Chapter one

HTTP - the Hyper-Text Transfer Protocol (2
week)

Introduction

The history of the Internet dates back to the Cold War days of the late
1950s. It evolved when the US Defense Force began to investigate a
method of geographically dispersing their centralized computer
system. It was believed that reducing reliance on one single route for
transmission of data and using decentralized system, would provide a
safer option for controlling their missiles. This idea was a safe guard to
protect the flow of communications in the event of a major
interruption. A 'fear' that in the event of a nuclear war, an enemy may
destroy a link in the US chain of communications, was the precursor to
the technology revolution!

Today, the internet is an international forum for exchange of
information and ideas between millions of people world wide, a rapidly
growing information super-highway. In contrast, two decades prior to
this, it was known mainly to those involved in the military or
academia.

The Department of Defense (USA) began an initiative which later
contributed towards the physical network of the first four computers
(nodes) right across America in 1969. This project was named
Advanced Research Project Agency ARPA. ARPA net was a response to
the launching of the first artificial satellite Sputnik by the USSR in
1957.

The World Wide Web and the use of hypertext, dates back to the early
1990s, when a physicist decided to invent a method of sharing
information with his colleagues. Dr. Tim Berners-Lee was working at
the laboratory for particle physics in Geneva, Switzerland, when he
thought his work would be easier if he and his colleagues could simply
link to each other's computers. The links were believed to provide
enormous efficiencies as they would freely facilitate sharing of
information and ideas. The name of the World Wide Web originated
because the hyperlinks to and from these computers were imagined to
be like a spider's web.

The CERN site is the name of the particle physics laboratory where Dr.
Berners-Lee worked. It is regarded the birthplace of the World Wide
Web.

Marc Andreessen was a university student in 1993 at the University of
Illinois. It was during this time that he led a team that invented the
first graphical user interface browser. Prior to this date, most people
had to rely on text based browsers such as Lynx. Access to the World
Wide Web during this period, was mostly for those working in
academia and of course the military.

The software, designed to assist people in accessing the Internet was
named Mosaic. As well as making it possible to explore the Internet in
a simple and intuitive manner, it provided an extremely user friendly

medium for home page design using multimedia.

The Client/Server Architecture of the World Wide Web

What is the World Wide Web?

The World Wide Web (WWW) is most often called the Web.
The Web is a network of computers all over the worlid.

All the computers in the Web can communicate with each
other.

All the computers use a communication standard called
HTTP.

How does the WWW work?

= Web information is stored in documents called Web pages.
Web pages are files stored on computers called Web servers.
Computers reading the Web pages are called Web clients.

= Web clients view the pages with a program called a Web
browser.

Popular browsers are Internet Explorer and Netscape
Navigator.

How does the browser fetch the pages?

= A browser fetches a Web page from a server by a request.

= A request is a standard HTTP request containing a page
address.

= A page address looks like this:
http://www.someone.com/page.htm.

How does the browser display the pages?

= All Web pages contain instructions for display

= The browser displays the page by reading these instructions.
= The most common display instructions are called HTML tags.

= HTML tags look like this <p>This is a Paragraph</p>.

Who is making the Web standards?

= The Web standards are not made up by Netscape or Microsoft.
The rule-making body of the Web is the W3C.

W3C stands for the World Wide Web Consortium.

W3C puts together specifications for Web standards.

The most essential Web standards are HTML, CSS and XML.

= The latest HTML standard is XHTML 1.0.

The Domain Name System (DNS)

What is DNS?

= DNS is the method by which Internet addresses in mnemonic
form such as sunc.scit.wlv.ac.uk. are converted into the
equivalent numeric IP address such as 134.220.4.1.

= To the user and application process this translation is a service
provided either by the local host or from a remote host via the
Internet.

= The DNS server (or resolver) may communicate with other
Internet DNS servers if it cannot translate the address itself.

What does DNS name structure look like?

= DNS names are constructed hierarchically.
= The highest level of the hierarchy being the last component or
label of the DNS address.

= Labels can be up to 63 characters long and are case insensitive.

= A maximum length of 255 characters is allowed.

= Labels must start with a letter and can only consist of letters,
digits and hyphens.

= DNS addresses can be relative or fully qualified.

= The final most significant label of a fully qualified name can fall
into one of three classes

1 arpa
This is a special facility used for reverse translation

2 Three letter codes
Indicate the type of organization hosting the computer.

code meaning

com Commercial. Now international.
edu Educational.

gov Government.

