chooses at random (s, x_{1}, x_{2}) and computes

$$
A=\left(I g_{2}\right)^{s} ; B=g_{1}^{x_{1}} g_{2}^{x_{2}} \text { and } z^{\prime}=z^{s}
$$

Next, Alice selects two integers u, v and computes

$$
a^{\prime}=a^{u} g^{v} \text { and } b^{\prime}=b^{s u} A^{v}
$$

Then she finds out $c^{\prime}=H\left(A, B, z^{\prime}, a^{\prime}, b^{\prime}\right)$.
4. Alice \rightarrow Bank: $c \equiv \frac{c^{\prime}}{u} \bmod q$ where u is a blinding integer.
5. Bank \rightarrow Alice: $r=c x+w$ and withdraws $\$ 1$ from Alice account.
6. Alice verifies whether

$$
g^{r} \stackrel{?}{=} h^{c} a \text { and }\left(I g_{2}\right)^{r} \stackrel{?}{=} z^{c} b
$$

If the checks hold, Alice computes

$$
r^{\prime} \equiv r u+v \bmod q
$$

The coin is the sequence $C=\left(A, B, z^{\prime}, a^{\prime}, b^{\prime}, r^{\prime}\right)$.
Note that everybody can verify the coin by checking whether

- $g^{r^{\prime}} \stackrel{?}{=} h^{c^{\prime}} a^{\prime}$ and
- $A^{r^{\prime}} \stackrel{?}{=} z^{\prime c^{\prime}} b^{\prime}$.

For this reason the sequence $\left(z^{\prime}, a^{\prime}, b^{\prime}, r^{\prime}\right)$ can be considered to be a signature of (A, B). The signature is created by Alice with a collaboration with Bank who contributes by sending $r=c x+w$ (and charges for this $\$ 1$) where c is a blinded version of $c^{\prime}=H\left(A, B, z^{\prime}, a^{\prime}, b^{\prime}\right)$. Alice publishes r^{\prime} so Bank knowing the coin is not able to trace Alice provided the discrete logarithm instances are intractable.
Payment (Alice \leftrightarrow Bob).

1. Alice \rightarrow Bob: C
or Alice pays Bob by sending the coin C.
2. Bob \rightarrow Alice: $d=H_{0}\left(A, B, I_{\text {Bob }}\right.$, date/time $)$.
3. Alice \rightarrow Bob: r_{1}, r_{2}
where $r_{1} \equiv d s u_{1}+x_{1} \bmod q$ and $r_{2} \equiv d s+x_{2} \bmod q$.
4. Bob verifies whether Alice's responce is correct, i.e.

$$
g_{1}^{r_{1}} g_{2}^{r_{2}} \stackrel{?}{=} A^{d} B
$$

Bob saves (C, r_{1}, r_{2}, date/time).
Deposit (Bob \leftrightarrow Bank).

1. Bob \rightarrow Bank: $\left(C, r_{1}, r_{2}\right.$, date/time $)$.
2. Bank recalculates d from the information given by Bob and verifies whether $g_{1}^{r_{1}} g_{2}^{r_{2}} \stackrel{?}{=} A^{d} B$. If the check holds and
(a) the coin has never been spent before, Bank stores the transcript (C, r_{1}, r_{2}, date/time) in its database for future references and credits $\$ 1$ to Bob's account,
(b) otherwise, the coin has been deposited already. In this case Bank takes the current transcript (C, r_{1}, r_{2}, date/time) and the previous ($C, r_{1}^{\prime}, r_{2}^{\prime}$, date'/time'), recomputes d and d^{\prime}, creates a system of four equations in four unknows in $\operatorname{GF}(q)$:

$$
\begin{aligned}
r_{1} & \equiv d u_{1} s+x_{1} \\
r_{2} & \equiv d s+x_{2} \\
r_{1}^{\prime} & \equiv d^{\prime} u_{1} s+x_{1}^{\prime}, \\
r_{2}^{\prime} & \equiv d^{\prime} s+x_{2}^{\prime}
\end{aligned}
$$

After easy transaformations, Bank is able to find the secret key of Alice

$$
u_{1} \equiv \frac{r_{1}-r_{1}^{\prime}}{r_{2}-r_{2}^{\prime}} \bmod q
$$

and identify her as $I=g^{u_{1}}$.
The above protocol can be modified for electronic wallets with observers [56]. An electronic wallet is an collection of a user controlled computer with a tamper-proof unit (such as a smart card) also called an observer [89]. It can be argued that the collection is more secure than the computer or observer individually. It is assumed that an organization communicates with the computer and accepts only those messages which have been approved by the observer. Observer cannot directly talk to the organization. The concept of electronic wallets can be used to design cryptographic protocols which are secure against:

1. Inflow - if the computer follows the protocol, the organization cannot send any extra information to the observer no matter how the organization and the observer deviate from the protocol.
2. Outflow - if the computer follows the protocol, the observer cannot send any extra information to the organization no matter how the organization and the observer deviate from the protocol.

15.2.4 Other E-Cash Protocols

The Brands e-cash drops the cut and choose method to formulate coins. This obviously is reflected in increased efficiency. Similar concept of e-cash was also designed by Ferguson [177].

Anonimity the e-cash discussed so far is tied up with prevention against multiple spending. It can be argued that in some circumstances anonimity can be a problem especially when criminals try to exploit it to their advantage. von Solm and Naccache [505] discussed such scenarios including perfect blackmailing and money laundering. To relax anonimity of e-cash, Brickell, Gemmell and Kravitz [65] introduced a trusted party who collaborates during the generation of coins. The party together with Bank can later cooperate to trace the origin of coins. This is e-cash with escrowing. Jakobsson and Yung [260] showed how an Ombudsman may be involved in the e-cash protocol to ensure tracability. M'Raihi [354] presented an efficient e-cash with a blinding office which plays the role of independent (from Bank) party who on a valid court order can together with Bank suppress anonymity of coins.

15.2.5 Micropayments

E-cash requires a substantial computational overhead which is an over-kill for payments of small charges, say cents per transaction. An example of such transactions includes reading a page from a WWW site, sending a short e-mail or using white or yellow pages on the Internet. To support micropayment, the cash generation, withdrawal and deposit must be significantly simplified so the computational overhead is not expensive. Typically, generation of a one-cent coin should not cost more than several percent of its nominal value. The most expensive operations are digital signatures so micropayment protocols substitute digital signatures by a much cheaper hashing whenever it is possible.

Parties involved in a micropayment protocol are clients, vendors and a bank. Vendors provide services for which clients pay small fees. The bank registers clients and vendors, maintains their accounts and debits/credits their accounts. Consider a micropayment protocol, called PayWord, introduced by Rivest and Shamir in [421]. Clients, vendors and Bank have their secret and public keys used for digital signatures. H is a collision-free hash function. The PayWord protocol involves a client (Alice) a vendor (Bob) and Bank.
Registration (Alice \leftrightarrow Bank).

1. Alice identifies herself to Bank, opens her account and applies for a PayWord certificate.
2. Bank \rightarrow Alice: $C R=\left(m, S G_{B}(m)\right)$
where $m=$ (Bank-ID, Alice-ID, K_{A}, expiry date), $S G_{B}(m)$ is a signature generated by Bank for the message m and K_{A} is the public key of Alice.

Payment (Alice \leftrightarrow Bob).

1. Alice creates a chain of paywords (each payword is worth 1 cent) $w_{1}, w_{2}, \ldots, w_{n}$ where

$$
w_{i}=H\left(w_{i+1}\right)
$$

and w_{n} is a random payword. The element w_{0} is a commitment or root of the chain.
2. Alice \rightarrow Bob: $\left(w_{0}, S G_{A}\right.$ (Alice-ID, Bob-ID, w_{0}, time) $)$
where $S G_{A}$ (Alice-ID, Bob-ID, w_{0}, time) is a signature for the root generated by Alice.
3. Bob verifies the signature and stores the root.
4. Alice \rightarrow Bob: $\left(w_{i}, i\right)$.

Alice pays by revealing the next paywords in the chain.
5. Bob verifies consecutive paywords by checking whether $w_{i}=H\left(w_{i-1}\right)$.

Deposit (Bob \leftrightarrow Bank).

1. Bob \rightarrow Bank: $\left(w_{\ell}, \ell\right),\left(w_{0}, S G_{A}\right.$ (Alice-ID, Bob-ID, w_{0}, time)
where w_{ℓ} is the last payword obtained from Alice.
2. Bank verifies the correctness of the last payword. If the chain of paywords generate the root and the signature is correct, then Bank charges Alice's account ℓ cents and deposit this amount to Bob's account.

The security of the protocol depends on the strength of the digital signature and collision-freeness of the hash algorithm. Payments in the PayWord protocol are very efficient. Time-consuming digital signatures are only applied at the begining of a payment session. Partial payments by paywords do not need digital signatures. Instead they employ much faster hashing algorithms such as MD5 or HAVAL. The second protocol MicroMint considered in [421] completely relies on hashing. Some other micropayment protocols can be found in $[8,355]$.

15.3 Payment Protocols

We are going to review some implementations of e-cash. For more details, we refer the reader to the book by Furche and Wrightson [189] or alternatively to the suitable Web site.
CAFE. CAFE stands for Conditional Access for Europe and it is a project within the European Community's ESPRIT program ([47]). CAFE uses smart cards and electronic devices called wallets. The wallet is a portable computer with its own power supply, keyboard and display. The wallet can house a tamper-proof smart card (observer) but can be used with or without it. Stores have their points-of-sale (POS) terminals. The communication between wallets and terminals is done using infrared light. Smart cards may also be inserted directly into terminals. CAFE is an off-line e-cash protocol based on blind signatures to ensure anonymity. To protect against multiple spending of e-cash, an observer (smart card) is included in the wallet. When the observer is not present or is disabled, the identity of the client is incorporated into e-cash. If the wallet is lost or stolen, the owner can get a refund by revealing some information about their identity but only after the e-cash has expired.
eCash ${ }^{T M}$. Digicash commercialised Chaums's anonymous electronic cash and called it eCash. DigiCash maintains its web site at http://www.digicash.com. eCash is a protocol which enables a user to withdraw e-cash and to store it on his local computer. The user can spend his e-cash at any shop which accepts eCash money. The shop can later deposit the money to its account. The following banks offer eCash: Mark Twain Bank of St. Louis (US), Deutsche Bank (Germany), St. George (Australia), Den norske Bank (Norway), and Bank Austria.
Mondex. Mondex implements e-cash using smart cards (http://www.mondex.com). E-cash is stored on a smart card. Transfer of cash is possible from one card to another. The devices used in the protocol are a smart card, a balance reader, a wallet and a phone set with a reader for the card. The wallet supports card-to-card money transfer. The phone set enables money flow between the card and the bank or can be used to make payments. Payments can be done in exact amounts. For security reasons, the card can be locked using a password-like code. The protocol does not use cryptographic techniques.

NetCash. The protocol was developed by the Information Science Institute at the University of Southern California and is documented at http://nii-server.isi.edu:80/info/netcash. The protocol uses e-mail as the communication medium. Electronic cash is a simple token (serial number) which is issued by a bank. The holder of a token can spent it by sending it to the shop via e-mail. The shop deposits the token with the bank. The security of NetCash is low and the protocol can be used for micropayments.

There is also a class of protocols which use credit cards as the main payment facility. Some of the existing protocols are briefly discussed.

CyberCash. CyberCash provides a secure credit card transaction service (available at http://www.cybercash.com). CyberCash supplies software for customers and merchants. The customer package is called wallet. Information flow is protected by using 1024-bit RSA encryption. After the customer has downloaded the software, his ID must be attached to the wallet and his credit card number must be binded to it. This information is conveyed via a secure channel to CyberCash. On its side, CyberCash verifies the user identity and his card number.

Assume that a customer has decided to buy some goods from a merchant. The merchant sends an information about the purchase to the customer. The information are fed to the customer wallet. The customer indicates to his wallet which credit card to use so the wallet sends the card number to the merchant using encryption. The merchant then contacts a CyberCash server which takes the transaction information and sends the payment order to the merchant's bank. The merchant's bank talks to the customer's bank and provides details of the payment. The result of the talk is sent back the CyberCash server which forwards it in encrypted form to the merchant. A single payment takes no more than 20 seconds.

CyberCash also supports CyberCoin service. This service is aimed to handle small credit card payments below $\$ 10$. A customer can transfer coins from his credit account to his wallet and make payments. Transfer of CyberCoins is done using encryption. The banks involved and the wallet keeps a record of all transactions.
First Virtual. This is an electronic fund transfer for credit card payments (see http://www.fv.com). To use the facility, a user has to open an account with First Virtual. The account consists of user name, e-mail address and credit card details. A user buying goods from a First Virtual shop gives the shop their name and e-mail address. The shop ships the goods and sends the bill to First Virtual who charges the buyer's credit card.
SET. Secure Electronic Transaction (SET) is a protocol developed by MasterCard and VISA with the cooperation of many companies including IBM, Microsoft and Netscape. The SET protocol supports credit card payments over the Internet. SET is similar to the CyberCash protocol. The communication of messages in the protocol is encrypted. The encryption keys are distributed by trusted certificate authorities.

A typical payment in SET is initialised by a customer who asks the merchant for both her public key and the public key of her bank payment gateway. The merchant provides the certificates of both keys. The customer first verifies the keys and after successful verification, he generates two messages: order information (OI) and purchase instructions (PI). The OI message is encrypted using the merchant's key. The PI message is encrypted using the payment gateway key. The merchant decrypts OI and forwards PI together with his certificate. The gateway decrypts PI verifies other payment information and sends the payment authorization to the customer's bank. The bank approves or declines the payment and communicates this to the gateway which relays it to the merchant.

Chapter 16

DATABASE PROTECTION AND SECURITY

Database management systems are an important part of the operations of most computerized organizations. In many instances the data held within database carry more value than the hardware and software used to manage and maintain the data. Consequently the privacy and security of data stored within database systems represents a major concern for organizations relying heavily on database management systems.

The subject of database security has been investigated by researchers for a number of years. This chapter aims at providing a general overview of such research and other related developments, following the broad lines of Hinke in [246] and expanding further on some of the more relevant topics.

16.1 Database Access Control

A database can be seen as a reservour of information that is necessary for a continued successful operation of the organization. The organization wants to be sure that data items are accessible to authorized persons only (access control) and the data correctly reflect the reality (update and protection against illegal modification). A careful analysis of security threats and associated with them risks, is essential to work out an acceptable security policy. The security policy can be further be divided into [14]:

- access control policy - it defines the collection of access priviledges and access rules. There are two broad classes of access control policy: mandatory and discretionary. A discretionary access control policy specifies users' privileges to different system resources. A mandatory access control policy defines user access to system resources using the user security clearence and the security classification of the resource,
- inference policy - it determines which data items have to be protected to eliminate a leakage or disclosure of confidential information (this is important in statistical data bases),
- user identification policy - it specifies the requirements for proper user identification,
- accountability and audit policy - it indicates a collection of requirements for the audit control,
- consistency policy - it defines the meaning of operational integrity, semantc integrity and physical integrity of databases.

A security mechanism is an implementation of security policy. It is crucial to verify to what degree the security features have been incorporated into the mechanism. The process of verification of security mechanisms can be performed according to some existing evaluation criteria (see the Orange Book [145], the White Book [378], or Canadian Book [377]).

All resources in a computer system can be divided into active subjects and passive objects. The way a subject acts on an object is called the access priviledge or right. Access priviledges can allow an user to manipulate objects (read, write, execute, delete, modify, etc.) or to modify the access permissions (transfer ownership, grant and revoke privileges, etc.). Note that for each pair (subject, object), access control policy assigns a collection of access rights. The assignment can be explicit (positive authorization) or implicit (negative authorization). In positive authorization, an entry (subject, object) consists of priviledges which are explicitly allowed. In negative authorization, an entry (subject, object) contains a collection of priviledges which are explicitly denied.

There are three types of access control: discretionary access control (DAC), mandatory access control (MAC), and role based access control (RBAC). The discretionary access control relates to general problem of access control enforced by an operating system. The mandatory access control is applicable in databases where information can be classified on different security levels (so-called multilevel databases). The role based access control makes sure that the requested access is consistent with the current role of the user. Roughly speaking, a user is assigned a collection of access priviledges to an object on the basis of the role they play rather than who they are.

Now we briefly introduce basic vacabulary. The smallest identifiable entity in a database is a data item. Typically it is a number or a string of characters which express some information (distance between cities, surename of a person, etc.). An entity in the real world is described by providing more specific information about its attributes such as colour, shape, length, etc. An ordered sequence of data items is called a physical record. Physical records defined over the same collection of attributes may be arranged and stored in the form of an array (or table). If a row of the table indicates a single physical record, then each column contains data items from the same attribute. Columns are called fields and the array constitues a logical record.

16.2 Security Filters

The idea of a filter mechanism for database security is probably one of the earliest to appear because of its simplicity. Given a database system to be protected, it is only natural to initially think of an intermediary between the user and the database system, in the form of a filter that simply screens-out data according to some policy for labelling data. This simple notion of a filter breaks down when more complicated problems, such as trojan horses and user inference is taken into account.

Out of this simple idea of a filter which is external to the database system, other security mechanisms have been developed. These mechanisms initially exists within the filter and are independent of the database system. Recent developments in multilevel security for database systems have indicated further limitations of the stand-alone filter, and it is increasingly common to find filters or trusted front-ends as one of the many components of a secure database system or trusted computing base.

One of the earliest extensions of the idea of a filter was the integrity lock approach, which was suggested initially by the U.S. Air Force Summer Study on Data Base Security in 1982. The notion of a "spray paint" to label elements in the database system was also suggested by the Study [104]. The integrity lock approach applied a checksum function to the contents of each record, and maintained this checksum for each record to detect illegal tampering by opponents who by-passed the filter.

Ideally, the checksum should be a cryptographic hash function or encryption algorithm which is resistant to plaintext and ciphertext attacks. The checksum is calculated each time data is to be stored in the database system, and it is re-computed and compared with the stored checksum to detect illegal changes since the last modification of the data. The data in the records are not encrypted to allow record processing by the database system. Note that the correct labelling of data is still the task of
the filter. Furthermore, checksums only provide error detection, and not error correction.
Following the work by Denning [139] the granularity for the classification of data can be whole records, whole attributes or individual data elements. The granularity of the input to the checksum function can also vary depending on the space available and the required security, as discussed by Denning in [138].

The major work on the integrity lock approach was by Graubart [219], where it was applied to a commercial "off-the-shelf" database management system. The components of the integrity lock design in [219] are the Untrusted Front End (UTFE), the Trusted Front End (TFE) and the untrusted database management system. The UTFE performed query parsing and the formatting of output to the user. The TFE performed tasks such as user authentication, tuple formatting, projections of data, and the calculations and verification of the checksums. The untrusted database system performs the usual tasks of record searching, tuple selection, insertion and deletions, and also database reconfiguration. The tuple in the database is left as plaintext for performance reasons, while the label and checksum is encrypted. As expected, the use of encryption expands the storage requirements of the database. The implementation of the integrity lock design was done on the MISTRESS database management system running on the Unix operating system [220]. A description of the operating system support environment for the integrity lock approach is given by Graubart and Kramer in [221].

In discussing the use of filters with checksums to provide integrity of data in the database it must be understood that only detection of illegal modification is possible, and the remedy for this problem is simply to use the backups of the database files. The idea of a filter and that of the integrity lock does not address the following problems:

- The problem of undetected modification for long periods of time. If the illegally modified data is hardly ever used, and thus its checksum never verified, it can remain in the database for a long period of time and will be present in every backup since the time of the unnoticed modification. This renders the backup as a useless solution to the problem of illegal modification. The solution to this problem is to perform checksum verification of all modified data before a backup is created.
- The problem of high occurrence of illegal tampering. If the backup solution is used to remedy this problem, then a high level of occurrence of illegal tampering means that the backup must be brought to use more often. In real time systems, this results in an intolerable performance degradation.

Although the filter idea for database security is too simple to be useful against complex attacks from illegal users and trojan horses, it has been a useful testing environment for other security mechanisms such as database encryption schemes and data labelling routines. The security filter represents one useful way to increase the security of commercial "off-the-shelf" database management systems which often have very poor security features. It is fair to say that the simple idea of security filters paved the way for more recent developments, such as the Trusted Computing Base (TCB). The reader is directed to the work by Pfleeger [399] for a brief discussion on the configuration of security filters, trusted front-ends and trusted database managers.

16.3 Encryption Methods

The use of cryptographic techniques or encryption for database systems represents another important security mechanism. Data is stored in the database system in an encrypted form, hence illegal users cannot read or modify the data. Encryption should be done in a lower level security mechanism which is applicable independent of the type of policy used in the database system. Although some
authors have suggested that because encryption is very secure then the database system need not be a trusted one (see for example, the discussion by Denning [140]), encryption should be used together with other security components in an integrated manner. Encryption on its own does not secure the database system since many loopholes may still exist within the operating system and the database system itself. Hence the effective use of encryption depends on the architecture or configuration of the database system which incorporates it. In general, encryption in database systems have other advantages, some among which are:

- Encryption provides the last line of defence against any attack by an opponent.
- Encryption of data in the database presents a "deterrent" to attackers. Access to the encrypted data without knowledge of some suitable cryptographic information is equivalent to access by an attacker to an insecure communications line. Without the suitable cryptographic information it may be very difficult or impossible to convert the cryptograms into plaintext.

The disadvantage of encrypted databases is that record searching, particularly in the case of partialmatch and range queries, becomes inflexible unless secure auxiliary information which maintains the positions of records or fields in the database is kept.

Encryption can be applied to three levels of data granularity, namely to whole tuples (records), whole attributes (fields) and to individual data elements. The encryption of whole attributes results in the need to decrypt the entire column or attribute in the relation if a single tuple is selected, hence it can be immediately dismissed as being to inflexible and resource consuming. The next alternative would be to encrypt whole tuples, in which case every record needs to be decrypted during projections of certain attributes. In general, given an unconditionally secure cryptosystem, the best alternative is to encrypt individual data elements. This will allow selections and projections in the normal manner. This alternative may result in the expansion of the tuples, and thus the database. With the continual decrease in the cost of storage medium this issue will not be a problem. In the following, the various database encryption schemes that have been designed by researchers in the area of database security will be presented.

DES-based Encryption

In [137] Denning has used the DES algorithm [379] for the encryption and authentication of fields within a record. Each field is encrypted using a distinct cryptographic key. The scheme assumes that the unique record identifier in the first field of each record is at most 8 bytes long and is left as plaintext. This ensures that record searching can be performed without loss of flexibility.

The encryption key for each field j of record i with a unique record identifier R_{i} and field identifier F_{j} is $K_{i j}=g\left(R_{i}, F_{j}, K\right)$, where g is a key generating function based on a secret database key K. Five ways are proposed to create the key generator g :

- $K_{i j}=E_{K_{j}}\left(R_{i}\right)$ with $K_{j}=E_{K}\left(F_{j}\right)$
- $K_{i j}=R_{i} \oplus K_{j}$ with $K_{j}=E_{K}\left(F_{j}\right)$
- $K_{i j}=E_{K_{i}}\left(F_{j}\right)$ with $K_{i}=E_{K}\left(R_{i}\right)$
- $K_{i j}=K_{i} \oplus F_{j}$ with $K_{i}=E_{K}\left(R_{j}\right)$
- $K_{i j}=E_{K}\left(R_{i} \oplus F_{j}\right)$
where \oplus is the exclusive-OR operator and E_{K} denotes encryption using key K. In using any of the five key generating functions the unique identifiers are padded until the whole 8 bytes (64 bits) are
filled. Out of the five generators the first and the second provides the highest level of security but are the least efficient. The third and the fourth generators are the most efficient but suffers the problem of multiple key exposures due to key compromises. In addition, all five generators suffer from the possibility of producing weak keys, in which case unused bits in the identifier can be set to 1 or 0 randomly to increase its security.

The encryption and decryption of a field $M_{i j}$ uses the DES cryptosystem, and in the case that it is less than 8 bytes long, it is simply replicated until the whole 8 bytes is full. In the case that $M_{i j}$ is longer than 8 bytes, it is encrypted using cipher block chaining with initialization block I. Since the keys are secret and never repeat, block I need not be distinct for every record, and in this scheme it is proposed that I be set to the all zero block. This produces the effect of having a single block encrypted in standard block mode being equivalent to that block encrypted in cipher block chaining with it as the first block.

Note that field encryption may cause expansion in the field size. Furthermore, in searching for a particular field j, all the fields must be decrypted first. A possible modification of this scheme is to incorporate a checksum to detect illegal record or field substitution. The checksum for field $M_{i j}$ is computed using a key which is a function of the record identifier R_{i}, field identifier F_{i} and the secret database key K.

The Subkeys Encryption Model

Davida, Wells and Kam [121] have used a subkeys model or method which is based on the Chinese Remainder Theorem. The theorem asserts that given r positive integers $m_{1}, m_{2}, \ldots, m_{r}$ which are relatively coprime and given r integers $a_{1}, a_{2}, \ldots, a_{r}$ then the congruence $x \equiv a_{i} \bmod m_{i}(i=1, \ldots, r)$ has a common solution. The idea in the subkeys model is that the equation $C_{i} \equiv a_{j} \bmod d_{j}$ is associated to records and fields. C_{i} corresponds to the encrypted records, a_{j} corresponds to the fields within a record, and d_{j} corresponds to the decrypting keys for field j. Here d_{j} are large primes and a_{j} is any integer. Hence d_{j} becomes the subkeys in the system and the field values a_{j} can be recovered by calculating:

$$
C_{i} \equiv \sum_{j=1}^{n} e_{j}\left(x_{j} \| f_{j i}\right) \bmod D
$$

where

$$
D=\prod_{j=1}^{n} d_{j}
$$

and $f_{j i}$ is the value for field j of record i ($f_{j i}$ is a data item). A random number x_{j} is generated for field j and is concatenated to $f_{j i}$. This concatenation must result in a number less than d_{j}. Encryption is performed by using the key e_{j} where

$$
e_{j} \equiv\left(D / d_{j}\right) b_{j} \bmod d_{j}
$$

and where

$$
b_{j} \equiv\left(D / d_{j}\right)^{\varphi\left(d_{j}\right)-1} \bmod d_{j}
$$

is the inverse of $\left(D / d_{j}\right)$ modulo d_{j} and $\varphi\left(d_{j}\right)$ is the Euler totient function of d_{j}.
In order to decrypt field j in a record C_{i} using key d_{j} the following calculation is performed:

$$
C_{i} \equiv\left(x_{j} \| f_{j i}\right) \bmod d_{j}
$$

$(j=1, \ldots, n)$. That is, we calculate $C_{i} \bmod d_{j}$ to get $\left(x_{j} \| f_{j i}\right)$ and we remove the random bits x_{j} to get the actual data item $f_{j i}$.

One disadvantage of the system is that the whole record must be re-encrypted after any field is updated. This is done to counter the known plaintext attack by a malicious user. The subkeys method for record encryption has been shown to permit some database operations, such as project and join in further work by Davida and Yeh [122]. The realization of the subkeys method and further extensions and improvements to increase its security can be found in the results of Omar and Wells [388]. The extensions consists of placing an encryption/decryption (E/D) unit at the user's terminal and a locator unit between the database management software and the encrypted database. The subkeys and a userfield capability matrix exists inside the locator. Users are allowed to access the database vertically (fields) and horizontally (records or tuples). Before any interaction with the database management system, a public key scheme is used to ensure the security of key transfers between the locator and the E/D unit. The work by Wells and Eastman in [516] is related to the research into the subkeys model, and represents effort into traffic analysis of encrypted databases. The reader is directed to the last three cited works for further information on the model.

Composed Encryption Functions

A method put forward by Wagner [507] consists of a two stage encryption method for databases where no single agency or device can encrypt or decrypt data directly. It allows users to choose their own keys while all data in the database are finally encrypted using a secret key. The system employs a trusted central authority or Data Distributor (DD) which holds a complementary key for each user. Before accessing any part of the database a user n must cooperate with another user $i(i<n)$ who acts as a sponsor to user n. In this scheme the first user (user 1) has a special position in that he or she chooses half or the random key for the database encryption (user 1 is preferably a trusted user, such as the database administrator). User 1 then becomes the sponsor of user 2, and so on. The model requires a cryptosystem to be closed under composition. The RSA cryptosystem and DES is suitable as a cryptosystem for this model.

The first step in the method is to perform key distribution where user 1 chooses a random secret X and the Data Distributor chooses also a random secret Y. User 1 then chooses his or her encryption key K_{1} and finds its inverse (decryption key K_{1}^{-1}) modulo $\varphi(N)$, where N is a large prime (public). User 1 then calculates

$$
Z_{1} \equiv K_{1}^{-1} X \bmod \varphi(N)
$$

and sends Z_{1} to the Data Distributor who calculates

$$
L_{1} \equiv Z_{1} Y \bmod \varphi(N)
$$

secretly. Note that L_{1} is in fact

$$
L_{1} \equiv K_{1}^{-1} X Y \bmod \varphi(N)
$$

and all data M is later encrypted as $M^{X Y} \bmod N$. The value $L_{i} \equiv K_{i}^{-1} X Y \bmod \varphi(N)$ is stored in secret and is used later for access to the database by the user i. Also note that user 1 does not require a sponsor, hence he or she should be a trusted user or database administrator.

The key distribution for user n is the following. User n chooses a secret random pair U and V and calculates his or her key $K_{n}=U V$. He or she then sends V to the Data Distributor. User n then chooses a sponsor user $i(i<n)$ and sends U to user i. User i calculates the inverse U^{-1} of U modulo $\varphi(N)$ and calculates

$$
Z_{n} \equiv U^{-1} K_{i} \bmod \varphi(N)
$$

on behalf of user n. In this step the sponsor has attached his or her own key K_{i}. The sponsor then sends Z_{n} to the Data Distributor. The Data Distributor now has both V and Z_{n}, and proceeds to
find the inverse V^{-1} of V modulo $\varphi(N)$. Next, the Data Distributor calculates

$$
L_{n} \equiv V^{-1} Z_{n} L_{i} \bmod \varphi(N)
$$

and stores L_{n} in a secure place. This means that in fact L_{n} reduces to

$$
L_{n} \equiv K_{n}^{-1} X Y \bmod \varphi(N)
$$

The storage and retrieval of a data M is performed as follows. User n stores data M by encrypting it using his or her key K_{n} and forms cryptogram $C^{\prime} \equiv M^{K_{n}} \bmod N$. This cryptogram is then given to the Data Distributor who further encrypts it using L_{n} giving C where $C \equiv\left(C^{\prime}\right)^{L_{n}} \bmod N$. Thus:

$$
C \equiv\left(C^{\prime}\right)^{L_{n}} \equiv\left(M^{K_{n}}\right)^{Z_{n} Y} \equiv M^{X Y} \bmod N
$$

User n can retrieve data M by asking the Data Distributor to decrypt C into $C^{\prime \prime}$. The Data Distributor first fetches the secret value L_{n} corresponding to user n and computes the inverse L_{n}^{-1} of L_{n} modulo $\varphi(N)$. Then the cryptogram $C^{\prime \prime}$ is calculated by:

$$
C^{\prime \prime} \equiv C^{L_{n}^{-1}} \bmod N
$$

and the Data Distributor passes $C^{\prime \prime}$ to user n. User n then finds M from $C^{\prime \prime}$ using K_{n}^{-1} by the following:

$$
M \equiv\left(C^{\prime \prime}\right)^{K_{n}^{-1}} \equiv\left(C^{L_{n}^{-1}}\right)^{K_{n}^{-1}} \equiv\left(\left(M^{X Y}\right)^{\left(K_{n}^{-1} X Y\right)^{-1}}\right)^{K_{n}^{-1}} \bmod N
$$

One advantage of this method is the ease in changing the user keys. When user n wants to get a new key, he or she must choose a random secret V and send it to the Data Distributor who calculates its inverse V^{-1} modulo $\phi(N)$. The Data Distributor then updates the secret L_{n} corresponding to user n and generates

$$
L_{n}{ }^{\prime} \equiv V^{-1} L_{n} \bmod \varphi(N)
$$

and user n updates his or her key K_{n} into

$$
K_{n}^{\prime} \equiv V K_{n} \bmod \varphi(N)
$$

Another advantage is the restructuring of the list of L_{i} values when that list is compromised. The Data Distributor simply chooses a secret random W and for each L_{i} in the list a new one is generated as:

$$
L_{i}^{\prime} \equiv W L_{i} \bmod \varphi(N)
$$

All ciphertext C in the database is then encrypted into \bar{C} by performing $\bar{C} \equiv C^{W} \bmod N$. Encryption and decryption of data by users then proceed as before.

