

HTML Utopia: Designing Without Tables Using CSS, 2nd
Edition

Thank you for downloading this four-chapter sample of Rachel Andrew's
and Dan Shafer’s book, HTML Utopia: Designing Without Tables Using CSS,
2nd Edition, published by SitePoint.

This excerpt includes the Summary of Contents, Information about the
Authors, Editors and SitePoint, Table of Contents, Preface, four chapters
of the book, and the index.

We hope you find this information useful in evaluating this book.

For more information or to order, visit sitepoint.com

http://www.sitepoint.com/launch/827047

Summary of Contents of this Excerpt

Preface .. xi

1. Getting the Lay of the Land...1

2. Putting CSS into Perspective ...21

3. Digging Below the Surface ...39

8. Simple CSS Layout...149

Index..485

Summary of Additional Book Contents

4. Validation and Backward Compatibility ...61

5. Splashing Around a Bit of Color ..75

6. Working with Fonts..95

7. Text Effects and the Cascade ...111

9. Three-column Layouts..217

10. Fixed-width Layouts ...259

A. CSS Miscellany ..299

B. CSS Color Reference..307

C. CSS Property Reference...317

Recommended Resources ...477

HTML Utopia: Designing
Without Tables Using CSS

by Dan Shafer

and Rachel Andrew

HTML Utopia: Designing Without Tables Using CSS
by Dan Shafer and Rachel Andrew

Copyright © 2006 SitePoint Pty. Ltd.

Editor: Georgina LaidlawTechnical Director: Kevin Yank
Index Editor: Bill JohncocksExpert Reviewer: Richard Rutter
Cover Design: Jess MasonManaging Editor: Simon Mackie
Cover Layout: Alex WalkerTechnical Editor: Craig Anderson

Printing History:
First Edition: May 2003
Second Edition: April 2006

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0-9752402-7-7
Printed and bound in the United States of America

About the Authors

Dan Shafer is a highly respected web design consultant. He cut his teeth as the first web-
master and Director of Technology at Salon.com, then spent almost five years as the
Master Builder in CNET’s Builder.com division.

Dan gained widespread recognition as a respected commentator on the web design scene
when he hosted the annual Builder.com Live! conference in New Orleans. He has designed
and built more than 100 web sites and is regarded as an expert in web user experience
design and implementation.

The author of more than 50 previous titles on computers and technology, Dan lives in
Monterey, California, with his wife of almost 25 years, Carolyn, and their Shiitzu dog,
Albert Einstein.

Rachel Andrew is web developer and director of web solutions provider edgeofmyseat.com.
When not writing code, she writes about writing code and is the coauthor of several books
promoting the practical usage of web standards alongside other everyday tools and tech-
nologies. Rachel takes a common sense, real world approach to web standards, with her
writing and teaching being based on the experiences she has in her own company every
day.

Rachel lives in the UK with her partner Drew and daughter Bethany. When not working,
they can often be found wandering around the English countryside hunting for geocaches
and nice pubs that serve Sunday lunch and a good beer.

About the Expert Reviewer

Richard Rutter lives and works in Brighton, UK, where he is co-founder and Production
Director for web consultancy Clearleft.1 Richard has been designing and developing web
sites for nigh on ten years and regularly harps on about web standards, accessibility, and
mountain biking on his weblog.2

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals.

Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and community
forums.

1 http://www.clearleft.com
2 http://www.clagnut.com

http://www.clearleft.com
http://www.clagnut.com
http://www.sitepoint.com/

This book is dedicated to One
Mind, in the knowing that It

is all there is.

—Dan Shafer

Table of Contents
Preface ... xi

Who Should Read this Book? ... xii
What’s in this Book? .. xii
The Book’s Web Site .. xv

The Code Archive ... xv
Updates and Errata ... xv

The SitePoint Forums ... xv
The SitePoint Newsletters .. xv
Your Feedback ... xvi
Acknowledgements .. xvi

1. Getting the Lay of the Land ... 1
CSS in Context .. 2
The Basic Purpose of CSS .. 3
Why Most—but Not All—Tables Are Bad .. 3

Tables Mean Long Load Times ... 4
Use of Transparent Images Slows us Down 4
Maintaining Tables is a Nightmare ... 5
Tables Cause Accessibility Issues .. 6
When it’s Okay to Use a Table .. 6

What is CSS, Really? ... 6
Parts of a CSS Rule .. 8
Types of CSS Rules .. 11

Which Properties can CSS Rules Affect? 11
Which Elements can CSS Affect? ... 11
Where can CSS Styles be Defined? .. 12

A Simple Example ... 15
Summary ... 19

2. Putting CSS into Perspective ... 21
What can CSS Do? .. 21

Color and CSS ... 22
Fonts and CSS ... 25
Dynamic Pseudo-classes and CSS ... 28
Images and CSS ... 29
Multiple Style Sheets, Users, and CSS .. 30

Advantages of CSS Design ... 31
Increased Stylistic Control ... 31
Centralized Design Information ... 32
Semantic Content Markup ... 33

Accessibility ... 34
Standards Compliance ... 36

Browser Support for CSS ... 37
Summary ... 37

3. Digging Below the Surface ... 39
Applying CSS to HTML Documents .. 40
Using Shorthand Properties ... 41
How Inheritance Works in CSS ... 42
Selectors and the Structure of CSS Rules .. 44

Universal Selector .. 44
Element Type Selector ... 45
Class Selector ... 45
ID Selector .. 46
Pseudo-element Selector ... 47
Pseudo-class Selector .. 48
Descendant Selector ... 50
Parent-child Selector .. 51
Adjacent Selector ... 52
Attribute Selectors ... 52
Selector Grouping .. 54

Expression Measurements .. 54
Absolute Values ... 56
Relative Values .. 57

CSS Comments .. 59
Summary ... 60

4. Validation and Backward Compatibility .. 61
Validating your CSS .. 61
Adjusting for Backward Compatibility .. 65

Browsers that Do Not Support CSS ... 66
Browsers with Poor or Badly Implemented CSS Support 66
Bugs in Modern Browsers ... 69

Keep the Quirks: DOCTYPE Switching .. 70
Summary ... 73

5. Splashing Around a Bit of Color .. 75
Who’s in Charge? .. 75
Color in CSS .. 77

How to Specify Colors ... 78
Selecting and Combining Colors ... 81
Setting body Color ... 82
Transparency, Color, and User Overrides 83

Order the print version of this book to get all 500+ pages!iv

HTML Utopia: Designing Without Tables Using CSS

http://www.sitepoint.com/launch/827047

Interesting Uses of Color .. 85
Warnings and Cautions .. 85
Coloring Alternate Rows and Adding Cell Borders in Data
Tables .. 87

Background Images .. 90
Summary ... 94

6. Working with Fonts .. 95
How CSS Deals with Fonts .. 95
The font-family Property ... 96

Generic Fonts .. 97
The font-size Property .. 99

HTML Sizes vs CSS Sizes .. 100
Variability across Browsers and Platforms 100
Relative to what? ... 101

Other Font Properties .. 103
The font-style Property .. 103
The font-variant Property ... 103
The font-weight Property ... 103

The font Shorthand Property .. 104
Standard and Nonstandard Font Families ... 106

Specifying Font Lists .. 107
Using Nonstandard and Downloadable Fonts 109

Summary ... 109

7. Text Effects and the Cascade ... 111
Using the span Element ... 112
Text Alignment as a Design Technique ... 113

Text Alignment in CSS vs HTML ... 114
Moving from Crowded to Airy Design Using Alignment 114

First-line Indentation ... 120
Horizontal and Vertical Spacing ... 122

The line-height Property ... 122
The letter-spacing and word-spacing Properties 125

Text Decorations ... 129
Styling Hyperlinks ... 131
Styling Lists with CSS .. 134

The list-style-type Property ... 134
The list-style-position Property .. 137
The list-style-image Property .. 139

Cascading and Inheritance ... 140
Basic Principles of Cascading .. 140

vOrder the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/827047

Sort Order ... 142
Specificity .. 144
Origin .. 146
Weight .. 147

Summary ... 147

8. Simple CSS Layout ... 149
The Layout .. 149
Creating the Document .. 151

The Header .. 153
The Main Content Section ... 153
The Sidebar ... 154

Positioning the Page Elements .. 157
The display Property .. 157
Absolute, Relative, and Positioning Contexts 158
The Box Model .. 162
Margin Properties .. 173
Margins, Padding, and Lists ... 175
Border Properties ... 179

Constructing the Layout ... 181
The Header Area .. 185
The Content Area .. 192
Repositioning the Sidebar .. 213

Summary ... 214

9. Three-column Layouts .. 217
Adding a Third Column ... 217

The Markup .. 218
Positioning the Sidebar .. 221

Adding a Footer ... 232
The float Property .. 236

How Does it Work? ... 239
Putting float into Practice in our Layout ... 240
Achieving Full-height Columns ... 244
The Content Order Problem ... 251

Other Layout Methods ... 255
Summary ... 256

10. Fixed-width Layouts .. 259
The Layout .. 260
Creating the Document .. 261
Centering the Content Area ... 264

The Header Area .. 267

Order the print version of this book to get all 500+ pages!vi

HTML Utopia: Designing Without Tables Using CSS

http://www.sitepoint.com/launch/827047

The Content .. 268
The Table .. 273
Multiple-column Fixed-width Layouts .. 281

Positioned Columns ... 282
Floated Columns .. 284

“Zoom” Layouts ... 288
Creating the Style Sheet ... 290
Attaching Alternate Style Sheets .. 295

Summary ... 297

A. CSS Miscellany ... 299
At-rules .. 299
Aural Style Sheets .. 303
CSS and JavaScript .. 305

B. CSS Color Reference ... 307

C. CSS Property Reference .. 317
azimuth ... 318
background .. 318
background-attachment .. 319
background-color ... 320
background-image .. 321
background-position ... 322
background-position-x, background-position-y 324
background-repeat ... 325
behavior ... 326
border .. 327
border-bottom, border-left, border-right, border-top 328
border-bottom-color, border-left-color, border-right-color, border-top-
color .. 329
border-bottom-style, border-left-style, border-right-style, border-top-
style ... 330
border-bottom-width, border-left-width, border-right-width, border-
top-width ... 330
border-collapse ... 331
border-color ... 332
border-spacing ... 333
border-style .. 334
border-width .. 337
bottom .. 338
caption-side ... 339
clear ... 339

viiOrder the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/827047

clip .. 340
color .. 341
content .. 342
counter-increment .. 345
counter-reset .. 347
cue .. 348
cue-after, cue-before ... 349
cursor .. 349
direction .. 352
display ... 354
elevation .. 358
empty-cells ... 358
filter .. 359
float ... 361
font ... 362
font-family ... 364
font-size ... 366
font-size-adjust .. 368
font-stretch .. 370
font-style ... 371
font-variant .. 372
font-weight .. 373
height .. 375
ime-mode ... 376
layout-flow ... 377
layout-grid ... 378
layout-grid-char .. 379
layout-grid-line ... 380
layout-grid-mode .. 381
layout-grid-type ... 382
left ... 383
letter-spacing ... 384
line-break ... 385
line-height ... 386
list-style ... 388
list-style-image ... 389
list-style-position .. 391
list-style-type ... 392
margin ... 394
margin-bottom, margin-left, margin-right, margin-top 395
marker-offset ... 396
marks .. 398

Order the print version of this book to get all 500+ pages!viii

HTML Utopia: Designing Without Tables Using CSS

http://www.sitepoint.com/launch/827047

max-height, min-height .. 399
max-width, min-width .. 400
-moz-border-radius ... 401
-moz-border-radius-bottomleft, -moz-border-radius-bottomright, -moz-
border-radius-topleft, -moz-border-radius-topright 403
-moz-opacity .. 404
orphans ... 405
outline ... 406
outline-color .. 407
outline-style ... 408
outline-width ... 409
overflow ... 410
overflow-x, overflow-y .. 412
padding ... 413
padding-bottom, padding-left, padding-right, padding-top 415
page ... 416
page-break-after ... 417
page-break-before ... 418
page-break-inside ... 420
pause ... 421
pause-after, pause-before .. 422
pitch .. 422
pitch-range ... 424
play-during .. 424
position ... 426
quotes .. 427
richness ... 429
right .. 430
ruby-align .. 431
ruby-overhang .. 432
ruby-position ... 434
scrollbar-base-color ... 435
scrollbar-element-color ... 436
size .. 438
speak ... 439
speak-header .. 440
speak-numeral .. 441
speak-punctuation .. 441
speech-rate ... 442
stress ... 443
table-layout .. 444
text-align ... 445

ixOrder the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/827047

text-align-last ... 446
text-autospace .. 447
text-decoration ... 449
text-indent ... 450
text-justify ... 451
text-kashida-space .. 452
text-overflow .. 453
text-transform .. 454
text-underline-position ... 455
top ... 456
unicode-bidi ... 457
vertical-align .. 460
visibility ... 462
voice-family ... 463
volume ... 464
white-space .. 465
widows .. 467
width ... 468
word-break ... 469
word-spacing .. 470
word-wrap .. 471
writing-mode ... 472
z-index ... 473
zoom ... 474

Recommended Resources ... 477
Index ... 485

Order the print version of this book to get all 500+ pages!x

HTML Utopia: Designing Without Tables Using CSS

http://www.sitepoint.com/launch/827047

Preface
I’ve been around the Web for a while now—some might say I’ve been here from
the beginning. And one thing that always bothered me about the Web was its
inherent inability to disentangle content from presentation. The interconnected-
ness of it all meant that, to produce a web site, you needed not only to have
something to say, and some graphical design skills to make the presentation of
that message look good, but you also needed to be a bit of a programmer. Initially,
this “programming” was a pretty lightweight task: HTML markup, when all is
said and done, isn’t really programming. Still, it’s more than just writing words
and using a word processor to format them, or conceptualizing a display for a
page—digitally or otherwise.

It’s no surprise, then, that designers who had clear ideas about how they wanted
their web pages to look were frustrated by the need to create complex sets of
deeply nested tables even to approximate their visions. As designers created increas-
ingly complex ideas, and web browsers diverged further and further from even
the merest semblance of compatibility, the Web threatened to collapse under its
own weight. Serious designers began lobbying for a complete break from HTML
to some new approach to the Web. Chaos reigned.

The Holy Grail of the Web, back then, was the notion that authors should write,
designers should design (and code HTML), and programmers should … well …
program. Those boundaries had not been clear in the first few years of the Web.

Then, along came Cascading Style Sheets (CSS), the subject of this book. The
governing forces of the Web, through the World Wide Web Consortium, better
known as the W3C,1 addressed the problem with the proposal that we divide
presentation instructions and the structural markup of content into two separate
kinds of files.

Things haven’t been the same since, thank goodness! Now we can (mostly) sep-
arate what we say from the way it’s presented to the user in a browser. I wager
that most of today’s web developers are fairly comfortable with CSS, and would
be no more likely to think of embedding presentational instructions in their
HTML than they would to consider mixing 23 fonts on the same web or print
page.

1 http://www.w3.org/

http://www.w3.org/

Since CSS emerged, dozens of books have been written about it. So when Site-
Point approached me to write a CSS book, my first thought was, “Who needs
another CSS book?” But as they began to reveal their vision to me, it made sense.
It was indeed time for a book that took a different tack, based on the extensive
experience of the web design community.

This book is different from the rest in two fundamental ways.

First, it focuses on the question of how to use CSS to accomplish some of the
successes that web designers have spent significant amounts of time and energy
to create using nested tables. In other words, this book doesn’t try to start from
scratch and become a CSS tutorial. Instead, it’s a sort of introductory CSS design
guide.

Second, it starts at the outside and works its way in. Most, if not all, other CSS
books focus first on the little pieces: the attributes, values, and tags that comprise
the syntax of CSS. They then explain how to put those pieces together into a
web site.

This book begins by looking at how CSS should influence the overall design of
a site, and how to put the CSS framework in place before you begin to deal with
individual HTML elements and their styling.

Who Should Read this Book?
As I wrote this book, I had in mind web designers with at least a little experience
building sites, who are curious about how CSS can help them become more ef-
fective designers. It’s aimed at the beginner to intermediate designer. I’ll assume
a strong grasp of HTML, but that’s about it.

What’s in this Book?
Chapter 1: Getting the Lay of the Land

This first chapter serves as a brief introduction to CSS and the main concepts
that we’ll discuss throughout the rest of the book. If you haven’t used CSS
at all before, or you want to ensure that you understand the concepts fully
before you get started, this chapter is a great place to start.

Order the print version of this book to get all 500+ pages!xii

Preface

http://www.sitepoint.com/launch/827047

Chapter 2: Putting CSS into Perspective
In this chapter, we begin to use CSS in practical ways, and to discuss why
we might want to use CSS rather than old-style methods like font tags for
text styling, and tables for layout.

Chapter 3: Digging Below the Surface
Picking up the pace, we start to look in some depth at how CSS works. Here,
we consider the different ways in which we can add CSS to our documents,
we discuss CSS selectors and rules, and we investigate the various shorthand
properties that will help us streamline our CSS files. We’ll also come to grips
with the concept of inheritance. This chapter ensures that you understand
the terminology and syntax we’ll be using, which will make it easier for you
to follow examples in this book and elsewhere.

Chapter 4: Validation and Backward Compatibility
In this chapter, we discuss how we can validate our documents and style
sheets to ensure that they comply with the published specifications. We also
find out a bit about the practicalities of ensuring our sites’ backward compat-
ibility with older browsers or devices.

Chapter 5: Splashing Around a Bit of Color
This chapter looks closely at the ways in which colors can be applied to text
and other objects, as well as to page backgrounds. It will discuss how to de-
scribe colors, where to use them, and how to make them work together to
achieve specific effects.

Chapter 6: Working with Fonts
This chapter examines the question of how fonts can be used properly in
CSS-based web design. After an explanation of how CSS deals with fonts at
the most abstract level, we’ll look at the use of standard and nonstandard
fonts in web pages. Finally, we’ll discuss some guidelines for the selection of
font families and sizes for your page designs.

Chapter 7: Text Effects and the Cascade
This chapter builds on Chapter 6, where we looked at text in terms of fonts
and their related style properties. Here, we’ll explore a range of other ways
in which we can style text, and spend time looking at links and lists, in par-
ticular.

Chapter 8: Simple CSS Layout
We start this chapter by creating a simple two-column layout. Along the way,
we discover how to use absolute and relative positioning techniques in CSS

xiiiOrder the print version of this book to get all 500+ pages!

What’s in this Book?

http://www.sitepoint.com/launch/827047

layouts; how margins, padding, and borders work together; and how we can
put all of these techniques into practice by creating a fully functional two-
column layout.

Chapter 9: Three-column Layouts
Out first task in this chapter is to add a third column to the layout we created
in Chapter 8. We then discuss the issues that arise when we want to add a
footer that runs along the bottom of a multiple-column layout like ours.
Along the way, we’ll find out how to use the float property to create multi-
column layouts, and how to create full-length columns using CSS. We’ll also
consider some of the issues that surround these types of layouts.

Chapter 10: Fixed-width Layouts
In this last chapter, we’ll create a fixed-width layout that’s centered in the
user’s browser window. As we progress, we’ll look at techniques for styling
data tables effectively, and discuss one method by which you can enable your
users to choose a different layout if they find your fixed-width layout difficult
to read.

Appendix A: CSS Miscellany
This appendix provides a brief description of some of the more obscure parts
of CSS that weren’t covered in detail earlier in the book, including the “at-
rules” and aural style sheets. It also introduces the concept of DHTML as a
launching point for further reading.

Appendix B: CSS Color Reference
This appendix provides a comprehensive list of all (official and unofficial)
color names in CSS, along with their hexadecimal and RGB equivalent values.

Appendix C: CSS Property Reference
This sizeable appendix contains a complete reference to all CSS properties
at the time of writing. It includes a practical example for each property (when
appropriate) and gives an indication of the level of support browsers provide
for that property.

Bibliography
The Recommended Resources listed here include books and web sites. The
bibliography is by no means exhaustive; it’s more of a list of our own favorite
references—resources that we, personally, have found helpful over the
years—than a reference to every resource on the topic.

Order the print version of this book to get all 500+ pages!xiv

Preface

http://www.sitepoint.com/launch/827047

The Book’s Web Site
Located at http://www.sitepoint.com/books/css2/, the web site supporting this
book will give you access to the following facilities:

The Code Archive
As you progress through the text, you’ll note a number of references to the code
archive. This is a downloadable ZIP archive that contains complete code for all
the examples presented in the book. It also includes a copy of the Footbag Freaks
web site,2 which we use as an example throughout the book. You can get it from
http://www.sitepoint.com/books/css2/code.php on the book’s web site.

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at
least one or two mistakes before the end of this one. The Errata page, at
http://www.sitepoint.com/books/css2/errata.php on the book’s web site, will always
have the latest information about known typographical and code errors, and ne-
cessary updates for new browser releases and versions of the CSS standard.

The SitePoint Forums
If you’d like to communicate with us or anyone else on the SitePoint publishing
team about this book, you should join theSitePoint Forums.3 In fact, you should
join that community even if you don’t want to talk to us, because there are a lot
of fun and experienced web designers and developers hanging out there. It’s a
good way to learn new stuff, get questions answered (unless you really enjoy being
on the phone with some company’s tech support line for a couple of hours at a
time), and just have fun.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters.

2 http://www.footbagfreaks.com/
3 http://www.sitepointforums.com/

xvOrder the print version of this book to get all 500+ pages!

The Book’s Web Site

http://www.sitepoint.com/books/css2/
http://www.footbagfreaks.com/
http://www.footbagfreaks.com/
http://www.sitepoint.com/books/css2/code.php
http://www.sitepoint.com/books/css2/errata.php
http://www.sitepointforums.com/
http://www.sitepoint.com/launch/827047

The SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of web development. The long-running SitePoint
Tribune is a biweekly digest of the business and moneymaking aspects of the Web.
Whether you’re a freelance developer looking for tips to score that dream contract,
or a marketing major striving to keep abreast of changes to the major search en-
gines, this is the newsletter for you. The SitePoint Design View is a monthly com-
pilation of the best in web design. From new CSS layout methods to subtle
Photoshop techniques, SitePoint’s chief designer shares his years of experience
in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at
http://www.sitepoint.com/newsletter/

Your Feedback
If you can’t find your answer through the forums, or you wish to contact us for
any other reason, the best place to write is books@sitepoint.com. We have a
well-manned email support system set up to track your inquiries, and if our
support staff is unable to answer your question, it comes straight to us. Suggestions
for improvement—as well as notices of any mistakes you may find—are especially
welcome.

Acknowledgements
First and foremost I must acknowledge the author of the original edition of this
book, Dan Shafer, for the solid CSS tutorial that makes up the first half of the
book. His original work still stood as an excellent introduction to the subject al-
most three years later, and updates were required simply due to the passing of
time and the evolution of browsers since the first edition of this book was pro-
duced.

Thanks must also go to the team members at SitePoint—especially to Simon
Mackie—for their expertise and support in guiding this book to completion. Also,
thanks to expert reviewer Richard Rutter, who helped greatly in ensuring that
outdated advice was excised from the original manuscript, and that I didn’t add
any inaccuracies of my own!

Finally, and as always, thanks to Drew and Bethany for putting up with me and
supporting me through yet another book project. I love you both.

—Rachel Andrew

Order the print version of this book to get all 500+ pages!xvi

Preface

http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/launch/827047

Getting the Lay of the Land1
We can look at Cascading Style Sheets (CSS) from a number of contextual per-
spectives. I prefer to view them as a correction to a fundamental mistake that
was made at the beginning of Web Time, back in the old days of the early 1990s,
when Tim Berners-Lee and the pioneering web builders first envisioned the be-
ginnings of the Web.

What was that mistake?

To meet the requirements of the Web’s initially limited purpose (its original intent
was to allow a small number of nuclear physicists using disparate systems at
various locations to share vital experimental data), it was not necessary to separate
a page’s content (the information contained in the document) from its presenta-
tion (the way that information is displayed). However, Berners-Lee didn’t envision
the massively popular, wildly commercialized, extensively morphed Web that
emerged from his core ideas in the early 1990s—I doubt that anyone could have.

So, the mistake was a lack of foresight, rather than an oversight. But it was a
mistake nonetheless.

CSS in Context
Almost as soon as the Web became popularized by the emergence of early
graphical web browsers (such as the wildly popular Netscape Navigator), the de-
signers of early web sites became aware of a problem. The method by which the
web browser displayed information stored in HTML files was not within the de-
signers’ control. No, it was primarily the users who were in charge of how the
web pages they visited would appear on their systems.

