
Common Gateway Interface (CGI)

Overview

The Common Gateway Interface (CGI) is a standard for interfacing external
applications with information servers, such as HTTP or Web servers. A plain HTML
document that the Web daemon retrieves is static, which means it exists in a
constant state: a text file that doesn't change. A CGI program, on the other hand, is
executed in real-time, so that it can output dynamic information.

For example, let's say that you wanted to "hook up" your Unix database to the World
Wide Web, to allow people from all over the world to query it. Basically, you need to
create a CGI program that the Web daemon will execute to transmit information to
the database engine, and receive the results back again and display them to the
client. This is an example of a gateway, and this is where CGI, currently version 1.1,
got its origins.

The database example is a simple idea, but most of the time rather difficult to
implement. There really is no limit as to what you can hook up to the Web. The only
thing you need to remember is that whatever your CGI program does, it should not
take too long to process. Otherwise, the user will just be staring at their browser
waiting for something to happen.

CGI is not thus a language. It's a simple protocol that can be used to communicate
between Web forms and your program.

Simple Diagram of CGI

Specifics

Since a CGI program is executable, it is basically the equivalent of letting the world
run a program on your system, which isn't the safest thing to do. Therefore, there
are some security precautions that need to be implemented when it comes to using
CGI programs. Probably the one that will affect the typical Web user the most is the

fact that CGI programs need to reside in a special directory, so that the Web server
knows to execute the program rather than just display it to the browser. This
directory is usually under direct control of the webmaster, prohibiting the average
user from creating CGI programs. There are other ways to allow access to CGI
scripts, but it is up to your webmaster to set these up for you. At this point, you may
want to contact them about the feasibility of allowing CGI access.

If you have a version of the NCSA HTTPd server distribution, you will see a directory
called /cgi-bin. This is the special directory mentioned above where all of your CGI
programs currently reside. A CGI program can be written in any language that allows
it to be executed on the system, such as:

? C/C++
? Fortran
? PERL
? TCL
? Any Unix shell
? Visual Basic
? AppleScript

It just depends what you have available on your system. If you use a programming
language like C or Fortran, you know that you must compile the program before it
will run. If you look in the /cgi-src directory that came with the server distribution,
you will find the source code for some of the CGI programs in the /cgi-bin directory.
If, however, you use one of the scripting languages instead, such as PERL, TCL, or a
Unix shell, the script itself only needs to reside in the /cgi-bin directory, since there
is no associated source code. Many people prefer to write CGI scripts instead of
programs, since they are easier to debug, modify, and maintain than a typical
compiled program.

CGI Applications

CGI turns the Web from a simple collection of static hypermedia documents into a
whole new interactive medium, in which users can ask questions and run
applications. Let's take a look at some of the possible applications that can be
designed using CGI.

Forms

One of the most prominent uses of CGI is in processing forms. Forms are a subset of
HTML that allow the user to supply information. The forms interface makes Web
browsing an interactive process for the user and the provider. The following figure
shows a simple form.

Simple form illustrating different widgets

As can be seen from the figure, a number of graphical widgets are available for form
creation, such as radio buttons, text fields, checkboxes, and selection lists. When the
form is completed by the user, the Submit Order! button is used to send the
information to the server, which executes the program associated with the particular
form to "decode" the data.

Generally, forms are used for two main purposes. At their simplest, forms can be
used to collect information from the user. But they can also be used in a more
complex manner to provide back-and-forth interaction. For example, the user can be
presented with a form listing the various documents available on the server, as well
as an option to search for particular information within these documents. A CGI
program can process this information and return document(s) that match the user's
selection criteria.

Gateways

Web gateways are programs or scripts used to access information that is not directly
readable by the client. For example, say you have an Oracle database that contains
baseball statistics for all the players on your company team and you would like to
provide this information on the Web. How would you do it? You certainly cannot point

your client to the database file (i.e., open the URL associated with the file) and
expect to see any meaningful data.