Polynomial-based Encryption

Cooper, Hyslop and Patterson [105] suggested a method for database encryption based on polynomials in the field $\operatorname{GF}(p)$, where p is prime. The contents of the database is viewed as consisting of fixedlength character strings. These are in turn made up of substrings and users can have access to a select subset of these substrings, as in the usual situation where users may only have access to a subset of the records in the database.

Let the substrings $S_{i}(i=1, \ldots, n)$ be concatenated into a single long string S. The long string is then encrypted using the following procedure. For the selected plaintext alphabet, a prime $p \geq c$ is chosen, where c is the number of characters in the alphabet. A bijection is then constructed from the plaintext alphabet to the integers in field $\operatorname{GF}(p)$. Hence, under the bijection the representative
substring belonging to users will correspond to the set of integers between 0 and $p-1$. Each sequence of integers S_{k} is then used to form a polynomial $S_{k}(x)$ in x of degree at most $d=l-1$ where l is the length of the representative sequence S_{k}. A finite field $G F_{k}=G F\left(p^{l}\right)$ is then generated using an irreducible polynomial $I_{k}(x)$ such that it contains the $S_{k}(x)$ as its element. Following this, a secret polynomial $R_{k}(x)$ is calculated for each finite field $G F_{k}$, and is multiplied to produce the polynomial $T_{k}(x)$ as follows:

$$
T_{k}(x) \equiv S_{k}(x) R_{k}(x) \bmod I_{k}(x)
$$

Encryption for the representative record S is equivalent to finding a polynomial $A(x)$ using the Chinese Remainder Theorem where:

$$
A(x) \equiv T_{k}(x) \bmod I_{k}(x)
$$

for $k=1, \ldots, n$. Decryption of a sequence S_{k} is performed by dividing $A(x)$ by $I_{k}(x)$, resulting in the remainder $T_{k}(x)$. This remainder is further multiplied by $R_{k}^{-1}(x)$, producing the required $S_{k}(x)$ which can be inverted back to the original plaintext using the initial bijection.

In [42] Blakley and Meadows presents an encryption scheme that allows the encrypted data to be used in some statistical computation involving counts, sums and higher-order moments. Given a Galois Field $\operatorname{GF}(\pi)$ where π is a large prime, the i-th record of the database is encrypted as the polynomial p_{i}, where each p_{i} is constructed so that $p_{i}\left(c_{j}\right)$ is the j-th data element of the i-th record $(i=1, \ldots, d)$. Here the k fields are represented by the elements c_{1}, \ldots, c_{k} of the Galois Field GF (π).

A user who is authorized to access all the fields in a record can be given one polynomial and all c_{j} $(j=1, \ldots, k)$. A user with access to a given number of fields of all the records gets all polynomials but only one c_{j}. A user who is authorized to know the sum or the average value of the projection of the j-th field can calculate

$$
\bar{p}=\sum_{i=1}^{d} p_{i}
$$

and evaluate it at c_{j}, and divide by d. Here the division by d is over the reals and the summation is over $\operatorname{GF}(\pi)$. The reader is directed to [42] for further notes on how to encrypt the polynomials and how to do other statistical computations.

Joint Encryption and Error-Control

In [360] Nam and Rao presents a database encryption scheme which allows decryption and control of errors in the database. The scheme is called Residue-Coded Cryptosystem (RCC) and is based on residue codes which presents an error-detection capability based on (n, k) residue codes. The idea of error-detection is very attractive to distributed databases in which data in the form of records must be sent between sites through communications medium which is subject to noise and to illegal tampering.

Given a plaintext M which is one field per record, the encrypted ciphertext C consists of n residues, including $(n-k)$ error-control residues. Thus,

$$
C=C_{1}, \ldots, C_{k}, C_{k+1}, \ldots, C_{n}
$$

where C_{1}, \ldots, C_{k} are the information residues and C_{k+1}, \ldots, C_{n} are the error-control residues. The encryption stage consists of the selection of n encryption keys d_{1}, \ldots, d_{n} (relatively prime integers) for each of C_{1}, \ldots, C_{n} respectively, where

$$
\prod_{i=1}^{k} d_{i} \geq \max (M) \cdot Z_{c}
$$

and

$$
d_{k+j}>d_{i}
$$

for $j=1, \ldots, n-k$ and $i=1, \ldots, k$, where Z_{c} is an integer employed for security and $\max (M)$ is the maximum value of M. Thus, the n pieces of information takes the following form:

$$
C_{i} \equiv(Z \| M) \bmod d_{i}
$$

for $i=1, \ldots, n$ where Z is a fixed length random number less that Z_{c} and " \mid " denotes concatenation.
The decryption stage consists of the calculation of Z concatenated to M as follows:

$$
Z \| M \equiv\left(\sum_{i=1}^{k} e_{i} C_{i}\right) \bmod D
$$

where

$$
D=\prod_{i=1}^{k} d_{i}
$$

The decryption key e_{i} is calculated as:

$$
e_{i}=\frac{D}{d_{i}} b_{i}
$$

where b_{i} is the inverse of D / d_{i} modulo d_{i} and

$$
\frac{D}{d_{i}} \times b_{i} \equiv 1 \bmod d_{i}
$$

The value M can then be retrieved from the concatenation $Z \| M$.
The syndrome computation and error control can be done depending on the set-up of the scheme. Thus, for a single residue error correction capability the ciphertext would then require two error-control residue. The syndrome vector can be computed in the following manner:

$$
S_{i} \equiv(C-\bar{M}) \bmod d_{i}
$$

for $i=k+1, n$. Here $\bar{M}=Z \| M$ before the M is abstracted out of the concatenation. The assurance that no errors have occurred is gained when $S_{i}=0$ for all the syndrome vectors. The reader is directed to the work by Nam and Rao [360] for further information on the scheme and a comparison of the scheme with the Subkeys Model in [121].

16.3.1 Privacy Homomorphisms

A major hustle with encryption for information protection in databases is the necessity of decryption every time information is needed for either processing or retrieval. It can be argued that during processing, the decryption can be eliminated if operations can be performed on cryptograms. In other words, instead of clear data, the operation uses ciphertext and generates a cryptogram of the result which can be then decrypted in the time of retrieval.

Given an operation $O P: \mathcal{M}^{n} \rightarrow \mathcal{M}$ which takes n arguments and produces result from the set \mathcal{M} and a cryptographic algorithm defined by its encryption and decryption functions E_{k} and D_{k}, respectively. It is said that a cryptographic transformation preserves an operation $O P$ on n variables if

$$
O P\left(m_{1}, \ldots, m_{n}\right)=D_{k}\left(O P\left(E_{k}\left(m_{1}\right), \ldots, E_{k}\left(m_{n}\right)\right)\right)
$$

for each cryptografic key $k \in \mathcal{K}$. This concept can be extended to algebraic fields when a cryptographic algorithm preserves both field operations $\langle+, \times\rangle$. Different candidates for cryptographic transformation preserving field operations are discussed in [450]. If processing involves not only addition and
multiplication but other operation such as comparison operations, then the class of cryptographic transformations preserving the operations is rather small and thus its practical usage is limited.

Rivest, Adleman and Dertouzos [422] defined a broader class of cryptographic transformations which preserve operations and called them privacy homomorphisms. The class of privacy homomorphisms is defined as the quadruple:

$$
\left(E_{K}, D_{K}, O P, O P^{*}\right)
$$

such that:

$$
O P\left(m_{1}, \ldots, m_{n}\right)=D_{k}\left(O P^{*}\left(E_{k}\left(m_{1}\right), \ldots, E_{k}\left(m_{n}\right)\right)\right)
$$

for each cryptographic key k and any sequence of m_{1}, \ldots, m_{n} in the message space \mathcal{M}. $O P$ and $O P^{*}$ are operations that are permissible in the message and cryptogram spaces, respectively. Notice that the definition says that we get the same result either applying the operation $O P^{*}$ in the cryptogram space \mathcal{C}, or using the operation $O P$ in the message space \mathcal{M}.

Recall that the enciphering transformation in the RSA system is $E_{K}(m)=m^{K} p m o d N$, where K is the enciphering key, m is the message, and the modulus $N=p q$ (p, q are primes). Note that:

$$
E_{K}\left(m_{1} \cdot m_{2}\right)=\left(m_{1} \cdot m_{2}\right)^{K}=m_{1}^{K} \cdot m_{2}^{K}=E_{K}\left(m_{1}\right) \cdot E_{K}\left(m_{2}\right)
$$

Thus, the enciphering transformation of the RSA system has the multiplication property. In other words, it is possible to define the multiplicative homomorphism ($E_{K}, D_{K}, O P, O P^{*}$) for which E_{K}, D_{k} are cryptographic transformations defined in the RSA system and $O P=O P^{*}$. This privacy homomorphism is as secure as the RSA system.

Other Research Efforts

There are a number of other research efforts which have a direct or indirect relevance to encryption in database systems. An interesting idea was presented by Brandt, Damgard and Landrock [57] whereby individuals could submit data concerning themselves to a centralized database without the need to trust the register of the database. The data of each individual is protected from one another, and each individual has the power to ensure that data about him or her in the register database is correct and not modified illegally. This scheme applies very attractively to scenarios such as in centralized medical databases with data from various hospitals, and in centralized government taxation databases. Given a number of institution which have to send data about a particular individual to the centralized database the scheme aims at keeping the individual anonymous and making the registration verifiable.

The work by Carroll and Jurgensen [76] presents a relational database structure in which access is controlled by cryptographic means, while data in the database are stored in an encrypted format. Information about the clearance of users are placed in individual user profles which can be hierarchical and non-hierarchical. A number of rules concerning read, write and read/write operations is also suggested. The results of a simulation is also provided which indirectly points out the practical difficulties of the $*$-property of the Bell-La Padula security model [18, 19]. Based on the access control mechanism and the database encryption scheme a formal model of systems security is also provided.

For other works, the reader is directed to Wagner, Putter and Cain [508] for a description of homophonic encrypted databases, to Gudes [225] for the use of encryption in file systems, and finally to Eriksson and Beckman [164] for a description of experiences in using encryption for the security of a police database systems.

16.4 Database Machines and Architectures

Database machines or database computers provides some advantages in security depending on their configuration with respect to the host operating system. Following the work by Hsiao [250] and by Henning and Walker [239], the four database machine architectures which may provide security are:

- Intelligent disk controller. Here the database management system resides on the host computer and employs the main memory of the host, but interacts with the intelligent controller. The controller usually has built into it enough processing logic so that raw data can be pre-processed before it is placed in the main memory of the host [250]. The security of the database provided by this architecture depends heavily on the security mechanisms provided by the host operating system. This includes user authentication which is performed by the host operating system. The advantage of this configuration comes from the increase in performance due to the speed of data retrieval by the controller, independent of the data storage mechanisms of the host. In this case it is required that the path between the controller and the host be a trusted one.
- Host independent hardware backend database machine. All security responsibilities belong to the database machine. All access can be controlled by the machine since it is physically separated from the host (frontend) computer. The database management routines and the on-line I/O capabilities are built into hardware, thus offering an increase in performance during normal database operations. The backend machine only receives the queries and returns answers to the host computer [250]. User authentication may be performed independent of the authentication by the host operating system. The backend machine must rely on the operating system to pass to it data and queries from users, hence a trusted path must exist between the backend and the host. Such a database machine would be trusted to a level at least equal to the highest level of trust in the host operating system.
- Software backend database machine. A software approach can be taken in the implementation of a backend database system, in which all database management tasks and online I/O routines are performed by software residing in a stand-alone general purpose computer. In this manner the resources of the host operating system is free from any database functions. The security of the database system in this configuration follows the security of the operating system, hence portability to different hosts may prove to be difficult. Additional security measures can be implemented on the backend computer independent of the security measures of the host.
- Multibackend software database machine. The software-based backend database machines can be adapted to a multiprocessor multibackend configuration. The same piece of software can be used in all instances of the backend without requiring any modifications to the hardware. A software control module is located between the single host and the multiple backends. In a multilevel security classification of data each backend can be used to stored data of differing sensitivity. The software control module can then route queries to these backends depending on the security clearance of the user. In terms of performance this configuration allows queries to be processed in parallel. However, the very nature of replicated data makes the control of these backends difficult. The security of this configuration is no different from that of the single backend software database machine. However, the fact that one backend may interact with another in the course of processing a query means that a covert channel may also exists between the backends.

16.4.1 Experimental Backend Database Systems

Two of the early experimental systems using backend database systems are the Data Base Computer (DBC) [13] developed at the Ohio State University, and MULTISAFE [501] developed by Virginia Tech and the University of South Carolina.

MULTISAFE

In MULTISAFE [501] the data management system is divided functionally into three major hardwaresoftware module. The are the User and Application Module UAM, the data Storage and Retrieval Module (SRM) and the Protection and Security Module (PSM). Logically, each of these modules are separated, but physically they may be implemented on the same underlying hardware. However, performance needs suggest that each module should be implemented on physically different processors. Although the three modules are treated as a separate and independent processes, they are precisely connected to achieve a combination of multiprocessing, pipelining and parallelism.

The UAM is essentially the interface between the user and the system. The UAM can be realized in a number of ways. It can be seen as a large conventional multiprogrammed processor with disjoint user address space or it can be viewed as a collection of intelligent terminals, each with a private memory and processor. Independent of its actual implementation, the UAM has the task of analyzing user queries and formatting results, and providing working storage and computation abilities to the user. The UAM does not provide any security or I/O tasks to the user.

The PSM encapsulates the security mechanism away from the other modules. It makes access decisions based on three dependency classes:

- Data-independent access. This access condition depends on user and/or terminal identification information and dynamic system variables.
- Data-definition-dependent access. This access depends on attribute names and relations, independent of their actual value.
- Data-value-dependent access. This requires the checking of attribute values before any access.

The PSM is dedicated to security-related tasks and is free from any operating system or database system functions. This includes audit-trail maintenance, integrity checking, cryptographic functions and the control of backup and recovery.

The SRM is dedicated to perform database accesses on behalf of the UAM and PSM. The SRM processor can be realized in terms of conventional computer hardware and/or a conventional DBMS software. Alternatively, a backend processor or a database machine can be employed. The SRM can perform other additional tasks, such as data manipulation operations and the materialization of database views. Furthermore, it can maintain private files associated with other non-DBMS applications belonging to the user. The reader is directed to [501] for more information on the communication of messages between the modules of MULTISAFE and other security-related issues.

Data Base Computer (DBC)

The Ohio State University Data Base Computer (DBC) [13] employs the idea of back-end computers and associative processors. The developers of DBC recognized a number of problems found in common database systems in relation to data security. Some of the problems they set out to solve are:

- The complexity of name-mapping operations in answering queries.
- The performance bottleneck caused by different functional software modules being implemented on the same underlying hardware.
- The data security overhead due to the need to perform multiple name-mapping operations in order to enforce security.

The key design concepts employed in the DBC to overcome these problems include the use of a partitioned content-addressable memory (PCAM), the use of structure and mass memories, area pointers, functional specification, look aside buffering and the integration of security into the design. The aim of the PCAM is to reduce the need for name-mapping data structures. This allows data to be moved anywhere in the database without the need to modify the name-mapping data structures. The PCAM is implemented by splitting a storage system into many blocks or partitions.

Name-mapping data structures for these blocks is based on the structure memory concept, in which a mass memory holds the information making up the database and contains only update invariant name-mapping data structures. The structure memory and the mass memory in the DBC are implemented as PCAMs. Name-mapping data structures are simplified using the concept of area pointers. A given area pointer shows which PCAM partitions holds a required data item, and no modification needs to be done on an area pointer in the case that data items are moved.

In order to minimize the difficulties met during the modification of name-mapping data structures a fast look aside buffer is employed. Before any chance is recorded permanently in the structure memory, it is first recorded in this buffer and is used to satisfy subsequent commands.

To overcome the bottleneck found on many database system which employ software modules, the DBC has taken the approach of functional specialization. Here, components are designed individually to adapt to their specified functions. The DBC has seven major specialized components. These are the keyword transformation unit (KXU), the structure memory (SM), the mass memory (MM), the structure memory information processor (SMIP), the index translation unit (IXU), the database command and control processor (DBCCP) and the security filter processor (SFP). The system operation consist of two "loops", namely the structure loop and the data loop, which have the the DBCCP in common. The incoming request from the Program Execution Unit (PES) is passed through the KXU which converts keywords into their internal form, and structural information about the database is retrieved and maintained by the SM. Set operations on the structural information is performed by the SMIP. Both the SM and the SMIP are implemented using PCAMs. The structural information from the SMIP is then decoded by the IXU and the results returned to the DBCCP. The data retrieval and update is then performed in the data loop. The MM contains the database and the SFP performs the necessary security checks.

Although the DBC initially employed the relational model, simulation studies shows that it is also suitable for the network and hierarchical data models [237].

16.5 Database Views

The concept and implementation of views in the broad area of database systems has been a topic of research for a number of years [78, 489, 431, 534, 274]. Interest in the use of views for purely security purposes only began in the early 1980's. One of the earliest uses of views was by Griffiths and Wade [222] in IBM's System R as a form of access control. This early work, however, concentrated on a single security classification and attempted mainly to solve the problem of grant propagation in a multiuser database system. The use of views for multilevel security in database systems was independently suggested in 1983 by Claybrook [98] and by the Summer Study on Multilevel Database Management System coordinated by the U.S. Air Force Summer Studies Board [104].

In order to understand the possible uses of views as security objects, it is useful to define views and to briefly look at its related terminology. Although views are not strictly defined over the relational data model, the best examples can be given using the relational data model using the syntax of the Structured Query Language or SQL [120]. The general form of an SQL query is the following:

$$
\begin{aligned}
& \text { select } \text { att }_{1}, \text { att }_{2}, \ldots, \text { att }_{n} \\
& \text { from } \text { rel }_{1}, \text { rel }_{2}, \ldots, \text { rel }_{m} \\
& \text { where pred }
\end{aligned}
$$

Here $a t t_{i}$ are the attributes, rel $_{i}$ the database relations and pred is the predicate. The attributes can also be replaced by a "*" meaning that the whole tuple (record) with all its attributes are to be retrieved.

A view can be defined to be a pre-set or predefined named retrieval query that creates a virtual relation over base relations. The view or virtual relation is not stored in the database, whereas the base relations are the underlying data stored in the database. Once created, a view can be queried as if it were a true relation. Views can be built upon other views, and so on. For example, in [98] Claybrook presents an architecture whereby an internal view is defined over the database, then a conceptual view is in turn defined over the internal view and finally the multiple user-defined views are defined over the conceptual view.

Using the SQL notation, the following is an example of the creation of a view V which is then queried by a user:

```
create view \(V\) as
    select att \(_{1}\), att \(_{2}, \ldots, a t t_{n}\)
    from rel \(_{1}\), rel \(_{2}, \ldots\), rel \(_{m}\)
    where pred \(_{v i e w-d e f}\)
    select att \(_{i 1}, a t t_{i 2}, \ldots, a t t_{i k}\)
        from \(V\)
        where pred \(_{\text {user }}\)
```

During query processing, the user query over view V is resolved internally into:

$$
\begin{aligned}
& \text { select } \text { att }_{i 1}, \text { att }_{i 2}, \ldots, \text { att }_{i k} \\
& \quad \text { from } \text { rel }_{1}, \text { rel }_{2}, \ldots, \text { rel }_{m} \\
& \text { where } \text { pred }_{v i e w-d e f} \text { and pred } d_{\text {user }}
\end{aligned}
$$

There are a number of concepts and terminology that are often used in discussing views and database security in general. Following the notations found in Wilson [525] and Denning et al. [141] these are the following:

- A security level is a pair (H, S) where H is a hierarchical security classification and S is a set of categories or compartments [525].
Examples of the classification are Confidential $<$ Secret $<$ TopSecret, and examples of categories are Crypto, NATO and others. An alternate notation is given in [141] where a security level is the pair

$$
<\text { SecrecyLevel, SecurityCategory }>
$$

which is also defined to be the secrecy component of an access class. The integrity component of an access class is given as

$$
<\text { IntegrityLevel, IntegrityCategory }>
$$

- The security level $\left(H_{1}, S_{1}\right)$ dominates the security level $\left(H_{2}, S_{2}\right)$ or

$$
\left(H_{1}, S_{1}\right) \geq\left(H_{2}, S_{2}\right)
$$

when $H_{1} \geq H_{2}$ and $S_{2} \subseteq S_{1}$.
That is, a given security level L_{1} dominates the security level L_{2} when level L_{1} is used classify data that is at least as sensitive as data classified as L_{1}. When L_{1} strictly dominates $L_{2}\left(L_{1}>L_{2}\right)$ we have that ($L_{1} \geq L_{2}$) and ($L_{1} \neq L_{2}$). Hence the symbol " \geq " denotes partial ordering [525]. Equivalently, access classes [141] can be seen as an element of a lattice structure having the " \geq " partial ordering, where access class L_{1} dominates (or strictly dominates) another access class L_{2}.

- A subject is an active entity that accesses objects in accordance with a security policy.

In the case of views in databases, the subject may be a process executing on behalf of a user and the objects are various views defined over the base relations and other views [525]. The subject or user has clearance or an associated access class [141] and the clearance (or access class) of a subject must dominate the classification (or access class) of the data before the subject has access to the data.

16.5.1 Advantages and Disadvantages of Views

There are a number advantages of using views for security objects in database systems. The first and foremost is the fact that views express the context of the data over which it is defined, and it is important that both the context and the data itself need to be protected. In its simplest form views present a subset of the database to the user, be it whole tuples or whole fields attributes. Any change in the underlying base relation does not require a corresponding modification to the view definition over that base relation. Thus views are very much static even while the database is dynamically changing. This advantage is derived from the fact that views can be defined independent of the logical structure and design of the database [98].

Views also provide content-dependent security where certain field (or attribute) values can be placed in the view definitions and the records (or tuples) containing those values can be suppressed from certain users or group of users. The opposite effect can be achieved by allowing only tuples containing certain attribute values to be displayed to the user. Content-dependent security further implies that only correct values or values within a given range can be inserted into the database via views. In this way users have less chance of inserting inappropriate values by chance or deliberately.

Another advantage of views is that labelling of attributes and tuples can be done by creating a separate attribute containing the security labels. Thus the labels can be stored as part of a relation or as a separate relation, and its existence can be hidden away from the user through the use of views. Hence it is clear that the database system need not have any special mechanism to coordinate labelling of attributes and tuples. An example of an attribute to store labels is the following [525]:

```
create view Vlevel\leqL as
    select *
    from R
    where LabelAttribute }\leq
```

In this example R is the relation while LabelAttribute is the attribute of R containing the labels of the tuples in R. If the views are defined using the SQL syntax then conditional expressions can be included in the view definition:

```
create view Salariesunclassified as
    select Name, DepartmentNumber,
    UnclassifiedSalary=
    if Salary }\leq1000
    then Salary
    else F(Salary)
    from Employees
```

where F can be a function that performs some operation on the Salary attribute. F can also be a sanitization operation or function [141] which is defined to be a computation that takes input from a source and outputs data that is less sensitive that the source. Besides sanitization functions, other built-in functions can also be used inside the view definition. Example of these are functions that return machine time and date, and user identification.

Although views have many advantages, there are some shortcomings. View definitions may contain errors and the database upon which the views are defined may also contain errors [525]. If contentdependence is used in the definition, then errors in the database may cause the down-grade of whole tuples which are accessed by the users. The complexity of view definitions may also result in the overhead in computing resource usage. Another possible threat comes from user or trojan horses which attempts to deduce the view definition of data of higher security classification by doing various insert operations and retrievals through the views. If an inserted data cannot be retrieved again by the user due to the view definition, then the user has gained some information through inference about the view definition. In general, the advantages of views out-number its disadvantages, and views do present some possibilities for high level protection.

16.5.2 Completeness and Consistency of Views

Although views may contain visible errors in the syntax of their definition, of more concern and interest are the errors arising from the conflict of two or more syntactically correct view definitions. In such cases, one view definition may present some conditions or constraints which must be observed in order for data to be accessed through that view, while another view definition may relax or even contradict the constraints of the first view definition.

Denning et al. [141] distinguishes between a view which retrieves or updates data and a view which classifies data. The first type is referred to as access views while the later is refered to as classification constraints. Access views can be used to retrieve data through the user's clearance. The base relation that contains the required data is permitted to have a higher security clearance. Classification constraints are views which specify access classes and the relationship between actual data in the relation and other data derived from it. In this way views as classification constraints can be used to manage content-dependencies and context-dependencies, to control inference by the users and to perform sanitization of data. A sanitization rule ensures that the access class of the view output (target) is dominated by the least upper bound of the access class of the view input (source).

Classification constraints must be consistent and complete. A set of classification constraints is consistent when no two constraints define conflicting classes and they both must be simultaneously satisfied. A set of classification constraints is complete when an access class is defined for each valid data element. A more specific definition is given in Akl and Denning [4] is the following.

Assume that a multilevel relation R is modeled by the schema

$$
R\left(A_{1}, C_{1}, A_{2}, C_{2}, \ldots, A_{n}, C_{n}\right)
$$

where C_{i} is the classification attribute holding the access class labels of data attribute A_{i}. A classification constraint is then a rule of the form $S=(R, A, E, L)$ which is interpreted as if E then $\operatorname{class}(R . A)=L$, where R is the relation, A is one or more data attributes in R, E is an optional expression and L is the access class.

A set of classification constraints is consistent when any two pair of constraints S_{i} and S_{j} are consistent, which in turn requires one of the following four conditions to be true:

1. $L_{i}=L_{j}$, which is when both constraints assign the same access class.
2. $A_{i} \cap A_{j}=0$, which is when S_{i} and S_{j} apply on disjoint attribute sets.
3. $E_{i} \cap E_{j}=0$, which occurs when S_{i} and S_{j} cannot be simultaneously satisfied.
4. $E_{i} \cap E_{j} \cap D=0$, which is when S_{i} and S_{j} never simultaneously satisfy all integrity constraints.

Here D is the intersection of all m integrity constraints I_{1}, \ldots, I_{m} in the database. A set of classification constraints is complete when for every instance of the database in D, each element is assigned an access class by at least one constraint.

Akl and Denning [4] also presents an algorithm based on computational geometry to check for consistency, with a complexity of the order of $O\left(N n^{2}\left(g+m^{2}\right)\right)$, where N is the number of relations, n the number of classification constraints, m the number of integrity constraints, and g is the number of attributes in each relation. An algorithm to check for completeness is also presented in [4], with a complexity of the order $O(M n)$, with M being the number of attributes in the database.

The algorithms in [4] for secure views are computationally feasible when the constraints are simple, and deals only with numeric data. In [525] Wilson proposed the idea of atomic views which is a small set of views on which secure views can be built. For a relation R, a view $R_{=L}$ is defined for each security level L that includes exactly the tuples of the relation R classified at level L. Similarly view $R_{\leq L}$ is defined to include tuples of R that are dominated by L. Then, for each hierarchical classification and for each category C_{i}, an atomic view $R_{\geq C_{i}}$ is defined to consists of the set of tuples whose levels dominate C_{i}. Wilson proposes that atomic views should be defined by the trusted database administrators, while the DBMS should automatically create secure views based on the atomic views. Atomic views guarantees that completeness and consistency are achieved in defining secure views. Atomic views in [525] is more general that secure views in [4] in that they are not restricted to only numerical values.

16.5.3 Design and Implementations of Views

Although interest in the use of views and research into formal methods of describing views and its problems started in the 1980's, only few projects have dedicated completely to investigating views for database security. One major project whose results have shaped much of the opinion on secure views is the SeaView project.

SeaView

The SeaView project has its roots in the Summer Study on Multilevel Data Management Security held by the Committee on Multilevel Data Management Security of the U. S. Air Force Studies Board [104]. The project was a three year joint work by SRI International and Gemini Computers, sponsored by the U. S. Air Force, Rome Air Force Development Centre. Its aim is to design a multilevel secure database system fulfilling the A1 class of secure systems as specified by the U. S. Department of Defense Trusted Computer Systems Evaluation Criteria [146].

Within the three year period of its design, the project by Denning et al. has completed a security policy and interpretation [134], a multilevel relational data model [142, 310] which is an extension of the standard relational data model to accommodate labelling, a formal security policy model [135] and a formal top-level specifications [312] with its verification [519]. The project also contributed ideas on the assurance of multilevel database systems [309]. The SeaView models extends the relational data model by including in it mandatory security requirements and by supporting data consistency through application-dependent constraints. Data in the base relations and views are hidden from unauthorized users, with different users seeing different instances of a given relation. This multiple instances of the same objects or polyinstantiations have different access classes. Thus multiple tuples with the same primary key but different access classes can exist. Similarly, tuples may have multiple values, each having a different access class.

With respect to its architecture SeaView has ensured that all components of the system which enforces mandatory security are to be isolated in a security kernel. The whole database system with all its support for multilevel relations is to be implemented on a general-purpose operating system kernel enforcing mandatory security policy at the single-level file and segments [309]. Each multilevel real relation is decomposed into the single-level relations defined as single-level kernel objects. These single level relations are then combined later to provide the multilevel relations for the users. The reader is directed to Lunt et al. [312] for a detailed discussion on the architecture and components of the SeaView implementation.

ASD_Views

Another project on the implementation of views is ASD_Views by the TRW Defense Systems Group [192]. The main aim in ASD_Views is to achieve a suitably-sized Trusted Computing Base (TCB) that meets the criteria for evaluation of class B2 and above. ASD_Views is an attempt to solve the problem met when views are defined to be objects of both mandatory and discretionary security in multilevel secure DBMSs. In particular, the major difficulty in a view-based DBMS is that the TCB tends to become very large because views involves a great deal of the DBMS code. The requirement of a class B2 certification as specified in [146] is that only a small size TCB can be used. Thus, most view-based DBMS will face difficulty in achieving certification above class B1.

The approach in SeaView [141] is to place the view mechanism over a reference monitor together with a trusted kernel. Each level of data is then physically stored on its own disk segment and the reference monitor must guarantee that only data with clearance dominated by the user's clearance is released. The main problem with this configuration is that the overall performance of the system degrades due to overhead required for every view that is accessed to collect various data for the view from different locations and to join them.

ASD_Views takes the simpler solution of restricting the query language that can be used in the view definition. This limits the complexity of the view definition but ensures that the TCB remains small. The view definition only allows a subset of rows (tuples) and columns (attributes) from only one underlying base relation. Joins, aggregate functions and arithmetic expressions are excluded. These restrictions allow the processing of the query which defines a secure view to be done within the TCB perimeters without the need of the creation of other data structures commonly associated with queries. Thus within the TCB only a small number of data structures are created for any view definition. Another important point is that ASD_Views does not allow polyinstantiations, hence reducing the complexity of its implementation.

The architecture of ASD_Views consists of three general parts. The SQL Processor resides outside the TCB boundary, and it decomposes user queries into requests to read rows (tuples) from the secure
views defined by the TCB. These reduced queries are then handled by the Restricted View Processor followed by the Read/Write Row Interface, both of which reside inside the TCB boundary. The reader is directed to the work by Garvey and Wu [192] for more details.