While there were many, including myself, who thought this was A Good Thing,
designers were beside themselves with concern. From their perspective, this con-
stituted a fundamental flaw. “Users don’t know anything about good design,”
they argued. If the designers couldn’t control with great accuracy things like colors,
fonts, and the precise, pixel-level positioning of every design element on the web
page, their creations could easily end up as ugly travesties in users’ browsers.
Most designers, accustomed to print and other fixed layouts that afforded them
complete control over what the user saw, found ways to bend the Web to their
will.

Lest I incur the ire of every designer reading this book, let me hasten to add that
I don’t think this was A Bad Thing. It is certainly the case that designers know
more about how content should be displayed for users than do the users them-
selves. Things like spacing, color combinations, and other design elements affect
readability and usability. My point has much less to do with who should have
been in charge, than it does with the actions to which designers were more or
less forced to resort in order to achieve at least some measure of control.

Soon, expert designers discovered that they could use tables to gain significant
control over the presentation of content to users. By laying out tables within
tables within tables, they could position quite precisely any design element that
could be contained within a table cell. And that encompassed almost everything.

The first desktop publishing-style web page design tool, NetObjects Fusion, en-
abled designers to lay out pages with a high degree of precision. It generated
complex, table-based HTML, which resulted in web pages that were as close as
possible to the designer’s original vision.

We never looked back.

But tables weren’t intended to be used as layout tools, so while they were effective,
they were also horribly inefficient. We’ll explore some of the shortcomings and
disadvantages of using tables for layout tasks a little later in this chapter; for now,

Order the print version of this book to get all 500+ pages!2

Chapter 1: Getting the Lay of the Land

http://www.sitepoint.com/launch/827047

just know that everyone, including the designers who used the techniques, under-
stood pretty well how clumsy a solution they really were.

The Basic Purpose of CSS
After a brief series of skirmishes at the beginning of the Web’s development, the
question of who should control the overall appearance of a page or site ended
with the designers as victors. Users, after all, care more about usability, accessib-
ility, and convenience than the nitty-gritty details of design techniques.

Yet designers found themselves hard-pressed to identify very good, standards-
compliant ways to provide their customers—and their customers’ users—with
great designs that were also effective and efficient. Thus, they were forced to rely
largely on tables.

However, as time passed and the use of tables to lay out web pages became in-
creasingly complex, even the design community became uneasy. Maintaining a
web page that consists of a half-dozen or more deeply intertwined tables is a
nightmare. Most designers prefer not to deal with code—even simple HTML
markup—at such a level of detail.

Into the breach stepped the World Wide Web Consortium, better known as the
W3C,1 a body founded by Tim Berners-Lee to oversee the technical growth of
the Web. They saw that separating the content of a site from its presentation (or
appearance) would be the most logical solution. This would enable content ex-
perts—writers, artists, photographers, and programmers—to provide the “stuff”
that people come to a site to see, read, or experience. It would also free the design
experts—artists, graphic designers, and typographers—to determine a site’s aes-
thetics independently of its content.

The result was CSS.

Why Most—but Not All—Tables Are Bad
Why is the table not suited to being a design mechanism? There are numerous
reasons, but the ones we’re most concerned with in this context are:

� They result in load times that are longer than necessary.

1 http://www.w3.org/

3Order the print version of this book to get all 500+ pages!

The Basic Purpose of CSS

http://www.w3.org/
http://www.sitepoint.com/launch/827047

� They encourage the use of inefficient “placeholder graphics” that further slow
performance.

� Their maintenance can be a nightmare in which even minor changes break
the entire layout.

� They can cause the page to become inaccessible to those who are not using a
graphical web browser.

Tables Mean Long Load Times
Most people don’t know that web browsers are deliberately designed to ensure
that each table downloads as a single entity. None of the material that’s contained
in a table will be displayed until all the contents of that table are downloaded to
the client machine and available for display.2

When the original, intended purpose of tables is taken into account, this makes
sense. Tables were designed to display … well, tables of data. Each cell contained
a value that was being compared to, or related with, the values of other cells in
the table. Isolated bits of data appearing quasi-randomly would not do; the table
was a single, integrated entity.

When designers began to rely on tables to contain all or most of the content of
a web page, they were also saddled with the consequences of this design decision.
In addition to the apparent delay that many users experience as a result of tables
displaying all at once, the sheer volume of HTML code that’s required to create
web page layouts with nested tables can also add load time due to the increased
page size. Table-based layouts almost certainly account for more user concern
over long page-load times than any other single factor.

Avoiding this significant load time would obviously be A Good Thing.

Use of Transparent Images Slows us Down
Even when using tables as layout mechanisms, designers could not quite attain
the detailed level of control they wanted over page design. Sometimes, for instance,
a designer might need a bit more breathing room around one part of a table
cell—something for which tables do not allow. This kind of precision was un-
achievable.

2Cascading Style Sheets Level 2 (CSS 2) includes a property called table-layout that alters this
behavior, with several important caveats. Refer to Appendix C for details.

Order the print version of this book to get all 500+ pages!4

Chapter 1: Getting the Lay of the Land

http://www.sitepoint.com/launch/827047

Early on, someone came up with the notion of creating a transparent.gif image
file—a tiny GIF image that had no visible content. By creating table cells that
contained these transparent images, we could force extra vertical and horizontal
“space” into tables whose cells were designed to remain in close proximity to one
another.

The problem is that, given a table with dozens (or even hundreds) of these images,
and depending on a variety of other factors, the performance impact of transparent
GIFs on a web page can be significant. More importantly, though, this technique
often restricts the page to a fixed pixel size, and clutters the page with images
that are irrelevant to the meaning of the page content. This severely impacts the
ability of users with disabilities to make sense of table-based sites, as we’ll see
later.

Maintaining Tables is a Nightmare
The third reason why most tables are bad is that maintaining a complex array of
deeply nested tables is a nightmare. If you use tools such as Macromedia
Dreamweaver or Adobe GoLive to manage your sites and their designs, generally
you can ignore the messiness of the nested tables that make the design possible.
But even these tools are not foolproof, and when they “mess up” (to use a highly
technical term), amending the unsightly pages they create can be quite a challenge.

If you’re like most designers, and you wouldn’t be caught dead using an HTML-
generating tool because you feel you gain more control and understanding if you
hand-code everything, then you’ll be familiar with the maintenance problem.

The difficulty arises because, by necessity, tables have a fairly complex set of
tags—even if they aren’t embedded within other tables. And when we have nested
tables, well, we’ve got a clear case of the uglies, all right.

The situation is further complicated by the fact that, unlike programming editors,
HTML editors generally do not force or support the clean indentation of code.
So, finding the start and end points for a given table, row, or cell turns out to be
what software folks call a “non-trivial task.” While it’s true that a competent
HTML coder or designer could make this problem more tractable, it’s never really
solvable, no matter what we do.

5Order the print version of this book to get all 500+ pages!

Maintaining Tables is a Nightmare

http://www.sitepoint.com/launch/827047

Tables Cause Accessibility Issues
The fourth reason why tables are bad lies in the way non-graphical browsers—such
as the screen readers used by many visually impaired users—read an HTML
document. When a text-only device reads the content of a site, it starts at the
top and works down the page line by line. When it comes to a table, it starts at
the first (top-left) cell, then continues along the top row, then moves to the
second row, and so on. In the case of a table that’s used correctly, for tabular
data, this is rarely a problem. However, where nested tables have been used to
display chunks of text in the desired layout, that content can become nonsensical
when read in this manner.

When it’s Okay to Use a Table
There’s one notable exception to the cardinal rule that Tables Are A Bad Thing.

If you have tabular data, and the appearance of that data is less important than
its appropriate display in connection with other portions of the same data set,
then a table is in order. If you have information that would best be displayed in
a spreadsheet such as Excel, you have tabular data.

In general (though, undoubtedly, there are exceptions to this rule as well), this
means that the use of tables should be confined to the presentation of numeric
or textual data, not graphics, multimedia data types, forms, or any other interact-
ive user interface components.

What is CSS, Really?
Now that we’ve established that an important role of CSS in designers’ lives is
to free us from the drudgery of using tables for page layout, let’s take a look at
what CSS really is.

The most important word in the label “Cascading Style Sheets” is the middle
one: “style.” “Cascading” becomes important only when we get into fairly complex
style usage, while the word “sheet” is a tad misleading at times. So, even though
we mean Cascading Style Sheets in the broadest and most accurate sense, we’ll
focus not on the cascading or sheet-like nature of these beasts, but on their role
in determining the styles of our web pages and sites.

Order the print version of this book to get all 500+ pages!6

Chapter 1: Getting the Lay of the Land

http://www.sitepoint.com/launch/827047

Styles are defined as rules. These rules tell any web browser that understands
them (i.e. any browser that supports CSS) how to display specific types of content
structures when it encounters these structures in delivering a web page to a user.
We call this visual display of a web page the way the browser renders the page.

To understand how styles affect the appearance of a web page, we need to under-
stand what happens to a web page in the absence of any style rules.

Figure 1.1 shows how the browser displays a page when its author hasn’t specified
any style rules. Each browser has a default way of displaying web pages using its
own internal style sheet. So, a first-level heading enclosed in <h1> and </h1> tags
will be displayed using a relatively large font in black, because that’s dictated by
the browser’s style sheet. The “default” font that’s used may vary between
browsers, and can be affected by user-defined settings as well.

Figure 1.1. Normal browser page display behavior

7Order the print version of this book to get all 500+ pages!

What is CSS, Really?

http://www.sitepoint.com/launch/827047

Figure 1.2. The browser displaying a page with a style rule in
effect

Figure 1.2 depicts what happens when the page’s author defines style rules. An
author-defined rule overrides the browser’s own internal style sheet rule for that
element, and the new style takes over. Even if the user has defined his or her own
settings for this element, those wishes usually will not be honored (though there
are some intriguing exceptions to this generality, which we’ll discuss much later
in this book).

Parts of a CSS Rule
Every style consists of one or more rules. Figure 1.3 shows a CSS rule with all
the parts labeled.

Order the print version of this book to get all 500+ pages!8

Chapter 1: Getting the Lay of the Land

http://www.sitepoint.com/launch/827047

Figure 1.3. The parts of a CSS rule

Each rule has two parts:

1. a selector that defines the HTML element(s) to which the rule applies

2. a collection of one or more declarations, made up of a property and a
value,3 which describe the appearance of all the elements that match the
selector

The property tells the browser which element is being defined. For example,
font-weight tells the browser that this declaration defines the weight of the
font. After the colon that separates the two parts of a declaration, we see a value
that will be applied to that property. If a value of bold followed the font-weight
property, it would make the weight of the font in that document bold. Each de-
claration must be followed by a semicolon, with one exception: the semicolon
that follows the last property is optional and may be omitted. In this book,
though, we’ll always add the optional semicolon. I encourage you to adopt this
habit, as it’s much easier to train yourself always to add the semicolon than it is
to remember when it is and is not required. This approach also makes it easier
to add properties to an existing style rule.

Here are a few examples of increasingly complex CSS rules, with the parts iden-
tified so that you can fix this syntax clearly in your mind. This is the only real
syntax issue you must understand in order to master CSS, so it’s important!

3Many books and articles about CSS get confused when it comes to this terminology, using these
terms interchangeably, or calling declarations “attributes.” In this book, I used the W3C-endorsed
terminology of “declarations,” “properties,” and “values.” I reserve the name “attributes” for attributes
of HTML tags.

9Order the print version of this book to get all 500+ pages!

Parts of a CSS Rule

http://www.sitepoint.com/launch/827047

h1 {
 color: red;
}

The selector, h1, indicates that this rule applies to all h1 headings in the document.
The property that’s being modified is color, which refers to the font color. The
value we want the color property to take on is red. Chapter 5 and Chapter 6
explore fonts and coloring in CSS in greater detail.

p {
 font-size: small;
 color: green;
}

The selector, p, indicates the style rule should be applied to all paragraphs in the
document. There are two declarations in the rule. The first, which sets the property
font-size, sets the size of the font in all paragraphs in the document to small.
See Chapter 3 for an explanation of this and other measurement issues in CSS.
The second property, color, is set to green. The result of this rule is that all
paragraphs in the document will appear in a green, “small” font.

p {
 font-family: 'New York', Times, serif;
}

Again, this rule deals with paragraphs, as is evidenced by the p selector. This
time, the selector affects the font family that is used to display text. The new
wrinkles in this example are that it includes a list of values for the font-family
property, and one of those values is enclosed in quotation marks.

The font-family property is one of a handful of CSS properties to which you
can assign a list of possible values, rather than a single, fixed value. When you
use a list, commas must separate its individual members. In this case, the font-
family value list tells the browser to use New York as the font if the user’s ma-
chine has it installed. If not, it directs the browser to use Times. And if neither
of these fonts is available on the user’s system, the browser is told to default to
the font used for serif type. This subject is covered in more depth in Chapter 6.

Whenever a value in a list includes spaces (as is the case with the font named
“New York”), you must put that value into quotation marks. Many designers use
single quotation marks for a number of reasons, not least of which is that they’re
slightly easier to type, but you can use either single or double quotation marks.

Order the print version of this book to get all 500+ pages!10

Chapter 1: Getting the Lay of the Land

http://www.sitepoint.com/launch/827047

Types of CSS Rules
We can categorize and think about CSS rules in several possible ways:

� First, we can think of the different types of properties that can be defined.
For example, different properties affect the color of elements, their positions
within the browser window, and so on.

� We can also consider the types of elements that can be affected using CSS,
and specifically, how certain elements can be targeted.

� Finally, there is the issue of where the style rules are defined.

Let’s take a brief look at each of these categorizations, so that you have a good
overview of the organization of CSS rules before you embark on a detailed study
of their use.

Which Properties can CSS Rules Affect?
CSS rules can include properties that affect virtually every aspect of the
presentation of information on a web site. A complete reference to these properties
is presented in Appendix C.

Which Elements can CSS Affect?
Stated another way, this question asks, “How, specifically, can a CSS rule target
a piece of information on a web page for special presentation?” CSS allows the
designer to affect all paragraphs, but how can you confine that impact to certain,
specific paragraphs? Is this even possible?

The answer is “yes.” Through various combinations of selector usage, the designer
can become quite specific indeed about the circumstances under which a style
rule is enforced. For example, you can assign rules so that they affect:

� all elements of a specific type

� all elements of a specific type that are assigned to a common group or class

� all elements of a specific type that are contained within other elements of a
specific type

11Order the print version of this book to get all 500+ pages!

Types of CSS Rules

http://www.sitepoint.com/launch/827047

� all elements of a specific type that are both contained within another specific
element type and assigned to a common group or class

� all elements of a specific type only when they come immediately after an ele-
ment of some other type

� only a specific element of a specific type that is assigned a unique ID

Chapter 3 includes a detailed discussion of all the CSS selectors you can use to
achieve these kinds of precision targeting.

Where can CSS Styles be Defined?
Finally, you can define CSS styles in any of three places:

� inside the HTML (such style declarations are called inline declarations)

� between <style> and </style> tags inside the head element (this is called
an embedded style sheet)

� in an external CSS file, also called an external style sheet

Inline Declarations

You can style any element by listing style declarations inside that element’s style
attribute. These are referred to as inline declarations because they’re defined inline
as part of the document’s HTML. You can assign a style attribute to almost all
HTML elements. For example, to make a second-level heading within a document
appear in red text and all capital letters, you could code a line like this:

<h2 style="color: red; text-transform: uppercase;">An Unusual
 Heading</h2>

If you follow the advice in this book, you won’t use many inline declarations. As
we’ll see, separating content from presentation is one of the big advantages of
CSS, and embedding styles directly in HTML tags defeats that purpose. Inline
declarations are mainly useful for rapid prototyping—quickly applying style
properties to a particular element to experiment with an effect before giving the
properties a more permanent place in an embedded or external style sheet.

Order the print version of this book to get all 500+ pages!12

Chapter 1: Getting the Lay of the Land

http://www.sitepoint.com/launch/827047

Embedded CSS

Specifying style properties in an embedded style sheet is an approach that’s often
used by beginning web designers and those just learning the techniques involved
in CSS design. It’s not my favorite method, but it does have the virtue of being
easy to deal with, so you’ll see it used from time to time in this book.

To embed a style sheet in a web page, we place a style element in the head of
the document’s HTML and fill it with style rules, as shown here in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>CSS Style Sheet Demo</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />

<style type="text/css">
 h1, h2 {
 color: green;
 }
 h3 {
 color: blue;
 }
 </style>
 </head>

The CSS rules contained in the style block apply to all the designated parts of
the current document. In this case, the first rule directs the browser to display
all level one and two headings (h1, h2) in green. The second rule displays all
level three headings (h3) in blue.

Notice that each rule starts on a new line, and each declaration within the rule
appears indented within braces on its own line. Strictly speaking, this layout isn’t
required, but it’s a good rule of thumb that improves the readability of your code,
especially if you’re used to the look of JavaScript code.

External CSS

Finally, you can define CSS rules in a file that’s completely separate from the
web page. You can link to this file by including a link element in the head of
any web page on which you want to implement those styles.

13Order the print version of this book to get all 500+ pages!

Where can CSS Styles be Defined?

http://www.sitepoint.com/launch/827047

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>CSS Style Sheet Demo</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <link rel="stylesheet" type="text/css" href="corpstyle.css" />
 </head>

In this example, the file corpstyle.css contains a set of styles that have been
linked to this page. Here’s what the contents of this file might look like:

File: corpstyle.css

h1, h2 {
 color: green;
}
h3 {
 color: blue;
}

This is my preferred way to use CSS, for a number of reasons.

First, this is the least “locked-in” of the three basic methods designers can use to
insert styles into a web page. If you define an external style sheet file, you can
apply it to as many pages of your site as you want, simply by linking to the style
sheet from each page on which you want it used. Using external CSS also makes
your site a lot easier to maintain: changing the appearance of an element that
appears on every page of your site is a simple matter of modifying the shared
.css file. If you use embedded or—worse yet—inline styles, you’ll have to change
every single page on which the element appears.

Second, external style sheets are treated as separate files by the browser. When
the browser navigates to a new page that uses the same style sheet as a previous
page, that external style sheet will not be downloaded again. Therefore, pages
that use external styles are quicker to load.

Last, but not least, external style sheets are simply more professional. By using
them, you demonstrate an understanding of the importance of the separation of
content from presentation, and you make it much easier to discuss your style
sheets, share them with colleagues, analyze their effects, and work with them as
if they were a serious part of the site’s design, rather than an afterthought.

Order the print version of this book to get all 500+ pages!14

Chapter 1: Getting the Lay of the Land

http://www.sitepoint.com/launch/827047

A Simple Example
Now that you have a basic overview of what CSS is all about, why it exists, and
why it’s an important technique for web designers to adopt, where’s the proof?
Let’s look at an example of a small but not overly simplistic web page (see Fig-
ure 1.4).

Figure 1.4. A sample web page demonstrating embedded styles

Here’s the HTML that will produce that page if we use embedded CSS. Don’t
let the complexity of the code intimidate you—by the end of Chapter 3 you
should be able to infer the meaning of most of it without my help. For now, you
can download the code archive from the book’s web site and marvel at the results
in your browser. The file is called ch1sample.html.

File: ch1sample.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Basic 3-Column Sample Page</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <style type="text/css">

15Order the print version of this book to get all 500+ pages!

A Simple Example

http://www.sitepoint.com/launch/827047

 body {
 background-color: teal;
 margin: 20px;
 padding: 0;
 font-size: 1.1em;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 }
 h1 {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 margin: 0 0 15px 0;
 padding: 0;
 color: #888;
 }
 h2 {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 margin: 0 0 5px 0;
 padding: 0;
 font-size: 1.1em;
 }
 p {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 line-height: 1.1em;
 margin: 0 0 16px 0;
 padding: 0;
 }
 .content>p {
 margin: 0;
 }
 .content>p+p {
 text-indent: 30px;
 }
 a {
 color: teal;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-weight: 600;
 }
 a:link {
 color: teal;
 }
 a:visited {
 color: teal;
 }
 a:hover {
 background-color: #bbb;
 }
 /* All the content boxes belong to the content class. */

Order the print version of this book to get all 500+ pages!16

Chapter 1: Getting the Lay of the Land

http://www.sitepoint.com/launch/827047

 .content {
 position: relative;
 width: auto;
 min-width: 120px;
 margin: 0 210px 20px 170px;
 border: 1px solid black;
 background-color: white;
 padding: 10px;
 z-index: 3;
 }
 #navleft {
 position: absolute;
 width: 128px;
 top: 20px;
 left: 20px;
 font-size: 0.9em;
 border: 1px dashed black;
 background-color: white;
 padding: 10px;
 z-index: 2;
 }
 #navleft ul {
 list-style: none;
 margin: 0;
 padding: 0;
 }
 #navright {
 position: absolute;
 width: 168px;
 top: 20px;
 right: 20px;
 border: 1px dashed black;
 background-color: #eee;
 padding: 10px;
 z-index: 1;
 }
 </style>
 </head>
 <body>
 <div class="content">
 <h1>Getting the Lay of the Land</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore
 magna aliqua. Ut enim ad minim veniam, quis nostrud
 exercitation ullamco laboris nisi ut aliquip ex ea
 commodo consequat. Duis aute irure dolor in

17Order the print version of this book to get all 500+ pages!

A Simple Example

http://www.sitepoint.com/launch/827047

 reprehenderit in voluptate velit esse cillum dolore eu
 fugiat nulla pariatur.</p>
 <p>Excepteur sint occaecat?</p>
 </div>
 <div class="content">
 <h2>CSS in Context</h2>
 <p>Nemo enim ipsam voluptatem quia voluptas sit aspernatur
 aut odit aut fugit, sed quia consequuntur magni
 dolores eos qui ratione voluptatem sequi nesciunt.
 Neque porro quisquam est, qui dolorem ipsum quia dolor
 sit amet, consectetur, adipisci velit, sed quia non
 numquam eius modi tempora incidunt ut labore et dolore
 magnam aliquam quaerat voluptatem.</p>
 </div>
 <div class="content">
 <h2>Keep Adding Content</h2>
 <p>You can see that as you keep adding content to this page,
 it adds nicely boxed and centered material down the
 center of the page.</p>
 </div>
 <div id="navleft">
 <h2>Some Links</h2>

 <a href="http://www.rachelandrew.co.uk/"
 title="Rachel Andrew's personal site">Rachel
 Andrew
 <a href="http://www.sitepoint.com/"
 title="SitePoint Home Base">SitePoint Home
 <a href="http://www.sitepoint.com/forums"
 title="SitePoint Discussion Forums">SitePoint
 Forums
 <a href="http://www.mozilla.org/firefox"
 title="Firefox at The Mozilla Foundation">Firefox

 <a href="http://www.microsoft.com/ie"
 title="Internet Explorer at Microsoft's Site">Internet
 Explorer
 <a href="http://www.opera.com/"
 title="Opera Home Page">Opera
 <a href="http://www.apple.com/safari"
 title="Safari on Apple's Web Site">Safari

 </div>
 <div id="navright">
 <h2>Why CSS is Better</h2>
 <p>At vero eos et accusamus et iusto odio dignissimos

Order the print version of this book to get all 500+ pages!18

Chapter 1: Getting the Lay of the Land

http://www.sitepoint.com/launch/827047

 ducimus qui blanditiis praesentium voluptatum deleniti
 atque corrupti quos dolores et quas molestias excepturi
 sint occaecati cupiditate non provident.</p>
 </div>
 </body>
</html>

Summary
You should now understand the historical and technological contexts in which
CSS has emerged, the major problems it is designed to solve, and how it works
on a superficial level. You also know why tables aren’t suited to being used as a
web page layout device, even though they have other perfectly valid uses.

In addition, you can identify both the parts of a CSS rule, and at least three ways
in which these rules can be applied to your web pages.

Chapter 2 drills more deeply into the prospective issues surrounding CSS. It
clears up some of the misconceptions you may have about this technology, and
describes some of the important issues you’ll have to take into consideration be-
cause of the way web browsers work (or don’t) with CSS rules.

19Order the print version of this book to get all 500+ pages!

Summary

http://www.sitepoint.com/launch/827047

20

Putting CSS into Perspective2
In Chapter 1, we took a 10,000-foot view of CSS. We began by looking at why
using tables for web page layout is generally a bad idea. Then, we examined the
types of CSS rules, and which aspects of a web page our style sheets could affect.

