

ASP.NET 2.0
Web Parts in Action

ASP.NET 2.0
Web Parts in Action
Building Dynamic Web Portals

DARREN NEIMKE

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications
Cherokee Station
PO Box 20386 Fax: (609) 877-8256
New York, NY 10021 email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co.
Cherokee Station Copyeditor: Sharon Mullins
PO Box 20386 Typesetter: Gordan Salinovic
New York, NY 10021 Cover designer: Leslie Haimes

ISBN 1-932394-77-X

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06

To Bill Wilkinson, for teaching me to program

vii

brief contents

Part 1 Portals and web parts 1

1 Introducing portals and web parts 3

2 Web parts: the building blocks of portals 32

3 Using web part connections 65

4 The Web Part Manager 96

5 Working with zones 127

6 Understanding personalization 158

Part 2 Extending the portal framework 199

7 Creating an enhanced editing experience 201

8 Useful portal customizations 229

9 Portal management 257

10 Into the future 282

appendix Creating the Adventure Works project 310

contents

foreword xiii
preface xiv
acknowledgments xv
about this book xvi
about the title xix
about the cover illustration xx

Part 1 Portals and web parts 1

1 Introducing portals and web parts 3
1.1 Introduction 3

1.2 What is a portal? 5
Anatomy of a portal 6 ✦ A portal example 8

1.3 Using the ASP.NET 2.0 portal framework 16
Components of the framework 16

1.4 Introducing Adventure Works Cycles database 18
What is the database? 18 ✦ You’re hired! 19
Getting our hands on data 21

1.5 Summary 31

2 Web parts: the building blocks of portals 32
2.1 Introduction 32

2.2 Exploring web parts 33
Discovering the GenericWebPart control 34

2.3 Understanding the WebPart class 38
Using custom controls 38 ✦ Creating web parts with user controls 42

2.4 Understanding web part internals 45
IWebPart 46 ✦ IWebActionable 48 ✦ IWebEditable 52
ix

2.5 Applying themes and styles 54

2.6 Adding web parts to the Adventure Works Solution 59

2.7 Summary 64

3 Using web part connections 65
3.1 Dissecting connections 65

The Master/Details scenario 66 ✦ The Parent/Child scenario 67

3.2 Creating simple connections 70
Creating a connection consumer 72

3.3 Sorting out connection types 74
Static connections 75 ✦ Dynamic connections 76

3.4 Using transformers 79
Using pre-defined transformers 84

3.5 Adventure Works—implementing connections for HR 90

3.6 Summary 95

4 The Web Part Manager 96
4.1 Introduction 96

A control with many hats 97

4.2 The Page Lifecycle 100

4.3 Page display modes 101

4.4 Web part authorization 104

4.5 Importing and exporting web parts 108

4.6 Using WebPartManager with master pages 119

4.7 Adventure Works—additions to the HR code 121

4.8 Summary 125

5 Working with zones 127
5.1 Introduction 127

5.2 Classifying zones 128
WebPart zones 128 ✦ Tool zones 129 ✦ WebZone—the
common base class 130 ✦ Zone appearance 131

5.3 Custom rendering of zones 133
The structure of zones 134 ✦ Rendering the header, body, and
footer 135 ✦ Displaying the galleries in a DropDownList 136

5.4 Using WebPartChrome 139
Defining chrome types 139 ✦ Customizing chrome 141
Viewing the results of custom chrome 142
x CONTENTS

5.5 Explaining parts 143
EditorZone parts 144 ✦ CatalogZone parts 148

5.6 Zone additions to the Adventure Works Portal 150
Planning the CatalogZone extensions 151
Creating a custom catalog part 151

5.7 Summary 157

6 Understanding personalization 158
6.1 Introduction 158

6.2 Defining personalization 159

6.3 Personalization in action 161

6.4 Lifecycle of personalization data 169
Storing personalization data 170 ✦ The PersonalizationProvider
class 171 ✦ Setting up the database 176

6.5 Working with personalization data 180
SetPersonalizationDirty 181 ✦ Personalization interfaces 183

6.6 Personalization of the Adventure Works portal 187
Allowing users to change personalization scope 187
Adding a Notes web part 191

6.7 Summary 197

Part 2 Extending the portal framework 199

7 Creating an enhanced editing experience 201
7.1 Introduction 201

7.2 Supplying custom editing controls 202
Improving the FavoritesWebPart 203

7.3 Improving usability 214
Reducing mouse clicks 214 ✦ Creating a collapsible
EditorZone 219 ✦ A finishing touch 225

7.4 Summary 228

8 Useful portal customizations 229
8.1 Introduction 229

8.2 Making common tasks accessible 230
Identifying common tasks 231
Creating a common tasks MenuBar 232
CONTENTS xi

8.3 Versioned personalization data 234
Creating a revision of data 236 ✦ Approving a revision 238
Allowing a user to commit changes 240

8.4 Creating an area for tool zones 243
Moving our task zones 244 ✦ Displaying the TaskZone area 246

8.5 Adding a CatalogZone dialog 247
Displaying catalogs 249 ✦ Displaying web parts 251
Communicating between web pages 253

8.6 Summary 255

9 Portal management 257
9.1 Introduction 257

9.2 Preparing for deployment 258
Code instrumentation 259 ✦ Health monitoring 262

9.3 Recovering from errors gracefully 268
Providing a custom error page 269 ✦ Logging the failure 270

9.4 When all else fails 271
Self-maintenance of web parts 272 ✦ Managing personalization data 279

9.5 Summary 281

10 Into the future 282
10.1 Introduction 282

10.2 Reflecting on the portal 283

10.3 A world of web portals 284
SharePoint 284 ✦ Internet portals 286
Developer extensibility 287

10.4 Ajax behavior 287
Making Client-side Callbacks 289 ✦ Announcing Atlas 292
Using Atlas 293

10.5 Introducing Live.com—a modern mega-portal 299
Personalizing the Live.com portal 300 ✦ MicrosoftGadgets.com—a repository
of custom gadgets 301 ✦ Creating a custom Live.com gadget 302

10.6 Call to action 308

appendix Creating the Adventure Works project 310

index 319
xii CONTENTS

foreword

I never realized how satisfying it would be to read the final version of Darren’s book. Let me start
with a little background to explain why that is.

The Web Parts team began working on the ASP.NET project almost four years ago. The vision
was to provide a set of controls that allow end users to assemble a Web User Interface using the
browser. The user would put the content he wanted in a web page by adding and removing “Web
Parts.” He would have the ability to adjust the web UI using drag and drop.

You might think that once the Web Parts technology was released with ASP.NET 2.0, the job
was done. However, our job won’t really be done until the Web Parts model is widely used and
deployed. Thanks to our customers and to authors like Darren, we are moving ever closer to that
goal. ASP.NET 2.0 Web Parts in Action is a fundamental tool for any ASP.NET developer who
wants to leverage Web Parts to its fullest potential.

As we developed the Web Parts technology, an outstanding team of engineers routinely
engaged in passionate discussions on how to build the features. One area to which we devoted a
lot of time was making sure that Web Parts was extensible and would fit every need. ASP.NET Web
Parts in Action brings out those points of extensibility, allowing you to exploit Web Parts in the
best possible ways.

Web Parts in ASP.NET has created an inflection point in control development. In this model,
individual controls themselves are the heart of the web application. As I look to the next four
years, I can safely say that we have only scratched the surface of what can and will be done with
Web Parts. As you jump on the Web Parts train—and read ASP.NET Web Parts in Action—you
will be preparing yourself to take advantage of many new innovations in the years to come.

ANDRES SANABRIA

Lead Program Manager
ASP.NET and Server Application Frameworks
xiii

preface

I had often thought about writing a book on the topic of development, a book whose focus
would be on the role of the lead developer. I started saving my thoughts, even creating snippets
that I hoped would eventually find their way into that book. I was edging my way slowly to com-
mitting to the project, knowing that the topic was timeless and that I could take my time to get
things right and to do the book justice.

When Manning approached me about writing a book on web portals and web parts using
ASP.NET 2.0, I knew that with this topic timing would play a large part in determining when the
book would need to be delivered. There would be no taking it slow with this one! A new and excit-
ing technology such as this results in a huge hunger for information about how to create solutions
using the new bits and pieces. Regardless of the timing, I needed to convince myself that I could
write a book that would share with others the lessons gathered in my years of solutions develop-
ment experience and that would not simply focus on the new stuff. With the book now behind
me, I believe that I have managed to achieve this goal.

This book showcases three of my passions: ASP.NET, web portals, and custom solution deliv-
ery. I was challenged during my writing to present each of these passions in a real and dynamic
environment and in a way that underlines the extensibility of the ASP.NET portal framework. It
is my hope that you will be equally challenged as you work through the book and as this frame-
work reveals itself to you, inspiring you to build great things!
xiv

acknowledgments

First and foremost, I’d like to thank Anne for bending the lifestyle and events of an entire household
to fit this book into our lives. Hopefully one day Harrison and Charles will see “Dad’s silly book
with the picture of a pirate on the cover” and they will be reminded of the pirates of their youth.

Thanks to my editors, Mike Stephens and Mitch Denny, for coming along for the ride and
staying with it the whole way through—a journey with lots of memories for us all, I’m sure.
Thanks also to my very special development editor on this project. When Betsey Henckels was
first assigned to help me, I asked, “What exactly does a development editor do?” By the time we
finished I sure knew—they do a lot! Thanks, Betsey.

To the highly respected bunch of guys who reviewed this manuscript during development,
thank you! You helped make this a more solid product. I feel confident and proud in knowing
that the book has your stamp of approval. Thanks to James Curran, Stuart Caborn, Doug War-
ren, Berndt Hamboeck, Aleksey Nudelman, Joe Litton, Robbe Morris, Dennis Gorelik, Dave
Corun, Benjamin Gorlick, Bernard Farrell, Paul Wilson, Arul Kumaravel, Sergey Koshcheyev,
Dan Hounshell, Richard Xin, and Andrew Deren. Special thanks to Anand Narayanaswamy for
his technical proofread of the manuscript, just before it went to press.

Finally, a big thank-you must be extended to Marjan Bace and his great staff at Manning Pub-
lications. It was an absolute pleasure working with all of you.
xv

about this book

Over the past few years you will have likely noticed the rise and rise of web portals and seen the
impact that they are having on the way that we use the Web. Portals such as Sharepoint,
Live.com, Google, and DotNetNuke have transformed the way that we consume our daily infor-
mation. Regardless of whether or not you are new to portals or an old hand with them, this book
will provide you with all that you need to know to start building them.

This book is unlike many other popular ASP.NET books in that it focuses solely on teaching
you how to use the web parts and portal framework features of ASP.NET 2.0 to build portal appli-
cations. By removing unnecessary details of other parts of ASP.NET and reducing the amount of
information that there is to consume we can view portal creation in a very clear and concise manner.

Road map

This book is divided into two parts and is designed to guide you from the very first moment that
you start using the portal framework right up to the point where you need to design and build a
portal for an enterprise scenario.

The first part of the book spans chapters 1 through 6 where, after an introduction to
ASP.NET 2.0, you will learn about the core APIs of the portal framework. In these chapters we
will be rolling up our sleeves and pulling these APIs apart as we learn how to customize, extend,
and secure our portal through code and configuration settings. It’s here that you will learn about
the very nature of each of the parts in the portal framework.

Chapter 1 serves as a high level introduction to ASP.NET 2.0 and offers a glimpse into some
of the terminology of portals. In this chapter we will also learn about the fictional Adventure
Works business which will serve as the example business for which we will be building a portal
throughout the remainder of the book.

In chapter 2 we will look at web parts—the useful little units that allow us to add content to
a portal. It is in this chapter that we will build our very first basic portal. By the end of the chapter
we will be up and running and will familiar with the APIs surrounding web parts and also learn
about web part internals when we use interfaces within the portal framework to customize the
behaviour of our web parts.

In the third chapter of the book we will delve into the world of web part connections and learn
how to connect web parts using transformers and connections to increase the value of data and
empower users to use data to suit their own unique needs.
xvi

Chapter 4 is possibly the most important chapter in the book as this is where we learn about
the web part manager. Here I’ll show you what role the web part manager plays in orchestrating
the runtime behaviour of the portal. Again, we’ll be diving in under the covers so that we can learn
how to customize this control to provide just the behaviour that we need. For example, we will
see how to write code in our very own custom web part manager that checks each web part on
every page to check whether the user has permission to view each part.

After learning about the web part manager, we’ll turn to chapter 5 where we learn about the
important topic of zones. On the surface, zones appear as inanimate objects in the world of por-
tals, but by the time we’ve pulled them apart, you’ll see that zones play an important role in how
web parts are rendered and provide us with the perfect way to customize the look and feel of all
web parts in our portal, as well as create a unique and engaging place for visitors to our site.

If chapter 4 was the most important chapter, then chapter 6 is certainly the second most
important one because this is where we get our hands dirty playing with personalization. Given
that users place such high importance on the ability to customize and personalize their portals to
create their own unique spaces, personalization is a very important topic indeed. In this chapter
we will learn about the key extensibility points of the personalization system that we must use to
give our portals that special edge!

The second part of the book begins with chapter 7. By now you’ve learned about the core APIs
in the framework. Prior to this chapter, we’ve read a lot of the theory of portals and put it into
practice with small prototypes, but now it’s time to learn the special art of portals. You’ll master
how to mix each of the things that you’ve learned thus far into a recipe that will help you to produce
portals that are not only highly customized but portals that users also enjoy using. We’ll do this
by looking at some of the common customizations that are applied to modern portals and seeing
how to apply them to our own portal. Some of these customizations include the collapsible/expand-
able editor that we create in chapter 7, as well as the feature we will implement in chapter 8 that
is similar to the data versioning that comes as a standard feature in Sharepoint 2007. You’ll also
learn how to mix server-side and client-side code in chapter 8 when we create a cool pop-up catalog
zone dialog.

By chapter 9 our portal is nearing feature completeness and the only thing that remains is to
deploy what we have created so that our users can start using it. I won’t bore you with informa-
tion about configuring web servers and copying files. Instead we’ll take a different approach to
deployment, learning how to instrument code and more about health monitoring. Learning these
important lessons will give us visibility over the health of our portal when it is no longer under
our direct control.

In the last chapter we take a look back at what we’ve learned; and then we turn around to view
the possible future of our little portal. By looking at Atlas technology we will gain an understand-
ing of how XML and JavaScript can combine to improve the responsiveness of web applications
across the board.

Finally, the appendix shows how to create an ASP.NET web project in Visual Studio 2005.
This web project forms the basis for the web portal that we will be building throughout the book.

I fully expect that the little journey I have planned for you in this book will be both insightful
and engaging. After reading this book you will be well on your way to having full control over
ABOUT THIS BOOK xvii

the design and behaviour of your portals and you will be confident that users of your portals will
have a great place to start their daily web activities!

Source code

All source code in listings or in text is in a fixed-width font like this to separate it from
ordinary text. In some cases, the original source code has been reformatted: we’ve added line
breaks and reworked indentation to accommodate the available page space in the book. In rare
cases even this was not enough, and listings include line-continuation markers. Code annota-
tions accompany many of the listings, highlighting important concepts. Bolding in code listings
is used for emphasis as well.

The source code for all of the examples in this book as well as for the web project can be down-
loaded from the publisher’s website at www.manning.com/neimke.

Author Online

Your purchase of ASP.NET 2.0 in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical questions, and
receive help from the author and from other users. To access the forum and subscribe to it, point
your web browser to www.manning.com/neimke. This page provides information on how to get
on the forum once you are registered, what kind of help is available, and the rules of conduct on
the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue
among individual readers and between readers and the author can take place. It is not a commit-
ment to any specific amount of participation on the part of the author, whose contribution to the
AO remains voluntary (and unpaid). We suggest you try asking the author some challenging ques-
tions, lest his interest stray! The Author Online forum and the archives of previous discussions
will be accessible from the publisher’s website as long as the book is in print.
xviii ABOUT THIS BOOK

xix

about the title

By combining introductions, overviews, and how-to examples, the In Action books are designed
to help learning and remembering. According to research in cognitive science, the things people
remember are things they discover during self-motivated exploration.

Although no one at Manning is a cognitive scientist, we are convinced that for learning to
become permanent it must pass through stages of exploration, play, and, interestingly, retelling
of what is being learned. People understand and remember new things, which is to say they master
them, only after actively exploring them. Humans learn in action. An essential part of an In Action
guide is that it is example-driven. It encourages the reader to try things out, to play with new code,
and explore new ideas.

There is another, more mundane, reason for the title of this book: our readers are busy. They
use books to do a job or to solve a problem. They need books that allow them to jump in and
jump out easily and learn just what they want just when they want it. They need books that aid
them in action. The books in this series are designed for such readers.

xx

about the cover illustration

The figure on the cover of ASP.NET 2.0 in Action is a “Tatar,” a Turkic-speaking inhabitant of
Russia. The name “Tatars” was originally used for the people that overran parts of Asia and
Europe under Mongol leadership in the 13th century. It was later extended to include almost any
Asian nomadic invaders, whether from Mongolia or the fringes of Western Asia. The illustration
is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by
William Miller of Old Bond Street, London. The title page is missing from the collection and we
have been unable to track it down to date. The book’s table of contents identifies the figures in
both English and French, and each illustration bears the names of two artists who worked on it,
both of whom would no doubt be surprised to find their art gracing the front cover of a com-
puter programming book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea market in the
“Garage” on West 26th Street in Manhattan. The seller was an American based in Ankara, Tur-
key, and the transaction took place just as he was packing up his stand for the day. The Manning
editor did not have on his person the substantial amount of cash that was required for the purchase
and a credit card and check were both politely turned down. With the seller flying back to Ankara
that evening the situation was getting hopeless. What was the solution? It turned out to be noth-
ing more than an old-fashioned verbal agreement sealed with a handshake. The seller simply pro-
posed that the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless to say, we
transferred the funds the next day, and we remain grateful and impressed by this unknown per-
son’s trust in one of us. It recalls something that might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear on our cov-
ers, bring to life the richness and variety of dress customs of two centuries ago. They recall the
sense of isolation and distance of that period-and of every other historic period except our own
hyperkinetic present. Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one continent from another.
Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more
varied personal life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer
business with book covers based on the rich diversity of regional life of two centuries ago‚ brought
back to life by the pictures from this collection.

1
P A R T
Portals and web parts
In chapters 1 through 6 you will be introduced to ASP.NET 2.0 and you will learn
about the core APIs of the portal framework. You will also be introduced to Adven-
ture Works, the fictional business for which we will be building a portal in the later
chapters of this book. You will be asked to roll up your sleeves and pull these APIs
apart as you learn how to customize, extend, and secure our portal through code and
configuration settings. In these six chapters you will learn about the very nature of
each of the parts in the portal framework.

C H A P T E R 1

Introducing portals
and web parts

1.1 Introduction 3
1.2 What is a portal? 5
1.3 Using the ASP.NET 2.0 portal framework 16
1.4 Introducing Adventure Works Cycles database 18
1.5 Summary 31
1.1 INTRODUCTION

ASP.NET 2.0 introduces many exciting and important features for web developers.
One of the most powerful is the portal framework. You can use the portal frame-
work’s new Web Parts technology to build dynamic web portals. Sounds great, but
there’s a catch. Depending on whom you ask, a portal may be anything from a generic
home page to a complex information dashboard. In this book, we’ll take a close look
at how to build portals using the ASP.NET 2.0 Web Parts. Along the way, you’ll get a
better picture of what goes into a true portal and see practical examples of useful ASP-
driven portal design.

By the time the ASP.NET 1.0 framework burst onto the scene in January 2001, its
users had built up high expectations. ASP.NET is a web framework that was built
from the ground up with a vision of providing the most advanced platform for
creating dynamic, modern web applications. Using the framework freed developers
from many of the time-consuming and most error-prone operations in existing
frameworks, and set them free to focus on meeting application requirements. Newly
3

eliminated operations included common coding tasks as well as more complicated
coding for security, web services, and deployment.

At this time, the expectations placed upon web frameworks were becoming increas-
ingly demanding, as businesses were now embracing the web as an application plat-
form in ever-increasing numbers. This was due in part to the success of the web-based
business models of companies such as Amazon, Yahoo, and E-Bay. ASP.NET 1.0 had
arrived with all the answers to solve the new problems of the day, and it was just in time
to take advantage of all this demand. The rest is history. Growth of the platform was
stellar as developers and businesses streamed into this new platform in droves. Much
of this growth was due to the migration from the earlier ASP platform to .NET. At the
time of writing, some statistics that highlight this growth are

• Compilers have been developed for over 30 languages that target the .NET
Framework.

• Over a hundred books have been written specifically on the topic of ASP.NET
and related topics—such as web services.

• There are approximately 1,000 registered .NET user groups worldwide.

• There are more than a million users of Visual Studio, the premier tool for devel-
oping .NET applications.

Today, ASP.NET is the fastest growing web development platform in the world! For the
architects of ASP.NET 1.0, the success of that release marked the beginning of planning
for the next evolution: ASP.NET 2.0. ASP.NET 1.0 established a common page model
as a standard for programming and provided a sleek new runtime environment for pro-
cessing requests. The 1.0 release also simplified how we work with web services and
made them much easier to build and deploy. Finally, the 1.0 release gave us server con-
trols. Server controls are pre-packaged components that encapsulate common tasks;
these include controls such as a calendar for displaying calendar information and data
grids for displaying data in a tabular manner. Server controls provide a consistent pro-
gramming model—a standard that developers follow to write code.

The vision for ASP.NET 2.0 was that it would become a sexier second generation
of the platform that would address not just the common controls, but also common
application functions such as Navigation, Authorization, and Membership. All of
this planning culminated with the release of .NET Framework version 2.0 in
November 2005. ASP.NET 2.0 has achieved the vision by delivering a set of compo-
nents that are common to most web applications. Now it’s time to take advantage of
the ASP.NET 2.0 components and see how they are used to build the next generation
of web applications. Throughout this book we will use one of the new features of
ASP.NET 2.0—the portal framework—as we learn how to create web portals.

As we’ll see throughout this book, the portal framework is a set of controls and
services that specifically target the growing demand for web portals creation. This
book explains the portal framework and shows how to put it to work. The first half of
4 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

the book is written to provide a deep understanding of all the controls and services
that make up the portal framework. The second half of the book goes in under the
covers and explains how to customize each aspect of the portal framework to suit our
own requirements.

Given that web portals are all about presenting and working with data, this book
supplies practical business examples of creating portal solutions in the context of the
Adventure Works database. This database was created by Microsoft and is packaged
with SQL Server 2005 as an example of how to create a real-world database using
SQL Server. This database includes an extensive set of tables and provides data that is
reflective of a real business. Using this database allows the book to show a wide vari-
ety of scenarios.

Section 1.2 begins our exploration by delving into the term “portal” so that we
can establish an understanding of what it means. We’ll also acquaint ourselves with
some other terminology that is used to describe individual pieces of a portal, such as
web parts, personalization, connections, and more. By the section 1.2, we will have
introduced most of the common sub-elements of portals.

NOTE Because this chapter is introductory, some of you might best jump in at
chapter 2 instead of starting here. This chapter may appear to be old hat for
those of you who have solid experience with ASP.NET, or a general under-
standing of the concepts necessary to build web applications.

1.2 WHAT IS A PORTAL?

Like so many of the terms that we encounter in our industry, the word portal has
come to mean nearly anything; in fact, it is probably the most overused term on the
web today. But what does it mean? What do you do when your boss comes to you
and says he wants you to build a portal? Most people will tell you that a portal is some
kind of entry page that represents a larger section of content. Wikipedia, for example,
defines it as follows:

A web portal is a website that provides a starting point or gateway to other
resources on the Internet or an intranet.

So, given a definition as loose as that, what isn’t a portal? Each of the following exam-
ples would fit the definition of a portal quite nicely:

• http://Google.com—as a search engine, it could easily be considered as the start-
ing point for the entire Internet.

• The front page of your company’s intranet—it has links that lead to all of your
company’s content.

• Any page on the Internet that contains hyperlinks—these would pretty much sat-
isfy those definitions.

Given such a simple definition, each of the three listed items must be a portal because
each provides a place from which to start an excursion on the Internet. However,
WHAT IS A PORTAL? 5

http://Google.com

when the term portal is used to describe websites, it implicitly refers to other, more
specific characteristics beyond simply being a page with hyperlinks on it. So we’ll
need to come up with a definition of our own which better describes the type of web-
sites that we think of when we refer to portals.

1.2.1 Anatomy of a portal

Before we can embark on a mission to come up with our own useful definition of a
web portal, we should first look at components that are common to portals and are
generally expected in today’s modern portal web applications. The first stop on our
tour is the web part control.

Web parts

Suppose that we want to create a page that allows users to easily add information
about topics that interest them. Some users might add information about the latest
news updates from Reuters, whereas others would add the latest Dilbert comics and
updates to recent sporting results. If you’ve ever used SharePoint or other modern
Internet portal applications such as http://www.live.com and http://Google.com/ig,
you’ve seen that applications already exist that allow these types of additions by users.
The different informational components that are added to the pages, such as news
updates or Dilbert comics, are known as web parts.

NOTE SharePoint is a Microsoft portal product for managing team participation
in projects. For example, a publisher could use a portal such as SharePoint
as a central location for writers, editors, and reviewers around the world to
share and review chapters for a book like the one you are holding in your
hands. Chapters could be posted on the portal to be marked up by review-
ers and editors. The SharePoint portal could be used to track the progress
of documents, share information, pass responsibility from one member to
another, and a number of other document management functions. This
book on web parts is designed to give you the skills to develop a portal just
as sophisticated and useful as SharePoint.

Web parts are considered the building blocks of portal applications because of the way
that users can add them to the web pages to customize those pages to meet their needs.
Users typically browse a catalog of web parts to select the particular one they want to
add to a page. There is no limit to the number of web parts that the catalog for a portal
can contain. In fact, the more web parts a portal can offer via its catalog, the happier
the users are with the possibilities available for customizing their pages.

Personalization

Modern portals offer a dazzling array of customization options. Users can customize
portals to display a wide range of information and they can choose how this informa-
tion appears on a web page. For example, a user could display the weather information
6 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

http://Google.com/ig

for whatever city he chooses and could then arrange how and where the weather
appears on the page. These customizations are made possible by a portal service known
as personalization. If web parts are the building blocks of a portal, personalization is
almost certainly the glue that holds the entire solution together.

Personalization acts as a medium for storing and retrieving user customizations.
When a user adds a web part to a page, it is personalization that remembers to put it
there the next time the user visits that page. When the user configures a weather infor-
mation web part to display the weather for his city, it is personalization that remembers
which city the user chose, and also whether that user chose to have the temperature dis-
played in Celsius or Fahrenheit. When the user specifies that a particular web part
should be displayed on the right-hand side of the page instead of the left, personaliza-
tion remembers this preference. What’s more, personalization saves and remembers
these changes on a per-user basis. This means that the same page can appear totally dif-
ferent, depending on who the user is and how he or she has chosen to customize the
page. For one user the weather web part might appear on the right hand side of the
page, whereas for another, it might appear on the left hand side, or not at all!

When using web parts in ASP.NET 2.0, personalization comes as an automatic fea-
ture. This means that the developer doesn’t need to write any code to “remember”
personalization changes that have been made by the user.

Zones

When I suggested that the weather web part could appear on either the left or right
side of the page, I was really referring to another component of portal applications
called zones. Pages in portal applications tend to be drawn up into zones that can each
contain web parts.

On a web page in a portal application, users are allowed to move web parts freely
from one zone to another. These zones ensure that the web parts are constrained to
regions of the screen that conform to the overall format of the page. Personalization
ensures that once a user has moved a part from one zone to another, that part will
appear in the same zone whenever that user visits the page—although it might appear
in a completely different zone for another user, depending on where he positions it.

The relationship between web parts and zones is shown in figure 1.1. It shows a
typical web page for a portal application. The page shown contains two zones and
each zone contains different web parts. As we can see, the zone on the left contains
the “News” and “Financial” web parts, while the zone on the right contains web parts
for “Stocks” and “Weather.” A user visiting this page could use his mouse to drag any
of these individual web parts into the other zone. For example, the user could choose
to drag the Weather web part across to the left zone.

Developing a concise definition

Now that we’ve seen some of the common components of a portal—the web part,
personalization, and zone—I’d like to supply a simple, concise definition of the term
WHAT IS A PORTAL? 7

portal so that throughout this book I can use the term and you will know exactly
what I mean.

A portal is a web application which consists of pages that can display many
different types of information based on user selection. A portal also allows the
user to perform a variety of customizations on those pages that are remembered
between viewing sessions.

This definition will serve as a useful device as we progress through the book by ensur-
ing that we have a common way to describe the subject matter. Now that we’ve
defined what a portal is, let’s get started with an example exercise that provides us a
chance to work with a portal as we’ve defined it. In the example exercise we’ll take the
basic building blocks we’ve seen so far, such as web parts and zones, and use them to
create a simple portal.

1.2.2 A portal example

The portal example we are about to create will consist of a single web page that has
two zones: a zone on the left side of the page and another on the right side. Each zone
will contain a single web part. The page will also have a button which enables the user
to switch the page into a mode that allows the web parts to be moved between the
two zones. When web parts are in this mode, properties, such as their titles, can be
edited at runtime. Figure 1.2 shows what our example page will look like when it is
complete, and highlights some of the key points.

Figure 1.1 This image shows a web page that contains two zones. The left zone

contains the News and Financial web parts, whereas the right zone contains the

Stocks and Weather web parts.
8 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

Figure 1.2 contains the following zones:

1 The left zone contains a calendar web part. This web part is titled “Thought of
the Day.”

2 The right zone contains a label and is titled “Today’s thought.”

3 An editor zone allows the user to customize the properties of the web parts. In this
figure, the editor has the properties for the web part in the left zone displayed.

4 A button allows the user to place the page in a state that allows customizations
to take place.

To get things started, open Visual Studio 2005 and create a new ASP.NET WebSite
project named MinimumDefinition. Save the project to a convenient location in your
file system. Figure 1.3 shows a dialog being displayed within Visual Studio and a web
project being created in a folder location named C:\WebPartApplications\Chapter1.

Figure 1.2 This example portal has two zones (numbers 1 and 2) between which you can

drag web parts. There is also an editor that allows users to customize the properties of

the web parts.
WHAT IS A PORTAL? 9

Open the website project that was just created and, if it is not already present, add a
file named Default.aspx. We can now add some markup to the page to create the
format for our page and specify the layout for the two zones that will ultimately con-
tain the web parts. Listing 1.1 displays the wayour HTML looks at this stage.

<%@ Page Language="C#" %>
<html>

<head id="Head1" runat="server">
<title>Minimum Definition Web Parts Page</title>

</head>
<body>
<form id="form2" runat="server">

<div id="container" style="width: 400px">
 <div id="rightpanel" style="float: right">

 </div>

 <div id="leftpanel">

 </div>
</div>

Figure 1.3 The New WebSite dialog in Visual Studio allows you to choose what type of

project type to create and specify options for it, such as where the project will be saved to

and what language will be used.

Listing 1.1 Basic Html layout for the Default.aspx page

Placeholder for
right zone

Placeholder for left
zone
10 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

</form>
</body>
</html>

Adding zones to the web part page

While in design mode, expand the Visual Studio Toolbox
and open its Web Parts category. It’s from here that we can
start adding web part controls to our page. Figure 1.4
shows the Web Parts category of the Toolbox displayed.

In ASP.NET every web parts page must contain one
and only one WebPartManager control. Furthermore,
in a web parts page, the WebPartManager must be the
first web part control in the control hierarchy. We’ll dis-
cuss this control and these constraints in much more
detail in chapter 4; but for now just understand that, as
its name suggests, it is the manager part and therefore
responsible for many of the operations and events that
occur within a portal application. Drag the WebPart-
Manager control from your Toolbox and add it to the
top of your page.

Next, drag a WebPartZone control from the Tool-
box into each of the HTML DIV elements that we added
previously; that is, add one WebPartZone to the left-
most DIV and add another one to the DIV on the right.
These two zones will contain the web parts. When we’ve
completed the page, you will be able to drag web parts
between the two zones and have the personalization
mechanism automatically keep track of which zone each
web part belongs to.

Right-click on the left zone (WebPartZone1) and
choose “Properties” from the context menu. This will
display the Visual Studio Properties window and allow
us to change the properties of the WebPartZone con-
trol. In the properties window, locate the HeaderText
property and set its value to Left Zone. Do the same for the middle zone but set its
title to Middle Zone. From within Visual Studio your page should now look similar
to figure 1.5.

Adding web parts to the page

Now that the page has zones, we can add the web parts to it. Open the Standard cat-
egory panel of the Toolbox and drag a calendar onto the left zone and drag a label

Figure 1.4 The controls for

creating portal applications

are contained in the Web

Parts category within the

Visual Studio 2005 Toolbox.
WHAT IS A PORTAL? 11

web control onto the middle zone. Notice that when those controls are added to the
zones, additional user interface (UI) elements are wrapped around them—namely, a
title and a little down arrow. These UI elements are not related in any way to the
underlying calendar or label controls but instead are specific to web parts. It should
now be clear that these controls are no longer ordinary server controls when they live
inside the web part zones, but they have in fact become web parts. To demonstrate
this fact, switch the page into source code view and add a Title attribute to each of
the server controls. Title the calendar server control “Thought of the day,” and give
the label a title of “Today’s thought.” Listing 1.2 shows how the markup for the web
parts should appear when viewing the page in source code view, while figure 1.6
shows how the page should appear when viewed in the Visual Studio designer. Notice
that the titles we added are displayed above each of those controls.

Calendar control

<asp:WebPartZone ID="WebPartZone1" runat="server" HeaderText="Left Zone">
<ZoneTemplate>

<asp:Calendar ID="Calendar1"
runat="server"
Title="Thought of the Day"
/>

</ZoneTemplate>
</asp:WebPartZone>

Label control

<asp:WebPartZone ID="WebPartZone2" runat="server" HeaderText="Middle Zone">
<ZoneTemplate>

<asp:Label ID="Label1"
runat="server"
Title="Today's thought"
Text="We often learn more from our failures than

from our successes"
/>

</ZoneTemplate>
</asp:WebPartZone>

Figure 1.5 Viewing the page in design mode within Visual Studio pro-

vides an approximation of how it will appear when viewed in a browser.

Listing 1.2 The calendar and Label server controls appear within the

 WebPartZones with their titles set.

A title attribute
has been applied
to each control

A title attribute
has been applied
to each control
12 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

Right-click on the Default.aspx file and choose “View in Browser” to run the
page in a browser.

Allowing a user to customize controls

Now that the page has web parts, we’ll add an EditorZone that allows us to per-
sonalize the page at runtime. Switch the page into design mode within Visual Studio
and then drag an EditorZone control from the Toolbox and place it beneath the
two zones. Then drag an AppearanceEditorPart control from the Toolbox onto
the EditorZone.

You probably noticed that, in addition to the AppearanceEditorPart, there
are other controls in the Toolbox for editing web parts, such as the BehaviorEdi-
torPart, the LayoutEditorPart, and the PropertyGridEditorPart. Each of
these editor controls allows the user to customize different features of a web part. The
appearance editor will allow users to edit things such as the Title of a web part and its
Height and Width. The other editor controls allow customizations to be made to
other attributes of web parts such as what zone they appear in, or whether the title is
displayed as a clickable hyperlink. I’ll walk through each of the editor parts in much
more detail in chapter 5, but for this simple example the AppearanceEditorPart
is all we need for now. The code for the EditorZone control should now look like
the following snippet:

<asp:EditorZone ID="EditorZone2" runat="server">
<ZoneTemplate>

<asp:AppearanceEditorPart
 ID="AppearanceEditorPart1"
 runat="server" />

</ZoneTemplate>
</asp:EditorZone>

Now that we have a web part page and an editor, all that remains is to provide a way
to switch the page into edit mode at runtime so that we can edit the web control

Figure 1.6

When displayed in the designer,

the title of each control is dis-

played just above the control.
WHAT IS A PORTAL? 13

properties and change their layout. By default, web pages will appear in browse mode,
so we’ll need to add a button to allow us to switch into edit mode. Drag a button from
the Toolbox onto the page, and set its text to “Switch to Edit Mode.” Next, add some
code to handle the Click event of the button for switching between display modes. At
this time the markup for the button should appear as it does in the following snippet:

<asp:Button ID="Button1"
runat="server"
OnClick="Button1_Click"

Text="Switch to Edit Mode" />

The code simply needs to allow us to switch the mode of the page between “browse”
and “edit” modes. To do this we set the DisplayMode on the WebPartManager
instance for the page. The following snippet shows the simple logic for switching
between Edit and Display modes when the button is clicked.

protected void Button1_Click(object sender, EventArgs e) {

if (Button1.Text.Contains("Edit")) {
WebPartManager1.DisplayMode =
WebPartManager.EditDisplayMode;
Button1.Text = "Switch to Browse Mode";

} else {
WebPartManager1.DisplayMode =
WebPartManager.BrowseDisplayMode;
Button1.Text = "Switch to Edit Mode";

}
}

Right-click on the Default.aspx file and choose View in Browser to run the page.
When the page is first displayed it will be in its default state—browse mode. Press the
button a few times to toggle between browse mode and display mode. Notice that
when you are in edit mode the name of the zone appears above each zone.

With the page in edit mode, drag both web parts into the middle zone. Close the
browser and then start the application up again. Notice that the web parts page
“remembered” which zone the web parts were in. This is the result of the personaliza-
tion saving the customization changes and reapplying them for us.

One feature that we haven’t seen on this page so far is the AppearanceEditor-
Part. To view this control, we must first switch the page into edit mode. When the
page is in edit mode, each web part will have a verb—such as Minimize, Close, and
Edit associated with it—that allows a user to perform additional operations on the
web part. Figure 1.7 shows these verbs being displayed for the Calendar web part.

Clicking on the Edit verb for a web part will make the EditorZone visible. We
then use the editor to manage the properties and layout for that particular part. Let’s
try this. Select the Calendar, and then select its Edit verb. The EditorZone should
now be visible as it is in figure 1.8 allowing you to change the Title to “My Calendar”
and press OK or Apply to have that change saved.
14 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

Once the change has been saved, close the browser and then start the application up
again. Notice that the title change was remembered between sessions. This, again, is
due to the personalization feature.

You’ve built a portal!

That’s it for this example. As promised, you’ve now built an information portal that
meets our minimum definition of a portal, and here’s the definition again, just so
you can verify that your portal meets the requirements:

A portal is a web application which consists of pages that can display many different
types of information based on user selection. A portal also allows the user to perform a
variety of customizations on those pages that are remembered between viewing sessions.

We also saw the three common ingredients of mod-
ern portals in action; that is, web parts, zones, and
personalization. Of course there is still much to
learn, but it’s instructive to pause and reflect on just
how much has been achieved with less than a dozen
lines of C# code.

To summarize, we dragged seven web controls
from the Toolbox onto a web page and wrote less
than a dozen lines of code. By the end of that we had
a page that exposed some very advanced functional-
ity and was capable of remembering page customiza-
tions on a per-user basis. The mere fact that we can
drag an AppearanceEditor from the Toolbox and
have it automatically create the one hundred or so
HTML controls and the thousands of lines of appli-
cation code needed to present a working editor con-
trol is quite amazing. Building atop this sort of tested
application logic means that we can now start to
build more advanced applications with fewer bugs
than we could previously.

Figure 1.7

Verbs associated

with a web part

Figure 1.8 The EditorZone, with

the AppearanceEditor displayed,

allows you to change the appear-

ance of the web part.
WHAT IS A PORTAL? 15

Now we’ll move on to a quick summary of the major web part controls before head-
ing into a session on data and learning about the Adventure Works Cycles business.

1.3 USING THE ASP.NET 2.0
PORTAL FRAMEWORK

Having just developed our first example, now is a good time to pause and make some
sense of what we’ve seen. As mentioned, a great deal of functionality was achieved
with very few lines of actual programming code, and I’m sure that you are probably
wondering where all of that power came from. Let’s start at the top and expand on
the description of a portal framework that was presented in section 1.2.

What is the framework?

The portal framework is a set of controls that combine at runtime to provide an over-
all service. These controls are known collectively as web part controls and include the
core components that we’ve already seen—personalization, web parts, and zones—but
also include several other components that we haven’t discussed in detail as yet. The
most important of these is the WebPartManager. The WebPartManager control is
an invisible member of the portal, but is responsible for nearly all of the major events
that occur within it. For example, with our simple example from the previous section,
if we were to remove the WebPartManager, the whole sample would just throw one
great big exception—even though we only visibly used it in two lines of code!

In addition to the WebPartManager, we also observed web parts and zones at
work. We saw how easy it is to create web parts; in fact, we even saw that standard
web controls such as Calendars and Labels can be used as web parts simply by adding
them to a zone. We got to see how zones assist with the layout of web parts and how
the user can move the web parts freely between zones at runtime. We also caught our
first glimpses of personalization when we changed the title of the Calendar web part
and saw that it was automatically persisted across the browser. The fact that personal-
ization can do this for us without our having to write any code is a very significant
achievement, as it demonstrates one of the ways that the ASP.NET 2.0 architects have
managed to remove the need to write code that performs common tasks.

1.3.1 Components of the framework

We’ll now take a 40,000-foot view of the portal framework to get more of a high-level
perspective of the functions that are contained within it. This will provide us with a
full picture of the portal framework and allow us to view its breadth. I’m also going to
bundle the web part controls into categories based on the functionality that they
offer. Having this type of view aligns with the way that the rest of the book is laid out.
In other words, if you look at the table of contents, you will see that each chapter is
based on a particular functional slice of the web part framework. Within each chapter
we’ll be learning how to get the most out of that particular grouping of controls.
16 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

• Web parts—In many ways, portals only exist to display web parts. After all, it is
the web part that displays what the end-user is ultimately after—whether that is
a Dilbert comic, a newsfeed from Reuters, or just a simple calendar. Therefore,
the web part is a very important piece of the overall portal architecture. In Chap-
ter 2 when we examine the internal workings of the web part control you will
know exactly how the Calendar and Label controls were magically turned into
web parts when they were added to zones in our earlier example.

• Connections—Another major feature of the portal framework is web part con-
nections. Connections allow separate web parts to communicate with one
another at runtime to share information about each other. To more easily visual-
ize this, consider a page with two web parts on it. One of these web parts dis-
plays a listing of employees and the other displays staff photographs. A
connection could be used to synchronize these two web parts so that the photo-
graph matches the employee that has been selected by a user in the other web
part. Connections allow us to maintain these types of interdependencies between
web parts without the need to write lots of tricky application code.

• WebPartManager—I mentioned the WebPartManager before and explained that
it is the most important control in the portal framework because it manages so
many of the tasks. It instantiates the zones and the web parts when the page is first
viewed. It then tracks all of the state changes and monitors movements of web parts
between zones. We also saw in our earlier example how it is used to change the dis-
play mode of the page to allow the user to perform editing operations on web parts.
In chapter 5 we’ll look at the WebPartManger control in detail to learn much
more about each of these features. While we’re at it, we’ll get to see what other
things the WebPartManager has been doing for us behind the scenes.

• Editing—As we saw in our initial example, the portal framework offers an Edi-
torZone that can contain different editor controls. The EditorZone can con-
tain any of the included EditorPart web controls that ship with ASP.NET 2.0
such as the AppearanceEditor, LayoutEditor, BehaviorEditor, and
PropertyGridEditor parts. The requirement for the editor parts is that they
inherit from the abstract EditorPart base class, which each of these parts does.
We’ll learn about these types of editor parts in chapter 5 and then explore them
more fully in chapter 8 where we’ll discuss how to do advanced operations with
them, such as creating our own custom editor part controls.

• Catalog—The last of the major functional components of the portal framework
is the catalog—or gallery as it is known in other applications such as SharePoint.
We’ve mentioned that one feature of portals is how they allow users to add parts
USING THE ASP.NET 2.0 PORTAL FRAMEWORK 17

to pages at runtime. The catalog is the place where a user can go to discover
which web parts are available, and then select them to add to his page. For exam-
ple, a user could open the catalog and search for “weather” web parts and then,
from the listing that results from this search, choose a web part and add it to his
page. The workings of the catalog are discussed in chapter 5. A deeper analysis is
given in chapter 9 when we totally replace the standard catalog with a custom
one of our own.

This section has given us a good high-level understanding of the components of the
portal framework. We’ve also seen what controls the ASP.NET 2.0 portal framework
provides for building portals. While our knowledge of the portal framework is still
fairly limited, we’ve established a basic, core body of knowledge to build upon. And
don’t worry, we’ll learn much more about each of these categories of controls in the
chapters that follow.

1.4 INTRODUCING ADVENTURE
WORKS CYCLES DATABASE

This section opens up for you a new career—and you were ready for a change, weren’t
you? You’ve just been hired as a web application developer for Adventure Works
Cycles. The section introduces you to the Adventure Works Cycles Company and its
major departments, and to the database you will be working with.

Since the early 1990s, almost every book and tutorial about Microsoft technology
has based its database samples on either the Northwind or Pubs databases that have
shipped with SQL Server and Microsoft Access. For SQL Server 2005, Microsoft has
released a new database that is based on a fictitious company named Adventure
Works Cycles.

1.4.1 What is the database?

The Adventure Works database exposes a much richer set of entities than its predeces-
sors. It also models a much more typical set of business scenarios and has groups of
tables that represent the HR, sales, production, and purchasing areas of the business.
Here is a quote from MSDN that describes the database.

NOTE The purpose of this database is to demonstrate a complete solution for
designing an integrated schema and to provide a sample database for
that schema. This edition is designed to be used with Microsoft® SQL
Server™ 2005.

The database schema covers many functional areas for a fictitious bicycle manufac-
turer. These areas include

• Customer/sales force automation and analysis

• Human resources
18 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

• Manufacturing workflow

• Engineering document management

As you can see, the main reason for using this database as the foundation for provid-
ing data scenarios in this book isn’t merely for the sake of using a new technology, but
because it allows the use of real-world examples when demonstrating concepts.

1.4.2 You’re hired!

Throughout this book you can assume that you are a developer who is working for
Adventure Works and receiving requirements from the various departments within
the business, such as HR. Your “job” is to plan and implement those requests within
your application where you’ll be using the web parts to display data. Initially you will
implement a very simple solution and then, as your understanding of the portal
framework grows, you will add customizations to match the increasing complexity of
the requirements. By the end of the book you will have created a highly customized
portal application for the Adventure Works Cycle business.

For the remainder of this section we’ll discuss the Adventure Works Cycles busi-
ness to provide more context as to the nature of the departments within the com-
pany. The Adventure Works business is split up into the cost centers, each
responsible for a different aspect of the business:

• Human Resources—The HR operating division sets company policies, and is
responsible for information relating to employees, their respective departments,
and historical pay data. HR also keeps track of people other than employees,
such as contacts, and stores details about them, such as their address details. Nat-
urally, quite a bit of the HR data is confidential.

• Production—The production center manages stock and ensures that inventory
levels are always sufficient to fulfill orders that are coming through. For auditing
purposes, the production systems have to store information about products,
inventory, stock movements, and work orders.

• Purchasing—The purchasing team liaises with vendors and keeps track of the stock
order details for goods that have been put on order by the production team.

• Sales—The sales cost center keeps track of incoming orders and runs queries over
sales history data. It, obviously, has a heavy data requirement.

Reporting on day-to-day operations

To learn more about the day-to-day operations of these cost centers, let’s start by cre-
ating reports about employee counts and sales figures. Open your preferred query
tool for SQL Server 2005 and start by entering the query and running it.
INTRODUCING ADVENTURE WORKS CYCLES DATABASE 19

SELECT CountOfEmployees = COUNT(EmployeeID)
FROM HumanResources.Employee
WHERE CurrentFlag = 1

When we run this statement in SQL Server, we can see that
the Adventure Works business currently employs 290 staff
as shown in figure 1.9.

Next we’ll expand upon that query by grouping the staff
hires by the year in which they began work. By doing this we can see how the business
has grown. To create the report we still only need to query the employee table to get
the data we need. Enter the SQL code and run the statement.

SELECT [Year Of Hire] = YEAR(HireDate),
 [Employees Hired] = COUNT(EmployeeID)
FROM HumanResources.Employee
GROUP BY YEAR(HireDate)
ORDER BY YEAR(HireDate) DESC

Figure 1.10 shows us the result of running this
statement; and we can see from it that 1999 stands
out as the company’s biggest year for employee
hires, with 198 employees hired.

In listing 1.3 we’ve altered our previous query
slightly so that we can see how the 290 employees
that are currently employed are distributed within
the departments of the business. To present this
data in a meaningful way requires us to join the
EmployeeDepartmentHistory and Depart-
ment tables.

SELECT DepartmentName = dept.[Name],
 EmployeeCount = COUNT(e.EmployeeID)
FROM HumanResources.Employee e,
 HumanResources.EmployeeDepartmentHistory hist,
 HumanResources.Department dept
WHERE hist.EmployeeID = e.EmployeeID
 AND hist.DepartmentID = dept.DepartmentID
 AND hist.EndDate IS NULL
GROUP BY dept.[Name]
ORDER BY EmployeeCount DESC

We can see that the where clause for this query specifies that the EndDate for the
EmployeeDepartmentHistory entry must be null. This ensures that we are only
including the current record for a given employee, and won’t double-up for an
employee who has multiple entries—such as an employee who was transferred

Listing 1.3 Employee count by department query

Figure 1.9 Employee

count results

Figure 1.10 Employee hires

by calendar year results
20 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

between departments. Figure 1.11 shows us that, when we run the query, we can see
that the production department has by far the most employees at 179.

Finally, we can write a query that allows us to see the number of sales that are
made by Adventure Works Cycles to support its 290 employees. To obtain this infor-
mation, we simply need to query the SalesOrderHeader table and add up the
value of sales orders for each year. The following snippet provides the code to do this:

SELECT FiscalYear = YEAR(DATEADD(m, 6, soh.OrderDate)),
 SalesAmount = SUM(soh.SubTotal)
FROM Sales.SalesOrderHeader soh
GROUP BY YEAR(DATEADD(m, 6, soh.OrderDate))
ORDER BY SalesAmount DESC

The results for this query are shown in figure 1.12.
From the results we can see that sales have grown
for each of the three years that the business has
been operating.

Looking at these queries helps us get a feel for
the business. From these queries we can see that
the sales have grown exceptionally between the
years 2002 and 2005. In this time sales have more
than doubled from $2.7 million to just over $6
million. It was therefore not surprising that, look-
ing at the headcounts for each department, pro-
duction and sales lead the way. In fact, of the 290
employees that the business currently employs,
nearly 200 of them work in the production area.

With more than five years worth of sales, HR,
production, and purchasing data, the Adventure
Works Cycles business provides us with an ample
scope for building interesting applications, which is
lucky because that’s exactly what we are about to do!

1.4.3 Getting our hands on data

In order to create a portal for the Adventure Works
business, we will need data. Before we can use that
data, our first task is to create the code that can
access the SQL Server database and return it for us.
This type of code is generally known as data access
code and it sits within a conceptual application
layer commonly referred to as the data layer. In this
section we’ll be creating the data access methods
and the necessary logic to get data for the human
resources department at Adventure Works. To do

Figure 1.11 Employee count by

department results

Figure 1.12 Sales YTD results
INTRODUCING ADVENTURE WORKS CYCLES DATABASE 21

this we will create a project that contains all the methods needed to perform data access
for each department in the Adventure Works business.

The full source code for the AW.Portal.Data project can be found on the associ-
ated source files that come with this book.

NOTE It should be noted that the purpose of the code being shown here is to pro-
vide a simple demonstration of how to retrieve data from SQL Server and
is not intended to act as a demonstration of best practices for creating data
access methods. For brevity, code that would normally be included for the
performance of such tasks as exception handling, security checks, and data
caching has been left out.

Configuring the database connection

The application we’ll be creating in this book is a web portal application, so we can
store the credentials that we’ll use for connecting to the database in the new connec-
tionStrings section of the web configuration file. This section is a new feature in
ASP.NET V2.0 and is the recommended place for storing database connection infor-
mation. The connectionStrings section adds new security-related features to the
configuration file, such as the ability to store connection strings in an encrypted
form. When we add our connection string to the configuration file it looks similar to
what is shown in listing 1.4.

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

<connectionStrings>

 <add
 name="AdventureWorksConnectionString"
 connectionString="Data Source=.\sql2k5;
 ➥Initial Catalog=AdventureWorks;
 ➥Integrated Security=True"
 providerName="System.Data.SqlClient" />
</connectionStrings>

<system.web></system.web>

</configuration>

The configuration data shown in listing 1.4 comes from the Web.config file for our
application and contains the connection string that we’ll be using to connect to the
Adventure Works database. The connectionStrings element of the web configu-
ration file is the best place for connection strings that will be used within a web appli-
cation. This is because there is good API support for reading from this configuration

Listing 1.4 The connection string configuration for the Adventure Works

 database
22 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

section in a strongly typed manner by using the ConfigurationManager class.
Even better, this element can be easily encrypted when deployed into a production
environment so that sensitive security information, such as usernames and passwords,
are not left lying about in clear text within the configuration file.

In our application the data layer will return custom business entity classes. There
are no hard and fast rules about what data types to return from a data layer and ask-
ing any two people will almost certainly result in a differing opinion. Some of your
alternative options will include—but not be limited to

• Custom business entities

• Strongly typed datasets

• XML

As with almost everything in programming, the answer to the question of which data
type to use will almost certainly depend on your circumstances. For example, with
applications that need to expose their data to external parties you will want to use a
more XML-centric approach. Likewise, if your application connects to data but it
only has an occasional connection to the data source, then you may wish to use
strongly typed datasets as your data type since they can help reduce the amount of
code that you need to write in this scenario.

For our application, the choice of custom business entities will work just fine as
we will always be connected, and using them will also ensure that we get strongly
typed access to our underlying data. Custom business entities also work well with
ASP.NET as they are easy to bind to controls such as the Repeater and the new
GridView control.

Creating a data access layer

To get things rolling with our data layer, open Visual Studio and create a new C#
library project named AW.Portal.Data and save it to a convenient location in your
file system. Figure 1.13 shows a new C# class library project being created in a folder
location named C:\Sandboxes\AdventureWorks.

When the project has been created, we want to ensure that the assembly will be
created with the correct namespace and with a desirable assembly name. You can
view these project settings by right-clicking on the project node in the solution
explorer and choosing Properties. Notice that the assembly and namespace are set to
AW.Portal.Data. This means that building the project will create an assembly
named AW.Portal.Data.dll that can be referenced from other projects.

Close the properties window and add a new class file to the project named Data-
Layer.cs by right-clicking on the project in the Solution Explorer and choosing
Add file. This is the class that will contain all the individual methods for each set of
data that we need to return.
INTRODUCING ADVENTURE WORKS CYCLES DATABASE 23

Before adding the data access methods to our DataLayer class, we’ll add a new
property named ConnectionString to it. This property will contain the logic for
specifying the connection string that is used by the DataLayer when connecting to
the database. Listing 1.5 shows how this is implemented in code:

namespace AW.Portal.Data {

 public class DataLayer {

 public DataLayer() { }

 public string ConnectionString {
 get {
 ConnectionStringSettings setting =

ConfigurationManager.ConnectionStrings["AdventureWorksConnectionString"];

 if (setting == null) {

Figure 1.13 Creating a new class library project in Visual Studio 2005

Listing 1.5 The DataLayer class includes the logic for retrieving the connection

 string information from the configuration file. This is achieved with

 help from the ASP.NET ConfigurationManager class.

ConnectionString
is retrieved

ConfigurationManager encapsulates logic
of accessing configuration data
24 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

 string errorString =
 “You must configure the connection
 ➥string in the web config file.” ;
 throw new ConfigurationErrorsException(errorString);
 }

 return setting.ConnectionString;
 }

 }
 }
}

Notice that we get the connection string information from the Configuration-
Manager class. The ConfigurationManager is a new class in ASP.NET 2.0 that
was added to help perform tasks related to accessing configuration data. The Con-
figurationManager class is contained within the System.Configuration
assembly. You may have to add a reference to the System.Configuration assem-
bly from the DataLayer project if it is not already present before you can reference
the ConfigurationManager in your code.

Figure 1.14 shows the Add Reference dialog in Visual Studio with the System.
Configuration assembly selected and ready to be included as a project reference.

The fully qualified name of the ConfigurationManager class is its namespace
followed by its class name, which is System.Configuration.Configuration-
Manager. However, in listing 1.5 you can see that we have only used the class name.
In order for the code to compile, we must import the namespace into our class by

Figure 1.14

The Add Reference dialog in

Visual Studio 2005 allows

us to create references to

shared libraries from within

our .NET projects.
INTRODUCING ADVENTURE WORKS CYCLES DATABASE 25

using the C# using directive. Add the following using directive at the top of the
class file:

using System.Configuration ;

Now that the namespace has been added to the class file we are able to use unquali-
fied type names within our code and have it compile successfully.

Defining the SQL queries

For this application we will not use stored procedures, but instead be use parameterized
SQL that is embedded in the data layer as strings. Open up the AW.Portal.Data
project and add a new C# class file named SQL.cs. The SQL file will contain all the
SQL strings and will be accessed by the data access methods. Listing 1.6 shows some of
the SQL strings embedded within a static class.

NOTE For the sake of brevity, the following listing shows the code for only a few
of the SQL strings. The remainder of the SQL strings can be found in the
code in the associated source files that come with this book.

public static class SQL {

 public static readonly string ListDepartments = @"
 SELECT dept.DepartmentID, DepartmentName = dept.[Name], GroupName,
 EmployeeCount = (SELECT COUNT(hist.EmployeeID) as EmployeeCount
 FROM HumanResources.EmployeeDepartmentHistory hist
 WHERE hist.DepartmentID = dept.DepartmentID
 AND hist.EndDate IS NULL)
 FROM HumanResources.Department dept
 ORDER BY GroupName, DepartmentName";

 public static readonly string ListEmployeesByDepartment = @"
 SELECT e.EmployeeID, p.FirstName, p.LastName, e.Title as JobTitle
 FROM HumanResources.Employee e,
 HumanResources.EmployeeDepartmentHistory hist,
 Person.Contact p
 WHERE hist.EmployeeID = e.EmployeeID
 AND p.ContactID = e.ContactID
 AND hist.DepartmentID = @departmentID
 AND e.CurrentFlag = 1
 ORDER BY p.LastName";

 public static readonly string ListJobCandidates = @"
 SELECT JobCandidateID, Resume.query('
 declare namespace
ns=""http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
Resume"";
 data(/ns:Resume/ns:Name/*)') as CandidateName,

Listing 1.6 SQL.cs

Parameterized SQL

XQuery to query XML values
26 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

 Resume.query('
 declare namespace
ns=""http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
Resume"";
 data(/ns:Resume/ns:Skills)') as Skills
 FROM HumanResources.JobCandidate
 WHERE EmployeeID IS NULL";

}

Notice that the query named ListJobCandidates makes use of an XQuery expres-
sion to perform an XPATH query on the Resume field. XQuery is a language addition
in SQL Server 2005 and allows you to query XML data stored in the database using the
query() expression. In this case the Resume field in the HumanResources.Job-
Candidate table is stored in an XML type column.

Custom business entities

The SQL strings that we’ve defined will allow us to retrieve data from SQL Server.
This is the same data that will be displayed from within the web parts on our portal.
For example, the ListDepartments SQL could be used by a web part whose job it
is to display a listing of departments to users. To make this data usable from within
our portal application, we’ll make sure that the properties of our custom business
entity classes align to fields in the SQL that we have defined. When data is returned
from SQL Server we can load it into the properties of a corresponding business entity
and return it to our portal application.

Each business entity class will have a single method named Fill which takes a
SqlDataReader object that is returned from the database and reads the values from
it, mapping them to the properties of the class. Because this method is common to all
business entity classes we can extract its definition to an interface. Being able to refer-
ence the Fill method via an interface allows us to write generic code when using
it—as we’ll see shortly. Listing 1.7 displays the code for the interface, and also for a
business entity which implements it named Employee.

namespace AW.Portal.Data {

public interface IBusinessEntity {

 void Fill(SqlDataReader reader) ;

}

XQuery to query XML values

Listing 1.7 The Employee class is an example of a business entity class. These

 classes expose a property for each field that is returned from an SQL

 query. Each business entity also provides a Fill method which reads

 the data returned from the query to its properties.

Method named
Fill is defined on
interface
INTRODUCING ADVENTURE WORKS CYCLES DATABASE 27

public class Employee : IBusinessEntity {
 private int _id;
 private string _firstName;
 private string _lastName;
 private string _jobTitle;

 public int ID { get { return _id; } set { _id = value; } }
 public string FirstName {

 get { return _firstName; }
 set { _firstName = value; }
 }
 public string LastName {
 get { return _lastName; }
 set { _lastName = value; }
 }
 public string JobTitle {
 get { return _jobTitle; }
 set { _jobTitle = value; }
 }

 public void Fill(SqlDataReader reader) {
 _id = reader.GetInt32(0);
 _firstName = reader.GetString(1);
 _lastName = reader.GetString(2);
 _jobTitle = reader.GetString(3);
 }
}

}

Notice that the Employee class contains a property for each field returned by the
ListEmployeesByDepartment SQL and that the Fill method is used to map the
data returned from that SQL into the properties. In just a moment we’ll write the
generic helper method that will connect to the database and retrieve data from it.
This helper code will then call the Fill method on the relevant business entity
object, passing in the SqlDataReader. By having the Fill method defined on an
interface, this helper class does not need to know about any of the actual business
entities as it can communicate through the interface.

Data helper functions

The helper method that we are about to create will perform the tasks common to all
data access operations. It will prepare the SQL, add it to an SqlCommand object, and
fire the query against the database. Even though this code must be run for all
business entities, it needs to be written only once because the logic is the same
regardless of the business entity that it is operating over. From within the
AW.Portal.Data project, open the DataLayer.cs file and add the code for the
helper method shown in listing 1.8.

Business entity
implements
interface…

…And provides custom
implementation of
interface method
28 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

private T GetDataItem<T>(string commandText, string[] parameterNames,
object[] parameterValues)
 where T : IBusinessEntity, new() {

 SqlConnection cnn = new SqlConnection(this.ConnectionString);
 SqlCommand cmd = new SqlCommand();
 cmd.CommandType = CommandType.Text;
 cmd.Connection = cnn;
 cmd.CommandText = commandText;

 if (parameterNames != null && parameterNames.Length > 0) {
 for (int i = 0; i < parameterNames.Length; i++) {
 cmd.Parameters.AddWithValue(

parameterNames[i],
parameterValues[i]
);

 }
 }

 T dataItem = new T();

 try {
 cnn.Open();

 using (SqlDataReader reader = cmd.ExecuteReader()) {
 if (reader != null) {
 reader.Read();
 dataItem.Fill(reader);
 }

 }
 } finally {
 if (cnn.State == ConnectionState.Open) {
 cnn.Close();
 }
 }

 return dataItem;
}

NOTE This generic method executes a statement and returns a single business en-
tity. The completed project that comes with this book also contains a sec-
ond method named GetDataItems for executing statements and
returning collections of business entity objects.

As we’ll illustrate, having this data access logic allows us to use a single line of code to
execute SQL queries from a calling method, and ensures that all of the code for creating

Listing 1.8 GetDataItem method uses a new feature of the .NET Framework

 known as Generics to allow its code to run over any type which

 conforms to the generic constraints that are specified.

Specify Generic constraints

Add parameters
to our command

Read data into item
INTRODUCING ADVENTURE WORKS CYCLES DATABASE 29

connections and cleaning them up is common. This in return reduces the chances of
introducing logic errors in multiple places. You can also see that the code uses a new
feature of the .NET Framework known as Generics. Generics is a powerful new addition
to the .NET Framework in the 2.0 release that allows a developer to write code against
types that are not defined until runtime, and provides a way to use generic constraints
to constrain the types of data that can be accepted.

Notice how our IBusinessEntity interface allows these generic helper meth-
ods to call Fill(...) on an object that is merely defined as a T. This is because of
the Generic constraints that are added to the method informing the compiler that T
is a type of IBusinessEntity. Adding the new() constraint to the generic T item
allows it to create new instances of the generic T type.

NOTE For more information about Generics, you can read the excellent article in
the Msdn Magazine that can be found at the following URL: http://ms-
dn.microsoft.com/msdnmag/issues/03/09/NET

Creating data access methods

Finally, it’s time to add the data access methods that will be callable from the web appli-
cation and will return the appropriate data to the web application. I’m only going to
show and discuss two of the methods that return HR-related data but the actual source
file and assembly that come with the book contain all the data access methods that are
required to supply data for all departments within the Adventure Works business.

The following code snippet shows a method named ListDepartments, which
calls the generic GetDataItems method to return a collection of Department busi-
ness entities from the database. The Department class is passed as the generic argu-
ment to the ListDepartments method, allowing the generic code to use type
information for the Department class.

public List<Department> ListDepartments() {
 return GetDataItems<Department>(SQL.ListDepartments, null, null);
}

The code for returning a single business entity is shown in the following snippet. This
is very similar to the code used for returning a collection of business items. On this
occasion the Employee class is passed as the generic argument.

public Employee GetEmployeeDetails(int employeeID) {
 return GetDataItem<Employee>(SQL.GetEmployeeDetails, new string[] {
"@employeeID" }, new object[] { employeeID });
}

That’s it for the data access layer, and I hope that you have appreciated how simple
these methods are—just a single line of code is all that is required to run statements
against our DataLayer and obtain results. All of our hard work has been worth-
while! While creating our data access code we’ve seen some interesting new .NET 2.0
features. These were
30 CHAPTER 1 INTRODUCING PORTALS AND WEB PARTS

• The use of generics to write algorithms that can run against any single data type

• The use of the new XQuery language to query data stored within XML data
fields in SQL Server

• The new connectionStrings configuration setting in web applications to
store connection string information

For the remainder of this book, we will be creating a web application that references
this data layer to get data for the Adventure Works web portal components. The
actual data layer that you’ll be using is contained in the chapter 1 folder of the
resources that came with this book.

1.5 SUMMARY

This chapter introduced web parts and the ASP.NET Portal Framework, and in the
process we managed to come up with our own working definition of a portal. In
addition, we looked at the Adventure Works Cycles database and saw how to write
some basic queries against that database to retrieve a line of business data about the
company. The main reason for looking at this line of business data is that throughout
book we’ll be working with that data and building web parts to present views of it to
end users.

Upcoming chapters build on this data access code by creating a portal application
for the Adventure Works business. In fact, in the next chapter the first set of require-
ments are issued by the HR department, and we start by creating the web application
and applying the first set of web parts to it. In the process, as we use the data access
layer to retrieve data for our application, we’ll see the benefits of the hard work that
went into building that layer.
SUMMARY 31

C H A P T E R 2

Web parts: the building
blocks of portals

2.1 Introduction 32
2.2 Exploring web parts 33
2.3 Understanding the WebPart

class 38
2.4 Understanding web part

internals 45

2.5 Applying themes and styles 54
2.6 Adding web parts to the Adventure

Works Solution 59
2.7 Summary 64
2.1 INTRODUCTION

You may already be acquainted with web parts and web part controls, and if you’ve
worked with products such as SharePoint you have already used them quite exten-
sively. (If these topics are not familiar, please dip into chapter 1 for a quick refresher.)
Before you start this chapter, I recommend that you whet your appetite by seeing real
examples of how web part controls allow users to customize the look and feel of web
applications. To do so, visit http://Start.com.This is a web-based portal created by
Microsoft Research. Notice how it provides a variety of methods to customize the
page, by adding web parts and configuring them. For example, while at that page
you could add a web part to display the current news from one of a dozen news pro-
viders, or display the weather for any city in the world. If you’re like me, you could
lose many hours configuring that page to exactly suit your fancy. And guess what—
once you’ve done it, it’s your page! Every time you visit that page, all the web parts
you added, configured, and moved around will be there for you—just the way you
left them.
32

http://Start.com

In chapter 1 we learned that web parts are an integral aspect of a portal applica-
tion. This chapter supplies a more exhaustive understanding of web parts, in particu-
lar how they are implemented in ASP.NET 2.0 portal applications.

This chapter is the first step in a journey through the properties, methods, and
operations of web parts. In it we’ll learn how to add custom verbs to web parts and
how to customize their look and feel through themes and other customization tech-
niques. We’ll also delve a little deeper into the subject to see how web parts imple-
ment various interfaces that expose their behavior to the rest of the ASP.NET web
portal framework. By the end of this chapter we’ll be well on our way to understand-
ing how the http://Start.com website achieves its magic. Let’s begin!

2.2 EXPLORING WEB PARTS

Web parts are informational components, such as news updates or comics, that are
added to web pages; and as such, web parts can be considered the primary building
blocks of a portal application that displays dynamic content. In ASP.NET 2.0 we are
provided with the WebPart server control for working with web parts. The WebPart
server control comes pre-packaged with many properties and methods needed to use
it in a variety of ways to show dynamic content to users.

The composition of web parts

A web part is generally rendered with a title bar, a border, and a body for displaying
its dynamic content. The web part is manipulated by a web control that allows a user
to work with and customize the web part. For example, users can set the web part’s
height or width and provide it with a title and description. Other manipulations of web
parts are accessed through small menu-like items known as verbs. These operations
include performing tasks such as closing the
web part, minimizing it, or connecting it to
other web parts on the page. Figure 2.1 shows
the basic elements that make up a standard
web part control.

In figure 2.1 we can see the various sub-
elements that combine to form a web part.
Throughout this chapter we will learn more
about each of these elements and see how to
use the WebPart class to modify or affect
each different element. Understanding how
to gain access to each of these elements will
take us a long way down the path towards
having full control over how our web parts
are displayed to the end-users of our portal.

Figure 2.1 The sub-elements of a Web-

Part control.
EXPLORING WEB PARTS 33

http://Start.com

Categorizing web parts

So far you’ve bumped into lots of buzzwords and phrases about web parts; but aside
from a minor example, we have yet to learn exactly what they are. Are they simply
common ASP.NET server controls? Or are they more like ASP.NET user controls? Do
they ship as part of the core set of ASP.NET server controls? Answering these questions
is logically the best place to begin our exploration of the ASP.NET WebPart control.

The simple example application that we built in chapter 1 showed that when we
added standard ASP.NET server controls, the Calendar and the Label, to a web
part zone, a transformation magically occurred—they became web parts. We saw that
suddenly those controls had verbs, they now had titles, and they had properties that
could be edited at runtime via the editor parts. To answer the question of “what is a
web part?” we need to do some investigative work and discover more of the magic
that turned those standard server controls into web parts!

2.2.1 Discovering the GenericWebPart control

In order to understand what happened to the Label and Calendar controls in the
previous chapter, we’re going to need to put our debugging skills to the test and deter-
mine how all these web part controls interact with each other. To do that we’ll set up
a web page and add web part controls to it. After that we’ll add code to the page that
will access those parts. Finally, when we attach the debugger to the code and run it
we’ll have a clear view of the state of those objects at runtime. Completing those steps
will give us a much clearer view of how the transformation occurred.

NOTE This book is designed to be very hands-on, and as such we will frequently
be writing small pages to try new things as we learn about them. Therefore,
it would be a good idea to create a new ASP.NET project in Visual Studio
that can be used to create ad-hoc web pages for testing. For the remainder
of this book I’ll refer to this test project as “your test project.”

