
1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Develop and Deliver Enterprise-Critical Applications with XML .NET
• Complete Case Studies with Ready-to-Run Source Code and Full Explanations

• Hundreds of Developing & Deploying, and Debugging Sidebars, Security Alerts,
and FAQs

• Complete Coverage of Web Services and the VS.NET Integrated Development
Environment (IDE)

XML
.NET D e ve l o p e r ’s

G u i d e

Adam Sills

Mesbah Ahmed

Dotthatcom.com

Frank Boumphrey

Jonothon Ortiz Technical Editor

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

■ “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page i

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page ii

1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

XML
.NET D e ve l o p e r ’s

G u i d e

Adam Sills

Mesbah Ahmed

Dotthatcom.com

Frank Boumphrey

Jonothon Ortiz Technical Editor

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results
to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work
is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state
to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or
other incidental or consequential damages arising out from the Work or its contents. Because some
states do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,” and “Ask the
Author UPDATE®,” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”“Hack
Proofing™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of
their respective companies.
KEY SERIAL NUMBER
001 PKH4T67VT5
002 ESTRT45RF4
003 BHER6W354N
004 9HD34B3QAN
005 ZR88JN6NVH
006 NTG4R54RM4
007 CG8VHTR46T
008 D6Y9R565MR
009 22N5M4BX6S
010 SD6YH2Y7FC

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
XML .NET Developer’s Guide

Copyright © 2002 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-928994-47-4
Technical Editor: Jonothon Ortiz Cover Designer: Michael Kavish
Acquisitions Editor: Catherine B. Nolan Page Layout and Art by: Reuben Kantor and
Indexer: Robert Saigh Shannon Tozier
Copy Editor: Beth A. Roberts

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page iv

v

Acknowledgments

v

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight
into the challenges of designing, deploying and supporting world-class enterprise
networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, Frida Yara, Bill Getz, Jon Mayes, John Mesjak, Peg
O’Donnell, Sandra Patterson, Betty Redmond, Roy Remer, Ron Shapiro, Patricia
Kelly,Andrea Tetrick, Jennifer Pascal, Doug Reil, and David Dahl of Publishers
Group West for sharing their incredible marketing experience and expertise.

Jacquie Shanahan,AnnHelen Lindeholm, David Burton, Febea Marinetti, and Rosie
Moss of Elsevier Science for making certain that our vision remains worldwide in
scope.

Annabel Dent and Paul Barry of Elsevier Science/Harcourt Australia for all their help.

David Buckland,Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan,
and Joseph Chan of Transquest Publishers for the enthusiasm with which they receive
our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

Jackie Gross, Gayle Voycey,Alexia Penny,Anik Robitaille, Craig Siddall, Darlene
Morrow, Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates
for all their help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, Shannon Russell and the rest of the great folks at
Jaguar Book Group for their help with distribution of Syngress books in Canada.

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page v

vi

Contributors

Adam Sills is an Internet Programmer at GreatLand Insurance, a small
insurance company parented by Kemper Insurance. He works in a small IT
department that focuses on creating applications to expedite business pro-
cesses and manage data from a multitude of locations. Previously, he had a
small stint in consulting and also worked at a leading B2B eCommerce
company designing and building user interfaces to interact with a large-
scale enterprise eCommerce application.Adam’s current duties include
building and maintaining Web applications, as well as helping to architect,
build, and deploy new Microsoft .NET technologies into production use.
Adam has contributed to the writing of a number of books for Syngress
including ASP .NET Developer’s Guide (ISBN: 1-928994-51-2) and is an
active member of a handful of ASP and ASP.NET mailing lists, providing
support and insight whenever he can.

Todd Carrico (MCDBA, MCSE) is a Senior Database Engineer for
Match.com. Match.com is a singles portal for the digital age. In addition
to its primary Web site, Match.com provides back-end services to AOL,
MSN, and many other Web sites in its affiliate program.Todd specializes
in design and development of high-performance, high-availability data
architectures primarily on the Microsoft technology. His background
includes designing, developing, consulting, and project management for
companies such as Fujitsu,Accenture, International Paper, and
GroceryWorks.com. In addition to his contribution to C# .NET Web
Developer’s Guide (ISBN: 1-928994-50-4),Todd has also contributed
chapters to other books in the Syngress .NET Series including the
ASP .NET Web Developer’s Guide (ISBN: 1-928994-51-2) and the
VB .NET Developer’s Guide (ISBN: 1-928994-48-2).Todd resides in
Sachse,Texas with his wife and two children.

Greg Hack is a Senior Software Engineer with Allscripts Healthcare
Solutions. Greg has over 15 years of experience developing software on
platforms ranging from the mainframe to the desktop, using a wide

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page vi

vii

variety of languages and technologies. Recent work includes a Web-based
application that allows patients to view their medical records and a Pocket
PC application that delivers clinical information to physicians at the point
of care. Greg has also contributed to C# .NET Web Developer’s Guide
(ISBN: 1-928994-50-4).

Patrick Coelho (MCP) is an instructor at The University of Washington
Extension, North Seattle Community College, Puget Sound Center, and
Seattle Vocational Institute, where he teaches courses in Web Development
(DHTML,ASP, XML, XSLT, C#, and ASP.NET). Patrick is a Co-Founder
of DotThatCom.com, a company that provides consulting, online develop-
ment resources, and internships for students. He is currently working on a
.NET solution with contributing author David Jorgensen and nLogix.
Patrick holds a bachelor of science degree from the University of
Washington, Bothell. He lives in Puyallup,Washington with his wife,
Angela. Patrick is a contributor to Syngress Publishing’s C# .NET Web
Developer’s Guide (ISBN: 1-928994-50-4) and the ASP .NET Web
Developer’s Guide (ISBN: 1-928994-51-2).

David Jorgensen (MCP) is an instructor at North Seattle Community
College, University of Washington Extension campus, and Puget Sound
Centers. He is also developing courses for Seattle Vocational Institute, which
teach .NET and Web development to the underprivileged in the Seattle
area. David also provides internship opportunities through his company,
DotThatCom.com, which does online sample classes and chapters of books.
David holds a bachelor’s degree in Computer Science from St. Martin’s
College and resides in Puyallup,Washington, with his wife, Lisa and their
two sons, Scott and Jacob. David is a contributor to Syngress Publishing’s
C# .NET Web Developer’s Guide (ISBN: 1-928994-50-4) and the
ASP .NET Web Developer’s Guide (ISBN: 1-928994-51-2).

Joe Dulay (MCSD) is the Vice-President of Technology for the IT Age
Corporation. IT Age Corporation is a project management and software
development firm specializing in customer-oriented business enterprise
and e-commerce solutions located in Atlanta, Georgia. His current

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page vii

viii

responsibilities include managing the IT department, heading the tech-
nology steering committee, software architecture, e-commerce product
management, and refining development processes and methodologies.
Though most of his responsibilities lay in the role of manager and archi-
tect, he is still an active participant of the research and development team.
Joe holds a bachelor’s degree from the University of Wisconsin in
Computer Science. His background includes positions as a Senior
Developer at Siemens Energy and Automation, and as an independent
contractor specializing in e-commerce development. Joe is also co-
author of Syngress Publishing’s Hack Proofing Your Web Applications
(ISBN: 1-928994-31-8). Joe would like to thank his family for always
being there to help him.

Henk-Evert Sonder (CCNA) has over 15 years of experience as an
Information and Communication Technologies (ICT) professional,
building and maintaining ICT infrastructures. In recent years, he has spe-
cialized in integrating ICT infrastructures with secure business applica-
tions. Henk’s company, IT Selective, works with small businesses to help
them develop high-quality, low cost solutions. Henk has contributed to
several Syngress books, including the E-Mail Virus Protection Handbook
(ISBN: 1-928994-23-7), Designing SQL Server 2000 Databases for .NET
Enterprise Servers (ISBN: 1-928994-19-9), VB .NET Developer’s Guide
(ISBN: 1-928994-48-2), and BizTalk Server 2000 Developers Guide for
.NET (ISBN: 1-928994-40-7). Henk lives in Hingham, Massachusetts
with his wife, Jude and daughter, Lilly.

Chris Garrett is the Technical Manager for a large European Web
agency. He has been working with Internet technologies since 1994 and
has provided technical and new media expertise for some of the world’s
biggest brands. Chris is a co-author of Syngress Publishing’s ASP .NET
Web Developer’s Guide (ISBN: 1-928994-51-2). Chris lives in Yorkshire,
England with his wife, Clare and his daughter,Amy.

Mesbah Ahmed (PhD and MS, Industrial Engineering) is a Professor of
Information Systems at the University of Toledo. In addition to teaching

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page viii

ix

and research, he provides technical consulting and training for IT and
manufacturing industries in Ohio and Michigan. His consulting experi-
ence includes systems design and implementation projects with Ford
Motors, Dana Corporation, Riverside Hospital, Sears, and others.
Currently, he provides IT training in the areas of Java Server, XML, and
.NET technologies. He teaches graduate level courses in Database
Systems, Manufacturing Systems, and Application Development in
Distributed and Web Environment. Recently, he received the University
of Toledo Outstanding Teaching award, and the College of Business
Graduate Teaching Excellence award. His current research interests are in
the areas of data warehousing and data mining. He has published many
research articles in academic journals such as Decision Sciences, Information
& Management, Naval Research Logistic Quarterly, Journal of Operations
Management, IIE Transaction, and International Journal of Production Research.
He has also presented numerous papers and seminars in many national
and international conferences. Mesbah is also a co-author of Syngress
Publishing’s ASP .NET Web Developer’s Guide (ISBN: 1-928994-51-2).

Dreamtech Software India, Inc., is a leading provider of corporate
software solutions. Based in New Delhi, the company is a successful pio-
neer of innovative solutions in e-learning technologies.The Dreamtech
Software team, which authored all the books in the Cracking the Code
series has over 50 years of combined software-engineering experience in
areas such as Java, wireless application, XML, voice-based solutions, .NET,
COM/COM+ technologies, distributed computing, DirectX,Windows
Media technologies, and security solutions. For more information, log on
to www.dreamtechsoftware.com.

Frank Boumphrey is a retired professor of surgery who now specializes in
Internet applications and medical documentation.As well as numerous
medical papers, he has authored several books on XML, the Internet and
on other related subjects. Frank is the president of the HTML Writers
Guild, a 125,000 member strong, not-for-profit, International organization
of Web page Writers, and was a participant in various working groups of
the World Wide Web Consortium (W3C). Presently his main objective is to
help XML to become the language of choice in Web documents.

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page ix

x

Technical Editor and Reviewer

Jonothon Ortiz is Vice President of Xnext, Inc. in Winter Haven,
Florida. Xnext, Inc. is a small, privately owned company that develops
Web sites and applications for prestigious companies, such as the New
York Times. Jonothon is the head of the programming department and
works together with the CEO on all company projects to ensure the best
possible solution. His primary field of experience is database backend for
Web applications and occasionally programming the GUI of a Web appli-
cation. He has developed over 30 databases, ranging from small e-com-
merce sites to client identification and storage. Many of these databases
incorporated XML in some fashion, from a small footprint file to the
generation of smaller XML files to increase performance time for often-
used queries and results.The majority of these applications were coded in
either PHP, Perl, or ASP 3.x / .NET. Johothon has been a contributor to
a variety of title from Syngress Publishing, including ASP .NET Web
Developer’s Guide (ISBN: 1-928994-51-2), the VB .NET Developer’s
Guide (ISBN: 1-928994-48-2), and the Ruby Developer’s Guide
(ISBN: 1-928994-64-4). Jonothon lives with his wife, Carla in
Lakeland, Florida.

155_XML_NET_FM.qxd 3/7/02 3:01 PM Page x

Contents

xi

Foreword xxi

Chapter 1 Introducing the Microsoft
.NET Framework 1

Introduction 2
What Is the .NET Framework? 3
Introduction to the Common Language Runtime 3
Using .NET-Compliant Programming Languages 5
Creating Assemblies 5

Using the Manifest 8
Assembly Cache 11
Locating an Assembly 12

Private Assembly Files 17
Shared Assembly Files 17

Understanding Metadata 17
The Benefits of Metadata 18
Identifying an Assembly with Metadata 18
Types 19

Defining Members 19
Using Contracts 20

Assembly Dependencies 21
Unmanaged Assembly Code 21

Reflection 21
Attributes 22

Ending DLL Hell 22
Side-by-Side Deployment 23
Versioning Support 23

Using System Services 24
Exception Handling 24

Step 1 of the Location
Process

Manifest

Reference Request

Is it a static?

to Step 2

It is dynamic;
create on-the-fly

then proceed.

YES

NO

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xi

xii Contents

StackTrace 25
InnerException 26
Message 26
HelpLink 26

Garbage Collection 26
Console I/O 26

Microsoft Intermediate Language 27
The Just-in-Time Compiler 27

Using the Namespace System to Organize Classes 28
The Common Type System 29

Type Safety 32
Relying on Automatic Resource Management 32

The Managed Heap 33
Garbage Collection and the Managed Heap 35

Assigning Generations 40
Using Weak References 41

Security Services 41
Framework Security 43

Granting Permissions 43
Gaining Representation through

a Principal 45
Security Policy 46

Summary 48
Solutions Fast Track 49
Frequently Asked Questions 52

Chapter 2 Visual Studio.NET IDE 55
Introduction 56
Introducing Visual Studio.NET 56
Components of VS.NET 58

Design Window 59
Code Window 59
Server Explorer 60
Toolbox 61
Docking Windows 62
Properties Explorer 63
Solution Explorer 64

The Toolbox Window

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xii

Contents xiii

Class View 65
Dynamic Help 66
Task List Explorer 67

Features of VS.NET 68
IntelliSense 68
XML Editor 70
Documentation Generation

(XML Embedded Commenting) 73
Adding XML Document Comments

to C# Pages 74
Customizing the IDE 75
Creating a Project 76

Projects 76
Creating a Project 76
Add Reference 77
Build the Project 77
Debugging a Project 77

Summary 78
Solutions Fast Track 79
Frequently Asked Questions 81

Chapter 3 Reviewing the Fundamentals
of XML 83

Introduction 84
An Overview of XML 84

The Goals of XML 85
What Does an XML Document Look Like? 85
Creating an XML Document 86

Creating an XML Document in
VS.NET XML Designer 87

Components of an XML Document 88
Structure of an XML Document 91

Well-Formed XML Documents 92
Schema and Valid XML Documents 93

XML Schema Data Types 97
Transforming XML through XSLT 98

XSL Use of Patterns 102

The Goals of XML

■ XML shall be
compatible with SGML.

■ It shall be easy to write
programs that process
XML documents.

■ The number of optional
features in XML is to
be kept to the absolute
minimum; ideally, zero.

■ XML documents should
be human-legible and
reasonably clear.

■ The XML design should
be prepared quickly.

■ The design of XML
shall be formal and
concise.

■ XML documents shall
be easy to create.

■ Terseness in XML
markup is of minimal
importance.

■ XML shall be
straightforwardly
usable over the
Internet.

■ XML shall support a
variety of applications.

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xiii

xiv Contents

XPath 105
Summary 107
Solutions Fast Track 107
Frequently Asked Questions 109

Chapter 4 Using XML in the .NET
Framework 111

Introduction 112
Explaining the XML Document Object Model 112

The Different XML DOM Levels 113
XML DOM Core Interfaces 114
DOM Structure Model 115
DOM Traversal 118

NodeIterator 119
TreeWalker 120
NodeFilter 121

DOM Range 122
DOM XPath 123

Introduction to the System.Xml Namespace 124
Overview of System.Xml.Schema Classes 124
Mapping XML DOM on the

System.Xml Namespace 130
Explaining a Selection of System.Xml Classes 132

Using the System.Xml Namespace 145
Building the XML Address Book 145

Loading the XML Address Book 145
Creating and Deleting Categories 149
Creating, Editing, and Deleting Entries 151

Summary 156
Solutions Fast Track 157
Frequently Asked Questions 158

Chapter 5 Understanding .NET and
XML Security 159

Introduction 160
The Risks Associated with Using XML in

the .NET Framework 160

The Document
Interface Attributes

Attribute Description

doctype The Document
Type Declaration
(DTD) with this
document. If
DTD is not
present, this
returns null.

document The root
Element element in the

document.

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xiv

Contents xv

Confidentiality Concerns 161
.NET Internal Security as a Viable Alternative 162

Permissions 163
Principal 164
Authentication 165
Authorization 165
Security Policy 165
Type Safety 165

Code Access Security 166
.NET Code Access Security Model 166

Stack Walking 167
Code Identity 168
Code Groups 169
Declarative and Imperative Security 172
Requesting Permissions 173
Demanding Permissions 177
Overriding Security Checks 179
Custom Permissions 184

Role-Based Security 185
Principals 186

WindowsPrincipal 186
GenericPrincipal 187
Manipulating Identity 188

Role-Based Security Checks 190
Security Policies 192

Creating a New Permission Set 195
Modifying the Code Group Structure 200
Remoting Security 207

Cryptography 207
Security Tools 210
Securing XML—Best Practices 212

XML Encryption 212
XML Digital Signatures 218

Summary 222
Solutions Fast Track 223
Frequently Asked Questions 228

You can determine the
permission set of a
code group by
performing these
steps:

1. Run Microsoft
Management Console
(MMC) by choosing
Start | Run and typing
mmc.

2. Open the .NET
Management snap-in,
via Console |
Add/Remove Snap-in.

3. Expand the Console
Root | .NET
Configuration | My
Computer.

4. Expand Runtime
Security Policy |
Enterprise |Code
Groups.

5. Select the code group
All_Code.

6. Right-click All_Code
and select Properties.

7. Select the Permission
Set tab.

8. The Permission Set
field lists the current
value.

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xv

xvi Contents

Chapter 6 XML and the Web with
ASP.NET 231

Introduction 232
Reviewing the Basics of the ASP.NET Platform 232
Reading and Parsing XML 234

Parsing an XML Document 235
Navigating through an XML Document

to Retrieve Data 236
Writing an XML Document Using the

XmlTextWriter Class 239
Generating an XML Document Using

XmlTextWriter 239
Exploring the XML Document Object Model 242

Navigating through an XmlDocument
Object 243

Parsing an XML Document Using the
XmlDocument Object 244

Using the XmlDataDocument Class 247
Loading an XmlDocument and

Retrieving the Values of Certain Nodes 248
Using the Relational View of an

XmlDataDocument Object 249
Viewing Multiple Tables of an

XmlDataDocument Object 252
Querying XML Data Using XPathDocument

and XPathNavigator 256
Using XPathDocument and

XPathNavigator Objects 259
Using XPathDocument and XPathNavigator

Objects for Document Navigation 261
Transforming an XML Document Using XSLT 264

Transforming an XML Document
to an HTML Document 266

Transforming an XML Document into
Another XML Document 268

Working with XML and Databases Online 274

Answers to Your
Frequently asked
Questions

Q: Why so much emphasis
on the Web? Can’t I
use XML on the
desktop as well?

A: Yes, you can use XML
on the desktop.
However, one of the
main goals of .NET is
to properly connect
the desktop with the
Internet and not suffer
any setback due to
server type, program-
ming language, and so
on. As you might have
noticed as well,
ASP.NET can be
thought of as a Web
wrapper for desktop
code. This helps ensure
that what you see
online will be mostly
reproducible offline.

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xvi

Contents xvii

Creating an XML Document from
a Database Query 275

Reading an XML Document into a DataSet 278
Summary 280
Solutions Fast Track 280
Frequently Asked Questions 283

Chapter 7 Creating an XML.NET
Guestbook 283

Introduction 284
Functional Design Requirements

of the XML Guestbook 285
Constructing the XML 286

Adding Records to the Guestbook 288
Understanding the pnlAdd Panel 292
Adding a Thank-You Panel with PnlThank 294
Exploring the Submit Button Handler Code 294

Viewing the Guestbook 298
Displaying Messages 298

Advanced Options for the Guestbook Interface 301
Manipulating Colors and Images 301
Modifying the Page Output 305

Summary 308
Solutions Fast Track 308
Frequently Asked Questions 310

Chapter 8 Creating a Message Board
with ADO and XML 311

Introduction 312
Setting Up the Database 312

MS Access Database 313
SQL Server Database 317

Designing Your Application 321
Designing Your Objects 323
Creating Your Data Access Object 323
Designing the User Class 325
Designing the Board Class 335

Migrating…

Online Forms

As you have noticed and
learned throughout this
book, ASP.NET enables
programmers to use Web
forms, which can be
described as the VB6.0
desktop form. In this par-
ticular example, your
“AddClick” sub would be
placed within the
OnClick() event for what-
ever button you wanted to
use as your trigger for this
action. One other little
trick is to view each
“panel” as a small form
within an mdi, namely the
browser window, with
their own “hide” and
“show” features.

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xvii

xviii Contents

Designing the ThreadList Class 344
Designing the Thread Class 347
Designing the PostList Class 350
Designing the Post Class 353
Designing the MessageBoard Class 356

Designing the User Interface 357
Setting Up General Functions 358
Building the Log-In Interface 366
Designing the Browsing Interface 373

Board Browsing 373
Thread Browsing 376
Message Browsing 379

Creating the User Functions 382
Editing the Member Profile 383
Creating Threads and Posts 385

Building the Administrative Interface 389
Summary 403
Solutions Fast Track 403
Frequently Asked Questions 405

Chapter 9 Building a Remote
Database Viewer 407

Introduction 408
Understanding ADO.NET 408

The ADO.NET Architecture 410
Using .NET Data Provider 410

Connection 411
Command 411
Data Reader 411
Data Adapter 412

Using DataSets and DataTables 413
A Quick Comparison of ADO and
ADO.NET 414

Accessing Data from a Database Using ADO.NET 414
Database Design 415
Navigating between Records 415
Add Record Form 419
Delete/Update Form 422

The Board Class

+Update()
+CreateThread()
+Delete()
+DeleteThread()
+DeletePost()
+CreateBoard() : Board

+BoardID : Long
+Name : String
+Description : String
+ChildThreads
+ChildThread

Board

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xviii

Contents xix

Converting Binary Data Using Base64 428
How Base64 Works 429
Converting Binary Data into Base64 Format 431

Database Design 431
Reading Base64 Encoded Data from an

XML File 436
Designing and Implementing a Simple Remote

Database Viewer 440
What Is a Remote Database? 441
Advantages and Disadvantages of

Remote Data Access 442
Implementing a Simple Remote Database
Viewer 445

Summary 448
Solutions Fast Track 448
Frequently Asked Questions 449

Chapter 10 Building a Wholesale Catalog 451
Introduction 452
Basic Design Considerations 453

Storage: XML versus Traditional Databases 453
Information Transport Methods 454
XML and EDI 455
XML Vocabularies 456
Implementation of the Agora Markets

Catalog 456
Data Store 456
Transport Protocols 457

Vocabularies 457
Requirements 457
Analysis 458

Data Store 458
Catalog Updating 459
Business-to-Business E-Communications 459
The XML Files 460
Data Typing Entries 461
Catalog 462

Understanding
ADO.NET

The ADO.NET also sports
these features:

■ Interoperability

■ DataSet

■ Performance

■ Scalability

■ Maintainability

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xix

xx Contents

Coding the Project 462
Database Design 463

OLTP versus OLAP 463
XML Packages Design 465

Supplier Interface and B2B Design 469
Fatal Errors versus Nonfatal Errors 469
Coding updatecat1.aspx 470
Analysis of Code Listing updatecat1.aspx 482

Customer Interface Design 490
GUI:The Catalog Page 490

Analysis of Code 493
Analysis of Code 498

GUI:The Shopping Cart Page(s) 502
Analysis of Code Listing
‘shopcartadd.aspx’ 508

Business and Web Services 514
Business versus Web Services 514
Coding a Business Service 514

Analysis of Code 516
Creating a Web Service 519

An Overview of Web Services 519
Coding a Web Service 519
Analysis of Code 521

Testing the Web Service 522
Using Web Services 524

Universal Description, Discovery,
and Integration 524

Web Service Description Language 524
Installation: Migrating to SQL Server 529

Changing the Connection String 530
Compatible Data Types 530
SQL Strings 531
Converting to SQL Server 531

Summary 533
Solutions Fast Track 533
Frequently Asked Questions 535

Index 537

Developing &
Deploying…

DataReader versus DataSet

DataReader for the most
part works pretty much
like the old recordset with
which ASP programmers
are familiar. DataSet will
create a virtual database
(preserved in XML) that
we can work with even
while disconnected to the
database. It requires a
complete new subset of
objects and methods to
work with it.

155_XML_NET_TOC.qxd 3/7/02 3:12 PM Page xx

Welcome to the XML.NET Developer’s Guide! We have taken great care to create a
quality reference book for XML programmers who want to enhance their coding
skills to include applications for the .NET platform.This book assumes that you do
have previous exposure to XML and are familiar with VB.NET, C#, and ASP.NET.
In other words, this book is not for a novice or beginner.

Since its inception in February of 1998, XML has been moving forward through
the continued efforts of the World Wide Web Consortium (W3C).At first many
developers scoffed at XML, thinking it was just a new way to script. However, those
developers who regularly worked with database management and development soon
realized the potential of what XML could be—a way to provide data between parties
without needing to rely on proprietary solutions.

Developers began to incorporate snippets of XML into their desktop applica-
tions, maybe to store configuration data or maybe as an export file.As time passed,
they began to transfer XML to the Internet. Databases began to communicate to
each other via XML and companies were finding that they had an easier time coping
with external database data thanks to XML.

Developers, however, were not the only ones to notice the potential of XML:
Microsoft and made it one of the cornerstones of the .NET Framework. .NET aims
to bridge the gap between desktop applications and online applications, and facilitate
the communication of objects between the two.

The XML .NET Developer’s Guide was created and organized using the following
principal: XML, in the real world, lives up to its flexibility.You are just as likely to
stumble across a desktop application running XML as you are to find an online
e-commerce shop that uses XML to transfer data.

xxi

Foreword

155_XML_NET_fore.qxd 3/6/02 5:16 PM Page xxi

xxii Foreword

As you work through this book you’ll find that we will be jumping around from
VB.NET to C# or maybe use a little bit of both.This flexibility within .NET allows
you to use the right code always to optimize your XML code; if you thought C#
provides faster queries than VB.NET but VB.NET delivers the better front-end you’ll
find; it’s not an issue, as within .NET you can use both.

If this sounds confusing to you it may mean that you are still a beginner with
.NET in general; if this is the case we suggest you pick up a copy of VB.NET
Developer’s Guide (ISBN: 1-928994-48-2) and C# Web Developer’s Guide (ISBN: 1-
928994-50-4) from Syngress Publishing.These books contain greater detail on the
.NET framework including how it works, and how to work with it using the pro-
gramming language of your choice.As new .NET languages become available
Syngress’ set of .NET programming books will increase and so will your choices in
programming for XML.

If you have read any of Syngress’ .NET books in the past you’ll be familiar with
the layout.We introduce either introductory material (or, in this case, refresher mate-
rial) in the first couple of chapters, move on to the meat of the book with in-depth
views on specific points in the programming language, and finish off with a set of
case studies that enhance the skills and ideas you’ve learned throughout the book.All
in all, the XML.NET Developer’s Guide has a total of ten chapters.

Chapter 1 (Introducing the .NET Framework) will bring you up to speed with a
refresher in how .NET works internally, with Chapter 2 (Visual Studio .NET IDS)
providing an introductory look into VS.NET, Microsoft’s IDE for .NET program-
ming.This new IDE can work more with XML than its predecessor, so even if you
are familiar with the VS.NET IDE it may be a good idea to browse through this
chapter.

Chapter 3 (Reviewing the Fundamentals of XML) kicks off by giving you a quick
refresher for XML basics.This is followed up by Chapter 4 (Using XML in the .NET
Framework), in which we start to look at how you can work with XML through
.NET. Both Chapter 3 and 4 cover basic XML items such as proper XML syntax and
validation through Schemas.You will also learn about many of the major namespaces
and how they work, and begin to familiarize yourself with the appropriate classes
you need to complete your projects.You will be surprised at the flexibility that XML
offers and how even some other classes that do not directly revolve around XML can
work with XML as well.

Chapter 5 (Understanding .NET and XML Security) introduces a major issue in the
XML user community—security.While XML is unable to provide proper security by

www.syngress.com

155_XML_NET_fore.qxd 3/6/02 5:16 PM Page xxii

www.syngress.com

itself, a thorough understanding of what XML can do combined with an under-
standing of .NET security is vital.

Chapter 6 (Web Development Using XML and ASP.NET) will introduce you to the
online aspect of XML using ASP .NET and teach you how XML is a vital part of
online applications through the use of multiple examples, including an online catalog.

Chapters 7, 8, 9, and 10 are the hands-on case studies (Creating an XML.NET
Guestbook; Creating a Message Board with ADO and XML; Building a Simple Remote
Database Viewer; and Building a Wholesale Catalog).These applications, with the excep-
tion of Chapter 7, are fairly large, complex, and require an understanding of basic
.NET concepts as well as .NET programming.

You wanted XML? You got it!

—Jonothon Ortiz,Technical Editor

Foreword xxiii

155_XML_NET_fore.qxd 3/6/02 5:16 PM Page xxiii

155_XML_NET_fore.qxd 3/6/02 5:16 PM Page xxiv

Introducing the
Microsoft .NET
Framework

Solutions in this chapter:

■ What Is the .NET Framework?

Introduction to the Common Language
Runtime

Using .NET-Compliant Programming
Languages

Creating Assemblies

Understanding Metadata

Using System Services

Microsoft Intermediate Language

Using the Namespace System to Organize
Classes

The Common Type System

Relying on Auto Resource Management

Security Services

Chapter 1

1

Summary

Solutions Fast Track

Frequently Asked Questions

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 1

2 Chapter 1 • Introducing the Microsoft .NET Framework

Introduction
With the introduction of the .NET architecture, Microsoft presents a solution
that must provide us with a solid base for distributed applications.Although
Microsoft has a long way to go, they are off to a good start with the .NET
Framework.Visual Studio .NET is the first real .NET application that will see
daylight.

To leverage the communication of distributed .NET applications, the .NET
architecture makes heavy use of XML. In fact, XML is the default encoding lan-
guage of the framework, not only to encapsulate data to send back and forth
between applications, but also in configuration files.This is a logical choice as you
learn what the .NET Framework is all about.

This chapter will cover all the basics of this framework that you need to
understand to use the information in the rest of this book. If you need more in-
depth information on the .NET framework, you can find it in the other .NET
books in this series.

The .NET framework includes a number of base classes to get you started.
The Framework includes abstract base classes to inherit from, as well as imple-
mentations of these classes to use.You can even derive your own classes for
custom modifications.All the classes are derived from the system object, which
gives you great power and flexibility.All applications will share a common run-
time environment called the Common Language Runtime (CLR).The .NET
Framework now includes a Common Type System (CTS) that allows all the lan-
guages to share data using the same types.These features facilitate cross-language
interoperability.

To use .NET, you need to learn some new concepts, which we discuss
throughout this chapter.A .NET application is wrapped up in an assembly.An
assembly includes all the information you need about your application. It
includes information that you would find currently in a type library, as well as
information you need to use the application or component.This makes your
application or component completely self-describing.When you compile your
application, it is compiled to an intermediate language called the Microsoft
Intermediate Language (MSIL).When a program is executed, it is then con-
verted to machine code by the CLR’s just-in-time (JIT) compiler.The MSIL
allows an application to run on any platform that supports the CLR without
changing your development code.

Once the code has been prepared, .NET’s work is still not done. It continues
to monitor the application and perform automatic resource management on the

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 2

www.syngress.com

application to clear up any unused memory resources and provide security mea-
sures to prevent anyone from accessing your assembly.

In these few paragraphs, we’ve introduced the major new concepts found
within .NET: the CLR, the assembly unit (and its contents), what makes .NET
interoperable, and how .NET is “smart” in terms of automatic memory manage-
ment and security. Let’s now look in-depth at how .NET works so we can get a
better grasp of what it can do for our XML applications, both desktop and online.

What Is the .NET Framework?
The .NET Framework is Microsoft’s latest offering in the world of cross-develop-
ment (developing both desktop and Web applications), interoperability, and, soon,
cross-platform development.As you go through this chapter, you’ll see just how
.NET meets these developmental requirements. However, Microsoft’s developers
did not stop there; they wanted to completely revamp the way we program.

In addition to the more technical changes, .NET strives to be as simple as
possible. .NET contains functionality that a developer can easily access.This same
functionality operates within the confines of standardized data types and naming
conventions.This internal functionality also encompasses the creation of special
data within an assembly file that is vital for interoperability, .NET’s built-in secu-
rity, and .NET’s automatic resource management.

Another part of the “keep it simple” philosophy is that .NET applications are
geared to be copy-only installations; in other words, a special installation package
for your application is no longer required.The majority of .NET applications
work if you simply copy them into a directory, which definitely eases the burden
on the programmer.

The CLR changes the way in which programs are written, in the sense that
developers won’t be limited to the Windows platform. Just as with ISO C/C++,
programmers are now able to see their programs work on any platform with the
.NET runtime installed.

Introduction to the Common
Language Runtime
The CLR controls the .NET code execution. CLR is the step above COM,
MTS, and COM+.

The CLR is the runtime environment for .NET. It manages code execution
and the services that .NET provides.The CLR “knows” what to do through

Introducing the Microsoft .NET Framework • Chapter 1 3

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 3

4 Chapter 1 • Introducing the Microsoft .NET Framework

special data (referred to as metadata) that is contained within the applications.
The special data within the applications store a map of where to find classes,
when to load classes, and when to set up runtime context boundaries, generate
native code, enforce security, determine which classes use which methods, and
load classes when needed. Since the CLR is privy to this information, it can
also determine when an object is used and when it is released.This is known as
managed code.

Managed code is what we want to aim for in order to create fully CLR-
compliant code. Code that’s compiled with COM and Win32API declarations
falls under the category of unmanaged code. Managed code keeps us from
depending on obstinate dynamic link library (DLL) files. In fact, thanks to the
CLR, we don’t have to deal with the Registry, graphical user identifications
(GUIDs),AddRef, HRESULTS, and all the macros and application programming
interfaces (APIs) we depended on in the past.They aren’t even an available option
in .NET.

Removing all the excess also provides a more consistent programming model.
Since the CLR encapsulates all the functions that we had with unmanaged code,
we won’t have to depend on any preexisting DLL files residing on the hard drive.
This does not mean that we have seen the last of DLL; it simply means that the
.NET Framework contains a system within it that can “map out” the location of
all the resources we are using.

To help CLR-based code execute properly, CLR-compliant code is also
Common Language Specification (CLS)-compliant code. CLS is a subset of
CLR types defined in the Common Type System (also discussed later in the
chapter), and its features are instrumental in the interoperability process by con-
taining the basic types required for CLR operability.These little things put
together allow .NET to handle multiple programming languages.The CLR
manages the mapping; all that you need is a compiler that can generate the
code and the special data needed within the application for the CLR to
operate.This ensures that any dependencies your application might have are
always met and not broken.

When you set your compiler to generate the .NET code, it runs through the
CTS and inserts the appropriate data within the application for the CLR to read.
Once the CLR finds the data, it proceeds to run through it and lay out every-
thing it needs within memory, declaring any objects when they are called (but
not before).Any application interaction, such as passing values from classes, is also
mapped within the special data and handled by the CLR.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 4

Introducing the Microsoft .NET Framework • Chapter 1 5

Using .NET-Compliant
Programming Languages
.NET isn’t stuck in the rut of a single, solitary programming language taking
advantage of a multiplatform system. In fact, when you get right down to it,
what’s the point of having a runtime that promises portability when you have to
use a singular programming model to do it? You have to rely on just that one
programming language to fill your needs, but what happens if the language
doesn’t lend itself to your needs? All of a sudden, portability takes a back seat to
necessity—for something to be truly “portable,” you require not only a portable
runtime, but also the ability to code in what you need, when you need it. .NET
offers us the solution of allowing any programming language that is compliant
with .NET to run. Can’t get that bug in your class worked out in VB, but you
know that you can work around it in C? Use C# to create a class that can be
easily used with your VB application.Third-party programming language users
don’t need to fret for long, either; several companies plan to create .NET-com-
pliant versions of their languages.

Currently, the only .NET-compliant languages are all of the Microsoft flavor;
for more information, check these out at http://msdn.microsoft.com/net:

C#

XML

C++ with Managed Extensions

VB.NET

ASP.NET (although this one is more a subset of VB.NET)

Jscript.NET

Other programming languages are preparing their .NET – compliant ver-
sions, such as Perl (http://aspn.activestate.com/ASPN/NET/index) and even
Cobol (www.adtools.com/info/whitepaper/net.html).

Creating Assemblies
So, just how do you get a bunch of languages to “play nice” together? Most
other programming languages do not use the Portable Executable (PE) format
for their executables, which was a primary reason that prevented portability to

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 5

6 Chapter 1 • Introducing the Microsoft .NET Framework

Microsoft, and vice versa.With the .NET environment comes something new: a
logical approach to executables called assemblies.The CLR handles the entire exe-
cuting of an assembly.The assembly “owns” a collection of files that are referred
to as static assemblies, which the CLR uses. Static assemblies can be resources used
by the assembly, such as image files or text files that the application will use.The
actual code that executes is found within the assembly in MSIL format. In other
words, an assembly is roughly the equivalent of a VB 6.0 COM component.An
assembly has three options that need to be set when you create it:

Loader optimization

Naming

Location

The loader optimization option has three settings: single domain, multidomain,
and multidomain host.The single-domain setting is the default and is used most in
client-side situations.The JIT code is generally smaller when the single-domain
setting is used, compared with the other two settings, and there is no real
noticeable difference between memory resources.The exception is if the appli-
cation winds up being used as part of a multidomain or multidomain host setup,
where it will actually hurt more than it’ll help—such as within a client/server
solution.

The multidomain and multidomain host settings apply to the same concept
of multidomain usage.The only difference between the two is how the CLR will
react with the code. In multidomain, the code is assumed to be the same across
the domain. In multidomain host, however, each domain hosts different code.
Let’s say that you have an application development in which all the domains have
the assembly filename, but each has different code hosted to see how it can still
interact; you would get the best performance using the multidomain host opti-
mization routine.

There are some benefits to setting the assembly as useable by multiple appli-
cations. Fewer resources will be consumed, since the type (object) will be loaded
and mapped already; it won’t need to be recreated each time it’s needed.
However, the end result of the JIT code is increased some, and access to static
items are slower, since the static references are referenced indirectly.

The name of the assembly can impact the scope and usage by multiple appli-
cations.A single-client use application uses the name given to it when created,
but there is no prevention for name collision.Therefore, in order to help prevent

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 6

Introducing the Microsoft .NET Framework • Chapter 1 7

name collisions in an assembly in a multi-assembly scenario, you can also give the
assembly a shared name. Having a shared name means that the assembly can be
deployed in the global assembly cache, which you can think of as a global repository
of assemblies.

A shared name is made up of the textual name of the assembly (the name you
created for it) and a digital signature. Shared names are unique names due to the
pairing of the text name and digital signature.This system, in turn, helps prevent
name collision and keeps anyone using the same textual name from writing over
your file, since the shared name is different.A shared name also provides the
required information that’s needed for versioning support by the CLR; this same
information is used to provide integrity checks to give a decent level of trust.
(For full trust, you should include a full digital signature with certificates.) Figure
1.1 illustrates how the shared-name process works.

From the shared-name diagram in Figure 1.1, you can see that the shared
name is first created into the primary assembly (Assembly 1), then the reference of
the primary assembly is stored as a token of the version within the referencing
assembly’s (Assembly 2’s) metadata, and it is finally verified through the CLR.

An assembly, once created, has the following characteristics:

www.syngress.com

Figure 1.1 The Shared-Name Process

Manifest

Digital Signature is written into
the Manifest.

1

Manifest

Token digital signature
 in Assembly 1 is created.2

Assembly 1

Assembly 2

3

CLR

Assembly 1 stored in Global
Assembly cache.

Assembly 2 token referenced
by the CLR.

CLR evaluates between the two, and

if both are equal, the CLR verifies

that the data is 100 percent from
the same developer.

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 7

8 Chapter 1 • Introducing the Microsoft .NET Framework

Contains code that the runtime executes PE MSIL code is not
executed without the manifest present. In other words, if the file is not
formatted correctly, it will not run.

Only one entry point An assembly cannot have more than one
starting point for execution by the runtime; you cannot, for example, use
both WinMain and Main.

Unit of side-by-side execution An assembly provides the basic unit
needed for side-by-side execution.

Type boundary Each type declared within an assembly is recognized
as a type of the assembly, not as a solitary type initiated into memory.

Security boundary The assembly evaluates permission requests.

Basic deployment unit An application comprised of assemblies
requires only the assemblies that make up its core functions.Any other
assemblies that are needed can be provided on demand, which keeps
applications from having the bloated setup files commonly associated
with VB 6.0 runtime files.

Reference scope boundary The manifest within the assembly dic-
tates what can and cannot go on, in order to resolve types and resources;
it also enumerates assembly dependency.

Version boundary Being the smallest versionable unit in the CLR,
all the types and resources that it has are also versioned as a unit.The
manifest describes any version dependencies.

Figure 1.2 displays a typical assembly.The assembly has been dissected to dis-
play the code, the manifest area, the metadata within the manifest, and the infor-
mation stored within the metadata.

As you can see, all the benefits that CLR gives us are located within the
assembly, but reside within the manifest.

Using the Manifest
Apart from the MSIL, an assembly contains metadata within its manifest.We will
go into detail about metadata and its uses in upcoming sections, but for now, just
remember that the metadata is all the relevant information that the CLR needs
to properly run the file, and the manifest stores the metadata.Thanks to the man-
ifest, assemblies are freed from depending on the Registry and breaking DLLs
(the cause of DLL Hell). Basic metadata includes the items listed in Table 1.1.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 8

Introducing the Microsoft .NET Framework • Chapter 1 9

Table 1.1 Basic Attribute Classes

Basic Attribute Class Description

AssemblyCompanyAttribute Contains a string with the company
name and product information.

AssemblyConfigurationAttribute Contains current build information, as
in Alpha stage.

AssemblyCopyrightAttribute Copyright information that is stored as
a string.

AssemblyDefaultAliasAttribute Name information and alias information.

AssemblyDescriptionAttribute Provides a description of the modules
included within the assembly.

AssemblyInformational Any extra version information; this is
VersionAttribute not used by the CLR for versioning

purposes.

AssemblyProductAttribute Product information.

AssemblyTitleAttribute Title of the assembly.

AssemblyTrademarkAttribute Any trademarks of the assembly.

www.syngress.com

Figure 1.2 A Typical Assembly

Manifest generated by
the Compiler

Code

Code Reuse Interoperability
Assembly

Information

Version Objects/Types Members

METADATA

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 9

10 Chapter 1 • Introducing the Microsoft .NET Framework

Table 1.2 lists custom attributes that you can set into the manifest.

Table 1.2 Custom Attributes

Custom Attributes Description

AssemblyCultureAttribute Contains information on the cultural set-
tings, such as base language or time zone.

AssemblyDelaySignAttribute Tells the CLR that there is some extra
space that might be empty to reserve
space for a future digital signature.

AssemblyKeyFileAttribute Contains the name of the file that con-
tains the key pair for a shared name.

AssemblyKeyNameAttribute If you use the CSP option, the key will be
stored within a key container. This
attribute returns the name of the key
container.

AssemblyOperatingSystem Information on the operating system(s)
Attribute supported by the assembly.
AssemblyProcessAttribute Information on the CPU(s) supported by

the assembly.
AssemblyVersionAttribute Returns the version of the assembly in the

standard major.minor.build.revision form.

In regard to the third assembly option, location, a manifest’s location on the
assembly can also be altered, based on the type of assembly deployment.An assembly
can be deployed as either a single file or multiple files.A single file assembly is much
like a standard DLL file; its manifest is placed directly within the application.Again,
the assembly is not that different from the standard executable or DLL; what changes
is how it’s run. In a multifile assembly, the manifest is either incorporated into the
main file (such as the main DLL file), or as a standalone (Figure 1.3).

NOTE

Depending on what you are doing, you might want to use a standalone
manifest for any multifile assembly. A standalone manifest provides a
consistent access location for the manifest and ensures that it will be
there when needed. However, constantly referencing the assembly can
carry a small memory overhead, so its advantage shines with larger, mul-
tifile assemblies.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 10

Introducing the Microsoft .NET Framework • Chapter 1 11

Assembly Cache
The cache on which the CLR depends is called the machinewide code cache.This
cache is further divided into two subsections: the global assembly cache and the
download cache.The download cache simply handles all the online codebases that
the assembly requires.The global download cache stores and deals with the
assemblies that are required for use within the local machine; namely, those that
came from an installer or an SDK. Only assemblies that have a shared name can
be entered into the global assembly cache, since the CLR assumes that these files
will be used frequently and between programs.

Even though a file will be used often, however, it can still be sluggish. Since
the CLR knows that to enter the global assembly cache, the assembly must be
verified, it assumes that it is already verified and does not go through the verifi-
cation process, thus increasing the time it takes to reference the assembly within
the global assembly cache. One integrity check is performed on it prior to entry
into the global assembly cache; this integrity check consists of verifying the hash
code and algorithms located within the manifest. Furthermore, if multiple files
attempt to reference the assembly, a single dedicated instance of the assembly is

www.syngress.com

Figure 1.3 Manifest Location within an Assembly

DLL File

Manifest

DLL File

Manifest

image.jpg DLL File logo.bmp

sugoi.ico

DLL File

check.exe

DLL File

Manifest

Single File Multiassembly with Manifest

Multiassembly with Standalone Manifest

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 11

12 Chapter 1 • Introducing the Microsoft .NET Framework

created to handle all the references, which allows the assemblies to load faster and
reference faster across multi-assembly situations.

A file that’s located in the global assembly also experiences a higher degree of
end-user security, since only an administrator can delete files located within the
global assembly cache. In addition, the integrity checks ensure that an assembly
has not been tampered with, since assemblies within the global assembly cache
can be accessed directly from the file system.

Locating an Assembly
Once the assembly is created, finished, and deployed, its scope is basically pri-
vate; in other words, the assembly will not in any way, shape, or form interfere
with any other assemblies, DLL files, or settings that are not declared in the
assembly’s manifest. It’s all part of CLR’s automation; it used to be that only VB
coders had protection from memory leaks or other types of problems by inad-
vertently creating a program that went too far out of its area, but now, the
CLR handles all that.

Now, a single assembly is easy to run, and easy for the CLR to locate.
However, when dealing with multiple files, you might ask yourself,“Wait—if the
assembly is so tightly locked, how can multiple assemblies interact with each
other?” It’s a good question to ask; most programmers working with .NET create
multifile assemblies, and so we need to understand the process the CLR takes to
locate an assembly. It goes like this:

1. Locate the reference and begin to bind the assembly(ies).
Once the request has been made (through AssemblyRef) by an assembly
in a multi-assembly to reference another assembly within the multi-
assembly, the runtime attempts to resolve a reference in the manifest that
tells the CLR where to go.The reference within the manifest is either a
static reference or a dynamic reference.A static reference is a reference cre-
ated at build time by the compiler; a dynamic reference is created as an on-
the-fly call is made. Figure 1.4 illustrates Step 1 of the location process.

2. Check the version policy in the configuration file. The CLR
checks to see if there’s a configuration file; for client-side executables, it
usually resides in the same directory with the same name, but has a
*.CFG extension. For Internet-based applications, the application must
be explicitly declared in the HTML file.A standard configuration file
can look like the following:

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 12

Introducing the Microsoft .NET Framework • Chapter 1 13

www.syngress.com

<?xml version = "1.0">

<Configuration>

<AppDomain

PrivatePath="bin;etc;etc;code"

ShadowCOpy="true"/>

<BindingMode>

<AppBindingMode Mode="normal"/>

</BindingMode>

<BindingPolicy>

<BindingRedir Name="TestBoy"

Originator="45asdf879er423"

Version="*" VersionNew="7.77"

UseLatestBuildRevision="yes"/>

</BindingPolicy>

<Assemblies>

<CodeBaseHit Name="s_test_mod.dll"

Originator="12d57w8d9r6g7a3r"

Version="7.77"

CodeBase=http://thisisan/hreflink/test.dll/>

</Assemblies>

</Configuration>

Figure 1.4 Step 1 of the Location Process

Manifest

Reference Request

Is it a static?

to Step 2

It is dynamic;
create on-the-fly

then proceed.

YES

NO

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 13

14 Chapter 1 • Introducing the Microsoft .NET Framework

The document element of this XML file is Configuration.All this
node does is tell the CLR that it’s found a configuration file type, and
that it should look through it to see if this type is the one it needs.The
first node contains the AppDomain element that has the PrivatePath and
ShadowCopy attributes. PrivatePath points to a shared and private path to
the bin(s) directory(ies).The path is the location of the assemblies that
you need and the location of the global assembly cache.

Keep in mind that the PrivatePath attribute is relative to the
assembly’s root directory and/or subdirectories thereof; anything outside
of that needs to be either in the global assembly cache or linked to using
the CodeBase attribute of the Assemblies attribute. ShadowCopy is used to
determine whether an assembly should be copied into the local down-
load cache, even if it can be run remotely.

The next node contains BindingMode. Binding mode refers to how
the assemblies within the application should “bind” to their exact ver-
sions. BindingMode contains the AppBindingMode element, which declares
the BindingMode to be safe or normal.A safe binding mode indicates that
this assembly is of the same assembly version as the others when the
application is deployed. No Quick Fix Engineering (QFE) methods are
applied, and any version policies are ignored; these characteristics apply
to the entire application. Normal mode is simply the normal binding
process in which the QFE is used and version policies are applied.

BindingPolicy stores the BindingRedir element, which deals with the
attributes that tell the CLR which version to look for.This type of ele-
ment applies only to assemblies that are shared.The Name attribute is the
assembly’s name; Originator contains an 8-byte public key of the
assembly; and Version can either explicitly state which version the
assembly should be redirected to, or uses a wildcard (*) to signify that all
versions should be redirected. VersionNew contains the version to which
the CLR should be redirected, and UseLatestBuildVersion contains a
yes/no value that states whether the QFE will automatically update it.

Assemblies stores the tags that the CLR can use to locate an
assembly.The tags in this element are always attempted before a thor-
ough search. Name and Originator contain the same information that they
contain in the BindingPolicy. Version contains only the current version of
the assembly; CodeBase contains the URL at which the assembly can be
located. Figure 1.5 illustrates Steps 2 and 3.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 14

Introducing the Microsoft .NET Framework • Chapter 1 15

www.syngress.com

NOTE

The reference that’s checked against from the AssemblyRef contains the fol-
lowing information from the assembly it’s asking for: text name, version,
culture, and originator if it has a shared name. Of the references listed, the
location process can work without all of them except the name. If it can’t
find culture, version, or originator (which only shows up on shared names),
it will try to match the filename and then the newest version.

WARNING

Even though you can use partial references, doing so kills the whole con-
cept of version support, and cancause you to use the wrong file at times.
For example, let’s say that you’ve created a whole new set of classes and
need to benchmark the differences. If you are using partial references,
it’s more than likely that the new version will be selected over the old
version. Be precise, even if it’s tedious to do so!

Figure 1.5 Steps 2 and 3 of the Location Process

from Step 1

Configuration File

Get Path Information

Does it have a ShadowCopy?

Get Binding Mode

Bind Redirect Name

Bind Redirect Originator

Bind Redirect Version Information

Bind Redirect use Latest Version?

Assembly Name

Assembly Originator

Assembly Version

Does it have a codebase?

Yes, access it at the
location defined.

No, assume it is in the local
path or in the PrivatePath.

Step 3

Step 2

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 15

16 Chapter 1 • Introducing the Microsoft .NET Framework

3. Locate the assembly via probing or codebase. When the infor-
mation stored in the Configuration file is retrieved, it is then checked
against the information it has in the reference and determines whether it
should locate the file at the specified URL codebase or via location
probe. In the case of a codebase, the URL is referenced and the file’s
version, name, culture, and originator are retrieved to determine a
match. If any of these fails, the location process stops.The only excep-
tion is if the version is equal to or greater than the version needed; if it
is greater or equal to and all the other references check out, the location
process proceeds to Step 4. If no URL is listed for a codebase, the CLR
will probe for the needed assembly under the root directory.

Probing is a bit different and more thorough than looking at the
URL, but definitely more lax in verifying references.When probing
begins, it checks within the root directory for a file with the assembly
name ending with *.MCL, *.DLL, or *.EXE. If it’s not found in the
root, it continues to check all the paths listed in the PrivatePath attribute
of AppDomain of the configuration file.The CLR also checks a path
with the name of the assembly in it.Again, if an error is found, the loca-
tion process stops; if it’s found and verified, it proceeds to Step 4.

4. Use the global assembly cache and QFE. The global assembly
cache is where global assemblies that are used throughout multiple pro-
grams are found.All global assemblies have a shared name so that they
can be located through a probe. QFE, refers to a method in which the
latest build and revision are used; it’s done this way to allow greater ease
for software vendors to provide patches by recreating just one assembly
instead of the entire program. If the assembly is found and the QFE is
off, the runtime double-checks in the global assembly cache with a QFE
for the particular assembly; if a greater revision/build is found, that ver-
sion takes the place of the one found while probing.

5. Apply the administrator policy. At this point, any versioning poli-
cies are applied (versioning policies are stored in the admin.cfg file of
the Windows directory), and the program is run with the policies
applied.The only major impact on this policy occurs if an administrator
policy initiates a redirect to a version; if this happens, the version must
be located in the global assembly cache before the redirect occurs.The
runtime assumes that since the redirect is administrative, the user manu-

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 16

Introducing the Microsoft .NET Framework • Chapter 1 17

ally and consciously set it, and has supplied the needed file in the global
assembly cache.

Private Assembly Files
Private assembly files are normally single applications and reside in its own direc-
tory without needing to retrieve any information or use resources from an
assembly that is located outside its own folder.This does not mean that the pri-
vate assembly can’t access the standard namespaces; it simply means that they do
not use or require any other external applications to properly function.These
types of assemblies are useful if the assembly will be constantly reused and does
not rely on any other assembly. Private assembly files are not affected by ver-
sioning constraints.

Shared Assembly Files
Shared assembly files are generally reserved for multi-assembly applications and
store commonly used components, such as the graphical user interface (GUI)
and/or frequently used low-end components.These assemblies are stored in the
global assembly cache, and the CLR does enforce versioning constraints.
Examples of a shared assembly are the built-in .NET Framework classes.

A shared assembly, as you might have guessed, is the exact opposite of a pri-
vate assembly.A shared assembly does stretch outside the bounds of its directories
and requires resources that are found within other assemblies. Shared assemblies
come into play heavily when dealing with modular applications. For example, a
GUI that is used between several applications can be stored as a shared assembly
or as a commonly used database routine.

Understanding Metadata
Two things happen when you create your assembly:Your code is transformed into
MSIL, and all the relevant information contained in the code—types, references,
and so on—are noted within the manifest as metadata.When the CLR kicks in, it
inserts the metadata into in-memory data and uses it as a reference in locating what
it needs according to the program.This road map provides a large part of interoper-
ability, since the CLR doesn’t actually need to know what code it’s programmed in;
it simply looks at the metadata to find out what it needs and where it’s going.

The metadata is responsible for conveying the following information to
the CLR:

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 17

18 Chapter 1 • Introducing the Microsoft .NET Framework

Security permissions

Types exported

Identity

External assembly references

Interface name

Interface visibility

Local assembly members

The Benefits of Metadata
The items in metadata are placed within in-memory data structures by the CLR
when run.This allows metadata to be used more freely with faster access time.
This system enhances the self-describing functions of .NET assemblies by having
readily available all of the items that the assembly needs to interact.This also
allows for other objects (per the metadata, of course) to interact with the
assembly.

Metadata also allows interoperability by creating a layer between the
assembly’s code and what the CLR sees.The CLR uses the metadata extensively,
thus removing the burden of operability from the CPU/language.The CLR
reads, stores, and uses the metadata through a set of APIs, most notably the man-
aged reflection and reflection emit services.The layer abstraction causes the runtime
to continue optimizing in-memory manifest items without needing to reference
any of the original compilers, and enables a snap-in type of persistence that
allows CLR binary representations, interfacing with unmanaged types, and any
other format needed to be placed in memory.

You might have been surprised when you saw that the metadata allows
unmanaged types to show up; however, this does not impact the CLR in any
way. Unmanaged metadata APIs are not checked, nor do they enforce the con-
straints present. However, the burden of verifying unmanaged metadata APIs is
placed solely on the compiler.

Identifying an Assembly with Metadata
Metadata identifies each assembly with the following: Name, culture, version, and
public key.The name used is the textual name of the assembly or the name you
gave it when you created it.The culture simply references the cultural settings

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 18

Introducing the Microsoft .NET Framework • Chapter 1 19

used, such as language, time zone, country/region, and other localization items.
The public key used is the same one generated by the assembly.

Types
In unmanaged code we referred to types as objects.Types, like objects, contain
data and logic that are exposed as methods, properties, and fields.The big dif-
ferences between the two lie in the properties and fields; properties contain logic
in order to verify or construct data, whereas fields act like public variables.
Methods are unchanged.Types also provide a way to create two different repre-
sentations with different types by looking at the two different types as part of
the same interface—in other words, they have similar responses to events.

Currently, two types are available to .NET users: value types and reference
types. Reference types describe the values as the location of bits, and can be
described as an object, interface, or pointer type.An object type references a self-
describing value, an interface type is a partial description that is supported by other
object types, and the pointer type is a compile-time description of a machine-
address location value.

When dealing with classes, the CLR uses any method it deems fit, according
to the CTS. Metadata has a special mark for each class that describes to the CLR
which method it should use.Table 1.3 lists the layout rules that metadata marks
for each class.

Table 1.3 Class Layout Rules

Class Layout Rules

AutoLayout CLR has free reign over how the class is laid
out; this shows up more often on the inconse-
quential classes.

LayoutSequential CLR guides the loader to preserve field order as
defined, but offsets are based on the field’s
CLR type.

ExplicitLayout CLR ignores field sequence and uses the rules
the user provides.

Defining Members
Members are the methods, fields, properties, events, and nested types that are found
within a type.These items are descriptions of the types themselves and are

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 19

20 Chapter 1 • Introducing the Microsoft .NET Framework

defined within the metadata.This is one of the reasons that access of items
through metadata is so efficient.

Fields, arrays, and values are subvalues of a value representation. Field sub-
values are named, but when accessed through an index they are treated as array
elements; a type that describes the values composed of array elements creates a
true array type with values of a single type. Finally, the compound type is a value
of a set of fields that can hold fields of different types.

Methods are operations that are associated with a particular type or a value
within the type. For security purposes, methods are named and signed with the
allowed types of arguments and return values. Static methods are methods that are
tied directly to the type; virtual methods are tied to the value of the type.The
CLR also allows the this keyword to be null within a virtual method.

Using Contracts
The signature that methods use is part of a set of signatures referred to as a con-
tract.The contract brings together sets of shared assumptions from the signatures
between all implementers and users of the contract, providing a level of check
and enforcement.They aren’t real types; rather, they are the requirements that a
type needs to be properly implemented. Contract information is defined within
the class definition.

Class contracts are one of the most common; they are specified within a class
definition, and in this case are defined as the class type along with the class defi-
nition.The contract represents the values and other contracts supported by the
type, and allows inheritance of other contracts within other types.

An interface contract is defined within an interface. Just like the class definition,
an interface definition defines both the interface contract and the interface type.
It can perform the functions that a class contract can, but it cannot describe the
representation of a value, nor can it support a class contract.

A method contract is defined within a method definition. Just like a normal
method, it’s an operation that’s named and specifies the contract between the
method and the callers of the method. It exerts the most control over parameters,
specifying the contract for each parameter in the method that it must support
and the contracts for each return value, if there is one.

A property contract is defined within a property definition.The property con-
tract specifies the method contract used for the subset of operations that handle a
named value, including the read/change operations. Each property contract can
be used only with a single type, but a type can use multiple property contracts.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 20

Introducing the Microsoft .NET Framework • Chapter 1 21

www.syngress.com

An event contract is defined in an event definition. It specifies method contracts
for the basic event operations (such as the activation of an event), and for any oper-
ations implemented by any type that uses the event contract. Like the property
contract, each event contract can be used only with a single type, but a type can
use multiple event contracts.

Assembly Dependencies
An assembly can depend on another assembly by referencing the resources that
are within the scope of another assembly from the current assembly scope.The
assembly that made the reference has control over how the reference is resolved;
this gives the assembly mapping control over the reference onto a particular ver-
sion of the referenced assembly.When you depend on an external assembly, you
can choose to let the CLR assume that the files are present in the deployed envi-
ronment or will be deployed with the corresponding assemblies. Such an assump-
tion can be pretty large or problematic, but the CLR is smart enough to know
what to do if it’s not there.

Unmanaged Assembly Code
Unmanaged code is not left out of the manifest.To allow interoperability with
unmanaged COM / code, a GUID is included with each type, adding a version
number to classes, and includes a collection of type references that are raised as
events.An unmanaged assembly attempts to receive data from an assembly
through reformatting via the Virtual Execution System.

Reflection
The concept of reflection is available to the user via the System.Reflection names-
pace. In essence, reflection reflects the composition of other .NET code back to
us. It can discover everything that is vital within the assembly, such as the classes,
events, properties, and methods exposed by the assembly.We can then use this
information to “clone” an instance of that assembly so that we can use the classes
and methods defined there.

Using reflection can theoretically provide access to nonpublic information
such as code, data, and other information that is normally restricted due to isola-
tion. .NET provides a built-in check system of rules to determine just what you
can get using reflection. If you really have to use nonpublic information, you need
to use ReflectionPermission. ReflectionPermission is a class located within the

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 21

22 Chapter 1 • Introducing the Microsoft .NET Framework

Object.CodeAccessPermission namespace and gives access to all the nonpublic infor-
mation when requested by a reflection.This class can theoretically also give
someone the ability to view your code, so do not use this class if you can avoid it!
You definitely will not want to use this on Internet applications. By default and
without needing permission, reflection can access or do the following:

Public types

Public members

Module/assembly location

Enumerate assemblies and modules

Enumerate nonpublic types (have to be in the same location as the
assembly using reflection)

Enumerate public types

Invoke public, family access (of calling code class), and assembly access
(of calling-code class) members

Attributes
An attribute allows you to add descriptive declarations that behave similarly to
keywords.You can use attributes to annotate types, methods, fields, properties, and
other programming elements.They are stored within the metadata and can help
the CLR understand the description of your code.Attributes can describe the
way in which data is serialized, describe security characteristics, or limit JIT com-
pilation for debugging purposes. Perhaps one of the most versatile of the meta-
data items, attributes can even add descriptive elements to your code to affect its
runtime behavior.A simple attribute might be used like this:

Public Class <attribute()> ClassName

In this example, the class ClassName is described by the attribute attribute().
This means that when the CLR hits this class, it will alter its behavior according
to what attribute() says.

Ending DLL Hell
Everyone knows what DLL Hell is: It’s that situation that happens when an older
or newer DLL file overwrites the previous copy after the installation of a new
application (usually a newer DLL that is not backward compatible). Registry set-
tings are changed; some are added, some are removed, and some are altered.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 22

Introducing the Microsoft .NET Framework • Chapter 1 23

www.syngress.com

GUIDs could change and, in the blink of an eye, all these things accumulate into
a situation in which one DLL file prevents your application from working.

In order to prevent DLL Hell, the .NET Framework performs the following:

Application isolation is enforced.

“Last known good” system from Windows NT systems is enforced.

Side-by-side deployment is permitted and backed up by isolation.

File version information is recorded and enforced.

Applications are self-describing.

Side-by-Side Deployment
Side-by-side execution allows two different versions of the same assembly file to
run simultaneously.This is an advantage of the isolation provided to each
assembly. Side-by-side deployment removes the dependency on backward com-
patibility that often causes DLL Hell. Side-by-side execution can be running
either on the same machine or in the same process.

Side-by-side deployment in the same process can be the most strenuous to
code for; you have to write the code so that no process-wide resources are used.
The extra work pays off in that you can run multiple components and objects in
the same thread, allowing for greater process flexibility and usage.

Side-by-side deployment on the same machine puts less stress on the code
writer, but still has its quirks.The biggest point to look out for when coding this
way is to write in support for multiple applications attempting to use the same
resource; you can work around this by removing the dependency on the resource
and allowing each version to have its own cache.

Versioning Support
Versioning is the method .NET uses with assemblies that have a shared name; it
tells the CLR the version of the particular assembly. Each assembly has two types
of version information available: the compatibility version and the informational
version.The compatibility version is the first number, which the CLR uses to deter-
mine identities.The informational version allows for an extra string description of
the assembly that the CLR doesn’t really need.

The version number looks like your typical version—a four-part number that
describes, in order, the major build version, the minor build version, the build,
and the revision. If there are any changes to the major or minor versions, the
assembly is used as a separate entity and is isolated.The build and the revision

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 23

24 Chapter 1 • Introducing the Microsoft .NET Framework

signify a build compatible to the present assembly, which means that this new
version contains a bug fix or patch.

The major and minor numbers are used to perform incompatibility checks.
In other words, compatibility is weighed against the major and minor numbers;
any difference in either of these two numbers tells the runtime that it is a new
release with many changes and should be treated accordingly.The build number
tells the runtime that a change has been made, but does not carry a high incom-
patibility risk. It’s been our experience that relying on the build number at times
is very bad practice, especially if the minor change involves your types. In fact,
whenever you change anything, such as how a class is referenced, you should treat
it as a major/minor revision unless you absolutely take all the necessary steps to
make the class backward compatible.

When you do create a backward-compatible class, try to create it as a bug fix
or patch, and define the change in the QFE.That way, the runtime assumes that
backward compatibility is in place, since there should be no major changes
(again, such as class references), and uses it accordingly unless it is explicitly told
not to by a configuration file.

Using System Services
System services combine everything that the runtime makes available, such as
exception (error) handling, memory management, and console input/output
(I/O). Some of the topics discussed here might not be new to some VB program-
mers, especially those who have had some exposure to Java or C/C++.

Memory management really hasn’t changed a lot, only the way in which it’s
implemented. Instead of programmers having full control over object instantiation
and destruction, the CLR takes over that task. However, we do have the ability
now to create standard command-line programs.

Exception Handling
.NET introduces the implementation of a Try/Catch system through its new
Exception object. Some of you might be familiar with this concept from previous
Java work.A simple try/catch statement can look like the following:

Try

{

Thiswillcrash();

}

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 24

Introducing the Microsoft .NET Framework • Chapter 1 25

Catch(error_from_Thiswillcrash)

(

//react to the error thrown by Thiswillcrash()

}

In essence, a try/catch set will place the function or sub within a try
“wrapper” that will monitor any error messages. If an error message matches
“error_from_Thiswillcrash”, then the catch “wrapper” generates the appropriate
response to the error.This gives programmers more flexibility in determining
errors and how they want to handle the error, instead of letting Windows do it
and hoping for the best.

A perfect scenario is a DLL file.Within the DLL file, you have a standard file
read and file write system. However, instead of just generating a failure error if
the file that needs to be read is not found, you would just display a message that
says “this file is being created” and then creates the file without the user even
knowing that an error occurred.A simple way of doing a try/catch for this situa-
tion might appear as follows:

Try

{

FileReadDisplay();

}

Catch(File_not_found_error)

{

//display message "This file is being created"

//create file that matches needed defaults

//display message "A new default file has been generated.

//Please reset your defaults."

}

The try/catch system is part of the Exception class.The Exception class brings
with it some extra goodies for debugging, including StackTrace, InnerException,
Message, and HelpLink.

StackTrace
Stacks haven’t changed over the years; a stack is still a special type of data structure
in which items are removed in the reverse order in which they were added (last
in, first out, or LIFO).This means that the most recently added item is the first to

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 25

26 Chapter 1 • Introducing the Microsoft .NET Framework

be removed. StackTrace, quite simply, allows you trace the stack for errors. It is
most useful when dealing with constant errors along loops and within a try/catch
statement. StackTrace is useful when it is defined before a try statement and when
it ends after the catch statement.

InnerException
An InnerException can store a series of exceptions that occur during error han-
dling.You can then format the series of exceptions into a new exception that
contains the series. It’s almost like a waterfall view; an exception is thrown, which
in turn throws another exception. Using InnerException, the first exception would
be stored within the last exception and so on, giving the developer an ample road
map to locate the starting point of an error.

Message
Message stores a more in-depth error description.This is extremely useful when
used in conjunction with InnerException.

HelpLink
Using HelpLink, you can set a specific URL or URN within a try/catch block to
point to an article or help file that has more details on the error generated.

Garbage Collection
Garbage Collection (GC) is .NET’s method for handling object creation and
destruction, as well as cleanup and preventive maintenance. GC does not rely on
reference counting; it has its own unique system for detecting and determining
which objects are no longer in use. In this sense, .NET is smart enough to know
when a file is being used and when it needs to be removed.We delve into a full
overview of GC in the Relying on Automatic Resource Management section later in
this chapter.

Console I/O
Console applications are those little programs that pop up a DOS box and run
from the command line. Command-line applications can be used in middle-tier
situations, in testing a new class, or even for creating DOS-based functionality for
a utility tool.We have this capability thanks to the System.Console namespace. (We
discuss namespaces later in this chapter.)

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 26

Introducing the Microsoft .NET Framework • Chapter 1 27

Here’s a brief example of a simple command-line VB application:

Import System.Console

Sub Main()

Dim readIN as String

WriteLine("This is a line!")

ReadIN = ReadLine()

WriteLine(ReadIN)

End Sub

The console would print “This is a line!” with a carriage return at the end
automatically, giving us one line to write whatever we want.After a carriage
return is detected, what we wrote is stored within the variable ReadIN and then
displayed via WriteLine.

Microsoft Intermediate Language
Once your assembly is in managed code, the CLR in turn translates the code to
the MSIL. MSIL is a type of bytecode that gives .NET developers the portability
they need, but it is also essential to the system’s interoperability, since it provides
the JIT compiler with the information it needs to create the necessary native
code. MSIL is platform independent.

MSIL also creates the metadata that is found within an assembly. Both the
MSIL and metadata are stored within an extended and modified version of the
PE (which is more a combination between PE’s syntax and the Common Object
File Format, or COFF, object system). MSIL’s flexibility allows an assembly to
properly define itself and declare all it needs for self-description.

The Just-in-Time Compiler
Without the JIT, we wouldn’t have any functioning .NET programs.The JIT turns
the MSIL code into the native code for the particular platform on which it’s run-
ning. Each version of .NET for each individual platform also includes a JIT for that
specific platform architecture. For example, an x86 version of .NET can compile
.NET code from a non-x86 architecture, because the JIT on the x86 machine
translates the MSIL into x86-specific code and contains no platform-specific code.

JIT’s method of code compilation is literally “just in time”—it compiles the
MSIL code as it’s needed.This method guarantees faster program loading time

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 27

28 Chapter 1 • Introducing the Microsoft .NET Framework

and less overhead in the long run, since JIT compiles what is needed when it’s
needed. MSIL, when created and referenced, creates a stub to mark the methods
within the class being used. JIT compiles just the stubbed code and replaces the
stubs within the MSIL to the location of the compiled code address.

There are currently two flavors of JIT: Normal JIT and Economy JIT. Economy
JIT is geared toward intensive CPU/RAM usage systems, such as Windows CE
platforms. Economy JIT differs from normal JIT in that, in order to make the best
of the intensive CPU/RAM usage situation, it replaces the stubs in the MSIL with
the actual compiled code, not a reference to its address. Microsoft currently claims
that economy JIT is less efficient than normal JIT for this reason. However, a
decent bench exam of these two compilers has yet to be done.

Using the Namespace System to
Organize Classes
We’ve already seen an example of namespaces in the previous code example, but
what are they? Namespaces are references that we place within the code that
point to the location of the object or class that we need to use within the .NET
Framework. In the previous code example, we used the System.Console names-
pace.This naming scheme is used only for organizational purposes, but it is vital
that you understand it.

A namespace is basically a hierarchical system created to organize intrinsic
classes that provide the basic functions that come with .NET. Each class is kept
within a namespace that suits its use; for example,Web-related classes are kept
within the System.web namespace. Each namespace can contain namespaces, pro-
viding more functionality for each namespace.The system namespace is the root
namespace on all .NET machines.

.NET allows for multiple namespaces, classes, interfaces, and other valid types
declared within it.The following example displays a sample namespace that con-
tains multiple assemblies and an assembly that is stored within a namespace:

MyNamespace.namespace.class

MyNamespace.enum

MyNamespace.interface.class

MyNamespace.Namespace.class

Here we have the MyNamespace base namespace with multiple namespaces
that, in turn, contain all the needed operations, functions, and procedures to pro-

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 28

Introducing the Microsoft .NET Framework • Chapter 1 29

vide necessary services. Each namespace can have classes that have the same
name; for example, Assembly3 and Assembly5 can both have a Count class.
However, within a single namespace, there cannot be any duplicate class names.
Namespaces can also be local or global; local namespaces can be seen only by the
current application, and global namespaces can be seen on the entire machine.

The Common Type System
The Common Type System (CTS) gives the CLR a description of the types that
are supported and used, and how they are presented in metadata.The type in
CTS represents the type system, which is one of the more important parts of
.NET for cross-language support.The type provides the rules and logical steps
that a language compiler employs to define, reference, use, and store information.
If you are using any CLR-compliant compiler outside of the .NET Framework,
it must use the CTS system to properly create the assembly.The type system that
the CTS uses contains classes, interfaces, and value types.

A class is now contained within a type. In fact, the term type is sometimes
used (although sometimes erroneously) with the same meaning as object to reflect
.NET.The term still has the same functionality as in any other object-oriented
programming (OOP) language; it can define variables, hold the state of objects,
perform methods and events, and create, set, and retrieve properties. Every time
an instance of a .NET class is created, it is treated as an object.Table 1.4 lists the
characteristics of a class, and Table 1.5 lists the characteristics of the members.

Table 1.4 Class Characteristics

Class Characteristics

Sealed Class derivations are prohibited.
Implements Interface contracts are fulfilled by this class.
Abstract This class can’t be instantiated on its own; in order to use

it, you must derive a class from it—just like abstract
classes in C/C++.

Inherits This means that the class being defined will inherit the
characteristics (i.e., properties, fields, methods) of the class
that is written next to it. You can use the same characteris-
tics or override them.

Exported This class can be viewed outside the assembly.
Not-Exported This class cannot be viewed outside the assembly.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 29

30 Chapter 1 • Introducing the Microsoft .NET Framework

Table 1.5 Member Characteristics

Members Characteristics

Private Defines accessibility as permitted only within the same
class or a member of a nested class within the same
class.

Family Defines accessibility as permitted within the same class
as the member and subtypes that inherit it.

Assembly Defines accessibility as permitted only from within the
assembly in which the member is implemented.

Family or Assembly Defines accessibility as permitted only by a class that
qualifies as a family or an assembly.

Public Defines accessibility as permitted from any class.
Abstract A nonimplemented member; as with C/C++, you have

to derive a class from it in order to implement it.
Final A method with the final statement cannot be over-

ridden; this helps prevent any unintentional overrides
that can damage functionality.

Overrides Used by virtual methods; it replaces the predefined
implementation from the derived class.

Static A method that is declared static exists without needing
to be instantiated and can be referenced through all
class instances.

Overloads An overloaded method has the same name as another
method and the same code, but its parameters, order
of parameters, or calling convention might be dif-
ferent. This is useful for adding last-minute function-
ality to a method that you might only need once.

Virtual Used to create a virtual method in order to have the
functionality provided by Overrides.

Synchronized Limits usage of implementation to one thread at a
time.

NOTE

The Virtual Execution System is tied in with the CTS concept. In fact, it’s
a special execution engine that was created just to ensure that the ten-
ants of the CTS are implemented.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 30

Introducing the Microsoft .NET Framework • Chapter 1 31

www.syngress.com

Abstract Classes?
If you’ve never used C/C++, abstract classes might be a foreign concept
to you. An abstract class can be defined as a “skeleton” class that has no
actual code within it—simply a declaration of what a class that can be
derived needs to have within its structure to be considered a derivative of
the skeleton. In other words, the “flesh on the bones” is added later.

Abstract classes are useful when you need to create some sort of
base class that needs to be reused, but have no need for it later—sort of
like a blueprint. For example, take the abstract class fruit_eater:

Abstract class fruit_eater

{

Private Me_eat As Integer

Me_eat = 1

Public Property Eat() As Integer

Get

Return Me_eat

End Get

End Property

End Class

Public class monkey_boy

Inherits fruit_eater

Public Property me_do_eat() as String

If Eat = 1 Then

'code goes here to tell you that monkey_boy eats fruit!

End If

Developing & Deploying…

Continued

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 31

32 Chapter 1 • Introducing the Microsoft .NET Framework

Type Safety
Type safety is one of the guarantees that .NET gives us; it limits access to
memory locations to which it has authorization.Therefore, if we have Object A
trying to reference the memory location of Object B that is within the memory
area of Assembly C, Object A will not be allowed access. Even if Object A tries to
access a memory location that is accessible by its assembly and does not have per-
mission, it will be denied.An optional verification process can be run on the
MSIL to verify that the code is type safe; it’s optional because it can be skipped
based on permissions given to the code.

Type-safe code tells the runtime that it can go ahead and isolate the code,
since it’s not going to need anything outside its boundaries. Even if the trust
levels are different within type-safe code, it can execute on the same process.
Code that is not type-safe might cause crashes during runtime or even shut down
your entire system, so be careful with it. Remember, we’re working with a beta
runtime, and it can be touchy!

Relying on Automatic
Resource Management
Here we get to the nuts and bolts of .NET.All the changes we’ve seen so far in
this chapter are either semantically oriented or enhancements, but the way in
which .NET handles memory management is a completely different story. For a
long time, we’ve used the deterministic finalization system, in which we declare
that the code ran on the class initialization and termination and had control over
where a class was terminated. Deterministic finalization had its drawbacks; if the

www.syngress.com

End Property

End Class

Using the abstract class fruit_eater, we set a requirement that class
monkey_boy must have to say that monkey_boy eats fruit. This can be
further expounded to another class, animal_kingdom, which can use
fruit_eater to organize between herbivores and carnivores within its
kingdom of wild animals and monkey_boys.

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 32

Introducing the Microsoft .NET Framework • Chapter 1 33

programmer forgot to declare the class empty (null, in some cases), or simply
forgot to run the termination event, we’d have a memory leak or worse when
control over the project terminated.

This outdated memory management system is referred to as reference counting.
A count is kept within each object, usually in its header, of how many references
there are for the object. Each application (or client, as it is referred to in COM
circles) that is referencing an object states when it is referencing the object and
when it is releasing the object.As new objects are instantiated, the count (or
number of objects in the count) is incremented and decremented when the
object is either overwritten or recycled.

The burden of doing the actual cleanup of the object, however, was not on
the application. All the application did was merely issue the destroy command
to the object; the object then had to free itself from the reference count.When
an object was not properly deallocated (destroyed), we had an instance of a
memory leak. Reference counting also had a limited growth size; objects
became “bloated” (made bigger artificially) in order to store the reference
count, and, of course, cyclic objects generated the previously mentioned
nonzero reference count.

.NET replaces all this with automatic resource management.The runtime is now
“smart” enough to know when and how to handle memory allocation, dealloca-
tion, and usage.A major drawback is that we can’t control when an object or a
class is terminated; therefore, we have no knowledge of when the termination
takes place.This is a very valid point and, quite honestly, the only noticeable
drawback because it won’t release the memory and so we encounter a dead refer-
ence. However, most of the time this won’t matter, because Garbage Collection
will eventually get to it. Now let’s see how .NET handles memory and how
Garbage Collection is tied up in all of this.

The Managed Heap
When a program is run in .NET, the runtime creates the region of address space
it knows it needs, but does not store anything on it.This region is the heap (also
referred to as the free store or freestore). .NET controls the heap and determines
when it’s time to free an object. Figure 1.6 illustrates the following pointer inter-
action process:

1. A pointer is created for the allocated space (heap) that keeps track of the
next available free area on the allocated space that the runtime can use
for storage.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 33

34 Chapter 1 • Introducing the Microsoft .NET Framework

2. As the application creates new objects, the runtime checks to see if the
space currently being pointed to can handle the new object; if it can’t, it
dynamically creates the space.

3. The object is then placed on the heap, its constructor is called, and the
new operator returns the address block of our newly created object.

NOTE

When an object/type is over 20,000 bytes, a special “large heap” is cre-
ated to store it. This special heap does not go through compression
when Garbage Collection is called. Compression occurs during the gener-
ation process, described in a later section in this chapter.

www.syngress.com

Figure 1.6 Pointer Interaction with a Managed Heap

Address
Space

Initializing the Space
and Pointer

Pointer

Allocating Space and
verifying Space is correctAddress

Space

Space
Requested

Returning Space and
placing Object on heap

APPLICATION

Pointer

Pointer

Address
Space

OBJECT

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 34

Introducing the Microsoft .NET Framework • Chapter 1 35

Garbage Collection and
the Managed Heap
As mentioned, .NET handles the managed heap by using Garbage Collection.
In its purest sense, GC is an algorithm designed to determine when the life
cycle of an object has ended. In order to determine if an object is at or near its
end, GC analyzes the root of the object. Roots (also known as strong references),
much like actual roots found in nature, act as roadmaps to where vital
resources, such as objects, are stored. Global or static pointers, local variables
that are on a thread stack, and CPU registers containing pointers to the heap
are all considered roots. All visible roots are stored in a list created and updated
by the JIT and the CLR.