This chapter provides an overview of CSS’s place in the web development cosmos.
First, we’ll discuss what CSS can and can’t do for you. We’ll spend a little time
examining the advantages of CSS design, and see how using CSS can help you
to create better sites by doing things that old-style tables and spacer GIFs can’t
do.

After a quick look at how CSS interacts with the ever-shifting world of web
browsers, we’ll discover how we can create CSS that accommodates those browsers
that don’t provide full support for CSS standards, either because they predate
the standard, or they tried to support the standard but got it wrong.

What can CSS Do?
Recall from Chapter 1 that one of the key advantages of CSS is that it separates
the content of a web site from its appearance or presentation. This separation is im-
portant because it allows us to create web sites that enable writers to create the
information the web site is intended to convey, while leaving the design of the
site—how it looks and how it behaves—to designers and programmers.

It follows, then, that CSS would be useful for defining the appearance of a site,
but not necessarily for dictating its behavior.

However, like many such generalizations, this statement is true only most of the
time. Why? Because the dividing line between appearance and behavior is neces-
sarily fuzzy.

For example, as we’ll see when we develop our layouts in the second part of this
book, CSS can be used effectively to create context-sensitive menus, along with
other elements of the interface with which your users will interact. You may be
familiar with menu designs whose interactivity relies heavily on JavaScript, or
some other scripting language, but we’ll learn some techniques that avoid scripting,
while allowing us to do some fairly creative things with navigation.

Later on, this book provides detailed instructions and examples of how you can
alter the appearance of colors, fonts, text, and graphics using CSS; the rest of
this section provides some ideas about the kinds of tasks for which you can use
CSS. My intention here is less to teach you how to do these things than it is to
whet your appetite and start you thinking about the possibilities …

Color and CSS
You can use style sheet rules to control the color of any HTML element that can
be displayed in color. The most common elements for which you’ll find yourself
setting the color are:

� text

� headings (which are really a special form of text)

� page backgrounds

� background colors of text and headings

This may not seem like much, but knowing when and how to apply color to these
elements—and, perhaps more importantly, how to combine the use of color in
interconnected elements—can really expand your web design capabilities.

Order the print version of this book to get all 500+ pages!22

Chapter 2: Putting CSS into Perspective

http://www.sitepoint.com/launch/827047

Figure 2.1. Black-and-white version of fall holiday page

The simple act of changing the color of all the text on a page, then providing a
colored background for that text, can turn a fairly ordinary-looking web page
(Figure 2.1) into one that has a completely different feel to it. Figure 2.2 shows
what the page in Figure 2.1 looks like if we simply choose colors appropriate to
a holiday theme—yellow text on a black background. Figure 2.3 shows the oppos-
ite effect: black text on a yellow background. While you could argue that these
alternative layouts aren’t as readable as the black and white original in Figure 2.1,
you’d have to admit that the two variations are more interesting to look at.

Figure 2.2. Yellow-on-black version of fall holiday page

23Order the print version of this book to get all 500+ pages!

Color and CSS

http://www.sitepoint.com/launch/827047

Here’s the style rule that creates the effect in Figure 2.2. As you can see, it’s fairly
straightforward, yet the result of its use is certainly dramatic.

body {
 color: yellow;
 background-color: black;
}

As we’ll see in Chapter 5, naming the colors you want is just one of several ways
to define color in CSS.

Here’s the style rule that creates the effect in Figure 2.3. No surprises here: it’s
the opposite of the code that was used to generate the look in Figure 2.2.

body {
 color: black;
 background-color: yellow;
}

Figure 2.3. Black-on-yellow version of fall holiday page

Maybe you find the use of a starkly contrasting color for the entire background
of a page a bit overwhelming. Figure 2.4 shows another variation on the text
color theme. Here, we’ve provided yellow text on a black background only behind
the headings on the page. The rest of the page’s background color, and all non-
heading text, remains unchanged from the original design in Figure 2.1.

Order the print version of this book to get all 500+ pages!24

Chapter 2: Putting CSS into Perspective

http://www.sitepoint.com/launch/827047

Figure 2.4. Yellow-on-black headings on fall holiday page

Here’s the style rule that generates the heading effect shown in Figure 2.4.

h1, h2, h3, h4, h5, h6 {
 color: yellow;
 background-color: black;
}

Notice that we didn’t have to do anything fancy, like put the headings inside
<div> and </div> tags, or create a rectangular box around them. In the view of
the web browser, the heading is a block level element, which occupies the full
width of the space in which it resides, by default. So, if you give a heading a
background-color property, that property will apply to the entire horizontal
block that contains the heading.

CSS provides a range of other advantages to the color-conscious designer, but
we’ll leave those details to Chapter 5. Our purpose here is merely to touch upon
the variety of things you can expect to accomplish using CSS.

Fonts and CSS
In Chapter 1, we saw a number of examples that used fonts in CSS style rules.
From that exposure, you’re probably comfortable with defining the fonts in which
you want the body text and headings of various levels to be displayed.

You can apply fonts to smaller amounts of text by enclosing that text within
 and tags (a subject we’ll treat in detail in Chapter 9), then ap-

25Order the print version of this book to get all 500+ pages!

Fonts and CSS

http://www.sitepoint.com/launch/827047

plying style properties to the span. You might use this approach, for example, to
highlight a sentence in the middle of a paragraph, as shown in Figure 2.5.

Figure 2.5. Highlighting an important sentence

To do this, we simply need to wrap the sentence in and tags,
then add a style rule for the new span. Note that these span elements should be
used sparingly, and that there are a number of issues to consider before you apply
these techniques—see Chapter 8 and Chapter 9 for all the details. Below is the
HTML that was used to create this effect.

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
 do eiusmod tempor incididunt ut labore et dolore magna aliqua
Ut enim ad minim veniam, quis nostrud

 exercitation ullamco laboris nisi ut aliquip ex ea commodo
 consequat. Duis aute irure dolor in reprehenderit in
 voluptate velit esse cillum dolore eu fugiat nulla pariatur.
 Excepteur sint occaecat cupidatat non proident, sunt in culpa
 qui officia deserunt mollit anim id est laborum.</p>

You can target a particular span by adding an id or class attribute (we’ll look
at this in more detail in Chapter 3), then adding the id or class to the selector,
as shown here:

.important {
 font-weight: bold;
 background-color: yellow;
 color: red;
}

One type of HTML text element to which it’s sometimes quite useful to apply
font rules is the list. We generally create lists in an effort to call specific attention
to several items that are related to one another, and using a font style to set the
list off even more clearly from the text can be a good technique. Figure 2.6 shows
a list that has been set in a font that contrasts with the main text of the page,

Order the print version of this book to get all 500+ pages!26

Chapter 2: Putting CSS into Perspective

http://www.sitepoint.com/launch/827047

and is bold. The list stands out from the page, calling attention to itself as being
particularly important.

Figure 2.6. Highlighting an important list

Once we’ve identified this list in HTML using an id attribute, we can style it by
adding a rule to our style sheet.

<ul id="partylist">
 children (at 7:30 p.m. in the downstairs kitchen)
 teens (at 9:30 p.m. in the youth room)
 adults (at 11:00 p.m. in the fellowship hall)

The rule now looks like this:

#partylist {
 font-family: 'Comic Sans MS', Arial, Helvetica, sans-serif;
 font-weight: bold;
 color: yellow;
 background-color: black;
}

27Order the print version of this book to get all 500+ pages!

Fonts and CSS

http://www.sitepoint.com/launch/827047

Dynamic Pseudo-classes and CSS
One of the more interesting effects that you can create with CSS involves the
use of the “hover” effect on text. By defining a CSS style rule that changes the
appearance of text when the user pauses the cursor over that text, you can create
an effect that looks a bit like animation.

Unfortunately, this effect works only on link text in Internet Explorer 6, although
in other browsers—such as Firefox and Internet Explorer 71—you can create this
effect on other elements. You can use the hover pseudo-class to determine what
will happen to a text link over which the user pauses the cursor, as shown here:

a:hover {
 background-color: blue;
 color: white;

}

Figure 2.7 shows what happens when the user positions the cursor over a link to
which this style rule is applied. While you can’t tell that the color of the text has
changed, you can easily see that the text is larger than the other links around it.

Figure 2.7. Applying a dynamic pseudo-class to a hovered link

This effect feels a bit like an animated graphic in a menu where the buttons are
programmed to change when the user’s mouse hovers over them—it’s a technique
that we’ll learn more about in Chapter 9.

Changing Text Size in :hover Styles

You may be tempted to change the size of the text in a link when the user
hovers their mouse over it—it does make very obvious to the user which link

1At the time of writing, Internet Explorer 7 is still in beta testing, so no guarantees can be made of
its final functionality.

Order the print version of this book to get all 500+ pages!28

Chapter 2: Putting CSS into Perspective

http://www.sitepoint.com/launch/827047

they currently have selected. However, this is generally considered bad
practice, as changing the size of text in the middle of a document will typically
move other elements of the document around, potentially confusing the user.
It’s much better to use background and font colors to make such distinctions.

Images and CSS
Images are placed on a web page using the HTML tag. With CSS, we
can only affect relatively minor aspects of an image’s display, but that doesn’t
mean we can’t control anything interesting.

Like any other object in a web page, an image can always be enclosed inside a
div element and positioned arbitrarily on the page. We can also affect the border
around an image, as well as its alignment, again by embedding the image in a
div element, then using a style to alter the appearance of that containing div.

Figure 2.8 shows what would happen to an image placed alongside text on a page,
in the absence of any CSS instructions. The image appears at the left edge of the
page and it is aligned with one line of text, which shares its baseline with the
bottom of the image. Subsequent lines of text appear below the image.

Figure 2.8. An image and text to which CSS styles haven’t been
applied

One thing for which CSS is particularly helpful is forcing text to flow gracefully
around inline images. Using the float property (which is covered in detail in
Chapter 8), you can “float” an image on a page in such a way that the text placed
beside it will wrap around the image nicely. Figure 2.9 shows what happens if

29Order the print version of this book to get all 500+ pages!

Images and CSS

http://www.sitepoint.com/launch/827047

we position the image using the float property. Note how the text flows smoothly
around the side of, and then under, the image. This is almost certainly closer to
the design effect we want than the example shown in Figure 2.8.

Figure 2.9. Positioning an image and text with help of float

To do this to all the images in your site, add the following rule to your style sheet:

img {
 float: left;
}

Multiple Style Sheets, Users, and CSS
It is possible to define more than one style sheet for a given web page or site;
we’ll look at how alternate style sheets can be used in the course of creating
projects later in the book. Some modern browsers (such as Firefox and Opera)
allow the user to select from additional style sheets if they have been created.
These “alternate” style sheets can be used to display larger font sizes or higher
contrast designs for users who have specific accessibility needs.

With a bit of scripting, you can automate that selection process and create an
adaptable site that several different categories of users can experience appropri-

Order the print version of this book to get all 500+ pages!30

Chapter 2: Putting CSS into Perspective

http://www.sitepoint.com/launch/827047

ately. We won’t be covering this kind of scripting in this book, but if you’re in-
terested, Paul Sowden’s article, “Alternative Style: Working With Alternate Style
Sheets”,2 on A List Apart is a great place to start.

Advantages of CSS Design
I’ve already touched on a number of the powerful features of, and reasons for,
using CSS for site layout. In this section, I’ll formalize those arguments and
present them all in one place. Not only do I hope to convince you of the merits
of CSS, but I aim to give you the tools to sell others on the technology.

In the cutthroat world of freelance web development, you will often be called
upon to explain why you will do a better job than other developers bidding on
the same project. If CSS layout is one of the tools in your web design arsenal,
the sites you build will benefit from the advantages presented here. Many of
these advantages go well beyond ease of development, and translate directly to
extra value for your clients. Let them know about this—it just might make the
difference between winning the contract and losing out to a designer who lives
and breathes table-based design.

Increased Stylistic Control
Perhaps the major selling point of CSS is that it lets you control many aspects
of the appearance of your site that simply cannot be controlled with pure HTML
(for example, creating hover effects on links). For a complete reference to the
style properties that can be controlled with CSS, see Appendix C.

In addition to the number of properties that it puts at your fingertips, CSS allows
you to apply those properties to the available HTML page elements more uni-
formly than would be possible using other techniques. For instance, if you wanted
to use HTML to put a visible border around part of the page, you’d need to use
a table to do it, because pure HTML lets you add borders to tables only. Not
only does CSS give you greater control over the look of the border (it can be
solid, embossed, dotted, or dashed; thick or thin; any of a multitude of colors;
etc.), it lets you add a border to any page element—not just tables. The design
rationale behind CSS aims to give the designer as many options as possible, so,
generally speaking, a property can be applied at any point at which, potentially,
it could make sense to do so.

2 http://www.alistapart.com/articles/alternate/

31Order the print version of this book to get all 500+ pages!

Advantages of CSS Design

http://www.alistapart.com/articles/alternate/
http://www.alistapart.com/articles/alternate/
http://www.sitepoint.com/launch/827047

CSS simply has more properties that can be applied to more page elements than
HTML has ever offered. If you had to choose between CSS and HTML as a
means for specifying the design of your site, and your decision was based solely
on which approach would afford you the most visual control, CSS would win
outright. Despite this, it is common practice to use HTML for design wherever
possible, and to resort to CSS whenever an effect is needed that HTML cannot
produce. While the appearance of sites designed with this rationale is just as good
as any others, by taking this approach to design, we miss out on all the other
advantages of CSS.

Centralized Design Information
As I’ve already explained, the best way to use CSS in the design of a web site is
to write one or more .css files to house all your style code, and then to link those
files to the appropriate pages with the HTML <link /> tag. This approach ensures
that everything to do with the look of your site can be found in one place, and is
not jumbled up with the content of your site.

The idea is that you should be able to change the content of your site without
affecting its look, and vice versa. In traditional web design, where HTML tags
and attributes are used to specify the way things look in the browser, the code
for these two aspects of your site are mixed together, so anyone who wants to
modify one of these must understand both, or risk breaking one while making
changes to the other. The look and the content of the site are said to be coupled.

This principle of keeping code that serves different purposes in different places
is known in the programming world as decoupling. If a site’s style and content
are decoupled, a web designer can modify the look of the site by editing the .css
file(s), while a content editor can add content to the site by editing the .html
files.

Even more significant than facilitating organization and teamwork, this separation
of code reduces code duplication. In HTML-based design, if you want the title
of every article on your site to display in a large, red font, you have to put
and tags around the text inside the relevant h1 element on every one of
your site’s article pages. With CSS-based design, you can specify the font prop-
erties for every h1 element in one place, which saves on typing. And, should you
decide to change the appearance of these headings, you have only to modify the
.css file instead of each and every .html file, which saves your sanity! These
differences are illustrated in Figure 2.10.

Order the print version of this book to get all 500+ pages!32

Chapter 2: Putting CSS into Perspective

http://www.sitepoint.com/launch/827047

Figure 2.10. Centralizing design code with CSS

If you look closely at Figure 2.10, you’ll see that, in addition to the organizational
advantages described above, the browser has less code to download. On heavily
designed sites, or sites with hundreds of pages or more, this reduced download
time can have a significant impact both on the user experience, as well as your
bandwidth costs.

Semantic Content Markup
When you use .css files to decouple the content from the appearance of your
site, as I’ve just described, a curious thing begins to happen to your HTML. Be-
cause CSS affords you complete control over the appearance of page elements,
you begin to choose tags because they describe the structure and meaning of

33Order the print version of this book to get all 500+ pages!

Semantic Content Markup

http://www.sitepoint.com/launch/827047

elements of the page, instead of how you want them to look. Stripped of most
or all of the presentational information, your HTML code is free to reflect the
semantics of your site’s content.

There are a number of reasons why this is a desirable state of affairs, key among
them the fact that decoupling content from design makes it very easy to find
things when you’re changing the content of your site. The easiest way to spot a
CSS-based site is to use the View Source feature in your browser—if you can make
sense of the code within ten seconds, chances are that you’re not dealing with a
site that uses table-based layout and other non-semantic HTML.

Your web site will be easier for potential visitors to find through search engines
if it’s marked up with semantic HTML, because the fewer presentational tags
the search engine has to wade through to analyze your site, the easier it will be
for it to index the content. As we’ll see, CSS lets you control the position of an
element in the browser window almost independently of its position in the HTML
document. So, if you have a newsletter subscription form, or some other lengthy
chunk of HTML that won’t mean a whole lot to a search engine, feel free to move
its code to the end of your HTML document and use CSS to ensure that it’s
displayed near the top of the browser window.

Increasingly supported by modern browsers is a feature of the HTML link ele-
ment3 that lets you restrict a linked style sheet so that it affects a page only when
that page is displayed by a certain type of browser. For instance, you could link
three .css files to a page: one that defined the appearance of the page on a
desktop browser, another that dictated how the page will look when printed, and
yet another that controlled the display on mobile devices such as Internet-con-
nected Personal Digital Assistants (PDAs). Only by using semantic markup, and
allowing the CSS to take care of the display properties, is this sort of content
repurposing possible.

Last, but certainly not least, are the vast accessibility improvements that a site
can gain by using semantic markup. We’ll discuss these in detail in the next sec-
tion.

Accessibility
Should you ever have the opportunity to observe a visually impaired individual
browsing the Web, I highly recommend you do so. Alternatively, get yourself

3Specifically, the media attribute.

Order the print version of this book to get all 500+ pages!34

Chapter 2: Putting CSS into Perspective

http://www.sitepoint.com/launch/827047

some screen reader software, switch off your monitor, and see for yourself what
it’s like.

Web sites that use tables, images, and other non-semantic HTML for layout are
extremely difficult for visually impaired people to use. Their screen reader software
will typically read the page aloud, from top to bottom. It’s not unusual for a
modern, table-based web site to inflict 30 seconds or more of nonsense upon the
user before the actual content begins. An example of some of what a screen
reader would output for a table based site is shown below:

Table with one column and five rows, Table with three columns
and one row, Link, Graphic, slash logo underline main dot gif,
Table end, Table with two columns and one row, Link, Graphic,
slash nav underline about underline us dot gif, Link, Graphic,
slash nav underline site underline map dot gif, Table end, Table
end, Table with one column and twenty-six rows, Table with one
column and seventeen rows …

Now, if you think that sounds mildly annoying, imagine having to listen to it for
each and every page of the sites that you visit!

CSS-based design and semantic markup nearly eliminate this aural garbage, be-
cause they ensure that every tag in the document has a structural meaning that’s
significant to the viewer (or listener). An aural browser ignores the visual
formatting properties defined in the CSS, so the user need not listen to them.

On a site that used semantic markup, for example, a visually impaired user would
never have to wonder if a word was bold because it was more important, or just
because it looked better that way. Elements that were displayed in bold for design
reasons would have that property assigned using CSS, and the aural browser
would never mention it. Elements that needed additional impact or emphasis
would be marked up using the semantically meaningful strong and em elements,
which are displayed, by default, as bold and italic text in visual browsers, yet also
convey meaning to a screen reader user, as they tell the device to emphasize the
phrase.

A complete set of guidelines exists for developers who are interested in making
their sites more accessible for users with disabilities. The Web Content Accessib-
ility Guidelines 1.04 (WCAG) is recommended reading for all web developers,
with Guideline 35 focusing on the idea of avoiding presentational markup in favor

4 http://www.w3.org/TR/WCAG10/
5 http://www.w3.org/TR/WCAG10/#gl-structure-presentation

35Order the print version of this book to get all 500+ pages!

Accessibility

http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10/#gl-structure-presentation
http://www.sitepoint.com/launch/827047

of semantic markup. As we create projects later in this book, we’ll discuss some
of these issues more fully.

Standards Compliance
The WCAG isn’t the only specification that advocates the use of CSS for the
presentational properties of HTML documents. In fact, the latest HTML stand-
ards6 themselves are written with this in mind.

The World Wide Web Consortium7 (W3C) is the body responsible for publishing
recommendations (de facto standards) relating to the Web. Here are some of the
W3C Recommendations that relate to using semantic markup and CSS:

HTML 48

The latest (and last) major revision of the HTML Recommendation marks
all non-semantic elements and attributes as deprecated.9 The font element,
for example, is clearly marked as deprecated in this standard. Under the de-
scription of deprecated elements, the Recommendation has this to say:

In general, authors should use style sheets to achieve stylistic and
formatting effects rather than HTML presentational attributes.

XHTML 1.010

XHTML is a reformulation of HTML 4 as an XML document type. It lets
you use HTML tags and attributes while enjoying the benefits of XML features
(including the ability to mix tag languages, custom tags, etc.).

This Recommendation includes the same tags and deprecations as HTML 4.

Web Content Accessibility Guidelines 1.011

As described in the section called “Accessibility”, the WCAG Recommendation
strongly recommends using CSS and semantic markup in web design to im-
prove accessibility. I’ll let the Recommendation speak for itself:

6 http://www.w3.org/MarkUp/#recommendations
7 http://www.w3.org/
8 http://www.w3.org/TR/html4
9A deprecated element or attribute is one that has been tagged for removal from the specification,
and which therefore should not be used. For a document to comply strictly with the specification, it
should not use any deprecated tags or attributes.
10 http://www.w3.org/TR/xhtml1/
11 http://www.w3.org/TR/WCAG10/

Order the print version of this book to get all 500+ pages!36

Chapter 2: Putting CSS into Perspective

http://www.w3.org/MarkUp/#recommendations
http://www.w3.org/MarkUp/#recommendations
http://www.w3.org/
http://www.w3.org/TR/html4
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/WCAG10/
http://www.sitepoint.com/launch/827047

Misusing markup for a presentation effect (e.g. using a table for
layout or a header to change the font size) makes it difficult for
users with specialized software to understand the organization
of the page or to navigate through it. Furthermore, using
presentation markup, rather than structural markup, to convey
structure (e.g. constructing what looks like a table of data with
an HTML PRE element) makes it difficult to render a page intel-
ligibly to other devices.

Many web developers believe that strict standards compliance is an idealistic goal
that is rarely practical. One of the primary goals of this book is to demonstrate
that this is not true. Today’s browsers provide strong support for CSS and produce
more consistent results when they are fed standards-compliant code. While bugs
and compatibility issues still exist, they are no more insurmountable than the
bugs that face designers who rely on noncompliant code. In fact, once you have
valid, standards-compliant code, fixing bugs and compatibility problems can be
easier—as you have the starting points of a valid document and style sheet, and
just need to find out why the browser display differs—and a lot of help is available
on the Web to help you to do that.

Browser Support for CSS
At the time of writing, the browsers employed by the vast majority of web users
provide sufficient CSS support to make CSS layouts a viable and sensible choice.
The usage of really old browsers—such as Netscape 4—has dwindled to a point
where supporting them to the full (i.e. so that these users can access the complete
design and functionality of your site) is unnecessary. That said, it’s perfectly
possible to design sites so that your layout degrades gracefully in older browsers,
ensuring that no users are denied access to your content

Designing sites to meet web standards, and constructing them using CSS, should
enable you to communicate with more users: they’ll be able to access the content
whether they’re using the latest version of Firefox on a desktop computer, a PDA
or phone, an old version of Netscape, or a screen reader. We’ll explore some of
the ways in which we can optimize site access for various browsers in Chapter 4.

Summary
In this chapter, we explored the primary uses of CSS, and discussed the advantages
of designing sites using Cascading Style Sheets. Chapter 3 focuses on the “how”

37Order the print version of this book to get all 500+ pages!

Browser Support for CSS

http://www.sitepoint.com/launch/827047

of CSS: we’ll see how rules are included in tags as inline style rules, embedded
in pages as embedded style sheets, and loaded from external style sheet files.
We’ll also investigate in more detail the various selectors and structures of CSS
rules, and the units and values you’ll use in all rules that require specific measure-
ments.

Order the print version of this book to get all 500+ pages!38

Chapter 2: Putting CSS into Perspective

http://www.sitepoint.com/launch/827047

Digging Below the Surface3
This chapter completes our look at the “mechanics” of CSS: the background you
need to have in order to work with the technology. It covers six major topics:

� a quick review of the three methods we can use to assign CSS properties to
HTML documents

� the use of shorthand properties to group the values for a related set of prop-
erties within a single statement

� the workings of the inheritance mechanism in style sheets

� the structure of a style, including variations on the use of selectors to determine
with great precision exactly what is affected by a style

� the units and values that can appear in styles to express sizes, locations, and
other properties, and how they’re used

� CSS comments, which can be used to place human-readable notes in your
CSS code

Applying CSS to HTML Documents
In Chapter 1, we discussed three methods for applying style sheet properties to
HTML documents. Let’s briefly review them here.

inline styles
We can use the style attribute, which is available for the vast majority of
HTML elements, to assign CSS properties directly to HTML elements.