Int International Organization.

mil Military.

net |Network related.

org |Miscellaneous Organization.

3 Two letter codes
Indicate the country of origin

URL, URI, URN
What is URL?

= A Uniform Resource Locator is the exact address or location of
the files or web pages be retrieved on the internet.

= URL is a syntax that mandated the following format:

= <protocol>:// <host> [:<port>] [<path>] [?<query>]

= Example:-
http://mail5srvl.tech.aau.edu.et/en/mail.html?sid=test&lang=e
n

W hat is the difference among URL, URI and URN?

= URI(Uniform Resource Identifier) is a formatted string that
univocally and uniquely identifies a resource.

= There are two types of URIs: URLs and Uniform Resource Names
(URNS)

= A URL takes you straight to the resource and the data.

= A URN is only a unique name you can use to identify any
resource you want.

= URNSs are related to namespaces.

= Both URLs and URNs can uniquely identify resources over the
Web.

= Use URLs when you need to know or specify location
information.

= Use URNSs if the resource is location-independent.

= address-specific (URL) and name-based (URN)

HTTP Header
HTTP Message

= HTTP messages consist of requests from client to server and
responses from server to client.

= Request and Response messages use the generic message
format for transferring entities

= Both types of message consist of a start-line, one or more
header fields (also known as "headers"), an empty line (i.e., a
line with nothing preceding the CRLF) indicating the end of the
header fields, and an optional message-body.

= Message example

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Tue, 27 Mar 2001 10:35:30 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Tue, 27 Mar 2001 10:34:52 GMT
ETag: "8c70de8ea9b6c01:d0d"
Content-Length: 488
<htmli>

<head>

<title> Test Page For HTTP </title>

</head>

<body>

<p>
<img src="IN00483_.gif" width="36"

height="35">
Test Page!
</p>
</body>
</html>

= Message dissected by diagram

Request Line
e Method (a.k.a. Status Line)
* Request URI ®* HTTP Version Info

* HTTP Version Info * Status Code
® Description

Message body

= Used to carry an entity body. Entity differs from message body
when “encoding” exist. Example: the entity body is compressed
= Itis an Octet - an 8-bit sequence of data
= May be divided into pieces and sent in chunk. When size cannot
be predetermined and reassembled during reception of the
messages
= Messages do not have to have a message body. Some messages
cannot have a message body
= Example of message body
= A Web page! The text to render as the page is the body
= Login information or other form data
= Shopping information - item you wish to buy

HTTP Header

HTTP header fields, which include general-header, request-
header, response-header, and entity-header fields, follow the
same generic format .

Each header field consists of a name followed by a colon (":")
and the field value.

The order in which header fields with differing field names are
received is not significant. However, it is "good practice" to send
general-header fields first, followed by request-header or
response- header fields, and ending with the entity-header
fields.

General HTTP Header

There are a few header fields which have general applicability for
both request and response messages, but which do not apply to
the entity being transferred.

These header fields apply only to the message being
transmitted.

general-header = Cache-Control
| Connection
| Date
| Pragma
| Transfer-Encoding
| Upgrade
| Via

Entity Headers

It gives meta-information (meta means information about) about
the entity-body being transferred Or, if no entity-body exists,
about the resource of the request
It apply only if a message body exists
Examples of entity headers
= Allow: List of methods supported by the resource
= Content-Encoding: Indicates types of content codings
applied
= Content-Language: Language of the intended audience
= Content-Length: Size of entity-body
= Expires: Date/time after which response is considered
stale
= etc

Requests Headers

= Additional information about the request

= May include information about the client (or sender) itself
= Examples of request headers

= Accept: Specifies media types acceptable for response

= Accept-Charset: Indicates acceptable character sets

= Accept-Encoding: Similar to Accept; specific to encodings
= Accept-Language: Limits response to preferred languages
= Host: Specifies the host & (optional) port of the resource

= etc

Responses Headers

= More information than available from just the status line

= May be information about the server or the resource

= Examples of response headers

= Age: Estimate of time since response was generated

= ETag: Current value of the entity tag

= Location: Used to redirect to a different location (URI)

= Proxy-Authenticate: Proxy authentication challenge

= Retry-After: Expected time that a service will be unavailable
= Server: Information about the server software used

= WWW-Authenticate: Authentication challenge

HTTP Request/Response, the Stateless nature of HTTP

The stateless nature of HTTP

= A fundamental characteristic of the Web is the stateless
interaction between browsers and web servers.