Once GC starts, it’ll assume that all the roots available to the heap are null.
This makes the GC begin a verification process in which it goes through each
root recursively and starts to make a graph that contains all the references
available and any linked references (e.g., Object A references Object B).This
step is repeated once more to make sure that everything is in place by
assuming that if it’s a duplicate object, it’s already on the list and thus a legiti-
mate object, meaning that the graph it just built is correct.The final step of
this verification process is that GC starts to trace the root of each object to
determine if the root is coming from the program that is going to use the cur-
rent address space. Any objects without roots are considered null or no longer
in use, and are treated as garbage—which is an accurate assumption since no
two applications share the same address space—and are promptly removed
from the heap.You can also manually invoke GC. It’s not necessary to do that
since GC works automatically, but it’s useful for those times when you find an
object that needs to be destroyed immediately (such as an object that needs to
be reset by destroying it and recreating it immediately).You can manually
invoke GC as follows:

System.GC.Collect()

This code automatically kicks in GC and has it run through its chores.
However, it eventually creates overhead if used repeatedly, so it’s best to use it
sparingly. Roots also provide the fix to memory leaks and stray resources.The
runtime uses the roots to determine when an object or resource is no longer in
use, enabling GC to clean them up.

Now that we know how GC works, let’s look at just what the GC namespace
offers (Table 1.6).

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 35

36 Chapter 1 • Introducing the Microsoft .NET Framework

Table 1.6 The GC Namespace

Property/
Method Type Method Description

Properties— Max Lists the generations that the
public static Generation system can support.

Total This method displays the total byte
Memory space of alive objects, and can occa-

sionally overlap objects that will be
released soon.
This method is used frequently for
high-usage areas, especially the areas
that contain expensive and/or limited
resources, such as CE.

Methods— Collect An example of an overloaded method;
public static it forces a collection of all available

generations. Can be useful in building
your own garbage collection system
for your particular application by
analyzing available generations. You
can then use this information to force
any objects into a disposal.

Get Another overloaded method; it
Generation returns the specific generation that an

object is in.
KeepAlive A method that assists in migrating VB

6.0 code to VB.NET. Using KeepAlive,
you can tell GC that this object does
not get recycled, even if there are no
roots to it from the rest of the man-
aged code, by sending GC a “fake”
alive response.

Request This method is an implemented
Finalize workaround to a bug in the beta1
OnShutdown Framework; the .EXE engine usually

shut downs without calling a finalize
routine. This method causes all final-
ization that needs to be done on shut-
down.

www.syngress.com

Continued

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 36

Introducing the Microsoft .NET Framework • Chapter 1 37

www.syngress.com

Table 1.6 Continued

Methods— Suppress This method simply tells the system
public static Finalize to not finalize an object. Very useful for

helping GC “skip” prefinalized objects
(objects that have been manually
finalized), and thus keeps GC from wast-
ing time on something that’s not there.

WaitFor A really buggy implementation of a good
Pending idea. This method suspends the current
Finalizers running thread until all finalizers in the

queue are run. However, since running a
finalizer almost always kicks in a GC, this
method causes a circular loop that will
keep waiting for finalizers as new final-
izers are created. This method would be
much more useful if it could target gen-
erations instead.

Methods—public Equals Checks to see if the object being
instance (all these evaluated is the same instance as the
methods are inher- current object.
ited from the System
.Object namespace)

GetHash Returns the hash function for a
Code specific type.
GetType Returns the type from an object.
ToString Returns a string to represent the object.

Methods— Finalize Allows cleanup before GC gets to it.
protected instance However, the CLR can decide to
(all these methods ignore this command, as when the
are inherited from root is still active or it’s considered
System.Object a constantly used resource.
namespace)

Memberwise Creates a copy of the current object’s
Clone members.

We can use the methods and properties inherent to the Garbage Collection
namespace to formulate a workaround to GC having full control over the dis-
posal of objects. (Remember, the runtime controls the memory allocation
through Garbage Collection; that includes the destruction of objects.) The
following is an example of this code:

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 37

38 Chapter 1 • Introducing the Microsoft .NET Framework

Imports System

'class/module/assembly code here to do whatever you want

'please note that this is just an example and is non-functioning.

' there is a very good functional example of this similar process

' available in the .NET SDK Samples under the GC/VB folder of the

' SAMPLES directory.

'now that we have the objects / resources set, let's create a typical

' Dispose class.

Public Class DisposeMe

Inherits Object

Public Sub Dispose(objName as String)

'objName would be received by previously using the

' ToString Public Instance Method and storing the value in a

string.

Finalize

GC.SuppressFinalize(objName)

End Sub

Protected Overrides Sub Finalize()

' no clean-up code needed; this will cause Finalize to be ran

End Sub

End Class

'note the use of SuppressFinalize to keep the GC from repeating itself.

Congratulations! We’ve just worked around one of the basic problems of GC.
With this example, we can successfully control manual termination of objects and
resources. It’s best to reserve this type of workaround for intensive resources.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 38

Introducing the Microsoft .NET Framework • Chapter 1 39

www.syngress.com

Don’t Use a Raw Finalize Method!
GC allows a small emulation of the Class_Terminate event via the finalize
method. However, the finalize method does not supercede the authority
of the GC/CLR, and it might not be instantly implemented if the GC/CLR
assume that the resource/object is still needed or in use. It could very
well be a couple of calls too late before it’s shut down, which is espe-
cially frustrating when you need to remove an object for program flow.
Finalized objects:

Are promoted to older generations, causing unnecessary
heap usage.

Have longer initialization times.

Are out of your control as to when and where they are actu-
ally terminated.

Cause any other objects that are associated with them to be
finalized, adding more strain to the heap.

Can prolong the lifetime of other objects that are referenced
from the finalized object.

For these reasons, it is better to avoid using finalize alone. If you
determine that you must use it, make sure that you avoid all actions that
could interfere with the finalize code, such as creating an instance of the
finalized object after you run the finalize method, thread synchroniza-
tion operations, and any exceptions from the finalize method.

Resurrection is a side effect of finalization. Sometimes we’ll be pre-
sented with a situation in which an object has been finalized but there is
still a pointer to it, meaning that GC assumes it’s alive when it’s been
already finalized. A typical scenario is to finalize an object in order to
create a new instance of the same object; if the first object is still there in
finalization, the pointer points to the old object, and the object, while in
finalized stage, never gets cleaned out properly because it has a reference
from the application. It’s important that if you finalize something, you set
a flag or a check routine to make sure that it’s gone before you try to do
anything else concerning that object type.

Debugging…

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 39

40 Chapter 1 • Introducing the Microsoft .NET Framework

Assigning Generations
GC uses an ephemeral garbage collector, which describes the lifetime of an
object in generations. Using this system, the garbage collector makes the fol-
lowing logical assumptions:

Newer objects have shorter lifetimes.

Older objects have longer lifetimes.

Newer objects are created around the same time and have strong
relationships.

Compacting a portion of the heap is faster than compacting it completely.

www.syngress.com

Figure 1.7 Generations

Generation 0

Step 2
Objects within Generation 0 that
are still in use are moved up to
Generation 1. New objects are
placed within Generation 0.

Generation 1

Step 3
Objects within Generation 0 that are still in
use are moved up to Generation 1. Objects
that are still in use within Generation 1 are
moved up to Generation 2. This process
is repeated and no new Generations
are created over Generation 2.

Object in use

Object in use

Object not in use

Generation 0

Step 1
Objects within Generation 0 are
evaluated to see which ones are
still in use.

Generation 0

Generation 1

Generation 2

Object 01

Object 02

Object 03

Object 01

Object 02

Object in use

Object not in use

Object 04

Object 05

Object 06

Object in use

Object in use

Object not in use

Object 07

Object 08

Object 09

Object 04

Object 05

Object in use

Object in use

Object in use

Object in use

Object not in use

Object 01 Object in use

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 40

Introducing the Microsoft .NET Framework • Chapter 1 41

Let’s look at a new heap. Once the heap is created and the first set of objects is
instanced, the objects are created and set as Generation 0.As a new set of objects is
created, GC checks to see which objects from Generation 0 still exist (Step 1 in
Figure 1.7).Those that do exist are compacted, moved above Generation 0, and
become Generation 1 (Step 2).As the new Generation 0 enters the same process, so
does Generation 1.Any remaining members of Generation 1 become Generation 2,
and those that survived Generation 0 become 1 (Step 3).Then, the new Generation 0
is created.At this point, the process continues, but there can be no higher genera-
tion than 2; any survivors from any subsequent Generation 1 members are placed in
Generation 2 with the previous Generation 1 members that survived.This also means
that a complete heap compacts portions at a time, thus increasing overall speed.

Objects within Generation 0 are checked more frequently than the other two
generations because of .NET’s philosophy that new objects are more likely to be
the first to be removed. In other words, the longer an object is alive, the more
likely it is to stay alive.

Using Weak References
Another innovation that stems from the roots concept is weak references; a weak
reference is a weak link to an object in memory that has been or is in the final-
ization process. It “acts” like a root and will be collected by GC the next time it
runs.A strong reference, on the other hand, represents the primary object creation.
Without a strong reference, you can’t really create a weak one.

Weak references can provide a workaround when you are dealing with
memory-intensive objects, and avoid the cost of constantly recreating and reinitial-
izing objects. Imagine an object that traverses a database and stores a set of sorted
fields. If the database is small enough, it can rest in memory without problem.
However, if the database is large, we run the risk of tanking out our resources every
time we have to create a new one. Using a weak reference, we can bypass having to
create a new object and redoing the sort by keeping the items we need on standby.
You can then recreate the strong reference by pointing to the weak reference.

Security Services
Security services are not to be confused with the concept of security as offered by
.NET. Security services provide a type of check and balance within code, meta-
data, and MSIL in order to make sure that the CLR gets what it expects, that it’s
getting it through either the same developer or a trusted source, and that future
references to items usually denied access to due to isolation can be granted access.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 41

42 Chapter 1 • Introducing the Microsoft .NET Framework

In .NET, the Virtual Execution System (VES) handles all the security
checking.The still unreleased Overview of CLR Runtime Security spec sheet from
Microsoft has all the details.This spec sheet will contain more nuts and bolts
about how the VES controls security checking.We do know, however, that the
VES provides the security services commonly used within the CLR.

Type safety is enforced through the VES by matching the same strong types in
metadata with the corresponding MSIL (local variables and stack slots).You can
look at it as a technical diagram; it draws a very strong line pointing from the
metadata to the MSIL, and makes sure that everything matches up to the correct
declaration and memory space.

The VES also covers versioning safety. Since the VES does the job of lining
everything up, it also goes ahead and sees that all the information that’s being
checked also passes the version check.The VES also makes sure that the CLR
will “see what it gets”; in other words, that the CLR will work within the
assumptions it made about the code.

However, in order to make an assumption about the code, the CLR must be
sure that the code is a proper executable.Again, the VES steps in by providing the
only three methods that a code can use to become executable: class loader, legacy-
code-based platform invoke, and, for migration purposes, an unmanaged COM interop.
Using the legacy-code platform invoke and the unmanaged COM interop can
cause some performance issues, so it’s best to avoid them altogether when writing
or migrating code and to stick to the class loader.The class loader connects
implementations to the information about the implementation within a meta-
data.The VES uses the class loader to also determine who is trying to access a
type, and thus takes the advantage to determine accessibility.

In addition, the VES has access, through the CTS, to the permissions that are
stored within metadata to access methods. It checks each type against the permis-
sions, and marks each type that has permission with a stub in the loader (the JIT
and the linker also use VES to do the same) that tells the CLR to enforce the
permissions to which the stub points.This is called declarative security.

NOTE

Although the CLR is impressive in terms of detection algorithms, it has a
drawback in that it’s still, in the end, simply a logical system. It can’t tell
when someone might trick it (although the CLR is very stringent, thus
making it hard to trick). To prevent that, we can use imperative security;
that is, we can set the rules in our code.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 42

Introducing the Microsoft .NET Framework • Chapter 1 43

www.syngress.com

Framework Security
Code access security and role-based security are the two types of security provided by
the .NET framework.They are mechanisms that are geared toward a “keep it
simple” mentality regarding how to decide what a user can do.The keep it simple
idea trickles down to a simple model with consistency, providing easy transitions
from code-based to role-based security and back.The fundamentals that give the
.NET security its robustness are permission, principals, and security policy.

Code access security, as you might have noticed, provides varying degrees of
trust for an application. It can change these degrees according to the information
that the assembly provides—such as developer, version, and the like—since this
information is stored on the code.When the process of determining if a partic-
ular code can access, the runtime checks the current call stack of the code
looking for the permission; if it can’t find permission, it throws an exception.

Role-based security makes an authoritative decision based on the principal value
from the current thread making the request.The role(s) listed within the principal
value are then evaluated, and the action/ability requested is given or denied.

Financial software programmers and database coders might already be familiar
with the concept of role-based security. Usually, in these situations, when a client
requests access to a certain part of the system or resource, a check is run to deter-
mine from what role the client making the request comes. Let’s say that a
member of the group Alpha is trying to access a resource located with a member
of the Omega group.Alpha starts the connection, and Omega picks off the first
principal from the connection thread.The principal is then analyzed for roles, and
Omega determines that the Alpha workgroup does not have permission for all
the resources—just two of them. Omega allows the connection, but limits Alpha’s
request to the two resources. If Alpha tried to obtain a resource outside those
two, the request would be denied.

Granting Permissions
Permission is the basic building block of security. Some view permission logically
as a response given to a query in order to gain access; others look at it as a key
fitting into a lock. Both views are equally correct. Permissions in .NET are used
via requests, grants, and demands.

A code can request permissions to see if it can access a file. If it doesn’t fall
under those permissions, you could have a function to grant permission to the

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 43

44 Chapter 1 • Introducing the Microsoft .NET Framework

code that’s making the request. If a code with the permissions ready comes
along, you might want to implement an added layer of permission called demand.
In other words, while the code might have the basic permissions needed in
order to satisfy the need, the code can also demand that (a) specific permission(s)
be present.Table 1.7 lists the permissions for both code access security and role-
based security.

Table 1.7 Code Access Security and Role-Based Security Permission Lists

Code Access
Security Permissions Description

DnsPermission Provides access to a Domain Name System.
EnvironmentPermission Provides access to the ability of

read/write/query environment variables. Write
access also includes the ability to create,
remove, and write.

FileDialogPermission Provides access to files acquired via a file
dialog box.

FileIOPermission Provides access to perform low-level
(through stream) read, write, append, or
create directories.

IsolatedStoragePermission Provides access to an area that is attributed to a
specific user within a part of the code identity.

ReflectionPermission Used in conjunction with System.Reflection to
have permission to find out information about
a type at runtime.

RegistryPermission Provides access to the Registry and the read,
write, create, delete Registry functions;
applies to keys and values. If you truly want
to make people who use your .NET code
happy, use the .NET and don’t use the
Registry anymore. This permission is really
more of a migration step.

SecurityPermission Provides the ability to do actions that are nor-
mally not allowed, such as calling into unman-
aged code and skipping the verification
process. Use this with caution; it can lead to
holes in your system that can be used to
access other parts of it.

www.syngress.com

Continued

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 44

Introducing the Microsoft .NET Framework • Chapter 1 45

www.syngress.com

Table 1.7 Continued

Code Access
Security Permissions Description

SocketPermission Doesn’t really grant any ability; either accepts
or creates any attempted connections at a
given transport address. Using this permission
in conjunction with SecurityPermission for exe-
cutables can cause some bad things to happen.

UIPermission Provides the ability to use the functionality
provided by the user interface.

WebPermission Just like SocketPermission, it either accepts or
creates any attempted connections from/to a
Web address.

Role-Based
Security Permissions Description

PrincipalPermission Demands that the identity of an active prin-
cipal match. (See the Principal section for
more information.)

Gaining Representation through a Principal
Have you ever wanted a go-between (and I don’t mean a lawyer) to plead your
case to the program to get access? A principal provides just that function.
Depending on the situation, a principal provides the permission level needed on
your behalf to enter.The CLR lets the principal in, but it’s not letting you in; the
CLR only allows you to do what the principal is supposed to.

A generic principal is your run-of-the-mill representation that you can use to
find out what someone who is not unauthenticated can “see.”Although this is
not practical in an everyday program, it is very useful for testing and debugging
situations, and is extremely helpful when trying to determine situations in which
a permission shows up that you didn’t plan for.

Custom principals are created on-the-fly by an application to suit a current
need or requirement.They extend the basic usability of a generic principal, but
are dependent on having the proper authentication modules and types given to
them by the application.This dependency gives the custom principal an element
of security, since it can’t work without being given what it needs to work.

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 45

46 Chapter 1 • Introducing the Microsoft .NET Framework

NOTE

A special class of principal—the Windows Principal—represents strictly
Windows users. It uses this impersonation to get roles that are available
for that particular user.

Security Policy
The rules that the CLR follows are referred to collectively as the security policy.
The local administrator determines these configurable rules. Once an assembly is
attempting to load, the security policy is checked to see what permissions the
CLR can grant the assembly. It determines various possibilities and then, if it
passes, provides the needed permissions or simply does not allow the program
to run.

Three levels specify security policy:The local machine policy, the application
domain policy, and the user policy.The runtime uses all three of these policies to
filter out the final security policy that will be placed on the assembly and thus
determines its permissions. Both the user and the application domain policy
specify the set of permissions that are allowed, and then this set of permissions is
compared to the machine policy.The permissions that are not filtered out
become the security policy.

Application Domains
An application in .NET runs in a domain that’s managed by a host.This host can
be a shell host (launches .EXEs from a shell), a browser host (runs code from the
site), a server host (ASP.NET; runs code that handles requests on a server), and a
custom-defined host.When one of these creates the application domain, for
example, the shell host—which would be Windows—sets the policy that the
code must deal with under that domain.The policy generated cannot be added
to, but can be made more flexible by the host.

After an application domain policy is set, the new policy applies only to
assemblies that are loaded after the creation of the new policy.Any previous poli-
cyholders will have their previous policy covered and won’t have to use the new
one unless reloaded. Once the main assembly is loaded and the first reference to
another assembly is made, the loader kicks in, places the assembly into the appro-
priate application domain, and then returns the information (referred to as

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 46

Introducing the Microsoft .NET Framework • Chapter 1 47

evidence) that proves it can be trusted (will return versioning information to
verify) to the runtime.Table 1.8 lists the evidence that is/can be returned.

Table 1.8 Evidence

Application Directory Where the Application Resides

Custom Evidence created by the user or system defined;
great for making 100-percent that sure it’s the
correct evidence.

Hash Returns the hash encrypted in MD5 or SHA1.
Publisher The AuthentiCode signature provided by the code.
Site Location of origin.
Strong Name Assembly’s strong name.
URL URL of origin.
Zone Zone of origin; for example, Internet Zone.

Matches the zones listed in your Properties box
for IE under the Security tab.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 47

48 Chapter 1 • Introducing the Microsoft .NET Framework

Summary
The .NET platform is a great leap forward in the evolution of computing from
PCs connected to servers through networks such as the Internet, to one where all
manner of smart devices, computers, and services work together to provide a
richer user experience.The .NET platform is Microsoft’s vision of how the
developers of this new breed of software will approach the challenges this change
will provide.

If some of the .NET concepts sound familiar, there’s a good reason: the .NET
platform is the next generation of what was called Windows DNA. However,
while Windows DNA did offer some of the building blocks for creating robust,
scalable, distributed systems, it generally had little substance in and of itself,
whereas .NET actually has an integrated, comprehensive design and well-con-
ceived, usable tools.

The components at the heart of the .NET platform are the Common
Language Runtime (CLR), the Base Class Library (BCL), and the Common
Language Specification (CLS).The .NET BCL exposes the features of the CLR
in much the same way that the Windows API allows you to use the features of
the Windows operating system; however, it also provides many higher-level fea-
tures that facilitate code reuse.The CLS gives language vendors and compiler
developers the base requirements for creating code that targets the .NET CLR,
making it much easier to implement portions of your application using the lan-
guage that’s best suited for it.The .NET platform allows languages to be inte-
grated with one another by specifying the use of the Microsoft Intermediate
Language (MSIL, or just IL) as the output for all programming languages tar-
geting the platform.This intermediate language is CPU-independent, and much
higher level than most machine languages.

Automatic resource management is one of the most discussed features of the
.NET platform, and for good reason: countless man hours have been spent
chasing problems introduced by poor memory management.Thanks to the man-
aged heap memory allocator and automatic garbage collection, the developer is
now relieved of this tedious task and can concentrate on the problem to be
solved, rather than on housekeeping.When an allocated object is no longer
needed by the program, it will be automatically be cleaned up and the memory
will be placed back in the managed heap as available for use.

Once written and built, a managed .NET application can execute on any
platform that supports the .NET CLR. Since the .NET CTS defines the size of
the base data types that are available to .NET applications, and applications run

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 48

Introducing the Microsoft .NET Framework • Chapter 1 49

within the CLR environment, the application developer is insulated from the
specifics of any hardware or operating system that supports the .NET platform.
While currently this means only Microsoft Windows family of operating sys-
tems, work is underway to make the .NET core components available on
FreeBSD and Linux.

The .NET architecture now separates application components so that an
app always loads the components with which it was built and tested. If the
application runs after installation, then the application should always run.This is
done with assemblies, which are .NET-packaged components. Assemblies con-
tain version information that the .NET CLR uses to ensure that an application
will load the components from which it was built. Installing a new version of
an assembly does not overwrite the previous version, thanks to the Assembly
cache, a specialized container (directory) that stores a system’s installed .NET
components.

Given the massive amount of legacy code in use, it was necessary to allow
.NET applications to interact with unmanaged code.As you can probably guess,
unmanaged code is code that isn’t managed by the .NET CLR. However, this
code is still run by the CLR; it just doesn’t get the advantages that it offers, such
as the CTS and Automatic Memory Management.There are a couple of times
when you will probably end up using unmanaged code, making API or other
DLL calls, interfacing with COM components, or allowing COM components to
utilize .NET components. However, realize that by calling unmanaged code, you
might be giving up portability!

Developing software using .NET technology is a big change; there are a lot
of pieces to the puzzle, and more than a few new ideas. Hopefully, we have
given you a solid introduction to the basics, and you now have a foundation
upon which to build your skills using the information found in the rest of the
book. If you want more detail on a particular feature of the platform, the
MSDN Web site contains a vast amount of reference material that covers the
features of the .NET platform at a much more technical level than we
attempted here.

Solutions Fast Track
What Is the .NET Framework?

.NET provides developers with new possibilities on creating
applications.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 49

50 Chapter 1 • Introducing the Microsoft .NET Framework

Introduction to the Common Language Runtime
The CLR is the heart of the .NET Framework. It provides much of the
functionality that .NET uses.

CLR will provide the function of translating the application from its
internal code to code within the native environment.

Managed code will be able to get the most out of the new .NET
features from the CLR.

Using .NET-Compliant Programming Languages
Programming for .NET is not limited to the Microsoft standard
languages.Any compiler that follows the CTS and other requirements
for .NET can be created for any programming language.

.NET’s new interoperability allows us to use each language’s strengths to
counteract weak areas.

Different programming languages will have the same method of
communication within each other, thus ensuring true interoperability.

Creating Assemblies
The new deployable unit for .NET is an assembly. It is more like a
logical DLL file than a true executable file.

All the information that the CLR needs to properly run an assembly is
located within the assembly itself.

Each assembly file consists of the internal code, the manifest area, and
the metadata contained within the manifest area.

Understanding Metadata
Metadata contains the map that .NET uses to layout objects in memory
and how they are used.

The manifest area within the assembly contains the metadata.

Using System Services
More control is given to exception handling through the try/catch
system.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 50

Introducing the Microsoft .NET Framework • Chapter 1 51

The automatic resource management system for .NET is “smart”
enough to know when objects are in use and when they need to be
removed.This takes the burden off the programmer, but the
programmer can always opt to declare when an object should be
removed.

Microsoft Intermediate Language
MSIL is the bytecode that the just in time (JIT) compiler uses to create
native code for the assembly file.

MSIL is platform independent.

The code within a .NET application is converted to MSIL.

Using the Namespace System to Organize Classes
A namespace provides an organizational hierarchical system for classes.

Each class that specifies to a specific function is stored within its
respective namespace.

The System namespace is the root namespace of all namespaces in .NET.

The Common Type System
The Common Type System is the way in which types are supported
within the runtime.

The CTS also specifies how types can interact with each other, and how
they are displayed as metadata.

The CTS provides the rules that types must follow in order to work
with .NET.

Relying on Auto Resource Management
The managed heap system replaces the reference count system.

The object cleanup is referred to as Garbage Collection. .NET controls
when Garbage Collection runs and when an object is removed.

The burden of object cleanup is placed more within .NET than on the
developer.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 51

52 Chapter 1 • Introducing the Microsoft .NET Framework

Security Services
Permissions are the rights needed to use a resource.There are many
different types of permissions that can be used in any event and are
primarily used within code access security.

The principal acts as a go-between for you to get the permissions
needed.There is only one type of principal. Principals are used within
role-based security.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: If any .NET language has access to everything in the Base Class Library, why
is there so much talk about C#?

A: While in theory all .NET languages have equal access to the BCL, in reality
it was left up to the language teams to determine what level of support they
wanted to offer, at least beyond the minimum needed for basic compliance. In
our opinion, C#, has received much attention, because many believe it was
the only language specifically designed for .NET.

Q: Where can I find information on COM/CLR compatibility issues?

A: Visit http://msdn.microsoft.com/library/dotnet/cpapndx/_cor_appendix_e
___known_compatibility_issues.htm.

Q: Do I have to use Visual Studio.net or a Microsoft-endorsed editor to create
my VB.NET files?

A: No.With the implementation of VBC.EXE, you can use any editor you want
to write the code, without suffering any bugs or problems.

Q: Is it better to learn and rewrite my existing VB / C++ applications in
VB.NET / C#, or to make the necessary changes to my VB / C++ applica-
tion to run on .NET?

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 52

Introducing the Microsoft .NET Framework • Chapter 1 53

A: That’s a subject of debate. It all depends on the size of your code. Naturally,
smaller programs will be easier to convert to .NET; even if you do convert to
.NET, you might still miss out on the advantages .NET has over VB / C++.
On the other hand, learning and rewriting a complete program in .NET can
be time consuming. Keep these considerations in mind when deciding what
you should convert and what you should rewrite.

Q: Is everything in the Win32 API exposed through the BCL?

A: Not through the BCL, but you can make API calls directly through most
languages.

Q: Isn’t the fact that .NET applications aren’t native code going to increase PC
requirements?

A: This depends on what type of application you’re developing, but it’s a pretty
safe bet.There will be additional memory requirements introduced by the
managed environment, but they will be negligible in practice. Every new
development in software engineering has required more horsepower, and
we’re really not taxing today’s processors with most software. Buying more
memory if it is required should be a simple sale; developer man hours are
generally much more expensive than more memory is.

Q: Where can I get more information about the .NET architecture feature X?

A: A search engine such as Google might help depending on what you’re
looking for, but start with MSDN online. Many white papers and various
magazine articles about .NET can be found there.

www.syngress.com

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 53

155_xml_net_pd_C01.qk 3/6/02 11:23 AM Page 54

Visual Studio.NET
IDE

Solutions in this chapter:

■ Introducing Visual Studio.NET

■ Components of VS.NET

■ Features of VS.NET

■ Customizing the IDE

■ Creating a Project

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 2

55

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 55

56 Chapter 2 • Visual Studio.NET IDE

Introduction
In addition to the powerful .NET platform, Microsoft has introduced a new ver-
sion of its Visual Studio Suite, called Visual Studio.NET (VS.NET). Even in its
Beta stages,VS.NET provides the developer with powerful visual tools for devel-
oping all types of applications on the .NET platform.

VS.NET helps in the speedy creation and deployment of applications coded
in any of the managed languages, including C#.This chapter gets you familiar
with the new features of VS.NET and teaches you to customize it according to
your needs.We cover the many new features of VS.NET, including the .NET
Framework,Web Services, XML support, and the Integrated Development
Environment (IDE).

We also cover the XML editor, which has tag completion for Extensible
Stylesheet Language Transformations (XSLTs).We go over the IntelliSense feature
and how it is used in the different windows. Finally, we cover how to customize
your settings within the IDE.

VS.NET is a complete development environment.The components stay the
same regardless of language, making it very easy to switch projects and languages
and have the same features in the same place. Moreover, with the expanded
IntelliSense with tag completion, routine code writing is faster.

NOTE

VS.NET, while a great way to work with XML.NET, VB.NET, or C#, has a
hefty price tag of $1,000 for just the basic IDE, while the Enterprise version
can scale up to $10,000 per license. Just remember that VS.NET is simply
an IDE—any code writing or editing can still be performed with Notepad.

Introducing Visual Studio.NET
The Start pages deliver a great many resources for the development environment.
The Start page is the default homepage for the browser inside of the IDE.You
can tap all aspects of the IDE from these pages.We go over the three most useful
Start pages, beginning with the “What’s New” Start page and the “My Profile”
page, and ending with the “Get Started” Start page.We show you what is new
with VS.NET, set up your profile, and get started using the tool.

Let’s open VS.NET and look at the first of the Start pages (Figure 2.1).

www.syngress.com

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 56

www.syngress.com

You can filter the “What’s New” Start page to whatever topic you are inter-
ested in—we have chosen to filter by .NET Framework.All content in the
“What’s New” Start page will be rendered based on the filter, so you can save
some time by not looking up new features for VB, for example.You can also
select Check availability of Visual Studio.NET service packs from this
Start page to see if you need the latest download for VS.NET. Let’s look at the
“My Profile” Start page next, shown in Figure 2.2.

Visual Studio.NET IDE • Chapter 2 57

Figure 2.1 VS.NET Start Page: What’s New

Figure 2.2 VS.NET Start Page: My Profile

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 57

58 Chapter 2 • Visual Studio.NET IDE

The “My Profile” section of the Start page lets you create your own (custom)
profile or select from any of the options listed. If you happen to come from a VB
background, using the VB profile would be beneficial so that you could be familiar
with the tools from VS 6. Likewise, a C++ or Interdev user from VS 6 will benefit
from the same environment.This will help you to learn the tool by showing a
familiar layout.You can also select to have only external help, which will open the
Help menu in a new window available outside of the IDE.You can filter the Help
topics; in our case, we’ve selected .NET Framework SDK in the What’s New
section Start page.You can also select the window layout that you want to use.You
then can select the Get Started Start page, shown in Figure 2.3.

Here you can select projects you worked on previously, and you can also see
where they are located on the machine by dragging the mouse over the name of
the file.This is a nice feature that you can use when you have two projects
named the same but at different locations.

The Start page is the default page for the Web browser window in VS.NET,
so if you close it and want to get it back, simply click the Home icon on the
Web toolbar and the page will load in the design window.

Components of VS.NET
The Visual Studio.NET IDE is made up of many components that interact with
one another.You can use each separately or at the same time.This feature lets the

www.syngress.com

Figure 2.3 VS.NET Start Page: Get Started

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 58

Visual Studio.NET IDE • Chapter 2 59

user decide which set of components he wishes to use.All of the components
together create an intuitive graphical user interface (GUI).

Design Window
The design window is used when you are graphically creating an application using
the Toolbox to drag and drop objects onto the window. Much like the code
window and browser, the design window cannot be docked or set to Auto Hide.
You can split the design view or have tab groups added to it. Splitting the window
helps when you need to compare code from two separate files (Figure 2.4).

Here you can see windows for both design and code.This is a C# Web
application, but the system is the same for any project.

Code Window
As we mentioned, the code window is much like the design window.There is no
toolbox functionality within the code view, however—you cannot drag and drop
objects from the toolbox and into the code view. If you create objects in the
code view and then switch back to the design view, the objects that you added

www.syngress.com

Figure 2.4 Split Window View

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 59

60 Chapter 2 • Visual Studio.NET IDE

will appear.Again, you cannot dock this window or allow it to float.You can,
however, split it and add new tab groups to the display. Figure 2.5 shows the code
window split and a tab vertical tab order added.

If you look at Figure 2.5 a little more closely, you can see a collapsible menu
tree on the left-hand side.This is created every time you create a class or func-
tion, enabling you to collapse each section independently to save space for
viewing other code present within the window. Note that you must have the
default option Outlining Mode checked for this to be present. If you want to
have line numbers show for your code, you will have to choose Tools |
Options. In the Options dialog box, select Text/Editors. Select C#, and then
choose the option to have line numbers added.

You can also define your own regions of code that might be collapsed.To do
this, simply add the following code to your class or function you want to make
into a region:

#region

///Comments

#endregion

Server Explorer
The Server Explorer is by far one of the best features in VS.NET. From this
window you can connect to a server on the network and have full access to that

www.syngress.com

Figure 2.5 Code View

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 60

Visual Studio.NET IDE • Chapter 2 61

server or servers.You can also link to any database servers on the network. Let’s
see how to do that. Click the Connect to Database icon in the title bar of the
window (Figure 2.6).You will be prompted to give all information required for a
Universal Data Link (UDL).

Fill out the UDL Wizard and test the connection.After this is done, you can
access everything within that database that the user has rights to. Let’s take a look
at that in Figure 2.7.

You can now click on any object within the Server Explorer and edit it
within VS.NET.This is a timesaver from having to have both the Query Analyzer
and VS open at the same time, and going back and forth between the two just to
switch a data type of one stored procedure input parameter.

Toolbox
The Toolbox, shown in Figure 2.8, includes Data, Components,Web Forms, and
Window Forms.As stated earlier in the chapter, you can use the Toolbox with
the Design View window.You can drag and drop each tool onto the design

www.syngress.com

Figure 2.6 Add Database
to Server Explorer

Figure 2.7 Expanded
Database View

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 61

62 Chapter 2 • Visual Studio.NET IDE

window. In addition, you can customize the Toolbox by adding your own code
fragments and renaming them to something meaningful.

To do this, simply right-click on the Toolbox and select Add Tab. Give it a
name that is different from the existing tabs, and you are ready to add your own
tools.To add a new tool, highlight a block of code that you want to make into a
tool, and drag it onto the Toolbox label you just created.

The Clipboard Ring stores all the items that you have copied.You can then
double-click these and add them to the source code.

Docking Windows
One of the new features for VS.NET is that you can dock or expand or col-
lapse all the windows within the view of the IDE.To add windows to your
IDE, navigate to the standard toolbar and select View; here you can select all
the windows that you want to have immediately available in your environment.
One drawback to this is that you will not have much room left in which to
work if you select a lot of windows to show, but the Auto Hide feature of each

www.syngress.com

Figure 2.8 The Toolbox Window

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 62

Visual Studio.NET IDE • Chapter 2 63

window makes them slide off the screen and embed in the side when not
needed.This enables you to have maximum code view, but still have all win-
dows present.To see a window that has Auto Hide enabled, simply position
your mouse over the Window icon on either side of the IDE.You can dock
each window into place by clicking on the pin or by navigating to the standard
toolbar and choosing the Window menu option. Once a window is docked, it
is there permanently; you can, however, make the window float by selecting
Window | Floating (Figure 2.9).

Properties Explorer
The Properties Explorer is much as it was in VS 6 and the Visual Basic IDE and
Visual Interdev IDE. Select an object from the design window, and in the
Properties Explorer, you will see available attributes for that object listed, as
shown in Figure 2.10.The right-hand column lists the property names, and the
left-hand column stores the attribute’s value.The Properties window enables
Rapid Application Development (RAD) by allowing you to quickly create a
graphical representation of the application you are building without doing any
coding whatsoever. Some options are available in the Properties Explorer.You can
select from the drop-down list the actual object you want to view.You can also
select the Events option and have the event available to that object displayed.You
can organize the Properties Explorer either by categories or alphabetically.

www.syngress.com

Figure 2.9 Floating Window

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 63

64 Chapter 2 • Visual Studio.NET IDE

Any changes made in this window will be propagated to the design view and
code view windows, respectively.

Solution Explorer
The Solution Explorer is the same as it was in VS 6.The Explorer is a look at all
the files in your solution. In the title menu bar, you have four options: Refresh,
Copy Web, Show All Files, and Properties.The Properties option lets you set all
of your solutions’ properties, including debug parameters options.The .NET IDE
has two different types of containers available for holding items: solutions and pro-
jects.The main difference between the two is that you can have multiple projects
within a solution, whereas the project container keeps only files and items within
files. Let’s look at this in more detail in Figure 2.11.

Here, you need to make two changes. Set the target schema to Internet
Explorer 3.2 & Navigator 3.0. In addition, change the page layout from Grid
to Flow—this is from a C# Web application.These two changes will make all
the JavaScript comply with the selected browsers.This will enable you to code
without having to check to make sure if your scripts will work in older browsers.

www.syngress.com

Figure 2.10 Properties Explorer

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 64

Visual Studio.NET IDE • Chapter 2 65

By making the change to Flow layout, you prevent your code from using absolute
positioning within span tags so that it will be safe for Netscape users.These two
changes are useful for any ASP.NET development you might do inside of the
.NET IDE.

Class View
The Object Browser will give you a complete list of all classes’ methods and
properties in your solution. Everything is listed, and it is quite in depth. If you
want, you can look up parents of classes that you are using and list out the
methods and properties you might need. By double-clicking on an external class
in your solution, the Object Browser will load and have all parent and child
nodes of the class listed with each of their methods and properties included.This
comes in handy when you need to find a suitable substitute class to handle some
part of your application.As in Java, .NET has an incredible quantity of built-in
classes that can accomplish just about everything you might need—the trouble is
finding their location and how to access their methods and properties. Using the
Object Browser enables you to achieve this in a timely fashion (Figure 2.12).

From this window, you can quickly drill through a class that is not your own
and see what methods and properties it has; you also will get a summary of what
it does and how it is instantiated.

www.syngress.com

Figure 2.11 Solution Properties

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 65

66 Chapter 2 • Visual Studio.NET IDE

Dynamic Help
Dynamic Help is a dockable window just like the previous windows we dis-
cussed.To get Dynamic Help to appear, simply choose Help | Dynamic Help.
You can then make the window float or Auto Hide. One thing to note is that
each part of Help (Index, Contents, Search, Index Results, and Search Results) is
a separate window, so if you undock them and make them all float, you will have
quite a few windows appearing on the screen. One thing you can do is load all
the Help windows into themselves, and a bottom tab order will appear inside the
main Help window; you can then access all parts of Help from the same window
(Figure 2.13).

To customize the Dynamic Help window, choose Tools | Options. In the
Options dialog box, select Environment and then select Dynamic Help. Here
you can specify what topics you want to have available and in what order.You
can also specify how many links are displayed per topic. In addition, you can
create a custom Help file on your own for your project, by following the XML
schema named vsdh.xsd. Create your XML file based off of that schema list and
place the file where you want your Help topics to be displayed.

www.syngress.com

Figure 2.12 Object Browser

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 66

Visual Studio.NET IDE • Chapter 2 67

Tabbing through the many different Help options and getting to the informa-
tion you need is now easy. If you have the hard drive space, loading all the
MSDN Help files from the disks that come with VS.NET would be beneficial.To
do this, simply check the option on the installation sequence that will run from
the computer and not the CD.This will prevent you from constantly having to
load another disk every time you want to look up a particular topic.This gets
quite annoying when you need one disk to open the tree view and another to
access the topic within.

Task List Explorer
The Task List (Figure 2.14) enables you to add tasks that need to be done and orga-
nize them in a number of different ways and with priority. It is very simple to use. If
you are using Source Safe, a group of developers can quickly see what needs to be
done and what has been done by viewing the Task List for each file in the project.

Another feature of the Task List is that it will create tasks on-the-fly as you
debug your application by marking down any errors.You can then go back and
fix each task and have it removed.You can organize the task list on Build errors.
In addition, you can create your own custom token, which is a unique key that

www.syngress.com

Figure 2.13 Docked Help Windows

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 67

68 Chapter 2 • Visual Studio.NET IDE

tells the Task List that a comment needs to be added to the list, to appear in
your Task List from your code.You can map out your function or method or
whatever you are coding with your own custom tokens and have them appear in
the Task List.

To create your own custom token to add to the default tokens available
(HACK,TODO, UNDONE), choose Tools | Environment | Task List. Give
the token name and priority.To use the token, simply add something like the fol-
lowing in your code window (use the comment tag “//” and then the token
name followed by the instruction for the task):

// FUBAR what I want in the task list to appear.

Features of VS.NET
VS.NET has a combination of new and old features built into the IDE.We dis-
cuss the additions to IntelliSense, the new features of XML support, and the
many different ways you can now customize the IDE. Let’s begin with
IntelliSense.

IntelliSense
IntelliSense is a form of code completion that has been part of most Microsoft
developer tools for many years. Code completion technology assists when you
start to type a tag, attribute, or property by providing the resulting ending so that
you will not have to write out the entire item.You will notice this right away.

www.syngress.com

Figure 2.14 Task List

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 68

Visual Studio.NET IDE • Chapter 2 69

VS.NET has IntelliSense support for all the primary programming languages:
VB.NET, C#, and C++. IntelliSense even exists for Cascading Style Sheets and
HTML. Unfortunately,VS.NET doesn’t include IntelliSense for XSLT in the
Beta2 version—we might have to wait for the release version. Currently,
ActiveState does make an XSLT plug-in for VS.NET that provides this function-
ality; you can obtain a free trial version at http://aspn.activestate.com/ASPN/
Downloads/VisualXSLT.

While developing, you will notice that IntelliSense provides information
about active classes only, meaning those that you have created in your project or
those referenced in your page with the using Directive (for code-behind pages:
pagename.aspx.cs). If you are trying to use an object or method, and no
IntelliSense appears for it, you might have forgotten to include the reference.

For example, if you attempt to do data operations using the SqlCommand
object, no IntelliSense will appear until you include the appropriate data class
(Figure 2.15):

using System.Data.SqlClient;

www.syngress.com

Figure 2.15 Using IntelliSense

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 69

70 Chapter 2 • Visual Studio.NET IDE

For C#, IntelliSense is available only in the code-behind page and not in the
ASPX page itself.This might change in the release version.To disable IntelliSense,
choose Tools | Options | Text/Editor and select the editor you are using,
which should be C#. In the Statement Completion section, uncheck all the
options, which will disable IntelliSense for the editor.

XML Editor
When working with XML,VS.NET has some interesting features. If you
create a well-formed XML document of your own, you can easily generate a
corresponding XSD schema that conforms to the 2001 W3C XML Schema.
Once this is done, your XML document will have code completion based on
this new schema.We’ll take a detailed look at XML in general and schemas
later, but for now, remember that XML is the “Extensible Markup Language”
that can handle data, while schemas are used to validate their matching XML
document.

To test creating a schema, let’s open poll.xml and generate a schema for it:

1. Choose File | Open. Navigate to your CD-ROM drive and locate the
file poll.xml.

2. Click Open.This should load the page into the IDE.

3. If the XML is one continuous line, simply click the Format The
Whole Document icon (Figure 2.16).

Now, let’s create a schema for this file. Right-click anywhere in the text
editor and select Create Schema.You can see these resulting changes in
Figure 2.17:

■ A new file called poll.xsd was auto-generated by VS.NET.

■ In the Properties window, the new schema is set as the file’s target
schema.

■ An XML namespace attribute is added.This namespace behaves like the
HTML namespace; it identifies the document as XML, lists its version,
and its text encoding.

■ IntelliSense based on the schema is now available for this document.

You can also select a different schema to base the XML file on by selecting a
new schema from the targetSchema drop-down (Figure 2.18).This would then
provide IntelliSense based on the schema selected.

www.syngress.com

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 70

Visual Studio.NET IDE • Chapter 2 71

www.syngress.com

Figure 2.16 Formatting an XML Document

Figure 2.17 Generating a Schema for a Well-Formed XML Document

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 71

72 Chapter 2 • Visual Studio.NET IDE

You can also view XML documents in Data mode.This presents the docu-
ment in a hierarchical structure. From this view, you can also add new nodes and
data to the document (Figure 2.19).

www.syngress.com

Figure 2.18 Selecting a Target Schema

Figure 2.19 Viewing an XML Document in Data Mode

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 72

Visual Studio.NET IDE • Chapter 2 73

Documentation Generation
(XML Embedded Commenting)
This feature enables you to comment your code with an embedded XML
tagging structure.When XML documentation is enabled, an XML documen-
tation file will be created during the build process. In the Solutions Explorer,
right-click on the project name, and then select Properties.The Project
Properties dialog appears. Click the Configuration Properties folder and
select Build.

Find the item called XML Documentation File in the textbox next to
this, provide a relative path to the file location you would like the
Documentation written to, and click Apply (Figure 2.20).

Now let’s look at how to add XML comments to the code.

www.syngress.com

Figure 2.20 Setting the XML Documentation File Source in the Project
Properties Dialog

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 73

74 Chapter 2 • Visual Studio.NET IDE

Adding XML Document Comments to C# Pages
To add XML documentation comments to your code, simply type three slashes
above any class, method, or variable.

public DataSet catalogItemDetails(string book_isbn)

{

return catalogRangeByCategory(-1, -1, book_isbn);

}

An XML representation of its inputs and outputs will be generated:

/// <summary>

///

/// </summary>

/// <param name="book_isbn"></param>

/// <returns></returns>

public DataSet catalogItemDetails(string book_isbn)

{

return catalogRangeByCategory(-1, -1, book_isbn);

}

Simply add appropriate notes and build the project:

/// <summary>

/// Specialized interface to catalogRangeByCategory.

/// This Method returns all the data for only the given book

/// </summary>

/// <param name="book_isbn">string</param>

/// <returns>DataSet</returns>

public DataSet catalogItemDetails(string book_isbn)

{

return catalogRangeByCategory(-1, -1, book_isbn);

}

When you build the project, you will receive a list of warnings corresponding to
every Public variable, property, method, and class that is not commented. Figure 2.21
shows what happens when you tell it to create comments; this is how it tells you
what variable isn’t commented.This will not prevent program execution, or the
writing of the documentation file. Figure 2.22 contains the XML generated on build.

www.syngress.com

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 74

Visual Studio.NET IDE • Chapter 2 75

www.syngress.com

Customizing the IDE
The VS.NET IDE is fully customizable.All windows can be set to dockable, hide,
auto hide, and floating.You can display different toolbars for each different type of
file, and you can create customizable toolbars.You can set font, tab, and text
layout properties for each type of file.You can set the default Start page to open
the last project, or even set it to a user-created page. If you mess up the layout,
you can easily set it back to several predefined layouts.

Figure 2.21 Warning for Uncommented Public Variables, Properties,
Methods, and Classes

Figure 2.22 Generated XML Documentation

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 75

76 Chapter 2 • Visual Studio.NET IDE

Creating a Project
Now that we have covered all the different aspects of the IDE, let’s create a test
project.We cover the different type of projects available, show how to add a Web
reference to the project, and briefly go over some of the debugging tools avail-
able to the IDE.This should give a well-rounded tour of the complete IDE. Now
let’s go over the projects available.

Projects
Users new to .NET will see that three Web projects are added to the project
listing for all languages: the ASP. NET,Application,Web Service, and Control
Library.The other projects will be familiar to all VS 6 users (Figure 2.23).

Creating a Project
For this example, we will build an ASP.NET Web application (Figure 2.23).You
can keep the name as the default, or select a new name.The location should be
localhost if you are developing on the same box as the IIS server; if not, you will
have to place the location of the server in that text box, either through IP or the
name of the server.The next option is to either close any open solutions and
open this anew, or add it to the existing solution.We recommend that you
choose to have it close all open solutions and open anew, so as not to task your
machine with having multiple solutions in the same IDE. Click OK, and
VS.NET will create the project for you.

www.syngress.com

Figure 2.23 Project Listing in the IDE

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 76

Visual Studio.NET IDE • Chapter 2 77

Add Reference
One of the great benefits of working within the IDE of VS.NET is that you can
add references to your project with ease.Try it out: In this project, select the pro-
ject name in the Solutions Explorer. Right-click and select Add Web Reference.
Now you will have to have a location to a WSDL file from which to locate and
add in the Web Service to the project.This is covered later in the book.

You can also add a reference to a DLL to your project.This will be done in
much the same way as the Web Reference. Instead of selecting Add Web
Reference as we just did, select Add Reference, and then choose from all the
available references on your machine.

Build the Project
To build a project, simply press F5 or click the Start icon on the main window
menu bar.The project will be compiled.You must also set a Start page before this
takes place.To do that, right-click on the file you want as the Start page or
window, and set it to Start page.This will launch this page first after the project
has been compiled and run (Figure 2.24).

Debugging a Project
While building the project, any errors will bring up a dialog box, which will ask
you to continue with the errors in place, or to stop debugging and correct any
errors displayed.These errors will show in the Task window.You can double-click
on any error in the Task window, and the IDE will take you to that location in
the code.As you fix the bugs present in the task list, they will be removed.You
can also set breakpoints and step over and step into options.

www.syngress.com

Figure 2.24 Compiling a Project

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 77

78 Chapter 2 • Visual Studio.NET IDE

Summary
In this chapter, we’ve taken a tour of the VS.NET IDE.We’ve seen an
overview of the interface, some of its component windows, and some of its
built-in features.The design window and the code window are graphical tools
used in creating an application.You can split the windows or have tab groups
added to them; you can use the Toolbox (which includes Data, Components,
Web Forms, and Window Forms) to drag and drop objects onto the design
window.The Server Explorer window allows you to connect to a server on
the network and have full access to that server, and to link to any database
servers on the network.

One of the new features for VS.NET is that you can dock all the windows, or
expand and collapse them within the view of the IDE.The Auto Hide feature of
each window makes them slide off the screen and embed in the side when not
needed; this enables you to have maximum code view but still have all windows
present.

The Properties Explorer (similar to the one in VS 6 and the Visual Basic
IDE and Visual Interdev IDE) allows you to select an object from the design
window to see available attributes for that object listed. Any changes made in
this window will be propagated to the design view and code view windows,
respectively.

The Solution Explorer (the same as in VS 6) is a look at all the files in your
solution via the four options: Refresh, Copy Web, Show All Files, and
Properties.The .NET IDE has two different types of containers available for
holding items: solutions and projects (you can have multiple projects within a
solution, whereas the project container keeps only files and items within files).
The Object Browser will give you a complete list of all classes’ methods and
properties in your solution.

Other windows include Dynamic Help and the Task List. Dynamic Help is a
dockable window that you can fully customize to make it easy to tab to whatever
information you are interested in.You can use the Task List for collaborative pro-
jects and in debugging; it lets you add and prioritize tasks.

IntelliSense, the code-completion technology Microsoft uses, is supported in
VS.NET for VB.NET, C#, and C++, but not yet for XSLT. IntelliSense provides
information about active classes. For C#, IntelliSense is available only in the
code-behind page and not in the ASPX page itself.

www.syngress.com

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 78

Visual Studio.NET IDE • Chapter 2 79

Another important feature is XML Documentation.This feature enables you
to comment your code with an embedded XML tagging structure.When XML
documentation is enabled, an XML documentation file will be created during
the build process.

We’ve looked at some issues such as the customizable, dockable, hide, auto
hide, and float settings for many of the component windows, along with the pro-
file setting on the Start page.VS.NET is a collection of integrated developer tools
with which you should definitely be familiar.

Solutions Fast Track
Introducing Visual Studio.NET

Visual Studio.NET (VS.NET) provides a consistent interface across the
primary development languages.

VS.NET provides easy-to-use tools for Windows and WebForms rapid
prototyping across languages (including C# and Managed C++).

Components of VS.NET
Enhanced window manipulation for user preferences within the
Integrated Development Environment (IDE) gives the developer the
ability to dock, auto hide, hide, or float all component windows.

Task List has the ability to create custom tokens to map out and
prioritize your code via the Task List.

Server Explorer allows the developer to quickly connect and access any
database server on the network, enabling direct access to all database
objects, including stored procedures, functions, and user settings.

Features of VS.NET
IntelliSense is one of the best tools at your disposal when learning a new
language or technology.VS.NET has built IntelliSense into almost every
aspect of the development process.

www.syngress.com

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 79

80 Chapter 2 • Visual Studio.NET IDE

Dynamically generated XML Documentation provides a fast and easy
way to comment your code and generate a separate XML formatted
documentation file.This tool makes code more self-documenting, and it
should save developers time and ensure that some documentation is
provided.

Generating XML schemas from well-formed XML is now a breeze with
.NET.You can also create new XML documents that conform to
popular standards by selecting a targetSchema and using the IntelliSense
feature to create valid XML documents.

Customizing the IDE
The VS.NET IDE is fully customizable.All windows can be set to
dockable, hide, auto hide, and floating.You can display different toolbars
for each different type of file and create customizable toolbars.You can
set font, tabbing, and text layout properties for each type of file.

You can set the default Start page to open the last project, or even set it
to a user-created page.

The IDE also includes several common default settings in case you mess
up while customizing your interface, settings such as the default VB 6
interface or Visual InterDev.

Creating a Project
One of the great benefits of working within the IDE of VS.NET is that
you can add references to your project with ease

To build a project, simply press F5 or click the Start icon on the main
window menu bar.

While building the project, any errors will bring up a dialog box, which
will ask you to continue with the errors in place, or to stop debugging
and correct any errors displayed.

www.syngress.com

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 80

Visual Studio.NET IDE • Chapter 2 81

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: How can I look up a parent class method or property of any system-level object?

A: Use the Class View window, accessed from the standard toolbar by clicking
View | Class View.

Q: Does VS.NET support line numbering in its text editor?

A: Yes, from the standard toolbar, select Tools | Options.This will open the
Options dialog; select the Text Editor folder, pick the language, and click on
the check box for line numbering under the display section.

Q: Is there a way to set the tab size in the text editor?

A: Yes, from the standard tool bar, select Tools | Options.This will open the
Options dialog; select the Text Editor folder, choose a language folder, select
Tabs, and set them to your desired setting.

www.syngress.com

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 81

155_xml_net_pd_C02.qk 3/6/02 11:25 AM Page 82

Reviewing the
Fundamentals
of XML

Solutions in this chapter:

■ An Overview of XML

■ Well-Formed XML Documents

■ Transforming XML through XSLT

■ XPath

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 3

83

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 83

84 Chapter 3 • Reviewing the Fundamentals of XML

Introduction
XML is quickly becoming the universal protocol for transferring information
from site to site via HTTP.Whereas the HTML will continue to be the language
for displaying documents on the Internet, developers will start using the power of
XML to transmit, exchange, and manipulate data using XML.

XML offers a very simple solution to a complex problem. It offers a standard
format for structuring data or information in a self-defined document format.
This way, the data are kept independent of the processes that will consume the
data. Obviously, the concept behind XML is nothing new. XML happens to be a
proper subset of a massive specification named SGML developed by the World
Wide Web Consortium (W3C) in 1986.The W3C began to develop the standard
for XML in 1996 with the motivation that XML would be simpler to use than
SGML but will have more rigid structure than HTML. Since then, many soft-
ware vendors have implemented various features of XML technologies. For
example,Ariba has built its entire B2B system architecture based on XML, many
Web servers (such as WebLogic Server) use XML specifications for configuring
various server-related parameters, Oracle has included necessary parsers and utili-
ties to develop business applications in its 8i/9i suites, and finally, the .NET has
also embraced the XML technology.

XML contains self-defined data in document format; hence, it is platform
independent. It is also easy to transmit a document from one site to another
easily via HTTP. However, the applications of XML do not necessarily have to
be limited to conventional Internet applications only; it can be used to commu-
nicate and exchange information in other contexts, too. For example, a VB client
can call a remote function by passing the function name and parameter values
using an XML document.The server can return the result via a subsequent
XML document.

An Overview of XML
Extensible Markup Language (XML) is fast becoming a standard for data
exchange in the next generation’s Internet applications. XML allows user-
defined tags that make XML document handling more flexible than the
conventional language of the Internet, the HyperText Markup Language
(HTML).The following section touches on some of the basic concepts
of XML.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 84

www.syngress.com

The Goals of XML
Ten goals were defined by the creators of XML, which give definite direction as
to how XML is to be used.

■ XML shall be compatible with SGML.

■ It shall be easy to write programs that process XML documents.

■ The number of optional features in XML is to be kept to the absolute
minimum; ideally, zero.

■ XML documents should be human-legible and reasonably clear.

■ The XML design should be prepared quickly.

■ The design of XML shall be formal and concise.

■ XML documents shall be easy to create.

■ Terseness in XML markup is of minimal importance.

■ XML shall be straightforwardly usable over the Internet.

■ XML shall support a variety of applications.

In other words, XML is for sharing information easily via a nonproprietary
format over the Internet. XML is made for everybody, to be used by everybody, for
almost anything. In becoming the universal standard, XML has faced and met the
challenge of convincing the development community that it is a good idea prior to
another organization developing a different standard.The way in which XML
achieved this was by being easy to understand, easy to use, and easy to implement.

What Does an XML Document Look Like?
The major objective is to organize information in such a way so that human
beings can read and comprehend the data and its context; in addition, the docu-
ment itself is technology and platform independent (nonproprietary, remember?).
Consider the following text file:

F10 Shimano Calcutta 47.76

F20 Bantam Lexica 49.99

Obviously, it is difficult to understand exactly what information the preceding
text file contains.

Reviewing the Fundamentals of XML • Chapter 3 85

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 85

86 Chapter 3 • Reviewing the Fundamentals of XML

Now consider the following XML document (shown in Figure 3.1).The
code is available in the Catalog1.xml file from www.syngress.com/solutions.

Figure 3.1 Catalog1.xml

<?xml version="1.0"?>

<Catalog>

<Product>

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

</Product>

<Product>

<ProductID>F20</ProductID>

<ProductName>Bantam Lexica</ProductName>

<ListPrice>49.99</ListPrice>

</Product>

</Catalog>

The document in Figure 3.1 is XML’s way of representing data contained in
a product catalog. It has many advantages: it is easily readable and compre-
hendible, self-documented, and technology-independent. Most importantly, it is
quickly becoming the universally acceptable data container and transmission
format in the current information technology era.Well, welcome to the exciting
world of XML!

Creating an XML Document
We can use Notepad to create an XML document.VS.NET offers an array of
tools packaged in the XML Designer to work with XML documents.We will
demonstrate the usages of the XML Designer later. Right now, go ahead and
open the Catalog1.xml file from www.syngress.com/solutions in IE 5.0 or later.
You will see that the IE displays the document in a very interesting fashion with
drill-down features as shown in Figure 3.2.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 86

Reviewing the Fundamentals of XML • Chapter 3 87

Creating an XML Document in
VS.NET XML Designer
It is very easy to create an XML document in VS.NET by following these
steps:

1. From the Project menu, select Add New Item.

2. Select the XML File icon in the Add New Item dialog box.

3. Enter a name for your XML file.

4.The VS.NET will automatically load the XML Designer and display the
XML document template.

5. Finally, enter the contents of your XML document.

The system will display two tabs for two views: the XML view and the Data
view of your XML document.These views are shown in Figures 3.3 and 3.4,
respectively.The XML Designer has many other tools to work with, which we
will introduce later in this chapter.

www.syngress.com

Figure 3.2 Catalog1.xml Displayed in IE

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 87

88 Chapter 3 • Reviewing the Fundamentals of XML

Components of an XML Document
An XML document contains a variety of constructs (also referred to as “elements”).
Some of the frequently used ones include:

Declaration Each XML document can have the optional entry
<?xml version=“1.0”?>. This standard entry is used to identify the doc-
ument as an XML document conforming to the W3C recommendation
for version 1.0.

Comment An XML document can contain HTML-style comments
such as <!--Catalog data -->.

www.syngress.com

Figure 3.3 The XML View of an XML Document in VS .NET XML Designer

Figure 3.4 The Data View of an XML Document in VS.NET XML Designer

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 88

Reviewing the Fundamentals of XML • Chapter 3 89

Schema or Document Type Definition (DTD) In certain situa-
tions, a schema or DTD might precede the XML document.A schema
or DTD contains the rules about the elements of the document. For
example, we can specify a rule like “A product element must have a
ProductName, but a ListPrice element is optional.” .NET uses schemas
exclusively so we will not be discussing DTD in-depth.

Elements An XML document is mostly comprised of elements. An
element has a start-tag and an end-tag. In between the start-tag and
end-tag, we include the content of the element.An element might con-
tain a piece of character data, or it might contain other elements. For
example, in the Catalog1.xml, the Product element contains three other
elements: ProductId, ProductName, and ListPrice. On the other hand, the
first ProductName element contains a piece of character data such as
Shimano Calcutta.

Root Element In an XML document, one single main element must
contain all other elements inside it.This specific element is often called
the root element. In our example, the root element is the Catalog element.
The XML document can contain many Product elements, but there must
be only one instance of the Catalog element.

Attributes Okay, we agree that we didn’t tell you the entire story in
our first example. So far, we have said that an element can contain other
elements, or data, or both. Besides these, an element can also contain
zero or more so-called attributes.An attribute is just an additional way to
attach a piece of data to an element.An attribute is always placed inside
the start-tag of an element, and we specify its value using the
“name=value” pair protocol.

You can find a more complete list of XML’s constructs at www.w3c.org/xml.
Let us revise our Catalog1.xml and include some attributes to the Product ele-

ment. Here, we will assume that a Product element will have two attributes, Type
and SupplierId.As shown in Figure 3.4, we will simply add the Type=“Spinning
Reel” and SupplierId=“5” attributes in the first product element. Similarly, we will
also add the attributes to the second product element.The code shown in Figure
3.5 is also available from www.syngress.com/solutions.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 89

90 Chapter 3 • Reviewing the Fundamentals of XML

Figure 3.5 Catalog2.xml

<?xml version="1.0"?>

<Catalog>

<Product Type="Spinning Reel" SupplierId="5">

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

</Product>

<Product Type ="Baitcasting Reel" SupplierId="3">

<ProductID>F20</ProductID>

<ProductName>Bantam Lexica</ProductName>

<ListPrice>49.99</ListPrice>

</Product>

</Catalog>

Let us not get confused with the “attribute” label! An attribute is just an addi-
tional way to attach data to an element. Rather than using the attributes, we
could have easily modeled them as elements as follows:

<Product>

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

<Type>Spinning Reel</Type>

<SupplierId>5</SupplierId>

</Product>

Alternatively, we could have modeled the entire product element to be com-
prised of only attributes as follows:

<Product ProductID="F10" ProductName="Shimano Calcutta"

ListPrice = "47.76" Type="Spinning Reel" SupplierId= "5" >

</Product>

At the initial stage, the necessity of an attribute might appear questionable.
Nevertheless, they exist in the W3C recommendation, and in most situations
become handy in designing otherwise complex XML-based systems.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 90

Reviewing the Fundamentals of XML • Chapter 3 91

www.syngress.com

Empty element
We have already mentioned a couple of times that an element can contain other
elements, or data, or both. However, an element does not necessarily have to have
any of these; if needed, it can be kept totally empty. For example, observe the fol-
lowing element:

<Input type="text" id="txtCity" runat="server" />

The preceding element is a correct XML element.The name of the element
is Input. It has three attributes: type, id, and runat. However, it does not contain
any subelements, nor does it contain any explicit data. Hence, it is an empty ele-
ment.We can specify an empty element in one of two ways:

■ Just before the “>” symbol of the start-tag, add a slash (/), as shown in
the preceding code.

■ Terminate the element using a standard end-tag as follows:

<Input type="text" id="txtCity" runat="server" ></Input>

Examples of empty elements include
, <Pup Age=1 />, <Story>
</Story>, and <Mail/>.

Structure of an XML Document
In an XML document, the data are stored in a hierarchical fashion.A hierarchy is
also referred to as a tree in data structures. Conceptually, the data stored in the
Catalog1.xml can be represented as a tree diagram as shown in Figure 3.6. Please
note that certain element names and values have been abbreviated in the tree dia-
gram, mostly to conserve real estate on the page.

In Figure 3.6, each rectangle is a node in the tree. Depending on the context, a
node can be of different types. For example, each product node in the figure is an
element-type node. Each product node happens to be a child node of the catalog
node.The catalog node can also be termed as the parent of all product nodes. Each
product node, in turn, is the parent of its PId, PName, and Price nodes.

In this particular tree diagram, the bottom-most nodes are not of element-type,
but rather of text-type.There could have been nodes for each attribute and its
value too, although we have not shown those in this diagram.

The Product nodes are the immediate descendants of the Catalog node. Both
Product nodes are siblings of each other. Similarly, the Pid, PName, and Price nodes
under a specific product node are also siblings of each other. In short, all children
of a parent are called siblings. Figure 3.6 illustrates these terms.

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 91

92 Chapter 3 • Reviewing the Fundamentals of XML

Well-Formed XML Documents
At first sight, an XML document might appear to be like a standard HTML doc-
ument with additional user-given tag names. However, the syntax of an XML
document is much more rigorous than that of an HTML document.The HTML
document allows us to spell many tags incorrectly (the browser will just ignore
it), and it is a free world out there for people who are not case-sensitive. For
example, we can use <BODY> and </Body> in the same HTML document
without getting into trouble.When developing an XML document, however, cer-
tain rules must be followed. Some basic rules, among many others, include:

■ The document must have exactly one root element.

■ Each element must have a start-tag and end-tag.

■ The elements must be properly nested.

■ The first letter of an attribute’s name must begin with a letter or with an
underscore.

■ A particular attribute name can appear only once in the same start-tag.

An XML document that is syntactically correct is often called a well-formed
document. If the document is not well-formed, Internet Explorer will provide an
error message. For example, the following XML document will receive an error
message, when opened in Internet Explorer, just because of the case sensitivity of
the tag <product> and </Product>.

www.syngress.com

Figure 3.6 The Tree Diagram for Catalog1.xml

Catalog

Product Product

PId PricePName PricePNamePId

47.76ShimanoF10 49.99BantamF20

The Root: Also Known As:
Document.Element

Siblings

First Child of Catalog

A Text-Type Node

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 92

Reviewing the Fundamentals of XML • Chapter 3 93

<?xml version="1.0"?>

<product>

<ProductID>F10</ProductID>

</Product>

Schema and Valid XML Documents
An XML document might be well-formed, but it might not necessarily be a
valid XML document.A valid XML document conforms to the rules specified in
its Document Type Definition (DTD) or schema. DTD and schema are actually
two different ways to specify the rules about the contents of an XML document.
The DTD has several shortcomings. First, a DTD document does not have to be
coded in XML.That means that a DTD is itself not an XML document. Second,
the data types available to define the contents of an attribute or element are very
limited in DTD.This is why, although VS.NET allows both DTD and schema, we
will present only the schema specification in this chapter..The W3C has put for-
ward the candidate proposal for the standard schema specification (www.w3.org/
XML/Schema#dev).The XML Schema Definition (XSD) specification by W3C
has been implemented in ADO.NET .VS .NET supports the XSD specifications.

A schema is simply a set of predefined rules that describe the data contents of
an XML document. Conceptually, it is very similar to the definition of a relational
database table. In an XML schema, we define the structure of an XML document,
its elements, the data types of the elements and associated attributes, and most
importantly, the parent-child relationships among the elements.We can develop a
schema in many different ways. One way is to enter the definition manually using
Notepad.We can also develop schema using visual tools, such as VS.NET or XML
Authority. Many automated tools can also generate a rough-cut schema from a
sample XML document (similar to reverse engineering). If we do not want to code
a schema manually, we can generate a rough-cut schema of a sample XML docu-
ment using VS.NET XML Designer.We can then polish the rough-cut schema to
conform to our exact business rules. In VS.NET, it is just a matter of one click to
generate a schema from a sample XML document.To generate a rough-cut schema
for our Catalog1.xml document (shown in Figure 3.1), follow these steps:

1. Open the Catalog1.xml file in a VS.NET Project.VS.NET will display
the XML document and its XML view and the Data view tabs at the
bottom.

2. Click on the XML menu pad of the Main menu.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 93

94 Chapter 3 • Reviewing the Fundamentals of XML

That’s all! The systems will create the schema named Catalog1.xsd. If we
double-click on the Catalog1.xsd file in the Solution Explorer, we will see the
screen as shown in Figure 3.7.We will see the DataSet view tab and the XML
view tab at the bottom of the screen.We will elaborate on the DataSet view later
in the chapter.

For discussion purposes, we have also listed the contents of the schema in
Figure 3.7.The XSD starts with certain standard entries at the top.Although the
code for an XSD might appear complex, there is no need to be overwhelmed by
its syntax.Actually, the structural part of an XSD is very simple.An element is
defined to contain either one or more complexType or simpleType data structures.A
complexType data structure nests other complexType or simpleType data structures.A
simpleType data structure contains only data.

In our XSD example (Figure 3.7), the Catalog element can contain one or
more (unbounded) instances of the Product element.Thus, it is defined to contain a
complexType structure. Besides containing the Product element, it can also contain
other elements (for example, it could contain an element Supplier). In the XSD
construct, we specify this rule using a choice structure as follows:

<xsd:element name="Catalog" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

--- --- ---

--- --- ---

</xsd:choice>

</xsd:complexType>

</xsd:element>

www.syngress.com

Figure 3.7 Truncated Version of the XSD Schema Generated by the XML
Designer

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 94

Reviewing the Fundamentals of XML • Chapter 3 95

www.syngress.com

Because the Product element contains further elements, it also contains a
complexType structure.This complexType structure, in turn, contains a sequence of
ProductId and ListPrice.The ProductId and the ListPrice do not contain further ele-
ments.Thus, we simply provide their data types in their definitions.The automated
generator failed to identify the ListPrice element’s text as decimal data; we con-
verted its data type to decimal manually.The complete listing of the Catalog.xsd is
shown in Figure 3.8.The code is also available from www.syngress.com/solutions.

NOTE

An XSD is itself a well-formed XML document.

Figure 3.8 Partial Contents of Catalog1.xsd

<xsd:schema id="Catalog"

targetNamespace="http://tempuri.org/Catalog1.xsd"

xmlns="http://tempuri.org/Catalog1.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

attributeFormDefault="qualified" elementFormDefault="qualified">

<xsd:element name="Catalog" msdata:IsDataSet="true"

msdata:EnforceConstraints="False">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Product">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ProductID"

type="xsd:string" minOccurs="0" />

<xsd:element name="ProductName"

type="xsd:string" minOccurs="0" />

<xsd:element name="ListPrice"

type="xsd:string" minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

Continued

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 95

96 Chapter 3 • Reviewing the Fundamentals of XML

Figure 3.8 Continued

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

www.syngress.com

XML Validation in VS.NET
VS.NET provides a number of tools to work on XML documents. One
allows us to check if a given XML document is well-formed. While on the
XML view of an XML document, you can use XML | Validate XML Data
in the main menu to see if the document is well-formed. The system dis-
plays its findings in the bottom- left corner of the status bar. Similarly,
you can also use the Schema Validation tool to check if your schema is
well-formed. While on the XML view of the schema, use the Schema |
Validate Schema of the main menu to perform this task.

However, none of the preceding tests guarantee that your XML
data is valid according to the rules specified in the schema. To accom-
plish this task, you will need to link your XML document to a particular
schema first. Then, you can test the validity of the XML document.
Follow these steps to assign a schema to an XML document:

1. Display the XML document in XML view (in the XML Designer).

2. Display its Property sheet (it will be captioned DOCUMENT).

3. Open the drop-down list box at the right-hand side of the
targetSchema, and select the appropriate schema.

4. Now, go ahead and validate the document using the XML |
Validate XML Data in the main menu.

By the way, many third-party software can also test if an XML doc-
ument is well-formed, and if it is valid (against a given schema). In this
context, we have found the XML Authority (by TIBCO) and XML Writer
(by Wattle Software) to be very good. An excellent tool named XSV is
also available from www.w3.org/2000/09/webdata/xsv.

Developing & Deploying…

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 96

Reviewing the Fundamentals of XML • Chapter 3 97

XML Schema Data Types
When an XML file acts as a database, and XSL and XPath act as SQL queries to
render the XML file, we need a place where the contents in the XML file are
declared somewhere with their data types.As in any database, whether SQL
Server or Oracle, all columns are defined with data types, which is the rela-
tional-oriented concept.This led to the requirement of having data types in
XML schema.

There are two types of data types, primitive and derived. Primitive data types
are as is, and are not derived from any other data types (e.g., float). Derived data
types are based on other data types.The integer data type is derived from the
decimal data type.

The primitive data type defined for the purpose of XML schema need not be
the same for other specifications or other databases, the same way in which the
user-defined data types meant for XML schema are not meant for any other
resources.Table 3.1 lists the various data types that XML schemas can take advan-
tage of.

Table 3.1 XML Schema Data Types

Primitive Derived Fundamental Constraining
Data Type Data Type Facets Facets

String normalizedString equal length
Boolean Token ordered minLength
Decimal Language bounded maxLength
Float NMTOKEN cardinality pattern
Double NMTOKENS numeric enumeration
Duration Name whiteSpace
dateTime NCName maxInclusive
Time ID maxExclusive
Date IDREF minExclusive
gYearMonth IDREFS minInclusive
gMonthDay ENTITY totalDigits
GDay ENTITIES fractionDigits
GMonth Integer
hexBinary nonPositiveInteger

www.syngress.com

Continued

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 97

98 Chapter 3 • Reviewing the Fundamentals of XML

Table 3.1 Continued

Primitive Derived Fundamental Constraining
Data Type Data Type Facets Facets

base64Binary negativeInteger
AnyURI Long
Qname Int
NOTATION short
GYear Byte

nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger

Transforming XML through XSLT
Extensible Stylesheet Language Transformation (XSLT) is the transformation
component of the XSL specification by the W3C (www.w3.org/Style/XSL). It
is essentially a template-based declarative language that can be used to trans-
form an XML document to another XML document, or to documents of other
types (e.g., HTML and text).We can develop and apply various XSLT tem-
plates to select, filter, and process various parts of an XML document. In .NET,
we can use the Transform() method of the XSLTransform class to transform an
XML document.

Internet Explorer (5.5 and later) has a built-in XSL transformer that automat-
ically transforms an XML document to an HTML document.That is how, when
we open an XML document in IE, it displays the data using a collapsible list
view. However, Internet Explorer cannot be used to transform an XML docu-
ment to another XML document. Now, why would we need to transform an
XML document to another XML document? Well, suppose that we have a very
large document that contains our entire catalog’s data.We want to create another
XML document from it, which will contain only the productId and productNames
of those products that belong to the “Fishing” category.We would also like to

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 98

Reviewing the Fundamentals of XML • Chapter 3 99

www.syngress.com

sort the elements in ascending order of the unit price. Further, we might want to
add a new element in each product, such as Expensive or Cheap, depending on
the price of the product.To solve this particular problem, we can either develop
relevant codes in a programming language such as C#, or we can use XSLT to
accomplish the job. XSLT is a much more convenient way to develop the appli-
cation, because XSLT has been developed exclusively for these types of scenarios.

Since the majority of XML/XSLT transformations take place online, we will
be using ASP.NET with VB.NET as our programming language to provide the
following example. Before we can transform a document, we need to provide the
transformer with the instructions for the desired transformation of the source
XML document.These instructions can be coded in XSL.We have illustrated this
process in Figure 3.9.

The following example will apply XSLT to transform an XML document to

an HTML document.We know that IE can automatically transform an XML
document to a HTML document and display it on the screen in collapsible list
view. However, in this particular example, we do not want to display all of our
data that way; we want to display the filtered data in tabular form.Thus, we will
transform the XML document to an HTML document of our choice (and not to
IE’s choice).The transformation process will select and filter some XML data to
form an HTML table.

We will apply XSLT to extract the account information for Ohio customers
from the Bank3.xml file shown in Figure 3.10, which is also available from
www.syngress.com/solutions.

Figure 3.9 XSL Transformation Process

XML Source File

XSL Instructions

Dot Net XSL
Transformer

Target File

• HTML
• XML
• Text

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 99

100 Chapter 3 • Reviewing the Fundamentals of XML

Figure 3.10 Bank3.xml file

<Bank>

<Account AccountNo="A1112">

<Name>Pepsi Beagle</Name>

<Balance>1200.89</Balance>

<State>OH</State>

</Account>

<Account AccountNo="A2564">

<Name>Misty Bishop</Name>

<Balance>1245.78</Balance>

<State>OH</State>

</Account>

<Account AccountNo="A5689">

<Name>Catherine Jones</Name>

<Balance>1458.11</Balance>

<State>OH</State>

</Account>

</Bank>

The extracted data will be finally displayed in an HTML table.The output of
the application is shown in Figure 3.11.

www.syngress.com

Figure 3.11 Transforming an XML Document into an HTML Document

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 100

Reviewing the Fundamentals of XML • Chapter 3 101

If we need to use XSLT, we must first develop the XSLT style sheet (i.e.,
XSLT instructions).We have saved our style sheet in a file named XSLT1.xsl. In
this style sheet, we have defined a template as <xsl:template match=“/”> …
</xsl:template>.The match=“/” will result in the selection of nodes at the root of
the XML document. Inside the body of this template, we have first included the
necessary HTML elements for the desired output.

The <xsl:for-each select=“Bank/Account[State=‘OH’]“ > tag is used to select all
Account nodes for those customers who are from “OH”.The value of a node can
be shown using a <xsl:value-of select= attribute or element name>. In case of an
attribute, its name must be prefixed with an @ symbol. For example, we are dis-
playing the value of the State node as <xsl:value-of select=“State”/>. The com-
plete listing of the XSLT1.xsl file is shown in Figure 3.12, and is available from
www.syngress.com/solutions. In the aspx file, we have included the following
asp:xml control:

<asp:xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

While defining this control, we have set its DocumentSource attribute to
Bank3.xml, and its TransformSource attribute to XSLT1.xsl.The complete code for
the aspx file, named XSLT1.aspx, is shown in Figure 3.13, and is available from
www.syngress.com/solutions.

Figure 3.12 XSLT1.xsl

<?xml version="1.0" ?>

<!-- Chapter 4\XSLT1.xsl -->

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<h4>Accounts</h4>

<table border="1" cellpadding="5">

<thead><th>Acct Number</th><th>Name</th>

<th>Balance</th><th>State</th></thead>

<xsl:for-each select="Bank/Account[State='OH']" >

<tr align="center">

www.syngress.com

Continued

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 101

102 Chapter 3 • Reviewing the Fundamentals of XML

Figure 3.12 Continued

<td><xsl:value-of select="@AccountNo"/></td>

<td><xsl:value-of select="Name"/></td>

<td><xsl:value-of select="State"/></td>

<td><xsl:value-of select="Balance"/></td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Figure 3.13 XSLT1.aspx

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body><form runat="server">

XSL Transformation Example

<asp:Xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

</form></body></html>

XSL Use of Patterns
Pattern matching occurs to define which XML elements belong to which XSL
templates.To see an illustration of this function, look at the following examples of
an XML document and an XSL style sheet.We used patterns in XSLT1.xsl to
determine the location of the XML elements within Bank3.xml. Let’s look at
another, simpler example of patterns to better understand what they are. Figure
3.14 is an XML document containing some product information.

Figure 3.14 XML Product Information

<?xml version="1.0">

<Products>

<Product>

<ProductID>1001</ProductID>

<ProductName>Baseball Cap</ProductName>

www.syngress.com

Continued

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 102

Reviewing the Fundamentals of XML • Chapter 3 103

Figure 3.14 Continued

<ProductPrice>$12.00</ProductPrice>

</Product>

<Product>

<ProductID>1002</ProductID>

<ProductName>Tennis Visor</ProductName>

<ProductPrice>$10.00</ProductPrice>

</Product>

</Products>

Now let’s look at Figure 3.15 to see the XSL patterns used to transform our
XML to Figure 3.16.