<h1 style="font-family: Helvetica, Arial, sans-serif;
 color: blue;">Welcome</h1>

This method is best reserved for times when you want quickly to try out one
or more CSS properties to see how they affect an element. You should never
use this method in a practical web site, as it avoids almost every advantage
that CSS has to offer.

embedded styles
We can use the style element in the head portion of any HTML document
to declare CSS rules that apply to the elements of that page.

<style type="text/css">
h1, h2 {
 color: green;
}
h3 {
 color: blue;
}
</style>

This form of CSS offers many advantages over inline styles, but is still not
as flexible or powerful as external styles (discussed below). I recommend that
you reserve embedded styles for use when you’re certain that the styles you’re
creating will be useful only in the current page. Even then, the benefit of
separate code offered by external styles can make them a preferable option,
but embedded styles can be convenient for quick-and-dirty, single-page work.

external styles
We can use a <link /> tag in the head portion of any HTML document to
apply the CSS rules stored in an external file to the elements of that page.

<link rel="stylesheet" type="text/css" href="mystyles.css" />

Order the print version of this book to get all 500+ pages!40

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

External styles are the recommended approach to applying CSS to HTML,
as this technique offers the full range of performance and productivity advant-
ages that CSS can provide.

Using Shorthand Properties
Most properties take a single item as a value. When you define a property with
a collection of related values (e.g. a list of fonts for the font-family property),
the values are separated from one another by commas, and if any of the values
include embedded white space or reserved characters, such as colons, they may
need to be enclosed in quotation marks.

In addition, there’s a special set of properties called shorthand properties, which
let you use a single property declaration to assign values to a number of related
properties. This sounds more complicated than it is.

The best-known shorthand property is font. CSS beginners are usually accus-
tomed to defining font properties one by one:

h1 {
 font-weight: bold;
 font-size: 90%;
 line-height: 1.8em;
 font-family: Helvetica, Arial, sans-serif;
}

But CSS provides a shorthand property, font, that allows this same rule to be
defined much more succinctly:

h1 {
 font: bold 90%/1.8em Helvetica, Arial, sans-serif;
}

You can do the same with properties such as padding:

h1 {
 padding-top: 10px;
 padding-right: 20px;
 padding-bottom: 10px;
 padding-left: 5px;
}

We could replace the above declaration with the following shorthand:

41Order the print version of this book to get all 500+ pages!

Using Shorthand Properties

http://www.sitepoint.com/launch/827047

h1 {
 padding: 10px 20px 10px 5px;
}

The values are specified in a clockwise order, starting at the top of the element:
from top, to right, to the bottom, then left.

All shorthand properties are identified in Appendix C.

How Inheritance Works in CSS
Before you can grasp the syntax and behavior of CSS rules, you need a basic
understanding of inheritance, and how it’s used in CSS.

Think of a family tree. Your great-grandfather is at the top of the tree, followed
by his children, including his only son (your grandfather). Below your grandfather
is your mother and her siblings, and then, beneath her, there’s you, your siblings,
and your children. Some of your features, such at the color of your hair and eyes,
would be inherited from your ancestors—perhaps you have your mother’s hair
color, but your grandfather’s eyes. Other features may not be passed on in this
way. Your son may be far taller than anyone else in the family.

Just as everyone in your family fits into your family tree, every element on an
HTML page belongs to the document’s inheritance tree. The root of that tree is
always the html element.1 Normally, the html element has only two direct des-
cendants in the inheritance tree: head and body.

Figure 3.1 shows a simple HTML inheritance tree for a small document.

As you can see, the document has in its head the standard title and link ele-
ments, the latter of which probably links to an external style sheet. It also includes
a meta element (most likely to set the document’s character set).

The body element has five children: an h1, an h2, a p element (labeled p1 so we
can refer to it easily), a div, and an unordered list (ul) element. The div element,
in turn, contains two paragraph elements, one of which has an emphasis (em)
element, while the other contains an anchor (a) element. The ul element includes
three list item (li) elements; one of these includes an emphasis (em) element,
while another contains the paragraph element labeled p4.

1This is even true of documents written to older versions of the HTML standard, in which the html
element was not required.

Order the print version of this book to get all 500+ pages!42

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

Figure 3.1. A simple HTML inheritance tree

Each element in an HTML document (with the exception of the root html ele-
ment) has a parent element. This is the element that directly precedes it in the
tree. In Figure 3.1, p1’s parent is the body element. Likewise, p1 is said to be a
child of the body element.

Most elements in an HTML document will be descendants of more than one
element. For example, in Figure 3.1, the paragraph element p1 is a descendant of
the body and html elements. Similarly, the paragraph element p2 is a descendant
of the div, body, and html elements. This notion of element hierarchy is important
for two reasons:

� The proper use of some of the CSS selectors you’ll work with will depend on
your understanding of the document hierarchy. There is, for example, an im-
portant difference between a descendant selector and a parent-child selector.
These are explained in detail in the section called “Selectors and the Structure
of CSS Rules”, later in this chapter.

� If you don’t supply a specific value for an element’s property, in many cases,
that element will take the value assigned to its parent. Consider the example
document shown in Figure 3.1. If the body element had a declaration for the
font-family property and p1 did not, p1 would inherit the body element’s
font-family. In contrast, setting the width property of an element will not
directly affect the width of its child elements. font-family is an inherited
property; width is not.

43Order the print version of this book to get all 500+ pages!

How Inheritance Works in CSS

http://www.sitepoint.com/launch/827047

The properties that are inherited—and those that are not—are indicated in
Appendix C. However, you can set any property to the special value inherit,
which will cause it to inherit the value assigned to its parent element.

This inheritance issue can become tricky when you’re dealing with fairly
complex documents. It’s particularly important when you’re starting with a
site that’s been defined using the traditional table layout approach, in which
style information is embedded in HTML tags. When a style sheet seems not
to function properly, you’ll often find that the problem lies in one of those
embedded styles from which another element is inheriting a value.

Selectors and the Structure of CSS Rules
In Chapter 1 we learned that every CSS style rule consists of two parts: a selector,
which defines the type(s) of HTML element(s) to which the style rule applies;
and a series of declarations, consisting of properties and values, that define the
style.

So far, we’ve seen only simplistic selectors. Typically, they’ve contained only one
element:

h1 {
 font-size: 120%;
 text-transform: capitalize;
}

We’ve encountered one or two instances where a single rule is designed to apply
to more than one kind of HTML element:

h1, h2, h3 {
 font-size: 120%;
 text-transform: capitalize;
}

In this section, we’ll take a look at all the different kinds of selectors that are
available to you in CSS.

Universal Selector
The universal selector matches every element in the document. It has very little
practical value by itself, but the universal selector can come in handy in specific

Order the print version of this book to get all 500+ pages!44

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

situations involving, for example, attribute selectors, which I’ll explain later in
this section.

In this example, all elements in the page are given a text color of red:

* {
 color: red;
}

Element Type Selector
The element type selector is the most common selector. It specifies one HTML
element type with no qualifiers. In the absence of other style rules that might
apply to the element type provided in the selector, this rule applies to all such
elements on the page.

In this example, we specify the text and background color of all hyperlinks in the
current document. They will appear as white text on a green background.

a {
 color: white;
 background-color: green;
}

Class Selector
To apply a style rule to a potentially arbitrary group of elements in a web page,
you’ll need to define a class in the style sheet, then identify the HTML elements
that belong to that class using the class attribute.

To define a class in a style sheet, you must precede the class name with a period.
No space is permitted between the period and the name of the class.

The following style sheet entry defines a class named special.

.special {
 font-family: Verdana, Helvetica, Arial, sans-serif;
}

Then, we add class="special" to the elements that we want to adopt this style.

<h1 class="special">A Special Heading</h1>
<p class="special">This is a special paragraph.</p>

45Order the print version of this book to get all 500+ pages!

Element Type Selector

http://www.sitepoint.com/launch/827047

You can write your class so that it applies only to a particular type of element.
In the following example, we create the same special class, but this time it applies
only to paragraph elements.

p.special {
 font-family: Verdana, Helvetica, Arial, sans-serif;
}

If you define an element-specific class such as the p.special example above,
then associate that class (in this case, special) with an element of any other
type, the style rule simply does not apply to that element.

An HTML element can belong to multiple classes: simply list those classes (sep-
arated by spaces) in the class attribute:

<p class="special exciting">Paragraph! Of! Stuff!</p>

ID Selector
An ID selector lets you target a single HTML element within a page. Like a class
selector, an ID selector must be defined in the style sheet and included explicitly
in the HTML tag. Use the # symbol to identify an ID selector in the style sheet,2

and the id attribute to give an element an ID. IDs must be unique within a
document; no two HTML elements in a single document should have the same
ID.

This style sheet rule defines a rule for an element with the ID unique:

#unique {
 font-size: 70%;
}

The code below uses the HTML id attribute to indicate the element that will be
affected by the rule above:

<h4 id="unique">This will be a very tiny headline</h4>

For example, if you had five <div class="sidebar"> items on your page, but
you wanted to style differently the one responsible for displaying your site’s
search box, you could do so like this:

2Optionally, you can confine the ID’s use to an element of a specific type by preceding the # with
the HTML element’s tag name (e.g. div#searchbox). But, since you can have only one element
with the specific ID within a document, it seems silly to confine it to a specific element type.

Order the print version of this book to get all 500+ pages!46

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

div.sidebar {
 border: 1px solid black;
 background-color: yellow;
}
#searchbox {
 background-color: orange;
}

The search box would then appear in your HTML as shown here:

<div id="searchbox" class="sidebar">
 <!-- HTML for search form -->
</div>

Now, since the div has id="searchbox" and class="sidebar" attributes, all
the sidebar declarations will be applied to the search box, but it will take its
background-color from the #searchbox rule. The guidelines for cascading
overlapping rules (discussed in Chapter 9), in combination with the ID selector,
let you avoid having to redefine all the sidebar properties in a special searchbox
class.

However, you could just as easily define a class and apply it to the exceptional
element (the search box, in this example). This approach is more flexible, although
perhaps not as efficient in terms of code space. For example, imagine you’ve
identified a class or other rule that applies to all level-three headings except one,
and you’ve used an ID selector for the exception. What do you do when a redesign
or content change requires one more such exception? The ID selector solution
breaks down immediately in that situation.

Pseudo-element Selector
This and all the remaining selectors in this section require a browser that supports
the CSS 2 specification, such as Firefox, Safari, Opera, or Internet Explorer 7.
Some features, such as the :hover pseudo-class, are supported by some older
browsers, but their implementations are not complete.

Pseudo-element selectors and pseudo-class selectors are unique among the CSS
selectors in that they have no equivalent HTML tag or attribute. That’s why they
use the prefix “pseudo” (meaning “false”).

So far, the CSS specification has defined only three pseudo-elements: first-
letter, first-line, and first-child. While the first two of these phrases
mean something to us humans, it’s ultimately up to each browser to interpret

47Order the print version of this book to get all 500+ pages!

Pseudo-element Selector

http://www.sitepoint.com/launch/827047

them when rendering HTML pages that use these pseudo-elements. For example,
does first-line mean “first sentence,” or does it mean the first physical line
that’s displayed—a value that changes as the user resizes the browser? The first-
child pseudo-element, on the other hand, is not browser-dependent. It refers to
the first descendant of the element to which it is applied, in accordance with the
HTML document hierarchy described in the section called “How Inheritance
Works in CSS”.

To define a pseudo-element selector for a style rule, precede the pseudo-element
name with a colon. Here’s an example:

p:first-letter {
 font-face: serif;
 font-size: 500%;
 float: left;
 color: gray;
}

This creates a drop-caps effect for the first letter in every paragraph on the page,
as shown in Figure 3.2. The first letter in each paragraph will be five times larger
than the usual type used in paragraphs. The float style property, which we discuss
in Chapter 8, ensures the remaining text in the paragraph wraps around the en-
larged drop-cap correctly.

Figure 3.2. Creating a drop-caps effect using the first-letter
pseudo-element

Pseudo-class Selector
A pseudo-class selector is exactly like the pseudo-element selector, with one
exception. A pseudo-class selector applies to a whole element, but only under
certain conditions.

The current release of CSS 2 defines the following pseudo-classes:

Order the print version of this book to get all 500+ pages!48

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

� hover

� active

� focus

� link

� visited

� lang

A style sheet, then, can define style rules for these pseudo-classes as shown in
the example below. You may remember that we’ve already seen a rule that uses
the hover pseudo-class.

a:hover {
 color: green;
}

All anchor tags will change color when the user mouses over them. As you can
see, this means the pseudo-class selector comes into play only when the user in-
teracts with the affected element.

The lang pseudo-class3 refers to the setting of the lang attribute in an HTML
element. For example, you could use the lang attribute shown below to define
a paragraph in a document as being written in German:

<p lang="de">Deutsche Grammophon</p>

If you wanted, for example, to change the font family associated with all elements
in the document that were written in German, you could write a style rule like
this:

:lang(de) {
 font-family: spezialitat;
}

lang vs language

Be careful not to confuse this lang attribute with the deprecated language
attribute that used to be used to set the scripting language used in pages.

3Be aware that browser support for the lang pseudo-class is still very scarce. It’s covered here mainly
for the sake of completeness.

49Order the print version of this book to get all 500+ pages!

Pseudo-class Selector

http://www.sitepoint.com/launch/827047

Descendant Selector
As we’ve discussed, all HTML elements (except the html element) are descendants
of at least one other HTML element. To apply a CSS style rule to an element
only when it’s a descendant of some other kind of element, we can use a descend-
ant selector.

A descendant selector, such as the one shown in the following style rule, restricts
the applicability of the rule to elements that are descendants of other elements.
The scope of the descendant selector is determined by reading the rule from right
to left. Spaces separate the element types.

li em {
 color: green;
}

The style rule identifies that a color of green will be applied to any text contained
in an em, or emphasis, element only when the emphasized text is a descendant of
a list item.

In the fragment below, the first em element will be displayed in green characters;
the second will not, as it doesn’t appear within a list item.

 Item one
 Item two

<p>An italicized word.</p>

It’s important to note that the descendant relationship need not be an immediate
parent-child connection. Take this markup, for example:

<div class="sidebar">
 <p>If you have any questions, please call
 our office during business hours.</p>
</div>

The following style rule would apply to the anchor element even though it focuses
explicitly on a elements that are descendants of div elements. This is because,
in this case, the a element is the child of a paragraph that’s contained in a div
element.

Order the print version of this book to get all 500+ pages!50

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

div a {
 font-style: italic;
}

Parent-child Selector
A parent-child selector causes a style rule to apply to element patterns that
match a specific sequence of parent and child elements. It is a special case of the
descendant selector that we discussed above. The key difference between the two
is that the pair of elements in a parent-child selector must be related directly to
one another in a strict inheritance sequence.

A parent-child relationship is specified in a selector with the “greater than” sign
(>).

Below is an example of a parent-child relationship.

body > p {
 font-weight: bold;
}

In the example below, this rule will only affect para2, as para1 and para3 are
not direct descendants of the body element.

<body>
 <div class="sidebar">
 <p id="para1">This is the sidebar.</p>
 </div>
 <p id="para2">Welcome to the web site! Here's a list:</p>

 <p id="para3">This is the first paragraph in the list. It's
 also the last.</p>

</body>

As of this writing, Internet Explorer for Windows (up to and including version
6) distinguishes itself by being the only major browser that does not support
parent-child selectors. Because of this, careful use of descendant selectors is far
more common, and the parent-child selector is often abused to specifically create
styles that do not apply to Internet Explorer for Windows.

51Order the print version of this book to get all 500+ pages!

Parent-child Selector

http://www.sitepoint.com/launch/827047

Adjacent Selector
Adjacency is not related to inheritance. Adjacency refers to the sequence in which
elements appear in an HTML document. As it happens, adjacent elements are
always siblings, but it’s their placement in the document, rather than their inher-
itance relationship, that is the focus of this selector. This point is demonstrated
in the HTML fragment below:

<h1>This is important stuff!</h1>
<h2>First important item</h2>
<h2>Second important item</h2>

The first h2 heading is adjacent to the h1 heading, but the second h2 heading is
not adjacent to the h1 heading.

The adjacent selector uses the + sign as its connector, as shown here:

h1 + h2 {
 margin-top: 11px;
}

This style rule would put 11 extra pixels of space between the bottom of an h1
heading and an h2 heading that followed it immediately. It’s important to recog-
nize that an h2 heading that follows a paragraph under an h1 heading would not
be affected.

As of this writing, Internet Explorer for Windows (up to and including version
6) remains the only major browser that does not support adjacent selectors, al-
though support is planned for Internet Explorer version 7. Because of this, the
adjacent selector has not yet found widespread use in practical web design.

Attribute Selectors
The group of selectors I’m lumping together as attribute selectors are among
the most interesting of all the CSS selectors, because they almost feel like pro-
gramming techniques. Each attribute selector declares that the rule with which
it is associated is applied only to elements that have a specific attribute defined,
or have that attribute defined with a specific value.

There are four levels of attribute matching:

[attribute] matches if the attribute attribute is defined at all
for the element(s)

Order the print version of this book to get all 500+ pages!52

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

[attribute="value"] matches only if the attribute has a value of value

[attribute~="value"] matches only if the attribute is defined with a space-
separated list of values, one of which exactly matches
value

[attribute|="value"] matches only if the attribute is defined with a hy-
phen-separated list of “words,” and the first of these
words begins with value

You might, for example, want to apply style properties to all single-line text input
boxes (<input type="text" />) in your document. Perhaps you want to set
their text and background colors to white and black, respectively. This style rule
would create that effect:

input[type="text"] {
 color: white;
 background-color: black;
}

The third variation of the attribute selector described above searches the values
assigned to an attribute, to see whether it contains the word you’ve specified (i.e.
a value in a space-separated list).

For example, during the development of a web site, various graphic designers
may have inserted some img elements with temporary placeholder alt attributes,
with the idea of returning to them later to finish them. You could call attention
to the existence of such tags with a style rule like this:

img[alt~="placeholder"] {
 border: 8px solid red;
}

This selector will find all img elements whose alt attributes contain the word
“placeholder,” and will put an eight-pixel red border around them. That ought
to be hard to miss!

The fourth variation really is useful only when you’re dealing with the lang at-
tribute. Typically, the lang attribute takes on a value such as en or de. However,
it can also be used to define the regional dialect of the language being used: en-
us for American English, en-uk for British English, etc. This is when the [attrib-
ute|="value"] selector comes into its own. It enables you to isolate the first
portion of the lang attribute, where the language that’s being used is defined.
The other portions of the hyphen-separated value are ignored.

53Order the print version of this book to get all 500+ pages!

Attribute Selectors

http://www.sitepoint.com/launch/827047

As you’ve probably come to expect by now, attribute selectors are not supported
by Internet Explorer for Windows versions 6 and earlier. As with other advanced
selector types, this has prevented the widespread adoption of attribute selectors,
despite their obvious usefulness.

Selector Grouping
To apply a style rule to elements of several different types in an HTML document,
we use selector grouping, separating with a comma the element types to which
the rule is to be applied.

Here’s a simple example of this type of selector:

h1, h2, h3 {
 font-family: Helvetica, Arial, sans-serif;
 color: green;
}

The elements in the selector list need not be of the same type or even the same
level of specificity. For example, the following style rule is perfectly legal. It applies
a specific style to level-two headings (h2) and to paragraphs whose class is defined
as special:

h2, p.special {
 font-size: 22px;
}

You may include a space between the comma-separated items, though this is not
necessary.

Expression Measurements
Most of the values we define in a CSS rule include measurements. These meas-
urements tell the rule how tall or wide something is to be, so it follows that you’ll
most commonly use measurements when working with fonts, spacing, and posi-
tioning.

There are two types of measurements: absolute and relative. An absolute meas-
urement (e.g. setting a font-size to 18px, or 18 pixels) tells the browser to render
the affected content 18 pixels tall.4 Technically speaking, it tells the browser to

4Again, if I wanted to be terribly precise, I would say that a pixel is actually a relative measurement,
because its meaning is relative to the display medium on which the page is produced. But, in this

Order the print version of this book to get all 500+ pages!54

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

use the specified font and scale its character height so that the font’s overall
height is 18 pixels. Chapter 8 includes an explanation of font height and width.

Relative measurements, on the other hand, instruct the browser to scale a value
by some percentage or multiple, relative to the size of the object before the scaling
takes place. The example below defines a style rule in which all fonts in paragraphs
on the page should be scaled to 150% of the size they would have been without
this style:

p {
 font-size: 150%;
}

If you knew that, in the absence of such an instruction, the text of all paragraphs
on the page displays at a size of 12 pixels, you could also accomplish the same
thing this way:

p {
 font-size: 18px;
}

Generally, you should use the relative sizing values whenever you can. This
technique works better than absolute sizing when the user has set preferences
for font sizes, and in situations in which multiple style sheets could be applied.
It’s also more accessible, as visually impaired users can more easily increase the
font size on the page by configuring their browsers’ preferences.

All length values (the term used by the CSS specification to describe any size
measurement, whether horizontal or vertical) consist of an optional sign (+ or
-), followed by a number (which may include a decimal point), followed by a
unit of measurement. No spaces are permitted between the number and the unit
of measurement.

context, “relative” means “relative to some other value in the style rule or in the HTML,” and in that
sense, pixels are absolute.

55Order the print version of this book to get all 500+ pages!

Expression Measurements

http://www.sitepoint.com/launch/827047

Absolute Values

Table 3.1. Absolute values supported in style sheets

ExplanationStyle MeaningStyle Abbreviation

Imperial unit of measure;
2.54 centimeters

inchin

 centimetercm

 millimetermm

1/72 inchpointpt

12 points, or one-sixth of
an inch

picapc

One dot on the screenpixelpx

Table 3.1 shows the absolute values that are supported in CSS style sheets, and
where they’re not obvious, the values’ meanings.

When a length of zero is used, no unit of measurement is needed. 0px is the same
as 0. It doesn’t make sense to give a unit of measurement when the length is zero
units, because zero is the same distance in any unit of measurement.

Whenever you need to supply an absolute measurement for the size or position
of an element in a style sheet rule, you can use any of the above abbreviations
interchangeably. Each of the following rules should produce precisely the same
result:

font-size: 1in;
font-size: 2.54cm;
font-size: 25.4mm;
font-size: 72pt;
font-size: 6pc;

Pixels pose an entirely different set of issues. A pixel is one point on a screen that
can be on or off, displaying any color that is needed. If you set your monitor’s
display to a resolution of 800 pixels by 600 pixels, a pixel corresponds to 1/600
of the screen height. On a 15-inch display, the height is about 10.5 inches and

Order the print version of this book to get all 500+ pages!56

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

the width is a little more than 13 inches.5 A 12-pixel font display on that monitor
would turn out to be about 1/50 of the 10.5-inch height of the display, or just a
little more than one-fifth of an inch.

Many designers set their font sizes using pixels in the belief that this prevents
site users from increasing the font size using their browser settings, because Inter-
net Explorer does not allow the resizing of text set in pixels. However, most other
browsers do allow the user to resize text set in pixels. A common issue arises with
sites whose designers haven’t realized that fonts set using pixels can be resized
in other browsers: often, the text will appear to expand out of fixed-size boxes.
From the point of view of accessibility, if users need a larger font size and have
increased the text size in their browsers accordingly, we should support this choice
regardless of which browser they’re using; thus, we should avoid setting text
heights using pixels. Creating designs that work well even if users have increased
the text size in their browsers is part of the process of designing for the Web.
The use of pixels to size text should be avoided.

Relative Values
Because of the problems posed by the use of any absolute value, the most flexible
way to approach measurements for style rules is to use relative units of measure-
ment. Principally, these units are em and percentage, although some people prefer
to use the more obscure ex measurement. The em measurement is so named be-
cause it refers to the width of an uppercase “M” in the given font, but in practice,
it’s equal to the font-size of the current font. The ex measurement is based on
the height of the lowercase “x” character in a font (more commonly known as
the x-height of the font) and is far less common than the em.