CGI provides a solution to the problem in the form of a gateway. Once you have the
information, you can format and send it to the client. In this case, the CGI program
serves as a gateway to an Oracle database, as shown in below.

A gateway to a database

Similarly, you can write gateway programs to any other Internet information service,
including Archie, WAIS, and NNTP (Usenet News). In addition, you can amplify the
power of gateways by using the forms interface to request a query or search string
from the user to retrieve and display dynamic , or virtual, information which are
beyond the scope of this course.

CGI is great for smaller tasks not requiring a large amount of traffic to be pumped
through them. It is also available on the largest number of web hosting providers,
and relatively easy to use. Use mod_perl, C w/ the apache API, PHP, ASP, JSP, Cold
Fusion, Zope, or similar technology when working with super massive high traffic
sites. Hosting for these high performance platforms can be prohibitively expensive
for up and coming businesses however. And unless you’re getting 20+ requests a
second on your cgi scripts, you probably won’t notice any slowness. That number of
20 of course varies wildly based on the hardware and network capacity of your web
hosting situation.

Here’s a diagram to help you better understand CGI:

And here’s what the 11 steps mean:

1. The web surfer fills out a form, and clicks submit. The information in
the form is sent over the internet to the web server.

2. The web server "grabs" the information from the form, and passes it
to the CGI Software.

3. The CGI Software then performs whatever validation of this
information that is required. For instance, it checks to see if an email
address is valid. If this is a database program, the CGI Software
prepares a database statement, to either add, edit or delete information
from the database.

4. The CGI Software then executes the prepared database statement,
which is passed to the database driver.

5. The database driver acts as a middleman, and performs the
requested action on the database itself.

6. The results of the database action are then passed back to the
database driver.

7. The database driver sends the information from the database to the
CGI Software.

8. The CGI Software takes the information from the database, and
manipulates it into the format that is desired.

9. If any static html pages need to be created (or similar task needs to
be performed), the CGI program accesses the web server computer's
file system, and reads, writes, and/or edits files.

10. The CGI Software then sends the result it wants the web surfer's

browser to see back to the web server.

11. The web server sends the result it got from the CGI Software back
to the web surfer's browser.

 When you create an html form like this:

 <html>
<body>
<form action=”/cgi-bin/myscript.cgi” method=”post”>
<p>Your name: <input type=”text” size=”20” name=”your_name”>

Your email address: <input type=”text” size=”50” name=”email_address”>
<input type=”submit” value=”Print out my name and email!”>
</form>
</body>
</html>

You can choose either “get” or “post”. Only use get in situations where you need the
user to be able to bookmark the resulting page. Otherwise, use post. Using get you
can only have 1024 bytes sent to the program, which in a lot of cases isn’t enough
data.

 When the user submits this form, the data made available to your script looks
something like this:
your_name=name+father&email_address=myemail@somehost.com&x=54&y=102

 Actually, because of url encoding, it may look different depending on what browser
you send it from. But that’s not important. In smart cgi programming, we use
what’s called a “library” or “module” which shields us from doing the hard stuff like
splitting up that string that we get from the form.

 So, we use our library to grab the value of the inputted data, then send what’s
called an “HTTP Header” back to our browser, then we type html code in our perl / c
/ c++ script to mark up the data we want to send back to the browser.

 In a nutshell, that’s all there is to cgi. It does many, many great things, including
splitting up the data we get from the form into a very easily usable format for us,
automatically!

How do I get information from the server?

Each time a client requests the URL corresponding to your CGI program, the server
will execute it in real-time. The output of your program will go more or less directly
to the client.

A common misconception about CGI is that you can send command-line options and
arguments to your program, such as

 command% myprog -qa blorf

CGI uses the command line for other purposes and thus this is not directly possible.
Instead, CGI uses environment variables to send your program its parameters. The
two major environment variables you will use for this purpose are:

? QUERY_STRING

QUERY_STRING is defined as anything which follows the first ? in the URL.
This information could be added either by an ISINDEX document, or by an
HTML form (with the GET action). It could also be manually embedded in an
HTML anchor which references your gateway. This string will usually be an
information query, i.e. what the user wants to search for in the database, or
perhaps the encoded results of your feedback GET form.