Figure 3.15 XSL Style Sheet for Product Information (products.xsl)

<?xml version="1.0">

<xsl:template xmlns:xsl="uri.xsl">

<HTML>

<HEAD>

<TITLE>Product list</TITLE>

</HEAD>

<BODY>

<TABLE cellpadding="3" cellspacing="0" border="1">

<xsl:repeat for="Products/Product>

<TR>

<TD>

<xsl:get-value for="ProductName"/>

</TD>

<TD>

<xsl:get-value for="ProductPrice">

</TD></TR>

</xsl:repeat>

</TABLE>

</BODY>

</HTML>

</xsl:template>

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 103

104 Chapter 3 • Reviewing the Fundamentals of XML

Figure 3.16 XML Product Info HTML Source Output

<HTML>

<HEAD>

<TITLE>Product list</TITLE>

</HEAD>

<BODY>

<TABLE cellpadding="3" cellspacing="0" border="1">

<TR>

<TD>

Baseball Cap

</TD>

<TD>

$12.00

</TD></TR>

<TR>

<TD>

Tennis Visor

</TD>

<TD>

$10.00

</TD></TR>

</TABLE>

</BODY>

</HTML>

As you can see, you can use a combination of XML documents and XSL
style sheets to transform your data into HTML.Why, you might ask? It seems like
a lot more work than just generating HTML at runtime on the server.Well, it is
more work, but the added benefits are worth it.Typically, your Web application
will generate XML documents at runtime instead of HTML documents.The
separation of data from display allows for parallel development of the presentation
and business services of a Web application.This also reduces the friction between
your Web developers and your component developers, as they tend to step on
each other’s toes a bit less.Also, you can use different style sheets to transform
different HTML documents for different browsers, in an effort to utilize the
additional functionality provided by those browsers.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 104

Reviewing the Fundamentals of XML • Chapter 3 105

XPath
XPath is another XML-related technology that has been standardized by the
W3C. XPath is a language used to query an XML document for a list of nodes
matching a given criteria.An XPath expression can specify both location and a
pattern to match.You can also apply Boolean operators, string functions, and

www.syngress.com

Debugging XSL
The interaction of a style sheet with an XML document can be a compli-
cated process, and, unfortunately, style sheet errors can often be cryptic.
Microsoft has an HTML-based XSL debugger you can use to walk through
the execution of your XSL. You can also view the source code to make your
own improvements. You can find the XSL debugger at http://msdn.
microsoft.com/downloads/samples/internet/xml/sxl_debugger/default.asp.

The following list contains examples of style sheet error messages
you might run into when using Microsoft’s XML Parser 3.0:

Description: Named template ‘<template-name>’ does not
exist in the style sheet.

You are trying to call or apply a style sheet by name that
does not exist. Remember that XML is case sensitive. Make
sure that the style sheet you are attempting to reference
exists and is the correct case.

Description: End-tag ‘<tag-name>’ does not match the
start-tag ‘<different-tag-name>’.

Your XSL style sheet is not well-formed. Check your HTML to
ensure that it is well-formed and that all your elements either
are closed or are specified as empty tags.

Description: The character ‘<’ cannot be used in an attribute
value.

Typically, this error results from a missing “ within an attribute list
of an element.

Debugging…

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 105

106 Chapter 3 • Reviewing the Fundamentals of XML

arithmetic operators to XPath expressions to build extremely complex queries
against an XML document. XPath also provides functions to do numeric evalua-
tions such as summations and rounding.The full W3C XPath specification can be
found at www.w3.org/TR/xpath.The following are some of the capabilities of
the XPath language:

■ Find all children of the current node

■ Find all ancestor elements of the current context node with a specific tag

■ Find the last child element of the current node with a specific tag.

■ Find the nth child element of the current context node with a given
attribute.

■ Find the first child element with a tag of <tag1> or <tag2>.

■ Get all child nodes that do not have an element with a given attribute.

■ Get the sum of all child nodes with a numeric element.

■ Get the count of all child nodes.

The preceding list just scratches the surface of the capabilities available using
XPath.Again, the .NET framework provides support for XPath queries against
XML DOM documents and read-only XPath documents.We will be working
with XPath throughout the book by using its respective System.XML classes.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 106

Reviewing the Fundamentals of XML • Chapter 3 107

Summary
XML has emerged as the Web standard for representing and transmitting data
over the Internet.The W3C has worked to establish standards for XML and
related technologies, including XML DOM, XPath, XSL, and XML schemas.
XML DOM is an API that is used to create, modify, and traverse XML docu-
ments. XPath is a language that is used to query XML documents. XSL trans-
lates XML documents from one format to another. XML schemas define the
structure and data types of the nodes in an XML document. All of these tech-
nologies are industry standards backed by the W3C. Microsoft has taken all of
these standards and packaged them into their .NET architecture.This book
focuses heavily on the System.XML class, where we will find all of the neces-
sary support for creating, reading, editing, and working with XML, schema,
XPath, and limited XSL.This chapter was meant to be just a review of XML so
that, as we look through the rest of the chapters, you will have a fresh memory
of XML against which to reference. Now, we will get ready to look at XML as
it is used with .NET.

Solutions Fast Track
An Overview of XML

XML stands for eXtensible Markup Language. It is a subset of a larger
framework named SGML.The W3C developed the specifications for
SGML and XML.

XML provides a universal way for exchanging information between
organizations.

XML cannot be singled out as a standalone technology. It is actually a
framework for exchanging data. It is supported by a family of growing
technologies such as XML parsers, XSLT transformers, XPath, XLink,
and schema generators.

Well-Formed XML
While XML does not need to be well-formed, it is a good habit to
get into.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 107

108 Chapter 3 • Reviewing the Fundamentals of XML

There are two ways to provide validation for XML: through schema
and DTD.

.NET uses schema exclusively to provide validation for XML in .NET.

Schemas allow for greater flexibility and precision compared to DTD.

You can use VS.NET to generate a schema for your XML file.

Transforming an XML Document Using XSLT
You can use XSLT (XML Style Sheet Language Transformation) to
transform an XML document to another XML document, or to
documents of other types (e.g., HTML and text).

XSLT is a template-based declarative language.We can develop and
apply various XSLT templates to select, filter, and process various parts
of an XML document.

In .NET, you can use the Transform() method of XSLTransform class to
transform an XML document.

XPath
XPath is another W3 recommendation that acts as a query language for
XML.

XPath uses pattern-matching with expressions, just like XSLT, but with
more support and functionality.

XPath is not used to transform XML, but rather to facilitate the
searching and querying of data.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 108

Reviewing the Fundamentals of XML • Chapter 3 109

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: I am a newbie to .NET; what impact does XML have on it?

A: XML is integrated heavily through .NET. It is found in everything from
System.Data to System.Xml namespace, it is the backbone of the configura-
tion system, and it is used in SOAP messaging and much more.

Q: How do I know when to use an element versus an attribute when defining
the structure of my XML?

A: It is very hard to define catchall rules to determine when to use an element
versus an attribute. Remember, though, that you can do very little validation
with attributes other than making sure that they exist. For the most part, if
there is any doubt, use an element to describe your content.

Q: Are there any XML editors out there?

A: Yes, quite a few, one of which is XML Notepad by Microsoft, which is not
very good.The one we personally prefer to use is XML Spy.You might have
a little learning curve with the user interface, but it is by far the best XML
editor available when considering price. Sometimes, though, nothing beats
Notepad when you need something down and dirty.

Q: Do I always have to define a schema for my XML document?

A: No, you don’t always need a schema. Schemas are great for when you have to
do validation—typically when exchanging XML documents over the
Internet. Performing validation all the time might seem like a great idea, but
it is a very expensive operation that can bog down a Web server.When
shooting out XML to the Web, you typically don’t need a schema, although it
is a great way to document your XML.

www.syngress.com

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 109

110 Chapter 3 • Reviewing the Fundamentals of XML

www.syngress.com

Q: How can I use XSL to make my applications completely browser independent?

A: XSL is a tool you can use to transform XML to HTML.You can create sev-
eral style sheets. Each can be especially suited for a particular browser, and
depending on the browser of the client, you can transform the XML using
the respective style sheet.This not only allows you to support Netscape and
Internet Explorer, but also allows you to support almost any Internet-enabled
device, from handhelds to cell phones.

Q: What W3C level of support is provided in the XML classes supplied with the
.NET Framework?

A: The XmlDataDocument class supports W3C DOM Core Level 1 and Core
Level 2 specifications.The XmlSchema class supports W3C XML Schemas
for Structures and the XML Schemas for Data Types specifications.The
XslTransform class supports the XSLT 1.0 specification. See the W3C Web
site for details on the specifications at www.w3c.org.

155_xml_net_pd_C03.qk 3/6/02 12:33 PM Page 110

Using XML in the
.NET Framework

Solutions in this chapter:

■ Explaining the XML Document Object
Model

■ Introduction to the System.Xml
Namespace

■ Using the System.Xml Namespace

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 4

111

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 111

112 Chapter 4 • Using XML in the .NET Framework

Introduction
As you turn to the .NET Framework to start working with XML, you find a
number of namespaces that have “Xml” in their names.They deliver a broad set
of classes, supporting you in the use of XML.We will discuss all XML-related
namespaces in the coming chapters, which will make it clear that they support in
most cases all of your XML needs. However, the .NET Framework does not sup-
port all standards available. Luckily, it will let you built your own XML name-
spaces, using the existing ones.

XML and its related standards will keep on evolving, making it not always
easy for Microsoft to keep the namespaces up with these developments. Let’s
hope that Microsoft makes use of the features they built into the .NET
Framework by updating and releasing individual assemblies; in our case, the
namespaces with improved XML support.

This chapter discusses the System.Xml namespace that contains the classes that
implement the XML Core. For this reason, we will also take a closer look at the
XML Document Object Model (DOM) that is at the heart of the XML definition.

Explaining the XML
Document Object Model
The XML Recommendations from the W3C were not completed in one day.
They were written very slowly, one at a time, allowing a good deal of time
between each before the next was drafted.This allowed the W3C to iteratively
create recommendations and determine features of the DOM levels. In doing so,
each DOM level built upon the previous level, and it is possible to create an
XML parser that implements some, but not all, of the levels (or even some fea-
tures of each level, but not all features).

The DOM is a recommendation made by the W3C to enable a standard way
of providing access to the data contained in an XML document. It is essentially a
list of interfaces and class recommendations to allow anyone to internally imple-
ment an XML parser and expose a common interface to enable a developer
access to his or her XML data.This interface is based on the idea that the XML
is in a hierarchical or tree-like structure, where certain nodes might contain child
nodes, which might also contain child nodes, and so on.The DOM provides the
capabilities to navigate this tree of nodes in a relatively simple programmatic
manner. Some of the DOM API capabilities include:

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 112

www.syngress.com

■ Find the root node in a XML document.

■ Find a list of elements with a given tag name.

■ Get a list of children of a given node.

■ Get the parent of a given node.

■ Get the tag name of an element.

■ Get the data associated with an element.

■ Get a list of attributes of an element.

■ Get the tag name of an attribute.

■ Get the value of an attribute.

■ Add, modify, or delete an element in the document.

■ Add, modify, or delete an attribute in the document.

■ Copy a node in a document (including subnodes).

The DOM is not a programming tool or COM object or anything you can
directly program against.The W3C does not have a team of developers creating
applications and tools to provide developers with the ability to read and write
XML documents.The W3C simply works on creating recommendations for
standards, so when a Java developer accesses XML, then switches to using
Microsoft’s XML parser (MSXML), then to a parser written in C, access to the
XML data is the same, and the developer does not need to learn new tools and
methodologies.

The Different XML DOM Levels
DOM Level 1 is effectively the building block for all DOM-based XML parsers.
This level provides definitions for every part of the most basic XML document. If
you consider the XML in Figure 4.1, you will see a number of different types of
elements.An element is defined by DOM Level 1 to be an element, text, comment,
processing instruction, CDATA section, or an entity reference. In addition to the
elements in the XML, there is the processing instruction (<? ?> tag), a document
element (the <addressBook> element), and a number of attributes. For more
information on DOM Level 1, go to www.w3.org/TR/REC-DOM-Level-1/
level-one-core.html.

Using XML in the .NET Framework • Chapter 4 113

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 113

114 Chapter 4 • Using XML in the .NET Framework

Figure 4.1 Sample XML

<?xml version="1.0"?>

<addressBook>

<category name="Friends">

<entry name="Bill Gates" phoneNumber="555-1212" />

<entry name="Steve Jobs" phoneNumber="555-1213" />

</category>

</addressBook>

DOM Level 2 provides a number of small changes to DOM Level 1, and
provides a number of new interfaces and functionality to programmatically access
XML data. Level 2 adds support for Cascading Style Sheets (CSS) and events
(user interface and tree manipulation). Level 2 Core also adds the notion of
namespaces attached to different nodes.A namespace is simply another level of
naming to add to your XML elements and attributes by specifying a namespace
in front of the name. In addition to namespaces, DOM Level 2 adds definitions
of DOM Ranges and DOM Traversal. DOM Range is a way to select content in
an XML document based on two boundary points. DOM Traversal defines inter-
faces to navigate the hierarchical structure of XML documents. In order for an
XML parser to support DOM Range and DOM Traversal, it must also support
DOM Level 2 Core. For more information on DOM Level 2, go to
www.w3.org/TR/DOM-Level-2-Core/core.html.

DOM Level 3 is the newest level in the Document Object Model specifica-
tions. Currently, Level 3 is not finished, but will extend Level 2 by finishing sup-
port for XML 1.0 with namespaces and adding additional keyboard events to the
DOM API. In addition, it will add support for abstract schemas—this could be a
very interesting feature, especially for those who have a lot of object-oriented
experience; the idea of an abstract schema for your data that you can extend and
override and still use the base abstract definition.

XML DOM Core Interfaces
Microsoft .NET currently supports DOM Level 1 and a subset of DOM Level 2.
Microsoft has also provided additions to the DOM in their XML classes, in a
manner to ease the work necessary to manipulate XML documents. Level 3 sup-
port has not been established yet, as the specification has not been finalized by
the W3C, although you could rightfully expect Microsoft to examine and likely
implement DOM Level 3 in a future version of their .NET framework.

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 114

Using XML in the .NET Framework • Chapter 4 115

DOM Structure Model
The W3C has broken down the DOM into a tree structure of nodes of varying
types.This model has a number of interfaces and all of its attributes and methods
clearly defined.

The Node interface is the base interface for all elements.All objects imple-
menting this interface expose methods for dealing with children, yet not all
objects implementing this interface may have children.Tables 4.1 and 4.2 detail a
number of attributes and methods of the Node interface.

Table 4.1 The Node Interface Attributes

Attribute Description

nodeName The name of this node, depending on the type of node
in question.

nodeValue The value of this node. Note, however, that only certain
types of nodes (attributes, text) will return a valid result.

nodeType The type of node in question.
childNodes The child nodes of this node.
firstChild The first child node of this node.
lastChild The last child node of this node.
Attributes The attributes on this node.
ownerDocument The Document object associated with this node.

Table 4.2 The Node Interface Methods

Method Description

insertBefore(newChild, Insert a new node before the refNode.
refChild)
replaceChild(newChild, Replace the old child node with a new node.
oldChild)
removeChild(oldChild) Remove the old child from the context node’s list

of children.
appendChild(newChild) Append a new node to the end of the list of

child nodes in the context node.
hasChildNodes() Returns true or false depending on whether the

context node has child nodes.
cloneNode() Return a duplicate of the context node.

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 115

116 Chapter 4 • Using XML in the .NET Framework

The Document interface represents the top-level root in an XML docu-
ment, and implements the Node interface. It is the root of the XML tree,
and provides the primary access to the XML contained within the document.
The attributes and methods of the Document interface are listed in Tables 4.3
and 4.4.

Table 4.3 The Document Interface Attributes

Attribute Description

doctype The Document Type Declaration (DTD) with this
document. If DTD is not present, this returns null.

documentElement The root element in the document.

Table 4.4 The Document Interface Methods

Method Description

createElement(tagName) Creates and returns an element with the speci-
fied tag name.

createTextNode(data) Creates and returns a Text object containing the
specified string data.

createComment(data) Creates and returns a Comment object con-
taining the specified string data.

createCDATASection(data) Creates and returns a CDATA object containing
the specified string data.

createAttribute(name) Creates and returns an Attr object with the spec-
ified name.

The Element interface is the most common type of node a developer will
encounter when working with a DOM XML parser. Considering the XML
shown previously in Figure 4.1, every addressBook, category, and entry element is of
type Node.The attributes and methods of the Element interface are listed in Tables
4.5 and 4.6.

Table 4.5 The Element Interface Attributes

Attribute Description

tagName The name of the element.

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 116

Using XML in the .NET Framework • Chapter 4 117

Table 4.6 The Element Interface Methods

Method Description

getAttribute(name) Returns an attribute value by name.
setAttribute(name, value) Adds or sets the value of a named

attribute.
removeAttribute(name) Removes an attribute by name.
getAttributeNode(name) Returns an Attr node by name.
setAttributeNode(newAttr) Adds or replaces an attribute.
removeAttributeNode(oldAttr) Removes a given Attribute node.
getElementsByTagName(name) Returns a NodeList of all descendent ele-

ments with the given node name.
removeAttribute(name) Removes a given named attribute.
removeAttributeNode(oldAttr) Removes a given Attr from the context

node.
setAttribute(name, value) Sets a named attribute to have a certain

value.
setAttributeNode(newAttr) Adds or updates the newAttr in the con-

text node.

The Attr (Attribute) element is the second most common type of node a
developer will encounter. It is incredibly simple and has no methods, only prop-
erties. See Table 4.7 for the attributes of the Attribute interface.

Table 4.7 The Attribute Interface Attributes

Attribute Description

name The name of this attribute.
ownerElement The element that contains this attribute.
specified This returns true if the attribute was defined and given a

value in the original XML document, and false otherwise.
value This returns the value of the attribute.

The last major interface in the DOM structure worth mentioning is the
NodeList.The NodeList is a live list of nodes in a given XML document.A
NodeList can be retrieved by the Node.childNodes property and the Document.
getElementsByTagName method. Being a live list of nodes, any changes to the

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 117

118 Chapter 4 • Using XML in the .NET Framework

nodes in a NodeList affects the original nodes in the containing XML document.
This makes the NodeList a very powerful interface, allowing a developer to get a
subset of nodes in his or her document, make changes to them, and not have to
manually replace the nodes in the XML document.

There are a number of other different node types in the DOM Structure
Model, including the Text node, Comment node, ProcessingInstruction node, and
CDATASection node. Each of these additional node types represents other var-
ious types of nodes found in XML documents.They each have a few attributes
and methods, and all inherit the Node interface. For a complete list of all the
node types and their attributes and methods in the DOM Core Level 2, go to
www.w3.org/TR/DOM-Level-2-Core/core.html.

DOM Traversal
DOM Level 2 includes a number of optional traversal interfaces, as well as
defining the core DOM model. None of the interfaces in the DOM Traversal
specification are required if an XML parser implements DOM Level 2.The three
interfaces in the DOM Traversal specification are the TreeWalker, NodeIterator, and
NodeFilter.

The NodeIterator and TreeWalker interfaces are defined to provide easy-to-use
and robust traversal of a document’s contents.The NodeIterator allows a developer
to navigate forward and backward through a list of nodes, without the ability to
move up and down the hierarchical relationships of the tree.The TreeWalker
maintains the XML document’s hierarchical structure and allows a developer to
navigate the entire hierarchy without losing the parent-child relationship like the
NodeIterator. In general, the NodeIterator is used to provide access to the data that
specific nodes contain, whereas the TreeWalker is used when the structure of the
document around the selected nodes is as important as the content of each node.
Both the TreeWalker and NodeIterator are dynamic, in that changes to the nodes
returned from either will affect the underlying XML document.

A NodeIterator or a TreeWalker can be associated with a NodeFilter, which
examines each node and determines if the node should appear in the logical view
of Nodes represented by each. By logical view, we mean that the physical view of
the data can be different from the view a NodeIterator or TreeWalker shows to a
developer. In either case, the physical view is maintained as well as the logical
view, so additions, deletions, and updates to the logical view directly affect the
real, physical view of the data.

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 118

Using XML in the .NET Framework • Chapter 4 119

NodeIterator
The NodeIterator view of its nodes is an ordered list, with the nodes appearing in
document order.That is, the nodes in the list appear in the same order they
appear in the underlying XML data.A NodeIterator’s position is always before the
first node, between two nodes, or after the last node.When a NodeIterator is cre-
ated, the position is set to before the first node, as shown in Figure 4.2.The
asterisk (*) shows the position of the NodeIterator.

Figure 4.2 NodeIterator Position after Creation

* Node1 Node2 Node3 Node4 Node5

Each call to nextNode() returns the next node in the list, advances the position
by one, and returns the node it just passed. For example, after two calls to
nextNode(), the position is placed between Node2 and Node3, with Node2 being
returned, as shown in Figure 4.3.

Figure 4.3 NodeIterator after Two Calls to nextNode()

Node1 [Node2] * Node3 Node4 Node5

As you can see, Node2 is represented as being selected by being bracketed. If a
call to previousNode() were to occur, the position would be placed between Node1
and Node2, and Node1 would be returned, as shown in Figure 4.4.

Figure 4.4 NodeIterator after Call to previousNode()

[Node1] * Node2 Node3 Node4 Node5

If a call to previousNode() were to occur again, the position would be placed
before Node1, and since the NodeIterator is now at the beginning of the list, null
would be returned.The same is true if nextNode() is called at the end of the list.
The position would be placed at the end of the list, and null would be returned
from the method call.Any subsequent calls to nextNode() or previousNode() when
the position is at the end or beginning of the list, respectively, a null value would
be returned and the position would not change.

The NodeList interface demands that the implementation be robust in that it
must be able to gracefully handle changes such as additions or deletions to the
underlying data and not fail. In the preceding example, if Node3 were removed by

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 119

120 Chapter 4 • Using XML in the .NET Framework

another method call and the call to nextNode() attempted to return Node3, it
would instead gracefully handle this by updating its list of nodes (while still
maintaining document order) and return the next available node in the list. For
example, in Figure 4.3, Node2 is the currently active node. If that node were to
be removed, the position would stay the same, but that node would be removed
from the logical view.Any subsequent calls to retrieve the current node would
return the node directly before the removed node, or Node1 (Figure 4.5).

Figure 4.5 After Removing the Context Node

[Node1] * Node3 Node4 Node5

TreeWalker
The TreeWalker provides much of the same functionality as the NodeIterator, but in
a tree-oriented view of the nodes in a subtree, rather than a list-oriented view.
The TreeWalker allows you to move forward and back, or to the parent node, one
of its children, or to a sibling node.The TreeWalker navigation is very similar to
the navigation used directly on Node objects.The major difference is that the
TreeWalker can represent a logical view of the data, whereas direct Node naviga-
tion forces the developer to handle every node.

Like the NodeIterator, the TreeWalker interface demands that the implementation
be able to gracefully handle changes in structure to the underlying XML docu-
ment.Where the NodeIterator maintains its position in the list by staying close to the
context node, the TreeWalker’s position is set based on the currentNode property of
the TreeWalker. For example, if the context node of a TreeWalker in the underlying
XML document is removed, the position of the TreeWalker would remain the same.
Any calls to retrieve the current node would return the newly removed node, and
would allow the developer to navigate through the deleted node and its children.
Taking the example in Figure 4.5 and applying the TreeWalker to it, the context
node would still be Node2 as in Figure 4.6.

Figure 4.6 Removing a Node from a TreeWalker

Node1 Node3 Node4 Node5

[Node2]

Consider the XML document fragment in Figure 4.7. If the current context
node is the <category /> element and it is removed, the TreeWalker will still con-
tain that node as the current node.The TreeWalker can navigate the children of

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 120

Using XML in the .NET Framework • Chapter 4 121

the context node freely without invalidating it. However, if the developer
attempts to move out of this deleted subtree, the node that originally contained it
in the XML document will effectively “recapture” it, maintaining the position in
the document tree as if the <category /> node had never been deleted and a call
to move to the next sibling of that node was received.

Figure 4.7 XML Document Fragment

…

<category name="Friends">

<entry name="Dave Thomas" phoneNumber="555-1212" />

<entry name="Ronald McDonald" phoneNumber="555-1213" />

</category>

…

NodeFilter
The NodeFilter interface is used to further define a filter on the nodes returned
by the logical view of either the NodeIterator or TreeWalker. It does this by its
single method, acceptNode().This method allows a NodeIterator or TreeWalker to ask
the filter whether the current node should be present in the logical view. If a
NodeFilter rejects the node in question, the process of selecting a node is repeated
until a node is accepted by the filter. If no node is found, a null value is returned.
Examine the mock C# code in Figure 4.8.

Figure 4.8 NodeFilter Mock C# Code

public Node nextNode()

{

while(NodeFilter.acceptNode(this.nodes[this.position]) ==

FILTER_SKIP && this.position < this.length)

{

this.position++;

}

if(this.position >= this.length)

return null;

else

return this.nodes[this.position];

}

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 121

122 Chapter 4 • Using XML in the .NET Framework

Obviously this is not real C# code using the System.Xml classes, but it does
demonstrate the idea of the NodeFilter.The nextNode() method is requesting a
NodeFilter to accept or not accept the node at the current position. It loops
through all the nodes until it can find a node that the filter does not want to
skip.At that point, it exits and returns the node at the current position. However,
if the position goes to the end of the list, it returns null and exits the method call.

DOM Range
Like DOM Traversal, DOM Range is not mandatory for Level 2 XML parsers.A
Level 2 parser can implement some or all of the DOM Range specification if the
developers of the parser wish to do so.According to the W3C DOM Range
specification, the Range interface can be seen as a convenience interface where all
of the operations one can perform on the Range can be mapped to a series of
node editing operations.

A range in an XML document can be thought of as two boundary points.A
boundary point is essentially the node that contains it, and an offset.The node is
called the container of the boundary point and its position. Every container and their
ancestors are ancestor containers of the boundary point and its position. If the con-
tainer is an Attribute, Document, DocumentFragment, Element, or EntityReference, the
offset is between its child nodes, whereas if the container is a CharacterData,
Comment, or ProcessingInstructions, the offset is between characters of the string con-
tained by it. See Figure 4.9 for an example of boundary points and ranges.

The range denoted by the boundary points s1 and e1 both have a container
of the addressBook element.The boundary point s1 has an offset of zero (0),
because it is at the beginning of the container node.The corresponding end
point e1 has an offset of one (1), since it points to the end of the first container
in the addressBook element. Every node inside this element is considered an
ancestor container of this range.The boundary point denoted by s2 has an offset
of 1, since it starts at the “i” character, and the corresponding end boundary point

www.syngress.com

Figure 4.9 Boundary Point and Range Example

<addressBook><category name=”Friends”><entry name=”Bill Gates” phoneNumber=”555-1212" /></category></addressBook>

s1 e1

s2 e2

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 122

Using XML in the .NET Framework • Chapter 4 123

has an offset of 8. Both boundary points are located in the name attribute; there-
fore, these two boundary points both have the name attribute as their node.

A node is considered to be selected by a Range if it is between the two
boundary points of the Range.That is, if a node’s start position and end position
fall between a range, then it has been selected by the Range. For example, range 1
in Figure 4.9 selects the category and entry nodes that are contained within it.A
node is partially selected by a Range if a portion of it is contained within the
range but the whole node is not contained within the range. For example, range
2 in Figure 4.9 selects “Bill Gat”, but not the entire string “Bill Gates” .Hence,
this node is only partially selected by the range.

The DOM Range specification defines a couple of interfaces to work with
ranges in XML documents. One of the interfaces is aptly named “Range.”The
Range interface is the main interface provided to work with ranges.The methods
provided on this interface allow a developer to move a range, select its contents,
and replace the contents with something new.The other interface provided by
the DOM Range specification is the DocumentRange interface.This interface
contains a single method, CreateRange, which creates a range for use in a given
XML document.

DOM XPath
XPath was not introduced to the Document Object Model until Level 3,
which at the time of this writing is still under development by the W3C. Since
the recommendation is not finished, we won’t go into very much detail about
XPath in the DOM, but we will go over some of the major items presented in
the recommendation.

The main interface provided in this draft is the XPathEvaluator, which pro-
vides evaluation of XPath 1.0 expressions without support for extension func-
tions or variables.As of this writing, the draft states that it is expected that the
XPathEvaluator interface will be implemented on the same objects that implement
the Document interface.

Another interface in the draft is XPathExpression, which represents a parsed
XPath 1.0 expression.The XPathExpression interface provides a method to eval-
uate the expression based on a given context node.Tightly coupled with
XPathExpression is the XPathResult interface. XPathResult represents the result
from an evaluated XPathExpression, with methods to retrieve iterators on the
result set of nodes.The iterator returned implements the XPathSetIterator, which
only provides methods for iteration of a result set of nodes.

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 123

124 Chapter 4 • Using XML in the .NET Framework

Introduction to the
System.Xml Namespace
The System.Xml namespace is Microsoft’s newest implementation of a DOM
XML parser.The various classes that live in the System.Xml namespace represent
their implementation of the various DOM interfaces.According to Microsoft,
their System.Xml namespace classes implement DOM Level 1 Core and DOM
Level 2 Core. In addition, the System.Xml.Schema namespace implements the
Schema recommendation, and the System.Xml.XPath namespace implements
DOM XPath. For the most part, all of the classes in the System.Xml namespace
are named similarly to the DOM interfaces you read about earlier in this chapter,
except they are prefixed with “Xml”.

Overview of System.Xml.Schema Classes
The System.Xml.Schema classes are used to represent an XML schema.These
classes support the XML Schema 1 (XML Schema for Structures) recommenda-
tion for schema mapping and validation.These classes also support the XML
Schema 2 (XML Schema for Data Types) for data types in XML schemas. For
more information on XML schemas, go to www.w3.org/TR/xmlschema-1/ or
www.w3.org/TR/xmlschema-2/.

In short, XML schemas are used to define the data types and structures pre-
sent in an XML document. XML schemas are used to define what each data type
an XML element represents. DTDs are useful in that they provide information
about what nodes and attributes can appear in an XML document and where
they can appear, whereas an XML Schema Document (XSD) is used to provide
an even further level of definition as to what the elements and attributes repre-
sent. Consider the XSD document fragment in Figure 4.10.

Figure 4.10 Sample XSD Document

<xs:complexType name="category">

<xs:sequence>

<xs:element name="entry">

<xs:complexType>

<xs:attribute name="Name"

type="xs:string" use="required"/>

<xs:attribute name="PhoneNumber"

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 124

Using XML in the .NET Framework • Chapter 4 125

Figure 4.10 Continued

type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="Name" type="xs:string" use="required"/>

</xs:complexType>

What Figure 4.10 shows is a very basic XML schema that a developer could
write to guarantee that his or her XML data is in the correct format.The only
problem with this text-based schema is that it’s very complicated and difficult to learn
and write. Luckily for those of us who do not necessarily want to spend a lot of our
precious time writing these schemas, Microsoft has created a number of tools for us
to use to automate this process.These tools include the visual XSD designers available
when you add a DataSet or XMLSchema item to your project.These two tools are
invaluable if you need to visually design your own schema.The other major tool
Microsoft has provided in the .NET framework is the System.Xml.Schema classes.

The System.Xml.Schema classes are used to represent an XML schema in an
object-oriented, class-based approach.The classes in this namespace can be used
both to represent an existing XML schema, and to create a new schema program-
matically. Everything that can be done by writing an XML schema by hand can
be programmatically created and read using the classes in this namespace. Let’s
discuss a few of the more basic classes in this namespace.

Like the System.Xml classes, the System.Xml.Schema classes that are used to
represent a schema are all descendants of the XmlSchemaAnnoted class (which is
itself a subclass of the XmlSchemaObject class).The next level in the XmlSchema
hierarchy is the XmlSchema class.The XmlSchema class contains the definition for
the schema and corresponds to the schema element in the XSD document.All
schema elements are added either directly to your Schema object or to a descen-
dant of the Schema object.The XmlSchema class contains “Write an XSD docu-
ment and compile the Schema Object Model (SOM) into schema information
for validation.”

The XmlSchemaAttribute class is used to describe an attribute in your XSD
document.You can set the name and schema type of the attribute using public
properties on the class.You can also set its default or fixed value depending on
how your attribute is meant to work.The XmlSchemaSimpleType and
XmlSchemaComplexType classes are used to represent simple and complex types,

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 125

126 Chapter 4 • Using XML in the .NET Framework

respectively.The main distinction about simple and complex types is that simple
types are used to represent a single piece of data, and complex types themselves
contain multiple pieces of data. Look at Figure 4.11 to see the System.Xml.Schema
classes in action (the code in this example can be found at www.syngress.com/
solutions in the SchemaProject folder).

Figure 4.11 System.Xml.Schema Classes in Action

namespace SchemaProject

{

class Class1

{

static void Main(string[] args)

{

XmlSchema mySchema = new XmlSchema();

XmlSchemaSimpleType mySimpleType = new

XmlSchemaSimpleType();

mySimpleType.Name = "mySimpleType";

XmlSchemaComplexType myComplexType = new

XmlSchemaComplexType();

myComplexType.Name = "complexType";

mySchema.Items.Add(myComplexType);

XmlSchemaAttribute myAttribute = new XmlSchemaAttribute();

myAttribute.Name = "myAttribute";

myComplexType.Attributes.Add(myAttribute);

mySchema.Compile(new

ValidationEventHandler(ValidationCall));

mySchema.Write(System.Console.Out);

System.Console.ReadLine();

}

public static void ValidationCall(object sender,

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 126

Using XML in the .NET Framework • Chapter 4 127

Figure 4.11 Continued

ValidationEventArgs args)

{

Console.WriteLine(args.Message);

}

}

}

The example in Figure 4.11 is about as simple as it gets. It simply creates a
new complex type, defines an attribute to be used in the complex type, and then
compiles and shows the resulting XSD document. Table 4.8 lists the classes inside
the System.Xml.Schema namespace.

Table 4.8 System.XML.Schema Classes

Class Name Class Description

XmlSchema This class stores the definition of a
schema.

XmlSchemaAll The W3C all element.
XmlSchemaAnnotated Base class for annotation elements.
XmlSchemaAnnotation The W3C annotation element.
XmlSchemaAny The W3C any element.
XmlSchemaAnyAttribute The W3C anyAttribute element.
XmlSchemaAppInfo The W3C appinfo element.
XmlSchemaAttribute The W3C attribute element.
XmlSchemaAttributeGroup The W3C attributeGroup element with

the ref attribute.
XmlSchemaChoice The W3C choice element.
XmlSchemaCollection Stores a cache of XSD and XDR schemas.
XmlSchemaCollectionEnumerator Allows for simple iteration of the

XmlSchemaCollection.
XmlSchemaComplexContent The W3C complexContent element.
XmlSchemaComplexContent The W3C extension element.
Extension
XmlSchemaComplexContent The W3C restriction element.
Restriction

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 127

128 Chapter 4 • Using XML in the .NET Framework

Table 4.8 Continued

Class Name Class Description

XmlSchemaComplexType The W3C complexType element.
XmlSchemaContent Contains an abstract model for the

schema content.
XmlSchemaContentModel Contains an abstract model for the

schema content model.
XmlSchemaDatatype An abstract class for mapping XSD and

.NET Framework types.
XmlSchemaDocumentation The W3C documentation element.
XmlSchemaElement The W3C element element.
XmlSchemaEnumerationFacet Defines enumeration facets and repre-

sents the W3C enumeration facet.
XmlSchemaException Returns exceptions from the schema.
XmlSchemaExternal Returns information on the schema

passed to it.
XmlSchemaFacet Abstract class used for facets when

simple types are derived by restriction.
XmlSchemaFractionDigitsFacet The W3C fractionDigits facet.
XmlSchemaGroup The W3C group element.
XmlSchemaGroupBase Abstract class used for XmlSchemaChoice,

XmlSchemaAll, and XmlSchemaSequence.
XmlSchemaGroupRef The W3C group element with the ref

attribute.
XmlSchemaIdentityConstraint Represents the key, keyref, and unique

elements.
XmlSchemaImport The W3C import element.
XmlSchemaInclude The W3C include element.
XmlSchemaKey The W3C key element.
XmlSchemaKeyref The W3C keyref element.
XmlSchemaLengthFacet The W3C length facet.
XmlSchemaMaxEclusiveFacet The W3C maxExclusive facet.
XmlSchemaMaxInclusiveFacet The W3C maxInclusive element.
XmlSchemaMinLengthFacet The W3C minLength facet.
XmlSchemaNotation The W3C notation element.
XmlSchemaNumericFacet The W3C numeric facets.

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 128

Using XML in the .NET Framework • Chapter 4 129

Table 4.8 Continued

Class Name Class Description

XmlSchemaObject Creates an empty schema.
XmlSchemaObjectCollection Handles collections of XmlSchemaObjects

when returned from methods.
XmlSchemaObjectEnumerator An enumerator to walk through the col-

lection generation by
XmlSchemaObjectCollection.

XmlSchemaObjectTable Allows for read-only helpers for the
XmlSchemaObject and provides the col-
lections for elements accessible from the
XmlSchema class.

XmlSchemaParticle Base class for all particle types.
XmlSchemaPatternFacet Class for defining pattern facets.
XmlSchemaRedefine The W3C redefine element.
XmlSchemaSequence The W3C sequence element.
XmlSchemaSimpleContent The W3C simpleContent element.
XmlSchemaSimpleContent A Microsoft extension; adds attributes to
Extension the simpleType content. The W3C exten-

sion element for simpleType content.
XmlSchemaSimpleContent A Microsoft extension; affects an element
Restriction within a subset of inherited simple types

by restricting its range of values.
XmlSchemaSimpleType The W3C simpleType element.
XmlSchemaSimpleTypeContent Abstract class for all classes of simpleType

content.
XmlSchemaSimpleTypeList The W3C list element; a list of the

simpleType elements.
XmlSchemaSimpleTypeRestriction The W3C restriction element, but only for

simpleTypes.
XmlSchemaSimpleTypeUnion The W3C union element.
XmlSchemaTotalDigitsFacet The W3C totalDigits element.
XmlSchemaType Contains the base class for all simpleType

and complexType classes.
XmlSchemaUnique The W3C unique element.
XmlSchemaWhiteSpaceFacet The W3C whiteSpace facet.
XmlSchemaXPath The W3C selector element from the XPath

specification.

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 129

130 Chapter 4 • Using XML in the .NET Framework

Mapping XML DOM on the
System.Xml Namespace
The next important step in understanding how to use XML in the .NET Frame-
work is to understand how the DOM standards provided by the W3C have been
followed and extended by Microsoft’s implementation of their System.Xml classes.

Since their first XML parser, Microsoft has continually created extensions to
the DOM recommendations.These extensions have been implemented with the
idea that using these extensions would facilitate working with XML in certain
areas. In truth, many of these extensions are really just “shortcuts” to what the
XML DOM already provides us with. However, using the Microsoft XML parser
is different from using a parser that sticks to the W3C DOM recommendations, so
do not expect to be able to just hop over to another parser, thinking it will work
the same as it has via .NET.The only noticeable changes from the W3C DOM in
Microsoft are cosmetic. For example, their implementation of the DOM interface
node, the nodeName, and nodeValue properties have been renamed to Name and
Value, respectively.While examining the classes in the System.Xml namespace, you
might find other places where method and attribute names vary from the W3C
DOM interfaces, but rest assured, Microsoft did build in all the functionality that
the DOM recommendations define. See Table 4.9 for a quick reference to the
relationships between the DOM interface and Microsoft’s implementation.

Table 4.9 DOM Interfaces Compared to the System.Xml Classes

DOM Interface System.Xml Class

Node XmlNode
Attribute XmlAttribute
CDATASection XmlCDataSection
CharacterData XmlCharacterData
Comment XmlComment
Document XmlDocument
DocumentFragment XmlDocumentFragment
DocumentType XmlDocumentType
Element XmlElement
Entity XmlEntity
EntityReference XmlEntityReference
NamedNodeMap XmlNamedNodeMap
NodeList XmlNodeList

www.syngress.com
Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 130

Using XML in the .NET Framework • Chapter 4 131

Table 4.9 Continued

DOM Interface System.Xml Class

Notation XmlNotation
ProcessingInstruction XmlProcessingInstruction
Text XmlText

As you can see, every interface provided in the DOM Level 1 Core and
DOM Level 2 Core has a corresponding class in the System.Xml namespace. If
you examine the classes presented in Table 4.8, you should also notice that every
method and property defined in the W3C recommendations has a corresponding
method or property in the related class in the System.Xml namespace.

The extensions that Microsoft provides for XML are listed in Table 4.10.
Remember, these extensions are not present in the DOM recommendation.

Table 4.10 System.Xml Classes Not Present in DOM

System.Xml Class Description

XmlAttributeCollection This class inherits from XmlNamedNodeMap and is
a slight change from the DOM recommendation.
An instance of this class is returned from the
Node.attributes property. This class provides addi-
tional functionality from the NamedNodeMap inter-
face Microsoft felt was necessary.

XmlConvert This is mostly a utility class used to transform data
between CLR and XSD types.

XmlDataDocument This class inherits from XmlDocument, and is a spe-
cialized class when using a DataSet and you wish
to perform XML operations on it.

XmlDeclaration Represents the XML declaration node <?xml ver-
sion=”1.0”…?>.

XmlImplementation Defines the context for a set of XML documents.
This class provides a single method to create
instances of XmlDocuments.

XmlQualifiedName This class represents a fully qualified XML name in
the form of namespace:localname.

XmlTextReader Provides forward-only cursor-like read access to an
XML document.

XmlTextWriter Provides forward-only cursor-like write access to an
XML document.

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 131

132 Chapter 4 • Using XML in the .NET Framework

These classes are there mostly to extend and provide additional access to
XML documents that the W3C has either not thought of or has decided not to
include in their recommendations.

Explaining a Selection of System.Xml Classes
Now that you’ve seen how the DOM corresponds to the System.Xml classes, let’s
look at the most common of these classes.The first class we are going to look at
is XmlNode.As you learned from examining the .NET DOM, every node type
inherits directly from the XmlNode class.The XmlNode class is abstract, which
means that you cannot directly create an XmlNode class; instead, you must create
one of the classes that subclass XmlNode. See Table 4.11 for a subset of XmlNode’s
properties and methods.

Table 4.11 XmlNode Properties and Methods

Type Name Description

Property Attributes Gets an XmlAttributeCollection con-
taining the attributes of this node.

Property ChildNodes Gets the children of this node.
Property FirstChild Gets the first child of this node.
Property HasChildNodes Returns a Boolean value indicating

whether the node has any child nodes.
Property InnerText Gets or sets the value of this node and

all children.
Property InnerXml Gets or sets the markup representing

the children of this node.
Property LastChild Gets the last child of this node.
Property Name Gets the name of this node.
Property NextSibling Gets the node immediately following

this node.
Property NodeType Gets the type of the current node.
Property OuterXml Gets the XML representing this node

and all of its children.
Property ParentNode Gets the parent of this node.
Property PreviousSibling Gets the node immediately before this

node.
Property Value Gets or sets the value of this node.

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 132

Using XML in the .NET Framework • Chapter 4 133

Table 4.11 Continued

Type Name Description

Method AppendChild() Adds the specified node to the end of
the list of children of this node.

Method InsertAfter() Inserts the specified node immediately
after the context node.

Method InsertBefore() Inserts the specified node immediately
before the context node.

Method PrependChild() Adds the specified node to the begin-
ning of the list of children of this node.

Method RemoveAll() Removes all children from this node.
Method RemoveChild() Removes the specified child from this

node.
Method ReplaceChild() Replaces the old child node with a new

child node.
Method SelectNodes() Selects a list of nodes that match an

XPath expression.
Method SelectSingleNode() Selects the first node that matches an

XPath expression.

Remember that XmlNode is the base class for all node types in a .NET XML
document, so every method in XmlNode is available in any node that inherits
from it.The next node type to look at is the second most important when
working with the System.Xml namespace, the XmlDocument class. See Table 4.12
for the XmlDocument’s properties and methods.

Table 4.12 XmlDocument Methods and Properties

Type Name Description

Property DocumentElement Gets the root XmlElement in the XML
document.

Property DocumentType Gets the node containing the DOCTYPE
declaration.

Property InnerXML Overridden version of the XmlNode’s
implementation.

Property Name Overridden version of the XmlNode’s
implementation.

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 133

134 Chapter 4 • Using XML in the .NET Framework

Table 4.12 Continued

Type Name Description

Property NodeType Overridden version of the XmlNode’s
implementation.

Property Preserve Gets or sets the value indicating
Whitespace whether to preserve whitespace.

Method CloneNode Overridden version of the XmlNode’s
implementation.

Method CreateAttribute Creates an XmlAttribute with the speci-
fied name.

Method CreateCData Creates an XmlCDataSection containing
Section the specified data.

Method CreateComment Creates an XmlComment containing the
specified text.

Method CreateDocument Creates an XmlDocumentFragment.
Fragment

Method CreateDocument Creates an XmlDocumentType object.
Type

Method CreateElement Creates an XmlElement object.
Method CreateNode Creates an XmlNode object.
Method CreateTextNode Creates an XmlTextNode object with

the specified text.
Method GetElementsBy Returns an XmlNodeList containing all

TagName the descendant elements with the
specified name.

Method Load Loads the XmlDocument.
Method LoadXml Loads the XmlDocument from the spec-

ified string.
Method Save Saves the XmlDocument.

The XmlDocument class contains methods and properties to create, load,
save, and edit an XmlDocument. Most of the interaction of the nodes contained
in an XmlDocument are managed through the XmlNode class’s properties and
methods. See Figure 4.12 for an example of how to use the XmlDocument and
XmlNode class to create a simple XML document (the code for this can be
found in the XmlDocumentProject folder at www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 134

Using XML in the .NET Framework • Chapter 4 135

Figure 4.12 Simple XmlDocument Class

using System;

using System.Xml;

namespace XmlDocumentProject

{

public class Class1

{

public Class1()

{

}

public static void Main()

{

XmlDocument myDoc = new XmlDocument();

XmlProcessingInstruction myProc =

myDoc.CreateProcessingInstruction("xml",

"version=\"1.0\"");

myDoc.AppendChild(myProc);

XmlElement myRoot = myDoc.CreateElement("rootNode");

myDoc.AppendChild(myRoot);

XmlElement myElement = myDoc.CreateElement("firstSubElement");

myRoot.AppendChild(myElement);

Console.WriteLine(myDoc.OuterXml);

Console.Write("Press enter to finish...");

Console.ReadLine();

}

}

}

The XmlDocumentProject is about as simple as it gets when working with
XML data. In the first line of the Main method, an XmlDocument is created.
Next, the program creates a processing instruction (the <? ?> tag) and adds it to
the XmlDocument, although this is optional as the XmlDocument will still function

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 135

136 Chapter 4 • Using XML in the .NET Framework

without it. Next, a root element is created with the name rootNode and is added
to the XmlDocument. Finally, another element is created and added to the root
node, and then the XML is written to the console window.The output of
myDoc.OuterXml looks like this:

<?xml version="1.0"?><rootNode><firstSubElement /></rootNode>

The next class that is important to mention is the XmlDataDocument class.
XmlDataDocument inherits from XmlDocument and is used to represent relational
data obtained from a DataSet in an XML format. Since the DataSet is represented
internally by the .NET framework as XML data, the transformation to and from
formats and working with the resulting data is much easier than if you attempted
to do the same thing with ADO.NET. Essentially, the XmlDataDocument has all of
the same methods and properties as the XmlDocument, but some methods are
overridden in order to more properly work with the underlying data structure. In
addition to the overrides, there are a small number of methods and properties
that are new to the XmlDataDocument class. See Table 4.13 for a list of these
methods and properties.

Table 4.13 XmlDataDocument Methods and Properties

Type Name Description

Property DataSet Get the underlying DataSet for the XML
data.

Method GetElementFromRow Get the XmlElement associated with a
given DataRow.

Method GetRowFromElement Get the DataRow associated with a
given XmlElement.

As you can see, there isn’t very much more to the XmlDataDocument than the
XmlDocument.The additional methods and the single property are there solely to
allow you to work with the data in the DataSet. See Figure 4.13 for an example
of how to work with the XmlDataDocument (the code for this can be found in
the XmlDataDocumentProject folder at www.syngress.com/solutions).

Figure 4.13 XmlDataDocument Example

using System;

using System.Xml;

using System.Data;

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 136

Using XML in the .NET Framework • Chapter 4 137

Figure 4.13 Continued

using System.Data.OleDb;

namespace XmlDataDocumentProject

{

class Class1

{

static void Main(string[] args)

{

OleDbConnection myConn =

new OleDbConnection("Provider=SQLOLEDB.1;" +

"Data Source=localhost;Initial Catalog=Pubs;" +

"User ID=sa;Pwd=;");

OleDbCommand myCommand = new OleDbCommand(

"SELECT * FROM Authors", myConn);

OleDbDataAdapter myAdapter = new OleDbDataAdapter(myCommand);

DataSet myData = new DataSet();

myAdapter.Fill(myData);

XmlDataDocument myDoc = new XmlDataDocument(myData);

Console.WriteLine(myDoc.OuterXml);

Console.Write("Press enter to finish...");

Console.ReadLine();

}

}

}

The first few lines in the code establish a connection to the PUBS database
on the local instance of SQL Server. Next, a command object is built with the
SQL statement SELECT * FROM Authors, and a DataAdapter is created and a
DataSet filled with the resulting data. Next, an XmlDataDocument is created and
the DataSet is passed as a constructor parameter to the XmlDataDocument. Finally,
the OuterXml of the XmlDataDocument is written to the console.The following
XML is a sample of what is returned:

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 137

138 Chapter 4 • Using XML in the .NET Framework

<NewDataSet>

<Table>

<au_id>172-32-1176</au_id>

<au_lname>White</au_lname>

<au_fname>Johnson</au_fname>

<phone>408 496-7223</phone>

<address>10932 Bigge Rd.</address>

<city>Menlo Park</city>

<state>CA</state>

<zip>94025</zip>

<contract>true</contract>

</Table>

</NewDataSet>

As you can see, the XmlDataDocument can be a very valuable addition for those
of us who want to turn our relational data into a readable XML format.When
working with ADO in the pre-.NET era, turning a RecordSet into XML and then
attempting to read the resulting XML was something only the bravest or most igno-
rant did.The only thing you could really do with the resulting XML is save it to the

www.syngress.com

Deciding Which Class to Use
to Represent Your XML Data
The System.Xml namespace provides a number of classes that represent
XML documents, and deciding what to use and how to use it should be a
design consideration. The XmlDocument class is available for access to a
text-based set of XML data. If you have XML passed to your class as a param-
eter, or you are able to directly access an XML document on a file system,
then the XmlDocument class is definitely the correct choice. If you have a
streaming model to your XML data, then the XmlTextReader might be a
good class to use to access the streaming data. If you are receiving XML
from a database, then the XmlDataDocument would be a good choice,
although you do have several methods from which to choose to retrieve this
data (ExecuteReader returns an XmlReader, the SQLXML classes allow use of
the FOR XML clause in SQL statements) when using this method.

Designing & Planning…

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 138

Using XML in the .NET Framework • Chapter 4 139

file system or pass it to another object somewhere that would turn the data back
into a RecordSet and work with it that way, completely ignoring the XML. Luckily
for those of us who had worked with the XML support in ADO, Microsoft has pro-
vided us with a much better way to work with relational data in XML format.

The next important node type to talk about is the XmlElement class.The
XmlElement class represents any element in your XML document (anything with
< and > surrounding it). XmlElement inherits from XmlNode, so it has the func-
tionality of the XmlNode built directly into it, and it provides a small number of
methods and properties in addition to what XmlNode provides. See Table 4.14 for
a list of these methods and properties.

Table 4.14 XmlElement Additional Methods and Properties

Type Name Description

Property HasAttributes Indicates whether this element has
attributes.

Property IsEmpty Gets or sets the tag format of this ele-
ment.

Method GetAttribute Gets the attribute value for the speci-
fied attribute.

Method GetAttributeNode Gets the XmlAttribute node for the
specified attribute.

Method GetElementsByTagName Gets a list of all descendant elements
that match the specified tag name.

Method HasAttribute Indicates whether this element has the
specified attribute.

Method RemoveAllAttributes Removes all attributes from this element.
Method RemoveAttribute Removes the specified attribute.
Method RemoveAttributeAt Removes the attribute at the specified

index.
Method RemoveAttributeNode Removes the specified XmlAttribute.
Method SetAttribute Sets the value of the specified

attribute.
Method SetAttributeNode Adds a new XmlAttribute (or replaces

an existing one).

The XmlElement class’s methods and properties provide additional function-
ality on top of what XmlNode provides for dealing with attributes and child
nodes.The next node type we are going to discuss is the XmlAttribute class, since

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 139

140 Chapter 4 • Using XML in the .NET Framework

it pretty much goes hand in hand with the XmlElement class.The XmlAttribute
class represents an attribute in an XML element.The XmlAttribute class inherits
from XmlNode, and also provides a bit of additional functionality on top of what
XmlNode provides. See Table 4.15 for a list of these properties.

Table 4.15 XmlAttribute Additional Properties

Type Name Description

Property OwnerElement Gets the XmlElement that contains this
attribute.

Property Specified Gets or sets a value indicating if this
attribute value was explicitly set.

Being a relatively simple type of node in an XML document, the XmlAttribute
class doesn’t have much specialized functionality. See Figure 4.14 for an example of
how to use the XmlElement and XmlAttribute classes (the source code for this can be
found in the XmlAttributeElementProject folder at www.syngress.com/solutions).

Figure 4.14 XmlElement and XmlAttribute Example

using System;

using System.Xml;

namespace XmlAttributeElementProject

{

class Class1

{

static void Main(string[] args)

{

XmlDocument myDoc = new XmlDocument();

XmlElement myRoot = myDoc.CreateElement("rootElement");

myDoc.AppendChild(myRoot);

XmlElement myElement = myDoc.CreateElement("subElement");

myRoot.AppendChild(myElement);

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 140

Using XML in the .NET Framework • Chapter 4 141

Figure 4.14 Continued

XmlElement mySecondElement =

myDoc.CreateElement("subSubElement");

XmlAttribute myAttribute = myDoc.CreateAttribute("attribute");

myAttribute.Value = "this is my attribute value";

myElement.SetAttributeNode(myAttribute);

myElement.SetAttribute("attribute2",

"this is my second attribute value");

myElement.AppendChild(mySecondElement);

Console.WriteLine(myDoc.OuterXml);

Console.Write("Press enter to finish...");

Console.ReadLine();

}

}

}

The first step in the code is to create an XmlDocument and add a root element
to it. Next, two additional XmlElements are created, subElement and subSubElement.
Next, a new attribute is created from the XmlDocument object and its value is set
to “this is my attribute value”. Next, the attribute that was just created is added
using the SetAttributeNode method of the XmlElement class, and another attribute
is added using the SetAttribute method. Finally, the mySecondElement object is
added as a child to the myElement object, and the entire document’s XML is
written to the console:

<rootElement>

<subElement attribute="this is my attribute value"

attribute2="this is my second attribute value">

<subSubElement />

</subElement>

</rootElement>

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 141

142 Chapter 4 • Using XML in the .NET Framework

All this discussion about how to create and load XML documents has been
great, but we’re sure you want to know how to take a document, find a group of
elements, and deal with the data contained in them.There are a number of
methods available in the classes we’ve discussed thus far to select a list of nodes
based on an XPath query or simply by knowing a given tag name.The class these
methods return is XmlNodeList.The XmlNodeList class is just a live list of nodes
that are represented in list form instead of in the DOM hierarchy. XmlNodeList
does very little more than any other list class you’ve used in the System.Collections
namespace, but it is only returned by classes in the System.Xml namespace.There
is no need to list its methods and properties, as most of them are inherited from
either System.Object or System.Collections.IEnumerable, so instead, let’s just
delve directly into an example of how to use the XmlNodeList in Figure 4.15
(the code for this example can be found in the XmlNodeListProject folder at
www.syngress.com/solutions).

Figure 4.15 XmlNodeList Example

using System;

using System.Xml;

using System.Data;

using System.Data.OleDb;

namespace XmlNodeListProject

{

class Class1

{

static void Main(string[] args)

{

OleDbConnection myConn =

new OleDbConnection("Provider=SQLOLEDB.1;" +

"Data Source=localhost;Initial Catalog=Pubs;" +

"User ID=sa;Pwd=;");

OleDbCommand myCommand = new OleDbCommand(

"SELECT TOP 3 * FROM Authors", myConn);

OleDbDataAdapter myAdapter = new OleDbDataAdapter(myCommand);

DataSet myData = new DataSet();

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 142

Using XML in the .NET Framework • Chapter 4 143

Figure 4.15 Continued

myAdapter.Fill(myData);

XmlDataDocument myDoc = new XmlDataDocument(myData);

XmlNodeList myList = myDoc.GetElementsByTagName("Table");

for(int x = 0; x < myList.Count; x++)

{

Console.Write("Element #" + x.ToString());

Console.Write("\t");

Console.Write(myList[x].Name + " element ");

Console.Write("has " + myList[x].Attributes.Count +

" attributes");

Console.Write("\n\t");

Console.Write(" and has " + myList[x].ChildNodes.Count +

" child nodes");

if(myList[x].ChildNodes.Count > 0)

{

Console.WriteLine();

foreach(XmlNode myNode in myList[x].ChildNodes)

{

Console.Write(myNode.Name + " ");

}

}

Console.WriteLine();

}

Console.Write("Press enter to finish...");

Console.ReadLine();

}

}

}

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 143

144 Chapter 4 • Using XML in the .NET Framework

www.syngress.com

Using foreach on the XmlNodeList Class
One important thing to remember when dealing with an XmlNodeList is
that it is a live list. When you get an XmlNodeList from an XmlDocument
object, iterating through the child nodes using a foreach structure
proves to be effortless and has no problems.

XmlDocument myDoc = new XmlDocument();

…

XmlNodeList myList = myDoc.SelectNodes("/node1/node2");

foreach(XmlNode myNode in myList)

{

Console.WriteLine(myNode.Name);

}

However, when retrieving an XmlNodeList from an XmlDataDocument,
it is still a live list of data, but the nodes in the list are not created until
requested. That is, when an XmlNodeList is created from an XmlDocument,
the nodes are not brought into the list until the moment they are requested
(it functions like this in order to reduce any overhead of relating data in the
DataSet to data in the list of nodes. For example:

XmlDataDocument myDoc = new XmlDataDocument(myDataSet);

XmlNodeList myList = myDoc.SelectNodes("/Table/Au_id");

foreach(XmlNode myNode in myList)

{

Console.WriteLine(myNode.Name);

}

This code will always fail in Beta 2 and Release Candidate 1 (RC1),
and raise an exception detailing how the members of the list have
changed since the foreach iteration began. Microsoft knows about this
problem, and has an easy workaround: use an explicit for loop instead
of the foreach loop and your code will work fine:

XmlDataDocument myDoc = new XmlDataDocument(myDataSet);

XmlNodeList myList = myDoc.SelectNodes("/Table/Au_id");

for(int x = 0; x < myList.Count; x++)

{

XmlNode myNode = myList[x];

Console.WriteLine(myNode.Name);

}

Designing & Planning…

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 144

Using XML in the .NET Framework • Chapter 4 145

The XmlDataDocument is used in this case simply to get a good amount of data
to work with without needing to have an XML document on hand. Loading an
XML document using the XmlDocument instead of the XmlDataDocument would
be a very minor change, and would simply involve changing the way you load the
XML.The rest would be exactly the same.

After we’ve retrieved the XmlDataDocument, we call the GetElementsByTagName
method and choose to retrieve every Table element in the XML. Next, we loop
through the XmlNodeList, writing out the pertinent information on every node
that appears in the list.As you can see, there isn’t that much to the XmlNodeList,
since it is essentially nothing but a list class, like the list classes in the
System.Collections namespace.

Using the System.Xml Namespace
This section of the chapter provides you with a thorough example of how to use
the System.Xml namespace and the classes in this namespace.This exercise will
show you how to create and load an XML document using the XmlDocument
class, select multiple and single nodes in the document, edit node values, delete
nodes, and finally, save the XML document to the file system.

The exercise you are about to read is a simple address book using XML as
the data store.The address book will store a list of categories and a list of cate-
gory entries associated with individual categories. It will have the capabilities to
handle multiple address books using multiple XML files, create the base XML
files automatically, and be able to add, edit, and remove nodes using the DOM-
compliant System.Xml classes.

Building the XML Address Book
The XML Address Book is a C# Windows application that can be found at
www.syngress.com/solutions in the XmlAddressBook folder. It uses three forms
to accept user input and to display your address book grouped by categories.
When you select a category, it displays the associated entries, and when you select
an entry it displays the entry information and allows you to update the entry you
selected. See Figure 4.16 for a screenshot of the user interface of the application.

Loading the XML Address Book
The first step in creating your address book is to define the format of your XML
data. In this case, we’ve already seen the format of the XML in Figure 4.1 earlier

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 145

146 Chapter 4 • Using XML in the .NET Framework

in this chapter.We will have a top-level addressBook element, multiple category ele-
ments that are children of addressBook, and multiple entry elements that are chil-
dren of a category element.

Now that our data format has been defined, the next step is to create a new
XML Address Book file.When the users clicks File | New (or presses CTRL +
N), he or she will be prompted with a File Save dialog and will have the choice
of where to save the file. Figure 4.17 shows the code for this.

Figure 4.17 Creating a New XML Address Book File

private void mnuFileNew_Click_1(object sender, System.EventArgs e)

{

saveFileDialog1.CheckFileExists = false;

saveFileDialog1.CheckPathExists = true;

saveFileDialog1.Filter = "XML Address book files (*.xmlab)|*.xmlab";

www.syngress.com

Figure 4.16 XML Address Book GUI

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 146

Using XML in the .NET Framework • Chapter 4 147

Figure 4.17 Continued

saveFileDialog1.OverwritePrompt = true;

DialogResult result = saveFileDialog1.ShowDialog();

if(result.ToString().ToLower() == "ok")

{

this.myDocument = new XmlDocument();

XmlProcessingInstruction myProc =

myDocument.CreateProcessingInstruction(

"xml", "version='1.0'");

XmlElement myElement = myDocument.CreateElement("addressBook");

myDocument.AppendChild(myProc);

myDocument.AppendChild(myElement);

myDocument.Save(saveFileDialog1.FileName);

this.loadAddressBook(saveFileDialog1.FileName);

}

}

After the user has successfully selected and named a file to create, a new
XmlDocument is created (this is a class-level variable).A processing instruction is
added (the <?xml version=“1.0”?> instruction), and the root addressBook element
is added. Finally, the myDocument variable is saved and the loadAddressBook()
method is called.

A very similar process happens when a user wants to open an existing address
book file from the file system. See Figure 4.18.

Figure 4.18 Opening an Existing XML Address Book File

private void mnuFileOpen_Click(object sender, System.EventArgs e)

{

openFileDialog1.CheckFileExists = true;

openFileDialog1.CheckPathExists = true;

openFileDialog1.Filter = "XML Address book files (*.xmlab)|*.xmlab";

openFileDialog1.Title = "Open Address Book file";

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 147

148 Chapter 4 • Using XML in the .NET Framework

DialogResult res = openFileDialog1.ShowDialog();

if(res.ToString().ToLower() == "ok")

{

this.lstCategories.Items.Clear();

this.lstEntries.Items.Clear();

this.loadAddressBook(openFileDialog1.FileName);

saveFileDialog1.FileName = openFileDialog1.FileName;

}

}

This method first prompts the user for a valid file to open.After a valid file is
opened, the user interface list boxes are cleared and the loadAddressBook() method
is called.The loadAddressBook() method is the main method for initializing the
user interface. It adds the categories to the category list box and instantiates the
class-level XmlDocument that stores the address book. Figure 4.19 shows the code
for loadAddressBook().

Figure 4.19 The loadAddressBook() Method

private void loadAddressBook(string path)

{

this.initMenuItems(true);

myDocument = new XmlDocument();

myDocument.Load(path);

XmlNodeList categories = this.myDocument.GetElementsByTagName("category");

foreach(XmlNode category in categories)

{

this.addCategory(category.Attributes["name"].Value, false);

}

}

First, the menu items are initialized by calling the initMenuItems method.This
method simply enables certain menu items that wouldn’t be valid if there were no
address book currently loaded. Next, the myDocument variable is instantiated and

www.syngress.com

Figure 4.18 Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 148

Using XML in the .NET Framework • Chapter 4 149

the XML file is loaded from the supplied path. Next, a list of category elements
is retrieved from the documents using the GetElementsByTagName method in
the XmlDocument class. Finally, each category is added to the UI using the
addCategory() method.

Creating and Deleting Categories
The next step in creating the XML Address Book application is to create your cat-
egories.A separate form is created for this in your project called AddCategory.cs,
and can be found at www.syngress.com/solutions in the XmlAddressBook folder.
The sole purpose of this form is to collect a category name and verify that the
name entered is not empty.After it does this, it calls the addCategory() method of
the MainForm class, shown in Figure 4.20 and in XMLAddressBook folder at
www.syngress.com/solutions.

Figure 4.20 The addCategory Method

public void addCategory(string name, bool isNew)

{

this.lstCategories.Items.Add(name);

if(isNew)

{

XmlElement newCat = myDocument.CreateElement("category");

XmlAttribute newName = myDocument.CreateAttribute("name");

newName.Value = name;

newCat.Attributes.Append(newName);

myDocument.DocumentElement.AppendChild(newCat);

}

this.clearEntryDetail();

}

The first step in this method is to add the requested category to the category
list box. If the category is new (if it should be added to the XML document),
then a new XmlElement is created and an XmlAttribute is added.You will end up
with an XML element that looks like this:

<category name="The name parameter"></category>

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 149

150 Chapter 4 • Using XML in the .NET Framework

Finally the new category element is added to the end of the child nodes of the
DocumentElement of the XmlDocument (remember that the addressBook node is the
root node, or document element). Finally, the entry detail text boxes are cleared to
clean up in case the user clicked on an entry before adding the new category.

The next action to consider is how to delete an existing category from your
address book.The user selects a category, and clicks the Delete menu item from
the Category menu.This code is shown in Figure 4.21, and can also be found in
the XMLAddressBook folder at www.syngress.com/solutions.

Figure 4.21 Deleting a Category

private void mnuCategoryDelete_Click(object sender, System.EventArgs e)

{

if(this.lstCategories.SelectedItems.Count > 0)

{

string category = this.lstCategories.SelectedItems[0].Text;

string xpath = "/addressBook/category[@name='" +

category +

"']";

XmlNode myNode = myDocument.SelectSingleNode(xpath);

myNode.ParentNode.RemoveChild(myNode);

this.lstCategories.SelectedItems[0].Remove();

this.lstEntries.Clear();

this.clearEntryDetail();

}

else

{

MessageBox.Show("You must select a category");

}

}

After verifying that a category has indeed been selected, an XPath expression
is built in order to select the appropriate category from the XML document.This
XPath expression ends up looking like /addressBook/category[@name=‘Selected
Category’]. Next, that category is selected and it is removed from the XmlDocument
by calling its parent node’s RemoveChild() method, passing in itself as the child to

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 150

Using XML in the .NET Framework • Chapter 4 151

be removed. Finally, the category and entry list boxes are cleared, and the entry
detail text boxes are cleared.

Creating, Editing, and Deleting Entries
Now that we have finished with creating and deleting categories, the next step is
to be able to add, edit, and delete entries from each category. For adding entries, a
form has been created to accept the entry name and telephone number and
verify that each is not an empty string (this form is named AddEntry.cs and can
be found in the XmlAddressBook folder at www.syngress.com/solutions).After a
category has been selected, and an entry name and telephone number have been
entered, the addEntry() method of the MainForm class is called.The code for this
method can be found in Figure 4.22.

Figure 4.22 The addEntry Method

public void addEntry(string categoryName, string entryName,

string phoneNumber, bool isNew)

{

string entry = entryName + " -- " + phoneNumber;

this.lstEntries.Items.Add(entry);

if(isNew)

{

XmlNode oldCat = myDocument.SelectSingleNode(

"/addressBook/category[@name='" + categoryName + "']");

XmlElement newEntry = myDocument.CreateElement("entry");

XmlAttribute newName = myDocument.CreateAttribute("name");

newName.Value = entryName;

XmlAttribute newPhone = myDocument.CreateAttribute("phoneNumber");

newPhone.Value = phoneNumber;

newEntry.Attributes.Append(newName);

newEntry.Attributes.Append(newPhone);

oldCat.AppendChild(newEntry);

}

this.clearEntryDetail();

}

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 151

152 Chapter 4 • Using XML in the .NET Framework

The first step in this method is to create the display version of the entry for the
entry list box, which is simply the name and telephone number separated by “ – ”,
and add it to the entry list box. If the entry is new (that is, it should be added to
the XML document), the entry is added to the XML document. First, we retrieve a
reference to the selected category to which we are adding an entry. Next, an entry
element is created and the name and phone number attributes are created, given a
value, and added to the entry element.This element ends up looking like:

<entry name="Name parameter" phoneNumber="Phone Number parameter" />

Finally, the new entry element is added to the list of children of the category,
and the entry detail text boxes are cleared to clean up the screen.The next thing
to look at is what happens when a user clicks on an item in the category list.
When the user clicks on a category, the entries in that category should appear
in the entry list box. See Figure 4.23 and the XmlAddressBook folder at
www.syngress.com/solutions for the code to do this.

Figure 4.23 Filling the Entries List Box

private void lstCategories_Click(object sender, System.EventArgs e)

{

if(this.lstCategories.SelectedItems.Count > 0)

{

string category = this.lstCategories.SelectedItems[0].Text;

string xpath = "/addressBook/category[@name='" +

category +

"']/entry";

this.lstEntries.Items.Clear();

XmlNodeList entries = myDocument.SelectNodes(xpath);

foreach(XmlNode entry in entries)

{

string name = entry.Attributes["name"].Value;

string phoneNumber = entry.Attributes["phoneNumber"].Value;

this.addEntry(category, name, phoneNumber, false);

}

this.clearEntryDetail();

}

}

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 152

Using XML in the .NET Framework • Chapter 4 153

After it is verified that the user has selected a category, an XPath expression is
built to select this category.The XPath here is the same as when a user deletes a
category, except this expression selects all the entry nodes in the chosen category.
Next, it loops through the XmlNodeList returned by executing the XPath expres-
sion, retrieving the name and telephone number for each entry and calling the
addEntry() method for each.

When a user clicks on an entry, the bottom pane of information will be filled
in with the details for that entry to allow the user to edit the entry and update
the address book.The event that gets fired when the user clicks on an entry
simply breaks apart the entry in the entry list box and fills in the two text boxes
with the values from the entry.The user can make changes and then click the
Update Entry button to update the XML document with the values in the text
boxes. See Figure 4.24.

Figure 4.24 Editing an Entry

private void btnUpdate_Click(object sender, System.EventArgs e)

{

if(this.txtName.Text.Trim() != "" &&

this.txtNumber.Text.Trim() != "")

{

string category = this.lstCategories.SelectedItems[0].Text;

string entry = this.lstEntries.SelectedItems[0].Text;

string name = entry.Substring(0, entry.IndexOf(" -- "));

string xpath = "/addressBook/category[@name='" +

category + "']/entry[@name='" +

name + "']";

XmlNode entryNode = myDocument.SelectSingleNode(xpath);

entryNode.Attributes["name"].Value = this.txtName.Text.Trim();

entryNode.Attributes["phoneNumber"].Value = this.txtNumber.Text.Trim();

this.lstEntries.SelectedItems[0].Text = this.txtName.Text.Trim() +

" -- " + this.txtNumber.Text.Trim();

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 153

154 Chapter 4 • Using XML in the .NET Framework

Figure 4.24 Continued

}

else

{

MessageBox.Show("You must enter a name and a number.");

}

}

After the text boxes have been validated (no empty strings allowed), an XPath
expression is built to find the entry the user is editing.The XPath for this looks like:

/addressBook/category[@name='Selected Category']/entry[@name='Selected

Entry']

Next, the entry element is selected, and its name and phoneNumber attributes
are set to what the user entered into the Name and Phone Number text boxes.
Finally, the entry in the entry list box is updated to what the user entered.

The last feature needed in the XML Address Book is the capability to delete
entries. Deleting entries is incredibly similar to everything you’ve seen so far.The
process is simple: Select a category, select an entry, and press the Delete button.
The code to delete an entry is shown in Figure 4.25.

Figure 4.25 Deleting an Entry

private void mnuEntryRemove_Click(object sender, System.EventArgs e)

{

if(this.lstEntries.SelectedItems.Count > 0)

{

string category = this.lstCategories.SelectedItems[0].Text;

string entry = this.lstEntries.SelectedItems[0].Text;

string name = entry.Substring(0, entry.IndexOf(" -- "));

string xpath = "/addressBook/category[@name='" +

category + "']/entry[@name='" +

name + "']";

XmlNode entryNode = myDocument.SelectSingleNode(xpath);

www.syngress.com

Continued

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 154

Using XML in the .NET Framework • Chapter 4 155

Figure 4.25 Continued

entryNode.ParentNode.RemoveChild(entryNode);

this.lstEntries.SelectedItems[0].Remove();

this.clearEntryDetail();

}

else

{

MessageBox.Show("You must select an entry");

}

}

After it has been verified that the user selected an entry, an XPath expression
is built to select the specific entry element the user is deleting, which is exactly
the same as the XPath expression built to find a node to edit. Next, the specific
entry element is selected, and its parent node’s RemoveChild() method is called,
passing itself as the child to remove. Finally, the entry list box is updated and the
entry detail text boxes are cleared so the user doesn’t attempt to edit the newly
deleted entry.

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 155

156 Chapter 4 • Using XML in the .NET Framework

Summary
This chapter covered the very basics of the Document Object Model (DOM) for
XML created by the World Wide Web Consortium (W3C).There are multiple
levels defined by the W3C in the DOM, including DOM Level 1 Core, DOM
Level 2 Core, DOM Range, DOM Traversal, and DOM XPath. DOM Level 1
Core and DOM Level 2 Core are, as their names suggest, the core of the DOM.
They define the interfaces that must be adhered to in order to claim that an
XML parser is compliant with DOM Level 1 and/or DOM Level 2.The inter-
faces provided by the Core DOM levels include the Document, Node, Element,
and Attribute interfaces.These are the most basic and frequently used interfaces
when working with XML data.

The DOM Range and DOM Traversal specifications are provided by the
W3C to enable common access to editing and navigating nodes in an XML doc-
ument. DOM Range is used to define a way for a developer to programmatically
access data in an XML document without needing to navigate the DOM hier-
archy. DOM Traversal was created to enable a developer to navigate the node
hierarchy without necessarily needing to use the navigation built into the DOM
interfaces. NodeList is provided to enable you to create a list of nodes and navi-
gate through each node without manually building a list of nodes; instead, you
simple provide an XPath expression and let the parser do the work for you.The
TreeWalker is provided to allow a slightly more robust navigation of nodes in
manner similar to what the DOM Core interfaces provide.The TreeWalker can
navigate in any direction in a node tree, and also provides access to navigating
deleted nodes even after they have been deleted from the node tree.

Microsoft implemented DOM Level 1 Core, DOM Level 2 Core, and the
NodeList interface when building their System.Xml classes. Every interface is fully
supported, including every property and method defined by the W3C. Microsoft
has made additions to the interfaces that the W3C recommends in order to make
development with XML easier for the developer.They added a number of classes,
properties, and methods to slightly simplify access to data that might otherwise be
more cumbersome in a strict DOM implementation.

We went through an application using the System.Xml classes that created an
address book that used XML as its data store. Overall, the application was simple
(as far as applications go), but it demonstrated how to use a number of the
System.Xml classes, including XmlDocument, XmlNode, XmlElement, XmlAttribute,
and XmlNodeList (the four most commonly used classes).The XML Address Book

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 156

Using XML in the .NET Framework • Chapter 4 157

built an XML document, added nodes, edited nodes, removed nodes, and pro-
vided the user interface to tie all the code to events that the user would generate
while using the application.

Solutions Fast Track
Explaining the XML Document Object Model

The W3C created the DOM to provide a common set of interfaces for
all DOM-compliant parsers to use, so developers would not need to
completely relearn new parsers for different languages and technologies.

The four main node interfaces in the DOM are Node, Document,
Element, and Attribute. Using these four interfaces, you have full
programmatic ability to create, modify, and delete an XML document.

DOM Range, DOM Traversal, and DOM XPath were created to assist
in working with XML documents and the DOM Core interfaces.

Introduction to the System.Xml Namespace
The System.Xml classes fully support all DOM Level 1 Core and DOM
Level 2 Core interfaces.

Some additional functionality has been added to the System.Xml classes
to ease development efforts, including (but not limited to) new classes to
access the XML data (XmlDataDocument), new methods on certain
classes, and new properties on certain classes.

Using the System.Xml Namespace
Determine the format for the XML Address Book in order to know
ahead of time how your data will be structured when you need to
modify it.

Create the ability to add and delete categories, and how to select
individual categories and display their information on the screen. Create
the ability to select the list of entries that are in any given category.

Create the ability to add, edit, and delete entries, and how to select
individual entries and display their information on the screen.

www.syngress.com

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 157

158 Chapter 4 • Using XML in the .NET Framework

Q: Does it matter which XML classes I use in my project?

A: Yes.You should always use the classes that are most relevant to the problem at
hand. If you need to access relational data in XML format, use the
XmlDataDocument class. If you need a simple forward-only, cursor-like access
to your XML data, use the XmlTextReader to get your XML data.

Q: I’m having trouble figuring out when to use XML in my project; where
should I use it?

A: XML should be used when the best solution is to use XML.That is vague,
but, overall, XML should be used when you need a textual representation of
your data.This can include any number of things, including the data store for
an address book or when you need to share information between applications.

Q: Who should define my XML data format?

A: That is completely up to the developer who is working on the application.
There are a number of XML standards already created for various business
types. More information can be found at www.oasis-open.org/.

Q: When working with the System.Xml classes, should I stick to the DOM-com-
pliant methods and properties, or should I use everything available to me?

A: It is important to understand what methods and properties are DOM com-
pliant if you ever plan to switch to another XML parser. However, using the
additional functionality provided by the System.Xml classes shouldn’t hinder
you too much if you do switch if you already understand what you’re using
that isn’t DOM compliant.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

155_xml_net_pd_C04.qk 3/6/02 1:57 PM Page 158

Understanding .NET
and XML Security

Solutions in this chapter:

■ The Risks Associated with Using XML in
the .NET Framework

■ .NET Internal Security as a Viable Alternative

■ Security Concepts

■ Code Access Security

■ Role-Based Security

■ Security Policies

■ Cryptography

■ Security Tools

■ Securing XML—Best Practices

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 5

159

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 159

160 Chapter 5 • Understanding .NET and XML Security

Introduction
When you discuss a topic within the realm of Information Technology (IT), the
subject of security will be brought to the table, especially if the product carries
the Microsoft logo. Luckily for Microsoft, on XML, the IT industry has a collec-
tive conscience.As odd as it might seem, security was never a requirement when
XML was developed.This is no longer the case, but barely.As of September
2001, a standard for XML signatures has not reached the final W3C recommen-
dation. On XML encryption, only a draft version exists.This also means that
many manufacturers have yet to implement XML signatures and encryption.

Of course, we try to keep this security void under control by sending docu-
ments over secure channels, such as SSL and VPN. However, if somebody with ill
intent can make use of this secure channel, he, as is mostly the case, can submit
rogue XML documents into this channel.Without verifiable sender identifica-
tion, you can never be sure of the legitimacy of an XML document. Moreover,
even if you can sign your XML document, you need encryption to obscure the
content from prying eyes.

In a way, this chapter is kind of an odd man out, since none of the XML-
related .NET namespaces touches the subject of security. However, .NET has a
single nasmespace within the XML namespace that deals with security. In the
documentation, Microsoft warns that you should not use this namespace, since it
is meant for the .NET Framework security system. No further explanation is
given, and it even contradicts the founding principles of the .NET Framework.
Although many of these classes carry much resemblance to soon-to be-standard
XML signature. Our guess is that it not fully complies with the latest version of
the XML signature standard and therefore will not interoperate with other
implementations of this standard.A possible hint is the fact that the documenta-
tion of this namespace references a draft from February 2000.

Since security is such an important subject, we will spend this chapter on
XML security within the .NET Framework.Then we will look at XML and its
internal security capabilities.

The Risks Associated with Using
XML in the .NET Framework
XML and XSL are very powerful tools, and when wisely wielded can create
Web applications that are easy to maintain because of the separation of data and

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 160

www.syngress.com

presentation.With a little planning, you can reduce the amount of code necessary
by compartmentalizing key aspects of functionality using XML and XSL and
reusing them throughout the application.Along with changing the way in which
your components communicate within your application, XML will change the
way entities communicate over the Internet.

XML and XSL are open standards, which is one of the reasons why these
standards have become so popular. Many times, XML schemas are published by
organizations to standardized industry- or business-related information.This is
done in the hopes of further automating business processes, increasing collabora-
tion, and easily integrating with new business partners over the Internet.As XML
becomes more popular, you will begin seeing more information being exchanged
between businesses and organizations.As always, secure design and architecture
are key to making sure that none of that information is compromised during the
exchange.The next sections provide a basis for understanding and using the
XML encryption and digital signature specifications.

Confidentiality Concerns
The best way to protect data is to not expose it, and let’s face it; anything you
send over the Internet is fair game.Although you might feel safer making a pur-
chase over the Internet with a credit card than when your waiter picks up your
credit card at the restaurant, a risk is still a risk.

As always, when dealing with the Internet, security is an issue, but remember
that XML is about data, plain and simple, and XSL is about transforming XML.
Security needs to be carefully implemented in all Web applications, but it should
be implemented in a layer autonomous to XML and XSL. If information is not
meant to be seen, it is much safer to transform the XML document to exclude
the sensitive information prior to delivering the document to the recipient, rather
than encrypt the information within the document.

XSL is a great way to “censor” your XML documents prior to delivery.
Because XSL can be used to transform XML into anything, including a new
XML document, it will allow you to have very granular control over what data
gets sent to whom when it is used in conjunction with authentication.