Both the em and the percentage generate font sizes based on the inherited or de-
fault size of the font for the object to which they’re applied. In addition, ems and
percentages are 1:100 equivalent. A size of 1em is identical to a size of 100%.

This description begs the question, “What’s the default or inherited font size for
a particular HTML element?” The answer is: it depends.

Prior to the emergence of Opera 5 for Windows, browsers set the default values
for all fonts as part of their startup processes. Users had no control. The browsers

5High school math would lead you to predict a nine- by 12-inch screen, but unfortunately, 15-inch
monitors don’t normally have a full 15 inches of diagonal screen space. Perhaps computer manufac-
turers don’t study Pythagoras.

57Order the print version of this book to get all 500+ pages!

Relative Values

http://www.sitepoint.com/launch/827047

defined a default, and web designers overrode the defaults willy-nilly, as they saw
fit. The user took what was presented.

Then, along came the idea of user choice—a development that, not surprisingly,
was facilitated by the emergence of CSS. Essentially, the developers of the Opera
browser created a local style sheet that users could modify and set their own de-
faults to use. The Opera developers also defined a nice graphical user interface
through which users could set preferences for these styles.

This was great for users, but web designers found themselves in a quandary. If,
for example, you assumed that browsers were going to default body text to a 12-
point font size6 (which was the de facto standard before the user-controlled
preferences era), you could set a style to apply a 1.25em scaling to the text and
get a 15-point font size for the text in question. It was nice and predictable.

But now, a 1.25em scaling applied to a font tells the browser to increase the size
of the font to 1.25 times (or 125% of) its default size. If the user has set up his
or her browser to show standard text at a height of 16 points, your 1.25em
transformation brings the size up to 20 points.

When you stop to think about it, though, that’s probably just fine. The user who
chooses a larger base font size probably needs to see bigger type. If you want type
that would otherwise be at 12 points to display at 14 for some good reason, then
it’s not unreasonable to expect that this new user will benefit in the same way
from seeing the font used in this particular situation increase from his or her
standard 16 points to 20.7

Most of the time, there’s not really a reason to muck around with the user’s set-
tings for font sizes, so changing them arbitrarily isn’t a good idea. Before you
apply this kind of transformation to a segment of text in your web design, ask
yourself if it’s really necessary. My bet is that, nine times out of ten, you’ll find
it’s not.

I would be remiss if I didn’t point out that some pitfalls are inherent in the use
of relative font sizes. Under some circumstances, relative font values can combine
and multiply, producing bizarre results indeed.

6Just in case you were wondering, pixel sizes and point sizes are not equivalent, and the ratio between
the two varies between browsers and operating systems. For example, the 12-point default font size
used by most Windows browsers was rendered at 16 pixels on that platform. 12pt is equivalent to
16px on Windows browsers.
7If that’s not the case, you probably want to rethink your reason for boosting the font size in the
first place.

Order the print version of this book to get all 500+ pages!58

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

For example, let’s say that you define style rules so that all text that’s bold is
displayed at 1.5em and all italic text is displayed at 1.5em, as shown below.

.bold {
 font-weight: bold;
 font-size: 1.5em;
}
.italic {
 font-style: italic;
 font-size: 1.5em;
}

In your document, these styles are used together in a number of different ways,
as shown in this markup:

<p>This is normal, this is bold,
 this is italic,
 this is bold and italic, and
 finally, this is bold,
 then italic.</p>

When you nest8 these styles, the resulting text will display at 2.25em (1.5em ×
1.5em). This problem arises with child elements, which inherit from their parent
container elements the computed values for measured properties, not the relative
values. This is relatively easy to avoid, but if you overlook it, the results can be
quite startling, as Figure 3.3 illustrates.

Figure 3.3. Relative measurements gone haywire

CSS Comments
You’re probably already familiar with the concept of comments in HTML:

<!-- this is an HTML comment -->

8Nesting is the process of putting one element inside another. For example, we say that a span inside
another span is nested.

59Order the print version of this book to get all 500+ pages!

CSS Comments

http://www.sitepoint.com/launch/827047

Comments allow you to include explanations and reminders within your code.
These are ignored entirely by the browser, and typically are included solely for
the developer’s convenience. If you’ve ever had to make changes to code that
hasn’t been touched in a few months, I’m sure you can appreciate the value of a
few well-placed comments that remind you of how it all works.

CSS has its own syntax for comments. In HTML, a comment begins with <!--
and ends with -->. In CSS, a comment begins with /* and ends with */:

<style type="text/css">
 /* This rule makes all text red by default. We include
 paragraphs and table cells for older browsers that don't
 inherit properly. */
 body, p, td, th {
 color: red;
 }
</style>

If you know much JavaScript, you’ll recognize this syntax, which can be used to
create multiline comments in that language as well. However, unlike JavaScript,
CSS does not support the single-line double-slash (//) comment style.

Summary
This chapter ended our overview of CSS technology with a tour of some of the
syntactic and structural rules of CSS styles. Along the way, it explained the basic
ideas involved in HTML document inheritance.

In Chapter 4, we’ll see how you can check your pages to see if they meet the
W3C Recommendations. Passing such a check will help you ensure that your
pages will display as expected not only in current browsers, but in all future
browsers as well. We’ll also learn a few tricks to get your pages to display in a
usable way in older browsers.

Order the print version of this book to get all 500+ pages!60

Chapter 3: Digging Below the Surface

http://www.sitepoint.com/launch/827047

Simple CSS Layout8
We now have some sound theory under our belts. The rest of this book will
concentrate on how you can put CSS into practice when developing your own
sites. Along the way, we’ll be learning how to lay out pages using CSS—moving
from simple layouts to more complex ones—and how you can combine some of
the concepts you’ve already read about to create great-looking sites.

This chapter will start with the creation of a simple two-column layout. Along
the way, we’ll discover how to use absolute and relative positioning, and see how
margins, padding, and borders work together. Then, we’ll get an understanding
of how all these tools can be used together in practice by creating a two-column
layout that uses many of the techniques we have discussed already in this book.

While the layout we’ll create in this chapter is a relatively simple one, it’s a
structure that’s used by many web sites; the layout we’ll develop here could easily
form the basis for a production site.

The Layout
Many web site designs start life as mock-ups in a graphics program. Our first ex-
ample site is no exception: we have an example layout or “design comp” created
in Fireworks as a starting point.

Figure 8.1. Creating the layout as an image file

Starting out with a visual like this enables us to think about the way we’re going
to build the site before we start to write any XHTML or CSS. It gives us the op-
portunity to decide how best to approach this particular layout before we code
a single line.

This layout divides the page into three main sections: a header, which contains
the site logo and some main navigation; a main content area comprising a large
image above a list of news stories; and a sidebar, which presents some additional
items.

Order the print version of this book to get all 500+ pages!150

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Figure 8.2. Marking the main sections on the layout

This layout could be described as a two-column layout with a header area. Being
able to visualize a design as being a combination of its main sections eases the
process of deciding how to approach the page layout.

Creating the Document
Having decided what the basic components of our page will be, we can start work.
The first thing we’ll do is create an XHTML document that contains all of the
text elements we can see in our layout image, marked up using the correct XHTML
elements.

151Order the print version of this book to get all 500+ pages!

Creating the Document

http://www.sitepoint.com/launch/827047

Working this way might seem a little strange at first, particularly if you have
been used to working in a visual environment, such as Dreamweaver, and simply
concentrating on how the design looks. However, one of the advantages of using
CSS for layout is that we’re able to separate the structure of the page from its
appearance. This allows us to concentrate on building a good solid document as
the basis of our site, before adding the design using CSS.

We start out with the basic requirements for an XHTML Strict document. As
we’re going to use CSS for all of the presentational information on this site,
there’s no reason not to use a Strict DOCTYPE. The Transitional DOCTYPEs
(for both XHTML and HTML 4.01) allow you to use attributes and elements
that are now deprecated in the W3C Recommendations. The deprecated elements
and attributes are mainly used for presentation, and as we’re going to use
CSS—not XHTML—for presentation, we won’t need to use these anyway.

File: index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Footbag Freaks</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 </head>
 <body>
 </body>
</html>

Declaring the Character Set

In our pages, we’ve used the meta element with the http-equiv="Con-
tent-Type" attribute to declare our document’s character set. This makes
it easy for browsers (and the W3C validator) to determine which character
set is being used in the document. If this information was missing, a browser
could misinterpret the characters in your page, which could see your pages
rendered as unintelligible garbage.

All of the examples in this book use ISO-8859-1 encoding, which is the de-
fault for most popular text editors and programs such as Dreamweaver. If
you’re dealing with a different character set, such as Unicode, you’ll need to
change the meta elements accordingly.

Order the print version of this book to get all 500+ pages!152

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

The Header
Let’s start to add the content of this page to our document. As we do so, we’ll
split it up into the various sections identified above, containing each page section
between <div> and </div> tags. We’ll give each div an id to identify that section;
we’ll use these ids to address each section and style it using CSS.

After the <body> tag, add the following markup:

File: index.html (excerpt)

<div id="header">
 <p>The Home of the Hack</p>

 Contact Us
 About Us
 Privacy Policy
 Sitemap

</div> <!-- header -->

We won’t worry about any image elements at this point, because there are nu-
merous ways in which we can add images to the page using CSS; we’ll make the
decision as to the best way to add each image as we create our CSS. Thus, the
header area simply contains the tag line, “The Home of the Hack,” and a list that
includes the main navigation links.

The Main Content Section
The main content section comes next, contained in a div with an id of content:

File: index.html (excerpt)

<div id="content">
 <h2>Simon Says</h2>
 <p>Simon Mackie tells us how a change of shoes has given him new
 moves and a new outlook as the new season approaches.</p>
 <p>Read More</p>
 <h2>Recent Features</h2>

 <h3>Head for the Hills: Is Altitude Training the
 Answer?</h3>
 <p>Lachlan 'Super Toe' Donald</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

153Order the print version of this book to get all 500+ pages!

The Header

http://www.sitepoint.com/launch/827047

 ultrices posuere cubilia Curae; Praesent hendrerit
 iaculis arcu.</p>
 <p>Full Story</p>

 <h3>Hack up the Place: Freestylin' Super Tips</h3>
 <p>Jules 'Pony King' Szemere</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit
 iaculis arcu.</p>
 <p>Full Story</p>

 <h3>The Complete Black Hat Hacker's Survival Guide</h3>
 <p>Mark 'Steel Tip' Harbottle</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit
 iaculis arcu.</p>
 <p>Full Story</p>

 <h3>Five Tricks You Didn't Even Know You Knew</h3>
 <p>Simon 'Mack Daddy' Mackie</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit
 iaculis arcu.</p>
 <p>Full Story</p>

</div> <!-- content -->

This area will contain the large image with a text overlay that highlights a feature
story. Four news items will be listed below this.

The Sidebar
Finally, let’s add the sidebar, which contains a search box and some important
dates:

File: index.html (excerpt)

<div id="sidebar">
 <h3>Site Search</h3>
 <form method="post" action="" id="searchform">
 <div>
 <label for="keywords">Keywords</label>:

Order the print version of this book to get all 500+ pages!154

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

 <input type="text" name="keywords" id="keywords" />
 </div>
 <div>
 <input type="submit" name="btnSearch" id="btnSearch" />
 </div>
 </form>
 <h3>Coming Events</h3>

 10 Apr 06 -
Seattle Zone
 Qualifier
 13 Apr 06 -
World Cup - Round 8
 21 Apr 06 -
FootbagOOM 05 - NY
 28 Apr 06 -
WFPA AGM - Hong Kong
 3 May 06 -
World Cup - Round 9

 <h3>Move of the Month</h3>
 <h4>The Outer Stall</h4>
 <p>Eti bibendum mauris nec nulla. Nullam cursus ullamcorper
 quam. Sed cursus vestibulum leo.</p>
 <p>more</p>
</div> <!-- sidebar -->

This completes our markup for the homepage of the site. Save your page and
view it in your browser. The content of your document will display using the
default styles for the elements that we’ve used, as Figure 8.3 illustrates. It won’t
be pretty, but it should be easily readable!

Our last job before we start to add the CSS that will create the design we see in
the example graphic is to validate our markup. By validating the document at
this point, we’ll know that we’re adding CSS to a valid document: we won’t come
up against problems caused by existing invalid markup.

155Order the print version of this book to get all 500+ pages!

The Sidebar

http://www.sitepoint.com/launch/827047

Figure 8.3. Displaying the page after the content is added

Order the print version of this book to get all 500+ pages!156

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Positioning the Page Elements
We can now begin to create our style sheet. But, before we do, we need to take
a moment to understand some basic concepts that come into play when creating
layouts such as this (and many others): the display property, the concept of
positioning, and the CSS Box Model technique.

The display Property
Before we can move on to look at CSS positioning issues, we should take a quick
look at the display property, as it can have a significant impact on page layout.

The display property determines how a browser displays an element—whether
it treats it as a block, an inline text fragment, or something else. Although it can
be assigned any of 17 legal values, browser support realities confine the list to
six, only four of which are really important. For a full reference to display see
Appendix C.

The six possible values for the display property are:

� block

� inline

� list-item

� none

� table-footer-group

� table-header-group

The default value varies from element to element. Block elements such as p, h1,
and div default to block, while inline elements (those that would normally occur
within a section of text), such as strong, code, and span, default to inline. List
items default to list-item. Assigning non-default settings to elements can pro-
duce interesting and useful effects. Later in this book, we’ll see how we can use
display: inline to cause a list to display horizontally.

If you supply a value of none, the element to which it applies will not display,
and the space it would normally occupy will be collapsed. This differentiates the
display: none declaration from the visibility: hidden declaration, which is

157Order the print version of this book to get all 500+ pages!

Positioning the Page Elements

http://www.sitepoint.com/launch/827047

commonly used to hide an element but preserve the space it would occupy if it
were visible.

Absolute, Relative, and Positioning Contexts
The CSS position property takes on a single, constant value that determines
how the block is positioned on the page. The two most frequently used values
are absolute and relative. Another value, static, is the default value for this
property; the fourth value, fixed, is not supported by Internet Explorer 6.

Positioning in CSS can be confusing because the points that are referenced to
guide a block’s placement on the page change in accordance with the positioning
context of the block. There’s no universal set of coordinates to guide placement,
even when you’re using the absolute positioning value. Each time a block is
positioned on the page with a position setting other than static, it creates for
its descendants a new positioning context in which the upper left corner of its
content area has the coordinates (0,0). So, if you use CSS to position an element
within that block, its position will be calculated relative to that new coordinate
system—its “positioning context.”

The best way to understand this concept is to look at a few simple, interrelated
examples. Let’s start with a blank page. In this context, the upper left corner of
the viewport—the viewable area of the browser window—is where the initial (0,0)
coordinates are located. Let’s place a simple piece of text in a div, as shown in
Figure 8.4.

Figure 8.4. The first line of text

Order the print version of this book to get all 500+ pages!158

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Here’s the HTML fragment that produces the result shown above. The CSS
properties top and left are used to position the div on the page, locating it 75
pixels from the top of the page, and indenting it from the left of the page by 125
pixels:

File: positioning.html (excerpt)

<div style="position: absolute; left: 125px; top: 75px;"
 class="big">
 This is the first line of text being positioned.
</div>

Now, put a second div inside the first one, as shown here:

File: positioning.html (excerpt)

<div style="position: absolute; left:125px; top: 75px;"
 class="big">
 This is the first line of text being positioned.
 <div style="position: absolute; left: 25px; top: 30px;"
 class="big">
 This is a second line.
 </div>
</div>

Figure 8.5. An element positioned inside a positioned block

The result is shown in Figure 8.5. Notice that the second line of text is indented
25 pixels from the left of the first line of text, because that first line sets the pos-
itioning context for the second: it’s the parent element of the second line. Both
lines are positioned absolutely; however, the first line is positioned from the top

159Order the print version of this book to get all 500+ pages!

Absolute, Relative, and Positioning Contexts

http://www.sitepoint.com/launch/827047

and left of the viewport, and the second line is positioned absolutely from the
top and left of the first. Notice, too, that its font size is huge. Why? Take a look
at the style rule for the big class, and you’ll understand:

File: positioning.html (excerpt)

.big {
 font-family: Helvetica, Arial, sans-serif;
 font-size: 2em;
 font-weight: bold;
}

As the second div is a child of the first, its font size is calculated relative to that
of the first div. The style rule defines the font as being of size two ems, which
instructs the browser to render the text at twice the size it would otherwise appear.
When that two em rule is applied to the first line, its size is doubled. But when
it is applied to the second line, the font size of the first line is doubled to calculate
that of the second.

We can correct this using an absolute font size constant:

File: positioning.html (excerpt)

.big {
 font-family: Helvetica, Arial, sans-serif;
 font-size: large;
 font-weight: bold;
}

The two divs should now share the same font size.

The page now has two div elements, one nested inside the other. Both use abso-
lute positioning. Now, let’s add a third element—this time, a span element that
will be contained in the second div. Using relative positioning, the HTML looks
like this:

File: positioning.html (excerpt)

<div style="position: absolute; left: 125px; top: 75px;"
 class="big">
 This is the first line of text being positioned.
 <div style="position: absolute; left: 25px; top: 30px;">
 This is an
 example of a second line.
 </div>
</div>

Order the print version of this book to get all 500+ pages!160

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

The result of this markup can be seen below. Notice that the words “an example
of,” which are contained in the span, appear below and slightly to the right of
their original position. Relative positioning is always based on the positioned element’s
original position on the page. In other words, the positioning context of an element
that uses relative positioning is provided by its default position. In this example,
the span is positioned as shown in Figure 8.6. It appears below and to the right
of where it would normally be if no positioning was applied—a case that’s illus-
trated in Figure 8.7.

Figure 8.6. Example of relative positioning

Figure 8.7. The same example with the positioning removed

161Order the print version of this book to get all 500+ pages!

Absolute, Relative, and Positioning Contexts

http://www.sitepoint.com/launch/827047

Don’t worry if this concept still seems a bit confusing; we’ll be looking at how
these concepts work in practice as we create our layouts.

The Box Model
From the perspective of a style sheet, every item you deal with in an HTML page
can be viewed as existing inside a box. This fact is generally far more obvious
when you’re formatting large chunks of content, like the three main page areas
we’ve identified in our design. But it’s true even when you’re dealing with indi-
vidual components of those elements, like headings, lists, list elements, and even
segments of text.

The basic CSS box model is shown in Figure 8.8.

Figure 8.8. The basic CSS box model

At the center of the CSS box model is the content itself. Don’t think of this
“content” as being the same as words or images that might comprise the content
of a news story or a set of links. “Content” describes any item that’s contained
within the area of the box.

Notice from the diagram that the visible width of the box is determined by adding
together the content width, the padding, and the border. The margin determines
the distance between each side of the visible box and adjacent elements. Similarly,
the visible height of the box is determined by adding the height of the content
to the padding and border settings. Once again, the margin determines how far
the box will be separated from adjacent objects vertically.

The width of each of these elements—margin, border, and padding—can be set
using four CSS properties (one for each side of the box), or a single shorthand
property. Border behavior is slightly more complicated because, in addition to
width, a border can have characteristics such as line style and color.

In this discussion, I’ll begin by explaining and demonstrating the use of padding
in some detail. Then, I’ll move on to a discussion of margins, which will be briefer,
as it’s so similar to padding. Finally, I’ll discuss borders.

Order the print version of this book to get all 500+ pages!162

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

For the next few sections, I’ll use a basic, single-box layout to demonstrate CSS
rule techniques. It starts out as the layout shown in Figure 8.9, with no padding,
border, or margin: the content is the same size as the box.

Figure 8.9. Starting point for the box model demonstration

I’ve given the h1 element a gray background so you can see more easily the impact
of the effects I’ll be demonstrating. The HTML below produces the page shown
in Figure 8.9:

File: boxmodel.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Box Model Demo</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <style type="text/css">
 h1 {
 background-color: #c0c0c0;
 color: black;
 }
 </style>
 </head>
 <body>
 <h1>Help! I'm stuck in a box model!</h1>
 </body>
</html>

Throughout the rest of this discussion, I’ll be modifying only the style sheet in-
formation, so I’ll reproduce only that section of the code, indicating any changes
in bold.

163Order the print version of this book to get all 500+ pages!

The Box Model

http://www.sitepoint.com/launch/827047

Pixels vs Percentages

As the box model deals with the display of content on the screen, the pixel is the
most commonly used of the absolute measurement units in CSS. However, if
you need to create a layout that takes up all of the available space, regardless of
how big the browser window is, it’s necessary to use the percentages rather than
pixels. Such layouts are characterized by their “stretchy” behavior—the page
elements expand and contract proportionately as the user resizes the browser
window.

Padding Properties

Four properties together define the padding around an object in a CSS rule:
padding-left, padding-right, padding-top, and padding-bottom.

Let’s change just one of the padding settings to get a feel for how this works.
Modify the style sheet in the sample file, so that it replicates the following frag-
ment (remember that the new material is presented in bold text below):

File: boxmodel.html (excerpt)

h1 {
 background-color: #c0c0c0;
 color: black;
padding-left: 25px;

}

The result of this change is shown in Figure 8.10. Notice that the text now begins
25 pixels from the left side of the box, resulting in 25 pixels of blank, gray space
to the left of the text.

Figure 8.10. Demonstrating padding-left

Order the print version of this book to get all 500+ pages!164

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

As you’d expect, you can set the other padding sizes the same way, as this code
fragment shows:

File: boxmodel.html (excerpt)

h1 {
 background-color: #c0c0c0;
 color: black;
 padding-left: 25px;
padding-top: 15px;
padding-bottom: 30px;
padding-right: 20px;

}

Figure 8.11. Defining all four padding properties

You can see the effects of these changes in Figure 8.11.

You may notice that the padding on the right-hand side appears not to have
worked. You asked for 20 pixels, but no matter how wide you stretch the window,
the gray area that defines the box containing our h1 element just goes on and on.

This is because padding-right creates a space between the right edge of the text
and the right edge of the heading, as represented by the gray box. The spacing
is difficult to see in this case, because the heading automatically spans the width
of the browser window, leaving plenty of room for the text to breathe on the
right-hand side. If you make the browser narrow enough, though, you can see
the padding take effect.

165Order the print version of this book to get all 500+ pages!

The Box Model

http://www.sitepoint.com/launch/827047

Figure 8.12. Demonstrating the effect of padding-right

Figure 8.12 demonstrates this principle. The first screenshot shows how the page
from Figure 8.11 looks if you narrow the browser window so that there would
be room for the word “in” on the first line if padding-right was not set as it is.
The second screenshot reinforces this idea by showing the page resized so that
one word only fits on each line. Notice that, in several cases, the right padding
size looks large enough to accommodate the word on the next line. In fact, merely
removing the padding-right declaration from the style sheet produces the result
shown in Figure 8.12.

Because it’s often necessary to adjust padding around objects in HTML, the CSS
standards define a shorthand property that’s simply called padding. You can give
this property up to four values; Table 8.1 identifies how the properties will be
assigned in each case.

Order the print version of this book to get all 500+ pages!166

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Table 8.1. Effects of multiple values on padding shorthand
property

InterpretationNumber of Values

Set all four padding values to this value.1

Set the top and bottom padding to the
first value, and left and right padding
to the second.

2

Set the top padding to the first value,
right and left to the second value, and
bottom to the third value.

3

Set the top padding to the first value,
right padding to the second, bottom
padding to the third, and left padding
to the fourth value.

4

Remembering the Order

To remember the order in which these values are specified, simply recall that
they’re identified in clockwise order from the top, or remember the mnemonic
trouble (top, right, bottom, and left).

For example, the style rule above could be rewritten using the padding shorthand
property as follows:

File: boxmodel.html (excerpt)

h1 {
 background-color: #c0c0c0;
 color: black;
padding: 15px 20px 30px 25px;

}

To create equal top and bottom padding, and equal left and right padding, you
could use:

File: boxmodel.html (excerpt)

h1 {
 background-color: #c0c0c0;
 color: black;
padding: 15px 25px;

}

167Order the print version of this book to get all 500+ pages!

The Box Model

http://www.sitepoint.com/launch/827047

Finally, to create equal padding on all four sides of the h1 element, you could
use this markup:

File: boxmodel.html (excerpt)

h1 {
 background-color: #c0c0c0;
 color: black;

padding: 25px;
}

What would happen if you used either ems or percentages for the padding values?
The two units have slightly different effects: the em unit scales the padding ac-
cording to the size of the font of the content, while the percentage unit scales
the padding according to the width or height of the block that contains the ele-
ment. To demonstrate these effects, let’s work with a new HTML page that dis-
plays two headings against colored backgrounds on a page of a contrasting color.