16.6 Trends in Database Security Research

In this section current research that has received considerable new interest will be discussed. The security of distributed database systems has long been realized as being lacking. The security of such systems represents a more complex problem that the simple interconnection of individually secure sites of database systems. Besides being secure on its own, a local database must also ensure that its behaviour does not endanger the security of the other databases in the distributed database system. The needs of a secure network also placed additional burden on the overall problem of security.

Object-oriented database systems and knowledge-based systems are two recent areas of research within the broad area of database research. Similar to distributed database systems, their security has received little or almost no attention until only recently. Thus, it would be useful to briefly look into the possible ways of making such systems secure.

16.6.1 Security in Distributed Databases

Although there is a considerable amount of research material dealing with aspects of distributed database systems and their design, research into the security aspects of distributed database systems and distributed systems in general have only began to take serious form and definition during the last five years. The amount of available research results which directly address security in distributed database systems is small due not to the lack of interest in the topic on the part of researchers, but rather to the complexity of distributed systems in itself and the necessary groundwork in the security of centralized database systems before any consideration can be given to security in distributed databases.

Currently some researchers have begin to address the individual security needs of distributed databases as compared to the security of distributed systems in general [406, 327, 313]. The security of some issues and features of distributed databases have began to be analyzed, particularly those which have solid research background from the pure database research point of view.

Such an analysis is exemplified by the work by Downing, Greenberg and Lunt [161] where the security of serializable transactions have been considered. Two general assumptions that have been suggested in this work and which is useful for all distributed transactions are the following:

- The \star-property. This simply requires that a transaction must write only data whose access class equals the transaction class. This is a direct derivation from the Bell-La Padula security model [18, 19].
- The Simple Security Property. This requires that transactions must read only data whose access class is dominated by the transaction class. That is, the "read-down" rule must be observed.

Following these two assumptions the work in [161] proceeds to compare three concurrency control techniques that have been suggested in the pure database research literature, namely two-phase locking, time-stamp ordering and optimistic concurrency control. Out of these three concurrency control techniques only optimistic concurrency control satisfies the two assumptions, and together with some modifications presents the most suitable algorithm for secure transactions, both in centralized and distributed databases.

These research conclusions represents initial steps towards the full understanding of the security requirements in distributed database systems. Such research provides the foundation on which further work and specialized designs can be done in the area of database security.

From the point of view of the use of cryptography for distributed database security, most of the protocols involving cryptography had communications and computer networks in mind (such as the work in [365], [506] and [265]), and they were not geared to solve other more complex security problems in distributed database systems. One notable initiative has been taken by Herlihy and Tyger [240] where the application of cryptographic secret sharing schemes to data replication in distributed systems have been considered. The parallel between secret sharing and quorum formation for the determination of updates to replicated data is very clear, but successful practical secret sharing algorithms suitable for distributed databases have yet to be found. Another notable work in cryptographic considerations for distributed systems is by Dolev and Wigderson [159] where the security of multi-party protocols in distributed systems is discussed.

Another approach from the point of view of design methodology has been taken by Bussolati and Martella [72, 71]. The work presents a multiphase methodology for the design of security systems in an integrated and aggregated distributed environment. The approach is a high-level initiative which is suitable for the expression of security policies governing the distributed database system. The use of views in distributed database systems have been considered by Bertino and Haas in [28]. Views over base relations represents a high-level approach to the security of database systems independent of any low-level physical design and constraints of the system. One can easily conclude that if the view approach at individual sites are secure, then views over the distributed database are also secure. However, the proofs and verification of the security of views at a high level does not necessarily eliminate the difficulties and complexities in the underlying design and implementation of the views.

Another approach to secure distributed database would be to employ an underlying secure distributed operating system, with the database application running on top of the operating system at each site. This approach may prove rewarding since there may be many common mechanisms to control distributed processes in both distributed databases and distributed operating systems. An immediate consequence of this approach would be the increase in complexity in the distributed operating system due to the different nature of data in the two systems. These differences include granularity, the life-span and the sheer volume of data. Thus, it is probably more useful in the long term to design distributed database systems which infuses security in the whole design, rather than to depend on external components, such as a secure distributed operating system, to achieve a verifiable level of security. The reader is directed to $[172,203,529]$ for more interesting work towards the security of distributed databases and distributed systems.

16.6.2 Security in Object-Oriented Database Systems

Object-oriented systems have recently received increasing attention, and from the point of view of database research many researchers have began to develop Object-oriented database systems for various applications. Historically, the idea of objects as a programming construct came from the language Simula. The fact that it has a programming language background has resulted in the notations and meanings of the terms in object-oriented systems having programming connotations. Thus it is advantageous to maintain a loose definition of object-oriented systems, and to use more precise definitions in more specific contexts [371]. In this section the notation for object-oriented database systems will follow that by Banerjee et al. [12], and the reader is directed to this reference and to the work by Kim and Lochovsky [281] for more details on object-oriented systems.

Background

Each entity in an object-oriented system is represented as an object. The information about the state of a given object is represented in the instance variables, while the behaviour of an object is represented by messages to which the object responds. The values of the instance variables are objects themselves, and the recursive definition only terminates when primitive objects are used. The primitive objects immediately represent their state (they do not have instance variables).

The behaviour or actions defined on objects are referred to as methods, and a given method performs its actions by sending messages to the objects. Methods themselves can be seen as some code which manipulates or returns the state of a given object, and methods are in fact part of the definition of objects. Usually, a message consists of the name of the method to be invoked, together with a list of objects involved. Thus, sending a message to an object means that the method is to be executed. Objects also communicate with each other using messages. The messages and object name arguments become the interface of the outside world to the objects. Primitive methods are used to represent simple actions that can be carried out without the need of messages.

To prevent the consummation of large storage space for objects with their own instance variables and methods, it is natural to group "similar" objects in a class. Objects that belong to one class or type are described by the same instance variables and methods, and they all respond to the same set of messages. Each object may have a different state, but the computation type, which is the result of a method activation, is uniform throughout the class. Thus, objects that belong to a class are instances of the class, and so a class describes the form (instance variables) of its instances and the applicable operations (methods) to its instances. Note that the class of an object is itself an object, and a class object can create new instances of its own type.

Related to the idea of a class is the notion of a class hierarchy and inheritance of properties (which are the instance variables and messages) following along the hierarchy. A class and its subclass (or superclass) are related through a $i s-a$ relationship. Subclasses of a class inherit all properties defined for the class, and in addition can have their own local properties. Another possible relationship is the is-part-of hierarchy which is used to define composite objects, which can consist of objects from different classes [12, 273]

Research in Security

The area of object-oriented systems is a relatively new one, and only very recently has attention been given by researchers to the security needs of object-oriented systems. In discussing the security of object-oriented database systems it is important to realize that security is very difficult or impossible to achieve without an underlying mandatory security kernel. This fact refers more to the implementation aspects of object-oriented database systems rather than to the conceptual and high-level use of objects in a database system.

The work by Lunt [308] and by Lunt and Millen [311] represents an effort to investigate the problems in defining the meaning of security as applied to object-oriented database systems. Security classification as described in the work by Lunt [308] are associated with objects and classes. An alternative way to look at the classification of objects is to take the classification itself as being applied to the fact that an object or class exists in the database with that given security classification. Similarly, the security classification of the properties (or facet in [308]) of an object, which consists of instance variables, messages, methods and constraints, does not actually apply to the properties themselves, but more to the association that exists between the property and the object.

The "read-down-write-up" rule or " \star-property" of the Bell-La Padula security model $[18,19]$ can be transferred quite readily to the object-oriented model of database systems. The following points
define more precisely the "read-down-write-up" rule for objects and classes (where L denotes the security classification) [308]:

- all system-defined classes should be classified at system-low.
- if object O_{1} is a superclass of O_{2}, then $L\left(O_{1}\right) \geq L\left(O_{2}\right)$.
- If V is a property (facet) of an object O, then $L(V) \geq L(O)$. This is true for all properties of that object.
- If property (facet) V_{2} of object O_{2} is inherited from object O_{1} with the corresponding property (facet) V_{1}, then $L\left(V_{2}\right) \geq L\left(V_{1}\right)$.
- If two or more of an object's classes have a property (facet) named V, then the object must inherit the property (facet) V having the lowest security classification.
- If a subject S sends a message m to an object O to execute method M, then $L(S) \geq L(M) \geq$ $L(O)$ and $L(S)=L(m)$.
- Assume that class O_{1} has property (facet) V (which is inherited by its subclasses). If object O_{2} belongs to class O_{1} and if $L(V)$ in O_{1} is dominated by $L\left(O_{2}\right)$, then $L(V)$ in O_{2} must be dominated by $L\left(O_{2}\right)$. This is to prevent inference when V in O_{1} is visible, yet V in O_{2} is invisible, implying that $L(V)$ in O_{2} dominates $L\left(O_{2}\right)$.

The above rules show that the notion of security and its associated ideas are applicable to objectoriented database systems. The reader is directed to the following references for further discussion on this area:

- The work by Keefe, Tsai and Thuraisingham [273] presents the SODA (Secure Object-Oriented Database System) model.
- The work by Fernandez, Gudes and Song [178] discusses an authorization model for objectoriented database system.
- The work by Thuraisingham [497] gives a multilevel secure object-oriented data model called SO2.
- The work in [12, 280, 279] and the work in [184, 183, 522] present two implementations of object-oriented database systems, namely the ORION and Iris object-oriented database systems respectively.

An overview of research on access control in object-oriented databases can be found in [14].

16.6.3 Security in Knowledge-Based Systems

The area of artificial intelligence and the application of expert systems have received an explosion of interest during the last decade. Various expert systems have been designed, from research prototypes to commercial versions to be used in real life situations. Both the business community and the military have found increasing uses of expert system in daily tasks.

One aspect of expert systems and knowledge-bases in general which has received hardly any attention is that of the security of such systems. Although the differences between the security of knowledge-base systems and database systems are not immediately obvious, further consideration into the different nature of the data in both systems and the use of rules in knowledge-base systems
will indicate that it presents a somewhat more complex and un-researched problem compared with database systems.

The term production systems is best used to represent a model that partitions intelligent processes into rules, data and a control strategy [27]. Thus, in a multilevel secure production system both data and rules need to be classified, which in turn may require modifications to be done on the existing control strategy.

The work by Berson and Lunt [27] and by Morgenstern [348] represents one of the earlier attempts to consider the application of multilevel security concepts to production systems and knowledge-bases. In [27] Berson and Lunt analyse the use of the noninterference condition first proposed by Goguen and Meseguer [204] to production systems. The condition requires that besides higher level data being invisible to lower clearance users, the effects of the actions, such as the firing of rules, by higher level users, should also be invisible to lower clearance users. From this condition emerges four important points that must be taken into consideration when designing secure production systems [27]:

- Rules and data which is classified at a high level must be invisible to lower clearance users and their lower level processes.
- The inference engine should function independent of the security classification of the rules and data. Thus, the inference engine should function at a given security level with only the available rules and data of the same (or lower) security level without the need to reference or know of the existence of higher level rules and data.
- To satisfy knowledge engineering requirements the rules must be created such that they are complete and make sense to any user with a given security clearance. Thus, the user must not be aware of the existence of other rules which have higher security classification. Immediately related to this point is the need for the lower level subsets of rules to be closed so that users or processes cannot infer the existence of higher level rules.
- Any intermediate results of the firing of rules by a user must be classified at the same level as the user's clearance.

The above discussion only represents an introductory note and an example of the direct application of multilevel security policies in database systems to knowledge-based systems. The reader is directed to other studies such as [348] and to the efforts by Garvey and Lunt [193, 194] for more recent works in multilevel security for knowledge-based systems.

Chapter 17

ACCESS CONTROL

A computing environment can be seen as a collection of resources which are shared by user processes under a watchful eye of the operating system. The collection typically includes hardware resources (the CPU, the main memory, disk space, I/O devices, etc.) and software resources (editors, compilers, debugging tools, etc.). Sharing of resources can take on different forms and each form of sharing requires different degree of the operating system attention or control. For example, resources such as printers may be accessed by every process as long as the operating system puts the interested processes in a queue so they can access the printer sequentially in some order. An editor can be accessed concurrently by many processes as long as each process does not modify it. Normally, personal data files can be accessed by their owners only. The main task of the operating system (OS) is to control the access to system resources. The classification of computer entities into resources (passive) and processes (active) is not disjoint as a process can be also a resource to which another process would like to have an access. In the access control vocabulary, passive entities or resources are called objects and active entities or processes are called subjects.

Any type of resource (object) has the well defined collection of access operations specifying how the object can be manipulated by a subject. A subject can usually be granted a small subset of all possible access operations. This subset defines access privileges (permissions) assigned to the subject. Whenever a subject wishes to access an object to perform some specific operation (read, write, execute, etc.), OS checks whether the subject has the corresponding access permissions to the object. If the subject holds the appropriate permissions, OS grants the access, otherwise denies the access to the object.

The access control can be based on different policies. The choice of a security policy is crucial as it determines the performance, flexibility, and availability of the computer system. The policy is normally defined by the organisation and reflects restrictions imposed on access control by the legal and business requirements. Consider the following aspects of access control policy.

1. Minimum versus maximum collection of privileges. The assignment of access permissions can be done using the minimum privilege principle where a subject gets assigned the smallest possible collection of access permissions which is enough for the subject to function normally. The other extreme is the maximum privilege principle which defines widest range of permissions for subjects.
2. Open versus closed access control. OS has to verify each access request generated by a subject. There are two possibilities. All access requests are allowed unless they are explicitly forbidden. This is an open access control. In a closed access control, all access requests are forbidden unless explicitly authorised.
3. Granulation of access control. Each object has to be well defined together with its basic collection of access permissions such as: read, write, delete, execute, and create. The permissions may be
ordered so if a subject is assigned a privilege of a higher order to an object then the subject implicitly holds all lower-order privileges to the object.

There are three major types of access control:

- Mandatory access control (MAC). Objects (information) are classified on hierarchical levels of security sensitivity (typically, top secret, secret, confidential, unclassified). Subjects (users) are assigned their security clearance. Access of a subject to an object is granted or denied depending on the relation between the clearance of the subject and the security classification of the object.
- Discretionary access control (DAC). Each object has its unique owner. The owner exercises their discretion over the assignment of access permissions.
- Role based access control (RBAC). Rather than to subjects, permissions are assigned to roles. A subject always acts according to the currently delegated role and therefore acquires the appropriate permissions relevant to the current role. The subject can hold different permissions to objects depending on the role assigned to it.

Role based access control is gaining attention as a viable alternative to MAC and DAC ([179, 442]). Access permissions are associated with roles rather than with subjects. Note that most institutions and organisations are role driven. A person who today is the manager of a branch may be asked to be the chair of a selection committee to appoint new staff or to be the acting chief manager for a day or perhaps, the person may be suspended as the manager for some time due to a pending investigation. Depending on circumstances, a person may become a member of new roles or may cease to be a member of other roles.

17.1 Mandatory Access Control

Mandatory access control also called multilevel access control originated from the research in military security models and deals with the problem of information flow control. The aim of MAC is to ensure that information flows in one direction. Note that most attacks involve interaction between an attacker (a hostile process or Trojan Horse) and a victim process. To thwart the attacks, it is enough to enforce the flow of information in one direction.

17.1.1 Lattice Model

Denning [136] developed a formal model of MAC using lattices. In the model, there is a collection of objects \mathcal{O} (typically, files, program variables, data items, records, etc.), a collection of subjects \mathcal{S} (processes) and a collection of security levels \mathcal{L}. Security levels are assigned to both subjects and objects.

- Security clearance is a level assigned to a subject.
- Security classification is a level associated with an object.

Although levels are shared by both subjects and objects their interpretation is different. The decision about whether or not a subject $s \in \mathcal{S}$ can access an object $o \in \mathcal{O}$ is made after looking at the relation between the clearance of the subject and the classification of the object. If the clearance dominates the classification, the access is permitted, otherwise denied.

The key issue now is the definition of a relation \geq which can be used to compare two security levels (clearance with classification). If the relation \geq introduces a partial ordering so it is

- transitive, i.e. if $a \geq b$ and $b \geq c$, then $a \geq c$ and
- antisymmetric, i.e. if $a \geq b$ and $b \geq a$, then $a=b$,
then the pair $\langle\mathcal{L}, \geq\rangle$ constitutes a lattice. Lattices demonstrate many interesting properties. Any two security levels $\ell_{1}, \ell_{2} \in \mathcal{L}$ has a least upper bound $\ell_{\text {up }}$ such that $\ell_{\text {up }}$ dominates both ℓ_{1} and ℓ_{2} or simply,

$$
\ell_{u p} \geq \ell_{1} \text { and } \ell_{u p} \geq \ell_{2} .
$$

Similarly, a greatest lower bound $\ell_{\text {down }}$ is the biggest element which is dominated by both ℓ_{1} and ℓ_{2} or

$$
\ell_{1} \geq \ell_{\text {down }} \text { and } \ell_{2} \geq \ell_{\text {down }}
$$

There are also two distinguished elements: the largest and the smallest in the lattice.
Consider the security levels \mathcal{L} for the case when users are working on different projects and they (their processes) will need to access objects (data) with different sensitivity levels: top secret (TS), secret (S), confidential (C) and unclassified (U). There is a natural ordering among the sensitivity levels, namely, $T S>S>C>U$. It is obvious that for any project, there is a specific collection of necessary objects so for each project, there are corresponding clusters of objects called compartments. Let the collection of object sensitivity be $\mathcal{R}=\{T S, S, C, U\}$ and the collection of compartments be \mathcal{T}. Then $\mathcal{L}=\mathcal{R} \times \mathcal{T}$ and a security level $\ell \in \mathcal{L}$ is a pair of $\left(\ell_{\mathcal{R}}, \ell_{\mathcal{T}}\right)$ where $\ell_{\mathcal{R}} \in \mathcal{R}$ and $\ell_{\mathcal{T}} \in \mathcal{T}$. A relation \geq can be defined as

$$
\left(\ell \geq \ell^{\prime}\right) \Leftrightarrow\left(\ell_{\mathcal{R}} \geq \ell_{\mathcal{R}}^{\prime}\right) \text { and }\left(\ell_{\mathcal{T}} \supseteq \ell_{\mathcal{T}}^{\prime}\right)
$$

for $\ell, \ell^{\prime} \in \mathcal{L}$. The relation can be used to control the access. A subject $s \in S$ with its clearance $\ell_{s} \in \mathcal{L}$ is granted access to an object $o \in \mathcal{O}$ with its classification ℓ_{0} if and only if

$$
\ell_{s} \geq \ell_{0}
$$

If this happens we say that the subject s dominates the object o or simply $s \geq o$. Note that the comparison of subject and object is performed using their labels (security levels).

Consider an example. Given a computer system which is working within a university environment. Let $\mathcal{S}=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $\mathcal{O}=\left\{o_{1}, o_{2}, o_{3}\right\}$. Security levels are defined as $\mathcal{L}=\mathcal{R} \times \mathcal{T}$ where \mathcal{R} defines information sensitivity levels $\mathcal{R}=\{T S, S, C, U\}$ with the order $T S>S>C>U$ and \mathcal{T} is a collection of the following compartments: $\alpha, \beta, \gamma, \delta$. The compartment α consists of all objects related to student data, β - to academic staff, γ - to visiting scholars, δ - to executives of the university.

Assume the following clearance levels:

$$
\begin{aligned}
& s_{1} \leftrightarrow(T S, \mathcal{T}), \\
& s_{2} \leftrightarrow(S,\{\alpha, \beta, \gamma\}), \\
& s_{3} \leftrightarrow(C,\{\alpha, \gamma\}) .
\end{aligned}
$$

The notation $s_{2} \leftrightarrow(S,\{\alpha, \beta, \gamma\})$ reads that s_{2} has the clearance on the level S and can access objects from α, β and γ compartments. The information classification levels are:

$$
\begin{aligned}
& o_{1} \leftrightarrow(U,\{\alpha, \gamma\}), \\
& o_{2} \leftrightarrow(T S,\{\beta, \delta\}), \\
& o_{3} \leftrightarrow(S,\{\alpha, \beta\} .
\end{aligned}
$$

The object o_{3} is classified on the level S and is stored in two compartments α and β. Denote that the clearance level assigned to s as $\left(s_{\mathcal{R}}, s_{\mathcal{T}}\right)$ and the information classification level assigned to o as $\left(o_{\mathcal{R}}, o_{\mathcal{T}}\right)$. The relation \geq can be defined as follows:

$$
(s \geq o) \Leftrightarrow\left(s_{\mathcal{R}} \geq o_{\mathcal{R}}\right) \text { and }\left(s_{\mathcal{T}} \supseteq o_{\mathcal{T}}\right)
$$

The lattice $\langle\mathcal{L}, \geq\rangle$ has two distinguished elements. The smallest is (U, \emptyset) and the largest is $(T S, \mathcal{T})$. The subject s_{1} can access all objects as its label equals to the largest element in the lattice. The subject s_{2} can access o_{1} and o_{3}. The subject s_{3} is permitted to access o_{1} only.

17.1.2 The Bell-LaPadula Model

Bell and LaPadula [20] introduced a simple model for the information flow control which can be considered as a special case of the general lattice model. The collection of subjects is \mathcal{S} and objects - \mathcal{O}. The security levels are simply sensitivity levels or $\mathcal{L}=\mathcal{R}=\{T S, S, C, U\}$ with the order \geq. A request generated by a subject is granted if the information flows from lower security levels to higher security levels. The model concentrates on two access permissions: read and write. Note that when

- a subject reads an objects, the information flows from the object to the subject or

$$
s \stackrel{r}{\leftarrow} o,
$$

- a subject writes into an object, the information flows from the subject to the object or

$$
s \xrightarrow{w} 0 .
$$

It is not difficult to conclude that a subject s_{1} with low clearance should be allowed to write into an object o_{1} with high classification and a subject s_{2} with high clearance should be permitted to read object o_{2} with low security classification. If the two subjects are happened to be the same; $s=s_{1}=s_{2}$, then we have

$$
o_{2} \xrightarrow{r} s \xrightarrow{w} o_{1} .
$$

The rules for information flow control are formulated as follows:

1. simple security property - a subject can read information from an object if the clearance level of the subject dominates the security classification of the object,
2. \star-property - a subject can write into an object if the clearance level of the subject is dominated by the security classification of the object.

In other words, the simple security property indicates that read down property while the \star-property is termed as write up property.

The existence of so-called covert channels makes possible the information to flow in prohibited directions. Consider an example. Assume that there are two subjects with different security clearances. Two subjects may conspire to create a covert channel which will be used by the process s_{L} with lower security clearance to read some information from the process s_{H} with higher security clearance. Both processes can agree before hand on an objects which is rightfully accessible for both of them. Process s_{L} can write into the objects and s_{H} can read it. Every time s_{H} wants to communicate a single bit to s_{L}, s_{H} puts or releases read lock on the object. s_{L} at the agreed instance of time attempts to write into the object. If the attempt

- succeeds, s_{L} reads a covert bit 1 (the object is not locked),
- fails, the covert bit is 0 (the object has been locked by s_{H}).

In general, the elimination of covert channels is expensive. In addition, the progress in hardware causes that covert channels become faster.

Table 17.1: An access matrix

	$o_{1}=s_{1}$	$o_{2}=s_{2}$	$o_{3}=s_{3}$	o_{4}	o_{5}
s_{1}		wait		read	read, write
s_{2}	signal	execute	send, receive	delete	write
s_{3}	control	signal, wait	control	execute	read

17.2 Discretionary Access Control

Discretionary access control assumes that the owner of an object controls access permissions to it. It is in the owner discretion to assign access permissions to objects. Most of access control models use a matrix to describe the current protection state.

17.2.1 Access Matrix Model

Lampson [295] introduced the access matrix model for DAC. The model was extended by Graham and Denning [218]. The core of this model is a matrix whose rows are indexed by subjects \mathcal{S} and columns by objects \mathcal{O}. A single matrix entry (s, o) contains all access permissions held by the subject s to the object o. Usually, the collection of objects contains all subjects or $\mathcal{O} \supseteq \mathcal{S}$. The access matrix describes the current protection state defined by the pattern of permissions in the matrix entries. An example of an access matrix is given in Table 17.1. For instance, s_{1} is permitted to read the object o_{4}. The subject s_{3} can execute the object o_{2} which is, in fact, the subject s_{2}.

Since the contents of the access matrix reflect the current state of protection privileges in computer system, it must be changed whenever a new privilege has been granted to a specific subject or an existing one has been removed from a specific matrix entry. To modify protection state, Graham and Denning [218] identifies the following collection of protection commands:

- Create_object () - create an object (or a subject). Note that $\mathcal{O} \supseteq \mathcal{S}$.
- Delete_object() - delete an object (or a subject).
- Grant_permission $\left(\alpha, s_{i}, o_{j}\right)$ - grant the permission α to the subject s_{i} for object o_{j}.
- Delete permission $\left(\alpha, s_{i}, o_{j}\right)$ - delete the permission α to object o_{j} held by the subject s_{i}.
- Transfer_permission $\left(\alpha, o_{j}, s_{i}\right)$ - for the specified object o_{j}, the command allows one subject to transfer permission α to another subject s_{i}.
- Read() - display the contents of selected entries of the access matrix.

Create_object () can be called by any subject s_{j} to create either an object or a subject. The creator s_{j} becomes the owner of the object $o_{n e w}$ (subject $s_{n e w}$) and has exclusive rights to control the distribution of permissions to that object (subject). In effect, a new column $o_{n e w}$ is added to the matrix with the owner in the entry $\left(s_{j}, o_{n e w}\right)$ if the object is passive. If, however, the new object is active, a new column $o_{\text {new }}=s_{n e w}$ and a new row $s_{n e w}$ is added to the matrix. The entry $\left(s_{j}, o_{n e w}\right)$ contains the owner permission and the entry ($s_{n e w}, o_{n e w}$) - the control permission.

Delete_object () is reverse to Create_object (). The command can be invoked by the owner of the object o_{j} (subject) only and it causes that the object o_{j} ceases to exist. This implies that the corresponding column (in the case of passive object) or both the corresponding column and row (in the case of active object) are removed from the matrix.

Grant_permission $\left(\alpha, s_{i}, o_{j}\right)$ can be executed by the owner of the object o_{j} and it grants the permission α to the subject s_{i}. Granted permissions must be different from the owner permission.

Delete_permission (α, s_{i}, o_{j}) may be executed in two situations. The owner of the object o_{j} can delete any permission from any entry of the access matrix column o_{j}. A subject s_{k} which controls s_{i} (the entry (s_{k}, s_{j}) contains the control permission) can remove any permission from any entry of the row s_{j}.

Transfer_permission $\left(\alpha, o_{j}, s_{i}\right)$ involves two subjects s_{k} which intends to transfer the permission α and executes the command and s_{i} which is a grantee to whom the permission is to be assigned. The command is executed only if the subject s_{k} has a copy flag associated with the permission α (denoted by α^{*}). In other words, if a matrix entry $\left(s_{k}, o_{j}\right)$ contains α^{*}, the subject s_{k} may transfer the permission α to s_{i}.

Read() allows a subject to read current entries of the access matrix.
Needless to say, any choice of permissions and protection commands is to some extend arbitrary. There is a natural tradeoff between protection and openness of computer resources. If we accept a very limited set of protection commands with a small number of possible permissions, we will presumably get better protection but sharing computer objects will be very restricted. Eventually, if the collection of protection commands allows to create and destroy objects only, then we get a protection mechanism which provides complete isolation among subjects. The mechanism is extremely inflexible but it is secure.

Protection commands directly influence the way subjects may share their resources. There are three main levels of sharing:

1. no sharing (complete isolation),
2. sharing data objects,
3. sharing untrusted subjects.

The first and second level can be implemented using the access matrix model presented above. The third level of resource sharing requires new protection commands. Consider the following scenario. Given three subjects s_{0}, s_{1} and s_{2}. The subject s_{0} owns the subject s_{2} and the subject s_{2} uses an object o according the some permission α. For some reasons, the subject s_{0} needs to share with s_{1} the object accessible to s_{2}. Although s_{1} and s_{0} may trust each other, s_{1} may not trust s_{2}. This problem was formulated by Graham and Denning [218] and can be solved by introduction of a new indirect access permission. The permission indirect is defined as follows:

- Given three subjects: the subject s_{2}, its owner s_{0} and the acquirer s_{1}.
- The indirect access to s_{2} can be granted to the acquirer s_{1} by the owner s_{0} only.
- The acquirer s_{1} can access all objects which are accessible to s_{2} in the same way as the subject s_{2} (in other words, s_{1} holds the same collection of permissions as the subject s_{2}).
- An indirect permission can be revoked by the owner s_{0} at any time.

In general, the more flexible access control the more protection commands have to be defined. Unfortunately, some access control problems cannot be solved using the access matrix model. For example

1. if a permission α^{*} is transferred from one subject to another, then the second subject can propagate the permission α with no agreement of the first one,
2. the read permission allows a reader to copy the object and to grant friend subjects the read access to the copy,
3. if two or more untrustworthy processes conspire, they may exercise their permissions collectively,

17.2.2 The Harrison-Ruzzo-Ullman Model

The access control model defined by Harrison, Ruzzo and Ullman in [236] deals with the set of subjects \mathcal{S}, the set of objects \mathcal{O} and the set of generic rights \mathcal{P} which define access permissions held by a subject $s \in \mathcal{S}$ to an object $o \in \mathcal{O} . M$ is an access matrix with rows and columns labelled by subjects and objects, respectively. An entry $M(s, o)$ is a subset of \mathcal{P} and defines access right of $s \in \mathcal{S}$ to $o \in \mathcal{O}$.

There are six primitive operations op p_{i} which are used to modify the sets \mathcal{S} and \mathcal{O} together with the entries of the matrix M. They are:

- enter r into $M(s, o)$ - put an access right r into the entry (s, o) of the matrix M;
- delete r from $M(s, o)$ - remove an access right r from $M(s, o)$;
- create subject s - create a new subject and append a new row and column to the matrix M labelled by subject s with empty entries;
- create object o - create a new object and append a new column to the matrix M labelled by subject o;
- destroy subject s - destroy the subject s and remove the corresponding row and column from M;
- destroy object o - destroy the object o and remove the corresponding column from M;

Obviously, subjects do not have direct access to the primitive operations. Instead, they can be invoked indirectly via the so-called protection commands. The generic form of a protection command is:

```
command c(X)
    if r}\mp@subsup{r}{1}{}\mathrm{ in }M(\mp@subsup{s}{1}{},\mp@subsup{o}{1}{})\mathrm{ and
        r}\mp@subsup{r}{2}{}\mathrm{ in }M(\mp@subsup{s}{2}{},\mp@subsup{o}{2}{})\mathrm{ and
        \vdots
        rm in M (sm,oom)
    then
        op ;
        op2;
        \vdots
        opn;
end
```

where X is a collection of formal parameters and $r_{i} \in \mathcal{P}$ for $i=1, \ldots, m$.
A configuration of a protection system is a triple $(\mathcal{S}, \mathcal{O}, M)$ where the sets \mathcal{S} and \mathcal{O} are current subjects and objects, respectively, together with the current access matrix M.