Creating a web page

Open your test project and create a new web page named GenericWebPart-
Test.aspx. This page will be used to learn how these web controls are turned into
web parts. As with all web pages that contain web parts, we must start by adding a
WebPartManager control at the top of the page. Finally, we can add a WebPart-
Zone and add a Label control to it. With that, our code should look like the follow-
ing snippet:

<asp:WebPartManager ID="WebPartManager1" runat="server" />

<asp:WebPartZone ID="WebPartZone1" runat="server">
 <ZoneTemplate>
 <asp:Label id="ctl1" runat="server" Text="I'm a label" />
 </ZoneTemplate>
</asp:WebPartZone>
34 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

All that we know at this stage is that at some time between now and when this page is
displayed in a browser, the Label control that we added to the web part zone starts
looking and behaving like a web part. We know this because we saw that the label
gained two characteristics common to web parts—a Title and Verbs—when it was
contained within the web part zone in the previous chapter. Next we‘ll write code
that allows us to view the state of the page at runtime. Switch into the code section of
the web page, enter the code, and set the debugging breakpoints that are displayed in
figure 2.2.

After an ASP.NET has been processing a good while, it enters into a phase that is
referred to as the pre-rendering phase of the page. During the pre-rendering phase of
the page, the OnPreRender event handler in the page is called by the ASP.NET
engine, which causes code in our method to be executed. At this time, page execution
will halt at the breakpoints that we’ve set. When the execution halts at runtime, we
can inspect the state of the controls on the page at runtime. The control that we are
interested in is WebPartZone1.

A WebPartZone control has two properties that are of particular interest to us
because they will provide information regarding where our Label control is, and
what type of control it is. These properties are called “Controls” and “WebParts”
and, as you may guess from their names, they contain collections of controls that are
contained by the web part zone. Logic would have us believe that the Label control
will turn up in the WebPartZone’s “Controls” collection because it is a web control
but, from what we’ve observed, it’s pretty easy to expect that it will show up in the
“WebParts” collection instead. Let’s run the page and see. From the Debug menu in
Visual Studio, press Start Debugging to run the page and attach the debugger to it.

Debugging the page

The page runs and stops at the breakpoints, allowing us to place our mouse over the
breakpoints and inspect the state of each variable. Hovering over the countOfWeb-
Parts variable that we declared indeed does prove that the zone now contains one
web part control as shown in figure 2.3.

Figure 2.2 Code and debugging breakpoints are used to inspect the state

of controls on our page during the pre-rendering phase of the page lifecycle.
EXPLORING WEB PARTS 35

Similarly, hovering over the countOfControls variable will display zero for its
value. This tells us that the web part zone now believes that it contains no web con-
trols. Hover over the last breakpoint and you’ll see that the name of the Type of the
web part is GenericWebPart as displayed in figure 2.4.

With the page still in debug mode, right-click on the wp variable and choose the
“Quick Watch” menu option from the resulting context menu. In response, the
Quick Watch dialog is displayed for the wp variable allowing us to see the values for
all of its properties. Figure 2.5 displays the Quick Watch dialog with many of the
properties for the wp variable shown.

In the Quick Watch dialog we can see that the GenericWebPart has a large
number of properties that do not belong to the Label class but, instead are members
of the WebPart class. These properties include: “IsClosed,” “Title,” “CatalogI-
conImageUrl,” and “ChromeState” to name just a few. We see that there is also a
property named “WebBrowsableObject” and that it is currently displaying a value
of {Text = “I’m a label”}—the very same text value that we assigned to the original
label in the mark-up for the page! This is quite a significant discovery, because it tells
us that the very same Label control that we added to our WebPartZone earlier has
been replaced with a new Type of control and has been wrapped by the WebBrows-
ableObject property. We can actually still get at the underlying Label control via
the ChildControl property of the GenericWebPart—as demonstrated by the

Figure 2.3 While stepping through code in debug mode you can place the mouse cursor

above variables to display their state.

Figure 2.4 Displaying the Type of the web part at runtime shows that it is no longer

a Label but is now a GenericWebPart control.
36 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

code in listing 2.1. Why would we want to get at the underlying control of the
generic web part? One reason might be that we are using a control such as a Grid-
View as the child control and we need to access the GridView after a page postback
to re-bind it to a data source control.

protected override void OnPreRender(EventArgs e) {
 base.OnPreRender(e);

 int countOfControls = this.WebPartZone1.Controls.Count;
 int countOfWebParts = this.WebPartZone1.WebParts.Count;

 foreach (WebPart wp in this.WebPartZone1.WebParts) {
 if (wp is GenericWebPart) {
 Type t = ((GenericWebPart)wp).ChildControl.GetType();

Figure 2.5 The Visual Studio 2005 Quick Watch window displays the runtime values

of objects.

Listing 2.1 The ChildControl property of the GenericWebPart provides access to

 the underlying web control that is wrapped by the GenericWebPart.

Cast the web part to a
GenericWebPart to get at
the ChildControl property
EXPLORING WEB PARTS 37

 string typeName = t.Name;
 }
 }
}

Having viewed the page at runtime, we saw that the portal framework elevated the
label to the status of a web part by enclosing it within a GenericWebPart wrapper
before adding it to the zone. This occurs for all non-web part controls that are added
to web part zones, including user controls. Being able to create user controls and have
them treated as web parts makes it possible to create web parts very rapidly and easily
compared to the alternative—which is to create web parts directly by inheriting from
the WebPart class. To get a feel for some of the differences, let’s take a look at what’s
involved when we create web parts by inheriting from the WebPart class. In doing so
we’ll better understand how to work directly with the WebPart class and we’ll also
get to see how web parts are rendered.

2.3 UNDERSTANDING THE WEBPART CLASS

Up until now, all the web parts that we’ve seen have been created by simply adding server
controls—such as the Calendar and Label—to zones within the page. Now it’s time
to learn about another kind of web part control—a custom server control that directly
inherits from the abstract WebPart base class. In this section we will create a web part
by inheriting directly from the WebPart class and then learn how to add our custom
web part to a web page by registering our custom web part class with the page.

Dragging user controls onto zones and having them treated as web parts is fine
when the web parts do not need to be shared outside a single application; but part of
the power of web parts is that, by their very nature, they lend themselves well to being
reused in more than just a single portal application. For reuse, user controls cannot
surpass custom controls, because custom controls can be compiled into very specific
assemblies and easily shared between applications. If you need to share web parts
between your own applications, or indeed, package them for reuse by third parties,
then you will want to create custom controls so that you can take advantage of the
packaging of assemblies.To do this you will need to create custom classes that derive
directly from the WebPart class.

The WebPart class lives in the System.Web.UI.WebControls.WebParts
namespace and serves as the base class for all web part controls. In fact, if you look at
the definition of GenericWebPart, you will see that it does in fact inherit from the
WebPart class. The WebPart class itself inherits from a base class named Part.
The Part class has the basic properties that are relevant for all web part “parts”—
including editor parts and catalog parts such as description, title and a few others.

2.3.1 Using custom controls

We’ve just seen that, when creating web parts, we have two options. The first option
is to create a class that derives directly from the WebPart class, and the second option

Returns "Label"
38 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

is to drop user controls or server controls onto a web zone
and have the framework place those controls within a
generic wrapper known as a GenericWebPart. Let’s now
take a look at how to create web parts using each of these
two methods.

The first web part that we’ll build is a custom server
control that inherits directly from the WebPart class.
This will allow us to see for the first time what’s involved
in getting a web part up and running using that method.
The web part that we will build will be a weather web part
to display the weather for a variable number of days. It
will have a property that allows us to specify how many
days of weather to display. This is a good example of the
sort of informational web part that would appear on a
typical portal. Figure 2.6 displays what the weather web
part control will look like when displayed in a browser.

Creating a weather web part

To start creating the weather web part, open your test web project and add a new class
file named “CustomWeatherPart.cs” to the WebPart folder and then derive that class
from WebPart. At this point your class should look similar to the following snippet:

namespace WebPartTests {

 public class CustomWeatherPart : WebPart {

public CustomWeatherPart() { }
 }

}

To allow users to set the number of days of weather to be displayed, we’ll add a prop-
erty named NumberOfDays. By default we’ll set it to a value of 4 so that at least that
number of days of weather will be displayed—even before the user has had time to
configure it to be some other value. We can store the value for this property in View-
State so that it is persisted even after multiple trips between the browser and the
web server (postbacks). The last bit of logic to be added ensures that the user cannot
accidentally set the number of days to a value greater than 10 or less than 1. The code
for our property is shown in listing 2.2, with all of its logic in place.

public int NumberOfDays {
get {

if (ViewState["NumberOfDays"] == null) {
return 4;

} else {

Listing 2.2 The NumberOfDays property contains the number of days of weather

 that should appear in the web part.

Figure 2.6 This custom

web part control displays

random weather infor-

mation for a variable

number of days.
UNDERSTANDING THE WEBPART CLASS 39

return (int)ViewState["NumberOfDays"];
}

}
set {

if (value < 1 || value > 10) {
ViewState["NumberOfDays"] = 4;

} else {
ViewState["NumberOfDays"] = value;

}
}

}

The NumberOfDays property can now be used to specify how many days of weather
our control will display; and the constraints that were added to the property ensure
that there will always be some number of days to display weather for.

Rendering custom controls

When you work with custom server controls, one of the problems you face is that user
interface elements are created by using code, as opposed to standard HTML and
markup. Displaying a control in code requires creating every facet of it, including its
style information in code. This is not the case when using user controls because you can
use Visual Studio’s design-time tools to simply drag controls from the toolbox onto the
surface of the user control. What’s more, once the controls are on the design surface,
the developer can use design time tools, such as property editors and other wizards that
exist within Visual Studio, to develop and maintain the properties of the control.

You create user interface elements for custom server controls by writing code that
runs during the control’s Render method. The Render method is a method that is
common to all web controls and is called by the ASP.NET runtime to display every
web control. In the Render method you write your user interface elements directly
into an HtmlTextWriter object that is passed in as a parameter to that method by
the ASP.NET Framework.

NOTE The Render method is a virtual (overridable) member of the Sys-
tem.Web.UI.Control class. This is a class that all server controls inherit
from.

For our custom weather web part control, we’ll use some logic to randomly produce a
weather result for a variable number of days, and then create a weather image for each
day of weather. In reality you would likely have some back-end process—such as a web
service—that would return actual weather results. Add the code shown in listing 2.3 to
your class and build the project to see that everything compiles.
40 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

private enum WeatherType {
 Sunny = 0,
 Rainy = 1,
 Cloudy = 2,
 Unknown = int.MaxValue

}

protected override void Render(HtmlTextWriter writer) {

 Random rand = new Random();

 for (int i = 0; i < this.NumberOfDays; i++) {

 int weatherValue = rand.Next(1000) % 3;
 WeatherType todaysWeather = (WeatherType) weatherValue;

 Image img = new Image() ;
 img.ImageUrl =

 string.Format("~/images/{0}.gif", todaysWeather.ToString()) ;
 img.AlternateText = "Today's weather";

 writer.AddStyleAttribute(HtmlTextWriterStyle.TextAlign, "center");
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 img.RenderControl(writer);
 writer.WriteBreak();
 writer.Write(todaysWeather.ToString());
 writer.RenderEndTag(); // end Div
 }
}

In the Render method we have constructed a simple loop that will run for as many
days as we have weather to display and, within each loop, a weather picture is pro-
duced and rendered.

NOTE The HtmlTextWriter that we’ve used to render our weather web part is
a customized text writer that simplifies the task of writing HTML and is
also capable of rendering specific output based on the device that is target-
ed. For example, when the page is visited by an older browser, the Html-
TextWriter will automatically emit down-level markup.

Adding custom controls

That completes the creation of the custom web part; all that remains is to create a
web page to contain and display it—and from now on we’ll refer to web pages that
contain web parts as “web part pages,” to distinguish them from ordinary web pages.

Listing 2.3 The Render method for the weather web part displays a series of

 random weather images.

Create enum to use in code

Create random
number between
0 and 3

Choose one of 4 images
based on result of random number

Render weather image
UNDERSTANDING THE WEBPART CLASS 41

Add a new web page to your project named CustomWeather.aspx and, as with all
web part pages, add a WebPartManager to it. You must also declare the server con-
trol to the page by using a Register directive at the head of the page as shown here:

<%@ Register TagPrefix="wp" Namespace="WebPartTests" %>

When you have registered your controls to the page you can then reference your cus-
tom web part within a ZoneTemplate—making sure to use the same tag prefix as
declared in the register directive:

<asp:WebPartZone ID="WebPartZone1" runat="server">
<ZoneTemplate>

<wp:CustomWeatherPart
ID="CustomWeatherPart1"
runat="server"

 Title="Weather Forecast" />
</ZoneTemplate>

</asp:WebPartZone>

As we saw in figure 2.6, when this page is displayed in a browser, it will render the
weather web part with the default four days’ worth of weather visible. To change the
number of days that are displayed you can just add the NumberOfDays property in the
markup of the server control or set the value in code. The following snippet shows the
property being set within the markup to display an entire week’s worth of weather.

<wp:CustomWeatherPart
ID="CustomWeatherPart1"
runat="server"
NumberOfDays="7"
Title="Weather Forecast" />

2.3.2 Creating web parts with user controls

We’ve seen labels and calendars that magically morph into GenericWebParts and
custom server controls that derive from the WebPart class being used to create web
parts; but we haven’t as yet seen a web part created using a UserControl. Being able
to use user controls as web parts allows developers to create user interfaces employing
exactly the same techniques they applied when creating web pages. This includes hav-
ing the ability to drag-and-drop controls from the Toolbox onto the design surface.
For this reason, user controls may also be easier to understand for someone who is rel-
atively new to ASP.NET and who would benefit from the better design time experi-
ence that they would get when creating user controls in Visual Studio 2005. One
advantage includes being able to drag controls directly from the Visual Studio 2005
Toolbox onto the surface of user controls as opposed to having to work solely in code.

The weather web part that we built had a very simple user interface and therefore
the rendering code and logic were not overly complex; but as the amount of presenta-
tion code that is required for a control increases, custom server controls can become
quite difficult to create and maintain because you tend to end up writing many lines
of code to create the user interface layout.
42 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

Displaying calendar appointments

In this next example a user control will be used
to create a web part that displays the current
date and time. The web page will also display
information to the users about upcoming meet-
ings from their calendars. In our example, how-
ever, we’ll again use hard-coded sample data for
simplicity rather than writing the code that
would be required to connect to a real calendar.
Figure 2.7 shows how this web part will appear
when it’s complete.

From within your test web project, add a new
user control file named MyCalendar.ascx to
the project. To create the user interface elements
necessary to display our control, add the markup
that is displayed in listing 2.4 to the control.

<h3>Current Date and Time</h3>
<div>
 Date:
 <%= DateTime.Now.ToShortDateString() %>
</div>
<div>
 Time:
 <%= DateTime.Now.ToShortTimeString() %>
</div>

<h3>Upcoming Meetings</h3>
<asp:Repeater ID="rptMeetings" runat="server">
 <ItemTemplate>
 <p>
 <%# Eval("MeetingName") %>

 <%# Eval("MeetingDateTime") %>

 </p>
 </ItemTemplate>
</asp:Repeater>

Listing 2.4 creates the presentation layout for the web part. As you can see, there is a
Repeater server control named rptMeetings that binds to some fields named
“MeetingName” and “MeetingDateTime.”

Listing 2.4 The HTML to display the calendar user interface

The Date and Time
interface elements

The Calendar
interface elements

Figure 2.7 A user control web

part is used to display the current

date and time. It also displays in-

formation about upcoming meet-

ings for the logged-in user.
UNDERSTANDING THE WEBPART CLASS 43

Binding dynamic data

I mentioned before that, in a real world situation, the data we are displaying would be
coming from a live backend, line-of-business application such as a Customer Rela-
tionship (CRM) database that contains information about the contacts and customers
of a business. However, in our example, those fields are going to come from some
sample data held in a data table. To create the data and bind it to the repeater, switch
to source code view and add the code displayed in listing 2.5 to the form:

protected override void OnLoad(EventArgs e) {

 base.OnLoad(e);

 DataTable dt = new DataTable("MeetingData");
 dt.Columns.Add("MeetingName", typeof(string));
 dt.Columns.Add("MeetingDateTime", typeof(DateTime));

 DataRow row1 = dt.NewRow();
 row1["MeetingName"] = "AGM";
 row1["MeetingDateTime"] = DateTime.Now.AddDays(.2);
 dt.Rows.Add(row1);

 DataRow row2 = dt.NewRow();
 row2["MeetingName"] = "Lunch with CEO";
 row2["MeetingDateTime"] = DateTime.Now.AddDays(1.3);
 dt.Rows.Add(row2);

 this.rptMeetings.DataSource = dt;
 this.rptMeetings.DataBind();

}

The code in listing 2.5 shows that a DataTable is created and two columns are
added to it that will contain the information about meetings. Next, dummy data is
appended to the table before we finally bind the table to our repeater control, which
contains the user interface logic to display the data to the user.

That completes the code for the user control. Now we can create a web page to
display it in. Add a page to your test web project and, as with all web part pages, add
a WebPartManager and a WebPartZone to the page.

With the page in design mode, drag the user control that we just created from the
Server Explorer onto the web part zone. Listing 2.6 shows how the page appears
when displayed in source view. You can see that the designer has added a Register
directive for the user control and also added the correct mark-up for the user control
into the body of the ZoneTemplate. Build and run your page in a browser to view
the results. They should appear as they did in figure 2.7.

Listing 2.5 Data is created and is bound to the user interface elements of our

 Calendar web part control

Add columns to
a DataTable to
store data

Add some rows
of data to the
DataTable

Add some rows of
data to the DataTable

Bind the DataTable
to the user interface
44 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

<%@ Register Src="MyCalendar.ascx" TagName="MyCalendar" TagPrefix="uc1" %>

<asp:WebPartZone ID="WebPartZone1" runat="server">
<ZoneTemplate>

<uc1:MyCalendar
id="MyCalendar1"
runat="server"
Title="My Calendar" />

</ZoneTemplate>
</asp:WebPartZone>

Now you’ve seen both options for creating web part controls. That is, you can either
create them by using custom server controls and by inheriting from the base WebPart
class, or you can use user controls. In a very short time we’ve actually managed to build
web parts by using both custom server controls and user controls. Ideally, as you’ve
been working through these samples you’ve started thinking of all the different types
of web parts that a real business might want to have displayed on its portal—employee
information, sales data, production figures, profit and loss data, and so on. As we move
further into the book, you’ll learn that the portal framework comes complete with a
catalog to store all these parts. Then you will see that having too many web parts never
presents a problem, because they can all be stored and easily retrieved from within the
catalog gallery, ready to be displayed on a user’s page at any time.

2.4 UNDERSTANDING WEB PART INTERNALS

So far we’ve seen and created custom controls by deriving from the WebPart class and
also created GenericWebPart controls by adding server controls and user controls
directly to web part zones. Now it’s time to zoom in on the WebPart class. What are
the interfaces and properties that the WebPart class supports? How do these interfaces
and properties allow other portal framework components to interact with it?

An important feature of the WebPart class is that it implements interfaces that
allow it to describe its properties and behaviors to other members of the portal frame-
work as described in table 2.1.

Listing 2.6 The MyCalendar user control web part is declared within the

 web part zone

Table 2.1 The WebPart class implements three interfaces

Interface Description

IWebPart Describes the core properties of a web part
such as its Title, Description, Height, and Width

IWebActionable Describes how a web part provides verbs

IWebEditable Describes a web part that provides custom edi-
tor parts for managing some of its properties
UNDERSTANDING WEB PART INTERNALS 45

Because the WebPart class implements these three interfaces, each of the different
members of the portal framework can interact with all web parts. For example, when
a page is first displayed, each web part is handed to the web part manager. The man-
ager then uses these interfaces to determine what capabilities a web part has. There-
fore, when the manager was handed our weather web part, it didn’t have to know
anything about what properties we had given it, but by virtue of the fact that the
weather web part is a web part, the web part manager knew that the control would
have certain distinguishing features such as a Title and Verbs, etc.

In the sections that follow we’ll spend time going over each of those three inter-
faces described in table 2.1 to gain a better understanding of how they are used by the
portal framework, and also how we can use them to extend and customize the behav-
ior of web parts that we create.

2.4.1 IWebPart

The IWebPart interface defines the properties that are common to all web parts.
The following is a list of each of the properties that are exposed by the IWebPart
interface.

• CatalogIconImageUrl—the URL of an image that is displayed for a web part
when that part is displayed in a catalog of web parts.

• Description—Descriptive text about a web part that is displayed for a web part
when that part is displayed in a catalog of web parts. This property is also used
to display tooltip information about a web part.

• Subtitle—Combines with the Title property to form the complete title for a
web part control.

• Title—the title of a web part control.

• TitleIconImageUrl—the URL of an image that is displayed in the web part’s title
bar.

• TitleUrl—a URL to a link containing additional information that is related to
the web part.

Implementing the common web part properties

When you create a custom web part by inheriting directly from the WebPart class
you will have access to each of the properties listed above in your code because the
IWebPart interface is already implemented for you. However, when using user con-
trols as web parts you will need to implement the interface for yourself to be able to
code against these properties from within your control. The reason for this is that the
user control does not inherit from the WebPart class, and therefore it does not have
these properties associated with it. The code shown in listing 2.7 creates a user con-
trol that implements the IWebPart interface and provides a custom implementation
for each property of that interface.
46 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

public partial class SampleWebPart : UserControl, IWebPart {

string CatalogIconImageUrl {
get { return "~/images/CatalogImage.png"; }
set { return; }

}

string Description {
get { return "This is the description."; }
set { return; }

}

string Subtitle {
get { return "Sub-Title."; }

}

string Title {
get { return "Web Part Title"; }
set { return; }

}

string TitleIconImageUrl {
get { return "~/images/Globe.gif"; }
set { return; }

}

string TitleUrl {
get { return "~/Default.aspx"; }
set { return; }

}
}

Figure 2.8 shows how those properties would appear when rendered in a browser.
Notice that the text in the title bar is represented as a clickable link that would take
the user back to the Default.aspx page. This is due to the fact that we specified a
value for the TitleUrl property. Notice as well, that when the mouse is placed over
the title text or the image that is displayed alongside it in the title bar, the description

Listing 2.7 Implementing the IWebPart interface from within a user control

Figure 2.8

IWebPart members dis-

played on a web part.
UNDERSTANDING WEB PART INTERNALS 47

is displayed as a tooltip. Each of the elements you see in the figure 2.8 web part is a
direct result of the values we assigned to the interface properties in listing 2.7.

We’ve just seen the IWebPart interface in action. The IWebPart interface is the
first of the three interfaces that are implemented by web parts. Throughout this sec-
tion we’ve learned about the members of this interface and how they affect the look
and feel of a web part at runtime. Now we’ll look at the next interface that is imple-
mented by all web parts—the IWebActionable interface—and see how it is used to
add verbs to custom web part controls.

2.4.2 IWebActionable

Earlier in this chapter we saw that each web part has a menu, containing menu items.
These menu items are referred as “verbs,” and they allow users to perform operations
such as closing or minimizing the web part. Every web part has a default set of verbs
assigned to it by the zone in which it appears. These verbs are known as zone verbs
and are common to all web parts—they are Close, Minimize, Restore, Delete, Edit,
and Export. Which zone verbs are visible at any given time depends on the current
display mode of the web page, the current user, and also the current state of the web
part itself. For example, it would not make sense to display the Close verb when the
web part is already closed or Restore when it is open.

Displaying custom verbs

In addition to the standard set of zone verbs that each web part is assigned, additional
verbs can also be added to the web part’s menu. These additional verbs would gener-
ally be for the purpose of allowing users to perform custom actions associated with
the web part. This can be achieved by using the WebPartVerb class to create a verb,
and adding that verb to the existing collection of verbs for the part. For example, we
could add a verb named Copy Text to a web part that would enable users to copy text
from within a web part to another control elsewhere on the page. Verbs are the per-
fect choice for adding these kinds of discrete operations to web parts because they are
conveniently hidden away from the main user interface section of the web part, yet
readily accessible to the user.

The IWebActionable interface is used to define a property named Verbs that
appears on every web part. The Verbs property is responsible for returning all the verbs
that belong to a web part, and it is here that we have the opportunity to add custom
verbs to the existing collection. Let’s demonstrate this by extending the SampleWeb-
Part we just created, so that it implements the IWebActionable interface. This will
allow us to add in our own custom verbs for that web part. The following snippet of
code shows how to implement the interface on our SampleWebPart class.

public partial class SampleWebPart : UserControl, IWebPart, IWebActionable
{

protected WebPartVerbCollection IWebActionable.Verbs {
48 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

 get { }

}

}

NOTE If you are using custom controls for your web parts you will not have to di-
rectly implement these interfaces because they are already implemented on
the base WebPart class. In that case, your code will differ because you will
be overriding an existing implementation of the IWebPart and IWeb-
Actionable members, as opposed to implementing one from scratch.

Next we will add code to the Verbs property to create two custom verbs for our class.
The first verb will allow the user to click on it to display the current time in a label. A
second verb will allow the user to clear the text of the label. The verbs that we add are
also associated with corresponding server-side event handlers named DisplayTime
and ClearTime. These handlers are the methods that will be called when a user clicks
on the verb. The full code for our custom Verbs implementation can be seen in
listing 2.8, while figure 2.9 shows the two verbs being displayed in a browser at runtime.

WebPartVerbCollection IWebActionable.Verbs {
 get {

 WebPartVerb timeVerb = new WebPartVerb(
 "TimeVerb1",
 new WebPartEventHandler(DisplayTime)
);

 timeVerb.Text = "Change Display Text";
 timeVerb.ImageUrl = "~/images/event.gif";

 WebPartVerb clearVerb = new WebPartVerb(
 "ClearVerb1",
 new WebPartEventHandler(ClearTime)
);

 clearVerb.Text = "Clear Display Text";

 return new WebPartVerbCollection(
new WebPartVerb[] { timeVerb, clearVerb }
);
 }
}

Listing 2.8 The Verbs property is used to associate custom verbs with a web

 part.

Create verbs using the
WebPartVerb class

Associate any text and images
to display for the verb

Add the verbs
to a collection and
return them
UNDERSTANDING WEB PART INTERNALS 49

The verbs are created and their attributes set. This includes setting the ImageUrl
and assigning the text that will be displayed to the user. Finally, the verbs are added to
a WebPartVerbCollection and returned to the portal framework where they are
then added to the web part for display.

When the web part is run in a browser, we can see that our custom verbs are
added to the verb list along with any zone verbs. Clicking on either of our custom
verbs causes the web page to post back to the web server where the associated handler
method will be called. A nice enhancement might be to actually disable the Clear
Display Text verb if the text has already been cleared from the display.

The WebPartEventHandler delegate

We saw that the WebPartVerb class is used to create verbs. When the WebPart-
Verb class was constructed, two pieces of information were passed as its arguments.
This is shown in the following snippet of code:

WebPartVerb clearVerb = new WebPartVerb(
 "ClearVerb1",
 new WebPartEventHandler(ClearTime)
);

The first argument specifies what ID to use for the verb control, and the second argu-
ment is a WebPartEventHandler delegate. The WebPartEventHandler delegate
is used to associate a method with the click event for the verb, and enforces that the
specified method implements the WebPartEventHandler interface.

NOTE A delegate is a special Type in .NET that allows us to specify that methods
which handle events must implement a specific interface.

When the verb that we’ve created is clicked by a user, a postback occurs and a method
named ClearTime is called to handle the click event. The following piece of code
shows the code for the ClearTime method:

protected void ClearTime(object sender, WebPartEventArgs e) {

 this.lblText.Text = string.Empty;
}

Figure 2.9 Our custom web part verbs appear in the web part’s menu along

with any existing zone verbs.
50 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

Note that the ClearTime method implements the WebPartEventHandler by tak-
ing an object and an instance of the WebPartEventArgs class as its arguments.

Handling events in the browser

In addition to handing the click events for verbs on the server, the WebPartVerb
class also provides a way to specify that a client-side event handler is used. Specifying
a client-side event handler for verbs allows us to handle the click event for the verb
in the browser, and means that there is no postback to the web server, so no page
refresh occurs.

To use client-side event handlers we can simply specify the name of the client-side
function when creating the verb. This process is almost identical to the previous pro-
cess when we used a server-side event handler, except that the name of the handling
method is passed into the verb’s constructor as a string literal instead of being passed
as an instance of the WebPartEventHandler class. Listings 2.9 and 2.10 display
the code for a Verbs property, which adds a verb that is handled by a client-side Java-
Script function named ClientClickHandler. You can see that the ID of the con-
trol is passed to the function.

WebPartVerbCollection IWebActionable.Verbs {
get {

WebPartVerb verb = new WebPartVerb(
"Verb1",
"ClientClickHandler('" + this.ClientID + "')"
);

verb.Text = "Display Web Part ID";
verb.ImageUrl = "~/images/event.gif";

return new WebPartVerbCollection(new WebPartVerb[] {verb});
}

}

<script language="javascript" type="text/javascript">

function ClientClickHandler(webPartID) {
alert("You clicked the following web part: " + webPartID + ".") ;

}

</script>

Listing 2.9 Verbs can also be associated with client-side event handlers that do

 not require the item to post back to the web server.

Listing 2.10 A client-side JavaScript function is written to handle the verb’s click

 event in the browser
UNDERSTANDING WEB PART INTERNALS 51

The use of client-side event code can help to create applications that are more dynamic
and interactive, because the user is not left waiting for his operations to run while the
browser performs a postback to the web server. Performing a server postback requires
the entire payload of the page to be round-tripped each time that server communica-
tion is required.

Ajax, which stands for Asynchronous JavaScript and XML, is a technique that is
being used increasingly by developers to create sites that are highly interactive. By
using Ajax, a developer is able to send smaller packets of data through to XML web
services without requiring a complete page postbox. The response from these web ser-
vice calls is then processed in the browser by using client-side JavaScript. The result is
twofold; first, only the part of a page that needs to be refreshed is communicated
between the server and the user’s browser; and second, the web pages appear more
responsive because the user is not stalled while waiting for a full page refresh to occur.

I’ll defer a fuller discussion about Ajax and web parts until chapter 10, when we
explore ways to take advantage of this technique with the portal framework.

2.4.3 IWebEditable

The last of the three interfaces that are implemented by all web parts is IWebEdit-
able. This interface allows developers to associate custom editing controls with their
web parts. We’ll look at this interface in detail in chapter 5 and again, in even greater
detail in chapter 8. For now we’ll just look at an example to show why you would need
to use this interface. Remember from chapter 1 that
we created the simple portal example and that we
added an AppearanceEditorPart to an Edi-
torZone to allow some of the properties of the web
part to be edited by users at runtime. Figure 2.10
shows us the editor zone with the Appearance-
EditorPart displayed.

At runtime, users of our portal can access this
AppearanceEditorPart to directly manipulate
the appearance of web parts on the page.

Creating custom EditorParts

As you can see, the appearance editor provides us
with user interface elements for managing the
appearance of the web part—such as its Title, its
Height, and Width. But what if you need special
controls to manage a property of your web part?
An example might be if we wanted to provide users
of our weather web part with a map that allowed
them to select their weather region visually. This is
the kind of scenario that the IWebEditable

Figure 2.10 The Appearance-

EditorPart provides user inter-

face elements that allow users

to manage the appearance of

web parts at runtime.
52 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

interface is designed to manage, as it provides us with a way of assigning custom edi-
tor controls with our web part. To implement the IWebEditable interface, two
members must be implemented:

• The CreateEditorParts method—which allows you to return a collection of
all custom editor parts that you want to associate with your control

• The WebBrowsableObject property—which provides a way to return a refer-
ence to the underlying control that you wish to expose to your custom editor part.

To associate a custom map editor part with our weather web part, we start by adding
code to the CreateEditorParts method which returns the custom editor control
that we need to manage our zip code property. The following code shows what is
required to return a custom editor part named ZipCodeSelector from the Cre-
ateEditorParts method:

public override EditorPartCollection CreateEditorParts() {

 EditorPartCollection editorParts = base.CreateEditorParts();

 editorParts.Add(new ZipCodeSelector());
 return editorParts;
}

In the ZipCodeSelector editor part, we
would include the rendering logic that we
want to display when the part is displayed
in the editor zone. As with all server con-
trols, this is accomplished by writing some
custom code in the Render method. In this
case we’ll add some code to display an icon
and a link that the user can click to launch
a larger map selection dialog. How do you
do that? Figure 2.11 shows how the editor
part would display in the browser when the
code in listing 2.11 is executed.

Figure 2.11 shows a custom editor
section appearing in the EditorZone. The
custom editor section has a title of “Untitled” and contains an icon—a picture of the
globe—and a link that allows users to launch a completely custom dialog for selecting
zip codes. The custom dialog that is launched could display an interactive map that
allowed users to select postcodes in a more visual manner than the standard textbox
control normally offered for entering postcodes.

Figure 2.11 The completed editor

part is displayed in the editor zone

whenever the associated web part

is edited.
UNDERSTANDING WEB PART INTERNALS 53

protected override void Render(HtmlTextWriter writer) {
 base.Render(writer);
 Image img = new Image();
 img.ImageUrl = "~/Images/Globe.jpg";
 img.BorderStyle = BorderStyle.None;
 img.Style.Add("margin", "0px 10px");

 writer.Write(@"") ;
 img.RenderControl(writer);
 writer.Write(
 ➥@"<a href=""javascript: void(0);""

 ➥onclick=""LaunchMapEditor() ;"">"

 ➥);
 writer.Write("Display custom editor");
 writer.Write("");
 writer.Write(@"");
}

We could set this up so that when the user clicks on the “Display custom editor” link,
a dialog is displayed that provides the user with a simple way to make region selec-
tions—such as a control that allows the user to view a map of the world and gives
him a way to make selections by clicking on areas of the map.

Throughout this discussion on web part internals, we’ve seen that by implement-
ing certain interfaces and behaviors, our web parts are able to work together with the
other components of the portal framework cohesively. We’ve also seen that having
different pieces of the framework communicating via interfaces provides for a high
level of extensibility. This extensibility was demonstrated when we were able to easily
pass our own custom editor parts for use in the EditorZone by simply implement-
ing the IWebEditable interface.

Although the discussion in this chapter has focused thus far on extending the
functionality of controls, there is one last topic that we should cover before moving
on to more work on the Adventure Works Portal. That topic is themes. While
themes are not a specific feature of web parts, our discussion on web parts would not
be complete without mentioning them. Themes are common to all controls in
ASP.NET 2.0, and offer a very flexible way to create websites that, in turn, offer flexi-
ble visual styles and layouts.

2.5 APPLYING THEMES AND STYLES

Prior to ASP.NET 2.0, we used Cascading Style Sheets (CSSs) to create sites with
highly flexible styles and layouts. We used CSS to create styles and associate them
with the HTML elements in your application. This approach works well when we

Listing 2.11 The ZipCodeSelector editor part includes code for rendering its

 display when shown in the editor zone

Create image to
display as an icon

Write HTML to
display for the
control
54 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

know exactly the sort of HTML we are producing them for. The problem that arises
when using ASP.NET 2.0 is that most of the time we are no longer working directly
with raw HTML, but instead are working through the abstractions of server controls.
For example, consider a standard server control tag for presenting the user with an
EditorZone such as the one shown here:

<asp:EditorZone ID="EditorZone1" runat="server">
 <ZoneTemplate>
 <asp:PropertyGridEditorPart
 id="PropertyGridEditorPart1"
 runat="server" />
 </ZoneTemplate>
</asp:EditorZone>

At runtime, this EditorZone server control is expanded into nearly a hundred lines
of HTML markup, representing several hundred individual HTML elements. The dif-
ficulty for ASP.NET developers in the past lay in determining exactly what HTML
was produced by server controls, and then mapping that to the relevant CSS styles.

Adding styles to controls

In ASP.NET 2.0, the themes feature provides a new way of creating styles for server
controls. You can think of themes as style sheets for server controls. It’s a good idea
when developing any ASP.NET server controls—not just web parts—to extract all
the style-related information contained in server controls and move it into a theme
file. Having the style information separate from the presentation information pro-
vides us with the same level of flexibility that we had when using CSS alone in the
past. For example, consider the Google site. It’s a very simple site; but when you visit
it on holidays or special occasions, it is customized for the occasion. If you go there
on Easter, you are likely to see the Easter Bunny hovering just above the search text-
box with his basket of Easter eggs at the ready. By grouping the style information
regarding images, colors, and so forth into themes, you can easily achieve this kind
of customization in your own applications. By creating several themes and applying
different themes on different occasions, you could make your web parts look like
pumpkins on Halloween!

Visual Studio 2005 supports the themes feature by offering new designer support
for it. As shown in figure 2.12, nearly all server controls offer the developer support
via the new Common Tasks feature. This feature reveals itself by offering a menu of
additional features that can be accessed directly from a control when that control is
viewed in design mode. In figure 2.12 we see the common tasks menu being dis-
played for the WebPartZone control with a single menu item that allows the user to
Auto Format that control. Clicking on the menu item displays a dialog that allows
the user to apply one of four named formats to that control. Figure 2.13 shows four
zones, each with a different format applied to it. The name of the format is shown in
the title of the web part.
APPLYING THEMES AND STYLES 55

When the web part zone is formatted,
additional information is added to that
control’s declaration to describe to the
ASP.NET runtime how the styles are to
be applied. Listings 2.12 and 2.13
show the markup for a WebPartZone
before and after it has style informa-
tion added to it.

<asp:WebPartZone ID="WebPartZone1" runat="server" />

<asp:WebPartZone ID="WebPartZone1" runat="server"
 BorderColor="#CCCCCC" Font-Names="Verdana"
Padding="6">

<PartChromeStyle BackColor="#EFF3FB" BorderColor="#D1DDF1"
 Font-Names="Verdana" ForeColor="#333333" />
<MenuLabelHoverStyle ForeColor="#D1DDF1" />
<EmptyZoneTextStyle Font-Size="0.8em" />
<MenuLabelStyle ForeColor="White" />

Figure 2.12 The common tasks dialog for the WebPartZone allows a developer to

format that control.

Listing 2.12 A WebPartZone server control without any style-related attributes

Listing 2.13 A WebPartZone server control after applying a default theme

Figure 2.13 The four standard themes that

come with ASP.NET 2.0.
56 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

<MenuVerbHoverStyle BackColor="#EFF3FB" BorderColor="#CCCCCC"
BorderStyle="Solid"
BorderWidth="1px" ForeColor="#333333" />
<HeaderStyle Font-Size="0.7em" ForeColor="#CCCCCC"
HorizontalAlign="Center" />
<MenuVerbStyle BorderColor="#507CD1" BorderStyle="Solid"
BorderWidth="1px" ForeColor="White" />
<PartStyle Font-Size="0.8em" ForeColor="#333333" />

<TitleBarVerbStyle Font-Size="0.6em" Font-Underline="False"
ForeColor="White" />
<MenuPopupStyle BackColor="#507CD1" BorderColor="#CCCCCC"
BorderWidth="1px" Font-Names="Verdana"
Font-Size="0.6em" />
<PartTitleStyle BackColor="#507CD1" Font-Bold="True" Font-
Size="0.8em" ForeColor="White" />

</asp:WebPartZone>

As we can see, when the web part zone is formatted it becomes quite verbose because
it contains so many style sub-elements. The biggest problem with having all that style
information embedded in the page is that, if you decide to change the base look-and-
feel for that control throughout your entire site, you have to go through all your pages
and change every occurrence. If, however, you have used themes to style your controls,
all style information for each of your server controls can be managed from a single place.

Creating themes

Now that we’ve seen the effect of having all of our style information embedded in
pages, we are going to learn how to centralize this style information into a single loca-
tion by using features known as Themes and Skin files. ASP.NET’s feature, Themes,
allows us to package style information such as style elements, images, and CSS files
into folders. These folders contain

• Skin Files—Contain the style information for server controls—such as the style
sub-elements shown in listing 1.13

• Images—Images that are associated with a specific theme—such as images of
pumpkins for a theme named Halloween

• CSS Files—CSS information that compliments the colors and styles of the theme

These folders are then stored underneath a new, specially named folder called
App_Themes within the application, and the names of the folders created underneath
the App_Themes folder become the name of the theme. For example, we might want
to create a theme for Valentine’s Day, which has images of hearts and style information
that is predominantly red. We could create a theme folder named “Valentine” to store
the images and style information and images that are required to create the look-and-
feel for that theme. This would include the style information for server controls,
images that are associated with the theme, as well as any CSS files that we wish to use.
Figure 2.14 shows the folder structure for a site that contains a blue Valentine.
APPLYING THEMES AND STYLES 57

To remove the style information from the web part zone and move it into a theme
folder named Valentine, follow these steps:

1 In your test web project, right-click on the solution folder and choose Add
Folder, then select Theme Folder as the folder type.

2 Add a folder underneath the theme folder and name it “Valentine.”

3 Right-click on the new Valentine theme folder and choose “Add Item” to add
the file that will contain the style information for your server controls, and
name the skin file “Valentine.skin”.

The beauty of skin files is that they contain the definition of a server control in prac-
tically the same fashion as the definition would appear in a normal page, except that
the theme definitions do not have an ID attribute. By the time all that style informa-
tion for our web part zone is moved into the skin file, its control definition will be
stripped back to its original state as shown in listing 2.12. After moving the style
information into the skin file, it will as appear as it is displayed in listing 2.14:

<asp:WebPartZone runat="server" BorderColor="#CCCCCC" Font-Names="Verdana"
Padding="6">

<PartChromeStyle BackColor="#EFF3FB" BorderColor="#D1DDF1" Font-
Names="Verdana" ForeColor="#333333" />
<MenuLabelHoverStyle ForeColor="#D1DDF1" />
<EmptyZoneTextStyle Font-Size="0.8em" />
<MenuLabelStyle ForeColor="White" />
<MenuVerbHoverStyle BackColor="#EFF3FB" BorderColor="#CCCCCC"
BorderStyle="Solid"
BorderWidth="1px" ForeColor="#333333" />

Figure 2.14 This web application contains a theme named “Valentine.”

Listing 2.14 Skin files store control definitions containing all of the style

 information for server controls.
58 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

<HeaderStyle Font-Size="0.7em" ForeColor="#CCCCCC"
HorizontalAlign="Center" />
<MenuVerbStyle BorderColor="#507CD1" BorderStyle="Solid"
BorderWidth="1px" ForeColor="White" />
<PartStyle Font-Size="0.8em" ForeColor="#333333" />
<TitleBarVerbStyle Font-Size="0.6em" Font-Underline="False"
ForeColor="White" />
<MenuPopupStyle BackColor="#507CD1" BorderColor="#CCCCCC"

BorderWidth="1px" Font-Names="Verdana"
Font-Size="0.6em" />
<PartTitleStyle BackColor="#507CD1" Font-Bold="True" Font-
Size="0.8em" ForeColor="White" />

</asp:WebPartZone>

As we can see, this skin file definition for the WebPartZone control looks almost
identical to the WebPartZone control definition that we saw in listing 2.13. However,
the difference is that this information is now stored in a single place—the skin file—
and that all WebPartZone controls can now use this style without having to each have
their own embedded style sub-elements. One more step is required to apply a theme
within an application; you must configure the application so that it knows which
theme to use. This configuration can be constructed either at page level or at applica-
tion level in the web.config file. Both of these options are shown in listing 2.15.

<%@ Page Language="C#" Theme="Blue" %>

<system.web>
 <pages theme="Blue" />
</system.web>

The benefit of using the web configuration file to declare themes is that you are
required to declare it in only one place, whereas declaring it in each page would result
in many declarations. Having the theme declared in many different places makes the
code more difficult to maintain, because a developer would have to locate each place
that it was declared when making changes to the theme.

Now that you better understand web parts and have worked with them a bit, let’s
apply your new skills to the Adventure Works Cycles business.

2.6 ADDING WEB PARTS TO THE
ADVENTURE WORKS SOLUTION

In chapter 1 we created a data layer so that we could connect to SQL Server 2005 and
retrieve information about the Adventure Works Cycles business. In this chapter we’ll
start putting that data to good use as we build the beginnings of a portal application

Listing 2.15 Configuration entries for themes can be set at either page or

 configuration file level.

Declaring a theme
at page level

Declaring a theme
at configureation
file level
ADDING WEB PARTS TO THE ADVENTURE WORKS SOLUTION 59

based on the Adventure Works business. The portal that we will build throughout the
course of this book will be built with small incremental steps. At the end of each
chapter we’ll apply a concept we’ve learned by integrating an implementation of that
concept into the portal. While each step may, in itself seem small, by the end of the
book we will have created a portal that is filled with the features that clients have
come to expect of portal-style applications.

To implement the concepts you’ve learned in this chapter, let’s get back to your
job at Adventure Works. Today the HR department has asked you to develop a small
website that displays some of their line of business data—such as a list of employees,
departments, and information about the latest job candidates. They’ve specified that
initially the portal should be able to display the following data:

• A listing of all departments with employee numbers listed against each one

• A listing of all employees for a given department

As an applications developer for Adventure Works you’ve got ASP.NET 2.0 installed
and you are all geared up and ready for the task.

After discussions with the users, it is clear to you that while they have an immedi-
ate need for just these few features, their longer-term requirements are likely to be
much larger. For this reason, you make the decision to use the web portal framework
to build features as standalone components. Over time there will be the ability to har-
ness the extensibility of the framework through features such as web part connections
and verbs, to leverage components that we build today into tomorrow’s features.

NOTE To complete this exercise you will need to create a project for the Adventure
Works application. If you are comfortable with project creation and some
of the new ASP.NET 2.0 features such as master pages, themes, etc., then
you might just want to grab the project from the resources for this chapter
that come with the book. If you would like to create the project for yourself
to see how to implement these new features, you can complete the walk-
through titled “Creating the Adventure Works Project” in the appendix.

Displaying all departments

We’ll address the first feature request, which was to create a web part that displays a
listing of all departments from the Adventure Works database. Open the Adventure
Works project and create a new folder named WebParts and add to it a new user
control file named DepartmentListingPart.ascx.

With the user control in design mode, add a GridView server control from the
toolbox by dragging it onto the design surface. From the associated GridView tasks,
choose the <New Data Source> option so that we can configure a data source to
return the data that we need. At this time the Data Source Configuration Wizard starts
up and the Choose a Data Source Type screen is displayed as shown in figure 2.15.
We’ve already created a data access layer to perform our data operations, so from this
screen we choose the Object data source type and press OK.
60 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

The next screen in the wizard displays a listing of classes, allowing us to choose which
business object contains the method to bind to the GridView control. This screen is
displayed in figure 2.16. Select the AW.Portal.Data.DataLayer class and then
press OK.

Figure 2.15 The first step in the data source configuration wizard is to

specify what type of data source we are binding to.

Figure 2.16

When using

the object data

source control,

we get to specify

which class will

provide the data.
ADDING WEB PARTS TO THE ADVENTURE WORKS SOLUTION 61

With the business object chosen, all that remains is to choose which method of the
object will provide us with the data. The last screen of the wizard that we’ll be using
allows us to select the ListDepartments method and press Finish. This last screen
is displayed in figure 2.17.

Now the wizard has all of the information it needs to create a data source control
that can be bound to the GridView, and we can create a page in which to display our
control. To add this web part to the web part page we created earlier, switch the
Default.aspx page into design mode and drag the DepartmentListingPart
user control from the Server Explorer on to the WebPartZone. Listing 2.16 shows
that by adding the user control, Visual Studio has automatically registered the control
with the page and added the correct markup for the user control into the zone tem-
plate for us.

<%@ Register Src="WebParts/DepartmentListingPart.ascx"
 TagName="DepartmentListingPart" TagPrefix="uc1" %>

...

<asp:WebPartZone ID="WebPartZone1" runat="server">
<ZoneTemplate>

Figure 2.17 The wizard allows us to choose which methods of the object data

source will perform data operations such as Select, Update, Insert, and Delete.

Listing 2.16 The DepartmentListingPart

Added Register
declaration for
user control
62 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

<uc1:DepartmentListingPart
ID="DepartmentListingPart1"
runat="server"
Title="Departments" />

</ZoneTemplate>
</asp:WebPartZone>

The register tag that was added by Visual Studio is
known as the @ Register directive. This directive is
included in ASP.NET web pages so that a tagname
and tagprefix can be associated with user controls
and custom server controls. You can see that the
tagname (DepartmentListingPart) and tag-
prefix (uc1) could then be useful in declaring the
department listing user control within the page.

We can now run the application and see that
the web part is displayed with a listing of depart-
ments as shown in figure 2.18. To do this, right-
click on the Default.aspx file and choose “View
in Browser.”

Creating an

Employees web part

Now that we have a listing of all departments, we
may turn our attention to the second requirement
we were given—to display a listing of employees for a given department. We’ll again
create this listing as a web part and again be using the GridView control to display
the data in a list. Right-click on the WebParts folder and add to it a new user con-
trol file named EmployeeListingPart.ascx.

With the user control in design mode, add a GridView control and choose the
<New Data Source> option. Walk through the Data Source Configuration wizard, in
a manner similar to the steps we took for the previous control, and bind the Grid-
View to the ListEmployees method of the data layer class. Finally, add the web
part to the RightZone in the web part page.

When viewed in the designer, your page should be similar to the page shown in
figure 2.19. You can now view the portal by right-clicking on the Default.aspx
file and choosing “View in Browser.”

The full source code for the portal at this stage can be found in the resources that
accompany this book.

Added user control
to zone template

Figure 2.18 The DepartmentList-

ing web part shows a listing of the

departments within the Adventure

Works business with the number

of employees shown against each

department.
ADDING WEB PARTS TO THE ADVENTURE WORKS SOLUTION 63

2.7 SUMMARY

In this chapter we’ve covered a stretch of important ground in learning about these
fundamental portal components; but perhaps even more important is the fact that we
now have our portal up and running. As we move through the book, in each chapter
we will add small additional touches to the portal as we learn new concepts. By the
end of the last chapter you will see that the sum of all these small additions is an
interesting portal with many useful features.

Throughout this chapter we covered some fundamental lessons about web parts
and, in particular, the WebPart server control, and we then added them to our own
portal. We have demystified some of what happens when controls are added to web
zones and learned about the special GenericWebPart control. We also saw how to
use verbs to link additional operations to our web parts.

Finally, we started work on the Adventure Works portal application by creating
the Visual Studio 2005 project and then adding our first web parts for the HR
department. These web parts were simple, but we’re not finished with them yet. The
next chapter dips into web part connections. With this knowledge we’ll be positioned
to connect our two web parts and have the department part act as a filter for the
employee part. This will allow us to complete the requirement that the employees be
viewable by department.

Figure 2.19 The portal when viewed in design mode within Visual Studio 2005
64 CHAPTER 2 WEB PARTS: THE BUILDING BLOCKS OF PORTALS

C H A P T E R 3

Using web part
connections

3.1 Dissecting connections 65
3.2 Creating simple connections 70
3.3 Sorting out connection types 74

3.4 Using transformers 79
3.5 Adventure Works— implementing

connections for HR 90
3.6 Summary 95
3.1 DISSECTING CONNECTIONS

Connections are powerful features of the portal framework that allow data to be
exchanged between web parts. Connecting web parts can be fun because it provides
you with an opportunity to think up interesting ways of presenting data to end-users.
In this chapter we will learn about connections and the web part controls—such as
the WebPartConnection—that make it possible for connections to occur. We’ll see
that there are several ways to connect web parts, and we’ll also learn how to create and
configure transformers to connect web parts that expose different interfaces.

Let’s look at an example that offers a glimpse into the power of web part connec-
tions. Suppose that you are browsing the Adventure Works portal and come across a
page displaying a staff listing. When you select a row on the listing, other connected
web parts on the page update their information to display data that is related to that
selection. For example, the page might contain a web part that displays images.
When you select employee details, the page could update to display a picture of that
employee. Another web part might display the key performance indicators (KPIs) for
65

that staff member, while yet another could display a summary of that employee’s
projects. Having web parts that can automatically remain synchronized with each
other provides users with a more useful view of data.

All connections involve two web parts. One part provides data that can be of any
type, such as fields, rows, lists, or even complex data types. This part is referred to as
the provider web part. The other web part receives the data and is referred to as the
consumer web part. Sitting in the middle of a connection is an optional control called
a transformer.

Transformers provide a way to transfer data between providers and consumers
that do not share a common data type. Think back to our introductory example in
chapter 1—we looked at how connections allow multiple web parts to communicate.
Connections work when each web part is able to communicate via data that is of a
common type. When data is not common among web parts, it is the job of a trans-
former to transform the data into a format that can be accepted by one web part or
another—thus allowing two-way data communications to occur between any web
parts, regardless of whether they share common data interfaces or not.

3.1.1 The Master/Details scenario

The following section takes a look at the common scenarios that connections was
designed to support, such as the Master/Details scenario and the Parent/Child scenario.

The Master/Details scenario provides a way for users to make selections from a list
of items, while another part displays more detailed information about the selected
item. Figure 3.1 shows the steps of this selection process.

1 A web part (A) displays a list of expenses for an employee.

2 The employee makes a selection from the list. The selected item is shown as the
row, which is highlighted in grey.

3 The connection (B) passes information about the selection to another web part.

4 The other web part (C) displays the details of the expensed item—such as the
date of the purchase and the name of the vendor.

Figure 3.1 In the Master/Details scenario a row of data is selected in one web

part and the details of that single item are displayed in another web part.
66 CHAPTER 3 USING WEB PART CONNECTIONS

3.1.2 The Parent/Child scenario

The Parent/Child connection scenario is similar to the Master/Details scenario, except
that for each selected item there can be more than one related record. Figure 3.2
provides an example of this.

1 A web part (A) displays a listing of departments.

2 The employee makes a selection from the list. The selected item is shown as the
row highlighted in grey.

3 The connection (B) passes information about the selection to another web part.

4 A second web part (C) then displays a list of all employees for the selected
department.

Making data easier to understand

You will often want to display different views of data to allow your users to digest it
more easily. For example, applications that display accounting data often contain a
great deal of information that is difficult to interpret from a single glance. Using web
parts, you might allow the user to select segments of that data and then have another
part that could display it in a friendlier view—such as a graph or some other more
visual format. Figure 3.3 presents such a scenario.

1 A web part (A) displays profit and loss data for one of the Adventure Works
departments.

2 A finance officer selects an item from the list. The selected item is shown as the
row highlighted in grey.

3 The connection (B) passes information about the selection to another web part.

4 A second web part (C) presents the data from the selected row as a pie chart that
is much easier to understand.

Figure 3.2 The Parent/Child scenario allows all the related rows to be

shown for a single selection.
DISSECTING CONNECTIONS 67

In figure 3.3, we can clearly see how the chart provides users with a simple way to
understand the complex data from the web part on the left side. Separating these two
displays into separate web parts simplifies the logic in each web part, and therefore
makes them easier to maintain.

Creating components for specialization

To shield end users from the complexity associated with modern applications, clever
people spend many hours in the difficult task of building and maintaining applica-
tions, and maintenance naturally becomes more complicated as applications grow in
size. To simplify the development and maintenance of feature-rich applications, it is
common to break things down into smaller components that perform specific sub-
operations within a larger scope of work. Having specific operations separated into
individual components can make them much easier to extend and modify, because
you only have to understand the behavior of a system at the component level instead
of having to understand it as a whole.

Consider the example in figure 3.4 which is typical of how dynamic, data-driven
applications work. It shows a page for displaying shopping cart details to a user.

The page shown in figure 3.4 might contain the following parts for displaying
information relevant to data contained within the cart:

• “Related Items” that entice users to buy other goodies based on items they have
already selected

• A navigational aid allowing the user to continue shopping or offering a link to
proceed through to checkout, such as the component shown in the middle on
the left side of figure 3.4.

• Other advanced operations offered to the user such as the ability to display
images of the cart items as a slideshow, similar to the component shown at the
bottom of figure 3.4.

Figure 3.3 Presenting statistical data in a graphical format makes it easier to

understand.
68 CHAPTER 3 USING WEB PART CONNECTIONS

As you can see from each of these types of information displayed to the buyer, when
the overall operation is extended, things can become complicated quickly. If we were
to build each of these pieces of information into our page, then the page would
become very complex and would involve a great deal of presentation code and logic
for synchronizing the display of each piece. Alternatively, we can separate each piece
of information into individual web parts and use connections to orchestrate the data
flows between the web parts. This makes it possible for each web part to perform just
a single operation and remain relatively simple.

When web parts and connections are used, each separate component can feed off
a single set of data, each component can respond to changes made in other compo-
nents, and each component can update its display accordingly. For example, remov-
ing all items in the current basket might force the Checkout Options web part to
hide the checking-out link from the user. Overall, this symbiotic relationship
between components extends the usefulness of each individual part, and allows for
efficient code reuse, while also extending the life of web parts.

Having seen some of the scenarios that require connections to work—the depart-
ment/employee listing scenario, the financial scenario, and the shopping cart sce-
nario—we can now appreciate the kinds of operations in which connections are used.
Without connections, the code that is required to create those scenarios can be exten-
sive, and programmers who create the requisite complex code often make mistakes.
By using connections, unnecessary complexity is avoided, and we are free to focus on
other requirements. It’s now time to apply what we’ve seen so far, and learn how con-
nections really work.

Figure 3.4 Breaking a large user interface down into smaller, individual

components provides a way to reduce the complexity in a user interface.
DISSECTING CONNECTIONS 69

3.2 CREATING SIMPLE CONNECTIONS

To put into action the concepts from the first
part of this chapter, we are going create two
web parts and connect them. One web part
is a provider web part that is used by an
accountant to enter end-of-year financial
data. This year-end data is to be used in a
report being prepared for the company’s
board and its shareholders—for the sake of
simplicity, the data is entered as a range of
comma-separated numbers. This data is then
exposed via a connection to a consumer web
part, which displays a graphical representa-
tion of it. Figure 3.5 shows what our example
will look when it is completed.

Web part connections communicate
using interfaces, which are the programmatic
way of defining a contract for data that com-
ponents must adhere to. How does this work? One web part provides data of a cer-
tain data type. When another web part exists that is capable of consuming that type
of data, a connection between them can be made. So, the first thing that we must do
for our example is to create an interface that can be used as the data contract for
exchanging the data. The following snippet of code shows the interface that defines
the data contract for our connection:

 public interface INumbersInterface {
 int[] Numbers { get; }

 }

Creating a Connection Provider

Our provider web part will be a user control named NumberProvider.ascx and,
as you saw in figure 3.5, the user control has a very simple interface containing just a
TextBox and a Button. To create the web part, add the user control to your sample
project and give it the mark-up contained in the following code snippet.

 Enter a comma-delimited string of numbers:

 <asp:TextBox ID="TextBox1"

 runat="server"
 Text="1,3,2,5,4,6,7,3,5,8,2,3,2,5" />

 <asp:Button ID="Button1"
 runat="server"

 Text="Submit" />

As you can see, this web part has a text box to allow the user to enter data, and a but-
ton that will force the web page to submit data back to the web server (a postback).

Figure 3.5 As you work through the

example in this section, you will be per-

forming steps that produce this result—

a chart that displays financial data in an

easy-to-read graphical format
70 CHAPTER 3 USING WEB PART CONNECTIONS

It’s during this postback that the number data will be passed to the consumer web
part via the connection. Switch the NumberProvider.ascx user control into
source code view, so that the code to implement the connection provider logic can be
added. To make this switch, we’ll first implement the INumbersInterface inter-
face that will be passed via the connection. To implement the interface, a public
property named Numbers is added that exposes an array of integers; this data is
derived from the input supplied by the user. Listing 3.1 shows how to implement the
interface on the user control class.

 public partial class NumberProvider :
 System.Web.UI.UserControl, INumbersInterface {

 public int[] Numbers {
 get {
 string[] strings = this.TextBox1.Text.Split(
 new char[] { ',' },
 StringSplitOptions.RemoveEmptyEntries
);

 int[] numbers = new int[strings.Length];

 for (int i = 0; i < strings.Length; i++) {
 int tmp = 0;
 int.TryParse(strings[i], out tmp);
 numbers[i] = tmp;
 }
 return numbers;
 }
 }
 }

The Numbers property takes the text that has been entered by a user and splits it
into an array of strings. The string array is then converted to an array of numbers
and returned.

At runtime, the web part framework learns which web parts expose connection
information by finding methods marked with a ConnectionProvider attribute. It
is the method marked with this attribute that is responsible for returning the connec-
tion data. In our case, because we implemented the interface on the control itself, we
simply return a reference to the control from the method, as you can see in the code
that follows:

 [ConnectionProvider("Number Provider", "default")]
 public INumbersInterface GetProviderData() {
 return this;
 }

Listing 3.1 The provider web part implements our interface, thereby exposing

 the Numbers property.

Implement the
interface

Convert the user’s
entry into an
array of strings

Convert the array
of strings into an
array of integers
CREATING SIMPLE CONNECTIONS 71

That’s all there is to creating the provider control, and we can now move on to create
another user control.

3.2.1 Creating a connection consumer

To begin the process of creating another user control to act as the consumer web part,
add another user control and name it NumberConsumer.ascx. This control must
provide a method marked with the ConnectionConsumer attribute, so that the web
part framework knows that it can act as the consumer within a connection. The method
that is marked with the ConnectionConsumer attribute must be able to accept data of
the correct type so that this web part meets its obligations to the data contract. Our class
with the consumer method and a private field named _data is shown in the code that
follows. Note that the field _data is used to store the data when it is received.

 public partial class NumberConsumer : System.Web.UI.UserControl {

 INumbersInterface _data = null;

 Color[] _colors = new Color[] {
 Color.Blue,
 Color.Green,
 Color.Red,
 Color.Gold
 };

 [ConnectionConsumer("Text Consumer")]
 public void SetProviderData(INumbersInterface providerData) {

 this._data = providerData;
 }

 }

At runtime the connection data is passed to the method marked with the Connec-
tionConsumer attribute. In our implementation we simply grab it and store it in a
field. The field will be accessed just prior to the page being rendered (the pre-rendering
phase of the page) when we use the connection data to generate a bar graph to display
to the user.

It’s important to understand why we stored the data that was passed into the con-
sumer web part and didn’t use it until the pre-rendering phase. For any given web
page, many connections could be in play. Immediately after the connections are ini-
tialized, the connection data is passed around to the web parts that are configured to
receive data of the correct type. Because a web part can have multiple connections,
you could be handed data from more than one connection or even handed the same
piece of data more than once. Therefore, it is important not to use the data as soon as
it is handed to your web part. Instead, store the data and wait until the pre-rendering
phase of the page because, by this time, all the connections will have finished passing
their data and the state will be finalized for that request.

If you made user interface changes at the time that you received the connection
data, you would have no way of knowing whether all connections on the page had

Declare some colors to
display on the chart
72 CHAPTER 3 USING WEB PART CONNECTIONS

finished passing their data. This could lead to making assumptions that are incorrect;
or you might end up performing the same set of operations more than once, if you
received data for a second time.

To create the bar graph shown in figure 3.5 on page 70, we’ll use a standard
HTML table. When we loop through the numbers in the _data field we can simply
color the cell if it is lower than the number we are examining. For example, if our
table is 10 rows high and we want to display a bar for the number 3, we’ll simply
color in the bottom 3 rows of that column. Listing 3.2 shows the code for the
OnPreRender override method.

 protected override void OnPreRender(EventArgs e) {
 if (this._data != null) {

 Table tbl = new Table();

 int maxNum = 0;
 for (int i = 0; i < _data.Numbers.Length; i++) {
 if (_data.Numbers[i] > maxNum)
 maxNum = data.Numbers[i];
 }

 maxNum = Math.Min(maxNum, 10);

 for (int i = 0; i < maxNum; i++) {

 TableRow row = new TableRow();
 tbl.Rows.Add(row);

 for (int j = 0; j < _data.Numbers.Length; j++) {
 TableCell cell = new TableCell();
 cell.Text = " ";

 if (_data.Numbers[j] >= (maxNum - i))
 cell.BackColor = _colors[j % _colors.Length];

 row.Cells.Add(cell);
 }
 }

 this.Controls.Add(tbl);
 }
 }

The method that is shown in listing 3.2 uses two loops to draw up a grid for the
chart. An outer loop is responsible for writing out the rows for the grid, while an

Listing 3.2 The consumer uses the data that was passed to it to create a simple

 bar chart to display the results to the user

Find the
maximum value

Cap the maximum
value at 10

Create a row
for each value

Create a column
for data item

Color the cell if required
CREATING SIMPLE CONNECTIONS 73

inner loop creates the cells within each row. The colored bars of the chart are achieved
by applying a background color to cells.

The final task is to create the page that will host the web parts and then to wire up
the connection between them. To do this, create a page named StaticConnec-
tionsTest.aspx and open it in design view. Add a WebPartZone control and then
drag the two user controls, NumberProvider.ascx and NumberConsumer.ascx,
into it. The code for the web part zone should now look like the following:

 <asp:WebPartZone ID="WebPartZone1" runat="server">
 <ZoneTemplate>

 <uc1:NumberProvider ID="NumberProvider1"
 runat="server" Title="Data" />

 <uc2:NumberConsumer ID="NumberConsumer1"
 runat="server" Title="Chart" />

 </ZoneTemplate>
 </asp:WebPartZone>

As with all web part pages, ensure that you have a WebPartManager at the top of
the page, and within it declare a StaticConnections element. The StaticCon-
nections element can contain WebPartConnection declarations for web parts
within the page. The code with the necessary connection information to create a con-
nection between our provider and consumer web parts is as follows:

 <asp:WebPartManager ID="WebPartManager1" runat="server">
 <StaticConnections>

 <asp:WebPartConnection ID="cnn"
 ConsumerID="NumberConsumer1"
 ProviderID="NumberProvider1"

 />
 </StaticConnections>

 </asp:WebPartManager>

Run the example and notice that the chart is able to change its state based upon the
data number that is entered into the textbox. Congratulations, you’ve just created
your first web part connection! I’m sure that even such a simple example has sparked
your interest to understand exactly what is happening, and how the data is being
passed around. To begin the discovery process, let’s lift the hood and take a look at
the components that make up a web part connection.

3.3 SORTING OUT CONNECTION TYPES

Now you’re ready to take a closer look at connections and dissect the individual
pieces. Doing so will help you understand what options you have with connections
and how you can work with them programmatically. We’ll also learn how to connect
web parts that don’t even exist at design time by using connections known as dynamic
connections. Before we look at dynamic connections, let’s start with the other type of
connection: static connections.
74 CHAPTER 3 USING WEB PART CONNECTIONS

3.3.1 Static connections

We saw that when we configured the static connection, we had to define information
about a provider endpoint and a consumer endpoint. When the page is initialized—
actually just after initialization—the WebPartManager uses the connection configu-
ration information to activate all the connections for the page. During this activation
period, the WebPartManager checks to ensure that both of the connection partici-
pants (the provider and the consumer) are enabled, and then the WebPartManager
grabs the data from the provider and hands it to the consumer. To be able to pass data
between the endpoints, the manager must know which method to use—which is
where information provided by the ConnectionConsumer and the Connection-
Provider attributes is used. With those attributes in place, the WebPartManager
can determine which method should receive the data it passes. It makes this determi-
nation by scanning the web part at runtime and looking for the method.

Identifying connection endpoints

In our simple connection example where we connected the SimpleConsumer and
the SimpleProvider web parts, each web part exposed just a single consumer or
provider method (endpoint), but this is not a limitation. Although this is not a com-
mon occurrence, each web part can actually expose more than just one consumer or
provider endpoint. In the case where a web part has multiple consumer endpoints or
multiple provider endpoints, we must pass additional information to the portal
framework so that it knows which endpoint to associate with a connection. To do
this, we must first give each endpoint an ID. This is done by specifying an additional
piece of information in the ConnectionProvider or ConnectionConsumer
attribute. The ConnectionProvider attribute in the code that follows contains
two arguments:

• The first argument has a value of Number Provider and represents the descrip-
tion of the provider.

• The second argument has a value of MyID and represents its ID. The MyID
value will be referred to when creating the connection information.

The following snippet of code shows the ConnectionProvider attribute being
applied to a method named GetProviderData:

 [ConnectionProvider("Number Provider", "MyID")]
 public INumbersInterface GetProviderData() {

 return this;
 }

The ID of the connection provider can now be specified via the ProviderConnec-
tionPointID property when you create the WebPartConnection information as
shown in the code that follows. Likewise, there is a ConsumerConnection-
PointID property that allows you to target a specific consumer endpoint.
SORTING OUT CONNECTION TYPES 75

 <asp:WebPartManager ID="WebPartManager1" runat="server">
 <StaticConnections>

 <asp:WebPartConnection
 ID="cnn"
 ConsumerID="NumberConsumer1"
 ProviderID="NumberProvider1"
 ProviderConnectionPointID="MyID"

 />

 </StaticConnections>
 </asp:WebPartManager>

If your web part does expose
multiple consumer or provider
endpoints and you fail to spec-
ify the identity of the endpoint
when you configure the con-
nection, the web part frame-
work will look for an endpoint
named “default,” as this is the
standard name given to provid-
ers by the web part framework when the providers are created with no specific ID. If
the web part fails to locate a provider with that name, that endpoint will not be created,
and the ConnectErrorMessage will be displayed on the web part associated with
the endpoint created for the connection. Figure 3.6 shows how the error would appear
to an end user.

All the connections we’ve seen so far are referred to as “static connections”—con-
nections that are declared in the StaticConnections section of a WebPartMan-
ager. The participants of static connections are always known at design time and hard-
wired so that they do not change. Once they have been declared, the only attribute of
static connections that can be altered is whether or not the connection is enabled. Static
connections always have a shared scope—meaning that any changes made to a static
connection affect every user and not just the user making the change.

Another kind of connection exists which allows connections to be discovered and
created at runtime—dynamic connections. As described in the next section, dynamic
connections add a great deal of flexibility to a portal because not all of their details
need to be known in advance.

3.3.2 Dynamic connections

When using static connections, we saw that we needed to know the details of the web
parts which were going to be participating in the connection in advance. That works
well when the web parts are declared within a page, but what happens when they are
not? For example, how do we connect web parts that are dynamically loaded at run-
time from a CatalogZone? The answer can be found in dynamic connections.

Figure 3.6 The error shown to the user when an end-

point cannot be ascertained at runtime.
76 CHAPTER 3 USING WEB PART CONNECTIONS

The ConnectionsZone

Dynamic connections are not declared within the StaticConnections element, but
instead require the use of their own zone called a ConnectionsZone. The Connec-
tionsZone provides a way for users to create and manage all the facets of connections
at runtime. Like other zones—such as the EditorZone and the CatalogZone—the
ConnectionsZone is only visible when the page is in a specific display mode. For the
ConnectionsZone that mode is known as connect mode.

 NOTE There are five standard modes that a web page can enter into: Browse-
DisplayMode, CatalogDisplayMode, ConnectDisplayMode,
DesignDisplayMode, and EditDisplayMode. These are described
in greater detail in chapter 4.

The purpose of the ConnectionsZone is to display all the user interface elements
required to dynamically discover connection endpoints and connect them together at
runtime. The code that follows shows a version of the page we used in the static con-
nections example. In this example, however, the code has been changed to support
dynamic connections instead of static connections.