If you find yourself adding a username and password element to your XML,
stop. If you are encrypting values prior to entering them into an XML docu-
ment, stop.Tools already exist that you can use for authentication, authorization,
and encryption.These concepts are integral to Web applications, but at a higher
level in the overall architecture.

Understanding .NET and XML Security • Chapter 5 161

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 161

162 Chapter 5 • Understanding .NET and XML Security

For example, let’s say that you have an e-commerce Web site that takes
orders over the Web and then sends that order to a fulfillment company via
XML to be packed and shipped. Because the credit card needs to be debited at
the time of shipping, you feel it necessary to send the credit card number to the
fulfillment company in the XML document that contains the rest of the order
information. Feeling uncomfortable in exposing that information in clear text,
you decide to encrypt the credit card number within the XML document.
Although your intentions are good, the decision has consequences.The XML
document no longer becomes self-describing. It has also become proprietary
because you need the encryption algorithm in order to extract the credit card
number.This decision reintroduces some of the problems XML was meant to
eliminate. In many of these cases, other solutions exist. One might be to not
send the credit card information to the fulfillment company along with the rest
of the order.When the order has been shipped, have the fulfillment company
send a shipping notification to your application and have your application debit
the credit card.

Note that both your data and your code are at risk. XSL is a complete pro-
gramming language, and at times may be more valuable than the information
contained within the XML it transforms.When you perform client-side transfor-
mations, you expose your XSL in much the same way that HTML is exposed to
the client. Granted, most of your programming logic will remain secure on the
server, but XSL still comprises a great deal of your application. Securing it is as
important as securing your XML.

.NET Internal Security
as a Viable Alternative
As we discuss in the following sections, code access security and role-based secu-
rity are the most important vehicles to carry the security through your applica-
tions and systems. However, let it be clear that we are not discussing VB or C#
security, but .NET security; that is, the security defined by the .NET Framework
and enforced by the CLR. Since the .NET Framework namespaces make full use
of the security, every call to a protected resource or operation when using one of
these namespaces automatically activates the code access security (CAS). Only if
you start up the CLR with the security switched off, CAS will not be activated.
The CLR is able to “sandbox” code that is executed, preventing code that is not
trusted from accessing protected resources or even from executing at all.We

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 162

Understanding .NET and XML Security • Chapter 5 163

discuss this more thoroughly in the Code Access Security section later in this
chapter.What is important to understand is that you can no longer ignore secu-
rity as a part of your design and implementation phase. It is a priority to safe-
guard your systems from malicious code, and you also want to protect your
code/application from being “misused” by less-trusted code. For example, let’s say
that you implement an assembly that holds procedures/functions that modifies
Registry settings. Because these procedures/functions can be called by other
unknown code, these can become tools for malicious code if you do not incor-
porate the .NET Framework security as part of your code.

To be able to use the .NET Security to your advantage, you need to under-
stand the concepts behind the security.

Permissions
In the real world, permission refers to an authority giving you, or anyone else for
that matter, the formal “OK” to perform a specified task that is normally
restricted to a limited group of persons.The same goes for the meaning of per-
mission in the .NET Security Framework: getting permission to access a pro-
tected resource or operation that is not available for unauthorized users and code.
An example of a protected resource is the Registry, and a protected operation is a
call to a COM+ component, which is regarded as unmanaged code and therefore
less secure.The types of permissions that can be identified include:

■ Code access permissions Protects the system from code that can be
malicious or just unstable; see the Code Access Security section for more
information.

■ Role-based security permissions Limits the tasks a user can per-
form, based on the role(s) he plays or the identity he has; see the Role-
Based Security section for more information.

■ Identity permissions See the Role-Based Security section for more
information.

■ Custom permissions You can create your own permission in any
of the other three types, or any combination thereof.This demands a
thorough understanding of the .NET Framework security and the
working of permissions. An ill-constructed permission can create secu-
rity vulnerabilities.

You can use permissions through different methods:

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 163

164 Chapter 5 • Understanding .NET and XML Security

■ Requests Code can request specific permissions from the CLR, which
will only authorize this request if the assembly in which the code resides
has the proper trust level.This level is related to the security policy that is
assigned to the assembly, which is determined on the base of evidence the
assembly carries. Code can never request more permission than the secu-
rity policy defines; such a request will always be denied by the CLR.
However, the code can request less permission.What exactly security
policy and evidence consist of is discussed over the course of this chapter.

■ Grants The CLR can grant permissions based on the security policy
and the trustworthiness of the code, and it requests code issues.

■ Demands The code demands that the caller has already been granted
certain permissions in order to execute the code.This is the security part
for which you are actively responsible.

Principal
The term principal refers directly to the role-based security, being the security
context of the executed code.A principal is created based on the identity and
role(s) of the caller, whether it is a user or other code. In fact, every thread that is
activated is assigned a principal that is by default equal to the principal of the
caller.Although we just stated that the principal holds the identity of the caller,
this is not entirely correct, because the principal has only a reference to the
caller’s identity, which already exists prior to the creation of the principal.Three
types of principals can be identified:

■ Windows principal Identifies a user and the groups it is a member of
that exists within a Windows NT/2000 environment.A Windows principal
has the capability to impersonate another Windows user, which resembles
the impersonate you might know from the COM+ applications.

■ Generic principal Identifies a user and its roles, not related to a
Windows user.The application is responsible for creating this type of
principal. Impersonation is not a characteristic of a general principal, but
because the code can modify the principal, it can take on the identity of
a different user or role.

■ Custom principal You can construct these yourself to create a prin-
cipal with additional characteristics that better suits your application.
Custom principals should never be exposed, because doing so can create
serious security vulnerabilities.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 164

Understanding .NET and XML Security • Chapter 5 165

Authentication
In general, authentication is the verification of a user’s identity; hence, the creden-
tials he hands over. Because the identity of the caller in the .NET Framework is
presented through the principal, the identity of the principal has to be estab-
lished. Because your code can access the information that is available in the
principal, it can perform additional authentication tests. In fact, because you can
define your own principal, you can also be in control over the authentication
process.The .NET Framework supports not only the two most-used authentica-
tion methods within the Windows 2000 domain—NTLM and Kerberos V5.0—
but also supports other forms of authentication, such as Microsoft Passport.
Authentication is used in role-based security to determine if the user has a role
that can access the code.

Authorization
Authorization takes place after authentication, based on the established identity of
the principal.Authorization in relation to roles has to be part of the code and can
take place at every point in the code.You can use the user and role information
in the principal to determine if a part of the code can be executed.The permis-
sions the principal is given, based on its identity, determine if the code can access
specific protected resources.

Security Policy
To be able to manage the security that is enforced by the CLR, an administrator
can create new or modify existing security policies. Before an assembly is loaded,
its credentials are checked.This evidence is part of the assembly.The assembly is
assigned a security policy depending on the level of trust, which determines the
permissions the assembly is granted.The setting of security policies is controlled
by the system administrator and is crucial in fending off malicious code.The best
approach in setting the security policies is to grant no permissions to an assembly
for which the identity cannot be established.The stricter you define the security
policies, the more securely your CLR will operate.

Type Safety
A piece of code is labeled type safe if it only accesses memory resources that do
not belong to the memory assigned to it.Type safety verification takes place
during the JIT compilation phase and prevents unsafe code from becoming

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 165

166 Chapter 5 • Understanding .NET and XML Security

active.Although you can disable type safety verification, it can lead to unpre-
dictable results.The best example is that code can make unrestricted calls to
unmanaged code, and if that code has malicious intent, the results can be severe.
Therefore, only fully trusted assemblies are allowed to bypass verification.Type
safety can be regarded as a form of “sandboxing.”

Code Access Security
The .NET Framework is based on the concept of distributed applications, in
which an application does not necessarily have a single owner.To circumvent the
problem of which parts of the application (being assemblies) to trust, code access
security is introduced.This is a very powerful way to protect the system from
code that can be malicious or just unstable. Remember that it is always active,
even if you do not use it in your own code. CAS helps you in:

■ Limiting access permissions of assemblies by applying security policies

■ Protecting the code from obtaining more permissions than the security
policy initially permits

■ Managing and configuring permission sets within security policies to
reflect the specific security needs

■ Granting assemblies specific permissions that they request

■ Enabling assemblies in demanding specific permissions from the caller

■ Using the caller’s identity and credentials to access protected resources
and code

.NET Code Access Security Model
The .NET code access security model is built around a number of characteristics:

■ Stack walking

■ Code identity

■ Code groups

■ Declarative and imperative security

■ Requesting permissions

■ Demanding permissions

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 166

Understanding .NET and XML Security • Chapter 5 167

■ Overriding security checks

■ Custom permissions

By discussing these characteristics, you will get a better understanding of how
CAS works, and how it can work for you during the design and implementation
of applications.

Stack Walking
Perhaps stack walking is the most important mechanism within CAS to ensure that
assemblies cannot gain access to protected resources and code during the course
of the execution.As mentioned before, one of the initial steps in the assembly
load process is that the level of trust of the assembly is determined, and corre-
sponding permission sets are associated with the assembly.The total package of
sets is the maximum number of permissions an assembly can obtain.

Because the code in an assembly can call a method in another assembly and
so forth, a calling chain develops (Figure 5.1), with every assembly having its own
permissions set. Suppose that an assembly demands that its caller have a specific
permission (UIPermission in Figure 5.1) to be able to execute the method. Now
the stack walking of the CLR kicks in.The CLR starts checking the stack where
every assembly in the calling chain has its own data segment. Going back in the
stack, every assembly is checked for the presence of this demanded permission, in
our case UIPermission. If all assemblies have this permission, the code can be exe-
cuted. If, however, somewhere in the stack an assembly does not have this per-
mission (in our case this is in the top assembly Assembly1), the CLR throws an
exception, and access to the method is refused.

Stack walking prevents calling code from getting access to protected resources
and code for which it initially does not have authorization.You can conclude that
at any point of the calling chain the effective permission set is equal to the inter-
section of the permission sets of the assemblies involved.

Even if you do not incorporate the permission demand in your code, stack
walking will take place because all class libraries that come with the CLR make
use of demand to ensure the secure working of the CLR.The only drawback of
stack walking is that it can have a serious performance impact, especially if the
calling chain is long. Suppose the stack contains eight assemblies, and the top
assembly makes a call to a method that demands a specific permission and does
so in a 200-fold loop.After executing the loop, 200 security stack walks are trig-
gered. Since each stack walk performs eight security checks, the total number of
security checks is 1600.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 167

168 Chapter 5 • Understanding .NET and XML Security

Code Identity
The whole principle of the .NET Framework security rides on code identity, or to
what level a piece of code can be trusted.The code identity is established based
on the evidence that is presented to the CLR. Evidence can come from two
sources:

■ Evidence that is incorporated in the assembly, and put in there during
the coding and subsequent compiling of the code, or which can later be
added to the assembly.

■ Evidence that is provided by the host where the assembly resides.The
CLR controls the accepting of host evidence, through the security per-
mission ControlEvidence, which should be granted only to trusted hosts.

Table 5.1 lists the default evidence that can be used to determine to what
code group code belongs. Because you cannot control the identity of the
assembly, you are never sure how reliable this evidence is, except for the signa-
tures provided.

www.syngress.com

Figure 5.1 Performing Stack Walking to Prevent Unauthorized Access

Calling Chain on the Stack

Assembly1

Method1a Granted:
FileIOPermission

Assembly2

Method2a Granted:
FileIOPermission

UIPermission

Assembly3

Method3a Granted:
FileIOPermission

UIPermission

Assembly4

Method4a Granted:
FileIOPermission

UIPermission

Assembly5

Method5a Granted:
FileIOPermission

UIPermission

Assembly6

Method6a Granted:
FileIOPermission

UIPermission
UIPermission
(SecurityAction.Demand)

Succeeded

Succeeded

Succeeded

Succeeded

Failed

Sta
ck

 W
alk

 R
es

ult
: F

AI
L

Se
cu

rit
y S

ta
ck

 W
alk

 de
ma

nd
ing

 th
e U

IP
er

mi
ssi

on

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 168

Understanding .NET and XML Security • Chapter 5 169

Table 5.1 The Available Default Types of Evidence

Evidence Description

Directory The directory where the application—hence, assembly—is
installed.

Hash The cryptographic hash that is used in the code of the
code: MD5 or SHA1 (see the Cryptography section).

Publisher The signature of the assembly’s owner, in the form of a
X.509 certificate, set through Authenticode.

Site The name of the site from which the assembly originates;
for example, www.company.com (prefixes and suffixes are
disregarded).

Strong name The strong name consists of the assembly name (given name),
public key (of the publisher), version numbers, and culture.

URL The full URL, also called code base, including prefix and
suffix: https://www.company.com:4330/*.

Zone The zone in which the assembly originates. Default zones
are Internet, Local Intranet, My Computer, No Zone
Evidence, Trusted Sites, and Untrusted (Restricted) Sites.

The more evidence you can gather about the assembly, the better you can
determine to what extent you can grant it permissions.The strong name is of
great importance. If you and all other serious application developers are persistent
in providing assemblies with strong names, you can prevent your code from
becoming the vehicle of someone’s dubious intents. Sadly enough, malicious code
can still have a convincing strong name, which is why the best evidence is the
certificate and signature that should be present with the assembly. Once you have
established the trustworthiness of an assembly, based on all the evidence before
you, you can determine the appropriate permission sets. Here is where your
realm of control starts, by constructing appropriate code groups.

Code Groups
A code group can be defined as a group of assemblies that share the same value for
one, and only one, piece of evidence, called membership condition. Based on this
evidence, a permission set is attached to the assembly. Because a code group is
part of a code group hierarchy (Figure 5.2), an assembly can be part of more
code groups.The effective permission set of the assembly is the union of the per-
missions sets of the code groups to which it belongs.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 169

170 Chapter 5 • Understanding .NET and XML Security

When an assembly is about to be loaded, the evidence is collected and the
code group hierarchy is checked.When the assembly is matched with a code
group, the CLR will check its child code groups.This implies that the con-
struction of the hierarchy is very important and must be built starting with
the general evidence items—for example, starting with zone and moving on
to more specific ones such as publisher. A complicating factor is that there are
three security levels (Enterprise, Machine, and User), each with its own code
group hierarchy. All three are evaluated, resulting in three permission sets,
which at the end are intersected, thereby determining the effective permis-
sion set.

It is the administrator’s responsibility to construct code group hierarchies that
can quickly be scanned and enforce a high level of security.To do so, you must
take several factors into account:

■ Limit the number of levels.

■ Use membership conditions at the first level that are highly discrimina-
tory, preventing large parts of the hierarchy from being checked.

■ The hierarchy’s root, All Code, should have no permissions assigned, so
code that does not contain at least some evidence is not allowed to run.

■ The more convincing the evidence—for example, the publishers certifi-
cate—the more permissions that can be granted.

www.syngress.com

Figure 5.2 Graphical Representation of a Code Group Hierarchy

All_Code
Permission set:

Nothing

Publisher:
msdn.one.microsoft.com

Permission set:
LocalIntranet

Zone:
Internet

Permission set:
Internet

Site:
msdn.one.microsoft.com

Permission set:
Nothing

Strong
Name:
MyOwnCompany

Permission set:
FullTrust

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 170

Understanding .NET and XML Security • Chapter 5 171

■ Make no exceptions or shortcuts by giving out more permissions
than the evidence justifies. Assume that you have a specific applica-
tion running in the intranet zone that needs to have full trust to
operate. Because it is your own application, you implicitly trust it,
without the factual evidence. If you do this, however, it can come
back to haunt you.

Table 5.2 lists the available default membership conditions.You can construct
your own, but that is beyond the scope of this chapter. Membership conditions
are discussed in more detail later in the chapter.

Table 5.2 Default Membership Conditions for Code Groups

Membership Condition Description

All Code Applies to every assembly that is loaded.
Application directory Applies to all assemblies that reside in the

same directory tree as the running application;
hence, the Application domain.

Hash Applies to all the assemblies that use the same
hash algorithm as specified, or have the speci-
fied hash value.

Publisher Applies to all assemblies that carry the speci-
fied publishers certificate.

Site Applies to all assemblies that originate from
the same site.

Skip verification Applies to all assemblies that request the Skip
Verification permission. WARNING: This per-
mission allows for the bypassing of type safety.
Use it only at the lowest level after you have
established that the code is fully trusted.

Strong name Applies to all assemblies that have the speci-
fied strong name.

URL Applies to all assemblies that originate from
the specified URL, including prefix, suffix, path,
and eventual wildcard.

Zone Applies to all assemblies that reside in the
specified zone.

(custom) Applies to custom-made conditions that are
normally directly related to specific applications.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 171

172 Chapter 5 • Understanding .NET and XML Security

Declarative and Imperative Security
There are two ways to add security to your code.This can be a demand that callers
have a specific permission, or a request for a specific permission from the CLR.

The first method is declarative security, which can be set at assembly, class,
and/or member level, so you can demand different permissions at different places
in the assembly. Permission demand at member level will only be effectuated, as
this part of the code is actually called.The VB.NET syntax of declarative code is
<[assembly:]Permission(SecurityAction.Member, State)>; for example:

<assembly: FileIOPermission(SecurityAction.Demand, Unrestricted := True)>

<FileIOPermission(SecurityAction.Request, Unrestricted := True)>

The first security example is valid for the entire assembly; hence, every call in
this assembly needs to have the FileIOPermission.The second example can be
used for a class or a single method. Only a reference to a class or a call of the
method will request the CLR for FileIOPermission.

As the syntax already suggests, by using brackets (<>), this code is not treated
as ordinary code. In fact, as you compile the code to an assembly, these lines are
extracted and placed in the metadata part of the assembly.This metadata is
checked at different points, such as during the load of the assembly or when a
method in the assembly is called. Using declarative security, you can demand,
request, or even override permissions before the code is even executed.This gives
you a powerful security tool during the development of the code and assemblies.
However, this means that you must be aware of the type of permissions you need
to request and/or demand your code.

The second method is imperative security, which becomes a part of your code
and can make permission demands and overrides. It is not possible to request per-
missions using imperative security, because that makes it unclear at what point a
specific permission is needed and at what point it is no longer needed.That is why
permission requests are related to identifiable units of code.You might want to use
imperative security to check if the caller has a permission that is specific for a part
of the code. For example, just before a conditional part of the code (this might
even be triggered by the role-based security) wants to access a file or a Registry
key, you want to check if the caller has this FileIOPermission or RegistryPermission.
The VB.NET syntax of the imperative security in code looks like this:

Dim PermissionObject as New Permission()

PermissionObject.Demand()

Here is an example:

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 172

Understanding .NET and XML Security • Chapter 5 173

www.syngress.com

Dim CheckPermission as New FileIOPermission()

CheckPermission.Demand()

The permission object is valid only for the scope on which it is declared, and
it will be automatically discarded at the time the code returns to a higher scope.
During this scope, imperative security demands and overrides overrule the per-
missions demanded with a declarative security statement.

Having discussed declarative and imperative security, it is time to take a look
at how you can use this to request, demand, and override permissions.

Requesting Permissions
Requesting permissions is the best way to create a secure application and prevent
possible misuse of your code by malicious code.As mentioned before, based on the
evidence, an assembly hands over to the CLR, and then a permission set is deter-
mined, using security policies.These security policies are constructed independently
from the permissions an assembly needs. Of course, if you fully trust an assembly,
you can grant it all the permissions it needs.An assembly can be granted more per-
missions than it actually needs. Requesting permissions is not asking for more per-
missions than you are granted, based on the security profile, but refraining from
granting permissions the code does not need. By now you have probably started to
wonder what the use of requesting permissions is if the security policy decides
what permissions are available to the assembly.The term available implies two issues:

■ If an assembly requests more permissions than it is granted, based on the
security policy, it will not be loaded and/or the code will not be exe-
cuted. Instead, the CLR will throw an exception.

■ If an assembly requests less permissions, it protects itself from misuse of
these additional permissions somewhere up or down the calling chain.

Requesting permissions is a characteristic of proper .NET applications, and
demands from the developer a good understanding of the use of permissions
related to the code he writes. Because you can only request permissions by using
declarative security, you can first write and test the code and then add the permis-
sion requests later.This can make the development process easier, saving you the
hassle of constantly having to consider permission requests for unfinished code.

There are three types of permission requests:

■ RequestMinimum Defines the permissions the code absolutely needs
to be able to run. If the RequestMinimum permission is not part of the
granted permission set, the code is not allowed to run.

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 173

174 Chapter 5 • Understanding .NET and XML Security

■ RequestOptional Defines the permissions the code might not neces-
sarily need to be able to run, but might need in certain circumstances. If
the RequestOptional permission is not part of the granted permission set,
the code is still allowed to run. However, you need the code to be able
to handle the situation in which the permission is needed but not
granted, thus handling exceptions.

■ RequestRefuse Defines the permissions the code will never need and
which should not be granted to the assembly. By refraining from certain
permissions you prevent malicious code or unstable code from misusing
these permissions.

After the code is completed and you compile assemblies, you should get into
the practice of making a minimum, optional, or refuse request for every permis-
sion (as listed in Table 5.3), based on the permissions needed by the code.
Eventually, you can make it more specific to relate it to classes or members.
Besides the fact that you can create secure assemblies, it is also a good way of
documenting the permissions related to your code.

Table 5.3 The Default Permission Classes Derived from the
CodeAccessPermission Class

Permission
Permission Class Type Description

DirectoryServices Resource Controls access to the
Permission System.DirectoryServices classes.
DnsPermission Resource Controls access to the DNS servers on

the network.
Environment Resource Controls access to the user
Permission environment variables.
EventLogPermission Resource Controls access to the event log

services.
FileDialogPermission Resource Controls access to files that are selected

through an Open | File… dialog.
FileIOPermission Resource Controls access to files and directories.
IsolatedStorageFile Resource Controls access to a private virtual
Permission file system related to the identity of

the application or component.
MessageQueue Resource Controls access to the MSMQ
Permission services.

www.syngress.com

Continued

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 174

Understanding .NET and XML Security • Chapter 5 175

Table 5.3 Continued

Permission
Permission Class Type Description

OleDbPermission Resource Controls access to the OLE DB data
provider and the data sources associ-
ated with it.

PerformanceCounter Resource Controls access to the performance
Permission counters of Windows 2000 (or NT).

PrintingPermission Resource Controls access to printers.

ReflectionPermission Resource Controls access to metadata types.

RegistryPermission Resource Controls access to the Registry.

SecurityPermission Resource Controls access to SecurityPermission,
such as Assert, Skip Verification, and
Call Unmanaged Code.

ServiceController Resource Controls access to services on the
Permission system.

SocketPermission Resource Controls access to sockets that are
needed to set up or accept a network
connection.

SqlClientPermission Resource Controls access to SQL server
databases.

UIPermission Resource Controls access to UI functionality,
such as Clipboard.

WebPermission Resource Controls access to an Internet-related
resource.

PublisherIdentity Identity Permission is granted if the evidence
Permission publisher is provided by the caller.

SiteIdentityPermission Identity Permission is granted if the evidence
site is provided by the caller.

StrongNameIdentity Identity Permission is granted if the evidence
Permission strong name is provided by the caller.

UrlIdentityPermission Identity Permission is granted if the evidence
URL is provided by the caller.

ZoneIdentity Identity Permission is granted if the evidence
Permission zone is provided by the caller.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 175

176 Chapter 5 • Understanding .NET and XML Security

Now let’s look at some examples of the different types of requests:

<assembly: SecurityPermissionAttribute(SecurityAction.RequestMinimum, _

Flags := SecurityPermissionFlag.ControlPrincipal)>

In order for this assembly to run, it needs at least the permission to be able to
manipulate the principal object.This is a permission you would give only to an
assembly you trust.

<assembly: SecurityPermissionAttribute(SecurityAction.RequestMinimum, _

ControleEvidence : = True)>

In order for this assembly to run, it needs at least the permission to be able to
provide additional evidence and modify the evidence as provided by the CLR.
This is a powerful permission you would give only to fully trusted assemblies.

<FileIOPermissionAttribute(SecurityAction.RequestOptional, _

Write := "C:\Test*.cfg")> Public Class ClassAct

The ClassAct class requests the optional permission to be able to write to files
in the C:\Test directory with the extension .cfg. If the security policy permits
FileIOPermission, this restricted request is given. If the FileIOPermission is not
granted, then any subsequent write to a CFG file in C:\Test will fail.

<assembly: FileIOPermission(SecurityAction.RequestRefuse, _

Unrestricted := True)>

The assembly refuses the FileIOPermission, even if the security policy grants
this permission. If you used this request in combination with the previous
example, and the security policy grants FileIOPermission, only ClassAct will get
this restricted FileIOPermission, and the rest of the code in the assembly will not
have any FileIOPermission.

<assembly: FileIOPermission(SecurityAction.RequestRefuse, _

All := "C:\Winnt\System32*.*")>

The assembly refuses only FileIOPermission to the access of files in the
C:\Winnt\System32 directory. If the security policy grants this permission, the
assembly can access all files, except for the one in the stated directory.

Instead of making requests for every code access permission, you can also
request one of the following named permission sets: Nothing, Execution, Internet,
LocalIntranet, SkipVerification, and FullTrust.You can do this by issuing the fol-
lowing request:

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 176

Understanding .NET and XML Security • Chapter 5 177

<assembly: PermissionSetAttribute(SecurityAction.RequestMinimum, _

Name := NamedPermissionSet)>

Another way to request more code access permissions in one statement is to
use XML-coded permission sets:

<assembly: PermissionSetAttribute(SecurityAction.RequestMinimum, _

File := "Filename.xml")>

Demanding Permissions
By demanding permissions, you force the caller to have a specific permission it
needs to execute the code. If the caller has this request, it is very likely that he
obtained it by requesting it at the CLR.As we discussed before, a permission
demand triggers a security stack walk. Even if you do not perform these demands
yourself, the .NET Framework classes will.This means that you should never per-
form permission demands related to these classes, because they will take care of
those themselves. If you do perform a demand, it will be redundant and only add
to the execution overhead.This does not mean that you should ignore it; instead,
when writing code, you must be aware of which call will trigger a stack walk,
and make sure that the code does not encourage a surplus of stack walks.
However, when you build your own classes that access protected resources, you
need to place the proper permission demands, using the declarative or imperative
security syntax.

Using the declarative syntax when making a permission demand is prefer-
able to using the imperative syntax, because the latter might result in more
stack walks.There are, of course, cases that are better suited for imperative per-
mission demands. For example, if a Registry key has to be set under specific
conditions, you will perform an imperative RegistryPermission demand just
before the code is actually called.This also implies that the caller can lack this
permission, which will result in an exception that the code needs to handle
accordingly. Another reason why you want to use imperative demands is when
information is not known at compile time. A simple example is
FileIOPermission on a set of files whose names are only known during runtime
because they are user related.

Two types of demands are handled differently than previously described.
First, the link demand can be used only in a declarative way at the class or
method level.The link demand is performed only during the JIT compilation
phase, in which it is checked if the calling code has sufficient permission to
link to your code. A security stack walk is not performed because linking

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 177

178 Chapter 5 • Understanding .NET and XML Security

exists only in a direct relation between the caller and code being called.The
use of link demands can be helpful to methods that are accessible through
reflection.The link demand will not only perform a security check on code
that obtains the MethodInfo object—hence, performing the reflection—but the
same security check is performed on the code that will make the actual call to
the method.The following two examples show a link demand at class and at
method level:

<SecurityPermissionAttribute(SecurityAction.LinkDemand, _

Unrestricted := True)> _

Public Class ClassAct

Public Shared Function _

<SecurityPermissiobAttribute(SecurityAction.LinkDemand)> _

Act1() As Integer

' body of the function

End Function

The second type of demand is inheritance demand, which can be used at both
the class and method level, through the declarative security. Placing an inheri-
tance demand on a class can protect that class from being inherited by a class
that does not have the specified permission. Although you can use a default
permission, it makes sense to create a custom permission that must be assigned
to the inheriting class to be able to inherit from the class with the inheritance
demand.The same goes for the class that inherits from the inheriting class. For
example, let’s say that you have created the ClassAct class that is inheritable, but
also has an inheritance demand set.You have defined your own inherit permis-
sion InheritAct. Another class called ClassActing wants to inherit from your class,
but because it is protected with an inheritance demand, it must have the
InheritAct permission in order to be able to inherit. Let’s assume that this is the
case. Now there is another class called ClassReacting that wants to inherit from
the class ClassActing. In order for ClassReacting to inherit from ClassActing, it
also needs to have the InheritAct permission assigned.The inheritance demand
would look like this:

<InheritActAttribute(SecurityAction.InheritanceDemand)> Public Class

ClassAct

The inheritance demand at method level can be the following:

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 178

Understanding .NET and XML Security • Chapter 5 179

Public Overridable Function

<SecurityPermissionAttribute(SecurityAction.InheritanceDemand)>

Act1() as Integer

' Body of the function

End Function

Overriding Security Checks
Because stack walking can introduce serious overhead and thus performance
degradation, you need to keep stack walks under control.This is especially true if
they do not necessarily contribute to security, such as when a part of the execu-
tion can only take place in fully trusted code. On the other hand, your code has
permission to access specific protected resources, but you do not want code that
you call to gain access to these resources—so you want to have a way to prevent
this. In both cases, you want to take control of the permission security checks;
hence, overriding security checks.You can do this by using the security actions
Assert, Deny, and PermitOnly (meaning “deny everything but”).

After the code sets an override, it can undo this override by calling the corre-
sponding Revert method: RevertAssert, RevertDeny, and RevertPermitOnly, respec-
tively. Get into the practice of first calling the Revert method before setting the
override, because performing a revert on a nonexisting override has no effect.

WARNING

You can place more than one override of the same type—for example,
Deny—within the same piece of code. However, this is not acceptable to
the CLR. If during a stack walk, the CLR encounters more than one of the
same asserts it throws an exception, because it does not know which of
the overrides to trust. If you have more than one place in a piece of code
where you set an override, be sure to revert the first one before setting
the new one.

Assert Override
When you set an assert override on a specific permission, you force a stack walk
on this permission to stop at your code and not continue to check the callers of
your method.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 179

180 Chapter 5 • Understanding .NET and XML Security

WARNING

If you use an assert, you inadvertently create a security vulnerability,
because you prevent the CLR from completing security checks. You must
convince yourself that this vulnerability cannot be exploited.

The use of Assert makes sense in the following situations:

■ You have coded a part of an application that will never be exposed to
the outside world.The user of the application has no way of knowing
what happens within that part of the application.Your code does need
access to protected resources, such as system files and/or Registry keys,
but because the callers will never find out that you use these protected
resources, it is reasonably safe to set an Assert to prevent a full security
check from being performed.You do not care if the caller has that per-
mission or not.

■ Your code needs to make one or more calls to unmanaged code, but
because the caller of the code obtains access through your Web site, you
are safe in assuming that he will not have permissions to make calls to
unmanaged code. On the other hand, the callers cannot influence the
calls you make to unmanaged code.Therefore, it is reasonably safe to
assert the permission to access unmanaged code.

■ You know that somewhere in your code you have to perform a search,
using a Do..Loop structure that at one point has to access a protected
resource.You also know that the code that calls the protected resource
cannot be called from outside the loop.Therefore, you decide to set an
assertion just before the call to the protected resource, to prevent a sur-
plus of stack walks. In case the particular piece of code that does the call
to the protected resource can be called by other code, you have to move
up the assertion to the code that can only be called from the loop.

Let’s look at the stack walk that was initially used in Figure 5.1, but now let’s
throw in an assertion and see what happens (Figure 5.3).The assert is set in
Assembly4 on the UIPermission. In the situation with no assert, the stack walk did
not succeed because Assembly1 did not have this permission. Now the stack walk
starts at Assembly6 performing a permission demand on UIPermission, and goes on
its way as it usually goes. Now the stack walk reaches Assembly4 and recognizes

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 180

Understanding .NET and XML Security • Chapter 5 181

an assert on the permission it is checking.The stack walk stops there and returns
with a positive result. Because the stack walk was short-circuited, the CLR has
no way of knowing that Assembly1 did not have this permission.

An Assert can be set using both the declarative and the imperative syntax. In
the first example, the declarative syntax is used.An Assert is set on the
FileIOPermission.Write permission for the CFG files in the C:\Test directory:

Public Function _

<FileIOPermission(SecurityAction.Assert, Write :=

"C:\Test*.cfg")> _

Act1() As Integer

' body of the function

End Function

The second example uses the imperative syntax setting the same type of Assert:

Public Function Act1() As Integer

Dim ActFilePerm As New

FileIOPermission(FileIOPermissionAccess.Write, _

"C:\Test*.cfg")

www.syngress.com

Figure 5.3 A Stack Walk Is Short-Circuited by an Assert

Calling Chain on the Stack

Assembly1

Method1a Granted:
FileIOPermission

Assembly2

Method2a Granted:
FileIOPermission

UIPermission

Assembly3

Method3a Granted:
FileIOPermission

UIPermission

Assembly4

Method4a Granted:
FileIOPermission

UIPermission

Assembly5

Method5a Granted:
FileIOPermission

UIPermission

Assembly6

Method6a Granted:
FileIOPermission

UIPermission
UIPermission
(SecurityAction.Demand)

Succeeded

Succeeded

Sta
ck

 W
alk

 R
es

ult
: S

UC
CE

SS

Se
cu

rit
y S

ta
ck

 W
alk

 de
ma

nd
ing

 th
e U

IP
er

mi
ssi

on

UIPermission(SA.Assert)

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 181

182 Chapter 5 • Understanding .NET and XML Security

ActFilePerm.Assert

' rest of body

End Function

Deny Override
The Deny does the opposite of Assert in that it lets a stack walk fail for the per-
mission the Deny is set on.There are not many situations in which a Deny over-
ride makes sense, but here is one:Among the permissions your code has is
RegistryPermission. Now it has to make a call to a method for which you have no
information regarding trust.To prevent that code from taking advantage of the
RegistryPermission, your code can set a Deny. Now you are sure that your code
does not hand over a high-trust permission.

Because unnecessary Deny overrides can disrupt the normal working of secu-
rity checks (because they will always fail on a Deny), you should revert the Deny
after the call ends for which you set the Deny.

For the sake of the example, we use the same situation as in Figure 5.3, but
instead of an Assert, there is a Deny (Figure 5.4).Again, the security stack walk is

www.syngress.com

Figure 5.4 A Stack Walk Is Short-Circuited by a Deny

Calling Chain on the Stack

Assembly1

Method1a Granted:
FileIOPermission

Assembly2

Method2a Granted:
FileIOPermission

UIPermission

Assembly3

Method3a Granted:
FileIOPermission

UIPermission

Assembly4

Method4a Granted:
FileIOPermission

UIPermission

Assembly5

Method5a Granted:
FileIOPermission

UIPermission

Assembly6

Method6a Granted:
FileIOPermission

UIPermission
UIPermission
(SecurityAction.Demand)

Failed

Succeeded

Sta
ck

 W
alk

 R
es

ult
: F

AI
L

Se
cu

rit
y S

ta
ck

 W
alk

 de
ma

nd
ing

 th
e U

IP
er

mi
ssi

on

UIPermission(SA.Deny)

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 182

Understanding .NET and XML Security • Chapter 5 183

triggered for the UIPermission permission in Assembly6.When the stack walk
reaches Assembly4, it recognizes the Deny on UIPermission and it ends with a fail.
In our example, the security check would ultimately have failed in Assembly1, but
if Assembly1 had been granted the UIPermission, the stack walk would have suc-
ceeded, if not for the Deny. Effectively this means that Assembly4 revoked the
UIPermission for Assembly5 and Assembly6.

You can set a Deny by using both the declarative and the imperative syntax.
In the first example, the declarative syntax is used.A Deny is set on the
FileIOPermission permission for all the files in the C:\Winnt\System32 directory:

Public Function _

<FileIOPermission(SecurityAction.Deny, All :=

"C:\Winnt\System32*.*")> _

Act1() As Integer

' body of the function

End Function

The second example uses the imperative syntax setting the same type of
Assert:

Public Function Act1() As Integer

Dim ActFilePerm As New

FileIOPermission(FileIOPermissionAccess.AllAccess, _

"C:\Winnt\System32*.*")

ActFilePerm.Deny

' rest of the body

End Function

PermitOnly Override
The PermitOnly override is similar to the negation of the Deny, by denying
every permission but the one specified.You use the PermitOnly for the same
reason you use Deny, only this one is more rigorous. For example, if you permit
only the UIPermission permission, every security stack walk will fail but the one
that checks on the UIPermission.Take Figure 5.4 and substitute Deny with
PermitOnly. If in Assembly6 the security check for UIPermission is triggered, the
stack walk will pass Assembly4 with success, but will ultimately fail in Assembly1.
If any other security check is initiated, it will fail in Assembly.The result is that
Assembly5 and Assembly6 are denied any access to a protected resource that
incorporates a Demand request, because every security check will fail. As you

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 183

184 Chapter 5 • Understanding .NET and XML Security

can see, PermitOnly is a very effective way of killing any aspirations of called
code in accessing protected resources.The PermitOnly is used in the same way
as Deny and Assert.

Custom Permissions
The .NET Framework enables you to write your own code access permissions,
even though the framework comes with a large number of code access permis-
sion classes. Because these classes are meant to protect the protected resources and
code that are exposed by the framework, it might well be the case that the appli-
cation you are developing has defined resources that are not protected by the
framework permissions, or you want to use permissions that are more tuned
toward the needs of your application.

You are completely free to replace existing framework permission classes,
although this requires a large amount of expertise and experience. In case you are
just adding new permission classes to the existing ones, you should be particularly
careful not to overlap permissions. If more than one permission protects the same
resource or operation, an administrator has to take this into account if he has to
modify the rights to these resources.

NOTE

The subject of overlapping permissions brings up a topic not discussed
earlier. Although the whole discussion of code access permission has
been from the standpoint of the CLR, or .NET Framework, eventually the
CLR has to access resources on behalf of the users/application. Even if
the code has been granted a specific permission to access a protected
resource, that does not automatically mean that it is allowed to access
that system resource. Take the example of a method having the
FileIOPermission permission to the directory C:\Winnt\System32. If the
identity of the Windows principal has not been given access to this part
of the file system, accessing a file in that directory will fail anyway. This
implies that the administrator not only has to set up the permissions
within the security policy, but he also has to configure the Windows
2000 platform to reflect these access permissions.

Building your own permissions does not only imply that certain development
issues are raised, but even more so, the integrity of the entire security system must be

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 184

Understanding .NET and XML Security • Chapter 5 185

discussed.You have to take into account that you are adding to a rigid security
system that relies heavily on trust and permissions. If mistakes occur in the design
and/or implementation of a permission, you run the risk of creating security holes
that can become the target of attacks or let an application grant access to protected
resources that it is not authorized to access. Discussing the process of designing your
own permissions goes beyond the scope of this chapter. However, the following steps
give you an understanding of what is involved in creating a custom permission:

1. Design a permission class.

2. Implement the interfaces IPermission and IUnrestrictedPermission.

3. In case special data types have to be supported, you must implement the
interface ISerializable.

4. You must implement XML encoding and decoding.

5. You must implement the support for declarative security.

6. Add Demand calls for the custom permission in your code.

7. Update the security policy so that the custom permission can be added to
permission sets.

Role-Based Security
Role-based security is not new to the .NET Framework. If you already have
experience with developing COM+ components, you surely have come across
role-based security.The concept of role-based security for COM+ applications is
the same as for the .NET Framework.The difference lies in the way in which it
is implemented. If we talk about role-based security, the same example comes up,
over and over again.This is not because we can’t create our own example, but
because it explains role-based security in a way everyone understands. So here it
is:You build a financial application that can handle deposit transactions.The rule
in most banks is that the teller is authorized to make transactions up to a certain
amount, let’s say $5,000. If the transaction goes beyond that amount, the teller’s
manager has to step in to perform the transaction. However, because the manager
is only authorized to do transactions up to $10,000, the branch manager has to
be called to process a deposit transaction that is over this amount.

Therefore, as you can see, role-based security has to do with limiting the tasks
a user can perform, based on the role(s) he plays or the identity he has.Within the
.NET Framework, this all comes down to the principal that holds the identity and

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 185

186 Chapter 5 • Understanding .NET and XML Security

role(s) of the caller.As discussed earlier in this chapter, every thread is provided
with a principal object. In order to have the .NET Framework handle the role-
based security in the same manner as it does code access security, the permission
class PrincipalPermission is defined.To avoid any confusion, PrincipalPermission is not
a derived class of CodeAccessPermission. In fact, PrincipalPermission holds only three
attributes: User, Role, and the Boolean IsAuthenticated.

Principals
Let’s get back to where it all starts: the principal. From the moment an applica-
tion domain is initialized, a default call context is created to which the principal
will be bound. If a new thread it activated, the call context and the principal are
copied from the parent thread to the new thread.Together with the principal
object, the identity object is also copied. If the CLR cannot determine what the
principal of a thread is, a default principal and identity object is created so that
the thread can run at least with a security context with minimum rights.There
are three type of principals: WindowsPrincipal, GenericPrincipal, and CustomPrincipal.
The latter goes beyond the scope of this chapter and is not discussed any further.

WindowsPrincipal
Because the WindowsPrincipal that references the WindowsIdentity is directly
related to a Windows user, this type of identity can be regarded as very strong
because an independent source authenticated this user.

To be able to perform role-based validations, you have to create a
WindowsPrincipal object. In the case of the WindowsPrincipal, this is reasonably
straightforward, and there are actually two ways of implementing it.This
depends on whether you have to perform just a single validation of the user
and role(s), or you have to do this repeatedly. Let’s start with the single valida-
tion solution:

1. Initialize an instance of the WindowsIdentity object using this code:

Dim WinIdent as WindowsIdentity = WindowsIdentity.GetCurrent()

2. Create an instance of the WindowsPrincipal object and bind the
WindowsIdentity to it:

Dim WinPrinc as New WindowsPrincipal(WindIdent)

3. Now you can access the attributes of the WindowsIdentity and
WindowsPrincipal object:

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 186

Understanding .NET and XML Security • Chapter 5 187

Dim PrincName As String = WinPrinc.Identity.Name

Dim IdentName As String = WinIdent.Name 'this is the same as

the previous line

Dim IdentType As String = WinIdent.AuthenticationType

If you have to perform role-based validation repeatedly, binding the
WindowsPrincipal to the thread is more efficient, so that the information is readily
available. In the previous example, you did not bind the WindowsPrincipal to the
thread because it was intended to be used only once. However, it is good practice
to always bind the WindowsPrincipal to the thread because in case a new thread is
created, the principal is also copied to the new thread:

1. Create a principal policy based on the WindowsPrincipal and bind it to
the current thread.This initializes an instance of the WindowsIdentity
object, creates an instance of the WindowsPrincipal object, binds the
WindowsIdentity to it, and then binds the WindowsPrincipal to the current
thread.This is all done in a single statement:

AppDomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.

WindowsPrincipal)

2. Get a copy of the WindowsPrincipal object that is bound to the thread:

Dim WinPrinc As WindowsPrincipal = Ctype(Thread.CurrentPrincipal, _

WindowsPrincipal)

It is possible to bind the WindowsPrincipal in the first method of creation to the
thread. However, your code must be granted the SecurityPermission permission to do
so. If that is the case, you bind the principal to the thread with the following:

Thread.CurrentPrincipal = WinPrinc

GenericPrincipal
In a situation in which you do not want to rely on the Windows authentication
but want the application to take care of it, you can use the GenericPrincipal.

NOTE

Always use an authentication method before letting a user access your appli-
cation. Authentication, in any shape or form, is the only way to establish an
identity. Without it, you are not able to implement role-based security.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 187

188 Chapter 5 • Understanding .NET and XML Security

Let’s assume that your application requested a username and password from
the user, checked it against the application’s own authentication database, and
established the user’s identity.You then have to create the GenericPrincipal to be
able to perform role-based verifications in your application:

1. Create a GenericIdentity object for the User1 you just authenticated:

Dim GenIdent As New GenericIdentity("User1")

2. Create the GenericPrincipal object, bind the GenericIdentity object to it,
and add roles to the GenericPrincipal:

Dim UserRoles as String() = {"Role1", "Role2", "Role5"}

Dim GenPrinc As New GenericPrincipal(GenIdent, UserRoles)

3. Bind the GenericPrincipal to the thread.Again, you need
SecurityPermission:

Thread.CurrentPrincipal = GenPrinc

Manipulating Identity
You can manipulate the identity that is held by a principal object in two ways.
The first is replacing the principal; the second is by impersonating.

Replacing the principal object on the thread is a typical action you perform
in applications that have their own authentication methods.To be able to replace
a principal, your code must have been granted the SecurityPermission, or more
specifically, the SecurityPermission attribute ControlPrincipal.This will allow your
own code to be able to pass on the PrincipalObject to other code.This attribute
grants you the permission to manipulate the principal, so you are allowed by the
CLR to pass on the principal. Replacing the principal object can be done by
performing these steps:

1. Create a new identity and principal object, and initialize it with the
proper values.

2. Bind the new principal to the thread:

Thread.CurrentPrincipal = NewPrincipalObject

Impersonating is also a way of manipulating the principal, with the intent to
take on the identity of another user to perform some actions on his behalf.You
can identify two variations:

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 188

Understanding .NET and XML Security • Chapter 5 189

■ The code has to impersonate the WindowsPrincipal that is attached to the
thread.This might seem a little odd, but you have to remember that your
code is part of an application domain that runs in a process.A user—
whether a system account, a service account, or even an interactive user—
starts this process on the Windows platform.Although the principal can be
used to perform role-based verification within the code, accessing pro-
tected resources is still done with the identity of the process user, unless
you actively use the user account of principal through impersonation.

■ The code has to impersonate a user that is not attached to the current
thread.The first thing you have to do is obtain the Windows token of
the user you want to impersonate.This has to be done with the unman-
aged code LogonUser.The obtained token has to be passed to a new
WindowIdentity object. Now you have to call the Impersonate method of
WindowsIdentity.The old identity—hence, token—has to be saved in a
new instance of WindowsImpersonationContext.

At the end of the impersonation, you have to change back to the original
user account by calling the Undo method of the WindowsImpersonationContext.

Remember, the principal object is not changed; rather, the WindowsIdentity
token, representing the Windows account, is switched with the current token.At
the end of the impersonation, the tokens are switched back again, as shown in
the following steps:

1. Call the LogonUser method, located in the unmanaged code library
advapi32.dll.You pass the username, domain, password, logon type, and
logon provider to this method that will return you a handle to a token.
For the sake of the example, we will call it hImpToken.

2. Create a new WindowsIdentity object and pass it the token handle:

Dim ImpersIdent As New WindowsIdentity(hImpToken)

3. Create a WindowsImpersonationContext object and call the Impersonate
method of ImpersIndent:

Dim WinImpersCtxt As WindowsImpersonationContext =

ImpersIdent.Impersonate()

4. At the end of the call, the original Windows token has to be put back in
the Identity object:

WinImpersCtxt.Undo()

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 189

190 Chapter 5 • Understanding .NET and XML Security

You could have done Steps 2 and 3 in one statement that looks like this:

Dim WinImpersCtct As WindowsImpersonationContext = _

WindowsIdentity.Impersonate(hImptoken)

Remember that you cannot impersonate when you use a GenericPrincipal
because it does not reference a Windows identity. For generic principals, you will
need to replace the principal with one that has a new identity.

Role-Based Security Checks
Having discussed the creation and manipulation of PrincipalObject, it is time to take
a look at how they can assist you in performing role-based security checks. Here is
where PrincipalPermission, already mentioned in the beginning of the section Role-
Based Security, comes into play. Using PrincipalPermission, you can make checks on
the active principal object, be it the WindowsPrincipal or the GenericPrincipal.The
active principal object can be one you created to perform a one-time check, or it
can be the principal you bound to the thread. Like the code access permissions,
the PrincipalPermission can be used in both the declarative and the imperative way.

To use PrincipalPermission in a declarative manner, you need to use the
PrincipalPermissionAttribute object in the following way:

Public Shared Function

<PrincipalPermissiobAttribute(SecurityAction.Demand, _

Name := "User1", Role := "Role1")> Act2()

As Integer

' body of the function

End Function

<assembly: PrincipalPermissionAttribute(SecurityAction.Demand, _

Role := 'Administrator')>

To use the imperative manner, you can perform the PrincipalPermission check
as shown:

Dim PrincPerm As New PrincipalPermission("User1", "Role1")

PrincPerm.Demand()

It is also possible to use the imperative to set the PrincipalPermission object in
two other ways:

Dim PrincState As PermissionState = Unrestricted

Dim PrincPerm As New PrincipalPermission(PrincState)

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 190

Understanding .NET and XML Security • Chapter 5 191

The permission state (PrincState) can be None or Unrestricted, where None
means the principal is not authenticated.Therefore, the username is Nothing,
the role is Nothing, and Authenticated is false. Unrestricted matches all other prin-
cipals.

Dim PrincAuthenticated As Boolean = True

Dim PrincPerm As New PrincipalPermission("User1", "Role1",

PrincAuthenticated)

The IsAuthenticated field (Princauthenticated) can be true or false.
In a situation in which you want PrincipalPermission.Demand() to allow more

than one user/role combination, you can perform a union of two
PrincipalPermission objects. However, this is only possible if the objects are of the
same type.Thus, if one PrincipalPermission object has set a user/role, and the
other object uses PermissionState, the CLR throws an exception.The union
looks like this:

Dim PrincPerm1 As New PrincipalPermission("User1", "Role1")

Dim PrincPerm2 As New PrincipalPermission("User2", "Role2")

PrincPerm1.Union(PrincPerm2).Demand()

The Demand will succeed only if the principal object has the user User1 in
the role Role1 or User2 in the role Role2.Any other combination fails.

As mentioned before, you can also directly access the principal and identity
object, thereby enabling you to perform your own security checks without the
use of PrincipalPermission. Besides the fact that you can examine a little more
information, it also prevents you from handling exceptions that can occur using
PrincipalPermission. .You can query the WindowsPrincipal in the same way the
PrincipalPermission does this:

■ The name of the user by checking the value of
WindowsPrincipal.Identity.Name:

If (WinPrinc.Identity.Name = "User1") or _

WinPrinc.Identity.Name.Equals("DOMAIN1\User1") Then

End If

■ An available role by calling the IsInRole method:

If (WinPrinc.IsInRole("Role1")) Then

End If

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 191

192 Chapter 5 • Understanding .NET and XML Security

■ Determining if the principal is authenticated, by checking the value of
WindowsPrincipal.Identity.IsAuthenticated:

If (WinPrinc.Identity.IsAuthenticated) Then

End If

Additionally for PrincipalPermission, you can check the following
WindowsIdentity properties:

■ AuthenticationType Determines the type of authentication used. Most
common values are NTLM and Kerberos.

■ IsAnonymous Determines if the user is identified as an anonymous
account by the system.

■ IsGuest Determines if the user is identified as a guest account by the
system.

■ IsSystem Determines if the user is identified as the system account of
the system.

■ Token Returns the Windows account token of the user.

Security Policies
This section takes a closer look at the way in which security policies are con-
structed and the way you can manage them.To create and modify a security
policy, the .NET Framework provides you two tools: a command-line interface
(CLI) tool, called caspol.exe (see the section Security Tools) and a Microsoft
Management Console snap-in, mcscorcfg.msc (Figure 5.5).The latter will be used
for demonstration purposes because it is more visual and intuitive.

As you can see in Figure 5.5, the security policy model is comprised of the
following:

■ The runtime security policy levels are:

■ Enterprise Valid for all managed code that is used within the
entire organization (enterprise); therefore, this will have “by nature” a
restrictive policy because it references a large group of code.

■ Machine Valid for all managed code on that specific computer.
Because this already limits the amount of code, you can be more
specific with handing out permissions.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 192

Understanding .NET and XML Security • Chapter 5 193

■ User Valid for all the managed code that runs under that Windows
user.This will normally be the account that starts the process in
which the CLR and managed code runs. Because the identity of the
user is very specific, the granted permissions can also be more spe-
cific, thus less restrictive.

■ A code groups hierarchy that exists for each of the three policy levels.
We will look at how you can add code groups to the default structure,
which already exists for user and machine.

■ (Named) Permission Sets. By default, the .NET Framework comes with
seven named permission sets:

■ FullTrust Unlimited access to all protected resources and operations.

■ EveryThing Granted all .NET Framework permissions, except the
security permission SkipVerification.

■ LocalIntranet The default rights given to an application on the
local intranet.

■ Internet The default rights given to an application on the Internet.

■ Execution Has only the security permission EnableAssemblyExecution.

www.syngress.com

Figure 5.5 The .NET Configuration Snap-In

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 193

194 Chapter 5 • Understanding .NET and XML Security

■ SkipVerification Has only the security permission SkipVerification.

■ Nothing Denied all access to all protected resources and operations.

■ Evidence, which is the attribute that the code hands over to the CLR
and on which it determines the effective permission set. Evidence is
used in the construction of code groups.

■ Policy assemblies that list the trusted assemblies that hold security objects
used during policy evaluation.You should add your assemblies to the list
that implements the custom permissions. If you omit this, the assemblies
will not be fully trusted and cannot be used during the evaluation of the
security policy.

Understand that the evaluation process of the security policy will result in the
effective permission set for a specific assembly. For all of the three policy levels, the
code groups are evaluated against the evidence presented by the assembly.All the
code groups that meet the evidence deliver a permission set.The union of these
sets determines the effective permission set for that particular security policy level.
After this evaluation is done at all three security levels, the three individual permis-
sion sets are intersected, resulting in the effective permission set for an assembly.
This means that the code groups within the three security levels cannot be con-
structed independently, because this can result in a situation in which an assembly is
given a limited permission set that is too limited to run.When you take a look at
the permission set for the All_Code of the enterprise security policy, you will see
that it is Full Trust. Doing the same for the All_Code of the user security policy, you
will see Nothing. Because the code group tree of the enterprise is empty, it cannot
make evidence decisions; therefore, it cannot contribute to the determination of the
effective permission set of the assembly. By setting it to Full Trust, it is up to the
machine and user security policy to determine the effective permission set.

Because the user code group already has a limited code group tree, the root
does not need to participate in the determination of the permission set. By set-
ting it to Nothing, it is up to the rest of the code groups to decide what the effec-
tive permission group for the user security policy is.

You can determine the permission set of a code group by performing these
steps:

1. Run Microsoft Management Console (MMC) by choosing Start |
Run and typing mmc.

2. Open the .NET Management snap-in, via Console | Add/Remove
Snap-in.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 194

Understanding .NET and XML Security • Chapter 5 195

3. Expand the Console Root | .NET Configuration | My Computer.

4. Expand Runtime Security Policy | Enterprise |Code Groups.

5. Select the code group All_Code.

6. Right-click All_Code and select Properties.

7. Select the Permission Set tab.

8. The Permission Set field lists the current value.

Creating a New Permission Set
Suppose you decide that none of the seven built-in permissions sets satisfy your
need for granting permissions.Therefore, you want to make a named permission
set that does suit you.You have a few options:

■ Create a permission from scratch.

■ Create a new permission set based on an existing one.

■ Create a new permission from an XML-coded permission set.

To get a better understanding of the working of the security policy and to
get some hands-on experience with the tool, we discuss the different security
policy issues in the following exercises.

We use the second option and base our new permission set on the permis-
sion set LocalIntranet for the user security policy level:

1. Expand the User runtime security policy, and expand Permission Sets
(Figure 5.6).

2. Right-click the permission set LocalIntranet and select Duplicate; a
permission set called Copy of LocalIntranet is added to the list.

3. Select the permission set Copy of LocalIntranet and rename it to
PrivatePermissions.Then, right-click it and select Properties. Change
the Permission Set Name to PrivatePermissions and, while you’re
at it, change the corresponding Permission Set Description.

4. Change the permissions of the permission set: Right-click the
PrivatePermissions permission set, and select Change Permissions.

5. The Create Permission Set dialog box appears (Figure 5.7).You see
two permissions lists: on the left, the Available Permissions that are not
assigned, and on the right, the list with Assigned Permissions.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 195

196 Chapter 5 • Understanding .NET and XML Security

Between the two Permissions lists are four buttons.The Add and Remove
buttons let you move individual permissions between the lists. Note that you
cannot select more than one at the same time; this is done to prevent you from
making mistakes.You will better understand a given permission if you select that
permission in the Assigned Permissions list and press the Properties button.You

www.syngress.com

Figure 5.6 The Users Permission Sets and Code Groups

Figure 5.7 Modify the Permission Set Using the Create Permission Set
Dialog Box

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 196

Understanding .NET and XML Security • Chapter 5 197

www.syngress.com

can use the fourth button (Import) to load an XML-coded permission set. Now,
let’s make some modifications to the permission set, because that was the reason
to duplicate the permission set:

■ Add the FileIOPermission to the Assigned Permission list.

■ Add the RegistryPermission to the Assigned Permission list.

■ Modify the SecurityPermission properties.

To do so:

1. Select FileIO in the Available Permissions list. (Notice that if you have
selected a permission in the Assigned Permissions list, this permission
stays selected.)

2. Click Add.A Permission Settings dialog box for the FileIO appears
(Figure 5.8). (You can also double-click the permission to add it to the
Assigned Permissions list. However, do not double-click an Assigned
Permission by accident—this will remove the permission from the
Assigned Permission list.) On the Permission Settings dialog box, you are
given the option to select between Grant assemblies access to the
following files and directories and Grant assemblies unrestricted
access to the file system.

3. Choose the first one, and because it is already selected, we can focus our
attention on the empty list window below the option.You may expect

Figure 5.8 Modify the Settings of FileIO Using the Permission
Settings Dialog Box

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 197

198 Chapter 5 • Understanding .NET and XML Security

an Add button below the list, especially because there is a Delete Entry
one. However, there is an auto-add list.You fill in a line, and it is auto-
matically added.Add a second line, and a third empty line will appear.

4. As you saw earlier this chapter, this resembles the way we used
FileIOPermission and FileIOPermissionAttribute to demand and request
access to specific files in a specific directory. Go ahead, fill in
“C:\Test*.cfg”. Surprised that you get an error message? The point is
that the field demands that you use UNC names.The advantage is that
you can reference to files on other servers in the domain. However, the
dialog box checks the existence of the path when you click OK, so be
sure that the UNC path exists.

5. Fill the File Path with a valid UNC of the machine you are working on,
and because we want to give full access, you can check all four boxes.
(Note: if you do not check any of the boxes, then this is accepted,
because you filled in a File Path. However, if you check the properties of
FileIO as an assigned permission, you will notice that the line has disap-
peared—hence, a beta bug!).

6. Click OK and you have added a permission to the assigned permission
list.You are now ready for the next permission.

7. Double-click the Registry permission and a Permissions Setting
dialog box appears that looks a lot like the one you just saw with
FileIO. Keep the option Grant assemblies access to the following
registry keys.

8. Fill the Key field with a valid HKEY value, such as HKEY_LOCAL_
MACHINE, and check the Read box, so that we can give read permis-
sion to the specified Registry tree.

9. Click OK, and you have added your second permission to your permis-
sion set.

10. The last task is to modify the Security permission.Therefore, select the
Security permission in the Assigned Permissions list (do not double-click,
because that will remove the permission from the list) and click Properties.

11. A Permission Settings dialog box (Figure 5.9) appears.You see that the
option Grant assemblies the following security permissions is
selected, together with the properties Enable assembly execution,
Assert any permission that has been granted, and Enable
remoting configuration.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 198

Understanding .NET and XML Security • Chapter 5 199

www.syngress.com

12. We also want to grant our security policy the security permission
properties. Check Allow calls to unmanaged assemblies because
we want to make calls to unmanaged code. Also check Allow prin-
cipal control because we want to be able to modify principal settings.
Click OK, and you are done, for now, with modifying your first per-
mission set.

13. Click Finish.You will probably get a warning message stating that you
changed your security policy and you have to save it. Up until the point
you save the policy, an asterisk (*) will mark the user policy.

14. You can save the policy by right-clicking the User runtime security
policy and selecting Save.

If you want this permission set to also become part of the machine and/or
enterprise permission sets, you can simply copy and paste it.

You will also notice two other options: Reset and Restore Policy.The first
resets the policy back to the default setting of the policy.You can try it, but it will
wipe out all the changes you made up until now.The latter makes it possible to
go back to the previous save.This is possible because for each of the runtime
security policies, the settings are saved in an XML-coded file that becomes the
current one. Before this happens, it renames the old one with the extension .old.
The current one has the extension .cch.The default policy has no extension, so
to speak. For the user security policy, you have the following files:

Figure 5.9 Modify the Settings of Security Using the Permission
Settings Dialog Box

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 199

200 Chapter 5 • Understanding .NET and XML Security

■ security.config The default security; used by Reset.

■ security.config.cch The current/active policy.

■ security.config.old The last saved policy version; used by Restore
Policy.

The enterprise security uses the name enterprisesec.config, and the machine
uses the name security.config.This is possible because the user security policy is
saved in the user’s directory tree in the following folder:

Document and Settings\User_Name\Application Data\Microsoft\CLR Security

config\v1.0.xxxx

The enterprise and machine security policies are saved in the following
directory:

WINNT\Microsoft.NET\Framework\v1.0.xxxx\CONFIG

This directory is located by the CLR through the HiveKey:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Catalog42\NetFrameworkv1\

MachineConfigdirectory

Because the configuration files are XML-coded, you can open them with a
Web browser and examine them.This will give you additional understanding of
how the permission sets are set up.This also means that you can modify the
default security policies.

Modifying the Code Group Structure
Now that we have created a security permission set, it makes sense to start using
it.We can do so by attaching it to a code group.We are going to modify the code
groups structure of the user security policy. By default, the user already has a
basic structure (Figure 5.10).

A few things might strike you at first sight:

■ There is a code group called Wizard_Machine_Policy.The description of
this group tells you that a wizard, called the Adjust Security Wizard,
copied this group from the computer’s policy level and that you should
not modify it.This description is not totally true. In fact, if you take a
closer look at these code groups, you will see that all groups that end
with _Zone have a permission set of Nothing.This means that you, the
user, cannot make use of the permission sets of the machine that are

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 200

Understanding .NET and XML Security • Chapter 5 201

based on the zone evidence. However, if you are given more permissions
based on the zone evidence, this will be toned down by the zone-based
permission of the machine policy.The user can have permissions based
on zoned evidence that is equal to or less than allowed by the machine.
However, you do see zone-based code groups at the same level as the
Wizard_Machine_Policy, because these are the code groups that are
copied from the machine policy.

■ The zone-based code groups contain NetCodeGroup and FileCodeGroup.
As the description states, they are generated by the .NET Configuration
Tool; hence, the tool we are working with at the moment.The custom
code groups are based on XML-code files and can therefore not be
edited by the tool. However, you can use the caspol.exe tool to do so.
Without going into detail regarding what exactly these groups entail, it
suffices to state that they are necessary for you to use the .NET
Configuration Tool. If you do not remove or modify them, you might
lock yourself out from using this tool.

Let’s create a small code groups structure that is made up of two code groups
directly under the All_Code group, and apply our own custom-made permission
set PrivatePermissions to the LocalIntranet_Zone group:

www.syngress.com

Figure 5.10 The Default Code Group Structure for the User Security Policy

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 201

202 Chapter 5 • Understanding .NET and XML Security

1. If you do not have the MMC with the .NET Management snap-in
open, open it now.

2. Expand the tree to .NET Configuration | My Computer |
Runtime Security Policy | User.

3. Now, expand Code Groups | All_Code.

4. Right-click All_Code and select New; the Create Code Group dialog
box appears.

5. You are given two options: Create a new code Group and Import a
code group from a XML File. Use the first option. (Note: For the
NetCodeGroup and FileCodeGroup, the latter is used.)

6. You have to enter at least the Name field. For this example, we choose
PrivateGroup_1. Now, click Next.

7. The dialog box shows you a second page called Choose a condition
Type and has just one field called Choose the condition type for
this code group.The field has a pull-down menu containing the values
from which you can choose.All of these, except the first and last one—
All Code and (custom)—are evidence-related (Figure 5.11).

8. Select Site from the drop-down menu.A new field, called Site Name
appears and is related to the Site condition. For the sake of the example,

www.syngress.com

Figure 5.11 Select One of the Available Condition Types for a Code
Group

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 202

Understanding .NET and XML Security • Chapter 5 203

we choose the MSDN Subscribers download site, so we enter the value
msdn.one.microsoft.com in the site field.

9. Click Next, and the third page, called Assign a Permission Set to
the Code Group, appears.

10. You can choose between the options Use existing permission set and
Create a new permission set. Because the site comes from the
Internet, that permission set will do.

11. Select the value Nothing from the drop-down menu (Note:The per-
mission set we just made is also part of the list.), and click Next.

12. Click Finish, and you have created your first code group.While we are
at it, let’s create the second code group, which will be the child of the
code group we just created.

13. Right-click the code group PrivateGroup_1 and select New.

14. Create a new code group named PrivateGroup_2 and click Next.

15. Select the value Publisher from the drop-down menu. Below the field,
a new box called Publisher Certificate Details appears and has to be
filled by importing a certificate.You can do this by reading out of a
signed assembly using the Import from Signed File button. (Note: it
should say Import from signed Assembly.) Or, you can import a certifi-
cate file, using the Import from Certificate File button.

16. For the purpose of this example, we use the certificate from the
msdn.one.microsoft.com site. (Note: In case you have forgotten how this
is done, you go to a protected site, thus using SSL.You double-click the
icon indicating that the site is protected.This opens up the certificate.
Go to the Details tab and click the Copy to File button.)

17. Click the Import from Certificate File button, browse to the certifi-
cate file (the extension is .cer), and open it.You will see that the field in
the certificate box will be filled (Figure 5.12).

18. Click Next.

19. Select the existing permission group LocalIntranet.We can give more
permissions now that we know that the signed assemblies indeed
comes from Microsoft MSDN, but also originates from the corre-
sponding Web site.

20. Click Next, and then click Finish.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 203

204 Chapter 5 • Understanding .NET and XML Security

Before tackling our last task, let’s recap what we have done.We were con-
cerned with creating a permission set for signed assemblies that come from the
msdn.one.microsoft.com site. So, what if the assembly comes from this Web site
but is not signed? It meets the condition of PrivateGroup_1, so it will get the per-
mission set of this code group. Because this is Nothing, this would mean that these
assemblies are granted no permission. However, because the
msdn.one.microsoft.com site comes from the Internet Zone, it also meets the con-
dition of the code group Internet_Zone, which grants any assembly from this zone
the Internet permission set. Moreover, because a union is taken from all the
granted permission sets, these assemblies will still have enough permissions to run.

Why not make the PrivateGroup_2 a child of Internet_Zone, because unsigned
assemblies from msdn.one.microsoft.com are granted the Internet permission set
anyway? The reason is simple: we only want to give signed assemblies from
msdn.one.Microsoft.com additional permission if they also originate from the
appropriate Web site. In case such a signed assembly originates from another Web
site, we treat it as any other assembly coming from an Internet Zone.The reason
for giving PrivateGroup_1 the Nothing permission set is that it is only there to
force assemblies to meet both conditions, and PrivateGroup_1 is just an interme-
diate stage to meet all conditions.

What you have to keep in mind is that we only discussed how the actual
permission set is determined at the user security policy level.This will be inter-

www.syngress.com

Figure 5.12 Importing a Certificate for a Publisher Condition in a Code Group

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 204

Understanding .NET and XML Security • Chapter 5 205

sected with the actual permission set determined on the machine level.
Moreover, because at the machine level the assembly will be given only the
Internet permission set, our signed assembly will wind up with the effective
permission set of Internet. Normally, the actual permission set of the enterprise
is also taken into the intersection, but because that code group tree has only
the All_Code code group with full trust, it will play no role in the intersection
of this example.

Our last task, replacing a permission set, should be straightforward by now:

1. Right-click the code group LocalIntranet_Zone and select Properties.The
LocalIntranet_Zone Properties dialog box appears (Figure 5.13).

2. Select the Permission Set tab.

3. Open the pop-up menu with available permission sets and select
PrivatePermissions.You will see that the list box will reflect the per-
missions that make up the PrivatePermissions permission set.

4. Click Apply and go back to the General tab.

On this tab is a frame called If the membership condition is met, which
shows two options:

www.syngress.com

Figure 5.13 Setting Attributes in the General Tab of the Code Group
Permission Dialog Box

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 205

206 Chapter 5 • Understanding .NET and XML Security

■ This policy level will have only the permissions from the per-
mission set associated with this code group.This refers to the code
group attribute Exclusive.

■ Policy levels below this level will not be evaluated.This refers to
the code group attribute LevelFinal.

Both need some explanation, so let’s go back to our msdn.one.microsoft.com
example. Suppose you open the Properties dialog box of the Internet_Zone code
group and check the Exclusive option (of course, you have to save it first for it
to become active).We received a signed assembly from msdn.one.microsoft.com
that also originates from this site.We had established that it would be granted the
LocalIntranet_Zone permission at the user policy level. But now the Exclusive
option comes into play. Because our signed assembly also meets the Internet_Zone
condition, the Internet permission set is valid.The exclusive that is set for the
Internet_Zone code group forces all other valid permission sets to be ignored by
not taking a union of these permission sets. Instead, the permission set with the
Exclusive attribute becomes the actual permission set for the user policy level.
Because it will be intersected with the Actual permission sets of the other secu-
rity levels, it also determines the maximum set of permissions that will be granted
to the signed assembly. Use this attribute with care, because from all the code
groups of which an assembly is a member—hence, meets the condition—only
one can have the Exclusive attribute.The CLR determines if this is the case.
When the CLR determines that an assembly meets the condition of more than
one code group with the Exclusive attribute, it will throw an exception, and it
fails to determine the Effective permission set and the assembly is not allowed to
execute.

The way in which the LevelFinal is handled is more straightforward.
Understand that by establishing the effective permission set of an assembly, the
CLR evaluates the security policies starting at the highest level (Enterprise, fol-
lowed by User and Machine).Again, take our MSDN example.We set a LevelFinal
in the PrivateGroup_2 code group and removed the Exclusive attribute from
Internet_Zone.When the effective permission set for a signed assembly from
msdn.one.microsoft.com that originates from that Web site has to be established,
the CLR starts with determining the actual permission set of the enterprise
policy level.This is for All_Code Full Trust, effectively taking this policy level out
of the intersection of actual permission sets. Now the user policy level gets its
turn in establishing the actual permission set.As you know by now, this will be
equal to the LocalIntranet_Zone permission set. However, the CLR has also

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 206

Understanding .NET and XML Security • Chapter 5 207

encountered the LevelFinal attribute. It refrains from establishing the actual per-
mission set of the machine policy level and intersects the actual permission sets
from the enterprise and user policy level.The actual permission set will be equal
to LocalIntranet_Zone.

Because the machine policy level is not considered, the actual permission set
in this case has more permission than in the situation in which the LevelFinal
attribute has not been set.

Remoting Security
Discussing security between systems always provides a new set of security issues.
This is no exception for remoting. Let’s start with the communication between
systems. If you use an HttpChannel, you can make use of the SSL encryption.The
FtpChannel does not have encryption, but if both servers support IPSec, you are
able to create a secured channel through which the FtpChannel can communicate.

The next issue is to what extent you trust the other system. Even with a secure
channel in place, how do you know that the other system has not been compro-
mised? You need at least a sturdy authentication mechanism in place, and need to
avoid the use of anonymous users, although this will not always be possible.At least
try to use NTLM or Kerberos for authentication.The latter is a perfect vehicle for
handling impersonation between multiple systems. If you need to use anonymous
users, you can use IIS as the storefront and let the IIS handle the impersonation.
You can also use a proxy to prevent a user from directly accessing your IIS.

The messages that are exchanged should always be signed so you are able to
verify the sender and/or origin. Even when you are sure that a message is trans-
ported over a secured channel, you are never sure if the message that is put in this
channel has been sent out of ill intent.

This chapter has discussed the use of code access and role-based security.The
more thoroughly you use this runtime security instrument, the better you can
control the remoting security.

Cryptography
There is no subject about security that does not reference cryptography.Although
it is an absolute necessity to create a secure environment, it is not the “Holy
Grail” of security.This section highlights the cryptography features that come
with the .NET Framework. If you already have worked with Windows 2000
Cryptographic Service Providers (CSPs) and/or used the CryptoAPI, you know
nearly everything there is to know about cryptography in the .NET Framework.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 207

208 Chapter 5 • Understanding .NET and XML Security

The most important observation is that the ease of use of crypto functionali-
ties has improved a lot over the way we had to use the CryptoAPI, which only
was available for C/C++.An important addition in the design concept of the
cryptography namespace is the use of CryptoStreams, which make it possible to
chain together any cryptographic object that makes use of CryptoStreams.This
means that the output from one cryptographic object can be directly forwarded
as the input of another cryptographic object without the need of storing the
output result in an intermediate object.This can enhance the performance signif-
icantly if large pieces of data have to be encoded or hashed.Another addition is
the functionality to sign XML code, although only for use within the .NET
Framework security system.To what extend these methods comply with the pro-
posed standard RFC 3075 is unclear.

Within the .NET Framework, three namespaces involve cryptography:

■ System.Security.Cryptography The most important one; resembles the
CryptoAPI functionalities.

■ System.Security.Cryptography .X509 certificates. Relates only to the
X509 v3 certificate used with Authenticode.

■ System.Security.Cryptography.Xml For exclusive use within the .NET
Framework security system.

The cryptography namespaces support the following CSP classes that will be
matched on the Windows 2000 CSPs, by the CLR. If a CSP is available within
the .NET Framework, this does not automatically imply that the corresponding
Windows 2000 CSP is available on the system the CLR is running:

■ DESCryptoServiceProvider Provides the functionalities of the sym-
metric key algorithm Data Encryption Standard.

■ DSACryptoServiceProvider Provides the functionalities of the asym-
metric key algorithm Data Signature Algorithm.

■ MD5CryptoServiceProvider Provides the functionalities of the hash
algorithm Message Digest 5.

■ RC2CryptoServiceProvider Provides the functionalities for the sym-
metric key algorithm RC 2 (named after the inventor: Rivest’s
Cipher 2).

■ RNGCryptoServiceProvider Provides the functionalities for a Random
Number Generator.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 208

Understanding .NET and XML Security • Chapter 5 209

■ RSACryptoServiceProvider Provides the functionalities for the asym-
metric algorithm RSA (named after the inventors Rivest, Shamir, and
Adleman).

■ SHA1CryptoServiceProvider Provides the functionalities for the hash
algorithm Secure Hash Algorithm 1.

■ TripleDESCryptoServiceProvider Provides the functionalities for the
symmetric key algorithm 3DES.

To be complete, short descriptions of symmetric key algorithm, asymmetric
key algorithm, and hash algorithm are given.A symmetric key algorithm enables you
to encrypt/decrypt data that is sent between you and another party.The same key
is used to both encrypt and decrypt the data.That is why it is called a symmetric
algorithm.This algorithm forces you to exchange the key with your counter
party, but this must be done in a way that no other party can intercept this key.
Because symmetric key algorithms are often used for a short exchange of data, it
is also referred to as session key algorithm. For the exchange of session keys, the
parties involve use an asymmetric key algorithm.

An asymmetric key algorithm makes use of a key pair. One is private and is kept
under lock and key by the owner, and the other is public and available to
everyone. Because the algorithm uses two related but different keys to encrypt
and decrypt, it is called an asymmetric algorithm, but is also referenced as a public
key algorithm.The public key is wrapped in a certificate that is a “proof of authen-
ticity,” and that certificate has to be issued by an organization that is trusted by all
involved parties.This organization is called a certificate authority (CA), of which
VeriSign is the best known. So, what about using an asymmetric key algorithm to
exchange symmetric keys? The best example is two Windows 2000 servers that
need to regularly set up connection between both servers on behalf of their
users. Each connection—hence, session—has to be secured and needs to use a
session key that is unique in relation to the other secured sessions.The servers
exchange a session key for every connection. Both have an asymmetric key-pair
and have exchanged the public key in a certificate.Therefore, if one server wants
to send a session key to the other server, it uses the public key of the other server
to encrypt the session key before it sends it.The server knows that only the other
server can decrypt the session key because that server has the private key that is
needed to decrypt the session key.

A hash algorithm, also referred to as a one-way hash algorithm, can take a vari-
able piece of data and transform it to a fixed-length piece of data, called a hash or

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 209

210 Chapter 5 • Understanding .NET and XML Security

message digest that is nearly always much shorter; for example, 160 bits for SHA-1.
One-way means that you cannot derive the source data by examining only the
digest.Another important feature of the hash algorithm is that it generates a hash
that is unique for each piece of data, even if just one bit of data is changed.You
can see a hash value as the fingerprint of a piece of data. Let’s say, for example,
you send someone a plaintext e-mail. How do you and the receiver of the e-mail
know that the message was not altered while it was sent? Here is where the mes-
sage digest comes in. Before you send your e-mail, you apply a hash algorithm on
that message, and you send the message and message digest to the receiver.The
receiver can perform the same hash on the message, and if both the digest and
the message are the same, the message has not been altered.Yes, someone who
alters your message can also generate a new digest and obscure his act.Well, that
is where the next trick comes in.When you send the digest, you encrypt it with
your own private key, of which you know the receiver has the public part.This
not only prevents the message from being changed without you and the receiver
discovering it, but also confirms to the receiver that the message came from you
and only you. How?

Well, let’s assume that someone intercepts your message and wants to change
it. He has your public key, so he can decrypt your message digest. However,
because he doesn’t have your private key, he is unable to encrypt a newly gener-
ated digest.Therefore, he cannot go forward with his plan to change the e-mail
without anyone finding out. Eventually, the e-mail arrives at the receiver’s Inbox.
He takes the encrypted digest and decrypts it using your public key. If that suc-
ceeds, he knows that this message digest must have been sent by you because you
are the only one who has access to the private key. He calculates the hash on the
message and compares both digests. If they match, he not only knows that the
message hasn’t been tampered with, but also that the message came from only
you because every message has a unique hash. Moreover, because he already
established that the encrypted hash came from you, the message must also come
from you.

Security Tools
The .NET Framework comes with 10 command-line security tools (Table 5.4)
that help you to perform your security tasks. For a more thorough description of
these tools, you should consult the .NET Framework documentation.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 210

Understanding .NET and XML Security • Chapter 5 211

Table 5.4 Command-Line Security Tools

Name of
Name of Tool Executable Description

Code Access Caspol.exe This tool can perform any operation in relation
Security Policy to the code access security policy. Because it
Utility can do more than the .NET Configuration Tool

we have been using in this chapter, it is
important that you familiarize yourself with it.

Certificate Chktrust.exe With this tool, you can check a file that
Verification has been signed using Authenticode.
Utility
Certificate Makecert.exe Creates a X.509 certificate for testing
Creation Utility purposes. A option you might consider is to

install the Certificates Services on Windows
2000, which makes it much easier to create
and maintain certificates for development
and testing purposes.

Certificate Certmgr.exe This utility manages your certificates,
Manager Utility certificate trust lists, and so on. Use the

Microsoft Management Console with the
Certificates snap-in, which enables you to
maintain not only your own certificates, but
also (if you have the rights) the certificates
of your computer and service accounts.

Software Cert2spc.exe This tool creates a software publishers
Publisher certificate for one or more X.509
Certificate Test certificates.
Utility
Permissions Permview.exe This tool enables you to view the requested
View Utility permissions of an assembly.
PE Verify Utility Peverify.exe This tool enables you to verify the type

safety of a portable executable file.
Secutil Utility Secutil.exe This tool extracts strong name or public key

information from an assembly and converts
it so that you can use it directly in your code
(for example, for a permission demand).

File Signing Signcode.exe This tool enables you to sign a PE file with
Utility an Authenticode signature. If this utility is

called with no command-line options, a
Digital Signature Wizard is started.

www.syngress.com

Continued

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 211

212 Chapter 5 • Understanding .NET and XML Security

Table 5.4 Continued

Name of
Name of Tool Executable Description

Strong Name Sn.exe This tool enables you to sign assemblies
Utility with strong names.
Set Registry Setreg.exe This tools enables you to set Registry keys for
Utility use of public key cryptography. If you call

this utility without options, it will just list
the settings.

Isolated Storeadm.exe This tool enables you to manage isolated
Storage Utility storage for the current user.

Securing XML—Best Practices
Just as with HTML documents, digital certificates are the best way in which to
secure any document that has to transverse the Internet.Anytime you need to
perform a secure transaction over the Internet, a digital certificate should be
involved, whether the destination is a browser or an application. Certificates are
used by a variety of public key security services and applications that provide
authentication, data integrity, and secure communications across nonsecure net-
works such as the Internet. From the developer’s perspective, use of a certificate
requires it to be installed on the Web server, and that the HTTPS protocol is used
instead of the typical HTTP.

Access to XML and XSL documents on the server can be handled through
file access restrictions just like any other file on the server. Unfortunately, if you
are performing client-side XSL transformations, this requires that all the files
required to perform the transformation be exposed to the Internet for anyone to
use. One way to eliminate this exposure is to perform server-side transformation.
All XML and XSL documents can reside safely on the server where they are
transformed, and only the resultant document is sent to the client.