Here’s the HTML for that demonstration page:

File: boxmodel2.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Box Model Demo</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <style type="text/css">
 body {
 background-color: #808080;
 color: black;
 }
 h1, h4 {
 background-color: #c0c0c0;
 color: black;
 }
 </style>
 </head>
 <body>
 <h1>Help! I'm stuck in a box model!</h1>
 <h4>But it's not too crowded if you're just a little old
 heading like me! In fact, it's kind of cozy in here.</h4>
 </body>
</html>

Order the print version of this book to get all 500+ pages!168

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Notice that I’ve given the page a dark grey background, and I’ve added an h4
element, which I’ve styled in the same CSS rule as the h1 element.

This HTML page displays as shown in Figure 8.13.

Figure 8.13. Proportional padding page starting point

Now, let’s change the style sheet for this page so that it uses the padding property
to create a single-em padding space around the objects. The following code frag-
ment will do the trick:

File: boxmodel2.html (excerpt)

body {
 background-color: #808080;
 color: black;
}
h1, h4 {
 background-color: #c0c0c0;
 color: black;
padding: 1em;

}

169Order the print version of this book to get all 500+ pages!

The Box Model

http://www.sitepoint.com/launch/827047

As you can see in Figure 8.14, the amount of padding that appears around the
two heading elements is proportional to the size of the font used in the elements
themselves.

em: a Height Measurement

Remember that one em is equal to the height of the font in use. Consequently,
much more space is placed around the h1 element than around the h4 ele-
ment.

Let’s see what happens if we use a percentage, rather than an em, for the propor-
tional padding value. Change the HTML so that the style sheet looks like this:

File: boxmodel2.html (excerpt)

body {
 background-color: #808080;
 color: black;
}
h1, h4 {
 background-color: #c0c0c0;
 color: black;
padding: 10%;

}

Order the print version of this book to get all 500+ pages!170

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Figure 8.14. Using ems for proportional padding

The result of this change can be seen in Figure 8.15. Wow! There’s a huge amount
of space around those elements. The browser has applied 10% of the width of
the page as padding on all four sides.

171Order the print version of this book to get all 500+ pages!

The Box Model

http://www.sitepoint.com/launch/827047

Figure 8.15. Using percentage for proportional spacing

I’ve been using a background color behind the text of these elements to make it
easy to see the effect of the different padding settings, but the background colors
aren’t required. Figure 8.16 uses the same HTML code as Figure 8.15; the only
difference is that I’ve removed the background colors from the body, h1, and h4
elements. As you can see, these elements maintain their relative spacing.

Order the print version of this book to get all 500+ pages!172

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Figure 8.16. Demonstrating padding without colored backgrounds

Margin Properties
The difference between margins and padding is that margins exist outside the
boundaries of the object, while padding exists inside those boundaries. Figure 8.17
illustrates this difference according to the style sheet rules that are set in the code
fragment below. Margins are set in the same way as padding; the only difference
is the substitution of the word “margin” for the word “padding.”

body {
 background-color: #808080;
 color: black;
}
h1 {
 background-color: #c0c0c0;
 color: black;
}
h2 {
 background-color: #c0c0c0;
 color: black;

173Order the print version of this book to get all 500+ pages!

Margin Properties

http://www.sitepoint.com/launch/827047

 margin-left: 5%;
}
p {
 background-color: #c0c0c0;
 color: black;
 margin-left: 20%;
}

Figure 8.17. margin-left settings pushing the content and
background right

Notice that the second-level heading and the paragraph, both of which have
margin-left properties, are indented from the left edge of the browser. But,
unlike the example in which we set the padding-left property, the text and its
background color block are indented in this case. This is because the padding,
the color block, and the text are inside the content box, while the margin is outside
that box.

Next, let’s apply padding-left and margin-left settings to the code fragment:

body {
 background-color: #808080;
 color: black;
}
h1 {
 background-color: #c0c0c0;
 color: black;
}
h2 {
 background-color: #c0c0c0;
 color: black;

Order the print version of this book to get all 500+ pages!174

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

 margin-left: 5%;
padding-left: 1em;

}
p {
 background: #c0c0c0;
 color: black;
 margin-left: 20%;
padding-left: 10%;

}

As you can see in Figure 8.18, the above markup has caused the margin to push
the HTML elements and their surrounding background color blocks to the right,
while the padding has moved the text to the right within the colored background
blocks.

Figure 8.18. Combining margin-left with padding-left

If you load the above HTML (from the file included in the code archive for this
book) and resize it, you’ll notice that the indentation of the paragraph and the
heading changes as the width of the window changes. That’s because we used
relative values of 20% for the margin and 10% for the padding. Both of these
values are calculated relative to the width of the containing block, which in this
case is the browser window. The bigger the browser window, the bigger the margin
and padding on the paragraph. The padding on the heading doesn’t change, as
it’s specified in ems.

Margins, Padding, and Lists
By default, all visual browsers will apply a 50-pixel margin to the left edge of a
list. This allows room for the list item markers (bullets in the case of a bulleted

175Order the print version of this book to get all 500+ pages!

Margins, Padding, and Lists

http://www.sitepoint.com/launch/827047

list; numbers in the case of an ordered list). Unfortunately, the CSS Specification
doesn’t say explicitly whether this space should be implemented as left margin
or left padding in the browser’s default style rules. However, the description of
the marker-offset property does imply that margin is the way to go.

Whatever the intent of the specification, Firefox and Safari apply a default pad-
ding to the left side of lists, while most other browsers (including Internet Explorer
and Opera) use a margin. You can test this easily by applying a background-color
to an ol or ul element. On most browsers, the background will not cover the list
item markers; on Firefox and Safari, they will.

For this reason, whenever you apply your own left margin or padding value to a
list, you must be sure to specify both. If you applied only a margin, for example,
the default list indentation would display in Firefox, but be overridden on all
other browsers. If you applied a padding value only, the default 50-pixel margin
would display on Internet Explorer. Only by specifying both margin and padding
(usually by setting padding: 0 and using margin to do the job) can you ensure
consistent rendering across current browsers.

You can set vertical margins with the margin-top and margin-bottom properties.
Here’s another HTML page that demonstrates vertical margins:

File: boxmodel3.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Box Model Demo</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <style type="text/css">
 body {
 background-color: #808080;
 color: black;
 }
 h1 {
 background-color: #c0c0c0;
 color: black;
 margin-bottom: 5cm;
 }
 h2 {
 background-color: #c0c0c0;
 color: black;
 margin-left: 5%;

Order the print version of this book to get all 500+ pages!176

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

 margin-top: 5cm;
 margin-bottom: 5cm;
 padding-left: 1em;
 }
 p {
 background: #c0c0c0;
 color: black;
 margin-left: 20%;
 padding-left: 10%;
 margin-top: 5cm;
 margin-bottom: 5cm;
 }
 </style>
 </head>
 <body>
 <h1>No top margin but a 5cm bottom margin</h1>
 <h2>Top and bottom margins are set to 5cm</h2>
 <p>A paragraph with top and bottom margins set to 5cm</p>
 </body>
</html>

This page renders as shown in Figure 8.19.

Figure 8.19. Demonstrating vertical margins

177Order the print version of this book to get all 500+ pages!

Margins, Padding, and Lists

http://www.sitepoint.com/launch/827047

Unlike horizontal margins, vertical margins are not cumulative. If you have two
elements stacked one atop the other, like the h1 and h2 elements shown in Fig-
ure 8.19, the vertical spacing between them will be the greater of the
margin-bottom setting of the top element, and the margin-top setting of the
bottom element. In this case, they are both 5cm, so the distance between the two
elements is 5cm (not 10cm, as you might have supposed). If I had defined the
margin-bottom of the h1 as 10cm, then the vertical distance separating the two
elements would have been 10cm. The containing block in this case is the body,
which is, for all practical purposes, the same as the browser window’s client area.

It is possible to use negative values for margin property settings. This comes in
handy when you’ve set a margin-left property for the body of an HTML page,
but you want to move an element closer to the left margin of the page. The fol-
lowing HTML results in the display shown in Figure 8.20:

File: boxmodel4.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Box Model Demo</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <style type="text/css">
 body {
 background-color: #808080;
 color: black;
 margin-left: 5cm;
 }
 h1 {
 background-color: #c0c0c0;
 color: black;
 margin-left: -3cm;
 }
 h2 {
 background-color: #c0c0c0;
 color: black;
 }
 </style>
 </head>
 <body>
 <h1>The body's margin-left is 5cm, but mine is -3cm. </h1>
 <h2>I have no margin-left setting, so I use the body's 5cm
 setting.</h2>

Order the print version of this book to get all 500+ pages!178

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

 </body>
</html>

Figure 8.20. Negative margin setting in practice

As with the padding property, the margin shorthand property lets you set all
four margins with a single declaration, and interprets multiple values using the
rules shown in Table 8.1.

Border Properties
Border properties are more complex than padding and margin properties because
they affect not only the spacing between objects, but the appearance of that in-
tervening space. A border can be, and usually is, visible. In most ways, managing
border properties is similar to the process for managing margins and padding,
but there are some key differences.

Borders have three types of properties: style, width, and color. By default, a bor-
der’s style is set to none, its width to medium,1 and its color to the text color of
the HTML element to which it is applied.

The border-style property can take any one of a range of constant values. The
available values are solid, dashed, dotted, double, groove, ridge, inset, outset,
hidden, and none.

The hidden value has the same effect as none, except when applied to table
layouts. Refer to the border-style property in Appendix C for further details.

1Netscape 4 sets a default border width of 0, so you can’t rely on the default value if you wish to
target that browser.

179Order the print version of this book to get all 500+ pages!

Border Properties

http://www.sitepoint.com/launch/827047

W3C specifications largely leave the issue of the precise appearance of these
borders up to the browsers, so don’t be surprised if the results of using these
characteristics vary a bit from browser to browser, and platform to platform. But,
as is the case with default behaviors for other border settings, generally speaking,
the browsers treat this issue predictably and satisfactorily within reason.

The width of a border around an object can be set either with four individual
declarations, or with the border-width shorthand syntax. The four properties
are border-top-width, border-right-width, border-bottom-width, and
border-left-width. Each of these properties can be set with an absolute or rel-
ative length unit (such as pixels, ems, percentages, or inches), or with one of three
descriptive settings: thin, medium, or thick.

If you use the descriptive settings of thin, medium, and thick, the results are
browser-dependent. However, they are fairly predictable and consistent across
browsers and operating systems, within a pixel or so for each of the three descript-
ive settings.

Specific Border Measurements

If you wish to use specific measurements for border widths, you should use
pixels. This is the most meaningful unit of measurement for screen layouts,
which is where border-width is an important property.

You can control the colors associated with all four borders using the
border-top-color, border-right-color, border-bottom-color, and
border-left-color properties, or you can just use the border-color shorthand
property.

As we discovered in Chapter 5, you can supply a color argument in any of the
standard ways: using a hexadecimal RGB code (as in #ff9900), using a three-digit
hexadecimal RGB shortcut (as in #f90), via the rgb function (as in
rgb(102,153,0)), or using a standard color name (as in red).

The shorthand properties border-style, border-width, and border-color all
accept multiple values.

There is one additional shorthand property that’s probably the most widely used.
The border property allows you to specify the style, width, and color of all four
borders of an object in a compact form. Since a border that’s uniform on all sides
is most often your desire, this is an efficient way to set border property values.

Order the print version of this book to get all 500+ pages!180

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

The following style rule will produce a uniform, three-pixel, solid, red border
around any element with a class="warning":

.warning {
 border: 3px solid red;
}

Constructing the Layout
Now that we have some background knowledge of the ways in which elements
behave when they’re positioned using CSS, we can put our learning into practice
with our first layout.

Create a new style sheet named styles.css and link it to the Footbag Freaks
document we created earlier by adding the following markup to the head of the
document:

File: index.html (excerpt)

<head>
 <title>Footbag Freaks</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" type="text/css" href="styles.css" />

</head>

The first element to which we’ll add CSS is the body element. The design has a
background image that starts with a pattern but gradually blends into a deep
blue. To create this effect on our page, we’ll apply the image as a tiled background,
and give the page a blue background color. This way, when the background image
finishes, it seamlessly merges into the blue page background.

Download Footbag Freaks

The Footbag Freaks web site, including all images, is available for download
as part of the code archive for this book.

Let’s also set a font family and size, and set the margin and padding for the page
(the space between the edge of the viewport and your content) to 0, using the
markup below.

File: styles.css

body {
 margin: 0;

181Order the print version of this book to get all 500+ pages!

Constructing the Layout

http://www.sitepoint.com/launch/827047

 padding: 0;
 background-color: #050845;
 color: white;
 background-image: url(img/bg.jpg);
 background-repeat: repeat-x;
 font: small Arial, Helvetica, Verdana, sans-serif;
}

Setting Freaks font-size

I’ve set the font-size on the body using the keyword small. As we create
the rest of the style sheet, I’ll use percentage font sizes to make the size of
each element a percentage of small.

Now, your background image should tile across the width of the page, as shown
in Figure 8.21.

Figure 8.21. The background image tiling across the width of the
page

In our layout image, the content of the page is contained in an off-white box. To
create this box, we need to add another div in which we can wrap the content.

Order the print version of this book to get all 500+ pages!182

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

So, immediately after the opening <body> tag in your document, add the markup
shown in bold below:

File: index.html (excerpt)

<body>
<div id="wrapper">

 <div id="header">
 <p>The Home of the Hack</p>

Don’t forget to close this div immediately before the document’s closing </body>
tag, like so:

File: index.html (excerpt)

 <p>more</p>
 </div> <!-- main -->
</div> <!-- wrapper -->

</body>

Now, let’s add to the style sheet the rules that will give the box an off-white
background. We’ll also insert rules that add a margin to the wrapper area, creating
a space between the wrapper and the body element to let the background image
show through:

File: styles.css (excerpt)

#wrapper {
 background-color: #fdf8f2;
 color: black;
 margin: 30px 40px 30px 40px;
}

183Order the print version of this book to get all 500+ pages!

Constructing the Layout

http://www.sitepoint.com/launch/827047

Figure 8.22. The effect of the styled wrapper div

Figure 8.22 shows the results of our work. The margin has created a space that
lets the background show through, but the content inside the wrapper bumps
right up against the edge of the off-white area. We can create some extra space
here by adding padding to the #wrapper rule, as shown in the markup below.
The resulting display is shown in Figure 8.23.

File: styles.css (excerpt)

#wrapper {
 background-color: #fdf8f2;
 color: black;
 margin: 30px 40px 30px 40px;
padding: 10px;

}

Order the print version of this book to get all 500+ pages!184

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Figure 8.23. Extra padding creating space between the box’s edge
and its content

The Header Area
Let’s turn our attention to the header area of our layout, which contains the site
logo and main navigation. You’ll remember that when we created our HTML
document, we didn’t add any images: we were going to decide how best to include
our images as we developed the layout. But now, let’s add the logo image using
the img element. We’ll also include the site name as alt text for the image, so
that users who are browsing the site with images turned off, and those with screen
readers, can read the name of the site.

In your document, insert the image directly below the opening header div, like
this:

File: index.html (excerpt)

<body>
 <div id="wrapper">
 <div id="header">

<img src="img/logo.gif" alt="Footbag Freaks" height="77"
 width="203" />

185Order the print version of this book to get all 500+ pages!

The Header Area

http://www.sitepoint.com/launch/827047

 <p>The home of the hack</p>

 Contact Us
 About Us
 Privacy Policy
 Sitemap

 </div> <!-- header -->

If you view the page in a browser, you should see the image in the top, left corner
of the off-white box.

The graphic for our page layout shows a thin, light-blue border that appears above
and below the site’s tagline and navigation. How will we create this effect? Let’s
contain the tagline and navigation in another div to which we can apply a top
and bottom border. Add the div like so:

File: index.html (excerpt)

<body>
 <div id="wrapper">
 <div id="header">
 <img src="img/logo.gif" alt="Footbag Freaks" height="77"
 width="203" />

<div id="header-bottom">
 <p>The home of the hack</p>

 Contact Us
 About Us
 Privacy Policy
 Sitemap

</div> <!-- header-bottom -->
 </div> <!-- header -->

We can now address #header-bottom as we add the top and bottom borders:

File: styles.css (excerpt)

#header-bottom {
 border-top: 1px solid #b9d2e3;
 border-bottom: 1px solid #b9d2e3;
}

To style the navigation list and tagline, we’ll use some simple text formatting
properties that should now be fairly familiar!

Order the print version of this book to get all 500+ pages!186

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Example 8.30. styles.css (excerpt)

#header-bottom ul {
 margin: 0;
 padding: 0;
}
#header-bottom li {
 display: inline;
}
#header-bottom a:link, #header-bottom a:visited {
 text-decoration: none;
 background-color: #fdf8f2;
 color: #050845;
}
#tagline {
 font-weight: bold;
 background-color: #fdf8f2;
 color: #050845;
 font-style: italic;
}

We also need to add an id attribute to the paragraph that contains our tagline:

File: index.html (excerpt)

<p id="tagline">The home of the hack</p>

Figure 8.24. Styling navigation list items with display: inline

We set the margin and padding on the list within this area to 0, then set the li
element’s display property to inline, which will cause the list items to display
on the same line, rather than having each item display on a new line. Figure 8.24
shows this effect in action. We also styled the navigation links—again using the
dark blue and removing the underlines from them—and the tagline, which we
made bold, italic, and the same blue as our navigation items.

187Order the print version of this book to get all 500+ pages!

The Header Area

http://www.sitepoint.com/launch/827047

The problem with the display shown in Figure 8.24 is that it’s difficult to distin-
guish the links in the navigation list from one another. The recommended solu-
tion2 to this problem is to add a visible character—such as the pipe character
(|)—between each of the links, as I’ve done in the markup below:

File: index.html (excerpt)

 Contact Us |
 About Us |
 Privacy Policy |
 Sitemap

We can also set the color of the list items to dark blue (#050845), so that the
pipe character that sits outside of the anchor element will be blue, too. Our refined
header design is shown in Figure 8.25.

Example 8.33. styles.css (excerpt)

#header-bottom li {
 display: inline;
background-color: #fdf8f2;
color: #050845;

}

Figure 8.25. After styling the text elements in the header area

The header is really starting to take shape now! Our next step is to move the
tagline and navigation up onto the same line. To do this, we’ll have to use a
property that, while we haven’t discussed it in detail yet, will become more im-
portant to us as we progress through these layouts. That property is float.

2This recommendation was made as part of the Web Content Accessibility Guidelines (WCAG) 1.0.
The checkpoint that covers this speci f ic i ssue can be seen at
http://www.w3.org/TR/WCAG10/wai-pageauth.html#tech-divide-links.

Order the print version of this book to get all 500+ pages!188

Chapter 8: Simple CSS Layout

http://www.w3.org/TR/WCAG10/wai-pageauth.html#tech-divide-links
http://www.sitepoint.com/launch/827047

The float Property

float is one of the most interesting and often-used CSS properties. It takes a
value of left, right, or none (though none, the default, is rarely used). float
forces the element to which it’s applied to display outside its natural position in
the containing box; a float value of left or right pushes the element to the
left or the right of its natural position, respectively. This property can be used
within any block element.

The float property is designed to replace the align attribute that’s associated
with the HTML img element, and has, for all practical purposes, precisely the
same effect. The align attribute is deprecated in favor of the float property in
recent releases of HTML Recommendations from the W3C. The following HTML
fragment uses the float property to produce the result shown in Figure 8.26:

<p><img src="logo.gif" alt="Footbag Freaks Logo"
 width="203" height="77"
 style="float: left; padding-right: 1em;" />The Footbag Freaks
 logo appears to the left of this paragraph. Depending on
 whether or not I use the CSS <code>float</code> property, I
 may see more than one line of text beside the logo. The CSS
 <code>float</code> property replaces the deprecated
 <code>align</code> attribute of the HTML <code>img</code>
 element and has an identical effect.</p>

Figure 8.26. Achieving image-text alignment using the CSS float
property

The float property has one major advantage over the align attribute: float
can be applied to elements other than images, whereas application of the old
align attribute was limited to img, applet, and object elements.

No Dimensions? Declare a width

When using the float property on elements that don’t have well-defined
dimensions, you must include a width declaration in your CSS. An img is
an example of an element with well-defined dimensions, whereas a paragraph,
a heading, or a div doesn’t.

189Order the print version of this book to get all 500+ pages!

The Header Area

http://www.sitepoint.com/launch/827047

Using float in our Header

We’ll be exploring the float property in more detail in the next chapter, when
we create a layout that relies on float for the positioning of the page’s main
sections. However, at this point we can use our knowledge of float to align the
tagline and navigation correctly. The element that we’re going to float is the
tagline paragraph, so add the rules marked in bold below to your tagline rule:

Example 8.34. styles.css (excerpt)

#tagline {
 font-weight: bold;
 background-color: #fdf8f2;
 color: #050845;
 font-style: italic;
margin: 0;
padding: 0 0 0 20px;
width: 300px;
float: left;

}

We set float to 0 so that the paragraph’s default margin is removed. We then
add 20 pixels of left padding to move the tagline in from the left-hand side, and
give it a width of 300 pixels to provide a bit of space to its right, as is indicated
in the page’s original layout graphic. We then set the value of float to left, so
it sits to the left of the rest of the content, which in this case, is our navigation
list.

After making this change to the rules for the tagline paragraph, save your style
sheet and view your page in a browser. You should see the navigation display
alongside the tagline. These elements behave in exactly the same way as the
paragraph that wraps around the image in the example we discussed above. All
we need to do now is to align the list of navigation items to the right, and alter
the padding on the list to move it in slightly from the right-hand edge. Here’s
the markup you’ll need; the resulting display is depicted in Figure 8.27.

File: styles.css (excerpt)

#header-bottom ul {
 margin: 0;
padding: 0 30px 0 0;
text-align: right;

}

Order the print version of this book to get all 500+ pages!190

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Figure 8.27. The display after floating the tagline and aligning
the navigation

The final task that will complete the heading is to add the little footbag image
that displays to the right of the navigation in our layout image. First, add the
actual image to your document, beneath the navigation list. In the markup below,
I gave this image an empty alt attribute, so that nothing about this image would
be read out by a screen reader—this image is included for display purposes only.
I’ve also given the image an id of ball.

File: index.html (excerpt)

<div id="header">
 <img src="img/logo.gif" alt="Footbag Freaks" height="77"
 width="203" />
 <div id="header-bottom">
 <p id="tagline">The home of the hack</p>

 Contact Us |
 About Us |
 Privacy Policy |
 Sitemap

<img src="img/header-ball.gif" height="24" width="20" alt=""
 id="ball" />
 </div> <!-- header-bottom -->
</div> <!-- header -->

Now, let’s use our first bit of absolute positioning in the CSS to get the image
to line up properly. We know the location at which the image should be positioned
relative to the top and right-hand sides of the document, as we know the height
of the logo and width of the margin on the wrapper div. The following CSS will
place the ball in the correct position at the end of the navigation:

#ball {
 position: absolute;
 top: 110px;

191Order the print version of this book to get all 500+ pages!

The Header Area

http://www.sitepoint.com/launch/827047

 right: 55px;
}

The header section is now complete! It’s displayed in Figure 8.28.

Figure 8.28. The completed header section of the layout

The Content Area
Let’s move on to create the look and feel of the main content area of the page.
The first thing we’ll do is contain the sidebar and content divs within another
div that has an id of main. This will help us to line up the sidebar and content
divs beneath the header. Add the opening <div id="main"> just after the
header’s closing </div>:

File: index.html (excerpt)

 <img src="img/header-ball.gif" height="24" width="20" alt=""
 id="ball" />
 </div> <!-- header-bottom -->
</div> <!-- header -->
<div id="main">
 <div id="content">
 <h2>Simon Says</h2>

Close this div immediately after the closing </div> tag of the sidebar div. In
the style sheet, give #main a margin-top of ten pixels to separate the content
and header areas, as shown in the snippet below. We’ll return to #main later, as
we create our layout.

Order the print version of this book to get all 500+ pages!192

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

File: styles.css (excerpt)

#main {
 margin-top: 10px;
}

Now, let’s create a rule for #content. Add the following set of declarations to
your style sheet:

File: styles.css (excerpt)

#content {
 margin: 0 240px 0 0;
 border: 1px solid #b9d2e3;
 background-color: white;
 color: black;
}

We set the top margin of #content to 0. Then, we add a 240-pixel right-hand
margin, leaving space for us to position our sidebar later.