 <asp:WebPartManager ID="WebPartManager1" runat="server" />

 <asp:WebPartZone ID="WebPartZone1" runat="server">

 <ZoneTemplate>
 <uc1:NumberProvider ID="NumberProvider1" runat="server" />
 <uc2:NumberConsumer ID="NumberConsumer1" runat="server" />

 </ZoneTemplate>
 </asp:WebPartZone>

 <asp:ConnectionsZone ID="ConnectionsZone1" runat="server" />

Notice that the WebPartManager no longer contains a StaticConnections ele-
ment and that the page now has a ConnectionsZone added to it. If we run the
page at this point, the chart that we originally saw in figure 3.5 on page 70 will no
longer be displayed. This is because we removed the static connection that was pro-
viding it with data. We’ll have to use the ConnectionsZone to dynamically config-
ure the connection between the data part and the chart part before it is displayed.
Remember that to display the connections tool zone, the page must first be in “con-
nect” mode, so for the time being we’ll write hard-coded logic into the load method
of the page to make sure that it is. The following displays the code that is required
to set the page into connect mode.

 public partial class DynamicConnectionsPage : System.Web.UI.Page {

 protected override void OnLoad(EventArgs e) {
 WebPartManager1.DisplayMode =

WebPartManager.ConnectDisplayMode;
 }

 }
SORTING OUT CONNECTION TYPES 77

By re-running the page now, we see that,
even though the page is in connect mode,
the connections zone is still not visible. To
display the connections zone we must use
the verbs associated with the web part to
choose the connect verb. Clicking on the
connect verb will display the connections
zone and allow the connection informa-
tion for that particular part to be config-
ured. If the web part cannot participate in
connections then it will not have a con-
nect verb.

The ConnectionsZone has several
screens that a wizard allows us to cycle
through to perform connection operations. When you initially display the connec-
tions zone for a part, the appearance of its first screen will depend on whether the
selected web part is currently connected to any other parts and whether it is con-
nected as a provider, a consumer, or both. Figure 3.7 shows the first screen ren-
dered by the connections zone. In the figure, a link is displayed for creating a
connection to a consumer web part. This means that the web part being config-
ured exposes a provider endpoint but is not currently connected.

If the web part we are configuring also exposed a consumer endpoint, there would
be a second link displayed to “Create a connection to a Provider.” The first screen is
shown when the connection zone is in its default state. This state is known as the
ExistingConnections mode. There are actually four possible, standard modes:

• ExistingConnections

• ConnectToConsumer

• ConnectToProvider

• Configuring Transformer

Each mode has its own screen to display
the configuration options that are relevant
for that mode. As you can probably imag-
ine, clicking on the link titled “Create a
connection to a Provider” will switch the
state of the connection zone from
ExistingConnections to Connect-

ToProvider.
Figure 3.8 shows what happens when

you click on the “Create a connection to a
Consumer” link to display the connection

Figure 3.7 The appearance of the first

screen of the ConnectionsZone depends

on the connection state of the web part

for which it is being displayed.

Figure 3.8 The ConnectToConsumer

screen allows the user to select the web

part that will be the consumer from a list

of web parts.
78 CHAPTER 3 USING WEB PART CONNECTIONS

zone in its ConnectToConsumer mode. You can see that Title says “Send Data to
Web Part,” thus indicating that we just need to select which part will be receiving the
data for that part.

If we wished to provide a totally custom view for any of the wizard screens, we
could do so by creating a control and deriving it from the ConnectionsZone class.
We could then provide code in the RenderBody method of that class to provide our
own, unique user interface views.

3.4 USING TRANSFORMERS

At this point you understand that connections rely upon both web parts—Provider
and Consumer—to implement the same data contract. Now imagine yourself in a
pickle—you’ve purchased a charting web part to display your accounting data in a
visual manner from a third-party supplier, and you’ve purchased a custom grid web
part from another vendor to display profit and loss data. It’s extremely unlikely that
those two vendors even know about each other, let alone share a common endpoint
contract. So without the ability to pass the spreadsheet data to the charting web part,
any connections that those vendors added to their parts would be useless.

Transformers provide us with a way to climb out of this hole. Using transformers,
you can connect web parts that are incompatible. You can use a transformer to write
code that takes data from the accounting part and exposes it as the data type that is
expected by the charting web part.

Figure 3.9 shows an example of how transformers act as a bridge for connection
data that is incompatible. In the diagram we see that data is received form the pro-
vider web part (A) and transformed into different data type that is expected by the
consumer web part (B).

Figure 3.9 A transformer is a control that sits in the middle of a connection and transforms

connection data from one type into another type.
USING TRANSFORMERS 79

Let’s take a further look at what makes up a transformer, in order to learn more about
how it manages the transformations. We’ll also discover how to create our own trans-
formers. Creating a custom transformer is something that only needs to be done
when a very high level of specificity is required, because the portal framework pro-
vides us with some generic transformers that come as a standard part of ASP.NET 2.0.
However, by creating our own transformer we will see exactly what is required to per-
form a conversion between two different types of data.

In addition to creating our own custom transformers we’ll also see how to con-
figure ASP.NET so that it is aware of our transformer and is able to automatically
offer it for use when users are attempting to create new connections between
incompatible interfaces.

Creating custom transformers

The portal framework provides an abstract class named WebPartTransformer
which we can use to create our own custom transformer controls. Using the Web-
PartTransformer class requires us to implement a single method named Trans-
form, which is shown in the code:

public override object Transform(object data) {…}

It’s inside this method that we place the code required to transform data of one type
into data of another type. To see how to implement the logic for this method, let’s go
back to the INumbersInterface interface we used earlier in this chapter. We’ll take
the INumbersInterface and change it so that it exposes its data as an array of
strings rather than the array of integers that the consumer is expecting. The code that
follows shows the new interface that will be the data contract for the provider:

 namespace Samples {
 public interface IStringsInterface {

 string[] Strings { get; }
 }

 }

The NumberProvider web part can now be altered so that it returns instances of
string data as shown in listing 3.3.

 public partial class NumberProvider : UserControl, IStringsInterface {

 [ConnectionProvider("String Provider", "MyID")]
 public IStringsInterface GetProviderStrings() {

 return this;
 }

 string[] _strings = new string[0];
 public string[] Strings {

 get {

Listing 3.3 The NumberProvider class provides data based on IStringsInterface.
80 CHAPTER 3 USING WEB PART CONNECTIONS

 if (this._strings.Length == 0) {
 this._strings = this.TextBox1.Text.Split(
 new char[] { ',' },
 StringSplitOptions.RemoveEmptyEntries
);

 }
 return this._strings;

 }
 }

 }

At this point the NumberProvider and the NumberConsumer are incompatible
because their endpoints expose different contracts. The web part framework is smart
enough to realize this incompatibility, and won’t even provide an option to connect
them when using dynamic connections. If we attempt to connect them using a static
connection, we’ll receive an error similar to the one shown in figure 3.10.

In order to have the NumberProvider and NumberConsumer work together we
must create a transformer that can accept the IStringsInterface data and trans-
form it into INumbersInterface data. Next we’ll see exactly how to create such a
transformer and learn how to configure ASP.NET so that it knows we have a way of
converting between these two interfaces. Once we’ve done this, ASP.NET will treat
these as compatible interfaces when we are configuring them within the application.

The WebPartTransformer attribute

Creating a custom transformer requires us to inherit from the base transformer class
and we must also attribute our class with the WebPartTransformer attribute.
This attribute is constructed by passing in the Types of the provider and consumer.
The constructor for the WebPartTransformerAttribute is shown in the follow-
ing code:

 public WebPartTransformerAttribute (
 Type consumerType,
 Type providerType
)

Figure 3.10 An error is displayed if you attempt to connect incompatible

parts with static connections.
USING TRANSFORMERS 81

In our case, the consumer type (the type that we are consuming, not the type that we
are sending to the consumer endpoint) will be the IStringsInterface, and we
will be transforming it and exposing it as INumbersInterface. In other words, we
consume strings and provide integers. The Transform method will be invoked by
the web parts framework at runtime and handed data, based on the data type that
you are consuming.

A simple Transform method will merely cast the incoming data to the appropri-
ate interface and then manipulate a result based on the data type that you are provid-
ing. In listing 3.4 you can see what the code for a fully implemented transformer that
changes strings data to integer data looks like.

namespace Samples {

 [WebPartTransformer(typeof(IStringsInterface),
typeof(INumbersInterface))]
 public class StringsToNumbersTransformer
: WebPartTransformer, INumbersInterface {

 public StringsToNumbersTransformer() { }

 int[] _numbers = new int[0];

 public override object Transform(object data) {

 string[] strings = ((IStringsInterface)data).Strings;
 _numbers = new int[strings.Length];

 for (int i = 0; i < strings.Length; i++) {
 int tmp = 0;
 int.TryParse(strings[i], out tmp);
 numbers[i] = tmp;
 }
 return this;
 }

 public int[] Numbers {
 get { return this._numbers; }
 }
 }
}

As you can see, when such a simple transformation is required—converting an array
of strings to an array of numbers—very little code is required to build a custom trans-
former class.

Listing 3.4 StringsToNumbersTransformer.cs—a transformer class for

 transforming string arrays to integer arrays

Specify what data types the
transformer works with

Receive the
IStringsInterface data

Convert the strings
to numbers

The INumbersInterface
implementation
82 CHAPTER 3 USING WEB PART CONNECTIONS

Configuring a transformer

The final step to perform when creating a custom transformer is to let the portal
framework know about it by adding the details of the transformer to the web config-
uration file. This is accomplished by adding it to the system.web/webParts sec-
tion of that file. The code that follows shows how that section will look after you have
added an entry for our StringsToNumbersTransformer.

<system.web>
 <webParts>

<transformers>
<add

name="StringsToNumbersTransformer"
type="Samples.StringsToNumbersTransformer" />

</transformers>
</webParts>

</system.web>

Our transformer is now exposed to the web part framework and ready to act as a
bridge between the strings and numbers types. We can see that our transformer has
been successfully registered with the framework by inspecting the Available-
Transformers property of the web part manager. The AvailableTrans-
formers property contains a listing of all transformers currently “visible” to the
portal framework, and is used when determining which web parts can be connected
to other web parts on the page. The following snippet of code shows how to display a
listing of available transformers:

TransformerTypeCollection transformers =
WebPartManager1.AvailableTransformers;

foreach (Type type in transformers) {
Trace.Warn(type.Name);

}

Figure 3.11 shows the listing of transformers that the code above created.
At the beginning of this section, I mentioned that there are pre-defined trans-

formers that come standard with ASP.NET 2.0, as shown in figure 3.11. Although we
created only one transformer class, StringsToNumbersTransformer, there are
actually three transformers listed in the page trace output. The other two transform-
ers that are shown in the output, RowToParametersTransformer and
RowToFieldTransformer, ship as standard transformers with ASP.NET 2.0.

Figure 3.11 The list of available transformers as displayed in the page trace output.
USING TRANSFORMERS 83

3.4.1 Using pre-defined transformers

The custom transformers we created in the previous sections have limited use. By con-
trast, having a set of pre-defined transformers is handy because they are common and
can be used by all third parties. This means that they can be used as guidelines for vendors
so that their web parts can be interoperable with other parts. This also means that the
number of transformers required can be limited to just a few, as opposed to having to
create new transformers every time we need to connect incompatible web parts.

RowToParametersTransformer

The RowToParametersTransformer is one
of the existing ASP.NET transformers that allows
us to take data from a provider implementing the
IWebPartRow interface and connect it to a con-
sumer which is expecting to receive data based on
the IWebPartParameters interface. IWeb-
PartRow and IWebPartParameters are both
standard ASP.NET interfaces, and can be found
in the System.Web.UI.WebControls.Web-
Parts namespace.

When a user connects two parts using the
RowToParametersTransformer, a wizard
step will appear within the connections zone to
guide users through the configuration. During
this step the user can map each column in the
IWebPartRow data source to a parameter
within the control. This screen is displayed
when the connections zone is in Configur-
ingTransformer mode. Figure 3.12 shows
the first screen of the wizard for configuring a
transformer being displayed within the connec-
tions zone.

We can go back and edit the connection
configuration at any time by switching the web
part into connect mode and using the Edit but-
ton that appears when a transformer is present
on the connection, as shown in figure 3.13.

By looking at the wizard steps for configur-
ing the RowToParametersTransformer, we
have seen how the end-user’s experience works
with transformers. Now we can turn our atten-
tion towards creating two web parts that can be
used with this type of transformer. We will need

Figure 3.12 The screen for config-

uring the RowToParametersTrans-

former walks users through each

field in the provider row, and allows

them to map that field to a param-

eter in the consumer.

Figure 3.13 When the connection

contains a transformer, the edit but-

ton is enabled to allow the user to en-

ter ConfiguringTransformer mode.
84 CHAPTER 3 USING WEB PART CONNECTIONS

one web part that provides IWebPartRow connection data, and another web part
that receives IWebPartParameters connection data.

Providing IWebPartRow data

To create a web part that will provide data to the connection, we must provide a data
type which implements IWebPartRow. Implementing the IWebPartRow interface
requires our web part to implement two members—Schema and GetRowData. The
GetRowData method is called by the transformer when it needs to get the actual row
of data from the connection.

The other property, Schema, returns a PropertyDescriptorCollection—
which is a collection of items that describes each field within the row of data returned
by the GetRowData method. The items returned via the Schema property are used
by the transformer at runtime to create the configuration screen. This explains how
the configuration screen knew that the provider had a field called “Name” in the
image displayed in figure 3.12. Listing 3.5 shows a full implementation of a class that
exposes a provider endpoint for the IWebPartRow interface.

public partial class RowProvider : UserControl, IWebPartRow {

 private DataTable _table;

 public RowProvider() {
 _table = new DataTable();

 _table.Columns.Add(new DataColumn("ID", typeof(int)));
 _table.Columns.Add(new DataColumn("Name", typeof(string)));

 DataRow row = _table.NewRow();
 row.ItemArray = new object[] { 1, "Item 1" };
 _table.Rows.Add(row);
 }

 public void GetRowData(RowCallback callback) {
 callback(_table.DefaultView[0]);
 }

 public PropertyDescriptorCollection Schema {
 get {
 return TypeDescriptor.GetProperties(_table.DefaultView[0]);
 }
 }

 [ConnectionProvider("Row Data")]
 public IWebPartRow GetProviderData() {
 return this;

Listing 3.5 The transformer communicates with our web part via its

 IWebPartRow interface.

Create some initial
dummy data

Called by the transformer
to get the data

Called by the transformer
to get schema information

The connection
endpoint
USING TRANSFORMERS 85

 }

 protected override void Render(HtmlTextWriter writer) {
 writer.Write("This part is the provider.");
 }
}

In the example we see that ConnectionProvider endpoint does indeed return an
IWebPartRow data type—and in this case we can simply return an instance of the
user control itself, as it already implements that interface. The control in the example
returns hard-coded sample data; but, in a real application, this row could be dynamic.
For example, in a real application, this row could be the row from a SelectedIndex
of a data grid or such.

Consuming IWebPartParameters data

We have a web part that provides the IWebPartRow data to the RowToParameters-
Transformer, and all that we need before we can use the transformer is a web part
that consumes the IWebPartParameters data that the transformer will be provid-
ing. Like the IWebPartRow interface, the IWebPartParameters interface serves a
dual purpose:

1 It provides a method for exposing its schema information to the transformer,
which can then be used to create the configuration screen.

2 It provides a method for the interchanging of data.

To enable the transformer to retrieve information about the properties of the
consumer web part, the IWebPartParameters interface provides us with a
method named SetConsumerSchema. This method must be called by the
consumer to let the transformer know for which parameters it expects to receive
data. This is the information that the transformer uses when rendering the wizard to
match properties to columns. Listing 3.6 shows an example of how to call
SetConsumerSchema on the provider and pass it the details of two of its properties
named TempID and Description.

NOTE The item that is passed to the consumer is not the actual provider class, but
an instance of the RowToParametersTransformer class which im-
plements the IWebPartParameters interface.

[ConnectionConsumer("Parameters Data")]
public void SetProvider(IWebPartParameters provider) {

if (provider != null) {
PropertyDescriptorCollection props =
 TypeDescriptor.GetProperties(this);

Render some
trivial interface
for the web part

Listing 3.6 The consumer calls the SetConsumerSchema on the transformer to

 pass to it the properties available for mapping.
86 CHAPTER 3 USING WEB PART CONNECTIONS

PropertyDescriptor p1 = props.Find("TempID", false);
PropertyDescriptor p2 = props.Find("Description", false);

PropertyDescriptorCollection schemaProps =
new PropertyDescriptorCollection(

new PropertyDescriptor[] {p1, p2}
);

provider.SetConsumerSchema(schemaProps);

this._provider = provider;
}

}

As usual, the consumer stores the provider data in a local field for use during the pre-
rendering process, and at that time the consumer must call the GetParameters-
Data method on it. When that method is called, a reference to a callback method is
passed as an argument, and it is this callback method that will be invoked and have
the actual data row passed to it. Importantly, the callback method must match the
signature of the ParametersCallback delegate. The code that follows provides an
example of how to do this:

protected override void OnPreRender(EventArgs e) {
if (this._provider != null) {

this._provider.GetParametersData(
new ParametersCallback(SetProviderData)
);

}
base.OnPreRender(e);

}

public void SetProviderData(IDictionary dict) {
this._data = dict;

}

When we have the data, it’s simply a matter of using it during the rendering phase.
The following code shows a simple example of displaying the provider data by writ-
ing out each value:

protected override void Render(HtmlTextWriter writer) {
if (this._provider != null && this._data != null) {

foreach(DictionaryEntry de in this._data) {
writer.Write(

string.Format("{0} : {1}
",
de.Key,
de.Value
)

) ;

Pass the
properties to
the transformer
USING TRANSFORMERS 87

}
} else {

writer.Write("No data here!");
}

}

In this example, we are simply displaying the data that was received from the provider
directly to the user. In a real example, we might use the data that we receive to do
something more interesting. For example, the data we receive could hold a value for a
city and another value for a country. These values could then be passed to a weather
service that returns the weather information for the specified city.

RowToFieldTransformer

The other pre-defined transformer within the
ASP.NET web part framework is the RowTo-
FieldTransformer. As its name suggests, this
transformer also works with IWebPartRow

provider data, but it is looking for a consumer
that expects to receive IWebPartField data—
which is like a single field version of the previ-
ous transformer.

The configuration user interface provided by
this control displays all the column definitions
from within the IWebPartRow source in a
dropdown list as shown in figure 3.14. This
allows the user to choose which single column
from the row will provide it with its data.

Now that we’ve learned a great deal about
transformers and how they work, we will look at
one further area of working with transformers
that can be customized and that is the user interface that the user works with when
configuring a transformer during the connection process. Next we’ll learn how to
completely customize that part of the user experience by providing the user with a cus-
tom piece of user interface that allows him to manage the transformation mapping.

Customizing the transformation experience

The two ASP.NET transformers we’ve seen in this section have both provided the user
with configuration screens that guide him through the configuration process at runt-
ime. We are able to create configuration screens for our own custom transformers by
implementing the CreateConfigurationControl method in our custom Web-
PartTransformer. In this method we can simply return any control that we’d like
to present to the user that will allow the user to perform the configuration. The only

Figure 3.14 The transformation

screen for the RowToFieldTrans-

former.
88 CHAPTER 3 USING WEB PART CONNECTIONS

caveat to this is that the control we return must implement the ITransformerCon-
figurationControl interface.

The ITransformerConfigurationControl interface has two simple events
that must be exposed by our control to allow it to communicate with the containing
connections zone. The events I’m referring to are the Cancelled and Succeeded
events, and we raise them to indicate to the connections zone that the user has fin-
ished configuring the transformer. When the connection zone receives a notification
from either the Cancelled or Succeeded event, it can change its user interface to
display a new view to the user. The following code represents the bare minimum
amount of code for a control that implements the ITransformerConfigura-
tionControl interface. Note that this control would not actually display any user
interface, nor would it have any way to raise its two events. Implementing this ren-
dering logic is left as an exercise for the reader.

public class MyControl :
Control, ITransformerConfigurationControl {

public event EventHandler Cancelled;
 public event EventHandler Succeeded;

}

That’s all there is to creating a unique configuration experience for our transformers.
By supplying an ITransformerConfigurationControl with our transformers,
we can simplify the experience of the end-user when working with our data, espe-
cially when the mapping might be more advanced than a simple field-to-field map-
ping. For example, a more advanced mapping might see several address fields mapped
to a single address field property. In such an advanced scenario the user would cer-
tainly require a custom interface to manage the mapping.

Planning for interoperability

Having a common set of interfaces that are defined for working with connection data
means that third-party web part providers will have a set of guideline interfaces to
use. Using these interfaces when we are writing our own custom web parts applica-
tions makes it likely that our controls will work with vendor-supplied controls with-
out requiring the writing of any code. For example, when creating a web part that
exposes connection information, we should attempt to provide the connection data
as an IWebPartRow data type instead of exposing it as a custom interface type. Like-
wise, ensuring that when we are consuming connection data, we use either the IWeb-
PartParameters or IWebPartField data types will make our web parts more
interoperable with other web parts.

The next section pulls together the theory and practice of web part connections, as
you put them into action for Adventure Works.
USING TRANSFORMERS 89

3.5 ADVENTURE WORKS—
IMPLEMENTING CONNECTIONS FOR HR

At the end of chapter 1 we created a portal for Adventure Works Cycles. In that exer-
cise we created two parts: a part to display a listing of departments, and a part to dis-
play a listing of employees. In this exercise we will apply our new knowledge of
connections to join these two parts to one another, so that the employee list can be
filtered by a selected department in the department list. Figure 3.15 shows how the
two web parts will appear when this connection has been made. The image shows the
Finance department as the selected department with the employees for that depart-
ment shown in the employees list.

The IT department at Adventure Works has decided that, whenever possible, we
should increase the extensibility of our controls and use the standard connection
interfaces that work with the pre-defined ASP.NET transformers. To do this we will
ensure that the DepartmentListing web part exposes its data via the IWebPart-
Row provider interface, and have the EmployeeListingPart web part consume
the department identifier via the IWebPartField consumer interface.

NOTE If you don’t have a copy of the project from chapter 2 you can grab it from
the chapter 2 section of the resources website for this book at http://man-
ning.com/neimke.

Adding the provider endpoint

We’ll start the process of implementing the standard transformer interfaces within our
application by altering the DepartmentListingPart.ascx control to make it
expose a connection endpoint based on the IWebPartRow interface. Open that control

Figure 3.15 Adding a connection between the two web parts will allow the user to make

a selection in the Departments web part and have the employees for that department be

automatically displayed in the Employees web part.
90 CHAPTER 3 USING WEB PART CONNECTIONS

in design view, and configure the GridView to allow users to select items and modify
them so that the fill color of the selected row is highlighted. You can do this by adding
the attributes listed in the following code to the GridView control declaration:

AutoGenerateSelectButton="True"
SelectedRowStyle-BackColor="Yellow"

Now switch the control into source code view and add the IWebPartRow interface
definition to it. At this point the code for your class should look like this:

public partial class DepartmentListingPart : UserControl, IWebPartRow {

public void GetRowData(RowCallback callback) {
// implementation goes here

}

public PropertyDescriptorCollection Schema {
get {
 // implementation goes here
}

}
}

The Schema property requires us to return a collection of PropertyDescriptor
objects for each property that we want to expose to the transformer; in other words,
how many properties do we want to expose for dynamic configuration? We could
expose just the ID of the selected department—which is all that is needed for this
example; but in the future, we may create other parts that can utilize other properties
of a department, such as its name or description. So let’s return a Property-
Descriptor for each property of the selected Department item to keep things
uncomplicated. The code to accomplish this turns out to be simple, as seen in the fol-
lowing listing. The TypeDescriptor class already knows how to extract these
descriptors based on a type, so we can relegate the hard work to it.

public PropertyDescriptorCollection Schema {
 get {
 PropertyDescriptorCollection props =
 TypeDescriptor.GetProperties(typeof(Department));
 return props;
 }
}

The logic for our provider is contained within the GetRowData method. This is the
method that will be called by the transformer when it needs to get the data to send to
the consumer. This method is responsible for creating the data we described in our
Schema property, and passing it back to the caller via the callback that is passed to
the method. The code to do this follows:
ADVENTURE WORKS— IMPLEMENTING CONNECTIONS FOR HR 91

public void GetRowData(RowCallback callback) {

 int index = this.GridView1.SelectedIndex;
 int departmentID = (int)GridView1.DataKeys[index].Value;

 DataLayer datalayer = new DataLayer();
 Department department = datalayer.GetDepartment(departmentID);

 callback(department);
}

To complete this control we simply need to expose a provider endpoint that exposes
the IWebPartRow data. The provider endpoint returns the instance of the class
because the class implements the interface. The following shows the code for the pro-
vider endpoint:

[ConnectionProvider("Department Provider Data")]
public IWebPartRow GetProviderData() {

return this;
}

Our DepartmentListing web part is now set up to provide its data in accordance
with the IWebPartField interface.

Adding the consumer endpoint

Now we can configure the consumer endpoint on the employees web part so that it
accepts data based on the IWebPartField interface. Open the EmployeeListing-
Part in design mode and remove the DataSource control from the page and the
DataSourceID from the GridView. We’ll now be implementing the binding logic in
code because we have to decide whether we are connected or not. Open the control in
source code view so that we can create the consumer endpoint logic.

As we’ve seen with all the connection consumers we’ve created so far, the first step
is to add a method and mark it with the ConnectionConsumer attribute as shown
in the code that follows. In this method, we simply take the data that is handed to us
and assign it to a private field. Remember that we do this because we have to wait
until the pre-rendering phase of the page before we use it, so that we are sure we have
the latest connection data to work with.

public partial class EmployeeListingPart : UserControl {

IWebPartField _provider;
int _data = 0;

[ConnectionConsumer("Department Field Consumer")]
public void SetProviderData(IWebPartField provider) {

this._provider = provider;
}

}

92 CHAPTER 3 USING WEB PART CONNECTIONS

During the pre-render phase we must call a method named GetFieldValue on the
IWebPartField provider to get the value of the field from the provider. In the next
code snippet we can see that this method is called and a FieldCallback delegate is
passed to it as the argument. This is the consumer’s way of asking to receive its data
from the transformer. The transformer will invoke the callback—which must take an
object as its only argument—and the consumer can then work with the data. You can
see that our callback method named GetFieldData simply stores the value in a
local variable named _data so that it can be used in the rendering phase.

protected override void OnPreRender(EventArgs e) {
if (this._provider != null) {

this._provider.GetFieldValue(
new FieldCallback(GetFieldData)

);
}
base.OnPreRender(e);

}

private void GetFieldData(object data) {
int.TryParse(data.ToString(), out this._data) ;

}

By the end of the pre-rendering phase, the _data field will contain the value from
whatever provider we are connected to—in our case this will be the ID of a depart-
ment which has come from the DepartmentListingPart control. In listing 3.7
we see the logic to either display a full listing of employees if we are not connected, or
to display a filtered listing if we are connected and a department ID has been passed
through to us.

protected override void Render(HtmlTextWriter writer) {

 DataLayer datalayer = new DataLayer() ;
 List<Employee> employees ;

 if (_provider != null && _data > 0) {
 employees = datalayer.ListEmployeesByDepartment(_data);
 } else {
 employees = datalayer.ListEmployees();
 }

 GridView1.DataSource = employees;
 GridView1.DataBind();

 base.Render(writer) ;
}

Listing 3.7 When we render our control we check the connection data to deter-

 mine whether to display a filtered list or a full listing of employees.
ADVENTURE WORKS— IMPLEMENTING CONNECTIONS FOR HR 93

The code in our render method will now check to determine whether a connection
exists before fetching the employee data. If a connection does exist, it will use the data
from the connection to limit the employees that it gets to a specific department; oth-
erwise it will fetch the employees for all departments.

Adding the ConnectionsZone

The last thing to do is to go back to the web part page—Default.aspx—and add a
ConnectionsZone control and set the page into connect mode—as shown in the
code that follows. This will allow us to add and configure a dynamic connection
between the two web parts at runtime.

NOTE In chapter 4 we will see how to set the DisplayMode of the WebPart-
Manager dynamically, instead of hard-coding it as we have done so far.

protected override void OnLoad(EventArgs e) {
base.OnLoad(e);
WebPartManager1.DisplayMode = WebPartManager.ConnectDisplayMode;

}

Right-click on the Default.aspx file
and choose View in Browser to view the
portal. Notice that initially the employee
listing is still unfiltered. Choose the con-
nect verb from either of the web parts
and then walk through the configuration
process. Be sure to configure the trans-
former to pass the DepartmentID field
as shown in figure 3.16.

After configuring the connection, the
employees listing will be connected to
the departments web part and will have
its items filtered by the selected depart-
ment. Run the page in a browser and
check to see that it appears as shown in
figure 3.17.

With the page displayed, make some selections in the departments listing and ver-
ify that the employees displayed are correct for the department that is chosen. As you
make those selections, think of the underlying mechanics that made this possible.
The department’s listing is providing data based on the IWebPartRow interface, and
the employee’s listing is consuming connection data based on the IWebPartField
interface. What’s more, once we implemented those two interfaces on our web parts,
there was no need to write any code to manage the transformation between the two.

As we continue through the book, we’ll be able to leverage the connection data
exposed by these web parts by adding other web parts that also work with the pre-built

Figure 3.16 The provider data is displayed

in a dropdown list so that you can choose

which field will supply the data for this con-

nection.
94 CHAPTER 3 USING WEB PART CONNECTIONS

transformers. As you can imagine, it won’t be long before our pages are full of dynamic
information.

3.6 SUMMARY

Our knowledge of web parts is rapidly expanding. In chapter 2 we covered the different
types of web parts and saw that they can help to break down and simplify the task of
creating complex, information-centric portals. In this chapter we discussed the concept
of connecting web parts so that we can share data from different sources; and that by
using common patterns, such as the Summary/Detail and the Parent/Child, we can
present data to users in an effective manner. We also saw that connections can assist in
breaking user interface components down into simpler, more manageable pieces.

We also introduced the WebPartConnection control and saw how it works
within the framework to provide us with the ability to create connections, both stati-
cally and then dynamically.

Finally, we discussed transformers and how they can be used to create connections
between different types of web parts. We saw the interfaces that they work with, and
then finished by implementing a Parent/Child style of connection between the web
parts we created in chapter 2.

There are still many important members of the web part framework to learn
about; and in the next chapter we’ll look at the most important member—the Web-
PartManager—and see what it’s been doing for us all this time, unbeknownst to us.

Figure 3.17 The two parts are now connected, and the Employees web part is fil-

tered by selections made in the Departments web part.
SUMMARY 95

C H A P T E R 4

The Web Part Manager

4.1 Introduction 96
4.2 The Page Lifecycle 100
4.3 Page display modes 101
4.4 Web part authorization 104
4.5 Importing and exporting web

parts 108

4.6 Using WebPartManager with master
pages 119

4.7 Adventure Works— additions to the
HR code 121

4.8 Summary 125
4.1 INTRODUCTION

At this point, your knowledge of the portal framework is rounding out. At the begin-
ning of our journey, we peeked in from the top of the portal and saw that web parts can
be created to show different views of information. We’ve now descended through sev-
eral layers of the portal framework, down through connections and into the realm of
the web part manager. It is here that we’ve seen the essential services of the frame-
work—such as authentication and page mode management—and how those services
are managed by the WebPartManager. Learning to leverage these services is the key
to understanding how to create truly custom portal applications. By combining Web-
PartManger customizations with the physical structures of portals such as zones, con-
nections, and web parts, we can extend the portal framework to suit almost any need.

In chapters 1 through 3, we’ve added a WebPartManager control to the top of
every web page we’ve written. Without a WebPartManager, web part controls won’t
work at all; they’ll just throw big, ugly exceptions. It’s interesting to note that
although the WebPartManager has been chugging away under the covers managing
operations, we’ve only touched it once. For example, in chapter 3, we saw that the
WebPartManager determined whether the “connect” verbs were added to the web
96

parts. In addition, it’s the WebPartManager that guarantees that when you make a
single visit to a page and close a web part, the web part remains closed on the next
visit to the web page. It’s the WebPartManager that turns ordinary controls into
GenericWebParts, that initializes connections, and that moves web parts between
zones when the user drags them across a page. In short, the WebPartManager does a
heck of a lot.

By the end of this chapter, you’ll have a respectable grasp of the WebPartMan-
ager, and be fairly adept at both working with it and customizing it.

4.1.1 A control with many hats

What are the many hats a WebPartManager can wear? Tracking, managing person-
alization, controlling lifecycle events, switching page displays, and importing and
exporting web parts, to name a few. That’s a stack of hats. To get some sense of the
importance of the WebPartManager’s role, consider the following five categories of
tasks and activities that are displayed in table 4.1.

The WebPartManager manages each of these activities and exposes event notifica-
tions when they occur. As you can see, there’s really not a great deal that goes on with-
out the involvement of the WebPartManager. Let’s take a high-level tour through
each of these categories to get a better sense of them.

Keeping track of web parts

At any given moment, the webpartmanager knows exactly what web parts are on a
page, which zones they belong to, and whether or not the user is authorized to view
them. The webpartmanager also performs operations that require a web part to be
added to or removed from a page. Moving a web part between two zones is also
achieved via the manager. The code that follows lists an example of how the Web-
PartManager adds a web part to a page at runtime.

Table 4.1 The WebPartManager is a versatile control that manages a wide range of activities

Category Activities

Tracking web parts Adding web parts to zones; closing web parts; moving web
parts; tracking which web parts belong in which zones.

Managing Personalization Data Initializing web parts; loading personalization data; saving per-
sonalization data.

Controlling Lifecycle Events Creating web parts; initializing connections.

Switching Page Display Modes Switching the mode of the page.

Importing and Exporting Web Parts Serializing and de-serializing web parts for the export process.
INTRODUCTION 97

CustomWeatherPart weatherPart = new CustomWeatherPart();
weatherPart.ID = "CustomWeatherPart1";
weatherPart.NumberOfDays = 6;

WebPartManager1.AddWebPart(
weatherPart,
WebPartZone1,
WebPartZone1.WebParts.Count

);

Adding a generic web part such as a user control to the page is slightly different from
adding a custom web part, because the WebPartManager must first create a
GenericWebPart from whatever control is being used at the time. The following
snippet of code demonstrates how the WebPartManager creates a GenericWebPart:

TextBox textbox = new TextBox();
textbox.ID = "TextBox1";
GenericWebPart gwp = WebPartManager1.CreateWebPart(textbox);

WebPartManager1.AddWebPart(
gwp,
WebPartZone1,
WebPartZone1.WebParts.Count

);

Notice that WebPartManager first creates a GenericWebPart control, which can
then be passed into the AddWebPart method. This is similar to what occurred under
the covers when the Label control was turned into a GenericWebPart in the pre-
vious chapter.

Managing personalization data

The WebPartManager also manages the loading and saving of web part personaliza-
tion data. At the beginning of the page lifecycle the WebPartManager is handed a
blob of data from the personalization system, which it then distributes to each of the
relevant web parts. At the end of the page lifecycle, the WebPartManager gathers up
the personalization data from each of the web part controls, packages that data into a
single blob, and hands it back to the Personalization system for saving. This process
allows user customizations to persist across browser restarts. Personalization is a very
broad topic, so I’ll defer further discussion about it until chapter 6, when we can
devote an entire chapter to it.

Controlling lifecycle events

All of the events that occur during the web part page lifecycle are tracked and exposed
by the WebPartManager. For example, if you want to receive notifications about
when connections are initialized, you will get them from the manager. Likewise, if you
want to receive notifications whenever a user is attempting to move a web part between
98 CHAPTER 4 THE WEB PART MANAGER

zones, it’s the WebPartManger that will notify you of that event. The code snippet
that follows is an example of how you might listen for such events and disallow the
move based on some condition. For example, you could have zones within your appli-
cation that can only contain five web parts. When a user attempts to drag a sixth web
part into the zone, you could use the WebPartMoving event to cancel the move.

protected void WebPartManager1_WebPartMoving(
 object sender, WebPartMovingEventArgs e) {

 bool isMoveCancelled = true;

 // implement some custom logic here

 e.Cancel = isMoveCancelled;
}

This code shows us a skeleton implementation of handling the WebPartMoving event
of the WebPartManger. Typically, code would be included within this event handler
that would perform logic and set the value of the e.Cancel property based on that
logic. Overall there are 20 lifecycle events exposed by the WebPartManager that can
be used to provide custom behaviors and control the lifecycle within our applications.

Switching page modes

In chapter 3 we briefly discussed the five standard modes that a web part page can
enter into—BrowseDisplayMode, CatalogDisplayMode, ConnectDisplay-
Mode, DesignDisplayMode, and EditDisplayMode. We also saw that we were
able to set the current mode of a page when we forced the page to be in “connect”
mode in chapter 3. These modes are set by the WebPartManager and provide us the
means to perform powerful operations on web parts—such as connecting them or
editing them.

Importing and exporting web parts

Web part controls can be exported from and imported into pages at runtime.
SharePoint has a feature similar to this which allows users to discover web parts
stored in a central gallery on the internet and to import them into the page. You
can use the import/export capability exposed by the WebPartManager to add this
SharePoint feature to your own applications. For example, you could expose
methods on a web service to accept and retrieve the web part definitions that can be
created by the WebPartManager.

This section has presented an overview of the five categories of tasks that are per-
formed by the WebPartManager. Throughout this chapter we will learn more about
the WebPartManger by digging deeper into the inner workings of these five tasks.
Understanding how to extend and control the behavior of these tasks is the key to
creating truly unique portal applications.
INTRODUCTION 99

4.2 THE PAGE LIFECYCLE

Whenever an ASP.NET web page is requested, a class is created on the web server to
handle that request. It’s this class that we refer to as the Page class. When the page has
finished handling the request, it is destroyed and ceases to exist—at least until that
page is requested again. Between the time the page is created and destroyed, it goes
through a sequence of events that are known as The Page Lifecycle. The Page Lifecy-
cle is the event model that dictates when things occur—such as when controls are ini-
tialized or when postback events take place.

Before we start writing code to work with the WebPartManager, it’s important
to take the time to see when its events occur and map them to the lifecycle of the page
so that we have a full picture of what to expect, and when. Table 4.2 displays the
events that occur on the Page class and overlays those events with events occurring at
portal framework level.

By examining the stages in table 4.2, it is easy to see the effects of misunderstanding
the lifecycle. The snippet that follows shows the code that is required to dynamically
add a WebZone to a page. Notice that the code runs during the OnInit phase of the
page lifecycle. The OnInit phase occurs just prior to the InitComplete stage of
the page lifecycle—which is when web parts are first loaded.

protected override void OnInit(EventArgs e) {
base.OnInit(e);

EditorZone zone = new EditorZone();
zone.ID = "EditorZone1";
this.Controls.Add(zone);

}

One of the first things that a zone does when it is created is to register itself with the
WebPartManager control that exists for the current page. The WebPartManager

Table 4.2 Knowing when things occur in the lifecycle of a page is critical for understanding

how to customize the behavior of portal components

Lifecycle Stage Description

Init WebZones register themselves with the WebPartManager by making a
call to RegisterZone on the current WebPartManager for the page.
All static WebParts are loaded via the WebPartZoneBase making a
call to GetInitialWebParts.

InitComplete Dynamic Connections and dynamic WebParts are loaded from Personal-
ization data. Personalization data is applied to all WebParts.

LoadComplete Connections are activated and connection data is transformed and
exchanged.

PreRender Typically where page logic is written to deal with connection information.

SaveStateComplete Personalization data is saved.
100 CHAPTER 4 THE WEB PART MANAGER

then checks whether the initialization phase has completed and, if so, it throws the
InvalidOperationException. For this reason, if we attempt to perform the
same operation any time after the initialization phase of the page lifecycle, an error
will result. This can be seen in figure 4.1.

Just as we wouldn’t attempt to add a zone to the page after the InitComplete
phase, there would be no point in attempting to read data that you were expecting to
receive via a connection prior to the PreRender phase, because the connections are
not activated until just before then.

4.3 PAGE DISPLAY MODES

Understanding the page lifecycle for web parts leads us onto another important con-
cept—that of page mode management. In the previous chapter, we saw that a web
page can have several different display modes and that changing between the modes is
done by setting the DisplayMode property of the web part manager instance like so:

WebPartManager1.DisplayMode = WebPartManager.ConnectDisplayMode;

There are five standard modes that the page can enter into, and with each state there
are different user interface elements that allow the user to perform a specific set of
operations—such as managing connections or editing the properties of web parts.
Table 4.3 lists each of the display modes and details the operations that are associated
with them.

We’ve already seen that the mode of the page is affected by setting the Display-
Mode property of the current WebPartManager instance to one of the modes listed
above. The manager class also exposes a property named SupportedDisplay-
Modes that allows us to obtain a listing of all modes available at any particular

Figure 4.1 Attempting to add a zone to a page after the initialization phase will result

in an error.
PAGE DISPLAY MODES 101

moment. In a typical web part application we would display a list of the available
modes to the user, allowing them to switch modes so that they could perform a spe-
cific set of tasks. For example, it might be desirable for the administrators of a portal
to be able to log in and change certain features of the web parts, such as the back
color or their display title. By picking from a list of available modes, the users could
switch their web page from its default browse mode and into edit mode. Once in edit
mode, the user can make changes to web parts and then switch back into browse
mode to continue using the site as normal. Listing 4.1 illustrates how to present a list
of valid modes in a dropdown list.

foreach (WebPartDisplayMode displayMode in
 WebPartManager1.SupportedDisplayModes) {

if (displayMode.IsEnabled(WebPartManager1)) {
DropDownList1.Items.Add(

new ListItem(displayMode.Name)
);

}
}

NOTE Prior to the load phase of the Page Lifecycle, the WebPartManager’s Sup-
portedDisplayModes property will only contain the Browse and Display
modes. For this reason it’s important that the code shown in listing 4.1 is
run during an event that occurs during or after the load phase, so that all of
the supported modes are able to be included in the list.

Table 4.3 Each Display Mode exposes certain operations.

Mode Operations

BrowseDisplay-
Mode

This is the default state of a web part page. In this state users can view the
web parts on the page.

CatalogDisplay-
Mode

In this mode the user can drag parts between the zones. There are also
special user interface elements present that allow the user to choose web
parts from a gallery, and to add them to the page.

ConnectDisplay-
Mode

In this mode special user interface elements are displayed to users that
allow them to connect web parts together. There is also a “connect” verb
added to all web parts that are capable of being connected.

DesignDisplay-
Mode

Similar to browse mode, except that it allows users to drag web parts
between zones.

EditDisplayMode This mode allows users to edit the properties and attributes of web parts.
To do this, special user interface elements are displayed. In this mode users
can also drag web parts between zones.

Listing 4.1 Using the SupportedDisplayModes property of the WebPartMan-

 ager to present the user with a list of modes to choose from.

Check that the
mode is enabled
102 CHAPTER 4 THE WEB PART MANAGER

Notice that in the code listing we check to see whether a mode is enabled before add-
ing it to the list. You might be surprised to find a method on the display mode
because you are expecting each mode to be a simple string value or an enumerated
data type. This is not the case. All display modes are actually derived from the
abstract WebPartDisplayMode base class.

The WebPartDisplayMode class

The WebPartDisplayMode class contains several properties that are used by the
web part framework to determine what controls should be available to the user at any
given point in time. The following list details some of the properties of the Web-
PartDisplayMode class.

• AllowPageDesign—A value for determining whether users can change the
layout of a web parts page when the page is in a certain display mode.

• AssociatedWithToolZone—A value that indicates whether a certain display
mode is associated with a class that derives from the ToolZone class. For exam-
ple, the ConnectDisplayMode would return true here, as it is associated with
the ConnectionZone.

• Name—The name of a display mode.

• RequiresPersonalization—A value indicating whether a particular dis-
play mode requires personalization before it can be enabled.

• ShowHiddenWebParts—A value that indicates whether controls that have
their Hidden property set to true should be displayed.

By querying these properties, members of the portal framework can ascertain the cur-
rent state of the page and adjust themselves accordingly.

In addition to the five standard modes, we can actually create our own custom
display modes. Creating a custom mode would allow us to create a special state for
the pages in our portal, and then give our web parts the ability to detect that state and
act accordingly. As an example, a web part could be created to display its editing
views inline when the page was in a special mode without having to display the editor
zone to change certain properties.

To create a custom display mode we create a class and derive it from the WebPart-
DisplayMode base class. Then we override the properties that we need to achieve a
desired state. The snippet that follows shows a class that inherits from WebPartDis-
playMode and provides a custom implementation for the IsEnabled property:

public class CustomDisplayMode : WebPartDisplayMode {
public CustomDisplayMode() : base("CustomDisplayMode") { }

 public override bool IsEnabled(WebPartManager webPartManager) {

if(Roles.IsUserInRole("Administrator")) {
 return (webPartManager.Personalization.IsModifiable);
PAGE DISPLAY MODES 103

 }
 return false;

 }
}

To add the custom display mode to the list of SupportedDis-
playModes for a given page, we must override the Create-
DisplayModes method of the WebPartManager for it to be
added to the list. Figure 4.2 shows our custom display mode
appearing with the other modes in a dropdown list; while in the
code snippet, a custom web part manager is used to show the
code required to add the custom mode to the WebPartMan-
ager’s list of display modes.

public class CustomWebPartManager : WebPartManager {

protected override WebPartDisplayModeCollection
 CreateDisplayModes() {
 WebPartDisplayModeCollection modes =
 base.CreateDisplayModes();

modes.Add(new CustomDisplayMode());
return modes;

}
}

It’s worth noting that the order in which the list of available display modes is dis-
played is the same as the order in which they were added. To change the order of the
list we simply change our code a little. For example, changing our code to match the
following snippet would cause the CustomDisplayMode to be displayed first in the
dropdown list:

protected override WebPartDisplayModeCollection CreateDisplayModes() {
 WebPartDisplayModeCollection modes = base.CreateDisplayModes();

modes.Insert(0, new CustomDisplayMode());
return modes;

}

Now that we’ve seen some of the heavy-duty tasks that are performed by the Web-
PartManger such as display mode filtering, lifecycle management, and keeping
track of web part movements, it’s time to turn our attention to another important
role played by the WebPartManager: security. In the next section we will learn what
role the WebPartManager plays in securing access to web parts.

4.4 WEB PART AUTHORIZATION

The WebPartManager provides a mechanism that allows web parts to be displayed
or hidden based on a filter that can be set on a web part at design time. Using this
authorization feature, web parts can be designed to target a particular audience or
group of users within a certain application role. For example, the HR department

Figure 4.2 The cus-

tom display mode

would be presented

to users in the Ad-

ministrator role.
104 CHAPTER 4 THE WEB PART MANAGER

might have a web part for displaying a list of employees who accumulated the most
sick leave for the current year. This is certainly a web part that should not be viewed
by employees outside of the HR department. Using an authorization filter, you could
specify that users must be members of the HR department to view the sick leave web
part. The following snippet shows a web part with its AuthorizationFilter set
to allow only users in the role of Administrator to view it:

<asp:WebPartZone ID="WebPartZone1" runat="server">
<ZoneTemplate>

<wp:SecretPart
ID="CustomWeatherPart1"
AuthorizationFilter="Administrator"

runat="server"
Title="Sssshh, it’s a secret!"
/>

</ZoneTemplate>
</asp:WebPartZone>

The AuthorizationFilter is a property that is exposed by the base WebPart class
and exists to expose authorization information. However, contrary to what you might
suspect, simply setting its value to a non-empty value will not cause the framework to
automatically hide it from users that are not in an appropriate role. To force the autho-
rization checks to occur we must write code, as explained in the section that follows.

Performing authorization checks

The WebPartManager provides us with a method named IsAuthorized that is
used to indicate whether the current user is authorized to view any given web part.
Internally, the web part manager calls the IsAuthorized method for each web part
that it adds to a web page prior to making the web part available to the user. When
the method is called, a public event named AuthorizeWebPart is raised and
exposes information about the web part that is being added.

To manage the web part authorization process, we can write code to run when the
AuthorizeWebPart event is raised and return a value that will be used for the
IsAuthorized value. The bit of code that follows shows how to use the OnAutho-
rizeWebPart attribute of the WebPartManager to wire up an event handler for
this event:

<asp:WebPartManager ...
OnAuthorizeWebPart="wpm_AuthorizeWebPart" />

IMPORTANT! When you subscribe to the AuthorizeWebPart by wiring up the event
handler in code, you will never receive the authorization event notifica-
tions for static web parts. This is because static web parts are created and
added to the zones prior to the Init phase of the page, and the Init phase is
the first chance you have to create code to wire up the event. For this rea-
son you should only use the declarative syntax for event wiring when using
the AuthorizeWebPart event.
WEB PART AUTHORIZATION 105

The AuthorizeWebPart event exposes the WebPartAuthorizationEventArgs
class. This class provides information about the web part that is currently being eval-
uated by exposing the following properties:

• AuthorizationFilter—Gets the string value assigned to the Authoriza-
tionFilter property of a WebPart control; used for authorizing whether a
control can be added to a page.

• IsAuthorized—Gets or sets the value indicating whether a web part control
can be added to a page.

• IsShared—Gets a value that indicates whether a web parts control is visible to
all users of a web part page.

• Path—Gets the relative application path to the source file for the control being
authorized, if the control is a user control.

By handling the AuthorizeWebPart event, we can use these properties exposed by
the WebPartAuthorizationEventArgs class to make decisions about whether
the user is authorized, based on the AuthorizationFilter. In listing 4.2 we see
how to use the AuthorizationFilter from the EventArgs which are passed in
and then return a value that indicates whether or not the current user has permission
to view the web part being evaluated at the time:

void wpm_AuthorizeWebPart(object sender, WebPartAuthorizationEventArgs e) {

bool isAuthorized = false;

string[] roles =
e.AuthorizationFilter.Split(

new char[] { ',' }
);

for (int i = 0; i < roles.Length; i++) {
if (IsUserInRole(roles [i])) {

isAuthorized = true;
break;

}
}

e.IsAuthorized = isAuthorized;
}

In the code we see that the AuthorizationFilter property is checked against
roles held by the users to determine whether or not they have access to the web part.
You can see that, although the code we wrote here used the AuthorizationFilter

Listing 4.2 Within the AuthorizeWebPart event handler, code is written to

 check the users’ role memberships.

Split filter for
listing of roles

Check each
role for user
membership
106 CHAPTER 4 THE WEB PART MANAGER

to perform checks against the role membership of the user, we are not limited to
using it in this way. By exposing the authorization of web parts in this manner, the
ASP.NET team has left it open for us to choose how web parts are authorized within
our applications. This is preferable to having web parts hard coded against user roles,
for example. By having such an extensible mechanism for performing authorization
checks it would even be possible to create web parts that should only be displayed at
certain times of the year. For example, a department store might have a web part that
displayed special items for its website visitors at certain times of the year. This could
be achieved by using the AuthorizationFilter to store a list of seasons for which
that web part was valid:

<wp:DiscountShoppingPart
ID="DiscountShoppingPart1"
AuthorizationFilter="Winter, Summer"
runat="server"
Title="View today's specials"

/>

Of course, if we are only interested in using the AuthorizationFilter to perform
checks against application roles, why have to include event handling code in all of
your web part pages? In this case, what makes more sense is creating a custom Web-
PartManager and adding the custom role checking within it as a standard operation.
To do this we can either override the IsAuthorized method, or we can override the
OnAuthorizeWebPart method and include our code in that method. By having this
common code held within the manager class, there is no chance that we’ll forget to
add the event handler when creating new pages and our logic will all be in one place,
making it easier to maintain. The snippet that follows shows how to override the
OnAuthorizeWebPart method to perform common authorization logic:

public class SecureWebPartManager : WebPartManager {

public SecureWebPartManager() { }

protected override void OnAuthorizeWebPart(
WebPartAuthorizationEventArgs e) {

}
}

We can now add code that performs common authorization checks into the body of
the OnAuthorizeWebPart method so that all of our authorization checks are per-
formed from a single place. If an application were simply checking against the appli-
cation roles of a user, this code would look just like the code shown in listing 4.2.

Another important service offered by the WebPartManager is the importing/
exporting service, which allows web part definitions to be imported from, and
exported to, an external XML format.
WEB PART AUTHORIZATION 107

4.5 IMPORTING AND EXPORTING WEB PARTS

So you’ve got your web portal up and running and it’s being used throughout the
organization. One day one of your key developers tells you that he has just created a
clever new web part to expose lines of business data—such as a listing of new cus-
tomer prospects that the sales people have added to the customer list this month.
Now you’d like to make the new web part available to all users of the portal. How do
you do that? Does adding the new web part to the site require a deployment of the
entire application? You know that deployment of the entire application would
involve writing deployment notes, testing the entire application, and recruiting peo-
ple for the actual deployment.

Breathe a sigh of relief—deployment of the entire application is not required,
because the portal framework allows web parts to be transported in and out of web
applications via XML definition files known as Control Description Files. There’s
even a standard catalog part known as the ImportCatalogPart that allows users to
browse for these XML definition files and import them at runtime.

This section explains the actual mechanics of how the web part manager imports
and exports these definition files. This will leave us free to concentrate more specifi-
cally on the ImportCatalogPart in the next chapter when we look at the Cata-
logZone in greater detail.

The XML format of a web part allows it to be highly portable, thereby enabling us
to use it to create certain useful scenarios within our applications. For example:

• An organization might have more than just a single web application. For exam-
ple, they could have a web application that was used by HR staff to manage
staff information, and another web application that was used by all staff to
view company announcements, and which allows employees to offer feedback
to management. When there is more than one web application within an orga-
nization, it makes sense to separate web parts so that they can be shared. Each
application then needs to contain only the web parts that are specific to the
function of that application. Parts that are more general can then be contained
within a central repository so that they can be accessed by all applications.
These web parts might include parts that expose information about company
news, world news, weather, humor, horoscopes, etc. These general parts would
be exposed as XML via the central service by using either a web service or a
central file share.

• Applications can be created that allow advanced users to customize complex
web parts and then have those customizations saved out to an XML file. This
file would contain information reflecting the changes that had been made, and
could then be sent to other users or imported into a central repository so that
those customizations were available for all users. An example of this might be a
web part for configuring a complex report. An administrator could make
108 CHAPTER 4 THE WEB PART MANAGER

changes to a report’s configuration, such as specifying a date range to use when
filtering the data, and then save those changes into a reporting gallery using
names that help to define the data that the new report shows, such as Weekly
Sales Report, Sales MTD, and Sales YTD.

Now that we’ve looked at a couple scenarios for using importing and exporting, let’s
jump in and take a look at the mechanics of it so that we can see how to enable
importing and exporting in our own portal.

Requirements for exporting

Before web parts can be exported, two conditions must be met. The first of these
requires that the portal framework be configured to allow exporting. This is done by
setting the enableExport attribute to true on the webParts element in the web
configuration file.

<system.web>
 <webParts enableExport="true">

</webParts>
</system.web>

The second condition is that the web part that is targeted for export must have its
ExportMode property set to a value other than None. The values for the Export-
Mode come from the WebPartExportMode enumeration and can have any of the
following three values:

• All—All the properties and settings of the web part can be extracted.

• None—This is the default, and is the most secure setting. When a web part has
its ExportMode set to this value, an exception will occur if an export operation
is attempted upon it.

• NonSensitiveData—Only properties and settings that are not marked as
sensitive data can be extracted.

Sensitive data are personalized properties that have their IsSensitive property set
to true. Listing 4.3 shows a class with a single property that is marked as sensitive.

public class SecretWebPart : WebPart {

 string _secret = "";
 [Personalizable(PersonalizationScope.User, true)]
 public string Secret {
 get {
 return this._secret;
 }

The enableExport
attribute is set to “true”

Listing 4.3 WebPart properties can be marked as sensitive by specifying so for

 the isSensitive argument of the Personalizable attribute.

Pass true as the
second argument
for sensitive data
IMPORTING AND EXPORTING WEB PARTS 109

 set {
 this._secret = value;
 }
 }
}

If this web part were to be exported, the value of the Secret property would only be
persisted to the XML format if the ExportMode for that part were set to All, or if
the current page were in shared personalization mode.

Simple import/export example

To help better understand the mechanics of importing and exporting, let’s work
through a simple example. In this example we’ll create a web part that allows users to
enter their personal information. The web part will
have four fields: Name, Department, SSN, and Date of
Birth. The first two fields will have a shared personal-
ization, so changes that are made to them will be visible
to all users of the portal. The last two fields, SSN and
Date of Birth, will have a per-user personalization use,
so changes that are made to them will be visible only to
the user who made the changes. Finally, the last two
fields will also be marked as sensitive data, so that their
values are not persisted during an export operation.
When complete, this control will look similar to the
one displayed in figure 4.3.

NOTE As I’ve mentioned already, there is actually an easy way of extracting the
XML from a web part by simply using the Export verb that is present on
web parts when the requirements for exporting have been met. The reason
for deliberately taking the longest route to obtain the XML in this exercise
is that along the way we will gain a solid understanding of how the under-
lying process works. We’ll be applying this knowledge later in the book
when we learn how to build highly customized web part galleries. So, as you
work through this example, just remember, it’s really just a baby step to-
wards things to come!

We’ll get started by adding a new user control named EmployeeDetails.ascx to
our test project and adding the user interface code that is shown in the snippet that
follows.

<div>
 Name: <%= this.Name %>

 Department: <%= this.Department %>

Figure 4.3 The EmployeeDe-

tails web part allows users to

enter their personal informa-

tion while protecting the sensi-

tive SSN and Date of Birth

fields from export operations.
110 CHAPTER 4 THE WEB PART MANAGER

 SSN: <%= this.SSN %>

 Date of Birth: <%= this.DOB %>
</div>

The web part will have a property for each of the four fields it exposes. As you can
see, code blocks are interspersed with the HTML markup so that the values of these
properties are written into the page. We need to mark each of these properties with
the correct attributes to ensure that their data is persisted by the personalization sys-
tem. We must also ensure that our two private fields are marked as having their data
stored on a per-user basis, and that the personalization system treats them as sensitive
data for export operations. Listing 4.4 shows the code required to add the four prop-
erties and configure their personalization properties correctly.

public partial class EmployeeDetails : UserControl {

 private string _name;
 [Personalizable(PersonalizationScope.Shared)]
 [WebBrowsable]
 public string Name {
 get { return _name; } set { _name = value; }
 }

 private string _department;
 [Personalizable(PersonalizationScope.Shared)]
 [WebBrowsable]
 public string Department {
 get { return _department; } set { _department = value; }
 }

 private string _ssn;
 [Personalizable(PersonalizationScope.User, true)]
 [WebBrowsable]
 public string SSN {
 get { return _ssn; } set { _ssn = value; }
 }

 private string _dob;
 [Personalizable(PersonalizationScope.User, true)]
 [WebBrowsable]
 public string DOB {
 get { return _dob; } set { _dob = value; }
 }
}

That’s all that there is to creating this web part. The attributes we’ve used will ensure
that the data is persisted and protected correctly by the personalization system. We

Listing 4.4 The EmployeeDetails control with properties for each of the four

 fields it exposes marked appropriately for personalization.

Mark as shareable
data for personalization

Mark as browsable
to appear in
property editor

Set scope for
personalization
IMPORTING AND EXPORTING WEB PARTS 111

can now move on to creating the page
that will host our web part. We are going
to use this web page to personalize the
fields of the web part, and then to export
the XML for the web part so that we can
view it. When completed the page will
have a structure similar to that shown in
figure 4.4.

Create a page named DisplaysMy-
Details.aspx and open it in design
view. Add a WebPartManager and a
WebPartZone control and then drag the
EmployeeDetails.ascx user controls
into the zone. At this time we can also
create a layout for the page and add con-
trols for our buttons and the XML viewer.
The code to create the entire page is
shown in listing 4.5.

<div id="buttonpanel">
 <asp:Button ID="btnResetPersonalization" runat="server"

Text="Reset" />
 <asp:Button ID="btnEdit" runat="server" Text="Edit" />
 <asp:Button ID="btnToggleScope" runat="server" />
 <asp:Button ID="btnExport" runat="server" Text="Export" />
 <asp:Button ID="btnImport" runat="server" Text="Import" />

</div>

<div id="webcontrolspanel" style="width:700px">
 <div style="width:320px; float: right">
 <asp:EditorZone ID="EditorZone1" runat="server">
 <ZoneTemplate>
 <asp:PropertyGridEditorPart
 ID="PropertyGridEditorPart1"
 runat="server" />
 </ZoneTemplate>
 </asp:EditorZone>
 </div>
 <div style="width: 300px">
 <asp:WebPartZone ID="WebPartZone1" runat="server">
 <ZoneTemplate>
 <uc2:EmployeeDetails
 ID="EmployeeDetails1"
 runat="server"
 Title="Employee Details"

Listing 4.5 The markup and server controls required to create the user interface

 for the page described in figure 4.4.

Buttons
that drive
functionality
of page

Property Grid to
manage properties
of Employee Details

EmployeeDetails
web part

Figure 4.4 The web page that will host the

EmployeeDetails web part will provide an ed-

itor to manage the values of the control and a

viewer for displaying the exported XML.
112 CHAPTER 4 THE WEB PART MANAGER

 ExportMode="NonSensitiveData"
 />
 </ZoneTemplate>
 </asp:WebPartZone>
 </div>
</div>

<div id="xmlviewerpanel">

 <asp:TextBox ID="txtWebPart"
 runat="Server"
 TextMode="MultiLine"
 Rows="37"
 Columns="90"
 />
</div>

Now that we have the web part and the layout for our web page sorted out, it’s time
to wire up the buttons that we added to the button panel to get our page working.
There are five buttons and they serve the following purposes:

• Reset—Allows all personalization details for controls on the page to be reset.
Clicking on this button will cause any dynamic web parts that have been
imported into the zone to be removed, and any values that have been assigned
to the web part properties to be removed as well.

• Edit—Switches the DisplayMode of the web part manager to Edit. This
allows us to edit the properties of the web part.

• ToggleScope—Switches the personalization scope between “per-user” and
“shared.” When the page is in per-user scope the sensitive properties will not be
exported, whereas when the page is in shared scope they will.

• Export—Exports the XML for our web part causing it to be displayed in the text
box.

• Import—This button is enabled whenever there is XML in the text box, and
causes that web part to be imported into the zone as a new, dynamic web part.

Before we add the code for those buttons, we need to add logic, based on the current
state of the page, that will determine issues such as whether the Import button is
enabled and deciding what text to display on the Edit and Toggle buttons. Listing 4.6
displays the code we should add to run during the PreRender phase, to keep those
button properties synchronized with the current state of the page.

We can now go ahead and wire up the code for the buttons. The Reset, Edit, and
Toggle buttons are actually quite straightforward, so we can proceed to add the code
for those straight away. The code for them is covered in the listings that follow on
pages 114 through 116.

EmployeeDetails
web part

A TextBox to display
exported web part XML
IMPORTING AND EXPORTING WEB PARTS 113

protected override void OnPreRender(EventArgs e) {
 base.OnPreRender(e);

 if(WebPartManager1.DisplayMode == WebPartManager.EditDisplayMode){
 this.btnEdit.Text = “Browse” ;
 }else{
 this.btnEdit.Text = “Edit” ;
 }

 if(WebPartManager1.Personalization.Scope ==
 PersonalizationScope.Shared){
 this.btnToggleScope.Text = “User Scope” ;
 }else{
 this.btnToggleScope.Text = “Shared” ;
 }

 this.btnImport.Enabled = this.txtWebPart.Text.Length > 0;
}

The Reset button simply makes a call through to the personalization service and calls
the ResetPersonalizationState method. This has the effect of resetting any
personalization changes that have been applied to the current page—including any
controls on it.

protected void btnResetPersonalization_Click(object sender, EventArgs e) {
 this.WebPartManager1.Personalization.ResetPersonalizationState();
}

It is the job of the Edit button to switch the page in and out of Edit mode. Clicking
this button will toggle the DisplayMode between Browse and Edit. When the page
is in Edit mode an Edit verb will appear on the web part, and clicking it will display
the EditorZone, allowing the web part to be edited.

protected void btnEdit_Click(object sender, EventArgs e) {
 if (this.WebPartManager1.DisplayMode ==
 WebPartManager.EditDisplayMode) {
 WebPartManager1.DisplayMode = WebPartManager.BrowseDisplayMode;
 } else {
 WebPartManager1.DisplayMode = WebPartManager.EditDisplayMode;
 }
}

The next task is to write the code for the Toggle Scope button. When we click on this
button, the “personalization scope” for the page will be toggled between two values:
Shared and Per-User. We’ll be learning a lot more about personalization scope through-
out the book, but for now just understand that any personalization scope affects certain

Listing 4.6 Logic is placed in the PreRender event handler, which synchronizes

 the display of buttons to the actions that are available, given the cur-

 rent state of the page.

Toggle Edit/Browse
button

Toggle user
scope button
114 CHAPTER 4 THE WEB PART MANAGER

users when changes are made to web parts. Any changes that are made to web parts
when the page is in shared scope apply to all users of a site—even unauthenticated
ones. Changes made to web parts when a page is in per-user scope only apply to the
user who made them. Also, when web parts are exported on a web part and the page
is in shared scope, then all of the properties of that part will be exported, whereas if the
page is in per-user scope, then only non-sensitive properties are persisted.

protected void btnToggleScope_Click(object sender, EventArgs e) {
 if (WebPartManager1.Personalization.CanEnterSharedScope)
 WebPartManager1.Personalization.ToggleScope();
}

We can now write the code for the actual import and export operations. The Web-
PartManager class provides two methods which we’ll be using to perform these
operations, and they are shown in the snippets that follow:

public virtual void ExportWebPart (
WebPart webPart,
XmlWriter writer

)

public virtual WebPart ImportWebPart (
XmlReader reader,
out string errorMessage

)

WARNING! Exporting web parts can allow potentially sensitive data to be imported and
exported. As such, this feature should be handled with care—especially
when importing XML that is external to your application.

Using the methods provided by the WebPartManager makes writing the code to
perform these operations straightforward. We simply grab the web part that we want
to serialize and pass it to the ExportWebPart method along with an XmlText-
Writer that we create. The code to do this is explained in listing 4.7.

protected void btnExport_Click(object sender, EventArgs e) {

 StringBuilder sb = new StringBuilder();
 WebPart partToExport =
 WebPartManager1.GetGenericWebPart(EmployeeDetails1);

 if (partToExport.ExportMode != WebPartExportMode.None) {

 using (StringWriter sw = new StringWriter(sb))
 using (XmlTextWriter xw = new XmlTextWriter(sw)) {
 WebPartManager1.ExportWebPart(partToExport, xw);
 }

Listing 4.7 Clicking the Export button causes the web part to be serialized and

 the resulting XML to be displayed in the viewer text box.

Check that
web part can
be exported

Export
web part
IMPORTING AND EXPORTING WEB PARTS 115

 string partXML = sb.ToString();
 this.txtWebPart.Text = partXML;
 }
}

After you have extracted the XML definition for the web part, you can choose where
to store it. It doesn’t matter where the XML is stored, just as long as it can be accessed
for importing at a later time. Typically, if the web part definitions are not going to be
made available outside the current application, they may be stored in either the file
system or in a database. If they are going to be accessed by more than a single applica-
tion, it would make sense to abstract the storage and retrieval of web part definitions
behind a web service façade so that any application can access them. Regardless of
where we choose to store the XML for our web part definitions, importing a web part
simply means retrieving the XML. When we have the XML for a web part, it can be
passed to the ImportWebPart method of the WebPartManager to create a web
part instance. Once we have our web part instance, we simply use the WebPartMan-
ager again to add the web part to the page. Code listing 4.8 shows the code needed
to perform an import operation:

protected void btnImport_Click(object sender, EventArgs e) {

 string partXML = this.txtWebPart.Text;

 if (!string.IsNullOrEmpty(partXML)) {
 using (StringReader sr = new System.IO.StringReader(partXML))
 using (XmlTextReader tr = new XmlTextReader(sr)) {
 string errorMessage;
 WebPart webPart =
 WebPartManager1.ImportWebPart(tr, out errorMessage);

WebPartManager1.AddWebPart(
 webPart,
 WebPartZone1,
 WebPartZone1.WebParts.Count
);
 }
 this.txtWebPart.Text = string.Empty;
 }
}

That’s all the code that is required to be able to run the example. Before we run the
code, however, we must make two final checks. Earlier when we looked at the
requirements for being able to export web parts, it was mentioned that the exporting

Display XML in viewer

Listing 4.8 Clicking the Import button causes a dynamic web part to be created

 based upon the XML in the viewer text box.

 Import web part XML

Add part to
the page
116 CHAPTER 4 THE WEB PART MANAGER

functionality must first be enabled in the web configuration file. In our example we
are switching the personalization scope into Shared scope; and doing so also requires
a configuration entry. Open the Web.Config file and make sure that you have a
webParts section which contains the entries shown in this snippet:

scope.
<system.web>
 <webParts enableExport="true">

<personalization>
 <authorization>
 <allow

 verbs="enterSharedScope"
 users="*" />

 </authorization>
</personalization>

</webParts>
</system.web>

Configuring the authorization for personalization in this way allows us to switch the
personalization scope of web pages into shared scope. Using the star (*) for the users’
attribute simply means that all users can set the scope of web pages into shared scope.
Other options here include limiting the ability to make scope changes to certain users
or enforcing restrictions based on the users’ role within the application.

When you run the example it should appear in a browser, and look similar to the
image shown in figure 4.5.

Notice the XML that is produced when the Import button is clicked. Try changing
the scope between Shared and Per-User to see how it affects the XML that is produced.

Figure 4.5 The completed page allows the properties of the web part to be

managed within the standard PropertyGrid Editor part.
IMPORTING AND EXPORTING WEB PARTS 117

Notice also that changes that are made in Per-User scope are not visible when you are
in Shared scope mode. You might also notice that the web part has an Export verb that
provides a way of automatically creating the XML. We’ll see this again in the next
chapter when we take a closer look at the ImportCatalogPart. Before we move
away from the exporting feature, let’s finish by taking a brief look at the format of the
XML that was exported.

XML format of web part description files

The web part description files that we’ve been exporting contain all of the informa-
tion required to create an instance of the underlying web control, and to set all of the
property information for it. The file is basically split into two sections named meta-
Data and data. The data section contains all of the information about the state of
the web part, whereas the metaData section contains some additional information
about the underlying assembly and also what error message should be displayed to
the user in the event of an import failure. Listing 4.9 shows an abbreviated version of
the web part description file from our example.

<webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type src="~/WebParts/EmployeeDetails.ascx" />
 <importErrorMessage>

Cannot import this Web Part.
</importErrorMessage>

 </metaData>
 <data>

 <properties>
 <property name="Name" type="string">Guy Gilbert</property>
 <property name="DOB" type="string">15-May-1972</property>
 <property name="SSN" type="string" />
 <property name="Department" type="string">

Human Resources
 </property>

 </properties>
 <genericWebPartProperties>
 <property name="AllowClose" type="bool">True</property>
 <property name="Width" type="unit" />
 <property name="ExportMode" type="exportmode">

NonSensitiveData
 </property>

 </genericWebPartProperties>
 </data>
 </webPart>
</webParts>

Listing 4.9 The web part description file contains details about the state of a

 web part and also its type information.

Assembly
type or
path to
user controlMessage to display

for import errorsProperties
of web part

User control
configuration
118 CHAPTER 4 THE WEB PART MANAGER

Getting to this point has been quite an intense learning experience, but in the process
we’ve gained important knowledge. We’ve learned how to serialize and de-serialize
web parts, and seen how doing so provides a way to store and share them among
applications. We’ve also scratched the surface of personalization. Personalization may
appear a little confusing for the moment but don’t despair; chapter 6 explains it more
fully. The last item we’ll look at in this chapter involves web parts and master pages.
We’ll learn a bit about master pages and see how to manage interactions between web
parts and the WebPartManager when using master pages.