XML Encryption
The goal of the XML Encryption specification is to describe a digitally
encrypted Web resource using XML.The Web resource can be anything from an
HTML document to a GIF file, or even an XML document.With respect to
XML documents, the specification provides for the encryption of an element,
including the start- and end-tags, the content within an element between the

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 212

Understanding .NET and XML Security • Chapter 5 213

start- and end-tags, or the entire XML document.The encrypted data is struc-
tured using the <EncryptedData> element that contains information pertaining to
encrypting and/or decrypting the information.This information includes the
pertinent encryption algorithm, the key used for encryption, references to
external data objects, and either the encrypted data or a reference to the
encrypted data.The schema as defined so far is shown in Figure 5.14.

Figure 5.14 XML Encryption DTD

<!DOCTYPE schema

PUBLIC "-//W3C//DTD XMLSCHEMA 200010//EN"

http://www.w3.org/2000/10/XMLSchema.dtd

[

<!ATTLIST schema xmlns:ds CDATA #FIXED

"http://www.w3.org/2000/10/XMLSchema">

<!ENTITY enc "http://www.w3.org/2000/11/temp-xmlenc">

<!ENTITY enc 'http://www.w3.org/2000/11/xmlenc#'>

<!ENTITY dsig 'http://www.w3.org/2000/09/xmldsig#'>

]>

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"

xmlns:ds="&dsig;"

xmlns:xenc="&enc;"

targetNamespace="&enc;"

version="0.1"

elementFormDefault="qualified">

<element name="EncryptedData">

<complexType>

<sequence>

<element ref="xenc:EncryptedKey" minOccurs=0/

maxOccurs="unbounded"/>

<element ref="xenc:EncryptionMethod" minOccurs=0/>

<element ref="ds:KeyInfo" minOccurs=0/>

<element ref="xenc:CipherText"/>

www.syngress.com

Continued

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 213

214 Chapter 5 • Understanding .NET and XML Security

Figure 5.14 Continued

</sequence>

<attribute name="Id" type="ID" use="optional"/>

<attribute name="Type" type="string" use="optional"/>

</complexType>

</element>

<element name="EncryptedKey">

<complexType>

<sequence>

<element ref="xenc:EncryptionMethod" minOccurs=0/>

<element ref="xenc:ReferenceList" minOccurs=0/>

<element ref="ds:KeyInfo" minOccurs=0/>

<element ref="xenc:CipherText1"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

<attribute name="NameKey" type="string" use="optional"/>

</complexType>

</element>

<element name="EncryptedKeyReference">

<complexType>

<sequence>

<element ref="ds:Transforms" minOccurs="0"/>

</sequence>

<attribute name="URI" type="uriReference"/>

</complexType>

</element>

<element name="EncryptionMethod">

<complexType>

<sequence>

<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

www.syngress.com

Continued

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 214

Understanding .NET and XML Security • Chapter 5 215

Figure 5.14 Continued

<attribute name="Algorithm" type="uriReference" use="required"/>

</complexType>

</element>

<element name="ReferenceList">

<complexType>

<sequence>

<element ref="xenc:DataReference" minOccurs="0"

maxOccurs="unbounded"/>

<element ref="xenc:KeyReference" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="DataReference">

<complexType>

<sequence>

<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="URI" type="uriReference" use="optional"/>

</complexType>

</element>

<element name="KeyReference">

<complexType>

<sequence>

<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="URI" type="uriReference" use="optional"/>

</complexType>

</element>

<element name="CipherText">

www.syngress.com

Continued

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 215

216 Chapter 5 • Understanding .NET and XML Security

Figure 5.14 Continued

<complexType>

<choice>

<element ref="xenc:CipherText1"/>

<element ref="xenc:CipherText2"/>

</choice>

</complexType>

</element>

<element name="CipherText1" type="ds:CryptoBinary">

<element name="CipherText2">

<complexType>

<sequence>

<element ref="ds:transforms" minOccurs="0"/>

</sequence>

</complexType>

<attribute name="URI" type="uriReference" use="required"/>

</element>

</schema>

The schema is quite involved in describing the means of encryption.The fol-
lowing described elements are the most notable of the specification.

The EncryptedData element is at the crux of the specification. It is used to
replace the encrypted data, whether the data being encrypted is within an
XML document or the XML document itself. In the latter case, the
EncryptedData element actually becomes the document root.The EncryptedKey
element is an optional element containing the key that was used during the
encryption process. EncryptionMethod describes the algorithm applied during the
encryption process, and is also optional. CipherText is a mandatory element that
provides the encrypted data.You might have noticed that the EncryptedKey and
EncryptionMethod are optional—the nonexistence of these elements in an
instance is the sender making an assumption that the recipient knows this
information.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 216

Understanding .NET and XML Security • Chapter 5 217

The processes of encryption and decryption are straightforward.The data object
is encrypted using the algorithm and key of choice.Although the specification is
open to allow the use of any algorithm, each implementation of the specification
should implement a common set of algorithms to allow for interoperability. If the
data object is an element within an XML document, it is removed along with its
content and replaced with the pertinent EncryptedData element. If the data object
being encrypted is an external resource, a new document can be created with an
EncryptedData root node containing a reference to the external resource.
Decryption follows these steps in reverse order: parse the XML to obtain the algo-
rithm, parameters, and key to be used; locate the data to be encrypted; and perform
the data decryption operation.The result will be a UTF-8 encoded string repre-
senting the XML fragment.This fragment should then be converted to the char-
acter encoding used in the surrounding document. If the data object is an external
resource, then the unencrypted string is available to be used by the application.

There are some nuances to encrypting XML documents. Encrypted XML
instances are well-formed XML documents, but might not appear valid when
validated against their original schema. If schema validation is required of an
encrypted XML document, a new schema must be created to account for those
elements that are encrypted. Figure 5.15 contains an XML instance that illustrates
the before and after effects of encrypting an element within the instance.

Figure 5.15 XML Document to Be Encrypted

<?xml version="1.0"?>

<customer>

<firstname>John</firstname>

<lastname>Doe</lastname>

<creditcard>

<number>4111111111111111</number>

<expmonth>12</expmonth>

<expyear>2000</expyear>

</creditcard>

</customer>

Now, let’s say we want to send this information to a partner, but we want to
encrypt the credit card information. Following the encryption process laid out by
the XML Encryption specification, the result is shown in Figure 5.16.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 217

218 Chapter 5 • Understanding .NET and XML Security

Figure 5.16 XML Document after Encryption

<?xml version="1.0"?>

<customer>

<firstname>John</firstname>

<lastname>Doe</lastname>

<creditcard>

<xenc:EncryptedData

xmlns:xenc='http://www.w3.org/2000/11/temp-xmlenc' Type="Element">

<xenc:CipherText>AbCd….wXYZ</xenc:CipherText>

</xenc:EncryptedData>

</creditcard>

</customer>

The encrypted information is replaced by the EncryptedData element, and the
encrypted data is located within the CipherText element.This instance of
EncryptedData does not contain any descriptive information regarding the encryp-
tion key or algorithm, assuming the recipient of the document already has this
information.There are some good reasons why you would want to encrypt at the
element level considering the XLink and XPointer supporting standards, which
enable users to retrieve portions of documents (although there is a debate as to
restricting encryption to the document level).You might want to consolidate a
great deal of information in one document, yet restrict access only to a subsec-
tion. In addition, encrypting only sensitive information limits the amount of
information to be decrypted. Encryption and decryption are expensive opera-
tions.Although encryption is an important step in securing your Internet-bound
XML, there are times when you might want to ensure that you are receiving
information from whom you think you are.The W3C is also in the process of
drafting a specification to handle digital signatures.

XML Digital Signatures
The XML Digital Signature specification is a fairly stable working draft. Its scope
includes how to describe a digital signature using XML and the XML-signature
namespace.The signature is generated from a hash over the canonical form of the
manifest, which can reference multiple XML documents.To canonicalize some-
thing is to put it in a standard format that everyone generally uses. Because the
signature is dependent upon the content it is signing, a signature produced from a

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 218

Understanding .NET and XML Security • Chapter 5 219

www.syngress.com

non-canonicalized document could possibly be different from that produced from
a canonicalized document. Remember that this specification is about defining
digital signatures in general, not just those involving XML documents—the man-
ifest may also contain references to any digital content that can be addressed or
even to part of an XML document.

To better understand this specification, knowing how digital signatures work
is helpful. Digitally signing a document requires the sender to create a hash of the
message itself, and then encrypt that hash value with his own private key. Only
the sender has that private key and only he can encrypt the hash so that it can be
unencrypted using his public key.The recipient, upon receiving both the message
and the encrypted hash value, can decrypt the hash value knowing the sender’s
public key.The recipient must also try to generate the hash value of the message
and compare the newly generated hash value with the unencrypted hash value
received from the sender. If both hash values are identical, it proves that the
sender sent the message, as only the sender could encrypt the hash value cor-
rectly.The XML specification is responsible for clearly defining the information
involved in verifying digital certificates.

XML digital signatures are represented by the Signature element, which has the
following structure where “?” denotes zero or one occurrence,“+” denotes one or
more occurrences, and “*” denotes zero or more occurrences. Figure 5.17 shows
the structure of a digital signature as currently defined within the specification.

Figure 5.17 XML Digital Signature Structure

<Signature>

<SignedInfo>

(CanonicalizationMethod)

(SignatureMethod)

(<Reference (URI=)? >

(Transforms)?

(DigestMethod)

(DigestValue)

</Reference>)+

</SignedInfo>

(SignatureValue)

(KeyInfo)?

(Object)*

</Signature>

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 219

220 Chapter 5 • Understanding .NET and XML Security

The Signature element is the primary construct of the XML Digital Signature
specification.The signature can envelop or be enveloped by the local data that it
is signing, or the signature can reference an external resource. Such signatures are
detached signatures. Remember, this is a specification to describe digital signa-
tures using XML, and no limitations exist as to what is being signed.The
SignedInfo element is the information that is actually signed.The
CanonicalizationMethod element contains the algorithm used to canonicalize the
data, or structure the data in a common way agreed upon by most everyone.This
process is very important for the reasons mentioned at the beginning of this sec-
tion.The algorithm used to convert the canonicalized SignedInfo into the
SignatureValue is specified in the SignatureMethod element.The Reference element
identifies the resource to be signed and any algorithms used to preprocess the
data.These algorithms can include operations such as canonicalization,
encoding/decoding, compression/inflation, or even XSLT transformations.The
DigestMethod is the algorithm applied to the data after any defined transforma-
tions are applied to generate the value within DigestValue. Signing the DigestValue
binds resources content to the signer’s key.The SignatureValue contains the actual
value of the digital signature.

To put this structure in context with the way in which digital signatures
work, the information being signed is referenced within the SignedInfo element
along with the algorithm used to perform the hash (DigestMethod) and the
resulting hash (DigestValue).The public key is then passed within SignatureValue.
There are variations as to how the signature can be structured, but this explana-
tion is the most straightforward.There you go—everything you need to verify a
digital signature in one nice, neat package! To validate the signature, you must
digest the data object referenced using the relative DigestMethod. If the digest
value generated matches the DigestValue specified, the reference has been vali-
dated.Then, to validate the signature, obtain the key information from the
SignatureValue and validate it over the SignedInfo element.

As with encryption, the implementation of XML digital signatures allows the
use of any algorithms to perform any of the operations required of digital signa-
tures, such as canonicalization, encryption, and transformations.To increase inter-
operability, the W3C does have recommendations for which algorithms should be
implemented within any XML digital signature implementations.

You will probably see an increase in the use of encryption and digital signa-
tures when both the XML Encryption and XML Digital Signature specifications
are finalized.They both provide a well-structured way in which to communicate
each respective process, and with ease of use comes adoption. Encryption will

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 220

Understanding .NET and XML Security • Chapter 5 221

ensure that confidential information stays confidential through its perilous
journey over the Internet, and digital signatures will ensure that you are commu-
nicating with whom you think you are.Yet, both these specifications have some
evolving to do, especially when they are used concurrently.There’s currently no
way to determine if a document that was signed and encrypted was signed using
the encrypted or unencrypted version of the document.Typically, these little
bumps find a way of smoothing themselves out…over time.

NOTE

You can write your own code to perform XSL transformations on the
server, or you can use the XSL ISAPI extension to automatically transform
the XML page that includes a reference to the XSL style sheet. Some of
the advantages to using the ISAPI filter are automatic selection and exe-
cution of style sheets on the server, style sheet caching for improved per-
formance, and the option to allow the “pass through” of the XML for
client-side processing. To learn more about the XSL ISAPI Extension, visit
http://msdn.microsoft.com/xml/general/sxlisapifilter.asp.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 221

222 Chapter 5 • Understanding .NET and XML Security

Summary
Positioning the .NET Framework as a distributed application environment,
Microsoft was well aware that they had to pay attention to how an application
can be secured, due to the great risks that distributed security incorporate.That is
why they introduced a scalable but rights- and permission-driven security mech-
anism: scalable because you can as much own your own designed and customized
permissions, and rigid because it is always, even if the application takes no notice
of permissions.To add to that, the CLR will check the code on type safety (it
checks whether the code is trying to stick its nose in places it does not belong)
during the JIT compilation.

The .NET Common Language Runtime (CLR) will always perform a secu-
rity check—called code access security—on an assembly if it wants to access a
protected resource or operation.To prevent an assembly from obscuring its
restricted permissions by calling another assembly, the CLR will perform a secu-
rity stack walk. It checks every assembly in a calling chain of assemblies to see if
every single one has this permission. If this is not the case, the assembly is not
given access to this protected resource or operation.

What permissions an assembly is granted and what permission an assembly
requests is controlled in two ways.The first is controlled by code groups that
grant permissions to an assembly based on the evidence it presents to the CLR.
The assembly itself controls the latter.A secure conscious assembly requests only
the permissions it needs, even if the CLR is willing to grant it more permissions.
By doing this, the assembly insures itself from being misused by other code that
wants to make use of its permission set.A code group hierarchy has to be set up
by an administrator, which he can do at different security policy levels: enterprise,
user, and machine.

To establish the effective set of permissions, the CLR uses a straightforward
and robust method: it determines all valid permission sets based on the evidence
an assembly presents per security policy level, and the actual permission set per
policy level is the union of the valid permission set.The CLR does this for all the
policy levels and intersects the actual permission set to determine the effective
permission set of an assembly.

Added to the code access security, the CLR still supports role-based security,
although its implementation differs slightly from what you were accustomed to
with COM. Every executing thread has a security context called principal that ref-
erences the identity of the user.The principal is also used for impersonation of
the executing user.The principal comes in a few forms: based on Windows users

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 222

Understanding .NET and XML Security • Chapter 5 223

and its authentication, generic and can be controlled by custom-made authentica-
tion services; and a base form that enables you to custom-make your own prin-
cipal and identity.The code can reference the principal to check if the user has a
specific role.

Still, the most important security feature is security policies, which allow you
to create code groups and build your own permission set that can be enriched
with custom permissions.The custom permissions can be added to the .NET
Framework without opening up the security system, provided that you make no
security mistakes in the coding of the permissions.

As can be expected from every framework that relies on security, the .NET
Framework comes with a complete set of cryptography functionalities, equal to
what we had with the CryptoAPI, only the ease of use has improved a lot and is
no longer dependent on C/C++.To control cryptographic functionalities, such
as certificates and code signing, the .NET Framework has a set of security utili-
ties that enable you to control and maintain the security of your application
during its development and deployment process.

We need to rely on .NET’s security because the XML security is so weak.
After all, XML is meant to be just a simple ASCII file for data transfer. In a way,
the security of an XML document should not really be left to XML, but rather
to the programmer. However, the W3C does have plans to provide several crypto
recommendations for XML, but, like any other mathematical algorithm, it is only
a matter of time before the encryption is cracked.Your best bet—and your
users’—when using XML is to secure it by using a combination of .NET’s
internal security classes with some decent encrypting.

Solutions Fast Track

The Risks Associated with Using XML
Anything and everything on the Internet is vulnerable. Expose only data
and code that is absolutely necessary.

If information is not meant to be seen, it is much safer to transform the
XML document to exclude the sensitive information prior to delivering
the document to the recipient, rather than encrypt the information
within the document.

XSL is a complete programming language, and at times might be more
valuable than the information contained within the XML it transforms.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 223

224 Chapter 5 • Understanding .NET and XML Security

When you perform client-side transformations, you expose your XSL in
much the same way that HTML is exposed to the client.

.NET Security as a Viable Alternative
Permissions are used to control the access to protected resources and
operations.

Principal is the security context that is attached to every executing
thread in the CLR. It also holds the identity of the user, such as
Windows account information, and the roles that user has. It also
contributes to the capability of the code to impersonate.

Authentication and authorization can be controlled by the application
itself or rely on external authentication methods, such as NTLM and
Kerberos. Once Windows has authorized a user to execute CLR-based
code, the code has to control all other authorization that is based on the
identity of the user and information that comes with assemblies, called
evidence.

Security policy is what controls the entire CLR security system.A
system administrator can build policies that grant assemblies permissions
access to protected resources and operations.This permission granting is
based on evidence that the assemblies hand over to the CLR. If the rules
that make up the security policy are well constructed, it enables the
CLR to provide a secure runtime environment.

Type safety is related to the prevention of assembly code to reach into
memory/storage of other applications.Type safety is always checked
during JIT compilation and therefore before the code is even loaded
into the runtime environment. Only code that is granted the
SkipVerification permission can bypass type safety checking, unless
this is turned off altogether.

Code Access Security
Code access security is based on granting an assembly permission and
enforcing that it can never gain more permissions.This enforcing is done
by what is known as security stack walking.When a call is made to a
protected resource or operation, the assembly that the CLR demanded
from the assembly has a specific permission. However, instead of checking

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 224

Understanding .NET and XML Security • Chapter 5 225

only the assembly that made the call, the CLR checks every assembly
that is part of a calling chain. If all these assemblies have that specific
permission, the access to the protected resource/operation is allowed.

To be able to write secure code, it is possible to refrain from permissions
that are granted to the code.This is done by requesting the necessary
permissions for the assembly to run, whereby the CLR gives the
assembly only these permissions, under the reservation that the requested
permissions are part of the permission set the CLR was willing to grant
the assembly anyway. By making your assemblies request a limited
permission set, you can prevent other code from misusing the extended
permission set of your code. However, you can also make optional
requests, which allow the code to be executed even if the requested
permission is not part of the granted permission set. Only when the
code is confronted with a demand of having such a permission, it must
be able to handle the exception that is thrown, if it does not have this
permission.

The demanding of a caller to have a specific permission can be done
using declarative and imperative syntax. Requesting permissions can only
be done in a declarative way. Declarative means that it is not part of the
actual code, but is attached to an assembly, class, or method using a
special syntax enclosed with brackets (<>).When the code is compiled
to the intermediate language (IL) or a portable executable (PE), these
demands/requests are extracted from the code and placed in the
metadata of the assembly.This metadata is read and interpreted by the
CLR before the assembly is loaded.The imperative way makes the
demands part of the code.This can be sensible if the demands are
conditional. Because a demand can always fail and result in an exception
being thrown by the CLR, the code has to be equipped for handling
these exceptions.

The code can control the way in which the security stack walk is
performed. By using Assert, Deny, or PermitOnly, which can be set with
both the declarative and imperative syntax, the stack walk is finished
before it reaches the end of the stack.When CLR comes across an Assert
during a stack walk, it finishes with a Succeed. If it encounters a Deny, it
is finished with a Fail.With the PermitOnly, it succeeds only if the
checked permission is the same or is a subset of the permission defined
with the PermitOnly. Every other demand will fail at the PermitOnly.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 225

226 Chapter 5 • Understanding .NET and XML Security

Custom permissions can be constructed and added to the runtime
system.

Role-Based Security
Every executing thread in the .NET runtime system has an identity that
is part if the security context, called principal.

Based on the principal, role-based checks can be performed.

Role-based checks can be performed in a declarative, imperative, and
direct way.The direct way is by accessing the principal and/or identity
object and querying the values of the fields.

Security Policies
A security policy is defined on different levels: enterprise, user, machine,
and application domain.The latter is not always used.

A security policy has permission sets attached that are built in—such as
FullTrust, Internet, or Custom Made.A permission set is a collection of
permissions. By grouping permissions, you can easily address them, only
using the name of the permission set.

The important part of the policy is the security rules, called code groups;
these groups are constructed in a hierarchy.

A code group checks the assembly based on the evidence it presents. If
the assembly’s evidence meets the condition, the assembly is regarded as
a member of this code group and is successively granted the permissions
of the permission set related to the code group.After all code groups are
checked, the permission sets of all the code groups or which the
assembly is a member are united to an actual permission set for the
assembly at that security level.

The CLR performs this code group checking on every security level,
resulting in three or four actual permission sets.These are intersected to
result in the effective permission set of permissions granted to the assembly.

Remoting limits the extent to which the security policy can be applied.
To create a secure environment, you need to secure remoting in such a
way that access to your secured CLR environment can be fully
controlled.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 226

Understanding .NET and XML Security • Chapter 5 227

Cryptography
The .NET Framework comes with a cryptography namespace that
covers all necessary cryptography functionalities that are at least equal to
the CryptoAPI that was used up until now.

Using the cryptography classes is much easier than using the CryptoAPI.

Security Tools
The .NET Framework comes with a set of security tools that enable
you to maintain certificates, sign code, create and maintain security
policies, and control the security of assemblies.

Two comparable tools enable you to maintain code access security.
caspol.exe (Code Access Security Policy Utility) has to be operated from
the command-line interface.The .NET Configuration Tool comes as a
snap-in for the Microsoft Management Console (MMC) and is therefore
more intuitive and easier to use than caspol.exe is.

Securing XML—Best Practices
Use existing methods of security to protect your XML. HTTPS works
with your XML in the same way it does with HTML.

Try to keep everything on the server. Perform your XSL
transformation on the server, thus only sending HTML or relevant
XML to the client.

The goal of the XML Encryption specification (currently in working-
draft form) is to describe a digitally encrypted Web resource using XML.
The specification provides for the encryption of an element including
the start- and end-tags, the content within an element between the
start- and end-tags, or the entire XML document.The encrypted data is
structured using the <EncryptedData> element.

The XML Digital Signature specification is a fairly stable working draft.
Its scope includes how to describe a digital signature using XML and
the XML-signature namespace.The signature is generated from a hash
over the canonical form of the manifest, which can reference multiple
XML documents.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 227

228 Chapter 5 • Understanding .NET and XML Security

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: I want to prevent an overload of security stack walk; how can I control this?

A: This can indeed become a major concern if it turns out that the code accesses
a significant number of protected resources and/or operations, especially if
they happen in a long calling-chain.The only way to prevent this from hap-
pening is to put in a SecurityAction.Assert just before a protected resource/oper-
ation is called.This implies that you need a thorough understanding of when a
stack walk—hence, demand—is triggered and on what permission this stack
walk will be performed. By just placing an Assert, you create an uncontrolled
security hole.What you can do is the following, which can be applied in the
situation in which you make a call to a protected resource, but do this from
within a loop-structure.You can also use it in a situation in which you call a
method that makes a number of calls to (different) protected resources/opera-
tions that trigger the demand for the same type of permission.

The only way to prevent a number of stack walks is to place an imperative
assertion on the permission that will be demanded. Now you know that the
stack walk will be stopped in its tracks.To close the security hole you just
opened, you place an imperative demand for the permission you asserted in
front of the assertion. If the demand succeeds, you know that in the other part
of the calling-chain, everything is OK in regard to this permission. Moreover,
because nothing will change if you check a second or third time, you can save
yourself from a lot of unnecessary stack walks.Think about a 1000-fold loop:
You just cleared your code from doing redundant 999 stack walks.

Q: When should I use the imperative syntax, and when should I use the
declarative?

A: First, make sure that you understand the difference in the effect they take.The
imperative syntax makes a demand, or override for that matter, on part of your
code. It is executed when the line of code that holds the demand/override is
encountered during runtime.The declarative syntax brings these demands and

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 228

Understanding .NET and XML Security • Chapter 5 229

overrides right into the metadata of the assembly. During the load phase of the
assembly, the metadata is extracted and interpreted, meaning that the CLR
already takes action on this information. If a stack walk takes place, the CLR
can handle overrides much quicker than if they would occur during execu-
tion, thus the imperative way. However, demands should only be made at the
point they are really necessary. Most of the time, demands are conditional—
think about whether the demand is based on a role-based security check. If
you would make a demand declarative for a class or method, it will be trigger
a stack walk every time this class or method is referenced, even if demands
turn out to be not needed.To recap: Make overrides declarative and place
them in the header of the method, unless all methods in the class need the
assertion; then, you place it in the class declaration. Remember that an
assembly cannot have more than one active override type. If you cannot avoid
this, you need to use declarative overrides anyway. Make demands imperative
and place them just before you have to access a protected resource/operation.

Q: How should I go about building a code group hierarchy?

A: You need to remember four important issues in building a code group
hierarchy:

■ An assembly cannot be a member of code groups that have conflicting
permissions; for example, one with unrestricted FileIOPermission and one
with a more restricted FileIOPermission.

■ The bigger the code group hierarchy, the harder it is to maintain.

■ The larger the number of permission sets; the harder it is to maintain them.

■ The harder it is to maintain code groups and permissions sets, the more
likely it is that they contain security holes.

Anyhow, the best approach is the largest common denominator. Security
demands simplicity with as few exceptions as possible. Before you start cre-
ating custom properties sets, convince yourself that this is absolutely necessary.
Nine out of 10 times, one of the built-in permission sets suffices.The same
goes for code groups—most assemblies will fit nicely in a code group based
on their zone identity. If you conclude that this will not do, add only code
groups that are more specific than the zone identity, like the publisher iden-
tity, but still apply to a large group of assemblies. Use more than one level in
the code group hierarchy only if it is absolutely necessary to check on more

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 229

230 Chapter 5 • Understanding .NET and XML Security

than one membership condition—hence, identity attribute.Add a permission
set to the lowest level of the hierarchy only and apply the Nothing permis-
sion set to the parent code groups.

Take into account that the CLR will check on all policy levels, so check
if you have to modify the code group hierarchy of only one policy level, or
that this has to be done on more levels. Remember, the CLR will intersect
the actual permission sets of all the policy levels.

Q: How do I know when to use an element versus an attribute when defining
the structure of my XML?

A: It is very hard to define catchall rules to determine when to use an element
versus an attribute. Remember, though, that you can do very little validation
with attributes other than making sure that they exist. For the most part, if
there is any doubt, use an element to describe your content.

Q: Are there any XML editors out there?

A: Yes, quite a few, one of which is XML Notepad by Microsoft.The one we
personally prefer to use is XML Spy.You might have a small learning curve
with the user interface, but it is by far the best XML editor available when
considering the price. Sometimes, though, nothing beats XML Notepad
when you need something down and dirty.

Q: Do I always have to define a schema for my XML document?

A: No, you don’t always need a schema. Schemas are great for when you have to
do validation—typically when exchanging XML documents over the
Internet. Performing validation all the time might seem like a great idea, but
it is a very expensive operation that can bog down a Web server.When
shooting out XML to the Web, you typically don’t need a schema, although it
is a great way to document your XML.

Q: How can I use XSL to make my applications completely browser independent?

A: XSL is a tool you can use to transform XML to HTML.You can create sev-
eral style sheets. Each can be especially suited for a particular browser, and
depending on the browser of the client, you can transform the XML using
the respective style sheet.This not only allows you to support Netscape and
Internet Explorer, but also allows you to support almost any Internet-enabled
device, from handhelds to cell phones.

www.syngress.com

155_xml_net_pd_C05.qk 3/7/02 8:58 AM Page 230

Web Development
Using XML and
ASP.NET

Solutions in this chapter:

■ Reviewing the Basics of the ASP.NET
Platform

■ Reading and Parsing XML

■ Writing an XML Document Using the
XmlTextWriter Class

■ Exploring the XML Document Object Model

■ Querying XML Data Using XPathDocument
and XPathNavigator

■ Transforming an XML Document Using XSLT

■ Working with XML and Databases Online

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 6

231

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 231

232 Chapter 6 • Web Development Using XML and ASP.NET

Introduction
Microsoft has done a great job of bringing ASP and their older languages into
the twenty-first century with .NET.ASP.NET is now a full-fledged object-
oriented Web application development platform, and has seen many improve-
ments; the main improvement to ASP with .NET is its capability to use the
.NET languages and not have to rely on either JScript or VBScript.

The following are some key points of ASP.NET:

■ ASP.NET is a key part of the wider Microsoft .NET initiative,
Microsoft’s new application development platform.

■ .NET is both an application architecture to replace the Windows DNA
model, and a set of tools, services, applications, and servers based on the
.NET Framework and the Common Language Runtime (CLR).

■ Rather than just being ASP 4 or an incremental upgrade,ASP.NET is a
complete rewrite from the ground up, using all of the advanced features
.NET makes available.

■ ASP.NET can take advantage of all that .NET has to offer, including
support for around 20 or more .NET languages from C# to Perl .NET,
and the full set of .NET Framework software libraries.

■ Web applications written in ASP.NET are fast, efficient, manageable,
scalable, and flexible, and, above all, easy to understand and to code!

■ Components and Web applications are all compiled .NET objects written
in the same languages, and they offer the same functionality, so there is no
need to leave the ASP environment for purely functional reasons.

■ You’ll have less need for third-party components.With a few lines of
code,ASP.NET can talk to XML, serve as or consume a Web service,
upload files,“screen scrape” a remote site, or generate an image.

Reviewing the Basics
of the ASP.NET Platform
With the .NET Framework and ASP.NET, Microsoft has not just shown itself to
be a contender in Web development technologies, but many commentators also
believe Microsoft has taken the lead.ASP.NET is well equipped for any task you
want to put to it, from building intranets to e-business or e-commerce mega-
sites. Microsoft has been very careful to include the functionality and flexibility
developers require, while maintaining the easy-to-use nature of ASP:

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 232

www.syngress.com

■ With ASP.NET you now have a true choice of languages.All the .NET
languages have access to the same foundation class libraries, the same
type of systems, equal object orientation and inheritance capabilities, and
full interoperability with existing COM components.

■ You can use the same knowledge and code investment for everything
from Web development to component development or enterprise sys-
tems, and developers do not have to be concerned about differences in
APIs or variable type conversions, or even deployment.

■ ASP.NET incorporates all the important standards of our time, such as
XML and SOAP. In addition, with ADO.NET and the foundation class
libraries, they are arguably easier to implement than in any other tech-
nology, including Java.

■ An ASP.NET programmer still only needs a computer with Notepad
and the ability to FTP to write ASP code, but now with the .NET
Framework command-line tools and the platform’s XML-based configu-
ration, this is truer than before!

■ Microsoft has included in the .NET Framework an incredibly rich feature
set of library classes, from network-handling functions for dealing with
Transmission Control Protocol/Internet Protocol (TCP/IP) and Domain
Name System (DNS), to XML data and Web services, to graphic drawing.

■ In the past, the limitations of ASP scripting meant components were
required for functionality reasons, not just for architectural reasons.
ASP.NET has access to the same functionality and uses the same lan-
guages in which you would create components, so now components are
an architectural choice only.

■ A .NET developer is shielded from changes in the underlying operating
system and API, as the .NET technologies deal with how your code is
implemented; and with the Common Type System, you don’t have to
worry whether the component you are building uses a different imple-
mentation of a string or integer to the language in which it will be used.

NOTE

The remainder of this chapter assumes you have previous knowledge of
ASP.NET; if you need more help with ASP.NET in general, please feel
free to pick up a copy of Syngress’ ASP.NET Web Developer’s Guide
(ISBN: 1-928994-51-2).

Web Development Using XML and ASP.NET • Chapter 6 233

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 233

234 Chapter 6 • Web Development Using XML and ASP.NET

Reading and Parsing XML
The XmlTextReader class provides a fast forward-only cursor that can be used to
“pull” data from an XML document.An instance of it can be created as follows:

Dim myRdr As New XmlTextReader(Server.MapPath("catalog2.xml"))

Once an instance is created, the imaginary cursor is set at the top of the docu-
ment.We can use its Read() method to extract fragments of data sequentially. Each
fragment of data is distantly similar to a node of the underlying XML tree.The
NodeType property captures the type of the data fragment read, the Name property
contains the name of the node, and the Value property contains the value of the
node, if any.Thus, once a data fragment has been read, we can use the following
type of statement to display the node-type, name, and value of the node.

Response.Write(myRdr.NodeType.ToString() + " " +

myRdr.Name + ": " + myRdr.Value)

The attributes are treated slightly differently in the XmlTextReader object.
When a node is read, we can use the HasAttributes property of the reader object to
see if there are any attributes attached to it. If there are attributes in an element,
the MoveToAttribute(i) method can be applied to iterate through the attribute col-
lection.The AttributeCount property contains the number of attributes of the cur-
rent element. Once we process all of the attributes, we need to apply the
MoveToElement method to move the cursor back to the current element node.
Therefore, the following code will display the attributes of an element:

If myRdr.HasAttributes Then

For i = 0 To myRdr.AttributeCount - 1

myRdr.MoveToAttribute(i)

Response.Write(myRdr.NodeType.ToString() + " : "+ myRdr.Name _

+ ": " + myRdr.Value + "</br>")

Next i

myRdr.MoveToElement()

End If

Microsoft has loaded the XmlDocument class with a variety of convenient class
members. Some of the frequently used methods and properties are AttributeCount,
Depth, EOF, HasAttributes, HasValue, IsDefault, IsEmptyElement, Item, ReadState, and
Value.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 234

Web Development Using XML and ASP.NET • Chapter 6 235

Parsing an XML Document
In this section, we will apply the XMLTextReader object to parse and display all data
contained in our Catalog2.xml document (this document can be found in the
source code folder for Chapter 6 on the companion Solutions Web site for the book
www.syngress.com/solutions).The code for this example and its output is shown in
Figures 6.1 and 6.2, respectively.The code shown in Figure 6.2 is available on the
CD. Our objective is to start at the top of the document and then sequentially travel
through its nodes using the XMLTextReader’s Read() method.When there is no more
data to read, the Read() method returns “false.”Thus, we are able to build the While
myRdr.Read() loop to process all data. Please review the code (Figure 6.2) and its
output carefully.While displaying the data, we have separated the node-type, node-
name, and values using colons. Not all elements have names or values; hence, you
will see many empty names and values after respective colons.

Figure 6.2 XmlTextReader1.aspx

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<Script runat="server">

Sub Page_Load(sender As Object, e As EventArgs)

www.syngress.com

Figure 6.1 Truncated Output of the XmlTextReader1.aspx Code

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 235

236 Chapter 6 • Web Development Using XML and ASP.NET

Figure 6.2 Continued

Dim myRdr As New XmlTextReader(Server.MapPath("Catalog2.xml"))

Dim i As Integer

While myRdr.Read()

Response.Write(myRdr.NodeType.ToString() + " : " + myRdr.Name _

+ ": " + myRdr.Value + "
")

If myRdr.HasAttributes Then

For i = 0 To myRdr.AttributeCount - 1

myRdr.MoveToAttribute(i)

Response.Write(myRdr.NodeType.ToString() + " : "+ myRdr.Name _

+ ": " + myRdr.Value + "</br>")

Next i

myRdr.MoveToElement()

End If

End While

myRdr.Close()

End Sub

</Script>

Navigating through an XML
Document to Retrieve Data
In the previous section, we extracted and displayed all data, including the white-
space contained in an XML document.We will illustrate an example where we
will navigate through the document and pick up only those data that are necessary
for an application.The output of this application is shown in Figure 6.3. In this
example, we will display the names of our products in a list box.We will load the
list box using the Product Name data from the XML file.The user will select a par-
ticular product. Subsequently, we will search the XML document to find and dis-
play the price of the product.We will travel through the XML file twice, once to
load the list box and once to find the price of a selected product. Please be aware
that we could have easily developed the application by building an array or array
list of the products during the first pass through the XML data, thus avoiding a
second pass. Nevertheless, we are reading the file twice just to illustrate various
methods and properties of the XmlTextReader object.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 236

Web Development Using XML and ASP.NET • Chapter 6 237

To load the list box, we will go through the following process: we will load
the list box in the Page_Load event. Here, we will read the nodes one at a time. If
the node type is of element-type, we will check if its name is ProductName. If it is
a ProductName node, we will perform a Read() to get to its text node and then
apply the myRdr.ReadString() method to extract the value and load it in the list
box. Finally, we will close the reader object. Caution:We are assuming that there is
no “whitespace” between the ProductName and its Text node. If there is a white-
space, we will need to put the second Read() in a loop until the node-type is Text.

While myRdr.Read()

If XmlNodeType.Element

If myRdr.Name="ProductName" Then

myRdr.Read()

lstProducts.Items.Add(myRdr.ReadString)

End If

End If

End While

myRdr.Close()

To find the price of the selected product, we will go through the following
process: we will include the necessary code in the “unclick” event code of the
command button “Show Price.”We will create a second XmlTextReader object
based on the catalog2.xml file. Of course, we can scan all nodes sequentially to
find the price. However, the XmlTextReader class enables you to skip undesirable
nodes, such as the “whitespace” or the declaration nodes via the MoveToContent()
method.According to Microsoft, all nonwhitespace, Element, End Element,
EntityReference, and EndEntity nodes are content nodes.The MoveToContent() method

www.syngress.com

Figure 6.3 Output of the Navigation ASPX Example XmlTextReader2.aspx

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 237

238 Chapter 6 • Web Development Using XML and ASP.NET

checks whether the current node is a content node. If the node is not a content
node, then the method skips to the next content node.You need to be careful,
though. If the current node happens to be a content node, the cursor does not
move to the next content node automatically on a further MoveToContent().

Initially, when we instantiate the reader object, its node type is None. It hap-
pens to be a noncontent node. Hence, our first MoveToContent() statement takes
us to a content node.There, we check if it is an Element-type node named
“ProductName” and if its ReadString() is equal to the name of the selected
product. If all are true, then we apply a Read() to go to the next node.This Read()
might take us to a “whitespace” node, and thus we have applied a MoveToContent()
to get to the ListPrice node. Figure 6.4 shows an excerpt of the relevant code.The
complete code is available in the XmlTextReader2.aspx file located in the folder
for the source code for Chapter 6 on the companion Solutions Web site for the
book (www.syngress.com/solutions).

Figure 6.4 Excerpt of XmlTextReader2.aspx

Sub showPrice(s As Object, e As EventArgs)

Dim myRdr2 As New XmlTextReader(Server.MapPath("Catalog2.xml"))

Dim unitPrice As Double

Dim qty AS Integer

Do While Not myRdr2.EOF()

If (myRdr2.MoveToContent() = XmlNodeType.Element _

And myRdr2.Name ="ProductName" _

And myRdr2.ReadString()=lstProducts.SelectedItem.ToString())

myRdr2.Read()

If (myRdr2.MoveToContent() = XmlNodeType.Element _

And myRdr2.Name ="ListPrice")

unitPrice=Double.Parse(myRdr2.ReadString())

lblPrice.Text= "Unit Price = " + FormatCurrency(unitPrice)

Exit Do

End If

End If

myRdr2.Read()

Loop

qty = Integer.Parse(txtQty.Text)

lblAmount.Text = "Amount Due = " + FormatCurrency(qty * unitPrice)

myRdr2.Close()

End Sub

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 238

Web Development Using XML and ASP.NET • Chapter 6 239

By the way, we could have also used the MoveToContent() method to load our
list box more effectively. However, we just wanted to show the alternative
methodologies.

Writing an XML Document
Using the XmlTextWriter Class
The XmlTextWriter class is a concrete implementation of the XmlWriter abstract
class.An XmlTextWriter object can be used to write data sequentially to an output
stream, or to a disk file as an XML document.The data to be written can come
from the user’s input and/or from a variety of other sources, such as text files,
databases, XmlTextReaders, or XmlDocuments. Its major methods and properties
include Close, Flush, Formatting, WriteAttributes, WriteAttributeString, WriteComment,
WriteElementString, WriteElementString, WriteEndAttribute, WriteEndDocument,
WriteState, and WriteStartDocument.

Generating an XML
Document Using XmlTextWriter
In this section, we will collect user-given data via an .aspx page, and write the
information in an XML file. Figure 6.5 shows the runtime view of the applica-
tion. On the click event of the “Create XML File,” the application will create the
XML file (in the disk) and display it back in the browser as shown in Figure 6.6.

We have included the necessary code in the click event of the command
button. Our objective is to write the data in a disk file named Customer.xml. In
the code, first we have created an instance of the XmlTextWriter object as follows:

www.syngress.com

Figure 6.5 Output of XmlTextReader2.aspx

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 239

240 Chapter 6 • Web Development Using XML and ASP.NET

Dim myWriter As New XmlTextWriter _

(Server.MapPath("Customer.xml"), Nothing)

The second parameter Nothing is specified to map the file to a UTF-8
format.Then, it is just a matter of writing the various elements, attributes, and
their values judiciously. Once the file is written, we simply employ the
Response.Redirect(Server.MapPath(“Customer.xml”)) to display the XML documents
information in the browser. Figure 6.7 shows the complete code for the applica-
tion. Both Customer.xml and XmlTextWriter1.aspx files are available on the
companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 6.7 XmlTextWriter1.aspx

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<HTML><HEAD><title>XMLTextWriter Example</title></HEAD>

<body><form runat="server">

XmlTextWriter Example

<asp:Label id="lblAcno" Text="Account Number :"

runat="server"/>

<asp:TextBox id="txtAcno" runat="server" width="50" _

text=" ST124" />

<asp:Label id="lblName" Text="Name :" runat="server" />

<asp:TextBox id="txtName" runat="server" width="100" text="Vijay

Ananth"/>

<asp:Label id="lblCity" Text="City :" runat="server"/>

<asp:TextBox id="txtCity" runat="server" width="100" text="Toledo"/>

<asp:Button id="cmdWriteXML" Text="Create XML File" runat="server"

onclick="writeXML"/>

www.syngress.com

Figure 6.6 Generated XML File

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 240

Web Development Using XML and ASP.NET • Chapter 6 241

Figure 6.7 Continued

</form>

<Script Language="vb" runat="server">

Sub writeXML(sender As Object,e As EventArgs)

Dim myWriter As New XmlTextWriter _

(Server.MapPath("Customer.xml"), Nothing)

myWriter.Formatting = Formatting.Indented

myWriter.WriteStartDocument() 'Start a new document

' Write the Comment

myWriter.WriteComment("XMLTextWriter Example")

' Insert an Start element tag

myWriter.WriteStartElement("CustomerDetails")

' Write an attribute

myWriter.WriteAttributeString("AccountType", "Saving")

' Write the Account element and its content

myWriter.WriteStartElement("AccountNumber","")

myWriter.WriteString(txtAcno.Text)

myWriter.WriteEndElement()

' Write the Name Element and its data

myWriter.WriteStartElement("Name","")

myWriter.WriteString(txtName.Text)

myWriter.WriteEndElement()

'Write the City element and its data

myWriter.WriteStartElement("City","")

myWriter.WriteString(txtCity.Text)

myWriter.WriteEndElement()

'End all the tags here

myWriter.WriteEndDocument()

myWriter.Flush()

myWriter.Close()

'Display the XML content on the screen

Response.Redirect(Server.MapPath("Customer.xml"))

End Sub

</Script>

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 241

242 Chapter 6 • Web Development Using XML and ASP.NET

Exploring the XML
Document Object Model
The W3C Document Object Model (DOM) is a set of specifications to represent
an XML document in the computer’s memory. Microsoft has implemented the
W3C DOM via a number of .NET objects; the XmlDocument is one of these
objects.When an XmlDocument object is loaded, it organizes the contents of an
XML document as a “tree” (as shown in Figure 6.8).Whereas the XMLTextReader
object provides a forward-only cursor, the XmlDocument object provides fast and
direct access to a node. However, a DOM tree is cache intensive, especially for
large XML documents.

An XmlDocument object can be loaded from an XmlTextReader. Once it is
loaded, we can navigate via the nodes of its tree using numerous methods and
properties. Some of the frequently used members include DocumentElement (root
of the tree), ChildNodes (all children of a node), FirstChild, LastChild,
HasChildNodes, ChildNodes.Count (# of children), InnerText (the content of the
subtree in text format), Name (node name), NodeType, and Value (of a text node),
among many others.

If needed, we can address a node using the parent-child hierarchy.The first
child of a node is the ChildNode(0), the second child is ChildNode(1), and so on.
For example, the first product can be referenced as DocumentElement.ChildNodes(0).
Similarly, the price of the second product can be addressed as DocumentElement
.ChildNodes(1).ChildNodes(2).InnerText.

www.syngress.com

Figure 6.8 Node Addressing Techniques in an XML DOM Tree

Document.Element.ChildNodes(1).
ChildNodes(2).InnerTextCatalog

Product Product

PId PricePName PricePNamePId

47.76ShimanoF10 49.99BantamF20

Document.Element.
ChildNodes(0)

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 242

Web Development Using XML and ASP.NET • Chapter 6 243

Navigating through an XmlDocument Object
In this example, we will implement our product selection page using the XML
DOM. Figure 6.9 shows the output of the code.

Let’s go through the process of loading the XmlDocument (DOM tree).There
are a number of different ways to load an XMLDocument object; we will load it
using an XmlTextReader object.We ask the reader to ignore the “whitespaces”
(more or less to conserve cache).As you can see from the following code, we are
loading the tree in the Page_Load event. On “PostBack”, we will not have access
to this tree, which is why we are storing the “tree” in a session variable.When the
user makes a selection, we will retrieve the tree from the session and search its
node for the appropriate price.

Private Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDoc As New XmlDocument()

Dim myRdr As New XmlTextReader(Server.MapPath("Catalog2.xml"))

myRdr.WhitespaceHandling = WhitespaceHandling.None

myDoc.Load(myRdr)

Session("sessionDoc") = myDoc ' Put it in a session variable

Once the tree is loaded, we can load the list box with the InnerText property
of the ProductName nodes.

For i = 0 To myDoc.DocumentElement.ChildNodes.Count - 1

lstProducts.Items.Add _

www.syngress.com

Figure 6.9 Output of the XmlDocument Object Example

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 243

244 Chapter 6 • Web Development Using XML and ASP.NET

(myDoc.DocumentElement.ChildNodes(i).ChildNodes(1).InnerText)

Next i

myRdr.Close()

Next, let’s investigate how to retrieve the price of a selected product. On
click of the Show Price button, we simply retrieve the tree from the session, and
get to the Price node directly.The SelectedIndex property of the list box does a
favor for us, as its SelectedIndex value will match the corresponding child’s ordinal
position in the Catalog (DocumentElement). Figure 6.10 shows an excerpt of the
relevant code that is used to retrieve the price of a selected product.The com-
plete code is available in the XmlDom1.aspx file on the companion Solutions
Web site for the book (www.syngress.com/solutions).

Figure 6.10 Partial Listing of XmlDom1.aspx

Private Sub showPrice(s As Object, e As EventArgs)

Dim i As Integer

Dim qty As Integer = 1

Dim price As Double

Dim myDoc As New XmlDocument()

myDoc = Session("sessionDoc")

i = lstProducts.SelectedIndex ' The Row number selected

qty = Integer.Parse(txtQty.Text)

price = Double.Parse _

(myDoc.DocumentElement.ChildNodes(i).ChildNodes(2).InnerText)

lblPrice.Text = FormatCurrency(price)

lblAmount.Text = FormatCurrency(qty * price)

End Sub

Parsing an XML Document
Using the XmlDocument Object
A tree is comprised of nodes. Essentially, a node is also a tree because it contains
all other nodes below it.A node at the bottom does not have any children; hence,
most likely it will be of a text-type node.We will employ this phenomenon to
travel through a tree using a VB recursive procedure.The primary objective of
this example is to travel through the DOM tree and display the information con-
tained in each of its nodes. Figure 6.11 shows the output of this exercise.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 244

Web Development Using XML and ASP.NET • Chapter 6 245

We will develop two subprocedures:

■ DisplayNode(node As XmlNode) It will receive a node and check
if it is a terminal node. If it is, this subprocedure will print its contents. If
the node is not a terminal node, then the subprocedure will check if the
node has any attributes; if there are, it will print them.

■ TravelDownATree(tree As XmlNode) It will receive a tree, and at
first it will call the DisplayNode procedure.Then, it will pass the subtree
of the received tree to itself.This is a recursive procedure.Thus, it will
actually fathom all nodes of a received tree, and we will get all nodes of
the entire tree printed.

Figure 6.12 shows the complete code listing.The code is also available in the
file named XmlDom2.aspx on the companion Solutions Web site for the book.
As usual, we will load the XmlDocument in the Page_Load() event using an
XmlTextReader.After the DOM tree is loaded, we will call the TravelDownATree
recursive procedure, which will accomplish the remainder of the job.

Figure 6.12 The Complete Code XmlDom2.aspx

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myXmlDoc As New XmlDocument()

Dim myRdr As New XmlTextReader(Server.MapPath("Catalog2.xml"))

www.syngress.com

Figure 6.11 Parsing an XmlDocument Object

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 245

246 Chapter 6 • Web Development Using XML and ASP.NET

Figure 6.12 Continued

myRdr.WhitespaceHandling = WhitespaceHandling.None

myXmlDoc.Load (myRdr)

TravelDownATree(myXmlDoc.DocumentElement)

myRdr.Close()

End If

End Sub

Sub TravelDownATree(tree As XMLNode)

If Not IsNothing(tree) Then

DisplayNode(tree)

End If

If tree.HasChildNodes Then

tree = tree.FirstChild

While Not IsNothing(tree)

TravelDownATree(tree) //Call itself and pass the subtree

tree = tree.NextSibling

End While

End If

End Sub

Sub DisplayNode(node As XmlNode)

If Not node.HasChildNodes Then

Response.Write("Name= " + node.Name + " Type= " _

+ node.NodeType.ToString()+" Value= "+node.Value +"
")

Else

Response.Write("Name= " + node.Name + " Type= " _

+ node.NodeType.ToString() + "
")

If node.NodeType = XmlNodeType.Element Then

Dim x As XmlAttribute

For each x In node.Attributes

Response.Write("Name= " + x.Name + " Type = " _

+ x.NodeType.ToString()+" Value = "+x.Value +"
")

Next

End If

End If

End Sub

</Script>

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 246

Web Development Using XML and ASP.NET • Chapter 6 247

Using the XmlDataDocument Class
The XmlDataDocument class is an extension of the XmlDocument class, and more or
less behaves the same way the XmlDocument does.The most fascinating feature of
an XmlDataDocument object is that it provides two alternative views of the same
data, the XML view and the relational view.The XmlDataDocument has a property
named DataSet. It is through this property that XmlDataDocument exposes its data
as one or more related or unrelated DataTables. A DataTable is actually an imagi-
nary table view of XML data. Once we load an XmlDataDocument object, we can
treat it as a DOM tree, or we can treat its data as a DataTable (or a collection of
DataTables) via its DataSet property. Figure 6.13 shows the two views of an
XmlDataDocument. Because these views are drawn from the same DataDocument
object, they are automatically synchronized.That means that any changes in either
of them will change the other.

In this section, we will provide three examples:

■ We will demonstrate how to load an XML document as an
XmlDataDocument object, and process it as a DOM tree.

■ We will illustrate how to retrieve the data from a DataTable view of the
XmlDataDocument’s DataSet.

■ Finally,We will demonstrate when and how the XmlDataDocument object
provides multiple-table views.

www.syngress.com

Figure 6.13 Two Views of an XmlDataDocument Object

XML Source

XmlDataDocument

The Tree View
DataSet’s

Data Table View

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 247

248 Chapter 6 • Web Development Using XML and ASP.NET

Loading an XmlDocument and Retrieving
the Values of Certain Nodes
In this section, we will load an XmlDataDocument using our Catalog2.xml file.After
we load it, we will retrieve the product names and load them in a list box. Figure
6.14 shows the output of this example.The code for this application is listed in
Figure 6.15, and is also available in the file named XmlDataDocument1.aspx on the
companion Solutions Web site for the book.

The XmlDataDocument is a pleasant object with which to work. In this
example, the code is pretty straightforward.After we have loaded the
XmlDataDocument, we have declared an XmlNodeList collection named
productNames.We have populated the collection by using the
GetElementsByTagName(“ProductName”) method of the XmlDataDocument object.
Finally, it is just a matter of iterating through the productNames collection and
loading each of its members in the list box.

At this stage, you are probably wondering why we are not finding the unit
price of the selected product.Actually, therein lies the beauty of the
XmlDataDocument. Because it has extended the XmlDocument class, all of the
members of the XmlDocument class are also available to us.Thus, we could use the
same technique as shown in our previous example to find the price. Nevertheless,
the reason for not showing the searching technique here is that we will cover it
later when we discuss the XPathIterator object.

Figure 6.15 XmlDataDocument1.aspx

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<html><head></head><body><form runat="server">

Select a Product:

www.syngress.com

Figure 6.14 Output of XmlDataDocument1.aspx

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 248

Web Development Using XML and ASP.NET • Chapter 6 249

Figure 6.15 Continued

<asp:ListBox id="lstProducts" runat="server" rows = "2" />

</body></form><html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataDoc As New XmlDataDocument()

myDataDoc.Load(Server.MapPath("Catalog2.xml"))

Dim productNames As XmlNodeList

productNames= myDataDoc.GetElementsByTagName("ProductName")

Dim x As XmlNode

For Each x In productNames

lstProducts.Items.Add (x.FirstChild().Value)

Next

End If

End Sub

</Script>

Using the Relational View of an
XmlDataDocument Object
In this example, we will process and display the Catalog3.xml document’s data as
a relational table in a DataGrid. The Catalog3.xml is exactly the same as
Catalog2.xml, except that it has more data.The Catalog3.xml file (Figure 6.17) is
available on the companion Solutions Web site for the book. Figure 6.16 shows
the output of this example.

www.syngress.com

Figure 6.16 Output of XmlDataDocument DataSet View Example

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 249

250 Chapter 6 • Web Development Using XML and ASP.NET

If we want to process the XML data as relational data, we first need to load
the schema of the XML document.We have generated the following schema for
the Catalog3.xml using VS.NET. Figure 6.17 shows the schema specification (also
available on the companion Solutions Web site for the book).

Figure 6.17 Catalog3.xsd

<xsd:schema id="Catalog" targetNamespace="http://tempuri.org

/Catalog3.xsd" xmlns="http://tempuri.org/Catalog3.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata

="urn:schemas-microsoft-com:xml-msdata" attributeFormDefault

="qualified" elementFormDefault="qualified">

<xsd:element name="Catalog" msdata:IsDataSet="true"

msdata:EnforceConstraints="False">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Product">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ProductID" type="xsd:string" minOccurs="0"

msdata:Ordinal="0" />

<xsd:element name="ProductName" type="xsd:string"

minOccurs="0" msdata:Ordinal="1" />

<xsd:element name="ListPrice" type="xsd:string" minOccurs="0"

msdata:Ordinal="2" />

</xsd:sequence>

<xsd:attribute name="Type" form="unqualified" type="xsd:string"/>

<xsd:attribute name="SupplierId" form="unqualified"

type="xsd:string" />

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 250

Web Development Using XML and ASP.NET • Chapter 6 251

NOTE

When we create a schema from a sample XML document, VS.NET auto-
matically inserts an xmlns attribute to the root element. The value of this
attribute specifies the name of the schema. Thus, when we created the
schema for Catalog3.xml, the schema was named Catalog3.xsd and
VS.NET inserted the following attributes in the root element of
Catalog3.xml: <Catalog xmlns=”http://tempuri.org/Catalog3.xsd”>.

In our .aspx code, we loaded the schema using the ReadXmlSchema method
of our XmlDataDocument object as:

myDataDoc.DataSet.ReadXmlSchema(Server.MapPath("Catalog3.xsd")).

Next, we have loaded the XmlDataDocument as:

myDataDoc.Load(Server.MapPath("Catalog3.xml")).

Since the DataDocument provides two views, we have exploited its
DataSet.Table(0) property to load the DataGrid and display our XML file’s infor-
mation in the grid. Figure 6.18 shows the complete listing of the code.The code
is also available in the XmlDataDocDataSet1.aspx file on the companion
Solutions Web site for the book (www.syngress.com/solutions).

Figure 6.18 Complete Listing for XmlDataDocDataSet1.aspx

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<html><head></head><body><form runat="server">

Select a Product:

<asp:DataGrid id="myGrid" runat="server"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataDoc As New XmlDataDocument()

' load the schema

www.syngress.com

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 251

252 Chapter 6 • Web Development Using XML and ASP.NET

Figure 6.18 Continued

myDataDoc.DataSet.ReadXmlSchema(Server.MapPath("Catalog3.xsd"))

' load the xml data

myDataDoc.Load(Server.MapPath("Catalog3.xml"))

myGrid.DataSource = myDataDoc.DataSet.Tables(0)

myGrid.DataBind()

End If

End Sub

</Script>

Viewing Multiple Tables of an XmlDataDocument Object
In many instances, an XML document might contain nested elements. Suppose
that a bank has many customers, and a customer has many accounts.We have
modeled this simple scenario in an XML document with nested elements.This
document, named Bank1.xml, is shown in Figure 6.19. It is also available on the
companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 6.19 Bank1.xml

<?xml version="1.0" encoding="utf-8" ?>

<Bank xmlns="http://tempuri.org/Bank1.xsd">

<Customer>

<CustomerID>C100</CustomerID>

<CustomerName>Alfred Smith</CustomerName>

<City>Toledo</City>

<Account>

<Type>Savings</Type>

<Balance>1500.00</Balance>

</Account>

<Account>

<Type>Checking</Type>

<Balance>111.11</Balance>

</Account>

<Account>

www.syngress.com

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 252

Web Development Using XML and ASP.NET • Chapter 6 253

Figure 6.19 Continued

<Type>Home Equity</Type>

<Balance>50000</Balance>

</Account>

</Customer>

<Customer>

--- --- ---

--- --- ---

</Customer>

</Bank>

If we load the XML document in Figure 6.19 and its schema in an
XmlDataDocument object, it will provide two relational tables’ views: one for the
customer’s information, and the other for the account’s information. Our objec-
tive is to display the data of these relational tables in two data grids as shown in
Figure 6.20.

To develop this application, first we had to generate the schema for our
Bank1.xml file.We used the VS.NET XML designer to accomplish this task. It is
interesting to observe that while creating the schema,VS.NET automatically gen-
erates the one-to-many relationship between the Customer and Accounts elements.

www.syngress.com

Figure 6.20 Displaying Customer and Accounts Data in Two Data Grids

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 253

254 Chapter 6 • Web Development Using XML and ASP.NET

To establish the relationship, it also creates an auto-numbered primary key
column (Customer_Id) in the Customer data table. Simultaneously, it inserts the
appropriate values of the foreign keys in the Account data table. Figure 6.21 shows
the DataSet view of the generated schema.

In order to provide the relational view of our XML document (Bank1.xml),
VS.NET included the Customer_Id attributes in both Customer and Account ele-
ments in its generated schema. It also generated the necessary schema entries to
describe the implied relationship among the Customer and Account elements.
Figure 6.22 shows an excerpt of the generated schema for our XML file.The
complete schema is available in a file named Bank1.xsd on the companion
Solutions Web site for the book (www.syngress.com/solutions).

Figure 6.22 Primary Key and Foreign Key Specifications in the Bank1.xsd

<xsd:unique name="Constraint1" msdata:PrimaryKey="true">

<xsd:selector xpath=".//Customer" />

<xsd:field xpath="@Customer_Id" /></xsd:unique>

<xsd:keyref name="Customer_Account"

refer="Constraint1"msdata:IsNested="true">

<xsd:selector xpath=".//Account" />

<xsd:field xpath="@Customer_Id" />

</xsd:keyref>

www.syngress.com

Figure 6.21 XmlDataDocument DataSet Representation in Visual Studio .NET

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 254

Web Development Using XML and ASP.NET • Chapter 6 255

In the preceding fragment of the generated schema, the xsd:unique element
specifies the Customer_Id attribute as the primary key of the Customer element.
Subsequently, the xsd:keyref element specifies the Customer_Id attribute as the for-
eign key of the Account element. XPath expressions have been used to achieve the
aforementioned objectives.

Figure 6.23 shows the complete listing of the application. It is also available in
the xmlDataDocDataSet2.aspx file on the companion Solutions Web site for the
book (www.syngress.com/solutions).The code is pretty straightforward.We have
loaded two data grids from two data tables of the data set, associated with the
XmlDataDocument object.

Figure 6.23 Complete Listing for XmlDataDocDataSet2.aspx

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<html><head></head><body><form runat="server">

Customers :

<asp:DataGrid id="myCustGrid" runat="server"/>

Accounts :

<asp:DataGrid id="myAcctGrid" runat="server"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataDoc As New XmlDataDocument()

' load the schema

myDataDoc.DataSet.ReadXmlSchema(Server.MapPath("Bank1.xsd"))

' load the xmldata

myDataDoc.Load(Server.MapPath("Bank1.xml"))

myCustGrid.DataSource = myDataDoc.DataSet.Tables("Customer")

myCustGrid.DataBind()

'load the Account grid

myAcctGrid.DataSource = myDataDoc.DataSet.Tables("Account")

myAcctGrid.DataBind()

End If

End Sub

</Script>

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 255

256 Chapter 6 • Web Development Using XML and ASP.NET

NOTE

In a Windows form, the DataGrid control by default provides automatic
drill-down facilities for two related DataTables. Unfortunately, it does not
work in this fashion in a Web form; additional programming is needed
to simulate the drill-down functionality.

In this example, we illustrated how an XmlDataDocument object maps nested
XML elements into multiple DataTables.Typically, an element is mapped to a
table if it contains other elements; otherwise, it is mapped to a column.Attributes
are mapped to columns. For nested elements, the system creates the relationship
automatically.

Querying XML Data Using
XPathDocument and XPathNavigator
The XmlDocument and the XmlDataDocument have certain limitations. First, the
entire document needs to be loaded in the cache. Often, the navigation process
via the DOM tree itself gets to be clumsy.The navigation via the relational views
of the data tables might not be very convenient either.To alleviate these prob-
lems, XML.NET has provided the XPathDocument and XPathNavigator classes.
These classes have been implemented using the W3C XPath 1.0
Recommendation (www.w3.org/TR/xpath).

The XPathDocument class enables you to process the XML data without
loading the entire DOM tree.An XPathNavigator object can be used to operate
on the data of an XPathDocument. It can also be used to operate on XmlDocument
and XmlDataDocument. It supports navigation techniques for selecting nodes, iter-
ating over the selected nodes, and working with these nodes in diverse ways for
copying, moving, and removal purposes. It uses XPath expressions to accomplish
these tasks.

The W3C XPath 1.0 specification outlines the query syntax for retrieving data
from an XML document.The motivation of the framework is similar to SQL;
however, the syntax is significantly different.At first glance, the XPath query syntax
might appear very complex. However, with a certain amount of practice, you
might find it very concise and effective in extracting XML data.The details of the
XPath specification are beyond the scope of this chapter. However, we will illustrate

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 256

Web Development Using XML and ASP.NET • Chapter 6 257

several frequently used XPath query expressions. In our exercises, we will illustrate
two alternative ways to construct the expressions.The first alternative follows the
recent XPath 1.0 syntax.The second alternative follows XSL Patterns, which is a
precursor to XPath 1.0. Let us consider the following XML document named
Bank2.xml.The Bank2.xml document is shown in Figure 6.24, and is also avail-
able on the companion Solutions Web site for the book (ww.syngress.com/
solutions). It contains data about various accounts.We will use this XML
document to illustrate our XPath queries.

Figure 6.24 Bank 2.xml

<Bank>

<Account>

<AccountNo>A1112</AccountNo>

<Name>Pepsi Beagle</Name>

<Balance>1200.89</Balance>

<State>OH</State>

</Account>

--- --- ---

--- --- ---

<Account>

<AccountNo>A7833</AccountNo>

<Name>Frank Horton</Name>

<Balance>8964.55</Balance>

<State>MI</State>

</Account>

</Bank>

Sample Query Expression 1: Suppose that we want the names of all
account holders.The following alternative XPath expressions will accom-
plish the job equally well:

■ Alternative 1: descendant::Name

■ Alternative 2: Bank/Account/Name

The first expression can be read as “Give me the descendents of all
Name nodes.”The second expression can be read as “Give me the Name

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 257

258 Chapter 6 • Web Development Using XML and ASP.NET

nodes of the Account nodes of the Bank node.” Both of these expres-
sions will return the same node set.

Sample Query Expression 2: We want the records for all customers
from Ohio.We can specify any one of the following expressions:

■ Alternative 1: descendant::Account[child::State=‘OH’]

■ Alternative 2: Bank/Account[child::State=‘OH’]

Sample Query Expression 3: Any one of the following alternative
expressions will return the Account node-sets for all accounts with a
balance more than 5000.00:

■ Alternative 1: descendant::Account[child::Balance > 5000]

■ Alternative 2: Bank/Account[child::Balance > 5000.00]

Sample Query Expression 4: Suppose that we want the Account infor-
mation for those accounts whose names start with the letter “D.”

■ Alternative 1: descendant::account[starts-with(child::Name, ‘D’)]

■ Alternative 2: Bank/Account[starts-with(child::Name, ‘D’)]

Which of the alternative expressions would you use? That depends on your
personal taste and on the structure of the XML document.The second alternative
appears to be easier than the first. However, in the case of a highly nested docu-
ment, the first alternative will offer more compact expressions. Regardless of the
syntax used, please be aware that each of the preceding queries will return a set
of nodes. In our ASP code, we will have to extract the desired information from
these sets using an XPathNodeIterator.

NOTE

We found the http://staff.develop.com/aarons/bits/xpath-builder/ site to
be very good in learning XPath queries interactively.

Okay, now that we have traveled through the XPath waters, we are ready to
venture into the usages of the XPathDocument. In this context, we will provide
two examples.The first example will extract the names of the customers from
Ohio and load a list box.The second example will illustrate how to find a spe-
cific piece of data from an XPathDocument.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 258

Web Development Using XML and ASP.NET • Chapter 6 259

Using XPathDocument and
XPathNavigator Objects
In this section we will use the XPathDocument and XPathNavigator objects to load
a list box from our Bank2.xml file (as shown in Figure 6.24).We will load a list
box with the names of customers who are from Ohio. Figure 6.25 shows the
output of this application. Figure 6.26 shows the complete code for this applica-
tion.The code is also available in the XPathDoc1.aspx file on the companion
Solutions Web site for the book (www.syngress.com/solutions).

We loaded the Bank2.xml as an XPathDocument object as follows:

Dim Doc As New XPathDocument(Server.MapPath("Bank2.xml"))

At this stage, we need two more objects: an XPathNavigator for retrieving the
desired node-set, and an XPathNodeIterator for iterating through the members of
the node-set.These are defined as follows:

Dim myNav As XPathNavigator

myNav= myDoc.CreateNavigator()

Dim myIter As XPathNodeIterator

myIter=myNav.Select("Bank/Account[child::State='OH']/Name")

The Bank/Account[child::State=‘OH’]/Name search expression returns
the Name nodes from the Account node-set whose state is “OH.”To get the

www.syngress.com

Figure 6.25 Using the XPathDocument Object

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 259

260 Chapter 6 • Web Development Using XML and ASP.NET

value inside a particular name node, we need to use the Current.Value property of
the Iterator object.Thus, the following code loads our list box:

While (myIter.MoveNext())

lstName.Items.Add(myIter.Current.Value)

End While

Figure 6.26 Complete Code XPathDoc1.aspx

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.XPath"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body>

<form runat="server"><h4>

Query Examples</h4>

Customers From Ohio:

<asp:ListBox id="lstName1" runat="server"

width="150" rows="4"/>

<asp:Button id="cmdDetails" Text="Populate the ListBox"

runat="server" onClick="showNames"/>

</form></body></html>

<Script Language="vb" runat="server">

Sub showNames(s As Object, e As EventArgs)

Dim Doc As New XPathDocument(Server.MapPath("Bank2.xml"))

Dim myNav As XPathNavigator

myNav=Doc.CreateNavigator()

Dim myIter As XPathNodeIterator

myIter=myNav.Select("Bank/Account[child::State='OH']/Name")

While (myIter.MoveNext())

lstName1.Items.Add(myIter.Current.Value)

End While

End Sub

</Script>

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 260

Web Development Using XML and ASP.NET • Chapter 6 261

Using XPathDocument and XPathNavigator
Objects for Document Navigation
This section will illustrate how to search an XPathDocument using a value of an
attribute, and using a value of an element.We will use the Bank3.xml to illustrate
these. Figure 6.27 shows a partial listing of the Bank3.xml.The complete code is
available on the companion Solutions Web Site for the book (www.syngress.com/
solutions).

Figure 6.27 Bank3.xml

<Bank>

<Account AccountNo="A1112">

<Name>Pepsi Beagle</Name>

<Balance>1200.89</Balance>

<State>OH</State>

</Account>

--- --- ---

--- --- ---

</Bank>

The Account element of the XML document in Figure 6.27 contains an
attribute named AccountNo, and three other elements. In this example, we will
first load two combo boxes, one with the account numbers, and the other with
the account holder’s names.The user will select an account number and/or a
name. On the click event of the command buttons, we will display the balances
in the appropriate text boxes. Figure 6.28 shows the output of the application.
The application has been developed in an .aspx file named XPathDoc2.aspx.
Figure 6.29 shows the complete listing.The code is also available on the com-
panion Solutions Web site for the book (www.syngress.com/solutions).

To search for a particular value of an attribute (e.g., of an account number),
we have used the following expression:

Bank/Account[@AccountNo='"+accNo+"']/Balance

To search for a particular value of an element (e.g., of an account holder’s
name), we have used the following expression:

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 261

262 Chapter 6 • Web Development Using XML and ASP.NET

descendant::Account[child::Name='"+accName+"']/Balance

We need to call the MoveNext method of the Iterator object in order to get to
the balance node.The following expression illustrates the construct:

Bank/Account[@AccountNo='"+accNo+"']/Balance

Figure 6.29 Complete Code XPathDoc2.aspx

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.XPath"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body>

<form runat="server"><h4>

Balance Inquiry Screen</h4>

Select an Account Number:

<asp:DropdownList id="cboAcno" runat="server" width="100" />

Balance from Account Number Search:

<asp:Textbox id="txtBalance1" runat="server" width="80" />

<hr/>

Select an Customer Name:

www.syngress.com

Continued

Figure 6.28 The Output for XPathDoc2.aspx

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 262

Web Development Using XML and ASP.NET • Chapter 6 263

Figure 6.29 Continued

<asp:DropdownList id="cboName" runat="server" width="110" />

Balance from Customer Name Search :

<asp:Textbox id="txtBalance2" runat="server" width="80" />

<asp:Button id="cmdDetails" Text="Show Balances" runat="server"

onClick="showNames"/>

</form></body></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDoc As New XPathDocument(Server.MapPath("Bank3.xml"))

Dim myNav As XPathNavigator

myNav=myDoc.CreateNavigator()

Dim myIter As XPathNodeIterator

' Populate the DropDownList with Account Number values

myIter=myNav.Select("//@*") ' Load all attributes

While (myIter.MoveNext())

cboAcno.Items.Add(myIter.Current.Value)

End While

' Populate the DropDown list with the name values

myIter=myNav.Select("/Bank/Account/Name")

While (myIter.MoveNext())

cboName.Items.Add(myIter.Current.Value)

End While

End If

End Sub

Sub showNames(s As Object, e As EventArgs)

'Get the value of the selected Item

Dim accNo As String = cboAcno.SelectedItem.Text.Trim()

www.syngress.com

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 263

264 Chapter 6 • Web Development Using XML and ASP.NET

Figure 6.29 Continued

Dim accName As String = cboName.SelectedItem.Text.Trim()

Dim myDoc As New XPathDocument(Server.MapPath("Bank3.xml"))

Dim myNav As XPathNavigator

myNav=myDoc.CreateNavigator()

Dim myIter As XpathNodeIterator

' Query to get the balance from AccountNo

myIter=myNav.Select("Bank/Account[@AccountNo='"+accNo+"']/Balance")

myIter.MoveNext()

'Display the values of Balance

txtBalance1.Text=FormatCurrency(myIter.Current.Value)

' Query to get the balance from Name

myIter = myNav.Select _

("descendant::Account[child::Name='"+accName+"']/Balance")

myIter.MoveNext()

'Display the values of Balance

txtBalance2.Text=FormatCurrency(myIter.Current.Value)

End Sub

</Script>

Transforming an XML
Document Using XSLT
Extensible Stylesheet Language Transformations (XSLT) is the transformation com-
ponent of the XSL specification by W3C (www.w3.org/Style/XSL). It is essen-
tially a template-based declarative language that can be used to transform an XML
document to another XML document, or to documents of other types (e.g.,
HTML and text).We can develop and apply various XSLT templates to select,
filter, and process various parts of an XML document. In .NET, we can use the
Transform() method of the XSLTransform class to transform an XML document.

Internet Explorer (IE) 5.5 and later has a built-in XSL transformer that auto-
matically transforms an XML document to an HTML document.When we open
an XML document in IE, it displays the data using a collapsible list view.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 264

Web Development Using XML and ASP.NET • Chapter 6 265

However, IE cannot be used to transform an XML document to another XML
document. Now, why would we need to transform an XML document to
another XML document? Well, suppose that we have a very large document that
contains our entire catalog’s data.We want to create another XML document
from it, which will contain only the productId and productNames of those products
that belong to the “Fishing” category.We would also like to sort the elements in
ascending order of the unit price. Further, we might want to add a new element
in each product, such as “Expensive” or “Cheap” depending on the price of the
product.To solve this particular problem, we can either develop relevant codes in
a programming language such as C#, or we can use XSLT to accomplish the job.
XSLT is a much more convenient way to develop the application, because XSLT
has been developed exclusively for these kinds of scenarios.

Before we can transform a document, we need to provide the Transformer
with the instructions for the desired transformation of the source XML docu-
ment.These instructions can be coded in XSL. Figure 6.30 illustrates this process.

In this section, we will demonstrate certain selected features of XSLT through
some examples.The first example will apply XSLT to transform an XML docu-
ment to an HTML document.We know that IE can automatically transform an
XML document to an HTML document and can display it on the screen in col-
lapsible list view. However, in this particular example, we do not want to display
all of our data in that fashion; we want to display the filtered data in tabular
fashion.Thus, we will transform the XML document to an HTML document to
our choice (and not to IE’s choice).The transformation process will select and
filter some XML data to form an HTML table.The second example will trans-
form an XML document to another XML document and subsequently write the
resulting document in a disk file, as well as display it in the browser.

www.syngress.com

Figure 6.30 XSL Transformation Process

XML Source File

XSL Instructions

.NET XSL
Transformer

Target File

• HTML
• XML
• Text

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 265

266 Chapter 6 • Web Development Using XML and ASP.NET

Transforming an XML Document
to an HTML Document
In this example, we will apply XSLT to extract the account’s information for
Ohio customers from the Bank3.xml (as shown in Figure 6.27) document.The
extracted data will be finally displayed in an HTML table. Figure 6.31 shows the
output of the application.

If we need to use XSLT, we must first develop the XSLT style sheet (i.e.,
XSLT instructions).We have saved our style sheet in a file named XSLT1.xsl. In
this style sheet, we have defined a template as <xsl:template match=“/”> …
</xsl:template>. The match=“/” will result in the selection of nodes at the root
of the XML document. Inside the body of this template, we have first included
the necessary HTML elements for the desired output.

The <xsl:for-each select=“Bank/Account[State=‘OH’]” > tag is used to select all
Account nodes for those customers who are from “OH.”The value of a node can be
shown using a <xsl:value-of select=attribute or element name>. In case of an
attribute, its name must be prefixed with an at (@) symbol. For example, we are
displaying the value of the State node as <xsl:value-of select=“State”/>. The com-
plete listing of the XSLT1.xsl file is shown in Figure 6.32, and is also available on
the companion Solutions Web site for the book (www.syngress.com/solutions). In
the .aspx file, we have included the following asp:xml control:

<asp:xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

www.syngress.com

Figure 6.31 Transforming an XML Document to an HTML Document

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 266

Web Development Using XML and ASP.NET • Chapter 6 267

While defining this control, we have set its DocumentSource attribute to
Bank3.xml, and its TransformSource attribute to XSLT1.xsl.The complete code for
the .aspx file, named XSLT1.aspx, is shown in Figure 6.33, and is also available on
the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 6.32 Complete Code for XSLT1.xsl

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<h4>Accounts</h4>

<table border="1" cellpadding="5">

<thead><th>Acct Number</th><th>Name</th>

<th>Balance</th><th>State</th></thead>

<xsl:for-each select="Bank/Account[State='OH']" >

<tr align="center">

<td><xsl:value-of select="@AccountNo"/></td>

<td><xsl:value-of select="Name"/></td>

<td><xsl:value-of select="State"/></td>

<td><xsl:value-of select="Balance"/></td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Figure 6.33 XSLT1.aspx

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body><form runat="server">

XSL Transformation Example

<asp:Xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

</form></body></html>

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 267

268 Chapter 6 • Web Development Using XML and ASP.NET

Transforming an XML Document
into Another XML Document
Suppose that our company has received an order from a customer in XML format.
The XML file, named OrderA.xml, is shown in Figure 6.34, and is also available on
the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 6.34 An Order Received from a Customer in XML Format (OrderA.xml)

<?xml version="1.0" ?>

<Order>

<Agent>Alfred Bishop</Agent>

<Item>50 GPM Pump</Item>

<Quantity>10</Quantity>

<Date>

<Month>8</Month>

<Day>24</Day>

<Year>2001</Year>

</Date>

<Customer>Pepsi Beagle</Customer>

</Order>

Now we want to transmit a purchase order to our supplier to fulfill the pre-
vious order. Suppose that the XML format of our purchase order is different from
that of our client as shown in Figure 6.35.The OrderB.xml file is also available on
the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 6.35 The Purchase Order to Be Sent to the Supplier in
XML Format (OrderB.xml)]

<?xml version="1.0" encoding="utf-8"?>

<Order>

<Date>2001/8/24</Date>

<Customer>Company A</Customer>

<Item>

<Sku>P 25-16:3</Sku>

<Description>50 GPM Pump</Description>

<Quantity>10</Quantity>

</Item>

</Order>

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 268

Web Development Using XML and ASP.NET • Chapter 6 269

The objective of this example is to automatically transform OrderA.xml
(Figure 6.34) to OrderB.xml (Figure 6.35). The output of this application is
shown in Figures 6.36 and 6.37.

We have developed an XSLT file (shown in Figure 6.38) to achieve the nec-
essary transformation. In the XSLT code, we have used multiple templates.The
complete listing of the XSLT code is shown in Figure 6.38, and is also available
in the order.xsl file on the companion Solutions Web site for the book
(www.syngress.com/solutions).

www.syngress.com

Figure 6.36 Transformation of an XML Document to Another XML Document

Figure 6.37 The Target XML File as Displayed in Internet Explorer

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 269

270 Chapter 6 • Web Development Using XML and ASP.NET

Figure 6.38 Complete Listing for order.xsl

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" />

<xsl:template match="/">

<Order>

<Date>

<xsl:value-of select="/Order/Date/Year" />/

<xsl:value-of select="/Order/Date/Month" />/

<xsl:value-of select="/Order/Date/Day" />

</Date>

<Customer>Company A</Customer>

<Item>

<xsl:apply-templates select="/Order/Item" />

<Quantity><xsl:value-of select="/Order/Quantity"/></Quantity>

</Item>

</Order>

</xsl:template>

<xsl:template match="Item">

<Sku>

<xsl:choose>

<xsl:when test=". ='50 GPM Pump'">P 25-16:3</xsl:when>

<xsl:when test=". ='100 GPM Pump'">P 35-12:5</xsl:when>

<!--other Sku would go here-->

<xsl:otherwise>00</xsl:otherwise>

</xsl:choose>

</Sku>

<Description>

<xsl:value-of select="." />

</Description>

</xsl:template>

</xsl:stylesheet>

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 270

Web Development Using XML and ASP.NET • Chapter 6 271

Subsequently, we have developed the XSLT2.aspx file to employ the XSLT
code in the order.xsl file to transform the OrderA.xml to OrderB.xml.The com-
plete listing of the .aspx file is shown in Figure 6.39, and is also available on the
companion Solutions Web site for the book (www.syngress.com/solutions).The
transformation is performed in the ShowTransformed() subprocedure of our .aspx
file. In this code, the Transform method of an XSLTransform object is used to trans-
form and generate the target XML file.