= HTTP is a stateless protocol.

= Each HTTP request a browser sends to a web server is
independent of any other request.

= The stateless nature of HTTP allows users to browse the Web by
following hypertext links and visiting pages in any order.

= HTTP also allows applications to distribute or even replicate
content across multiple servers to balance the load generated by
a high number of requests.

HTTP Request

Three Parts of a Request Line are Request Method, Request URI
and HTTP version information

Request Methods

GET (or retrieve) information from the resource server
POST “the information” back to the resource server
DELETE “the information” from the resource server
PUT “the information” at the resource location

HEAD: Like GET but only returns meta-information
OPTIONS: Gets the communication available

HTTP Version

Used by sender to notify receiver of its abilities
Version information is included in first line of message
Uses <major> . <minor> numeric notation

Examples: 1.0 or 1.1

<major> number indicates the message format
<minor> number indicates extensions to major format
HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT
Examples: HTTP/1.0 or HTTP/1.1

Response Line Dissected

HTTP response include HTTP Version Information, Status Code
and Status Description

The response from the server contains 3 digit status code and a
text phrase which describe about the status.

Status Codes - 5 Categories

1xx: Informational request received and processing is continuing
2xx: Success The action was successfully received, understood,
& accepted

3xx: Redirection Further action must be taken to complete the
request

4xx: Client Error A client error occurred

5xx: Server Error A server error occurred

= Example of Status Codes

100: Continue - Tells the client to continue with a request
200: OK - The request has succeeded

202: Accepted - The request has been accepted but not
processed

302: Found - Resource requested found but temporarily
moved

400: Bad Request - The request could not be understood
401: Unauthorized - The request requires proper
authorization

403: Forbidden - The client may not access the resource
500: Internal Server Error - The server encountered an
unexpected error. The request was not fulfilled

505: HTTP Version Not Supported - The server does not or
will not support the HTTP version

Web browser configuration

A browser is an application program that provides a way to
look at and interact with all the information on the World
Wide Web.

The word "browser" seems to have originated prior to the
Web as a generic term for user interfaces that let you browse
(navigate through and read) text files online.

the first Web browser with a graphical user interface is Mosaic
(in 1993)

Technically, a Web browser is a client program that uses the
Hypertext Transfer Protocol (HTTP) to make requests of Web
servers throughout the Internet on behalf of the browser
user.

the first widely-used browser, Netscape Navigator. Microsoft
followed with its Microsoft Internet Explorer.

Today, these two browsers are the only two browsers that the
vast majority of Internet users are aware of.

Lynx is a text-only browser for UNIX shell and VMS users.
Another recently offered and well-regarded browser is Opera.
Use of browser is

= Font mapping, e.g. Unicode

= Compression, decompression

= Handles multimedia, manages plug-ins

= Interprets scripts

= Executes Java applets

= Maintains cache, history
= Manipulates cookies

HTTP Authentication

The HTTP protocol (RFC 2616) defines a simple framework for
access authentication schemes.

The assumption is that a certain group of pages (usually
referred to as a protected realm or just a realm) should only
be accessible to certain people who are able to provide
credentials if challenged by the server.

If an HTTP client, e.g. a web browser, requests a page that is
part of a protected realm, the server responds with a 401
Unauthorized status code and includes a WWW-Authenticate
header field in his response. This header field must contain at
least one authentication challenge applicable to the requested
page.

Next, the client makes another request, this time including an
Authentication header field which contains the client's
credentials applicable to the server's authentication challenge.
If the server accepts the credentials, it returns the requested
page. Otherwise, it returns another 401 unauthorized
response to inform the client the authentication has failed.

Basic Access Authentication

The basic authentication scheme assumes that your (the
client's) credentials consist of a username and a password
where the latter is a secret known only to you and the server.
The server's 401 response contains an authentication
challenge consisting of the token "Basic" and a name-value
pair specifying the name of the protected realm. Example:

= WWW-Authenticate: Basic realm="Control Panel"

Upon receipt of the server's 401 response, your web browser
prompts you for the username and password associated with
that realm. The Authentication header of your browser's
follow-up request again contains the token "Basic" and the
base64-encoded concatenation of the username, a colon, and
the password.

= Authorization: Basic QWRtaW46Zm9vYmFy