4.6 USING WEBPARTMANAGER
WITH MASTER PAGES

At your first meeting with master pages, you’ll do little more than shake hands, but
you’ll see how to use them and also gain an understanding for the effect that they
have on the interactions between web parts and the WebPartManager, and that’s a
good start. Master pages are new in ASP.NET 2.0 and will be a very popular feature
because they enable us to easily apply a consistent layout to an entire web application.
To achieve this, one or more master pages is created that defines the layout for the
common user interface elements. If you’ve ever used master pages in PowerPoint pre-
sentations, this should sound familiar, because an ASP.NET master page also contains
behaviors that are common to all pages. Each actual page contains only unique con-
tent; and all the common elements such as menus, headers, and footers are contained
within the master page file.

In addition to the base HTML markup, the master page also contains one or more
content placeholders. These placeholders define regions within the template that are
substituted with the page content at runtime. The snippet that follows shows a sim-
ple master page template:

<%@ Master Language="C#" %>

… HTML, HEAD AND BODY TAGS WOULD GO HERE

<table>
<tr>

<td>
<asp:contentplaceholder id="MainContent" runat="server" />

</td>
<td>

<asp:contentplaceholder id="SideContent" runat="server" />
</td>

</tr>
</table>

A content page references the master page by using the MasterPageFile attribute
of the Page directive and then creates a Content control for each ContentPlace-
Holder control in the master page that it wants to provide content for. The content
USING WEBPARTMANAGER WITH MASTER PAGES 119

within the Content controls is merged with the master page content at runtime.
The snippet that follows shows the markup for a content page that references a mas-
ter page:

<%@ Page Language="C#" MasterPageFile="~/Default.master" %>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent"
 Runat="Server">

… Main content would go here
</asp:Content>

<asp:Content ID="Content1" ContentPlaceHolderID="SideContent"
 Runat="Server">

… Other content would go here
</asp:Content>

For web part applications, we can use master pages and content placeholders to
declare the WebPartManager and other common controls within the master page
file—this could include controls such as the EditorZone and CatalogZone con-
trols as well. When the WebPartManager is declared in a master page, it cannot
declare the StaticConnections for parts within content pages. As you will
remember from the last chapter, the WebPartManager allows you to explicitly
declare static connections between two parts on a web page within the body of the
WebPartManager tag itself through the use of a StaticConnections element:

<asp:WebPartManager ID="WebPartManager1" runat="server">
<StaticConnections>

<asp:WebPartConnection
ID="cnn"
ConsumerID="NumberConsumer1"
ProviderID="NumberProvider1"
/>

</StaticConnections>
</asp:WebPartManager>

So that static connections can be declared when the web part manager is contained
within a master page, the web part framework provides us with the ProxyWebPart-
Manager which can be declared in the content pages and used to define the static
connections. You actually create the ProxyWebPartManager in the same way that
you would create a WebPartManager, and at runtime the ProxyWebPartMan-
ager communicates information through to the WebPartManager on our behalf. If
you don’t actually have any static connections to declare, then you can get away with-
out having to add a ProxyWebPartManager.

<asp:ProxyWebPartManager ID="ProxyWebPartManager1" runat="server">
<StaticConnections>

<asp:WebPartConnection ... />
</StaticConnections>

</asp:ProxyWebPartManager>
120 CHAPTER 4 THE WEB PART MANAGER

Well that’s it; well done. It’s been quite a journey exploring the WebPartManager;
but it’s time well spent because you’ve shored up the knowledge you need to dig in
and work the deep behavioral customizations that your customers will demand.
Armed with this knowledge, let’s re-visit the Adventure Works portal to see how the
application of these WebPartManager customizations will affect our code base.

4.7 ADVENTURE WORKS—
ADDITIONS TO THE HR CODE

At the end of chapter 3 the Adventure Works portal was starting to shape up. At that
point, we had web parts displaying lists of departments and employees to users. In
addition, a connection allowed users to select departments and to have those selec-
tions change the employees shown in the other web part. The HR management is
cheering the progress that you’ve made with the portal, but has highlighted some
potential concerns. Their biggest concern is security; they are concerned that as the
number of web parts on the portal grows and more users start using the portal, unau-
thorized users might be able to view sensitive information.

Another feature that the HR management has asked us to investigate is how we can
allow their users to perform certain customization tasks on the portal, such as reposi-
tioning web parts on pages and dynamically adding or removing web parts from pages.

In this section we are going to add two new features to our Adventure Works por-
tal application that will help us to meet the requests from the HR management. First
we’ll add a control that allows users to change the display mode of the page at run-
time. Having the ability to dynamically change the display mode is essential to allow-
ing portal users to perform the kinds of tasks HR wants—namely, moving web parts
around and adding or removing web parts.

After we’ve created the control for changing display modes, we’ll implement a
custom WebPartManager. The custom WebPartManager will contain code for
performing authorization checks on all web parts from a central place and in a consis-
tent manner.

NOTE If you don’t have a copy of the project from chapter 3 you can grab it from
the chapter 3 section of the resources website for this book.

Creating a DisplayMode picker control

In chapter 3 we added code to the Default.aspx page that allowed us to manage
connections. To achieve this, we had to hard-code the page so that it was set in “con-
nect” mode. As we’ve learned in this chapter, we can fix that by implementing a mode
changer control that allows users to dynamically change the page mode at runtime.
Open the Default.aspx page in code view and remove the following line of code:

WebPartManager1.DisplayMode = WebPartManager.ConnectDisplayMode;
ADVENTURE WORKS— ADDITIONS TO THE HR CODE 121

To allow the users to change the mode we’ll create a user control that displays a list of
available modes and allows them to make a selection that changes the current mode.
Additionally the control should pre-select the current mode within the list. Create a
new user control named ModeChanger.ascx and add a DropDownList control to
it. Set the AutoPostBack property of the dropdown list to true so that events are
fired whenever the selected item is changed. The code for the dropdown control
should now look like this:

<asp:DropDownList ID="DropDownList1" runat="server" AutoPostBack="True" />

There are two aspects to creating our mode changer control. The first of these is load-
ing the control with data. We saw this earlier in the chapter when we looked at the
page display modes. In that section we saw that WebPartManager exposes a prop-
erty which contains a list of the display modes available to us. We’ll use this property
when the page is initializing and add the names of each one as a list item in the
DropDownList control. The following snippet displays the code to do that:.

protected override void OnInit(EventArgs e) {
 base.OnInit(e);

 WebPartManager wpm =
 WebPartManager.GetCurrentWebPartManager(this.Page);

 foreach (WebPartDisplayMode displayMode in wpm.SupportedDisplayModes) {

 if (displayMode.IsEnabled(wpm)) {
 DropDownList1.Items.Add(
 new ListItem(displayMode.Name)
);
 }
 }
}

The key functionality here is that we use the IsEnabled property of the WebPart-
DisplayMode to ensure that only display modes available for the current state of the
page will be added to the list. For example, if EditorZone is not on the page, the
EditDisplayMode will not be enabled, so there is no point in offering the user the
option to switch into that mode.

The second issue we confront is what code we must write to change the modes.
The code that manages the mode changing will be wired up to handle selection
changes in the dropdown list. This means that whenever the user changes the selected
item in the list, an event will be raised and our code will be run. In the code that han-
dles the event we will grab the text from the selected item in the list and then check to
ensure that it is a supported mode value. We’ll use that value to set the current dis-
play mode on the WebPartManager.

protected void DropDownList1_SelectedIndexChanged(
 object sender, EventArgs e) {
122 CHAPTER 4 THE WEB PART MANAGER

 WebPartManager wpm =
 WebPartManager.GetCurrentWebPartManager(this.Page);

 string modeName = DropDownList1.SelectedValue;
 WebPartDisplayMode mode = wpm.SupportedDisplayModes[modeName] ;
 if(mode != null)
 wpm.DisplayMode = mode ;
}

All that remains is to ensure that whatever display mode the page is currently in also
appears as the selected item in the dropdown list. To set the selected item of the drop-
down list, add the code shown in the snippet that follows to our master page:

protected override void OnPreRender(EventArgs e) {

 WebPartManager wpm =
 WebPartManager.GetCurrentWebPartManager(this.Page);

 WebPartDisplayMode currentMode = wpm.DisplayMode;

 DropDownList1.ClearSelection();
 DropDownList1.Items.FindByText(currentMode.Name).Selected = true;

}

We can now add the user control to the web part page and press run to see the results.
You should receive a result similar to the picture shown in figure 4.6.

Figure 4.6 The ModeChanger control as it appears within the Adventure Works

Portal application.
ADVENTURE WORKS— ADDITIONS TO THE HR CODE 123

NOTE You can add a PropertyGridEditorPart to the EditorZone and a
PageCatalogPart to the CatalogZone to make the Edit and Catalog
modes appear within the list.

Adding a custom WebPartManager

The next feature we want to implement is a custom WebPartManager to handle all
our web part authorization checks. The code we’ll be implementing to perform autho-
rization checks is similar to the code we saw earlier in the chapter when we discussed
using AuthorizationFilter strings to store authentication information. In the
section on web part authorization I mentioned that it is good for authorization logic
to be standard across the entire application. The logic for the authorization checks
we’ll be performing is all the same—checking to find which roles a user is a member
of—so moving all of the authorization logic for displaying web parts into the web part
manager makes sense: single point of implementation, single point of failure!

To create our custom WebPartManager, add a class file to the project named
PortalWebPartManager.cs by right-clicking on the App_Code folder and
choosing Add File. When the file is created ensure that the PortalWebPartMan-
ager class inherits from WebPartManger.

There are two pieces of code that need to be added to our custom WebPartMan-
ager. We need one method that will perform a role-based check for the current user
and another method to handle the AuthorizeWebPart events. The code that han-
dles the authorization events will get the AuthorizationFilter string for each web
part and then split it up into individual roles. Once we have the individual roles for
each web part we can loop through them and check each role to determine whether or
not the user has access to that web part. Listings 4.10 and 4.11 contain the code for
handling the event and for the helper method which checks the users’ roles.

protected override void OnAuthorizeWebPart(
 WebPartAuthorizationEventArgs e) {

 if (string.IsNullOrEmpty(e.AuthorizationFilter)) {
 e.IsAuthorized = true;
 return;
 }

 string[] authorizedRoles =
 e.AuthorizationFilter.Split(new char[] { ',' });

 for (int i = 0; i < authorizedRoles.Length; i++) {
 if (IsUserInRole(authorizedRoles[i])) {
 e.IsAuthorized = true;
 return;
 }

Listing 4.10 When web parts require authorization, we compare the roles in the

 AuthorizationFilter with the users’ roles to see if they match.

Role restrictions
on this part?

Convert filter
to array of
role strings

Check each
role string
individually
124 CHAPTER 4 THE WEB PART MANAGER

 }
 e.IsAuthorized = false;
}

Role membership is checked in two places as shown in listing 4.11. First we deter-
mine whether the application is configured to use the new ASP.NET 2.0 Roles feature
and, if so, we check with that feature to see if there’s a match. If the Roles feature is
not enabled, we simply check the user attached to the current thread to determine
whether it has a valid role membership. We have not configured the Adventure
Works portal to use the Roles feature, so our code will refer to whatever user is
attached to the current context when performing authorization checks.

bool IsUserInRole(string roleName) {
 if (Roles.Enabled) {
 return Roles.IsUserInRole(roleName);
 } else {
 return Context.User.IsInRole(roleName);
 }
}

By adding this code to our custom WebPartManager, we now have a single point
for managing all the web part authorization logic in the portal, and also a single place
from which to fix any bugs that arise within the code.

4.8 SUMMARY

This is a core chapter as it has provided us an understanding of how the portal
framework works. That understanding will prove invaluable as we start customizing
our portal application in the upcoming chapters. When you combine the concepts
you’ve mastered in this chapter with the knowledge of personalization you will gain
in the next chapter, you will find that you have unraveled many of the key concepts
of the portal framework. Chapter 5 will put you in good standing because it covers
the last of the web part controls—Zones. Then, chapter 6 wraps up discussions on
personalization. So as you start chapter 7, your ability to produce a uniquely
customized portal will be limited only if you withhold your creativity or have limited
time and energy to expend.

You should come away from this chapter with several key points. First, you’ve seen
that a close relationship exists between the WebPartManager and personalization.
We witnessed how the power of that relationship works when we created the Employ-
eeDetails control and saw that users were able to change its property values and have
those changes persisted without our needing to write any code to do so. In that same
exercise we saw how the WebPartManager can extract an XML definition from a web

No match, return false

Listing 4.11 Check the role membership of the current user.
SUMMARY 125

part and then recreate the web part from that same definition at a later point in time.
This feature will become increasingly important to us later in the book when we extend
the Adventure Works Catalog to facilitate portal users in choosing web parts from a
web service catalog.

This chapter demonstrated another important point—how the WebPartMan-
ager manages the current mode of a page and how this determines what controls are
visible. This behavior brings home the symbiotic nature of all the controls within the
framework. It’s this oneness that I find most appealing as it enables rich functionality
to be provided with a minimum of implementation code.

The final concept from this chapter that I’d like you to hold onto is the Page Life-
cycle. Understanding the Page Lifecycle is crucial to determining how the compo-
nents in web applications work. Failure to observe important events such as page
initialization and pre-rendering occurring within our page can lead to unexpected
and oftentimes unwanted behavior—as we saw when we added a zone to the page
and it caused an exception to be thrown.
126 CHAPTER 4 THE WEB PART MANAGER

C H A P T E R 5

Working with zones

5.1 Introduction 127
5.2 Classifying zones 128
5.3 Custom rendering of zones 133
5.4 Using WebPartChrome 139

5.5 Explaining parts 143
5.6 Zone additions to the Adventure

Works Portal 150
5.7 Summary 157
5.1 INTRODUCTION

Now that you have reached the half-way mark of this book, it may be helpful to stand
back for a minute and see where you are. The previous three chapters have been refer-
ence chapters for the major web part controls within the portal framework. Each of
those three chapters was written to provide a solid understanding of the major building
blocks used when developing portal applications. To re-cap a bit, we first learned about
the WebPart control and saw that it provides a way to display data that users can per-
sonalize to suit their own preferences. We also saw that users can move web parts
around at runtime within the regions of the page known as zones. After learning about
web parts we saw how to use web part connections to extend the usefulness of web parts
by allowing them to interoperate with other web parts on the page. And then, in the
previous chapter dealing with the WebPartManager control we gained insights into
how the WebPartManager control orchestrates the inner workings of the portal. We
saw that the WebPartManager control scrutinizes nearly all events and provides the
events that supply the portal framework with its lifecycle. Such events include control-
ling when personalization data is gathered up and sent off for storage.

In this chapter—the fourth and last of the web part control reference chapters—
we will explore the topic of zones. As we hike through the chapter we’ll gain an
127

appreciation that zones are much more than rectangular areas that web parts can be
dragged in and out of. In fact, we’ll see that zones play a very fundamental role in
determining the character of our portal. We’ll start by learning how zones are classi-
fied and then look into traits that are common to all zones.

5.2 CLASSIFYING ZONES

Within the portal framework all zones are categorized as being either WebPart zones
or Tool zones. This classification is based on two concerns: first, what type of child
controls the zones contain; and second, what purpose the zones serve. WebPart
zones contain web parts as their child controls, whereas Tool zones contain the child
controls consisting of editor parts, catalog parts, or connections.

The purpose of WebPart zones is therefore to contain web parts while it is the role
of the ToolZone to contain controls that offer tasks complimentary to web parts,
such as catalog controls, editing controls, and connection controls. WebPart zones
should seem familiar to us by now, because they are the main type of zone we’ve used
so far, but let’s take a look at both types of zones and explore their differences.

5.2.1 WebPart zones

Throughout the book so far we’ve used WebPart zones extensively to provide a place
where our web parts can live on a web page. We’ve seen that web parts can be added
to a WebPartZone control either at design time or dynamically at runtime. To allow
web parts to be added at design time, the WebPartZone exposes a special ZoneTem-
plate to declare web parts within. An example of this is shown in listing 5.1:

<asp:WebPartZone ID="WebPartZone2" runat="server">
 <PartTitleStyle BackColor="Black" Font-Bold="True"
 ForeColor="White" />
 <PartStyle BackColor="LightGray" />
 <ZoneTemplate>
 <uc2:EmployeeDetails
 ID="EmployeeDetails3"
 runat="server"
 Title="Employee Info" />
 </ZoneTemplate>

</asp:WebPartZone>

The code listing shows a WebPartZone with some declarative elements that control
certain style elements. Also declared within the WebPartZone is the ZoneTemplate
section; it’s within the zone template that the EmployeeDetails web part is declared
and will inherit the styles that we see declared within the WebPartZone definition.

Listing 5.1 A WebPartZone that contains a single web part declared within its

 zone template.
128 CHAPTER 5 WORKING WITH ZONES

Figure 5.1 shows how the part styles that are contained within
the WebPartZone would affect the EmployeeDetails web
part when it is rendered within a browser.

Figure 5.1 shows that styles declared within the WebPart
zone apply to all web parts displayed within this particular
zone. On this occasion, the PartTitleStyle element
ensures that each web part has a title with a black-colored
background and its title is displayed in white, emboldened
text. The PartStyle element provides the web part a gray-
colored background.

5.2.2 Tool zones

Tool zones provide the controls that allow users to manage web parts within the por-
tal. For example, we saw how the ConnectionsZone provides a place for configur-
ing and maintaining connections between web parts. Likewise, we’ve seen that the
EditorZone provides controls for managing the properties of web parts within a
web page. Three types of tool zones come as a standard part of the ASP.NET 2.0 con-
trol set: EditorZone, ConnectionsZone, and CatalogZone.

Both the EditorZone and the CatalogZone have a ZoneTemplate similar to
the one in the WebPartZone, allowing a user to declare child controls at design-
time. However, unlike the WebPartZone, any controls contained within the Zone-
Template of these zones cannot be WebPart controls. In the case of the Editor-
Zone, any controls declared within its ZoneTemplate must inherit from a base class
called EditorPart, whereas any controls contained by the CatalogZone must
inherit from a base class named CatalogPart. Listing 5.2 shows the declarative syn-
tax for creating a CatalogZone as well as an EditorZone.

<asp:CatalogZone ID="CatalogZone1" runat="server">
 <PartTitleStyle BackColor="#507CD1" ForeColor="White" />
 <FooterStyle BackColor="Red" ForeColor="White" />
 <HeaderStyle BackColor="Red" ForeColor="White" />
 <ZoneTemplate>
 <asp:PageCatalogPart ID="PageCatalogPart1" runat="server" />
 </ZoneTemplate>
</asp:CatalogZone>

<asp:EditorZone ID="EditorZone1" runat="server">
 <PartTitleStyle BackColor="#507CD1" ForeColor="White" />
 <FooterStyle BackColor="Red" ForeColor="White" />
 <HeaderStyle BackColor="Red" ForeColor="White" />
 <ZoneTemplate>

Listing 5.2 The CatalogZone and EditorZone both have zone templates that

 contain their “parts” and also have similar style elements.

Figure 5.1 The Em-

ployee Info web part

shows the effects that

have been applied by

the style elements

contained within the

WebPartZone.
CLASSIFYING ZONES 129

 <asp:AppearanceEditorPart ID="Part1" runat="server" />
 <asp:BehaviorEditorPart ID="Part2" runat="server" />
 </ZoneTemplate>
</asp:EditorZone>

Each of the “part” controls contained within the template zones of the EditorZone
and CatalogZone exist to provide a specific piece of functionality. Within the Edi-
torZone, the AppearanceEditorPart control allows users to manage certain
appearance aspects of web parts, such as their title, height, and width. The Behav-
iorEditorPart enables administrators to control other web part properties such as
the TitleUrl or the CatalogIcon for the web part. In the ZoneTemplate of the
CatalogZone, a PageCatalogPart is declared that provides users with a way to
manage which web parts are displayed on the page at any given time.

Noting that each of the zones shown in listings 5.1 and 5.2 has had a ZoneTem-
plate provides insight into the similarities that exist between them. Not only do the
zones each have a ZoneTemplate, but we can see that each of the three zones shown
in these examples—WebPartZone, CatalogZone, and EditorZone—has con-
tained an identical set of style elements. So while I’ve told you that zones fall into two
camps—WebPart zones and Tool zones—it’s clear that quite a few similarities exist
across all zones. The section that follows explores the inherent similarities in zones
because all zones are derived from a common base class.

5.2.3 WebZone—the common base class

Now that we’ve seen how all zones fall into one of two categories, it’s important to
understand that both the ToolZone and WebPartZone classes themselves inherit
from a common base class named WebZone. The inheritance hierarchy for all zones
can be seen in the following code snippet:

• WebZone

• ToolZone

• CatalogZoneBase

• CatalogZone

• EditorZoneBase

• EditorZone

• ConnectionsZone

• WebPartZoneBase

• WebPartZone

This hierarchy listing shows us that, regardless of whether a zone is a WebPart zone
or a Tool zone, all zones are ultimately derived from the WebZone class, and it’s this
130 CHAPTER 5 WORKING WITH ZONES

class that provides the zones with common attributes—such as their styles and their
rectangular appearance within a page.

Learning about the common inheritance of zones and the two classifications of
zones has been an important step toward truly understanding them. Now let’s take a
closer look at the common style elements that are provided for all zones by the Web-
Zone class.

5.2.4 Zone appearance

Listings 5.1 and 5.2 offered a glimpse at the common styles of zones and how each
zone was declared in a similar manner. Because they derive from the WebZone class,
all zones share the following common features:

• The style settings for the zone

• Zone layout

The layout for zones is provided by a set of common rendering methods that exist on
the WebZone class, which we’ll cover in a short while. For now, however, concentrate
on the styles for zones to see what they cover and how we can work with them.

Common styles are exposed to zones via a vast set of style properties on the Web-
Zone class. This explains why each of the zones in the earlier listings contained the
same named style settings for properties such as PartTitleStyle, HeaderStyle,
and FooterStyle. These style properties are responsible for determining how bor-
ders are displayed, what colors and fonts are used, and how the headers and footers of
zones are presented to users. We can use these style properties to customize the ren-
dered appearance of controls within the zones on our pages. In figure 5.2 we see a
CatalogZone with callouts showing various areas and regions within that zone
which can be affected by styles.

Figure 5.2 The style elements can be used to affect the appearance of a wide range of

elements within the zone.
CLASSIFYING ZONES 131

The use of style elements allows us to apply font settings, background and foreground
colors, and even images to all the major regions within our zones. Not all the styles
called out in figure 5.2 are properties of the base WebZone class. Rather, the Web-
Zone class supplies only the styles that are common to all zones, such as Header-
Style, FooterStyle, PartStyle and PartChromeStyle. Other style
properties specific to a specific zone are added by that zone. For example, the
InstructionTextStyle property is added by the CatalogZone, as it is the only
zone to supply such text.

Listing 5.3 contains the declarative syntax necessary to create the CatalogZone
shown in figure 5.2

<asp:CatalogZone ID="CatalogZone1" runat="server"
Font-Names="Verdana"
Padding="10"
InstructionText="This is instruction Text"
HeaderText="This is header text"
BorderColor="lightgray"
BorderWidth="1px">

<HeaderVerbStyle ForeColor="White" />
<HeaderStyle BackColor="Black" ForeColor="White" />
<CloseVerb Text="Close Verb" />
<AddVerb Text="Add Verb" />
<VerbStyle Font-Size="Smaller" />
<PartLinkStyle ForeColor="Blue" />
<SelectedPartLinkStyle ForeColor="Blue" />
<InstructionTextStyle Font-Size="Small"

CssClass="instruction-text" />
<LabelStyle BorderColor="Black" BorderWidth="1px" />
<PartChromeStyle BackColor="Control" />
<PartLinkStyle Font-Size=Large />
<PartTitleStyle BackColor="Black" ForeColor="White" />
<FooterStyle BorderStyle="Dashed" />

<ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="DeclarativeCatalogPart1"
 runat="server">
 <WebPartsTemplate>
 <uc2:EmployeeDetails ID="EmployeeDetails2"
 runat="server" Title="Employee Details" />
 <wp:AccountingPart ID="AccountingPart"
 runat="server" Title="Accounting Web Part" />
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
<asp:PageCatalogPart ID="PageCatalogPart1"

Listing 5.3 This CatalogZone contains style elements that are used to control

 the visual appearance of the zone and its child controls.

Style elements provide the
visual characteristics
132 CHAPTER 5 WORKING WITH ZONES

 runat="server" />
 <asp:ImportCatalogPart ID="ImportCatalogPart1"
 runat="server" />
 </ZoneTemplate>

 </asp:CatalogZone>

As we see in this listing, there are many attributes that can be affected by the style. Each
of these style elements actually inherits from the base System.Web.UI.WebCon-
trols.Style class, which means that each style element allows the user to define
fonts, colors, borders, and CSS styles for a particular area within the control’s user inter-
face. Having the ability to define a CSS style through the style elements is important
because there is much that can be controlled through CSS which cannot be managed
by a style. In listing 5.3 the InstructionTextStyle declares a CSS style named
“instruction-text” so that it can control the pad-
ding on its left side. This is how the instruction
text is made to appear indented in figure 5.2.

Although styles provide us with a great deal
of flexibility in customizing the rendered output
of zones, you sometimes require a finer level of
control, such as when you need to add totally
new elements within the zone. The next section
describes how to deal with this type of situation.

5.3 CUSTOM RENDERING OF ZONES

The tools described in this section enable us to
customize zone output to a greater degree than
you can using styles. To view this higher degree of
customization, take a look at figure 5.3, which
shows the CatalogZone from SharePoint.

The SharePoint gallery is similar to the
ASP.NET CatalogZone, in that it lists each
gallery (Catalog) in the top half of the zone and
allows a user to select a gallery. When a gallery
is selected, the web parts contained within the
gallery are displayed in the lower half of the
zone. The SharePoint Gallery contains some
unique features that cannot be achieved purely
through the use of styles, such as

Figure 5.3 The CatalogZone in

SharePoint provides elements

for paging and filtering which

cannot be achieved by simply

specifying styles.
CUSTOM RENDERING OF ZONES 133

• Web Parts appear in a pageable list.

• A Filter allows web parts to be filtered.

• There is even spacing between the name of each gallery and the number of parts
contained.

In order to achieve these types of effects within our own zones, we must resort to cus-
tomizing the rendering process of the zone rather than simply applying styles.
Throughout the next section we’ll learn which methods must be overridden to cus-
tom render zones, and we’ll see some code samples for doing so.

5.3.1 The structure of zones

Before the discussion on styles I mentioned that, in addition to providing common
styles for zones, the WebZone class also provides methods to control the rendering of
specific areas within a zone; because of this all zones share the layout shown in figure 5.2.

As we can see in figure 5.4, all zones actually have a header, footer, and a body
section. The header generally displays the
title, the body contains the parts exposed by
the zone, and the footer contains additional
controls. Looking at figure 5.5, we can see
how this layout is applied to a Catalog-
Zone control.

The CatalogZone shown in figure 5.5 is
a good example of how zones use their header
and footer space to render titles, verbs, and
optionally any other helper controls that may
be useful to serving the needs of the zone. In
the case of the CatalogZone, we see that the
title of the zone and a Close verb are rendered
in the header, while the footer contains a
selector control which lists the zones con-
tained on the page and two verbs: one for
adding web parts to the selected zone and one
to close the catalog zone.

Figure 5.5

The CatalogZone uses

its footer section to

provide controls that al-

low the user to choose

where to add web parts

on the page.

Figure 5.4 Each zone has three major

sections which are enforced by render-

ing methods contained within the base

WebZone class.
134 CHAPTER 5 WORKING WITH ZONES

5.3.2 Rendering the header, body, and footer

The WebZone base class provides the following methods that can be overridden to
control the rendering of zones:

• RenderContents

• RenderHeader

• RenderBody

• RenderFooter

By overriding any or all of these methods we can provide complete customization
over the appearance of zones by directly emitting our own custom HTML as the ren-
dered output. To fully understand this, consider what happens when we do not cus-
tomize these methods and therefore get the base implementation of them. In the base
implementation of the RenderContents method, an outer table is created and then
the RenderHeader, RenderBody, and RenderFooter methods are called to dis-
play those sections of the zone within the table. This gives us the structure shown in
figure 5.4.

When customizing zones by using custom rendering, we first choose which sec-
tion of the zone we are customizing and then override the relevant method. For
example, let’s say we wanted our zones to exist within HTML DIV elements rather
than HTML tables. By overriding the default behavior of the RenderContents
method, a different HTML tag could be used to contain the zone such as a DIV. Like-
wise, if we have some special requirements for displaying custom user interface ele-
ments to the user from within our zone, we can override any of the rendering
methods to insert our logic. For example, to create a totally custom footer section
within a zone we simply create a class that inherits from the zone type that we want to
customize, and then override the RenderFooter method this way:

public class ListCatalogZone : CatalogZone {

protected override void RenderFooter(HtmlTextWriter writer) {
// Custom footer rendering code goes here...

}
}

By overriding the RenderFooter method in this manner we are free to use the
HtmlTextWriter to add any rendering code we please—or even to not render any-
thing, and therefore remove the footer rendering from the CatalogZone altogether.

Although taking ownership of the render process for sections of the zones makes it
possible to provide a totally unique interface for our zones, taking ownership can also
be an onerous task. For example, if we overrode the RenderBody method for the Cat-
alogZone, we would be undertaking the responsibility of rendering the following:
CUSTOM RENDERING OF ZONES 135

• Instruction text

• Links for each gallery

• Links for each web part for the selected gallery

All of this adds up to quite a bit of work. We have to ensure not only that we do the
right thing when adding our custom user interface elements, but also that we re-create
the existing user interface elements correctly. When re-creating the existing user interface
elements, care must be taken to ensure that it is done in a manner consistent with their
normal appearance. This means that we are not only creating HTML to contain and dis-
play text, but also applying any styles that the user has added via the zone declaration.

Having looked at the structure of zones and examined the rendering process of
them, it’s time to get our hands dirty by writing code that allows us to perform cus-
tom rendering of our own zone.

5.3.3 Displaying the galleries in a DropDownList

To see how to customize the appearance of our galleries we will now create a custom
CatalogZone and override its RenderCatalogPartLinks method so that each of
the galleries are displayed within a dropdown list as opposed to being listed as indi-
vidually clickable links. The tasks involved in creating this customization are

• Override the RenderCatalogPartLinks method of the zone to insert cus-
tom rendering logic to insert a dropdown list at the top of the zone.

• Create code that displays the instructional text of the zone and apply styles that
have been supplied by the developer.

• Create a method that handles the postback event of the dropdown list and use
the selected value of the list to set the selected gallery.

Figure 5.6 shows how our custom catalog zone will appear at runtime.
Notice that the galleries in our custom

CatalogZone are now contained within a
dropdown list and that only galleries con-
taining web parts are displayed. Let’s see
how this custom rendering is performed.
In your test project, create a new class
named ListCatalogZone and derive it
from the CatalogZone class. Next, over-
ride the RenderCatalogPartLinks

method to display the instructional text
and create a dropdown to display the gal-
leries. The code to do this is displayed in
listing 5.4.

Figure 5.6 Custom rendering is used to dis-

play the available galleries within a Drop-

DownList control instead of listing them as

individual links.
136 CHAPTER 5 WORKING WITH ZONES

protected override void RenderCatalogPartLinks(HtmlTextWriter writer) {

this.RenderInstructionText(writer);

DropDownList galleryList = new DropDownList();

galleryList.ID = this.ClientID + "_GallerySelector";
galleryList.Page = this.Page;
galleryList.ClearSelection();
galleryList.AutoPostBack = true;

foreach (CatalogPart gallery in this.CatalogParts) {

WebPartDescriptionCollection parts =
 gallery.GetAvailableWebPartDescriptions();

if (parts.Count > 0) {
galleryList.Items.Add(

new ListItem(gallery.Title, gallery.ID)
);

}

}

if (galleryList.Items.Count == 0) {
writer.Write(

 "There are no galleries that contain web
 parts."
);
} else {

writer.Write("Select a Gallery:");
if (!string.IsNullOrEmpty(this.SelectedCatalogPartID)) {

galleryList.Items.FindByValue(
this.SelectedCatalogPartID).Selected = true;

}

galleryList.RenderControl(writer);
}

}

The code for our custom gallery rendering logic, shown in listing 5.4, first calls a helper
method to display the instructional text. The reason for separating this code into a
helper method is that we not only write the instructional text, but apply any
InstructionTextStyle styles that have been specified as well. If we didn’t separate
the logic for displaying the instructional text into its own method, the RenderCat-
alogPartLinks method would become overly long and cumbersome to maintain.
After rendering the instruction text, our code then creates a DropDownList control

Listing 5.4 The RenderCatalogPartLinks method is overridden to customize the

 way that the galleries are displayed.

Display Instruction Text

Create
DropDownList

Add Galleries to
DropDownList

Select Gallery
CUSTOM RENDERING OF ZONES 137

and assigns it a unique ID. It is important to note that we also set the AutoPostBack
property to true. This ensures that when the user makes a selection in the list a postback
will occur, and we can set the selected catalog part to whatever gallery the user has
selected. Setting the selected catalog part ensures that when the remainder of the Ren-
derBody logic is run for the CatalogZone, the web parts that will be displayed will
reflect the selected gallery.

The last part of the custom rendering code shown in listing 5.4 checks whether
any galleries have been added to the dropdown list. If no galleries were added—either
because there were none or because there were no galleries that contained web
parts—the user is notified. If galleries were added to the dropdown list, a label is
added and the currently selected gallery is pre-selected in the dropdown list. You can
see that the code for pre-selecting a gallery within the dropdown list uses the
SelectedCatalogPartID property of the CatalogZone to work out which item
to select.

The following code snippet shows the code for the CatalogZone helper method:

protected virtual void RenderInstructionText(HtmlTextWriter writer) {
if (!string.IsNullOrEmpty(this.InstructionText)) {

Label lbl = new Label();
lbl.Text = this.InstructionText;
lbl.Page = this.Page;
lbl.ApplyStyle(base.InstructionTextStyle);
lbl.RenderControl(writer);
writer.WriteBreak();
writer.WriteBreak();

}
}

Notice here that in the CatalogZone helper method one of the lines of code applies
the CatalogZone to the label. Doing this adds the styles that were specified in the
declaration of the control to the Label that we’re creating to display the instructional
text. By applying styles during custom rendering, we allow our custom catalog to
offer a consistent experience and allow developers to use our control exactly as if it
were one of the standard CatalogZone controls.

Now that we’ve completed the CatalogZone logic and added in our own drop-
down list, we must write the code that will handle the postback event from the drop-
down list and use it to set the CatalogZone property to reflect whatever item the
user has chosen. To handle the postback event we can write code to run during the
CatalogZone phase of page processing which occurs just prior to the page load
event. This is an event that occurs just prior to the page load event during a page
postback and allows controls to update their state based on values that have been
posted back from the client. In our case this will involve looking for a value in the
postback data collection that corresponds with the unique ID that we gave to our
dropdown control. The following code shows the code required to handle the post-
back event and to update the CatalogZone:
138 CHAPTER 5 WORKING WITH ZONES

protected override bool LoadPostData(
string postDataKey,
NameValueCollection postCollection
) {

this.SelectedCatalogPartID =
postCollection[this.ClientID + "_GallerySelector"];

return base.LoadPostData(postDataKey, postCollection);

}

The LoadPostData method for our control is actually called by the ASP.NET run-
time. The ASP.NET runtime calls this method for every control on a page that imple-
ments the IPostBackDataHandler interface, which the CatalogZone class does.
In our implementation of CatalogZone we retrieve the value that is contained
within the post collection for the dropdown list that we added. In our case the value
that we retrieve from the post collection for the dropdown list will be the ID of a gal-
lery because that is what we assigned as the value for each dropdown item that we
added to the dropdown list.

Add the custom CatalogZone to a web page and run the page within a browser
to see how the custom gallery that we created here works.

We’ve now seen that we can customize the appearance of our zones by using
either styles or by directly customizing the rendered output. However, as we saw in
the section on custom rendering, taking control of rendering a section such as the
body section of a zone can be a significant undertaking. This is particularly true if we
are interested only in making small customizations. For example, we saw that Share-
Point gallery body contains a control for filtering the web parts in the list. If we
attempted to apply this small enhancement to the body of the ASP.NET Catalog-
Zone by overriding the RenderBody method, we’d have to custom render the entire
body, including the gallery links. To assist with rendering only specific elements
within zones, the portal framework provides us with another piece of architecture
known as chrome.

5.4 USING WEBPARTCHROME

Chrome is a rendering element used by the WebPartZone, EditorZone, and Cat-
alogZone as a specific way to render parts that are contained within those zones.
The chrome acts as a visual container for the parts in the zones. In this way, chrome
enables us to perform rendering tasks on the parts that are contained within the body
of a zone without having to custom render the entire body of each part.

5.4.1 Defining chrome types

At this point we’ll drill in and examine the types of chrome that exist and write some
examples that allow us to gain an understanding of what effect chrome has on the
overall rendering process. To do this we will
USING WEBPARTCHROME 139

• Look at the different types of chrome that exist

• Create our own custom chrome

• Write samples against our own custom chrome to see how to implement
chrome

• Use the samples that we write to examine what rendering can be affected by
chrome

The best place to start when looking at chrome is to learn the different types of
chrome that exist. Each different zone uses a specific type of chrome which has spe-
cial rendering methods that match the features exposed by the zone. Table 5.1 lists
the types of chrome that are used by the three zones and also lists the methods
exposed by the chrome that can be used to assist with custom rendering:

The standard chromes—WebPartChrome, EditorPartChrome, and Catalog-
PartChrome—give us the default look and feel that we experience as we browse a
portal and view zones and their parts. For example, WebPartChrome uses its Ren-
derWebPart method to perform the following tasks:

• Creates the styles that will be used for the outer area of the part

• Draws the outer table that contains the part

• Adds the appropriate ID to the table to allow client scripts to interact with the
part—for dragging, etc.

• Renders the Title for the part

• Calls RenderCatalogPartContents so that the parts contents can be drawn
within the chrome template that has been created

As shown by this list, chrome is responsible for rendering the outer parts of the zone
as opposed to the inner area where the main content of the zone is contained. Because
of this, it can be useful to customize how chrome is rendered when we need to change
the appearance of the outer area of our zones beyond what we can achieve by simply
using styles. An example of this would be if we wanted to provide our zones with unique,
rounded corners—such as those Valentine’s Day hearts that were mentioned in chapter 2.

Table 5.1 Zones each use specific chrome types which have rendering methods

that are useful for controlling the appearance of certain areas of the zone.

Zone Standard Chrome Types Chrome Rendering Members

WebPartZone WebPartChrome GetWebPartVerbs,
RenderPartContents,
RenderWebPart

EditorZone EditorPartChrome RenderEditorPart,
RenderPartContents

CatalogZone CatalogPartChrome RenderCatalogPart,
RenderCatalogPartContents
140 CHAPTER 5 WORKING WITH ZONES

5.4.2 Customizing chrome

At times we’ll want to create a custom look for the outer area of our zones—a look
that will give all our pages a distinctive feel or flair. To do so, we create our own cus-
tom chrome class and write code within that class that performs custom rendering
logic to suits our needs. To allow us to use custom chrome in the portal, each zone
has a method that is responsible for returning the chrome type that should be used
for rendering its parts. The methods for each of these three zones that return their
chrome are

• WebPartZoneBase.CreateWebPartChrome

• EditorZoneBase.CreateEditorPartChrome

• CatalogZoneBase.CreateCatalogPartChrome

Overriding these methods provides us with an interception point we can use to return
our own chrome classes which contain custom rendering logic for rendering parts and
their contents. To see how this works, take a look at listing 5.5 and notice the logic
contained within its RenderPartContents and RenderWebPart methods:

public class CustomWebPartChrome : WebPartChrome {

public CustomWebPartChrome(WebPartZone zone, WebPartManager wpm) :
base(zone, wpm) { }

public override void RenderWebPart(
HtmlTextWriter writer,
WebPart webPart

) {

writer.Write("Outer section of the web part");
writer.WriteBreak();
this.RenderPartContents(writer, webPart);
writer.WriteBreak();
writer.Write("End of outer section");

}

protected override void RenderPartContents(
HtmlTextWriter writer,
WebPart webPart
) {
writer.Write("Part contents");

}
}

Listing 5.5 This custom chrome class uses its RenderWebPart and Render-

 PartContents methods to display the user interface of web parts

 for a web zone.

Render outer
area of

web part

Render web
part content
USING WEBPARTCHROME 141

This custom chrome class shown in the preceding segment inherits from Web-
PartChrome and can therefore be returned as the chrome to be used by the Cre-
ateWebPartChrome method of a WebPartZone. In order for the chrome to be used
by a zone, we must associate the chrome with the zone. In the case of a WebPartZone,
we accomplish this by overriding the CreateWebPartChrome method and returning
an instance of our custom chrome class. The following snippet shows a custom Web-
PartZone using our CustomWebPartChrome to perform web part rendering:

public class CustomWebPartZone : WebPartZone {

protected override WebPartChrome CreateWebPartChrome() {
return new CustomWebPartChrome(this, this.WebPartManager);

}
}

At runtime when the zone is rendering its body section, it will loop through each of
its contained web parts and actually use the chrome to do the rendering of that part
like so:

WebPartChrome chrome = this.WebPartChrome;
foreach (WebPart part in this.WebParts) {

chrome.RenderWebPart(writer, part) ;
}

This final snippet shows us that every web part within the WebPart zone is rendered
through the chrome, and not through the zone itself.

5.4.3 Viewing the results of custom chrome

To appreciate the additional level of control gained over the rendering process by cre-
ating our custom chrome, we can now use the CustomWebPartZone to host some
web parts and view the rendered output. Add the following markup to a page in your
test project and run it to view the output.

<wp:CustomWebPartZone ID="CustomWebPartZone1" runat="server">
<ZoneTemplate>

<asp:TextBox ID="part1" runat="server" Title="Part One" />
<asp:TextBox ID="part2" runat="server" Title="Part Two" />

</ZoneTemplate>
</wp:CustomWebPartZone>

Here our CustomWebPartZone class is declared within a page, and as we can see, it
contains two web parts declared within its zone template. At runtime the Render-
WebPart method of our custom chrome class will be called twice—once for each
web part contained within the zone. Figure 5.7 shows the results of the page being
run in a browser.

As we see, the text rendered from the RenderWebPart and RenderWebPart-
Contents methods is displayed instead of the textbox web parts we’d normally expect
142 CHAPTER 5 WORKING WITH ZONES

to see. To further highlight what’s going on, we can remove the overridden Render-
WebPart method we added to the custom chrome class. Removing this method from
our custom chrome class means that the base class implementation of that method will
be called at runtime and do all of its normal rendering of borders, titles and verbs so
at least our parts will look like the web parts we’ve seen in the past. Our custom Ren-
derWebPartContents code will still run and render the body of the part as the text
that we emitted: Part Contents. Figure 5.8 shows the output rendered when we remove
the implementation we added for the RenderWebPart method.

Working through the chapter to this point has provided a
good look at the three main rendering methods for zones and
we’ve seen how the level of control from the combination of
styles, zone rendering, and chrome rendering simplifies the
task of creating the exact look and feel we want for parts
within our portal. We’ve also seen that each of these three
methods of affecting the rendered output comes with a dif-
ferent level of difficulty. Using styles is relatively straightfor-
ward, while overriding the rendered sections within zones is
much more difficult because then we are attempting to create
a lot of visual elements and functionality.

Now that we’ve learned about the makeup of zones and
seen how to affect their visual elements, it’s time to take a
closer look within the EditorZone and the CatalogZone.

5.5 EXPLAINING PARTS

From what we’ve seen and read about zones so far, it should be clear that the main
function of zones is to act as containing areas for part controls. After all, it is the part
controls contained within the zone that provide the user with the real functionality
to accomplish various tasks. For example, in the case of the EditorZone, a user
would call on the AppearanceEditorPart to maintain the appearance of web
parts on a page. In this section we’ll see that each zone contains parts of a specific
type. Finally, once we understand how parts work, we’ll take a closer look at the
parts contained by the EditorZone and the CatalogZone to learn about the
functionality provided those zones. These are the last of the major web part controls
that we need to cover in detail.

Within the body of a zone, the parts that are rendered give the zone its distinct
purpose. For example, while the WebPartZone itself is quite useful for providing the

Figure 5.7

This figure shows how the Ren-

derWebPart and RenderWeb-

PartContents methods affect

the rendered output of web

parts contained within a zone.

Figure 5.8 By remov-

ing the code we wrote

for the RenderWebPart

method, we make the

web parts regain their

familiar look as the

verbs and title texts

are also rendered in

the header area.
EXPLAINING PARTS 143

layout and visual styles for web parts contained within it, having a WebPartZone
without web parts would really be of little use. The same goes for the EditorZone
and the CatalogZone. Can you imagine an EditorZone with no editor parts? It
would be practically useless!

Each type of zone contains only a certain kind of part within its body. In the case
of a WebPartZone, these parts are web parts that are derived from the WebPart
class, whereas in the case of the CatalogZone control they would be parts derived
from the CatalogPart class. Table 5.2 lists the types of parts contained within the
standard ASP.NET 2.0 zones.

The items in table 5.2 highlight the fact that each type of zone accepts only a specific
set of part types that can be contained within its body, and that each of the part types
for a zone derive from a specific base part type. This is why the CatalogZone is able
to happily accept any of either the DeclarativeCatalogPart, PageCatalog-
Part, or ImportCatalogPart controls within its body—because they all derive
from CatalogPart. It’s also worth noting that each of these part classes—WebPart,
CatalogPart, and EditorPart—are derived from the same base class: Part.

Let’s now take a closer look at each of the standard parts that can be accepted by
the CatalogZone and the EditorZone. By learning about the functionality
exposed by these two zones we’ll get to see how they are used to personalize web
pages and thereby satisfy our portal users.

5.5.1 EditorZone parts

As we’ve just seen, an EditorZone can contain any of the four standard editor parts
that inherit from the EditorPart class. The four standard editor zone parts are
AppearanceEditorPart, BehaviorEditorPart, LayoutEditorPart, and
the PropertyGridEditorPart. This section describes how users work with the
standard editor parts to personalize the properties, layout, appearance, and behavior
of web parts on their web pages.

AppearanceEditorPart

The AppearanceEditorPart provides controls that allow a user to modify several
of the visual elements of a web part. With this editor part a user can dynamically modify

Table 5.2 Zones each contain parts of only a certain type.

Zone Base Part Type Specific Part Types

WebPartZone WebPart GenericWebPart, WebPart

CatalogZone CatalogPart DeclarativeCatalogPart, PageCatalogPart,
ImportCatalogPart

EditorZone EditorPart AppearanceEditorPart, BehaviorEditorPart,
Layout-EditorPart, PropertyGridEditorPart

ConnectionsZone N/A N/A
144 CHAPTER 5 WORKING WITH ZONES

the text that is displayed for a web part or set the
width and height for the web part. The Chrome
Type control allows the user to specify certain
chrome-related style settings. With this property the
user can specify whether the web part has a border
and whether or not the title should be displayed for
the web part. Figure 5.9 shows the user interface that
is presented by the AppearanceEditorPart.

The AppearanceEditorPart is displayed
within the EditorZone whenever the page is in
edit mode and a web part on the page has been
selected for editing.

BehaviorEditorPart

Another editor part control is the BehaviorEdi-
torPart, which provides the ability to manage
the behavior properties of a web part. Unlike the
AppearanceEditorPart, the BehaviorEdi-
torPart is only visible under certain circum-
stances. In addition to the page being in edit
mode and a web part being selected, the Behav-
iorEditorPart requires that the page be in
shared personalization scope before it is visible.
This is because the web part properties affected by
the BehaviorEditorPart apply to all users
rather than just the user making the changes. Fig-
ure 5.10 shows the user interface that is presented
for the BehaviorEditorPart control.

As we can see, the BehaviorEditorPart
allows the user to alter the description for a web
part. The description is used to display extra infor-
mation about a web part to users, and is commonly
displayed in a tooltip. The next set of properties
governed by this part are several hyperlinks that
allow icons to be associated with the web part and
also allow users to navigate to pages that display
more information about the web part. For example,
when the Help Link property is set to a URL, a help
verb is displayed for the web part, allowing the user
to navigate to a web page that provides help infor-
mation about the web part. The Help Mode prop-
erty allows the user to select one of three values,

Figure 5.9 To modify the visual

elements of a web part, users

make use of the AppearanceEdi-

torPart interface to begin the task.

Figure 5.10 The BehaviorEditor-

Part allows authorized users to

change the features exposed by

certain web parts.
EXPLAINING PARTS 145

Modal, Modeless, and Navigate, that dictate how the help URL is displayed when the
user clicks on the help verb. If the Help Mode is set to Modal, the help URL is displayed
in a modal dialog window that the user must close before the web part page can con-
tinue, whereas if the Help Mode property is set to Navigate, then the contents of the
web part page are replaced with the contents of the help URL.

Other behaviors manageable by the BehaviorEditorPart include authoriza-
tion settings. The user can select an ExportMode which determines whether a web
part can be exported and whether sensitive data is contained within the exported
data. The user can also change the Authorization Filter which, as we have seen, sup-
plies a way to determine which users the web part should be displayed for.

LayoutEditorPart

The LayoutEditorPart is displayed under the
same circumstances as the AppearanceEdi-
torPart; that is, whenever the page is in edit
mode and a web part is selected for editing, it
allows the user to change the layout settings of a
web part.

The LayoutEditorPart has a property
called Chrome State which has two possible val-
ues—Normal and Minimized—that determine
whether or not the web part is fully visible or
whether it is rendered in a minimized mode. Fig-
ure 5.11 shows how this editor part is rendered
in a browser.

The Zone and ZoneIndex properties allow the user to move a web part between
zones and to manipulate its position within the zone.

All of the properties governed by the LayoutEditorPart can be managed with-
out it. For example, web parts contain a verb that allows their minimization and res-
toration. They can also be dragged between
zones when the page is in either edit or design
mode. This functionality is embedded within an
editor part for a specific reason: the embedding
enables the web page to cater to browsers that do
not allow the JavaScript behaviors required to
render verbs and to drag and drop web parts on
the page.

PropertyGridEditorPart

The last of the standard editor parts is the Prop-
ertyGridEditorPart which is displayed in
figure 5.12.

Figure 5.12 The PropertyGridEdi-

torPart allows users to maintain

the values of custom properties on

web parts.

Figure 5.11 When a user is unable

to use or enable JavaScript and is

therefore unable to dynamically

drag web parts around in the brows-

er, he must use the LayoutEditor-

Part to change the position of web

parts within zones on the page.
146 CHAPTER 5 WORKING WITH ZONES

The PropertyGridEditorPart allows a user to manage custom properties
that have been associated with a custom web part control. The properties displayed
by the PropertyGridEditorPart are dynamically generated, based on custom
properties of the web part marked with the WebBrowsable attribute:

[Personalizable(PersonalizationScope.Shared)]
[WebBrowsable]
[WebDescription("The name of the employee.")]
public string Name {

get { return _name; }
set { _name = value; }

}

Other attributes can be used to influence how the custom properties are rendered
within the PropertyGridEditorPart. The WebDisplayName attribute allows us
to specify the value that appears within the label for the control and the WebDescrip-
tion attribute can be used to supply additional information about a property that will
be displayed as a tooltip for the property in the PropertyGridEditorPart.

The PropertyGridEditorPart is somewhat clever in the controls it displays
by default for custom web part properties. Table 5.3 presents a list of the controls
that allow users to manage properties of differing types:

By looking at table 5.3 we can see what I mean when I say that the PropertyGrid-
EditorPart is clever. While it’s great that this editor part knows to use a Checkbox
control to represent a Boolean and a DropDownList control to represent an enum,
the choice of a TextBox control to display a DateTime value is sub-optimal. This
raises a valid reason to create a customized PropertyGridEditorPart control, in
that we can use better controls to display and validate certain values. For example, it
would be preferable to associate a calendar control with DateTime properties for the
purpose of ensuring that only valid values are entered.

That’s it for the EditorZone and its editor parts. As we’ve seen, by combining
the four editor parts that we’ve covered throughout this section, the user is provided
with a great deal of flexibility and power to customize the look, feel, and behavior of
a portal at runtime. When you see this type of flexibility that comes as standard
behavior in ASP.NET, you can really begin to appreciate just how successful the

Table 5.3 Controls used by the PropertyGridEditorPart

Property Type Control Used

String TextBox

Numeric TextBox

DateTime TextBox

Enum DropDownList

Boolean CheckBox
EXPLAINING PARTS 147

ASP.NET team has been in ensuring that the minimum bar for web applications has
been truly raised.

5.5.2 CatalogZone parts

The CatalogZone parts that come as standard parts within the portal framework are
the DeclarativeCatalogPart, the PageCatalogPart, and the ImportCata-
logPart. Each of these parts displays web parts which are stored in different areas
known as catalogs. Each catalog stores and retrieves its associated web parts in a different
format; users can select parts from these catalogs and add them to a page at runtime.

PageCatalogPart

The PageCatalogPart shown in figure
5.13 contains all the web parts that the
user has previously closed from WebPart
zones on a page. This mechanism provides
a way for users to re-add web parts to a
page that they have previously closed,
including web parts that have been
dynamically added and then closed.

In Figure 5.13, the Page Catalog con-
tains the Employee Details web part. This
part would have been closed by a user at
some stage. Closing a web part is not the
same as deleting it. Deleting a web part from the page removes it forever whereas
closing it simply adds it to the Page Catalog where it can be re-added.

DeclarativeCatalogPart

The DeclarativeCatalogPart stores its web parts in a declarative syntax within
the web page. When a DeclarativeCatalogPart has been added to a Catalog-
Zone, users are able to use it to add web parts to the page. This is done by selecting
the DeclarativeCatalogPart from within the CatalogZone. When the user
selects the DeclarativeCatalogPart from
within the CatalogZone, a list of all parts that
have been added to that catalog part are displayed
in the bottom half of the CatalogZone body as
shown in figure 5.14.

To add web parts to the DeclarativeCata-
logPart, a page author simply embeds the web
control declaration for the web parts directly
within the body of the DeclarativeCatalog-
Part section of the CatalogZone. The following
snippet of code shows a web part being added to
the DeclarativeCatalogPart catalog.

Figure 5.13 The user interface of the Page-

CatalogPart is displayed within the lower

portion of the CatalogZone.

Figure 5.14 The user interface of

the DeclarativeCatalogPart is dis-

played within the lower portion of

the CatalogZone.
148 CHAPTER 5 WORKING WITH ZONES

<asp:CatalogZone ID="CatalogZone2" runat="Server">
<ZoneTemplate>

<asp:DeclarativeCatalogPart ID="DeclarativeCatalogPart2"
 runat="server">
<WebPartsTemplate>

<uc2:EmployeeDetails ID="EmployeeDetails2"
runat="server"
Title="Employee Details" />

</WebPartsTemplate>
</asp:DeclarativeCatalogPart>

</ZoneTemplate>
</asp:CatalogZone>

In the code snippet above we see the markup used to create the CatalogZone shown
in figure 5.12. The code shows that the Employee Details web part is contained
within the WebPartsTemplate of the DeclarativeCatalogPart.

It is worth noting that web parts that are declared in the DeclarativeCatalog
can be “instanced” on a web page any number of times. For example, let’s say that
you open the Declarative Catalog shown in figure 5.14 and add the Employee Details
part contained within it to WebPartZone1. After you do so, the Employee Details
web part will still appear within the Declarative Catalog, and can still be added to the
page. Therefore a page can contain many instances of web parts that are declared
within this type of catalog. The DeclarativeCatalog is therefore an ideal place for web
parts that you’d like to add multiple times such as a web part which allows images to
be added to a page or a web part that allows a user to enter and display arbitrary
chunks of HTML on a page.

ImportCatalogPart

The last of the CatalogParts is the Im-
portCatalog. The ImportCatalog pro-
vides users with a way to import web parts
into a web application by browsing for web
part description files and then importing
them. The web part description files are the
XML files we discussed in chapter 4 when
we looked at the import/export process
from the WebPartManager perspective.
In addition to enabling users to search for
web part definition files and import them,
the ImportCatalogPart also lists web
parts previously imported by a user. Exist-
ing web parts are displayed in the lower part
of the interface for the ImportCatalog-
Part as shown in figure 5.15.

Figure 5.15 The user interface of the Im-

portCatalogPart is displayed within the

lower portion of the CatalogZone.
EXPLAINING PARTS 149

In figure 5.15 the ImportCatalogPart is shown with a single web part listed
near the bottom of the control. As in the declarative catalog, web parts that have been
imported can be added to the web page any number of times. Users can customize
the text that is displayed on the interface for this catalog part by setting one of two
properties: the BrowseHelpText and the UploadHelpText. The BrowseHelp-
Text property is used to set the text displayed above the “Browse” control, while the
property named UploadHelpText can be used to set the text that appears just above
the “Upload” button.

In addition to the standard zone parts we’ve seen for the EditorZone and the
CatalogZone, it is possible to create our own custom parts. By inheriting from the
right base classes, we can actually create our own specialized part controls that can be
added to zones. For example, by inheriting from CatalogPart we could create a
special catalog part control. This catalog control part could allow users to import web
parts that are stored somewhere other than where they are stored by the existing cata-
log parts—such as a web service or the file system. Having a CatalogPart that
could store and retrieve web parts from outside of the current web application opens
the door to the possibility of sharing web part definitions between multiple web
applications. SharePoint actually does something similar to this with its gallery where
it allows users to search for web parts from an online repository of parts which are
stored on the Microsoft.com website.

If learning about the parts contained by zones and the various ways to render
them felt like a bit of a technical slog, don’t be too discouraged because there was a
lot of information to cover. The advantage is, armed with the knowledge gained from
this chapter, you are now fully ready to start creating zones that provide users with a
unique experience. In fact, why don’t we start by using our new knowledge to create
some cool zone additions to the Adventure Works portal?

5.6 ZONE ADDITIONS TO THE
ADVENTURE WORKS PORTAL

At the end of chapter 4 we added some architectural features to the Adventure Works
Portal for authorizing web parts and allowing users to dynamically change the display
mode of the page. In the time that has elapsed since the last chapter, we’ve had more
discussions with the HR management team to discover which features to build next.
During the talks the HR department clamored for many more web parts so that users
of the portal could gain access to a wider range of business information. Additionally,
HR gazed at its crystal ball and glimpsed a need in the future to share web parts
between the current portal and some smaller, more specific sub-portals that would
suit the needs of smaller project-specific teams. After the talks, it was decided that the
functionality of the standard ASP.NET CatalogZone should be enhanced to make it
easy for administrators to add web parts to the portal, as well as make it simple to
share web parts between portal applications.
150 CHAPTER 5 WORKING WITH ZONES

NOTE If you don’t have a copy of the project from chapter 4 you can grab it from
the chapter 4 section of the resources website for this book.

5.6.1 Planning the CatalogZone extensions

To create the agreed upon enhancements, we
will need to provide a way for web parts to be
shared easily between web applications. From
earlier sections of this chapter, you will recall
that the existing CatalogZone parts allow
web parts to be loaded from three separate
places, but that none of them allowed web
parts to be shared concurrently between sep-
arate applications. For our requirements, web
parts should be storeable in a central location
and loaded from there into more than one
application in a manner similar to that
shown in figure 5.16.

Storing web part definitions centrally will allow administrators to pre-configure
web parts with specific customizations and upload them for use. This will be useful
for ensuring that the parts in the central gallery have the most common settings
already applied, and most users will typically not be required to make any customiza-
tions of their own before using them. Such settings might include the default number
of rows to display on a web part with a pageable interface or ensuring that a news web
part is pre-configured to read news from the most commonly selected news channels.

5.6.2 Creating a custom catalog part

To achieve our result we will create a custom catalog part that will be able to store and
retrieve web parts from a configurable location which, in our case, will be a fileshare
location on the network. The catalog part we
create will be derived from the CatalogPart
base class, which means it can be added to the
standard CatalogZone just like any of the
existing three catalog parts. Figure 5.17 shows
how our catalog part named Central Gallery
will appear when displayed within the Cata-
logZone:

To create our catalog part, add a class file to
the Adventure Works project named Central-
GalleryCatalogPart.cs by right-clicking
on the App_Code folder and choosing Add
File. When the file is created, ensure that the
CentralGalleryCatalogPart class inherits

Figure 5.16 Our custom gallery (Central

Web Part Repository) can be accessed by

multiple web applications.

Figure 5.17 A custom gallery named

Central Gallery with its two web parts

is contained within the CatalogZone.
ZONE ADDITIONS TO THE ADVENTURE WORKS PORTAL 151

from CatalogPart, and give it a friendly and distinct title to display when it appears
within the CatalogZone so that users will know what it is.

public class CentralGalleryCatalogPart : CatalogPart {

 public override string Title {
 get {
 string title = base.Title;
 return string.IsNullOrEmpty(title) ?
 "Central Gallery" : title;
 }
 set {
 base.Title = value;
 }
 }
}

Next we’ll need to add a property to our catalog part to tell it where the web parts are
located. Having this as a configurable property will make it easy to move the applica-
tion between different environments such as development, testing, and production. It
will also make it easier to re-use our catalog so that we could potentially have several
catalogs reading from different places on the network. Listing 5.6 shows the Gal-
leryPath property marked with the WebBrowsable attribute so that an adminis-
trator can configure the location from the portal by using the EditorZone and the
standard PropertyGridEditorPart.

private static string _galleryPath = "~/WebParts/";
[Personalizable(PersonalizationScope.Shared)]
[WebBrowsable(true)]
public virtual string GalleryPath {

get {
 return string.IsNullOrEmpty(_galleryPath) ?

"~/WebParts/" : _galleryPath;
}

 set {
 if (!value.EndsWith("/"))
 value += "/";

_galleryPath = value;
}

}

In the code for listing 5.6 we see that the GalleryPath property is marked with cer-
tain attributes. The Personalizable attribute marks the property as shared for per-
sonalization; so that whenever the gallery path is modified, all users of the portal will
be affected by the changes—not just the current user. By marking the GalleryPath

Listing 5.6 The GalleryPath property contains the location where web parts are

 stored for the custom gallery.
152 CHAPTER 5 WORKING WITH ZONES

property with the WebBrowsable attribute we ensure that users will be able to set its
value from within the PropertyGridEditorPart at runtime.

By this point, we’ve set the Title for our CatalogPart and provided a way for
users to set the location path to the place where the parts will be stored. Now we need
to think about how to retrieve the web parts and what format they should be stored in.

Adding and retrieving web parts

To store the web parts we’ll use the XML web part definitions we’ve worked with
when using the standard import/export functionality in the portal. Our catalog part
will have one method that takes the XML for a web part and adds it to the catalog and
another method which takes a web part description and returns a web part from the
gallery. The method for adding parts to the catalog will be implemented as a static
helper method so it can easily be called from within the application.

public static void ImportWebPart(string partTitle, string partContent) {

 string path = _galleryPath + partTitle + ".xml" ;
 path = HttpContext.Current.Server.MapPath(path);
 File.WriteAllText(path, partContent);
}

As we can see, the ImportWebPart method is marked as static, so that calling code
does not entail creating an instance of the class to use the ImportWebPart method.
The ImportWebPart method takes a string to serve as the title of the web part
which is also the file name that the web part is saved against. Finally, the web part
XML definition is saved by using the WriteAllText helper method of the Sys-
tem.IO.File class.

The method for retrieving a web part is called GetWebPart and is a method that
must be implemented when inheriting from the abstract CatalogPart class. The
GetWebPart method is responsible for returning a WebPart based on a WebPart-
Description passed to it. The WebPartDescription is a class containing infor-
mation about an item listed in a CatalogPart such as its Title, Description, ID, and
CatalogIconImageUrl, and is used as the standard way to pass information about
web parts between the CatalogZone and the CatalogPart controls. Listing 5.7
shows the code for the two overrides of the GetWebPart method.

public override WebPart GetWebPart(WebPartDescription description) {
 return GetWebPart(description.Title) ;
}

protected virtual WebPart GetWebPart(string partTitle) {
 string path = _galleryPath + part.Title + ".xml";
 path = HttpContext.Current.Server.MapPath(path);

Listing 5.7 The GetWebPart method returns a web part from the gallery’s store.
ZONE ADDITIONS TO THE ADVENTURE WORKS PORTAL 153

 WebPart wp = null;

 using (FileStream fs = File.OpenRead(path)) {
 XmlTextReader reader = new System.Xml.XmlTextReader(fs);
 string errorMessage = “” ;
 wp = WebPartManager.ImportWebPart(reader, out errorMessage);
 }

 return wp;
}

When we receive the WebPartDescription, we extract its Title property and call
off to a second overload for the GetWebPart method. This method has been created
especially for our class, which accepts a path to the file where we have the XML
description file stored. Once we have a file path, we need only load the XML file into
an XMLTextReader and pass it the WebPartManager class, which knows how to
convert the XML into a web part instance.

Naturally, we could implement any logic for creating web part controls within the
GetWebPart method based on the WebPartDescription that is passed in. We
could fetch the web parts as XML from the filesystem as we have here, or we could
fetch the XML from a web service. As a matter of fact, the GetWebPart method
could even load assemblies directly using Reflection. There are no limits to what the
GetWebPart method can do, as long as it accepts a WebPartDescription
instance and returns a WebPart instance. Sometimes the GetWebPart method
needs to return a control that does not inherit from the WebPart class. For example,
if we wrote a custom gallery that could store any standard ASP.NET controls, it
would be up to the GetWebPart method to wrap the server control within a
GenericWebPart before returning it.

So far, all is looking good! We’ve set out to create a catalog part that could be used
from within multiple applications and now we are almost finished. We’ve created the
catalog part and provided it with methods that allow it to read web parts in and out
of a central location. Additionally, we’ve provided a property which would allow an
administrator to configure the exact location for web parts storage. In the few steps
remaining we’ll add the few lines of code required to have our catalog part display its
web parts in the CatalogZone.

Displaying the web parts

The final method to be implemented when inheriting from the abstract Catalog-
Part class is called GetAvailableWebPartDescriptions. This method is
responsible for returning a WebPartDescription for each of the web parts within

Create
XmlTextReader
from filestream

Use WebPartManager
to create WebPart
154 CHAPTER 5 WORKING WITH ZONES

the catalog. To create an instance of the WebPartDescription class we can use
either of the following two constructors:

public WebPartDescription (
 string id,
 string title,
 string description,
 string imageUrl
)
public WebPartDescription (
 WebPart part
)

At runtime the CatalogZone hosting our web part will use the WebPartDescrip-
tions that we return from the GetAvailableWebPartDescriptions method to
display the web parts contained within the gallery. The CatalogIconImageUrl,
Description, Title and properties of the WebPartDescription class are aligned
with properties of the same name on the IWebPart interface:

• CatalogIconImageUrl—the URL of an image displayed for a web part when
that part is displayed in a catalog of web parts.

• Description—Descriptive text about a web part displayed for a web part when
that part is displayed in a catalog of web parts. This property is also used to dis-
play tooltip information about a web part.

• Title—the title of a web part control.

Listing 5.8 shows the code required to return the available web part descriptions for
our custom gallery.

public override WebPartDescriptionCollection
GetAvailableWebPartDescriptions() {

 if (base.DesignMode) {
 return CentralGalleryCatalogPart.DesignModeAvailableWebParts;

}

 List<WebPartDescription> coll = new List<WebPartDescription>();

 string path = HttpContext.Current.Server.MapPath(this.GalleryPath);

 foreach (string file in Directory.GetFiles(path)) {
 if (file.EndsWith(".WebPart")) {
 string partTitle = Path.GetFileNameWithoutExtension(file);
 WebPart wp = GetWebPart(partTitle);
 wp.ID = partTitle;

Listing 5.8 The GetAvailableWebPartDescriptions method returns a collection

 of the descriptions of web parts available from the custom gallery.

Offer custom
experience when part

 is in design mode

Only load files with a
.webpart file extension
ZONE ADDITIONS TO THE ADVENTURE WORKS PORTAL 155

 coll.Add(new WebPartDescription(wp));
 }
 }
 return new WebPartDescriptionCollection(coll);
}

In our implementation of the GetAvailableWebPartDescriptions method we
loop through each file within the directory that stores the web parts for our custom
gallery and create a WebPartDescription by passing the file name of each file to
our helper GetWebPart method. Passing a web part as the constructor argument of
the WebPartDescription will ensure that the web parts listed in our custom gal-
lery will have catalog images and tooltips associated with them if they are present in
the XML web part definition file.

Adding design-time functionality

At the beginning of the GetAvailableWebPartDescriptions method, you will
notice how we first check to see whether we are in design mode, and if so we display
some sample web part data so that our control offers a good design-time experience.

To provide the design-time data, some sample WebPartDescriptions are cre-
ated in a static constructor for our custom catalog part and assigned to a private static
property named DesignModeAvailableParts, as seen in listing 5.9.

static CentralGalleryCatalogPart() {
 WebPartDescription[] designParts = new WebPartDescription[3];

 designParts[0] =
new WebPartDescription("Part1", "WebPart 1", null, null);

 designParts[1] =
new WebPartDescription("Part2", "WebPart 2", null, null);

 designParts[2] =
new WebPartDescription("Part3", "WebPart 3", null, null);

 DesignModeAvailableWebParts =
new WebPartDescriptionCollection(designParts);

}

private static WebPartDescriptionCollection DesignModeAvailableWebParts;

Having this type of design-time experience ensures that our custom catalog part will
offer an identical design experience as the existing ASP.NET catalog parts.

Listing 5.9 From within the static class contstructor we add web part descrip-

 tions to display in Visual Studio when the CentralGalleryCatalogPart

 is displayed in design mode.

Set value of static
DesignModeAvailable-
WebParts property
156 CHAPTER 5 WORKING WITH ZONES

The code for the Adventure Works portal can be found in the chapter 5 section of
the resources website for this book. That code contains additional web parts that have
been added to a new project named AW.Portal.Web.SharedWebParts. The code
in the Adventure Works portal in the chapter 5 folder already includes new web parts
and the new custom gallery that we built in this chapter.

5.7 SUMMARY

Throughout this chapter we’ve seen how zones are much more than simple rectangles
on a web page. In fact, zones can have a dramatic impact on the display of the web parts
they contain. In addition to the zones themselves, we saw that custom chrome can be
used to add a finer level of control over the display of zones and their web parts.

Like the other web part controls we’ve seen so far—WebParts, Connections, and
the WebPartManger—zones are one of the fundamental building blocks of the por-
tals we will build. The purpose of this chapter has been to give you an understanding
of the purpose of zones and their capabilities. In future chapters we’ll apply this core
knowledge of web part controls to create more custom functionality. In chapter 7
we’ll dive into zones and chrome again to explore adding new verbs to our web zones
that provide users with an easier way to edit web parts. We’ll also create a Catalog-
Zone which is implemented as a dialog window and will provide us with an opportu-
nity to mix some client-side scripting with the web part controls.
SUMMARY 157

C H A P T E R 6

Understanding
personalization

6.1 Introduction 158
6.2 Defining personalization 159
6.3 Personalization in action 161
6.4 Lifecycle of personalization

data 169

6.5 Working with personalization
data 180

6.6 Personalization of the Adventure
Works portal 187

6.7 Summary 197
6.1 INTRODUCTION

The world of website offerings has changed markedly in just a few years. I first visited
websites to find the media soundtracks from my favorite shows, such as The Simpsons.
At that time, most sites were nothing more than a few pages and the page listing media
clips required endless scrolling. These pages often had weird background images and
bizarre soundtracks. Other pages on those early websites sometimes included a links
page—a page with links to all the other sites the owner recommended.