The UNIX access control mechanism allows to manipulate files by providing protection commands equivalent to the following ones.

```
command create_file(s,f)
    create file f;
    enter own into M(s,f);
end
```

The command createfile first creates a file and adds a single column in the matrix M labelled by f and puts the right own into $M(s, f)$. The owner s of an object o can grant the read r access right to a friendly subject s^{\prime} by invoking

```
command grantread \(\left(s, o, s^{\prime}\right)\)
    if own in \(M(s, o)\)
    then
    enter \(r\) in \(M\left(s^{\prime}, o\right)\);
end
```

The owner s of an object o can withdraw the access right r from a subject s^{\prime} by invoking

```
command delete_read(s,o, s')
    if own in M(s,o) and
            r \mp@code { i n ~ M ( s ' , o ) }
    then
            delete r from M (s',o);
end
```

Given an initial configuration $Q_{0}=(\mathcal{S}, \mathcal{O}, M)$ of the protection system and a collection of protection commands $\mathcal{C}=\left\{c_{1}, \ldots, c_{u}\right\}$, the protection state will change after application of a protection command $c \in \mathcal{C}$. The evolution of protection states can be captured by the sequence of configurations resulting by execution of protection commands $\left(c_{1}, c_{2}, \ldots\right)$, i.e.

$$
Q_{0} \vdash_{c_{1}} Q_{1} \vdash_{c_{2}} Q_{2} \ldots
$$

We say that a protection system leaks access right r from a configuration Q if a command $c \in \mathcal{C}$ leads to a configuration Q^{\prime} such that the access matrix contains r in some entry (or $r \in M(s, o)$) which previously did not contain it (or $r \notin M(s, o)$).

A protection system is safe in respect to r if there is no configuration Q which leaks r. This leads us to the following decision problem [191].

Safety of file protection systems

Instance: Given a protection system with set of subject \mathcal{S}, set of objects \mathcal{O}, set of access rights \mathcal{P} and collection of protection command $c \in \mathcal{C}$.

Question: Is there any sequence of commands from \mathcal{C} and an access right $r \in \mathcal{P}$ such that the system leaks r ?

It turns out [236], this problem is undecidable or in other words, there is no algorithm which could be used to solve it. Typically, undecidability appears whenever the problem in hand has too many free variables and parameters. If we restrict the form of commands so they consists of no more than a single primitive operation, then the safety problem becomes NP-complete. If additional restrictions are imposed, then the resulting problem may be solvable in polynomial time.

17.3 Role Based Access Control Model

An alternative to the MAC and DAC access control models is the role based access control (RBAC) model. The RBAC model streamlines the access control by first defining roles which are given access permissions to objects and later assigning roles to subjects. In most organisations and institutions, the access permissions do not depend on who the persons are but rather where their positions are in the management hierarchy. Normally, the position uniquely identifies a collection of jobs which is associated with it. RBAC allows for a nice packaging of access control permissions necessary to perform specific roles. Roles are treated as subjects whose identity is undefined until specific persons assume them.

The RBAC model allows to define relations among roles and users. As argued in [443], two roles may be mutually exclusive so they cannot be assumed at the same time by a single user. Roles may exhibit a hierarchical structure in which a higher level role inherits permissions of lower level roles. RBAC directly supports the following security policy principles [443]:

- Minimum privilege - a job defines a collection of objects (resources) and access rights which are necessary to perform duties associated with the job.
- Separation of duties - if the collaboration of two users is required to complete a job, it is possible to enforce this by defining two mutually exclusive roles for the job.
- Data abstraction - low-level access rights (such as read, write, delete, etc.) can be encapsulated into high-level access rights (such as send invoice and receive invoice).

Sandhu, Coyne, Feinstein and Youman in [443] presented a general RBAC model with role hierarchy and constrains. Given the set of users \mathcal{U}, the set of access permissions \mathcal{P}, the set of roles \mathcal{R} and the set of sessions \mathcal{S}. A user $u \in \mathcal{U}$ is identified with a person. A role $r \in \mathcal{R}$ is a well defined job function which describes the duty and authority imposed on the person who takes on the role. A session $s \in \mathcal{S}$ is an assignment of different roles to a given user. Users can start up a session during which they assume one or more roles they belong to. A session is always associated with a single user who has started it up. The same user can run many sessions concurrently. The notion of session is equivalent to the notion of subject in the DAC model. A user simply accesses a subset of all roles he or she belongs to. The RBAC model uses the two following relations:

1. a permission-to-role assignment $P A \subseteq \mathcal{P} \times \mathcal{R}$ and
2. a user-to-role assignment $U A \subseteq \mathcal{U} \times \mathcal{R}$.

There are two functions:

1. user: $\mathcal{S} \rightarrow \mathcal{U}$ - each session s is assigned to a single user user (s),
2. roles: $\mathcal{S} \rightarrow 2^{\mathcal{R}}$ - each session s is assigned to a subset of roles, i.e. roles $\left.(s) \subseteq\{r \mid u \operatorname{ser}(s), r) \in U A\right\}$. In effect, the session s has the permissions $\bigcup_{r \in \operatorname{roles}(s)}\{p \mid(p, r) \in P A\}$.

The basic RBAC model includes the above defined components ($\mathcal{U}, \mathcal{R}, \mathcal{P}, P A, U A$, user () , roles()).
Consider the set of roles \mathcal{R}. If the roles are partially ordered, i.e. there is a relation $R H \subseteq \mathcal{R} \times \mathcal{R}$ with the role hierarchy imposed by \geq, then the role() functions can be more conveniently defined knowing that if a user belongs to a role r, then he or she must belong to all roles r^{\prime} which are dominated by r or $r \geq r^{\prime}$. Constraints can be imposed on the assignments $P A$ and $U A$ and on the roles and user functions. For more details refer to [443].

17.4 Implementations of Access Control

Now we are going to consider implementation of access control. The starting point is always a security policy which needs to be enforced by a properly designed access control mechanism. Depending on the environment in which the mechanism is to be incorporated, the designer considers which of the known access control mechanisms could be adopted as the base for implementation. Let us review some of implementations. For alternative discussions on the subjects refer to [213, 217, 463].

17.4.1 The Security Kernel

This implementation is based on the so-called reference monitor concept [295]. The reference monitor is an abstract system which:

1. mediates all access requests,
2. functions correctly, and is tamper-proof.

Any access request must go through the reference monitor which grants or denies the access. There must be no way to bypass the monitor. The monitor must work correctly and the correctness must be verifiable. It must also be tamper-proof so it must be impossible to modify its functions by an unauthorised persons or processes. Note that the reference monitor concept is policy neutral - it can implement any access control policy (MAC, DAC, RBAC).

It is no surprise to learn that most access control mechanisms based on the reference monitor concept are incorporated as an integral part of operating system kernel [217]. This part is called security kernel. The Orange Book [145] defines the Trusted Computing Base (TCB) which includes all protection mechanisms (including the security kernel) which enforce security policy (including access control policy).

To protect the operating system from untrusted processes, the computer system must have at least two distinct modes of operations:

- user mode and
- monitor mode.

All components of OS are run in the monitor (supervisor) mode. All user processes are executed in the user mode. To enforce two-mode operation, the underlying hardware must have an additional bit called bit mode which indicates the current mode - " 0 " for monitor mode and " 1 " for user mode. The Intel $80386 / 486$ microprocessors support four modes of operation (protection rings) with two mode bits.

- The kernel is assigned the mode " 0 ".
- The remainder of the operating system - mode " 1 ".
- I/O routines - mode "2".
- User processes - mode " 3 ".

Clearly, the most privileged mode is " 0 " and the least - mode " 3 ".
Modes of operation alternate from monitor to user and from user to monitor. The switch from monitor to user mode is safe as long as the kernel works correctly. The switch from user to monitor mode must be controlled. To facilitate this, users (or more precisely their processes) are allowed to switch to monitor mode indirectly invoking privileged instructions. Privileged instructions can only be
run in monitor mode. When a user invokes a privileged instruction, the hardware does not execute it but generates a trap to the operating system. The operating system starts running from the address given in the trap vector. The address determines the place where the corresponding trap service routine is.

Assume for a while that a user is able to modify the contents of the trap vector. In this case, a user process may replace the address of the trap service routine by an address from the user program space. When the trap occurs, then the hardware switches to the monitor mode and transfers control to the user process. In effect the user process is run in the privileged mode [463].

As a matter of principle, the operating system never allows user processes for direct access to I/O routines. It also means that all I/O routines are part of the operating system and are run in monitor mode. Whenever a user process needs to print, it issues a privileged I/O instruction which traps to the operating system or more precisely to the proper I/O routine.

As the CPU executes a user process, all the CPU references to main memory must be checked whether they are within the address space of the program in execution. Any attempt to access instructions of other processes should result in an error and trap to the operating system. To implement memory protection, a hardware support is again required. The hardware consists of two registers and additional comparison gates. One register stores the base (the memory address where the currently executed program starts). This is the base register. The other also called the limit register indicates the size of the range. Both registers uniquely identify the (legal) address space of the process.

Assume that the CPU is running a process whose code resides in the memory [a, A] where a is the smallest address and A is the largest address of the process. The current contents of the base register is a and the limit register contains $a+A$. When the CPU tries to access a memory address x, then the hardware

- first checks whether $x \geq a$. If so, go to the next step. Otherwise, it traps to the operating system,
- next compares whether $x \leq a+A$. If the check holds, the reference is valid. Otherwise, a trap to the operating system is generated by the hardware.

Needless to say that the kernel only can load to the base and limit registers.
The most precious resource in computer system is the CPU. Once the control over the CPU is passed to a user process, there is no way to take it back until the process either voluntarily releases it or has generated an interrupt. This may never happen if, for example, the process has entered an infinite loop. To prevent the CPU from being taken over by a single process, a piece of hardware called timer is necessary. The timer can be accessed by the operating system only. Before a user process gets control over the CPU, the timer is initialised to the amount of time for which the process will be allowed to run. Every clock cycle decreases the contents of the timer until eventually the contents becomes zero. This causes an interrupt and switch to monitor mode.

17.4.2 Multics

This section is based on the description of Multics given in [391]. The Multics system is an operating system whose access control shows many similarities with the Bell-LaPadula model. In fact, the Bell-LaPadula model evolved from the Multics access control mechanism. Multics is a fully fledged operating system and its description goes beyond the the scope of the book. We give a brief account of the Multics access control.

All resources are organised in hierarchy of concentric rings of protection. The innermost ring is \mathcal{D}_{0}. The outermost ring is \mathcal{D}_{N}. A single ring \mathcal{D}_{i} constitutes a protection domain. \mathcal{D}_{0} is the most
privileged and \mathcal{D}_{N} is the least privileged domain. Multics treats all resources uniformly as segments (files) arranged into a hierarchical file system. Executable files are subjects (or procedures). Passive objects are data files (data segments). The relation between the protection rings and the hierarchy of files is defined by the security policy. Assume that a process $s \in \mathcal{D}_{i}$ invokes a process $s^{\prime} \in \mathcal{D}_{j}$. The general rule for access control is:

- if $j \geq i$, the access is permitted - a more privileged process s can always call a less privileged one,
- if $j<i$, the access is either denied or controlled, i.e. it is possible via so-called entry points or gates.

The gate notion is a generalisation of system calls. Any attempt by $s \in \mathcal{D}_{i}$ to invoke $s^{\prime} \in \mathcal{D}_{j}$; when $i>j$, will be treated as an error and will generate a trap into s^{\prime}. The process s^{\prime} may deliver a service to s only if the process s has suitable permissions.

Multics defines two possible implementations of access control using:

1. access brackets,
2. call brackets.

Instead of a single ring, a resource is assigned a band of rings (k, ℓ) where $k \leq \ell$. The pair (k, ℓ) constitutes the access brackets of the resource.

Assume that a process $s \in \mathcal{D}_{i}$ wishes to access a data file f with its access brackets (k, ℓ). The access control rules are:

- if $i \leq k$, then the access is granted;
- if $k+1 \leq i \leq \ell$, then reading/execution access is granted while writing/append access is denied;
- if $i>\ell$, the access is denied.

If the process $s \in \mathcal{D}_{i}$ wishes to access a process s^{\prime} with its access brackets (k, ℓ), then the access control rules are slightly different and are:

- if $i<k$, then the access is granted and a ring-crossing fault is induced;
- if $k \leq i \leq \ell$, then the access is granted;
- if $i>\ell$, the access is denied.

Note that in the above access control, if $i>\ell$, all access is denied. To relax this, Multics introduced call brackets. A process is assigned three integers (k, ℓ, m) where (k, ℓ) is access brackets and m is call bracket (or range). Call brackets are defined for subjects (procedure segments) only. The access rules are as above with the following addition:

- if $\ell<i \leq m$, then access is granted via specific entry points (gates),
- if $i>m$, the access is denied.

The Multics project was aiming to design a secure and efficient multi-user operating system. The access control was an integral part of the overall security. The ring structure of protection domains although conceptually elegant, puts restrictions on access control. Any subject in an inner ring \mathcal{D}_{i} can access any object from all outer rings \mathcal{D}_{j} for $i<j$ no matter whether the subject needs the object or not. In other words, the need-to-know principle is not supported in Multics.

17.4.3 UNIX

The UNIX access control evolved from Multics and some of Multics features are still present in UNIX. One of them is the tree structure of the file system. There are two basic types of elements in the file system: directories and files. Files can be further classified into data files and executable files. The tree structure is relaxed by the presence of the so-called links which are pointers to files in some other sub-directories. The collection of permissions supported by UNIX are write (\mathbf{w}), read (\mathbf{I}) and execute (x).

Users are assigned their home directories. It is the user responsibility to build and maintain their own sub-tree rooted in the user home directory. This responsibility includes permission assignment to all files owned by the user. Subjects in UNIX are defined into three broad categories:

1. owner,
2. group the owner is in,
3. universe (all other users).

Listing of a typical subdirectory is given in Figure 17.1. To descibe access permissions to a file or

```
$ ls -l
    drwxr-xr-x 1 josef cs-uow 3552 Jun 16 14:06 LIBRARY
    -rw-r----- 1 josef cs-uow 2349 Jun 16 08:43 form
    -rwxr-xr-x 1 josef cs-uow 3292 Jun 18 13:05 shell_script
```

Figure 17.1: Listing of files in UNIX
directory, it is enough to give collection of triplets of the form rwx to the owner, the group and the universe. So each file may have up to 9 permissions. For instance, the form file can be read and written by the owner (this is indicated by rw^{-}), can be read by the group (see the next triplet r--), and is not accessible to the universe (the last triplet ---). By the way, the first character in the listing specifies the type of file (data file indicated by - or directory denoted by d). To grant or deny access to a file, the UNIX system checks whether the user who asks for access

- is the owner of the file. If she is, then UNIX considers the owner permissions,
- belongs to the group. If she does, then UNIX compares the requested access with the group permissions,
- otherwise, the UNIX compares the requested access with the universe permissions.

UNIX allows a single user to be a member of different groups. In System V, the command newgrp allows users to switch between groups. The owner of a file is always able to set permissions to the file. The command chmod can be used for this purpose. Also the ownership of a file can be transferred by the current owner to other user by using the chown command.

While creating new files (by copying, editing or running a process which creates new files), UNIX assigns permissions according to default permissions. They can be controlled by the umask command. To modify the default to the requested permission pattern, it is enough to call the command umask $a b c$ where a, b, c are integers from 0 to 7 . So if you execute umask 037, then

owner	group	universe
rwx	rwx	rwx
000	011	111
rw-	r--	---

By default, any new file created by the owner gets full range of permissions specified by the application. If the application is an editor, this is typically rw-. for executable files, the default is rwx. The group can read the new file, i.e. their permissions are r--. The universe gets no access or ---.

Unlike data files, directories play a different role - they are used to partition the file system into sub-trees and keep information about them (who can use them and where they are stored on the disks). Consequently, a directory is a list of filenames together with addresses to their inodes where the information about their owners, permissions and location on the disks is kept. Clearly, access permissions for directories are defined differently and [167]

- r-- means that the contents of directory can be listed,
- -wx means that files in the directory are allowed to be renamed or deleted,
- --x means that files in the directory are permitted to be executed.

The UNIX access control uses owners, groups and the universe to define access permissions. This resembles a three ring structure - the owner is in the center, the group creates the first ring and the universe sits in the outer ring. The current list of permissions to an object (file) may be assigned independently by the owner. Some obvious restrictions in access control is a weak granulity of the group and the universe. If the owner of a file wishes to allow sharing it with another user, then the owner must allow the same access to the group the user is in. UNIX also defines the all-powerful superuser who is typically the administrator responsible for maintainance and smooth operation of the system. More details about UNIX and its security can be found in [167].

17.4.4 Capabilities

Consider an access matrix from Section 17.2 .1 with rows and columns indexed by subjects and objects, respectively. Note that the access matrix normally is sparse as most objects are not accessible to many subject. It is, therefore, reasonable to split the matrix into smaller and more manageable units. One of the possibilities is to assign to each subject the corresponding row of the access matrix. For a given subject (or protection domain), the capability list specifies the collection of accessible objects together with permissions to them. A capability is an object representation usually in the form of its name or identifier together with permissions.

It is said that a subject can access an object if the subject possesses an object capability. Capabilities are protected objects themselves and they must be protected against modification by users. There are three basic solutions which have been used to protect capabilities [492]:

- tagged architecture - capabilities are stored in memory with a tag bit switched on indicating that it can be modified by the kernel only,
- isolation from users - capabilities are kept by the operating system so user can refer to them only,
- cryptographic techniques - users are allowed to hold capabilities but any modification will be detected by the operating system.

A capability-based access control has an obvious advantage - it is easy to decide whether to grant or deny the access as subjects must present valid capabilities. Note that it is the subject responsibility to store and maintain capabilities. Operating system generates and verifies capabilities. For a given object, however, it is difficult to

- determine which subjects are allowed to access it and what permissions they have to the object,
- revoke permissions to the object.

The above mentioning difficulties relate to the fact that capabilities are scattered around different subjects.

Let us illustrate how capabilities can be used for access control. The Amoeba distributed operating system was designed at the Vrije University [357, 491]. The Amoeba access control is capability based. The format of capabilities in Amoeba is shown in Figure 17.2. The first two fields uniquely identify

Server Port	Object	Permissions	Check

Figure 17.2: The Amoeba capability
an object. They, in fact, constitute the object name. The last two are used for access control. The permission field is a binary string (8 -bit long) which specifies the collection of operations allowed to be performed by the capability holder. The check field (48-bit long) is used for validation of capabilities. The integrity of a capability is enforced cryptographically.

The following operations on capabilities are defined in Amoeba.

- Creation of an owner capability. This operation is performed when a new object is created. The owner of the object asks the server (who is a part of OS) to issue an owner capability. In response, the server creates the capability with all permission bits turned on and with a random string in the check field. The information about the capability is also stored by the server in the file tables for further references. In effect, the owner holds a valid capability and the server has registered the new capability.
- Verification of an owner capability. The holder of a capability presents it to the server who retrieves its registration information. Next the server compares the registration information with this provided by the capability.
- creation of a derivative capability. Assume that a user holds a valid owner capability and asks the server to create a restricted capability with the permission bit pattern p. First the server verifies whether the capability held by the user is valid. If it is, the server takes the random check number x from the owner capability adds exclusive-or to p and the result is input to a one-way function $f()$. The result is the new check string which is returned to the user. In other words, the new check string $x^{\prime}=f(x \oplus p)$ and the matching permission pattern is p.
- verification of a derivative capability. Given a derivative capability with the permissions p and the check value \tilde{x}. A holder of a derivative capability asks the server for verification. The server retrieves the information about the owner capability, takes the check value of the owner capability x adds to it the permissions p from the derivative capability and calculates the valid check string $x^{\prime}=f(x \oplus p)$. If the value x^{\prime} is equal to \tilde{x}, the capability is considered valid.

Note that capabilities resemble tokens. The access is granted when a user is able to present to the server a valid capability. The resitance of capabilities against forgery rests on the difficulty of reversing the one-way function and the length of the check field.

The Amoeba access control has the following interesting features:

- garbage collection - when an object is no longer accessible because all capabilities have been lost. This is done by removing all objects which have not been used for the last n garbage collection cycles,
- revocation of access - the holder of a capability can always propagate copies of the capability. To revoke the access, the owner can ask the server to invalidate all capabilities by changing the check number stored in the file table.
- controlled propagation of capabilities - a holder of a derivative capability can ask the server to create a capability with more resticted permissions.

There are many operating systems whose access control applies capabilities. Hydra [530] allows users to define their own (access) operations using the basic ones provided by the system. Those new permissions are called auxiliary rights. The CAP system [367] uses two types of capabilities: data and software. Data capabilities are standard permissions provided by the system (read, write, execute). Software capabilities, on other hand, allow users to define their own access operations.

17.4.5 Access Control Lists

An alternative to capabilities is the concept of access control lists (ACL). Instead of slicing the access matrix by rows, the matrix is divided by columns. So every object is asssigned its ACL which specifies who (which subject or protection domain) and how (access permissions) can use the object. This idea have been adopted in UNIX - see Section 17.4.3.

Consider how ACLs are implemented in the DCE distributed operating system. DCE which stands for Distributed Computing Environment was a project initiated by a group led by IBM, DEC and Hewlett Packard. The goal of the project was to develop a version of UNIX for distributed environment [429, 491].

The DCE operating system follows the client/server paradigm. Users are identified by their client processes and services by server processes. All computing resources are clustered together into socalled cells. A cell typically covers resources of a department or division so can be identified by resources hooked to a single LAN.

Unlike in capability-oriented access control where the fact of possessing a valid capability is enough to grant the access, ACL-oriented access control requires identification of users (subjects) who issue access requests. The indentification used in DCE are based on the Kerberos system. For identification purposes, users are given so-called privilege attribute certificates (PAC) which are simply cryptograms of the message which includes: the user identity, group and organization memberships. ACLs are protected entities kept by ACL managers. ACL managers are privileged library routines present in every server.

Objects are divided into two categories: simple objects such as files, and complex objects called containers such as directories. The collection of permissions is an extension of those present in UNIX and includes:

- read (r),
- write (w),
- execute (x),
- change-ACL (c),
- container-insert (i),
- container-delete (d)
- and test (t).

The only not-selfexplanatory permission is test. The test permission allows to check whether or not the value stored in the protected object is equal to some value without revealing the protected value. For instance, a user who has t permission to the password file, can verify whether the password in hand is equal to the password stored in the file without getting any additional information about the stored password. An example of ACL is given in Figure 17.3. The first row indicates the type of the

sample_data
$/ \ldots / \mathrm{C}=\mathrm{AU} / 0=\mathrm{UOW} / \mathrm{OU}=\mathrm{ITACS}$
user: josef:rwxcidt
user: jennie:rwxidt
user: thomas:rwxidt
group:staff:rxt
other:t
foreign_user:john@/.../cs.qut.edu.au:rwxt
foreign_group:staff@/.../cs.qut.edu.au:rt

Figure 17.3: An example of ACL in the DCE system
object. The second row identifies the default cell. Next the table specifies permissions of three users and of the group staff existing in the cell. All other local users can test the object (row 7). Finally, there are two foreign subjects (user and group) whose permissions are given in the last two rows.

Assume that a client (user) wishes to access a file. First the client contacts the suitable server and presents her PAC together with her access request. The server decrypts the PAC, retrieves her identity and memberships and looks up the appropriate ACL. If her name or groups she belongs appear on ACL, the server check permissions and grants the access if the request is consistent with the permissions. Otherwise, the request is denied.

The owner (creator) of an object typically retains all permissions. The DCE system provides also the ACL editor which can be called by clients to create new objects and subjects, manipulate the contents of ACLs, etc. Clearly, any call to the ACL editor is scrutinized against the caller's permissions.

Windows NT provide another example of access control based on ACLs. Readers interested in this subject are referred to the book by Gollmann [213].

Let us compare capabilities with ACLs. First consider how the access control is performed.

- Capabilities - access is granted if a valid capability is presented. The identity of the capability holder is not verified. The fact that a user holds a valid capability is enough to grant the access. Capabilities, however, have to be protected against modification.
- ACLs - access is granted to a user if the name of the user together with suitable permissions appears on the object ACL. Every time users request access, they have to be identified by the operating system.

Capabilities seem to be more suitable for distributed environment. The protection mechanism and naming can be merged making the access control more flexible. Capabilities can be easier incorporated into programming languages. On the other hand, ACLs offer better protection as users are always identified before allowing the access. It is easier to keep track who have been using what objects.

Chapter 18

NETWORK SECURITY

First works on Computer Networks technology was initiated by the famous ARPANET project that started in the late 1960s. The main focus at that time was the design principles and implementation of communication networks. Unfortunately, the security aspect of communication was totally ignored mainly because it was not perceived as a "real problem". The discovery of malicious software such as viruses, worms or Trojan horses in the 1980 s has changed the perception. In particular, computer viruses have become the major security problem especially for personal computers.

The Chapter consists of two parts. The first one deals with the recent developments in Internet protocol security. The second part investigates the nature of malicious software with the stress on viruses.

18.1 Internet Protocol Security (IPsec)

The "discovery" of the Internet in the early 1990's by the public was very much related to a growing popularity of the World Wide Web and its ever expanding applications. The computer network infrastructure has been seen by some as a new vehicle for conducting trade and commerce in an open manner, reaching millions of people connected to the Internet. These demands has brought to the foreground the issues of security, and consequently, forced the designers of computer networks to amend Internet Protocols so they provide confidentiality and authenticity of messages.

Since the Internet spans the globe, crossing national boundaries, the issues of transborder data flow and national security - from the defence and from the economic point of view - have also come to the foreground. A computer network can be regarded as a single "super computer", whose hardware and

Figure 18.1: A typical computer network
software resources are distributed over a given geographic area. An especially important component of this super computer is the communication network (see Figure 18.1) that connects computers together. It is susceptible to illegal activity by unfriendly users. The large physical dimensions of the network make it impossible to protect the network resources by physical security measures (see [112], [490], [491]). The application of access control methods in the computer network has obvious limitations, for example, they cannot be used to protect information that is being sent through the communication network. The only class of protection methods which can be applied is the class of cryptographic methods. It is worth noting that cryptographic protection does not exclude illegal user activity. Its main benefit is the protection of the computer network against the effects of such activity.

Recent advances in communications try to reconcile two seemingly impossible requirements: unrestricted global access to all communication end-points and isolation of some parts of the network. The requested isolation is typically temporary and the configuration of the network may fluctuate from time to time. This dilemma can be solved by designing two or more computer environments isolated from each other. For example, this solution is often applied in military. One computer environment is dedicated to military purposes while the other is integrated with the public Internet for unclassified information. Although quite effective, this solution is also expensive and in most institutions may not be acceptable.

Firewalls can be deployed to control incoming traffic to a protected site (or a local area network). Modern firewalls are fairly sophisticated combining an extensive range of traffic control mechanisms. The decision about whether the traffic is friendly, unwanted or simply hostile, is made using variety of message identification techniques. Typically, firewalls either allow the traffic to pass or the traffic is blocked. Note that the confidentiality aspect is ignored by firewalls.

When first networks were constructed and suitable standards for Internet communication developed, the security aspect was overlooked. The Internet Engineering Task Force (IETF) tries to fix this by development of new standards for secure Internet communications. For more details about IETF see http://www.ietf.org. In November 1998, Network Working Group of IETF published their request for comment RFC2401 [276] in which a security architecture for the Internet Protocol (IP) is detailed. The Internet Protocol security (IPsec) is based on the following two protocols:

1. Authentication Header protocol (AH) and
2. Encapsulating Security Payload protocol (ESP).

The AH protocol provides integrity and authentication services while the ESP protocol delivers mainly confidentiality. These services are implemented on the network layer as specified by the ISO OSI reference model [491]. Being more specific, IPsec can be implemented as

- an integral part of the underlying Internet protocol (this is the case for IP version 6 or IPv6),
- an interface between the IP layer and the network driver. This is also called the bump-in-thestack implementation,
- a separate crypto engine. This is also called the bump-in-the-wire implementation.

18.1.1 Security Associations

A security association (SA) is a unidirectional secure channel which offers either confidentiality (ESP protocol) or authenticity (AH protocol). If both confidentiality and authenticity are required, two security associations, say $\mathrm{SA}_{E S P}$ and $\mathrm{SA}_{A U}$, must be used. The sequence in which these two associations are applied is important. Always the unprotected (clear) message (packet) is first input to
$\mathrm{SA}_{E S P}$ and later the result is sent to $\mathrm{SA}_{A U}$. In other words, if the clear message is M then $M \rightarrow$ $\mathrm{SA}_{E S P} \rightarrow \mathrm{SA}_{A U}$. Note that this order of channels saves time and computing resources when the receiving side deals with corrupted packets - they are discarded after failing the authentication checks (which is typically less expensive than decryption). Note also that to establish a two-way channel with confidentiality and authenticity, one would need four security associations. Each security association is identified by the triple: destination IP address, security parameter index and security protocol used (either AH or ESP).

A security association may be applied in ether tunnel and transport mode. In the tunnel mode, an SA takes an incoming datagram and encapsulates it in a new datagram with a new header. This mode is used for confidentiality services when the incoming datagram is encrypted and the new header is added to enable the destination point to decrypt it. The transport mode typically leaves the basic structure of a datagram intact with some extra fields attached to it.

In other words, the tunnel mode resembles a postal service in which a post card is put into an envelop at the sender's post office. The destination address on the envelop indicates the post office of the receiver. On the arrival at the receiver's post office, the envelop is removed and the postcard delivered to the destination address. The transport mode can be compared to registered mail service. A post card is time-stamped and a number attached to it. The card still looks the same but some extra information is attached to it.

18.1.2 Authentication Header Protocol

The AH protocol (detailed in [277]) provides authentication of IP datagrams. The Authentication Header is placed directly after the IP header and is structured as shown in Table 18.1. The Next

Table 18.1: Authentication Header

Next Header	Payload Length
Security Parameters Index (SPI)	
Sequence Number Field	
Authentication Data	

Header field is 8 bits long and specifies the type of the next payload which follows the AH. The Payload Length (8 bits) field gives the length of the AH in 32 -bit words. The 16 -bit Reserved field is dedicated for future usage. The SPI field (32 bits) uniquely identifies the security association. The Sequence Number indicates position of the datagram within the stream of packets sent via the security association. This number is used to prevent the reply attack. The Authentication Data contains the Integrity Check Value (ICV) which is used by the receiver to verify the authenticity of the packet.

The ICV is, in fact, a message authentication code (MAC) generated using

1. a keyed hashing based on a private-key cryptosystem (such as DES or LOKI),
2. a collision-free hashing algorithm such as MD5 or SHA-1,
3. a signature based on a public-key cryptosystem.

For point-to-point communication, hashing is recommended while for multicast communication signatures are preferred. In general, the ICV is computed for all immutable parts of the packet. In
particular, these parts include: IP header fields which are immutable or those whose values can be predicted, the AH header and the upper level protocol immutable data.

The AH provides also protection against the reply attack. Any packet transmitted for an active SA has a unique (fresh) sequence number. The sequence number inserted into AH is always initialised to zero at the initialisation stage of a new SA and incremented by one for each consecutive datagram - the first packet is assigned 1 as its sequence number. As the sequence number field contains 32 bits, it is possible to send 2^{32} packets before the sequence number will cycle. To prevent cycles, the SA with sequence number set to zero (first full cycle is completed) causes the SA to be closed and a new SA is created.

It is interesting to note that a SA with the AH protocol only is typically used in the transport mode. If, however, it is used in combination with the ESP protocol, it can be applied in either transport or tunnel mode.

18.1.3 Encapsulating Security Payload Protocol

The ESP protocol is described in [278]. Unlike the AH protocol, the main service delivered by the ESP protocol is confidentiality of transmitted data. A SA based on the ESP protocol can be used in either transport or tunnel mode - see Table 18.2.

Table 18.2: Datagram structure for (a) transport and (b) tunnel modes

IP Header
Datagram Payload
(a)IP Header ESP Header Datagram Payload ESP Footer
(b) New IP Header
ESP Header

The ESP packet format is given in Table 18.3. The first two fields: SPI and Sequence Number create the ESP header. The padding section together with Pad Length, Next Header and Authentication Data constitute the ESP footer. The SPI (32 bits) identifies uniquely the security association of

Table 18.3: ESP Packet Format

this datagram. For the first datagram sent via the SA, the Sequence Number (32 bits) is initialised to 1 and increased by one for each consecutive packet. If the sequence number overflows (is equal to
2^{32}), then this SA is closed and the remaining packets are sent over a new SA. This field is used for reply prevention. The Datagram Body (also called Payload Data) contains the data carried by the original packet. The Padding is necessary to adjust the length of the encrypted data to be a multiple of 32 -bit words. The padding cannot be longer than 255 bytes. The Pad Length (8 bits) specifies the number of bytes in the Padding field. The Next Header (8 bits) indicates the type of data in the Datagram Body field. The Authentication Data field contains a MAC (or ICV) calculated for the whole datagram (excluding the Authentication Data).