This string is encoded in the standard URL format of changing spaces to +,
and encoding special characters with %xx hexadecimal encoding. You will
need to decode it in order to use it.

If your gateway is not decoding results from a FORM, you will also get the
query string decoded for you onto the command line. This means that each
word of the query string will be in a different section of ARGV. For example,
the query string "forms rule" would be given to your program with
argv[1]="forms" and argv[2]="rule". If you choose to use this, you do not
need to do any processing on the data before using it.

? PATH_INFO

CGI allows for extra information to be embedded in the URL for your gateway
which can be used to transmit extra context-specific information to the
scripts. This information is usually made available as "extra" information after
the path of your gateway in the URL. This information is not encoded by the
server in any way.

The most useful example of PATH_INFO is transmitting file locations to the
CGI program. To illustrate this, let's say you have a CGI program on your
server called /cgi-bin/foobar that can process files residing in the
DocumentRoot of the server. You need to be able to tell foobar which file to
process. By including extra path information to the end of the URL, foobar will
know the location of the document relative to the DocumentRoot via the
PATH_INFO environment variable, or the actual path to the document via the
PATH_TRANSLATED environment variable which the server generates for you.

How do I send my document back to the client?

I have found that the most common error in beginners' CGI programs is not properly
formatting the output so the server can understand it.

CGI programs can return a myriad of document types. They can send back an image
to the client, and HTML document, a plaintext document, or perhaps even an audio
clip. They can also return references to other documents. The client must know what

kind of document you're sending it so it can present it accordingly. In order for the
client to know this, your CGI program must tell the server what type of document it
is returning.

In order to tell the server what kind of document you are sending back, whether it
be a full document or a reference to one, CGI requires you to place a short header
on your output. This header is ASCII text, consisting of lines separated by either
linefeeds or carriage returns (or both) followed by a single blank line. The output
body then follows in whatever native format.

? A full document with a corresponding MIME type

In this case, you must tell the server what kind of document you will be
outputting via a MIME type. Common MIME types are things such as text/html
for HTML, and text/plain for straight ASCII text.

For example, to send back HTML to the client, your output should read:

 Content-type: text/html

 <HTML><HEAD>
 <TITLE>output of HTML from CGI script</TITLE>
 </HEAD><BODY>
 <H1>Sample output</H1>
 What do you think of this?
 </BODY></HTML>

? A reference to another document

Instead of outputting the document, you can just tell the browser where to
get the new one, or have the server automatically output the new one for
you.

For example, say you want to reference a file on your Gopher server. In this
case, you should know the full URL of what you want to reference and output
something like:

 Content-type: text/html
 Location: gopher://httprules.foobar.org/0

 <HTML><HEAD>
 <TITLE>Sorry...it moved</TITLE>
 </HEAD><BODY>
 <H1>Go to gopher instead</H1>
 Now available at
 a new location
 on our gopher server.
 </BODY></HTML>

However, today's browsers are smart enough to automatically throw you to
the new document, without ever seeing the above since. If you get lazy and

don't want to output the above HTML, NCSA HTTPd will output a default one
for you to support older browsers.

If you want to reference another file (not protected by access authentication)
on your own server, you don't have to do nearly as much work. Just output a
partial (virtual) URL, such as the following:

 Location: /dir1/dir2/myfile.html

The server will act as if the client had not requested your script, but instead
requested http://yourserver/dir1/dir2/myfile.html. It will take care of most
everything, such as looking up the file type and sending the appropriate
headers. Just be sure that you output the second blank line.

If you do want to reference a document that is protected by access
authentication, you will need to have a full URL in the Location:, since the
client and the server need to re-transact to establish that you access to the
referenced document.