These days, users expect much more from websites and generally require them to
be more customizable than their predecessors. Instead of being presented with a sim-
ple list of media soundtracks, users can now often personalize a page so that it con-
tains tracks from their favorite artist or music genre. Quite often users can even
aggregate their favorite items on a single page through sites that offer more advanced
customization services. Sites offering the ability to personalize content become “stick-
ier” as a result, because users stay on the sticky site rather than browsing to other sites
158

for the remainder of the content they want. The benefit for the owners of sticky web-
sites is that their sites serve more ads and thus generate greater revenue.

6.2 DEFINING PERSONALIZATION

There is an intensifying move away from the brochure-style sites of the early days to
the portal model where users can add a range of content to pages when and where
they like. In the past, every site that provided advanced personalization capabilities
had to engineer its own database system to store the customization information from
the users of the site and then develop complex code to pull the personalization from
the databases and reapply it when a user returned to the website. In ASP.NET 2.0 all
the tasks of creating databases and writing custom logic have been completed for us,
and these elements exist as a set of services jointly known as Personalization.

Personalization is an application service responsible for saving, retrieving and
reapplying data that represents customizations which have been made to controls on
a web page. The personalization service knows how to store the customization data
for a page and then retrieve it when a user requests the page again. When a page with
saved personalization data is re-requested, the personalization service fetches the data
so the page can be recreated for the user making the request.

This chapter explains how personalization works. We will see how personalization
data is stored, and how the personalization classes within ASP.NET 2.0 removes the
complexity of managing user customization. We will explore how the personalization
classes allow us to alter their behavior to customize the storing and retrieval of per-
sonalization data.

What personalization affects

Everything we’ve seen in the portal framework so far—WebParts, Zones, and the
WebPartManager—sits above personalization and requires personalization to re-
create the state of web pages after user customizations have been applied. Without
personalization there would be no use having the CatalogZone, and no sooner
would we dynamically add to a web page a web part we’ve taken from another loca-
tion than it would be forgotten, and the page would revert to its original format.
Without personalization, the changes made through parts within the EditorZone
would also be forgotten as soon as we navigated away from the page.

What personalization saves

To understand what type of data must be saved as part of the personalization process,
consider some of the following changes that can be made by users, and which must be
remembered by personalization:

• Using the EditorZone to change the properties of web parts

• Using the CatalogZone to add or remove web parts from the page
DEFINING PERSONALIZATION 159

• Moving web parts between zones

• Changing connection attributes

• Adding or removing web parts from a page

The data saved for personalization has to be sufficient to completely re-create a web
page exactly as the user left it, regardless of which previously mentioned changes
have occurred.

Personalization state

Before delving into personalization more deeply, it’s worth contrasting it with some
of the other state mechanisms that are offered by ASP.NET to see how it differs from
other methods of persisting data in ASP applications:

• ViewState—ViewState provides a way to store state information for a specific
web page that can be persisted across page postbacks but not across separate vis-
its to the web page.

• Cookies—Cookies allow us to store user-specific personalization data that can be
persisted across visits to the site. One of the limitations of cookies is that they
only store a small amount of data. Some browsers only allow up to 4096 bytes
of data to be stored within cookies, and also limit the number of cookies a site
can store. In addition to these limitations, users can elect to turn cookies off, so
they should not be relied upon to store important information.

• Session—The Session object allows values to be stored on a per-user basis for the
duration of a single visit to a website. When a user revisits the site, a new session
is created and all values are re-initialized.

• Profile—The ASP.NET profile feature allows data to be stored for individual
users and have it persisted across visits to the website. Profile is generally used to
store information about a user, such as a birth date or a favorite color. Profile is
also used to store complex user data such as shopping cart information and have
it persisted between page postbacks or site visits.

• Personalization—Personalization data is stored for controls on a web page and is
specific to individual users. Personalization data is persisted between visits to a
site. Unlike Profile data, personalization data is specific to preferences that have
been made to web part controls and is tied to changes that have been made to a
specific page.

Personalization differs from the other state mechanisms because

• It is tied to the identity of a user on a per-page basis.

• It is long-lived and therefore persists beyond a single user session.
160 CHAPTER 6 UNDERSTANDING PERSONALIZATION

In addition to storing data based on the identity of a user and a page address, person-
alization also takes into account a concept known as scope. Scope indicates whether a
change in personalization data affects only the user who made the change, or whether
all users of the portal are affected by the change.

Personalization scope

Within ASP.NET portals there are two scopes: shared scope and per-user scope.
Changes made to data while a page is in shared scope mode will be visible to all users
within the portal. This means if a web part is moved from one zone into another
while the page is in shared scope mode, all users of the portal will experience that
change. On the other hand, any changes made to the portal while a page is in per-
user scope mode will only be visible to the user making the change. Because of this,
the ability to make changes while in shared scope mode is a feature that is normally
restricted to those portal users who have administrative privileges. To bring this point
home, the next section presents an example of how the personalization service works.

6.3 PERSONALIZATION IN ACTION

To better understand how the personalization service works, let’s create a small exam-
ple that allows us to view the behavior of a web page while making personalization
changes to it. To do this we will create a small application that allows us to make
changes for different users, pages, and scopes; and in doing so we will see how each of
those variables affects the personalization data that is persisted.

Our application will have two web pages and will allow for multiple users to log in
and make personalization changes to those pages. As we work through this section, we
will see that personalization data is saved on a per-user, and per-page basis. In addition
to the per-user changes made, we’ll also allow certain users to change the scope of the
page into shared scope and make changes that affect all users of the portal. By allowing
multiple users to log in we’ll be able to make different changes for each user, and see
how the page looks differently, depending on which user we login as. Additionally, we
will see that any changes made to the page while in shared scope affect the default set-
tings for all users of the page. Figure 6.1 shows the page we’ll be creating and explains
some of the controls that can be used to interact with the web page.

To get things started, first open Visual Studio 2005 and create a new web project
named UnderstandingScope and add a new master page called Site.master to
the project. With the master page open add a WebPartManager at the top of the
page. Next, drag two WebPartZone controls from the Toolbox onto the page and,
to the first zone, add two TextBox controls. The HTML for the zones and web parts
should look something like the code in the following snippet.
PERSONALIZATION IN ACTION 161

<asp:WebPartZone ID="WebPartZone1" runat="server" >
<ZoneTemplate>

<asp:TextBox ID="TextBox1" runat="server" Title="WebPart 1" />
<asp:TextBox ID="TextBox2" runat="server" Title="WebPart 2" />

</ZoneTemplate>
</asp:WebPartZone>

<asp:WebPartZone ID="WebPartZone2" runat="server" />

The two zones in the preceding snippet are the same two zones shown in figure 6.1,
and will be used to allow us to drag the web parts between them whenever the page is
in design mode.

Next we’ll add the controls to the top of the web page. This allows us to manage the
page and view information about the logged-in user. The first control we’ll add is a
LoginName server control which displays a greeting message to the authenticated
user, and will enable us to identify which user is currently logged in. The LoginName
control is a simple server control used to display the username of an authenticated
user. We can use the FormatString property of the LoginName control to display

Figure 6.1 A prototype application will allow us to view the behavior of personalization

on a per-user, per-page, and per-scope basis.
162 CHAPTER 6 UNDERSTANDING PERSONALIZATION

a message to the currently logged-in user, as displayed in the following snippet of
HTML code:

<asp:LoginName ID="LoginName1" FormatString="Welcome, {0}" runat="server" />

Next, we must establish controls that allow us to change the display mode of the page
and to change personalization scope and to reset personalization for the page. For
these we will use LinkButton controls and write server code to handle their click
event as shown in the following:

<asp:LinkButton ID="lnkBrowse" runat="server"
OnClick="lnkBrowse_Click" Text="Browse DisplayMode" />

<asp:LinkButton ID="lnkDesign" runat="server"
OnClick="lnkDesign_Click" Text="Design DisplayMode" />

<asp:LinkButton ID="lnkToggle" runat="server"
OnClick="lnkToggle_Click" Text="Toggle Scope" />

<asp:LinkButton ID="lnkReset" runat="server"
OnClick="lnkReset_Click" Text="Reset Personalization" />

Finally, a LoginStatus control is used to allow authenticated users to log out and a
Login control allows unauthenticated users to login. The Login server control dis-
plays the user interface elements necessary to allow a user to enter their authentica-
tion credentials. The control then exposes that information as properties we can use
to validate them, and accept or deny a login request. When added to the page, the
HTML for those controls will look like so:

<p>
<asp:LoginStatus ID="LoginStatus1" runat="server" />

<asp:Login ID="Login1" runat="server"
 OnAuthenticate="Login1_Authenticate" />

</p>

To give the page its required behavior, code must be written that runs when each of
the link buttons is clicked. The code for the two buttons responsible for switching the
display mode of the page is similar to the code we wrote in chapter 4 when we wrote
the ModeChanger user control. It simply sets the DisplayMode property of the
WebPartManager for the page to the appropriate value:

protected void lnkBrowse_Click(object sender, EventArgs e) {
WebPartManager1.DisplayMode = WebPartManager.BrowseDisplayMode;

}

protected void lnkDesign_Click(object sender, EventArgs e) {
WebPartManager1.DisplayMode = WebPartManager.DesignDisplayMode;

}

The code that allows us to toggle the personalization scope between per-user scope
and shared scope is similarly trivial, because that functionality is also exposed via
PERSONALIZATION IN ACTION 163

helper methods which we access from the WebPartManager. The ToggleScope
functionality alternates the personalization scope for the page between shared scope
and per-user scope. We use this feature to switch the page into shared scope mode to
see how changes made while in that mode affect all users of the portal, and not just
the current user.

protected void lnkToggle_Click(object sender, EventArgs e) {
WebPartManager1.Personalization.ToggleScope();

}

The Reset Personalization button calls the ResetPersonalizationState method
of the WebPartManager’s personalization property, and causes any personalization
changes made to a page by a user for a given scope to be reset.

protected void lnkReset_Click(object sender, EventArgs e) {
WebPartManager1.Personalization.ResetPersonalizationState();

}

To process the login request, we handle the Authenticate event of the Login control.
For our application we can simply accept any username with a password of “password.”

protected void Login1_Authenticate(object sender, AuthenticateEventArgs e)
{

if (!string.IsNullOrEmpty(Login1.UserName)
&& Login1.Password == "password") {
e.Authenticated = true;

} else {
e.Authenticated = false;

}
}

The last step we need to take is to configure our web application to use forms authen-
tication rather than Windows authentication. We must also configure the authoriza-
tion settings for personalization so that authenticated users can switch the
personalization scope into shared scope mode. To make these configuration settings
we must make changes to the web.config file for the application. Listing 6.1 shows
the authorization elements that must be added to the web configuration file to allow
authenticated users to enter into shared scope within the portal.

<system.web>
<authentication mode="Forms" />

<webParts>
<personalization>

<authorization>
<deny verbs="enterSharedScope" users="?" />

Listing 6.1 The portal must be configured to allow users to enter into shared

 scope mode for personalization.
164 CHAPTER 6 UNDERSTANDING PERSONALIZATION

<allow verbs="enterSharedScope" users="*" />
</authorization>

</personalization>
</webParts>

</system.web>

In listing 6.2 code is added that runs during the pre-render phase of the page, and
ensures that the link buttons are hidden until a user has logged in and then hides the
Login control when the user has been authenticated:

protected override void OnPreRender(EventArgs e) {
base.OnPreRender(e);
this.lnkToggle.Visible =
 WebPartManager1.Personalization.CanEnterSharedScope;
this.lnkReset.Visible =

WebPartManager1.Personalization.CanEnterSharedScope;
this.LoginStatus1.Visible = Page.User.Identity.IsAuthenticated;
this.lnkBrowse.Visible = Page.User.Identity.IsAuthenticated;
this.lnkDesign.Visible = Page.User.Identity.IsAuthenticated;
this.Login1.Visible = !Page.User.Identity.IsAuthenticated;

}

Now that the code for the page is complete, all that
remains is to create two content pages by right-clicking
on the master page in the Solution Explorer within
Visual Studio 2005 and choosing the Add Content Page
option twice. This should create two content pages
named Default.aspx and Default2.aspx. We can
now run the Default.aspx page in a browser and
make personalization changes so that we may observe
the behavior. With the Default.aspx page displayed,
enter the following credentials into the login form:

Username: Jane
Password: password

After logging in, the page shown in figure 6.2 should be
displayed with both web parts contained in a single
zone.

Notice how the name of the user is now displayed
and there is a link that allows us to log out, so that we
can log in as another user. While logged in, press the
button labeled Design DisplayMode to allow design

Listing 6.2 The OnPreRender method is used to configure the visibility of the

 controls for the application.

Figure 6.2 When a user

is authenticated, controls

are displayed that allow

personalization changes

to be made.
PERSONALIZATION IN ACTION 165

changes to be made to the page. Drag
WebPart2 into the second zone so that
the page now looks like the page shown
in figure 6.3.

When I’m learning new concepts, I
always like to create small prototypes
such as the one we’ve just created so
that I can use it to observe behaviors
and understand how things work. I
hope this technique will be helpful to
you, too. Now that we’ve created our
portal we can run some experiments to
help us see how personalization works
under different circumstances.

Observing personalization changes

In this section, running some experiments over our prototype will enable us to catch
a glimpse of the true nature of personalization so that we will know how to use it, and
understand where it might work to best advantage. Once we have the results of these
experiments we can drill further into the personalization class. The most important
things to observe and understand about personalization are that it is scoped to the

• Current user

• Current page

• Current personalization scope

To see the effect of this scoping with our own eyes we can perform the following
experiments:

1 Check that personalization data is saved on a per-page basis—To prove that
changes made on the Default.aspx page only affect that page, browse to the
second page that uses the master page named Default2.aspx. While on the
Default2.aspx page, notice that both web parts are still in the first zone.

2 Check that personalization data is saved on a per-scope basis—While still logged in
as Jane, browse back to the Default.aspx page and click on the link titled
Toggle Scope to change the page into shared scope mode. Notice that even
though we are logged in as Jane, both web parts are contained within the first
zone; this is because the changes made by Jane were made while the page was in
per-user scope and therefore are only visible by that user.

3 Check that shared-scope changes affect all portal users—While logged in as Jane
and in shared scope mode, move WebPart2 into the second zone so that it
becomes the default for all users of the portal. Log Jane out by clicking on the

Figure 6.3 The web page after WebPart2 has

been moved into the right zone for the user

named Jane.
166 CHAPTER 6 UNDERSTANDING PERSONALIZATION

Logout link; and while no users are logged in, notice that Default.aspx now
shows a web part in each zone as the new default behavior for the page.

4 Check that resetting personalization returns a page to its default state—Log in and
switch the page into shared scope mode. Click on the Reset Personalization
link. This has the effect of resetting the personalization data for the current
page, user, and scope. After resetting the personalization data, log out and
observe that both web parts are back in the left zone again.

Having run through these small exercises, we’ve now seen how personalization data is
saved for a web page and what factors come into play when a personalized web page is
reconstructed. By completing the exercise we witnessed firsthand that personalization
data is saved uniquely by user, page, and also by scope.

NOTE The full source code for the UnderstandingScope project can be found
in the chapter 6 folder of the resources website for this book—http://man-
ning.com/neimke.

Another interesting aspect of personalization shown in the example is that there are
methods accessible via the Personalization property of the WebPartManager
that allow us to perform certain personalization duties. For example, when switching
the page between per-user scope and shared scope we used a method named Tog-
gleScope to do so. We accessed two other personalization members. First was the
CanEnterSharedScope property, which was used to determine whether or not to
expose the ToggleScope functionality to the user. The second personalization
member was named ResetPersonalizationState, which allowed the resetting
of the personalization data for the page.

The Personalization property of the WebPartManager is actually an instance
of a WebPartPersonalization class associated with the page. It’s this class that pro-
vides us with most of the logic and is implemented to carry out the low-level person-
alization operations within our portal. Let’s take a look at the WebPartPersonali-
zation class in more detail to see what else it has to offer.

WebPartPersonalization class

The WebPartPersonalization class contains the logic for personalization opera-
tions performed on web part controls within portal applications. Sometimes the
WebPartManager needs to perform personalization tasks on web controls such as
extracting personalization changes from controls and re-applying personalization data
to controls that have previously had personalization changes made to them. The
WebPartManager performs these tasks through the WebPartPersonalization
class. As we saw in our example, we are also able to access this object from code to
perform common personalization operations such as changing the current personal-
ization scope, or resetting the personalization data for a web page. Table 6.1 shows
the important public members of the WebPartPersonalization class.
PERSONALIZATION IN ACTION 167

We can use these public members to help us perform personalization tasks such as
those shown in the example. The following snippet of code highlights how we used
the CanEnterSharedScope property of the WebPartPersonalization class to
ensure that the link for toggling the personalization scope was displayed only to users
able to view the page in shared-scope mode:

 this.lnkToggle.Visible =
 WebPartManager1.Personalization.CanEnterSharedScope;

In addition to the public members listed in table 6.1, the WebPartPersonaliza-
tion class contains protected members that can be overridden to alter some of the
lower-level behavior regarding personalization data extracted from and re-applied to
web part controls. Table 6.2 lists the important protected members of the WebPart-
Personalization class.

Table 6.1 Key Public Members of the WebPartPersonalization Class.

Member Name Description

CanEnterSharedScope Indicates whether the current user is allowed to enter into shared per-
sonalization scope for the current page.

IsEnabled Indicates whether or not personalization is enabled for the current user
and page and whether it has successfully loaded.

InitialScope Gets or sets the default personalization scope to use for web pages.

ProviderName Gets or sets the personalization provider name for use.

Scope Gets the personalization scope for the current web page.

ResetPersonalizationState Resets the personalization data for the current page, user, and scope.

ToggleScope Alternates the personalization scope for the page between shared
scope and per-user scope.

Table 6.2 Key Protected Methods of the WebPartPersonalization Class.

Member Name Description

ApplyPersonalizationState Applies personalization data to either the WebPartMan-
ager for the page or for a specific web part control.

CopyPersonalizationState Copies the personalization state from one web part to
another web part.

ExtractPersonalizationState Extracts the personalization data from either the Web-
PartManager for the page or from a specific web part.

Load Initializes the personalization process by requesting that
personalization data be retrieved for the current page,
scope, and user from the underlying data store.

Save Saves the personalization data for the current page,
scope, and user to the underlying data store.
168 CHAPTER 6 UNDERSTANDING PERSONALIZATION

Changing the way that personalization data is mapped to web part controls is not a
common task; therefore, most of the time we will be able to use the default behavior
for these methods. Taking on the job of implementing these methods is quite tricky
because of the complex logic required to perform tasks such as

• Versioning data reloaded for a web part control that has had its definition
changed since its state was persisted

• Merging data that is being re-loaded with properties a user has changed

• Deciding how to determine when the state for a web part is considered “dirty”

We’ve seen the effect that scoping has on the personalized view for a user, and we’ve
also learned about the raw interfaces of the WebPartPersonalization class; now
it’s time to see how and when these are applied during the page lifecycle.

6.4 LIFECYCLE OF PERSONALIZATION DATA

What happens at runtime that allows personalization data to be fetched from a data
store and applied to a web page? That’s the question we’re going to answer now.
Understanding the lifecycle of the personalization data will allow us to see when
things occur; thus we will know where to write code if we ever need to affect person-
alization at a really low level—such as to change the data store used to store personal-
ization data. Since this section covers a number of topics and represents the major
chunk of this chapter, it may be helpful for you to see what you’re in for. Here’s the
ground we’re going to cover:

• Where personalization data is stored

• When personalization data is fetched from storage

• The process that applies the personalization data to the web page

• The process that gathers up modifications to personalization data at the end of
the page lifecycle

• When personalization data is persisted back into storage

• How to change the personalization provider of an application

Personalization is actually a two-phase operation. We’ve seen in the first phase how
the WebPartPersonalization class collects and aggregates state data for each web
part control on a web page. The second phase occurs when the data collected from
the controls on the page is sent to a data store to be persisted. This process can be
seen in figure 6.4.

This figure shows that, between visits to a web page, personalization data for web
part controls on the page is persisted in a data store. The process of communicating
with the data store is handled by a PersonalizationProvider class which
defines methods that are required to read and write personalization data to a data
store, as described in the section that follows.
LIFECYCLE OF PERSONALIZATION DATA 169

6.4.1 Storing personalization data

At runtime, the process of saving and restoring personalization data is kicked off by
the WebPartManager, as it manages the behavior of the portal during the event life-
cycle of the page. The process begins when a user visits a web page within the portal.
When this happens, the WebPartManager waits until the InitComplete phase of
the page lifecycle, and then uses the WebPartPersonalization class to apply any
existing personalization data to controls on the page. To do so, the WebPartPer-
sonalization class requests the personalization data from the Personaliza-
tionProvider.

At the end of the page lifecycle—during the OnPageSaveStateComplete
phase—the WebPartManager calls the Save method on the WebPartPerson-
alization class to save the state of the web part controls on the page. The
WebPartPersonalization class gathers the personalization data for each of the
web part controls on the page, and then hands it off to the Personaliza-
tionProvider class for saving.

Figure 6.5 provides an overview of the lifecycle of how personalization data is
saved and loaded against controls on a web page.

As you can see, the role of the PersonalizationProvider class is limited to
data access within the lifecycle of saving and retrieving personalization data.

Figure 6.4 The personalization process involves both saving and loading personalization

data from a data store.
170 CHAPTER 6 UNDERSTANDING PERSONALIZATION

6.4.2 The PersonalizationProvider class

The PersonalizationProvider class is marked as abstract. This means it can-
not be instantiated, and has been created solely to define a set of class members that
must be implemented by another class which inherits from it. Defining an abstract
class for saving and retrieving personalization data is a common extensibility pattern
within ASP.NET 2.0, as it allows developers to easily write specific data providers,
which act against any type of data store. For example, in one application personaliza-
tion data might be stored in an SQL Server database, whereas in another application
personalization data might be stored in an Oracle database. By inheriting from the
PersonalizationProvider class, a developer can create a custom Personal-
izationProvider class and implement the logic required to access data in the
data store which the developer will be using. At runtime when data must be saved or
loaded, the portal framework makes calls against the base PersonalizationPro-
vider class, and is therefore unaware of the exact type of the underlying data store.

Figure 6.5 The code that performs the job of loading and storing personalization data is

separated into several layers making it easier to customize specific functionality within the

process.
LIFECYCLE OF PERSONALIZATION DATA 171

In addition to the simple saving and retrieval operations, the Personaliza-
tionProvider class also defines a number of query-related methods that must be
implemented. Table 6.3 shows the key methods that must be implemented when
inheriting from the abstract PersonalizationProvider class and briefly
describes their use.

As you can see, the PersonalizationProvider class contains methods for
retrieving and saving personalization data, as well as methods for running queries
against personalization data that is currently saved.

Configuring a PersonalizationProvider

To allow the portal framework to know which personalization provider class to use,
ASP.NET provides us with a personalization element in the web configuration file
where we can specify the details of our personalization provider. Listing 6.3 shows the

Table 6.3 The key abstract methods of the PersonalizationProvider class.

Method Name Arguments Description

FindState scope
query
pageIndex
pageSize
totalRecords

Returns a collection of personalization state data
for a given query. The pageIndex and pageSize
arguments provide a way to page through large
sets of data. This method exists to allow admin-
istrative queries to be run against the data store.

GetCountOfState scope
query

Returns a count of the number of rows of per-
sonalization data that exist in the data store for a
given query. This method exists to allow admin-
istrative queries to be run against the data store.

LoadPersonalizationBlobs webPartManager
path
userName
sharedDataBlob
userDataBlob

Loads the raw personalization data from a data
store for a given web page.

ResetPersonalizationBlob webPartManager
path
userName

Resets the personalization data for a user on a
given page. If the userName argument is not
specified then it is the shared scope data that is
reset.

ResetState scope
paths
usernames

Resets the personalization data for users on a
list of pages. If no usernames are provided then
it is the shared scope data that is reset.

ResetUserState path
userInactiveSinceDate

Resets the personalization data for a given page

SavePersonalizationBlob webPartManager
path
userName
dataBlob

Saves the raw personalization data to a data
store for a given web page
172 CHAPTER 6 UNDERSTANDING PERSONALIZATION

configuration entry that is required to specify values for configuring a personalization
provider named OraclePersonalizationProvider.

<system.web>

 <webParts>
 <personalization
 defaultProvider="OraclePersonalizationProvider">
 <providers>
 <add
 name="OraclePersonalizationProvider"
 type="Testing.OraclePersonalizationProvider"
 connectionStringName="LocalOracleServer"
 applicationName="/"
 />
 </providers>
 </personalization>
 </webParts>
</system.web>

As we can see, the personalization element is configured to use a provider named
OraclePersonalizationProvider. The settings for the OraclePersonal-
izationProvider are configured in the providers element where we can specify
the assembly qualified class name and the connection string to use for our data pro-
vider class.

SqlPersonalizationProvider

By default, ASP.NET comes pre-configured with a provider for managing personaliza-
tion data against an SQL Server store called SQLPersonalizationProvider. This
class derives from the base PersonalizationProvider class and implements each
of the methods that are listed in table 6.3 against an SQL Server data store. The SQL-
PersonalizationProvider is pre-configured in the machine.config file and
so, if we are using SQL Server as our data store for personalization data, no configura-
tion entry is required.

If we need customizations to the way that personalization data is loaded or
retrieved from an existing provider, we can simply inherit from the existing provider
class and override the appropriate methods to tweak the behavior. Tasks that typically
require this type of tweaking include:

Listing 6.3 Portal applications can be configured to use a custom personaliza-

 tion provider class to save and load personalization data from a

 data store.
LIFECYCLE OF PERSONALIZATION DATA 173

• Caching stored data to reduce the load on databases when retrieving personal-
ization data

• Changing the keys against which personalization data is stored

• Encrypting stored data to make it secure when it is in storage

To better understand why we might want to customize the behavior of personaliza-
tion, let’s look at an example. When we created our prototype to observe the behavior
of personalization, we saw that personalization data is saved on a per-page basis. Hav-
ing data saved on a per-page basis is ideal for portals where each page allows many
users to personalize the content—such as with SharePoint. However, personalization
data keyed off the URL of the page wouldn’t necessarily suit applications in which
web parts are expected to remain static throughout the site. A blogging application is
an example of an application in which changes are typically made for all pages instead
of for just a single page.

A typical blogging application might have the following pages:

• The Home page which lists recent blog posts

• A page that displays a summary of historical blog posts

• A page that displays actual blog post content

Now think of the blog owner who takes time to personalize his or her blog using web
parts. To do this the owner could browse to the home page and add parts such as a Top
Rants web part and a Most Recent Rants web part of the page. After making these mod-
ifications the owner would save the changes and switch back into browse mode again.

Unfortunately the changes made by the owner will only be applicable to the home
page. When users click an article link in the Top Rants web part, they will be taken to
the page that displays blog post content to read the article, but the Top Rants web
part will no longer appear.

For small sites such as blogging applications, having navigational consistency is
critical for allowing users to find their way around the site. For a site such as this, it
just won’t do to have key navigational aids, such as the Top Rants web part, appear
and disappear at random. Instead, for this blogging application, we need to ensure
that any personalization changes made to one page also carry through onto all other
public pages, so that all of the navigational aids are consistent for all users of the site.

To change the saving and loading of personalization data so that it is no longer
keyed by the URL of the page, we must first create a custom provider which inherits
from the base provider class we are using in our portal like so:

public class
SingleKeySqlPersonalizationProvider :
 SqlPersonalizationProvider {

}

174 CHAPTER 6 UNDERSTANDING PERSONALIZATION

In this code snippet we are creating a class named SingleKeySqlPersonaliza-
tionProvider which inherits directly from the SqlPersonalizationProvider
class, and which therefore by default has the same behavior as the SqlPersonaliza-
tionProvider. The personalization provider uses the LoadPersonalization-
Blobs method to retrieve personalization data and the SavePersonalizationBlob
method to store it. If we take a closer look at those methods, we can see that one of the
parameters the method uses is the path of the web page. By overriding each of these
methods and changing the path to be a single, common path, we can ensure that all per-
sonalization data will be keyed for a single location and therefore will be the same for
the entire site. Listing 6.4 shows the code required to override these methods and create
a single path named urn:GlobalKey.

protected override void LoadPersonalizationBlobs(
WebPartManager webPartManager,
string path,
string userName,
ref byte[] sharedDataBlob,
ref byte[] userDataBlob) {

path = "urn:GlobalKey";
base.LoadPersonalizationBlobs(

webPartManager,
path, userName,
ref sharedDataBlob,
ref userDataBlob
);

}

protected override void SavePersonalizationBlob(
WebPartManager webPartManager,
string path,
string userName,
byte[] dataBlob) {

path = "urn:GlobalKey";
base.SavePersonalizationBlob(

webPartManager,
path,
userName,
dataBlob
);

}

Listing 6.4 Customizing the loading and saving of personalization data so that

 all data is stored and retrieved for a single key.

Storing personalization
data against a single,
hard-coded path.

Storing personalization
data against a single,
hard-coded path.
LIFECYCLE OF PERSONALIZATION DATA 175

In both the load and save methods shown in listing 6.4, we simply change the path to
our single, common path and then call through to invoke the base class implementa-
tion of the method to save and load the data.

NOTE C# uses the base keyword to call through to methods in an inherited class,
whereas VB uses the MyBase keyword.

Finally, we must configure the application to use our custom personalization provider
by specifying our custom provider in the personalization section of the web configu-
ration file. Listing 6.5 shows the configuration entry required for the application to
use the SingleKeySqlPersonalizationProvider.

<system.web>
 <webParts>
 <personalization
 defaultProvider="SingleKeySqlPersonalizationProvider">
 <providers>
 <add connectionStringName="LocalSqlServer"
 name="SingleKeySqlPersonalizationProvider"
 type="WebPartTests.SingleKeySqlPersonalizationProvider" />
 </providers>
 </personalization>
 </webParts>
</system.web>

NOTE The full source code for a project named SingleKeyWebsite can be
found on the resources website for this book. This project contains a cus-
tom SqlPersonalizationProvider which demonstrates how to
modify the storing and loading logic of a personalization provider.

Now that we know how to override the loading and storing behavior of the personal-
ization provider class, we can explore how these methods might be used to inject
other application logic such as encryption or caching.

6.4.3 Setting up the database

Before we can use the SqlPersonalizationProvider to store personalization
data, the tables and other database objects that are used by that class to perform data
access must first be created in an SQL Server database. To create these database
objects, the ASP.NET team has supplied us with a tool called the ASP.NET SQL
Server Setup Tool. This tool can be run against a database to create all the Tables,
Views, Stored Procedures, and User Accounts necessary to perform personalization
data storage operations in an SQL Server database. The tool is named
aspnet_regsql.exe and can be found either in the folder location where you

Listing 6.5 The portal is configured to use a custom personalization provider

 that stores all data against a single path key.
176 CHAPTER 6 UNDERSTANDING PERSONALIZATION

installed the .NET Framework—such as C:\WINDOWS\Microsoft.NET\Frame-
work\<version number>\aspnet_regsql.exe, or you can access the tool directly by run-
ning the Visual Studio Command Prompt.

The ASP.NET SQL Server setup tool

The aspnet_regsql tool can be run either as a Windows GUI application or as a
command-line tool. To run the tool in its GUI mode, simply run the .exe without
specifying any command-line arguments, like so:

 aspnet_regsql.exe

When the .exe is running in GUI mode the Windows application displayed in fig-
ure 6.6 is displayed. This application allows us to easily configure the commands
that need to be run against an SQL Server database to create the ASP.NET applica-
tion objects in the database.

As you can see, the GUI tool allows us to specify which SQL Server database the
application objects will be created in. It also enables us to specify what credentials are
needed to allow the tool to connect to the database in the first place. The tool can
also be run in console mode by supplying certain command-line arguments when
running the application.

Figure 6.6 The ASP.NET SQL Server Setup Wizard is a GUI version of the aspnet_regsql tool

used to create database objects to store personalization data in a SQL Server database.
LIFECYCLE OF PERSONALIZATION DATA 177

Running Server Setup in command-line mode

When the tool is run in command-line mode each of the parameters we entered via
the user interface of the Windows application must be passed in as command-line
arguments. Table 6.4 outlines which command-line arguments are available for use:

To understand how to use the SQL Server setup tool, take a look at the following
commands that use it:

Table 6.4 The command-line arguments for the ASP.NET SQL Server Setup Tool.

Argument Description

-? Displays Help text for the tool.

-W Runs the tool in Windowed Mode.

-C A full connection string, including user credentials, of the database
to use when creating the ASP.NET database objects. Alternatively,
connection string components can be specified individually by using
the -S, -U, -P, and -d arguments.

-S The name of the server running the SQL Server instance where the
database is installed.

-U The username of a user that has login permissions in the target data-
base. Not required if using the -E option for Windows credentials.

-P The password of a user that has login permissions in the target data-
base. Not required if using the -E option for Windows credentials.

-E Authenticates using the Windows credentials of the currently
logged-in user.

-d The name of the database to create or modify. If the database is not
specified, the default database name of “aspnetdb” is used.

-sqlexportonly
filename

Generates a script containing SQL commands to create the ASP.NET
database objects. The specified actions are not performed.

-A (options) Adds support for one or more ASP.NET features. Each individual
ASP.NET feature has a corresponding letter that can be specified
after the -A command argument. The letters corresponding to
ASP.NET features are:
 all - All features
 m - Membership
 r - Role management
 p - Profile
 c - Web parts personalization
 w - Web events

-R (options) Removes support for one or more ASP.NET features. Each individual
ASP.NET feature has a corresponding letter that can be specified
after the -A command argument.

-Q Runs the tool in quiet mode. When in quiet mode, no confirmation is
offered for removal options.
178 CHAPTER 6 UNDERSTANDING PERSONALIZATION

aspnet_regsql -A c -E -S . -d MyDatabase
aspnet_regsql -R c -A m -E -S . -d MyDatabase

The first command adds the database objects for the personalization feature to a data-
base named MyDatabase. The second command adds the database objects for the
membership feature and removes the database objects for the personalization feature
to a database named MyDatabase.

Personalization database schema

When the ASP.NET SQL Server setup tool is run, database objects are created for the
specified features. For personalization those objects include tables, views, and stored
procedures. Table 6.5 lists the database objects created for personalization.

Table 6.5 Database objects that are created in SQL Server to support

the personalization feature.

Tables dbo.aspnet_Applications
dbo.aspnet_Paths
dbo.aspnet_PersonalizationAllUsers
dbo.aspnet_PersonalizationPerUser
dbo.aspnet_SchemaVersions
dbo.aspnet_Users

Views dbo.vw_aspnet_Applications
dbo.vw_aspnet_Users
dbo.vw_aspnet_WebPartState_Paths
dbo.vw_aspnet_WebPartState_Shared
dbo.vw_aspnet_WebPartState_User

Stored
Procedures

dbo.aspnet_AnyDataInTables
dbo.aspnet_Applications_CreateApplication
dbo.aspnet_CheckSchemaVersion
dbo.aspnet_Paths_CreatePath
dbo.aspnet_Personalization_GetApplicationId
dbo.aspnet_PersonalizationAdministration_DeleteAllState
dbo.aspnet_PersonalizationAdministration_FindState
dbo.aspnet_PersonalizationAdministration_GetCountOfState
dbo.aspnet_PersonalizationAdministration_ResetSharedState
dbo.aspnet_PersonalizationAdministration_ResetUserState
dbo.aspnet_PersonalizationAllUsers_GetPageSettings
dbo.aspnet_PersonalizationAllUsers_ResetPageSettings
dbo.aspnet_PersonalizationAllUsers_SetPageSettings
dbo.aspnet_PersonalizationPerUser_GetPageSettings
dbo.aspnet_PersonalizationPerUser_ResetPageSettings
dbo.aspnet_PersonalizationPerUser_SetPageSettings
dbo.aspnet_RegisterSchemaVersion
dbo.aspnet_Setup_RemoveAllRoleMembers
dbo.aspnet_Setup_RestorePermissions
dbo.aspnet_UnRegisterSchemaVersion
dbo.aspnet_Users_CreateUser
dbo.aspnet_Users_DeleteUser
LIFECYCLE OF PERSONALIZATION DATA 179

Many of the objects in the table are shared between two or more of the ASP.NET fea-
tures. For example, the following tables that are created for personalization are shared
with other features such as membership and roles, and profile:

• aspnet_Applications

• aspnet_Paths

• aspnet_SchemaVersions

• aspnet_Users

Similarly, many of the Views and Stored Procedures that deal with Applications and
User entities are shared by more than one of the ASP.NET application features.

By this point in the chapter, you’ve steered your way slowly and steadily through a
good deal of material. To recap, you’ve learned about the nature and behavior of per-
sonalization. You’ve seen the lifecycle of personalization data and now understand the
mechanics of how the personalization data is stored and retrieved right down to the
actual structures within the database. Of course in programming there’s always more
to learn, and personalization is certainly no exception to that maxim. Throughout the
remainder of this chapter you will work through some real-world scenarios for using
personalization data so that you can see the complex issues involved when dealing with
personalization data and the features that can help you with this.

6.5 WORKING WITH PERSONALIZATION DATA

Suppose you wanted to create a web part to display and maintain the details of employ-
ees. The web part could be supported with personalizable, web-browsable properties
representing the data of a staff member, thereby allowing us to maintain the data in the
standard PropertyGridEditorPart. The properties might include data for a
FirstName and LastName. There could be other properties to store data on the
address information for an employee such as: Street1, Street2, City, State, and Zip
Code. Each of these pieces of data would be represented by a simple string property.

In the world of object-oriented design, it is more likely that we would represent
the data for employees using classes or structs. Here we would have an Employee class
with a FirstName, a LastName, and an Address property. The Address property
would itself be a class encapsulating the properties required to store address informa-
tion. Having complex properties such as this can be problematic when working with
personalization data. Having said that it is difficult to use complex data types to store
personalization data, I should point out that it is also quite common to want to do it,
so we need to find the solution. In the remainder of this section we will see just how
this is done.

In the portal framework, personalization data for web parts is saved only when
changes to the data occur. Therefore, given a web part with a simple string property,
the personalization data for the web part will only be saved when the value of the string
is changed. If no changes are made to the value of the property, the personalization data
180 CHAPTER 6 UNDERSTANDING PERSONALIZATION

will not be saved. This is actually a good thing because it can mean that unnecessary
trips to the database aren’t occurring.

For value data types such as numbers, enums, Booleans, or immutable data such
as strings, it is easy to check if their values change because you can simply compare
the value of the data with an earlier value. However, with reference data types such as
an Array, ArrayList, Dictionary, or custom data objects, it is not so simple to deter-
mine when data changes occur. This is because the value of complex reference types
can change without their reference changing, and the framework therefore cannot tell
that a change has occurred.

6.5.1 SetPersonalizationDirty

In all the web parts we’ve created so far, we’ve seen that marking web part properties
with the Personalizable attribute property ensures that values are automatically
persisted and re-loaded for us by personalization. This is fine for properties based on
value data types and immutable data types, because the portal framework knows how
to track changes made to data. It is not sufficient, however, when we have web parts
which have reference data types as properties. As a result, objects such as complex
business objects or collections cannot be persisted by simply marking those properties
with the Personalizable attribute.

To assist us with the task of saving complex data, each web part has a method
named SetPersonalizationDirty that we can use to inform the portal frame-
work that a web part has changes and must have its data saved. To do this we simply
call the SetPersonalizationDirty method on the WebPart to notify the portal
framework when a change occurs. Consider the following web part used for manag-
ing information about employees. It has a complex property for storing the
employee data.

public class EmployeeWebPart : WebPart {

 private Employee _employee;

 [Personalizable]
 public Employee Employee {
 get { return _employee; }
 set { _employee = value; }
 }
}

A consuming page might expect to make changes to the Employee data and have
them saved via personalization simply by making changes to the Employee values as
we see with the following snippet of code:

EmployeeWebPart.Employee.FirstName = this.FirstNameTextBox.Text;
EmployeeWebPart.Employee.LastName = this.LastNameTextBox.Text;

Changes made in this way would not be persisted by personalization, as personaliza-
tion would not be able to determine that the Employee property had changed, even
WORKING WITH PERSONALIZATION DATA 181

though its values had. For the data to be saved, we need a way to set the dirty state of
the web part whenever the employee data changes. The following snippet of code
shows a method that could be exposed by the EmployeeWebPart to allow callers to
set the SetPersonalizationDirty method of the web part whenever employee
data is changed:

public void SetDirty() {
 this.SetPersonalizationDirty();
}

Now when the web page needs to update the employee details, it performs the same
operations as before, but can now also call the SetDirty method on the web part to
ensure that the data is correctly saved by personalization:

EmployeeWebPart.Employee.FirstName = this.FirstNameTextBox.Text;
EmployeeWebPart.Employee.LastName = this.LastNameTextBox.Text;
EmployeeWebPart.SetDirty() ;

The changes made to the data in the EmployeeWebPart will now be saved.

NOTE In the chapter 6 folder of the resources included with this book, there is a
project named PersonalizationInterfaces which contains the full
source code for a web page named TestSetPersonalization-
Dirty.aspx, which can be used to test the SetPersonalization-
Dirty behavior.

In this example the calling web page is required to call the SetDirty method on the
web part to ensure that changes are saved. Failure to implement that method call will
result in a loss of data for users who make changes and expect to have them saved.
Calling the SetDirty method is therefore an unintuitive additional step which is
likely to lead to data being lost. A better way would be to include the call to the Set-
PersonalizationDirty method directly within the Employee property of the
web part itself, like so:

 [Personalizable]
 public Employee Employee {
 get { return _employee; }
 set {
 SetPersonalizationDirty() ;
 employee = value;
 }
 }

This way, whenever the Employee data was set, the web part would be flagged as dirty
and the personalization data would be saved. Although this change would be useful
for calling code because there would no longer be a need remember to call the Set-
Dirty method, it also would mean that the data for the EmployeeWebPart would
always be marked as dirty. This is because personalization uses this property setter
when it is re-loading personalization data at the beginning of lifecycle of the page.
What we really need is a way to have the call to SetPersonalizationDirty
182 CHAPTER 6 UNDERSTANDING PERSONALIZATION

included in the property setter, but only have it called when the data being set is from
some operation other than personalization loading. We can see an example of this in
the following code snippet:

 [Personalizable]
 public Employee Employee {
 get { return _employee; }
 set {

 if(!this.IsLoading)
 SetPersonalizationDirty() ;

 employee = value;
 }
 }

To help solve problems such as this, the portal framework supplies special interfaces
that can be implemented to hook into the loading, saving, and state tracking activi-
ties performed throughout the lifecycle of a web part. In the next section we’ll see
how these interfaces are used and look at some scenarios surrounding their use.

6.5.2 Personalization interfaces

As mentioned, the portal framework contains certain interfaces that can be imple-
mented to allow us to extend web part controls with custom logic. These interfaces
provide hooks into the lifecycle of saving and loading personalization data and allow us
to create custom solutions for loading and storing personalization data as well as track-
ing activity that occurs throughout the lifecycle. The personalization interfaces are

• IPersonalizable—Provides methods that allow us to take ownership of the
loading and storing process of personalization data for an individual web part
control.

• IVersioningPersonalizable—Provides a way to manage personalization
data for a web part that has now had its definition changed.

• ITrackingPersonalizable—Allows us to write code to perform tasks at
various stages during the loading and saving of personalization data.

By implementing these interfaces, developers can control how data is loaded, tracked,
and saved by writing code to manage complex personalization. Let’s take a deeper
look at each of the personalization interfaces to see what they are and how we can use
them to assist us when dealing with complex personalization scenarios.

IPersonalizable

Implementing IPersonalizable on a web part control requires that the following
property and two methods be implemented:

• IsDirty—This property indicates whether data for the control has changed

• Load—Custom logic for loading the data for the control

• Save—Custom logic for saving the data for the control
WORKING WITH PERSONALIZATION DATA 183

Both the Load and Save methods are passed a PersonalizationDictionary
object which contains a collection of PersonalizationEntry items as shown by
the following method signatures:

Load(PersonalizationDictionary state)
Save(PersonalizationDictionary state)

For example, consider a web part that maintains a list of a user’s favorite website links.
Such a web part might maintain the list of links in a complex property such as the fol-
lowing property, which uses a generic list of strings to store data:

private List<string> _hyperlinks = new List<string>();
[Personalizable]
public List<string> Hyperlinks {

get { return _hyperlinks; }
set { _hyperlinks = value; }

}

For such a class, this data would not be persisted because the standard personalization
behavior for ASP.NET portals does not know how to deal with complex data types
such as this. By implementing the IPersonalizable interface, custom code such
as that shown in listing 6.6 can be written to store any serializable data types in the
PersonalizationDictionary.

public new void Load(PersonalizationDictionary state) {

PersonalizationEntry pe = state["Hyperlinks"]
 as PersonalizationEntry;

if (pe != null) {
this.Hyperlinks = (List<string>) pe.Value;

}
}

public void Save(PersonalizationDictionary state) {

PersonalizationEntry entry =
new PersonalizationEntry(
 this.Hyperlinks,
this.WebPartManager.Personalization.Scope
);

state["Hyperlinks"] = entry;
}

Listing 6.6 Implementing the Load and Save methods of the IPersonalizable

 interface provides a way to write custom logic for handling person-

 alization data.

The PersonalizationEntry is cast to
the correct data type during loading.

The PersonalizationEntry
contains our custom data.
184 CHAPTER 6 UNDERSTANDING PERSONALIZATION

We see here that, by writing directly to the PersonalizationDictionary we can
store any serializable objects by creating our own PersonalizationEntry object
and assigning our data as the value of it.

NOTE In the chapter 6 folder of the resources website for this book, there is a
project named PersonalizationInterfaces which contains the full
source code for a web part named FavouritesWebPart, which is the
full implementation of the above snippet.

PersonalizationEntry

The PersonalizationEntry class is a simple data class whose sole purpose is to
store the state data for web part data. When personalization data is passed around
within the portal framework, it is often passed as PersonalizationEntry objects
so that methods within the portal have a structured way to work with personalization
data. The PersonalizationEntry class exposes the following three properties
that can be used by code to examine personalization data and to assist with making
decisions about its use:

• IsSensitive—Indicates whether the personalization data contains sensitive
information.

• Scope—Gets or sets the personalization scope associated with this piece of per-
sonalization data.

• Value—Gets or sets the personalization data for the personalization entry.

Having encapsulated data such as this is good, because strongly typed data is less likely
to be the cause of coding errors. Visual Studio can check code which accesses the Per-
sonalizationEntry class advising of any errors before we deploy our code.

By setting the properties of the PersonalizationEntry class, we can be guar-
anteed that our data will be handled in a consistent manner by other members of the
portal framework. For example, by setting the IsSensitive property of a Person-
alizationEntry to true, we can be sure the WebPartManager will handle the
data in a secure manner when performing export operations on a web part that con-
tains the property associated with it.

IVersioningPersonalizable

The IVersioningPersonalizable interface exists for the purpose of allowing us
to work with web parts that have had some part of their definition changed and
therefore require versioning. In this case, data may be retrieved which is orphaned
because the property it represents has been removed or renamed. By implementing
the IVersioningPersonalizable interface, a developer can map data he saved
for a property that has been removed or renamed and map it to a new property.
Implementing the IVersioningPersonalizable interface requires us to imple-
ment a single method named Load which receives a dictionary of any orphaned data
WORKING WITH PERSONALIZATION DATA 185

after normal personalization loading has taken place. The following snippet shows
the signature of the IVersioningPersonalizabel Load method:

public new void Load(IDictionary unknownProperties)

As an example of when to use this interface, consider a web part with a property that
stores a collection of user data such as a list of phone numbers in an ArrayList. At
some stage the developer of the web part may decide to use a different data type such
as a custom PhoneNumberCollection data type to store the data. In this case, the
developer would implement the new data type for the property and then write code
in the Load method to map between the two data types for any personalization data
which had been saved for the previous data type.

NOTE In the chapter 6 folder of the resources website for this book there is a project
named PersonalizationInterfaces. This project contains the full
source code for a web part named VersionedWebPart and includes an
implementation of the IVersioningPersonalizable interface.

Unlike the IPersonalizable interface, IVersioningPersonalizable is not
an interface that we are likely to implement on a common occurrence. However,
when we need to be able to handle version changes to our web parts, the IVersion-
ingPersonalizable interface is exactly the right tool for the job.

ITrackingPersonalizable

The last of the personalization interfaces is named ITrackingPersonalizable
and allows a developer to write code that is run before and after personalization data
is loaded or saved. A key reason for this is because we may need to ensure that some
code within our class does not run during the loading or saving phases of the page. In
such a case we can create a special boolean variable to act as a flag which indicates that
loading or saving is taking place. We would then set the value of this flag to true in a
pre-load event to indicate that loading is taking place, and then reset it to false in a
post-load event to indicate that loading has completed. The same sort of semantics
would apply for saving. Having set the value of the flag, other code in the class which
may get executed from logic in our load or save event handlers can then check the
value of the flag and use it to determine whether to execute or not—for example, if
the value of the flag were true, a method may choose not to execute any of its logic.
The ITrackingPersonalizable interface defines the following four methods
and one property that must be implemented by classes of this type:

• TracksChanges—Indicates whether the web part maintains tracking logic of
its own changes

• BeginLoad—Runs at the beginning of the load phase of personalization data

• EndLoad—Runs at the end of the load phase of personalization data
186 CHAPTER 6 UNDERSTANDING PERSONALIZATION

• BeginSave—Runs at the beginning of the saving phase of personalization data

• EndSave—Runs at the end of the saving phase of personalization data

Typically, the ITrackingPersonalizable interface is implemented by classes that
intend to track their own state changes. To do this a class should implement
ITrackingPersonalizable and return true from the TracksChanges property.
For web parts with complex properties such as collections or custom types, under-
standing the ITrackingPersonalizable interface is very important. Without
implementing this interface, the web part’s property setters will not know whether or
not they should call SetPersonalizationDirty and the personalization service
will not know to save the property values.

That covers the last of the main personalization interfaces and has provided us
with a clear understanding of what we have to work with when customizing our por-
tal to handle exceptional circumstances. Having learned about these interfaces and
the lifecycle of personalization, we are well equipped to take control of the behavior
of personalization. Let’s apply some of this knowledge to the Adventure Works portal
to see how we go about implementing this knowledge in the real world.

6.6 PERSONALIZATION OF THE
ADVENTURE WORKS PORTAL

This morning an e-mail arrived from the manager of the HR department asking for a
few small changes and additions to the HR portal. The first change they requested is for
a simple way to allow certain users to make changes to the portal that will be seen by
all users. For example, the web part displaying the greeting message should not be cus-
tomizable for each person, but should instead be customized once for all users to see.

The next change they requested is for a web part that allows users to keep track of
personal notes; this would be like sticky notes for the portal. The idea is that users
can create notes to store messages such as notes about tasks needing to be done.
Because these messages could contain sensitive information, the manager of the HR
department has requested that all data contained within the messages be stored in a
secure manner so that it cannot be read or even tampered with.

NOTE If you don’t have a copy of the project from chapter 5, you can grab from
the chapter 5 folder which is located in the resources website for this book.

OK, time to roll up our sleeves and get started!

6.6.1 Allowing users to change personalization scope

The first change request we’re going to tackle is to provide administrative users with a
way to switch the portal into shared scope mode at runtime. Figure 6.7 shows the
area of the page to which we’ll add new functionality.
PERSONALIZATION OF THE ADVENTURE WORKS PORTAL 187

As we see from the image, there will be a message displayed just below the page
header which shows the user what the current scope of the page is and provides a link
allowing him to toggle the scope.

Adding PageTasks

To get things started we will create a panel underneath the page header to display the
controls for managing the scope of the page. It is likely as time goes by that other page
related tasks will also go into this area, so we’ll refer to it by the generic sounding name
of the PageTasks. Other tasks we might add to this panel could include the following:

• A link that offers quick access to the web part catalog

• Tools for managing content versions for content on the web page

• A link that allows a user to manage the portal

We’ll see some of these functional items added to the portal as we progress through
the next three chapters and start to add more application-specific functionality to
our portal.

At this stage we want to display the PageTasks only to users who have permis-
sions to view the portal in shared scope mode. Therefore, we’ll create a Placeholder to
contain the user interface elements for the PageTasks controls and set its visibility
to hidden by default. We can then write logic that will display the Placeholder only
for users who have permission to manage personalization scope. To add the Place-
holder and the PageTasks controls, open the master page for the portal and add the
HTML shown in listing 6.7 just below the header section:

<asp:PlaceHolder ID="pnlPageTasks" runat="server" Visible="false">
 <div id="pagetasks">

 <asp:Label ID="lblCurrentScope" runat="server"
 Text="" Font-Bold="true" />

 <asp:Image runat="server" ID="imgToggle"
 ImageUrl="App_Themes/Images/allusr.GIF"
 ImageAlign="AbsMiddle" BorderStyle="None" />

Figure 6.7

The Adventure Works portal pro-

vides administrative users with the

ability to easily toggle the personal-

ization scope between shared scope

and per-user scope.

Listing 6.7 The markup code that creates the PageTasks panel including con-

 trols for toggling the personalization scope

A Label displays
the current scope

An Image
displays an
icon which
represents the
target state
188 CHAPTER 6 UNDERSTANDING PERSONALIZATION

 <asp:HyperLink id="lnkToggle" runat="server"
 Text="Show Shared View" />
 </div>
</asp:PlaceHolder>

The HTML for the PageTasks controls provides a Label that will be used to dis-
play the current personalization scope to the user, as well as an Image and a Hyper-
Link to allow the user to toggle the personalization scope. There are a couple things
worth noticing here. The HTML DIV element that contains the PageTasks controls
is given an ID so that we can refer to it both with client-side JavaScript and CSS. By
writing CSS code and placing it in the default.css file for the current theme, we
can provide the PageTasks panel with a suitable look and feel. In this case we will
simply give it a light-grey background and a solid border at the bottom so that it
looks like its own distinct section on the page. Open the default.css file and add
the following CSS definition for the PageTasks panel:

#pagetasks
{
 background-color: #eeeeee;
 color: #333333;
 text-align: left ;
 border-bottom: 1px solid #cccccc;
}

The beauty of having the style definition in the themes folder is that whenever we
want to create a new theme, we can also create a look and feel for our PageTasks
panel suitable to the surrounding feel of the page. The same can be said of the image
we are using alongside the link for toggling the scope. As you can see, this Image
control loads its content from an images folder underneath the App_Themes folder.
At runtime this image points to the images folder for the current theme of the appli-
cation—in our case that will be the images folder underneath the folder named Blue
in the App_Themes folder.

Now that we have the visual elements in place for the PageTasks controls, we
can write the logic that first determines whether they are visible for the current user.
Then we can write the logic for toggling the scope of the page.

The best place for the logic that chooses whether the PageTasks panel is dis-
played is in the PreRender phase for the page. The reason for putting the logic here
is that we want it to run as late as possible to ensure it only runs once—and we there-
fore incur the cost of running the code just once. If we put the code for manipulating
the PageTasks controls too early in the page’s lifecycle, we run the risk of it running
twice. This is because when the ToggleScope method is called, a Server.Trans-
fer is invoked, which means the page will run through its initialize and loading
events twice. The code displayed in listing 6.8 shows the logic required to manage the
controls in the PageTasks panel.

A HyperLink allows the
user to toggle the
personalization scope
PERSONALIZATION OF THE ADVENTURE WORKS PORTAL 189

protected override void OnPreRender(EventArgs e) {
 base.OnPreRender(e);

 this.pnlPageTasks.Visible =
 _wpm.Personalization.CanEnterSharedScope;

 if(this.pnlPageTasks.Visible) {

 string path = this.Request.Url.AbsolutePath;

 if (_wpm.Personalization.Scope == PersonalizationScope.User) {
 lblCurrentScope.Text = "Current Page Scope: Per-User";
 imgToggle.ImageUrl = "~/App_Themes/Images/allusr.GIF";
 lnkToggle.Text = "Show Shared View";
 lnkToggle.NavigateUrl = path + "?view=shared";
 } else {
 lblCurrentScope.Text = "Current Page Scope: Shared View";
 imgToggle.ImageUrl = "~/App_Themes/Images/perusr.GIF";
 lnkToggle.Text = "Show Per-User View";
 lnkToggle.NavigateUrl = path;
 }

 }
}

Notice how we first check to see whether the user can enter shared scope mode and
we set the visibility of the PageTasks panel based on that. We then configure the
display text, image URL, and the hyperlink based on the current personalization
scope of the page. If the current scope is per-user, the controls are configured to allow
the page to be toggled into shared scope mode and vice versa.

The logic for toggling the personalization scope is based off of a querystring argu-
ment named “view.” If the view querystring argument is present and its value is
shared, the page should be displayed in shared scope mode, or else it should be dis-
played in per-user mode. The code that performs this check is placed in the OnInit
phase of the page so that it is run as early as possible. Listing 6.9 shows the logic for
managing the current personalization scope of the page:

protected override void OnInit(EventArgs e) {
 base.OnInit(e);

 bool requiresToggle = false;

 _wpm = WebPartManager.GetCurrentWebPartManager(this.Page);

Listing 6.8 The OnPreRender method is used to conditionally display the Page-

 Tasks panel and to manage the state of the controls within the panel.

Ascertain whether
the user can view the
PageTasks panel

Display controls to
toggle into shared

scope mode

Display controls to
toggle into per-

user scope mode

Listing 6.9 The OnInit method is used to ascertain whether the user has

 requested a scope change.
190 CHAPTER 6 UNDERSTANDING PERSONALIZATION

 if (Request.QueryString["view"] != null) {
 string view = Request.QueryString["view"];
 if (view == "shared" &&

_wpm.Personalization.Scope != PersonalizationScope.Shared) {
 requiresToggle = true;
 }
 } else if (_wpm.Personalization.Scope == PersonalizationScope.Shared) {

 requiresToggle = true;
 }

 if (requiresToggle) {
 _wpm.Personalization.ToggleScope();
 }
}

In the OnInit method we check to see whether the view argument is present within
the querystring for the page and, if so, we check the current scope of the page to see
whether we need to toggle the scope. Likewise, if the view argument is not present
within the querystring then the page should be in per-user scope, so we must check
that as well.

When the portal is run, the PageTasks panel will be displayed for users who
have been configured to see it from within the authorization section of the web con-
figuration file. The following snippet of code from the web configuration file shows
how to add the shared scope capability for users of the portal:

<webParts enableExport="true">
 <personalization>
 <authorization>
 <deny verbs="enterSharedScope" users="?" />
 <allow verbs="enterSharedScope" users="*" />
 </authorization>
 </personalization>
</webParts>

In this snippet we see that only authenticated
users have been allowed to enter into shared
scope mode for the portal.

6.6.2 Adding a Notes web part

The second feature we’ve been asked to add
is a web part that allows users to add arbi-
trary chunks of text to a page and which
encrypts the contents of the web part when it
is saved to the data store. Figure 6.8 shows
that one of the portal users has used this web
part to keep track of some outstanding HR
tasks she needs to follow up on.

Ascertain if the user requested
to display shared scope

Decide if we should switch
into per-user scope

ToggleScope
if required

Figure 6.8 The Text Web Part allows

users to enter text and have it saved

securely in an encrypted format.
PERSONALIZATION OF THE ADVENTURE WORKS PORTAL 191

In this image the user has added some HTML content to the body of the web part
to display a list of tasks as a bulleted list. By default the web part displays its content
in a read-only format within a label control, but will also allow a user to switch into an
edit mode. When the web part is in edit mode the content will be displayed within a
TextBox, allowing the user to make changes to the text. To get things started we’ll cre-
ate a web part and add a property to contain the content and a property that lets us
know whether or not we are currently in edit mode. Create a class file named Tas-
kNotes.cs and add the code from listing 6.10 to it.

public class TaskNotes : WebPart, IPersonalizable {

 private string _message;
 public string Message {
 get { return _message; }
 set { _message = value; }
 }

 public bool IsEditing {
 get {
 return Convert.ToBoolean(this.ViewState["IsEditing"]);
 }
 set { this.ViewState["IsEditing"] = value; }
 }
}

Notice that the property for the web part is not marked with the Personalizable
attribute; this is because we’ll be implementing the IPersonalizable interface and
therefore taking control over the loading, saving, and state tracking of the web part.
Writing this logic ourselves allows us to insert our encryption and decryption logic.

Implementing IPersonalizable

As we saw earlier in the chapter, implementing IPersonalizable means writing
Load method and Save method and exposing a property which indicates whether
or not the control is “dirty.” The logic for each of these is actually quite simple as we
are simply writing or reading values directly from the PersonalizationEntry-
Collection. Listing 6.11 shows the code we will use to implement the IPerson-
alizable interface.

Listing 6.10 The TaskNotes web part implements the IPersonalizable interface

 and therefore does not mark its personalizable Message property

 with the Personalizable attribute.

Store in ViewState
to persist across
page postbacks
192 CHAPTER 6 UNDERSTANDING PERSONALIZATION

private bool _isDirty = false;
public bool IsDirty {
 get { return _isDirty; }
}

public new virtual void Load(PersonalizationDictionary state) {

 PersonalizationEntry pe = state["Message"] as PersonalizationEntry;

 if (pe != null) {
 try {
 string data = pe.Value.ToString() ;
 string message = EncryptionHelpers.DecryptData(data);
 this.Message = message;
 } catch (CryptographicException ex) {
 this.Message = ex.Message;
 }
 }
}

public void Save(PersonalizationDictionary state) {

 if (this.WebPartManager != null) {

 string data = EncryptionHelpers.EncryptData(_message);

 PersonalizationEntry entry =
 new PersonalizationEntry(data, PersonalizationScope.User);
 state["Message"] = entry;
 }
}

The logic here is identical to the logic we saw earlier in the chapter when we took our
first look at the IPersonalizable interface, except the data we are saving is passed
off to a couple of methods that help us with encryption before saving and after load-
ing has occurred.

Encrypting Message Content

The .NET Framework provides us with some useful classes for performing crypto-
graphic services for making data secure such as encryption and hashing operations.
These classes can be found in the System.Security.Cryptography namespace
and make the job of encrypting and decrypting data a relatively simple task. For our
purposes we will choose an encryption provider that implements the logic of the Triple

Listing 6.11 The TaskNotes web part implements the IPersonalizable methods

 to store message data in an encrypted format.

Decrypt the
personaliztion

data when loading

Encrypt user entered
data when saving

Write encrypted data
into the state bag
PERSONALIZATION OF THE ADVENTURE WORKS PORTAL 193

Data Encryption Standard (TripleDES) algorithm to encrypt and decrypt our web
part data.

To use the TripleDES encryption provider that ships with the .NET Framework
we create an instance of the TripleDESCryptoServiceProvider class which
exposes the necessary encryption and decryption services for us to use:

private static TripleDESCryptoServiceProvider _crypto =
 new TripleDESCryptoServiceProvider();

Now that we have an instance of the TripleDES crypto provider, we can use it to
work with our data. First, we’ll want to have it encrypt data that has been entered by
the user. To do this, we can create a helper method which takes the plain-text data the
user has entered and encrypts it. Listing 6.12 shows the helper method we will use to
encrypt user-entered data.

public static string EncryptData(string data) {

 string encryptedData = "";

 if (!string.IsNullOrEmpty(data)) {

 byte[] receivedBytes = Encoding.Unicode.GetBytes(data);
 byte[] encryptedBytes =
 _crypto.CreateEncryptor().TransformFinalBlock(
 receivedBytes,
 0,
 receivedBytes.GetLength(0)
);

 encryptedData = Convert.ToBase64String(encryptedBytes);
 }
 return encryptedData;
}

As we can see, the text passed into the EncryptData helper method is converted
into a byte array, which is then encrypted by the encryptor that is created by the
TripleDES crypto provider. Finally the byte array is converted to a string and
returned to the calling code. Similarly, the code for decrypting encrypted text con-
verts the string to a byte array which can be used by a decryptor to decrypt the bytes
and then return a decrypted string to the calling code. The helper method shown in
listing 6.13 shows how this is done.

Listing 6.12 Encrypting the message data is handled by the TripleDES-

 CryptoServiceProvider and returned as an encrypted string.

An encryptor is
used to encrypt
data
194 CHAPTER 6 UNDERSTANDING PERSONALIZATION

public static string DecryptData(string encryptedData) {

 string decryptedData = "";

 if (!string.IsNullOrEmpty(encryptedData)) {

 byte[] base64 = Convert.FromBase64String(encryptedData);
 byte[] bytes = _crypto.CreateDecryptor().TransformFinalBlock(
 base64,
 0,
 base64.GetLength(0)
);

 decryptedData = Encoding.Unicode.GetString(bytes);
 }

 return decryptedData;
}

Both of these helper functions are implemented as static methods so that they can
be easily used by calling code without having to first create an instance of a class.
This is possible because we do not need to keep hold of any state outside of the two
helper methods.

Now that our data is being saved and loaded in a secure format, all that remains is
to create the logic within the web part that allows users to switch it into an editing
mode so that they can change the content for the web part.

Managing WebPart behavior

We have a number of options at our disposal to allow the user to switch the web part
into edit mode so that the content can be updated. One way might be to display
some custom controls on the chrome of the web part—such as a button—to allow
the user to toggle in between an editing and a viewing state. For our web part, we will
simply use verbs to allow the user to invoke the necessary actions, because using a
verb is probably a slightly simpler task than adding a button and handling its click
event. The snippet shown in listing 6.14 shows the code required to add the necessary
custom verbs to our web part that will allow management over the content.

public override WebPartVerbCollection Verbs {
 get {
 List<WebPartVerb> verbs = new List<WebPartVerb>();
 EditNoteVerb verb = null;

Listing 6.13 Decrypting the message data is handled by the TripleDES-

 CryptoServiceProvider and returned as an unencrypted string.

A decryptor is used
to decrypt the

encrypted bytes

Listing 6.14 Overriding the Verbs property allows us to add custom verbs with

 a convenient constructor based on the current editing state of the

 web part.
PERSONALIZATION OF THE ADVENTURE WORKS PORTAL 195

 WebPartManager wpm =
 WebPartManager.GetCurrentWebPartManager(this.Page);

 if (this.IsEditing) {
 verb = new EditNoteVerb("Save Note", SaveNoteHandler);
 } else {
 verb = new EditNoteVerb("Edit Note", EditNoteHandler);

 }

 if (verb != null) {
 verbs.Add(verb);
 }

 return new WebPartVerbCollection(verbs); ;
 }
}

When the web part is in an editing mode, a Save Note verb is displayed that allows
any changes to be saved, and switches the mode back into a viewing state. When we
are in viewing mode for the page, a save verb will be added that allows the user to
edit the content. The following code shows the logic for the methods that handle the
verb operations:

void EditNoteHandler(object sender, WebPartEventArgs e) {
 this.IsEditing = true;
}

void SaveNoteHandler(object sender, WebPartEventArgs e) {

 this.Message = this._tb.Text;
 this._isDirty = true;

 this.IsEditing = false;

}

As we can see, the code for saving the changes for the web part is quite simple. First,
the new message text is set based on the input by the user. Next, we set the isDirty
flag to indicate that the web part has changes. This is very important, and failure to do
so will result in our changes going unsaved. This is because the portal framework uses
the IsDirty property of the IPersonalizable interface to know whether or not to
call our Save method. Finally, the IsEditing flag is set to false so that the rendering
logic can know to display the message contents in a Label rather than a TextBox.

The code for the Adventure Works portal can be found in the chapter 6 folder of
the resources that come with this book. The code in that folder contains the Task-
Notes web part and the PageTasks panel that have been integrated into the portal.

Display a verb
based on
the current
editing state
196 CHAPTER 6 UNDERSTANDING PERSONALIZATION

6.7 SUMMARY

This chapter has been a necessarily long discussion on the topic of personalization
because of the significant role that personalization plays within the portal. It is also
the last of the chapters which I refer to as “building block” chapters. The building
block chapters have covered the core ASP.NET objects used to create portal applica-
tions and include:

• Web parts

• Zones

• Connections

• WebPartManager

• Personalization

By using and customizing the behavior of these core portal objects we can create truly
unique and compelling portals that rival modern portals such as SharePoint and
http://Live.com. In the remaining chapters we take the lessons learned in the building
block chapters and use that knowledge to give the Adventure Works portal a facelift.
After surgery, the portal will sport features that cannot be implemented straight out
of the box. In performing the surgery, we learn the important lessons of planning and
implementing custom application features in our application.
SUMMARY 197

http://Start.com

2
P A R T
Extending the
portal framework

In chapters 7 through 10 you will master the art of portals and learn how to mix the
things you’ve learned so far into a recipe that will help you to produce portals that are
not only highly customized but that users will enjoy using. We’ll do this by looking at
some of the common customizations that are applied to modern portals to see how to
apply them to our own portal.

C H A P T E R 7

Creating an enhanced
editing experience

7.1 Introduction 201
7.2 Supplying custom editing controls 202
7.3 Improving usability 214
7.4 Summary 228
7.1 INTRODUCTION

Managing a portal is a bit like owning a B & B. In both cases we want our clients to
have a unique experience and for their stay at the site to be as long and useful as pos-
sible. But with B & Bs and portals, there’s a catch to capturing customers. What
attracts users to your portal may not be the underlying wizardry you’re so proud of;
after all, not everyone likes ginger in their blueberry muffins. Most portal visitors
aren’t dazzled by the “coolness” of zones, personalization, web parts, or even the web
part manager. Users either take those elements for granted or don’t even see them. On
the other hand, they do care about and notice the ability to personalize a substantial
amount of content and see the same content when they revisit the website.

What else do users feel strongly about? Ease of use is certainly important. This
means that use of features should be intuitive and easy. Consider the way that we’ve
been editing the web part values throughout this book. How many actions has the
user just performed to personalize that web part?
201

• One: Select the edit item in the dropdown list.

• Two: Open the verbs menu for the web part.

• Three: Select the edit verb.

• Four: Save changes.

Four clicks. That’s not too bad, right? Well, it’s important to remember that all of
these clicks add up and to the visitor of our site, they all count. To stay on top of the
usability issue, we need to pay attention to things such as mouse clicks and to keep
them to a minimum. For example, in the preceding example, could you include logic
within the web part itself to determine whether the current user has editing rights and
if so, add an edit button to the web part? When the user clicked on the edit button
we could handle the logic for switching the page into edit mode automatically; then
the user would only need a single click to perform editing. Changes such as this
might seem small, but to the users this can mean the difference between a good portal
and one which is perceived as being difficult to use.

Throughout this chapter we will use some elbow grease to polish the Adventure
Works application and make it shine when it comes to providing the user with a great
editing experience. Not only will we see how to reduce the complexity of our design
by removing mouse-clicks but we will also see how to beef-up the power behind the
EditorZone itself to allow users to perform complex operations within it. In fact,
that’s exactly where we are going to start, by taking the FavoritesWebPart that we
saw in chapter 6 in the discussion of the IPersonalizable interface, and provid-
ing users with a rich user interface to manage the hyperlink data.

7.2 SUPPLYING CUSTOM EDITING CONTROLS

In chapter 6 we discussed a web part named FavoritesWebPart which allowed
users to add the URLs to their favorite websites and have them remembered.

NOTE The FavoritesWebPart discussed here is included in the sample
project named PersonalizationInterfaces that can be found in
the chapter 6 section of the resources website for this book.