The ESP protocol is designed for private-key encryption (such as DES) as it is typically faster than its public-key counterparts. The authentication is supported by the same algorithms as in the case of the AH protocol.

18.1.4 Internet Key Exchange

The Internet Key Exchange (IKE) is described in [235]. Two parties called Initiator and Responder who wish to establish a common SA (secure channel), call the Internet Security Association Key Management Protocol (ISAKMP). The protocol runs in two stages. In the first stage, two peers negotiate a common secure channel further called a ISAKMP Security Association or a ISAKMP SA for short. The negotiated attributes include: encryption algorithm, hashing function, authentication method, and the algebraic group for exponentiation (Diffie-Hellman key agreement). Additionally, a pseudorandom bit generator can be negotiated. An ISAKMP SA is a bi-directional channel and provides both confidentiality and authenticity. Note that a normal SA used to transmit data, is unidirectional and can provide either authentication or confidentiality. In the second stage, the ISAKMP SA is used to exchange key material for a SA.

The key material SKEYID necessary to establish the ISAKMP SA is derived differently depending upon an authentication method used. The collection of options is

$$
\begin{aligned}
\text { SKEYID } & =\operatorname{PBG}\left(N_{i} \mid N_{r}, g^{r_{i} x_{r}}\right) \text { for signatures, } \\
\text { SKEYID } & =\operatorname{PBG}\left(H\left(N_{i} \mid N_{r}\right), C K Y_{i} \mid C K Y_{r}\right) \text { for public-key encryption, } \\
\text { SKEYID } & =\operatorname{PBG}\left(\text { key, } N_{i} \mid N_{r}\right) \text { for pre-shared keys, }
\end{aligned}
$$

where N_{i}, N_{r} are payloads of nonce datagrams generated by the initiator and responder, respectively, $g^{x_{i}}, g^{x_{r}}$ are public keys of the initiator and responder, respectively, $g^{x_{i} x_{r}}$ is the Diffie-Hellman key (common for both parties), CKY ${ }_{i}$ and $C K Y_{r}$ are tokens (also called cookies) for the initiator and responder, respectively. The tokens provide a source address identification of two parties. The pair of tokens uniquely identifies the currently valid cryptographic key SKEYID used by the two parties. $P B G$ is an agreed pseudorandom bit generator and H is a hash function. The key SKEYID now is used to generate the following three variants:

$$
\left.\left.\begin{array}{rl}
\text { SKEYID }_{d} & =P B G\left(\text { SKEYID, } g^{x_{i} x_{r}}\left|C K Y_{i}\right| C K Y_{r} \mid 0\right), \\
\text { SKEYID }_{a} & =P B G\left(\text { SKEYID, }^{\text {SKEYID } \left._{d}\left|g_{i}^{x_{i} x_{r}}\right| C K Y_{i}\left|C K Y_{r}\right| 1\right),}\right. \\
\text { SKEYID }_{e} & =P B G\left(\text { SKEYID, }_{\text {SKEYID }}^{a} \mid\right.
\end{array} g^{x_{i} x_{r}}\left|C K Y_{i}\right| C K Y_{r} \right\rvert\, 2\right), ~ \$
$$

where SKEYID $_{d}$ is the key used to derive keys for non-ISAKMP SAs (or simply session keys), and SKEYID $_{a}$, SKEYID $_{e}$ are the keys used by the ISAKMP SA for authentication and confidentiality, respectively. The exchange of information is authenticated using two strings:

$$
\begin{aligned}
H_{i} & =P B G\left(\text { SKEYID }, g^{x_{i}}\left|g^{x_{r}}\right| C K Y_{i}\left|C K Y_{r}\right| S A_{i} \mid I D_{i i}\right), \\
H_{r} & =P B G\left(\text { SKEYID }, g^{x_{r}}\left|g^{x_{i}}\right| C K Y_{r}\left|C K Y_{i}\right| S A_{i} \mid I D_{i r}\right),
\end{aligned}
$$

where $S A_{i}$ is the entire body of the SA payload minus the ISAKMP header, and $I D_{i i}, I D_{i r}$ are the identification payloads for the initiator and responder, respectively. The IKE has two distinct phases: negotiation and establishment. In the first phase two parties negotiate attributes for the SA and the key material used to establish a common ISAKMP SA.
Negotiation Phase of IKE with Signatures
Assume that the parties know their true public keys for signature verification. Initiator and Responder are two parties who would like to establish a secure channel. The communication between the parties is as follows:

Initiator			Responder
(1)	$\mathrm{HDR}, \mathrm{SA}$	\rightarrow	
(2)		\leftarrow	$\mathrm{HDR}, \mathrm{SA}$
(3)	$\mathrm{HDR}, \mathrm{KE}, N_{i}$	\rightarrow	
(4)		\leftarrow	$\mathrm{HDR}, \mathrm{KE}, N_{r}$
(5)	$\mathrm{HDR}^{*}, I D_{i i}, \mathrm{SIG}_{i}$	\rightarrow	
(6)		\leftarrow	$\mathrm{HDR}^{*}, I D_{i r}, \mathrm{SIG}_{r}$

HDR is an ISAKMP header and SA is an negotiation payload. The negotiation payload can contain many options if the SA is sent by Initiator. It must have a single option when the SA is sent by Responder. KE is a key exchange payload with the public exponents used in the DH key agreement. N_{i} and N_{r} are nonce payloads generated by the parties. HDR* is an ISAKMP header with encrypted payload which follows the header. $I D_{i i}$ and $I D_{i r}$ are identification payloads for the ISAKMP initiator and responder. SIG_{i} and SIG_{r} are the signature payloads for H_{i} and H_{r}, respectively. In the first two steps, parties negotiate security attributes. In steps (3) and (4), parties exchange their nonces and public parameters of the DH key agreement. Now the two parties can calculate the main key SKEYID and its variants SKEYID $_{d}$, SKEYID $_{a}$, SKEYID $_{e}$. The two last variants are used in steps (5) and (6) to provide confidentiality and authentication. The exchange can be compressed by allowing the initiator to send messages in steps (1) and (3) in a one go and the responder to send messages (2) and (4) in one packet - this is the so-called aggressive mode of the IKE protocol.
Negotiation Phase of IKE with Public-Key Encryption
This option works under the assumption that the parties know their mutual public keys $P K_{i}$ and $P K_{r}$. The data exchange is given below.

Initiator			Responder
(1)	$\mathrm{HDR}, \mathrm{SA}$		
(2)			$\mathrm{HDR}, \mathrm{SA}$
(3)	$\mathrm{HDR}, \mathrm{KE}$,		
	$\left\{I D_{i i}\right\}_{P K_{r}},\left\{N_{i}\right\}_{P K_{r}}$	\rightarrow	
(4)			
(5)	HDR^{*}, H_{i}		
(6)			HDR^{*}, H_{r}

where $P K_{i}$ and $P K_{r}$ are the public key of the initiator and responder, respectively, and $\{m\}_{P K}$ means the cryptogram of message m encrypted using public key $P K$.
Negotiation Phase of IKE with Pre-Shared Key
Assume that the parties share the same secret key. The phase take the form of the following steps.

Initiator			Responder
(1)	$\mathrm{HDR}, \mathrm{SA}$	\rightarrow	
(2)		\leftarrow	$\mathrm{HDR}, \mathrm{SA}$
(3)	$\mathrm{HDR}, \mathrm{KE}, N_{i}$	\rightarrow	
(4)		\leftarrow	$\mathrm{HDR}, \mathrm{KE}, N_{r}$
(5)	$\mathrm{HDR}^{*}, I D_{i i} H_{i}$	\rightarrow	
(6)		\leftarrow	$\mathrm{HDR}^{*}, I D_{i r} H_{r}$

Final Phase
This phase is used to obtain a key material for non-ISAKMP security associations (or simply session keys). The information exchange is performed via the ISAKMP SA established in the first phase. In other words, the payloads, except the ISAKMP header, are encrypted. The parties involved in the first phase may act on behalf of their clients. In this case, the identities of the clients may be used together with the identities of the Initiator and Responder. Typically, the internal security policy determines whether or not this is required. To simplify our considerations we assume that the Initiator and Responder do not have the clients. The exchange of messages is as follows.

Initiator			Responder
(1)	$\mathrm{HDR}^{*}, \mathrm{H}(1), \mathrm{SA}, N_{i}$	\rightarrow	
(2)		\leftarrow	$\mathrm{HDR}^{*}, \mathrm{H}(2), \mathrm{SA}, N_{r}$
(3)	$\mathrm{HDR}^{*}, \mathrm{H}(3)$		

where $\mathrm{H}(1)=P B G\left(\mathrm{SKEYID}_{a}, M_{I D}|S A| N_{i}\right), \mathrm{H}(2)=P B G\left(\mathrm{SKEYID}_{a}, M_{I D}|S A| N_{r}\right)$, and $\mathrm{H}(3)=P B G\left(\operatorname{SKEYID}_{a}, 0\left|M_{I D}\right| S A\left|N_{i}\right| N_{r}\right) . M_{I D}$ is the message identity from ISAKMP header. If the KE payloads are not exchanged, the key material is

$$
\mathrm{KEYMAT}=P B G\left(\mathrm{SKEYID}_{d}, \text { protocol }|\mathrm{SPI}| N_{i} \mid N_{r}\right),
$$

otherwise

$$
\mathrm{KEYMAT}=P B G\left(\mathrm{SKEYID}_{d}, g^{x_{i} x_{r}} \mid \text { protocol }|\mathrm{SPI}| N_{i} \mid N_{r}\right)
$$

Note that the keys materials KEYMAT are different at both sides as the SPIs used by Initiator and Responder are different. If the key material is too short, the IKE protocol expends it by applying the following iterative procedure

$$
\begin{aligned}
K_{1} & =P B G\left(\mathrm{SKEYID}_{d}, \text { protocol }|\mathrm{SPI}| N_{i} \mid N_{r}\right), \ldots \\
K_{i+1} & =P B G\left(\mathrm{SKEYID}_{d}, K_{i} \mid \text { protocol }|\mathrm{SPI}| N_{i} \mid N_{r}\right), \ldots
\end{aligned}
$$

18.1.5 Virtual Private Networks

The Internet is a driving force for new network-based applications and services. It spans over the globe and connects most organisations, institutions, and private users. The main weakness of the Internet is the lack of security. The concept of a virtual private network (VPN) repeats a well known idea of a private network built over insecure leased communication lines. The Internet provides (insecure) communication links which can be used to build a secure and private subnetwork using IPsec. IPsec can be used directly (IPv6) or indirectly (jointly with IPv4) to provide authentication and confidentiality.

Consider a collection of basic VPN configurations.

- The host-to-host secure communication.
- The gateway-to-gateway secure communication.
- The multiple nested secure communication.

The host-to-host configuration is used to create a bidirectional secure channel (with authentication or privacy or both). To implement an authentication channel, two security associations (in each direction) with the AH protocol must be used. To provide authentication and privacy, four security associations have to be applied. This configuration is the basic one which is used for other more complex once.

Most of international companies and organisations have many branches or divisions each of which is typically supported by one or more LANs with the access to the Internet. It is reasonable to assume that the company needs to establish from time to time a secure communication between two or more LANs. Consider the simplest case when two LANs are to be integrated into a single VPN. If the LANs have already access to the Internet, then the traffic to and from the Internet is passing through a nominated host called gateway. It is enough to establish a secure channel between two security gateways in order to integrate the two LANs into a VPN.

Assume that we have already two LANs integrated into a VPN. It can be expected that two hosts residing in two different LANs may need to establish a secure channel. In this case, the traffic between the two hosts will be protected locally (within the LANs) and externally (outside their LANs). The local protection is provided by the host-to-host secure channel. The external security is guaranteed jointly by the host-to-host and gateway-to-gateway secure channels. This kind of nested secure channels makes sense if, for example, the authentication channel is requested within the VPN while the transmitted information between LANs is to be kept secret from the outside world.

18.2 Computer Viruses

Discovery of computer viruses was one of the most important factors which put the network security issues in the spotlight. It turns out that users of personal computers are all at risk from computer virus infections. Recent developments in the computer virus technology, in particular the macro virus that spreads through the exchange of documents prepared using, for example, certain word processing packages, mean that more computer users than ever before will be affected at some time by a computer virus.

The reader who wish to further study the topic is referred to [101, 420]. While working on this chapter, the authors were helped by Jeff Horton who made accessible a draft of his PhD thesis [248]. He also read this part and corrected the text. The authors gratefully acknowledge this.

18.2.1 What is a Computer Virus ?

Computer viruses, computer worms and Trojan horses are all different forms of malicious software or malware. Cohen in [99] informally defines a computer virus as
a program that can "infect" other programs by modifying them to include a possibly evolved copy of itself.

Viruses infect computer programs by modifying them. The modification can take different forms including:

- destroying data. The Brain virus [243] targeted the IBM PC and was capable of destroying of data describing the location of sectors making up files on a diskette and might even overwrite part of a file in the process of infection,
- stealing CPU time. Consider a virus that asks permissions before infecting an executable file. The creator of the virus can see it as a useful tool while users whose work is interrupted by the virus, can perceive it as a time-wasting nuisance,
- reducing the functionality of the infected program,
- adding new, not necessarily, malicious capabilities to the infected program. Cohen in [99] discusses a virus that compresses executable files on infection and which decompresses the file on execution.

There is an increased research activity related to the problem of detection and removal of computer viruses. Detection of viruses is not easy as viruses tend to mutate after infection. That is why Cohen used "possibly evolved" in his definition. Designers of computer viruses intentionally create viruses that are able to mutate after infection, to make detection of viruses by anti-virus software more difficult.

Cohen's definition is too restrictive as it fails to include a program that is able to attach itself to a host program by some means other than altering the code of the host program, but otherwise would seem well-described by the tag of "computer virus". The companion strategy of infection is an excellent example of this. For this reason, the above definition can be extended as follows:

> A computer "virus" is a program that can "infect" other programs by modifying either host programs or the environment in which host programs exist. A possibly mutated copy of the virus gets attached to host programs.

The above definition can be further extended by requiring from viruses to be capable of further replication. A formal definition of a computer virus is given in [100].

18.2.2 Worms and Trojan Horses

Informally, a computer worm can be defined as
a self-replicating and self-contained program that is capable of spreading itself to other machines.

Unlike a virus, a worm does not infect or otherwise depend on a host program - it is self-contained.
The Internet Worm unleashed in November 1988 is, probably, the most famous example of a worm. The worm exploited a number of known security holes in the UNIX operating system. It consisted of two programs: a grappling hook (or bootstrap) program and the main program [463]. The grappling hook was a short C program. Once established in a foreign machine, the grappling hook compiled and executed. During the execution, it connected to the machine from which it had originated and uploaded a copy of the main program. The task of the main program was to search the Internet for other machines which could be easy victims i.e. machines which would allow remote execution of the grappling hook without proper authorisation.

Recently, the Autostart worm for the Macintosh was reported and is described in [259]. The worm exploited the ability to designate a program on a diskette or hard disk to be executed when the disk was mounted by the operating system. Unlike the Internet Worm, it spread via the transfer of infected disk from one machine to another.

A Trojan horse program can be defined as
a program that claims to perform a particular function, sufficiently attractive to the computer user to ensure that the user executes the program. Instead of or perhaps in addition to performing this function, the Trojan horse takes some form of undocumented action, often malicious, that was intended by the programmer.

Note that this definition excludes programs which cause destruction is a result of bugs in the program. Trojan horses, unlike viruses and worms, do not replicate themselves. Malicious actions undertaken by a Trojan horse can range from a relatively simple action such as deleting files to more subtle activities such as gathering private information about users. It is not difficult to imagine a Trojan horse that collects secret session keys from a user hard disk and sends this information out over the Internet for collection at a remote site.

18.2.3 Taxonomy of Viruses

The risk of infection greatly depends on the hardware platform in use. Consider the three following platforms:

- IBM PC - users of this platform are the worst affected. It is reported in [359] that more than 10,000 DOS-based computer viruses having been created as at November 1996.
- Macintosh - users have also been affected by the computer virus problem, but not to the same degree as users of IBM PCs. Estimates vary, but there are certainly fewer than 100 viruses specifically designed for the Macintosh platform.
- UNIX - users are fortunate as there is no common virus threats against this platform. However, the potential exists for viruses to be written for this platform (see [99, 101, 162, 328]).

Any computer platform where programs are stored on modifiable media is subject to attack by computer viruses. In general, viruses can be divided into two broad classes:

- platform dependent,
- platform independent.

Platform dependent viruses normally exploit a specific hardware/software configuration characteristic for the platform. Macro viruses are a newcomer in the area and are platform independent. Macro viruses are written in interpreted languages supplied by some common programs (applications) that are available across multiple platforms. A good example such an application is Microsoft Word. It is available for both IBM PC and Macintosh computers.

Viruses infect only executable files. To activate them, the host program must be executed. A virus can be either

- memory resident - the virus remains active even after its host program has terminated,
- non-memory resident - the virus becomes active only if its host program is executing.

Writers of computer viruses use two main strategies to make the detection of viruses more difficult. The strategies are:

- polymorphism - a virus changes its form using variety of techniques including encryption,
- stealth - a virus tries to conceal its presence in infected objects when executing.

A sequence of bytes considered characteristic of a virus is called the virus signature. To detect a virus, it is enough to scan the program for a virus signature. Polymorphism attempts to minimise the number of bytes available for use in a virus signature. There are two parts to the strategy.

- The virus encrypts the main body of the virus code using a variable key when infecting. A range of different simple schemes would be used. Before the encrypted virus can be executed, it must be decrypted.
- In addition to choosing between a variety of different encryption and, hence, decryption schemes, the virus applies equivalent machine instructions, reordering instructions (if the new order of instructions leads to equivalent operation), inserting dummy instructions (for instance, no operation instruction), building up a code during runtime (once constructed, the code performs the required task), and using intermixing operations (see [101]).

18.2.4 IBM-PC Viruses

This class of viruses is the biggest and can be divided into three groups:

- file infecting viruses,
- boot sector infecting viruses, and
- multipartite viruses (infecting both executable files and boot sectors).

File Infecting Viruses

The simplest type of file infecting virus overwrites part of the host program and does not store the code that was overwritten. The host program before and after infection is illustrated in Figure 18.2. The

1. Program before infection by overwriting virus.
\square
2. Program after infection by overwriting virus.
Viral Code Program Code

Figure 18.2: Host program before and after infection by overwriting virus
virus overwrites the beginning of the file so the virus will get executed every time the host program is invoked. The host program is likely to be so badly damaged that it is unable to function correctly. The viral code may also be placed elsewhere in the file hoping that it gets executed every time the host program is called leaving most of the host program functions intact.

More sophisticated viruses attach to a host program in such a way that the host program is repairable by the virus. A simple way of infecting an executable file so that any changes made are repairable is to append the virus code to the end of the file, save the first few bytes of code for later restoration, and replace them with a jump to the appended viral code. When the host program is executed, the viral code receives control first, can repair the code of its host and call it (see Figure 18.3). It is also possible to prepend the viral code to the host file (see Figure 18.4).

If a virus avoids overwriting, it means that the infected program (the host with the virus) has increased its size. This fact can be noticed by a user or a program monitoring the sizes of executable files. There are, however, ways in which a file can be infected without changing its size, yet the host code can be repaired by the virus at time of execution.

- A cavity virus finds an area of constant data within the host program that is large enough to accommodate itself, records the value that was originally stored there and replaces the constant data with itself. The Lehigh virus [101] operated in this way.
- A cavity virus might also store itself inside unused spaces within an executable file that exist as a consequence of the format of the file. The CIH virus applies this technique [512].

1. Program before infection by appending virus.
\square Program Code
2. Program after infection by appending virus.

3. On execution, control passes to viral code. Virus repairs program code.
\square
4. Virus executes original program.

Figure 18.3: An appending virus

- A compression virus compresses all or part of the host file contents so it can hide inside the host program without changing the size of the file. The compressed component can be uncompressed at runtime.

Boot Sector Infecting Viruses

Every time a computer is switched on, the operating system is loaded from a floppy or hard disk. This process is called bootstrapping. The bootstrapping process proceeds in several stages. When the operating system is loaded from a floppy disk, the first sector on the disk, referred to as the boot sector or $D O S$ boot sector, consists of a small program that is responsible for starting the next stage. If the disk does not contain an operating system, this sector includes a program which informs the user that this is not bootable disk prompting for the insertion of another disk.

Hard disks are, because of their large size, often divided into a number of smaller logical parts called partitions. The first physical sector of a hard disk is referred to as the master boot record (MBR) or master boot sector (MBS) and contains a record of the partitions into which the disk has been divided, together with a small program responsible for locating a bootable partition and booting from that partition. The first logical sector of a bootable partition is then the boot sector that is used to load the operating system (see Figure 18.5).

Boot sector viruses infect the code found in the master boot record for hard disks or in the DOS boot sector for floppy and hard disks. The infection process normally looks like this. A virus

- finds the target sector and stores it elsewhere so the virus can continue the boot process,
- loads a copy of itself into the sector.

Examples of this type of viruses are

- AntiCMOS viruses - a virus from this family discards the code from the infected sector and attempts to perform the boot functions itself [271],
- Brain viruses - a virus infects floppy disks only [243],
- Monkey viruses - they infect boot sector and store the partition tables elsewhere so that infected hard disks are inaccessible if computers are not booted from the virus-infected hard disk [346],

1a. Program before infection by prepending virus.

2a. Viral code prepended, program code shifted.

$$
\text { Lrat Code } \quad \text { Program Code }
$$

1b. Program before infection by prepending virus.

2 b . Viral code prepended; only overwritten program code shifted.

Pral Codee.	P. Code \#2

Figure 18.4: A prepending virus

Figure 18.5: Illustration of boot process for floppy and hard disks

- Hare Krsna - they tamper with location of the partition tables [517].

Companion Viruses

Companion viruses do not modify host programs they infect. Instead, they create their copies as separate executable files. There are two basic types of companion viruses under MS-DOS [48, 249, 315].

- Regular companion - a virus of this type create a file in the same directory as the host program but with a filename extension which gets usually executed before the extension used by the host program. For example, a . COM file with the same name as a .EXE file and in the same directory is executed before the . EXE file if the file extension is not specified.
- Path companion - a virus creates a file with any executable extension in a directory that is searched for executable files before the directory containing the host program
- Surrogate companion - a virus renames the host program and replaces it with a copy of itself.

18.2.5 Macintosh Operating System

To discuss viruses affecting Macintosh platform, we need first introduce necessary background about Macintosh operating system. For more details the reader is referred to [252, 253, 254, 255].

Any Macintosh file has two components;

- data fork,
- resource fork (or resource file).

A characteristic feature of the Macintosh OS is that each file has its

- type, for example, application (APPL) or ASCII text (TEXT),
- creator or the application program which owns the file.

Resources within a resource file are described by

- a resource type (four letter code),
- an ID number (two-byte integer),
- a name (string of characters).

To identify a particular resource, it is enough to specify a resource type and either an ID number or a resource name. An application resource file stores variety of information including: MENU - stores information about the list of options in a particular application menu, MBAR - lists the menus that are present in an application's menu bar, WIND - describes the dimensions and other characteristics of a window created by an application, CNTL - defines a control which is a user interface element such as a button or scrollbar created by an application, and CODE - contains main components of an application executable code.

Loading resource may involve many resource forks. A search path is followed to locate requested resources. The starting point is always the current resource file and the search ends in the System file that contains resources which are part of the operating system.

Consider the graphical user interface presented by an application. Many of the interface elements such as menus, windows, buttons, etc. are drawn by definition procedure (DP). The executable code of a definition procedure is stored in a resource and loaded by the OS when required to draw a user interface element. The OS provides a default implementation and it can be customised by a user. Examples of definition procedures include

- a menu DP - it is stored in an MDEF resource and is responsible for drawing menu items within a menu,
- a menu bar DP - it is stored in an MBDF resources and is responsible for drawing activities related to the display of menus,
- a window DP - it is stored in a WDEF resource and is responsible for such tasks as drawing frame or resizing a window,
- a control DP - it is stored in a CDEF resource and is responsible among many tasks for drawing the control and testing for where the mouse has been clicked by the user within a control.

The INIT is another important type of resource containing executable code. These are resources that contain code that is intended to be executed at system startup. INIT resources can be located within the System file itself or in files of particular types.

The Finder is an application which is a part of the Macintosh operating system. The Finder

- manages the display of the user desktop,
- keeps track of the location (both on the screen and on the disk directory structure) of files and folders,
- ensures that the appropriate application is used to work with a file created when the file is double-clicked by the user.

Under Macintosh system software prior to System 7 (System 6), "Finder" refers to a version of the software that would permit only one application at a time to execute. That is, users could run the Finder or some other application but not both at once. MultiFinder was a refinement of the Finder that would permit more than one application, including MultiFinder itself, to execute at a time. System 7 and later use "Finder" to refer to a version of the software descended from MultiFinder more than one application at a time, including the Finder, may be executed.

Application developers are able to designate an icon for each type of file that is created or owned by the application. These icons will be displayed by the Finder to represent the user documents. Icon information is given by resources from the application resource fork. The Finder extracts this and other information from the application resource fork and stores it in a database for easy access. The location of the application on disk is also stored.

To display the icon for a document, the Finder checks its database for an icon corresponding to the document type provided by the application with the same creator code as the document. When a document is double-clicked, the Finder searches its database for an application whose creator code is the same as the document creator code. If found, the Finder executes that application to process the document.

Macintosh Hardware

First Macintosh models were based on Motorola 68000 microprocessors. We collectively name Macintoshes based on the 680 x 0 series of microprocessors as " 68 K Macintoshes" and code intended to run on these microprocessors as " 68 K code". The PowerPC series of microprocessors replaced 680 x 0 microprocessors in new Macintosh models. Models with the PowerPC microprocessor are collectively referred to as "PPC Macintoshes" and code - "PPC code". Needless to say, the machine code for the 680x0 microprocessors is not compatible with the newer PowerPC microprocessors. Apple has addressed this problem by supplying a 68LC040 emulator as a part of the operating system for PPC Macintoshes.

The executable of an application can be stored within the application file using the following three basic methods:

- application based on 68 K code is split into a number of code segments. These applications can run under emulation on a PPC Macintosh.
- application based on 68 K code is split into code fragments and also contains a small code segments responsible for starting up the code fragment component on versions of the OS that are not able to automatically perform this task. These applications cannot run under emulation on a PPC Macintosh.
- application based on PPC code is split into code fragments.

Macintosh viruses known so far work by modifying an application based on 68 K code segments. This, however, also makes PPC Macintoshes vulnerable as

- most PPC applications contain at least a small component based on 68 K code which informs a user that the application cannot be run on a 68 K Macintosh,
- not all viruses attempt to modify the application code directly. Some viruses add executable resources like the MDEF resource to an application. 68 K definition procedures added to a PPC application by a virus will still work in a PPC environment,
- there is every reason to expect that such viruses will be written in the future.

Code fragments are typically stored in the data fork of an application file but may also be stored in resources in the resource fork. A resource known as the code fragment resource or cfrg resource with identity 0 is used to index the fragments. Applications based on code fragments can also import shared libraries. The code fragments within a shared library could potentially be infected by a virus (although no such viruses for the Macintosh are currently known). A code fragment based environment is much more flexible and programmer friendly than the 68 K code segment environment.

The structure of an application based on code segments is much simpler. Figure 18.6 illustrates it. The executable code of a 68 K application is divided into a number of segments and each segment is stored in a CODE resource. This has the advantage that not all resources are required in memory at a particular time to execute programs.

CODE
Resource \#0 (Jump Table)

Figure 18.6: Illustration of a code segment based 68 K application
A mechanism is needed to enable a routine located in one code segment to call another routine. Intersegment calls are handled with the aid of a so-called jump table. To invoke a routine in another segment, a jump is executed to the jump table where the addresses of routines are stored. The jump table is stored in the CODE resource with ID 0 . The first entry in the table contains the address of the routine which gets executed first. Not all compilers maintain the entire jump table in the CODE 0 resource. Instead, a jump table is constructed in memory on execution.

18.2.6 Macintosh Viruses

Most Macintosh viruses modify the executable code of an application program in some way so that when the program is run, the viral code gets executed. There are two major techniques to achieve this

- a virus modifies the code segments of the application,
- a virus adds new resources containing definition procedure that will be invoked implicitly during application execution.

Consider a typical 68 K application illustrated in Figure 18.6. A virus can infect the application by changing the code segments in three ways.

- The virus adds a code segment to the application in the form of an additional CODE resource modifying the first entry of the jump table so it refers to the viral CODE resource. In result, the
viral code gets control when the application starts executing. The original first jump table entry is saved by the virus so that it can return control to the application once it has completed its task. The application original code segments are not modified except from the jump table. The infection process is illustrated in Figure 18.7. The viruses: nVIR [174], and the INIT29 [173] are good examples of viruses of this type [175].

Figure 18.7: Modifications made by virus that adds an additional CODE resource to an application

- Rather than adding a new code segment to the application, the virus adds its code to the end of an existing CODE resource. The virus need not touch the jump table. Instead, it modifies the first few bytes of a routine in the CODE resource so that when the routine is invoked, the viral code is called. The bytes replaced by the virus can be saved and restored after execution of the viral code. Figure 18.8 presents how the virus works.

Figure 18.8: Modifications made by virus that adds its code to an existing CODE resource and modifies a routine to jump to the viral code

- The virus appends its body to an existing CODE resource and modifies the jump table. When the application is executed, the viral code gains control first. The original jump table entry is saved so that control can be returned to the application. This strategy of infection is depicted in Figure 18.9.

There are several ways in which an application can be infected by the addition of a resource containing the code for a definition procedure. A typical relationship of an application menu with a default definition procedure is given in Figure 18.10. Consider the following infection strategies for this case.

Figure 18.9: Modifications made by virus that adds its code to an existing CODE resource and modifies a jump table entry

- the virus adds a viral definition procedure with the same type and identity as a standard DP resource from the System file - see Figure 18.11,
- the virus adds a viral definition procedure with a changed identity - see Figure 18.12.

Figure 18.10: Typical relationship of application MENU and System MDEF

Figure 18.11: Relationship between an application MENU, viral MDEF and System MDEF
The WDEF virus [176] deserves a special attention. This virus infects using a definition resource. However, the definition resource is not added to an executable file! The WDEF virus adds a WDEF 0 resource containing the viral code to the resource file on each disk in which the Finder stores its desktop database, the Desktop file. This file is opened by the Finder when a disk is mounted. When the user subsequently opens a window within the Finder, the operating system will search for a WDEF 0 resource to perform drawing operation. As the most recently opened resource files are searched first for resources, the viral WDEF 0 resource stored within the Desktop file will be found and executed in place of the original WDEF 0 resource. All operating systems since System 7 are immune to this attack.

18.2.7 Macro Viruses

A macro is a collection of statements in some language that performs a task when interpreted. Many application packages allow users to automate tasks which are common and repetitive, by defining their

Figure 18.12: Relationship between an application MENU, viral MDEF and System MDEF
own macros. Some application packages provide not only a simple scripting language that can be used to control the application usage but also supply an interpreter for a complete programming language. Microsoft Word is probably the best-known of these applications. Microsoft Word 6 provided as its macro language a version of BASIC that was called WordBasic. Microsoft Word 6 was the first multi-platform implementation for both Macintosh and IBM PC.