Figure 6.39 Complete Listing for XSLT2.aspx

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.XPath"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<%@Import Namespace="System.IO"%>

<html><head></head><body><form runat="server">

XSL Transformation Example

<asp:ListBox id="lstInitial" runat="server" rows="9"

width=250/>

<asp:ListBox id="lstFinal" runat="server" rows="9" width=250/>

<asp:Button id="cmdTransform" Text="Transform the XML" runat="server"

onClick="showTransformed" />

<asp:Button id="cmdDisplayTgt" Text="Show Transformed XML in IE"

runat="server" onClick="showTarget" />

</form></body></html>

<Script Language="vb" runat="server">

Sub Page_Load(sender As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDoc As New XPathDocument(Server.MapPath("OrderA.xml"))

Dim myNav As XPath.XPathNavigator

Dim myIterator As XPath.XPathNodeIterator

' Set nav object

www.syngress.com

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 271

272 Chapter 6 • Web Development Using XML and ASP.NET

Figure 6.39 Continued

myNav = myDoc.CreateNavigator()

' Iterate through all the attributes of the descendants

myIterator =myNav.Select("/Order")

myIterator=myNav.SelectDescendants(XPathNodeType.Element,false)

myIterator.MoveNext()

While myIterator.MoveNext()

' Add the Items to the DropdownList

lstInitial.Items.Add _

(myIterator.Current.Name+" :"+myIterator.Current.Value)

End While

End If

End Sub

Sub showTransformed(sender As Object,e As EventArgs)

' Load the XML Document

Dim myDoc As New XPathDocument(Server.MapPath("OrderA.xml"))

' Declare the XSLTransform Object

Dim myXsltDoc As New XSLTransform

' Create the filestream to write a XML file

Dim myfileStream As New FileStream _

(Server.MapPath ("OrderB.xml"),FileMode.Create,FileShare.ReadWrite)

' Load the XSL file

myXsltDoc.Load(Server.MapPath("order.xsl"))

' Tranform the XML file according to XSL Document

myXsltDoc.Transform(myDoc,Nothing,myfileStream)

myfileStream.Close()

lstFinal.Items.Clear

Dim myDoc2 As New XPathDocument(Server.MapPath("OrderB.xml"))

Dim myNav As XPath.XPathNavigator

Dim myIterator As XPath.XPathNodeIterator

' Set nav object

myNav = myDoc2.CreateNavigator()

' Iterate through all the attributes of the descendants

www.syngress.com

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 272

Web Development Using XML and ASP.NET • Chapter 6 273

Figure 6.39 Continued

myIterator =myNav.Select("/Order")

myIterator=myNav.SelectDescendants(XPathNodeType.Element,false)

myIterator.MoveNext()

While myIterator.MoveNext()

' Add the Items to the DropdownList

lstFinal.Items.Add _

(myIterator.Current.Name+" :"+myIterator.Current.Value)

End While

End Sub

Sub showTarget(sender As Object,e As EventArgs)

Response.Redirect(Server.MapPath("OrderB.xml"))

End Sub

</Script>

Working with XML and Databases Online
Databases are used to store and manage an organization’s data. However, it is not
a simple task to transfer data from the database to a remote client or to a business
partner, especially when we do not clearly know how the client will use the sent
data.We might send the required data using XML documents; that way, the data
container is independent of the client’s platform.The databases and other related
data stores are here to stay, and XML will not replace these data stores. However,
XML will undoubtedly provide a common medium for exchanging data among
sources and destinations. It will also allow various pieces of software to exchange
data among themselves. In this context, the XML forms a bridge between
ADO.NET and other applications. Since XML is integrated into the .NET
Framework, the data transfer using XML is much easier than it is in other soft-
ware development environments. Data can be exchanged from one source to
another via XML.The ADO.NET Framework is essentially based on DataSets,
which, in turn, rely heavily on the XML architecture.The DataSet class has a rich
collection of methods that are related to processing XML. Some of the widely
used ones are ReadXml, WriteXml, GetXml, GetXmlSchema, InferXmlSchema,
ReadXmlSchema, and WriteXmlSchema.

In this context, we will provide two simple examples. In the first example,
we will create a DataSet from a SQL query, and write its contents as an XML

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 273

274 Chapter 6 • Web Development Using XML and ASP.NET

document. In the second example, we will read back the XML document gener-
ated in the first example and load a DataSet. What are the prospective uses of
these examples? Well, suppose that we need to send the product data of our
fishing products to a client. In earlier days, we would have sent the data as a text
file. However, in the .NET environment, we can instead develop an XML docu-
ment very quickly by running a query, and subsequently send the XML docu-
ment to our client.What is the advantage? It is fast, easy, self-defined, and
technology independent.The client can use any technology (e.g.,VB, Java, Oracle,
etc.) to parse the XML document and subsequently develop applications. On the
other hand, if we receive an XML document from our partners, we might as well
apply XML.NET to develop our own applications.

Creating an XML Document
from a Database Query
In this section, we will populate a DataSet with the results of a query to the
Products table of SQL Server 7.0 Northwind database. On the click event of a
command button, we will write the XML file and its schema. (The output of the
example is shown in Figure 6.40).We have developed the application in an .aspx
file named DataSet1.aspx.The complete listing of the .aspx file is shown in
Figure 6.41 and is also available on the companion Solutions Web site for the
book (www.syngress.com/solutions).

The XML file created by the application is as follows:

www.syngress.com

Figure 6.40 Output for DataSet1.aspx Application

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 274

Web Development Using XML and ASP.NET • Chapter 6 275

<myXMLProduct>

<dtProducts>

<ProductID>13</ProductID>

<ProductName>Konbu</ProductName>

<UnitPrice>6</UnitPrice>

</dtProducts>

--- --- ---

--- --- ---

</myXMLProduct>

The code for the illustration is straightforward.The DataSet’s WriteXml and
WriteXmlSchema methods were used to accomplish the desired task.

Figure 6.41 Complete Listing for DataSet1.aspx

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Data.SqlClient" %>

<html><head></head><body><form runat="server">

Cheap Products:

<asp:DataGrid id="myGrid" runat="server"/>

<asp:Button id="cmdWriteXML" Text="Create XML File" runat="server"

onclick="writeXML"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataSet As New DataSet("myXMLProduct")

Dim myConn As New _

SqlConnection("server=ora07;uid=sa;pwd=ahmed;database=Northwind")

Dim mydataAdapter As New SqlDataAdapter _

("SELECT ProductID,ProductName,UnitPrice FROM Products WHERE

UnitPrice <7.00",myConn)

mydataAdapter.Fill(myDataSet,"dtProducts")

www.syngress.com

Continued

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 275

276 Chapter 6 • Web Development Using XML and ASP.NET

Figure 6.41 Continued

myGrid.DataSource=myDataSet.Tables(0)

myGrid.DataBind

Session("sessDs")=myDataSet

End If

End Sub

Sub writeXML(s As Object, e As EventArgs)

Dim myFs1 As New FileStream _

(Server.MapPath _

("myXMLData.xml"),FileMode.Create,FileShare.ReadWrite)

Dim myFs2 As New FileStream(Server.MapPath _

("myXMLData.xsd"),FileMode.Create,FileShare.ReadWrite)

Dim myDataSet As New DataSet _

myDataSet=Session("sessDs")

' Use the WriteXml method of DataSet object to write an XML file

' from the DataSet

myDataSet.WriteXml(myFs1)

myFs1.Close()

myDataSet.WriteXmlSchema(myFs2)

myFs2.Close()

End Sub

</Script>

Reading an XML Document into a DataSet
Here, we will read back the XML file created in the previous example (as shown
in Figure 6.40) and populate a DataSet in the Page_Load event of our .aspx file.
We will use the ReadXml method of the DataSet object to accomplish this objec-
tive.The output of the application is shown in Figure 6.42.The application has
been developed in an .aspx file named DataSet2.aspx.The complete code for this
application is shown in Figure 6.43, and is also available on the companion
Solutions Web site for the book (www.syngress.com/solutions).The code is self-
explanatory.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 276

Web Development Using XML and ASP.NET • Chapter 6 277

Figure 6.43 Complete Listing for DataSet2.aspx

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Data.SqlClient" %>

<html><head></head><body><form runat="server">

Products Data From XML File:

<asp:DataGrid id="myGrid" runat="server"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataSet As New DataSet("myXMLProduct")

Dim myFs As New FileStream _

(Server.MapPath("myXMLData.xml"),FileMode.Open,FileShare.ReadWrite)

myDataSet.ReadXml(myFs)

myGrid.DataSource=myDataSet.Tables(0)

myGrid.DataBind

myFs.Close

End If

End Sub

</Script>

www.syngress.com

Figure 6.42 Output of DataSet2.aspx Application

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 277

278 Chapter 6 • Web Development Using XML and ASP.NET

Summary
ASP has come a long way in a very short time. It is not difficult to see why it is
so popular, when the languages are so easy to learn and novice developers do not
need any special software or platform knowledge, just Notepad and their current
desktop operating system. Contrast this against, say, Java Server Pages, where the
language can be tricky for new programmers, and the application server installa-
tion can seem daunting.The playing field has been leveled; developers now have
the freedom to choose the languages that suit them, and each .NET language has
equal access to the full .NET functionality and abilities.

Since we can use so many different .NET languages in ASP.NET, we can also
use the .NET Framework without any problems.

Solutions Fast Track
Reviewing the Basics of the ASP.NET Platform

ASP.NET is part of the wider Microsoft .NET initiative.

.NET is a set of tools, services, applications, and servers based on the

.NET Framework and Common Language Runtime (CLR).

VBScript support has been dropped in favor of VB.NET.The CLR
enables you to use a choice of full-fledged, object-oriented, and event-
driven server-compiled languages for the first time.

.NET languages are compiled using an intermediate language and then
into machine-specific code, so language differences are now more a
matter of style and personal preference rather than functionality and
performance. Objects can interact and inherit from components written
in any language.

ASP.NET pages are built with (and are) .NET components, providing all
the benefits of an object-oriented approach.

Web forms introduce a new Visual Basic forms-style way of looking at
Web pages, allowing for server-side, event-driven coding and true
separation of layout and logic with code behind. .NET form controls
maintain session state, and the controls properties are available to the
ASP code without resorting to querying the request object.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 278

Web Development Using XML and ASP.NET • Chapter 6 279

The functionality available has been increased to encompass such exciting
features as building dynamic images on-the-fly, browser-based file upload,
and network services without the need for third-party components.

You can now distribute code and applications easily and effectively with
.NET Web services and standards-based protocols.

Deployment, including server configuration, is mostly just a matter of
transferring files with configuration implemented with Extensible
Markup Language (XML) files. Now you do not need to register and
unregister components.

Mission-critical services now have increased support, with load balancing
and several state management options, including the ability to store state
information in an SQL Server database.

Reading and Parsing XML
The XmlTextReader class provides a fast forward-only cursor to pull data
from an XML document.

Some of the frequently used methods and properties of the
XmlTextReader class include AttributeCount, Depth, EOF, HasAttributes,
HasValue, IsDefault, IsEmptyElement, Item, ReadState, and Value.

The Read() of an XmlTextReader object enables you to read data
sequentially.The MoveToAttribute() method can be used to iterate
through the attribute collection of an element.

Writing an XML Document
Using the XmlTextWriter Class

An XmlTextWriter class can be used to write data sequentially to an
output stream, or to a disk file as an XML document.

Its major methods and properties include Close, Flush, Formatting,
WriteAttributes, WriteAttributeString, WriteComment, WriteElementString,
WriteElementString, WriteEndAttribute, WriteEndDocument, WriteState, and
WriteStartDocument.

Its constructor contains a parameter that can be used to specify the
output format of the XML document. If this parameter is set to
“Nothing,” the document is written using UTF-8 format.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 279

280 Chapter 6 • Web Development Using XML and ASP.NET

Exploring the XML Document Object Model
The W3C Document Object Model (DOM) is a set of specifications to
represent an XML document in the computer’s memory.

XmlDocument class implements both the W3C specifications (Core Levels
1 and 2) of DOM.

XmlDocument object also allows navigating through XML node tree
using XPath expressions.

XmlDataDocument is an extension of XmlDocument class.

It can be used to generate both the XML view as well as the relational
view of the same XML data.

XmlDataDocument contains a DataSet property that exposes its data as
relational table(s).

Querying XML Data Using
XPathDocument and XPathNavigator

XPathDocument class allows loading XML data in fragments rather than
loading the entire DOM tree.

XPathNavigator object can be used in conjunction with XPathDocument
for effective navigation through XML data.

XPath expressions are used in these classes for selecting nodes, iterating
over the selected nodes, and working with these nodes for copying,
moving, and removal purposes.

Transforming an XML Document Using XSLT
You can use XSLT (XML Style Sheet Language Transformations) to
transform an XML document to another XML document or to
documents of other types (e.g., HTML and text).

XSLT is a template-based declarative language.We can develop and
apply various XSLT templates to select, filter, and process various parts
of an XML document.

In .NET, you can use the Transform() method of XSLTransform class to
transform an XML document.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 280

Web Development Using XML and ASP.NET • Chapter 6 281

Working with XML and Databases Online
A DataSet’s ReadXml() can read XML data as DataTable(s).

You can create an XML document and its schema from a database query
using DataSet’s WriteXml() and WriteXmlSchema().

Some of the widely used ones include ReadXml, WriteXml, GetXml,
GetXmlSchema, InferXmlSchema, ReadXmlSchema, and WriteXmlSchema.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Why so much emphasis on the Web? Can’t I use XML on the desktop as well?

A: Yes, you can use XML on the desktop. However, one of the main goals of
.NET is to properly connect the desktop with the Internet and not suffer any
setback due to server type, programming language, and so on.As you might
have noticed as well,ASP.NET can be thought of as a Web wrapper for
desktop code.This helps ensure that what you see online will be mostly
reproducible offline.

Q: What is the difference between DOM Core 1 API and Core 2 API?

A: DOM Level 2 became an official World Wide Web Consortium (W3C) rec-
ommendation in late November 2000.Although there is not much difference
in the specifications, one of the major features was the namespaces in XML
being added, which was unavailable in prior versions. DOM Level 1 did not
support namespaces; thus, it was the responsibility of the application pro-
grammer to determine the significance of special prefixed tag names. DOM
Level 2 supports namespaces by providing new namespace-aware versions of
Level 1 methods.

Q: How is XPath different from XSL Patterns?

A: XSL Patterns are predecessors of XPath 1.0 that have been recognized as a
universal specification.Although similar in syntax, there are some differences

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 281

282 Chapter 6 • Web Development Using XML and ASP.NET

between them. XSL Pattern language does not support the notion of axis
types; XPath does.Axis types are general syntax used in XPath, such as descen-
dant, parent, child, and so on.Assume that we have an XML document with
the root node named Bank. Further, assume that the Bank element contains
many Account elements, which in turn contain account number, name, balance,
and state elements. Now, suppose that our objective is to retrieve the Account
data for those customers who are from Ohio.We can accomplish the search
by using any one of the following alternatives:

■ XSL Pattern Alternative: Bank/Account[child::State=‘OH’]

■ XPath 1.0 Alternative: descendant::Account[child::State=‘OH’]

Which of the preceding alternatives should you use? That depends on
your personal taste and on the structure of the XML document. In case of a
very highly nested XML document, the XPath offers more compact search
string.

www.syngress.com

155_xml_net_pd_C06.qk 3/6/02 5:13 PM Page 282

Creating an
XML.NET Guestbook

Solutions in this chapter:

■ Functional Design Requirements of the
XML.NET Guestbook

■ Adding Records to the Guestbook

■ Viewing the Guestbook

■ Advanced Options for the Guestbook
Interface

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 7

283

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 283

284 Chapter 7 • Creating an XML.NET Guestbook

Introduction
Your first case study is a simple online guestbook application, completely coded
in ASP.NET.You are going to need to provide the basic functions through this
guestbook, namely the ability to do the following:

■ Enable guests to enter messages.

■ Display all messages on one page.

■ Show author, e-mail address of author, and comment from the author of
the message.

The flowchart in Figure 7.1 shows the user interaction process that you want
to achieve.

In essence, the user will come to the site and decide if he or she wants to
view previous messages or add new ones.The user will be redirected to the view
comments page after filling out a new message, or the user viewing the messages
has the option to fill out a message.

NOTE

On the companion Solutions Web site for the book (www.syngress.com/
solutions) for Chapter 7 are two folders for this chapter, representing
two ways of going about this guestbook: one is labeled “basic,” and the
other is labeled “advanced.” We are going to explore both of these.

www.syngress.com

Figure 7.1 Basic Functionality Layout

User

Add

Comment

View
Comment

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 284

www.syngress.com

All of these functions need to be kept as compact as possible. Our backend
needs to store the following information for every message that is left on the
guest book:

■ Name

■ E-mail

■ Subject Line

■ Actual Comment

The Name, E-mail, Subject Line, and Actual Comment need to be required
fields, and you need to provide validation for the e-mail field. In addition, you
need to provide the user with an easy-to-use interface.A basic interface would
consist of the user being able to do the following:

■ Choose between adding a new entry and viewing previous entries

■ Properly locate the corresponding text areas for the entry points

■ Have real-time validation take place where needed

■ Reply to a comment left by a user via e-mail

Functional Design Requirements
of the XML Guestbook
Several guest books are already available online for download, but most require
either a Microsoft Access database or an SQL Server database for storing the
guest book entries and other information pertinent to that guestbook.While
both of these tools provide their own strengths and weaknesses, you want to pro-
vide an application that is small, quick, and able to stand-alone without requiring
a separate application to make it work.This type of thought also implies that the
application will be small and easy to transfer, if needed.You also need to keep an
eye on the code and keep it as small as possible.You need to be able to write
directly to the database and read from the database with as little code as possible.
Just because you are trying to make the code portable doesn’t mean you need to
make the code bloat!

So, if you are not going to use a traditional database (such as Microsoft
Access or SQL Server), then what can you use that won’t kill the application

Creating an XML.NET Guestbook • Chapter 7 285

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 285

286 Chapter 7 • Creating an XML.NET Guestbook

requirements? Previously, we talked about a technology that is turning into a
strong database alternative, called XML. XML will enable you to use a text-based
approach to your database that does not rely on any ODBC connections or even
any server (although your code will pretty much lock you into a server that uses
ASP.NET). Moreover, through an XML schema you can define how your XML
“row” will look and what each value must contain.

With your backend solution set at XML, you need to determine how you are
going to work with the XML file.The logical choice is the System.XML name-
space, but you can actually find a faster method by using the XML tools that
accompany the System.Data namespace. Even though System.XML is the more
powerful than System.Data when it comes to XML, you simply don’t need to rely
on so much coding to see your results.

NOTE

The choice of System.Data over System.XML does not mean that
System.XML is in any way inefficient. It simply means that, as program-
mers, we sometimes have to choose between a solution that requires
more time but is more flexible, and a solution that is quicker but more
rigid. System.XML is more flexible with XML than System.Data will ever
be, but all you need for this case study is just to be able to read and
write to an XML file.

Constructing the XML
Even though System.Data is viewed more or less as a method of working with
traditional database connections, such as a SQL database or an Access database, it
can also work with XML data, provided the XML has an inline schema that it
can match the data against; almost like looking at the table structure first and
then the data within it.

The file gbook.xml shown in Figure 7.2, and in the Basic directory on the
companion Solutions Web site for the book (www.syngress.com/solutions) dis-
plays the XML code with which we will be working.

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 286

Creating an XML.NET Guestbook • Chapter 7 287

Figure 7.2 gbook.xml (Basic Version)

01: <gbook>

02: <xsd:schema id="gbook"

03: targetNamespace=""

04: xmlns=""

05: xmlns:xsd="http://www.w3.org/2001/XMLSchema"

06: xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

07:

08: <xsd:element name="gbook"

09: msdata:IsDataSet="true">

10: <xsd:complexType>

11: <xsd:choice maxOccurs="unbounded">

12: <xsd:element name="gbooky">

13: <xsd:complexType>

14: <xsd:sequence>

15: <xsd:element name="Name" type="xsd:string" minOccurs="0" />

16: <xsd:element name="Chrono" type="xsd:string" minOccurs="0" />

17: <xsd:element name="Email" type="xsd:string" minOccurs="0" />

18: <xsd:element name="Comments" type="xsd:string" minOccurs="0" />

19: </xsd:sequence>

20: </xsd:complexType>

21: </xsd:element>

22: </xsd:choice>

23: </xsd:complexType>

24: </xsd:element>

25:

26: </xsd:schema>

27: </gbook>

Lines 1 and 26 have the root tags for the XML file. In this example, we are
using “gbook,” but you can use anything. Lines 2 through 6 are one line in which
we used whitespace to organize the attributes in order for the tag to be more

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 287

288 Chapter 7 • Creating an XML.NET Guestbook

readable.The targetNamespace and xmlns attributes in the <xsd:schema> tag are left
blank, since both the targetNamespace and xmlns are inline.The xsd attribute is
pointing to the current schema, and the special Microsoft attribute msdata points
to a Microsoft data compatibility namespace.

NOTE

If you want more information on the XSD and MSDATA attributes, you
can find documentation for XML schemas online at http://msdn.microsoft
.com/library and www.w3.org/XML/Schema.html.

Lines 8 through 24 construct the element that will store the data.When the
data is entered into the corresponding .aspx file, it will format the data within the
XML per the data outline within the schema. In this case, a sample entry in our
guestbook will appear as the following:

<gbooky>

<Name>Jon Ortiz</Name>

<Chrono>Time Posted</Chrono>

<Email>somewhere@overthereainbow.com</Email>

<Comments>Hola!</Comments>

</gbooky>

This information will be created by your application through the System.Data
namespace. In order to be able to do so, System.Data matches the information
input to the inline schema and creates the appropriate record. Now that you have
set up the “template,” you can get started with the code that adds records. Refer
to Figure 7.3 for the logic behind the XML file.

Adding Records to the Guestbook
Any veteran ASP developers are going to notice in this section a distinct change.
Remember in desktop applications that you formed your GUIs using a form?
Well, in ASP.NET, the form has been brought to Web development and is
referred to as a panel.You are going to work with your code inline for just this
chapter so that you can get a good grasp of what a panel looks like and how it
works within ASP.NET.

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 288

Creating an XML.NET Guestbook • Chapter 7 289

www.syngress.com

Figure 7.3 Creating a Record Using the XML Schema

User enters
information to submit

a guestbook
message.

ASP.NET
guestbook entry

page uses
System.Data to read

schema within XML file.

Does the data pass
validation and
match the XML

schema?

New row is created following the
schema structure:

<gbooky>
<Name> User Name </Name>
<Chrono> Time & Date Posted </Chrono>
<Subject> Comment Subject </Subject>
<Comment> Actual Message </Comment>
<gbooky>

User is alerted to
invalid data and
asked to change
data on the GUI.

Is the data valid?

YES

NO

NO

YES

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 289

290 Chapter 7 • Creating an XML.NET Guestbook

There are no real differences between using a form for desktop applications
and a panel for online applications. Many of the same subs are intact, such as
OnLoad, and panel can reference any item within the panel, just like in desktops.
A great place to view the panel in ASP.NET is within the UI for adding guest-
book records.Your file will be called add.aspx, and is the code is shown in Figure
7.4 (note that some lines wrap), and in the Basic directory on the companion
Solutions Web site for the book (www.syngress.com/solutions).

Figure 7.4 Sample ASPX Code add.aspx (Basic Version)

01: <%@ Page Language="VB" EnableSessionState="False"%>

02:

03: <%@ Import Namespace="System.IO" %>

04: <%@ Import Namespace="System.Data" %>

05: <html>

06: <head>

07: <title>Add Entry</title>

08: </head>

09: <script language="VB" runat="server" >

10: <!-- event handling code here-->

11: </script>

12: </head>

13: <body topmargin="0" leftmargin="0" rightmargin="0" marginwidth="0"

marginheight="0">

14:

15:

16: <h3 align="center">Guestbook Post Page.</h3>

17:

18: <asp:label id="err" text="" style="color:#FF0000" runat="server" />

19: <asp:Panel id=pnlAdd runat=server>

20: <form action="add.aspx" runat=server>

21: <table border="0" width="80%" align="Center">

22: <tr>

23: <td>Sign-in My GuestBook</td>

24: <td> </td>

25: </tr>

www.syngress.com

Continued

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 290

Creating an XML.NET Guestbook • Chapter 7 291

Figure 7.4 Continued

26: <tr>

27: <td>Name :</td>

28: <td><asp:textbox text="" id="Name" runat="server" /

><asp:RequiredFieldValidator ControlToValidate=Name display=static

runat=server>*</asp:RequiredFieldValidator></td>

29: </tr>

30: <tr>

31: <td>E-Mail :</td>

32: <td><asp:textbox text="" id="Email" runat="server"/>

<asp:RequiredFieldValidator ControlToValidate=Email display=static

runat=server> *</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator runat="server"

ControlToValidate="Email"

ValidationExpression="[\w-]+@([\w-]+\.)+[\w-]+"

Display="Static"

Font-Name="verdana" Font-Size="10pt">Please enter a valid

e-mail address</asp:RegularExpressionValidator>

33: </td>

34: </tr>

35: <tr>

36: <td>Comments :</td>

37: <td><asp:Textbox textmode=multiline id="Comments" columns="25"

rows="4" runat="server" />

38: </td>

39: </tr>

40: <tr>

41: <td colspan="2" >

42: <asp:Button Text="Submit Post" onClick="AddClick" runat="server"

/></td>

43: </tr>

44: </table>

www.syngress.com

Continued

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 291

292 Chapter 7 • Creating an XML.NET Guestbook

Figure 7.4 Continued

45: </form>

46: </asp:Panel>

47:

48: <asp:Panel id=pnlThank visible=false runat=server>

49: <p align=center>Thank you for posting in my Guestbook!

50: Click here to view GuestBook.

51: </p>

52: </asp:Panel>

53: </body>

54: </html>

It might look daunting at first, but it really is quite simple. Remember that in
ASP.NET, you first should declare the language the page is going to be using.
While it is redundant, since the language declaration on the <script> tag deter-
mines the actual language use, it is still a good coding practice to get into. Lines 2
through 4 declare the namespaces that you are going to use—System, System.IO,
and System.Data. Lines 5 through 8 just display the HTML code that needs to be
in every HTML page.

You then hit the script tag that controls the Submit button event (lines 9
through 10). For now, it’s just a placeholder for the code you’ll be adding in later.
Notice that the code is placed at the head of the HTML file, which means that it
will be processed before anything else.You’ll look at the Submit button event
after you dissect this portion of the ASP.NET page.

Understanding the pnlAdd Panel
On line 19 of Figure 7.4, pnlAdd is declared; it is the name of the panel that con-
tains the programming code displaying the messages and text boxes that the user
will be viewing on the page, in order to enter the guestbook entry data; (e.g., the
name area, the name entry textbox, the e-mail area, the e-mail entry textbox, the
comment area, the comment entry textbox, and the Submit button). In other
words, it is your run-of-the-mill HTML form but with ASPX. In reality, there are
only two “normal” form objects; the name text box is your standard text object,
and the comment area is your standard multi-line text box.

The e-mail area, however, is another story.Take a look at the behemoth of a
line that you’ll find in line 32:

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 292

Creating an XML.NET Guestbook • Chapter 7 293

<asp:textbox text="" id="Email" runat="server"/

><asp:RequiredFieldValidator ControlToValidate=Email display=static

runat=server> *</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator runat="server"

ControlToValidate="Email"

ValidationExpression="[\w-]+@([\w-]+\.)+[\w-]+"

Display="Static"

Font-Name="verdana" Font-Size="10pt">Please enter a valid

e-mail address</asp:RegularExpressionValidator>

Starting from the top, you find your standard ASPcontrol declaration as a
text box with its default text set to empty and an ID of “E-mail.” Right after it
comes the ASP control declaration for RequiredFieldValidator set to validate the
control labeled E-mail and with a static display.You then implement two types
of validation to the field.The first validation is through the RegularFieldValidator
control:

<asp:RequiredFieldValidator ControlToValidate=Email display=static

runat=server>This is required.</asp:RequiredFieldValidator>

All you are doing here is a quick check to see if the field is empty. If the user
skips the field and leaves it empty, then a little message in red shows up saying
that “This is required.”You don’t have to use that text, but it works for this
example. Our second round of validation begins right after that line with the
more intense RegularExpressionValidator object:

<asp:RegularExpressionValidator runat="server"

ControlToValidate="Email"

ValidationExpression="[\w-]+@([\w-]+\.)+[\w-]+"

Display="Static"

Font-Name="verdana" Font-Size="10pt">Please enter a valid

e-mail address</asp:RegularExpressionValidator>

You first set the object to bind itself to the Email control. It will be ana-
lyzing the contents within the e-mail object to see if it falls under the valida-
tion expression that it has been given; in this case, it checks to see that an at
(@) symbol as well as a dot (.) is present within the string.You might want to
read up on RegEx to fully understand what variables can be used with regular
expressions.

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 293

294 Chapter 7 • Creating an XML.NET Guestbook

Adding a Thank-You Panel with PnlThank
All you are doing here is declaring a panel that will show up after a successful
guestbook entry has been added to the XML file.The link in order to view the
guestbook is declared and set.Very simple and very quick, to the point, starting
on line 48 (Figure 7.4):

<asp:Panel id=pnlThank visible=false runat=server>

<p align=center>Thank you for posting in my Guestbook!

Click here to view GuestBook.

</p>

</asp:Panel>

Exploring the Submit Button Handler Code
Now that you have established your design and layout, you can take a look at the
code that actually handles the addition of new entries into the guestbook.The basic
functionality of this code is to react to the Submit button when pressed, and write
the necessary items to the XML file. Figure 7.5 walks you through an overview of
the Submit button code.The complete source code for Figure 7.5 can be found on
the companion Solutions Web site for the book (www.syngress.com/solutions).

www.syngress.com

Stricter E-Mail Validation
The method of e-mail validation demonstrated in this chapter is not the
only option available to you. There is a stricter method for e-mail vali-
dation that would only enable the user to input a .com, .org, .edu, .mil,
.gov, or .net:

ValidationExpression = "^[\w-]+@[\w-]+\.(com|net|org|edu|mil|gov)$"

Developing & Deploying…

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 294

Creating an XML.NET Guestbook • Chapter 7 295

www.syngress.com

Figure 7.5 Submit Button Handler Code for add.aspx (Basic Version)

01: Sub AddClick(Sender As Object, E As EventArgs)

02:

03: Try

04: Dim dataFile as String = "gb/gbook.xml"

05:

06: 'the next line wraps

07: Dim fin as New FileStream (Server.MapPath(dataFile),

FileMode.Open,FileAccess.Read,FileShare.ReadWrite)

08:

09: 'this line also wraps

10: Dim fout as New FileStream (Server.MapPath(dataFile),

FileMode.Open,FileAccess.Write,FileShare.ReadWrite)

11:

12: Dim guestData as New DataSet()

13: Dim newRow as DataRow

14: err.Text = ""

15: guestData.ReadXml(fin)

16: fin.Close()

17: newRow = guestData.Tables(0).NewRow()

18: newRow("Name")=Name.Text

19: newRow("Chrono")=DateTime.Now.ToString()

20: newRow("Email")=Email.Text

21: newRow("Comments")=Comments.Text

22: guestData.Tables(0).Rows.Add(newRow)

23: guestData.WriteXml(fout, XmlWriteMode.WriteSchema)

24: fout.Close()

25: pnlAdd.Visible=false

26: pnlThank.Visible=true

27:

28: Catch edd As Exception

29: err.Text="Error writing file at: " & edd.ToString()

30:

31: End Try

32:

33: End Sub

34: </script>

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 295

296 Chapter 7 • Creating an XML.NET Guestbook

Line 1 starts you off with your VB code, declaring itself a code segment that
is run on the server-side and written using VB. Line 1 uses an ASP.NET form
subnamed AddClick; this code segment will be providing all of the functionality
of the Submit button.

On line 3, you start taking advantage of one of VB’s newest and very useful
features, error trapping.Your try/catch segment starts out by declaring a variable
to store the location of your XML file, which can be any directory.You can just
assume that for this example it’s in the gb directory on the root folder of the site.
With the location of the file stored, you can open up a FileStream object to open
and process the XML file for you. FileStream needs to know the actual location
(not the virtual location) of the file, so you use Server.MapPath() to return the
actual location of the file to your FileStream object, which you can then open
(FileMode.Open) and start reading (FileAccess.Read).You can also tell FileStream
how to handle other events, such as sharing; by telling FileStream to allow
read/write sharing of the file (FileShare.ReadWrite), you don’t have to worry
about your XML file suffering from any file locking, which would prevent any
other user from editing the file and giving the user a nasty error.

With your XML file stored within the fout object (line 10 in Figure 7.5), you
can start to create the object that will handle parsing the data, DataType, and prop-
erly formatting it and writing to the XML file, DataRow. Specifically, DataType will
handle reading the information and transforming it into a table format. DataRow
will then use the information stored within your DataType object to create a new
row with the columns that it finds within the DataType object. In other words,
when DataType reads your XML file, it will see the root element gbook as your
table, gbooky as your rows, and all the information within gbooky as columns. It will
write the information out accordingly to the XML file. It will know what it’s

www.syngress.com

Online Forms
As you have noticed and learned throughout this book, ASP.NET enables
programmers to use Web forms, which can be described as the VB6.0
desktop form. In this particular example, your AddClick sub would be
placed within the OnClick() event for whatever button you wanted to
use as your trigger for this action. One other little trick is to view each
“panel” as a small form within the browser window, with their own
“hide” and “show” features.

Migrating…

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 296

Creating an XML.NET Guestbook • Chapter 7 297

writing since it’s using the inline schema (Figure 7.2) to write to the file per the
schema, using the WriteXML class of the DataType object and having it write the
stream matching the XMLSchema (XMLWriteMode.WriteSchema).You then hide the
panel that contains the text boxes and Submit button, and make the panel that con-
tains the “Thank You” message. Figures 7.6 and 7.7 show the basic add.aspx file
before and after filling out a new entry.

www.syngress.com

File Locking
File locking is a basic response to multiple users trying to read and modify
the same file at around the same time. We say at “around” the same time
because file locking will take place if the file is accessed at the same time,
or if access is attempted after someone already has access to it. By pre-
venting multiple users from reading and writing the file, you avoid file
corruption and constant backup restorations. File locking allows a tem-
porary “lock” to be placed to the file that allows for changes to be made
one after the other without damaging the integrity of the file.

Developing & Deploying…

Figure 7.6 Before Adding a New Entry

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 297

298 Chapter 7 • Creating an XML.NET Guestbook

Viewing the Guestbook
One line of actual ASPX code—that’s about as simple as it gets, and is done just
by using the built-in XML server control.You should know that ASP.NET has
several controls built in to facilitate many different HTML functions, such as dis-
playing radio buttons and handling forms, which allows ASP.NET to generate
items fairly on-the-fly. XML is no exception to this rule.

Displaying Messages
Here is our one-line masterpiece, as shown in Figure 7.8. In essence, all we
did to get the sample output shown in Figure 7.8 was just to tell the
ASP.NET XML control to read the data in gbook.xml, and to transform it
according to the XSL information in gbook.xsl. It is shown in Figure 7.9 and
can be found in the gb folder in the Basic directory on the companion
Solutions Web site for the book (www.syngress.com/solutions). Figure 7.10
shows us the output.

www.syngress.com

Figure 7.7 After Adding a New Entry

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 298

Continued

Creating an XML.NET Guestbook • Chapter 7 299

Figure 7.8 viewplain.aspx (Basic Directory)

01: <html>

02: <head>

03: <title>XML Control Test</title>

04: </head>

05: <body bgcolor="#000000">

06: <!- - line 7 wraps - ->

07: <asp:xml id="gbook" DocumentSource="gb/gbook.xml"

TransformSource="gb/gbook.xsl" runat="server"/>

08: </body>

09: </html>

NOTE

If you have no other recourse but to use XSL to also generate your
hyperlinks, the fastest workaround to this is to simply add the <a>
element with an attribute of href and nesting the e-mail element.

Figure 7.9 gbook.xsl

01: <?xml version="1.0"?>

02:

03: <!-- this line wraps -->

04: <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

05:

06: <xsl:template match="/">

07:

08: <xsl:for-each select="gbook/gbooky">

09: <table width = "400">

10: <!- - this line wraps - ->

11: <tr><xsl:value-of

select="Name"/></tr>

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 299

300 Chapter 7 • Creating an XML.NET Guestbook

Figure 7.9 Continued

12:

13: <!- - this line wraps - ->

14: <tr>
<xsl:value-of

select="Chrono"/></tr>

15:

16: <!- - this line wraps - ->

17: <tr>
<xsl:value-of

select="Email"/></tr>

18:

19: <!- - this line wraps - ->

20: <tr><font face="Arial, Helvetica, sans-serif" size="2"

color="#C7B29A"><p><xsl:value-of

select="Comments"/></p><p></p></tr>

21:

22: </xsl:for-each>

23: </table>

24: </xsl:template>

25: </xsl:stylesheet>

www.syngress.com

Figure 7.10 Viewing Basic Guestbook Entries

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 300

Creating an XML.NET Guestbook • Chapter 7 301

Advanced Options for the
Guestbook Interface
Now that you have a good understanding of a guestbook and how it works, you
can try to do something you haven’t done yet—actually make it look cool! Just
because you are working with ASP.NET does not mean that you cannot use its
new tricks to come up with some really jazzy items and tweak your XML a bit.
Let’s start by looking at your guestbook entry page.

Manipulating Colors and Images
Clearly, this is a design point and not a very strong showing of ASP.NET.
However, how you design your page is just as vital as how you design a graphical
user interface. In this example, we made the design pleasing to the eye, and we try
to use a couple of design techniques to lure the user’s eye to the proper areas on
the add screen.While these are basic points, it’s a good idea to keep the following
in mind:

■ Is the area visible on most monitors? (Start at 800 x 600 resolution.)

■ Will the user be able to understand what to do?

■ If the user cannot easily figure out what to do, should an easy-to-find
help link be visible, or should you perhaps change the design?

One of the nice things about asp.net controls is that you can still use tags
with them. In fact, this second version of the add entry page (Figure 7.12)
looks so nice because we’re using a Cascading Style Sheet (CSS) script with
it (on the companion Solutions Web site for the book [www.syngress.com/
solutions] as gbook.css in the Advanced directory). Another part of this new
design that you haven’t seen before are the emoticons. Emoticons add a little
bit of interactivity to the guestbook by enabling users to pick an image that
reflects their “feelings” at the time of posting.You will have to add a couple of
changes to the XML file and to the add.aspx file, as well as to the view.aspx
file in order to display the images. Figure 7.11 shows you how the new
add.aspx page will look before entering a message, and Figure 7.12 shows the
page after entering a message.

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 301

302 Chapter 7 • Creating an XML.NET Guestbook

Line 16 in Figure 7.13 reflects the change from the previous XML code;
all that happened was just to create a new element of img underneath the

www.syngress.com

Figure 7.11 add.aspx before Entering a Comment (Advanced Version)

Figure 7.12 add.aspx after Entering a Comment (Advanced Version)

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 302

Creating an XML.NET Guestbook • Chapter 7 303

complex type gbook.Your code will read this value and assign the correct image
for it. For right now, all you are doing is just preparing the inline schema to sup-
port the value so that when you store the data it will know where to put it.The
complete source code for Figure 7.13 is available on the companion Solutions
Web site for the book (www.syngress.com/solutions).

Figure 7.13 gbook.xml (Advanced Version)

01: <gbook>

. . .

14: <xsd:sequence>

15: <xsd:element name="Name" type="xsd:string" minOccurs="0" />

16: <xsd:element name="Emoticon" type="xsd:string" minOccurs="0" />

17: <xsd:element name="Email" type="xsd:string" minOccurs="0" />

18: <xsd:element name="Comments" type="xsd:string" minOccurs="0" />

19: <xsd:element name="DateTime" type="xsd:string" minOccurs="0" />

20: </xsd:sequence>

Now for your code; first, you have to add the new row to your Submit button
handler at the top in order to include the new Emoticon element within the XML
(Figure 7.14).The advanced version of the add.aspx submit handler code is available
on the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 7.14 Your Changed add.aspx Submit Handler Code (Advanced Version)

10: Sub AddClick(Sender As Object, E As EventArgs)

11:

12: Try

13: Dim dataFile as String = "gb/gbook.xml"

14:

15: 'the next line wraps

16: Dim fin as New FileStream (Server.MapPath(dataFile),

FileMode.Open,FileAccess.Read,FileShare.ReadWrite)

www.syngress.com

Continued

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 303

304 Chapter 7 • Creating an XML.NET Guestbook

Figure 7.14 Continued

17:

18: 'this line also wraps

19: Dim fout as New FileStream (Server.MapPath(dataFile),

FileMode.Open,FileAccess.Write,FileShare.ReadWrite)

20:

21: Dim guestData as New DataSet()

22: Dim newRow as DataRow

23: err.Text = ""

24: guestData.ReadXml(fin)

25: fin.Close()

26: newRow = guestData.Tables(0).NewRow()

27: newRow("Name")=Name.Text

28: newRow("Emoticon")=Emoticon.Value

29: newRow("Chrono")=DateTime.Now.ToString()

30: newRow("Email")=Email.Text

31: newRow("Comments")=Comments.Text

32: guestData.Tables(0).Rows.Add(newRow)

33: guestData.WriteXml(fout, XmlWriteMode.WriteSchema)

34: fout.Close()

35: formPanel.Visible=false

36: thankPanel.Visible=true

37:

38: Catch edd As Exception

39: err.Text="Error writing file at: " & edd.ToString()

40:

41: End Try

42:

43: End Sub

44: </script>

The final change to your add entry is an option button for the image selec-
tion; you can add this code anywhere in the add.aspx within the display area.We
set ours right after the name.

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 304

Creating an XML.NET Guestbook • Chapter 7 305

<tr>

<td>Mood :</td>

<td><select id="Emoticon" runat="server">

<option Value="01.gif">Happy</option>

<option Value="02.gif">Sad</option>

<option Value="03.gif">Cute</option>

<option Value="04.gif">Ugly</option>

</select>

</td>

</tr>

Modifying the Page Output
You don’t really want to display the same boring, old structured output, so try
using some tables to break things up a bit.You are going to take a look at this
code a bit differently by starting with the page load code (Figure 7.15).The
source code for the advanced version of the view.apsx code is available on the
companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 7.15 view.aspx (Advanced Version)

Sub Page_Load(Src As Object, E As EventArgs)

Dim ds As New DataSet

Dim fs As New FileStream(Server.MapPath("gb\gbook.xml"),

FileMode.Open)

ds.ReadXml(fs)

gbook.DataSource = ds.Tables(0).DefaultView

gbook.DataBind()

fs.close()

End Sub

You are telling the server that when the page loads (before anything else is
processed, including HTML), create a dataset (ds) and a filestream (fs) to the
XML file.Then, you tell the dataset (ds) to read the XML file and bind the infor-
mation to the gbook object with the information contained in the dataset.You
close the filestream and finish your initialization code.Your display code has
undergone some major changes as well (see Figure 7.16; note that some lines
wrap).The complete source code is available on the companion Web site for the
book (www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 305

306 Chapter 7 • Creating an XML.NET Guestbook

Figure 7.16 Your Changed Display Code add.aspx (Advanced Version)

01: <%@ Page Language = "VB" Debug="true" %>

02: <%@ Import Namespace="System.IO" %>

03: <%@ Import Namespace="System.Data" %>

04: <html>

05: <script language="VB" runat="server">

. . .

06: </script>

07:

08: <body>

09: <h3>Advanced Guestbook</h3>

10: <ASP:Repeater id="gbook" runat="server">

11: <headertemplate>

12: <table width="350" style="font: 12pt Arial">

13: </headertemplate>

14:

15: <itemtemplate>

15: <tr>

16: <%# DataBinder.Eval(Container.DataItem, "Name") %>

17: <img src="<%# DataBinder.Eval(Container.DataItem, "Emoticon")

%>" >

18: <%# DataBinder.Eval(Container.DataItem, "Chrono") %>

19: </tr>

20: <tr>

21: <a href="mailto: <%# DataBinder.Eval(Container.DataItem,

"Email") %>"><%# DataBinder.Eval(Container.DataItem, "Email") %>

22: </tr>

23: <tr>

24: <%# DataBinder.Eval(Container.DataItem, "Comments") %>

25: </tr>

26: </itemtemplate

27:

28: <footertemplate>

29: </table>

30: </footertemplate>

31:

32: </ASP:Repeater>

33: </body>

34: </html>

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 306

Creating an XML.NET Guestbook • Chapter 7 307

NOTE

This code has had all of the graphical changes stripped; if you want to
see the code as the screenshots display it, please check the code on com-
panion Solutions Web site for the book (www.syngress.com/solutions).

Instead of using the asp:xml server control, you are using the Repeater control
and a DataSource. Lines 2 and 3 have the two namespaces that you are going to
need for your script tag. System.IO handles the Filestream object, and System.Data
handles the DataSource object.The information acquired from the Page_Load sub
will generate the information that is bound to the Repeater object.The Repeater
object (id=“gbook”) will read the information bound to it, write the header, and
then repeat the sequence within the item template until it finishes; then the
footer will be written and the asp:repeater object will close. Line 17 shows your
only change to the Repeater by adding the link to the image stored by the image
tag.The preceding code plus the graphical add-ons give you the happy result as
seen in Figure 7.17.

www.syngress.com

Figure 7.17 view.aspx + graphics (Advanced Version)

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 307

308 Chapter 7 • Creating an XML.NET Guestbook

Summary
Well, we started with basically nothing and finished with something that is not
only useful, but can be pleasing to the eye as well. Hopefully, this chapter intro-
duced some concepts that are useful, not only to your hobby programming but
also in your work.

XML and ASP.NET can work well together in a variety of ways: from simple
reading and writing, to proper design and look. Using a combination of either
the System.Data namespace and the ASP server objects, you can create a single-
line parsing .aspx page or a more robust page with tables, rows, columns, and dif-
ferent colors and graphics. In order to achieve the best performance available, the
System.Data namespace requires an inline schema within the XML file, which the
System.Data namespace can reference against when reading or writing XML.

ASP server objects themselves are very flexible in that they can be standalone
and provide an area to insert inline ASPX code. In the Advanced guestbook, you
made heavy use of the inline functions, wrapping table rows and columns around
them to provide a view that was readable. In addition, by using an inline function
you were able to receive the correct image file associated for an emoticon, by
placing it within the <image> html tag. Combined with Cascading Style Sheets
(CSS), this method proved capable and provided ample room to grow.

Solutions Fast Track
Functional Design Requirements of the
XML.NET Guestbook

XML enables you to use an interface that is both universally read and
universally accessed.You do not have to use bulky components such as
SQL or Access databases for simple—and even some complicated—
database solutions.

XML provides a schema to use with XML in order to provide validation
for data.

Adding Records to the Guestbook
When working with the System.Data namespace and planning to write
XML, you need to make sure that you have a properly validated inline
XML schema, or else the code will not work.

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 308

Creating an XML.NET Guestbook • Chapter 7 309

Even though you can use the XML schema to help determine certain
validation points, it is better to have the ASP.NET provide the validation
of certain entries, such as e-mail, due to the powerful use of regular
expressions.

Viewing the Guestbook
Using System.Data can provide a fast, efficient forward-only read and
write solution that is perfect for reading and writing to XML files that
are not dependant on heavy node interaction, and that just need
information added to them.

Cascading Style Sheets (CSS) provide a way to create a more pleasing
guestbook without having to change any code structure.

Advanced Options for the Guestbook Interface
The ASP.NET controls are very versatile and efficient. Keep in mind
that by combining them with CSS, their obvious lack of visual aids is
easily bypassed for a true eye-candy feel.

The asp:repeater object needs to have a <headertemplate>, an
<itemtemplate>, and a <footertemplate> within it to function.

The only part of the asp:repeater object that actually repeats is the
<itemtemplate> section.

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 309

310 Chapter 7 • Creating an XML.NET Guestbook

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Why does the add.aspx code need the inline XML schema?

A: Add.aspx uses the schema to retrieve the way it needs to write the data to the
XML file in the proper order. Say that instead of name before e-mail, you had
e-mail before name; add.aspx would write the row with the e-mail field first
instead of the name field.

Q: Why won’t the simple guestbook show?

A: .NET expects www.w3.org/1999/XSL/Transform as the XSLT namespace.This
does limit you a bit, since the working draft version is much better than the
1999 version.

Q: I get an error that says,“compilation error, (addClick or Page_Load) is not part
of asp:(add.aspx or viewbook.aspx)”.What does that mean?

A: Unfortunately, some of the error handling for ASP.NET still needs tweaking;
this is a perfect example.When running the aspx page, it will spit out errors
when it finds them within the ASP objects, but is not very good at reporting
errors within the subs located within the <head> tag.When you see these
errors, check the code and try again.

www.syngress.com

155_xml_net_pd_C07.qk 3/6/02 3:52 PM Page 310

Creating a Message
Board with ADO
and XML

Solutions in this chapter:

■ Setting Up the Database

■ Designing Your Application

■ Designing the User Interface

■ Setting Up General Functions

■ Building the Log-In Interface

■ Designing the Browsing Interface

■ Creating the User Functions

■ Building the Administrative Interface

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 8

311

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 311

312 Chapter 8 • Creating a Message Board with ADO and XML

Introduction
This case study details the process necessary to design and implement your own
message board using ADO.NET and XML. First, we will go through the process
necessary to create the data structures in MS Access and SQL Server.We will
analyze our application and break down the data into small pieces in order to
represent them in a database. Next, we will determine the best way to design our
application and go through the design of all the classes we will use to power the
message board, and determine what methods and properties each class should
contain.

Once the data analysis is done, we are going to develop our classes that will
represent the core “business objects” in our application.These objects will be the
guts of dotBoard and are what we will use in our user interface (UI) to allow our
users to interact indirectly with the data in our database.The last step we will per-
form is creating the UI itself and allow users to interact with our message board.

One major point we should realize, however, is that no matter how large a
project this message board seems, it is in fact incredibly simple once broken
down into its smaller pieces. In fact, as you delve deeper and deeper into .NET,
you will notice how much simpler it is to build most applications.With the
right programming practices and .NET as your technology of choice, you can
build complex applications in a much more efficient manner than some of the
older technologies in existence.

Setting Up the Database
Setting up the database is one of the most important parts of any application.
How do you represent your ideas in a structured, well-formed way? The first and
most important step is to break down what you know you want your application
to do, analyze those tasks, and then extract the important parts.

A message board has several distinguishable elements once you start to ana-
lyze it.The first and most obvious is that you need to store information on sub-
jects and threads. If you’ve ever looked at a message board before, you’ll notice
that it’s broken down into three levels.The first level is a general heading,
describing what it is going to contain.We’ll call this level Board. Board can con-
tain any number of Threads. Finally, a Thread contains any number of Messages.
The last area of data involved is data representative of a message board user. Users
do not fit into this three-level hierarchy, but instead are a distinct part of each
level.This very distinct hierarchy is a great place to start when defining your data.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 312

www.syngress.com

The first thing to do is break down the type of information that describes a
Board.This can be done many different ways: brainstorm, use your vast knowl-
edge of all things data, or actually go to some bulletin boards on the Web and
take a look at the kind of information they capture and display.This last option is
probably the easiest, as there are numerous examples on the Web to look at.

That said, let’s go through a Board and determine what type of information a
Board uses. Our board will have the following information displayed on the user
interface: name, description, list of threads, thread count, post count, the moder-
ator, and some type of unique identifier. Not all of those fields need their values
to be saved in the database. For example, the thread count and post count can be
easily retrieved at runtime by just calculating them.That leaves Name,
Description, Moderator, and a Unique Identifier.

Threads are less complex than Boards.A Thread contains the following fields:
board ID, subject, post count, creator, and some type of unique identifier.The
board ID should be created by a relationship between the two tables, and post
count can be retrieved at runtime.That leaves subject and creator.

A Post is comprised of the following fields: subject, body, creator, thread ID,
and some type of unique identifier.All of these must be captured in order to suc-
cessfully represent a Post.

Finally, the last item we must capture is the user data. Most bulletin boards
you visit do not allow anonymous posting.That is, in order to post, you must
have your own user data. Our message board will function the same way.This
makes it much easier to write your SQL statements and preserve database
integrity. User information will contain the following fields: a unique identifier,
username, password, first name, last name, e-mail address, whether or not this user
is an administrator, and whether or not this user has been banned from posting.

MS Access Database
Setting up your Access database is a pretty quick process.You can use the dotBoard
.mdb file located on the companion Web Site for the book (www.syngress.com/
solutions), or follow the steps provided next. If you want to create your own
database, open up Microsoft Access (either 97 or 2000), and create a new database
called dotBoard.mdb.

The Microsoft Access database is rather straightforward.As described previ-
ously, the Board table (Figure 8.1) will contains four fields: BoardID, BoardName,
BoardDescription, and ModeratorID. BoardID should be an AutoNumber, with
Indexed set to Yes (No Duplicates), and should also be the primary key.

Creating a Message Board with ADO and XML • Chapter 8 313

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 313

314 Chapter 8 • Creating a Message Board with ADO and XML

BoardName is a Text field, with Required set to Yes, and with a Field Size of
100. BoardDescription is a Text field, with Field Size set to the maximum
access allows, which is 255.

The Threads table will also contain four fields:ThreadID,ThreadSubject,
CreatorID, and BoardID.ThreadID should be an AutoNumber, with Indexed
set to Yes (No Duplicates), and should also be the primary key.ThreadSubject
is a Text field, with Field Size set to the maximum access allows, which is 255.
CreatorID is a Number, with Field Size set to Long Integer, and Required
set to Yes. BoardID is a Number, with Field Size set to Long Integer, and
Required set to Yes (Figure 8.2).

The Posts table will contain six fields: PostID, PostSubject, PostBody,
CreatorID,ThreadID, and PostDate. PostID should be an AutoNumber, with
Indexed set to Yes (No Duplicates), and should also be the primary key.
PostSubject is a Text field, with Field Size set to the maximum access allows,
which is 255. PostBody is a Memo field with Required set to Yes. CreatorID is
a Number, with Field Size set to Long Integer, and Required set to Yes.
ThreadID is a Number, with Field Size set to Long Integer, and Required
set to Yes. PostDate will be a Date/Time field with a Default Value of Now()
and Required set to Yes. See Figure 8.3 for the Posts table.

www.syngress.com

Figure 8.1 The Board Table

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 314

Creating a Message Board with ADO and XML • Chapter 8 315

www.syngress.com

Figure 8.2 The Threads Table

Figure 8.3 The Posts Table

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 315

316 Chapter 8 • Creating a Message Board with ADO and XML

The Users table will contain eight fields: UserID, Username, Password,
FirstName, LastName, Email, IsAdmin, IsBanned. UserID should be an
AutoNumber, with Indexed set to Yes (No Duplicates), and should also be
the primary key. Username is a Text field, with its Field Size set to 50 and
Required set to Yes. Password is a Text field, with its Field Size set to 50
and Required set to Yes. FirstName is a Text field, with its Field Size set to
100 and Required set to Yes. LastName is a Text field, with its Field Size set
to 200 and Required set to Yes. Email is a Text field, with its Field Size set
to 255 and Required set to Yes. IsAdmin and IsBanned are Yes/No fields,
with Format set to True/False and Required set to Yes. See Figure 8.4 for
the Users table.

The last step is to define the relationships between the tables. Posts relates
to Threads on ThreadID.Threads relates to Board on BoardID. Users relates to
Posts on CreatorID, to Threads on CreatorID, and Board on ModeratorID
(Figure 8.5).

www.syngress.com

Figure 8.4 The Users Table

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 316

Creating a Message Board with ADO and XML • Chapter 8 317

SQL Server Database
Setting up a SQL Server database is rather effortless, especially since you can let
the database do everything for you by executing a SQL script.The only thing
you need to do is open up your SQL Enterprise Manager, navigate to the
server you want to create your database on, and open up the Databases node.
Right-click the Databases node and select New Database. Name your database
dotBoard, and select OK.

The only other action you need to take is to open SQL Query Analyzer,
and execute the SQL Script shown in Figure 8.6 (which can also be found on
the companion Solutions Web site for the book (www.syngress.com/solutions)
called dotBoard Setup.sql).

Figure 8.6 SQL Server Database Creation Script (dotBoard Setup.sql)

CREATE TABLE [dbo].[Board] (

[BoardID] [int] IDENTITY (1, 1) NOT NULL ,

[BoardName] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL ,

www.syngress.com

Figure 8.5 The Relationships between Tables

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 317

318 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.6 Continued

[BoardDescription] [varchar] (255) COLLATE SQL_Latin1_General_

CP1_CI_AS NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Posts] (

[PostID] [int] IDENTITY (1, 1) NOT NULL ,

[PostSubject] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL ,

[PostBody] [text] COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[CreatorID] [int] NOT NULL ,

[ThreadID] [int] NOT NULL ,

[PostDate] [datetime] NOT NULL DEFAULT getDate()

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

CREATE TABLE [dbo].[Threads] (

[ThreadID] [int] IDENTITY (1, 1) NOT NULL ,

[ThreadSubject] [varchar] (255) COLLATE SQL_Latin1_General_

CP1_CI_AS NOT NULL ,

[CreatorID] [int] NOT NULL ,

[BoardID] [int] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Users] (

[UserID] [int] IDENTITY (1, 1) NOT NULL ,

[Username] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT

NULL ,

[FirstName] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL ,

[LastName] [varchar] (200) COLLATE SQL_Latin1_General_CP1_CI_AS NOT

NULL ,

[Email] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT

NULL ,

[IsAdmin] [bit] NOT NULL ,

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 318

Creating a Message Board with ADO and XML • Chapter 8 319

Figure 8.6 Continued

[IsBanned] [bit] NOT NULL

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Board] WITH NOCHECK ADD

CONSTRAINT [PK_Board] PRIMARY KEY CLUSTERED

(

[BoardID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Posts] WITH NOCHECK ADD

CONSTRAINT [PK_Posts] PRIMARY KEY CLUSTERED

(

[PostID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Threads] WITH NOCHECK ADD

CONSTRAINT [PK_Threads] PRIMARY KEY CLUSTERED

(

[ThreadID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Users] WITH NOCHECK ADD

CONSTRAINT [PK_Users] PRIMARY KEY CLUSTERED

(

[UserID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Users] WITH NOCHECK ADD

CONSTRAINT [DF_Users_IsAdmin] DEFAULT (0) FOR [IsAdmin],

CONSTRAINT [DF_Users_IsBanned] DEFAULT (0) FOR [IsBanned]

GO

ALTER TABLE [dbo].[Posts] ADD

CONSTRAINT [FK_Posts_Threads] FOREIGN KEY

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 319

320 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.6 Continued

(

[ThreadID]

) REFERENCES [dbo].[Threads] (

[ThreadID]

) ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT [FK_Posts_Users] FOREIGN KEY

(

[CreatorID]

) REFERENCES [dbo].[Users] (

[UserID]

)

GO

ALTER TABLE [dbo].[Threads] ADD

CONSTRAINT [FK_Threads_Board] FOREIGN KEY

(

[BoardID]

) REFERENCES [dbo].[Board] (

[BoardID]

) ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT [FK_Threads_Users] FOREIGN KEY

(

[CreatorID]

) REFERENCES [dbo].[Users] (

[UserID]

)

GO

Finally, go back to your SQL Enterprise Manager, navigate to your database,
and select the Diagrams node. Right-click and select New Database
Diagram. Click Next, then select our four database tables, and click Next.The
diagram should be created automatically for us, and should look a lot nicer than
the MS Access version (Figure 8.7).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 320

Creating a Message Board with ADO and XML • Chapter 8 321

Designing Your Application
When designing an application, there are two possible main routes.The first is
the procedural approach (anyone familiar with ASP 3.0 and earlier who did not
use COM objects to handle logic knows exactly what I mean): the simple
“Page1” does this,“Page2” does this, and so on.You have a set of “top-down”
ASP scripts (that is, your code starts at the top and executes until it hits the
bottom), with functions including files, which make up your application.There is
technically nothing wrong with this approach, as there are many large-scale appli-
cations written exactly this way.

Your other choice is to take a more object-oriented (OO) approach. In an
OO world, you create a set of classes and interfaces that make up the core of
your application. Using these classes, you create a user interface that will define
what an average user would consider your “application.”This approach allows the
designer of the classes to encapsulate a good majority of the code and logic
behind the application, without exposing it to whomever might be building the
user interface (and likely, the same person will be building both).An OO
approach also allows your application to be used in a variety of ways, and would

www.syngress.com

Figure 8.7 The SQL Server Diagram

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 321

322 Chapter 8 • Creating a Message Board with ADO and XML

allow someone to build multiple user interfaces on top of the exact same set of
classes.

Both approaches have their merits and flaws.With the procedural approach,
you will be stuck in ASP.NET for your user interface, and if you want to “copy”
logic from one place to another, you either have to create globally scoped func-
tions, or copy and paste code.The procedural approach does tend to be a bit
easier to create, though, because you do not have the additional overhead of
having to create classes to handle your logic and data.The object-oriented
approach effectively encapsulates your entire application into a small set of classes,
grouped into an assembly .dll file, which can be created from another application
and used.This allows you to hand another developer your assembly file, and let
him or her go about building the actual user interface without you ever needing
to know what the user interface was.The drawback to building an application in
an OO manner is that whomever is developing the classes needs to take a lot of
care to get it done properly, and be able to build it in such a manner as to not tie
it exclusively to one type of user interface.

When deciding whether dotBoard should be procedural or object-oriented,
take into account these things: First and foremost, you need to be able to main-
tain your code. If your code is modularized into multiple functions and organized
very well, then the procedural approach doesn’t seem too bad. However, if your
code is placed haphazardly throughout your application, finding your bugs and
improving code at a later date might be harder. If your code is organized into a
set of classes and public interfaces (the methods and procedures that an applica-
tion can “see”), it is typically easier to maintain your code, as each piece of each
class is a very small piece of the application as a whole, and making changes
won’t likely take a large amount of code.

The other thing you should think about is that dotBoard is being written in
VB.NET. For anyone who has built an application in straight ASP, you would
probably be more comfortable with the procedural approach. For anyone who
has built an application in ASP and created VB COM objects, you would most
likely be more comfortable with the object-oriented approach, but feel some
trepidation about speed and performance issues. For the master gurus out there
who are building C++ ATL COM objects and using them in ASP, you might
scoff at VB.NET and think you would rather stick with C++ ATL COM.Well,
all of you have very valid points.A straight procedural approach is generally
looked down upon in a professional environment,VB COM objects in ASP are
typically regarded as slow and frequently memory- and processor-intensive, and
well, nobody can read the C++ ATL code anyway, so it doesn’t count!

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 322

Creating a Message Board with ADO and XML • Chapter 8 323

Seriously, though, every point made is very valid about every technology dis-
cussed.That’s where VB.NET comes in.The .NET runtime is remarkably fast.
The Just-In-Time (JIT) compilation of your code only happens the first time it is
executed; so, after that initial execution, your code runs incredibly fast until you
change it (at which point the JIT compilation happens again).VB.NET is also a
fully object-oriented language. It provides developers with every good OO tech-
nique available, and it is actually quite easy to write OO applications with it.

All that said, it’s pretty obvious that dotBoard should be an object-oriented
application. Don’t worry if you’ve never written any OO code before. Object-
oriented techniques are relatively easy to implement, and even if you don’t think
you’ve ever used any objects before, you probably have (especially if you’ve done
any development in ASP).

Designing Your Objects
Now that we’ve decided on object orientation, we need to analyze our applica-
tion and determine what our objects will “look like.”At this point, you might
say,“we’ve already done that while analyzing and building our database,” and
you’d be right.We have already done that. Half of our design work is now
already done! The only other part we have to do is map the data we’ve already
analyzed to VB.NET types and group them accordingly.We’re going to do that
with the wonder of UML (Unified Modeling Language). If you don’t know
what UML is, don’t worry; all we’re using it for here is to show you some pretty
pictures of what our classes are going to look like. Please note that all of these
objects and all files can be found on the companion Solutions Web site for the
book (www.syngress.com/solutions).

Creating Your Data Access Object
To make it easier for each of your objects to have access to the database, we’re
going to create a singular data access object that does everything for you.
We’re going to call this class DataControl, and it is going to be comprised of
solely shared methods. A shared method means you do not need to create an
instance of a User object to call it. DataControl will contain two Shared
methods, GetDataSet and ExecuteNonQuery. GetDataSet returns a DataSet, and
ExecuteNonQuery executes a SQL statement and returns nothing.This class is
pretty straightforward, and is shown in Figure 8.8 (likewise, the complete
source code for DataControl.vb can be found on the companion Solutions
Web site for the book).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 323

324 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.8 DataControl.vb

Imports System.Data

Imports System.Data.OleDb

Imports System.Web

Imports System.Configuration

Imports System.Collections.Specialized

Public Class DataControl

Public Shared Function GetDataSet(ByVal SQL As String) As DataSet

Dim connectionString As String

Dim settings As ConfigurationSettings

Dim appSettings As NameValueCollection

appSettings = settings.AppSettings()

connectionString = appSettings.Item("ConnectionString")

Dim connection As New OleDbConnection(connectionString)

connection.Open()

Dim adapter As New OleDbDataAdapter(SQL, connection)

Dim myData As New DataSet()

adapter.Fill(myData)

adapter.Dispose()

connection.Close()

Return myData

End Function

Friend Shared Sub ExecuteNonQuery(ByVal SQL As String)

Dim connectionString As String

Dim settings As ConfigurationSettings

Dim appSettings As NameValueCollection

appSettings = settings.AppSettings()

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 324

Creating a Message Board with ADO and XML • Chapter 8 325

Figure 8.8 Continued

connectionString = appSettings.Item("ConnectionString")

Dim connection As New OleDbConnection(connectionString)

connection.Open()

Dim myCommand As New OleDbCommand()

myCommand.Connection = connection

myCommand.CommandText = SQL

myCommand.CommandType = CommandType.Text

myCommand.ExecuteNonQuery()

'clean up

connection.Close()

myCommand.Dispose()

connection.Dispose()

End Sub

End Class

You see that the two methods in DataControl are in fact, rather simple.These
functions connect to the database and do a specific function (execute SQL scripts
and one returns a DataSet).The one thing to note is that the connection string is
being retrieved from the ConfigurationSettings.AppSettings.These are dynamic set-
tings that the .NET runtime gives you access to.When you’re running an
ASP.NET application, they are located in the web.config file. In another type of
application, they are located in ProjectName.exe.config.That’s it for our Data object.
The next step is to take a look at our User object.

Designing the User Class
When we looked at the user information when thinking about the database, we
discovered a number of fields that needed to reside in the User table. Luckily, all
our classes will be structured in a way to nearly match the database; the User class
is no exception.The only difference is that this User is a VB.NET class and not a
database table.

There are four basic types of users: Guests, Registered Users, Administrators, and
Moderators.All of these should be represented when we build our User class.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 325

326 Chapter 8 • Creating a Message Board with ADO and XML

Again, you might say something like “but this is an object-oriented application,
and if we have multiple types of one object, shouldn’t they be separate?”Again,
you would be right.There are three types of users.All have similar properties; the
only difference is that some do certain things that others can’t. For example, a
Registered User in a bulletin board would have the ability to post threads and
messages, whereas a Guest user would not.A Registered User would also have
the ability to edit his or her profile and edit his or her messages, whereas a Guest
user would not be able to.An Administrator would have the ability to do every-
thing a Registered User could, except globally.A Moderator can modify posts
and threads in boards to which he or she has Moderator privileges.

Now that we’ve identified the multiple types of users, we need to determine
if we should have multiple types of users in our application.A Guest can only
browse a bulletin board, as no security is necessary for browsing.A Registered
User can create and edit posts, and modify his or her profile.An Administrator
can do anything he or she wants to the bulletin board.A Moderator can do what
a Registered User can, and can act like an Administrator on the board to which
he or she is given moderation rights.

You might want to build some neat OO objects here, but all these things can
be accomplished through a single User class.Take a look at Figure 8.9.

You see that our User object will have the exact same fields as our database
table, which is named exactly the same.This makes it a bit easier to remember
which field in the object matches up to which field in the database.The other
thing you should notice is the three items at the bottom of the diagram: Create,
Validate, and Update.All are methods the User object will have. Update() will
update the user’s details and save them to the database. Validate is a shared method

www.syngress.com

Figure 8.9 The User Object Diagram

+Validate() : User
+Update()
+Create() : User

+ID : Long
+Username : String
+Password : String
+FirstName : String
+LastName : String
+Email : String
+IsAdmin : Boolean
+IsBanned : Boolean

User

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 326

Creating a Message Board with ADO and XML • Chapter 8 327

of the User class, and can be used to perform all user validation. Create is also a
shared method, and can be used to create a brand new user in the database.

That’s it.That’s the whole User object. Not much to it, is there? It has a
Boolean field to signify whether or not it is an Administrator, and each Board
object will store the ID of the Administrator of that Board, so the User object
doesn’t have to.The only other thing to mention is Guest users—a Guest user
will just be a User that is Nothing.That is, if you are currently a guest in the
application, you won’t have a User object created for you. Let’s take a look at the
code involved to create this User object in Figure 8.10.The complete source code
for User.vb can also be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.10 The Basics (User.vb)

Public Class User

Private mUsername As String

Private mPassword As String

Private mFirstName As String

Private mLastName As String

Private mUserID As Long

Private mIsAdmin As Boolean

Private mEmail As String

Private mUserID As Long

End Class

That part is clear enough.We declare the User class, and the private variables
necessary to represent each user. Next, declare the public properties for each of
these private variables as shown in Figure 8.11.The complete source code for
User.vb can also be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.11 Public Properties (User.vb)

Public WriteOnly Property Password() As String

Set(ByVal Value As String)

MPassword = Value

End Set

End Property

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 327

328 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.11 Continued

Public ReadOnly Property ID() As Long

Get

Return mUserID

End Get

End Property

Public Property LastName() As String

Get

Return mLastName

End Get

Set(ByVal Value As String)

mLastName = Value

End Set

End Property

Public Property FirstName() As String

Get

Return mFirstName

End Get

Set(ByVal Value As String)

mFirstName = Value

End Set

End Property

Public Property Username() As String

Get

Return mUsername

End Get

Set(ByVal Value As String)

mUsername = Value

End Set

End Property

Public Property IsAdmin() As Boolean

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 328

Creating a Message Board with ADO and XML • Chapter 8 329

Figure 8.11 Continued

Get

Return mIsAdmin

End Get

Set(ByVal Value As Boolean)

mIsAdmin = Value

End Set

End Property

Public Property IsBanned() As Boolean

Get

Return mIsBanned

End Get

Set(ByVal Value As Boolean)

mIsBanned = Value

End Set

End Property

Public Property Email() As String

Get

Return mEmail

End Get

Set(ByVal Value As String)

mEmail = Value

End Set

End Property

With that out of the way, let’s look at the methods the User object will
have. As we saw earlier, there will be three methods: Validate, CreateUser, and
Update. Validate is a shared method, which will give a developer the ability to
validate and return a valid User object, or throw an exception. CreateUser is also
a shared method that gives the developer the ability to create a new User
object. Finally, Update will allow a developer to update the private fields in the
User object and commit them to the database.This will be for tasks such as
saving passwords and updating e-mail addresses. Let’s take a look at the first

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 329

330 Chapter 8 • Creating a Message Board with ADO and XML

method, Validate, in Figure 8.12. Figure 8.12.The complete source code for
User.vb can also be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.12 The Validate Method (User.vb)

Public Shared Function Validate(ByVal username As String, _

ByVal password As String) As User

If password.Equals("") Then

Throw New ArgumentException("You must enter a password.")

Else

Dim myData As DataSet = DataControl.GetDataSet("SELECT * " & _

"FROM [Users] WHERE [UserName] = '" & username & "'")

If myData.Tables(0).Rows.Count <= 0 Then

Throw New ArgumentException("Username does not exist.")

Else

If CBool(myData.Tables(0).Rows(0)("IsBanned")) = True Then

Throw New Exception("User is banned")

Else

If password <> _

CStr(myData.Tables(0).Rows(0)("Password")) Then

Throw New ArgumentException("Invalid password")

Else

Return New User(myData.Tables(0).Rows(0))

End If

End If

End If

End If

End Function

The Validate method accepts a username and a password as parameters, and
attempts to verify that those parameters are a valid combination for a registered
user. If the password is empty, it throws an ArgumentException. If, while looking
up the username, it finds that the username is not present in the database, it
again throws an ArgumentException. If the username exists, but the user is
banned, then it throws an ArgumentException. If the username exists, the user is

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 330

Creating a Message Board with ADO and XML • Chapter 8 331

not banned, and the password passed in was incorrect, once again it throws
an ArgumentException. Finally, if the username is valid and the password is
correct, it returns a new User object, passing in the first DataRow to the User
constructor.

At this point, you’re probably wondering why we haven’t discussed the con-
structor of the User object.Well, wait no longer! Here’s the code for the User
object constructor in Figure 8.13.The complete source code for User.vb can also
be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.13 Constructors (User.vb)

Public Sub New(ByVal userId As Long)

Dim myData As DataSet

myData = DataControl.GetDataSet("SELECT * FROM Users " & _

"WHERE UserID = " & Me.mUserID)

If myData.Tables(0).Rows.Count <= 0 Then

Throw New ArgumentException("The requested user " & _

does not exist.")

Else

inflate(myData.Tables(0).Rows(0))

End If

myData.Dispose()

End Sub

Public Sub New(ByVal row As DataRow)

inflate(row)

End Sub

There are two constructors here.The second constructor is what the Validate
method called.That constructor forwards the DataRow on to another method
called inflate, which will be discussed in a moment.The first constructor accepts a
user ID as a parameter.This user ID is synonymous with the UserID field in the
User table.The constructor looks up the user based on the user ID. If that user

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 331

332 Chapter 8 • Creating a Message Board with ADO and XML

ID is not found, it throws an ArgumentException. If the user ID is found, it for-
wards the first DataRow in the DataSet to the fillData method in Figure 8.14.The
complete source code for User.vb can also be found on the companion Solutions
Web site for the book (www.syngress.com/solutions).

Figure 8.14 The fillData Method (User.vb)

Private Sub inflate(ByVal row As DataRow)

Me.mUsername = CStr(row("Username"))

Me.mFirstName = CStr(row("FirstName"))

Me.mLastName = CStr(row("LastName"))

Me.mIsAdmin = CBool(row("IsAdmin"))

Me.mEmail = CStr(row("Email"))

Me.mUserID = CLng(row("UserID"))

Me.mPassword = CStr(row("Password"))

End Sub

As you can see, the inflate method accepts a DataRow as a parameter, and pop-
ulates all the private fields with values from the database.This is frequently called
“inflating” your objects; hence, the appropriately named subroutine.The other
thing to notice is that inflate is a private subroutine.This is because you don’t
want any objects outside of the current User object to have access to this method.
It does “utility” work on the object, and is unnecessary for any other object to
call this method.

Now that we’ve discussed how to validate and return a valid User object, let’s
move on to creating users.Any user can have any username.The only restriction
is that no two users can have the same username.This is because if you had two
users with the same username, the only way to identify which one you wanted is
to have some other type of unique identifier. Unfortunately, people can typically
remember names and usernames much better than they can some (relatively)
random number. So, in order to keep this username unique, you have to manually
check. If you were a database administrator, you would probably insist on creating
a unique index on the username field in the database, which is completely rea-
sonable. If you feel you need the extra “security” in place to make sure the same
username isn’t taken twice, go ahead and put it in there, but it’s in the CreateUser
method as well, which we will now take a look at in Figure 8.15.The complete

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 332

Creating a Message Board with ADO and XML • Chapter 8 333

source code for User.vb can also be found on the companion Solutions Web site
for the book (www.syngress.com/solutions).

Figure 8.15 The CreateUser Method (User.vb)

Public Shared Function CreateUser(ByVal userName As String, _

ByVal password As String, _

ByVal firstName As String, _

ByVal lastName As String, ByVal email As String) As User

Dim sql As String

Dim myData As DataSet

sql = "SELECT userName FROM Users WHERE userName = '" & _

userName & "'"

myData = DataControl.GetDataSet(sql)

If myData.Tables(0).Rows.Count <= 0 Then

'this username has not been taken

sql = "INSERT INTO [Users] ([Username], [Password], " & _

"[FirstName], [LastName], " & _

"[Email], [IsAdmin], [IsBanned]) VALUES ('" & userName & _

"','" & password & "','" & firstName & "','" & lastName & _

"','" & email & "',0,0)"

DataControl.ExecuteNonQuery(sql)

Return User.Validate(userName, password)

Else

'this username has already been taken

Throw New ArgumentException("The username is already taken")

End If

End Function

First, the CreateUser function scans the database to see if the request username
already exists. If it does, it throws an ArgumentException. If the username doesn’t
exist, it builds a SQL statement to insert a new row into the user table and exe-
cutes it. Finally, it calls the Validate method and returns the result.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 333

334 Chapter 8 • Creating a Message Board with ADO and XML

www.syngress.com

Creating Console Applications to Test Your Progress
Visual Studio .NET gives us an easy way to test and debug our applica-
tions, without actually needing to have a decent user interface to look
at—they call it a Console Application. Sure, Console Applications are
useful by themselves when you don’t need a UI, but when you are
building a relatively large application and you don’t want to get yourself
confused trying to build the UI and the classes at the same time, con-
sider using a Console Application to debug your project.

Go ahead and try it.

1. Add a new Console Application to your project.

2. Add a reference to your dotBoardObjects project to the
Console Application.

3. Set your new Console Application as the start-up project.

4. Start putting in some code to test the classes you’ve
written—maybe something like this:

Dim myUser As User

myUser = User.CreateUser("myuser", "mypassword", "joe", _

"blow", "joe.blow@email.com")

Console.WriteLine(myUser.FirstName)

Console.WriteLine("Press enter to finish")

Console.ReadLine()

Before you run this, put a break point on the line that creates
a user.

5. Step through the code using F8 (if you set up your Visual
Studio to use the Visual Basic Profile), and watch as the exe-
cution moves into the User class you created. You can step
through your application and watch as every line of code is
executed. If an error pops up, stop your application, fix the
error, and run the application again.

You should use and abuse this technique as much as possible. Not
only does it allow you to test and debug your classes, but it also does it
without your needing to build a UI at the same time you build the objects.

Debugging…

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 334

Creating a Message Board with ADO and XML • Chapter 8 335

The last method to discuss is the Update method.This method updates the
database with the current state of the object. See Figure 8.16 for the Update
method.The complete source code for User.vb can also be found on the com-
panion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.16 The Update Method (User.vb)

Public Sub Update()

Dim sql As String

sql = "UPDATE [Users] SET [Password] = '" & mPassword & _

"', [FirstName] = '" & mFirstName & _

"', [LastName] = '" & mLastName & _

"', [Email] = '" & mEmail & "'"

If Me.IsAdmin = True Then

sql = sql & ", [IsAdmin] = 1"

Else

sql = sql & ", [IsAdmin] = 0"

End If

If Me.IsBanned = True Then

sql = sql & ", [IsBanned] = 1"

Else

sql = sql & ", [IsBanned] = 0"

End If

sql = sql & " WHERE [UserID] = " & mUserID.ToString()

DataControl.ExecuteNonQuery(sql)

End Sub

Again, this method is rather simple; it generates a SQL statement to update
the database.The If statements are there to insert the correct Boolean value into
the database instead of “True” or “False.” Finally, after building the SQL state-
ment, it executes it and exits the method.

Designing the Board Class
Now that we’ve designed the User class, let’s take a look at the Board class. Many
of the concepts in the User class will be taken from the Board class.That is, the
Board class will mimic the Board table in the database, and will have a couple of
similarly named methods as in the User class. Let’s take a look at a UML diagram
of the Board class in Figure 8.17.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 335

336 Chapter 8 • Creating a Message Board with ADO and XML

Just by looking at this diagram, you can see that the Board class has much
more functionality than the User class. Notice the four fields from the Board
table: BoardID, Name, and Description. Just like the User class, these are directly rep-
resentative of what exists in the database.The other two fields you shouldn’t rec-
ognize. ChildThreads returns a list of the Threads that exist in this Board.
ChildThread is a property that accepts a ThreadID to return a specific Thread that
is directly located in a specific Board.

The methods available to a Board object should be somewhat self-explanatory.
The Update method does exactly what the User class Update method did: updates
the database with the private fields in the database.The Delete method deletes
the Board from the database. DeleteThread deletes a specific Thread from the
database. DeletePost deletes a specific Post that is located somewhere in this Board.
CreateThread creates a new Thread and adds it to the private list of Threads in this
Board. Like the User class, the Board class has a way to create new Boards, called
CreateBoard. Let’s start by showing the basics of the Board class in Figure 8.18.The
complete source code for Board.vb can be found on the companion Solutions
Web site for the book (www.syngress.com/solutions).