To allow the user to add hyperlinks, the page that hosted the FavoritesWebPart
had a textbox and a button that allowed the user to submit hyperlink data to the
web part. When the user pressed the button on the page, data was taken from the
textbox and passed to a method named AddHyperlink that was exposed on the
web part. Figure 7.1 shows a picture of the page in which you can see the textbox,
the “Add Hyperlink” button, and the web part which displays the data for two exist-
ing hyperlinks.

While the favorites web part is undoubtedly useful, it also has some drawbacks.
For example, how do users remove hyperlinks when they no longer hold the
esteemed status of “favorite”? Another drawback is that the user can enter only a URL
202 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

for the hyperlink; this would make it extremely difficult to read and understand links
that contained large amounts of data appended to the URL. Finally, and probably the
most limiting drawback, is that to be of any use at all, the web part relies upon the
page to provide the controls and code that allows the user to enter the hyperlinks in
the first place. Having a web part that relies upon functionality provided by the web
page is not good because the web part is no longer portable and cannot be arbitrarily
added to any page by a user.

NOTE The relationship between any two objects is referred to as their “coupling.”
Objects that are highly reliant upon one another are referred to as being
tightly coupled while objects that are free-standing are referred to as loosely
coupled. Wherever possible we want our web parts to be loosely coupled so
that they are not dependant upon other objects and can therefore be used
in a wider range of applications.

There are many things that we can do to improve the FavoritesWebPart and in
the process we’ll also make it easier for users to work with. One option is to allow
users to enter additional data about each hyperlink—such as a display title and a
description. The extra information can then be used to improve the appearance of the
hyperlink when it is displayed in a web page.

In the next section we’ll take the FavoritesWebPart and make several
improvements to it. First we’ll give it a rich data type that will allow it to store the
title, hyperlink, and a description. Then we’ll really whip it into shape by creating a
custom editor control to make it easy for users to work with the web part and add
new favorites.

7.2.1 Improving the FavoritesWebPart

As mentioned, we are looking for ways to improve the usability of our portal, and
we’ve started by taking a look at how users maintain and edit web parts within the
portal. We’re now going to take the FavoritesWebPart and make a number of
improvements to it. Throughout the course of these improvements we’ll learn some
important lessons about how to work with web parts that have complex data for their
properties, and we’ll see how to work with the EditorZone by adding our own cus-
tom editor parts to it.

Figure 7.1 The FavoritesWebPart that we created in chapter 6 displays a

listing of the users’ favorite hyperlinks.
SUPPLYING CUSTOM EDITING CONTROLS 203

The FavoritesWebPart in the PersonalizationInterfaces sample used a
simple string data type to store its hyperlinks data. In order for us to be able to store
extra information about each hyperlink we need to create a complex data type that con-
tains properties to store the data for us. To do this we can create a data class and add
a property for each additional piece of information that we wish to store. Listing 7.1
shows the code for a class named HyperlinkData that can store additional informa-
tion about our hyperlinks.

[Serializable]
public class HyperlinkData {

public HyperlinkData(string displayName, string
description,
 string url) {

this._displayName = displayName;
this._description = description;
this._url = url;

}

private string _displayName;
public string DisplayName {

get { return _displayName; }
set { _displayName = value; }

}

private string _description;
public string Description {

get { return _description; }
set { _description = value; }

}

private string _url;
public string URL {

get { return _url; }
set { _url = value; }

}
}

As we can see, the HyperlinkData class is very simple and has a public property for
each piece of data that we need to keep track of. The DisplayName property will be
used as the value to display when we render the hyperlink and the Description
property will be used to display additional information alongside of the hyperlink in
the page. Figure 7.2 shows us what the FavoritesWebPart will look like when it is
displayed in a browser.

Listing 7.1 The custom HyperlinkData class is created to store additional

 information about each favorite.
204 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

In Figure 7.2 we can see that a FavoritesWeb-
Part is displayed that contains three hyperlinks and
each hyperlink displays its description text alongside
the link. Additionally, the display text is shown to
the user instead of the raw URL of the hyperlink.
Now that we have the data type that will store the
information for our web part sorted out, we need to
provide the user with a way to enter the data
required to create hyperlinks. Having seen the
PropertyGridEditorPart in earlier chapters,
you might be thinking that the portal framework
will automatically provide us with a form for enter-
ing new hyperlinks. If so, think again because we’ll
see in just a moment that the PropertyGridEdi-
torPart doesn’t know how to present an editing
interface for web parts that expose complex data
types as their property data.

Coping with complex data

As I just mentioned, when we first think about how the user will manage the hyper-
link data within the FavoritesWebPart we would probably envisage the data
automatically appearing within the standard PropertyGridEditorPart as we
discussed in chapter 5 when we learned about the EditorZone and its editor parts.
From that chapter you will remember that personalization properties can be added
to the PropertyGridEditorPart simply by marking them with the WebBrows-
able attribute as shown in the following code snippet. Figure 7.3 shows how a cus-
tom property named “data” appears when
displayed in the PropertyGridEdi-
torPart.

The following snippet of code shows
how the WebBrowsable attribute is
applied to the property to ensure that it
appears within the editor part:

[Personalizable]
[WebBrowsable()]
public string Data {

get { return _data; }
set { _data = value; }

}

Figure 7.2 The new Favor-

itesWebPart uses the additional

information contained within

the HyperlinkData class to pro-

vide a richer display for the user.

Figure 7.3 The PropertyGridEditor part can

automatically create editing elements for

simple data types such as enums, strings,

dates, and integers.
SUPPLYING CUSTOM EDITING CONTROLS 205

The standard PropertyGridEditorPart serves us well for simple types such as
strings, integers, booleans, and dates, but cannot do so for properties that are com-
plex types. As an example, by default the property in the following listing, which is a
custom data type, will not appear within the PropertyGridEditorPart:

[Personalizable]
[WebBrowsable()]
public MyNumberType NumberData {

get { return _numberData; }
 set { _numberData = value; }

In this snippet the NumberData property is not one of the simple data types that I
just mentioned but is instead a custom data type named MyNumberType.

The reason that complex types are not displayed within the PropertyGridEdi-
torPart is that this EditorPart only displays a single editing element for each
property marked with the WebBrowsable attribute. Representing a complex type as
a single field would require the class being edited to know how to convert itself to
and from a single field representation. For example, given a single textbox to enter all
of the data for our HyperlinkData class, there would have to be some agreed stan-
dard about how to enter it in a single field and the user would need to know how to
do that. Perhaps the data for each property would be delimited by a known character
as shown in the following snippet where the data for a hyperlink is delimited by two
dollar symbols ($$):

 Microsoft$$http://microsoft.com$$The Microsoft website$$5

In this example, the user has entered data for the DisplayName, URL, Description,
and DisplayOrder properties with the delimiting character separating each one.

The TypeConverter class

It turns out, that the .NET Framework does provide us with a useful way to represent
any single class as a single string and have that class know how to convert itself to and
from a single string representation. Having this capability provides us with the means
to be able to provide a complex data type to store our favorites data and have it con-
sumed by the PropertyGridEditorPart as a string so that changes can be made
to it. To do this we can create a special type of class that is known as a TypeCon-
verter and assign it to a class that will use it. The TypeConverter class provides
the special logic for converting a class from one type into another type—in our case
this means converting our favorites data to and from a string representation.

The chapter 7 folder of the resources that came with this book contains a project
named TypeConverterExample. The TypeConverterExample project contains
the source code for a web part named ConvertibleWebPart which provides a full
implementation of a web part that uses a TypeConverter to display its complex
data within the PropertyGridEditorPart. Figure 7.4 shows the Convert-
ibleWebPart displayed on a page and shows that its NumberData property (which
206 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

is a complex data type) is represented within the
PropertyGridEditorPart.

TypeConverters are widely used within
the .NET Framework as a way to access values
on underlying objects. This is actually one of the
ways that server controls which have properties
that are complex types can be represented and
managed within the Visual Studio property grid.
Figure 7.5 shows the ConvertibleWebPart
displayed in the Visual Studio designer and
shows that the complex NumberData property
on the ConvertibleWebPart can also be
managed within that environment.

In figure 7.5 we can see a web part titled
“My Web Part” shown within the Visual Studio
environment at design-time. Notice the Num-
berData property that is shown in the property
window and see that it is able to be managed as
string data. Under the covers it is a TypeCon-
verter that provides the means for the Num-
berData type to convert to and from a string in
this way.

Figure 7.5 TypeConverters are also used by the Visual Studio design environment

to represent complex types in the property grid.

Figure 7.4 A TypeConverter can be

used to convert a complex type into

a string representation and made

available to the standard Property-

GridEditorPart.
SUPPLYING CUSTOM EDITING CONTROLS 207

While it might seem fine that we now have a way of providing the user with the abil-
ity to manage their hyperlink data via a TypeConverter, it’s still far from ideal. To
begin with, the user is now required to know what delimiter we are using to separate
out the property values and they also need to know in which order those properties
are to be entered within the string. To top it off, there’s no validation. What would
happen if the user entered a number in the place where a boolean was expected? It
could cause the entire web part to fail and die. The user needs an intuitive interface
that allows him to enter hyperlink data in a manner that is appropriate for that data
type. The user also needs data validation and advanced user interface features, such as
providing custom user interface elements that allow him to change the display order
of the hyperlinks. The portal framework satisfies these user needs.

Custom editor parts

The portal framework provides us with a way to associate any custom user interface
elements with our web parts to allow users to manage the web parts in totally custom
ways. To handle this function, the web part class contains a method named Create-
EditorParts that can be used to return custom user interfaces for managing com-
plex data types within the EditorZone.

In this next section we will create a custom editor part that will allow users to man-
age all of the data contained within the Hyper-
linkData data type and then we’ll associate it
with the FavoritesWebPart so that our custom
editor part is displayed whenever the user edits
FavoritesWebPart web part. Figure 7.6 dis-
plays the editor parts as they will be displayed
within an EditorZone at runtime.

We can see from figure 7.6 that our custom
editor part will allow users to manage the proper-
ties of the HyperlinkData data type and click
the OK or Apply buttons provided by the Edi-
torZone to create new links. Also notice that the
textbox for entering the description is displayed in
multi-line mode to make the job of entering large
descriptions easier. Now contrast the image shown
in figure 7.6 with the one shown in figure 7.4 and
you will immediately see the usability gains that
we get by providing a custom editor part to man-
age the hyperlink data.

Creating a favorites editor part

To create a an editor part that can be loaded into the EditorZone we are required to
create a class that inherits from the same base class as each of the existing ASP.NET

Figure 7.6 The portal framework

allows us to associate custom con-

trols with web parts to provide a

custom editing experience for com-

plex data types.
208 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

editor parts—the EditorPart class. The following snippet of code shows the begin-
nings of our custom editor class which is named FavoritesEditorPart.

public class FavoritesEditorPart : EditorPart {

TextBox txtDisplayName, txtDescription, txtUrl;

FavoritesWebPart FavoritePart {
get { return (FavoritesWebPart)this.WebPartToEdit; }

}
}

In this code snippet we can see that the FavoritesEditorPart has three textboxes
which are declared as private fields within the class. The reason for scoping those
fields at class level is so that the textboxes will be available to be referenced both when
we are creating the controls for our user interface, and again when we are responding
to a user-invoked action to save the data that is contained within those fields. I’ve also
added a convenience property named FavoritePart to encapsulate the logic for
accessing the underlying FavoritesWebPart that is being edited.

The EditorPart class is an abstract class and contains two methods named
ApplyChanges and SyncChanges that we must implement. With the Apply-
Changes method we write the logic to save changes that the user has made in our cus-
tom editor part with the underlying web part that is being edited. The ApplyChanges
method is called internally by the portal framework when the user presses the OK or
Apply buttons on the EditorZone, so it’s important that we write saving logic here
to give users an experience that is similar with other editor parts that they use.

Handling changes and updates

The SyncChanges method allows us to write code to synchronize the user interface
elements of our custom editor part with values in the underlying web part being edited.
In the case of the FavoritesEditorPart there is no need to include any logic within
the SyncChanges because there is no way that the editor part can get out of sync with
the underlying web part that is being edited. Listing 7.2 shows the code that is required
for our implementation of the ApplyChanges and SyncChanges methods.

public override bool ApplyChanges() {

string displayName = this.txtDisplayName.Text;
string description = this.txtDescription.Text;
string url = this.txtUrl.Text;

if (!string.IsNullOrEmpty(displayName) &&
 !string.IsNullOrEmpty(url)) {

Listing 7.2 The ApplyChanges method of an EditorPart is used to synchronize

 data with the web part that is being edited.
SUPPLYING CUSTOM EDITING CONTROLS 209

HyperlinkData hyperlink =
new HyperlinkData(displayName, description, url);

this.txtDisplayName.Text = "";
this.txtDescription.Text = "";
this.txtUrl.Text = "";

FavoritePart.AddHyperlink(hyperlink);

}

return true;
}

public override void SyncChanges() {
return;

}

As mentioned earlier, the ApplyChanges method will get called automatically by
the EditorZone whenever the user clicks either of the OK or Apply buttons on the
EditorZone user interface. Notice that the ApplyChanges method returns a bool-
ean result to the caller. This allows the editor part to inform the EditorZone if
errors have occurred during the save operation so that the EditorZone can know
whether it should do things such as close the zone after the OK button has been
clicked by a user. In this case where the user clicks the OK button and false is returned
from an editor part, the EditorZone does not close itself but instead stays open so
that the user can correct his data.

In our ApplyChanges method we grab the values from the textboxes and vali-
date that they contain both a display name and a URL. If the data is sufficient then a
new instance of the HyperlinkData class is created to contain the data that the user
has entered and is passed to a method on the FavoriteWebPart called AddHyper-
link, which adds the link to its current collection of links. The AddHyperlink
method is shown here:

public void AddHyperlink(HyperlinkData hyperlink) {
this.SetPersonalizationDirty();
_sorted = false;
this.Hyperlinks.Add(hyperlink);
CreateChildControls();

}

Whenever the FavoriteWebPart class adds a new hyperlink it must also set its per-
sonalization state to dirty so that the portal framework knows that the web part has
changes when it is saving personalization data at the end of the page’s lifecycle. The
FavoriteWebPart also makes a call to CreateChildControls so that its user
interface will be redrawn with the new hyperlink added to it.

Create an instance of the
HyperlinkData class

Call the AddHyperlink
method to save the
hyperlink data
210 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

Associating the editor part with a web part

Now we’ve created our editor part and we have just one more thing to do before we
can run it and see it working. The final task that we have remaining is to associate our
new editor part with the FavoritesWebPart so that it will be automatically dis-
played whenever the FavoritesEditorPart is being edited. Each web part
exposes a method named CreateEditorParts which is used to return a collection
of EditorPart instances to use as custom editors for the web part. This is how we
will associate the FavoritesEditorPart with the FavoritesWebPart—by
overriding that method and having it return an instance of our custom editor part.

The following code snippet shows how to return our editor part from the Create-
EditorParts method:

public override EditorPartCollection CreateEditorParts() {

FavoritesEditorPart editorPart = new FavoritesEditorPart();
editorPart.ID = this.ID + "_addLinkPart";
editorPart.Title = "Add New Link";

EditorPartCollection parts =
new EditorPartCollection(new EditorPart[] { editorPart });

return parts;
}

Although we’ve only returned a single editor part, you can see that the method actu-
ally returns a collection of editor parts so it is possible to return more than one. One
other task that we might perform from within the CreateEditorParts method is
to store a reference to the editor part instances in a local variable. Doing so would
allow the web part to directly call SyncChanges on any editor parts that it knew
about when changes occur. To understand when this scenario arises, consider a web
part that not only allowed for changes to be made within editor parts, but which also
exposes some user interface elements on the web part itself that allow certain changes
to be made. In this case, when a user made changes to the web part via the controls
on the web part interface, the web part could cycle through its custom editor parts
and call SyncChanges on each of them to be sure that they refreshed themselves.

The last thing that we need to look at for this example is how the Favor-
itesWebPart uses the HyperlinkData data type to store its hyperlinks. We are
also going to sort the hyperlinks before we display them so that they are displayed in
alphabetical order in the page—which will make it easier to locate a hyperlink as the
lists grow larger. Just like the collections that we saw in chapter 1 when we created
the AdventureWorks data layer, our web part will use generics to store the hyper-
links as a generic list. The following code snippet shows the property that the web
part uses to store the hyperlink data:
SUPPLYING CUSTOM EDITING CONTROLS 211

private List<HyperlinkData> _hyperlinks = new List<HyperlinkData>();
[DesignerSerializationVisibility(DesignerSerializationVisibility.Content)]
public List<HyperlinkData> Hyperlinks {

get { return _hyperlinks; }
set {

_hyperlinks = value;
}

}

Notice too, that the Hyperlinks property is
marked with a special attribute named
DesignerSerializationVisibility.
This attribute is useful for letting the Visual
Studio form designer know what data needs to
be persisted at design-time to provide a good
design experience for developers. In this case we
are stating that the HyperlinkData should be
persisted, but not the generic class that gets
dynamically created. If we fail to specify this set-
ting, Visual Studio will attempt to persist the
generic type but will fail and cause the web part
to show up with errors in the Visual Studio
design surface. Figure 7.7 shows how the
FavoritesWebPart appears at design time if we fail to mark the Hyperlinks prop-
erty with the correct DesignerSerializationVisibility attribute value.

Even though the web part in the figure displays an error at design time it will
work just fine at runtime when the generic collection type can be serialized. So while
this error can be safely ignored, it doesn’t make the design-time experience of our
web part very good at all.

The task of sorting the hyperlink data also turns out to be quite a simple job because
the generic List<T> data type already contains a sort method that can be called. We
call this method just before rendering the hyperlinks, as listing 7.3 shows us.

protected override void CreateChildControls() {

this.Controls.Clear();

if (!_sorted) {
this.Hyperlinks.Sort(new HyperlinkComparer());
_sorted = true;

}

Listing 7.3 The controls for displaying our Favorites links are added in the

 CreateChildControls method of our web part.

Sort the hyperlinks
by display name

Figure 7.7 When a custom server

control exposes a collection type, cus-

tom attributes must be used to inform

the designer how to handle serializa-

tion at design time. Failure to supply

this information to the designer will re-

sult in an error being displayed at de-

sign time but not at runtime.
212 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

foreach (HyperlinkData linkData in this.Hyperlinks) {

if (this.HasDescriptions &&
 !string.IsNullOrEmpty(linkData.Description)) {

this.Controls.Add(new LiteralControl("<p>"));
DisplayHyperlink(linkData);
DisplayDescription(linkData);
this.Controls.Add(new LiteralControl("</p>"));

} else {
DisplayHyperlink(linkData);

}
}

}

The Sort method takes an optional argument that is an IComparer and which pro-
vides us with a simple way to sort custom data types in any manner we choose. The
code for the HyperlinkComparer is shown in the following code snippet:

internal class HyperlinkComparer : IComparer<HyperlinkData> {
public int Compare(HyperlinkData x, HyperlinkData y) {

return x.DisplayName.CompareTo(y.DisplayName);
}

}

As you can see, this class implements the IComparer<T> interface and uses the
Compare method of that interface to supply its own logic for comparing two
HyperlinkData objects. In this case we are simply comparing the values of the dis-
play names of each item.

NOTE The code for the completed FavoritesWebPart and the Favorites-
EditorPart are included in the code for the AdventureWorks portal
in the chapter 7 section of the resources website for this book.

If you feel you’ve just moved through a substantial chunk of material, you’re right.
This section had to be long to include some important lessons that will help us when-
ever we need to create web parts that provide an editing experience with a high degree
of usability. Let’s take a minute to recap. We learned how to work with complex data
types. When working with complex data types we saw that custom editor parts can be
created to manage the editing of rich data and how editor parts synchronize their data
with the underlying web parts that they represent. As a bonus we caught a glimpse
how the .NET Framework uses TypeConverters to convert objects from one type
to another.

Check if we need to
display a description
SUPPLYING CUSTOM EDITING CONTROLS 213

7.3 IMPROVING USABILITY

The act of clicking a computer mouse can be tedious. I’ve come to this realization
because when I have to click on a website more than I think necessary, I become
unsatisfied and sometimes even agitated. Sites that require unnecessary clicks and
mouse moves quickly disappear from my favorites list and probably disappear from
yours too.

A quick search on the internet reveals an abundance of links that point to articles
on this very topic. In fact, experts earn good money in checking the usability of high-
exposure websites. When you stop and think about what happens when a user clicks
on a link, you understand exactly why it can be so annoying. When the user clicks a
link, a request is sent off to the web server for a new page to be created and sent back
to the browser. This process is referred to as “round-tripping” or a “postback”—
which is the term that we’ve been using in this book when a page round-trips to itself.
Part of the problem with a round-trip is that all the HTML must be sent from the
web server to the browser, and this takes time. Surfing around the internet today, we
can see that many pages take several seconds to load; it’s this time that is the cause of
the angst that is associated with mouse clicks.

Because mouse clicks can cause long waits for users, it’s important to pay atten-
tion to this issue and to constantly strive to remove clicks whenever possible. In the
next section we’ll find some of the redundant mouse clicks in our portal and remove
them by finding smarter ways to present user interface options to our users.

7.3.1 Reducing mouse clicks

Now that we have a good understanding of the cost that is associated with mouse
clicks, let’s make some adjustments to the AdventureWorks portal to reduce the
clicks required to perform common editing tasks. There are a couple of things that
we’ll do. First we’ll automatically add an edit verb to each web part that will be dis-
played to users that are authorized to perform edits on the page. Providing the edit
verb will allow users to place a web part into edit mode with just a single click com-
pared with the two clicks that are currently required. Figure 7.8 shows how our web
parts will appear to our portal users at all times after we’ve added our new edit verb.

NOTE If you don’t have a copy of the project from Chapter 6 you can grab it from
the Chapter 6 section of the resources website for this book.

Enabling single-click editing

At the beginning of this chapter we looked at how many mouse clicks are required to
edit the properties of a web part and we saw that four clicks are required. Remember
that the first step in the process was to place the page into edit mode. We did this
because, by default, the edit verb is only displayed when the the page is in edit mode
and we need to use the edit verb to edit a web part. Placing the page in edit mode
requires a postback which, as we’ve been discussing, can be the source of angst for
our users.
214 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

We’ll now learn how to ensure that an edit verb is always available to our users so that
web parts can be edited with just a single click, thereby removing the initial postback
to the server. The steps involved with enabling single-click editing are

• Ensure that the in-built edit verb is not rendered.

• Add our own edit verb to each web part on the page.

• Write code that runs when the user clicks the edit verb to place the page in edit
mode and select the web part for editing.

When we were working with web parts in chapter 2 we saw that there are zone
verbs—such as edit, connect, close and delete—that get added to all web parts by the
zone that contains them. We also saw that custom verbs can be added to individual
web parts by overriding the Verbs property of the web part and returning instances
of the WebPartVerb class. Because we want our new edit verb to be present on all
web parts, it is more analogous with the zone verbs than the custom verbs that are
added individually on each web part. For this reason it makes sense to add our verb at
the zone level rather than adding it for every web part. By adding the verb individu-
ally on each part we would run the risk of missing some web parts and then our
behavior would be inconsistent.

The WebPartZone class contains a method named OnCreateVerbs that we can
override to create verbs and have them added to all web parts that are contained by
the zone. So we’ll use this method to hide the in-built edit verb and replace it with
our own. To be able to write code in the OnCreateVerbs method we must create a
custom WebPartZone class and then use it in the portal. The following snippet of
code shows how to create a custom WebPartZone class:

public class PortalWebPartZone : WebPartZone {

}

Figure 7.8

The edit verb that is shown here

is a custom verb that replaces

the standard edit verb and is al-

ways available to authenticated

users even when the current

page is not in edit mode.
IMPROVING USABILITY 215

Now that we’ve got a custom zone, we simply add an override for the OnCreate-
Verbs method and implement our own logic within that method. The code in list-
ing 7.4 shows what our implementation of the OnCreateVerbs method looks like.

protected override void OnCreateVerbs(WebPartVerbsEventArgs e) {
base.OnCreateVerbs(e);

this.EditVerb.Visible = false;
Collection<WebPartVerb> verbs = new Collection<WebPartVerb>();

HttpContext ctx = HttpContext.Current;

if (ctx.Request.IsAuthenticated) {

WebPartVerb editVerb = new WebPartVerb(
"editVerb",
new WebPartEventHandler(HandleEditClick)
);

verbs.Add(editVerb);

if (this.WebPartManager.Personalization.Scope ==
 PersonalizationScope.Shared) {

editVerb.Text = "Edit Shared Web Part";
} else {

editVerb.Text = "Edit Web Part";
}

}
e.Verbs = new WebPartVerbCollection(verbs);

}

The first thing that we do in the OnCreateVerbs method is to hide the in-built edit
verb so that it isn’t displayed to the user. After we’ve hidden the existing edit verb we
then go about adding our new verb. It’s worth noting that in our implementation we
simply check if the user is authenticated before adding the new verb but we could
base our logic on some other check, such as whether the user is in a certain role
group. The last thing that we do before we set the Verbs property of the EventArgs
that are passed to us is to change the text to provide the user with a visual cue of
whether they are about to edit the shared view or the per-user view of the web part.
The code that runs when the user clicks the edit verb can be seen in the following
code snippet:

Listing 7.4 By overriding the OnCreateVerbs method of the zone the existing

 edit verb is hidden and a custom edit verb added.

Force the standard edit
verb to be hidden

Display the edit
verb if the user is
authenticated

Display the appropriate
text for the verb
216 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

void HandleEditClick(object sender, WebPartEventArgs e) {

WebPart wp = e.WebPart;

if (wp != this.WebPartManager.SelectedWebPart) {
this.WebPartManager.DisplayMode =
WebPartManager.EditDisplayMode;
this.WebPartManager.BeginWebPartEditing(wp);

}
}

In this method we first check that the web part is not already being edited and then
we switch the page into edit mode. With the mode set to edit, we can commence
editing on the web part by calling the BeginWebPartEditing method on the cur-
rent web part manager instance for the page.

Using the custom EditorZone

Now that we’ve created our custom WebPartZone class we must register the
namespace of the class with the web page so that it can be used. After registering the
namespace we can convert the control declarations for the existing web part zones
over to use our new class. The following snippet of code shows the register declara-
tion that makes our new class available to the page, and then shows the server tags
that should be used for the web part zones on the page:

<%@ Register Namespace="AW.Portal.Web" TagPrefix="portal" %>

<portal:PortalWebPartZone ID="LeftZone" runat="server">
...
</portal:PortalWebPartZone>

Aftrer changing the code in the Default.aspx page so that our new web part zone
class is used we should run the page and check that everything is working well and
that everything compiles.

Having confirmed that everything is running, you might notice that after chang-
ing the class that is used for the web part zones, all the styles have disappeared from
the web parts and their associated menus. This occurs because, when we changed the
tag for our web part zones from asp:WebPartZone to portal:PortWebPart-
Zone, the styles that we’ve already defined in the Theme folder no longer match the
new control tag. To get the styles re-applied we can simply open the theme file and
change the themed control to match our new tag as shown in listing 7.5. Note that
the register declaration is also added to the theme file in the same way that it was
added in the page.
IMPROVING USABILITY 217

<%@ Register Namespace="AW.Portal.Web" TagPrefix="portal" %>

<portal:PortalWebPartZone runat="server" BorderColor="#CCCCCC" Font-
Names="Verdana" Padding="6">

<PartChromeStyle BackColor="#EFF3FB" BorderColor="#D1DDF1" Font-

Names="Verdana" ForeColor="#333333" />
<SelectedPartChromeStyle BorderStyle="Dashed" BorderWidth="4"

BorderColor="#da8b32" />

<MenuLabelHoverStyle ForeColor="#D1DDF1" />
<MenuLabelStyle ForeColor="White" />
<MenuVerbHoverStyle BackColor="#EFF3FB" BorderColor="#CCCCCC"
BorderStyle="Solid"
BorderWidth="1px" ForeColor="#333333" />
<HeaderStyle Font-Size="0.9em" ForeColor="#CCCCCC"
HorizontalAlign="Center" />
<MenuVerbStyle BorderColor="#507CD1" BorderStyle="Solid"
BorderWidth="1px"
ForeColor="White" />
<PartStyle Font-Size="1em" ForeColor="#333333" />
<TitleBarVerbStyle Font-Underline="False" ForeColor="White" />
<MenuPopupStyle BackColor="#507CD1" BorderColor="#CCCCCC"
BorderWidth="1px"
Font-Names="Verdana" Font-Size="0.8em" />
<PartTitleStyle BackColor="#507CD1" Font-Bold="True" Font-
Size="1em" ForeColor="White" />

</portal:PortalWebPartZone>

Notice that the themed control now matches the control that we are using on the
Default.aspx page in the Adventure Works portal. I also added a style for the
SelectedPartChromeStyle to add a dashed border to a web part when it is
selected. This is a visual feature that I like to add in my own portals as it makes it very
obvious what web part is being edited. This feature is not so important when there
are only a small number of web parts on a page but as the number of web parts on the
page grows, remembering which web part is being edited can get difficult. Figure 7.9
shows how web parts appear when in edit mode based on the new theme style.

That’s it! With single-click editing in place we can feel confident that we’ve done
our small bit to reduce the internet’s unnecessary clicks.

Another unnecessary evil in web applications is pages that require the user to
scroll up and down or from side to side in order to view content. I’m sure that you’re
aware of this one too. The root of this evil is content that is either really wide or extra
long, or worse still—both! You often see this in reporting applications and it means
that you have to constantly scroll backwards and forwards or up and down to read all
of the content.

This type of problem can easily manifest itself in our portals with the EditorZone
control. Think about it for a moment. Here you have a control that will often display

Listing 7.5 Declaring the theme information for our custom EditorZone and

 adding a dashed border for selected web parts.

Display a dashed border
for selected web parts
218 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

the four standard editor parts but, as we’ve seen, can easily contain more than that. At
a screen resolution of 1200 x 800 pixels, a standard screen has only enough real estate
to display about two parts at a time, and the BehaviorEditorPart alone takes up
an entire screen. This means that if a user is making many edits, he or she is probably
scrolling a good deal and re-positioning the mouse cursor. This can also lead to poor
user acceptance of a portal application. How do you solve this problem?

7.3.2 Creating a collapsible EditorZone

The way that the Sharepoint team
solved the problem of having an Edi-
torZone that caused the page to scroll
vertically was by allowing users to
expand and collapse each editor part.
When the EditorZone is initially dis-
played in Sharepoint, only the first part
is shown in an expanded state. In this
next section we’ll change the Editor-
Zone in the Adventure Works portal so
that its editor zone also has expand/col-
lapse functionality. Figure 7.10 shows
how the EditorZone will appear
when complete.

In figure 7.10 we see that the Edi-
torZone contains three editor parts:
the AppearanceEditorPart, Lay-
outEditorPart, and BehaviorEd-
itorPart. Although the zone contains
these three parts, the screen real estate

Figure 7.9

Adding a dashed border helps

users understand which web

part is being edited.

Figure 7.10 An editor zone that provides ex-

pandable/collapsible editor parts allows users

to better manage screen real estate.
IMPROVING USABILITY 219

that is taken up by the zone is not excessive because both the layout part and the behavior
part are collapsed. The steps that we’ll take to implement the collapsible editor zone are

• Create custom EditorPartChrome to alter the rendering of the editor parts.

• Create a custom EditorZone to return the custom EditorPartChrome.

• Add JavaScript to manage the client-side expand/collapse behavior.

Back in chapter 5 we saw that each of the zones uses a special class that is referred to
as “chrome” to perform the rendering of their parts. We also saw how the chrome
gave us a finer level of control over how individual pieces of the parts are rendered,
thus saving us from having to completely write all of the rendering logic for parts
when we simply need to customize an isolated area within the part. So it is with the
adjustments that we must make to allow our parts to be collapsible. To do this we
only need to alter the rendering of the outer section of the part so that we can add the
plus or minus graphic and insert some JavaScript to control the expandable behavior
of the part. We certainly wouldn’t want to render all of the controls within the body
of each part simply to insert those small features.

Creating the EditorZone

To customize the rendering of the outer area of parts including their title descriptions,
use the RenderEditorPart method of the EditorPartChrome class. Overriding
the RenderEditorPart method will require us to create a custom Editor-
PartChrome class. Naturally enough, to have an editor zone that knows enough to use
the custom chrome that we’ll create, we will also have to create a custom EditorZone
class and specify the chrome type to use in its CreateEditorPartChrome method.
Listing 7.6 shows the code for a custom EditorZone class named Collapsible-
EditorZone that uses a class named CollapsibleEditorPartChrome.

public class CollapsibleEditorZone : EditorZone {

public CollapsibleEditorZone() { }

bool editorPartsAdded = false;
public bool EditorPartsAdded {

get { return this.editorPartsAdded; }
set { editorPartsAdded = value; }

}

protected override EditorPartChrome CreateEditorPartChrome() {
return new CollapsibleEditorPartChrome(this);

}
}

Listing 7.6 Our CollapsibleEditorZone uses custom chrome for rendering

 the editor parts

Determines whether editor
parts are already added

Replaces standard
EditorPartChrome with custom chrome
220 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

I’ve added a property named EditorPartsAdded to the editor zone to keep track of
when the first editor part has been added. We need to know this so that we can dis-
play the first part in an expanded state, but each additional part that is added will be
displayed as initially collapsed. At runtime an instance of the editor part chrome class
is instantiated as each editor part is added and that’s why we must store this state in
the editor zone and not in the chrome class.

That’s all the code that is required for our EditorZone class, although, remem-
ber that the server control tags in the master page must be changed to refer to the new
class as will any theme tags that exist for the editor zone—much the same set of tasks
that we ran through when we implemented our custom WebPartZone in the previ-
ous section.

Now that we’ve created the custom editor zone and specified the type of chrome
to be used, we must create the chrome class and write the custom rendering logic for
the title of the editor parts.

Adding our own chrome

To create our custom EditorPartChrome class we create a class that inherits from
the EditorPartChrome class as shown in this snippet of code:

public class CollapsibleEditorPartChrome : EditorPartChrome {

public CollapsibleEditorPartChrome(EditorZoneBase zone)
: base(zone) { }

}

The EditorPartChrome class has two main methods for rendering editor parts
named RenderEditorPart and RenderPartContents and, as mentioned, we
must override the RenderEditorPart method to customize the rendering of the
title area of each part. Figure 7.11 illustrates the user interface area that we’ll be ren-
dering in the RenderEditorPart method.

Figure 7.11

EditorPartChrome provides

the methods necessary to

custom render the header

and body of each individual

editor part. Here we custom-

ize the rendering of the head-

er to add a button for

collapsing or expanding the

state of the part.
IMPROVING USABILITY 221

The figure shows a darker section on the editor part that must be recreated when we
override the RenderEditorPart method so that we can add a button to manage
the collapsing behavior of the body of the part. In the RenderEditorPart method
we’ll re-draw the head section of the part and add our button, and we’ll also wrap the
body section in an HTML DIV element and give it a known ID so that we can toggle
its visibility at runtime; Listing 7.7 shows the code required to do this.

public override void RenderEditorPart(HtmlTextWriter
writer,
 EditorPart editorPart) {

if ((chromeType == PartChromeType.TitleAndBorder)
|| (chromeType == PartChromeType.TitleOnly)) {

this.RenderTitle(writer, editorPart);
}

if (editorPart.ChromeState != PartChromeState.Minimized) {
Style style2 = this.Zone.PartStyle;
if (!style2.IsEmpty) {

style2.AddAttributesToRender(writer, this.Zone);
}

writer.AddAttribute(
"id",
"EditorPartBody_" + editorPart.ClientID
);

if (this.EditorZone.EditorPartsAdded) {
writer.AddStyleAttribute("display", "none");

}

writer.RenderBeginTag(HtmlTextWriterTag.Div);
this.RenderPartContents(writer, editorPart);
writer.RenderEndTag();

this.EditorZone.EditorPartsAdded = true;
}

}

The first step is to call out to a helper method named RenderTitle that we’ll see in
just moment. We’ll put all of the logic for rendering the head section of the part into
the RenderTitle method. The remainder of the RenderEditorPart method
copies the style attributes that have been declared by the page author and then pre-
pares a DIV element to wrap the body of the editor part within it. You can see that

Listing 7.7 The RenderEditorPart method allows us to customize the rendering

 of the outer area of each editor part including its header and footer

 sections.

Displays head
section of part

Explicit ID makes identification
of body easy

Hides body if parts
are already added

Displays
body

Advises zone
that parts have
been added
222 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

we’ve added an ID attribute to the DIV so that we know exactly what it will be at
runtime when we need to reference the DIV to toggle its display. We see this in the
following line of code:

 writer.AddAttribute("id", "EditorPartBody_" + editorPart.ClientID);

The last things we do in the RenderEditorPart method are to check whether this
is the first editor part being added by querying our EditorPartsAdded property of
the EditorZone, and then conditionally hide or show the body based on that. A call
to RenderPartContents is made so that the body of the editor part can be created.
Then we explicitly set the EditorPartsAdded property to true so that on the next
time through the editor part can be hidden.

Implementing the client-side behaviors

When the body of the editor part is hidden, we’ll display a plus image in the head sec-
tion to indicate that the body can be expanded. When the body is visible we will
show a minus image, which indicates that the body can be hidden. So at runtime, in
addition to toggling the expanded state of the editor part, we must also take care to
swap the images at the same time. Performing these actions in the browser requires us
to write a small piece of JavaScript code that can access the HTML image and DIV
elements and change their state. We then tie the JavaScript code to an action that is
performed by a user so that it runs whenever the user clicks on the button in the head
of the editor part. The JavaScript code is shown in listing 7.8:

function ToggleEditorDisplay(divClientID,
imgClientUrl,
 expandImageUrl, minimizeImageUrl) {

var el = document.getElementById(divClientID) ;
if(el.style.display=='none') {

el.style.display='';
document.images[imgClientUrl].src= minimizeImageUrl;

} else {
el.style.display='none';
document.images[imgClientUrl].src= expandImageUrl;

}
}

As you can see, the JavaScript method is named ToggleEditorDisplay, and we
must pass it certain arguments so that it knows which HTML elements to perform its
actions upon. In this case, we pass it the ID of the DIV whose visibility we want to
toggle and also the ID of the image to swap. Finally, we pass in the paths of the
images to display based upon the current visibility state of the body of the editor part.

Listing 7.8 JavaScript function runs in the broswer and toggles the visibility of

 the editor part.
IMPROVING USABILITY 223

In the RenderTitle method we need to create the HTML for the head section of
the editor part and when we add the button that allows the user to toggle the visibil-
ity of the border, we add JavaScript to invoke the ToggleEditorDisplay method
in the browser. Listing 7.9 shows the code that is required to display the head section
of each editor part.

protected virtual void RenderTitle(HtmlTextWriter writer,
 EditorPart editorPart) {

HttpContext ctx = HttpContext.Current;
string imageID = string.Format(
 "EditorPartImage_{0}",editorPart.ClientID);
string expandImageUrl = "Images/Expand.gif";
string minimizeImageUrl = "Images/Minimize.gif";

string js = string.Format(
"ToggleEditorDisplay(
 'EditorPartBody_{0}', '{1}', '{2}','{3}')",
editorPart.ClientID,
imageID,
expandImageUrl,
minimizeImageUrl
);

Style style2 = this.Zone.PartTitleStyle;
if (!style2.IsEmpty) {

style2.AddAttributesToRender(writer, this.Zone);
}

writer.RenderBeginTag(HtmlTextWriterTag.Div);

writer.AddAttribute("onclick", js);
writer.AddStyleAttribute(HtmlTextWriterStyle.Cursor, "hand");
writer.AddAttribute(
 "src",
 this.EditorZone.EditorPartsAdded ?
 expandImageUrl : minimizeImageUrl);
writer.AddAttribute("id", imageID);
writer.RenderBeginTag(HtmlTextWriterTag.Img);
writer.RenderEndTag();

writer.Write(editorPart.Title);
writer.RenderEndTag();

}

Listing 7.9 The RenderTitle helper method displays the header area of each

 editor part and adds the clilckable elements and JavaScript that

 hides and shows the part in the browser.

Explicit ID used
identifies the
body area

Creates
Javascript to
handle user clicks

Adds the onclick
handler to the image
224 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

The first half of our RenderTitle method is responsible for generating the piece of
JavaScript that is attached to the image and will invoke the client-side ToggleEdi-
torDisplay JavaScript function. You can see that each argument that must be
passed to that function is prepared and the formatted into runnable piece of Java-
Script code. This JavaScript code is then assigned to the onclick attribute of the
image as can be seen in this section of code:

writer.AddAttribute("onclick", js);
writer.AddStyleAttribute(HtmlTextWriterStyle.Cursor, "hand");
writer.AddAttribute(
 "src",
 this.EditorZone.EditorPartsAdded ?
 expandImageUrl : minimizeImageUrl);
writer.AddAttribute("id", imageID);
writer.RenderBeginTag(HtmlTextWriterTag.Img);

The only code that remains to be written after the image has been created is the code
that displays the title of the editor part.

That’s all the work needed to create the custom chrome class and ensure that the
editor zone in the portal contains collapsible editor part items. Even though imple-
menting this change required writing only about 100 lines of code, the usability
impact of it on the portal will be great. No longer will users be required to constantly
scroll up and down the page in order to make changes to web parts in the editor and
have them saved.

You can see how the new EditorZone works by opening the Adventure Works
portal from the chapter 7 folder of the resources that come with this book and run-
ning the application. When you start the application, each web part will have a verb
titled “Edit Web Part” that you can click to display the editor zone. By displaying the
editor zone, you’ll see that you can in fact display or hide each individual editor part
within that zone. With the new editor zone displayed, I’d like to draw attention to
the buttons that appear at the top and bottom of this control that allow users to save
or apply their changes or to cancel the editing process for a web part. Figure 7.12
contains arrows that show where the buttons are on the editor zone that allow users
to perform the save, apply, or cancel actions.

By clicking these buttons, a user is able to end the editing process for a web part,
but the page itself remains in edit mode. Try it out. Place a web part in edit mode
and use the editor zone to make some changes. Once you’ve made the changes, click
OK and you’ll see that although the editor zone closes and the changes are reflected in
the web part, the page is still in edit mode.

7.3.3 A finishing touch

Generally when users finish editing a web part, they either want to completely step out
of the editing process or they want to begin editing a different web part—in which
case they click the edit verb for the new part that they want to edit. Now that we’ve
implemented single-click editing on each of the web parts, it makes sense to have the
IMPROVING USABILITY 225

page automatically revert to display mode when the user finishes editing a web part.
When the page reverts automatically to display mode, the user is no longer required to
switch modes manually and therefore we eliminate an extra mouse operation.

The editor zone handles the click events of these buttons by implementing the
IPostbackEventHandler interface and having code in the RaisePostBack-
Event method that checks an event argument that caused the postback to see which
button was clicked. For example, when a user clicks on the Close verb in the head of
the editor zone, the event argument that is passed to the RaisePostBackEvent is a
string with the value of headerClose. By overriding the RaisePostBackEvent
method of the EditorZone class we can actually intercept the code and write custom
code to handle the behavior of the portal whenever a user clicks on any of these buttons.

For the example, we want to automatically revert the page to display mode when-
ever the close or cancel buttons are clicked and we want to do the same when the OK
button is clicked, but first we need to save any changes in each of the editor parts.
The code in listing 7.10 shows how to override the RaisePostBackEvent method
of our custom editor zone to automatically place the page in browse mode when the
user finishes editing a web part.

protected override void RaisePostBackEvent(string eventArgument) {
WebPartManager wpm =
 WebPartManager.GetCurrentWebPartManager(this.Page);

Figure 7.12

The buttons used to save changes or

cancel the editing process.

Listing 7.10 Overriding the RaisePostBackEvent method of the EditorZone

 allows us to customize the behavior in response to users invoking

 close, cancel, or save operations.
226 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

if (eventArgument == "headerClose" || eventArgument == "cancel") {
wpm.DisplayMode = WebPartManager.BrowseDisplayMode;

} else if (eventArgument == "ok") {
ApplyAndSyncChanges();
wpm.DisplayMode = WebPartManager.BrowseDisplayMode;

} else {
base.RaisePostBackEvent(eventArgument);

}

}

void ApplyAndSyncChanges() {
foreach (EditorPart part in this.EditorParts) {

part.ApplyChanges();
part.SyncChanges();

}
}

As shown in the code listing, we check the event argument that is passed into the
RaisePostBackEvent handler so that we can handle those events with our own
logic. The first set of event arguments that we check for are the headerClose and
cancel strings that are received whenever the user clicks the close button at the top
of the editor zone or the cancel button that appears in the footer. When we find
either of these arguments, we simply set the current display mode to browse mode,
which forces editing to cease. When the user has clicked the OK button, we receive
the “ok” argument and we handle that with slightly different logic. In this case we
first save any data changes that have been made in the editor parts by enumerating
each part and calling the ApplyChanges and SyncChanges on them to ensure that
each of the parts saves their changes. After the data has been saved, we set the current
display mode to browse to cease editing.

For all other event arguments that are passed in to the RaisePostBackEvent
method—such as the “apply” string that is passed in when the user clicks on the
Apply button—we simply relegate the handling to the base EditorZone class to
supply the logic for us.

Our portal is starting to take shape now that we’ve started fine-tuning some of its
moving parts. The changes that we made to enhance the editing experience will mean
that our users can manage their web parts in the timeliest manner. Figure 7.13 shows
what our portal looks like after the changes made during this chapter.

Notice how the dashed border around the Departments web part makes it easy to
spot which web part is being edited. Note too how our collapsible EditorZone fits
neatly within the bounds of the page. These are some of the small things that we’ve
done to make the portal a picture of usability!

Ignore all other
event argument
data.
IMPROVING USABILITY 227

7.4 SUMMARY

In this chapter we plunged deeper into ASP.NET and the portal framework so that we
could learn how to do things that are non-standard—such as creating a collapsible
EditorZone and adding single-click editing capabilities to our web parts. Having
now seen some of the more obscure extensibility points within the framework that
can be used to customize our solutions - such as chrome—we are well on the way to
being free to implement the fullest solutions that we can create.

In chapter 8 we will use the same fine-toothed comb that we used in this chapter
and apply it to other areas of the portal.

Figure 7.13 The Adventure Works portal in its current state displayed with the

Departments web part being edited.
228 CHAPTER 7 CREATING AN ENHANCED EDITING EXPERIENCE

C H A P T E R 8

Useful portal
customizations

8.1 Introduction 229
8.2 Making common tasks

accessible 230
8.3 Versioned personalization data 234

8.4 Creating an area for tool zones 243
8.5 Adding a CatalogZone dialog 247
8.6 Summary 255
8.1 INTRODUCTION

In the world of applications development, we walk a fine line between the desire to
implement cool new features and the need to supply applications that are easy to use.
I know from my own experiences with Rapid Application Development (RAD), it
can be easy to lose sight of the big picture when tempted by the dizzying array of cool
new features and options at our disposal. Because of this, projects often veer off
course when a developer pipes up with an idea like, “Let’s just add one of these clever
gadgets to the application.” By the time the application is deployed, so many “little
gadgets” have been randomly added that the application is downright unwieldy.
Almost as common—and equally as difficult to use—is the application with few or
no features at all. With this type of application, users lack the tools and features they
require to interact with the application and therefore invent their own methods of
performing common tasks.

Sitting smartly between the applications with no features and the applications
with poorly planned features are the applications that have been carefully planned
229

from the start and which provide the right balance between features and usability.
You know the feel of these applications—you can jump right into them and begin
working with very little guidance, because their features are intuitive. The fact that
these applications tend to be popular indicates that users—even expert technical
users—appreciate a well-designed application! This chapter examines the Adventure
Works portal and explains what features are needed to make the portal simple and
enjoyable to use.

The features we’ll be adding to the portal are common to many popular web por-
tals, and are therefore likely to be requested by our customers when we are building
portals for them. The features I’ve selected for us to add are

• A toolbar displaying common portal management tasks

• An approval step to the editing process

• A separate area for the tool zones to eliminate their encroaching on the main
layout area of the page

• A CatalogZone dialog window

The underlying intent in adding these features is improving the user experience
because, in most cases, we are improving how we expose existing features to the user.
Take the toolbar as an example. Adding this toolbar provides a common area for
accessing features that allow a user to perform common functions, such as changing
personalization scope, switching the page mode, and viewing and approving versions
of personalization data. Without this common toolbar, each of those major
functions would be placed randomly on the page, and it would require the close
attention of the user to locate and identify them. Additionally, as new functions are
added to the toolbar, they will be more obvious to the user because of their very
position in the toolbar.

Now you understand how adding these four new features will improve usability.
But there is another, different reason for adding them. Adding the features gives you
an opportunity to learn skills critical to performing a wide range of portal customiza-
tions. For example, when you create the CatalogZone dialog window, you learn
some important lessons about how to use client-side JavaScript to communicate
between two browser windows.

Let’s proceed now with adding the features. By the end of this chapter, our portal
will be almost complete and ready for deployment into the production environment.
There, our users will test out the portal and either pat us on the back or pepper us
with potshots.

8.2 MAKING COMMON TASKS ACCESSIBLE

Before beginning the process of adding new features to our portal, let’s look back a
bit. Figure 8.1 shows the display mode dropdown list we built way back in chapter 4
to change the mode of the page.
230 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

In chapter 7 we improved the usability of the applica-
tion by removing the edit mode option from the list and
adding it directly to each web part as a verb, so that users
could edit web parts with a single click. Giving users the
ability to edit web parts with a single click is a much more
natural action for editing web parts than having to first
select Edit from a general list of options.

In fact, editing web parts is actually a common task, so
we need to ensure that our users are always able to find the
mechanism for performing that task. Another common
task within the portal is toggling the personalization scope
of the page between individualized user scope and shared user scope. Until now we
have not provided our users with any way to change the personalization scope—
instead it has been hard-coded in the load method of our pages—so we need to
enable users to perform this operation. As we look at editing and personalization, we
realize there are a number of tasks our users perform regularly, and it’s by making
these tasks easy to locate and use that we’ll be able to impress those users and make
them happy to use the application.

8.2.1 Identifying common tasks

When trying to identify common tasks, it is important to realize that our users will
often simply browse through the pages of our portal, quite content to read the text on
the pages or to view the information exposed by web parts on the page. But at other
times they will enter the portal to manage it by adding new content or changing the
web parts that are displayed on a given page. Each of the tasks users perform within
the application is known as a scenario, and it’s the complete list of scenarios that
determines the total feature set of an application.

When creating an application and determining which tasks are most common, it
is useful to create personas for fictitious users of your application and then write para-
graphs describing the tasks they perform. Some of the scenarios we might see for the
Adventure Works portal would include

• Mike designs the home page—Mike needs to rearrange the positioning of web
parts on the portal’s home page, so he uses the Design button in the Common
Tasks area to place the page into design mode and then drags various parts to
their intended location.

• Betsey adds some shared content—Betsey wants to add a news item to the home
page. To do this she clicks on the Shared button in the Common Tasks area to
place the page into shared personalization scope and then clicks the Add Con-
tent button from the Common Tasks area to display the catalog zone. When the
catalog zone is visible, Betsey can select a news web part and add it to the page.
Once the news web part is displayed on the page, she can add the content of the
news item.

Figure 8.1 The display

mode dropdown list en-

ables the user to change

the mode of the page.
MAKING COMMON TASKS ACCESSIBLE 231

• Mitch approves content changes—When Mitch visits the home page of the portal,
he can see by an alert on the Common Tasks area that the page has content
requiring approval. After viewing the changes, Mitch uses the Approve Content
button on the Common Tasks area to save the changes and make them visible
to all portal users.

Having these scenarios defined allows us to easily identify the most common tasks
performed and ensures that they are easily accessed from a prominent location on the
screen. By reading the scenarios, you can clearly understand that common tasks for
our portal include designing the page, changing the scope of the page, and adding
new web parts to a page. Therefore, we need to ensure that users can complete these
tasks with a minimum of fuss.

8.2.2 Creating a common tasks MenuBar

Now that we have identified the common tasks, we need a way to expose them from
a highly prominent place in our application so that they are easily accessible to our
users. In Windows programs such as MS Word, Internet Explorer, and the Windows
File Explorer, common tasks are positioned on a menu at the top of the screen so that
they can always be accessed by a single click. Placing the important tasks in such a
prominent position has another advantage— it makes it easier to introduce new com-
mon tasks to users without causing confusion. In this next section we’ll add a menu
bar to our portal to display common tasks to users. When this work is completed the
home portal page will look like the image shown in figure 8.2.

Looking at figure 8.2, we can see that each common task—Show Per-User View,
Add Web Parts, and Design—is now prominently displayed to users and is available
to them through a single click. The Common Tasks area displays the current person-
alization scope of the page clearly so that there is no confusion about what the current
scope is. This is important, because it can be very frustrating for the user who makes
many personalization changes to a portal and then finds that he’s done so in the
wrong scope and that the wrong group of users is now seeing the content changes.

Figure 8.2 A common area at the top of the page displays links with

which the user can perform common tasks.
232 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

We’re not going to cover all the code required for each of the common task buttons
because we’ve already seen most of it before—such as how to toggle display modes
and how to change the personalization scope of the page. The main point of this
exercise has been to highlight the importance of aggregating these important opera-
tions into a single menu area.

At this point, I’d like to highlight an interesting point. Each of the links on the
Common Tasks is able to change its display based on certain criteria. For example,
when the current personalization scope of the page is Shared, the text of the link but-
ton that allows the user to change the scope displays the following text: Show Per-
User View. When the current scope is Per-User, however, the text displays the words:
Show Shared View. Likewise, the button for adding web parts is visible only when
the display mode is not currently catalog mode, and the design button is visible only
when the display mode is not currently design mode. All the code required to set the
values for these buttons and to set their visibility is added to the pre-rendering phase
of the page, as can be seen in listing 8.1.

protected override void OnPreRender(EventArgs e) {
 base.OnPreRender(e);

 if (this.Visible) {

 if (_wpm.Personalization.Scope == PersonalizationScope.User) {
 lblCurrentScope.Text = "Current Page Scope: Per-User";
 imgToggle.ImageUrl = "~/Images/allusr.GIF";
 lnkToggle.Text = "Show Shared View";
 } else {
 lblCurrentScope.Text = "Current Page Scope: Shared View";
 imgToggle.ImageUrl = "~/Images/perusr.GIF";
 lnkToggle.Text = "Show Per-User View";
 }

 this.pnlCatalogMode.Visible =
 _wpm.DisplayMode != WebPartManager.CatalogDisplayMode;

 this.LinkButton2.Text =
 (_wpm.DisplayMode == WebPartManager.DesignDisplayMode) ?
 "Browse" : "Design";
 }
 }

The code in listing 8.1 shows us that each item on the Common Tasks area changes,
based on the current state of the page. For example, we see that three controls—
lblCurrentScope, imgToggle, and lnkToggle—each have a different display
based on the current personalization scope of the page.

Listing 8.1 Conditionally setting the visibility of Common Task buttons

Change the personalization
scope text and icon based

on the current scope

Hide the “Display Catalog” link
if the catalog is already visible

Toggle the text of the
display mode button based

on the current display mode
MAKING COMMON TASKS ACCESSIBLE 233

The Common Tasks area has been implemented as a user control so that its logic
is encapsulated within a single component, rather than being included within the
page. Having the logic for the Common Tasks area encapsulated in this manner
increases the maintainability of our application, because we end up with smaller,
more specific controls rather than a single monolithic chunk of logic embedded
within each page. To include the Common Tasks area in a page, we simply add the
following, single line of markup to the page:

 <uc:PageTasks ID="PageTasks1" runat="server" />

This reduces the amount of code required in the page which contains it and therefore
helps to increase the maintainability of the application overall.

NOTE You can find the user control for the Common Tasks area in the Adventure
Works portal application in the chapter 8 section of the resources website
for this book.

In addition to the maintainability aspect of our enhancement, the users of our appli-
cation will also be thanking us because they will now know that the Common Tasks
area of the page is where they will always find their most-used task items, as opposed
to having to hunt around on the page to find them.

In this section we have again seen important usability improvements made by
simply grouping important functions in a common area, so that everyday functions
become easier for our users to find and use. Additionally, because many of the popu-
lar, modern portals already employ this tactic, now our portal not only acts like a por-
tal but it is also starting to look more and more like a portal.

While we are focused on how our own portal is implementing many features that
are found in everyday portals, it’s worth looking at another portal feature which has
emerged in recent times. The feature gaining favor in portals has existed for many
years in systems (CMS), and that is the ability for users to make edits to content but
not have those changes appear on the publicly visible version of the site until they
have gained approval via a moderation system. Web applications that use web parts
extensively can be considered content management systems because of the way they
allow the content that is visible on the web page to be changed at runtime. For this
reason it has become popular to embed the same moderation functionality in CMS-
style applications into portal-style applications too. This helps to ensure that the peo-
ple who are most responsible for the content on display are able to approve any
changes, while allowing people who create content to make edits.

8.3 VERSIONED PERSONALIZATION DATA

To add editing approval capabilities to our own portal we must find a way to create
two versions of each page: one version would contain the approved content that is
publicly visible, while the other version would contain changes awaiting approval.
Figure 8.3 shows the editing process in our portal as it currently stands when a user
designs or edits the web parts.
234 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

Figure 8.3 shows that users are able to view web pages and change them into edit
mode to make changes to the personalization data. When the edits have been made,
the user can then save the page to update the content. This is in effect the same action
we’ve been taking throughout this book whenever we’ve edited a web part and clicked
Save to have those changes persisted.

To provide a way for the changes to be subjected to a moderation process, we
need a way of creating a second version of the page and using that version to store
updates while keeping the approved copy of content in the main page. Figure 8.4
shows us what this would look like.

The user first makes changes to the personalization content by switching a page
into edit mode; this is indicated by the box in the top right corner of figure 8.4.

Figure 8.3 Portal users can switch a page into edit mode to change the proper-

ties of web parts.

Figure 8.4 By adding an approval process, changes to web parts will not be visible

to all portal users until they are approved by a moderator.
VERSIONED PERSONALIZATION DATA 235

When the user begins the editing process, a second version of the personalization data
is created for the page to store those changes. The box in the middle of the top row
shows us that when the user saves his edits, a second version of the page is created to
store those changes. In the third box we see the version of the page that has the
changes is not visible to ordinary viewers of the page, and that the original approved
version of the personalization data is loaded into the page. To approve the pending
changes a moderator can request that the unapproved version of personalization data
again be loaded into the page so that they can view the edits made to the page and
optionally accept or decline those changes. The final box in the figure shows that
after the moderator has approved the changes, only one version of the data exists and
that version is visible to all visitors to the portal.

8.3.1 Creating a revision of data

To provide a system that allows for content moderation, the trick is to create a second
version of the personalization data—although if you think back to chapter 6 you will
remember that we have already seen a sneaky way to do this! In that chapter we saw
that by adding some custom code to the loading and saving of personalization blobs,
we could save all the personalization data against a single page key. To create a revi-
sion version we can write code similar to that shown in chapter 6, so that based on a
known condition in our page, we can change the personalization key to reflect the
second version of the page. For example, rather than saving data against the page key
of urn:global we could instead add some identifier to that key to indicate a revi-
sion such as urn:global|revision. In listing 8.2 we see the code that is added to
the LoadPersonalizationBlobs method of a custom personalization provider, to
conditionally load personalization data from either the main path or from a revision
of the data.

protected override void LoadPersonalizationBlobs(
 WebPartManager wpm,
 string path,
 string userName,
 ref byte[] sharedDataBlob,
 ref byte[] userDataBlob) {

 PersonalizationStateQuery query = new PersonalizationStateQuery();
 query.PathToMatch = path + "|revision";

 bool pageHasRevisionData =
 GetCountOfState(PersonalizationScope.Shared, query) > 0;

 bool isRevisionPage = ((PortalWebPartManager)wpm).IsRevisionPage;
 ((PortalWebPartManager)wpm).HasUnapprovedChanges

Listing 8.2 Conditionally changing the path used by the personalization

 provider gives us the effect of having multiple copies of personal-

 ization data per page.

Create a query to check for
existing personalization data
236 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

 = pageHasRevisionData;

 if (isRevisionPage && pageHasRevisionData) {
 path += "|revision";
 }

 base.LoadPersonalizationBlobs(
 wpm,

 path,
 userName,
 ref sharedDataBlob,
 ref userDataBlob
);
}

Quite a lot is happening in listing 8.2, so let’s take some time to walk through the
code. We should first check to see whether or not a revision version of the page exists.
We do this by creating a PersonalizationStateQuery object and setting its
PathToMatch property to the path we want to check. For our purposes we will be
storing the unapproved content version in a path which has the text “|revision” added
to the path, so that’s the value we use for the PathToMatch property. After initializ-
ing the query, we pass it to the GetCountOfState method—which is a method of
the personalization provider—and it will return a count of the state items which exist
in the data store for the query.

NOTE We’ll take a closer look at the PersonalizationStateQuery class in
chapter 9 when we look at different ways to manage our portal.

After using the count of state items to ascertain that revision data does indeed exist
for the page we are on, we then check with the WebPartManager instance for the
page to see whether or not the user has requested the revision page. If the answer to
both of these questions is “Yes,” we alter the path to the revision key so that the revi-
sion data is loaded by the call to LoadPersonalizationBlobs. Note that the
IsRevisionPage property on the WebPartManager is a custom property, and this
explains why we must cast the WebPartManager instance to a PortalWebPart-
Manager before we can gain access to it. The following snippet of code shows the
logic for the IsRevisionPage property which has been added to the PortalWeb-
PartManager:

public bool IsRevisionPage {
 get {
 return Page.Request.Params["view"] == "edit";
 }
}

Change the path to load
from the revised copy
VERSIONED PERSONALIZATION DATA 237

The code here is simply checking to see whether an item named “view” exists in the
Params collection of the Request; and if so, whether its value is set to “edit.” Typically
this value might come from a querystring value.

Notice that the code in listing 8.1 will return the approved version of the page if no
revision data is present in the data store, even if the IsRevisionPage returns true.
This ensures that the first time a user attempts to edit a page, he will be loading the cur-
rent version of the page and not an empty version of personalization data. This is
important because the approved version may already contain personalization changes.

8.3.2 Approving a revision

Now that we are able to load revision data, we must also find a way to ensure it is cor-
rectly saved. When performing the save, we need to include logic, such as a check to
determine whether the save operation is due to a user who is editing content or
whether the save is the result of a moderator approving the content. We determine
whether or not the user is committing changes by checking a custom property of the
PortalWebPartManager called CommittingChanges; this property is set from
the user interface layer when an administrator performs a commit operation. The
code for the CommittingChanges property is shown in listing 8. 3.

private bool _committingChanges = false;
public bool CommittingChanges {
 get { return _committingChanges; }
 set { _committingChanges = value; }
}

public void CommitChanges() {
 this.CommittingChanges = true;
 SetPersonalizationDirty();
}

At runtime, when an administrator performs a commit operation to accept content
changes—typically by pressing a button on the user interface layer—the code that
handles that operation simply calls CommitChanges on the PortalWebPartMan-
ager and the PortalWebPartManager then takes responsibility for setting the
CommittingChanges flag to true. It is crucial to notice in listing 8.2 that, in addi-
tion to setting the CommittingChanges flag to true, the CommitChanges method
also calls SetPersonalizationDirty on the personalization provider to ensure
that a save of personalization data is performed at the end of the page’s lifecycle.

Listing 8.3 Adding a CommitChanges method to our WebPartManager allows

 us to flag that personalization data has changes.
238 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

Listing 8.4 shows the code within our custom personalization provider which
ensures that the personalization data is saved correctly, regardless of whether the user
is editing or approving content updates.

protected override void SavePersonalizationBlob(
 WebPartManager wpm,
 string path,
 string userName,
 byte[] dataBlob) {

 bool isRevisionPage =
 ((PortalWebPartManager)wpm).IsRevisionPage;

 if (((PortalWebPartManager)wpm).CommittingChanges) {

 base.SavePersonalizationBlob(
 wpm, path, userName, dataBlob);

 ResetPersonalizationBlob(
 wpm, path + "|revision", null);

 } else if (isRevisionPage) {

 base.SavePersonalizationBlob(
 wpm,
 path + "|revision",
 userName,
 dataBlob);

 } else {
 base.SavePersonalizationBlob(
 wpm,
 path,
 userName,
 dataBlob);
 }
}

Notice there are three logic branches in the save method. The first branch checks the
custom CommittingChanges property of our PortalWebPartManager to see if
the user is committing changes; and if so, the content is saved against the public ver-
sion of personalization data and the revision copy is cleared out.

If the user is not committing changes, we check to see whether we are currently on
the revision page or not to determine against which path the data is saved.

Listing 8.4 Customizing the saving logic within our personalization provider

 allows us to route data to the correct path based upon the action

 that is being committed.

Check to see
whether the
user is commit-
ting changes

Reset the second
version of the content

Otherwise, simply decide
whether this is a revision copy
VERSIONED PERSONALIZATION DATA 239

8.3.3 Allowing a user to commit changes

You’ve now seen all the code required to save and fetch revisions of personalization
data. So now all we need to do is to create some user interface elements to allow users
to kick off versioning operations. The Common Tasks area we created earlier in this
chapter will be the ideal place to surface these operations. Since it’s likely that users
will be performing these versioning tasks regularly, we want to have this functionality
clearly displayed. Figures 8.5 and 8.6 show the new items on the menu bar for man-
aging content revisions.

In figure 8.5 a Revise Content button has been added that the user can click to
enter into a state where he may create new versions of the content. When the user
clicks on the Revise Content button the view=’edit’ querystring parameter is added to
the URL of the page; this is how we determine that the page is in revision mode. When
the page is in revision mode, the toolbar changes to the one shown in figure 8.6 and
the text of the Revise Content button changes to End Revising Content. In addition,
an Approve Content Changes button is visible so that the user can accept version
changes made to the page.

Because the appearance of the buttons we are adding to the Common Tasks menu
changes based on the state of the page, we must add some code to the PreRender
event just as we did in listing 8.1 when we changed the display of certain buttons
based on specific criteria. The following snippet shows the code that must be added
to the PreRender event to manage the state of the Revise Content buttons:

this.lnkCreateRevision.Text =
 _wpm.IsRevisionPage ?
 "End Revising Content" : "Revise Content";

this.pnlApprove.Visible =
 _wpm.HasUnapprovedChanges && _wpm.IsRevisionPage;

Here we see how the text of the revision button is toggled between Revise Content
and End Revising Content, based on whether the page is currently being viewed in its
revised state. The second part of the code snippet responsible for setting the visibility
of the Approve Content Changes button simply checks the two custom properties we

Figure 8.5 Actions displayed in Common Tasks area when the page

is in its normal mode.
240 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

added to the WebPartManager to see whether the page has changes, and whether
we are on the revision version of the page before displaying the Approve Content
Changes button.

The code which handles the click events of those buttons is also quite simple, as
we see in listing 8.5.

protected void lnkCreateRevision_Click(object sender, EventArgs e) {

 string url = Page.Request.Path;
 if (!_wpm.IsRevisionPage) { url += "?view=edit"; }
 Response.Redirect(url);
}

protected void lnkApproveChanges_Click(object sender, EventArgs e) {
 _wpm.CommitChanges();
}

Clicking on the Create Revision button simply toggles the page between edit and
normal views by either appending or removing the querystring parameter, which is
what we can see in the first method shown in listing 8.5. The code for approving the
convent revision is even more straightforward as we simply call through to our cus-
tom CommitChanges method on the WebPartManager, and the remainder of the
work will be handled by the saving logic that we wrote in our personalization pro-
vider in listing 8.3.

Before our solution is complete, we must add code to the load method of the
page. This will set the display mode of the page to catalog mode if the user is viewing
the revision page; and is similar to code that we’ve written many times before, as seen
in the following snippet:

if (_wpm.IsRevisionPage) {
 _wpm.DisplayMode = WebPartManager.CatalogDisplayMode;
}

Figure 8.6 Actions displayed in Common Tasks area when the page

is in revision mode.

Listing 8.5 The code for performing revision tasks is quite simple at the

 page level.
VERSIONED PERSONALIZATION DATA 241

Setting the display mode to catalog mode will ensure that parts can be moved and
edited, and that the catalog will be visible so that parts can be added to the page.
Lastly, we need to add the configuration entries which will ensure that our new per-
sonalization provider with the loading and saving customizations is used instead of
the default SqlPersonalizationProvider. The following snippet is the same as
the code shown in listing 6.3:

<personalization defaultProvider="SqlBlogPersonalizationProvider">
 <providers>
 <add connectionStringName="LocalSqlServer"
 applicationName="/"
 name="SqlBlogPersonalizationProvider"
 type="AW.Portal.Web.VersionedPersonalizationProvider" />
 </providers>
</personalization>

With these changes in place, our portal is now ready for users to begin making
changes to the content that will be hidden from public view until they are approved.
The only code needing to be created is the logic that ensures the Approve Content
button is only visible to users within specific access rights—presumably users with
content management rights. In order to keep this simple, I haven’t added that code to
our portal solution.

When you run the page and click on the Approve Content Changes button, you
will see that the Common Tasks area looks as it did in figure 8.6 and that the catalog
zone is displayed. While the page is in revise mode, make some changes to the con-
tent—such as adding or removing web parts or moving them around—and then click
on End Revising Content to see that the
changes are not visible in normal viewing
mode. Place the page into revise mode again so
you can approve the changes, and after doing so
click on the End Revising Content button once
again and you will see that the changes are now
visible to all portal users.

I mentioned before that when our page is
placed into revise mode, the catalog is displayed
to allow new web parts to be added. When the
CatalogZone is displayed you can see that it
appears on the right side of the page, just
underneath the Useful Links list as shown in
figure 8.7.

Having the tool zones appear within the
structural area of the page is not bad for sites
with a design such as ours, which is mainly
rectangular with a fair amount of free space.

Figure 8.7 Editors and Catalogs are

displayed in task zones that are with-

in the content area of the page.
242 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

But what if the website you are building doesn’t have a rectangular design? For exam-
ple, you might be building a web page designed by graphic artists who object to
throwing a large rectangular object into their intricate patterns. Figure 8.8 shows an
example of a design from the popular CSS design site—http://www.CssZenGar-
den.com—which is based on rounded shapes.

Where would you put a large rectangular catalog or editor zone within the con-
tent area of such a page? The answer may be to place the tool zones outside the struc-
ture housing the main website content altogether.

8.4 CREATING AN AREA FOR TOOL ZONES

In most common portal applications, tool zones are not embedded within the main
structure of the page but are instead contained within areas that are dynamically dis-
played when the user chooses to use them. This is because when web pages are
designed, the main layout areas of the page are meant to house only the primary con-
tent of the page—the section that is visible all the time. Designing pages in this man-
ner ensures that the page can contain the maximum amount of content without
appearing cramped.

One of the tactics for displaying tool zones outside the main content area of the
page is to show them within their own window hovering above the main page; this is
how the http://my.msn.com site displays the controls for editing web parts. Another
very common way to display tool zones is to contain them in a dynamic panel sitting

Figure 8.8 Some web page designs are not conducive to accommodating the large

rectangular areas required by Task Zones.
CREATING AN AREA FOR TOOL ZONES 243

http://my.msn.com
http://my.msn.com
http://my.msn.com
http://my.msn.com
http://my.msn.com
http://my.msn.com
http://www.CssZenGarden.com
http://www.CssZenGarden.com

beside the main content area of the page. This is how the http://Live.com and http://
Google.com/ig web portals display their catalogs. For our portal we will employ the
same tactic as the http://Live.com and http://Google.com/ig portals by creating a
dynamic panel which collapses and expands within the page to contain each of the tool
zones. Figure 8.9 shows how our page will appear when the editor zone is displayed.