Advanced usage: If you would like to output headers such as Expires or Content-
encoding, you can if your server is compatible with CGI/1.1. Just output them along
with Location or Content-type and they will be sent back to the client.

Structure of a CGI Script

Here's the typical sequence of steps for a CGI script:

1. Read the user's form input.
2. Do what you want with the data.
3. Write the HTML response to STDOUT.

The first and last steps are described below

Reading the User's Form Input

When the user submits the form, your script receives the form data as a set of
name-value pairs. The names are what you defined in the INPUT tags (or SELECT or
TEXTAREA tags), and the values are whatever the user typed in or selected. (Users
can also submit files with forms, but this primer doesn't cover that.)

This set of name-value pairs is given to you as one long string, which you need to
parse. It's not very complicated, and there are plenty of existing routines to do it for
you.

If that's good enough for you, skip to the next section. If you'd rather do it yourself,
or you're just curious, the long string is in one of these two formats:

"name1=value1&name2=value2&name3=value3"
"name1=value1;name2=value2;name3=value3"

So just split on the ampersands or semicolons, then on the equal signs. Then, do two
more things to each name and value:

1. Convert all "+" characters to spaces, and
2. Convert all "%xx" sequences to the single character whose ascii value is "xx",

in hex. For example, convert "%3d" to "=".

This is needed because the original long string is URL-encoded, to allow for equal
signs, ampersands, and so forth in the user's input.

So where do you get the long string? That depends on the HTTP method the form
was submitted with:

? For GET submissions, it's in the environment variable QUERY_STRING.
? For POST submissions, read it from STDIN. The exact number of bytes to read

is in the environment variable CONTENT_LENGTH.

What is the difference between GET and POST?

GET and POST are two different methods defined in HTTP that do very different
things, but both happen to be able to send form submissions to the server.

Normally, GET is used to get a file or other resource, possibly with parameters
specifying more exactly what is needed. In the case of form input, GET fully
includes it in the URL, like

http://myhost.com/mypath/myscript.cgi?name1=value1&name2=valu
e2

GET is how your browser downloads most files, like HTML files and images. It can
also be used for most form submissions, if there's not too much data (the limit
varies from browser to browser).

The GET method is idempotent, meaning the side effects of several identical GET
requests are the same as for one GET request. In particular, browsers and
proxies can cache GET responses, so two identical form submissions may not
both make it to your CGI script. So don't use GET if you want to log each
request, or store data or otherwise take an action for each request.

Normally, POST is used to send a chunk of data to the server to be processed,
whatever that may entail. (The name POST might have come from the idea of
posting a note to a discussion group or newsgroup.) When an HTML form is
submitted using POST, your form data is attached to the end of the POST
request, in its own object (specifically, in the message body). This is not as
simple as using GET, but is more versatile. For example, you can send entire files
using POST. Also, data size is not limited like it is with GET.

All this is behind the scenes, however. To the CGI programmer, GET and POST
work almost identically, and are equally easy to use. Some advantages of POST
are that you're unlimited in the data you can submit, and you can count on your
script being called every time the form is submitted. One advantage of GET is
that your entire form submission can be encapsulated in one URL, like for a
hyperlink or bookmark

Sending the Response Back to the User

First, write the line

Content-type: text/html

plus another blank line, to STDOUT. After that, write your HTML response page to
STDOUT, and it will be sent to the user when your script is done. That's all there is to
it.

Yes, you're generating HTML code on the fly. It's not hard; it's actually pretty
straightforward. HTML was designed to be simple enough to generate this way.

Useful CGI Environment Variables

In order to pass data about the information request from the server to the script, the
server uses command line arguments as well as environment variables. These
environment variables are set when the server executes the gateway program. CGI
scripts have access to 20 or so environment variables, such as QUERY_STRING and
CONTENT_LENGTH.