We also give the box a solid, single-pixel border in the same blue we used for the
heading borders, and give it a background color of white.

The Main Feature

At the very top of the page is a “boxout”: an area that’s visually contained within
a box that highlights it. This particular boxout highlights the main feature article.
Let’s look at that now.

Create a container for the main feature area by adding a div with an id of
mainfeature; wrap it around the heading, paragraph, and link of the main feature:

File: index.html (excerpt)

<div id="content">
<div id="mainfeature">

 <h2>Simon Says</h2>
 <p>Simon Mackie tells us how a change of shoes has given him
 new moves and a new outlook as the new season approaches.
 </p>
 <p>Read More</p>
</div> <!-- mainfeature -->

 <h2>Recent Features</h2>

Now you can style the main feature area in your style sheet:

193Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

File: styles.css (excerpt)

#mainfeature {
 background-image: url(img/mainimg.jpg);
 background-repeat: no-repeat;
 background-color: #112236;
 color: white;
 padding: 2em 2em 1em 200px;
}

Here, we add the background image, maining.jpg, and set it to no-repeat. But
if a user has the browser open to dimensions that are wider than the image, we
don’t want the exposed areas of the page to display white. To prevent this from
happening, we add a background color of #112236; this is the same color as the
far right-hand side of the image, so the image should appear to fade into the
background color seamlessly. We then set the text color to white and use padding
to position the text two ems from the top of the box, two ems from the right,
one em from the bottom, and 200 pixels from the left-hand side, so that it’s clear
of the image of the footbag player.

Next, we style the heading and the paragraphs within the boxout:

File: styles.css (excerpt)

#mainfeature h2 {
 margin: 0;
 font-weight: normal;
 font-size: 140%;
}
#mainfeature p {
 font-size: 110%;
}

Finally, we need to style the “Read More” link that leads readers to the full article.
Let’s start by adding a class="more" attribute to the paragraph element so that
we can target it with our style rules:

File: index.html (excerpt)

<div id="mainfeature">
 <h2>Simon Says</h2>
 <p>Simon Mackie tells us how a change of shoes has given him new
 moves and a new outlook as the new season approaches.</p>
 <p class="more">Read More</p>
</div>

Order the print version of this book to get all 500+ pages!194

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

First, we remove the top margin from the paragraph that contains the link, to
decrease the space between it and the paragraph. Then, we set text-align to
right:

File: styles.css (excerpt)

#mainfeature p.more {
 margin-top: 0;
 text-align: right;
}
#mainfeature p.more a:link, #mainfeature p.more a:visited {
 color: white;
 background-image: url(img/more-bullet.gif);
 background-repeat: no-repeat;
 background-position: center left;
 padding-left: 14px;
}

We then style the link and visited pseudo-classes, changing their color to white
and adding the more-bullet.gif background image. We only want to see the
bullet once, so we set repeat to no-repeat, then position the background center
and left. This positions the image in the center of the link’s text. Finally, in order
to stop the text from displaying over the top of the background image, we set
padding-left to 14 pixels. The impact of these changes is shown in Figure 8.29.

Figure 8.29. After styling the main feature section

195Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

The Features List

Our layout is really starting to take shape now! Let’s spend some time styling the
main content on this page: the list of feature articles.

At the moment, the text inside the content area butts up against the border of
the box. I want to create some space between that border and the content. The
contents of the home page content div are enclosed in an unordered list, so one
option we have is to add a margin to that list and to the h2 above it. However,
another page might have a different kind of main content, so in order that all of
the pages can be dealt with in the same way, let’s add another div, which wraps
around the heading and features list, and give it a class of inner:

File: index.html (excerpt)

<div id="content">
 <div id="mainfeature">
 <h2>Simon Says</h2>
 <p>Simon Mackie tells us how a change of shoes has given him
 new moves and a new outlook as the new season approaches.
 </p>
 <p class="more">Read More</p>
 </div> <!-- mainfeature -->
<div class="inner">

 <h2>Recent Features</h2>

 <h3>Head for the Hills: Is Altitude Training the
 Answer?</h3>
 <p>Lachlan 'Super Toe' Donald</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit
 iaculis arcu.</p>
 <p>Full Story</p>

 <h3>Hack up the Place: Freestylin' Super Tips</h3>
 <p>Jules 'Pony King' Szemere</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit
 iaculis arcu.</p>
 <p>Full Story</p>

 <h3>The Complete Black Hat Hacker's Survival Guide</h3>
 <p>Mark 'Steel Tip' Harbottle</p>

Order the print version of this book to get all 500+ pages!196

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit
 iaculis arcu.</p>
 <p>Full Story</p>

 <h3>Five Tricks You Didn't Even Know You Knew</h3>
 <p>Simon 'Mack Daddy' Mackie</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit
 iaculis arcu.</p>
 <p>Full Story</p>

</div>

</div> <!-- content -->

To create some space between the features list and the border of the containing
box, let’s add a margin to #content .inner in the style sheet:

File: styles.css (excerpt)

#content .inner {
 margin: 10px 20px 10px 40px;
}

If you view your layout in the browser, you should see the space that this margin
creates. We can now address the content of this section.

First, let’s style the heading. In our layout image, the heading has a blue underline
that stretches across the entire width of the content—an effect we can create using
a bottom border. Let’s also add a small amount of padding to the bottom of the
h2, to insert some space between the text and this border:

File: styles.css (excerpt)

#content .inner h2 {
 color: #245185;
 padding-bottom: 0.2em;
 border-bottom: 1px solid #b9d2e3;
 font-size: 110%;
}

Next, let’s add a rule to remove the margin and list bullets from the list of feature
items. While we could simply create this rule for #content .inner ul, as there’s
only one list in this page’s layout, that approach might cause problems on other
pages whose content includes lists that are not like this special features list. So

197Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

let’s add a class="features" attribute to the ul element first, so we can style
this particular list—and others like it—without affecting any normal, non-feature
lists within page content:

File: index.html (excerpt)

<div class="inner">
 <h2>Recent Features</h2>
 <ul class="features">

File: styles.css (excerpt)

#content .inner ul.features {
 margin: 0;
 padding: 0;
 list-style: none;
}

Each feature has a level three heading; we’ll style these by increasing the font
size:

File: styles.css (excerpt)

#content .inner h3 {
 font-size: 130%;
}

Let’s also make each of these headings act as a link to the appropriate article on
the Footbag Freaks site. We can style the link and visited pseudo-classes, as
well:

File: index.html (excerpt)

 <h3>Head for the Hills: Is Altitude Training the
 Answer?</h3>
 <p>Lachlan 'Super Toe' Donald</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit iaculis
 arcu.</p>
 <p>Full Story</p>

 <h3>Hack up the Place: Freestylin' Super Tips</h3>
 <p>Jules 'Pony King' Szemere</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit iaculis
 arcu.</p>

Order the print version of this book to get all 500+ pages!198

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

 <p>Full Story</p>

Example 8.52. styles.css (excerpt)

#content .inner h3 a:link, #content .inner h3 a:visited {
 color: #245185;
}

Finally, let’s style the page’s paragraph text by making it a dark gray and decreas-
ing the font size to 90%:

File: styles.css (excerpt)

#content .inner p {
 color: #666666;
 font-size: 90%;
}

The Author Images

We want to display an image of the author alongside each feature article listing.
Add the image to each feature item, after the heading, like so:

File: styles.css (excerpt)

 <h3>Head for the Hills: Is Altitude Training the
 Answer?</h3>
<img src="img/lachlan.jpg" alt="Lachlan Donald" height="48"

 width="35" />
 <p>Lachlan 'Super Toe' Donald</p>
 <p>Vestibulum ante ipsum primis in faucibus orci luctus et
 ultrices posuere cubilia Curae; Praesent hendrerit iaculis
 arcu.</p>
 <p class="more">Full Story</p>

This markup produces the display shown in Figure 8.30.

199Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

Figure 8.30. Displaying author images in the document

Let’s use the float: left declaration to move these author shots to the left of
the paragraph text. Note that we don’t need to include the image’s width here,
as each img already has a width defined.

File: styles.css (excerpt)

#content .inner .features li img {
 float: left;
 margin: 0 5px 5px 0;
}

Here, we’ve used a selector that will address only those images that are within
an li element with the class="features" attribute. This way, we avoid affecting
any other images that might be added to your content.

We’ve set the image to float left, and added a margin so that the text doesn’t sit
right next to the image—it has a little breathing room, as Figure 8.31 shows.

Order the print version of this book to get all 500+ pages!200

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Figure 8.31. Floating the author image

In our layout graphic, author names appear in bold text, so let’s give the paragraph
surrounding the author name a class attribute with the value author, and use
a CSS rule to style it bold. We’re not doing this with any or tags
because we’re styling the author names purely for aesthetic reasons—not for any
structural purpose. By keeping the author name styles out of the page markup,
we’re sticking to our goal of separating content from presentation. And, since
we’re using CSS, if we want to change the way the author name displays in future,
we can simply edit the rules for the appropriate class, instead of finding every
page on which an author’s name is displayed and changing it there. Here’s the
change we need to make to the page markup, followed by the CSS rule that will
make all suitably marked-up author names bold:

File: index.html (excerpt)

<img src="img/lachlan.jpg" alt="Lachlan Donald" height="48"
 width="35" />
<p class="author">Lachlan 'Super Toe' Donald</p>
<p>Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
 posuere cubilia Curae; Praesent hendrerit iaculis arcu.</p>

201Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

File: styles.css (excerpt)

#content .inner p.author {
 font-weight: bold;
}

The final page element that we need to style for this section is the “Full Story”
links that appear beneath each feature. Add a class of more to each link’s
opening <p> tag, then add the following rules to your style sheet:

File: styles.css (excerpt)

#content .inner p.more{
 margin-top: 0;
 text-align: right;
}
#content .inner p.more a:link, #content .inner p.more a:visited {
 color: black;
 background-image: url(img/more-bullet.gif);
 background-repeat: no-repeat;
 background-position: center left;
 padding-left: 14px;
 font-size: 90%;
 color: #1e4c82;
}

As I’m sure you’ve noticed, this styling is very similar to that of the “Read More”
link within the feature article section at the top of the page.

Your layout should now look a lot like the original layout graphic. Our progress
is shown in Figure 8.32. The page is very close to completion: we have only the
sidebar left to style!

Order the print version of this book to get all 500+ pages!202

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Figure 8.32. Displaying the page after styling the main content
area

203Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

The Sidebar

Figure 8.33. The unstyled sidebar

The content of the sidebar is languishing beneath the main content area, as Fig-
ure 8.33 illustrates. No rules have been applied to it, so it’s just sitting in its
natural location in the document.

Our first job is to move the sidebar from this position to the space we’ve created
for it on the right of the content area.

First, let’s see what happens if we position the sidebar using absolute positioning
from the top and right. Add the following rules to your style sheet:

File: styles.css (excerpt)

#sidebar {
 position: absolute;
 top: 0;
 right: 0;
 width: 220px;
 background-color: #256290;

Order the print version of this book to get all 500+ pages!204

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

 color: white;
 margin: 0;
 padding: 0;
}

View your page in the browser. The sidebar is stuck to the top, right corner of
the viewport as in Figure 8.34.

Figure 8.34. Positioning the sidebar top and right

When we discussed absolute and relative positioning earlier, I explained that an
element is always positioned relative to its parent element’s position, and that
this concept was described as an element’s positioning context. In this case,
#sidebar doesn’t have a positioned parent element, so it takes the viewport as
its positioning context.

However, we do have an element that can be positioned to provide us with a
useful positioning context—the div with id="main".

Find #main in your style sheet and add the following declarations:

205Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

File: styles.css (excerpt)

#main {
position: relative;
top:0;
left: 0;
width: 100%;

 margin-top: 10px;
}

The sidebar now takes #main as its parent, so it falls into place within the area
defined by the div with that id, as Figure 8.35 illustrates.

Figure 8.35. Positioning the sidebar to the top and right of a
relatively positioned container

With our sidebar now in position, we can start to style its contents. To start,
we’ll style the h3 headings that head the different sections of the sidebar:

File: styles.css (excerpt)

#sidebar h3 {
 font-size: 110%;
 background-image: url(img/sidebar-header-bg.jpg);

Order the print version of this book to get all 500+ pages!206

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

 background-repeat: no-repeat;
 margin: 0;
 padding: 0.2em 0 0.2em 10px;
 font-weight: normal;
}

Here, we’re displaying a background image behind the heading to create the
gradient effect we saw in our design comp.

Good Looks in the Background

Using a background image behind a heading is a great way to make your
headings more attractive without resorting to using an image for the actual
heading text. Using an image to display headings makes your site more diffi-
cult to maintain, as you need to manipulate those images every time you
want to make even minor changes.

Let’s have a closer look at the sections of content that display below each of the
headings in the sidebar. We need to add a div with a class of inner to each of
these, in order to create a little space and move the text content away from the
border. Add this div to each of the three sections, as shown here:

File: index.html (excerpt)

<div id="sidebar">
<div class="inner">

 <h3>Site Search</h3>
 <form method="post" action="" id="searchform">
 <div>
 <label for="keywords">Keywords</label>:
 <input type="text" name="keywords" id="keywords" />
 </div>
 <div>
 <input type="submit" name="btnSearch" id="btnSearch" />
 </div>
 </form>
</div>
<div class="inner">

 <h3>Coming Events</h3>

 10 Apr 06 -
Seattle Zone
 Qualifier
 13 Apr 06 -
World Cup - Round 8
 21 Apr 06 -
FootbagOOM 05 - NY
 28 Apr 06 -
WFPA AGM - Hong
 Kong

207Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

 3 May 06 -
World Cup - Round 9

</div>
<div class="inner">

 <h3>Move of the Month</h3>
 <h4>The Outer Stall</h4>
 <p>Eti bibendum mauris nec nulla. Nullam cursus ullamcorper
 quam. Sed cursus vestibulum leo.</p>
 <p>more</p>
</div>

</div> <!-- sidebar -->

Now, let’s add ten pixels of padding to inner:

File: styles.css (excerpt)

#sidebar .inner {
 padding: 10px;
}

Figure 8.36. The display after styling the headings and inner class

Order the print version of this book to get all 500+ pages!208

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

As you can see in Figure 8.36, the sidebar is starting to take shape. Now, let’s
address the list of events.

File: styles.css (excerpt)

#sidebar ul {
 list-style-image: url(img/more-bullet.gif);
 margin-left: 0;
 padding-left: 20px;
}

In the markup above, we use the more-bullet.gif image as the list bullet, remove
the margin, and add left padding of 20 pixels in order to display the list in line
with the headings.

File: styles.css (excerpt)

#sidebar p, #sidebar li {
 font-size: 90%;
 line-height: 1.4em;
}

Next up, we decrease the font size of the paragraph and list item text by reducing
it to 90%. We also create a little more spacing between the lines with the help
of the line-height property.

File: styles.css (excerpt)

#sidebar ul a:link, #sidebar ul a:visited {
 color: white;
}

The links in the sidebar are white and underlined in the mock-up, so we set them
to white with the rule above.

Finally, let’s make all the dates in the event list bold. Add a span with
class="date" to each of the dates in the list, then style them using the selector
#sidebar .date, like this:

File: index.html (excerpt)

 10 Apr 06 -

 Seattle Zone Qualifier
 13 Apr 06 -
World
 Cup - Round 8
 21 Apr 06 -

 FootbagOOM 05 - NY

209Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

 28 Apr 06 -
WFPA
 AGM - Hong Kong
 3 May 06 -
World
 Cup - Round 9

File: styles.css (excerpt)

#sidebar .date {
 font-weight: bold;
}

The events in the sidebar now display as shown in Figure 8.37.

Figure 8.37. Displaying the styled events in the sidebar

The Form

It’s time to create some rules for the search form at the top of the sidebar. Add
class="text" to the input type="text" element, then create a rule for
#searchform .text that gives the text box a width of 196 pixels and a border.
Here’s the markup:

File: styles.css (excerpt)

#searchform .text {
 width: 196px;
 border: 1px solid #45bac0;
}

Apply the searchbutton class to the div that surrounds the submit button, and
add a rule for it to styles.css, setting text-align to right and adding a top
margin so the button doesn’t bump right up against the text box.

Order the print version of this book to get all 500+ pages!210

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

File: styles.css (excerpt)

#searchform .searchbutton {
 text-align: right;
 margin-top: 4px;
}

Finally, let’s style the button itself, giving it a border the same color as the text
field, a background color that matches the blue used for the background of the
sidebar, and a text color of white, as defined in the rules below. You’ll also need
to add a class attribute with the value btn to the input element. The results of
your work should look like Figure 8.38.

File: styles.css (excerpt)

#searchform .btn {
 border: 1px solid #45bac0;
 background-color: #256290;
 color: white;
}

Figure 8.38. Displaying the styled site search

Move of the Month

The final element of the sidebar that we need to consider is the Move of the
Month section at its bottom. This section includes an image; we need to add this
to the document first. Insert it below the h4 and give it a class of motm-image:

File: index.html (excerpt)

<h3>Move of the Month</h3>
<h4>The Outer Stall</h4>
<img src="img/sidebar-player.gif"
 alt="player demonstrating the outer stall move" height="110"
 width="60" class="motm-image" />
<p>Eti bibendum mauris nec nulla. Nullam cursus ullamcorper quam.
 Sed cursus vestibulum leo.</p>
<p>more</p>

Let’s float this image to the right so that we can display the text to one side of
the image:

211Order the print version of this book to get all 500+ pages!

The Content Area

http://www.sitepoint.com/launch/827047

File: styles.css (excerpt)

#sidebar .motm-image {
 float: right;
 margin: 0 30px 0 20px;
}

As you can see, we’ve also added left and right margins to the image. The very
last thing we need to do is to format the “more” link, which is very similar to the
“Read More” and “Full Story” links in the rest of the layout. However, unlike
those links, this link will normally appear next to a floated image. We want to
ensure that it doesn’t appear alongside the image: we want it always to display
below. So, as you can see in the markup below, we use the clear: right declar-
ation to ensure there are no floated elements to the right of the image. We’ll also
need to add the more class to the paragraph that contains the link:

File: styles.css (excerpt)

#sidebar p.more {
 clear: right;
 margin: 0 30px 0 0;
 text-align: right;
}

We’ll be looking at clear in more detail in the next chapter. For now, note that
it can take the values of left (clearing a left float), right (clearing a right float),
and both (clearing both left and right floats). If you’re using floated elements in
your layouts, you’ll find this a useful property.

The final rules, below, should be familiar to you from the other “Read More”
and “Full Story” links:

File: styles.css (excerpt)

#sidebar p.more a:link, #sidebar p.more a:visited {
 color: white;
 background-image: url(img/more-bullet.gif);
 background-repeat: no-repeat;
 background-position: center left;
 padding-left: 14px;
}

This markup completes your two-column layout! The finished page display is
shown in Figure 8.39.

Order the print version of this book to get all 500+ pages!212

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Figure 8.39. The completed two-column layout

Repositioning the Sidebar
We can really start to appreciate the flexibility of CSS layouts when we decide
to experiment! For instance, imagine that we want to see how this layout would
look if we positioned the sidebar on the left, rather than the right. To do this,
you’d need to make only two changes in your CSS.

First, locate the #content rule and change the values for margin: give it a 240-
pixel left margin, rather than a 240-pixel right margin. Then, set the right margin
to 0:

213Order the print version of this book to get all 500+ pages!

Repositioning the Sidebar

http://www.sitepoint.com/launch/827047

#content {
 margin: 0 240px 0 0;
 border: 1px solid #b9d2e3;
 background-color: white;
 color: black;
}

Now, find the #sidebar rule and change the positioning declaration right: 0
to left: 0:

File: styles.css (excerpt)

#sidebar {
 position: absolute;
 top: 0;
left: 0;

 width: 220px;
 background-color: #256290;
 color: white;
 margin: 0;
 padding: 0;
}

Save your style sheet and refresh the page in your browser. The sidebar will now
appear on the left-hand side of the content, as Figure 8.40 shows.

Summary
We’ve covered a lot in this chapter! We began with an unstyled XHTML docu-
ment, and after learning a little bit about the theory of using CSS for layout—in
particular, absolute and relative positioning, margins, padding, and borders—we
began to create a two-column layout using an absolutely positioned sidebar.

You now have a complete page layout that uses CSS positioning; it’s the basic
layout used by many of the sites we see on the Web every day. This layout
method does have its limitations, though—we’ll discover those, and discuss some
alternative layouts, in the next chapter. However, if you need a two-column layout,
this structure is robust and can be used as the basis for countless attractive site
designs.

Order the print version of this book to get all 500+ pages!214

Chapter 8: Simple CSS Layout

http://www.sitepoint.com/launch/827047

Figure 8.40. Repositioning the sidebar

215Order the print version of this book to get all 500+ pages!

Summary

http://www.sitepoint.com/launch/827047

What's Next?

If you’ve enjoyed these chapters from HTML Utopia: Designing Without
Tables Using CSS, 2nd Edition, why not order yourself a copy?

HTML Utopia: Designing Without Tables Using CSS, 2nd Edition is the
definitive beginner's guide to CSS. This completely revised second edition
is a step-by-step, clearly written tutorial that will make building beautiful,
accessible, and maintainable CSS-based web sites a snap.

As standards guru Jeffrey Zeldman says, "After reading HTML Utopia:
Designing Without Tables Using CSS you will not only understand how to
use CSS to emulate old-school, table-driven web layouts, you will be
creating Web sites that would be impossible to design using traditional
methods"

HTML Utopia: Designing Without Tables Using CSS, 2nd Edition also
includes download access to all of the best practice code samples and
complete CSS layouts used throughout the book – plug them right into
your own projects without any retyping!

In the rest of the book, you’ll:
• Validate your CSS and make sure that it's correct.
• Learn to specify colors and fonts.
• Understand the cascade.
• Use CSS to position the elements on your page.
• Build robust, flexible two- and three-column layouts.
• Construct accessible forms using CSS.
• Learn to apply with the box model.
• Understand the differences between absolute and relative

positioning.
• Build both fixed-width and liquid layouts.
• And a whole lot more…

On top of that, order direct from sitepoint.com and you’ll receive a free
17” x 24” poster of your choice!