Notice how the area that contains the editor zone extends for the full length of the
page, and is no longer restricted by the structure of the area with the content section.
By having the editor zone displayed at full length, we ensure that the maximum
amount of page area is available to display a tool zone—which ultimately leads to less
scrolling by our users. The tool panel we create for our portal will contain the Edi-
tor, Catalog, and ConnectionsZone; and when visible will appear on the left
side of the page.

8.4.1 Moving our task zones

Because our task zones are currently displayed within the content area of the page,
we will need to create a new area to contain them and then move these zones into
that area. Presently we have the rectangular regions that make up the layout for our
website and these regions are contained both within the master page for the site and
also in the Default.aspx page itself. The regions in the master page contain the
outer elements that define the header row, the footer row, and the middle content
section. Figure 8.10 shows the layout of the regions providing the main content areas
for our portal.

Figure 8.9 Moving the area for displaying Task Zones to outside the main content area

means that the zones no longer interfere with the main layout area of the page.
244 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

http://Google.com/ig
http://Google.com/ig
http://Google.com/ig
http://Live.com
http://Google.com/ig
http://Google.com/ig
http://Google.com/ig
http://Live.com
http://my.msn.com

The regions for the Page Container, Header, Footer, and the area surrounding the Left
and Right content panels in the middle are contained within the master page; while the
Left, Content, Right, and Tool Area panels are contained within the Default.aspx
page. Our plan is to move the tool zone elements to a separate region outside the Page
Container so that the tools do not interfere with our page’s structure. To do this we can
move the HTML elements that make up the Tool Area region into the master page out-
side of the Page Container. The illustration in figure 8.11 allows us to see the overall
effect that this move will have on our page’s structure.

Before we move the EditorZone, CatalogZone, and ConnectionsZone from
the Default.aspx page, we must add an HTML DIV element in the master page to

Figure 8.10 Presently the area for tools is heavily embedded

within the rectangular regions that make up the layout of the page.

Figure 8.11 Our task is simply to move that rectangular area

outside of the main layout region.
CREATING AN AREA FOR TOOL ZONES 245

house those server controls. To do this, create a DIV with the ID of “toolpanel” and
place it between the WebPartManager and the container DIV in the master page. The
code for the DIV should now look like the code in the following snippet:

<div runat="server" id="toolpanel">

 ... ToolZone server controls go here

</div>

When we added the runat=’server’ attribute to the DIV, the DIV became a
server control; and so we could manipulate it from within server-side code. That’s
how we will affect the visibility of the toolpanel based on the current display mode of
the page.

8.4.2 Displaying the TaskZone area

Now that we’ve moved the tool zones into their own region, we can work on creating
the logic to ensure that this region is not displayed until the user requests that a tool
zone be visible. The HTML DIV element we’ve used to contain the tool zones is what
is known as a block element. Block elements are HTML elements which, by default,
take up 100% of the width of the allocated space. In our case this means that the
toolpanel DIV element will span the entire width of the top section of the screen
when it is visible, which will force the DIV element for the container to sit under-
neath it. This is not what we want. To display the toolpanel beside the container we
will need to use some CSS code to set the width and other layout information for
both the toolpanel and container DIV elements. The code in listing 8.6 shows the
CSS code and server-side code responsible for selecting the right CSS class to apply to
each panel based on the current display mode of the page.

.lzv { float: left ; width: 20% ; }

.lz { display: none ; }

.rzv { width: 100% ; }

.rz { float: right; width: 77% ; }

private void ToggleEditorZone() {

 WebPartDisplayMode mode = this.WebPartManager1.DisplayMode;

 bool displaySidePanel = (
 (mode == WebPartManager.EditDisplayMode &&
 this.WebPartManager1.SelectedWebPart != null)

Listing 8.6 CSS styles are used to control the placement and visibility of the

 tool zone and the main layout region.

Create the CSS
classes for the panels

Check whether to
display the side panel
246 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

 (mode == WebPartManager.CatalogDisplayMode)

 (mode == WebPartManager.ConnectDisplayMode)
);

 if (displaySidePanel) {
 this.container.Attributes.Add("class", "rz");

 this.toolpanel.Attributes.Add("class", "lzv");
 } else {
 this.container.Attributes.Add("class", "rzv");
 this.toolpanel.Attributes.Add("class", "lz");
 }
}

The CSS classes manage the visibility of the panels when they are in their maximized
state and in their minimized state. For example, when the toolpanel is visible, it is
assigned the lzv (Left Zone Visible) class, which gives it a width of 20% and floats the
DIV to the left of screen. At the same time, the container panel is given the rz class,
which floats it to the right and gives it a width of 77%. When the toolpanel is hid-
den, its display is set to none and the container panel is given a width of 100%. All of
this gives us exactly the effect that we want.

The server-side code simply checks the current display mode for the page and
then toggles the class attributes for the panels accordingly.

Run the application and observe the behavior of the page when the toolpanel is
visible, and also when it is closed. Notice when the toolpanel is hidden, the container
panel expands to fill the entire page; and when the toolpanel is visible, the container
panel contracts so that the tools are displayed on the left side of the page.

The features we’ve discussed so far in this chapter are all tools that customers are
likely to expect when you are creating portals for them. The reason that customers
will expect them is because they are fairly standard across major portals today.

Another portal feature we haven’t touched upon yet is the topic of tool zones dis-
played within their own dialog windows; that is, they pop up over the main content of
the page and are displayed within their own window. You can see examples of this
when you edit web parts on the http://my.msn.com portal. This feature is also
included in the 2006 version of SharePoint, where Microsoft has implemented a pop-
up version of the web parts gallery. Due to the popularity of these portals it is highly
likely that customers will also want to see the tool zones appearing within pop-up dia-
logs too. Therefore, in the next section we will learn how to implement such a feature.

8.5 ADDING A CATALOGZONE DIALOG

Using dialog windows to contain tool zones is an advanced topic because it requires
inter-window communication between the window containing the main page and

Set the CSS attributes
on the panels accordingly
ADDING A CATALOGZONE DIALOG 247

http://my.msn.com

the dialog window. In this section we will create a dialog window that displays cata-
logs which allow a user to add web parts to a specific zone. The steps involved in cre-
ating the catalog dialog are

• Create the catalog dialog page.

• Populate catalogs.

• Display the catalog dialog.

• Communicate between the dialog and the page.

• Dynamically load the assembly and add it as a web part.

For our example we’ll create a pop-up catalog that behaves in the same way as the gal-
lery featured in the next version of SharePoint. This means each zone on the page will
contain a link that allows users to launch the catalog dialog. It also means that any
web parts the user selects within the catalog dialog will be added to the zone the dia-
log was launched from. Figure 8.12 shows how the catalog dialog will appear when
displayed in a browser.

Figure 8.12 shows the catalog dialog displayed in its own window with three gallery
tabs visible: Text, Miscellaneous, and Site. When the user clicks on any of these tabs,
a list of web parts for that category is displayed underneath the tabs. When the user
clicks on a web part, it is added to the zone that launched the catalog dialog window.

The data for the categories and web parts contained within them will come from
an XML configuration file that allows us to group web parts and, importantly, to
specify the fully qualified class name of each web part. The XML file is named Cata-
logData.xml and contains the entries shown in listing 8.7.

Figure 8.12 When the Add To This Zone button is clicked, a pop-up catalog

dialog is used to present the user with a list of web parts that can be added.
248 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

<?xml version="1.0" encoding="utf-8" ?>
<catalogs>
 <catalog displayName="Text">
 <webpart displayName="Task Notes"
 typeName="AW.Portal.Web.SharedWebParts.TaskNotes" />

 <webpart displayName="Text Web Part"
 typeName="AW.Portal.Web.SharedWebParts.TextWebPart" />
 </catalog>
 <catalog displayName="Miscellaneous">
 <webpart displayName="News Web Part"
 typeName="AW.Portal.Web.SharedWebParts.NewsWebPart" />
 </catalog>
 <catalog displayName="Site">
 <webpart displayName="Favourites"
 typeName="AW.Portal.Web.FavoritesWebPart" />
 </catalog>
</catalogs>

The CatalogData XML file specifies a collection of catalogs with a given display
name, and also specifies that each catalog contains a collection of web parts. At run-
time we’ll display each of the catalogs as a tab; and when the user clicks on a tab, the
web parts for that catalog will be displayed as links which the user can select to add
that web part to a zone.

To get started with the development of this feature, let’s add a new web form
named CatalogDialog.aspx that will act as the catalog dialog to the project.

8.5.1 Displaying catalogs

In figure 8.12, the button that launches the catalog dialog is displayed at the top of
the zone. This button is rendered in the Header of each zone, launches the dialog,
and passes the dialog window the parameters that can be used to identify which zone
launched the catalog dialog.

The easiest way to display the button at the head of each zone is to override the
RenderHeader method of our custom web part zones. Listing 8.8 shows us how to
render the button from within the RenderHeader method.

protected override bool HasHeader {
 get { return true; }
}

protected override void RenderHeader(HtmlTextWriter writer) {

 HtmlInputButton b = new HtmlInputButton();

Listing 8.7 Using an XML file to store the list of web parts for our catalog dialog

 means that new web parts can easily be added at runtime.

Listing 8.8 The render logic for the zones is changed to include the button that

 is used to launch the pop-up catalog dialog.
ADDING A CATALOGZONE DIALOG 249

 b.ID = "mybutton1";
 b.Value = "Add To This Zone";

 ClientScriptManager cs = this.Page.ClientScript;
 string postbackReference = cs.GetPostBackEventReference(

this,
"catalog:[[WEBPART]]"
);

 b.Attributes.Add(
"onclick",
string.Format(

"DisplayDialog(\"CatalogDialog.aspx?postbackReference=

➥{0}\")",
postbackReference
)

);
 b.RenderControl(writer);
 writer.WriteBreak();

}

For the code in the RenderHeader method to run, we must first override the Has-
Header property of the WebPartZone control and ensure that it returns true. When
a user clicks on the Add to Zone button, a client-side JavaScript function named
DisplayDialog is called; and the URL of the catalog dialog page is passed as an
argument with a postback reference embedded within the querystring of the URL.
Notice that the postbackReference value is obtained by calling a method named
GetPostBackEventReference from the ClientScriptManager on the page.
Calling this method will return a string that can be invoked from within the browser
to force a postback to occur. In the code in listing 8.8 the returned string will look
like the following snippet:

__doPostBack('ctl00$Main$LeftZone', 'catalog:[[WEBPART]]')

When this string is executed in the browser, the control that appears as the first argu-
ment of the __doPostBack method will receive the postback notification on the
server and the second argument will be passed as the postback arguments. The client-
side JavaScript method named DisplayDialog that is launched when the user
clicks the button is shown in listing 8.9.

function DisplayDialog(url) {
 var opts =

 "width=300,height=250,resizable=yes,status=no,scrollbars=yes" ;

Listing 8.9 JavaScript is used to invoke the pop-up catalog dialog from within

 the client’s browser.
250 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

 var hwnd = window.open(url, “winname”, opts) ;
 if((document.window != null) && (!hwnd.opener))
 hwnd.opener = document.window ;
}

This JavaScript function simply uses the window.open function to launch a new
window with the dimensions and options specified. In our case, we are specifying that
the window should be 300 pixels wide and 250 pixels high, that it should be resizable,
and that the scrollbars should be present if necessary. The URL of the CatalogDia-
log is passed in with the postbackReference embedded within the URL as we
specified in our server-side code.

8.5.2 Displaying web parts

The catalog will be displayed using a Repeater and displaying each catalog using a
LinkButton server control. When the user clicks on one of these LinkButtons, a
postback will occur, and we will use the link that was clicked to set the selected cata-
log. At this time we’ll use the selected catalog to retrieve a listing of web parts from
our CatalogDialog XML data file. Listing 8.10 shows the Repeater that is used to
display web parts and the server-side code we use to populate the Repeater with web
parts for a selected category.

<asp:Repeater ID="rptWebParts" runat="server"
 OnItemDataBound="rptWebParts_ItemDataBound">

 <ItemTemplate>

 <asp:Label ID="Label2"
 runat="Server"
 Text='<%# XPath("./@displayName") %>'
 />

 </ItemTemplate>

</asp:Repeater>

void BindWebParts() {

 XmlNodeList nodes = null ;

 if (string.IsNullOrEmpty(this.SelectedCatalog)) {
 nodes = _doc.DocumentElement.ChildNodes[0].ChildNodes;
 } else {

Listing 8.10 Web parts are easily displayed by binding XML nodes to a Repeater

 server control.

Data binding
expression to
display web
part name
ADDING A CATALOGZONE DIALOG 251

 XmlNode node =
 _doc.DocumentElement.SelectSingleNode(
 "//catalog[@displayName='" +
 this.SelectedCatalog + "']"
);

 if (node != null)
 nodes = node.ChildNodes;

 }

 this.rptWebParts.DataSource = nodes;
 this.rptWebParts.DataBind();

}

In the BindWebParts method we use an XPATH data binding expression to find
which list of web part nodes to select, and we can then bind the resulting Xml-
NodeList returned from that query directly to the rtpWebParts Repeater control.
Something interesting to notice about the binding code in the Repeater control is the
use of the XPath statement. In listing 8.10 we’re using the ASP.NET XPath statement
to evaluate an XPATH expression during the binding operation. This allows us to apply
the displayName of each web part node to the Text property of a Label control.

Although the Label that displays the displayName of each web part is contained
within a hyperlink, we can see that the href attribute for the hyperlink is set to #.
Instead of setting a URL for the hyperlink in the mark-up code, we will set it from
server-side code so that we can format a JavaScript function call and assign it to the
onclick attribute of the hyperlink instead. Listing 8.11 shows code that will run
during the ItemDataBound event of the Repeater control and dynamically set the
JavaScript behavior for the anchor based on the value of the typeName attribute for
each web part node in the list.

protected void rptWebParts_ItemDataBound(
object sender, RepeaterItemEventArgs e)

{

 XmlNode node = (XmlNode) e.Item.DataItem;
 string typeName = node.Attributes["typeName"].Value;

 HtmlAnchor btn = (HtmlAnchor)e.Item.FindControl("clickme");
 btn.Attributes.Add(
 "onclick",
 "CloseCatalogDialog(\"" +
 this.hdnPostBackReference.Value + "\", \"" +

Find the selected
category node

Assign its child nodes
to a local variable

Bind to the
data repeater

Listing 8.11 As the XML nodes are bound to the repeater, JavaScript is inserted

 to the hyperlink that allows our users to select the web part add it

 to their page.
252 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

 typeName + "\")"
);
}

The code in listing 8.11 gets a handle to the underlying XmlNode being bound to each
row of data by using the DataItem property of the Item being bound. The DataItem
property we access from the RepeaterItemEventArgs is an instance of the data
item being bound to the row, and we can simply cast it directly to the type of data being
bound. In this case, because we initially bound our Repeater to an XmlNodeList, we
can be sure each item in that list will be an XmlNode. Once we have a reference to the
XmlNode, we simply grab the typeName from the node and use it to add a client-side
JavaScript function named CloseCatalogDialog to the hyperlink.

We are almost there. All that remains is for us to create the CloseCatalogDia-
log JavaScript function which will receive the information from the pop-up dialog
and to pass that information back to the server so the portal framework can add the
web part to the page.

8.5.3 Communicating between web pages

The CloseCatalogDialog function is a client-side JavaScript function that accepts
two arguments. The first argument accepted by the function is the original post-
backReference string that was passed into the catalog dialog window by the button
in the header of the zone to which we are adding web parts. The second argument of
the CloseCatalogDialog function is the value that appeared in the typeName
attribute for the web part in our CatalogDialog XML data file. Listing 8.12 shows
the CloseCatalogDialog function.

function CloseCatalogDialog(postbackReference, returnValue) {

 if(window.opener) {
 window.opener.DoCatalogPostBack(postbackReference, returnValue) ;
 window.opener.focus() ;
 }

 self.close() ;
}

The CloseCatalogDialog function simply checks the window.opener property
to see whether the window that opened the catalog dialog is still open and, if so, it calls
another function named DoCatalogPostBack within that window. The DoCata-
logPostBack function is the piece of code which will force the postback to occur in
our original window. After calling DoCatalogPostBack the CloseCatalogDialog

Listing 8.12 JavaScript is used to communicate the web part selection from

 within the dialog back to the calling page.
ADDING A CATALOGZONE DIALOG 253

function simply closes the catalog dialog window by calling self.close(), which
causes the window to close. The following code snippet shows the logic within the
DoCatalogPostBack function:

function DoCatalogPostBack(postbackReference, returnValue) {
 eval(postbackReference.replace("[[WEBPART]]", returnValue));
}

Here you can see that the string [[WEBPART]] is replaced by the typeName of the
web part that was clicked on. The [[WEBPART]] text in our original postbackRef-
erence string was simply a marker that would be easy to find and replace, so that’s
what we are doing here. After the replacing, the postbackReference string will
look something like this:

__doPostBack('ctl00$Main$LeftZone', 'catalog:TYPENAME OF SELECTED WEB PART')

This string is passed to the JavaScript eval method, which essentially forces execu-
tion of the string to occur; and when the string is executed, the client-side ASP.NET
JavaScript function named __doPostBack is fired. The __doPostBack function is
the piece of code sitting behind all server controls that causes a postback and is
responsible for telling ASP.NET which control caused the postback and also sending
along any event arguments. As we can see in our example, a control named
ct100$Main$LeftZone was the zone that initiated the postback, and the event
argument starts with the characters catalog: and ends with the type name of the
web part to add.

Because ASP.NET knows which control caused the postback to occur, it will send
this event information to the method on the control which implements the IPost-
BackEventHandler interface. This method is named RaisePostBackEvent and
the string it takes as its argument is the same string that was passed as the second
argument of the client-side __doPostBack function. Listing 8.13 shows the code
for the RaisePostBackEvent event handler that is coded within our custom web
part zone, and which receives the notification of the web part being added from the
catalog dialog window.

protected override void RaisePostBackEvent(string eventArgument) {

 WebPartManager wpm =
WebPartManager.GetCurrentWebPartManager(this.Page);

 if (eventArgument.StartsWith("catalog:")) {

 try {
 string[] argParts =
 eventArgument.Split(

Listing 8.13 We determine which web part the user is adding by inspecting the

 postback event arguments and then use the WebPartManager to

 add that web part to our list of parts for the zone.
254 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

 new char[] { ':' },
 StringSplitOptions.RemoveEmptyEntries
);
 Type t = BuildManager.GetType(
 argParts[argParts.Length - 1],
 true,
 true
);

 WebPart wp1 = (WebPart)Activator.CreateInstance(t);

 wpm.AddWebPart(wp1, this, this.WebParts.Count);
 } catch (Exception ex) {
 Console.WriteLine(ex.Message);
 }
 } else {
 base.RaisePostBackEvent(eventArgument);
 }
}

In the RaisePostBackEvent method we check that the eventArgument string
starts with our prefix of “catalog:”. If it does, we know that the string following those
characters will be the name of a class we can create an instance of, and then add to
this zone.

The code for creating the web part control is quite obscure, but we are using the
BuildManager class to create a Type instance from the string which we then pass to
the Activator class and create an actual class instance. Once we have an instance of
the class, it is simply passed to the AddWebPart method of the WebPartManager
so that the web part can be added to the zone.

Phew! That was a pretty intense session, so congratulations for making it through.
The catalog dialog example is definitely an advanced sample, but I’m sure you’ll agree
that the lessons learned were well worth the added complexity. When you look back
at the beginning of the example, you can begin to appreciate the power of the Get-
PostBackEventReference method that provided us our postbackReference.
Having the postbackReference string allows us to easily implement client-side
solutions that don’t require constant and immediate server postbacks to perform
complex tasks. This is true even when those tasks are performed within other win-
dows, and can occur at any time. Keep this lesson in mind when you are asked to dis-
play CatalogZone or EditorZone controls within pop-up dialog windows.

8.6 SUMMARY

The point of this chapter has been to show how features common to modern portals
are implemented. Looking back over chapters 1 through 7, you can now understand
that the first six chapters were designed to provide a basic understanding of the main
building blocks of portals and how they interact with one another. Chapters 7 and 8
SUMMARY 255

showed you how to apply the theories from the first part of the book to real world
solutions. It is the hands-on experience gained in these last two chapters that will be
invaluable when you are asked to create portals of your own.

Clients who ask you to build a web portal will expect to see not only the common
portal building blocks—such as having web parts and zones—but the look-and-feel
of prominent portals on the Internet. Because of these client expectations, learning
these advanced techniques and understanding how to implement common portal
behaviors will add some much needed value to your toolbox of development tricks.
256 CHAPTER 8 USEFUL PORTAL CUSTOMIZATIONS

C H A P T E R 9

Portal management

9.1 Introduction 257
9.2 Preparing for deployment 258
9.3 Recovering from errors gracefully 268
9.4 When all else fails 271
9.5 Summary 281
9.1 INTRODUCTION

It seems like ages since we started our journey into the world of web parts and portals
and we’ve covered a lot of ground along the way. Having taken on the challenge of
creating a web portal for the Adventure Works business, we set about liaising with the
end-users of the portal so that we could understand their requirements and ensure
that we were building suitable features for them. Well, the good news is that our work
is almost complete and soon it will be time to deploy the code onto the company’s
web server so the HR employees can begin using their new portal application. Before
we can deploy our portal though, we need to start the planning that will help us to
decide how the portal will be deployed. In addition, we need to work out how to sup-
port the portal after it has been deployed.

By the end of this chapter, we will not only have deployed our portal, but we will
also have set a strategy for effective management of the portal when it is no longer
under our control. Having this strategy in place frees us to be creative in chapter 10,
when we look at the newer areas of portal development that are emerging.

When we build software applications, we always go through the well-known Soft-
ware Development Lifecycle (SDLC) process. The SDLC defines the steps and pro-
cesses that we must pass through to create quality software applications. This is
257

essentially a linear progression from planning stages though to development, finish-
ing with the testing and deployment stages. Because of the linear nature of the SDLC,
it is also commonly referred to as the “lifecycle” of application development.

While the majority of the tasks we’ve embarked upon so far have been associated
with the development stage of the lifecycle, we must now turn our attention to the
last two phases of the SDLC lifecycle—testing and deployment.

So what exactly will happen when our application leaves the development envi-
ronment, and what can we do to ensure that we are able to manage and provide sup-
port for the portal when it leaves our hands? This chapter answers those questions.

9.2 PREPARING FOR DEPLOYMENT

Picture this situation: we’ve finished developing our portal application, so we deploy
the application files onto the company’s servers and release it to the users in the HR
department. For the first week everything goes according to plan and, aside from a
few requests for enhanced functionality, there have been no major hiccups and the
application is running smoothly. However, in the second week, we start getting
phone calls from the users complaining that, at times, our application seems to run
slowly and sometimes stops working altogether.

This is the worrisome scenario we face every time we deploy our applications into
a production environment. How will we diagnose our application to track down an
obscure and hard to locate bug? You might think we could simply run the code in
our development environment and observe the bug there by using debugging tech-
niques, but remember that this particular bug took a week to begin showing its beady
eyes. In reality there’s no guarantee that the bugs that affect our applications in one
environment will be reproducible in another environment, because many factors
often differ between environments. For example, we typically develop our applica-
tions on a machine running a desktop operating system such as Windows XP; but
when deployed, these same applications run on a machine running a server operating
system such as Windows 2003 Server. In reality, there are hundreds of factors that
vary between our development environment and the environments that we deploy
our code in.

Of course when our portal is in the development phase of the SDLC lifecycle, it is
easy to diagnose the cause of errors occurring in the application, because the code is
running on our development machine. In addition, we can use the debugging tools
in Visual Studio 2005 to connect to the running application and step through the
execution of a page to locate errors and attain the information necessary to help us
track down the cause of problems. We saw how to attach the Visual Studio debugger
to a web page and view the state of variables in chapter 2. Recall that we used the
debugger when we attached it to a web page to look at the state of a GenericWeb-
Part at runtime. However, as mentioned, things are not so simple when our applica-
tions are beyond reach.
258 CHAPTER 9 PORTAL MANAGEMENT

Let’s now take a step into the world of application monitoring where we can find
out what tools are at our disposal for diagnosing and tracking down errors when our
applications are deployed. On this trek, we’ll see two things. First, we use code
instrumentation to diagnose existing problems. And second, there are ways to moni-
tor the health of the applications so that we might even detect errors before they actu-
ally occur.

9.2.1 Code instrumentation

To assist in the task of tracking down bugs in applications, we can add code that will
log information about our application when it is running. This practice of adding
logging information is known as instrumenting our code. We’ll now take a look at
the Trace class in the .NET Framework which can be used to display diagnostic
information about the state of our code at runtime. We’ll also see how ASP.NET pro-
vides built-in support for optionally displaying this diagnostic information at the
bottom of each page. Displaying tracing information within a page provides a sim-
ple, interactive debugging experience when we are looking for problems in our code
at runtime.

The whole point of instrumenting code is to get help diagnosing problems when
they arise in our applications. When we add instrumentation it is for the purpose of
understanding what’s happening in our code in a quantitative way, without having to
run it on our own machine. By instrumenting our code and logging the results to an
output file or database, we can then analyze the data to diagnose the cause of prob-
lems and then work out how to take corrective action.

ASP.NET provides us with the Trace class for instrumenting our code using trace
statements. Trace class also allows the output of those statements to be written to a
specific target location such as a log file, the Windows Event Log, or even to simply
be displayed at the bottom of the screen. In the following snippet of code, trace state-
ments are used to send messages to the default tracing output location to record when
code enters and leaves the AddHyperlink method in our FavoritesWebPart:

public void AddHyperlink(HyperlinkData hyperlink) {

 HttpContext ctx = HttpContext.Current;
 ctx.Trace.Write("Entering AddHyperlink: " + hyperlink.URL);

 ... method code here

 ctx.Trace.Write("Exiting AddHyperlink");
}

The Trace can be accessed directly from code within our page, but for code con-
tained within controls such as our FavoritesWebPart we must first get a handle to
an instance of the current page context and access the Trace instance directly from
the context object. The Trace class writes the output of our trace statements into
PREPARING FOR DEPLOYMENT 259

objects known as listeners, which take the output and write it to a specific output
device. Once we have tracing statements in our code, we can configure our pages to
have these statements appear at the bottom of the page at runtime. This is useful for
accessing important debug information quickly and is accomplished simply by set-
ting the trace directive of the page to true as shown in the following snippet:

<%@ Page Trace="true" %>

Now when we run a page and add a hyperlink to our FavoritesWebPart, our trac-
ing statements will appear at the bottom of the page as shown in figure 9.1.

In figure 9.1 we see that the tracing output is now being added to the bottom of
our page, and that our tracing statements appear within the Trace Information sec-
tion of that output. By reading this information we can confirm that code entered
and exited the AddHyperlink correctly, and we can also see the text of the hyper-
link that is being added. The From First and From Last columns, appearing in the
tracing output can be used to determine how long it takes each section of code within
the page’s lifecycle to execute. The From First column tells us the time in seconds
since the first trace message was output, and the From Last column tells us how many
seconds have elapsed since the last trace message was output. By reading the output
we can locate code that is slow running and then use our own development environ-
ment to look for ways to improve the performance of that particular piece of code.

Another useful member of the Trace class is the Warn method, which is similar
to the Write method except that its output is displayed in the Trace Information
section in red text. It is customary to use the Warn method to write tracing output for
extreme conditions that our code encounters such as displaying the text of exceptions
that are being handled.

Figure 9.1 With page tracing turned on, tracing statements appear in the

trace information section at the bottom of the web page.
260 CHAPTER 9 PORTAL MANAGEMENT

For example, in our data access layer code we typically handle exceptions using
try…catch code blocks, such as the one shown in the following snippet of code:

try {
 ... attempt an operation here
} catch(Exception ex) {
 ... catch any exceptions here
} finally {
 ... perform clean-up tasks here
}

Using a try…catch…finally block ensures that any exceptions that might occur are
trapped, and therefore do not cause the execution of our page to fail. Catching excep-
tion information also helps us to ensure that sensitive information such as a connec-
tion string is not displayed on the page to our users. For example, if there were a
problem with one of the stored procedures that we wrote for our portal, we wouldn’t
want users to see that information displayed on the web page, but we would need to
write it out in a tracing statement so we could know to fix the problem. To do this we
can add a Trace.Warn call to the catch block to display details about the exception
as shown in listing 9.1:

try {

 ... method code here

} catch (Exception ex) {

 HttpContext ctx = HttpContext.Current;
 ctx.Trace.Warn(ex.ToString());

}finally {
 ... perform clean-up tasks here
}

Now when an exception is thrown we will be able to view a detailed message about
the cause of the exception in our tracing output. For example, we might forget to cor-
rectly configure our AdventureWorks connection string in the configuration file. If
so, when we deploy the application, our web parts will appear on the pages, but they
will not display any content. When we view the Trace output for the page, the exact
nature of the problem will be revealed to us as shown in figure 9.2.

Now when we run the page with tracing turned on, we can clearly see that the rea-
son our web parts are not displaying any content is because we haven’t added a con-
nection string configuration setting named AdventureWorksConnectionString
to our web configuration file.

Listing 9.1 Using Trace.Warn will cause statements to appear in red text within

 the tracing output, and is the standard to use when instrumenting

 exceptions.
PREPARING FOR DEPLOYMENT 261

Seeing tracing in action here makes it clear how useful it is as a tool for detecting the
source of problems in our applications. As for prescriptive guidance about where to
place tracing statements within an application’s code, the obvious place is to find the
strategic locations most likely to cause problems at runtime, and target them so we
can work out how to diagnose those errors when they occur. At a minimum, I would
suggest instrumenting the following code:

• Exception handling blocks

• Calls to external systems which may be expensive, so that we can monitor how
long those operations are taking

• Calls to complex business logic operations to help detect erroneous logic

There are many additional topics about managing tracing within our applications
worthy of investigation. One such topic is configuring listeners so that the output of
tracing statements is directed to areas other than the bottom of the page—such as the
Event Log or into a database. As such I highly recommend reading up on ASP.NET
Tracing to learn more about options that exist to help with diagnosing problems in
web applications.

9.2.2 Health monitoring

Tracing is certainly useful when diagnosing issues that already exist within our appli-
cation, but ideally we’d like to be a little more pro-active. We’d like to monitor the
application in order to detect certain types of issues before they actually become
problems. This activity is known as Health Monitoring and involves keeping track of

Figure 9.2 This trace output contains the text for two configuration exceptions,

which is the result of tracing code contained within the core ASP.NET code.
262 CHAPTER 9 PORTAL MANAGEMENT

performance counters in code, and viewing these vital statistics periodically to keep
an eye peeled for signs that errors are occurring.

Typical use

ASP.NET 2.0 contains an event-based health monitoring system known simply as
Health Monitoring that we can tap into to keep track of the health of our applica-
tions. We can use the Health Monitoring system to monitor the health of our appli-
cations and send notifications as thresholds when certain types of events are raised.
For example, periodically the ASP.NET process will be forced to recycle, which will
trigger an application restart. Most of the time, these restarts are expected. Here’s an
example: an administrator changes a web configuration file and thereby restarts the
application. However, there are other times when application restarts are symptom-
atic of an application experiencing extreme difficulty. In this case, we want to receive
notifications about the events. For instance, large numbers of application restarts are
a typical symptom that a denial-of-service attack is taking place. Using the Health
Monitoring service we could configure our application to listen for application
restarts, and configure a rule that would cause a notification to be sent after a certain
threshold is breached within a given time.

Monitoring system is highly configurable, and therefore allows us to choose which
logging provider to use as the output of the notification alert. Table 9.1 displays a list
of the standard logging providers configured to work with ASP.NET applications, and
details where they target their output:

In addition to the standard logging providers listed in table 9.1, we can also create our
own custom providers. Even more, we can extend and customize the Health Monitor-
ing system at a very granular level. In the next section we’ll take a look at the two most
common areas of extensibility with the Health Monitoring system: Custom Providers
and Custom Events. While learning about these topics we’ll also take the opportunity
to learn how to configure the Health Monitoring system for our application.

Table 9.1 Standard logging providers that are provided for the Health and Monitoring service
in ASP.NET.

Provider Class Implements an event provider that …

System.Web.Management.EventLogWebEvent-
Provider

Logs ASP.NET health-monitoring events into
the Windows Application Event Log

System.Web.Management.SimpleMailWeb-
EventProvider

Sends e-mail for event notifications

System.Web.Management.SqlWebEventProvider Saves event notifications to an SQL database

System.Web.Management.TraceWebEvent-
Provider

Sends ASP.NET health-monitoring events as
trace messages

System.Web.Management.WmiWebEvent-
Provider

Maps ASP.NET health-monitoring events to
Windows Management Instrumentation
(WMI) events
PREPARING FOR DEPLOYMENT 263

Custom providers

The main reason for creating a custom logging provider is to handle situations when
there are specific requirements for how notifications should be delivered. We’ve seen
that, for common notification sinks such as the Windows Event Log, Email, or a SQL
Server database, there are already pre-built providers available, but there will also be
times when we need to target other types of notification consumers—such as a mobile
phone device. When we are targeting a mobile device, we could create a logging pro-
vider that would receive notifications of critical behavior and have it send alerts to the
cell phone of an application administrator to advise him that things are not quite right.
When we need to target a notification consumer that is not supported by the standard
logging providers listed in table 9.1, we need to write our own provider and add to it
the logic for dispatching the notifications to the device we are targeting.

We create a custom logging provider by creating a class that derives from the
WebEventProvider class and overriding the ProcessMessage method. We place
our custom logic for dispatching the event notification in the ProcessMessage
method. It is this method that will be called by ASP.NET whenever an event that is
mapped to our provider is fired. This method receives an argument named
raisedEvent, which contains information about the Health Monitoring event that
occurred. This information includes the event type, event code, and a message
describing the event. Once we have created a custom logging provider, we can config-
ure it for use via the provider’s element of the healthMonitoring section of the
web configuration file, as seen in the following code snippet:

<healthMonitoring enabled="true">
 <providers>
 <add name="MySmsProvider"
type="SmsWebEventProvider,SmsWebEventProvider" />
 </providers>
</healthMonitoring>

In this snippet we are telling the Health Monitoring system that a custom event pro-
vider named MySmsProvider is available for use within the application.

Events

Notifications are dispatched to the logging providers through events. For example,
when an ASP.NET application is restarted, an application restart event is raised by
ASP.NET and handled by whatever logging provider is configured to handle events of
that kind. If the SqlWebEventProvider was configured as the current provider for
application restart events, an entry would be written into an SQL Server database each
time the restart count reached a threshold that we had configured for the application.

The Health Monitoring system is composed of a large hierarchy of standard
events that are raised by ASP.NET as it goes about the job of processing web requests.
These events are broken down into the following categories: Request, Error, Audit,
and Miscellaneous. In addition to the standard Health Monitoring events, we can
264 CHAPTER 9 PORTAL MANAGEMENT

also create custom events to notify the Health Monitoring service of things that we
want to keep an eye on in our applications. You configure which events should be
handled within the application through the eventMappings element of the
healthMonitoring section of the web configuration file, as seen in the following
code snippet:

<healthMonitoring enabled="true">
 <eventMappings>
 <add name="WebServiceCallEvent"
 type="ExternalCallWebEvent, ExternalCallWebEvent" />
 </eventMappings>
</healthMonitoring>

In this snippet we are registering a custom event named WebServiceCallEvent
with the Health Monitoring system. Note that the type of class configured for this
event is a custom class named ExternalCallWebEvent. Listing 9.2 shows the code
for the ExternalCallWebEventClass:

public class ExternalCallWebEvent : WebBaseEvent {

 public ExternalCallWebEvent (string message,
 object eventSource, int eventCode) :

base(message, eventSource, eventCode) { }
}

The WebBaseEvent class that the ExternalCallWebEvent inherits from is the
base class for all Health Monitoring events. We use this custom event by creating an
instance of the ExternalCallWebEvent class whenever we detect certain condi-
tions in our application and then calling the Raise method of the WebBaseEvent
class. The following snippet shows how to raise an ExternalCallWebEvent event
in code:

ExternalCallWebEvent e = new ExternalCallWebEvent(
 "Some notification message here",
 this,
 WebEventCodes.WebExtendedBase + 1
);

e.Raise();

Judging from the name of the class, you can imagine that we might typically raise
this particular custom event in response to an abnormal condition relating to mak-
ing a call to another website. The example of Health Monitoring included in the
Adventure Works sample for chapter 9 is based on a web part called OPMLWebPart.
Figure 9.3 shows a picture of how the OPMLWebPart appears when displayed in a
browser at runtime.

Listing 9.2 By creating and raising custom events, we can get fine-grained

 control over our health monitoring activities.
PREPARING FOR DEPLOYMENT 265

The OPMLWebPart allows a user to configure a URL to third-party site and have an
OPML formatted XML file returned from it. Making a call to another website is cer-
tainly something we’d want to keep our eye on. Imagine the case when the third-party
site takes a long time to respond to our requests, or worse still, stops responding alto-
gether. In such a case we’d want to be notified so that we could take corrective action
before our users start reporting errors from our application. Within the code for the
OPMLWebPart, health monitoring code records the time it takes to receive a response
from the third-party site, and if it is longer than two seconds, the web part starts rais-
ing ExternalCallWebEvent health events. This code can be seen in listing 9.3.

XmlDocument tmp = new XmlDocument();
Stopwatch watch = new Stopwatch();

watch.Start();
tmp.Load(this.OpmlPath);
watch.Stop();

if (watch.ElapsedMilliseconds >= 2000) {
 ExternalCallWebEvent e = new ExternalCallWebEvent(
 string.Format(
 "The call to {0} took {1} milliseconds to complete.",
 this.OpmlPath,
 watch.ElapsedMilliseconds
),
 this,

Figure 9.3 The OPMLWebPart reads an OPML file from an external website.

Calls to external resources are ideal candidates for health monitoring.

Listing 9.3 By monitoring the time it takes to load the OPML file we can raise

 an alert when it starts taking excessive time to access the external

 resource.

Check time elapsed for
making external call
266 CHAPTER 9 PORTAL MANAGEMENT

 WebEventCodes.WebExtendedBase + 1
);

 e.Raise();

}

return tmp.OuterXml;

In the code we create an instance of the Stopwatch class to keep track of how long it
takes to load the XML from an external site. If that time exceeds 2000 milliseconds,
we format a health monitoring event and raise it from within the system. The Stop-
watch is a special diagnostic class that can be used to perform very accurate timings
from within code, and is designed to be used especially for measuring elapsed times.

For our custom event to be logged, it must first be sent to a provider—which in
our case will be the MySmsProvider configured earlier. To do this we configure the
Health Monitoring service to handle our WebServiceCallEvent, and tell it which
provider to use as the sink for those events. The following snippet shows how to con-
nect our custom event to the SMS provider:

<healthMonitoring enabled="true">
 <rules>
 <add name="My SMS Rule"
 eventName="WebServiceCallEvent"
 provider="MySmsProvider"
 />
 </rules>
</healthMonitoring>

The rule we have configured here connects our custom WebServiceCallEvent to
the SMSProvider so that whenever the WebServiceCallEvent is raised within
our application, it will be sent to the SMS provider and our administrators will be
alerted that something is wrong and the application requires their attention.

Health Monitoring is a substantial topic and this section has only scratched the
surface. I highly recommend spending some time to research Health Monitoring and
other techniques for keeping tabs on applications. Just remember that when an appli-
cation is in a production environment and it starts to misbehave, you will be grateful
that you took the time to instrument your code appropriately.

Of course, no matter how hard we try to detect errors ahead of time there will still
be problems. We need to have a way to manage those sticky situations, so that the
user is not stopped in his tracks with no options for recovery. After all, who wants to
take the managing director’s midnight phone call when he’s grumbling about a bro-
ken web page? In the next section we will look at various strategies for assisting users
when all is not going according to plan and errors arise.

Raise custom health
monitoring event
PREPARING FOR DEPLOYMENT 267

9.3 RECOVERING FROM ERRORS GRACEFULLY

Earlier in this chapter we learned that we could instrument our code to help detect
the root cause of problems, and saw how to use Health Monitoring as an early warn-
ing system to alert us when our application’s health is waning. With all of these safety
measures in place, we can now deploy our application, comfortable in the knowledge
that we can detect errors before our users do, right? Well, unfortunately this is not the
case, and in reality even the best applications succumb to errors at times. What we
need is a way to handle errors when they occur at runtime and provide a way for our
application to handle these errors gracefully, so that users are not left looking at an
ASP.NET Error page such as the one shown in figure 9.4.

This is typical of what users see when something goes wrong with an ASP.NET page
and an unhandled exception occurs. Displaying such a page to users is disconcerting

Figure 9.4 The dreaded ASP.NET error page will be displayed by default

whenever an unhandled exception gets thrown.
268 CHAPTER 9 PORTAL MANAGEMENT

because the page shows code, detailed error messages, and other technical information
that users would simply not understand. Showing this level of technical information
could be even worse if it were viewed by a visitor with mischievous intentions—such
as a hacker. A hacker viewing technical details shown in figure 9.4 might gain valuable
insight into database connection strings and other information that could then be used
to hack the website. Having said all that, the ability to view such detailed information
about errors is very useful when we are developing the application, as it helps us find
errors and apply fixes faster. So we need to have the ability to flip a switch and have this
page displayed in the development environment, but to display a custom error page
when the application is deployed into other environments. Thankfully, ASP.NET pro-
vides us with this ability.

9.3.1 Providing a custom error page

To display a custom error page whenever unhandled errors occur, we can simply use
the configuration settings of our application to tell ASP.NET which page to redirect
to when errors occur. We do this by using the customErrors configuration element
in the web configuration file. The following snippet shows an example of the cus-
tomErrors element being set so that ErrorPage.aspx will be displayed whenever
an unhandled error occurs within the application.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <customErrors mode="On"
 defaultRedirect="ErrorPage.aspx" />
 </system.web>
</configuration>

In this example, the mode attribute is set to On while the defaultRedirect
attribute contains the URL of the page where we want to display custom error infor-
mation. Typically, such a page would inform the users that an error has occurred and
that the system administrator has already been notified. Finally, it is useful to provide
users with a link from this page that allows them to navigate back into the site—such
as a link to the home page or a link back to the page that the users have just come
from. Listing 9.4 shows a sample custom error page that tells users what happened.

<html>
 <body>
 <p>
 We are sorry for the inconvenience but an error has occurred. A
detailed error
 message has been sent to the system administrator. Please

Listing 9.4 A standard page can be used to display to users in place of the

 dreaded error page. This page can contain useful information

 and provide users with a way to continue their browsing

 experience.
RECOVERING FROM ERRORS GRACEFULLY 269

 click here to
return to the page
 that you were just at, or click here to
go our Home Page.
 </p>
 </body>
</html>

When critical errors occur on our website, users will no longer be subjected to the
confusing and highly technical standard ASP.NET error page. Instead, users are
shown a page with which they are more familiar, and which helps them to recover
and continue using our application. In the case of the page shown in listing 9.4, we
have explained that an error has occurred and we are providing users with links which
will allow continued use of the site. However, even though we’ve provided users with
a more friendly error page, we still need a way to log the failure and notify an admin-
istrator that it has occurred so that we take steps to fix the problem behind the failure.

9.3.2 Logging the failure

The simplest place to put notification code is in the Global Application class. To add
a Global Application class to our application, we simply right-click on the Visual Stu-
dio solution tree from within our web application and use the Add New Item menu
option to add a new Global Application file to our application. This adds a file
named Global.asax to our project. In the Global Application class, we can write
code that will run when certain application level events occur within the application.
For example, whenever a new page is requested within the application, the Begin-
Request event is fired and we can write code in the Global Application class to han-
dle that event. Likewise, the Global Application class allows us to handle the
Application’s Error event, so we can handle this event and write code that runs when
an unhandled error occurs. Listing 9.5 is an example of how to handle the Applica-
tion’s Error event from within the Global.asax file and use it to send an email to
an administrator notifying them of the error.

void Application_Error(object sender, EventArgs e) {

 Exception ex = Server.GetLastError();

 if (ex != null) {
 string body =
 "The following error has occurred: " + ex.ToString() ;
 string subject = "Application Error.";
 string from = "ErrorHandler@AdventureWorks.com";
 string to = "Adminstrator@AdventureWorks.com";

Listing 9.5 By logging unhandled errors from within the Applicaion_Error event

 handler we can get notifications when unexpected failures occur.
270 CHAPTER 9 PORTAL MANAGEMENT

 SmtpClient mailClient = new SmtpClient("http://localhost");
 mailClient.Send(from, to, subject, body);
 }
}

The code in listing 9.5 uses the GetLastError method of the Server object to
access an instance of the actual error that occurred. Having the underlying exception
object at our disposal provides access to a great deal of information about the error,
such as the message of the exception and also a full stack trace of what was happening
at the time the error occurred. We can use this information to diagnose what might
have caused it.

NOTE There’s an excellent article on MSDN which discusses an extensible strategy
for logging and reporting on errors that can be found at the following URL:
http://msdn.microsoft.com/asp.net/default.aspx?pull=/library/en-us/
dnaspp/html/elmah.asp

Now that our application has logging code, Health Monitoring code, and a custom
error page, you might think that the application will be resilient in all kinds of disas-
ters and that we have little to worry about. But if you’re taking off your shoes to put
your feet up on the desk, take heed of the following scenario.

9.4 WHEN ALL ELSE FAILS

A major selling point of web portals is that they facilitate the creation of modular user
interfaces where we can deploy new web parts any time without having to re-publish
an entire website. We saw this in chapter 8 with the custom dialog catalog, which
allows us to add new web parts to our portal by simply dropping an assembly in the
bin folder and then adding an entry to an XML file. Along with this ease of deploy-
ment comes the danger of deploying web parts that are not fully tested and contain
errors. Think about what it would mean to deploy a web part which included a criti-
cal error and which threw an exception the instant it was added to the page. Once
users added this web part to their pages, they would no longer be able to visit that
page because the error page would be displayed instead. And because the users could
not access their pages, they could not remove the web part. What to do?

We’ve seen in chapters 5 and 6 that the WebPartPersonalization class has a
method which allows us to reset the entire set of personalization data for a user for a
single page by using its ResetPersonalizationState method like so:

wpm.Personalization.ResetPersonalizationState()

So when a user has broken his page, we can fix it by finding a way to load the broken
pages into the current context and then calling ResetPersonalizationState on
the page. There are two issues with this. First, how can we load the page into the cur-
rent context given that it won’t load? Second, users will not be happy losing all their
WHEN ALL ELSE FAILS 271

settings for a page that is heavily personalized, so ideally we need to provide a way
that allows page resets to occur at a more granular level. We’ll now investigate how to
provide the users a self-management facility that allows them to go in and fix their
own broken pages when this type of scenario occurs.

9.4.1 Self-maintenance of web parts

In a presentation at the PDC conference in Los Angles in late 2005, Mike Harder,
who is a Software Design Engineer on the ASP.NET team for the web parts feature,
showed us how to provide user self-management. We’ll now implement Mike’s solu-
tion into our Adventure Works portal. First, let’s summarize the steps a user performs
so that we can see where we are headed.

The user

• Adds a broken web part to his page

• Is instantly taken to a self-help administration page to fix the problem

• Removes the broken web part from the page

• Is returned to the original page and the error web part is no longer present

To implement this solution we will create an administration page that allows users to
fix pages themselves. The page we’ll create will display a list of web parts for a given
page, and will allow the user to delete one or more web parts from that page. Figure 9.5

Figure 9.5

This grid displays all web

parts for a given page and pro-

vides the user with a way to

remove web parts which have

caused the underlying page to

stop working.
272 CHAPTER 9 PORTAL MANAGEMENT

shows the administration page that users will use to remove troublesome web parts
from their pages.

To get things started, add a new page to our portal named WebPartAdminis-
tration.aspx and set it as the custom error page for the application by making the
following customErrors entry in the web configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <customErrors mode="On"
 defaultRedirect="WebPartAdministration.aspx" />
 </system.web>
</configuration>

As we see in figure 9.5, our administration page shows all web parts for a given page
and allows them to be deleted from that page. In order to execute personalization
operations on another page instance, we will be creating a helper class which can
silently and invisibly instantiate a page in the background. Once we have that
instance, we can access the web part manager on the instance to perform personaliza-
tion operations. This helper class will also expose properties that allow us to view the
web parts on the invisible instance. Figure 9.6 illustrates the relationship between the
WebPartAdministration.aspx page and the helper class.

The helper class we create will be called WebPartsAdministrator, and as we
see from figure 9.6 it can create an invisible instance of the web page that caused the
user to arrive at the error handling page. The WebPartsAdministrator helper
class also provides a method named GetWebParts that we can access from the
administration page and use to return a listing of the web parts contained on the page
with the errors. The web parts returned by the GetWebParts method will be bound
to a list and displayed to the user—as shown in figure 9.5.

Figure 9.6 The relationship between our error handling page and the

helper class used to communicate with the page that has errors.
WHEN ALL ELSE FAILS 273

Silently running a web page

The most technically challenging part of this solution lies in creating the logic within
the helper class to silently instantiate the underlying page that contains the errors. Luck-
ily the ASP.NET framework provides us with many useful methods and classes, making
the task quite simple. The first bit of help from ASP.NET arrives when we call the
GetWebParts method of the WebPartsAdministrator class. When GetWeb-
Parts method is called, our helper class creates an instance of a page based on a virtual
path we provide and returns the web parts for that page; this can be seen in listing 9.6.

public static WebPartCollection GetWebParts(
 string path, HttpContext context) {

 Page page =
 (Page)BuildManager.CreateInstanceFromVirtualPath(
 path,
 typeof(Page)
);

 WebPartCollection webParts = null;
 page.PreLoad += delegate {
 webParts = WebPartManager.
 GetCurrentWebPartManager(page).WebParts;
 };

 ExecutePage(page, path, context);

 return webParts;
}

Listing 9.6 shows that the GetWebParts method dynamically instantiates the under-
lying page instance by using the CreateInstanceFromVirtualPath method of
the BuildManager class. This method takes the path of the ASP page that we wish to
create an instance of, and also a type argument, which indicates the base type for the
page class. In our case we are passing the aspxerrorpath that we are passed by the
ASP.NET error redirection, and simply specifying Page as the base class.

Once we have the page instance returned from the BuildManager, we hook the
PreLoad event for the page. Doing this allows us to access the web part manager
instance attached to the dynamic page during its execution so that we can access the
web parts and personalization services from it.

Now that we have an event handler registered for the PreLoad event, we execute
the page and our handler will be called at the appropriate part of the lifecycle of the
dynamic page. In addition, our code will run just as it would when we write event
handlers in the code behind normal pages. The code that executes the page is con-
tained within a private helper named ExecutePage, which is shown in listing 9.7.

Listing 9.6 The GetWebParts method executes a target page and uses a call-

 back to read web parts off of its web part manager instance.
274 CHAPTER 9 PORTAL MANAGEMENT

private static void ExecutePage(Page page, string path,
 HttpContext context) {
 string originalPath = context.Request.Path;
 context.RewritePath(path);

 try {
 context.Server.Execute(page, TextWriter.Null, false);
 } catch {}

 context.RewritePath(originalPath);
}

Notice—the first thing that we do in the ExecutePage method is to rewrite the
path of the request by using the Context.RewritePath method. This ensures that
code within the dynamic page will see the request URL as if the page really was the
page requested by the user. This helps to ensure that the dynamic page runs exactly as
it would for a normal request. After rewriting the path we use Server.Execute to
execute the dynamic page, which processes the target page within the context of the
current page. Notice in our code we are passing in a null TextWriter, so that even
though the dynamic page is executed, it doesn’t display anywhere. We also trap and
gobble up any exceptions so they do not affect our administration page.

At the time the page is executed, it will run through its lifecycle in just the same
way it would if it were being called directly from a browser request. So our event han-
dler will receive a notification when the page is in its pre-loading phase. At that time
we can access all the personalization and web part data directly from the web part
manager in our PreLoad event handler and return them to our administration page
where they will be displayed.

The last thing we do in the ExecutePage method is to rewrite the path of the
request back to the original path, so that the remainder of the requested page will
process in the right context.

The code for deleting a page is very similar to the code we used when we listed
web parts. The only difference is that in our PreLoad event handler we write code
that deletes a selected web part. Listing 9.8 shows the code for the DeleteWebPart
method of our WebPartsAdministrator class.

public static void DeleteWebPart(string path, string ID,
 HttpContext context) {
 Page page = (Page)BuildManager.CreateInstanceFromVirtualPath(
 path, typeof(Page));

Listing 9.7 Executing the page is achieved via a call to Server.Execute which ex-

 ecutes another page within the context of the current page.

Listing 9.8 Deleting a web part is achieved in a manner similar to attaining a list

 of web parts except that different code is run in the PreLoad callback.
WHEN ALL ELSE FAILS 275

 page.PreLoad += delegate {
 WebPartManager webPartManager =
 WebPartManager.GetCurrentWebPartManager(page);
 WebPart webPart = webPartManager.WebParts[ID];
 webPartManager.DeleteWebPart(webPart);
 };

 ExecutePage(page, path, context);
}

Notice that we again use an inline code block as our event handling code for the
PreLoad event by using the delegate keyword in C# and assigning a chunk of code
within curly braces. This form of attaching inline code blocks as event handlers is
called anonymous methods and is an elegant way to attach event handling code with-
out having to write separate methods for handling events. Writing our event handling
code as an anonymous method also allows us to refer to the ID argument passed in to
the DeleteWebPart method directly, which is something that we could not do if
the event handling code was in a separate method.

Databinding in the administration page

Now that we’ve finished the WebPartsAdministrator helper class, we can get to
work on the visual elements in the WebPartAdministration.aspx page we cre-
ated earlier. This page will list the web parts for a given page and allow the user to
delete individual web part items; listing 9.9 shows the mark-up code that we’ll use to
do this.

<p>
 There was an error on <asp:HyperLink ID="TargetPage" runat="server" />.
</p>

<asp:ObjectDataSource EnableViewState="False"
 ID="WebPartsDataSource" runat="server"
 TypeName="AW.Portal.Web.WebPartsAdministrator"
 SelectMethod="GetWebParts"
 DeleteMethod="DeleteWebPart">

<DeleteParameters>
 <asp:QueryStringParameter
 DefaultValue=""""
 Name="path"

Listing 9.9 The methods for obtaining a web part list and deleting web parts are

 encapsulated within an ObjectDataSource which can then be bound

 directly to a GridView, providing the user with a way of working

 with the data.

ObjectDataSource
supports data binding
with business object

Parameters map to
method arguments
276 CHAPTER 9 PORTAL MANAGEMENT

 QueryStringField="aspxerrorpath"
 Type="String" />
 <asp:ControlParameter
 ControlID="WebPartsGridView"
 Name="ID"
 PropertyName="SelectedValue"
 Type="String" />
 <portal:HttpContextParameter

 Name="context" />
</DeleteParameters>

<SelectParameters>
 <asp:QueryStringParameter
 DefaultValue=""""
 Name="path"
 QueryStringField="aspxerrorpath"
 Type="String" />
 <portal:HttpContextParameter
 Name="context" />
</SelectParameters>

</asp:ObjectDataSource>

<asp:GridView ID="WebPartsGridView" runat="server"
 AutoGenerateColumns="False"
 DataSourceID="WebPartsDataSource" DataKeyNames="ID">
 <Columns>
 <asp:CommandField ButtonType="Button" ShowDeleteButton="True" />
 <asp:BoundField DataField="Title"
 HeaderText="Title" SortExpression="Title" />
 <asp:TemplateField HeaderText="Zone">
 <ItemTemplate>
 <asp:Label ID="Label1"
 Text='<%# Eval("Zone.DisplayTitle") %>'
 runat="server" />
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="ZoneIndex" HeaderText="ZoneIndex"
 SortExpression="ZoneIndex" />
 </Columns>
</asp:GridView>

Three controls on our administration page are being used to fetch data and present it
to the user. The first of these controls is a hyperlink control with an ID of Tar-
getPage that is going to display a link back to the page which caused the error.
Users can click on this link when they have removed the errant web part to return to
the previous page. This provides a seamless browsing experience for users as they can

Display web parts using
a GridView control
WHEN ALL ELSE FAILS 277

fix their problem and return to their work without having to manually track an
administration page or make a phone call to resolve their issue.

A GridView control is used to display a grid of all web parts for the target page to
the user and is presented in such a way that the user can see the Name of the web
part, the Zone that contains the web part, its index within that zone, and a delete
button for each web part.

ObectDataSource and command parameter controls

The final control on the page is an ObjectDataSource. This control is bound to the
custom WebPartsAdministration business class that we built, and is configured
to use the GetWebParts method as its SelectCommand and the DeleteWebPart
method as its DeleteCommand. Command parameters are used to tell these methods
where to go for their argument data. The ObjectDataSource control is a specific
type of the new DataSource control and is used to perform two-way data binding
between data sources and data-bound controls. There are also specific DataSource
controls for performing data binding to SQL Server data sources and XML data
sources; however, binding directly to business objects is convenient as it allows us to
ensure that certain business rules can be enforced when dealing with application data.

In the following code segment, notice that the GetWebParts method expects
two arguments and the DeleteWebPart method expects three. Also note how these
are all passed in through command parameters configured within the ObjectData-
Source. In the same code segment, note the flexibility we have with command
parameters for binding to many different targets. Specifically, using these command
parameter objects, we can bind method arguments directly to Querystring values,
Form values, Cookies, Session items, and even Controls on the web page. An exam-
ple is where we bind the ID method argument of the DeleteWebPart method
directly to the SelectedValue property of the GridView control.

In fact, to highlight just how flexible the command parameters are, you may
notice that the HttpContextParameter is a custom parameter class because it has
a control prefix of “portal:” instead of the standard “asp:” control prefix used for the
in-built ASP.NET controls. The following fragment shows the entire code for the cus-
tom HttpContextParameter class:

public class HttpContextParameter : Parameter {
 protected override object Evaluate(
 HttpContext context, Control control) {
 return context;
 }
}

This class simply overrides the Evaluate method of the Parameter class and
returns the HttpContext that it is passed as its output.

The only task remaining in our page is to set the Text and the NavigateUrl
properties of the TargetPage hyperlink, so that users can navigate back to where
they came from, as shown in listing 9.10.
278 CHAPTER 9 PORTAL MANAGEMENT

protected override void OnLoad(EventArgs e) {
 base.OnLoad(e);

 TargetPage.Text = Request.Params["aspxerrorpath"];
 TargetPage.NavigateUrl = Request.Params["aspxerrorpath"]; ;

}

In this code we simply read the value of the aspxerrorpath that is passed to our
page by ASP.NET and set it as the redirect path.

You’ve just seen how to manage personalization data at the level of individual web
parts. It’s now time to take a quick look at the PersonalizationAdministra-
tion class to see how we can work with personalization data at a wider level.

9.4.2 Managing personalization data

The PersonalizationAdministration class contains static members that pro-
vide us with the ability to perform queries over personalization data. Using this class,
we could run queries to determine which users have not used the system recently and
then use that information to decide how to reset their personalization data. This kind
of functionality may be useful for large and active sites that do not wish to retain too
much personalization data for inactive members.

Here’s an example of a query that is used to return all personalization data older
than 200 days:

DateTime inactiveSince = DateTime.Now.AddDays(-200) ;

PersonalizationStateInfoCollection inactiveUserResult =
 PersonalizationAdministration.GetAllInactiveUserState(inactiveSince) ;

A site administrator could run such a query and then use the results to decide which
users should have personalization information deleted. To assist with such a task the
administrator could write another query which allowed her to view all personalization
data for a specific user before she deleted the data for that user. Figure 9.7 shows us how
these queries might look when presented as a couple of administration web parts.

In the first web part, the user can enter the username for a specific user and have a
collection of all his personalization data returned. In the second web part, an inactivity
period can be entered and all personalization data for individual users and paths older
than that date would be displayed in the grid. Notice how the data in the results grid
displays the user’s name and the path of the personalization data, and it also displays
the size of the personalization data for that personalization instance. An administrator

Listing 9.10 Our custom error handling page will receive an argument con-

 tained within the querystring.This can be used to route users

 back to their original location when they have finished admini-

 stering their web parts and have fixed their problem.
WHEN ALL ELSE FAILS 279

might use web parts such as these to locate inactive users for a given path and then
query all personalization data for that user to see whether she has some current person-
alization data instances before deleting that data.

The code for finding the personalization data for a specific user looks like this:

PersonalizationStateInfoCollection userResult =
 PersonalizationAdministration.FindUserState(
 null, UserNameTextBox.Text
);

When the administrator has decided to delete the personalization data for a specific
user, he can simply call the ResetUserState method of the Personalization-
Administration class like so:

PersonalizationAdministration.ResetUserState(null, UserNameTextBox.Text);

The PersonalizationStateInfoCollection class that is returned from the
PersonalizationAdministration queries is a collection of Personaliza-
tionStateInfo instances. The PersonalizationStateInfo class is an
abstract class, and so each of the items will actually be an instance of either the
UserPersonalizationStateInfo class or the SharedPersonalization-
StateInfo class. The PersonalizationStateInfo class itself contains only
three properties useful to us: LastUpdatedDate, Path, and Size. When looping
through a collection of personalization data from a query such as GetAllInac-
tiveUserState, we must therefore cast each item to a UserPersonalization-
StateInfo object before we can get at the Username of the user associated with the

Figure 9.7 Using the PersonalizationAdministration class allows us to run queries

over personalization data and provides a way to perform administrative queries such

as checking on the amount of stale personalization data in the system.
280 CHAPTER 9 PORTAL MANAGEMENT

personalization data. The following code snippet shows an example of how to get at
the UserPersonalizationStateInfo specific properties from a specific Per-
sonalizationStateInfo instance:

((UserPersonalizationStateInfo) userResult[0]).Username;
((UserPersonalizationStateInfo) userResult[0]).LastActivityDate;

It’s these properties that are displayed to the administrator in the bottom grid in fig-
ure 9.7.

9.5 SUMMARY

At the beginning of this chapter we asked this question: how can we support and
manage our web application when it is deployed and no longer directly under our
control? By the end of the chapter, you have the answer. You can choose from a num-
ber of methods to keep an eye on the health of your code. Code instrumentation and
health monitoring are two methods, and creating personalization queries and housing
them within management web parts is another.

Often, instrumenting code and adding management features are unglamorous
tasks. They are seldom found outside of commercial enterprise applications. For this
reason, I wanted to take the time to discuss these practices here and show that with
just a little foresight, a great deal of management capability can be injected into your
applications—even if they are small and being written by a hobbyist!
SUMMARY 281

C H A P T E R 1 0

Into the future

10.1 Introduction 282
10.2 Reflecting on the portal 283
10.3 A world of web portals 284

10.4 Ajax behavior 287
10.5 Introducing Live.com— a modern

mega-portal 299
10.6 Call to action 308
10.1 INTRODUCTION

Working through this book, we’ve seen an idea spring into reality as we added one
feature after another to the portal. At this point we’ve built something quite special—
and possibly something not even possible to envision way back on page 1. Our work
with the portal is finished for now and, as is customary when a milestone such as this
is reached, it’s time to both reflect and look forward. By looking back we can see the
scope of our learning and remind ourselves of the usefulness of each skill and con-
cept. By looking forward we can glimpse the latest round of technologies that are
generating a great excitement in the world of portal development and fuelling major
advancements in the community’s experiences with portals. Witnessing these new
technologies and learning how to implement them, you can build on what you’ve
learned in this book as you dive into the future. The process of looking back as well as
forward will help you understand how future technology meshes with what you’ve
learned and provide a clear picture of where you currently stand within the overall
landscape of portals and web parts.
282

10.2 REFLECTING ON THE PORTAL

In creating the Adventure Works portal we were able to lean on the features of the
ASP.NET portal framework to do most of the heavy lifting. We also saw that when
customizations to the portal were required, the portal framework facilitated those
customizations by being extremely extensible through a wide array of base classes and
interfaces. The next section provides a high-level look at the tasks we accomplished to
bring the Adventure Works portal up and running, and which of these tasks were
provided by the ASP.NET framework.

With the portal framework it’s actually quite easy to build a web portal that uses
nothing but out-of-the-box controls and components, and create an application that
will generate a great deal of interest. In reality, when we create web portals, we are
bound to customer expectations and requirements, so in practice we will nearly
always need to apply the kinds of customizations have learned throughout this book.

Let’s look back at some examples using the portal framework without customiza-
tions and then take a look at some of the areas that required changes.

We leveraged the portal framework by

• using and creating web part verbs

• using and creating connection transformers

• performing authorization checks

• creating custom catalogs

• customizing the loading and storing of personalization data

We extended the framework by

• adding custom editor parts to the EditorZone

• working with complex personalization data types

• customizing WebPartChrome to provide a custom look and feel for web parts

• enabling single-click operations to assist with usability

• creating an approval process for editing personalization data

• performing client-side interactions such as the pop-up catalog dialog

We have now a web portal that provides us with an excellent structure for hosting
web parts. This is actually advantageous because it’s through the use of new custom
web parts that most new features will be added. By building custom web parts that
provide specific functionality, we can add new features quickly, at low cost, requiring
minimal testing, and which have low impact on the rest of the code base.

We’ve completed our web portal and can easily extend it through the use of web
parts into the future. Does that mean that we have nothing more to do on our portal
code base? Are we finished? In software the answer to that question is almost always a
REFLECTING ON THE PORTAL 283

resounding “No.” New technologies and trends continue to spring up at an alarming
rate and so we can probably always plan for a next version (V-Next).

For the remainder of this chapter we’ll spend time looking at the global portals that
exist on the Internet and within businesses as intranet software. Looking at these glo-
bal portals and taking note of the kinds of features they provide to their users, it will
become clear that many of these features are the same as those we’ve added to our own
portal throughout the course of this book. Seeing our features in the context of other
portals can provide added awareness of how certain features are used by users. For
example, in each of the portals we’ll be seeing, users are able to select web parts from
a catalog for addition to their pages. Each portal, however, displays its catalog in a
slightly different manner. Some portals present the user with a catalog that displays as
a dialog window, whereas others have the catalog embedded within the page itself.
Some portals choose to display a very minimal amount of information about the web
parts in the catalog, whereas others display icons and descriptive text. In the case of the
Live.com portal, users can even preview the web part prior to adding it to their page.

When looking at each of these portals notice the features that we implemented
and then compare our implementation to the way these more “worldly” portals
present them. Understanding these subtle differences broadens our understanding of
the feature itself and may even lead us to an epiphany in which we discover a whole
new way to present a feature. Bingo.

10.3 A WORLD OF WEB PORTALS

Over the past few years a number of very large portals have sprung up across the
globe. These large portals cater to an ever-growing consumer base using portals on a
daily basis to reduce the complexity of finding information on the web and to provide
an area for aggregating a common set of services. These portals range from internal
sites used by employees to find and organize information within the enterprise to
external sites used by customers.

To cater to internal portals (intranets) Microsoft has created a product called
SharePoint. Businesses can install SharePoint on an internal server and use it to pro-
vide portal services to their employees. Outside of the enterprise, there has been a
trend by large vendors such as Microsoft, Google, Yahoo, and others to create large
public-facing portals. Typically, these public portals combine web parts and personal-
ization in an attempt to provide a single view of a user’s favorite links, her news, and
her email, which can be accessed from a single portal view.

In just a moment we’ll take a closer look at some of these large public-facing por-
tals, but first I want to briefly discuss SharePoint and explain how some of the fea-
tures we’ve created in this book were inspired by features found in SharePoint.

10.3.1 SharePoint

If you stop to think about how you use and consume data at your workplace, you will
realize that much of the information you use is centered on the projects your team is
284 CHAPTER 10 INTO THE FUTURE

working on. This project-centered information includes Office documents, email
conversations, project schedules, and other collaborative material. SharePoint is
designed to cater to all these types of information by providing a portal that closely
models the project-centric nature of how we work. SharePoint is designed on the
principle that users are members of teams and that the main task of teams is to collab-
orate over documents. Therefore, SharePoint makes it easy to create a team-based
portal and add documents and users to it. A SharePoint portal enables users to collab-
orate over business documents by having tight integration with Microsoft’s Office
document suite of tools.

When users add a document to a SharePoint portal, they can invite other team
members to collaborate on the document by making changes and tracking those
changes over time. While working on documents, users can employ their portal site to
add relevant information that other users can see and that will provide contextual help
when needed. In addition to document collaboration facilities, SharePoint also pro-
vides other useful built-in services that you would expect from an enterprise solution
such as search, notifications, content management, workflow, and reporting. These
services are combined with personalization to create portals rich in collaboration.

As with all portals, SharePoint offers extensibility through the use of web parts.
These web parts can be developed within an enterprise and then deployed alongside
the portal, so that they are made available to all of the company’s users. In keeping
with the business nature of intranet portals, many of the web parts typically developed
for intranet portals are used to expose different views of business data via a reporting
interface, or to perform specific business functions via a forms-based interface. For
example, intranet portals often have a wide array of business reporting web parts that
present information about daily operations as KPI metrics. By having this data avail-
able from their main intranet page, users are instantly able to view important KPI met-
rics such as resource utilization, days lost to work injuries, actual sales versus budgeted
sales data, and so forth. Having this information at their fingertips makes it easy for
business users to gain access to the information they need in decision-making.

When using SharePoint 2007, users will notice the many new features and usabil-
ity enhancements over the previous versions. Some of the features found in
SharePoint 2007 inspired the ones that we added to our portal. For example, the
Common Tasks menu bar we added to the Adventure Works portal is similar to the
menu bar that has been added to SharePoint for launching common tasks. Likewise,
in Version 3 of SharePoint a pop-up dialog catalog has been included to allow users
to quickly add web parts to a specific zone without interrupting their current work.
Finally, in Version 3 users can have different versions of personalization data for web
pages that have been changed. The ability to have multiple versions of personaliza-
tion data is part of a push for SharePoint to include more and more Content Man-
agement features, so that it will become a viable store for all of a company’s
documents, and not merely the project-centric information.
A WORLD OF WEB PORTALS 285

That’s a quick overview of SharePoint and, as we can see, this is a real business
portal with an emphasis on heavy-duty features for performing document collabora-
tion. As I mentioned before, another class of portals exists beyond the company intra-
net. This class of portals is available to the general public and accessible via the public
Internet. While these Internet portals are similar to their intranet cousins because
they offer web parts and personalization, they differ in subtle ways because of the way
they can handle a far greater diversity of requirements.

10.3.2 Internet portals

As it stands today, the public portal landscape is dominated by Internet giants
Microsoft, Google, and Yahoo! But in recent times we see the emergence of new play-
ers making their mark by offering innovative new ways for users to interact with the
portal. Table 10.1 lists the major portals on the Internet today.

The first three portals listed in table 10.1 are based upon extremely large and success-
ful search engines—MSN Search, Google, and Yahoo! One of the reasons that linking
portals with search engines is such a successful formula is because people most often
open a browser to perform a search. These large search companies know that by
tempting us with personalization and other portal features such as a wide array of web
parts, they can entice us to set their portal page as our home page and therefore boost
the usage of their search engines. At this level of portals it’s like a game of follow-the-
leader, because no sooner does one player offer a new feature than it appears in each
of the others. Over the past couple of years, this race to have the coolest features has
provided fertile ground from which to grow the current, standard set of portal fea-
tures. This standard set of portal features covers the features that were included as
standard items in the ASP.NET portal framework including personalization, zones,
connections and, of course, web parts.