Figure 8.18 Private Fields and Public Properties (Board.vb)

Public Class Board

Private mBoardID As Long

Private mName As String

Private mDescription As String

Private myThreads As ThreadList

www.syngress.com

Figure 8.17 The Board Class

+Update()
+CreateThread()
+Delete()
+DeleteThread()
+DeletePost()
+CreateBoard() : Board

+BoardID : Long
+Name : String
+Description : String
+ChildThreads
+ChildThread

Board

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 336

Creating a Message Board with ADO and XML • Chapter 8 337

Figure 8.18 Continued

Public ReadOnly Property ChildThread(ByVal threadId As Long) As _

Thread

Get

'lookup the correct thread

Dim i As Integer

For i = 0 To Me.ChildThreads.Count - 1

Dim myThread As Thread = Me.ChildThreads.Item(i)

If myThread.ID = threadId Then

Return myThread

End If

Next i

'if we've gotten to this point, there is no thread

'with that ID in this board. throw an exception

Throw New ArgumentException("Thread does not exist")

End Get

End Property

Public ReadOnly Property ChildThreads() As ThreadList

Get

Return myThreads

End Get

End Property

Public ReadOnly Property ID() As Long

Get

Return mBoardID

End Get

End Property

Public Property Name() As String

Get

Return mName

End Get

Set(ByVal Value As String)

mName = Value

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 337

338 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.18 Continued

End Set

End Property

Public Property Description() As String

Get

Return mDescription

End Get

Set(ByVal Value As String)

mDescription = Value

End Set

End Property

The public properties in this class are a little more complex than the properties
in the User class.The public properties for the private fields are easy to understand,
but ChildThread and ChildThreads are a bit more complex, as is the private
myThread variable. Let’s start with myThread, which is defined as being of type
ThreadList. If you’re familiar with the System.Collections namespace, you’ll definitely
notice that this is not one of the built-in .NET collections.ThreadList is actually a
custom list that wraps an ArrayList, which will be discussed a bit later. For now,
just accept the fact that this list collects all the Threads in a given Board.

The ChildThreads property returns the private myThreads variable.The
ChildThread property accepts a ThreadID as a parameter, and looks up that
ThreadID in the myThreads list. It loops through the list, and compares the ID of
the Thread in the list with the ThreadID passed in. If it finds a match, it returns
that Thread; otherwise, it throws an ArgumentException.Again, ThreadList will be
discussed later, but for now, let’s move on to the shared CreateBoard method, as
shown in Figure 8.19.The complete source code for Board.vb can be found on
the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.19 The CreateBoard Method (Board.vb)

Public Shared Function CreateBoard(ByVal name As String, _

ByVal description As String, _

ByVal creator As User) As Board

Dim sql As String

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 338

Creating a Message Board with ADO and XML • Chapter 8 339

Figure 8.19 Continued

Dim myData As DataSet

If creator.IsAdmin = True Then

sql = "SELECT BoardName FROM [Board] WHERE [BoardName] = '" & _

name & "'"

myData = DataControl.GetDataSet(sql)

If myData.Tables(0).Rows.Count <= 0 Then

'this board name does not already exist.

sql = "INSERT INTO [Board] ([BoardName], " & _

"[BoardDescription], " & _

") VALUES ("

sql &= "'" & name & "','" & description & _

"')"

'create the board

DataControl.ExecuteNonQuery(sql)

'return the board

Return New Board(name)

Else

'board name already exists

Throw New Exception("This board name already exists")

End If

Else

Throw New Exception("Only admins may create boards")

End If

End Function

The first step in this method is to check to see if the user that is requesting
that a new Board be created is an admin. If the user is not an admin, it throws an
exception. If the user is an admin, it then checks to see if a Board with that name
has already been created. Like the username field in the User class, the name field
in the Board class should be unique.This makes it easier to manage your Boards
and to make sure they’re named appropriately. If the Board name already exists, it
throws an exception; otherwise, it generates the SQL statement necessary to
create a Board. It then executes the SQL statement and returns a new Board
object based on the Board name. Let’s take a look at the Board constructor,

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 339

340 Chapter 8 • Creating a Message Board with ADO and XML

shown in Figure 8.20, to see what it does.The complete source code for
Board.vb can be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.20 Constructor (Board.vb)

Public Sub New(ByVal name As String)

Dim sql As String

Dim myData As DataSet

sql = "SELECT * FROM [Board] WHERE [BoardName] = '" & _

name & "'"

myData = DataControl.GetDataSet(sql)

If myData.Tables(0).Rows.Count > 0 Then

Me.inflate(myData.Tables(0).Rows(0))

Else

Throw New Exception("Board does not exist")

End If

End Sub

Private Sub inflate(ByVal myRow As DataRow)

mName = CStr(myRow("BoardName"))

mDescription = CStr(myRow("BoardDescription"))

mBoardID = CLng(myRow("BoardID"))

myThreads = New ThreadList(mBoardID)

End Sub

The Board constructor takes the Board name as a parameter, and looks in the
database for that Board name. If it cannot find the Board, it throws an Exception;
otherwise, it passes the first DataRow in the DataSet to the inflate method.The
inflate method functions exactly as it did in the User class: it fills the private fields
with values.The only difference here is that the myThreads variable is initialized
and the BoardID is passed to it.Again, the ThreadList will be discussed a bit later,
but trust that the ThreadList takes the BoardID passed in and creates a collection
of the Threads in this Board. Next, let’s take a look at the Update method in
Figure 8.21.The complete source code for Board.vb can be found on the com-
panion Solutions Web site for the book (www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 340

Creating a Message Board with ADO and XML • Chapter 8 341

Figure 8.21 The Update Method (Board.vb)

Public Sub Update(ByVal requestor As User)

If requestor.IsAdmin Then

'update the database with this board's details

Dim sql As String

sql = "UPDATE [Board] SET [BoardName] = '" & mName & _

"', BoardDescription = '" & mDescription & _

" WHERE [BoardID] = " & mBoardID.ToString()

DataControl.ExecuteNonQuery(sql)

End If

End Sub

The Update method in the Board class does exactly what the User class’s
Update method did.The only real difference here is that it checks to make sure
the user requesting the update is really an admin. If the user is not an admin, then
it throws an exception. Next, take a look at Figure 8.22 for the CreateThread
method.The complete source code for Board.vb can be found on the companion
Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.22 The CreateThread Method (Board.vb)

Public Sub CreateThread(ByVal subject As String, _

ByVal creator As User)

Dim sql As String

sql = "INSERT INTO [Threads] ([ThreadSubject], " & _

"[CreatorID], [BoardID]) VALUES ('" & subject & _

"'," & creator.ID.ToString() & "," & _

mBoardID.ToString() & ")"

DataControl.ExecuteNonQuery(sql)

'reinitialize the thread list

myThreads.InitializeThreads()

End Sub

The CreateThread method builds the SQL statement necessary to insert a new
Thread into the database, and then reinitializes the private ThreadList variable by
calling its InitializeThreads method.You MIGHT be wondering why the Board

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 341

342 Chapter 8 • Creating a Message Board with ADO and XML

class has the Create method for its child objects, whereas both the User class and
Board class have their Create method located in their class definitions.This is
because both the User class and Board class do not have any parent-child relation-
ships with any other classes.When you have a parent object and multiple child
objects, the typical place to put the creation of the child objects is in the parent
object.This is a matter of semantics—if you prefer to have your child objects
create themselves, feel free to do it that way.

Let’s explore how to delete objects.The Board class contains the Delete,
DeleteThread, and DeletePost methods.The Board class can obviously delete itself,
but why would it also contain the capability to delete both Threads and Posts? It
has these two methods because the Board class is where the ModeratorID lives, and
Moderators can delete both Threads and Posts, so it just seems natural to put
these two delete methods in the Board class. Look at Figure 8.23 for the code.
The complete source code for Board.vb can be found on the companion
Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.23 The Delete Method (Board.vb)

Public Sub Delete(ByVal requestor As User)

'only admins can delete boards

If requestor.IsAdmin Then

Dim sql As String

sql = "DELETE FROM Boards WHERE BoardID = " & _

mBoardID.ToString()

DataControl.ExecuteNonQuery(sql)

Else

Throw New ArgumentException("User not permitted to delete")

End If

End Sub

The first step in the Delete method is to check to make sure the requesting
user has the appropriate access rights to delete this board. If the user is not an
admin, then an ArgumentException is thrown. If the user does have access rights to
delete a Board, then the SQL statement is built to delete the Board from the
database.The SQL statement is executed, and the Board is officially deleted.You
can see the DeleteThread method in Figure 8.24.The complete source code for
Board.vb can be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 342

Creating a Message Board with ADO and XML • Chapter 8 343

Figure 8.24 The DeleteThread Method (Board.vb)

Public Sub DeleteThread(ByVal thread As Thread, ByVal requestor As User)

If requestor.IsAdmin Then

Dim sql As String

sql = "DELETE FROM Threads WHERE ThreadID = " & _

thread.ID.ToString()

DataControl.ExecuteNonQuery(sql)

'reinitialize the threads

myThreads.InitializeThreads()

Else

Throw New ArgumentException("User not permitted to delete")

End If

End Sub

The first step in the DeleteThread method is to make sure the requesting user
has the appropriate access to delete this thread. If the user is neither an admin nor
a moderator of this Board, then an ArgumentException is thrown. If the user does
have access to delete a Thread, then the SQL statement is built to delete the
Thread from the database.The SQL statement is executed, and the ThreadList is
reinitialized by calling its InitializeThreads method.

The next method we need is the DeletePost method.Take a look at Figure 8.25
for its implementation.The complete source code for Board.vb can be found on
the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.25 The DeletePost Method (Board.vb)

Public Sub DeletePost(ByVal thread As Thread, ByVal post As Post, _

ByVal requestor As User)

If requestor.IsAdmin Then

Dim sql As String

sql = "DELETE FROM Posts WHERE PostID = " & _

post.ID.ToString()

DataControl.ExecuteNonQuery(sql)

'reinitialize the posts in the thread

thread.ChildPosts.InitializePosts()

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 343

344 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.25 Continued

Else

Throw New ArgumentException("User not permitted to delete")

End If

End Sub

Just as in the DeleteThread method, the first step in the DeletePost method is
to make sure the requesting user has the appropriate access rights to delete this
post. If the user is neither an admin nor a moderator of this Board, then an
ArgumentException is thrown. If the user does have access to delete a post, then
the SQL statement is built to delete the post from the database.The SQL state-
ment is executed, and the Threads ChildPosts property is reinitialized by calling
its InitializePosts method.

Designing the ThreadList Class
We promised you that we would discuss the ThreadList, and here it is. As was
mentioned earlier, the ThreadList class is a class that wraps an ArrayList. By
wraps, we mean it contains a private ArrayList thereby holding its list of Threads,
and exposes certain custom functionalities not necessarily pre-built into the
ArrayList class. Let’s take a look at a UML diagram for the ThreadList class in
Figure 8.26.

As you can see from this diagram, there isn’t much to the ThreadList. It con-
tains a count of the number of Threads in the list, contains an Item property to
allow you to access the Threads in the list, and gives you the ability to manually
force the reinitialization of the list through the InitializeThreads method.Again,
let’s start at the basics and build up from there in Figure 8.27.The complete
source code for ThreadList.vb is available on the companion Solutions Web site
for the book (www.syngress.com/solutions).

www.syngress.com

Figure 8.26 The ThreadList Class

+InitializeThreads()

+Count : Integer
+Item

ThreadList

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 344

Creating a Message Board with ADO and XML • Chapter 8 345

Figure 8.27 The Basics (ThreadList.vb)

Public Class ThreadList

Private list As ArrayList

Private mBoardID As Long

Public Sub New(ByVal BoardID As Long)

mBoardID = BoardID

Me.InitializeThreads()

End Sub

Public ReadOnly Property Count() As Integer

Get

Return list.Count

End Get

End Property

End Class

The ThreadList class contains only two private fields: list and mBoardID.The
list variable is used to hold all your Threads, and mBoardID is used to look up the
Threads in a given Board.The constructor accepts a BoardID, and calls the
InitializeThreads method, as shown in Figure 8.28.The complete source code for
ThreadList.vb is available on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.28 The InitializeThreads Method (ThreadList.vb)

Public Sub InitializeThreads()

Dim myData As DataSet

Dim sql As String

sql = "SELECT [Threads].*, [Users].* FROM [Threads] " & _

"INNER JOIN [Users] " & _

"ON [Users].[UserID] = [Threads].[CreatorID] " & _

"WHERE " & _

"[BoardID] = " & mBoardID.ToString() & _

" ORDER BY [Threads].[ThreadID] DESC"

myData = DataControl.GetDataSet(sql)

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 345

346 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.28 Continued

list = New ArrayList()

Dim myRow As DataRow

For Each myRow In myData.Tables(0).Rows

list.Add(myRow)

Next

End Sub

The InitializeThreads method is rather straightforward, but there is one major
concept that needs to be mentioned. First, a SQL statement is built to select the
Threads located in the appropriate Board (this is where the mBoardID variable
comes into play).The SQL statement also joins on the Users table, to allow for the
Thread object to know about the user who created the Thread. Next, the list is ini-
tialized, and each DataRow in the resultant DataSet is added to the list.This is
where the important concept is.The private list currently contains a set of DataRow
objects. Obviously, you do not want to expose a bunch of DataRow objects as your
list of Threads, so this is where the Item property comes into effect. See Figure 8.29
regarding the Item property.The complete source code for ThreadList.vb is available
on the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.29 The Item Property (ThreadList.vb)

Public Function Item(ByVal index As Integer) As Thread

1 Dim myObject As Object = list.Item(index)

2 If myObject.GetType() Is GetType(Thread) Then

3 'it is already a thread, so nothing further is needed

4 Else

5 Dim myThread As Thread

6 myThread = New Thread(CType(list.Item(index), DataRow))

7 'replace the item in the list with

8 'an actual thread object

9 list.Item(index) = myThread

10 End If

11

12 Return CType(list.Item(index), Thread)

End Function

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 346

Creating a Message Board with ADO and XML • Chapter 8 347

The Item property is a little more complex than the average property. Let’s
review it, line by line. Line 1 creates a variable called myObject of type Object and
sets it equal to the object that is at the specified index of the ArrayList. Line 2 com-
pares the type of the object to the type of the Thread class. If they are the same, it
does nothing; if not, it enters the Else part of the If statement (lines 5 through 9).
Next, a Thread variable called myThread is declared and set to a new Thread on line
6, passing in the object that is in the specified index in the ArrayList.That object is
cast to a DataRow using CType. Line 9 sets the object at the specified index in the
ArrayList to the myThread variable. Finally, on line 12 it returns the Thread that is in
the specified index of the ArrayList (and again, is cast to be a Thread object).

You might be wondering exactly what all of this accomplishes.Well, if you
remember from the InitializeThreads method, the ArrayList is filled with DataRow
objects.We do not want to directly expose anyone using our objects to DataRow
objects, so we need to instead give them Thread objects. So, behind the scenes,
every time a new index is requested from the ArrayList, we quietly “switch” the
variable in that index from a DataRow to the appropriate Thread object.You
might also ask why this class doesn’t just put the Threads into the ArrayList from
the start instead of doing it this way.The answer is simple: there is no need for
the overhead of having multiple Thread objects (each with other objects inside
them) in the list when you can save memory and time instantiating objects by
just keeping the data for each Thread object until it is actually requested.When
developing large-scale applications with many parent-child hierarchical relation-
ships, a technique like this will save you and your application a lot of time.

Designing the Thread Class
The Thread class is the “middle child” in our hierarchy of objects. Luckily for us,
much of its functionality and concepts are borrowed directly from the Board class,
so this should be pretty quick. Let’s take a look at another UML diagram in
Figure 8.30.

www.syngress.com

Figure 8.30 The Thread Class

+CreatePost()

+ID : Long
+Subject : String
+Creator : User
+ChildPost
+ChildPosts

Thread

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 347

348 Chapter 8 • Creating a Message Board with ADO and XML

Like every class we’ve examined so far, the Thread class shares the same pri-
vate fields as the Thread table in the database. Like the Board class, the Thread class
contains two properties to access its children: ChildPost and ChildPosts. ChildPost
retrieves an individual Post object from its list, and ChildPosts returns the entire
PostList. PostList will be discussed a bit later.Thread also contains the method to
create child Posts. Let’s start with the basics in Figure 8.31.The complete source
code for Thread.vb is available on the companion Solutions Web site for the
book (www.syngress.com/solutions).

Figure 8.31 The Basics (Thread.vb)

Public Class Thread

Private mThreadID As Long

Private mSubject As String

Private mCreator As User

Private myPosts As PostList

Public Sub New(ByVal myRow As DataRow)

inflate(myRow)

End Sub

Private Sub inflate(ByVal myRow As DataRow)

mSubject = CStr(myRow("ThreadSubject"))

mThreadID = CLng(myRow("ThreadID"))

mCreator = New User(myRow)

myPosts = New PostList(mThreadID)

End Sub

Public ReadOnly Property ChildPost(ByVal postId As Long) _

As Post

Get

'lookup the correct Post

Dim i As Integer

For i = 0 To Me.ChildPosts.Count - 1

Dim myPost As Post = Me.ChildPosts.Item(i)

If myPost.ID = postId Then

Return myPost

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 348

Creating a Message Board with ADO and XML • Chapter 8 349

Figure 8.31 Continued

End If

Next i

'if we've gotten to this point, there is no Post

'with that ID in this board. throw an exception

Throw New ArgumentException("Post does not exist")

End Get

End Property

Public ReadOnly Property ChildPosts() As PostList

Get

Return myPosts

End Get

End Property

Public ReadOnly Property ID() As Long

Get

Return mThreadID

End Get

End Property

Public Property Subject() As String

Get

Return mSubject

End Get

Set(ByVal Value As String)

mSubject = Value

End Set

End Property

Public ReadOnly Property Creator() As User

Get

Return mCreator

End Get

End Property

End Class

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 349

350 Chapter 8 • Creating a Message Board with ADO and XML

First, you’ll notice the private fields that are the same as the fields in the
database.You’ll also notice that a Thread has a Creator field and property that are
User objects representing the user that created this Thread. Like the Board class,
this class has a constructor that accepts a DataRow as a parameter and then calls
inflate to fill the private fields using that DataRow.Also, like Board, you have two
child object properties, ChildPost and ChildPosts. ChildPost is used to return a
single Post, and ChildPosts is used to return the entire PostList. Let’s take a look at
the next method in the Thread class, CreatePost, in Figure 8.32.The complete
source code for Thread.vb is available on the companion Solutions Web site for
the book (www.syngress.com/solutions).

Figure 8.32 The CreatePost Method (Thread.vb)

Public Sub CreatePost(ByVal subject As String, _

ByVal body As String, _

ByVal creator As User)

Dim sql As String

sql = "INSERT INTO [Posts] ([PostSubject], " & _

"[PostBody], " & _

"[CreatorID], [ThreadID]) VALUES ('" & subject & _

"','" & body & "'," & creator.ID.ToString() & "," & _

mThreadID.ToString() & ")"

DataControl.ExecuteNonQuery(sql)

'reinitialize the thread list

myPosts.InitializePosts()

End Sub

Looking at the CreatePost method, you’ll notice that it does almost exactly
what CreateThread did in the Board class. It builds a SQL statement to create a
new Post, then executes that statement and reinitializes the private PostList object.

Designing the PostList Class
Since we’re almost finished creating our classes, it’s time to look at the PostList
class.You might be thinking,“I wonder if the PostList class is similar to the
ThreadList class.” Such thinking should be rewarded. PostList and ThreadList are

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 350

Creating a Message Board with ADO and XML • Chapter 8 351

nearly identical, except in regard to what type of object they collect.Again, let’s
take a look at the UML diagram for the class first in Figure 8.33; then, in Figure
8.34, we’ll review the basics of this class (he complete source code for PostList.vb
is available on the companion Solutions Web site for the book).

Figure 8.34 The Basics (PostList.vb)

Public Class PostList

Private list As ArrayList

Private mThreadID As Long

Public Sub New(ByVal ThreadID As Long)

mThreadID = ThreadID

Me.InitializePosts()

End Sub

Public Sub InitializePosts()

Dim myData As DataSet

Dim sql As String

sql = "SELECT [Users].*, [Posts].* FROM " & _

"[Posts] INNER JOIN [Users] " & _

"ON [Users].[UserID] = [Posts].[CreatorID] " & _

"WHERE " & _

"[ThreadID] = " & mThreadID.ToString() & _

" ORDER BY PostDate DESC"

myData = DataControl.GetDataSet(sql)

list = New ArrayList()

Dim myRow As DataRow

www.syngress.com

Figure 8.33 The PostList Class

+InitializePosts()

+Count : Integer
+Item

PostList

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 351

352 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.34 Continued

For Each myRow In myData.Tables(0).Rows

list.Add(myRow)

Next

End Sub

Public ReadOnly Property Count() As Integer

Get

Return list.Count

End Get

End Property

End Class

Just like ThreadList, PostList contains a Count property, a method to initialize
posts in a thread, and a constructor that accepts the ID of the parent object.The
only real difference here is that this class gets values from the User table instead
of the Thread table. Next, let’s examine the Item function in Figure 8.35.The
complete source code for PostList.vb is available on the companion Solutions
Web site for the book (www.syngress.com/solutions).

Figure 8.35 The Item Function (PostList.vb)

Public Function Item(ByVal index As Integer) As Post

Dim myObject As Object = list.Item(index)

If myObject.GetType() Is GetType(Post) Then

'it is already a post, so nothing further is needed

Else

Dim myPost As Post

myPost = New Post(CType(list.Item(index), DataRow))

'replace the item in the list with

'an actual post object

list.Item(index) = myPost

End If

Return CType(list.Item(index), Post)

End Function

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 352

Creating a Message Board with ADO and XML • Chapter 8 353

In reviewing this Item function, note that it looks remarkably similar to the
Item function in the ThreadList class. In fact, it is exactly the same except that it
uses Post instead of Thread. Other than that difference, PostList is exactly the
same as ThreadList.

Designing the Post Class
So far, you should have noticed that most of the classes in our code share many
of the same ideas: add, update, lists, mimicking the database tables.Well, the Post
class is no different. In fact, it is rather similar to both the Board and Thread
classes. Let’s take a look at the UML diagram for this class in Figure 8.36.

Just like the other classes, this one is remarkably similar to its brothers—espe-
cially the Thread class.The only real difference between this class and the Thread
class is that Post has a Body field, pulls its values from the Post table, and doesn’t
have any child objects. Let’s take a look at the whole class in Figure 8.37.The
complete source code for Post.vb is available on the companion Solutions Web
site for the book.

Figure 8.37 Post.vb

Public Class Post

Private mPostID As Long

Private mPostSubject As String

Private mPostBody As String

Private mCreator As User

Private mPostDate As Date

Public Sub New(ByVal myRow As DataRow)

inflate(myRow)

www.syngress.com

Figure 8.36 The Post Class

+Update()

+ID : Long
+Subject : String
+Body : String
+Creator : User
+PostDate : Date

Post

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 353

354 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.37 Continued

End Sub

Public Sub Update(ByVal requestor As User)

If requestor.ID = mCreator.ID Then

Dim sql As String

sql = "UPDATE [Posts] SET [PostSubject] = '" & _

mPostSubject & "', [PostBody] = '" & mPostBody & _

"' WHERE [PostID] = " & mPostID.ToString()

DataControl.ExecuteNonQuery(sql)

Else

Throw New ArgumentException _

("Only the creator of a post can update it")

End If

End Sub

Private Sub inflate(ByVal myRow As DataRow)

mPostID = CLng(myRow("PostID"))

mPostSubject = CStr(myRow("PostSubject"))

mPostBody = CStr(myRow("PostBody"))

mCreator = New User(myRow)

mPostDate = CDate(myRow("PostDate"))

End Sub

Public ReadOnly Property ID() As Long

Get

Return mPostID

End Get

End Property

Public Property Subject() As String

Get

Return mPostSubject

End Get

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 354

Creating a Message Board with ADO and XML • Chapter 8 355

Figure 8.37 Continued

Set(ByVal Value As String)

mPostSubject = Value

End Set

End Property

Public Property Body() As String

Get

Return mPostBody

End Get

Set(ByVal Value As String)

mPostBody = Value

End Set

End Property

Public ReadOnly Property Creator() As User

Get

Return mCreator

End Get

End Property

Public ReadOnly Property PostDate() As Date

Get

Return mPostDate

End Get

End Property

End Class

As you can see, this class has five private fields with the corresponding five
public properties. In addition, it has a constructor that accepts a DataRow param-
eter that passes the DataRow to the inflate method. Finally, it has an update
method, with the rule that only the creator of the Post can actually edit the Post.
Doesn’t seem too hard, does it? Especially after all the other classes we’ve dealt
with, it almost seems passé.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 355

356 Chapter 8 • Creating a Message Board with ADO and XML

Designing the MessageBoard Class
We’ve finally gotten every class in our message board object library finished; now
all we need is a way to get a list of every Board object from our database.This is
accomplished using the MessageBoard class.We won’t bother to show you a UML
diagram of the MessageBoard class, as there is only one method in it: GetBoards.
Let’s take a look at the code in Figure 8.38.The complete source code for
MessageBoard.vb is available on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.38 MessageBoard.vb

Public Class MessageBoard

Public Shared Function GetBoards() As ArrayList

Dim list As New ArrayList()

Dim sql As String

Dim myData As DataSet

Dim myRow As DataRow

sql = "SELECT [BoardName] FROM [Board] ORDER BY [BoardName] Asc"

myData = DataControl.GetDataSet(sql)

For Each myRow In myData.Tables(0).Rows

Dim myBoard As Board

myBoard = New Board(CStr(myRow("BoardName")))

list.Add(myBoard)

Next myRow

Return list

End Function

End Class

This class is fairly easy to understand.What it does is look up each BoardName
from the database, and create a new Board object based on that name. It then adds
each Board to its list, and finally returns the list.

That’s it. Every single one of our objects to be used in dotBoard is com-
pletely finished.You might wonder why we did all this work ahead of time,

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 356

Creating a Message Board with ADO and XML • Chapter 8 357

instead of just jumping into the application itself.That is a very good question,
and as such, has a very good answer.We did all this work designing and setting
things up so that when we actually build our application, it will go smoothly,
quickly, and won’t require a lot of coding in the user interface. Any good
application splits the UI from the actual implementation of the application,
which is exactly what we did.We are about to move on to the user interface
of our message board application.You will see that using the work we’ve
already done, the rest of this application is going to be very straightforward
and easy.

Designing the User Interface
Finally, we’ve gotten to our user interface. Our database is constructed; all of our
message board classes are created; so the final thing to do is to put a UI on top of

www.syngress.com

Copying ASP.NET Applications to Multiple Computers
If you are using the examples on the companion Solutions Web site for the
book (www.syngress.com/solutions), please perform the following steps
to get your ASP.NET message board up and running on your computer.

1. Copy the files from the Web site to a folder underneath your
WWWRoot folder, typically located at C:\Inetpub\WWRoot.
Name this folder dotBoardUI.

2. Open the Internet Services Manager from Administrative
Tools in the Control Panel.

3. Expand the Internet Information Services node, then your
computer’s node, and finally the Default Web Site node.

4. Find your dotBoardUI folder. Right-click and select Properties
to bring up the Properties pane.

5. Look at the Application Settings panel, and click the Create
button next to the grayed-out Application Name label and
text box.

6. Click OK.

Developing & Deploying…

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 357

358 Chapter 8 • Creating a Message Board with ADO and XML

it all. Just as when we created the classes our applications are going to use, we
need to sit and think for a few minutes to determine exactly what it is our mes-
sage board will do.The obvious requirements are that a user must be able to reg-
ister, log in, and modify his or her profile.Anyone must be able to browse the
Boards,Threads, and Posts. Registered Users must be able to create Threads and
Posts, and Administrators must have the ability to administer users and create and
delete Boards.

Sound like a lot? Well, since we have a good majority of this work already
built into our numerous classes, most of our work now is to create the UI and
tie events to methods our objects will handle.The only other thing our mes-
sage board should be able to do is be “changed” at will.That is, colors, fonts,
and any other type of styling element should be able to be changed without
needing to actually modify every single control we place on our form.This will
be discussed in a moment, but for now, rest assured, it will be very exciting, and
most of the work will be done for us! Let’s start by figuring out how to register
and log in.

Setting Up General Functions
The first step in designing our application is to create the ASP.NET applica-
tion.You can either get the solution from the Solutions Web site, or create your
own. If you get the files from the companion web site, they are in a folder
called “dotBoardUI” in the folder for Chapter 8 in the source code portion for
this book on the companion Solutions Web site (www.syngress.com/solutions).
The dotBoard.sln file is the main solution file, and everything else in that folder
is a part of the project. Either way, your application should be named
dotBoardUI, to go with your dotBoardObjects class library. After you have cre-
ated your application, add your dotBoardObjects project to your solution, and
add a reference to the newly added project to your ASP.NET application. Next,
rename Web Form1.aspx to default.aspx.This will make it easier when it
comes time to deploy your application, as default.aspx is typically one of the
default documents IIS serves when the browser doesn’t request a specific file in
your application.

Now that you have your project created and the appropriate references made,
let’s get started on the groundwork for our application. If you think about it,
every page you make will likely need access to the currently logged-in user.
There are many reasons for this, as you’ll see later, so for now just assume that
every page will need that information.There are many ways to do this. For

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 358

Creating a Message Board with ADO and XML • Chapter 8 359

example, you can copy and paste the code necessary to get this information on
every page.Anyone familiar with programming techniques should sense a red flag
go up at that statement. Copying and pasting the code is a terrible idea, for so
many reasons that we don’t have space to state them here.Another solution avail-
able is to create a public module with the common functions your pages would
need.This is a good solution, but let’s do it a little differently.We are going to
have one Web Form from which all our Web Forms will inherit.Why would we
do this? So every Web Form you create will have direct access to the common
methods, and every user control you put on these Web Forms will be able to get
the information easily.

Add a new class to your project and name it FormBase.vb.We’re not adding a
Web Form in this case, because we don’t need any type of UI for our FormBase;
we just need access to a common set of methods.Take a look at the basic code in
Figure 8.39 (which can also be found on the companions Solutions Web site
(www.syngress.com/solutions) for this book in the file FormBase.vb).

Figure 8.39 The Basics (FormBase.vb)

Public Class FormBase

Inherits System.Web.UI.Page

End Class

Pretty easy, right? What we have here is a class that inherits from System.Web
.UI.Page.This allows all our Web Forms to inherit directly from this class, instead
of inheriting from System.Web.UI.Page.The next thing we need is for our
FormBase to be able to have a reference to the currently logged in user (if there is
one). Here is the code to do just that in Figure 8.40.The complete source code
for FormBase.vb is available on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.40 Maintaining the Current User (FormBase.vb)

Private mCurrentUser As dotBoardObjects.User

Public Property CurrentUser() As dotBoardObjects.User

Get

Return mCurrentUser

End Get

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 359

360 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.40 Continued

Set(ByVal Value As dotBoardObjects.User)

mCurrentUser = Value

'add the user's ID to the session

Session.Add("userid", Value.ID.ToString())

End Set

End Property

Public ReadOnly Property IsLoggedIn() As Boolean

Get

Return Not mCurrentUser Is Nothing

End Get

End Property

All we have here is a private dotBoardObjects.User object, and a public property
to retrieve it.The Set property sets the private field with the value passed in, and
adds the user ID of the passed-in User object to the session.We do this so a user
does not have to log in multiple times while perusing your message board—
you’ll see where this comes into play later.The other property we have is one
that returns a Boolean value of whether or not there is a currently logged-in
user.This property makes it easier for someone to determine if there is a logged-
in user. Basically, instead of having to test for Nothing over and over, you use
this Boolean property.

That is all the state maintaining we’ll need in our base class.The only
other thing our FormBase class needs to do is fulfill that last requirement we
talked about; that is, the ability to modify every control on every form
without needing to actually rename the class names on elements.This is prob-
ably one of the most interesting techniques dotBoard will use. Basically, what
we will do is create the code necessary to automate the process of restyling
every control in every Web Form.This might sound like a daunting task, but
actually once you take a look at it, it is rather simple.The first step we need to
take is to open up our web.config file and add the following lines of XML
directly beneath the <configuration> tag as shown in Figure 8.41 (which can
also be found on the companion Solutions Web site for the book in the file
named web.config).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 360

Creating a Message Board with ADO and XML • Chapter 8 361

Figure 8.41 The web.config File

<appSettings>

<add key="ConnectionString"

value="Provider=Microsoft.Jet.OLEDB.4.0;

DataSource="C:\Location\To\Your\database\dotBoard.mdb;

User ID=Admin;Password=;" />

<add key="XmlConfigFile"

value="C:\Inetpub\WWWRoot\dotBoardUI\styles.xml" />

</appSettings>

Okay, now what exactly does that mean? Your <appSettings> are custom set-
tings you create and have access to in your application.We are creating two
custom settings, which are added using the <add> tag.The key attribute is the
name of the settings, and the value attribute is obviously the value. Here we are
adding two keys, ConnectionString and XmlConfigFile. ConnectionString is what you
use to connect to your database. Remember the DataControl class and how it
accessed System.Configuration.ConfigurationSettings? The ConnectionString key is
exactly what that class will use.The other key is XmlConfigFile, which is used to
hold the location to your XML file that will hold the style information we dis-
cussed earlier. Please change the values of each to represent where you actually
have the files on your computer located.

We now have the ConnectionString and XmlConfigFile keys added to our
AppSettings. Let’s start discussing how we will accomplish the “sweeping” change
of styles, without needing to manually apply any styles on your controls. First
take a look at the following Cascading Style Sheet (CSS) file you should add to
your project, as shown in Figure 8.42.This file can also be found on the com-
panion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.42 Styles.css

body

{

font-family:Tahoma, Arial, Sans-Serif;

font-size:10pt;

color:#000000;

}

.errors

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 361

362 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.42 Continued

{

font-family:Tahoma, Arial, Sans-Serif;

font-size:10pt;

color:#993300;

}

.link

{

text-decoration:underline;

font-family:Tahoma, Arial, Sans-Serif;

color:#FF9933;

}

.header

{

color:#003399;

font-size:16pt;

font-weight:bold;

font-family:Arial, Sans-Serif;

}

.panel

{

border: 1px solid #000000;

padding: 10px;

}

.inputBox

{

border: 1px solid #000000;

background-color:#e5e5e5;

}

.label

{

font-family:Tahoma;

font-size:8pt;

color:#000000;

}

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 362

Creating a Message Board with ADO and XML • Chapter 8 363

Figure 8.42 Continued

.button

{

border: 1px solid #000000;

background-color: #FF9933;

color: #000000;

font-family: Arial, Sans-Serif;

font-size: 10pt;

}

You can see here that we have a number of styles we will want to apply to
many different elements throughout our application. Manually setting these styles
is hardly desirable, and maintaining these settings if any of your class names change
would be a nightmare. So, what can be done to prevent us from having to main-
tain this? Enter the styles.xml file in Figure 8.43.This file can also be found on
the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.43 Styles.xml

<?xml version="1.0" encoding="utf8"?>

<styles>

<control type="System.Web.UI.WebControls.Label">label</control>

<control type="System.Web.UI.WebControls.TextBox">inputBox</control>

<control type="System.Web.UI.WebControls.Button">button</control>

<control type="System.Web.UI.WebControls.Panel">panel</control>

<control type="System.Web.UI.WebControls.LinkButton">link</control>

<control type="System.Web.UI.WebControls.ValidationSummary">

errors</control>

</styles>

You should now notice that the values of these XML tags correspond to an
appropriate class name in the preceding stylesheet declaration. Now all we need
to do is find a way to associate these XML tags with the appropriate controls on
every page.We can accomplish this through two methods, as shown in Figure 8.44.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 363

364 Chapter 8 • Creating a Message Board with ADO and XML

This file can also be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.44 Two Methods to Dynamically Apply Styles to Controls (Board.vb)

Public Sub ApplyStyles(ByRef objControls As ControlCollection)

If objXml Is Nothing Then

Dim xmlLoc As String

xmlLoc = ConfigurationSettings.AppSettings()("XmlConfigFile")

objXml = New XmlDocument()

Try

objXml.Load(xmlLoc)

Catch E As Exception

Throw New Exception("XML Style Config file not found")

End Try

End If

Dim objControl As Control

For Each objControl In objControls

Dim style As String

style = GetStyleName(objControl.GetType.ToString())

If style <> "" Then

Dim objWebControl As WebControl

objWebControl = CType(objControl, WebControl)

'we only want to apply these styles if we

'haven't already explicitly set them

If objWebControl.CssClass.Trim() = "" Then

objWebControl.CssClass = style

End If

End If

If objControl.HasControls() Then

ApplyStyles(objControl.Controls)

End If

Next objControl

End Sub

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 364

Creating a Message Board with ADO and XML • Chapter 8 365

Figure 8.44 Continued

Public Function GetStyleName(ByVal controlType As String) As String

Dim objNode As XmlNode

objNode = objXml.SelectSingleNode("styles/control[@type='" & _

controlType & "']")

If objNode Is Nothing Then

'do nothing

Return ""

Else

'get the css class specified by this node

Return objNode.InnerText

End If

End Function

That’s a lot to digest all at once, so let’s break it down.The first thing you’ll see
is that ApplyStyles accepts a ControlCollection as a parameter.This collection can be
obtained from Page.Controls or Control.Controls. Next, the subroutine checks to see
if the XML document has been loaded yet. If it hasn’t, it retrieves the location of
the styles.xml file from the AppSettings and loads it. If there was an error in the
loading of the document, it throws an exception. If there are no problems with
the XML document, it loops through every control in the ControlCollection that
was passed in. For every control, it sets a variable “style” to the value of what the
GetStyleName function returns. GetStyleName takes your control’s fully qualified
type name (represented in the code by objControl.GetType().ToString()), and looks
for that in the XML document. It does this by calling the SelectSingleNode function
of the XMLDocument object. It builds an XPath query string and looks for the
appropriate node with the type attribute that is the same as the type string passed
into the GetStyleName function. If it finds that node, it returns the InnerText of the
appropriate node; otherwise, it returns an empty string.

Control is returned to the ApplyStyles method, and the style that was returned
is tested to make sure it is not an empty string; there is no point in setting the
value if it is empty. Next, the Control is cast to be a variable of type WebControl.
Since the only Control that can have its style attribute programmatically manipu-
lated is the WebControl, and since every control in System.Web.UI.WebControls
inherits directly from WebControl, it is safe to perform this cast. Just make sure
you do not add anything other than WebControls to your styles.xml file, and this

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 365

366 Chapter 8 • Creating a Message Board with ADO and XML

will work without error. Next, the CssClass property of your WebControl is tested
to make sure it is currently an empty string. It does this because if you specifi-
cally set a style on one of your Controls, you most likely do not want that style
overridden by this method. If it is empty, it sets the CssClass property to the style
String that was returned by the GetStyleName function. Finally, if the Control has
child controls, it recursively calls ApplyStyles, but instead with the
Control.ChildControls ControlCollection as the parameter.

With these two functions, every type of Control you add to your styles.xml
file will automatically get CSS styles applied to them, without any maintenance
on your part other than a small XML file.Wondering how this will actually get
used? All you need to do is in your classes that inherit from FormBase, call the
ApplyStyles method passing the ChildControls of the page you are currently on.
Feel free to try this. Modify the stylesheet and styles.xml file all you want. Just
rest assured that every control type you add to your XML file will automatically
have the CSS classes applied to them that you want.

Building the Log-In Interface
Since we don’t have any users created in the database yet, let’s take a look at
how to register with dotBoard. How to create the User Controls and Forms
won’t be discussed, but the source code is available on the companion Solutions
Web site for the book (www.syngress.com/solutions), as well as multiple screen
shots for each Web Form and User Control.Take a look at the register.aspx page
in Figure 8.45.

Let’s examine the controls on this page. First, there are a number of labels
and text boxes used to capture the user’s information.There is also a button
that will submit the form when pressed.The red-colored controls are validation
controls.Validation controls allow you to place “rules” on input without
needing to actually code it yourself.The display property of these controls is set
to None, so they will never show up, but that is where the ValidationSummary
comes in.The control in the top right of this page is a ValidationSummary con-
trol, which will aggregate all the errors into one area, so you do not need to
place your validation controls in a custom place.The other thing on this form
is a CustomValidator control. A CustomValidator is typically used to handle client-
side JavaScript, but it is also quite useful to handle exceptions thrown and dis-
play them to the user. Let’s take a look at the code behind this form in Figure
8.46. Register.aspx.vb can also be found on the companion Solutions Web site
for the book (www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 366

Creating a Message Board with ADO and XML • Chapter 8 367

Figure 8.46 The Code-Behind File (Register.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'Put user code to initialize the page here

Me.ApplyStyles(Me.Controls)

End Sub

Private Sub btnRegister_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnRegister.Click

'attempt to register the user

If Me.Page.IsValid Then

Try

Dim myUser As dotBoardObjects.User

myUser = dotBoardObjects.User.CreateUser(_

txtUsername.Text, txtPassword.Text, _

txtFirstName.Text, txtLastName.Text, _

www.syngress.com

Figure 8.45 The Register.aspx Page

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 367

368 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.46 Continued

txtEmailAddress.Text)

'if we've made it this far, the create worked

Dim objPage As FormBase

objPage = CType(Me.Page, FormBase)

objPage.CurrentUser = myUser

'redirect to the default page

Response.Redirect("default.aspx")

Catch Ex As Exception

valCustom.ErrorMessage = Ex.Message

valCustom.IsValid = False

End Try

End If

End Sub

First, we have the Page_Load subroutine, which handles the Page.Load event.
All this event does is call the ApplyStyles method of the FormBase class. Next, we
have the btnRegister_Click subroutine that handles the Register button’s click
event.The first thing that subroutine does is make sure the page is currently in a
valid state.This validity is determined whether or not all of the validation con-
trols you added to your form return a valid result. Only once every validation
control becomes valid does Page.IsValid ever return true. Next, a User object is
declared and the CreateUser method is called. If the CreateUser method throws an
exception, then the custom validator on our form is set to invalid and its
ErrorMessage property is set to the Message property of the Exception thrown. If
the CreateUser succeeded, then a reference to the parent Page, casted to the
FormBase type, is created and the CurrentUser property is set to the User that was
just created. Once all this is done, the user is redirected to default.aspx.

As we discussed when we went over FormBase, every page will need to know
about the currently logged-in user. Likely, every page will also need a login form
so the user can log in from anywhere.The best way to do this is to create a Web
User Control.Take a look at our userArea.ascx control in Figure 8.47.

Boy, that’s ugly, isn’t it? Don’t worry, that’s why we created the style code in
FormBase. Anyway, what we have here are two panels.The top panel contains
the controls necessary to log a user in, while the bottom panel contains the
welcome message and any specific actions the user can take. Let’s take a look at

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 368

Creating a Message Board with ADO and XML • Chapter 8 369

the code-behind for this page in Figure 8.48.The complete source code for
Figure 8.48 can also be found on the companion Solutions Web site for the
book (www.syngress.com/solutions).

Figure 8.48 The Code-Behind (UserArea.ascx.vb)

Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Init

'CODEGEN: This method call is required by the Web Form Designer

'Do not modify it using the code editor.

InitializeComponent()

pnlNotLoggedIn.Visible = True

pnlLoggedIn.Visible = False

lnkAdmin.Visible = False

'attempt to log the user in

www.syngress.com

Figure 8.47 UserArea.ascx

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 369

370 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.48 Continued

If Not Session.Contents().Item("userid") Is Nothing Then

Dim userId As Long

userId = CLng(Session.Contents.Item("userid"))

Dim myUser As User

Try

myUser = New User(userId)

Dim objPage As FormBase

objPage = CType(Me.Page, FormBase)

objPage.CurrentUser = myUser

pnlNotLoggedIn.Visible = False

pnlLoggedIn.Visible = True

lblWelcome.Text = myUser.FirstName & " " & myUser.LastName

If myUser.IsAdmin Then

lnkAdmin.Visible = True

End If

Catch Ex As Exception

lblError.Text = Ex.Message

End Try

End If

End Sub

Private Sub btnLogIn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnLogIn.Click

'attempt to log in the user

If txtUsername.Text.Trim() <> "" And _

txtPassword.Text.Trim() <> "" Then

Try

Dim myUser As User = User.Validate(txtUsername.Text, _

txtPassword.Text)

Dim objPage As FormBase

objPage = CType(Me.Page, FormBase)

objPage.CurrentUser = myUser

'if it got this far it succeeded

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 370

Creating a Message Board with ADO and XML • Chapter 8 371

Figure 8.48 Continued

'redirect, to allow the whole page to refresh

Response.Redirect(Request.RawUrl)

Catch Ex As Exception

lblError.Text = Ex.Message

End Try

End If

End Sub

Private Sub LinkButton1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles LinkButton1.Click

'redirect to the register page

Response.Redirect("register.aspx")

End Sub

Private Sub lnkLogOut_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkLogOut.Click

Session.Remove("userid")

Response.Redirect("default.aspx")

End Sub

Private Sub lnkProfile_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkProfile.Click

Response.Redirect("profile.aspx")

End Sub

Private Sub lnkAdmin_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkAdmin.Click

Response.Redirect("admin.aspx")

End Sub

Okay, there’s a lot here, so let’s break it down.The Page_Init subroutine han-
dles the Page.Init event.When this subroutine is called, it attempts to log in the
user based on the Session userId value. If that value exists, it uses it and initializes
the CurrentUser object; otherwise, it exits. Finally, the subroutine hides or shows
the correct panel and admin link depending on whether the user was successfully

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 371

372 Chapter 8 • Creating a Message Board with ADO and XML

logged in or not, and if the use is an admin or not, and then changes the text of
the welcome label to the logged-in user’s first and last name.

BtnLogin_Click handles the event when the user clicks the Login button.The
first thing it does is check to make sure values have been entered in the username
and password fields. If so, it attempts to validate the user with the username and
password the user entered. If an exception is thrown, the error label text is set to
the message of the exception thrown. If not, it sets the CurrentUser property of
the FormBase to the currently logged-in user, and then redirects the user back to
the page he or she is currently on. It does this to make sure all controls on the
page have gotten a chance to know that the user has logged in.

Finally, we have four link buttons, the first one redirects the user to the register
page we’ve already seen, while the other clears the user ID out of Session and redi-
rects them back to default.aspx.The third redirects the user to profile.aspx, the user
profile page.The fourth one redirects the user to admin.aspx, the admin page.

Finally, open up your default.aspx page, and drag your userArea.ascx user con-
trol onto the page.You now have a fully functioning login/register area to your
message board, where anyone can register and log in and receive customized links
depending on what type of user they are. See Figure 8.49 to see what the page
looks like.

www.syngress.com

Figure 8.49 The Default Page, with the Styling Code Applied

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 372

Creating a Message Board with ADO and XML • Chapter 8 373

Designing the Browsing Interface
The next step in building dotBoard is to determine how to browse through the
Boards,Threads, and Posts.When a user first enters the site and views the default
page, she should be shown a list of Boards and descriptions she can choose to
view.This code is located in default.aspx and default.aspx.vb on the companion
Solutions Web site (www.syngress.com/solutions).

Board Browsing
Browsing through our boards isn’t very difficult; all we need to do is use a Repeater
control, and create a custom DataSet out of our list of Board objects. Unfortunately,
the only control we can drag and drop onto a Web Form is a Repeater control, and
you can’t drag controls into the Repeater, so we are going to have to look at the
actual quasi-HTML that ASP.NET uses and write the repeated content by hand, as
shown in Figure 8.50.The complete source code for Figure 8.50 can be found on
the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.50 The Repeater Control (Default.aspx)

<asp:Panel runat="server">

<asp:Repeater id="Repeater1" runat="server">

<HeaderTemplate>

<div class="header">Available boards</div>

</HeaderTemplate>

<SeparatorTemplate>

</SeparatorTemplate>

<ItemTemplate>

<a href='board.aspx?boardid=

<%#DataBinder.Eval(Container, "DataItem.BoardName")%>'>

<%#DataBinder.Eval(Container, "DataItem.BoardName")%>

<%#DataBinder.Eval(Container, "DataItem.BoardDescription")%>

</ItemTemplate>

</asp:Repeater>

</asp:Panel>

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 373

374 Chapter 8 • Creating a Message Board with ADO and XML

The repeater code creates a header template, separator template, and the actual
item template.The only thing we haven’t discussed thus far is what data source the
Repeater should use. Since the Repeater control requires a real data source (i.e.,
DataSet or something similar), what needs to be done is our list of Boards needs to
be “translated” into a DataSet.Take a look at the updated code-behind for the
default page in Figure 8.51.The complete source code for Figure 8.51 can be found
on the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.51 The Updated Code-Behind (Default.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'Put user code to initialize the page here

Me.ApplyStyles(Me.Controls)

Me.DisplayBoards()

End Sub

Private Sub DisplayBoards()

Dim myBoards As DataSet = New DataSet()

Dim list As ArrayList

list = dotBoardObjects.MessageBoard.GetBoards()

myBoards.Tables.Add("boards")

Dim myTable As DataTable = myBoards.Tables(0)

myTable.Columns.Add("BoardName", GetType(String))

myTable.Columns.Add("BoardDescription", GetType(String))

Dim i As Integer

For i = 0 To list.Count - 1

Dim myBoard As dotBoardObjects.Board

myBoard = CType(list(i), dotBoardObjects.Board)

Dim fields(1) As Object

fields(0) = myBoard.Name

fields(1) = myBoard.Description

myTable.Rows.Add(fields)

myTable.AcceptChanges()

Next i

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 374

Creating a Message Board with ADO and XML • Chapter 8 375

Figure 8.51 Continued

myBoards.AcceptChanges()

Repeater1.DataMember = "boards"

Repeater1.DataSource = myBoards

Repeater1.DataBind()

End Sub

Notice the addition to the Page_Load method in this file.This subroutine
now calls the DisplayBoards subroutine. DisplayBoards restructures the list of
Boards into an appropriate form for a Repeater control to use. First, it creates a
DataSet and gets the list of Boards from the MessageBoard class. Next, it creates
a new table in the DataSet and adds three columns to it. Next, it loops
through the list of Boards and builds an object array of the fields to add to the
DataSet. It then adds a new row by passing in the object array to the Add
method of the Rows collection. Finally, it accepts the changes, and forces the
Repeater control to DataBind to the DataSet. Look at Figure 8.52 to see what
this page looks like.

www.syngress.com

Figure 8.52 The Default Page with Boards Displayed

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 375

376 Chapter 8 • Creating a Message Board with ADO and XML

Thread Browsing
Once the user has clicked one of the board links from default.aspx, he is taken to
board.aspx.This page will be responsible for determining which board was
selected and for displaying the appropriate Threads. Displaying the Threads in a
Board will function nearly identically to how displaying Boards functioned. Let’s
take a look at the important quasi-HTML that this page uses in Figure 8.53.The
complete source code for Figure 8.53 can be found on the companion Solutions
Web site for the book (www.syngress.com/solutions).

Figure 8.53 The ASPX Code for Board.aspx

<table cellpadding="0" cellspacing="0" border="0">

<asp:Repeater runat="server" id="Repeater1">

<SeparatorTemplate>

<tr> <td colspan="2"> </td> </tr>

</SeparatorTemplate>

<ItemTemplate>

<tr>

<td>

started by

<%#DataBinder.Eval(Container, "DataItem.creatorName")%>

</td>

<td>

<%#DataBinder.Eval(Container, "DataItem.postCount")%>

total posts

</td>

</tr>

<tr>

<td colspan="2">

<a href='thread.aspx?

<%#DataBinder.Eval(Container, "DataItem.threadLink")%>

'>

<%#DataBinder.Eval(Container, "DataItem.threadSubject")%>

</td>

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 376

Creating a Message Board with ADO and XML • Chapter 8 377

Figure 8.53 Continued

</tr>

</ItemTemplate>

</asp:Repeater>

</table>

The repeater code creates a separator template and the actual item template.
It DataBinds the appropriate fields in the data source to items in the template.
Let’s take a look at how we get the data into the data source in Figure 8.54.The
complete source code for Figure 8.54 can be found on the companion Solutions
Web site for the book (www.syngress.com/solutions).

Figure 8.54 Board.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim mBoard As dotBoardObjects.board

Dim boardId As String

boardId = Request.QueryString.Item("boardid")

Dim myLabel As Label

myLabel = CType(Me.FindControl("lblHeader"), Label)

myLabel.Text = boardId

mBoard = New dotBoardObjects.board(boardId)

Dim myThreads As DataSet

myThreads = New DataSet()

myThreads.Tables.Add("threads")

Dim myTable As DataTable

myTable = myThreads.Tables(0)

myTable.Columns.Add("threadLink", GetType(String))

myTable.Columns.Add("threadSubject", GetType(String))

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 377

378 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.54 Continued

myTable.Columns.Add("postCount", GetType(Integer))

myTable.Columns.Add("creatorName", GetType(String))

Dim i As Integer

For i = 0 To mBoard.ChildThreads.Count - 1

Dim myThread As dotBoardObjects.Thread

myThread = mBoard.ChildThreads.Item(i)

Dim fields(3) As Object

fields(0) = "BoardId=" & boardId & _

"&ThreadId=" & myThread.ID.ToString()

fields(1) = myThread.Subject

fields(2) = myThread.ChildPosts.Count

fields(3) = myThread.Creator.Username

myTable.Rows.Add(fields)

myTable.AcceptChanges()

Next i

myThreads.AcceptChanges()

Repeater1.DataMember = "threads"

Repeater1.DataSource = myThreads

Repeater1.DataBind()

Me.ApplyStyles(Me.Controls)

End Sub

Just like default.aspx, the data binding is relatively straightforward. First, we
need to get a reference to the current Board.We do this by requesting the Board
name from the query string and initializing the Board using it. Next, we set a
label’s text property to the name of the Board, so the user knows what Board he’s
in.Then we create a DataSet, add a table to it, and add all the required columns.
Afterward, we iterate through the Board’s child threads and create an object array

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 378

Creating a Message Board with ADO and XML • Chapter 8 379

to hold the necessary fields to add to the DataSet. Finally, we add all the rows to
the DataSet and force the Repeater control to DataBind.Take a look at Figure 8.55
to see what the completed page looks like.

Message Browsing
The last piece to browsing the message board is to see individual Posts them-
selves. Just like Boards and Threads, displaying this data is accomplished by using a
Repeater control and a DataSet. Let’s take a look at the important quasi-HTML
and the code-behind in Figures 8.56 and 8.57.The complete source code for
Figure 8.56 and 8.57 can be found on the companion Solutions Web site for the
book (www.syngress.com/solutions).

Figure 8.56 Thread.aspx

<asp:Repeater runat="server" id="Repeater1">

<ItemTemplate>

<tr>

<td>posted by

www.syngress.com

Figure 8.55 The Board Page with Threads Displayed

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 379

380 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.56 Continued

<%#DataBinder.Eval(Container, "DataItem.postCreatorName")%>

<%#DataBinder.Eval(Container, "DataItem.postCreatorEmail")%>

</td>

<td>

posted at

<%#DataBinder.Eval(Container, "DataItem.postDate")%>

</td>

</tr>

<tr>

<td colspan="2">

<%#DataBinder.Eval(Container, "DataItem.postSubject")%>

</td>

</tr>

<tr>

<td colspan="2">

<%#DataBinder.Eval(Container, "DataItem.postBody")%>

</td>

</tr>

</ItemTemplate>

</asp:Repeater>

Figure 8.57 Thread.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim boardId As String

Dim threadId As Long

boardId = Request.QueryString.Item("boardId")

threadId = CLng(Request.QueryString.Item("threadId"))

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 380

Creating a Message Board with ADO and XML • Chapter 8 381

Figure 8.57 Continued

Dim myBoard As dotBoardObjects.board

myBoard = New dotBoardObjects.board(boardId)

Dim myThread As dotBoardObjects.thread

myThread = myBoard.ChildThread(threadId)

lblHeaderBoard.Text = myBoard.Name

lblHeaderThread.Text = myThread.Subject

Dim myPosts As DataSet

myPosts = New DataSet()

myPosts.Tables.Add("posts")

Dim myTable As DataTable

myTable = myPosts.Tables(0)

myTable.Columns.Add("postId", GetType(Long))

myTable.Columns.Add("postSubject", GetType(String))

myTable.Columns.Add("postBody", GetType(String))

myTable.Columns.Add("postDate", GetType(Date))

myTable.Columns.Add("postCreatorName", GetType(String))

myTable.Columns.Add("postCreatorEmail", GetType(String))

Dim i As Integer

For i = 0 To myThread.ChildPosts.Count - 1

Dim myPost As dotBoardObjects.Post

myPost = myThread.ChildPosts.Item(i)

Dim fields(5) As Object

fields(0) = myPost.ID

fields(1) = myPost.Subject

fields(2) = myPost.Body

fields(3) = myPost.PostDate

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 381

382 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.57 Continued

fields(4) = myPost.Creator.Username

If Me.IsLoggedIn = True Then

fields(5) = "<a href='mailto:" & myPost.Creator.Email & _

"'>email"

Else

fields(5) = ""

End If

myTable.Rows.Add(fields)

myTable.AcceptChanges()

Next i

myPosts.AcceptChanges()

Repeater1.DataMember = "posts"

Repeater1.DataSource = myPosts

Repeater1.DataBind()

Me.ApplyStyles(Me.Controls)

End Sub

Again, this code is nearly identical to that of the last two pages we’ve dealt
with.The only real difference is that one of the fields is actually building a short
HTML string.This is because the repeater can’t handle if statements.Therefore, in
order to hide or show users’ e-mail addresses depending on whether the viewer is
logged in or not, we need to build a string instead of directly inserting the value.
If the user is logged in, then the anchor tag for the poster’s e-mail address is built;
otherwise, an empty string is used.

Creating the User Functions
Registered Users (Members) get a special set of functions they can access, such as
creating threads and posts, editing their profile, and editing the messages they’ve
posted.A Guest (that is, an unregistered user) is limited to a very small set of
functionalities—specifically, viewing the threads and messages (Figure 8.58).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 382

Creating a Message Board with ADO and XML • Chapter 8 383

Editing the Member Profile
The next step in building our application’s user interface is to allow a registered
user to modify his or her member profile.This includes first name, last name, pass-
word, and e-mail address. Let’s take a look at the profile.aspx page in Figure 8.59.

The profile page contains text boxes for every field in the User object,
except for the user ID and username.These two fields are read only, and should
never be changed. Like the Register page, this page contains a number of valida-
tion controls with their display value set to none, and a ValidationSummary con-
trol added to the page to aggregate all the errors a user might receive while
inputting information.When this page first loads, it should default all fields
(except for passwords) with their existing values, so a user does not have to type
everything over, just change the fields he or she wants to change. Upon clicking
the Update Profile button, the user’s details should be updated and the user
given a message explaining that his or her profile was updated. Let’s take a look
at the implementation of these features in Figure 8.60.The complete source
code for Figure 8.60 can be found on the companion Solutions Web site for the
book (www.syngress.com/solutions).

www.syngress.com

Figure 8.58 The Thread Page

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 383

384 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.60 The Code-Behind (Profile.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Me.IsLoggedIn = False Then

'only logged in users can access this site

Response.Redirect("default.aspx")

End If

If Page.IsPostBack = False Then

txtFirstName.Text = Me.CurrentUser.FirstName

txtLastname.Text = Me.CurrentUser.LastName

txtEmailAddress.Text = Me.CurrentUser.Email

End If

Me.ApplyStyles(Me.Controls)

End Sub

www.syngress.com

Figure 8.59 The Profile Page

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 384

Creating a Message Board with ADO and XML • Chapter 8 385

Figure 8.60 Continued

Private Sub btnUpdate_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnUpdate.Click

If Page.IsValid Then

If txtNewPassword.Text.Trim() <> "" Then

Me.CurrentUser.Password = txtNewPassword.Text

End If

Me.CurrentUser.FirstName = txtFirstName.Text

Me.CurrentUser.LastName = txtLastname.Text

Me.CurrentUser.Email = txtEmailAddress.Text

Me.CurrentUser.Update()

lblMessage.Visible = True

End If

End Sub

Updating the user profile is rather easy. First, the Page_Load method checks to
make sure there is a valid, logged-in user. If not, it redirects the user back to
default.aspx. If the user is logged in and the page has not posted back to itself yet,
it sets the values of the text boxes to the existing values of the current User
object.Afterward, it applies the styles to the page and exits.

When the Update button is clicked, the btnUpdate_Click method is called.
The subroutine first checks to make sure all the validation controls have returned
valid results. If not, it exits the subroutine. If they have returned valid results, it
first checks to see if the user entered a new password, and if so, sets the current
User object’s password to what the user entered. Next, each of the User objects’
fields are set to what the user entered, then the User object is updated to the
database. Finally, the message label indicating that the profile was updated success-
fully is displayed.

Creating Threads and Posts
The last thing to do for Registered Users is to generate a page for them to create
new threads and posts. In order to get to this page, let’s take a look at board.aspx
and thread.aspx again.We need to add a LinkButton to each.When clicked, that
link button needs to redirect the user to createpost.aspx. See Figures 8.61 and
8.62.The complete source code for Figure 8.61 and Figure 8.62 can be found on
the companion Solutions Web site for the book (www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 385

386 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.61 LinkButton1_Click Event (Board.aspx)

Private Sub LinkButton1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles LinkButton1.Click

Dim boardId As String

boardId = Request.QueryString.Item("boardid")

Response.Redirect("createPost.aspx?boardName=" & boardId)

End Sub

Figure 8.62 LinkButton1_Click Event (Thread.aspx)

Private Sub LinkButton1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles LinkButton1.Click

Dim boardId As String

Dim threadId As Long

boardId = Request.QueryString.Item("boardId")

threadId = CLng(Request.QueryString.Item("threadId"))

Response.Redirect("createPost.aspx?boardName=" & boardId & _

"&threadId=" & threadId.ToString())

End Sub

The function of these buttons is almost the same.The first one redirects the
user to createpost.aspx?boardName=[The selected Board], and the second redirects
the user to createpost.aspx?boardName=[The selected Board]&threadId=[The
selected Thread].The same page handles the creation of new Threads and Posts, so
if you are creating a new Post, you just pass in the ThreadID along with the
board name. If you are creating a brand new Thread, you just pass in the Board
name. Let’s take a look at createpost.aspx to see what controls are on that page
in Figure 8.63.

The Create Post page contains the necessary controls to accept user input
and create a new Thread and/or Post.The other controls on the page are a
ValidationSummary, two RequiredFieldValidators, and a Panel that contains the cur-
rent Thread information. Obviously, if the user is creating a new Thread and Post,
the Thread panel will not be visible; whereas, if the user is creating a new Post

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 386

Creating a Message Board with ADO and XML • Chapter 8 387

inside a Thread, the Thread panel will be visible and display the appropriate
Thread subject. Let’s take a look at the code necessary to initialize this form in
Figure 8.64.The complete source code for Figure 8.64 can be found on the
companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.64 The Code-Behind Initialization (Createpost.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'only logged in users are allowed in this page

If Me.IsLoggedIn = False Then

Response.Redirect("default.aspx")

End If

mBoardName = Request.Item("boardName")

If Request.Item("threadId") Is Nothing Then

mThreadID = 0

www.syngress.com

Figure 8.63 The Create Post Page

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 387

388 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.64 Continued

Else

mThreadID = CLng(Request.Item("threadId"))

End If

mBoard = New dotBoardObjects.board(mBoardName)

lblBoardName.Text = mBoard.Name

If mThreadID = 0 Then

pnlShowThread.Visible = False

Else

pnlShowThread.Visible = True

mThread = mBoard.ChildThread(mThreadID)

End If

If Not Me.IsPostBack Then

'put the default values in the thread and board text boxes

If mThreadID <> 0 Then

txtThreadSubject.Text = mThread.Subject

lblThreadName.Text = mThread.Subject

End If

End If

Me.ApplyStyles(Me.Controls)

End Sub

First, what we do is verify that there is a logged-in user. If there isn’t, we
redirect the user back to the default page. If the user is valid, we get a reference
to the current board and if the ThreadID was passed in, we get a reference to
the appropriate Thread as well. Finally, if the page hasn’t posted back to itself
and we have a current Thread, we default the text box and label values with the
Thread’s subject. All that’s left is to take a look at the code that actually creates
Posts and Threads, as shown in Figure 8.65.The complete source code for
Figure 8.65 can be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 388

Creating a Message Board with ADO and XML • Chapter 8 389

Figure 8.65 btnCreatePost_Click Code (Createboard.aspx.vb)

Private Sub btnCreatePost_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnCreatePost.Click

If Me.IsValid = True Then

If mThreadID <> 0 Then

'we're adding a post to a thread. do nothing here

Else

'we're creating a new thread and adding a post

mBoard.CreateThread(txtThreadSubject.Text, Me.CurrentUser)

'let's find that thread. it will be the first one

'in the list

mThread = mBoard.ChildThreads.Item(0)

End If

mThread.CreatePost(txtThreadSubject.Text, _

TextBox1.Text, Me.CurrentUser)

'redirect the user to the current thread

Response.Redirect("thread.aspx?boardId=" & mBoardName & _

"&threadId=" & mThread.ID.ToString())

End If

End Sub

What happens in this bit of code is that we first check to make sure the page
is valid. If not, we do nothing; otherwise, we attempt to create the Thread and/or
Post. If the ThreadID is currently “0” (that is, no ThreadID was given to the page),
then we create a new Thread and set the private mThread variable to the new
Thread (remember that when adding a new Thread, since Threads are ordered by
their ThreadID field, new Threads appear at the top of the ThreadList). Lastly, we
create a new Post from the current Thread object and redirect the user to the
thread.aspx page to view the new and/or updated Thread.

Building the Administrative Interface
Administrators need to do a few things that other people can’t. First, they need
the ability to delete anything—Boards,Threads, and Posts.They also need the
ability to edit any Post, and modify any user’s admin or banned status. Let’s take a
look at the useradmin.aspx screen in Figure 8.66.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 389

390 Chapter 8 • Creating a Message Board with ADO and XML

This page allows administrators to promote other users to Administrator
status, and ban problematic users from logging in to the site. First, we have a
DropDownList control that we will DataBind to a DataSet.There is also a
LinkButton that will show the admin panel at the bottom once we’ve selected a
user to administer.The two radio button lists will be used to display and set the
current admin/banned status of the selected user. Finally, when the user clicks
the Modify User button, the current user will be updated with the new
banned and admin values the administrator entered. Let’s first take a look at the
code necessary to set up the form in Figure 8.67.The complete source code for
Figure 8.67 can be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.67 The Page_Load Method (Admin.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'only logged-in admins can enter this page

www.syngress.com

Figure 8.66 The User Admin Page

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 390

Creating a Message Board with ADO and XML • Chapter 8 391

Figure 8.67 Continued

If Me.IsLoggedIn = False Then

Response.Redirect("default.aspx")

ElseIf Me.CurrentUser.IsAdmin = False Then

Response.Redirect("default.aspx")

End If

'get the users bound to the drop down list

If Not Me.IsPostBack Then

Dim myUsers As DataSet

Dim sql As String

sql = "SELECT UserID, UserName FROM Users"

myUsers = dotBoardObjects.DataControl.GetDataSet(sql)

dlUsers.DataTextField = "Username"

dlUsers.DataValueField = "UserID"

dlUsers.DataMember = "data"

dlUsers.DataSource = myUsers

dlUsers.DataBind()

End If

Me.ApplyStyles(Me.Controls)

End Sub

The first thing this method does is guarantee that there is a logged-in user,
and that the currently logged-in user is an administrator. If either of these is not
true, it sends the user back to default.aspx. Next, it makes sure the page has not
posted back to itself; since there’s no need to DataBind a drop-down list every
time the page is executed, as ASP.NET will handle that for us. If the page has not
posted back to itself, it builds a SQL statement to retrieve the UserIDs and
Usernames from the Users table in the database. It then gets a DataSet from the
dotBoardObjects.DataControl class, and dynamically binds the DropDownList to the
DataSet. Finally, it applies the styles to this page and exits.

The next thing we need to do is have the ability to select a user from the
drop-down list, and have the page load that user’s information.The click event
handler for the Choose User link handles this. Let’s take a look at the code for it
in Figure 8.68.The complete source code for Figure 8.68 can be found on the
companion Solutions Web site for the book (www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 391

392 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.68 The lnkChooseUser_Click Method (Admin.aspx.vb)

Private Sub lnkChooseUser_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkChooseUser.Click

Dim userID As Long

userID = CLng(dlUsers.SelectedItem.Value)

Dim myUser As dotBoardObjects.User

myUser = New dotBoardObjects.User(userID)

If myUser.IsBanned = True Then

rblBanned.Items(1).Selected = True

Else

rblBanned.Items(0).Selected = True

End If

If myUser.IsAdmin = True Then

rblAdmin.Items(0).Selected = True

Else

rblAdmin.Items(1).Selected = True

End If

rblBanned.Visible = True

rblAdmin.Visible = True

Panel1.Visible = True

End Sub

This gets the user ID from the DropDownList’s SelectedItem.Value property,
and creates a new User object from it. Next, the appropriate radio buttons are
selected depending on whether or not the user is banned or is an admin. Finally,
the admin panel and the two radio button lists are set to visible, so they will
appear when the page refreshes. Next, we need to handle when the administrator
clicks the Modify User button and update the selected user based on what the
administrator entered. See Figure 8.69 for the code involved.The complete
source code for Figure 8.69 can be found on the companion Solutions Web site
for the book (www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 392

Creating a Message Board with ADO and XML • Chapter 8 393

Figure 8.69 The btnModify_Click Method (Admin.aspx.vb)

Private Sub btnModify_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnModify.Click

Dim userID As Long

userID = CLng(dlUsers.SelectedItem.Value)

Dim myUser As dotBoardObjects.User

myUser = New dotBoardObjects.User(userID)

'we now have the user, so let's set his admin/banned properties

If rblBanned.Items(0).Selected = True Then

'the user is not banned

myUser.IsBanned = False

Else

myUser.IsBanned = True

End If

If rblAdmin.Items(0).Selected = True Then

'the user is an admin

myUser.IsAdmin = True

Else

myUser.IsAdmin = False

End If

myUser.Update()

End Sub

Just as before, the first thing we do is get a reference to the selected User object.
The next step is to determine which radio buttons were selected, and set the
IsAdmin and IsBanned properties accordingly.The last step is to update the selected
user by calling its Update method. Now you can promote other users to be admin-
istrators, or ban them from entering your site again. If a banned user attempts to log
on, he will receive an error explaining that his account was banned.You might be
wondering why we don’t just delete the banned user.We don’t do this because the
Thread and Post tables are dependent on the User table, and deleting a user from
the User table would not be allowed due to the relationships involved.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 393

394 Chapter 8 • Creating a Message Board with ADO and XML

The other thing that administrators can do is create and delete Boards, delete
Threads, and delete Posts. Let’s start with creating a Board.The first step
involved in this is adding a new LinkButton to the user area user control.This
button will be named “lnkCreateBoard” and will have its text property set to
Create New Board. Once clicked, it should redirect the user to createboard.aspx.
Let’s take a look at that code in Figure 8.70.The complete source code for
Figure 8.70 can be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.70 The lnkCreateBoard_Click Code (Userarea.ascx.vb)

Private Sub lnkCreateBoard_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkCreateBoard.Click

Response.Redirect("createboard.aspx")

End Sub

Now that we have the administrator going to the Create Board page, let’s
take a look at that page (Figure 8.71).

www.syngress.com

Figure 8.71 The Create Board Form

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 394

Creating a Message Board with ADO and XML • Chapter 8 395

Like all our other pages that accept user input, this page has controls on it for
every piece of information we need to perform the task at hand.Also, like the
other pages, there is a validation control for every text box to make sure the user
enters the required information. Let’s take a look at the code-behind for this
form in Figure 8.72.The complete source code for Figure 8.72 can be found on
the companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.72 The Code-Behind (Createboard.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'only logged-in admins can enter this page

If Me.IsLoggedIn = False Then

Response.Redirect("default.aspx")

ElseIf Me.CurrentUser.IsAdmin = False Then

Response.Redirect("default.aspx")

End If

End Sub

Private Sub btnCreate_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnCreate.Click

If Me.IsValid = True Then

'create the new board

dotBoardObjects.Board.CreateBoard(txtBoardName.Text, _

txtBoardDescription.Text, _

Me.CurrentUser)

Response.Redirect("default.aspx")

End If

End Sub

Like every other admin page so far, this page guarantees that the current user
is a logged-in administrator, and if not, redirects to the default page.After the user
has entered the required information to create a board and clicks the Create
Board button, the btnCreate_Click method is called. First, the method checks to
make sure the page is valid, then it creates the Board based on the values the
administrator entered. Finally, it redirects the administrator back to the default
page so he can see his newly created board.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 395

396 Chapter 8 • Creating a Message Board with ADO and XML

The last things an administrator should be able to do are delete Boards,Threads,
and Posts.This functionality can be placed on the appropriate pages where this
information is actually displayed.What we will do is, next to every Board,Thread,
and Post we will place an HtmlAnchor control next to each item that will point to
an .aspx page named delete[type of object to delete].aspx. For example, deleting Boards
will link to deleteBoard.aspx. Let’s go over the three places in our code that need
to change because of this new feature in Figures 8.73, 8.74, and 8.75.The complete
source code for the next three figures can be found on the companion Solutions
Web site for the book (www.syngress.com/solutions).

Figure 8.73 The DisplayBoard Method Changes (Default.aspx.vb)

Dim fields(1) As Object

fields(0) = myBoard.Name

fields(1) = myBoard.Description

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

fields(1) &= "

<a href='deleteBoard.aspx?boardName=" & _

myBoard.Name & "'>>>delete"

End If

End If

Figure 8.74 The Page_Load Method Changes (Board.aspx.vb)

Dim fields(3) As Object

fields(0) = "BoardId=" & boardId & _

"&ThreadId=" & myThread.ID.ToString()

fields(1) = myThread.Subject

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

fields(1) &= "

<a href='deleteThread.aspx?" & _

"boardName=" & mBoard.Name & _

"&threadId=" & myThread.ID.ToString() & _

"'>>>delete"

End If

End If

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 396

Creating a Message Board with ADO and XML • Chapter 8 397

Figure 8.75 The Page_Load Method Changes (Thread.aspx.vb)

Dim fields(5) As Object

fields(0) = myPost.ID

fields(1) = myPost.Subject

fields(2) = myPost.Body

If Me.IsLoggedIn = True Then

If Me.IsLoggedIn = True Then

fields(2) &= "

<a href='deletePost.aspx?" & _

"boardName=" & myBoard.Name & _

"&threadId=" & myThread.ID.ToString() & _

"&postId=" & myPost.ID.ToString() & _

"'>>>delete"

End If

End If

You can see that all of these changes are very similar. Each gets slightly more
complicated as you get further down the object hierarchy; you need to pass more
information to get a reference to the correct objects. Now all we need to do is
create the three pages that will handle deleting our objects.All three are very
similar, and are shown in Figures 8.76, 8.77, and 8.78.The complete source code
for the following three figures can be found on the companion Solutions Web
site for the book (www.syngress.com/solutions).

Figure 8.76 DeleteBoard.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

Dim boardName As String

boardName = Request.QueryString.Item("boardName")

Dim myBoard As dotBoardObjects.board

myBoard = New dotBoardObjects.board(boardName)

myBoard.Delete(Me.CurrentUser)

End If

End If

Response.Redirect("default.aspx")

End Sub

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 397

398 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.77 DeleteThread.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

Dim boardName As String

Dim threadId As Long

boardName = Request.QueryString.Item("boardName")

threadId = CLng(Request.QueryString.Item("threadId"))

Dim myBoard As dotBoardObjects.board

myBoard = New dotBoardObjects.board(boardName)

Dim myThread As dotBoardObjects.thread

myThread = myBoard.ChildThread(threadId)

myBoard.DeleteThread(myThread, Me.CurrentUser)

End If

End If

Response.Redirect("default.aspx")

End Sub

Figure 8.78 DeletePost.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

Dim boardName As String

Dim threadId As Long

Dim postId As Long

boardName = Request.QueryString.Item("boardName")

threadId = CLng(Request.QueryString.Item("threadId"))

postId = CLng(Request.QueryString.Item("postId"))

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 398

Creating a Message Board with ADO and XML • Chapter 8 399

Figure 8.78 Continued

Dim myBoard As dotBoardObjects.board

myBoard = New dotBoardObjects.board(boardName)

Dim myThread As dotBoardObjects.thread

myThread = myBoard.ChildThread(threadId)

Dim myPost As dotBoardObjects.Post

myPost = myThread.ChildPost(postId)

myBoard.DeletePost(myThread, myPost, Me.CurrentUser)

End If

End If

Response.Redirect("default.aspx")

End Sub

A lot of code, for sure, but it should all be relatively easy to follow. Each page
retrieves the objects necessary to delete whatever it is trying to delete, and then
calls the appropriate delete method on the Board object.When it finishes, each
redirects the user back to the default page. If the person accessing this page is
neither logged in nor an admin, it does nothing but the final redirect.You don’t
want anyone who is not an admin deleting your Boards, so even on pages in
which the user never sees the UI, it’s still a good idea to perform every security
check necessary.

The final administrative interface we need to create is to give the administra-
tors the ability to edit Posts, in the case of offensive or undesired language that
doesn’t necessarily need to be deleted. First, we’ll need to add another button to
the view thread page right next to the Delete button. See Figure 8.79 for the
changes.The complete source code for Figure 8.79 can be found on the com-
panion Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.79 Page_Load Changes (Thread.aspx.vb)

If Me.IsLoggedIn = True Then

If Me.IsLoggedIn = True Then

fields(2) &= "

<a href='deletePost.aspx?" & _

"boardName=" & myBoard.Name & _

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 399

400 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.79 Continued

"&threadId=" & myThread.ID.ToString() & _

"&postId=" & myPost.ID.ToString() & _

"'>>>delete"

fields(2) &= " " & _

"<a href='editPost.aspx?" & _

"boardName=" & myBoard.Name & _

"&threadId=" & myThread.ID.ToString() & _

"&postId=" & myPost.ID.ToString() & _

"'>>>edit"

End If

End If

All that has changed is that a new HTML anchor tag is added that points to a
new page called editPost.aspx. Let’s take a look at this page and examine what
controls are on it (Figure 8.80).

www.syngress.com

Figure 8.80 editPost.aspx

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 400

Creating a Message Board with ADO and XML • Chapter 8 401

You should notice that this page looks very similar to the Create Post page.
In fact, it is nearly identical—so identical that we could have reused the same
page instead of creating the new one.The only reason we aren’t using the
create post page is for the sake of simplicity; there’s no need to complicate
pages we have already finished for new functionality. All we need to do now is
take a look at the code-behind page in Figure 8.81.The complete source code
for Figure 8.81 can be found on the companion Solutions Web site for the
book (www.syngress.com/solutions).

Figure 8.81 The Code-Behind (editPost.aspx)

Public Class editPost

Inherits FormBase

Private mBoard As dotBoardObjects.Board

Private mThread As dotBoardObjects.Thread

Private mBoardName As String

Private mThreadID As Long

Private mPostID As Long

Private mPost As dotBoardObjects.Post

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'only logged in users are allow in this page

If Me.IsLoggedIn = False Then

Response.Redirect("default.aspx")

ElseIf Me.CurrentUser.IsAdmin = False Then

Response.Redirect("default.aspx")

End If

mBoardName = Request.Item("boardName")

mThreadID = CLng(Request.Item("threadId"))

mPostID = CLng(Request.Item("postId"))

mBoard = New dotBoardObjects.board(mBoardName)

mThread = mBoard.ChildThread(mThreadID)

mPost = mThread.ChildPost(mPostID)

www.syngress.com

Continued

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 401

402 Chapter 8 • Creating a Message Board with ADO and XML

Figure 8.81 Continued

lblHeaderBoard.Text = mBoard.Name

lblHeaderThread.Text = mThread.Subject

If Not Me.IsPostBack Then

txtSubject.Text = mPost.Subject

txtMessage.Text = mPost.Body

End If

Me.ApplyStyles(Me.Controls)

End Sub

Private Sub btnEditPost_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnEditPost.Click

If Me.IsValid Then

mPost.Subject = txtSubject.Text

mPost.Body = txtMessage.Text

mPost.Update(Me.CurrentUser)

Response.Redirect("thread.aspx?boardID=" & _

mBoard.Name & "&threadId=" & _

mThread.ID.ToString())

End If

End Sub

End Class

You should immediately notice how similar the code-behind of the Edit Post
page is to the Create Post page.Again, we could have used the same page, but to
keep things simple we’re using two separate pages.The Page_Load method first
checks to make sure there is a logged-in user, and that the user is an administrator.
Next, it gets a reference to the appropriate Board, Thread, and Post objects, and fills
the label and text box controls on the page with values.The btnEditPost_Click
method makes sure the page is valid, then sets the values on the Post object, com-
mits it to the database, and redirects to the Thread View page so the user can see
the changes.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 402

Creating a Message Board with ADO and XML • Chapter 8 403

Summary
Our message board is 100-percent complete and ready for use.We have analyzed
our message board and created a solution to fit with all our requirements. Our
message board is an object-oriented application that is scalable, maintainable, and
well defined.We have created all the necessary classes to maintain our data and
the relationships between our data through the use of custom list objects and
classes.We also have a built-in security model where every action that requires
administrative access is checked before the requestor is allowed to perform the
operation.

Our user interface is somewhat extensible in that it dynamically applies styles
to multiple types of WebControls that we defined using CSS and an XML docu-
ment. Each Web Form we created inherits the FormBase class, which allows all
our Web Forms to have access to a few common methods and properties, in
addition to the System.Web.UI.Page methods and properties. Our user interface
contains all the necessary interfaces to browse through Boards,Threads, and
Messages, as well as interfaces to administer users, and those that contain inter-
faces to create and delete Boards,Threads, and Messages.