Specification

The following environment variables are not request-specific and are set for all
requests:

? SERVER_SOFTWARE

The name and version of the information server software answering the
request (and running the gateway). Format: name/version

? SERVER_NAME

The server's hostname, DNS alias, or IP address as it would appear in self-
referencing URLs.

? GATEWAY_INTERFACE

The revision of the CGI specification to which this server complies. Format:
CGI/revision

The following environment variables are specific to the request being fulfilled by the
gateway program:

? SERVER_PROTOCOL

The name and revision of the information protocol this request came in with.
Format: protocol/revision

? SERVER_PORT

The port number to which the request was sent.

? REQUEST_METHOD

The method with which the request was made. For HTTP, this is "GET",
"HEAD", "POST", etc.

? PATH_INFO

The extra path information, as given by the client. In other words, scripts can
be accessed by their virtual pathname, followed by extra information at the
end of this path. The extra information is sent as PATH_INFO. This
information should be decoded by the server if it comes from a URL before it
is passed to the CGI script.

? PATH_TRANSLATED

The server provides a translated version of PATH_INFO, which takes the path
and does any virtual-to-physical mapping to it.

? SCRIPT_NAME

A virtual path to the script being executed, used for self-referencing URLs.

? QUERY_STRING

The information which follows the ? in the URL which referenced this script.
This is the query information. It should not be decoded in any fashion. This
variable should always be set when there is query information, regardless of
command line decoding.

? REMOTE_HOST

The hostname making the request. If the server does not have this
information, it should set REMOTE_ADDR and leave this unset.

? REMOTE_ADDR

The IP address of the remote host making the request.

? AUTH_TYPE

If the server supports user authentication, and the script is protects, this is
the protocol-specific authentication method used to validate the user.

? REMOTE_USER

If the server supports user authentication, and the script is protected, this is
the username they have authenticated as.

? REMOTE_IDENT

If the HTTP server supports RFC 931 identification, then this variable will be
set to the remote user name retrieved from the server. Usage of this variable
should be limited to logging only.

? CONTENT_TYPE

For queries which have attached information, such as HTTP POST and PUT,
this is the content type of the data.

? CONTENT_LENGTH

The length of the said content as given by the client.

In addition to these, the header lines received from the client, if any, are placed into
the environment with the prefix HTTP_ followed by the header name. Any -
characters in the header name are changed to _ characters. The server may exclude
any headers which it has already processed, such as Authorization, Content-type,
and Content-length. If necessary, the server may choose to exclude any or all of
these headers if including them would exceed any system environment limits.

An example of this is the HTTP_ACCEPT variable which was defined in CGI/1.0.
Another example is the header User-Agent.

? HTTP_ACCEPT

The MIME types which the client will accept, as given by HTTP headers. Other
protocols may need to get this information from elsewhere. Each item in this
list should be separated by commas as per the HTTP spec.

Format: type/subtype, type/subtype

? HTTP_USER_AGENT

The browser the client is using to send the request. General format:
software/version library/version.

System Requirements:
1)Most operating systems will work with Perl/CGI

2)Your web server must be configured for CGI. You may need to talk to your
systems administrator or web hosting provider about this.

3)You must have perl / c++ / Cinstalled.

Writing your first script:

Create a new text file in a plain text editor such as Microsoft Wordpad. I use
Textpad, a shareware program. Name it first.cgi. Make sure to save this file in plain
text only. Do not save it with any special formatting or it won’t work properly.

#include <stdio.h>

void main() {

 /** Print the CGI response header, required for all HTML output. **/
 /** Note the extra \n, to send the blank line. **/
 cout<<"Content-type: text/html\n\n" ;

 /** Print the HTML response page to STDOUT. **/
 cout<<"<html>\n" ;
 cout<<"<head><title>CGI Output</title></head>\n" ;
 cout<<"<body>\n" ;
 cout<<"<h1>Hello, world.</h1>\n" ;
 cout<<"</body>\n" ;
 cout<<"</html>\n" ;

 exit(0) ;
}

Now, go to your web browser such as internet explorer and type in

http://yourfullpath/cgi-bin/first.cgi

You can also have a look at a cgi written in c : hello_c.txt that demonstrates basic
CGI programming, and use of the getcgivars() routine.