The remaining two portals on the list—http://Live.com and http://www.Goo-
gle.com/ig—are portals that offer us a glimpse into the next generation of portals
because of the new types of features they provide. The most outstanding of these fea-
tures—and the ones we’ll focus on for the remainder of the chapter—are developer
extensibility and client-side Ajax behavior.

Table 10.1 Major portals and who runs them

URL Run By

http://my.Msn.com Microsoft

http://Google.com/ig Google

http://my.Yahoo.com Yahoo!

http://Live.com Microsoft

http://www.PageFlakes.com Web 2.0 start-up
286 CHAPTER 10 INTO THE FUTURE

http://www.Google.com/ig
http://www.Google.com/ig
http://www.Google.com/ig
http://Live.com
http://my.Msn.com
http://Google.com/ig
http://my.Yahoo.com
http://Live.com
http://http://www.PageFlakes.co

10.3.3 Developer extensibility

In this brave new world of modern portals, developers can create custom web parts
in their own development environments and upload them into the site galleries, so
that they can be seen and used by other portal members. Although the developer-
created web parts are known by various names such as Gadgets in http://Live.com,
Flakes in the case of http://www.Google.com/ig, and Modules in the Google portal,
they are web parts nonetheless. By providing specific APIs that developers must
adhere to when creating these web parts, a developer can create a web part in the
morning and have it displayed to users from around the planet on the Google home
page that very afternoon.

As you might well imagine, providing the global base of developers with the abil-
ity to create unique, dynamic web parts means that the portal hosting these web parts
literally explodes with content offerings simultaneously giving birth to interesting
new communities. Suddenly the world of portals will be awash in a sea of web parts
that reveal themselves to us as Clocks, Daily Comics, Quote of the Day, Travel Orga-
nizer, To Do Lists, News, Weather, Sport, Web-based email, puzzles, games—and
the list goes on.

Having just learned a little bit about how portals are enabling developer extensi-
bility, we’ll soon get to take a tour of the Live.com website and see exactly how this
developer extensibility works. But first let’s learn more about the other major feature
that is being offered by portals—Ajax behavior.

10.4 AJAX BEHAVIOR

In chapter 2 we learned that Ajax stands for Asynchronous JavaScript and XML and
that a developer can use this technology to minimize the size of the packets of data
that are sent to XML web services without requiring a complete page postback. But
what exactly does this mean and how would we take advantage of it in our applica-
tions? Take a look at the web page shown in figure 10.1 and then we’ll discuss where
Ajax fits in the world of dynamic web applications.

Figure 10.1 shows the main milestone page from the collaboration site that was
used when writing this book. This page displays quite a bit of information such as the
navigation tabs, the mini-calendars, the main milestone calendar, and a list of
upcoming milestones. When this page is requested, the browser sends a request to the
server and the server dynamically generates the HTML required to display the page
and sends it back to the browser. This roundtrip takes from 2 to 5 seconds to com-
plete, depending on the speed of the underlying Internet connection.

From this page we can also see that the user may interact with the application by
performing certain actions such as editing a milestone, marking a milestone as com-
pleted, or creating a new milestone. When the user clicks on a link to invoke one of
these actions, the browser must send another request to the server so that the correct
user interface elements are displayed to perform that task. When the user clicks a
AJAX BEHAVIOR 287

http://www.Google.com/ig
http://www.Google.com/ig
http://Live.com
http://Live.com

checkbox to mark a milestone as “complete,” it would be expected that the milestone
is removed from the list.

In a non-Ajax application, clicking on the “complete” milestone checkbox will
force a complete page postback, and the server will re-create the entire page and
transmit the HTML for the entire page across the wire—a process we’ve already iden-
tified as taking anywhere from 2 to 5 seconds. If a user were visiting the page to per-
form a dozen activities, he would spend nearly a minute just waiting for pages to load
and re-load.

In an Ajax application however, a developer can create the page in a way that
requires only small, discrete parts of the page to postback. Using the “complete”
milestone checkbox again as an example, when the user clicks on a checkbox, the
only part of the page that is required to be re-drawn is the item that has been affected.
Obviously, reducing the portion of the page that is redrawn dramatically reduces the
processing time. On top of that, while a portion of the page is being redrawn, the
user can perform other actions on that page. Ajax eliminates the dead time the user
spent waiting for pages to load, so the user can continue working without getting dis-
gruntled, and accomplish more in a much shorter period.

Figure 10.1 A page like this that contains a good deal of information and allows user

interactions such as marking milestones is an ideal candidate for a bit of Ajax magic.
288 CHAPTER 10 INTO THE FUTURE

Ajax technology works like this—when a user performs an action on a web page, a
region of the page is updated with new content fetched from the server without the
whole page being fetched. This is accomplished by marking out a region of a page
with a client-side DOM object and then replacing its contents with data from the
server that was fetched by the JavaScript API, using an HTTP request to the originat-
ing server.

Ajax technology has been around for a few years, but its popularity exploded
recently due to the success of web applications such as Google’s GMail, Microsoft’s
Outlook Web Access Email, and a raft of junior company offerings such as the col-
laboration applications offered by the 37signals (http://www.37signals.com) com-
pany. Other popular Ajax implementations have included client-side mapping
applications such as http://local.live.com/ which allow a user to navigate through a
city map without requiring a page postback.

Microsoft realized the need to simplify HTTP requests using JavaScript when they
originally released ASP.NET 2.0 by including support for HTTP requests through a
feature known as Client-side Callbacks. Client-side Callbacks allow a control to exe-
cute an HTTP request back to the server to obtain additional data, without posting
the entire page.

10.4.1 Making Client-side Callbacks

In order to show how the Client-side Callbacks feature works, we will create a small
test page that uses them. The page we are going to create is extremely simple, but will
be perfect for highlighting the steps comprising an Ajax callback. Namely, our page
will allow us to walk through the following Ajax interaction:

1 We create a web page displaying the original time that the page was created.

2 A button is provided allowing the user to invoke a server-side operation.

3 Server processes the operation and returns the result.

4 The client user interface is updated with the result of the server-side operation.

In our test page the user will be able to enter a number in a textbox and have that
number of days added to the current date and the resulting date displayed on the page.
Figure 10.2 shows the simple user interface that we’ll create for the test.

When the page is created by the
server, we are displaying the current
time in a label. This is so that we can
see how often the whole page is being
returned. The following snippet of
code shows the HTML for the label
and the server-side code that is used
to write the current time:

Figure 10.2 This page uses Ajax to update a

result without requiring a full page postback.
AJAX BEHAVIOR 289

http://local.live.com/
http://local.live.com/
http://www.37signals.com
http://www.37signals.com
http://www.37signals.com

<h2>
 Page created at:
 <asp:Label ID="lblServerTime" runat="server" />
</h2>

protected override void OnLoad(EventArgs e) {

 base.OnLoad(e);

 this.lblServerTime.Text = DateTime.Now.ToString();
}

The idea is that when our user clicks the Get Result button, the value in the Days to
Add textbox will be sent through to the server and added to the current date and time
to produce another date. Performing this date calculation on the client using pure
JavaScript would be cumbersome because the JavaScript APIs do not have very
sophisticated methods for working with dates in this manner. Using a server postback
to perform the addition of days to the date allows us to use the DateTime object in
the .NET Framework where adding days to a date is a snap. The code for the button
that will invoke the server callback and the label that will display the results is shown
in the following snippet of HTML code:

<input id="btnGetResult"
 type="button"
 value="Get Result"
 onclick="AddDays(txtDays.value);"
 />

Notice that the button calls a JavaScript method named AddDays when it is clicked
and that it passes the value contained in the Days to Add textbox as an argument to
that function. It is the AddDays JavaScript function that will perform the “magic” of
communicating with the web server without causing a full-page postback. This is the
part that the ASP.NET Framework abstracts for us, and therefore makes the creation
of this complex logic a simple affair.

For the Ajax postback to occur, two things must happen. First, the control that will
act as the handler for the asynchronous callback must implement the ICallback-
EventHandler interface. The second is to generate JavaScript that can used to invoke
our server-side method from within the client using an Ajax call. The ICallback-
EventHandler interface is like an Ajax version of the IPostbackEventHandler
interface we used in chapter 8 when we needed to invoke a full-page postback from our
catalog dialog. The ICallbackEventHandler interface requires us to implement
two methods named RaiseCallbackEvent and GetCallbackResult. The
RaiseCallbackEvent method is the method invoked when the callback first
290 CHAPTER 10 INTO THE FUTURE

occurs, and is where we process the results of the callback operation. The GetCall-
backResult is used to return the values that were calculated in the RaiseCall-
backEvent processing. The following code snippet shows our implementation of
these two methods:

private string _callbackResult;

public string GetCallbackResult() {
 return _callbackResult;
}

public void RaiseCallbackEvent(string eventArgument) {

 double daysToAdd = double.Parse(eventArgument);
 _callbackResult = DateTime.Now.AddDays(daysToAdd).ToString();
}

The snippet shows that we are simply grabbing the value passed through to us from
the textbox, casting it to a double type, and then using the AddDays method of the
DateTime class to add that number of days to the current date. We assign this new
date value to a private variable which we return from the GetCallbackResult
method. The only piece of the puzzle that we haven’t seen so far is the “magic” code
for the AddDays JavaScript function.

In chapter 8, when we created the callback method for the IPostback-
EventHandler, we used the GetPostBackEventReference method of the
ClientScript class. This generated some JavaScript that we could then invoke to
cause a postback to occur and have specific arguments passed along with the post-
back. In much the same manner, the ClientScript class exposes a method named
GetCallbackEventReference that can be used to generate the JavaScript
required to invoke a partial-page postback. This code is shown in the following snip-
pet of code:

string callBack = ClientScript.GetCallbackEventReference(
 this, "arg", "ClientCallbackHandler", "context",
 "ClientErrorHandler", false);

string clientFunction = "function AddDays(arg, context)
 { " + callBack + "; }";

ClientScript.RegisterClientScriptBlock(
 this.GetType(), "AddDates", clientFunction, true);

The most significant part of this code is on the first line where we use the GetCall-
backEventReference method to generate a string that can be executed to invoke a
callback. The string generated by the call to the GetCallbackEventReference
method is shown in the following snippet of code:
AJAX BEHAVIOR 291

WebForm_DoCallback(
 '__Page', arg, ClientCallbackHandler,
 context, ClientErrorHandler, false)

This string equates to the JavaScript that is required to invoke a special ASP.NET Java-
Script method named WebForm_DoCallback, which then manages the asynchro-
nous callback to our page behind the scenes. As you can see, the values passed to that
special method will be the same as the values we pass into our AddDays function. So
there are some useful abstractions going on here making our lives much simpler. First,
the WebForm_DoCallback abstracts away the difficulty of invoking the asynchro-
nous JavaScript call; but secondly, the ClientScript.GetCallbackEventRef-
erence method abstracts the complexity of producing that string in the first place.

At this point we can run the test page and click the button a few times to see that
the Result label is updated, even though the Date Created time shown at the top of
the page does not change at all. Having achieved our desired outcome of refreshing
only the part of the page that is changing, we’ve saved users from twiddling their
thumbs during a full-page postback.

In the grand scheme of things, updating the value of a label based on some arbi-
trary page event such as a button click rates as pretty minor. When faced with real
application problems, we often find that working with client-side JavaScript can
become extremely complex because the tools for working with JavaScript are not as
advanced as the tools we have for working with pure .NET code. For example, we
don’t get Intellisense help when working with objects in JavaScript, and the debug-
ging experience is far short of the experience we have when debugging native .NET
code such as C#.

So there’s a problem here. We have growing demand for Ajax-style web pages but
the cost of producing this sort of page is much higher because of the added complex-
ity. Thankfully the ASP.NET team has again come to the fore with a new set of exten-
sions to ASP.NET, codenamed “Atlas.” It’s these Atlas extensions to ASP.NET that
will bring Ajax-style application development within reach of all developers.

10.4.2 Announcing Atlas

When Microsoft introduced Atlas to the world at the PDC conference in Los Angeles
in November 2005, it was warmly received by the development community. Up until
that time there had been several third-party and open-source solutions for simplifying
the task of creating Ajax-style applications in ASP.NET, but no clear standards had
emerged. The announcement of Atlas would mean that ASP.NET developers could
develop Ajax applications on top of a standard platform that would evolve and grow
with the ASP.NET product, and that it would also receive the same level of tooling
support as other ASP.NET controls within the Visual Studio IDE. In March 2006
Microsoft released the first publicly available version of Atlas that comes with a Go-
Live license—which means developers can use that version to create applications they
plan to deploy. This version of Atlas comes as a standalone assembly file which has a
292 CHAPTER 10 INTO THE FUTURE

version number of 2.0.50727 and was made available at the newly created Atlas
developer center, http://atlas.asp.net.

So what kinds of problems does Atlas solve for us? Let’s look at a typical Ajax sce-
nario and then look at how we’d solve it using Atlas.

10.4.3 Using Atlas

In web applications, people often search for a par-
ticular item and then display further details about
it. As an example, consider a product inventory
application where a user would search for a prod-
uct. In such an application the user might drill into
the product information by first locating a category
and then choosing the product from a list of prod-
ucts within that category. Figure 10.3 shows us a
simple example of this type of behavior.

In figure 10.3 the user can type the name of a
category into a textbox and then press the Get Products button to have the prod-
ucts for that category retrieved and displayed. Notice that beneath the textbox, Intel-
lisense help is displayed to the user about the categories available based upon the
characters that the user has already typed. This filtering behavior, known as auto-com-
pletion is a feature that clients ask for regularly when they want to present users with a
large list of items and have them locate an item within that list. The term auto-com-
pletion comes from the way that the behavior automatically provides a list based on
the characters that have been entered. This is a useful way to find words because a
user can type his way through a list of words until there is only one word remaining.

Using Atlas we’ll learn how to implement the auto-complete Intellisense items by
calling a web service without needing to postback, and we’ll do the same for the
products that are displayed. We’ll display those when the user clicks the Get Products
button without requiring a postback either. Let’s get started…

NOTE To complete the examples shown in this chapter you will need version
2.0.50727 of the Atlas .dll. This can be obtained by running the ASPNET-
Atlas.vsi file from the chapter 10 section of the resources website for this
book. This version of Atlas may be superseded in the near future as it is still
regarded as a beta release. Check the http://atlas.asp.net developer center
for information about the current release version of Atlas.

From within Visual Studio 2005, create a new Atlas website by choosing the file
menu and then click New, and WebSite. The New WebSite dialog box will appear.
Select the ASP.NET ‘Atlas’ WebSite template item and choose a location for the files.
Figure 10.4 shows the New WebSite dialog.

In order to run, our application will require data and according to our solution
description this data will be coming from a web service. In the real world, this web

Figure 10.3 This sample uses

Ajax to populate an auto-complete

list from a web service based on

text that a user has entered into

the text box.
AJAX BEHAVIOR 293

http://atlas.asp.net
http://atlas.asp.net

service might not be a service that we’ve created, but could instead be exposed by our
trading partners or simply by a third-party website.

Creating a web service

The web service that we create will expose two methods. The first method will be
called ListCategories and will return a list of the product categories. The second
method will be called ListProductsByCategory and this method will return a
list of products for a given category. Start by adding a new web service named Prod-
uctsWS.asmx to the project and place it within the namespace of AtlasSamples.
At this time the ProductsWS file should look like the code in the following snippet:

<%@ WebService Language="C#" Class="AtlasSamples.ProductsWS" %>

namespace AtlasSamples {

 public class ProductsWS : System.Web.Services.WebService {

 }
}

The first method we’ll create will be called by the Atlas components whenever the
user changes the value in the Category textbox. The following snippet shows the code
for the ListCategories method that will return a list of available categories based
on the text which the user has already entered.

Figure 10.4 Once Atlas has been installed we can select from these Atlas tem-

plates to get started building web applications with Ajax-style behaviors.
294 CHAPTER 10 INTO THE FUTURE

[WebMethod]
public string[] ListCategories(string prefixText, int count) {
 string[] categories = GetAllCategories() ;

 List<string> suggestions = new List<string>();
 foreach (string category in categories) {
 if (category.StartsWith(prefixText)) {
 suggestions.Add(category);

 }
 }
 return suggestions.ToArray();

}

As the user types characters into that textbox, Atlas will call the ListCategories
method passing in the characters already in the textbox as the prefixText argu-
ment. The ListCategories method then uses the prefixText value to return
only category names beginning with that text. In just a moment we’ll see how this
method is called from the client.

The next method we need must take a category as its argument and return a list-
ing of products for that category. This method will be called when the user clicks on
the GetProducts button. The following snippet shows the code for the List-
ProductsByCategory method.

[WebMethod]
public List<Product> ListProductsByCategory(string category) {

 List<Product> products = GetProducts(category) ;
 return products;
}

The ListProductsByCategory web service method is a simple method which
calls a database helper method, GetProducts, to retrieve all products for a given
category from an inventory database and then return them to the calling application.
That’s all of the functionality we’ll need from the web service and we can now get to
work creating a client-side Atlas application to consume these two methods.

Creating an auto-complete textbox

Prior to the availability of Atlas, the task of creating an auto-complete list and having
its values populated from a web service call would most likely have required several
hundred lines of highly complex JavaScript code. The user would be obliged to write
JavaScript that knew how to work with visual elements on the page, how to work
with web service protocols, and how to work with the XML that was returned from
the service. Getting this code to run in a single browser would be treacherous enough
without the added complexity of writing code to work against the individual quirks
of all browsers. In this next section we’ll see how Atlas provides controls that abstract
all of this complexity away from us. While the auto-completion example we are about
AJAX BEHAVIOR 295

to create is conceptually much more complex than our first simple Atlas example
which added two date values to produce a result, this example still goes through the
same set of logical actions to perform its behavior. Namely. in this example we will

1 Create the Atlas client-side controls that will support the auto-completion
behavior

2 Wire-up calls from within the client and marshal them on to the appropriate
server-side handler

3 Receive the results from the server and bind that data to the relevant Ajax client-
side controls

To create an auto-completion list, Atlas provides us with the new AutoComplete-
Extender control which we can bind to a textbox to show a list of auto-completion
results that a user can select. The code for creating an AutoCompleteExtender
control and associating it with a textbox is shown in the following snippet of code:

<asp:TextBox ID="TextBox1" runat="server" />

<atlas:AutoCompleteExtender runat="server"
 ID="Extender1"
 ServicePath="ProductsWS.asmx"
 ServiceMethod="ListCategories">

 <atlas:AutoCompleteProperties
 Enabled="True"
 MinimumPrefixLength="1"
 TargetControlID="TextBox1" />
</atlas:AutoCompleteExtender>

The AutoCompleteExtender requires very little information to perform its duties.
We provide the AutoCompleteExtender with the ServicePath to our web ser-
vice file, as well as the name of the method to call when the list needs updating.
Finally we embed an AutoCompleteProperties element within the control that
defines the target control. This will act as the input filter.

That’s all! At this point we can run the page and enter values in out textbox to see
that a dynamic auto-complete list is indeed displayed immediately underneath the
target control—which in our case is a textbox with an ID of TextBox1. Selecting an
item from the auto-complete list will populate that value into the target textbox.

Displaying results using declarative data binding

Once the user has arrived at the category he needs, he can click the Get Products
button to procure the products for that category and have them displayed. When the
button is clicked we need to call the ListProductsByCategory method on our
web service and bind the resulting list of product entities to presentation elements on
the page. In Atlas, this is done by creating placeholder HTML elements to perform
the layout of data, and then defining templates that map the data to those HTML
296 CHAPTER 10 INTO THE FUTURE

elements. The following snippet of code shows the HTML elements used to display
our product items that are returned by a call to the web service method.

<div id="listview" class="listView"></div>

<div style="display: none;">
 <div id="listView_layoutTemplate">
 <div id="listView_itemTemplate">

 </div>
 </div>
</div>

The first HTML DIV element with the ID of listview is the actual DOM node to
which the data will be bound while the next set of elements is used as a template to
hold the actual data. As we see, these elements define an outer DIV with the ID of
listView_layoutTemplate which defines the template structure; then the inner
DIV with the ID of listView_itemTemplate contains the nodes that will be
bound to each row of data. Within the listView_itemTemplate we see two
HTML SPAN elements are used to bind to the actual fields within the row—in this
case we will be displaying a product ID followed by its name.

The HTML code shown in these templates merely defines layout but doesn’t pro-
vide any information about how to map data from the bound objects to those nodes.
To define data bindings we can use the new Atlas declarative mark-up components as
shown in listing 10.1.

<script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">

 <components>

 <listView id="listview"
 itemTemplateParentElementId="listView_layoutTemplate"
 itemCssClass="item">
 <layoutTemplate>
 <template layoutElement="listView_layoutTemplate" />
 </layoutTemplate>
 <itemTemplate>
 <template layoutElement="listView_itemTemplate">
 <label id="listView_ProductID">
 <bindings>
 <binding dataPath="ID" property="text" />
 </bindings>
 </label>
 <label id="listView_ProductName">
 <bindings>
 <binding dataPath="Name" property="text" />
 </bindings>

Listing 10.1 Atlas logic for binding a data list to a client-side element

Binding
information
to map data
to individual
elements.
AJAX BEHAVIOR 297

 </label>
 </template>
 </itemTemplate>
 </listView>

 </components>
 </page>
</script>

First you want to notice that the Atlas mark-up component is contained within a spe-
cial script section with a type of text/xml-script. This special script section is used by
the Atlas code at runtime to determine the action to take when data is bound to
HTML DOM nodes. As we look through the mark-up for the data bindings we can
see that within the itemTemplate of the listView component that labels are
declared, and their binding information is what tells Atlas how to map data to ele-
ment IDs.

All that remains for us to do, now that we’ve described the layout and binding
information, is to write the code that will run when the user clicks on the Get Prod-
ucts button. This will query the web service and pass the resulting data to the data-
binding component. Listing 10.2 shows the pieces of JavaScript that handle the but-
ton click event and invoke a call against the web service we created earlier.

<script language="javascript" type="text/javascript">

 function GetProducts() {
 var category = document.getElementById("TextBox1").value ;
 AtlasSamples.ProductsWS.ListProductsByCategory(
 category, OnComplete, OnTimeout);
 }

 function OnComplete(results) {
 var listview = document.getElementById("listview");
 listview.control.set_data(results);
 }

 function OnTimeout(result) {
 alert("A call to a Web Service timed out");
 }

</script>

The GetProducts function handles the actual click event of the Get Products but-
ton; it simply calls through to a proxy class that has been created by the Atlas frame-
work to access the web service. Even though it seems trivial to call the web service,
this code actually encapsulates hundreds of lines of complicated JavaScript code.

Listing 10.2 Using an Atlas generated proxy to invoke a web service call
298 CHAPTER 10 INTO THE FUTURE

Aside from the category information passed to the web service proxy, we can see that
there is also a reference to a function that will be used to handle the completion of the
asynchronous web service call which is named OnComplete. All that this function
has to do is to get a handle to the DOM node that the data will be bound to, and bind
the data to it using the set_data method of the underlying Atlas object.

At this time we can run the sample to see that we are able to use both the auto-
completion textbox and the Get Products button to perform complex data opera-
tions, all from within the client.

NOTE The full source code for the SimpleList Atlas project can be found in the
chapter 10 section of the resources website for this book.

Think of the power available to us here. Using this Atlas technology we can now con-
sume and submit data to and from any page method or web service without forcing a
complete page postback. This is very much how we can expect most web applications
to function in the future. Already we see evidence of this on a daily basis with the release
of nearly every modern website offering some level of support for Ajax behavior. With
the added ease of the Atlas framework to spur on rapid development of these types of
websites, we can expect to see this number grow at an increased pace into the future.

As mentioned earlier in the chapter, web portals with Ajax-style behaviors that also
provide the ability for developers to create their own web parts and upload them have
emerged as the de-facto standard for how portals should behave. Live.com is an exam-
ple of this style of portal, and the good news for ASP.NET developers is that their portal
is based on this very same Atlas framework for creating client-side behaviors.

Now that we have a proper appreciation for Ajax and have seen how Atlas simpli-
fies the task of creating Ajax-style websites, it’s time to visit the http://Live.com portal
to see exactly how these features combine in this exciting breed of interactive portals.

10.5 INTRODUCING LIVE.COM—
A MODERN MEGA-PORTAL

How many guided tours have you taken where you found yourself listening to a lec-
ture while craning your neck and stuffing your hands into your pockets? This tour of
the Live.com site is different; we’ll explore the features by taking a hands-on approach
and trying things out. First we’ll create an account so that we can personalize the con-
tent to our liking and then see how to add Gadgets onto our portal page. Finally, we’ll
take a look at how to develop our own Gadgets and upload them to the Start.com
portal so that we can customize it in our own unique way. Let’s begin!

To start our tour, open a browser and point it at the http://Live.com website.
When you arrive, you will be greeted by a plain web page containing several rows of
fairly generic web parts—such as news, sport, weather, and health information web
parts. Figure 10.5 shows an image of the default start page for the Live.com portal.

While the default Live.com page displays useful information such as the latest
news and weather, it’s hardly personalized. For personalization, we must first log in
INTRODUCING LIVE.COM— A MODERN MEGA-PORTAL 299

http://Live.com
http://Live.com

using a Microsoft Passport account. To begin the login process, click on the Sign In
link at the top of the page, and if you already have a Passport account you can enter
your credentials to log in; otherwise you’ll have to create an account first.

10.5.1 Personalizing the Live.com portal

After logging in to the Live.com site we are presented with a directory of web
parts—woops… I mean Gadgets—which we can add to our page. Conceptually,
this is no different than the custom catalogs we created for our Adventure Works
portal. The only difference is that what
we called a Catalog is called a Directory
on Live.com; and while our Catalog was
full of web parts, the Live.com direc-
tory is full of gadgets. On the Live.com
site, these Gadgets are grouped into cat-
egories such as Fun, News & Info, Peo-
ple & Sharing, Productivity, and so on.
Figure 10.6 shows the user interface pro-
vided for browsing the directory and
adding Gadgets.

Figure 10.5 The home page of the Live.com portal displays a selection of “stock” news

and information web parts prior to making any specific personalization customizations.

Figure 10.6 Within the Live.com portal we

can choose to customize our page by select-

ing from a directory of Gadgets.
300 CHAPTER 10 INTO THE FUTURE

When we find a Gadget that we’d like to add, clicking on it will display a preview of
the Gadget’s content. Figure 10.7 illustrates what happens when we click on the
“NPR: Story of the Day” Gadget.

After clicking on a Gadget and viewing its content, we can either drag that Gad-
get out onto our page or simply click on the Add button and have it added automat-
ically. Once again, the semantics of adding web parts on Live.com is not terribly
different from how we added web parts to our own portal; although in the actual
implementation of the Live.com site, having a preview of the web part is a nice fea-
ture of their gallery.

In the same way that the web parts we added to the Adventure Works portal were
remembered between browser sessions, any Gadgets added to the Live.com site will be
persisted by their own personalization system. Another nice feature of the Live.com
portal is that, in addition to offering a wide variety of Gadgets, they also allow the user
to create “page” tabs which can contain groupings of Gadgets. Figure 10.8 shows a
Live.com page configured with custom Gadgets and custom “page” tabs.

In figure 10.8, the main tab contains Gadgets that display random images,
weather information from cities we’re interested in, and also some random quotes to
make the page more interesting. Other tabs on the page display other types of infor-
mation. On this particular portal we can see that there is a News, Sport, and Weather
tab to display news reports from the leading news providers, and a Blogs tab which
aggregates the RSS feeds from our favorite bloggers. One of the strengths of the
Live.com site is the wide variety of Gadgets offered; so this site already possesses an
elevated level of appeal because, as a portal, it allows us to aggregate all the informa-
tion we need in a single place.

10.5.2 MicrosoftGadgets.com—a repository

of custom gadgets

Having said that the Live.com site provides us with a rich variety of Gadgets, it’s still
fair to assume that there will always be information we’d like to have that is not avail-
able via the standard set of Gadgets. This is where the real power of the Live.com site
comes into play. Remember at the beginning of this chapter we discussed the new
trends in portals, and how a major new trend is for portals to offer developers the

Figure 10.7 The Live.com directory provides us with a handy preview feature we can use to

view the content of a Gadget prior to adding it to our page.
INTRODUCING LIVE.COM— A MODERN MEGA-PORTAL 301

ability to add their own web parts to them. Live.com provides a client-side API to
which developers can conform to create custom Gadgets and then upload them. In
this way, developers can use custom Gadgets privately or share them with all users of
the portal. Figure 10.9 displays the main page of the MicrosoftGadgets.com website,
which serves as the place where custom Gadgets can be uploaded or selected by users
to be added into their own portal pages.

Figure 10.9 shows us some of the diversity that can be found on the MicrosoftGad-
gets site. On this site we can find hundreds of user-submitted Gadgets exposing infor-
mation such as Google searches, e-Bay searches, games, movie critiques, and more. To
the developer-centric user, the most interesting part of the MicrosoftGadgets site is
certainly likely to be the fact that we can upload our own custom creations there.

10.5.3 Creating a custom Live.com gadget

OK, it’s been a long journey and we’re well in to the home stretch of learning about
modern portals and, in particular, Live.com; but let’s push forward because we’re
about to enter the most exciting part of the journey so far. In this next section we will
use the Atlas framework to develop our very own custom Gadget and upload it to the
Live.com site where we’ll then be able to add it to our portal page. To do this we’ll
create a special kind of Atlas project which has been designed specifically for the pur-
pose of creating Live.com Gadgets, and will then add in the Atlas code permitting us
to communicate with the server using Ajax postbacks.

Figure 10.8 The portal pages on Live.com can also be expanded through the use of tabs to cat-

egorize content when we have more content than is practical to display on a single page.
302 CHAPTER 10 INTO THE FUTURE

Suppose that there was some information you really wanted to see on the home page
of your portal. That information might be the latest stock quotes from stocks con-
tained within your portfolio or it might be the most recent image uploaded to the
NASA image gallery. Generally we will find that, for readily available information
such as this, there are already Gadgets which exist to display such information and all
we need to do is locate the Gadget from within the directory and add it to our home
page. However, it is sometimes useful to have information available for which no
Gadget yet exists. This might happen when the information we require is exposed
from an obscure web service, such as from one of our own websites. For occasions
such as this we can create our very own custom Gadgets and upload them either
directly into our own portal or, if we’d like to make the Gadget available to the gen-
eral public, we can upload it into the MicrosoftGadgets directory.

Gadgets can be added to the Live.com gallery because there is a standard format
for packaging all the elements of a Gadget—such as the user interface elements, the
CSS style definitions, and the JavaScript behaviors. Documentation on the
MicrosoftGadgets site describes the standard format for creating a Gadget and expos-
ing it to the Live.com website. Luckily for us the Atlas framework actually includes a

Figure 10.9 There is also a community site where we can view Gadgets added by other devel-

opers, that we can add to our own portal pages.
INTRODUCING LIVE.COM— A MODERN MEGA-PORTAL 303

special type of control that we can use to simplify the task of creating Gadgets. This
control is the atlas:Gadget control.

Defining a custom Gadget

In this section we will create our own Gadget and learn how to upload it to the Live.com
website. For simplicity the Gadget we create will be somewhat lame in that it will merely
display the current time on the screen. Our Gadget will use an Atlas Timer control to
display an update of the time every second. To get
things rolling, create a new Atlas WebSite named
SimpleClock and add a new WebForm named
ClockGadget.aspx to hold our simple clock.
When complete our gadget will resemble the image
shown in figure 10.10.

When creating an Atlas page, we must first add
a ScriptManager control to the page. Add the
following server control tag at the top of the
HTML document:

<atlas:ScriptManager runat="server" ID="scriptManager" />

You can think of the Atlas ScriptManager as being similar to the WebPartMan-
ager. While it appears to do very little, it is highly significant to the operations of the
page and its presence is required.

Next we must add an Atlas Gadget control to our page. This control will define
the layout of our Gadgets and provide a template for which to bind data resulting
from Atlas operations. The markup for our simple Gadget is shown in the following
snippet of code:

<atlas:gadget runat="server" ID="clockGadget"
 Title="A Simple Clock" Description="Displays the time">
 <ContentTemplate>
 <div style="border:
 dashed 1px Navy; background-color: InfoBackground">
 <h1>Time Gadget</h1>
 The current time is:
 <label id="timerLabel"></label>
 </div>
 </ContentTemplate>
</atlas:gadget>

The attributes on the Gadget element will provide the definition shown to the users
of our control while the ContentTemplate contains the layout elements which
define the appearance of our Gadget. By looking at the elements contained within the
ContentTemplate we can see that there is a label control with the ID of timerLa-
bel which has been created to display the current time. It’s this label to which we’ll
be binding the current time.

Figure 10.10 The Gadget we are

creating is a simple one that uses

Atlas scripts to update the time on

a page.
304 CHAPTER 10 INTO THE FUTURE

In order to update the display of the timerLabel control we will need to create
an Atlas Timer control and handle its Tick event so that we know when to display a
new time. The Timer control is an Atlas client component we use to raise events at a
specified interval. In our case we’ll set the interval of our timer to 1000 milliseconds
and associate a JavaScript function with the tick event of the timer where we will put
our logic for changing the display. All of this will give the effect of a clock which ticks
over each second. Listing 10.3 contains the Atlas script element which defines our
timer control, and also has the client-side OnTimerTick method that is used to han-
dle the tick event of the timer control.

<script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005"
 xmlns:atlas="http://schemas.microsoft.com/atlas/2005">
 <components>
 <timer id="timer1" interval="1000"
 enabled="true" tick="OnTimerTick" />
 </components>
 </page>
</script>

function OnTimerTick(sender, eventArgs) {

 var d = new Date();
 var label = document.getElementById('timerLabel');
 label.innerText = d ;
}

That’s all there is to creating our Gadget. Our timer is contained within the declara-
tive script block and has its interval set so that the tick event fires every 1000 millisec-
onds. Because we’ve enabled the timer it will begin firing its tick event as soon as the
page loads, and therefore our timerLabel will begin updating from that time on.
Run the page by pressing F5. Verify that the page runs and the timerLabel displays
the time correctly.

Uploading our Gadget to Live.com

Now that we’ve built and tested our simple little Gadget we are ready to set it free by
deploying it to the Live.com portal and there are a few simple steps required before
we can achieve this. In a nutshell, the steps we are must take are

• Host our gadget on a web server

• Configure Internet Explorer to work with Gadgets

• Upload our Gadget to the Live.com portal

Listing 10.3 The tick event of this Atlas timer control is handled by a client-side

 JavaScript method.
INTRODUCING LIVE.COM— A MODERN MEGA-PORTAL 305

For a simple Gadget such as ours, hosting the Gadget is not very difficult if all we
need to do is host it for ourselves and make it viewable from our single machine.
However, if we want to share our Gadget with the entire Live.com community, or if
we need to access our Gadget from more than one machine, then we’ll need to deploy
our Gadget to a site that is accessible from a central place. This would mean deploy-
ing a website that was permanently visible via the Internet and making that site host
our Gadgets for us. But for the purposes of getting something up and running in this
example, we will simply host our Gadget from the IIS web server on our own
machine. This means the Gadget we upload will only be visible when browsing the
Live.com portal from our own machine.

Configuring IIS to host our Gadget

The point of creating an IIS site to host the website containing our Gadget is to assure
that whenever we browse the Live.com site that the web server will be running and
our Gadget will therefore be available. Up until now this would not be the case,
because we’ve merely been using the in-built ASP.NET development web server that
comes as a part of the ASP.NET toolkit. An instance of this web server is spun up by
Visual Studio and used to host our websites when we are in development, but that
instance does not persist beyond the current development session. In other words,
were we to restart our machine and browse back to a site which had previously been
served up by an instance of the development web server, it would not be present until
we manually ran the server again and configured it to listen on the right port. With
IIS, however, our application will be available whenever we browse to Live.com
because IIS automatically restarts whenever the machine is started.

The first step to hosting our site in IIS is to create a virtual directory and the best
place to do this is via the IIS Manager tool. To access the tool we can either type
inetmgr from the Run dialog box or we can browse directly to the tool using Win-
dows. To browse to the IIS Manager tool from within Windows, click the Start but-
ton and then choose Control Panel. Once the control panel is open, click
Administrative Tools. From there, choose Internet Information Services. At this
point the IIS Manager tool should appear as shown in figure 10.11.

Figure 10.11

The IIS Manager allows us to

create Virtual Directories and

use them to host websites.
306 CHAPTER 10 INTO THE FUTURE

From within the IIS Manager tool, right-click on the Default WebSite folder, choose
New from the context menu and click on Virtual Directory. Doing this will start the
Virtual Directory Creation Wizard. In the first screen of the Virtual Directory wizard
click Next. The second screen of the wizard will ask us for an Alias for our Virtual
Directory, so type SimpleClock and click Next. In the third screen we need to set a
path so IIS knows where the files for the SimpleClock web application are located.
Browse to the physical directory we created for our SimpleClock project in Visual
Studio, and once that folder has been selected, click on Next. Finally, select the check
boxes for the access permissions needed to run the application. In our case simply
keeping the default access permissions of Read and Run Scripts should be sufficient.

That’s all there is to creating an IIS application to host our Gadget website. If
everything went according to plan, we should now be able to browse to the IIS hosted
application by typing the following URL into a browser: http://localhost/Simple-
Clock/ClockGadget.aspx. The result will appear the same as the time we ran the
application from within Visual Studio using the ASP.NET development web server,
but now it is being hosted from within IIS and therefore the site will be available
whenever IIS is running.

Configuring Security permissions

Now that we’ve hosted our application in IIS and tested it by browsing to it in Inter-
net Explorer, we must configure the local security settings on the IIS machine that is
hosting our web application to work with Gadgets.

To do this, click the Tools menu in Internet Explorer and open Internet Options
and select the Security tab. Within the Security tab, select the Trusted Sites zone and
click the Sites button. We are about to add the Live.com domain as a trusted site so
that data can be exchanged between the Live.com site and our machine.

To enable the permissions required to work with Gadgets, enter the following
domain information as a trusted Site:

 *.Live.com

After entering that domain information, click Add followed by Close.
The last thing we must do to enable the right permissions for Gadgets to work

from our machine is to allow for the exchange of data between our local host website
and the Live.com website. To enable this interaction, select the Internet zone setting
from the Security tab and click on the Custom level button. In the settings window,
locate the setting titled Access data sources across domains. Select the Prompt option
for this setting and then click OK twice to return to Internet Explorer.

Uploading our Gadget

Having configured the security on our machine to allow data to be exchanged with the
Live.com site, everything is now in place for us to upload our Gadget and run it from
the Live.com portal site. To upload our Gadget we must procure an XML version of it,
INTRODUCING LIVE.COM— A MODERN MEGA-PORTAL 307

http://localhost/SimpleClock/ClockGadget.aspx
http://localhost/SimpleClock/ClockGadget.aspx

because that is what Live.com is expecting to receive from us. Atlas makes obtaining
this XML data a trivial task because all we need to do is browse to the URL of the Gadget
and append the following text to the URL:

 ?gadget=true

Now press Enter to refresh the page, and see that our Gadget is now presented as
some XML in the shape of an RSS feed within the browser—this is exactly the infor-
mation that Live.com will use to obtain the metadata for our Gadget. Now we copy
the URL from the address line of the browser and we can head off to the Live.com site
to add our Gadget.

When we arrive at the Live.com site we can click the Add Stuff link in the upper
right corner of the page and click on the Advanced Options link from there. Paste the
URL we obtained for our Gadget into the
text box next to the Subscribe button and
press the button to upload the Gadget. At
this time the name of our Gadget will
appear in the page and we can click Install
Gadget to complete the installation pro-
cess. Dragging the installed Gadget onto
our page will present the Gadget as a stan-
dard web part on the portal as shown in
figure 10.12.

That’s it—we’re all done! We’ve now
run through all of the steps required to
build and publish our own custom Gadgets
to the Live.com portal.

The area to focus on from here is to improve our knowledge of Atlas in order to
build infinitely more exciting and dynamic Gadgets that access data from web ser-
vices and present that information in smart and interesting ways. As our skills in this
area grow we might even consider uploading some of our coolest Gadget creations to
the MicrosoftGadgets.com Gadget directory, allowing others to use them.

Regardless of where we choose to go from here, it’s easy to see how extensible this
technology is and how easy it makes the job of presenting XML-based information on
the web.

10.6 CALL TO ACTION

That’s the end of chapter 10, and it’s also the end of our trek through the world of
building portals with the ASP.NET portal framework together. By this time I sin-
cerely hope and expect that your head is full of ideas for implementing ASP.NET
portal solutions.

However, as we’ve seen in this chapter, the excitement of creating web parts and
portals extends way beyond building our own portals. Because of their componentized

Figure 10.12 Our own custom Gadget is

shown as it appears when uploaded to the

Live.com website.
308 CHAPTER 10 INTO THE FUTURE

nature, web parts lend themselves very well to being included in other portals that sup-
port a common set of protocols. Currently, Live.com and SharePoint are two plat-
forms that are compatible with ASP.NET, and so we should look beyond our own
portal implementations when thinking of ways to provide a valuable user experience
with web parts.

Moving forward, the very same Atlas-style web parts Gadgets supported by the
Live.com website will be supported by the Windows operating system itself. In the
next major release of Window, named Windows Vista, developers will be able to cre-
ate a special type of Gadget—a Sidebar Gadget that users can add to their desktops to
provide the same kind of web part experience we’ve seen throughout this book.

I thank you for taking the time to read this book. I’m sure that with all of the
exciting new frontiers opening up for web part development, the things we’ve learned
so far will ensure that our skills are relevant in the brave new world of portals.
CALL TO ACTION 309

Creating the
Adventure Works project

A P P E N D I X
A.1 INTRODUCTION

This walkthrough shows how to create an ASP.NET web project in Visual Studio
2005. This web project forms the basis for building the web portal that is referred to
throughout the book. The tasks that are illustrated in this walkthrough include

• Creating a new web project

• Referencing an Assembly which contains data access logic

• Configuring the application

• Implementing a Master Page

• Creating a Theme

NOTE All the files for the completed version of this project can be found in the
chapter 2 section of the resources website at www.manning.com/neimke.
Feel free to copy the source files from there to save yourself some typing.

A.2 STARTING THE PROJECT

Open Visual Studio 2005 and create a C# web project named AdventureWorksWeb
and save it to a convenient location in your filesystem such as C:\Sandboxes\Adven-
tureWorks. Once the project has been created, add a reference to the AW.Web-
Parts.Data assembly that we created in chapter 1. To do this, right-click on the
310

project folder and choose Add Reference; this will launch the Add Reference dialog as
shown in figure A.1.

NOTE If you didn’t complete chapter 1, you can find the AW.Portal.Data
assembly in the chapter 1 section of the resources website for this book.

Browse to the location of the AW.Portal.Data assembly file and add it as a refer-
ence. With the data layer now referenced by the web application, we are able to use the
methods we created in that assembly to perform all our data access operations.

Recall that the data layer requires a
connection string to be defined in the web
configuration file, so our next step is to
add a Web.config file to store this config-
uration entry. To add a Web.config file to
the project, right-click on the project ele-
ment in the Solution Explorer and choose
the Add New Item menu option. After
adding a Web.config file to our project,
we can open it and add the connection
string information. Make sure that the
Web.config file now contains the configu-
ration data shown in listing A.1:

<?xml version="1.0"?>

<configuration

<connectionStrings>

 <add name="AdventureWorksConnectionString"
 connectionString=
 "Data Source=.\skl2k5;Initial
 Catalog=AdventureWorks;
 Integrated Security=True"
 providerName="System.Data.SqlClient"
 />

</connectionStrings>

<system.web>

 <pages theme="Blue" />

<compilation debug="false"/>

Listing A.1 In ASP.NET 2.0, the new connectionStrings element is used to store

sensitive connection string information.

Figure A.1 The Add Reference dialog

window in Visual Studio 2005.
CREATING THE ADVENTURE WORKS PROJECT 311

<authentication mode="Windows"/>

</system.web>

</configuration>

A.3 ADDING A MASTER PAGE AND STYLES

Master pages are another of the new features in ASP.NET 2.0. In this section we will
create a master page to define a standard look and feel for all of our pages. Our master
page will provide a standard header and footer for our pages, as well as the global nav-
igation elements we need. Once we’ve created a master page, individual pages become
known as content pages as they just define the content unique to the page. At runtime
the master page will be merged with these content pages into a single page, which is
then displayed to the user. Right-click on the project element for the
AdventureWorksWeb project in the Solution Explorer and add a new master file
named Default.master to the project. Open the master file in source view and ensure
that it contains the HTML code shown in listing A.2:

<%@ Master Language="C#" AutoEventWireup="true"
 CodeFile="Default.master.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Adventure Works Cycles - HR Portal</title>

<link rel="Stylesheet" href="Styles/Default.css" />

<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />

</head>

<body>

<form id="form1" runat="server">

 <div id="container">

 <div id="header">

<h1>Adventure Works Cycles</h1>

<h2>Human Resources</h2>

</div>

 <div id="content">

<asp:contentplaceholder id="Main"
 runat="server" />

</div>

<div id="footer">

Listing A.2 All of the layout HTML that is standard across all pages is included

in the Master page
312 CREATING THE ADVENTURE WORKS PROJECT

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

Copyright © 2005 Adventure Works Cycles.

</div>

 </div>

</form>

</body>

</html>

The HTML in the master page will define the standard layout for all pages in our por-
tal application. As we can see, it provides a common header and footer as well as cre-
ates a standard title for the page and imports the stylesheet. Also notice that, in the
middle of the page, a ContentPlaceHolder server control is defined. This control
allows the content from an associated content page to be injected into the master page
at runtime. When we create the content page for our application we will see that this
control has an associated control in that page named a Content server control.

Having created the master page, we need to add a stylesheet to our application to
provide the layout information for the HTML. Add a folder named Styles to the
project and then add a stylesheet named Default.css to the folder. Open the
Default.css stylesheet and add the listing A.3 CSS layout code to it:

body {

margin: 15px auto;

padding: 0;

font-family: "Lucida Grande";

color: #333;

background-color: #f0f0f0;

text-align: center;

}

a {text-decoration: underline; padding: 1px; }

a:link { color: #03c; }

a:visited { color: #03c; }

a:hover {
 color: #fff; background-color: #30c; text-decoration: none;
 }

#container {

width: 760px;

border: 1px solid #ccc;

}

Listing A.3 The presentation and layout logic for our HTML is held in a

Cascading Stylesheet.
CREATING THE ADVENTURE WORKS PROJECT 313

#header {

position: relative;

background-color: #036;

height: 81px;

margin-left: auto;

margin-right: auto;

}

#content {

text-align: left;

}

#footer {

width: 100% ;

height: 55px;

text-align: center;

font-size: 10px;

}

#header h1 {

position: absolute;

left: 37px;

color: #fc0;

top: 12px;

text-transform: uppercase;

font-size: 18px;

}

#header h2 {

position: absolute;

left: 37px;

top: 60px;

color: #fff;

font-size: 11px;

}

#rightcolumn {

margin: 0px 0 0 0;

padding: 5px;

float: right;
314 CREATING THE ADVENTURE WORKS PROJECT

width: 240px;

border-left: 1px solid #ccc;

}

#leftcolumn {

margin: 0px 0 0 0;

padding: 10px;

float: left;

width: 450px;

}

Now that we have all the necessary information for defining the structure and main
layout of our pages, we can start creating content pages that will contain the content
of our site.

A.4 CREATE THE DEFAULT WEB PAGE

If a Default.aspx page was not automatically added when we created the project, we
should add one now by right-clicking on the project element for the
AdventureWorksWeb project in the Solution Explorer and choosing Add Web Page.
Open the Default.aspx page and add the listing A.4 HTML layout code:

<%@ Page Language="C#" MasterPageFile="~/Default.master"
 CodeFile="Default.aspx.cs" Inherits="_Default" %>

<asp:Content ContentPlaceHolderID="Main" ID="Content1" runat="server">

<div id="leftcolumn">

 Left

</div>

<div id="rightcolumn">

<div class="sidebar">Right</div>

</div>

</asp:Content>

By now we’ve added a good deal of code, so this is a dandy time to open our site in a
browser and see what’s happened so far. Right-click on the Default.aspx file and choose
View in Browser. At this point our page should appear as shown in the figure A.2.

Listing A.4 Content pages render the unique content area for each page and

rely on a Master page for rendering the outer area.
CREATING THE ADVENTURE WORKS PROJECT 315

While viewing the page in the browser, we can see that what was seemingly a large
mess of CSS and HTML has become the basis for our portal. Notice also that the base
layout logic which we put into the master page has merged seamlessly with the con-
tent we put into the content page. The left panel in the content section of the page is
where the web parts will live, whereas the right panel will contain the editor zone for
managing the properties of web parts and the catalog zone, so that users can choose
which parts to add or remove from their page. Of course, before we go ahead and add
those elements to the page, we must add the WebPartManager control to the page
and ensure that it is the first web part control in the control hierarchy.

After adding the WebPartManager to the content page, we can go ahead and add
two WebPartZones, an EditorZone and a CatalogZone. After adding those con-
trols, the page should now look similar to figure A.3 when it is displayed in design
mode within the Visual Studio Editor.

Figure A.3 shows the Default.aspx page with some added text and some static
links into the right side panel to give a more complete effect.

Figure A.2 When rendered, our page displays outer areas from the Master

page file and the left and right columns which are defined in our content page.

Figure A.3 The Visual Studio designer faithfully renders our page as it will

appear when displayed in a browser.
316 CREATING THE ADVENTURE WORKS PROJECT

A.5 ADD A THEME

In our project, all of the style infor-
mation for HTML elements is con-
tained in our stylesheet, but the style
information for our server controls
will be held within a .skin file within
a Theme. To add a Theme to the
project, right-click on the project
folder and choose Add Folder, then
select Theme Folder as the folder
type. Name the folder Blue. To add
a .skin file to our new Blue theme,
right-click on the Blue theme folder
and choose Add Item. Add a new
skin file to the theme folder and
name it Blue.skin.

Finally, ensure that the .skin file
contains the skin definition for web
parts shown in listing A.5:

<asp:WebPartZone runat="server" BorderColor="#CCCCCC"
 Font-Names="Verdana" Padding="6">
 <PartChromeStyle BackColor="#EFF3FB" BorderColor="#D1DDF1"
 Font-Names="Verdana" ForeColor="#333333" />
 <MenuLabelHoverStyle ForeColor="#D1DDF1" />

 <EmptyZoneTextStyle Font-Size="1.0em" />
 <MenuLabelStyle ForeColor="White" />
 <MenuVerbHoverStyle BackColor="#EFF3FB" BorderColor="#CCCCCC"
 BorderStyle="Solid" BorderWidth="1px" ForeColor="#333333" />
 <HeaderStyle Font-Size="0.8em" ForeColor="#CCCCCC"
 HorizontalAlign="Center" />
 <MenuVerbStyle BorderColor="#507CD1" BorderStyle="Solid"
 BorderWidth="1px" ForeColor="White" />
 <PartStyle Font-Size="1.0em" ForeColor="#333333" />
 <TitleBarVerbStyle Font-Size="0.8em" Font-Underline="False"
 ForeColor="White" />
 <MenuPopupStyle BackColor="#507CD1" BorderColor="#CCCCCC"
 BorderWidth="1px" Font-Names="Verdana"

 Font-Size="0.8em" />
 <PartTitleStyle BackColor="#507CD1" Font-Bold="True"
 Font-Size="0.8em" ForeColor="White" />

</asp:WebPartZone>

Listing A.5 Skin files contain the style information for server controls. When

combined with CSS files and images they form a theme.

Figure A.4 The App_Themes folder is a special

ASP.NET folder containing files that describe

the visual themes for our web application.
CREATING THE ADVENTURE WORKS PROJECT 317

Good job. You’ve stuck to it and worked hard to build the application. As you work
through this book, you’ll see that this hard work has been worthwhile. After all, you’ve
created a good base for the portal application.
318 CREATING THE ADVENTURE WORKS PROJECT

index
A

Activator 255
AddAttribute 222
AddAttributesToRender 222
AddWebPart method 98, 255
Adventure Works Cycles

database 18
introducing 18

Adventure Works
project 310–318

Ajax 52
explanation 287

AllowPageDesign 103
App_Code folder 39
App_Themes 189
AppearanceEditorPart 13, 52,

130, 144, 219
Application_Error 270
ApplyChanges 209, 227
ApplyPersonalizationState 168
Array 181
ArrayList 181, 186
ASP.NET

aspnet_regsql 179
custom error page 268
introducing 2.0 3–4
Page Lifecycle 100
team 272
web site project 9

ASP.NET configuration
system.web/webParts
section 83

aspxerrorpath 274
AssociatedWithToolZone 103
Atlas 292

databinding example 296
overview 293

Authenticate event 164
AuthorizationFilter

105–106, 124
Auto Format 55
AutoCompleteExtender

control 296
AutoPostBack property 122,

138
AvailableTransformers

property 83
AW.Portal.Data 22

B

BeginLoad 186
BeginRequest event 270
BeginSave 187
BeginWebPartEditing 217
BehaviorEditorPart 13, 130,

145, 219
BrowseDisplayMode 102
BrowseHelpText 150
BuildManager class 255, 274

C

Calendar 11
Cancel property 99
Cancelled event 89

CanEnterSharedScope
property 167

Cascading Stylesheets 54,
189, 246

CatalogDisplayMode 102,
233, 247

CatalogIcon 130
CatalogIconImageUrl

property 36, 46, 155
CatalogPart 129

deriving from 151
CatalogPartChrome 140
CatalogZone 108, 133,

242, 245
catch block 261
ChildControl property 36
Chrome 139
ChromeState property 36, 222
ClientClickHandler 51
ClientScript class 291
ClientScriptManager 250
Client-side Callbacks 289
CMS 234
code instrumentation 259
collaborate 285
Command parameters 278
Compare method 213
complex business logic 262
ConfigurationManager class 23
ConfiguringTransformer

mode 84
ConnectDisplayMode 102
ConnectionConsumer 72, 92
319

ConnectionProvider 71, 86
connections

consumer 72
defining a data contract 70
introducing 66
Master/Details Scenario 66
Parent/Child Scenario 67
provider 70

ConnectionStrings 22
ConnectionsZone 244–245
Content control 119
ContentPlaceHolder

control 119
ContentTemplate 304
Control Description Files 108
Cookies 160
CopyPersonalizationState 168
coupling 203
CreateCatalogPartChrome 141
CreateChildControls 210
CreateConfigurationControl 88
CreateEditorPartChrome 141,

220
CreateEditorParts method

53, 208, 211
CreateInstanceFromVirtualPath

method 274
CreateWebPartChrome 141
CRM. See Customer Relationship
CSS. See Cascading Stylesheet
CssZenGarden.com 243
Custom business entities 23
Custom server controls

creating 39
Customer Relationship 44

D

data layer 23
data section 118
Data Source Configuration

Wizard 60
DataItem 253
DataSource 92, 278
DataSourceID 92

DataTable 44
debugging 35
DeclarativeCatalogPart 148
decryption 194
defaultRedirect attribute 269
delegate 50, 276
DeleteWebPart 275
Description property 46, 155
DesignDisplayMode 102, 233
DesignerSerializationVisibility

212
DesignModeAvailableParts 156
development 258
diagnostic 267
Dictionary 181
Display modes 99
DisplayMode property

101, 114, 163, 217
switching modes 14

__doPostBack 250
dynamic connections 76

E

EditDisplayMode 102, 217, 246
EditorPart 129, 206

class 209
EditorPartChrome 140

class 220
creating custom 221

EditorPartCollection 211
EditorZone 13, 245

custom editor parts 208
expand/collapse 219

Email 264
enableExport attribute 109
encryption 176, 193
encryptor 194
EndLoad 186
EndSave 187
Evaluate method 278
EventArgs 216
EventLogWebEventProvider

263
ExportMode 109, 146

ExportWebPart 115
external systems 262
ExtractPersonalizationState 168

F

FieldCallback delegate 93
finally block 261
FindState 172
FindUserState 280
FooterStyle 131
FormatString property 162
Forms authentication 164

G

Gadgets 287, 299
GalleryPath property 152
Generics 30, 212
GenericWebPart 42, 97–98,

144, 258
control 34
properties 36

GetAllInactiveUserState
279–280

GetAvailableWebPartDescript-
ions 154

GetCallbackEventReference
291

GetCallbackResult 290
GetCountOfState 172, 237
GetCurrentWebPartManager

123, 254
getElementById 223
GetFieldValue 93
GetLastError method 271
GetPostBackEventReference

250, 291
GetRowData property 85
GetWebPart method 154
GetWebPartVerbs 140
Global Application class 270
Global.asax 270
GMail 289
Google 6, 55, 244, 284
320 INDEX

GridView 23, 60, 278
GUI 177

H

hacker 269
handling exceptions 261
HasHeader 249
HeaderStyle 131
HeaderText property 11
Health monitoring 262

categories 264
configuring 265
custom logging provider 264
events 265
usage of 263

Help Mode property 145
HTML 10
HTML DOM 298
HtmlTextWriter 40, 135, 222
HtmlTextWriterTag 222
HTTP 289
HttpContext 216, 224, 278
HyperLink 189, 203

I

IBusinessEntity 30
ICallbackEventHandler

interface 290
IComparer interface 213
IDictionary 186
IIS 306
Image 189
import/export

scenarios 108
simple example 110
XML definition 116

ImportCatalogPart 108, 149
ImportWebPart 115, 153
InitComplete 100, 170
InitialScope 168
InstructionTextStyle 132, 137
instrumenting 259
intellisense 293
Internet 284

Internet Explorer 232, 307
Intranet 284
InvalidOperationException 101
IPersonalizable interface 183,

192
IPostBackDataHandler

interface 139
IPostBackEventHandler 254,

291
interface 226

IsAuthenticated 216
IsAuthorized 105–106
IsClosed property 36
IsDirty 183, 196
IsEnabled property 103
IsSensitive 185
IsShared 106
ItemDataBound 252
ItemTemplate 251
ITrackingPersonalizable

interface 186
members 186

ITransformerConfigurationCon-
trol interface 89

IVersioningPersonalizable
interface 185

IWebActionable interface 48
IWebEditable interface 52
IWebPart interface 46, 155
IWebPartParameters 84
IWebPartRow 84–85, 90

J

Javascript 223, 250, 254, 290
handling verbs client-side 51

K

key performance indicator
(KPI) 65

L

Label 11
LastUpdatedDate 280

LayoutEditorPart 13, 146, 219
LinkButton control 163, 251
List 212
ListDepartments 26
ListEmployeesByDepartment

26
listeners 260
ListJobCandidates 26
Live.com 244, 286

custom gadgets 304
overview 299
uploading to 305

Load 183, 186, 192
LoadPersonalizationBlobs

172, 175, 236–237
logging 259
LoginName control 162
LoginStatus control 163
loosely-coupled 203

M

Master Pages 60
defining 119

MasterPageFile 119
metaData section 118
Microsoft Office 285
Microsoft Word 232
MicrosoftGadgets 302
Mike Harder 272
Modules 287
MSDN 18
my.msn.com 243
MyBase 176

N

NavigateUrl 278
.NET 2.0

Generics 30
notifications 264

O

ObjectDataSource 60, 278
using 278
INDEX 321

OnAuthorizeWebPart 105
OnCreateVerbs 215
OnInit 100, 190
OnPageSaveStateComplete 170
OnPreRender 73
OPML 266
Outlook Web Access 289

P

Page directive 119
Page Lifecycle 100
PageCatalogPart 130, 148
Parameter class 278
ParametersCallback delegate 87
Part class 38
PartChromeStyle 132
PartChromeType 222
PartStyle 132, 222
PartTitleStyle 131
Path 106
PathToMatch 237
PDC 272
performance counters 263
Personalizable attribute 181,

192
Personalization 119

configuring 172
lifecycle of 169
overview 159
simple example 161

personalization
overview 7
performing queries 279

Personalization property 167
Personalization provider 236
Personalization Scope 114,

161, 190
PersonalizationAdministration

class 279
PersonalizationDictionary 184
PersonalizationEntry 184–185
PersonalizationEntryCollection

192

PersonalizationProvider 170
members 172

PersonalizationScope 216
PersonalizationStateInfo 280
PersonalizationStateInfoCollect-

ion 279–280
PersonalizationStateQuery 237
Placeholder 188
planning 258
portals

common ingredients 15
customizing the
framework 283
definition 5
deploying 258
framework definition 16
framework layers 96
global 284
simple example 8–15

postback 39, 100, 138,
214, 251, 287

PreLoad event 274
PreRender 101, 240
ProcessMessage 264
Profile 160
PropertyDescriptor 91
PropertyDescriptorCollection

85
PropertyGridEditorPart

13, 124, 146, 153, 180, 205
ProviderName 168
ProxyWebPartManager 120

Q

querystring 190, 240
Quick Watch dialog 36

R

RAD. See rapid application de-
velopment

RaiseCallbackEvent
method 290

RaisePostBackEvent 254
method 226

rapid application
development 229

Register directive 42, 63
Render method 40
RenderBeginTag 222
RenderBody 135
RenderCatalogPart 140
RenderCatalogPartContents

140
RenderCatalogPartLinks

method 136
RenderContents 135
RenderEditorPart 140, 221

method 220
RenderEndTag 222
RenderFooter 135
RenderHeader 135

method 249
RenderPartContents 140, 221
RenderWebPart 140, 142
RenderWebPartContents 142
Repeater 23
Repeater control 251
RepeaterItemEventArgs 253
RequiresPersonalization 103
ResetPersonalizationBlob 172,

239
ResetPersonalizationState 167,

271
method 114, 164

ResetState 172
ResetUserState 172, 280
RewritePath method 275
Roles 125
roundtrip 214, 287
RowToFieldTransformer 83, 88
RowToParametersTransformer

83–84, 86
RSS 308
runat=’server’ 246
322 INDEX

S

Save 183, 192
SavePersonalizationBlob 172,

175, 239
Schema property 85
Scope 168, 185
ScriptManager 304
SDLC. See Software Develop-

ment Lifecycle
SelectedCatalogPartID 138
SelectedPartChromeStyle 218
SelectedValue property 278
SelectedWebPart 217, 246
serializable 184
Server Explorer 44
Session 160
SetConsumerSchema 86
SetPersonalizationDirty 187,

238
method 181

shared scope mode 187
SharedPersonalizationStateInfo

280
Sharepoint 6, 133, 174, 197

expand/collapse editor 219
intranet portal 284
overview 284
pop-up catalog 248

Sharepoint 2007 285
ShowHiddenWebParts 103
SimpleMailWebEventProvider

263
SmtpClient 271
Software Development

Lifecycle 257
SQL Server 18, 171, 264

XML data type 27
SQL Server Setup Tool 176
SqlCommand 28
SqlDataReader 27
SqlPersonalizationProvider 173

configuring 242
SqlWebEventProvider 263

Start.com 32, 197
static connections 120
Stopwatch class 267
Stored Procedures 179
StringsToNumbersTransformer

83
strongly typed Dataset 23
Subtitle property 46
Succeeded event 89
SupportedDisplayModes 101
SyncChanges 209, 227
System.Configuration 25
System.IO.File class 153
System.Security.Cryptography

namespace 193
System.Web.UI.Web-

Controls.Style 133

T

Tables 179
tag prefix 42
tagname 63
tagprefix 63
Task Zone 246
testing 258
TextBox 192
Themes 55, 317

App_Themes 57
Skin Files 57
Visual Studio support 55

tightly coupled 203
Timer control 305
Title 155
Title property 36, 46
TitleIconImageUrl property 46
TitleUrl 130
TitleUrl property 46
ToggleScope 164, 167
ToolZone 128
Trace class 259
TraceWebEventProvider 263
TracksChanges 186
Transform method 82

transformers 79
introducing 66
pre-defined transformers 83

TripleDESCryptoServiceProvid-
er class 194

Trusted Sites 307
try block 261
TypeConverters 206

using 207
TypeDescriptor 91

U

UploadHelpText 150
UserControl 38, 42
UserPersonalizationStateInfo

280

V

Value 185
verbs 48
Verbs property 48, 215
Views 179
ViewState 39, 160
Visual Studio

design time experience 207
design-time experience of user
controls 42

Visual Studio 2005 9
Visual Studio Properties

window 11

W

Warn method 260
web part

overview 6
web part description files

format of 118
Web Parts

Visual Studio Toolbox 11
web service 294
web.config 59

connectionStrings 22
customErrors 269
INDEX 323

web.config (continued)
healthMonitoring
section 264
personalization
authorization 164
personalization section 176
providers element 173
webParts element 109

WebBaseEvent 265
WebBrowsable 152
WebBrowsable attribute 205
WebBrowsableObject 36
WebDisplayName attribute 147
WebEventCodes 265
WebEventProvider 264
WebForm_DoCallback 292
WebMethod 295
WebPart

deriving from 38
WebPart control

composition of 33
WebPart Zones 128

common styles 131
creating chrome 141
custom rendering 135
deriving from 217
overview 128
structure of 134
theming 59

WebPartAuthorizationEventArgs
106

WebPartChrome 140
WebPartCollection 274
WebPartConnection

simple connection
example 65

WebPartDescription 153
WebPartDisplayMode 103, 246

properties of 103
WebPartEventArgs 51, 196
WebPartEventHandler 50, 216
WebPartExportMode

enumeration 109
WebPartManager

activities overview 97
authorization 104
AvailableTransformers 83
creating custom 124
importing and exporting 99,
107
introducing 11
lifecycle management 98
personalization 237
Personalization property 167

WebPartMoving event 99
WebPartPersonalization 271

class 167, 170
members 167

WebPartVerb 195, 215
WebPartVerbCollection 50
WebService 294
WebServiceCallEvent 267
WebZone 130

Wikipedia 5
Windows authentication 164
Windows Event Log 259, 264
Windows File Explorer 232
Windows Vista 309
WmiWebEventProvider 263
Write method 260
www.PageFlakes.com 286

X

XML
loading 267

XmlNode 253
XmlNodeList 252
XMLTextReader 154
XmlTextWriter 115
XPATH 252
XQuery 27

Y

Yahoo 284

Z

Zone property 146
ZoneIndex property 146
zones

overview 7–8
See also WebPart Zones

ZoneTemplate 42, 128
324 INDEX

	ASP.Net 2.0 Web Parts in Action: Building Dynamic Web Portals
	contents
	Foreword
	Preface
	Portals and web parts
	Introducing portals and web parts
	1.1 Introduction
	1.2 What is a portal?
	1.2.1 Anatomy of a portal
	1.2.2 A portal example

	1.3 Using the ASP.NET 2.0 portal framework
	1.3.1 Components of the framework

	1.4 Introducing Adventure Works Cycles database
	1.4.1 What is the database?
	1.4.2 You’re hired!
	1.4.3 Getting our hands on data

	1.5 Summary

	Web parts: the building blocks of portals
	2.1 Introduction
	2.2 Exploring web parts
	2.2.1 Discovering the GenericWebPart control

	2.3 Understanding the WebPart class
	2.3.1 Using custom controls
	2.3.2 Creating web parts with user controls

	2.4 Understanding web part internals
	2.4.1 IWebPart
	2.4.2 IWebActionable
	2.4.3 IWebEditable

	2.5 Applying themes and styles
	2.6 Adding web parts to the Adventure Works Solution
	2.7 Summary

	Using web part connections
	3.1 Dissecting connections
	3.1.1 The Master/Details scenario
	3.1.2 The Parent/Child scenario

	3.2 Creating simple connections
	3.2.1 Creating a connection consumer

	3.3 Sorting out connection types
	3.3.1 Static connections
	3.3.2 Dynamic connections

	3.4 Using transformers
	3.4.1 Using pre-defined transformers

	3.5 Adventure Works- implementing connections for HR
	3.6 Summary

	The Web Part Manager
	4.1 Introduction
	4.1.1 A control with many hats

	4.2 The Page Lifecycle
	4.3 Page display modes
	4.4 Web part authorization
	4.5 Importing and exporting web parts
	4.6 Using WebPartManager with master pages
	4.7 Adventure Works- additions to the HR code
	4.8 Summary

	Working with zones
	5.1 Introduction
	5.2 Classifying zones
	5.2.1 WebPart zones
	5.2.2 Tool zones
	5.2.3 WebZone-the common base class
	5.2.4 Zone appearance

	5.3 Custom rendering of zones
	5.3.1 The structure of zones
	5.3.2 Rendering the header, body, and footer
	5.3.3 Displaying the galleries in a DropDownList

	5.4 Using WebPartChrome
	5.4.1 Defining chrome types
	5.4.2 Customizing chrome
	5.4.3 Viewing the results of custom chrome

	5.5 Explaining parts
	5.5.1 EditorZone parts
	5.5.2 CatalogZone parts

	5.6 Zone additions to the Adventure Works Portal
	5.6.1 Planning the CatalogZone extensions
	5.6.2 Creating a custom catalog part

	5.7 Summary

	Understanding personalization
	6.1 Introduction
	6.2 Defining personalization
	6.3 Personalization in action
	6.4 Lifecycle of personalization data
	6.4.1 Storing personalization data
	6.4.2 The PersonalizationProvider class
	6.4.3 Setting up the database

	6.5 Working with personalization data
	6.5.1 SetPersonalizationDirty
	6.5.2 Personalization interfaces

	6.6 Personalization of the Adventure Works portal
	6.6.1 Allowing users to change personalization scope
	6.6.2 Adding a Notes web part

	6.7 Summary

	Extending the portal framework
	Creating an enhanced editing experience
	7.1 Introduction
	7.2 Supplying custom editing controls
	7.2.1 Improving the FavoritesWebPart

	7.3 Improving usability
	7.3.1 Reducing mouse clicks
	7.3.2 Creating a collapsible EditorZone
	7.3.3 A finishing touch

	7.4 Summary

	Useful portal customizations
	8.1 Introduction
	8.2 Making common tasks accessible
	8.2.1 Identifying common tasks
	8.2.2 Creating a common tasks MenuBar

	8.3 Versioned personalization data
	8.3.1 Creating a revision of data
	8.3.2 Approving a revision
	8.3.3 Allowing a user to commit changes

	8.4 Creating an area for tool zones
	8.4.1 Moving our task zones
	8.4.2 Displaying the TaskZone area

	8.5 Adding a CatalogZone dialog
	8.5.1 Displaying catalogs
	8.5.2 Displaying web parts
	8.5.3 Communicating between web pages

	8.6 Summary

	Portal management
	9.1 Introduction
	9.2 Preparing for deployment
	9.2.1 Code instrumentation
	9.2.2 Health monitoring

	9.3 Recovering from errors gracefully
	9.3.1 Providing a custom error page
	9.3.2 Logging the failure

	9.4 When all else fails
	9.4.1 Self-maintenance of web parts
	9.4.2 Managing personalization data

	9.5 Summary

	Into the future
	10.1 Introduction
	10.2 Reflecting on the portal
	10.3 A world of web portals
	10.3.1 SharePoint
	10.3.2 Internet portals
	10.3.3 Developer extensibility

	10.4 Ajax behavior
	10.4.1 Making Client-side Callbacks
	10.4.2 Announcing Atlas
	10.4.3 Using Atlas

	10.5 Introducing Live.com- a modern mega-portal
	10.5.1 Personalizing the Live.com portal
	10.5.2 MicrosoftGadgets.com-a repository of custom gadgets
	10.5.3 Creating a custom Live.com gadget

	10.6 Call to action

	appendix: Creating the Adventure Works project
	A.1 Introduction
	A.2 Starting the project
	A.3 Adding a master page and styles
	A.4 Create the default web page
	A.5 Add a Theme

	index