Order now and get it delivered to your doorstep!

http://www.sitepoint.com/launch/827047

Index
Symbols
#

hexadecimal string prefix, 80
ID selector symbol, 46

+ adjacent selector connector, 52
/* */ comment delimiters, 60
> parent-child selector, 51

A
<a> elements and skip navigation, 253
abbreviated size units, 56
abbreviations, absolute sizing, 56
absolute measurements, 54, 56

font sizes, 99, 160, 366
absolute positioning

document flow and, 235
Footbag Freaks homepage, 191, 204
multi-column, fixed-width layouts,

282
text, 158
three-column layout example, 231

accessibility
alternate style sheets, 30, 288
Braille printers, 300
pixel sizing and, 57, 101
relative sizing and, 55
semantic markup and, 34, 288
tabular layouts and, 6
transparent gifs and, 5
“zoom” layouts, 288

adjacent selectors, 52
Adobe Acrobat, 100
Adobe GoLive, 5
Adobe OpenType standard, 104
align attribute, 114, 189
alignment

of headings, 117

of list items, 197, 209, 226
of text, 113–120, 188

alphabets, non-Roman
Arabic, 452
Asian languages, 447, 451, 455
East Asian, 377, 382, 472
Hebrew, 352, 457

alternate style sheets, 30
attaching, 295
semantic markup and, 34
“zoom” layouts, 288

alternating table rows, coloring, 88, 90,
279

anchors (see links)
animation

pseudo-class simulation of, 28
transitions filters, 359

asterisk, universal selector, 44
at-rules, 67–68, 299–303
attention-getting color, 85
attribute selectors, 52
attributes, terminology and, 9
aural style sheets, 303–305

(see also screen readers)
author images, Footbag Freaks, 199

B
background colors, 23

background images with, 91
fixed-width layouts, 266
Footbag Freaks web site, 182
headings, 119
highlighting alternate table rows, 88,

279
revealing box model effects, 163,

174, 176
setting <body> color and, 82
text readability and, 81

background images
fading into background color, 194
fixed-width layouts, 265
Footbag Freaks link styling, 195, 228
full-height columns using, 245, 248
gradient effects, 207
revealing with margins, 183

background property, CSS, 318
background-attachment property, CSS,

93, 319
background-color property, CSS, 320

block level elements, 25
combining with color setting, 83
transparent setting, 83

background-image property, CSS, 90–
94, 321

background-position property, CSS,
322, 324

placing images, 93, 245, 271
background-repeat property, CSS, 93,

245, 271, 325
backward compatibility, 65–70
blinking, 129
block level elements

applying background color, 25
display property defaults, 157
positioning context and, 158

blocking browser access, 67–68
blog section, Footbag Freaks, 227
<body> elements

centering content, 265
color settings, 82
inheritance and, 42

bold text, 103, 272
border properties, 327–338

full-height columns, 249
border property, CSS, 180, 249
border-collapse property, CSS, 275,

331
border-color property, CSS, 180, 332
borders

adding to elements, 31

border properties, 179
Footbag Freaks header, 186
overlining contrasted with, 130
padding and margins compared to,

179
rounded corners, 403
table styling, 88

border-style property, CSS, 179, 334
border-width property, CSS, 180, 337
Box Model, CSS, 162
boxouts, 193
Braille printers, 300
browser compatibility

backward compatibility, 65–70
font constants, 106

browser defaults
display styles, 7, 393
font settings, 77
font sizes, 57, 102

browser preferences, 77, 98
browser support

alternate style sheets, 295
color specifications, 307
CSS, 37, 66, 69
CSS properties, 317
CSS version 2.1, 65
CSS, IE6 bugs, 286
non-supporting browsers, 66
pseudo-classes and elements, 28, 47

browser window area
centering layouts in, 259, 264
padding-right property and, 165
percentage sizing and, 175

browsers
(see also Firefox; Internet Explorer;

Netscape Navigator; Opera)
absolute font sizes, 100
absolute positioning and consistent

rendering, 231
DOCTYPE switching, 70
hiding styling from older, 67–68

Order the print version of this book to get all 500+ pages!486

Index

http://www.sitepoint.com/launch/827047

list marker offsets, 176
Quirks mode, 70
rendering borders, 180
rendering listed fonts, 107
standards compliance, 70

browser-specific extensions, 317
bulleted lists, 134, 136, 175, 195
buttons, styling, 211, 230

C
<caption> elements, 275
cascading behavior, 140–147

pseudo-classes, 133
cautions, color coding, 85
<center> elements, 114
centered content, 259, 264
centered text, 116
character encoding, 65, 152
child elements, floated, 245
class attributes

identifying elements, 45
 elements, 26

class selectors, 45, 86
specificity rating, 145

classes, multiple, 46
clear property, CSS, 339

full-length columns, 246
link display, 212
use with footers, 239
use with tables, 274

code archive, xv
code decoupling, 32
code duplication, 32
<code> elements, 113
colon prefix, pseudo-element selectors,

48
color, 75–94, 307–315

(see also background colors)
attention-getting color, 85
CSS color reference, 307–315
CSS effects with, 22–25

elements that can be colored, 77
methods of specifying, 78–81, 180,

307
readability and, 87, 278, 289
selecting and combining colors, 81
specific uses of, 85–90

color blindness, 82
color property, CSS, 341

background-color setting and, 83,
320

syntax illustrating, 10
comma separators

elements in selector groups, 54
property value lists, 10, 96, 107
shorthand property values, 41, 104

comments, CSS
HTML comments and, 59
temporarily disabling styling, 290

complementary colors, 81
constants

border styles, 335
font sizes, 99–101, 105
list-style-type property, 134

content areas
centering, 259, 264
Footbag Freaks markup, 153
liquid content with a footer, 238
skip navigation and, 252
styling, 192–213, 268–273
wrapping round floated columns,

284
content order problem, 251
content overflows, 410, 453
content repurposing (see alternate style

sheets)
coordinates (see positioning in CSS)
CSS (Cascading Style Sheets)

alternate style sheets, 30
browser support, 37, 65–66, 69
color effects, 22–25
color reference, 307–315

487Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/827047

design advantages, 31–37
effects possible with, 21–31
example styled page, 15
expression measurements, 54–59
font effects, 25–27
image effects, 29–30
inheritance, 42
JavaScript and, 305–306
positioning elements, 157–181
properties, full list, 317–475
pseudo-classes, 28, 132
rule syntax, 6, 8–10
simple two-column layout, 149–214
standards compliance and, 36
three-column layout, 217–257
validation, 61–65

CSS 2
at-rules, 299
descriptive color names, 308
font constant, 105
pseudo-classes and pseudo-elements,

47–48
system color names, 315
table-layout property, 4

CSS Box Model, 162
CSS Table Gallery, 274
CSS3 status, 317

D
date information, 209, 227
declarations, CSS rules, 9

cascading behavior, 142–143
inline declarations, 12, 40, 142, 146

 elements, 131
deprecated attributes, 189
deprecated elements, 36, 95, 114
descendant elements, 43
descendant selectors, 50
descriptive settings

border-width, 180
color names, 78, 308

design mock-ups, 149, 218, 232, 261
designs (see example web sites)
DHTML, 305–306
disabilities, users with, 300

(see also accessibility)
color blindness, 82

display property, CSS, 354
horizontal list items, 187
IE6 bug work-around, 287
layout effects, 157

<div> elements
empty <div>s, 246
image styling and positioning, 29
line-height property and, 124
margins for, 268, 282
positional context and, 205
 compared to, 112
wrapper <div>s, 263–266, 282

DOCTYPE declarations, 65, 71–72,
152

DOCTYPE switching, 70–73
document flow, 235, 239
DOM (Document Object Model), 306
download times (see load times)
downloadable fonts, 107, 109
Dreamweaver, Macromedia, 5
drop-caps effects, 48
dynamic effects, 305

(see also animation)

E
element type selectors, 45
elements, HTML

applicability of CSS properties, 31
deprecated elements, 36, 95, 114
hierarchical relationships, 43
selective targeting in CSS, 11

elements, XHTML
alternatives for hiding, 157
color display, 77
display property defaults, 157, 354

Order the print version of this book to get all 500+ pages!488

Index

http://www.sitepoint.com/launch/827047

float property applicability, 189
hiding, 462
positioning using CSS, 157–181
replaced elements, 468
selective targeting, 200
table definition, 90

element-specific classes, 46
 elements, 35, 113
em measurements, 57

padding property values, 168
text sizes, 100, 123, 160

embedded style sheets, 12–13, 40
example styled page, 15
hiding from non-supporting

browsers, 67
empty <div>s, 246
English language variants, 53
event diaries, 209
example web sites

(see also Footbag Freaks web site)
fixed-width layouts, 259–288
Halloween party page, 23–29
simple two-column layout, 149–214
three-column layout, 217–257

external style sheets, 12–13, 40
code decoupling and, 32
importance of validation, 61
semantic markup and, 33

F
fantasy fonts, 98
Faux Columns technique, 245
Firefox browser

color and font preference settings,
77

CSS property support, 317
use within this book, 70

Fireworks design mock-ups, 149, 261
first-* selectors, CSS 2, 47
fixed background images, 92–93
fixed-width layouts, 259–288

multi-column, 281
float property, CSS, 189, 361

(see also clear property)
Footbag Freaks images, 200, 211,

269
positioning images, 29
text alignment, 188
three-column layouts, 236–244

floated columns, 239, 284
floated layouts and content order, 251
font constants, 105
 elements, 36, 95, 100
font property, CSS, 41, 104–105, 362
font setting defaults, 77
font size defaults, 57
font-family property, CSS, 96–99, 364

font lists, 107
font property and, 104
standard and nonstandard fonts, 106
syntax illustrating, 10, 41

fonts, 95–110
CSS effects with, 25–27
nonstandard and downloadable, 109

font-size property, CSS, 99–102, 366
child elements, 160
ems and, 57
font property and, 104
Footbag Freaks web site, 182
syntax illustrating, 10
use with links, 28

font-style property, CSS, 103, 371
font-variant property, CSS, 103, 372
font-weight property, CSS, 103, 272,

373
Footbag Freaks web site

blog section, 227
content area styling, 192–213, 264,

268
download, 181
Events Schedule table styling, 273
fixed-width layouts, 259–288
header area styling, 185–192, 267

489Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/827047

layout, 149–151, 217–232
markup, 151–155, 218–221, 236
newsletter subscription form, 229
positioning elements, 157–181
repositioning the sidebar, 213–214
search form styling, 210
sidebar styling, 204
three-column version, 217–256
two-column version, 149–214

footers, 232, 236
forms

newsletter subscription, 229
search form, 210

forward slash, 104
full-height columns, 244–251

G
generated content, 342
generic font families, 97–99, 108

Macintosh and Windows, 106
GoLive, Adobe, 5
gradient background effects, 207
graphics (see images)
graphics program mock-ups, 149, 218
“greater than” sign, 51
GUI component standard colors, 315

H
hacks, 70
Halloween Party example page, 23–29
hanging indents, 121
harmonious colors, 81
<head> elements

embedded style sheets, 12–13, 40
external style sheets, 13, 40
inheritance and, 42

header areas
Footbag Freaks markup, 153
styling, 185–192
styling fixed-width, 267

headings
alignment, 117
Footbag Freaks match schedule, 263
highlighting, 24, 119
letter-spacing property and, 126–127

hexadecimal values
descriptive color equivalents, 308
Netscape extended colors, 313
specifying colors, 80, 180, 307

highlighting text
headings, 24, 119
mouseover effects, 28
table rows, 88, 90, 278
using , 112

horizontal navigation, 187–191
horizontal spacing, text, 125
hover pseudo-class, 28
HTML

(see also elements, HTML)
CSS validation requirements, 65
font size specification, 100
HTML 4 Recommendation, 36, 71
inheritance tree, 42
semantic markup, 33
text alignment, 114

http-equiv attribute, 152
hyperlinks (see links)

I
id attributes, 46

 element, 26
 element, 27

ID selectors, 46, 86
specificity rating, 145

images
adding a logo, 185, 269
avoiding use for text, 207
background, 90–94
CSS effects with, 29–30
Footbag Freaks authors, 199
as list item markers, 139, 209

Order the print version of this book to get all 500+ pages!490

Index

http://www.sitepoint.com/launch/827047

text wrapping, 29
 elements, 29, 185
@import rule, 67–68, 301
!important keyword, 141–142, 146–

147
indentation of code, 5
indentation of first lines, 120, 450
inheritance in CSS, 42–44

adjacency distinguished from, 52
cascading distinguished from, 140
color settings, 83
font sizing and, 57, 368
numeric values, 124
table and cell borders, 89

inline declarations, 12, 40
cascading behavior, 142, 146

inline elements, 112, 157
<input> element styling, 53
<ins> elements, 131
Internet Explorer

at-rule support, 299
bugs, 70, 73
CSS support, 66, 69
floated column problem, 285
floated three-column page display,

243
hiding style sheets from IE4, 67
Macintosh version, 317
position: fixed in IE6, 158
pseudo-class support, 132
Quirks mode enabling, 72
small-caps format, 103
text resizing, 57
word-spacing property, 128

Internet Explorer for Windows
adjacent selectors, 52
attribute selectors, 54
layouts developed with Firefox, 231
parent-child selectors, 51

ISO-8859-1 encoding, 152
italic font styles, 103

J
JavaScript, 60, 131, 305–306

style switchers, 297
justified text, 114, 451

L
lang attribute, 49, 53
lang pseudo-class, 49
language attribute, 49
languages other than English

Arabic, 452
Asian languages, 447, 451, 455
East Asian, 377, 382, 472
Hebrew, 352, 457

layout tables (see tabular layouts)
layouts (see example web sites)
leading, 122
length values, 55
letter-spacing property, CSS, 125
 elements, 134, 187
line termination, CSS, 9
line-height property, CSS, 122–123,

386
adding to font declarations, 104
creating space, 209, 272

line-through value, text-decoration, 131
<link> elements, 13, 40

alternate style sheets and, 34, 295
code decoupling and, 32
inheritance and, 42
media attribute, 34, 68

links
horizontal navigation separators, 188
skip navigation, 252
styling, 45, 131–134
styling, Footbag Freaks homepage,

194, 202, 226
styling, match schedule table, 280
turning off underlining, 131, 133,

226
liquid layouts, 259

491Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/827047

list items
alignment, 197, 209, 226
styling, Footbag Freaks navigation,

228
lists

applying margins, 175
font styles and, 26
styling, 134–140

list-style-image property, CSS, 139, 389
list-style-position property, CSS, 137,

391
list-style-type property, CSS, 134–138,

392
load times

decoupled code and, 33
external style sheets and, 14
tabular layouts and, 4

logos, 185, 269

M
Macintosh

fonts, 106, 109
Internet Explorer status, 317

Macromedia Dreamweaver, 5
Macromedia Fireworks, 149, 261
magnified views, 288
maintenance, ease of, 5, 14
margin property, CSS, 179, 394

@page rule and, 302
margins

applying to <div>s, 268, 282
applying to lists, 175
auto settings, 265
margin properties, 173
negative values, 178
padding compared to, 173
padding, borders and, 162
removing paragraph defaults, 190
vertical margins, 176

marker-offset property, CSS, 176, 396

media attribute
<link> element, 34, 68
<style> element, 301

@media rule, 299
media type output options, 299
Medium menu, W3C validator, 65
min-width property, CSS, 265, 400
monitors

color rendering, 80
pixel sizing and, 57

monospaced fonts, 97, 126
Mozilla-based browsers

(see also Firefox browser)
properties, 317, 401–405

multi-column layouts, 236
(see also three-column layouts; two-

column layouts)
fixed-width, 281

multiple style sheets (see alternate style
sheets)

N
name attribute, <a> tag, 253
navigation

horizontal navigation, 187–188
styling, three-column layout, 226

nesting
elements and color setting, 83
layout tables, 2, 4
quotes, 427
styles, 59
unordered lists, 136

NetObjects Fusion tool, 2
Netscape extended color names, 313
Netscape Navigator, 2

CSS support, 66
default border width, 179
hiding styling from Netscape 4, 67–

68
key nonconformance areas, 68

newsletter subscription form, 229

Order the print version of this book to get all 500+ pages!492

Index

http://www.sitepoint.com/launch/827047

O
oblique font styles, 103
 elements, 134
opacity, 404
OpenType font standard, 104
Opera browser

CSS property support, 317
CSS support history, 66
font sizing, 57

operating system-specific colors, 79,
315

origin factor, cascading, 146
outdents, 121, 450
outline property, CSS, 78, 406
overlining, 130

P
padding

margins, borders and, 162, 173
padding properties, 164

padding property, CSS, 41, 413
Footbag Freaks styling, 184
multiple values and, 166

padding-left property, CSS, 122, 415
@page rule, 302, 398, 416, 438
page styling, 302, 405, 467
paragraphs

centering, 118
highlighting text within, 112
indenting first lines, 120
initial drop-caps, 48
removing default margins, 190

parent elements, 43
parent-child selectors, 51
PDF files, 100
percentage sizing

padding property values, 168
pixel sizing compared to, 164
text sizes, 57, 100, 123

period class name prefix, 45
pipe character, 188

pixel sizing, 56, 101
border widths, 180
percentages compared to, 164
point sizes and, 58

Pixy’s Color Scheme Generator, 82
placeholder graphics, 4, 53
plus sign, 52
position property, CSS, 158, 426
positioning context, CSS, 158

absolute positioning, 205, 282
relative positioning, 160

positioning in CSS, 157–181
(see also absolute positioning)
background images, 93
relative positioning, 161
repositioning sidebars, 213–214

positioning properties, replacing, 241–
242

printed output, 302, 417–418, 420
@media rule, 300

Profile menu, W3C validator, 64
properties, CSS

(see also shorthand properties)
browser compatibility charts, 68
complete listing, 317–475
as declaration components, 9
inclusion in rules, 11
inherited properties, 43
JavaScript manipulation, 306
with multiple values, 10, 41
uniform application, 31
working with fonts, 96

proportional spacing
(see also em measurements; percent-

age sizing)
padding property values, 168

prototyping, 12
pseudo-class selectors, 48, 145
pseudo-classes, CSS, 132

dynamic effects with, 28
Footbag Freaks link styling, 195, 198

493Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/827047

overriding, 133
pseudo-element selectors, 47

Q
Quirks mode, 70–73
quotation marks

CSS property values, 10, 41, 98
font lists, 107
generated content, 344

R
readability of code, 5
readability of tables, 87, 278
readability of text, 81, 122, 261, 289
relative measurements, 55, 57, 367

font sizes, 100–101
font weights, 104
line-height property and, 123
Netscape 4 bug, 69

relative positioning, 161
absolute positioning within, 206
positional context and, 160

rendering process, 7, 100
RGB color values, 307

descriptive color equivalents, 308
Netscape extended colors, 313

rgb function, 80, 180
Ruby text, 431–435
rules, CSS, 7

categories, 11
conflict resolution, 141
controlling color, 24–25
font preferences, 108
measurements, 54–59
nesting, 59
order of selectors, 279
parts of, 8–10
selectors types, 44–54
styling precedence among, 8, 75, 77,

142

S
sans-serif fonts, 97
scope attribute, <th> element, 263
screen readers, 6

floated layouts and, 252
hiding skip navigation, 254
semantic markup and, 35

scrolling backgrounds, 90–91
search engines, 34
search form, Footbag Freaks, 210
selectors, CSS

adding class or id attributes, 26
combining ID and class selectors, 47
document hierarchies and, 43
element targeting possibilities, 11
grouping, 54
as rule components, 9, 44–54
specificity rating, 145
understanding, 279

semantic markup, 33, 131, 288
semicolon rule separators, 9
separating content from presentation,

1, 3, 201
accessibility and, 288
code decoupling, 32
CSS role, 21
style declarations and, 12, 14

serif fonts, 97, 365
shorthand properties, 41, 104

background property, 318
border properties, 180, 327
font property, 362
list-style property, 388
margin property, 179, 394
outline property, 406
padding property, 41, 166, 413

sidebars
aligning with content, 192
fixed-width layout, 282
Footbag Freaks markup, 154
overlapping footers, 235

Order the print version of this book to get all 500+ pages!494

Index

http://www.sitepoint.com/launch/827047

repositioning, 213–214
styling, 204
three-column layout, 220

size property, CSS, 302, 438
“skip navigation” links, 252, 254
small-caps format, 103, 372
sort order and cascading, 142
sound on the Web, 303
spacer GIFs, 5, 21
spaces

quoting values containing, 10, 41,
98, 107

shorthand property separator, 104
white-space property, 465

spacing
(see also margins)
positive and negative space, 113
text, horizontal and vertical, 122–

129
 elements, 25, 112

nesting styles, 59
relative font sizing, 102
relative positioning, 160

specificity factor, cascading, 144–146
spreadsheets and table use, 6, 261, 273
src attribute, background image equival-

ent, 90
standard fonts, 106
standards compliance, 36, 70
standards-compliant mode, 71
Strict DOCTYPEs, 71, 152
strikethrough effects, 131
 elements, 35, 113
style attributes (see inline declarations)
<style> elements, 12–13, 40
style switchers, 296
styling

(see also CSS)
browser default, 7, 393
CSS and control over, 31
hiding from older browsers, 67–68

location of style definitions, 12, 40
skip navigation, 252

styling rule (see rules, CSS)
system color names, 79, 315

T
table cells, collapsing borders, 275, 331
table headings (see <th> elements;

<thead> elements)
table rows

coloring alternate, 88, 90, 278
setting colors, 276

table-layout property, CSS, 4, 444
tables

CSS Table Gallery, 274
empty-cells property, 358
in fixed-width layout, 273
Footbag Freaks match schedule, 261
legitimate use of, 6
styling for readability, 87

tabular layouts
design rationale for, 2
drawbacks of, 3–6
inheritance problems, 44
nested tables, 5–6
screen readers and, 35

tagline styling, 190, 267
<tbody> elements, 263, 276
text

alignment, 113–120
colors and readability, 81
direction property, 353
generated content, 342
resizing, 289
spacings, 122–129, 272

text effects
cascading and, 111–148
using elements, 112

text sizes
(see also font sizes; font-size property)

text wrapping, 29, 138

495Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/827047

text-align property, CSS, 114, 265, 445
text-decoration property, CSS, 129,

449
text-indent property, CSS, 120, 450
text-only browsers, 6, 66

(see also screen readers)
<th> elements, 90, 263, 276
<thead> elements, 263, 276
three-column layout example, 217–257

display in IE6, 231
full-height columns, 244–251
markup with a footer, 236
unstyled display, 237
using float, 240

tiled background images, 90–91, 181
tiling behavior

background images, 182
transitional DOCTYPEs, 72
translucent elements, 404
transparent backgrounds, 83, 320
transparent GIFs, 5, 21
TrueType fonts, 107
two-column layouts, 149–214

fixed-width layouts, 282

U
 elements, 134, 197

(see also lists)
underlining, 129, 131, 133
Unicode, 152, 353, 458
units of measurement, 54–59
universal selectors, 44
url function, 90
url operator, 67, 140
user settings, 77, 98

V
validation

CSS, 61–65
Footbag Freaks markup, 155

vertical margins, 176

vertical spacing, text, 122
View Source feature, 34
visibility: hidden and display: none,

157
visually impaired users, 34
voice-family property, CSS, 304, 463

W
W3C (World Wide Web Consortium)

CSS development role, 3
CSS validation service, 61–65
semantic markup and, 36

Warnings menu, W3C validator, 63
warnings, color coding, 85
WCAG (Web Content Accessibility

Guidelines 1.0), 35–36, 78, 188
Web Developer Toolbar, 70
weight factor, cascading, 147
width property, CSS, 468

float property and, 189
preventing overlap, 223, 229

Windows platforms
(see also Internet Explorer for Win-

dows)
standard fonts, 106

word-spacing property, CSS, 128, 470
wrapper <div>s, 183, 224, 263–266,

282

X
x-height values, 57
XHTML

(see also DOCTYPE declarations;
elements, XHTML)

Dynamic HTML and, 305–306
XHTML 1.0 Recommendation, 36, 71

use in this book, 72
XHTML 1.1 Recommendation, 431–

435

Order the print version of this book to get all 500+ pages!496

Index

http://www.sitepoint.com/launch/827047

Z
Zapfino font, 109
“zoom” layouts, 288

497Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/827047

	HTML Utopia: Designing Without Tables Using CSS
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s in this Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	Getting the Lay of the Land
	CSS in Context
	The Basic Purpose of CSS
	Why Most—but Not All—Tables Are Bad
	Tables Mean Long Load Times
	Use of Transparent Images Slows us Down
	Maintaining Tables is a Nightmare
	Tables Cause Accessibility Issues
	When it’s Okay to Use a Table

	What is CSS, Really?
	Parts of a CSS Rule
	Types of CSS Rules
	Which Properties can CSS Rules Affect?
	Which Elements can CSS Affect?
	Where can CSS Styles be Defined?
	Inline Declarations
	Embedded CSS
	External CSS

	A Simple Example
	Summary

	Putting CSS into Perspective
	What can CSS Do?
	Color and CSS
	Fonts and CSS
	Dynamic Pseudo-classes and CSS
	Images and CSS
	Multiple Style Sheets, Users, and CSS

	Advantages of CSS Design
	Increased Stylistic Control
	Centralized Design Information
	Semantic Content Markup
	Accessibility
	Standards Compliance

	Browser Support for CSS
	Summary

	Digging Below the Surface
	Applying CSS to HTML Documents
	Using Shorthand Properties
	How Inheritance Works in CSS
	Selectors and the Structure of CSS Rules
	Universal Selector
	Element Type Selector
	Class Selector
	ID Selector
	Pseudo-element Selector
	Pseudo-class Selector
	Descendant Selector
	Parent-child Selector
	Adjacent Selector
	Attribute Selectors
	Selector Grouping

	Expression Measurements
	Absolute Values
	Relative Values

	CSS Comments
	Summary

	Simple CSS Layout
	The Layout
	Creating the Document
	The Header
	The Main Content Section
	The Sidebar

	Positioning the Page Elements
	The display Property
	Absolute, Relative, and Positioning Contexts
	The Box Model
	Pixels vs Percentages
	Padding Properties

	Margin Properties
	Margins, Padding, and Lists
	Border Properties

	Constructing the Layout
	The Header Area
	The float Property
	Using float in our Header

	The Content Area
	The Main Feature
	The Features List
	The Author Images

	The Sidebar
	The Form
	Move of the Month

	Repositioning the Sidebar

	Summary

	Index