The concept of macro virus - a virus written in the macro language - is not new. The possibility of a macro virus was predicted by Highland in 1989 [244]. It is not until 1995 that the first of macro viruses, Concept, emerged. In March 1999, researchers at Virus Test Center, University of Hamburg reported almost 600 known macro virus strains (for details contact ftp://agn-www.informatik.unihamburg.de/pub/texts/macro). Most of these macro viruses target at versions of Microsoft Word.

Macro viruses are typically embedded within a document file as a viral macro. Because the macros are interpreted by the application package rather than compiled into machine-specific executable code, they can execute within their host application an any computer hardware platform to which the application package has been ported. Macro viruses are potentially more infectious than other viruses especially when the infected documents are distributed via e-mail.

18.2.8 Protection against Viruses

There are two main strategies to combat viruses:

- preventing viruses from becoming established in a computer system,
- detecting and removing them.

There are many non-technical solutions to reduce the risk of virus infection and hopefully limit the consequences should it occur, including [245]:

- careful design of sequence in which the operating system looks for a bootable device,
- reconfiguration of e-mail system so an received mail item is opened "safely",
- removal of all executable programs that have been received from untrusted sources (without executing them),
- systematic backups of the system.

The anti-virus techniques can be classified into three major categories:

- Scanners,
- Integrity checkers,
- Behaviour blockers or activity monitors.

Scanners

A virus scanner tries to detect the presence of a virus in a file by looking for the signature of the virus. As a virus tends to change its code, scanners need to search a file for parts of the signature which are characteristic for the virus. Once a virus is detected, scanners may attempt to disinfect the infected file by removing the virus. However, in some cases, the original form of the file cannot be restored (when the virus destroyed a part of the file, for example). A better way is to replace the infected file from a backup. Scanners exhibit some drawbacks including [101]:

- they can only detect viruses with known signatures,
- scanners have to be updated every time a new virus is released,
- polymorphic viruses are difficult to detect by scanners,
- users must regularly run scanners to check disks for infection.

The first weakness can be partially eliminated by the introduction of heuristic analysis [224]. Heuristics are a set of rules that can be applied to executable code to determine whether or not it is infected by a virus. Heuristics can be

- positive - code performing operations suggestive to a virus,
- negative - code performing operations not likely to occur in virus code.

The difficulties with the detection of polymorphic viruses can be addressed by customising scanners so they work well for a specific family of polymorphic viruses. A better approach seems to be the application of so-called generic decryption [359]. This approach works for viruses which use encryption to change their form. Such a virus must decrypt the main body of its code before execution. Generic decryption attempts to emulate the program under investigation past the point at which the virus code has been decrypted so the virus can be identified from its signature.

To relieve users from the burden of running scanners at regular intervals, a memory-resident scanner component might be provided. This component scans automatically files and disks for viruses when accessed.

Integrity Checkers

It is reasonable to assume that a virus must change something when it infects a file. Hashing can be used for integrity checking. Once a file has been created, its hash value is computed. Any modification to it will cause a change of the hash value. Note that integrity checkers detect any change in a file not only this created by a virus. So if the hash value has changed, a file may be infected. Obvious limitations of integrity checkers are as follows.

- Viruses introduced before an integrity checker computed hash values for files, will not be detected.
- Integrity checkers fail to detect infection if a file was at the same time modified by the user and infected by a virus.
- Viruses can only be detected after they have spread and inflicted some damage.

The main advantage of integrity checkers seems to be that they are able to detect unknown viral infections including notorious polymorphic viruses. The reader who wish to pursue this topic, is referred to [48, 101, 420].

Behaviour Blockers and Activity Monitors

These anti-virus programs monitor the computer activity and attempt to detect the presence of a virus. The rationale behind behaviour blockers and activity monitors is the hope that it is possible to distinguish somehow between abnormal (viral) and normal behaviour. Clearly, this approach has the following drawbacks:

- Most viruses perform entirely legitimate actions rather than exploiting operating system weaknesses.
- Some viruses may try to bypass the anti-virus programs. For instance, some Macintosh viruses contain code which redirects traps generated by the virus to ROM code. If successful, the anti-virus program will be bypassed - it fails to detect the virus.
- Blocking a suspicious action may result in undesired consequences. For example, files may be left in inconsistent states after a suspicious operation.
- After detecting a suspicious activity, the anti-virus program may leave the decision about what needs to be done to the user. This can be irritating especially when it happens frequently.