Because a CGI program runs each time a user requests the page, the CGI program
can customize the page for each user. More power comes, however, when you
include an HTML form. A form on a Web page can have the name of a CGI program
as an action eleme nt. When the user fills in the form in the browser and clicks the

Submit button, the information gets sent right to the CGI program. The CGI program
can easily discover what information the user typed in and use this information to
build a custom Web page.

CGI programs must invariably parse plain text; Perl's high-level syntax, flexibility,
and text -manipulation routines make it an ideal language in which to program CGI.

However, Perl and other very high-level scripting languages have limitations. One
downside is their size. The Perl executable can be as much as ten times larger than
CGI C binaries. While some of the CGI libraries for Perl greatly simplify
programming, some do so at a cost in server performance. Since most servers fork a
separate process every time a CGI program is invoked, overhead can grow rapidly on
a high-traffic site with lots of CGI access.

Some Web servers (most notably Netscape and Apache) have their own APIs. These
allow you to code your CGI programs as extensions to the server, thus avoiding the
overhead created by forking new processes. Communicating with these APIs
generally means coding your CGI programs in C.

Since Perl contains powerful pattern-matching operators and string manipulation
functions, it is very simple to decode form information. Unfortunately, this process is
not as easy when dealing with other high-level languages like c and c++, as they
lack these kinds of operators. However, there are various libraries of functions that
make the decoding process easier.

Examples

1. Browser indentification – c++

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void main ()
{
 char *http_user_agent;
 cout<<"Content-type: text/plain\n\n";
 http_user_agent = getenv ("HTTP_USER_AGENT");
 if (http_user_agent == NULL) {
 cout<<"Oops! Your browser failed to set the HTTP_USER_AGENT ";
 cout<<"environment variable!\n";
 } else if (!strncmp (http_user_agent, "Mosaic", 6)) {
 cout<<"I guess you are sticking with the original, huh?\n";
 } else if (!strncmp (http_user_agent, "Mozilla", 7)) {
 cout<<"Well, you are not alone. A majority of the people are ";
 cout<<"using Netscape Navigator!\n";
 } else if (!strncmp (http_user_agent, "Lynx", 4)) {
 cout<<"Lynx is great, but go get yourself a graphic browser!\n";
 } else {
 cout<<"I see you are using a browser.\n", http_user_agent;
 cout<<"I don't think it's as famous as Netscape, Mosaic or Lynx! \n";
 }
 exit(0);

}

2. Simple Multiplication (using form processing) - c

<FORM ACTION="/cgi-bin/yourpath/mult.cgi">
<p>Please specify the multiplicands:
<IMPUT NAME=”m” SIZE=”5”>
<IMPUT NAME=”n” SIZE=”5”>
<INPUT TYPE=”SUBMIT” VALUE=”Multiply!”>
</FORM>

The Code

#include <stdio.h>
#include <stdlib.h>
int main(void) {
char *data;
long m,n;
printf("%s%c%c\n", "Content-Type:text/html;charset=iso-8859-1",13,10);
printf("\n");
printf(" Multiplication results\n");
data = getenv("QUERY_STRING");
if(data == NULL) printf(" Error! Error in passing data from form to script.");
else if(sscanf(data,"m=%ld&n=%ld",&m,&n)!=2)
 printf(" Error! Invalid data. Data must be numeric.");
else printf(" The product of %ld and %ld is %ld.",m,n,m*n);
return 0; }

For forms which use METHOD="POST", CGI specifications say that the data is
passed to the script or program in the standard input stream (stdin), and the
length (in bytes, i.e. characters) of the data is passed in an environment
variable called CONTENT_LENGTH. When reading the input, the program must
not try to read more than CONTENT_LENGTH characters.