Bibliography

[1] C. Adams and S. Tavares. Generating and counting binary bent sequences. IEEE Transactions on Information Theory, IT-36 No. 5:1170-1173, 1990.
[2] C. Adams and S. Tavares. The structured design of cryptographically good S-boxes. Journal of Cryptology, 3:27-41, 1990.
[3] L. M. Adleman. On breaking generalized knapsack public key cryptosystems. In Proc. 15th ACM Symposium on Theory of Computing, pages 402-412, Boston, 1983. "Association for Computing Machinery (ACM)".
[4] S. G. Akl and D. E. Denning. Checking classification constraints for consistency and completeness. In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages 196-201, Oakland, CA, 1987. IEEE Computer Society.
[5] W. B. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA and Rabin functions: certain parts are as hard as the whole. SIA M Journal of Computing, 17:194-208, 1988.
[6] D. Anderson, Th. Frivold, and A. Valdes. Next-generation intrusion detection expert system (nides): A summary. SRI-CSL-95-07, SRI International, Menlo Park, CA, 1995.
[7] D. Anderson, T.F Lunt, H. Javitz, A. Tamaru, and A. Valdes. Detecting unusual program behavior using the stastistical component of the next-generation intrusion detection expert system (nides). SRI-CSL-95-06, SRI International, Menlo Park, CA, 1995.
[8] R. Anderson, H. Manifavas, and C. Sutherland. Netcard - a practical electronic cash system. Technical Report Available at: http://www.cl.cam.ac.uk/users/rja14, Computer Laboratory, University of Cambridge, 1996.
[9] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Transactions on Information Theory, IT-29 No. 2:208-211, 1983.
[10] D. Atkins, M. Graff, A.K. Lenstra, and P.C. Leyland. The magic words are squeamish ossifrage. In J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT94, pages 263-277. Springer, 1995. Lecture Notes in Computer Science No. 917.
[11] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Practical and secure message authentication. In Proceedings, Workshop on Selected Areas in Cryptography, pages 55-68, 1995. SAC95, Carleton University, Canada, May 18-19.
[12] J. Banerjee, H. Chou, J. F. Garza, W. Kim, D. Woelk, N. Ballou, and H. Kim. Data model issues for object-oriented applications. ACM Transactions on Office Information Systems, 5(1):3-26, 1987.
[13] J. Banerjee, D. K. Hsiao, and K. Kannan. DBC - a database computer for very large databases. IEEE Transactions on Computers, C-28(6):414-429, 1979.
[14] A. Baraani-Dastjerdi. Access control in object-oriented databases. PhD thesis, Department of Computer Science, University of Wollongong, New South Wales, Australia, 1996.
[15] A. Baraani-Dastjerdi, J. Pieprzyk, and R. Safavi-Naini. A secure voting protocol using threshold schemes. In Eleventh Annual Computer Security Applications Conference, pages 143-148. IEEE Computer Society Press, 1995. New Orleans, Luisiana, Dec. 11-15, 1995.
[16] D.S. Bauer and M.E. Koblentz. NIDX - an expert system for real-time network intrusion detection. In Proceedings of the IEEE Computer Networking Symposium, pages 98-106, 1988.
[17] F. Bauspiess. SELANE: an approach to secure networks. In SECURICOM90 Proceedings, pages 159-164, 1990.
[18] D. E. Bell and L. J. La Padula. Secure computer systems: Mathematical foundations and model. Technical Report M74-244, Mitre Corp., Bedford, MA, 1973.
[19] D. E. Bell and L. J. La Padula. Secure computer systems (vols.1-3). Technical Report ESD-TR-73-278, Air Force Electronic Systems Division, Hanscom AFB, MA, 1973-1974.
[20] D.E. Bell and L.J. La Padula. Secure computer systems. Technical Report ESD-TR-73-278, Air Force Electronic Systems Division, Hanscom AFB, MA, 1974.
[21] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations amnog notions of security for public-key encryption schemes. In H. Krawczyk, editor, Advances in Cryptology - CRYPTO'98, pages 26-45. Springer, 1998. Lecture Notes in Computer Science No. 1462.
[22] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. De Santis, editor, Advances in Cryptology - EUROCRYPT’94, pages 92-111. Springer, 1995. Lecture Notes in Computer Science No. 950.
[23] J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In S. Goldwasser, editor, Advances in Cryptology - CRYPTO'88, pages 27-36. Springer-Verlag, 1988. Lecture Notes in Computer Science No. 403.
[24] J. Benaloh and M. Yung. Distributing the power of a government to enhance the privacy of votes. In Proceedings of the 5th ACM Symposium on Principles of Distributed Computing, pages 52-62, 1986.
[25] E. Berlekamp, R. McEliece, and H. van Tiborg. On the inherent intractibility of certain coding problems. IEEE Trans. Inform. Theory, IT-24:384-386, 1978.
[26] Elwyn Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.
[27] T. A. Berson and T. F. Lunt. Security considerations for knowledge-based systems. In Proceedings of the Third Expert Systems in Government Conference, October 1987. (preprint).
[28] E. Bertino and L. M. Haas. Views and security in distributed database management systems. In J. W. Schmidt, S. Ceri, and M. Missikoff, editors, Advances in Database Technology - Proceedings of EDBT'88 (Lecture Notes in Computer Science No. 303), pages 155-169. Springer-Verlag, 1988.
[29] T. Beth and C. Ding. On permutations immune against differential cryptanalysis. In Advances in Cryptology - EUROCRYPT'93, volume 765, Lecture Notes in Computer Science, pages 65-76. Springer-Verlag, Berlin, Heidelberg, New York, 1994.
[30] J/"urgen Bierbrauer, K. Gopalakrishnan, and D. R. Stinson. Bounds for resilient functions and orthogonal arrays. In Y. Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages 247-256. Springer, 1994. Lecture Notes in Computer Science No. 839.
[31] E. Biham, R. Anderson, and L. Knudsen. Serpent: a new block cipher proposal. In S. Vaudenay, editor, 5 th International Workshop on Fast Software Encryption, pages 222-238. SpringerVerlag, 1998. Lecture Notes in Computer Science No. 1372.
[32] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. In A.J. Menezes and S. A. Vanstone, editors, Advances in Cryptology - CRYPTO'90, pages 2-21. Springer-Verlag, 1991. Lecture Notes in Computer Science No. 537.
[33] E. Biham and A. Shamir. Differential cryptanalysis of FEAL and N-Hash. In D.W. Davies, editor, Advances in Cryptology - Eurocrypt '91, pages 1-16, Berlin, 1991. Springer-Verlag.
[34] E. Biham and A. Shamir. A Differential Cryptanalysis of the Data Encryption Standard. Springer-Verlag, 1993.
[35] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round DES. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO'92, pages 487-496. Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740.
[36] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systematic design of two-party authentication protocols. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO'91, pages 44-61. Springer, 1992. Lecture Notes in Computer Science No. 576.
[37] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systematic design of a family of attack-resistant authentication protocols. IEEE Journal of Selected Areas in Communications, 11:679-693, 1993.
[38] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. The kryptoknight family of light-weighted protocols for authentication and key distribution. IEEE/ACM Transactions on Networking, 3:31-41, 1995.
[39] D. Blackwell and M.A. Girshick. Theory of Games and Statistical Decisions. Wiley \& Sons, Inc., New York, 1966.
[40] G. R. Blakley. Safeguarding cryptographic keys. In Proc. AFIPS 1979 National Computer Conference, pages 313-317. AFIPS, 1979.
[41] G. R. Blakley and I. Borosh. Rivest-Shamir-Adleman public key cryptosystems do not always conceal messages. Computers 83 Mathematics with Applications, 5(3):169-178, 1979.
[42] G. R. Blakley and C. Meadows. A database encryption scheme which allows the computation of statistics using encrypted data. In Proceedings of the 1985 IEEE Symposium on Security and Privacy, pages 116-122, Oakland, CA, April 1985. IEEE Computer Society.
[43] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS\#1. In H. Krawczyk, editor, Advances in Cryptology - CRYPTO'98, pages 1-12. Springer, 1998. Lecture Notes in Computer Science No. 1462.
[44] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator. SIA M Journal of Computing, 15(2):364-383, May 1986.
[45] M. Blum and S. Goldwasser. An efficient probabilistic public-key encryption scheme which hides all partial information. In G. R. Blakley and D. C. Chaum, editors, Advances in Cryptology CRYPTO'84, pages 289-302. Springer, 1985. Lecture Notes in Computer Science No. 196.
[46] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal of Computing, 13(4):850-863, November 1984.
[47] J-P. Boly, A. Bosselaers, R. Cramer, R. Michelsen, S. Mjolsnes, F. Muller, T. Pedersen, B. Pfitzmann, P. de Rooij, B. Schoenmakers, M. Schunter, L. Vallee, and M. Waidner. The ESPRIT project CAFE - high security digital payment systems. In D. Gollmann, editor, Proceedings of the Third European Symposium on Research in Computer Security, ESORICS94, pages 217-230. Springer-Verlag, 1994. Lecture Notes in Computer Science No. 875.
[48] V. Bontchev. Possible virus attacks against integrity programs and how to prevent them. In Proceedings of the Second International Virus Bulletin Conference, pages 131-141, 1992.
[49] Jurjen N.E. Bos and David Chaum. Provable unforgeable signatures. In Ernest F. Brickell, editor, Advances in Cryptology-CRYPTO'92, pages 1-14. Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740.
[50] A. Bosselaers and B. Preneel. Integrity primitives for secure information systems, volume 1007 of Lecture Notes in Computer Science. Springer-Verlag, 1995.
[51] J. Bovey and A. Williamson. The probability of generating the symmetric group. Bull. London Math. Soc., 10:91-96, 1978.
[52] C. Boyd. Digital multisignatures. In H. Beker and F. Piper, editors, Proceedings Cryptography and Coding, pages 241-246. Claredon Press, 1989.
[53] C. Boyd. A cryptographic scheme for computerized general elections. In J-J. Quisquater and J. Vanderwalle, editors, Advances in Cryptology - EUROCRYPT'89, pages 617-625. SpringerVerlag, 1990. Lecture Notes in Computer Science No. 434.
[54] C. Boyd. A framework for design of key establishment protocols. In J. Pieprzyk and J. Seberry, editors, Proceedings of the First Australasian Conference on Information Security and Privacy (ACISP96), pages 146-157. Springer, 1996. Lecture Notes in Computer Science No. 1172.
[55] C. Boyd and W. Mao. Design and analysis of key exchange protocols via secure channel identification. In J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT'94, pages 171-181. Springer, 1995. Lecture Notes in Computer Science No. 917.
[56] S. Brands. Untraceable off-line cash in wallets with observers. In D. R. Stinson, editor, Advances in Cryptology - CRYPTO'93, pages 302-318. Springer, 1994. Lecture Notes in Computer Science No. 773.
[57] J. Brandt, I. B. Damgard, and P. Landrock. Anonymous and verifiable registration in databases. In C. G. Gunther, editor, Advances in Cryptology - Proceedings EUROCRYPT '88 (Lecture Notes in Computer Science No. 330), pages 167-176. Springer-Verlag, 1988.
[58] G. Brassard. Cryptology column - quantum computing: The end of classical cryptography. Sigact News, 25(4):15-21, 1994.
[59] G. Brassard and P. Bratley. Fundamentals of Algorithms. Prentice Hall, Englewood Cliffs, New Jersey, 1996.
[60] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. Journal of Computer and System Science, 37(2):156-189, 1988.
[61] E. F. Brickell. Solving low density knapsacks. In D. Chaum, editor, Advances in Cryptology CRYPTO'83, pages 25-37, New York, 1984. Plenum Press.
[62] E. F. Brickell. Breaking iterated knapsacks. In G. R. Blakley and D. C. Chaum, editors, Advances in Cryptology - CRYPTO'84, pages 342-358. Springer, 1985. Lecture Notes in Computer Science No. 196.
[63] E. F. Brickell. Some ideal secret sharing schemes. Journal of Computer and Systems Science, 37:156-189, 1988.
[64] E.F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial Mathematics and Combinatorial Computing, 6:105-113, 1989.
[65] E.F. Brickell, P. Gemmel, and D. Kravitz. Trusted-based tracing extensions to anonymous cash and the making of anonymous change. In Proceedings of the 6th Annual Symposium on Distributed Algorithms (SODA), pages 457-466. ACM Press, 1995.
[66] L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry. Improving resistance to differential cryptanalysis and the redesign of LOKI. In R.L. Rivest H. Imai and T. Matsumoto, editors, Advances in Cryptology - ASIACRYPT'91, pages 36-50. Springer Verlag, 1993. Lecture Notes in Computer Science, Vol.739.
[67] L. Brown, J. Pieprzyk, and J. Seberry. LOKI: A cryptographic primitive for authentication and secrecy applications. In J. Seberry and J. Pieprzyk, editors, Advances in Cryptology - Auscrypt '90, pages 229-236, Berlin, 1990. Springer Verlag.
[68] L.P. Brown. Analysis of the DES and the design of the LOKI encryption scheme. PhD Thesis, University of New South Wales, Canberra, Australia, 1991.
[69] M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system. In A. De Santis, editor, Advances in Cryptology-EUROCRYPT'94, pages 275-286. Springer, 1995. Lecture Notes in Computer Science No. 950.
[70] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions in Computer Systems, 8(1):18-36, 1990.
[71] U. Bussolati and G. Martella. The design of secure distributed systems. In Digest of papers spring COMPCON 83: Intellectual Leverage for the Information Society, pages 492-499. IEEE Computer Society, February 1983.
[72] U. Bussolati and G. Martella. Security design in distributed database systems. Journal of Systems and Software (USA), 3(3):219-229, 1983.
[73] P. Camion and J. Patarin. The knapsack hash function proposed at CRYPTO89 can be broken. In ???, editor, Advances in Cryptology - EUROCRYPT'91, pages 39-53. Springer, 1991. Lecture Notes in Computer Science No. ???
[74] R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. On the size of shares for secret sharing schemes. Journal of Cryptology, 6:157-167, 1993.
[75] F. Carettoni, S. Castano, G. Martella, and P. Samaratti. RETISS: a real time security system for threat detection using fuzzy logics. In Proceedings of the 25th Annual IEEE International Carnahan Conference on Security Technology, pages 161-167, 1991.
[76] J. M. Carroll and H. Jurgensen. Design of a secure relational database. In J. B. Grimson and H. J. Kugler, editors, Computer Security: the Practical Issues in a Troubled World, Proceedings of the Third IFIP International Conference on Computer Security, IFIP/Sec '85, pages 1-16, Dublin, Ireland, August 1985. North-Holland.
[77] National Computer Security Center. A guide to andestanding audit in trusted systems, 1988.
[78] D. D. Chamberlin, J. N. Gray, and I. L. Traiger. Views, authorization, and locking in a relational data base system. In Proceedings of AFIPS NCC Vol. 44, pages 425-430, 1975.
[79] A. Chan, Y. Frankel, P. MacKenzie, and Y. Tsiounis. Mis-representation of identities in e-cash schemes and how to prevent it. In K. Kim and T. Matsumoto, editors, Advances in Cryptology ASIACRYPT'96, pages 276-285. Springer, 1996. Lecture Notes in Computer Science No. 1163.
[80] B. Le Charlier, A. Mounji, and M. Swimmer. Dynamic detection and classification of computer viruses using general behaviour patterns. In Proceedings of Fifth International Virus Bulletin Conference, pages 20-22, 1995.
[81] C. Charnes and J. Pieprzyk. Linear nonequivalence versus nonlinearity. In Avances in Cryptology - AUSCRYPT'92, Lecture Note s in Computer Science, Vol. 718, J.Seberry, Y.Zheng (Eds.), pages 156-164. Springer-Verlag, 1993.
[82] C. Charnes and J. Pieprzyk. Cumulative arrays and generalised Shamir secret sharing schem es. In Seventeenth Annual Computer Science Conference, ACSC-17, Au stralian Computer Science Communications, Vol 16, No 1, Part C, Christchurch, Ne w Zealand, pages 519-528, 1994.
[83] C. Charnes and J. Pieprzyk. Attacking the $s l_{2}$ hashing scheme. In J. Pieprzyk and R. SafaviNaini, editors, Advances in Cryptology - ASIACRYPT'94, pages 322-330. Springer, 1995. Lecture Notes in Computer Science No. 917.
[84] C. Charnes and J. Pieprzyk. Generalised cumulative arrays and their applications to secret sharing schemes. In Proceedings of the Eighteenth Australasian Computer Science Conference, Australian Computer Science Communications, Vol.17, No.1, pages 61-65, 1995.
[85] C. Charnes, J. Pieprzyk, and R. Safavi-Naini. Conditionally secure secret sharing schemes with disenrollment capability. In Proceedings of the 2nd ACM Conference on Computer and Commu nication Security, November 2-4, 1994, Fairfax, Virginia, pages 89-95, 1994.
[86] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the $A C M, 24: 84-88$, February 1981.
[87] D. Chaum. Elections with unconditionally secret ballots and distruption equivalent to breaking RSA. In Advances in Cryptology - EUROCRYPT'88, pages 177-182. Springer-Verlag, 1988. Lecture Notes in Computer Science No. 330.
[88] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser, editor, Advances in Cryptology - CRYPTO'88, pages 319-327. Springer-Verlag, 1988. Lecture Notes in Computer Science No. 403.
[89] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell, editor, Advances in Cryptology - CRYPTO'92, pages 89-105. Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740.
[90] D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong undeniable signatures, unconditionally secure for the signer. In J. Feigenbaum, editor, Advances in Cryptology CRYPTO'91, pages 470-484. Springer, 1992. Lecture Notes in Computer Science No. 576.
[91] David Chaum. Blind signatures for untraceable payments. In R. L. Rivest, A. Sherman, and D. Chaum, editors, Advances in Cryptology - CRYPTO'82, pages 199-203, New York, 1983. Plenum Press.
[92] David Chaum and Hans Van Antwerpen. Undeniable signatures. In G. Brassard, editor, Advances in Cryptology - CRYPTO'89, pages 212-217. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.
[93] J.L. Chen and T. Hwang. Identity-based conference key broadcast schemes with user authentication. Computers \& Security, 13:53-57, 1994.
[94] K. Chen. A new identification algorithm. In E. Dowson and J. Golić, editors, Cryptography: Policy and Algorithms, pages 244-249. Springer, 1995. Lecture Notes in Computer Science, Vol. 1029.
[95] G.G. Christoph, K.A. Jackson, M.C. Neumann, C.L.B. Siciliano, D.D. Simmonds, C.A. Stallings, and J.L. Thompson. UNICORN: Misuse detection for UNICOS. In Proceedings of Supercomputing '95, 1995.
[96] R.F. Churchhouse. The ENIGMA - some aspects of its history and solution. IMA Bulletin, 27:129-137, 1991.
[97] R.F. Churchhouse. The Achilles heel of the ENIGMA cipher machine, and some of its consequences. IMA Bulletin, 1993.
[98] B. G. Claybrook. Using views in a multilevel secure database management system. In Proceedings of the 1983 IEEE Symposium on Security and Privacy, pages 4-17, Oakland, CA, 1983. IEEE Computer Society.
[99] F. Cohen. Computer viruses: theory and experiments. Computers \& Security, 6:22-35, 1987.
[100] F. Cohen. Computational aspects of computer viruses. Computers \& Security, 8:325-344, 1989.
[101] F. Cohen. A Short Course on Computer Viruses. John Wiley \& Sons, 1994.
[102] H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1995.
[103] J. D. Cohen and M. J. Fischer. A robust and verifiable cryptographically secure election scheme. In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, pages 372382, Portland, 1985. IEEE.
[104] Committee on Multilevel Data Management Security. Multilevel Data Management Security. Air Force Studies Board, National Research Council, National Academy Press, Washington, D. C., 1983.
[105] R. H. Cooper, W. Hyslop, and W. Patterson. An application of the chinese remainder theorem to multiple-key encryption in data base systems. In J. H. Finch and E. G. Dougall, editors, Proceedings of the Second IFIP International Conference on Computer Security, IFIP/Sec '84, pages 553-556. North-Holland, 1984.
[106] D. Coppersmith. Analysis of ISO/CCITT Document X. 509 Annex D. Internal Memo, IBM T.J. Watson Center, June 11, 1989.
[107] D. Coppersmith. The Data Encryption Standard (DES) and its strength against attacks. IBM J. Res. Dev., 38(3):243-250, 1994.
[108] D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking generator. In D.R. Stinson, editor, Advances in Cryptology - CRYPTO'93, pages 22-39. Springer, 1994. Lecture Notes in Computer Science No. 773.
[109] Don Coppersmith. Another birthday attack. In H. C. Williams, editor, Advances in Cryptology - CRYPTO'85, pages 14-17. Springer, 1986. Lecture Notes in Computer Science No. 218.
[110] Don Coppersmith and E. Grossman. Generators for certain alternating groups with applications to cryptology. SIA M Journal on Applied Mathematics, 29:624-627, 1975.
[111] Don Coppersmith, Andrew Odlyzko, and Richard Schroeppel. Discrete logarithms in GF(p). Algorithmica, 1:1-15, 1986.
[112] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems Concepts and design. AddisonWesley, 1995.
[113] R. Cramer and I. Damgård. New generation of secure and practical RSA-based signatures. In Koblitz N., editor, Advances in Cryptology - CRYPTO'96, pages 173-185. Springer, 1996. Lecture Notes in Computer Science No. 1109.
[114] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority election scheme. In W. Fumy, editor, Advances in Cryptology - EUROCRYPT'97, pages 103-118. Springer, 1997. Lecture Notes in Computer Science No. 1233.
[115] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In H. Krawczyk, editor, Advances in Cryptology - CRYPTO'98, pages 13-25. Springer, 1998. Lecture Notes in Computer Science No. 1462.
[116] M. Crosbie and E. Spafford. Active defense of a computer system using autonomous agents. In Proceedings of the 18th National Information Systems Security Conference, pages 549-558, 1995.
[117] M. Crosbie and E. Spafford. Applying genetic programming to intrusion detection. In Proceedings of the 1995 A A AI Fall Symposium on Genetic Programming, 1995.
[118] Joan Daemen, René Govaerts, and Joos Vandewalle. Weak keys for IDEA. In D. Stinson, editor, Advances in Cryptology - CRYPTO'93, pages 224-231. Springer, 1994. Lecture Notes in Computer Science No. 773.
[119] Ivan Damgård. A design principle for hash functions. In G. Brassard, editor, Advances in Cryptology - CRYPTO'89, pages 416-427. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.
[120] C. J. Date. An Introduction to Database Systems, volume 1. Addison-Wesley, 1986.
[121] G. I. Davida, D. L. Wells, and J. B. Kam. A database encryption system with subkeys. ACM Transactions on Database System, 6(2):312-328, 1981.
[122] G. I. Davida and Y. Yeh. Cryptographic relational algebra. In Proceedings of the 1982 IEEE Symposium on Security and Privacy, pages 111-116, Oakland, CA, April 1982. IEEE Computer Society.
[123] Donald W. Davies. Some regular properties of the 'Data Encryption Standard' algorithm. In R. L. Rivest, A. Sherman, and D. Chaum, editors, Advances in Cryptology - CRYPTO'82, pages 89-96, New York, 1983. Plenum Press.
[124] Marc Davio, Yvo Desmedt, Marc Fosséprez, René Govaerts, Jan Hulsbosch, Patrik Neutjens, Philippe Piret, Jean-Jacques Quisquater, Joos Vandewalle, and Pascal Wouters. Analytical characteristics of the DES. In D. Chaum, editor, Advances in Cryptology - Crypto '83, pages 171-202, New York, 1984. Plenum Press.
[125] J.A. Davis and D.B. Holdridge. Factorization using the quadratic sieve algorithm. In D. Chaum, editor, Advances in Cryptology - CRYPTO'83, pages 103-113, New York, 1984. Plenum Press.
[126] James A. Davis, Diane B. Holdridge, and Gustavus J. Simmons. Status report on factoring (at the Sandia National Laboratories). In T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in Cryptology-EUROCRYPT'84, pages 183-215, Paris, 1985. Springer. Lecture Notes in Computer Science No. 209.
[127] M.H. Dawson and S.E. Tavares. An expanded set of S-box design criteria based on information theory and its relation to differential-like attacks. In D.W. Davies, editor, Advances in Cryptology - Eurocrypt '91, pages 352-367, Berlin, 1991. Springer-Verlag.
[128] Wiebren de Jonge and David Chaum. Attacks on some RSA signatures. In H. C. Williams, editor, Advances in Cryptology - CRYPTO'85, pages 18-27. Springer, 1986. Lecture Notes in Computer Science No. 218.
[129] H. Debar, M. Becker, and D. Siboni. A neural network component for an intrusion detection system. In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages 1-11, 1992.
[130] H. Debar and B. Dorizzi. An application of a recurrent network to an intrusion detection system. In Proceedings of the International Joint Conference on Neural Networks, pages 478-483, 1992.
[131] A. Dempster. A generalization of bayesian inference. Journal of the Royal Statistical Society, 30:205-247, 1968.
[132] N. Demytko. A new elliptic curve based analogue of RSA. In Helleseth T., editor, Advances in Cryptology - EUROCRYPT’93, pages 40-49. Springer, 1994. Lecture Notes in Computer Science No. 765.
[133] B. denBoer and A. Bosselaers. An attack on the last two rounds of MD4. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO'91, pages 194-203. Springer, 1992. Lecture Notes in Computer Science No. 576.
[134] D. D. Denning, T. F. Lunt, P. G. Neumann, R. R. Schell, M. Heckman, and W. R. Shockley. Secure distributed data views: Security policy and interpretation for a class A1 multilevel secure relational database system. Interim Report A002, SRI International, Computer Science Laboratory, November 1986.
[135] D. D. Denning, T. F. Lunt, R. R. Schell, M. Heckman, and W. R. Shockley. Secure distributed data views (SeaView): The SeaView formal security policy model. Interim Report A003, SRI International, Computer Science Laboratory, July 1987.
[136] D. E. Denning. A lattice model of secure information flow. Communications of the ACM, 19(5):236-243, 1976.
[137] D. E. Denning. Field encryption and authentication. In D. Chaum, editor, Advances in Cryptology: Proceedings of CRYPTO 83, pages 231-247, Santa Barbara, CA, 1983. Plenum Press, New York.
[138] D. E. Denning. Cryptographic checksums for multilevel data security. In Proceedings of the 1984 IEEE Symposium on Security and Privacy, pages 52-61, Oakland, CA, April 1984. IEEE Computer Society.
[139] D. E. Denning. Commutative filters for reducing inference threats in multilevel database systems. In Proceedings of the 1985 IEEE Symposium on Security and Privacy, pages 134-146, Oakland, CA, April 1985. IEEE Computer Society.
[140] D. E. Denning. Database security. In Ann. Rev. Comput. Sci. Vol. 3, pages 1-22. Annual Reviews Inc., 1988.
[141] D. E. Denning, S. G. Akl, M. Heckman, T. F. Lunt, M. Morgenstern, P. G. Neumann, and R. G. Schell. Views for multilevel database security. IEEE Transactions Software Engineering, SE-13(2):129-140, 1987.
[142] D. E. Denning, T. F. Lunt, R. R. Schell, M. Heckman, and W. Shockley. A multilevel relational data model. In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages 220234, Oakland, CA, 1987. IEEE Computer Society.
[143] D.E. Denning. An intrusion-detection model. In Proceedings of the 1986 IEEE Symposium on Security and Privacy, pages 118-131. IEEE Computer Society Press, 1986.
[144] D.E. Denning and G.M. Sacco. Timestamps in key distribution protocols. Communications of the $A C M, 24(8): 533-536,1981$.
[145] Department of Defense. DoD 5200.28-STD: Department of Defense (DoD) Trusted Computer System Evaluation Criteria (TCSEC), 1985.
[146] Department of Defense. Trusted Computer System Evaluation Criteria - Orange Book. Pub. DOD 5200.28-STD, U.S. Department of Defense, 1985.
[147] Y. Desmedt. Threshold cryptography. European Transactions on Telecommunication and Related Technologies, 5(4):449-457, 1994.
[148] Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO'91, pages 457-469. Springer, 1992. Lecture Notes in Computer Science No. 576.
[149] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In G. Brassard, editor, Advances in Cryptology - CRYPTO'89, pages 307-315. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.
[150] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society, A400:97-117, 1985.
[151] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, 22:644-654, 1976.
[152] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory, IT-22:644-654, November 1976.
[153] W. Diffie and M. E. Hellman. Exhaustive cryptanalysis of the NBS data encryption standard. Computer, 10:74-84, June 1977.
[154] W. Diffie, P. Van Oorschot, and M. Wiener. Authentication and authenticated key exchanges. Designs, Codes, and Cryptography, 2:107-125, 1992.
[155] J. F. Dillon. A survey of bent functions. The NSA Technical Journal, pages 191-215, 1972. (unclassified).
[156] H. Dobbertin. Cryptanalysis of MD4. In Fast Software Encryption, Lecture Notes in Comp uter Science, Vol. 1039, D.Gollmann (Ed.), pages 53-69. Springer-Verlag, 1996.
[157] H. Dobbertin. Cryptanalysis of MD5 compress. Announcement on Internet, May 1996.
[158] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: a stengthened versionj of RIPEmd. In Fast Software Encryption, Lecture Notes in Comp uter Science, Vol. 1039, D.Gollmann (Ed.), pages 71-79. Springer-Verlag, 1996.
[159] D. Dolev and A. Wigderson. On the security of multi-party protocols in distributed systems. In D. Chaum, R. L. Rivest, and A. T. Sherman, editors, Advances in Cryptology - Proceedings of Crypto 82, pages 167-175, Santa Barbara, August 1982. Plenum Press, NY.
[160] C. Dowell and P. Ramstedt. The Computer Watch data reduction toll. In Proceedings of the 13th National Computer Security Conference, pages 99-108, 1990.
[161] A. R. Downing, I. B. Greenberg, and T. F. Lunt. Issues in distributed database security. In Proceedings of the Fifth Aerospace Computer Security Applications Conference, pages 196-203, Tucson, AZ, December 1989.
[162] T. Duff. Experience with viruses on UNIX systems. Computing Systems, 2:155-171, 1989.
[163] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31:469-472, 1985.
[164] R. Eriksson and K. Beckman. Protection of databases using file encryption. In V. Fak, editor, Proceedings of IFIP/Sec '83, pages 217-221, Stockholm, Sweden, May 1983.
[165] S. Even and O. Goldreich. Des-like functions can generate the alternating group. IEEE Trans. on Information Theory, IT-29(6):863-865, 1983.
[166] V. Fak. Repeated use of codes which detect deception. IEEE Trans. on Information Theory, 25(2):233-234, 1979.
[167] R. Farrow. UNIX System Security. Addison-Wesley, 1991.
[168] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of Cryptology, 1(2):77-94, 1988.
[169] H. Feistel. Cryptography and computer privacy. Scientific American, 228:15-23, May 1973.
[170] Horst Feistel, William A. Notz, and J. Lynn Smith. Some cryptographic techniques for machine-to-machine data communications. Proc. IEEE, 63(11):1545-1554, November 1975.
[171] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, pages 427-437. IEEE, 1987.
[172] J. Fellows and J. Hemenway. The architecture of a distributed trusted computing base. In Proceedings of the 10th National Computer Security Conference, pages 68-77, Baltimore, MD, September 1987. NBS/NCSC.
[173] D. Ferbrache. INIT29 - infections but your data is safe. Virus Bulletin, December 1989.
[174] D. Ferbrache. Virus analysis: nVIR and its clones. Virus Bulletin, October 1989.
[175] D. Ferbrache. Mac threats. Virus Bulletin, December 1990.
[176] D. Ferbrache. Virus report: WDEF - the hidden virus. Virus Bulletin, January 1990.
[177] N. Ferguson. Extensions of single-term coins. In D. R. Stinson, editor, Advances in Cryptology - CRYPTO'93, pages 292-301. Springer, 1994. Lecture Notes in Computer Science No. 773.
[178] E. B. Fernandez, E. Gudes, and H. Song. A security model for object-oriented databases. In Proceedings of the 1989 IEEE Symposium on Security and Privacy, pages 110-115, Oakland, CA, 1989. IEEE Computer Society.
[179] D. Ferraiolo and R. Kuhn. Role based access controls. In Proceedings of the 15 th National Computer Security Conference, pages 554-563, 1992. NIST, Gaithersburg.
[180] R. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6-7):467-488, 1982.
[181] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature problems. In A. M. Odlyzko, editor, Advances in Cryptology - CRYPTO'86, pages 186-194. Springer, 1987. Lecture Notes in Computer Science No. 263.
[182] S. Fischer-Hübner and K. Brunnstein. Combining verified and adaptive system components towards more secure computer architectures. In Proceedings of the International Workshop on Computer Architectures to Support Security and Persistence of Information, pages 1-7, 1990. Section 14.
[183] D. H. Fishman, J. Annevelink, D. Beech, E. C. Chow, T. Connors, J. W. Davis, W. Hasan, C. G. Hoch, W. Kent, S. Leichner, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. Risch, M. C. Shan, and W. K. Wilkinson. Overview of the Iris DBMS. In W. Kim and F. H. Lochovsky, editors, ObjectOriented Concepts, Databases and Applications, chapter 10, pages 219-250. Addison-Wesley, New York, 1989.
[184] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors, J. W. Davis, N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. A. Ryan, and M. C. Shan. Iris: An object-oriented database management system. ACM Transactions on Office Information Systems, 5(1):48-69, 1987.
[185] National Institute for Standards and Technology. Digital Signature Standard (DSS). Federal Register, 56(169), August 301991.
[186] R. Forre. Methods and instruments for designing S-boxes. Journal of Cryptology, 2(3):115-130, 1990.
[187] W.F. Friedman. The index of coincidence and its application in cryptography. Riverbank Laboratories, 1920. Publication No. 22.
[188] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for alrge scale elections. In J. Seberry and Y. Zheng, editors, Advances in Cryptology - AUSCRYPT'92, pages 244-251. Springer, 1993. Lecture Notes in Computer Science No. 718.
[189] A. Furche and G. Wrightson. Computer Money A Systematic Overview of Electronic Payment Systems. dpunkt, 1996.
[190] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory, 31:469-472, 1985.
[191] M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NPCompleteness. Freeman, 1979.
[192] C. Garvey and A. Wu. ASD_Views. In Proceedings of the 1988 IEEE Symposium on Security and Privacy, pages 85-95, Washington, 1988. IEEE Computer Society.
[193] T. D. Garvey and T. F. Lunt. Multilevel security for knowledge-based systems. In Proceedings of the Workshop on Object-Oriented Database Security, University of Karlsruhe, W. Germany, 1990. European Institute for System Security. (preprint).
[194] T. D. Garvey and T. F. Lunt. Multilevel security for knowledge-based systems. In Proceedings of the Sixth Computer Security Applications Conference, Tucson, Arizona, December 1990. (preprint).
[195] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital distributed system security architecture. In Proceedings of 12th National Computer Security Conference, pages 305-319, 1989. Baltimore, Maryland.
[196] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. In U. Maurer, editor, Advances in Cryptology - EUROCRYPT'96, pages 354-371. Springer, 1996. Lecture Notes in Computer Science No. 1070.
[197] J.L. Gersting. Mathematical Structures for Computer Science. W.H. Freeman and Company, New York, 1987.
[198] H. Ghodosi, J. Pieprzyk, and R. Safavi-Naini. Dynamic threshold cryptosystem: a new scheme in group oriented cryptography. In J. Pribyl, editor, Proceedings of PRAGOCRYPT96, pages 370-379. CTU Publishing House, 1996.
[199] J.K. Gibson. Discrete logarithm hash function that is collision free and one way. In IEE Proceedings-E, pages 407-410. Springer-Verlag, 1991. No. 138.
[200] E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane. Codes which detect deception. Bell System Tech. J., 53:405-424, 1974.
[201] J. Gill. Computational complexity of probabilistic Turing machines. Society of Industrial and Applied Mathematicians (SIAM), 6:675-695, December 1977.
[202] M. Girault. Self-certified public keys. In D. Davies, editor, Advances in Cryptology - EUROCRYPT'91, pages 490-497. Springer-Verlag, 1991. Lecture Notes in Computer Science No. 547.
[203] J. I. Glasgow, G. H. MacEwen, T. Mercouris, and F. Ouabdesselam. Specifying multi-level security in a distributed system. In Proceedings of the 7th DOD/NBS Computer Security Conference, pages 319-340, September 1984.
[204] J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proceedings of the 1984 IEEE Symposium on Security and Privacy, pages 75-86, Oakland, CA, April 1984. IEEE Computer Society.
[205] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM, 33(4):792-807, 1986.
[206] O. Goldreich, Y. Mansour, and M. Sipser. Interactive proof systems: provers that never fail and random selection. In Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, pages 449-460, Toronto, 1987. IEEE.
[207] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the $A C M, 38(1): 691-729$, 1991.
[208] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Science, 28(2):270-299, April 1984.
[209] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. SIAM. J. Computing, 18(1):186-208, February 1989.
[210] Shafi Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message attacks. Society of Industrial and Applied Mathematicians (SIAM), 17(2):281308, April 1988.
[211] J.D. Golić. Intristic statistical weakness of keystream generators. In J. Pieprzyk and R. SafaviNaini, editors, Advances in Cryptology - ASIACRYPT'94, pages 91-103. Springer-Verlag, 1995. Lecture Notes in Computer Science No. 917.
[212] D. Gollmann. What do we mean by entity authentication. In IEEE Symposium on Research in Security and Privacy, pages 46-54, 1996.
[213] D. Gollmann. Computer Security. Wiley, 1999.
[214] D. Gollmann, T. Beth, and F. Damm. Authentication services in distributed systems. Computers \& Security, 12:753-764, 1993.
[215] D. Gollmann and W.G. Chambers. Clock-controlled shift registers: a review. IEEE Journal of Selected Areas of Comm., 7(4):525-533, May 1989.
[216] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols. In IEEE Symposium on Security and Privacy, pages 234-248. IEEE Computer Society Press, 1990.
[217] A. Goscinski. Distributed Operating Systems The logical Design. Addison-Wesley, 1991.
[218] G.S. Graham and P.J. Denning. Protection: principles and practices. In Proceedings of the AFIPS Spring Joint Computer Conference, pages 417-429, 1972.
[219] R. D. Graubart. The integrity-lock approach to secure database management. In Proceedings of the 1984 IEEE Symposium on Security and Privacy, pages 62-74, Oakland, CA, April 1984. IEEE Computer Society.
[220] R. D. Graubart and K. J. Duffy. Design overview for retrofitting integrity-lock architecture onto a commercial DBMS. In Proceedings of the 1985 IEEE Symposium on Security and Privacy, pages 147-159, Oakland, CA, April 1985. IEEE Computer Society.
[221] R. D. Graubart and S. Kramer. The integrity-lock support environment. In J. H. Finch and E. G. Dougall, editors, Proceedings of the 2nd IFIP International Conference on Computer Security, IFIP/Sec '84, pages 249-268. North-Holland, 1984.
[222] P. P. Griffiths and B. W. Wade. An authorization mechanism for a relational database system. ACM Transactions on Database Systems, 1(3):242-255, 1976.
[223] CIDF Working Group. the common intrusion detection framework. Version 0.6, available at http://seclab.cs.ucdavis.edu/cidf, 1999.
[224] D. Gryaznov. Scanners for the year 2000: Heuristics. In Proceedings of the Fifth International Virus Bulletin Conference, pages 225-234, 1995.
[225] E. Gudes. The design of a cryptography based secure file system. IEEE Transactions on Software Engineering, SE-6(5):411-420, 1980.
[226] Louis Guillou and Jean-Jacques Quisquater. Efficient digital public-key signature with shadow. In Carl Pomerance, editor, Advances in Cryptology - CRYPTO'87, pages 223-223. SpringerVerlag, 1988. Lecture Notes in Computer Science No. 293.
[227] C. Günter. An identity-based key-exchange protocol. In J.-J. Quisquater and J. Vandewalle, editors, Advances in Cryptology - EUROCRYPT'89, pages 29-37. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 434.
[228] S. Gupta and V.D. Gligor. Experience with a penetration analysis method and tool. In Proceedings of the 15th National Computer Security Conference, pages 165-183, 1992.
[229] N. Habra, B.L. Charlierand, A. Mounji, and I. Mathieu. ASAX: software architecture and rule-based language for universal audit trial analysis. In Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, editors, Proceedings of ESORICS'92, European Symposium on Research in Computer Security, pages 435-450. Springer-Verlag, 1992. Lecture Notes in Computer Science No. 648.
[230] S. Halevi. Efficient commitment schemes with bounded sender and unbounded receiver. In D. Coppersmith, editor, Advances in Cryptology - CRYPTO'95, pages 84-966. Springer, 1995. Lecture Notes in Computer Science No. 963.
[231] F.M. Hall. An Introduction to Abstract Algebra. Cambridge University Press, Cambridge, 1969.
[232] S.E Hansen and T. Atkins. Automated system monitoring and notification with swatch. In Proceedings of the USENIX Systems Administration (LISA VII) Conference, pages 145-155, 1993.
[233] T. Hardjono and J. Seberry. Authentication via multi-service tickets in the KUPEREE server. In D. Gollmann, editor, Proceedings of the Third European Symposium on Research in Computer Security, ESORICS94, pages 143-160. Springer-Verlag, 1994. Lecture Notes in Computer Science No. 875.
[234] T. Hardjono and J. Seberry. Replicating the KUPEREE authentication server for increased security and reliability. In J. Pieprzyk and J. Seberry, editors, Proceedings of the First Australasian Conference on Information Security and Privacy, ACISP96, pages 14-27. Springer-Verlag, 1996. Lecture Notes in Computer Science No. 1172.
[235] D. Harkins and D. Carrel. RFC 2409: The Internet Key Exchange (IKE), November 1998. http://www.ietf.org.
[236] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems. Communications of the $A C M, 19(8): 461-471,1976$.
[237] H. R. Hartson. Database security - system architectures. Information Systems (GB), 6:1-22, 1981.
[238] P. Hawkes. Differential-linear weak key classes of IDEA. In K. Nyberg, editor, Advances in Cryptology - EUROCRYPT'98, pages 112-126. Springer, 1998. Lecture Notes in Computer Science No. 1403.
[239] R. R. Henning and S. A. Walker. Computer architecture and database security. In Proceedings of the 9th National Computer Security Conference, pages 216-230, Gaithersburg, MD, September 1986. National Bureau of Standarad/ National Computer Security Center.
[240] M. P. Herlihy and J. D. Tyger. How to make replicated data secure. In C. Pomerance, editor, Advances in Cryptology - Proceedings of CRYPTO '87 (Lecture Notes in Computer Science No. 293), pages 380-391. Springer-Verlag, 1987.
[241] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: how to cope with perpetual leakage. In D. Coppersmith, editor, Advances in Cryptology - CRYPTO'95, pages 339-352. Springer, 1995. Lecture Notes in Computer Science No. 963.
[242] E. Heyst, T.P. Pedersen, and B. Pfitzmann. New constructions of fail-stop signatures and lower bounds. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO'92, pages 15-30. Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740.
[243] H. Highland. The BRAIN virus: facts and fantasy. Computers \& Security, 7:367-370, 1988.
[244] H. Highland. A macro virus. Computers \& Security, 8:178-188, 1989.
[245] H. Highland. Procedure to reduce the computer virus threat. Computers \& Security, 16:439-449, 1997.
[246] T. H. Hinke. DBMS technology vs. threats. In C. E. Landwehr, editor, Database Security: Status and Prospects (Results of the IFIP WG 11.3 Initial Meeting), pages 57-87, Annapolis, Maryland, October 1987. IFIP, North-Holland.
[247] J. Hochberg, K. Jackson, C. Stallings, J.F. McClary, D. DuBois, and J. Ford. NADIR: An automated system for detecting network intrusion and misuse. Computers \& Security, 12:235248, 1993.
[248] J. Horton. Introduction to viruses. PhD draft, School of IT and CS, University of Wollongong, 1999.
[249] J. Horton and J. Seberry. Companion viruses and the Macintosh: threats and countermeasures. In Proceedings of the Fourth Australasian Conference on Information Security and Privacy (ACISP99), volume 1587, pages 202-212. Springer-Verlag, 1999.
[250] D. K. Hsiao. Data base computers. In M. C. Yovits, editor, Advances in Computers, pages 1-64. Academic Press, New York, 1980.
[251] K. Ilgun. USTAT: a real-time intrusion detection system for UNIX. In IEEE Symposium on Research in Security and Privacy, pages 16-28, 1993.
[252] Apple Computer Inc. Inside Macintosh: Files. Addison-Wesley, 1992.
[253] Apple Computer Inc. Inside Macintosh: Macintosh Toolbox Essentials. Addison-Wesley, 1992.
[254] Apple Computer Inc. Inside Macintosh: More Macintosh Toolbox. Addison-Wesley, 1993.
[255] Apple Computer Inc. Inside Macintosh: Operating System Utilities. Addison-Wesley, 1994.
[256] I. Ingemarsson, D. Tang, and C. Wong. A conference key distribution system. IEEE Trans. Information Theory, IT-28:714-720, 1982.
[257] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access structure. In Proceedings IEEE Globecom '87, pages 99-102. IEEE, 1987.
[258] K. Iversen. A cryptographic scheme for computerized general elections. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO'91, pages 405-419. Springer-Verlag, 1992. Lecture Notes in Computer Science 576.
[259] C. Jackson. Worms in the ripe apple. Virus Bulletin, July 1998. see http://www.virusbtn.com/VirusInformation/autostart9805.html.
[260] M. Jakobsson and M. Yung. Revokable and versatile electronic money. In Third ACM Conference on Computer and Communication Security, pages 76-87. ACM Press, 1996.
[261] H.S. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. In Proceedings of the 1991 IEEE Symposium on Security and Privacy, pages $316-326$. IEEE Computer Society Press, 1991.
[262] T. Johansson. Lower bounds on the probability of deception in authentication with arbitration. IEEE Trans. on Information Theory, 40(5):1573-1585, 1994.
[263] T. Johansson and A. Sgarro. Strengthening simmons bound on impersonation. IEEE Trans. on Information Theory, 37(4):1182-1185, 1991.
[264] T. Johansson, B. Smeets, and G. Kabatianskii. On the relation between a-codes and codes correcting indpendent errors. In T. Helleseth, editor, Advances in Cryptology - EUROCRYPT'93, pages 1-11. Springer, 1994. Lecture Notes in Computer Science No. 765.
[265] R. W. Jones and M. S. J. Baxter. The role of encipherment services in distributed systems. In F. Pichler, editor, Advances in Cryptology - EUROCRYPT'85, pages 214-220, Linz, Austria, April 1985.
[266] D. Kahn. The Codebreakers. Macmillian, New York, 1967.
[267] J. Kam and G. Davida. Structured design of substitution-permutation networks. IEEE Transactions on Computers, C-28:747-753, 1979.
[268] I. Kantzavelou and S. Katsikas. An attack detection system for secure computer systems - outline of the solution. In Proceedings of the 13th International Information Security Conference, pages 123-135, 1997.
[269] I. Kantzavelou and A. Patel. An attack detection system for secure computer systems - design of ads. In Proceedings of the 12th International Information Security Conference, pages 1-16, 1996.
[270] E.D. Karnin, J.W. Greene, and M.E. Hellman. On secret sharing systems. IEEE Transactions on Information Theory, IT-29:35-41, 1983.
[271] D. Karpinski. AntiCMOS - brain damage. Virus Bulletin, August 1994.
[272] A. Kaufmann. Graphs, Dynamic Programming, and Finite Games. Mathematics in Science and Engineering. Academic Press, New York, 1967.
[273] T. F. Keefe, W. T. Tsai, and M. B. Thuraisingham. SODA: A secure object-oriented database system. Computers $\& \in$ Security, 8(6):517-533, 1989.
[274] A. M. Keller. Updates to relational databases through views involving joins. In P. Scheuermann, editor, Improving Database Usability and Responsiveness, pages 363-384. Academic Press, New York, 1982.
[275] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis. Journal of Cryptology, 7(2):79-130, 1994.
[276] S. Kent and R. Atkinson. RFC 2401: Security architecture for the Internet Security. Network Working Group, IETF, November 1998. http://www.ietf.org.
[277] S. Kent and R. Atkinson. RFC 2402: IP Authentication Header, November 1998. http://www.ietf.org.
[278] S. Kent and R. Atkinson. RFC 2406: IP Encapsulating Security Payload (ESP), November 1998. http://www.ietf.org.
[279] W. Kim, N. Ballou, H. Chou, J. F. Garza, and D. Woelk. Features of the ORION object-oriented database system. In W. Kim and F. H. Lochovsky, editors, Object-Oriented Concepts, Databases and Applications, chapter 11, pages 251-282. Addison-Wesley, New York, 1989.
[280] W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architecture of the ORION next-generation database system. IEEE Transaction on Knowledge and Data Engineering, 2(1):109-124, 1990.
[281] W. Kim and F. H. Lochovsky. Object-Oriented Concepts, Databases and Applications. ACM Press Frontier Series. Addison-Wesley, New York, 1989.
[282] L. Knudsen and W. Meier. Improved differential attacks on RC5. In Koblitz N., editor, Advances in Cryptology - CRYPTO'96, pages 216-236. Springer, 1996. Lecture Notes in Computer Science No. 1109.
[283] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, 1969. Second edition, 1981.
[284] N. Koblitz. Elliptic curve cryptosytems. Mathematics of Computation, 48(177):203-209, 1987.
[285] K. Koyama, U.M. Maurer, T. Okamoto, and S.A. Vanstone. New public-key schemes based on elliptic curves over the ring z_{n}. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO'91, pages 252-266. Springer, 1992. Lecture Notes in Computer Science No. 576.
[286] K. Koyama and K. Ohta. Identity-based conference key distribution systems. In C. Pomerance, editor, Advances in Cryptology - CRYPTO'87, pages 175-184. Springer-Verlag, 1988. Lecture Notes in Computer Science No. 293.
[287] P. Kumar and R. Scholtz. Bounds on the linear span of bent sequences. IEEE Transactions on Information Theory, IT-29 No. 6:854-862, 1983.
[288] P. Kumar, R. Scholtz, and L. Welch. Generalized bent functions and their properties. Journal of Combinatorial Theory, Ser. A, 40:90-107, 1985.
[289] S. Kumar and E. Spafford. A pattern matching model for misuse intrusion detection. In Proceedings of the 17th National Computer Security Conference, pages 11-21, 1994.
[290] K. Kurosawa, K. Okada, and S. Tsujii. Low exponent attack against elliptic curve RSA. In J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT’94, pages 376383. Springer, 1995. Lecture Notes in Computer Science No. 917.
[291] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science, pages 1-10, Tucson, 1983. IEEE.
[292] X. Lai and J. Massey. A proposal for a new block encryption standard. In I.B. Damgård, editor, Advances in Cryptology - EUROCRYPT'90, pages 389-404. Springer, 1990. Lecture Notes in Computer Science No. 473.
[293] X. Lai, J. Massey, and S. Murphy. Markov ciphers and differential cryptanalysis. In D.W. Davies, editor, Advances in Cryptology - EUROCRYPT'91, pages 17-38. Springer, 1991. Lecture Notes in Computer Science No. 547.
[294] L. Lamport. Constructing digital signatures from a one-way function. Technical Report CSL-98, SRI International, October 1979.
[295] B. Lampson. Protection. In 5th Princeton Conference on Information and System Sciences, pages 437-443, 1971.
[296] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Ann., 261:513-534, 1982.
[297] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number field sieve. In Proc. $22 n d$ ACM Symposium on Theory of Computing, pages 564-572, Baltimore, Maryland, 1990. "Association for Computing Machinery (ACM)".
[298] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics, 126:649-673, 1987.
[299] L.A. Levin. One-way function and pseudorandom generators. Combinatorica, 7(4):357-363, 1987.
[300] C. M. Li, T. Hwang, and N. Y. Lee. Threshold-multisignature schemes where suspected forgery implies tracebility of adversarial shareholders. In A. De Santis, editor, Advances in Cryptology EUROCRYPT’94, pages 194-204. Springer, 1995. Lecture Notes in Computer Science No. 950.
[301] G.E Liepins and H.S. Vaccaro. Intrusion detection: Its role and validation. Computers \& Security, 11:347-355, 1992.
[302] G. Lowe. Some new attacks upon security protocols. In IEEE Computer Security Foundations Workshop, pages 162-169. IEEE, 1996.
[303] J. Loxton, D. Khoo, G. Bird, and J. Seberry. A cubic RSA code equivalent to factorization. Journal of Cryptology, 5:139-150, 1992.
[304] M. Luby and C. Rackoff. How to construct pseudorandom permutations and pseudorandom functions. SIAM Journal of Computing, 17(2):373-386, April 1988.
[305] P. Lucas and L. Van Der Gaag. Principles of Expert Systems. Addison-Wesley Publishing Company, 1991.
[306] T. Lunt and R. Jagannathan. A prototype real-time intrusion detection expert system. In Proceedings of the 1988 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 1988.
[307] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neumann, and C. Jalali. IDES: a progress report. In Proceedings of the 6-th Annual Computer Security Applications Conference, pages 273-285. IEEE Computer Society Press, 1990.
[308] T. F. Lunt. Multilevel security for object-oriented database systems. In D. L. Spooner and C. Landwehr, editors, Database Security III: Status and Prospects (Results of the IFIP WG 11.3 Workshop on Database Security), pages 199-209, Monterey, CA, 5-7 September 1989. IFIP, North-Holland.
[309] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. Element-level classification with A1 assurance. Computers \& Security, 7(1):73-82, 1988.
[310] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. The SeaView security model. IEEE Transactions on Software Engineering, SE-16(6):593-607, 1990.
[311] T. F. Lunt and J. K. Millen. Secure knowledge-based systems. Technical Report SRI-CSL-90-04, SRI International, Menlo Park, CA, August 1989.
[312] T. F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman, and D. Warren. A near-term design for the SeaView multilevel database system. In Proceedings of the 1988 IEEE Symposium on Security and Privacy, pages 234-244, Washington, 1988. IEEE Computer Society.
[313] G. H. MacEwen. Effects of distributed system technology on database security: A survey. In C. E. Landwehr, editor, Database Security: Status and Prospects (Results of the IFIP WG 11.3 Initial Meeting), pages 253-261, Annapolis, Maryland, October 1987. IFIP, North-Holland.
[314] F.J. MacWilliams and N.J.A. Sloane. The theory of error-correcting codes. North-Holland, Amsterdam, 1977.
[315] S. Magruder. High-level language computer viruses - a new threat ? Computers $\&\{$ Security, 13:263-269, 1994.
[316] J. Massey. Contemporary cryptology, an introduction. Proceedings of the IEEE, 76:533-549, 1988.
[317] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor, Advances in Cryptology - Eurocrypt '93, volume 765 of Lecture Notes in Computer Science, pages 386-397, Berlin, 1994. Springer-Verlag.
[318] M. Matsui. On correlation between the order of S-boxes and the strength of DES. In A. De Santis, editor, Advances in Cryptology - Eurocrypt'94, volume 950 of Lecture Notes in Computer Science, pages 366-376, Berlin, 1995. Springer-Verlag.
[319] M. Matsui and A. Yamagishi. A new method for known plaintext attack of FEAL cipher. In R.A. Rueppel, editor, Advances in Cryptology - Eurocrypt '92, volume 658, pages 81-91, Berlin, 1992. Springer-Verlag.
[320] Mitsuru Matsui. The first experimental cryptanalysis of the data encryption standard. In Yvo G. Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages 1-11. Springer, 1994. Lecture Notes in Computer Science No. 839.
[321] T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key distribution systems. Trans. IECE Japan, 69(2):99-106, 1986.
[322] S.M. Matyas and C.H. Meyer. Electronic signature for data encryption standard. IBM Tech. Disc. Bull., 24(5):2332-24, 1981.
[323] U. Maurer. A universal statistical test for random bit generators. Journal of Cryptology, 5(2):89105, 1992.
[324] U. Maurer and S. Wolf. Diffie-Hellman oracles. In Koblitz N., editor, Advances in Cryptology CRYPTO'96, pages 268-282. Springer, 1996. Lecture Notes in Computer Science No. 1109.
[325] Ueli M. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete algorithms. In Yvo G. Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages 271-281. Springer, 1994. Lecture Notes in Computer Science No. 839.
[326] R. J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages 114-116. Jet Propulsion Lab, 1978. DSN Progress Report 44.
[327] J. McHugh and B. M. Thuraisingham. Multilevel security issues in distributed database management systems. Computers \& Security, 7(4):387-396, 1988.
[328] M. McIlroy. Virology 101. Computing Systems, 2:173-181, 1989.
[329] L. Me. Security audit trail analysis using genetic algorithms. In Proceedings of the 12th International Conference on Computer Safety, Reliability and Security, pages 329-340, 1993.
[330] L. Me. Genetic algorithms, a biologically inspired approach for security audit trails analysis. In short presentaion, 1996 IEEE Symposium on Security and Privacy, 1996.
[331] C. Meadows. Formal verification of cryptographic protocols: a survey. In J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT’94, pages 135-150. Springer, 1995. Lecture Notes in Computer Science No. 917.
[332] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Boston/Dordrecht/London, 1993.
[333] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. on Inf. Theory, 39:1639-1646, 1993.
[334] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, Boca Raton, 1997.
[335] A. Menezes and S. Vanstone. Elliptic curve cryptosystems and their implementation. Journal of Cryptology, 6:209-224, 1993.
[336] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE Trans. Inform. Theory, IT-24:525-530, September 1978.
[337] Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in Cryptology - CRYPTO'89, pages 218-238. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.
[338] Ralph C. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances in Cryptology - CRYPTO'89, pages 428-446. Springer, 1990. Lecture Notes in Computer Science No. 435.
[339] R.C. Merkle. A fast software one-way hash function. Journal of Cryptology, 3(1):43-58, 1989.
[340] S. Micali and C.P. Schnorr. Efficient, perfect polynomial random number generators. Journal of Cryptology, 3(3):157-172, 1991.
[341] M. Mihaljević. A faster cryptanalysis of the self-shrinking generator. In J. Pieprzyk and J. Seberry, editors, Information Security and Privacy, Proceedings of ACISP96, pages 182-189, Berlin, 1996. Springer Verlag.
[342] Gary L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and System Science, 13(3):300-317, 1976.
[343] Victor S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Advances in Cryptology - CRYPTO'85, pages 417-426. Springer, 1986. Lecture Notes in Computer Science No. 218.
[344] S. Miyaguchi, K. Ohta, and M. Iwata. 128-bit hash function (N-Hash). In SECURICOM '90, pages 123-137, 1990.
[345] A. Moitra. Real-time audit log viewer and analyzer. In Proceedings of the 4 th Workshop on Computer Security Incident Handling, 1992. Incident Response and Security Teams - FIRST.
[346] Computer Virus Information Pages Monkey. http://www.datafellows.com/.
[347] J.H. Moore. Protocol failures in cryptosystems. In G.J. Simmons, editor, Contemporary Cryptology: The Science of Information Integrity, pages 541-558. IEEE Press, 1992.
[348] M. Morgenstern. Security and inference in multilevel database and knowledge-base systems. In Proceedings of the ACM International conference on the Management of Data (SIGMOD-87), pages 357-373, San Francisco, May 1987. ACM-SIGMOD.
[349] M. A. Morrison and J. Brillhart. A method of factoring and the factorization of f_{7}. Mathematics of Computation, 29:183-205, 1975.
[350] A. Mounji and B. Le Charlier. Detecting breaches in computer security: A pragmatic system with a logic programming flavor. In Proceedings of the Eight Benelux Workshop on Logic Programming, 1996.
[351] A. Mounji and B. Le Charlier. Continuous assessment of a unix configuration: Integrating intrusion detection and configuration analysis. In Proceedings of the ISOC' 97 Symposium on Network and Distributed System Security, 1997.
[352] A.
Mounji,
B.

Le
Charlier, D. Zampunieris, and N. Habra. Preliminary report on distributed asax. Research Report, May 1994, 36 pages. See http://www.info.fundp.ac.be/amo/publications.html, 1994.
[353] A. Mounji, B. Le Charlier, D. Zampunieris, and N. Habra. Distributed audit trail analysis. In Proceedings of the ISOC '95 Symposium on Network and Distributed System Security, 1995.
[354] D. M'Raihi. Cost-effective payment schemes with privacy regulation. In K. Kim and T. Matsumoto, editors, Advances in Cryptology - ASIACRYPT'96, pages 266-275. Springer, 1996. Lecture Notes in Computer Science No. 1163.
[355] Y. Mu, V. Varadharajan, and Y-X. Lin. New micropayment schemes based on PayWords. In V. Varadharajan, J. Pieprzyk, and Y. Mu, editors, Information Security and Privacy, ACSIP'97, LNCS vol. 1270, pages 283-293. Springer, 1997.
[356] B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion detection. IEEE Network, 8:26-41, 1994.
[357] S. Mullender, G. Van Rossum, A. Tanenbaum, R. Van Renesse, and H. Van Staveren. Amoeba: a distributed operating system for the 1990s. IEEE Computer, 23:44-53, 1990.
[358] S. Murphy. The cryptoanalysis of FEAL-4 with 20 chosen plaintexts. Journal of Cryptology, 2:145-154, 1990.
[359] C. Nachenberg. Computer virus-antivirus coevolution. Communications of the $A C M, 40: 46-51$, 1997.
[360] K. Nam and T. R. N. Rao. Cryptographic models for DBMS communications. In K. H. Kim, K. Chon, and C. V. Ramamoorthy, editors, Proceedings of Pacific Computer Communications '85, pages 277-283. North-Holland, 1985.
[361] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In Proc. 21th ACM Symposium on Theory of Computing, pages 33-43, Seattle, 1989. "Association for Computing Machinery (ACM)".
[362] W. Narkiewicz. Number Theory. World Scientific, Singapore, 1983.
[363] National Institute of Standards and Technology (NIST). FIPS Publication 180: Secure Hash Standard (SHS), May 11, 1993.
[364] National Institute of Standards and Technology (NIST). NIST FIPS PUB 185, Escrowed Encryption Standard, February 1994.
[365] R. M. Needham and M. D. Schroeder. Using encryption for authentication in a large network of computers. Communications of the ACM, 21(12):993-999, 1978.
[366] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks of computers. Communications of the ACM, 21(12):993-999, December 1978.
[367] R. M. Needham and R.D. Walker. The Cambridge CAP computer and its protection system. In Proceedings of the 6th Symposium on Operating System Principles, pages 1-10, 1990.
[368] P.G. Neumann. Audit trail analysis and usage data collection and processing. Part 1. Computer Science Laboratory, SRI International, 1985.
[369] P.G. Neumann and F. Ostapik. Audit trail analysis and usage data collection and processing. Part 2. Computer Science Laboratory, SRI International, 1987.
[370] V. Niemi and A. Renvall. How to prevent buying of votes in computer elections. In J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT'94, pages 164-170. Springer, 1995. Lecture Notes in Computer Science No. 917.
[371] O. Nierstrasz. A survey of object-oriented concepts. In W. Kim and F. H. Lochovsky, editors, Object-Oriented Concepts, Databases and Applications, chapter 1, pages 3-21. Addison-Wesley, New York, 1989.
[372] K. Nyberg. Perfect nonlinear S-boxes. In D.W. Davies, editor, Advances in Cryptology Eurocrypt '91, pages 378-386, Berlin, 1991. Springer-Verlag.
[373] K. Nyberg. On the construction of highly nonlinear permutations. In R.A. Rueppel, editor, Advances in Cryptology - Eurocrypt '92, pages 92-98, Berlin, 1993. Springer-Verlag.
[374] L. OConnor and J. Seberry. Cryptographic Significance of the Knapsack Problem. Aegean Park Press, 1988.
[375] L.J. O'Connor. An analysis of product ciphers based on the properties of Boo lean functions. PhD thesis, the University of Waterloo, 1992. Waterloo, Ontario, Canada.
[376] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. In T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in Cryptology - EUROCRYPT'84, pages 224-314, Paris, 1985. Springer. Lecture Notes in Computer Science No. 209.
[377] Canadian System Security Center Communication Security Establishment Government of Canada. The Canadian Trusted Computer Product Evaluation Criteria. Version 3.0e, January 1993.
[378] Commision of European Communities. Information Technology Security Evaluation Criteria. Technical Report, Brussels, September 1992.
[379] National Bureau of Standards. Announcing the data encryption standard. Technical Report FIPS Publication 46, National Bureau of Standards, January 1977.
[380] National Soviet Bureau of Standards. Cryptographic algorithm. GOST 28147-89, 1989.
[381] Y. Ohnishi. A study on data security. Master's thesis, Tohoku University, Japan, 1988.
[382] K. Ohta and K. Koyama. Meet-in-the-middle attack on digital signature schemes. In J. Seberry and J. Pieprzyk, editors, Proceedings of A USCRYPT 90, pages 110-121. Springer, 1990. Lecture Notes in Computer Science No. 453.
[383] T. Okamoto. A digital multisignature scheme using bijective public-key cryptosystems. ACM Transactions on Computer Systems, 6(8):432-441, 1988.
[384] T. Okamoto. Provably secure and practical identification schemes and corresponding signature schemes. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO'92, pages 31-53. Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740.
[385] T. Okamoto. An efficient divisible electronic cash system. In D. Coppersmith, editor, Advances in Cryptology - CRYPTO'95, pages 438-451. Springer, 1995. Lecture Notes in Computer Science No. 963.
[386] T. Okamoto and K. Ohta. Universal electronic cash. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO'91, pages 324-337. Springer, 1992. Lecture Notes in Computer Science No. 576.
[387] J. D. Olsen, R. A. Scholtz, and L. R. Welch. Bent-function sequences. IEEE Transactions on Information Theory, IT-28 No. 6:858-864, 1982.
[388] K. A. Omar and D. L. Wells. Modified architecture for the sub-keys model. In Proceedings of the 1983 IEEE Symposium on Security and Privacy, pages 79-86, Oakland, CA, April 1983. IEEE Computer Society.
[389] P.C. van Oorschot and M.J. Wiener. A known-plaintext attack on two-key triple encryption. In I.B. Damgård, editor, Advances in Cryptology - Eurocrypt '90, pages 318-325, Berlin, 1991. Springer-Verlag.
[390] R. Oppliger. Authentication Systems for Secure Networks. Artech House, Boston, London, 1996.
[391] E.I. Organick. The Multics System: An Examination of Its Structure. MIT Press, 1972.
[392] D. Otway and O. Rees. Efficient and timely mutual authentication. ACM Operating Systems Review, 21(1):8-10, 1987.
[393] J. Patarin. How to construct pseudorandom and super pseudorandom permutations from one single pseudorandom function. In R. Rueppel, editor, Advances in Cryptology - EUROCRYPT'92, pages 256-266. Springer, 1993. Lecture Notes in Computer Science No. 658.
[394] V. Paxson. Bro: A system for detecting network intruders in real-time. In Proceedings of the 7th Annual USENIX Security Symposium, Usenix, 1998.
[395] T.P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO'91, pages 129-140. Springer, 1992. Lecture Notes in Computer Science No. 576.
[396] K.L. Petersen. IDA - intrusion detection alert. In Poroceedings of the Sixth Annual International Computer Software and Application Conference, pages 306-311. IEEE Computer Society Press, 1992.
[397] B. Pfitzmann. Digital Signature Schemes. LNCS, 1100, Springer, New York, 1996.
[398] B. Pfitzmann and Waidner M. Fail-stop signatures and their applications. In SECURICOM91, pages 338-350, 1991.
[399] C. P. Pfleeger. Security in Computing. Prentice-Hall, Englewood Cliffs, NJ, 1989.
[400] J. Pieprzyk. Ciphers detecting illegal substitution of messages. Archiwum Elektrotechniki, XXIX(112-2):419-435, 1980. (in Polish).
[401] J. Pieprzyk. Bent permutations. In G. Mullen and P. Shiue, editors, Lecture Notes in Pure and Applied Mathematics, Vol 141, Proceedings of 1st International Conference on Finite Fields, Coding Theory, and Advances in Communications and Computing, Las Vegas, 1991, 1992.
[402] J. Pieprzyk and G. Finkelstein. Towards effective nonlinear cryptosystem design. IEE Proceedings, 135(6):325-335, November 1988.
[403] J. Pieprzyk and B. Sadeghiyan. Optimal perfect randomizers. In H. Imai, R. Rivest, and T. Matsumoto, editors, Proceedings of ASIACRYPT 91, pages 225-236. Springer, 1993. Lecture Notes in Computer Science No. 739.
[404] J.P. Pieprzyk. How to construct pseudorandom permutations from single pseudorandom functions. In Advances in Cryptology - EUROCRYPT'90, Lecture Notes in Computer Science, Vol. 473 , pages 140-150. Springer Verlag, May 1991.
[405] J.P. Pieprzyk and Xian-Mo Zhang. Permutation generators of alternating groups. In Advances in Cryptology - AUSCRYPT'90, J. Seberry, J. Pieprz yk (Eds), Lecture Notes in Computer Science, Vol.453, pages 237-244. Springer Verlag, 1990.
[406] G. M. J. Pluimakers. Some notes on authorization and transaction management in distributed database systems. Computers \& Security, 7(3):287-298, 1988.
[407] D. Pointcheval. A new identification scheme based on the perceptrons problem. In L. Guillou and J. Quisquater, editors, Advances in Cryptology - EUROCRYPT'95, pages 319-328. Springer, 1995. Lecture Notes in Computer Science No. 9921.
[408] Carl Pomerance. The quadratic sieve factoring algorithm. In T. Beth, N. Cot, and I. Ingemarrson, editors, Advances in Cryptology, volume 209 of Lecture Notes in Computer Science, pages 169-182. Springer-Verlag, 1984.
[409] A. Porras and P.G. Neumann. Emerald: Event monitoring enabling responses to anomalous live disturbances. In Proceedings of the National Information Systems Security Conference, 1997.
[410] B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis, Katholieke Universiteit Leuven, 1993.
[411] B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, and J. Vandewalle. Propagation characteristics of Boolean functions. In I.B. Damgård, editor, Advances in Cryptology - Eurocrypt '90, pages 161-173, Berlin, 1991. Springer-Verlag.
[412] B. Preneel and P. van Oorschot. MDx-MAC and building fast MACs from hash functions. In D. Coppersmith, editor, Advances in Cryptology - CRYPTO'95, pages 1-14. Springer, 1995. Lecture Notes in Computer Science No. 963.
[413] P. Proctor. Audit reduction and misuse detection in heterogeneous environments: framework and application. In Proceedings of the 10th Annual Computer Security Application Conference, pages 117-125, 1994.
[414] T.H. Ptacek and T.N. Newsham. Insertion, evasion and denial of service: Eluding network intrusion detection. Technical Report, Secure Networks Inc. http://www.secnet.com, January 1998.
[415] J.-J. Quisquater, M. Quisquater, M. Quisquater, M. Quisquater, L. Guillou, M. A. Guillou, G. Guillou, A. Guillou, G. Guillou, S. Guillou, and T. Berson. How to explain zero-knowledge protocols to your children. In G. Brassard, editor, Advances in Cryptology - CRYPTO'89, pages 628-631. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.
[416] Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search. new results and applications to DES. In G. Brassard, editor, Advances in Cryptology - CRYPTO'89, pages 408-415. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.
[417] M. Rabin. Digitalized signatures as intractable as factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer Science, January 1979.
[418] M. Rabin. Probabilistic algorithms for testing primality. J. Number Theory, 12:128-138, 1980.
[419] M. O. Rabin. Digitalized signatures. In Richard A. DeMillo, David P. Dobkin, Anita K. Jones, and Richard J. Lipton, editors, Foundations of Secure Computation, pages 155-168. Academic Press, 1978.
[420] Y. Radai. Integrity checking for anti-viral purposes: Theory and practice. http://www.virusbtn.com/OtherPapers/, 1994.
[421] R. Rivest and A. Shamir. PayWord and MicroMint: two simple micropayment schemes. In Proceedings of RSA'96 Conference. Available at: http://theory.lcs.mit.edu/~rivest, 1996.
[422] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomorphisms. In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure Computation, pages 169-177. Academic Press, New York, 1978.
[423] Ronald Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and public key cryptosystems. Communications of the $A C M, 21: 120-126,1978$.
[424] Ronald L. Rivest. The MD4 message digest algorithm. In A.J. Menezes and S. A. Vanstone, editors, Advances in Cryptology - CRYPTO'90, pages 303-311. Springer, 1991. Lecture Notes in Computer Science No. 537.
[425] Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Comments, April 1992. RFC 1321.
[426] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.
[427] John Rompel. One-way functions are necessary and sufficient for secure signatures. In Proc. $22 n d$ ACM Symposium on Theory of Computing, pages 387-394, Baltimore, Maryland, 1990. "Association for Computing Machinery (ACM)".
[428] U. Rosenbaum. A lower bound on authentication after having observed a sequence of messages. Journal of Cryptology, 6(3):135-156, 1993.
[429] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O'Reilly, 1992.
[430] O.S. Rothaus. On bent functions. Journal of Combinatorial Theory, Series A, 20:300-305, 1976.
[431] L. A. Rowe and K. A. Shoens. Data abstractions, views and updates in RIGEL. In P. A. Bernstein, editor, Proceedings of ACM SIGMOD 1979 International Conference on Management of Data, pages 71-81, Boston, 1979. ACM SIGMOD.
[432] R.A. Rueppel. On the security of Schnorr's pseudo random generator. In Advances in Cryptol-ogy-EUROCRYPT'89, Lecture Notes in Computer Science, Vol.434, pages 423-428. Springer Verlag, April 1990.
[433] R.A. Rueppel and P.C. Van Oorschot. Modern key agreement techniques. Computer Communications, 17:458-465, 1994.
[434] B. Sadeghiyan and J. Pieprzyk. A construction for super pseudorandom permutations from a single pseudorandom function. In R. Rueppel, editor, Advances in Cryptology - EUROCRYPT'92, pages 267-284. Springer, 1993. Lecture Notes in Computer Science No. 658.
[435] B. Sadeghiyan and J. Pieprzyk. On necessary and sufficient conditions for the construction of super pseudorandom permutations. In H. Imai, R. Rivest, and T. Matsumoto, editors, Proceedings of ASIACRYPT 91, pages 194-209. Springer, 1993. Lecture Notes in Computer Science No. 739 .
[436] R. Safavi-Naini and L. Tombak. Optimal authentication codes. In T. Helleseth, editor, Advances in Cryptology - EUROCRYPT'93, pages 12-27. Springer, 1994. Lecture Notes in Computer Science No. 765.
[437] R. Safavi-Naini and L. Tombak. Authentication codes in plaintext and chosen-content attacks. In A. De Santis, editor, Advances in Cryptology - EUROCRYPT'94, pages 254-265. Springer, 1995. Lecture Notes in Computer Science No. 950.
[438] R. Safavi-Naini and L. Tombak. Combinatorial structure of a-codes with r-fold security. In J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology - ASIACRYPT'94, pages 211223. Springer, 1995. Lecture Notes in Computer Science No. 917.
[439] R. Safavi-Naini, L. Tombak, and J. Pieprzyk. Perfect authenticity and optimal a-codes. In IEEE International Symposium on Information Theory and Its Applications, pages 235-238, 1994. Sydney, Australia, November 20-25.
[440] K. Sako and J. Kilian. Secure voting using partially compatible homomorphisms. In Y. Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages 411-424. Springer, 1994. Lecture Notes in Computer Science No. 839.
[441] K. Sako and J. Kilian. Receipt-free mix-type voting scheme. In L. Guillou and J-J. Quisquater, editors, Advances in Cryptology - EUROCRYPT'95, pages 393-403. Springer, 1995. Lecture Notes in Computer Science No. 921.
[442] R. Sandhu. Access control: the neglected frontier. In J. Pieprzyk and J. Seberry, editors, Proceedings of the First Australasian Conference on Information Security and Privacy (ACISP96), pages 219-227. Springer, 1996. Lecture Notes in Computer Science No. 1172.
[443] R.S. Sandhu, E.J. Coyne, H.L Feinstein, and C.E. Youman. Role-based access control models. IEEE Computer, 29(2):38-47, 1996.
[444] A. De Santis and M. Yung. On the design of provably-secure cryptographic hash functions. In I.B. Damgåard, editor, Advances in Cryptology - EUROCRYPT'90, pages 377-397. Springer, 1990. Lecture Notes in Computer Science No. 473.
[445] Bruce Schneier. Applied Cryptography. John Wiley \& Sons, 1996.
[446] C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4:161-174, 1991.
[447] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Mathematics of Computations, 44:483-494, 1985.
[448] A.W. Schrift and A. Shamir. Universal tests for nonuniform distributions. Journal of Cryptology, 6(3):119-133, 1993.
[449] M.R. Schroeder, editor. Number Theory in Science and Communication. Springer Series in Information Sciences. Springer-Verlag, 1984.
[450] J. Seberry and J. Pieprzyk. Cryptography: An Introduction to Computer Security. Prentice Hall, Sydney, 1989.
[451] J. Seberry, X. M. Zhang, and Y. Zheng. Highly nonlinear 0-1 balanced functions satisfying strict avalanche criterion. In Advances in Cryptology - AUSCRYPT'92, volume 718, Lecture Notes in Computer Science, pages 145-155. Springer-Verlag, Berlin, Heidelberg, New York, 1993.
[452] J. Seberry, X. M. Zhang, and Y. Zheng. Systematic generation of cryptographically robust Sboxes. In Proceedings of the first ACM Conference on Computer and Communications Security, pages 172 - 182. The Association for Computing Machinery, New York, 1993.
[453] J. Seberry, X. M. Zhang, and Y. Zheng. Improving the strict avalanche characteristics of cryptographic functions. Information Processing Letters, 50:37-41, 1994.
[454] Jennifer Seberry, Xian-Mo Zhang, and Yuliang Zheng. Nonlinearly balanced boolean functions and their propagation characteristics. In Douglas R. Stinson, editor, Advances in Cryptology CRYPTO'93, pages 49-60. Springer, 1994. Lecture Notes in Computer Science No. 773.
[455] Jennifer Seberry, Xian-Mo Zhang, and Yuliang Zheng. Pitfalls in designing substitution boxes. In Yvo G. Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages 383-396. Springer, 1994. Lecture Notes in Computer Science No. 839.
[456] M. Sebring, E. Shellhouse, M.E. Hanna, and R.A. Whitehurst. Systems in intrusion detection: A case study. In Proceedings of the 11th National Computer Security Conference, Gaithersburg, MD, pages 74-81, 1988.
[457] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, New Jersay, 1976.
[458] A. Shamir. How to share a secret. Communications of the ACM, 22:612-613, November 1979.
[459] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. IEEE Transactions on Information Theory, IT-30(5):699-704, Sept. 1984.
[460] C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:623-656, 1948.
[461] C. E. Shannon. Communication theory of secrecy systems. Bell Sys. Tech. J., 28:657-715, 1949.
[462] A. Shimizu and S. Miyaguchi. Fast data encipherment algorithm FEAL. In D. Chaum and W.L. Price, editors, Advances in Cryptology - Eurocrypt'87, pages 267-280, Berlin, 1988. Springer-Verlag.
[463] A. Silberschatz and P. Galvin. Operating System Concepts. Addison-Wesley, 1998.
[464] R.D. Silverman. The multiple polynomial quadratic sieve. Mathematics of Computation, 48:329339, 1987.
[465] G. J. Simmons. A game theory model of digital message authentication. Congressus Numerantium, 34:413-424, 1982.
[466] G. J. Simmons. Message authentication: game on hepergraphs. Congressus Numerantium, 45:161-192, 1984.
[467] G.J. Simmons. Geometric shared secret and/or shared control schemes. In A.J. Menezes and S. A. Vanstone, editors, Advances in Cryptology - CRYPTO'90, pages 216-241. Springer-Verlag, 1991. Lecture Notes in Computer Science No. 537.
[468] G.J. Simmons. A survey of information authentication. In G.J. Simmons, editor, Contemporary Cryptology, The Science of Information Integrity, pages 379-420. IEEE Press, 1992.
[469] G.J. Simmons, W. Jackson, and K. Martin. The geometry of shared secret schemes. Bulletin of the ICA, 1:71-88, 1991.
[470] Gustavus J. Simmons. Authentication theory/coding theory. In G. R. Blakley and D. C. Chaum, editors, Advances in Cryptology - CRYPTO'84, pages 411-431. Springer, 1985. Lecture Notes in Computer Science No. 196.
[471] Gustavus J. Simmons and Michael J. Norris. Preliminary comments on the MIT public-key cryptosystem. Cryptologia, 1(4):406-414, October 1977.
[472] A. Sinkov. Elementary Cryptanalysis. Mathematical Association of America, 1968.
[473] S.E. Smaha. Haystack: an intrusion detection system. In Proceedings of the Fourth Aerospace Computer Security Applications Conference, pages 37-44. IEEE, 1988.
[474] B. Smeets. Bounds on the probability of deception in multiple authentication. IEEE Trans. on Information Theory, 40(5):1586-1591, 1994.
[475] S.R. Snapp. A system for distributed intrusion detection scheme. In Proceedings of IEEE COMPCON'91, pages 170-176, 1991.
[476] S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, L.T. Heberlein, C. Ho, K.N. Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, and D. Mansur. Distributed intrusion detection system - motivation, architecture and an early prototype. In Proceedings of 14 th National Computer Security Conference, 1991.
[477] M. Sobirey, S. Fischer-Hübner, and K. Rannenberg. Pseudonymous audit for privacy enhanced intrusion detection. In Proceedings of the 13th International Information Security Conference, 1997.
[478] M. Sobirey, B. Richter, and H. Konig. The intrusion detection system aid. architecture, and experiences in automated audit analysis. In Proceedings of the IFIP TC6/TC11 International Conference on Communications and Multimedia Security, pages 278-290, 1996.
[479] A. Sorkin. Lucifer, a cryptographic algorithm. Cryptologia, 8(1):22-41, 1984. Erratum: ibid. 7, p. 118, 1978.
[480] S. Staniford-Chen, S. Cheung, R. M. Dilger R. Crawford, J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS - a graph based intrusion detection system for large networks. In Proceedings of the 19th National Information Systems Security Conference, pages 361-370, 1996.
[481] J.G. Steiner, B.C. Neuman, and J.I. Schiller. Kerberos: an authentication service for open network systems. In Usenix Conference Proceedings, pages 191-202, Dallas, Texas, February 1988.
[482] Jacques Stern. A new identification scheme based on syndrome decoding. In Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO'93, pages 13-21. Springer, 1994. Lecture Notes in Computer Science No. 773.
[483] D.R. Stinson. Some constructions and bounds for authentication codes. In A.M. Odlyzko, editor, Advances in Cryptology - CRYPTO'86, pages 418-425. Springer-Verlag, 1987. Lecture Notes in Computer Science No. 263.
[484] D.R. Stinson. A construction for authentication/secrecy codes from certain combinatorial designs. In Carl Pomerance, editor, Advances in Cryptology - CRYPTO'87, pages 355-366. Springer-Verlag, 1988. Lecture Notes in Computer Science No. 293.
[485] D.R. Stinson. Combinatorial characterizations of authentication codes. In J. Feigenbaum, editor, Advances in Cryptology- CRYPTO'91, pages 62-73. Springer, 1992. Lecture Notes in Computer Science No. 576.
[486] D.R. Stinson. An explication of secret sharing schemes. Designs, Codes and Cryptography, 2:357-390, 1992.
[487] D.R. Stinson. Combinatorial designs and cryptography. In Surveys in Combinatorics, pages 257-287. Cambridge University Press, 1993. London Mathematical Society Lecture Notes Series, vol. 187.
[488] D.R. Stinson. Cryptography: Theory and Practice. CRC Press, 1995.
[489] M. Stonebraker. Implementation of integrity constraints and views by query modification. In Proceedings of ACM SIGMOD 1975 International Conference on Management of Data, pages 65-78, San Jose, 1975. ACM SIGMOD.
[490] A. Tanenbaum. Computer Networks. Prentice Hall, 1981.
[491] A. Tanenbaum. Distributed Operating Systems. Prentice Hall, Englewood Cliffs, 1995.
[492] A. Tanenbaum and A. Woodhull. Operating Systems: Design and Implementation. Prentice Hall, Englewood Cliffs, 1997.
[493] J. Tardo and K. Alagappan. SPX: global authentication using public key certificates. In Proceedings of 12th IEEE Symposium on Research in Security and Privacy, pages 232-244, 1991. Oakland, California.
[494] W.T. Tener. Discovery: An expert system in the commercial data security environment. In Proceedings of the 4 th IFIP TC11 International Conference on Security, pages 261-268, 1989.
[495] H. Teng, K. Chen, and S. Lu. Security audit trail analysis using inductively generated predictive rules. In Proceedings of the Sixth Conference on Artificial Intelligence Applications, pages 24-29. IEEE Computer Society Press, 1990.
[496] H.S. Teng, K. Chen, and S.C. Lu. Adaptive real-time anomaly detection using inductively generated sequential patterns. In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages 278-284, 1990.
[497] M. B. Thuraisingham. A multilevel secure object-oriented data model. In Proceedings of the 12th National Computer Security Conference, pages 579-590, Baltimore, MD, October 1989. NIST/NCSC.
[498] Jean-Pierre Tillich and Gilles Zémor. Hashing with $s l_{2}$. In Yvo G. Desmedt, editor, Advances in Cryptology - CRYPTO'94, pages 40-49. Springer, 1994. Lecture Notes in Computer Science No. 839.
[499] L. Tombak. New results on uncoditionally secure authentication systems. PhD thesis, Department of Computer Science, University of Wollongong, Australia, 1995.
[500] M. Tompa and H. Woll. How to share a secret with cheaters. Journal of Cryptology, 1(2):133$138,1988$.
[501] R. P. Trueblood, H. R. Hartson, and J. J. Martin. MULTISAFE - a modular multiprocessing approach to secure database management. ACM Transactions on Database Systems, 8(3):382409, 1983.
[502] G. Tsudik. Message authentication with one-way hash functions. ACM SIGCOMM, Computer Communication Review, 22(5):29-38, October 1992.
[503] E.M. Valcarce, G.W. Hoglund, L. Jansen, and L. Baillie. Essense: An experiment in knowledgebased security monitoring and control. In Proceedings of the 3rd USENIX Unix Security Symposium, pages 155-170, 1992.
[504] J. van Tilburg. Security-Analysis of a Class of Cryptosystems Based on Linear Error-Correcting Codes. Royal PTT Nederland NV, PTT Research, Leidschendam, 1994.
[505] S. von Solms and D. Naccache. On blind signatures and perfect crimes. Computers and Security, 11:581-583, 1992.
[506] V. L. Voydock and S. T. Kent. Security mechanism in high-level network protocols. ACM Computing Surveys, 15(2):135-171, 1983.
[507] N. R. Wagner. Shared database access using composed encryption keys. In Proceedings of the 1982 IEEE Symposium on Security and Privacy, pages 104-110, Oakland, CA, April 1982. IEEE Computer Society.
[508] N. R. Wagner, P. S. Putter, and M. R. Cain. Encrypted database design: specialized approaches. In Proceedings of the 1986 IEEE Symposium on Security and Privacy, pages 148-153, Oakland, CA, April 1986. IEEE Computer Society.
[509] M. Walker. Information-theoretic bounds for authentication systems. Journal of Cryptology, $3(2): 131-143,1990$.
[510] W. D. Wallis, A. Penfold Street, and J. Seberry Wallis. Combinatorics: Room Squares, sum-free sets, Hadamard Matrices, volume 292 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York, 1972.
[511] M. Wang and A. Goscinski. The development and testing of the identity-based conference key distribution system for the RHODOS distributed system. In Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, editors, Proceedings of the Second European Symposium on Research in Computer Security - ESORICS92, pages 209-228. Springer-Verlag, 1992. Lecture Notes in Computer Science No. 648.
[512] R. Wang. Flash in the pan ? Virus Bulletin, August 1998. see http://www.virusbtn.com/VirusInformation/cih.html.
[513] A.F. Webster and S.E. Tavares. On the design of S-boxes. In H.C. Williams, editor, Advances in Cryptology - Crypto '85, pages 523-534, New York, 1986. Springer-Verlag.
[514] M.N. Wegman and J.L. Carter. New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences, 22:265-279, 1981.
[515] W.R.E. Weiss and A. Baur. Analysis of audit and protocol data using methods from artificial intelligence. In Proceedings of the 13th National Computer Security Conference, pages 109-114, 1990.
[516] D. L. Wells and C. M. Eastman. A preliminary study of traffic analysis in encrypted databases. In E. L. Gallizzi, J. Elam, and R. H. Sprague Jr., editors, Proceedings of the Eighteenth Hawaii International Conference on System Sciences 1985, pages 373-382, Honolulu, HI, 2-4 January 1985. Hawaii International Conference on System Sciences, Honolulu.
[517] I. Whalley. Hare krsna: ISKCON too far! Virus Bulletin, August 1996.
[518] G.B. White, E.A. Fish, and U.W. Pooch. Cooperating security managers: A peer-based intrusion detection system. IEEE Network, 10(1):20-23, 1996.
[519] R. A. Whitehurst and T. F. Lunt. The SeaView verification. In Proceedings of the Second Workshop on Foundations of Computer Security, pages 125-132, Franconia, NH, 1989. IEEE Computer Society.
[520] M.J. Wiener. Efficient DES key search. Presented at Crypto '93 rump session, August 20, 1993.
[521] H. S. Wilf. Algorithms and Complexity. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1986.
[522] K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris architecture and implementation. IEEE Transaction on Knowledge and Data Engineering, 2(1):63-75, 1990.

[^0]: ${ }^{1}$ Leon Battista Alberti (1404-1472) was born in Genoa, Italy. He was a humanist, architect and principal founder of Renaissance art theory. Alberti is also called the Father of Western Cryptology because of his contributions to the field [266].

[^1]: ${ }^{2}$ In the case of encryption algorithms, this means that the secret key space can be exhaustively searched. In the case of hashing algorithms, this means that the birthday attack becomes viable.

[^2]: ${ }^{1}$ If a message is known to contain a marital status, either married or single, then the uncertainty is only one bit, since there are only two possibilities for the first character, and once this is determined the message can be recovered. If the message was a student number, then the uncertainty is greater than one bit but will not exceed $\log _{2} k$ bits.

[^3]: ${ }^{2}$ In coding theory, redundancy refers to that portion of a codeword that is used to transmit check symbols, so as to allow error detection and possible correction. This portion of the codeword contains no information.

[^4]: ${ }^{1}$ Recall the Jacobi symbol $\left[\frac{a}{b}\right]$ is defined by $\left[\frac{a}{b}\right]=\left[\frac{a}{b_{1}}\right] \cdots\left[\frac{a}{b_{n}}\right]$, where $b=b_{1} \cdots b_{n}$ is factorisation of b and $\left[\frac{a}{b_{i}}\right] \equiv a^{\left(b_{i}-1\right) / 2} \quad\left(\bmod b_{i}\right)$ is the Legendre symbol for $i=1, \ldots, n$.