All in all, we have a functioning message board that could be placed any-
where and run on top of SQL Server or MS Access. It was accomplished in an
object-oriented manner and hopefully, by now, you understand the use for
designing OO applications.We have also separated the UI and UI logic from the
actual “business rules” applied to our objects. If we wanted, we could take our
dotBoardObject class library and put a Windows Form front end on it, a Web
Service front end on it, or even attach a Console Application front end—all
because we kept our UI completely separate from our implementation.

Solutions Fast Track
Setting Up the Database

Analyze your data and create the tables necessary to represent the
solution to our problem. Make sure you have broken down each piece
of data into the smallest possible representation of that data. For
example, you wouldn’t want to have a field in your database for the
user’s full name; instead, you would want first and last name fields.

Analyze your data and create the relationships necessary between the
different sets of data.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 403

404 Chapter 8 • Creating a Message Board with ADO and XML

Designing Your Application
Analyze your data and find a way to fit it into an object-oriented
environment. Many times, you can use the analysis you performed while
building your database in this step.

Map the fields in the database to appropriate fields in each object.

Analyze our solution and determine the types of methods each of our
objects will contain.You need to provide interfaces to modify, add, and
delete every relationship and field in each of your objects.

Designing the User Interface
Analyze what type of actions our users will need to perform, and create
the necessary Web Forms.

Analyze what type of actions our administrators will need to perform,
and create the necessary Web Forms.

Setting Up General Functions
Create the FormBase class that contains all the necessary properties and
methods our Web Forms will need to hold. Determine what functionality
you need shared throughout every Web Form, and build it into this class.

Building the Log-In Interface
Create the user area user control. Place this control on every Web Form
so each form can have a reference to the currently logged-in user.

Create the Registration page, which allows users to register for your
message board.

Designing the Browsing Interface
Create the Board browsing. Create the Web Form and use the Repeater
control and DataBind it to a DataSet.

Create the Thread browsing. Create the Web Form and use the Repeater
control and DataBind it to a DataSet.

Create the Post browsing. Create the Web Form and use the Repeater
control and DataBind it to a DataSet.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 404

Creating a Message Board with ADO and XML • Chapter 8 405

Creating the User Functions
Generate the Thread creation. Create the Web Form and use Validation
controls and text boxes to get the necessary information.

Generate the Post creation. Create the Web Form and use Validation
controls and text boxes to get the necessary information.

Building the Administrative Interface
Create the interface to ban and promote users. Make sure only
administrators can access this functionality using the properties built into
the FormBase class.

Create the interfaces necessary to delete Board,Thread, and Post pages.
Modify the existing View Board,Thread, and Post pages to create the
links to the delete pages.

Create the interfaces necessary to edit Posts. Modify the existing view
Post page to create the links to edit Posts.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: When designing applications, do I need to design them in an object-oriented
manner?

A: Absolutely not, although when applications are designed in an OO manner,
they are typically more scalable and maintainable, and allow for the use of
multiple user interfaces.You are not forced to create applications in an OO
manner, but good programming practices typically stress object orientation.

Q: Are there any performance issues when using an OO approach versus a more
procedural approach?

A: Yes, typically the OO approach adds a bit of overhead to everything you do.
For example, the creation of the custom DataSet in order to view Boards,

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 405

406 Chapter 8 • Creating a Message Board with ADO and XML

Threads, and Posts spends extra time that wouldn’t have been lost if you had
gone directly to the database instead of accessing the data through objects.
The price of scalability and maintainability is a possible performance loss.
Luckily, with .NET, execution is very fast after the initial compile, so it’s also
very likely that you would never notice the speed loss.

Q: How important is it to use Validation controls?

A: Very important. In ASP 3.0 and 2.0 (heck, even ASP 1.0), all validation had to
be done by hand. Empty fields needed to be validated as well as e-mail
addresses and URIs.With Validation controls,ASP.NET does all of this for us,
allowing us to focus more on the logic and business rules in our application.

Q: How can I ban a list of IP addresses in the future?

A: First, you would need to create a table in your database to store the list of IP
addresses, and provide a way for an administrator to enter an IP address into
it.Then, at every page you want to disallow this list of IP addresses from
viewing, compare the IP address of the requesting user and compare it to the
list of IP addresses you have banned. If it exists in your list of banned
addresses, redirect the user to another page or do whatever else you feel is
appropriate.

www.syngress.com

155_xml_net_pd_C08.qk 3/6/02 5:14 PM Page 406

Building a Remote
Database Viewer

Solutions in this chapter:

■ Understanding ADO.NET

■ Accessing Data from a Database Using
ADO.NET

■ Converting Binary Data Using Base64

■ Designing and Implementing a Remote
Database Viewer

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 9

407

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 407

408 Chapter 9 • Building a Remote Database Viewer

Introduction
By now you might have realized the versatility of XML as a markup language,
but you still might not be in a position to appreciate its usefulness beyond the
implementations that we have carried out so far. If you review the previous chap-
ters, you will find that we restricted our focus to working with plain text
wrapped into XML encoding, with the exception of only XML serialization.We
have yet to consider the conversion of data other than plain text into XML
encoding.This would be necessary if, for instance, it was needed to extract all the
data from a SQL Server database to be sent to another application in the form of
XML documents, or if a complete database structure were to be synchronized
over the Internet by wrapping it in XML documents. Serialization would work,
but only partially in these cases, as images, other OLE objects, and even stored
procedures need to be handled. Fortunately, some techniques have evolved for
such situations too; else, the utility of XML would have been severely limited.

Perhaps you are already familiar with the technique of encoding binary data
into a character string; for example, using Base64 encoding.This technique can
be used within the .NET Framework. In fact, it offers some respite from the
tedium involved in extracting an image from a database, encoding it, and wrap-
ping it into an XML document.The use of namespaces is part of the process, but
the introduction of ADO.NET is more significant. Microsoft has integrated XML
in the ADO.NET architecture, leveraging its ease of use.Thus, one can read
recordsets from SQL Server databases and then save them as XML documents,
using only a handful of code.

In this chapter, we address both of these aspects of data encoding in XML doc-
uments by creating a tool that allows one to remotely browse extracted data from a
SQL Server database and store the data as XML documents. First, we will take a
close look at the constitution of ADO.NET and how binary data encoding works.

Understanding ADO.NET
ADO.NET is based on the principle of universal data access (UDA) for accessing
data from a database.Although ADO.NET is specifically designed for building
.NET applications, it completely rules out database dependency as in the case of
ADO (ActiveX Data Objects).ADO.NET is backed up by all such classes that are
capable of database handling features, such as sorting the data using various options
for viewing the data in different formats, and reading data from and putting it
back on the database.ADO.NET uses XML as its default format for data
traversing, while with ADO, COM Marshalling is predominantly used for that

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 408

www.syngress.com

purpose.Yet, once you start working with ADO.NET you will find that familiarity
with the concepts and techniques of ADO go a long way in building effective
solutions for data access ADO.NET.The ADO.NET also sports these features:

■ Interoperability In the ADO.NET architecture, data travels across the
applications in an XML stream format.This confluence of XML and
ADO.NET offers the parent application a free environment for transmit-
ting data to the receiving application, without bothering about how data
will be read by the receiving application.The only requirement demanded
of the data-consuming application is the capability to read the XML.

■ DataSet The DataSet, a new feature within ADO.NET, is the memory
resident copy of data. It can represent the data of more than one table,
without using the JOIN clause in an SQL query.Thus, we can assume
DataSet as some sort of mini database that holds the data of multiple
tables and represents the relationship between them.Whatever modifica-
tion is required can be done on the copy of the data, and later, this mod-
ified copy of the data is submitted to the database for resolving updates.
The copy of the data maintained by the DataSet can be distributed
among various components, thereby the need of individually querying
the data source. In the ADO.NET environment, you can call DataSet as a
client-side cursor location.

■ Performance The performance of ADO.NET is further upgraded by
the extended support of XML.As mentioned earlier, XML is the
(default) data format in ADO.NET, which allows for manipulating and
recognizing the data irrespective of the data source, as the scope of XML
is not restricted to certain data types. Once the data is gained by the
recipient application, it can convert the data using its own data types.

■ Scalability Any Web-based application that uses ADO.NET can handle
any number of users without bothering about bottlenecks such as server
overloading due to too many connections, slow processing of queries,
and so forth, because ADO.NET applications do not maintain constant
connection with the database of the server. Neither does an ADO.NET
application, at the time of running, deploy any database lock too long;
instead, it works on the principle of disconnected access database.

■ Maintainability As the performance load on a deployed application
server increases, system resources can become scarce, thereby adversely
affecting response time.To solve this problem, software architects can seg-
regate the server’s business logic processing and user interface processing

Building a Remote Database Viewer • Chapter 9 409

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 409

410 Chapter 9 • Building a Remote Database Viewer

into separate tiers on separate machines.This, in effect, would mean that
the application server tier is replaced with two tiers, which would alter-
nate the load on system resources.

The problem is not designing a three-tier application; rather, it is increasing
the number of tiers after an application has been deployed. If the original applica-
tion is implemented in ADO.NET using datasets, this transformation is quite easy.
Remember, when you replace a single tier with two tiers, you arrange for those
two tiers to trade information. Since, the tiers can transmit data through XML-
formatted datasets, the communication between the tiers is simplified.

The ADO.NET Architecture
The working of ADO.NET is based on two components: DataSet and .NET
Data Provider. Figure 9.1 represents the inner architecture of ADO.NET.

Using .NET Data Provider
This core constituent of ADO.NET is specifically designed for data access and
manipulation.A .NET Data Provider lays down the connection with the
database, executes the commands or processes the queries, and retrieves the
results.The .NET Provider comprises four objects, which are illustrated in
Figure 9.2 and described in Table 9.1.

www.syngress.com

Figure 9.1 The ADO.NET Architecture

ADO.NET

.NET Provider DataSet

Connection Command DataReader DataAdapter

Table Collection Relational Collection

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 410

Building a Remote Database Viewer • Chapter 9 411

Table 9.1 Objects and Their Descriptions

Objects Description

Connection Establishes connection with a specified data source.
Command Executes command on data source.
DataReader Reads data from data source in read-only and forward-

only streams.
DataAdapter Fills the DataSet and handles update data source.

Connection
A connection with a database can be established either by following the conven-
tional method of using the Open function, or by implicitly calling the
DataAdapter.While establishing a connection with the database, the information
required to authenticate the user and other information such as the name of
the database is passed.

Command
Command contains the information about the SQL query that is submitted to the
database.The submitted SQL query could be a query to retrieve the data, per-
form an Update or Insert query, or it could be a stored procedure.

DataReader
DataReader provides the functionality of reading data from the data source.You
can consider it a server-side Cursor-Location.The DataReader object also con-
tains the methods and properties necessary to deliver a forward-only data stream
of rows from a data source.This means that you cannot update, add, or otherwise
modify records streamed from DataReader.

www.syngress.com

Figure 9.2 Core Objects of .NET Provider

.NET Provider Objects

Connection Command DataReader DataAdapter

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 411

412 Chapter 9 • Building a Remote Database Viewer

DataAdapter
DataAdapter provides a set of methods and properties that are needed for
retrieving and saving data between a DataSet and its source data store. It performs
the work of transferring returned data from a database into a DataSet, and man-
ages the reconciliation of data updated with regard to a database.

Data adapters are passed connections and commands whenever their action
methods are invoked. One remarkable feature of DataAdapter is that it allows
these commands to be set explicitly for controlling the statements used at run-
time for resolving changes, and permits the use of stored procedures.

DataAdapter is the object that connects to the database to fill in the data.
Moreover, depending upon the operations that take place, while the DataSet
holds the data, DataSet connects to the database to update the data.

Thus, DataAdapter works in close alliance with DataSet and acts as the source
of data. DataAdapter provides methods and properties to handle the data returned
by the database, and passes it to the DataSet.The DataAdapter uses Command
objects to execute SQL commands at the data source, and fills the DataSet with
data. It also handles the task of updating the database.

The .NET data providers can be broadly categorized as follows:

■ The SQL Server .NET data provider To use this data provider, you
must have access to SQL Server.This data provider uses specifically
defined protocols to communicate with SQL Server. It performs effec-
tively, as it accesses SQL Server without involving the OLEDB or
ODBC layers. In earlier versions of SQL Server, the OLEDB .NET
provider was used with SQL Server OLE DB Provider (SQLOLEDB).

■ The OLEDB .NET provider This data provider uses native OLEDB
in conjunction with COM for accessing the data.The OLE DB handles
both manual and automatic transactions.To use OLEDB .NET provider,
you must include an OLE DB provider as well.Table 9.2 lists various
OLE DB providers that are compatible with ADO.NET.

Table 9.2 OLEDB Providers Compatible with ADO.NET

Driver Provider

SQLOLEDB Microsoft OLE DB Provider for SQL Server
MSDAORA Microsoft OLE DB Provider for Oracle
Microsoft.Jet.OLEDB.4.0 OLE DB Provider for Microsoft Jet

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 412

Building a Remote Database Viewer • Chapter 9 413

Using DataSets and DataTables
In previous versions of ADO, the RecordSet class had the responsibility of
retrieving records from the database and performing all operations required for
data manipulation. In ADO.NET, the DataSet class replaces the RecordSet class.
Although both DataSet and RecordSet serve the same purpose, the flexibility and
more diversified approach of DataSet gives ADO.NET a definite edge over ADO.
In ADO, where RecordSet represents only one table, DataSet is a collection of two
or more tables, and represents the relationship between the tables. In technical
terms, you can consider DataSet as a relational database, where data is kept inside
the memory of DataSet.Thus, data is kept strictly away from the original data
source, thereby preventing any direct intervention.

DataSet maintains a copy of the data of related tables, and all the required
operations are performed on this copy. Subsequently, DataSet submits this local
copy of data to the original data source and resolves updates with the database. In
this way, DataSet not only maintains the safety and integrity of data, but also pro-
motes data operations with disconnected data sources in the true sense; unlike
with ADO, where minimum cursor locations have to be maintained in spite of
disconnected data sources.The algorithm of data and disconnected data sources is
further consolidated by the merging of ADO.NET with XML.The data travels
across various applications in XML format.The most remarkable feature of XML
technology is that once data gets into the hands of DataSet, the original data
source is of little significance.As evident in Figure 9.3, the working of DataSet is
centered on Table and Relational Collection.

www.syngress.com

Figure 9.3 Components of DataSet

DataSet

DataTables DataRelation

Rows Collection Columns Collection Constraints Collection

DataRows DataColumns

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 413

414 Chapter 9 • Building a Remote Database Viewer

Table Collection represents all the tables DataSet is holding. Each table in Table
Collection is represented by DataTables. Just like DataTables represents the tables
within a database, DataRows represents the rows in the table and DataColumns
represents the columns in a table. Figure 9.3 will help us better understand the
components of DataSet.

A Quick Comparison of ADO and ADO.NET
In ADO.NET, a single DataSet handles data from multiple tables; performing the
same task in ADO requires a JOIN in a SQL statement.Another significant dif-
ference between ADO and ADO.NET is in cursor types.The static and the
read-only cursors of ADO are replaced by the DataSet and the Data Reader,
respectively.

With ADO.NET, data can be shared with other applications using DataSet
much more easily than with ADO, which uses RecordSet. In ADO.NET, XML is
used for transmitting data across different applications, whereas in ADO, COM is
used, which means that data types supported in ADO have to be COM centric.
ADO.NET places no such restriction on data types, so you can send more richly
formatted data than with ADO.

In ADO, constant connection with the data source database locks needs to be
maintained for long periods of time, which sometimes leads to bottlenecks when
too many connections supported by the data source are challenged.This problem
has been bypassed in ADO.NET, where there is no need to maintain constant
connection with the data source. Once you have the data, your connection
becomes offline, and only when you need to submit the data back to the data
source does the connection becomes active.

Accessing Data from a
Database Using ADO.NET
Now that we have discussed the general scheme of ADO.NET and its compo-
nents, let’s familiarize ourselves with the process of working with data in Client-
Server architecture.Working with data implies adding new data, deleting and
updating the record, or merely viewing the records by navigating them.

In this section, various examples are given to illustrate the use of ADO.NET
for accessing data from the database.The following section discusses the database
design, which is accessed by various applications depicted as forms in the exam-
ples that follow. Each form has its own working schedule, and to access the data

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 414

Building a Remote Database Viewer • Chapter 9 415

from the database, each form first establishes the connection and then proceeds
with the designated task.

Database Design
Our database will contain five simple rows: emp_code (which is our primary key),
emp_firstname, emp_lastname, designation, and salary (Figure 9.4). Please note that in
this example, we are assigning null values to emp_firstname, emp_lastname, designa-
tion, and salary.This is only for simplicity; in a real-world situation, all of these
values cannot be null.

Navigating between Records
The form in Figure 9.5 allows you to view various records stored in the table.
For navigating between records, various buttons are placed on the form.To view
records, you first need to establish connection with the database.

The code block in Figure 9.6 serves to set up the connection with the
database.The complete source code for Figure 9.6 can be found on the com-
panion Solutions Web site for the book (www.syngress.com/solutions).

www.syngress.com

Figure 9.4 Database Design of emp Table

Figure 9.5 Navigation Form

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 415

416 Chapter 9 • Building a Remote Database Viewer

Figure 9.6 Setting Up a Connection with the Database During Form Load

private OleDbConnection Conn;

private OleDbDataAdapter dbCmd;

private DataSet dtSet;

private DataRowCollection dtRowColl;

private int CurRec;

private void frmViewRecord_Load(object sender, System.EventArgs

e)

{

string strSql="";

Conn = new OleDbConnection("Provider=SQLOLEDB.1;Persist

SecurityInfo=False;UserID=charul;pwd=charul;Initial

Catalog=employee;DataSource=developers");

try

{

Conn.Open();

}

catch(System.Data.OleDb.OleDbException ex)

{

MessageBox.Show(ex.ToString() + "Connection Fail.");

this.Close();

}

dtSet=new DataSet();

dtSet.Tables.Add("emp");

strSql="Select * from emp";

dbCmd= new OleDbDataAdapter(strSql,Conn);

dbCmd.Fill(dtSet,"emp");

dtRowColl=dtSet.Tables[0].Rows;

www.syngress.com

Continued

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 416

Building a Remote Database Viewer • Chapter 9 417

Figure 9.6 Continued

if (dtRowColl.Count==0)

CurRec=-1;

else

{

CurRec=0;

DisplayRec();

}

}

Looking at Figure 9.6, let’s clarify how the connection with the database is
established.While initiating connection with the database, information such as
username, password, data source name, and so forth are passed and an attempt is
made to open the connection to the database. If the connection cannot be estab-
lished, an exception is raised and the user message is displayed informing you of
the failure of the attempt.To execute the SQL statement on active connection,
the object dbCmd of OleDbDataAdapter is made.

Once the connection with the database is established, the dtSet, an object of
DataSet, is filled with table emp, which means that whatever data to be handled will
be coming from emp table.To retrieve the data, a SQL query is written that will
select all the records from the emp table.The dbCmd handles the data returned by
the database and assigns it to DataSet object dtSet. From the data returned, dtSet
picks up the first table and assigns the collection of rows present in the table to
dtRowColl, an object of the DataRowCollection class (the object of
DataRowCollection, which represents the collection of rows in the table).

The Count() method is used to determine whether some rows actually exist
in dtRowColl. If this method encounters 0, which means that no row exists,
nothing is displayed and the variable CurRec is set to –1. If otherwise, the
DisplayRec() function is called, which will display the current record.

It is important to mention here that records in the table start at 0, which
means that the first record is considered the second record.The variable CurRec
represents the ordinal positions of records present in the table, which means that
for CurRec, the zero record would be the first record. On the other hand, Count()
function considers that records start from 1. Hence, we can say that when the
variable CurRec and the Count() method encounter the records of the table, a
difference of 1 occurs with regard to the position of records.We look at how to

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 417

418 Chapter 9 • Building a Remote Database Viewer

display the current record, the first record, the last record, the previous record,
and the next record in Figures 9.7 through 9.11, respectively.The complete
source code for Figures 9.7 through 9.11 can be found on the companion
Solutions Web site for the book (www.syngress.com/solutions).

Figure 9.7 Function to Display the Current Record

private void DisplayRec()

{

DataRow dr= dtRowColl[CurRec];

txtEmpCode.Text=dr[0].ToString().Trim();

txtFirstName.Text=dr[1].ToString().Trim();

txtLastName.Text=dr[2].ToString().Trim();

txtDesignation.Text=dr[3].ToString().Trim();

txtSalary.Text=dr[4].ToString().Trim();

}

Figure 9.8 Coding to Display the First Record

private void cmdFirst_Click(object sender, System.EventArgs e)

{

if (dtRowColl.Count==0) return;

CurRec=0;

DisplayRec();

}

The code in Figure 9.8 shows that if the Count() function encounters 0,
which means that no record is present, nothing is displayed; otherwise, the first
record is displayed. For this, the private function DisplayRec () is called.

Figure 9.9 Coding to Display the Last Record

private void cmdLast_Click(object sender, System.EventArgs e)

{

if (dtRowColl.Count==0) return;

CurRec=dtRowColl.Count-1;

DisplayRec();

}

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 418

Building a Remote Database Viewer • Chapter 9 419

The code in Figure 9.9 shows that if Count() encounters 0, nothing would be
displayed, otherwise DisplayRec() function is called and the last record is displayed
to the user.

Figure 9.10 Coding to Display the Previous Record

private void cmdPrevious_Click(object sender, System.EventArgs e)

{

if (dtRowColl.Count==0) return;

CurRec—;

if (CurRec<0) CurRec=0;

DisplayRec();

}

Figure 9.10 illustrates how the previous record is viewed. For viewing these
records, the value of CurRec is successively decreased by 1. If the value of CurRec
becomes lesser than 0 (CurRec<0), it means that the user is attempting to scroll
beyond the first record.To handle such an action, CurRec is set to 0, so that the
first record is displayed and the action is cancelled.

Figure 9.11 Coding to Display the Next Record

private void cmdNext_Click(object sender, System.EventArgs e)

{

if (dtRowColl.Count==0) return;

CurRec++;

if (CurRec>=dtRowColl.Count) CurRec=dtRowColl.Count-1;

DisplayRec();

}

Figure 9.11 shows how to move forward and view the next record.The value
of CurRec is simply increased by 1. If the user tries to view records beyond the
last record, (CurRec>=dtRowColl.Count) cancels the attempt by displaying the last
record.

Add Record Form
The form in Figure 9.12 allows you to add new records in the table.This form
has two buttons, Save and Close, which handle the tasks of adding a new record
and closing down the form, respectively.While entering the new record, ensure

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 419

420 Chapter 9 • Building a Remote Database Viewer

that the Employee Code field is not left blank. If it is and you click the Save
button, a message will make an entry for the Employee Code field.A new record
can be added only after entering a value for the Employee Code field.

Figure 9.13 shows how a connection with the database is established and how
the buttons perform their tasks.The complete source code for Figure 9.13 can be
found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 9.13 Adding a New Record in the Database

string strSql="";

OleDbConnection Conn;

OleDbDataAdapter dbCmd;

if (txtEmpCode.Text.Trim()=="")

{

MessageBox.Show("Employee code can't be blank.");

txtEmpCode.Focus();

return;

}

strSql="Insert into emp Values(" + txtEmpCode.Text + "," +

(txtFirstName.Text.Trim()==""?"null":"'" + txtFirstName.Text.Trim()

+ "'") + "," + (txtLastName.Text.Trim()==""?"null":"'" +

txtLastName.Text.Trim() + "'") + "," +

(txtDesignation.Text.Trim()==""?"null":"'" +

txtDesignation.Text.Trim() + "'") + "," +

(txtSalary.Text.Trim()==""?"null": txtSalary.Text.Trim()) +")" ;

www.syngress.com

Figure 9.12 Add Record Form

Continued

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 420

Building a Remote Database Viewer • Chapter 9 421

Figure 9.13 Continued

Conn= new OleDbConnection("Provider=SQLOLEDB.1;Persist Security

Info=False;User ID=charul;pwd=charul;Initial

Catalog=employee;DataSource=developers");

dbCmd=new OleDbDataAdapter();

dbCmd.SelectCommand = new OleDbCommand(strSql,Conn);

try

{

Conn.Open();

}

catch(Exception ex)

{

MessageBox.Show(ex.ToString());

return;

}

DataSet empDS=null;

empDS= new DataSet();

try

{

dbCmd.Fill(empDS);

}

catch(Exception ex)

{

MessageBox.Show("Str : " + ex.Message);

return;

}

Conn.Close();

MessageBox.Show("Record Added.");

txtEmpCode.Text="";

txtFirstName.Text="";

txtLastName.Text="";

txtDesignation.Text="";

txtSalary.Text="";

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 421

422 Chapter 9 • Building a Remote Database Viewer

The code snippet in Figure 9.13 handles the task of adding new records in
the table residing on the database. For adding new records in the table, the tech-
niques of DataSet and DataAdapter are used.

At the start of this code snippet, the string type variable strSql is declared.This
variable will later be used to store the SQL query for inserting new records in
the table. Objects Conn and dbCmd, respectively, of classes OleDbConnection and
OleDbDataAdapter are created. Object Conn will be used for setting up a connec-
tion with the database, and object dbCmd will populate the DataSet with records.
Once the required objects and the variable have been declared, it is checked to
see whether the Employee Code field (txtEmpCode) is empty. If it is, a message is
shown prompting the user that this field cannot be left blank.

To insert records in the table, an SQL query is written.While writing the
Insert Record SQL query, the problem of entering empty values is taken into
consideration. In case the user fails to enter information in some field (except
that for Employee Code), the default value NULL is entered in the table.

Following this, the connection with the database is opened to submit the new
record to the table.The Conn object is used to establish a connection with the
database.The Conn object is populated with information, such as name of the
provider, username and ID, and names of data source and Initial Catalog.

In the Select command property of dbCmd, the variable strSql and the object
Conn, are passed.According to these arguments, the SQL query will be executed
on the active connection. Inside the try block, an attempt is made to open the
connection with the database. In case, the connection with the database cannot
be opened, the statements written inside the catch block will be executed and, as
a result, an error message will appear indicating that the connection with the
database could not be opened.

Delete/Update Form
This form in Figure 9.14 allows you to update and delete records.To do so, you
first need to select an employee code from the combo box.As soon as you select
the employee code from the combo box, other information pertaining to the
employee code will be displayed in the controls placed on the form. Once the
complete information has been displayed, you can perform necessary modifications
on the record or delete the record by clicking the corresponding buttons. Before
doing so, you need to establish connection with the database, for which the coding
listed in Figure 9.15 can be used.The complete source code for Figure 9.15 can be
found on the companion Solutions Web site for the book (www.syngress.com/
solutions).

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 422

Building a Remote Database Viewer • Chapter 9 423

Figure 9.15 Deleting and Updating Records

Conn = new OleDbConnection("Provider=SQLOLEDB.1;Persist Security

Info =False;UserID=charul;pwd=charul;Initial Catalog=employee;

Data Source=developers");

OleDbCommand empCmd = Conn.CreateCommand();

empCmd.CommandText = "Select emp_code from emp";

OleDbDataReader empReader=null;

try

{

empReader=empCmd.ExecuteReader();

}

catch(System.Data.OleDb.OleDbException ex)

{

MessageBox.Show(ex.Message);

this.Close();

return;

}

while(empReader.Read())

{

cboEmpCode.Items.Add(empReader.GetValue(0).ToString());

}

empReader.Close();

www.syngress.com

Figure 9.14 Delete and Update Form

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 423

424 Chapter 9 • Building a Remote Database Viewer

The object Con is used to make the connection with the database. It is popu-
lated with information such as the type of provider, username or ID, password
and name of data source and database.The OleDbCommand object empCmd is
used to execute the SQL query on the database.With the help of the SQL query,
all employee codes are picked up from the emp_code field of emp table.This query
is submitted to CommandText property of empCmd

Once the connection string and the SQL query have been written, an
attempt is made to open the connection with the database using the Open
method of the Con object.The try and catch blocks are used to establish connec-
tion.The connection with the database is opened inside the try block. If the con-
nection fails, the statements written inside the catch block will execute and the
attempt for connection will be shut down.

Once the connection with the database is established, the role of empReader
begins.The empReader is filled with the ExecuteReader() method of empCmd.The
empReader reads all records (emp_code) and stores them in a combo box. Once all
records have reached their destination, empReader is closed. Figure 9.16 shows the
code to display records.The complete source code for Figure 9.16 can be found
on the companion Solutions Web site for the book (www.syngress
.com/solutions).

Figure 9.16 Code to Display Records

OleDbCommand empCmd = Conn.CreateCommand();

empCmd.CommandText = "Select * from emp where emp_code=" +

cboEmpCode.SelectedItem.ToString().Trim();

OleDbDataReader empReader=null;

try

{

empReader=empCmd.ExecuteReader();

}

catch(System.Data.OleDb.OleDbException ex)

{

MessageBox.Show(ex.Message);

this.Close();

return;

www.syngress.com

Continued

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 424

Building a Remote Database Viewer • Chapter 9 425

Figure 9.16 Continued

}

ClearForm();

if (empReader.Read())

{

txtFirstName.Text=empReader.GetValue(1).ToString().Trim();

txtLastName.Text=empReader.GetValue(2).ToString().Trim();

txtDesignation.Text=empReader.GetValue(3).ToString().Trim();

txtSalary.Text=empReader.GetValue(4).ToString().Trim();

}

empReader.Close();

The code snippet in Figure 9.16 handles the task of displaying records related
to the employee code selected from the combo box.As soon as you select the
desired employee code, all records pertaining to the selected employee code will
be displayed in various text boxes placed on the form.To do this, an SQL query
is written in the CommandText property of empCmd.This SQL query will fetch
all the records related to the employee code selected from the combo box.The
results returned by the SQL query are stored in empReader using the
ExecuteReader() method of empCmd.After storing the records in empReader, the
records are read from it and displayed on the form.

If the records could not be stored in empReader, an appropriate error message
is displayed, the Data Reader is closed, and all controls placed on the form are
cleared. Figure 9.17 shows how a record is updated.The complete source code
for Figure 9.17 can be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 9.17 Code to Update a Record

string strSql="";

OleDbCommand empCmd = Conn.CreateCommand();

if (cboEmpCode.SelectedIndex==-1)

{

MessageBox.Show("No employee code selected.");

www.syngress.com

Continued

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 425

426 Chapter 9 • Building a Remote Database Viewer

Figure 9.17 Continued

cboEmpCode.Focus();

return;

}

strSql="update emp set emp_firstname='" + txtFirstName.Text +

"',emp_lastname='" + txtLastName.Text + "',designation='" +

txtDesignation.Text + "',salary=" + txtSalary.Text + " where emp_code="

+ cboEmpCode.SelectedItem.ToString().Trim();

empCmd.CommandText= strSql;

int iRows;

try

{

iRows=empCmd.ExecuteNonQuery();

}

catch(Exception ex)

{

MessageBox.Show(ex.Message.ToString());

return;

}

if (iRows>0)

{

MessageBox.Show("Record updated");

}

The code snippet in Figure 9.17 executes when the Update button is clicked.
The Update button is used to update the records in case any changes are made to
them. For making an update, you must first select an employee code. If the Update
button is clicked without selecting an employee code, the error message “No
employee code selected.” is displayed, and focus is set on the combo box.

For updating the records, a SQL statement that updates all related records of the
employee code selected is written.This SQL query is assigned to the previously
declared strSql variable and is passed to the CommandText property of empCmd.

An integer type variable is declared to determine whether the record is
updated. For this purpose, the update SQL query is executed using the

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 426

Building a Remote Database Viewer • Chapter 9 427

ExecuteNonQuery() method of empCmd.The ExecuteNonQuery() method returns the
number of rows affected in the table.The number of affected rows is stored in
iRows. If update SQL query could not be executed (number of rows affected is
zero), an error message box is shown. If the number of rows stored in iRows is
greater than 1, which indicates successful update, the message “Record updated” is
displayed. Now, let’s discuss deletion of records. Figure 9.18 contains the code for
deleting a record.The complete source code for Figure 9.18 can be found on the
companion Solutions Web site for the book (www.syngress.com/solutions).

Figure 9.18 Code to Delete a Record

OleDbCommand empCmd = Conn.CreateCommand();

if (cboEmpCode.SelectedIndex==-1)

{

MessageBox.Show("No employee code selected.");

cboEmpCode.Focus();

return;

}

empCmd.CommandText = "delete emp where emp_code=" +

cboEmpCode.SelectedItem.ToString().Trim();

int iRows=empCmd.ExecuteNonQuery();

if (iRows>0)

{

cboEmpCode.Items.Remove(cboEmpCode.SelectedItem);

ClearForm();

MessageBox.Show("Record deleted");

}

The code snippet in Figure 9.18 comes into action when the Delete button
is clicked to delete an employee record.To delete a record, you first must select
an employee code from the combo box. If you don’t, the message,“No employee
code selected.” is shown, and focus is set on the combo box.

For deleting records, an SQL query is written that will delete all the
records of the employee code selected by the user from the combo box.To

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 427

428 Chapter 9 • Building a Remote Database Viewer

make sure the records have been deleted, the delete SQL query is executed
using the ExecuteNonQuery() method of empCmd. As mentioned earlier, this
method will return the number of rows affected in the table; the number of
rows affected being stored in variable iRows. If the number of rows affected in
the table is greater than zero, it means that all the records of the selected
employee code have been deleted from the form and that that employee code
has been removed from the combo box.We need to reset the controls on the
form as well, as shown in Figure 9.19.The complete source code for Figure
9.19 can be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 9.19 Function to Clear the Controls Placed on the Form

txtFirstName.Text="";

txtLastName.Text="";

txtDesignation.Text="";

txtSalary.Text="";

This coding belongs to a private function, which clears (i.e. hides, it does not
delete) all the records from various controls placed on the form.We also need to
validate the user input for txtSalary.

if (e.KeyChar==(char)8)

{

return;

}

if (e.KeyChar<'0' || e.KeyChar>'9')

{

e.Handled=true;

}

The validation goes within the KeyPress event of txtSalary.This coding
restricts the user from entering non-numeric data in the text box.The text box
accepts only Integer type values and allows the Backspace key to operate.

Converting Binary Data Using Base64
In the previous section, you learned how the client application accesses the
database residing on the server for processing data, and also about the role of

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 428

Building a Remote Database Viewer • Chapter 9 429

ADO.NET as a bridge between the client application and the server.The data
retrieved from the server by the client application was in the simplest form, being
just plain text accompanied by some integer values. In addition, while submitting
data back to the server, the client application was not allowed to send arbitrary
data such as binary data, nor was there any provision to handle such data. For
example, in the previous section, you were sending very common information
such as name, address, telephone number, salary, and so forth. However, your
application is not limited to sending such fundamental data.There is the provision
for handling binary data such as images.This section explains how the application
handles binary data.

Base64, a binary conversion algorithm, converts binary data into plain ASCII
text, which is subsequently stored as a nonsequential string of text.The data sent
using Base64 could be any arbitrary data, which is encoded into plain ASCII text
before transmitting over the network.The recipient application decodes this data,
then rebuilds it, and the content the data represents is displayed.

How Base64 Works
The encoding process represents 24-bit groups of input as output strings of four
encoded characters. Proceeding from left to right, a 24-bit input group is formed
by concatenating 3*8-bit input groups.These 24 bits are then treated as four
concatenated 6-bit groups, each of which is translated into a single digit in the
Base64 alphabet.When encoding a bit stream via Base64, the bit stream must pre-
sume to be ordered with the most significant bit first.That is, the first bit in the
stream will be the highest-order bit in the first 8-bit byte, the eighth bit will be
the lowest-order bit in the first 8-bit byte, and so on.Table 9.3 shows the Base64
matrix table.

Table 9.3 The Base64 Matrix

Value Char Value Char Value Char Value Char

0 A 16 Q 32 G 48 W
1 B 17 R 33 H 49 X
2 C 18 S 34 I 50 Y
3 D 19 T 35 J 51 Z
4 E 20 U 36 K 52 0
5 F 21 V 37 L 53 1

www.syngress.com

Continued

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 429

430 Chapter 9 • Building a Remote Database Viewer

Table 9.3 Continued

Value Char Value Char Value Char Value Char

6 G 22 W 38 M 54 2
7 H 23 X 39 N 55 3
8 I 24 Y 40 O 56 4
9 J 25 Z 41 P 57 5
10 K 26 A 42 Q 58 6
11 L 27 B 43 R 59 7
12 M 28 C 44 S 60 8
13 N 29 D 45 T 61 9
14 O 30 E 46 U 62 +
15 P 31 F 47 V 63 /

Let’s consider an example to understand the Base64 algorithm. Suppose
Application A sends an XML file containing an image to Application B over the
network.While sending the image file to Application B, the entire data of the file
(image) is encoded in plain ASCII text using Base64.The encoded image file
would appear as shown here:

<Image>

<bmp>Qk24QwAAAAAAALYDAAAoAAAAgAAAAIAAAAABAAgAAAAAAAAAAADDDgAAww4AAOAAAA

DgAAAA////AGNjawBKSnMAQkqcAEJKpQBKUnsASlqtAEJSpQBCUq0AOUqtAFJjrQBSY7UAS

lqlAGNrjABSY6UASlqcAEJatQBaY4QAWmulAFJjnABKWpQAQlKMAEpjtQBCWq0Aa3OMAGNr

hABSWnMAY3OlAFprnABSY5QASlqMAFJrtQBKY60AQlqlAGNznABac7UAUmutAEpjpQBaa5Q

AWnOtAFJrpQBCWpQASlJjAGt7nABjc5QASlp7A.................................

...

...

...

..

6OZo6OjmaOZo5mjmafn5+Nn42Nn42NZceNno2Ojp+Nn2afjWXHZY2fjo6OoGaOoI6gjqCOg

o4mkIODaL6+19fXm1y6n46OZo5mjmaOjo6Ojo7In42eZcdmjo6gjmafx2XHno2fjp6NjY6O

n43Hn2aOjp+fjZ6NnmGNjY2fjZ+Nn5/Ijo5myI6OoI6gjqCOjo6gn6BmoGbIjp+fZY2fjp+

Nx46CyJ+Nno2Nn46OjqCOZo5mjmaOji0/g72qvr6r3LeblsiNn46gjqCOoGagZqBmoGagZp

+NjZ6NZo6gjqBmn41lx2Wfjo1lx2XIjmaNjY2fZo6Ojo6fn5+Nn42fjZ+Nno1lx42Nno2Nj

Y2NjY2fZo6Ojo6Ojo5moI6fx42Cjp6NZo6Ogo6fZcdljZ+OZo6gjqCOjqCOP1Amj9qqvLzL

lmhcjWXHjY2OZo6Ojo6Ojo6Ojo6Ojo6fn42NjY1mjo6OoI2fx2WNn8hmjWWNn8hmn42NjY2

fZo6OjmaOZo5mjmbIZshmyGafn5+fn5+fjceNno2Nn46foI5mjo6ejY6OjZ6Nn46Ojo6OjZ

5hno2OjmaOjoKOjn9RhWfLvavVvb2W2KuOjcdlx2WNoGagjo6gZqBmoGagZqBmoJ+NZceNj

Z+OjoKOn5/HZcefjo2NZY2Nn42Nno2NjZ+Ojo6Ojo6Ojo6Ojo6Ojo6Ojo6Ojo6OjmaOn5+f

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 430

Building a Remote Database Viewer • Chapter 9 431

jY2NjqCOgp+NZY2On43HjWaOoGbOjY2ejY2fjo6gjo6gSlAmw729vb3a1bebZMifZp7HZce

Njo5mn46Ojo6Ojo6Ojo6Ojo6fn56Nno2fjo6OjmafjY2ejY2Nnsdlx56Nnsdlx2XHZcdlx2

XHZcdlx2XHZcdlx2XHZcdlx41mjo6fno2NZo6OjmbIjZ6Njmafno2Ojo6On56NnseNoEldj

ogtAAA=</bmp>

</Image>

When Application B receives this encoded data, it reconverts it into its native
format (bmp or jpeg format) for display.

Converting Binary Data into Base64 Format
Our first example of working with Base64 illustrates how binary data is con-
verted into plain ASCII text using Base64 and stored in a XML file.The second
example shows how the Base64 formatted data is read and how its contents are
displayed. In the implementation process of Base64, the binary data that we are
converting is an image.This image is converted into Base64 format and stored
under bmp node of the XML file.

Database Design
The structure of the table named as myImages is provided in Figure 9.20.This
table is used for storing the name of the image and the length of the image.

The form shown in Figure 9.21 acts like an interface for the user to save the
image in an XML file in Base64 format.The Save button placed on the form
performs this task.

www.syngress.com

Figure 9.20 Database Design of the myImages Table

Figure 9.21 Write XML Form

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 431

432 Chapter 9 • Building a Remote Database Viewer

Figure 9.22 Setting Up a Connection with the Database During Form Load

private void frmWriteXml_Load(object sender, System.EventArgs e)

{

Conn=new OleDbConnection("Provider=SQLOLEDB.1;Persist Security

Info=False;User ID=charul;pwd=charul;Initial Catalog=employee;Data

Source=developers");

try

{

Conn.Open();

}

catch(System.Data.OleDb.OleDbException ex)

{

MessageBox.Show(ex.ToString() + "Connection Fail.");

this.Close();

}

}

The code in Figure 9.22 (which can be found on the companion Solutions
Web site for the book (www.syngress.com/solutions) initiates the connection
process with the database.While connecting to the database, information such as
the names of the provider, user, database, data source and user password is passed
and stored in Con (an Object of OleDbConnection class).As usual, an attempt is
made to open the connection with the database. In case the attempt fails, an
exception is raised, the user is informed about the cause of the failure, and the
connection process is closed.

Once connection with the database is established, the form is ready to write
an XML file in binary format using the Base64 algorithm. Figure 9.23 shows
our Base64 file ready to go as an XML file.The complete source code for
Figure 9.23 can be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 9.23 Coding to Save the Base64 Encoded Image in an XML File

private void cmdSave_Click(object sender, System.EventArgs e)

{

if (txtImageName.Text.Trim()=="")

www.syngress.com

Continued

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 432

Building a Remote Database Viewer • Chapter 9 433

Figure 9.23 Continued

{

MessageBox.Show("Image name can' be empty");

txtImageName.Focus();

return;

}

if (txtXmlFile.Text.Trim()=="")

{

MessageBox.Show("Xml filename can' be empty");

txtXmlFile.Focus();

return;

}

OleDbDataAdapter dbCmd;

DataSet dtSet;

DataRowCollection dtRowColl;

dtSet=new DataSet();

dtSet.Tables.Add("myImages");

string strSql;

strSql="Select img from myImages where image_name='" +

txtImageName.Text.Trim() + "'";

dbCmd= new OleDbDataAdapter(strSql,Conn);

dbCmd.Fill(dtSet,"myImages");

dtRowColl=dtSet.Tables[0].Rows;

if (dtRowColl.Count==0)

{

MessageBox.Show("Image not found!");

return;

}

DataRow dRow=dtRowColl[0];

byte[] byteImage=(byte[])dRow[0];

XmlTextWriter xmlWrite= new XmlTextWriter("c:\\temp\\" +

txtXmlFile.Text,null);

www.syngress.com

Continued

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 433

434 Chapter 9 • Building a Remote Database Viewer

Figure 9.23 Continued

xmlWrite.Formatting = Formatting.Indented;

xmlWrite.Indentation= 5;

xmlWrite.Namespaces=false;

xmlWrite.WriteStartDocument();

xmlWrite.WriteStartElement("Image","");

try

{

xmlWrite.WriteStartElement("","bmp","");

xmlWrite.WriteBase64(byteImage,0,byteImage.Length);

xmlWrite.WriteEndElement();

}

catch(Exception ex)

{

MessageBox.Show (ex.ToString(),"Error!!");

return;

}

xmlWrite.WriteEndElement();

xmlWrite.WriteEndDocument();

xmlWrite.Flush();

xmlWrite.Close();

MessageBox.Show("Xml Copied...");

}

The code in Figure 9.23 works when the user clicks the Save button to save
the XML file in Base64 format. How the coding provides such a mechanism is
explained in the lines that follow. It is important to recall that if the user leaves
any field blank and clicks the Save button to trigger the process, an error message
is displayed.

An object dbCmd of OleDbDataAdapter class is created, which will take the
responsibility of handling the data returned by the database and forwarding
it to DataSet.To receive the data created by dbCmd, the dtSet object of the

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 434

Building a Remote Database Viewer • Chapter 9 435

DataSet class is created.Apart from these objects, another object dtRowColl of
DataRowCollection is created to represent the collection of rows present in the
memory resident table in dtSet. Once all the required objects have been created
in dtSet, the table residing on the database named myImages is added up and a
SQL query is written to retrieve the image from myImages table.To run this SQL
query, dbCmd is used. It will execute the SQL query on active connection. Once
the SQL query is executed, the dtSet is filled with the data of myImages table, and
from the collection of tables in dtSet, the first table is picked up and the collec-
tion of rows of this table is stored in dtRowColl.

If it is found that no rows are present in the collection of rows
(dtRowColl.Count==0), which indicates that no record is present, an error
message is shown to the user stating that no image is found.

On the other hand, if rows are present in the table, the first row from the col-
lection of rows is picked up and stored in object dRow of DataRow class, which
represents individual rows in the collection of rows.

Although there could be multiple tables and rows in data being handled by
the dataset, in this example there is only one table, which comprises only one
field.That is why we are choosing the first table and the first column.

Once the row has been received, its contents (image) are stored in byteImage
array of byte type, and an xmlWrite object of XmlTextWriter opens the Write
stream to write the length of the file on the specified location. Before writing the
document, its formatting, indentation, and so forth are set.The process of writing
the document avails the WriteStartDocument() method.

While writing the document, the first element of the document is set as
Image and the subelement is set as bmp.After setting the elements for writing the
XML file, the length of the file is written in binary format using the
WriteBase64() method of xmlWrite.This function will write the file in binary
format on the specified location mentioned when opening up the xmlWrite in
write stream.

After writing down the file, the subelement is closed. In case the file could
not be written using WriteBase64(), an exception is raised.

If the file is successfully copied, a message to this end appears. Finally, the ele-
ment Image is closed and all the resources captured by the process of writing the
binary data in the XML file are released using the Flush() method.Then, the
xmlWrite is closed to finish the process. Figure 9.24 shows the simple code to
close the form.The complete source code for Figure 9.24 can be found on the
companion Solutions Web site for the book (www.syngress.com/solutions).

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 435

436 Chapter 9 • Building a Remote Database Viewer

Figure 9.24 Code to Close the Form

private void cmdClose_Click(object sender, System.EventArgs e)

{

Conn.Close();

this.Close();

}

The previous code shows the Close function placed on the form.As soon as
the user clicks on it, the connection with the database closes down followed by
the closure of the form.

Reading Base64 Encoded Data from an XML File
This example illustrates how the Base64 encoded data, which is stored as an
XML file, is decoded and rebuilt to display the image. Figure 9.25 is a screenshot
of the form.

The form in Figure 9.25 takes the name of the image, which is stored in the
XML file.After entering the name of the XML file, when the user clicks the
View button, another form appears with the image set in the background
(Figure 9.26).The code in Figure 9.27 will help you better understand how it
works. Figure 9.26 shows our sample output, and Figure 9.27 lists the code that
we are going to use for viewing the image within the XML file.The complete
source code for Figure 9.27 can be found on the companion Solutions Web site
for the book (www.syngress.com/solutions).

www.syngress.com

Figure 9.25 View an XML Form

Figure 9.26 Form to View the Image

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 436

Building a Remote Database Viewer • Chapter 9 437

Figure 9.27 Code to View the Image Stored in the XML File

private void cmdView_Click(object sender, System.EventArgs e)

{

frmViewBitmap frmView=new frmViewBitmap();

frmView.SetXmlFileName("c:\\temp\\" + txtXmlFile.Text);

frmView.ShowDialog();

frmView=null;

}

The code snippet in Figure 9.27 works for the View button, which displays
the XML file entered by the user.To view the XML file entered by the user, a
new instance, frmView, of form frmViewBitmap is made. In the SetXmlFileName
property of frmView, the source destination of the XML files is mentioned, along
with the name of the XML file entered by the user. Finally, the form is displayed
using the ShowDialog method of frmView. Figure 9.28 lists the code to close the
form, Figure 9.29 lists the code to retrieve the XML file, and Figure 9.30 lists the
code for reading the image using Base64.The complete source code for Figures
9.28 through 9.30 can be found on the companion Solutions Web site for the
book (www.syngress.com/solutions).

Figure 9.28 Code to Close the Form

private void cmdClose_Click(object sender, System.EventArgs e)

{

this.Close();

}

Figure 9.29 Function to Retrieve the XML Filename

public void SetXmlFileName(string strXmlFile)

{

strXmlFileName=strXmlFile;

}

This public function holds the name of the XML file from which the con-
tent of the image will be read.

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 437

438 Chapter 9 • Building a Remote Database Viewer

Figure 9.30 Function to Read the Image from the XML File Using Base64

private void ViewBitmap_Load(object sender, System.EventArgs e)

{

XmlTextReader readXml= null;

try

{

readXml= new XmlTextReader(strXmlFileName);

int len = 64*1024; //reads upto 64 kb of data

byte[] byteBmp = new byte[len];

while(readXml.Read())

{

if(readXml.NodeType == XmlNodeType.Element)

{

if(readXml.LocalName.Equals("bmp"))

{

readXml.ReadBase64(byteBmp,0,len);

}

}

}

readXml.Close();

readXml= null;

FileStream streamFile=File.OpenWrite("c:\\temp\\temp.bmp");

streamFile.Write(byteBmp,0,byteBmp.Length);

streamFile.Close();

streamFile=null;

Image img;

img=System.Drawing.Bitmap.FromFile("c:\\temp\\temp.bmp");

this.BackgroundImage =img;

this.Width=img.Width;

www.syngress.com

Continued

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 438

Building a Remote Database Viewer • Chapter 9 439

Figure 9.30 Continued

this.Height=img.Height;

img=null;

}

catch(Exception ex)

{

MessageBox.Show(ex.ToString());

}

if(readXml!= null)

{

readXml.Close();

}

}

private void frmViewBitmap_Deactivate(object sender, System.EventArgs e)

{

this.BackgroundImage=null;

}

The previous code displays a private function that handles the task of reading
the contents of an XML file and converting its bmp node (which carries the
image) into binary format using the Base64 algorithm. Once the node is con-
verted into binary format, it is displayed to the user as a background image of the
form.To explain the encoding process of Base64, we will use the images stored in
the XML file under bmp node.The coding of the function is explained next.

This function can be split into three phases. First, the XML file is read and the
contents under the bmp node are retrieved and converted into binary format
using Base64 functionality. Second, this binary formatted data is written on some
file and saved on a particular destination. Finally, this binary data is displayed to
the user in the form of an image set in the background of the form.

First, an object readXML of XMLTextReader is made to read the file passed to
it as an argument.This readXML object can read data up to 64KB binary data. If

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 439

440 Chapter 9 • Building a Remote Database Viewer

the data read by it is less than 64KB, this function adjusts the data accordingly. If
the data exceeds 64KB, this function truncates the excess data.

Once the process of reading the XML file begins, it is verified that the element
type in the XML file is node, and the type of node is bmp. For determining whether
the node type is bmp, the Equals() method of readXML is used and node type bmp
is passed to it. Once Node and Element authentication are done, the file is read using
the ReadBase64() method.While reading the file, three arguments (byteBmp, 0 ,len)
are passed.According to these arguments, the content (image information) stored
under the bmp node is read and stored in the variable len of integer type.After
reading it and converting it into binary format, it is assigned to array byteBmp of
byte type. Once the length of the image file is gained, readXML is closed and set to
NULL to remove any junk memory left undetected. Up to this point, the file has
only been read and has yet to be displayed.

In order to display the file, it first needs to be stored somewhere. For this, an
object streamFile of FileStream class is made, which will open the Write stream to
write down the file on a specified location with some desired name (“c:\\temp\\
temp.bmp”).While writing the file on a specified location, the arguments
(byteBmp, 0, byteBmp.Length) are passed.According to these arguments, the com-
plete length stored in byteBmp array will be written from the starting point of the
file. Once the process of writing the file is finished, the stream is closed.

After the file has been read and stored, the task that remains is to display the
image. For this, an object img of Image type is made. In this img object, the men-
tioned image filename is copied as a bitmapped image and is set as the back-
ground image of the form.The height and width of the form are set equal to
those of the image so that the image fits correctly in the background of the
form.

If at any point in this process a failure occurs, an exception is raised, the user
is informed of the reason for the failure, and readXML is closed, since it should
not be left open after raising the exception.

Designing and Implementing
a Remote Database Viewer
Developing a business application for an enterprise can be a difficult task if it calls
for consistently accessing data from the database for a particular application.To
access the relational database for the client-server application, developers use the
ODBC. However, for the Web environment, a developer has to either develop his

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 440

Building a Remote Database Viewer • Chapter 9 441

own data access methods or use the application programming interfaces (APIs)
that are compatible with the new environment.A better alternative is to use
ADO with OLEDB, which works with almost all data sources for different envi-
ronments such as client-server,Web, and so forth.

ADO can be used to access data for applications.With this, by using any
application language or tool, you can develop front-end database clients or
objects at middle-tier level.ADO works as a single interface for accessing data for
developing 1-to-n tier client-server,Web-based, or any other database-driven
applications.

What Is a Remote Database?
Before we can look at a remote database, we need to understand the traditional
client-server architecture, usually called a LAN.A client logs on to the network
using a username and password (provided by the server administrator).The server
authenticates the username and password of the client and allows him to access
the resource of the network.The client can now access the data from the server
or send the data to the server using the connection-oriented protocol that sup-
ports the LAN.With this, permanent link has been established between the server
and the client.

Figure 9.31 schematically shows the client-server application accessing the
data store using ADO.The application and the user interface communicate
directly with the data store.Various applications use various LAN components to
provide the state.

This process fails on the Internet, as the HTTP protocol is used to access the
components of the Web, such as any HTML page, image, or database. HTTP is a
connectionless protocol that cannot identify the client for the server automati-
cally as in a LAN environment. In the case of the Web, the client sends the
request to the Web server using the HTTP protocol. Once the Web server sends

www.syngress.com

Figure 9.31 Client-Server Architecture

Client Side

GUI Application ADO.NET

Server Side

Data Provider Database

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 441

442 Chapter 9 • Building a Remote Database Viewer

the response in HTML format, the connection at the physical level discontinues.
To handle requests related to accessing the database, we require another interface
that can understand the SQL query and carry out the processing accordingly. In
this approach, the user interface moves over the client and the browser over the
Internet.We communicate with the database with a server-based application
using the HTTP protocol.The server-based application might be developed using
Active Server Pages, CGI, or an ISAPI application written in any language.
Figure 9.32 illustrates this concept.

Now we’ll take a quick look at how remote data access can extend the appli-
cation itself rather than just the interface across the Internet. In this case, the user
interface, application, and ADO move over the Internet at the client machine
node.ADO can communicate quite effectively with the database, even over the
Internet.This approach is similar to the client-server approach, except it uses the
Internet to communicate between the client and the server (Figure 9.33).

Advantages and Disadvantages of
Remote Data Access
Thus, we can extend the scope of the client-server approach of data management
to cover the Internet using remote data access.This approach helps to reduce the

www.syngress.com

Figure 9.32 Web-based Client-Server Architecture

Client Side

GUI Application ADO.NET

Server Side

Data Provider DatabaseInternet

Figure 9.33 Web-based Client-Server Architecture: Another Approach

Client Side

GUI Application ADO.NET

Server Side

Data Provider DatabaseInternet

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 442

Building a Remote Database Viewer • Chapter 9 443

network traffic and saves time as compared to the Web approach, wherein the
user interface passes each request to the server for processing. It lessens the
demand on the server and reduces processing time.

Consider an example in which a remote user is viewing a list of products
from a database, whose order he wants to change. In the traditional method of
using ADO with ASP or any other application on the server, the entire recordset
must be transferred each time over the Web, whereas with remote data access, the
recordset is cached on the client side, where it can be sorted, filtered, and viewed
locally. Moreover, no request goes to the server that creates network traffic.

However, the requirement of the application must always be considered. For
example, if the customer wants to search a single record from thousands of
records, it is better to use the traditional Web approach, which requires sending
only one record over the Web.With remote data access, you have to transfer the
complete recordset of thousands of records over the Web, which will consume
substantial hard disk space and more time.Thus, a judiciously planned mixture of
techniques, depending on the nature of the application, is often necessary.
Figure 9.34 explains the components required at both the client and the server
sides.The client is installed with the .NET Framework, and the server carries
SQL Server 2000. SQL Server 2000 is compatible and can return the result in
XML format to the client.The connection between the client and the server has
been established using the Internet.You can create the database on SQL Server
according to the requirement of the application.The table on SQL Server 2000
can be created using either SQL Enterprise Manager or SQL query analyzer.

To communicate between the client and server, you can either create the
DSN on the server or use the database name. Here we are using the name of the
database for communication.The connection between the client and server can

www.syngress.com

Figure 9.34 Design of the Remote Database Viewer

Client ServerInternet

1. .NET Framework
2. C# Applicaiton
3. ADO.NET

1. Data Source
2. SQL Server 2000

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 443

444 Chapter 9 • Building a Remote Database Viewer

be established by using the connection string object of ADO.NET.The connec-
tion string carries the following information:

■ IP address of the site

■ Database name

■ Username

■ Password

You can provide either the database name or the name of the DSN created at
the server in the connection string.

Figure 9.35 explains how the client communicates with the server to access
the database.The user can view the result of the query, as well as edit the database.

The client sends the SQL query for accessing the database to the server using
the cmdobject of ADO.NET. For example, if the user wants to access the list of
authors in the Pubs database of the SQL server, an SQL query can be passed
from the client to “select authors from pub” in the cmdobject of ADO.NET.

This SQL query is passed to SQL Server 2000 for processing, and the SQL
server generates the result in XML format.This result is sent back to the client
in either a data set or data reader. If the client supports the XML, the result can
be viewed without parsing; otherwise, the client requires an XML parser to view
the result.

The data set or data reader can be used to sort, filter, or view the result by the
user. For example, if the user wants to change the order of the result set, the
client is not required to pass the SQL query again to the server.The same can be

www.syngress.com

Figure 9.35 Implementation of the Remote Database Viewer

1

2
3

4

Client Server

1. Client sends the SQL query to the server.
2. SQL Server processes the query and generates the result in XML format.
3. Server sends back the result to the client, either in data set or data reader.
4. User can use this object to view, sort, or filter the records.

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 444

Building a Remote Database Viewer • Chapter 9 445

sorted by using the object stored at the client side, which saves time and reduces
network traffic.

Implementing a Simple Remote Database Viewer
The first step toward implementing a remote database viewer is to initiate the con-
nection with the database residing on the server.As mentioned earlier, while estab-
lishing connection with the database, information such as the IP address of the data
source, username, and password, and name of the database must be provided. Other
important information that needs to be supplied is the name of the provider.The
name of the provider tells the type of data source. In simple words, we can say that
the provider tells whether the data source is SQL Server, Oracle, or Access.All these
information is passed in the object of the OleDbConnection class, which handles the
task of establishing and opening the connection with the database.The following
code snippet will help you to better understand the concept.

Conn = new OleDbConnection("Provider=SQLOLEDB.1;Persist Security

Info=False;User ID=charul;pwd=charul;Initial Catalog=employee;Data

Source=192.168.1.100");

try

{

Conn.Open();

}

catch(System.Data.OleDb.OleDbException ex)

{

MessageBox.Show(ex.ToString() + "Connection Fail.");

this.Close();

return;

}

With reference to the preceding code, in the object Conn of OleDbConnection
class, all the required information is passed and an attempt is made to open the
connection to the database. If the connection cannot be established, an exception
is raised, and the message “Connection Failed” appears.

Once the connection with the database is established, you need to send a
request to the data source to view the data of a particular table. For this, you
need to write a SQL query carrying the desired request and execute it.The
OleDbDataAdapter class will help you in carrying the SQL query written by
you, executing it and handling the data returned by the data source.

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 445

446 Chapter 9 • Building a Remote Database Viewer

OleDbDataAdapter empCmd = new OleDbDataAdapter("Select * from emp",Conn);

In the coding for executing the SQL that follows, you will see that all the
records of emp table are fetched and assigned to OleDbDataAdapter.The data
returned by the data source is an XML file representing the records of table in
textual format as depicted in the following code snippet.

<NewDataSet>

<emp>

<emp_code>4</emp_code>

<emp_firstname>Paul</emp_firstname>

<emp_lastname>Jeffcoat</emp_lastname>

<designation>Sales Manager</designation>

<salary>12000</salary>

</emp>

<emp>

<emp_code>501</emp_code>

<emp_firstname>John</emp_firstname>

<emp_lastname>Smith</emp_lastname>

<designation>Sr. Manager</designation>

<salary>20000</salary>

</emp>

<emp>

<emp_code>102</emp_code>

<emp_firstname>Benjamin</emp_firstname>

<emp_lastname>Egan</emp_lastname>

<designation>Programmer</designation>

<salary>12000</salary>

</emp>

</NewDataSet>

This XML file is handed over to the DataSet. Once the data reaches the
DataSet, all the rows are picked up and stored in DataRowCollection, which repre-
sents all the rows in the DataSet.

DataSet ds=new DataSet();

try

{

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 446

Building a Remote Database Viewer • Chapter 9 447

empCmd.Fill(ds,"emp");

}

catch(Exception ex)

{

MessageBox.Show(ex.ToString());

}

DataRowCollection drCol=ds.Tables[0].Rows;

Now that we have procured the records (rows) of the table, the only task that
remains is to display the records in some GUI-based format so that the records
can be viewed and easily understood.The list box can be used to display the col-
lection of rows.

foreach (DataRow dr in drCol)

{

ListViewItem lstItem=new ListViewItem();

lstItem.Text=dr[1].ToString().Trim();

lstItem.SubItems.Add(dr[2].ToString().Trim());

lstItem.SubItems.Add(dr[3].ToString().Trim());

lstItem.SubItems.Add(dr[4].ToString().Trim());

lstEmpView.Items.Add(lstItem);

}

After you execute all the code snippets listed for implementing the Remote
Database Viewer, the final output would appear as shown in Figure 9.36.

www.syngress.com

Figure 9.36 Output of the Remote Database Viewer Application

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 447

448 Chapter 9 • Building a Remote Database Viewer

Summary
In this chapter, we saw how XML can be used for communicating between the
.NET application and the database server by virtue of the ADO.NET architec-
ture.We discussed the designing and the implementation of a Remote Database
Viewer, and explored the process for retrieving binary format data that is stored
in a database and writing them in an XML file in Base64 format.

We learned how, through the ADO.NET architecture, the client retrieves
a copy of data from the server, and after some modification, sends the data to
the server using ADO.NET. Once connection between the client and the
server is established, this connection works like a bridge between them to
help retrieve and send data between the client and server. Sample programs
on the ADO.NET emphasized the connectionless architecture on which
ADO.NET is built.

The contents of this chapter should have equipped you with enough knowl-
edge to appreciate fully the use of ADO.NET with XML in the .NET environ-
ment, and design and implement our example, the Remote Database Viewer.

Solutions Fast Track
Understanding ADO.NET

ADO.NET is .NET’s new ADO architecture.

ADO.NET relies on XML to provide communication between tiers,
without requiring that proprietary information be exchanged.

ADO.NET can support different types of data, including XML and
database.

Accessing Data from a Database Using ADO.NET
ADO.NET helps to simplify the communication process for data
retrieval between a client application and a database.

DataSet is a miniature relational database in which the data is kept in
memory.

DataReader holds a stream of data from the database for a query operation.

DataReader is like forward-only or read-only RecordSet.

The main objects in ADO.NET are Connection, DataReader, and
DataAdapter.

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 448

Building a Remote Database Viewer • Chapter 9 449

In the ADO.Net architecture, XML is the key to remoting.

Converting Binary Data Using Base64
In the Base64 conversion, all the data is converted into the 64-character
set range from A to Z, a to z, 0 to 9, /, + .

System.Xml namespace provides the libraries to convert the data into
Base64 format.

Designing and Implementing a Simple Remote
Database Viewer

Remote data access allows the client to connect to a database over the
Internet, thus reducing network usage.

Previous implementations of remote data access failed or did not provide
adequate protection, when creating the connection over the Internet
because of the HTTP protocol.

ADO.NET is able to circumvent many of the issues related to HTTP.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What is a DataSet?

A: A DataSet is a miniature relational database in which the data is kept in
memory for accessing and updating through the collection of objects pro-
vided by it.Thus, DataSet provides a copy of data for processing on the client
machines. In this case, the client would be something such as a client work-
station, a Web server, or a remote Internet client.

Q: Which one is faster, the DataSet or the DataReader?

A: When a large amount of data is being retrieved from the database, the
DataReader is faster because it provides access to data one row at a time.
However, in retrieving small amounts of data, DataSet might be faster.

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 449

450 Chapter 9 • Building a Remote Database Viewer

Q: Does,ADO.NET support remote data access?

A: Yes,ADO.Net provides support for remote data access, whether your database
is on the local computer, a Web server, or a remote Internet client.

Q: When I work on the copy of data on the client machine, which I receive
from the server through the ADO.NET, how is the data updated on the
server?

A: To update the data on the server, you would have to explicitly update the
data on the server through the connection to the database.You have to call
the CommandUpdate function of the DataSet to update the data on the server
database.

www.syngress.com

155_xml_net_pd_C09.qk 3/7/02 11:57 AM Page 450

Building a
Wholesale Catalog

Solutions in this chapter:

■ Basic Design Considerations

■ Coding the Project

■ XML Packages Design

■ Customer Interface Design

■ Business and Web Services

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 10

451

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 451

452 Chapter 10 • Building a Wholesale Catalog

Introduction
You can read many books on XML and .NET, but the only way you can really
master them is to do it yourself. Nevertheless, we want to finish this book with
real-life applications that incorporate (nearly) everything we covered in this book.

The subject of this chapter is the creation of a business-to-business, or a supply-
chain, application that we have named “Wholesale Catalog.”We not only want to
show you an application using XML, but also an application from which you can
derive knowledge and extend to build a full-blown B2B application yourself.

The Wholesale Catalog will deal with a number of issues you face when con-
necting different systems together, with the exception of using XML as the
encoding format of information. In short, the Wholesale Catalog is kept synchro-
nized online with the catalog of different suppliers. Each supplier has its own
format of XML documents that needs to be unified for the Wholesale Catalog.
What is a wholesaler without customers? Therefore, it will have a client side too
that can search and browse through the catalog. Even though we described the
catalog concept in a few lines, this chapter will show that it is more complex;
however, remember that no e-commerce site works without a well-designed and
implemented online catalog. Using XML, the .NET Framework and Web
Services, you can do a great job achieving this.

Agora Markets Inc. is a startup e-business. Briefly, it wishes to mimic the old-
fashioned Town markets, or Farmers markets in virtual form. Sellers in a tradi-
tional market all have separate stalls to display their products, and shoppers can
browse through the various stalls, pinch and prod the various products, and com-
pare prices. In the virtual market Agora Markets Inc., suppliers will replace stall-
holders.Agora Markets Inc. will maintain a catalog of all the suppliers’ products,
which customers can browse either by supplier or by product type. Shoppers can
select items from this catalog, add items to a standard shopping cart, and pay for
their purchases.Agora markets will manage all details such as security and credit
card billing.They will notify the suppliers of the orders, and the suppliers will
only be responsible for shipping their products.Agora Markets Inc. takes a small
percentage of each sale as its commission.

Agora Markets has asked Netforce to design and execute its operation.
Central to the entire operation is the maintenance of an up-to-date catalog with
all the goods of the suppliers. Because Agora Markets Inc. wishes to compete not
only on the excellence of its product, but also on price, it is essential to find an
efficient way to update the catalog. Initial discussions make it clear that the best
way to do this is to allow the supplier to electronically update the central catalog.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 452

www.syngress.com

This chapter outlines the design process and code that results in a catalog that can
be updated by the individual suppliers.

Before delving into the nitty-gritty of the design process, some philosophical
issues need to be addressed:

■ How is data best stored? As XML or in a RDBMS?

■ What protocols and pathways will be used to pass data to the catalog
(e.g.,WAN versus Internet, HTTP)?

■ What language will be used (e.g., EDI versus XML)?

■ What vocabulary will be used?

Basic Design Considerations
This is a book on XML, so it might be natural to expect that everything between
its covers would be accomplished using XML—whether this is the best solution or
not. However, remembering the well-known adages “When the only tool you have
is a hammer, everything tends to look like a nail”, or “Just because this is the only
tool you know how to use does not necessarily mean it is the best tool for the job,”
we are not going to follow that course.This chapter is about designing an e-busi-
ness application using business principles. Thus, we are not going to take a “knee-
jerk” reaction to XML; we are going to use whatever tool is best for the project.

Storage: XML versus Traditional Databases
Both XML and a traditional database are great for storing information. Databases
are great for storing highly structured information that is going to be kept in a
central store. Databases have been optimized over the years for speed of access,
frequency of access, and ease of searching.There are numerous RDBMS systems
on the market such as DB2, Oracle, and SQL Server, all of which give out-
standing performance. However, they tend to be expensive and have a high over-
head, both financially and in the amount of maintenance required.

NOTE

Not familiar with RDBMS? Don’t be upset about it if you aren’t—not
even the people who work with RDBMS know they even have one!
RDBMS, the acronym for Relational DataBase Management System, is an
application that allows you to manage a database and allows for rela-
tional database structure.

Building a Wholesale Catalog • Chapter 10 453

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 453

454 Chapter 10 • Building a Wholesale Catalog

XML, on the other hand, is well suited to storing irregular information, and
information that is going to be kept in a distributed environment.Although
XML data stores can be searched almost as easily as a traditional database, the
speed of search is considerably slower.The financial overheads of XML are much
less than for a traditional database. XML then would appear to be best suited to
storing irregular data, to storing data that is going to be maintained in a dis-
tributed environment, and where access and searches are going to be relatively
infrequent. Such criteria describe many scenarios such as document storage, and
medical, legal, and government records.

A health system is an example of a place that can profitably use both methods
of storage. Nowadays, most health systems consist of a conglomeration of hospitals
and clinics.The nonmedical details of the patient, such as name, age, clinic number,
social security number, and so forth, is highly structured data with relatively fixed
fields, and is information that is going to be accessed on a regular basis, by all the
departments in the health system.These details are best kept in a traditional
database. On the other hand, the clinical notes on the patient are highly unstruc-
tured data that is usually kept in the various doctors’ locations; in other words, in a
distributed environment. It is also accessed infrequently, usually when a patient
comes to visit.These notes can be profitably kept in an XML data store.

Information Transport Methods
Electronic document interchange (EDI) is traditionally carried out over dedicated
value-added networks (VANs) that link partner to partner.This provides tremen-
dous security for the transferred material. However, there are several drawbacks.
There must be a dedicated link for each partner, and that is expensive. Using
third-party VANs, the charge is usually by the amount of information (bytes)
being transferred, so the more information that is pushed through the system, the
greater the cost.This factor was one of the design considerations for the terseness
of such EDI protocols as the ASC X12 EDI transmission structure (the American
Standards group concerned with EDI).

Access to the Internet, on the other hand, is “free.” Once a link has been made,
there is no extra cost for the amount of information that will be sent. Furthermore,
there are no dedicated connections, so anyone who can afford the price of a linkup
can potentially become a player—In other words, just about everyone. However,
the problem with the Internet, as we all know, is security.The cost of securing our
information so it cannot be tampered with can be significant.As with any business
decision, we need to weigh the cost of security against the need.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 454

Building a Wholesale Catalog • Chapter 10 455

Those wishing to get all the advantages of the Internet while maintaining
security should consider deploying Advanced Network eXchange (ANX).This is
a distributed virtual private networking (VPN) that uses HTTP protocols that
provides an industrial-strength foundation for doing e-business.The cost of
linking to the ANX net is only marginally more than linking to the Internet, but
because all users are registered and must sign an agreement, the majority of casual
and malicious hackers are excluded, and because they would be registered, the is
a 99.44-percent guarantee that they will be caught, or at least be traced to their
workplace.

XML and EDI
When it comes to encoding information for transfer in an e-business application,
there are theoretically many ways we could do it, but there are only two ways
with any solid credentials, XML and EDI.

www.syngress.com

EDI
EDI allows structured data to be sent electronically. In XML, data is
structured using tags. In EDI, the data is structured using line breaks
and text delimiters. The way in which the information is ordered is also
important. This information is packed and unpacked at each end by
special machines called translators (compared to XML processors). EDI
requires that both trading partners follow exactly the same protocol,
and to this end, there are a number of standard ways of encoding data
(compared to XML schema). The American Standards Association puts
its seal of approval on various standards maintained by various groups
and consortia (the ASC x12 standards). Other trade groups also main-
tain separate protocols (the health industry uses HL7—Health Level 7—
protocols).

Those wishing to find out more about EDI are directed to Electronic
Commerce with EDI by Robert L. Sullivan, which is privately published
but available through www.Amazon.com. It is by far and away the best
short account of the subject.

Developing & Deploying…

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 455

456 Chapter 10 • Building a Wholesale Catalog

EDI has been around for a long time, and has revolutionized many industries
and their industrial practices.The major drawback to EDI is the large expense of
becoming a player.Any business thinking of deploying EDI is looking at between
$50,000 to $250,000 in startup costs, and this is just too much for most small and
medium-sized businesses. On the other hand, most businesses have all that is
needed to use XML right from the start.Although there are inevitably some
entry costs, using XML for B2B information interchange is considerably less
expensive.A supplier on an XML-based system need only acquire or build a
simple application to become a player. (We will be building such a simple appli-
cation later in this chapter.) However, XML is much more verbose than EDI. By
some estimates, an XML B2B exchange requires 5 to 10 times as many bytes as
EDI does.This is an important consideration if one is using a VAN where cost is
proportional to the amount of data passed. However, with ANX and the Internet,
the cost is fixed, and the same whether 1 or 1000GB are passed.

XML Vocabularies
One problem with XML is that it is just too easy to design a custom language,
and so languages and vocabularies tend to multiply.Although organizations such
as OASIS (www.oasis-open.org) are attempting to bring standardization to XML
languages, XML is still a long way from EDI with its several standard, and stan-
dardized, vocabularies all overseen by the American Standards Institute (ASC X12
standards).With an XML B2B transaction, it is often necessary to design one’s
own language.The problem is that many other players in similar fields will have
done the same thing, and they might not be willing to switch.This means that
there must be a way to translate from language to another. Luckily, there is:
XSLT, and furthermore,ASP.NET has great support for XSLT.

Implementation of the Agora Markets Catalog
Here are the preliminary decisions and rationalization for the implementations in
our Agora Markets Catalog.

Data Store
The information in our catalog will be regular and structured.We are also
expecting a heavy volume of traffic.We will therefore store all of our information
in a relational database.We will use Access to prototype and develop the project,
and will migrate to a SQL server at a later date.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 456

Building a Wholesale Catalog • Chapter 10 457

Transport Protocols
Although we anticipate we will be trading with large suppliers, we also expect a
large number of small and medium-sized suppliers, and have no wish to cut them
out of the market. For this reason, we will not use EDI, but will use an XML-
based system instead.

We will not be transferring state secrets, so the ordinary level of security pro-
vided by the Internet should suffice. In addition, we would like to encourage
“casual” suppliers, and we do not want the (minimal) inconvenience of hooking
up to an ANX link to be a bar to entry. For this reason, we will be using XML-
based protocols transferred by HTTP over the Internet.

Vocabularies
We could find no suitable XML vocabulary registered with OASIS or elsewhere,
so we will design our own XML vocabulary.A registry of schemas and DTDs is
maintained by OASIS and XML-ORG at www.xml.org/xml/registry.jsp.

Requirements
Concurrent with making the “philosophical” decisions, the first step in any design
project is a discussion with the client to thoroughly understand their business
rules, and to draw up a list of their needs and their requirements.The require-
ments will then be expanded and modified by the programmers to produce a fea-
sible and practical list.After discussion with Agora Markets, and discussion with

www.syngress.com

ASP.NET and SQL Server
Both of these products are Microsoft technologies, so it should come as
no surprise that ASP.NET will obtain optimal function with SQL Server.
Indeed, ASP.NET allots special Connection and Command objects to SQL
Server that are much more efficient than their OleDB equivalents are. We
will see how to migrate our code to take advantage of these objects at
the end of the chapter. Microsoft claims that using the specialized
objects can speed processing by up to a factor of 10.

Developing & Deploying…

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 457

458 Chapter 10 • Building a Wholesale Catalog

and analysis by Netforce programmers, the following lists of requirements for the
project are drawn up:

■ The catalog data must be held in a readily accessible data store that can
be easily updated and searched.

■ The catalog must be capable of handling large volumes of requests.

■ There must be provision for e-business to e-business updating of the
catalog.

■ Communication between e-businesses will use XML.

■ Information entered into the catalog must be data typed.

■ The catalog must have provisions for information about sales, etc.

■ The catalog must be easily searchable.

■ The catalog must be accessible and searchable as a Web page.

■ The catalog must be accessible to business services.

■ ASP.NET will be used whenever possible.

Analysis
We will keep this to a minimum here; however, you should remember that in any
successful project, the precoding analysis is just as important, if not more impor-
tant, than the coding itself.

The single most important part of the analysis is to understand the business
processes involved. If the programming team does not understand what needs to
be accomplished, then all the most sophisticated modeling techniques and pro-
gramming will produce a useless application.Therefore, before writing a single
line of code, a diagram should be made of all the required parts of the applica-
tion, what each part will accomplish, and how they will fit together. Notes
should also be made as to what part of the application will carry out what func-
tion, and how information will be passed from one part of the application to
another.

Data Store
We have already decided that we will use a traditional database as our data store.
Often, the decision as to which database is to be used has been made for us by
what is already installed! For our case study, we will use SQL Server; SQL Server

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 458

Building a Wholesale Catalog • Chapter 10 459

is optimized for use with ASP.NET, is secure, and is easily capable of handling the
large volume of requests we anticipate.

Catalog Updating
Agora Markets Inc. will be operating on very low margins, and so will want to
keep any human handling of data to a minimum. Most of the larger suppliers will
also want to do this, so there must be a way for completely automatic upgrading
of the database. However, smaller suppliers might want to manually enter there
products into the catalog, and provision must be made for these people by sup-
plying a Web form of some kind that will integrate with the catalog database.

Business-to-Business E-Communications
Two entities that agree to do business with each other electronically are known
as trading partners.When partners agree to communicate, they must agree on sev-
eral protocols, one of which is the method of message transmission. In a typical
exchange, one trading partner will initiate a sequence of communication:

■ Partner A:Are you there and ready to receive a message?

■ Partner B: I am here and ready to receive a message.

■ Partner A: Here is my message…

■ Partner B: I have received your message (receipt acknowledgement).

■ (Partner B processes the message.)

■ Partner B: (If applicable) I have processed your message (process
acknowledgment).

■ Partner B:This is the message I received, and I have processed it success-
fully, OR…

■ Partner B:This is the message I received, and there was a fatal error (i.e.,
no processing was performed) OR…

■ Partner B:This is the message I received, and there were some errors
(success or error acknowledgment).

Depending on the nature of the communication, Partner B might wrap up all
the acknowledgments in one packet, or it might send separate acknowledgments.
In every case, it is important that it states what message it is replying to.The most
common way a reply is sent is to either send a copy of Partner A’s message back

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 459

460 Chapter 10 • Building a Wholesale Catalog

with an acknowledgment, or send back a unique ID that identifies the message.
When Partner A receives the acknowledgment, it will use its own internal process
to react to or record this information in any way that Partner A finds appropriate.

This process is illustrated graphically in Figure 10.1.

In the case of our wholesale catalog, we are going to use the HTTP protocol
on the Internet to carry out the transaction.This will automatically take care of
the first part of the transaction.The order in this case will be an order to update
the wholesale catalog,Agora Markets (Partner B) will use an ASP.NET page to
process the order, and also to generate the acknowledgments, and all the
acknowledgments will be sent back simultaneously.

The order will be in the form of an XML file, hopefully in an agreed-upon
standard format, and the acknowledgments will also be in the form of a standard
XML file.

The XML Files
XML is, of course, a meta-language, which is used to build a “language,” which is
a set of tags defined by both partners and validated via a mutually agreed-upon
schema.

In any communication, it is important that the communicants understand
one another, and that when they say “Apples,” they both mean the same thing.

www.syngress.com

Figure 10.1 “Partner” Communication Process

Are You There?

I Am Here

Here's My Order
Order Recieved

Order Processed

Success or
Failure

Process
Reply

Training
Partner A

Training
Partner B

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 460

Building a Wholesale Catalog • Chapter 10 461

As an analogy, if two persons of the same culture and language communicate,
there is usually not a problem. If people of different languages communicate,
then they must either learn each other’s language, or employ a translator. Note,
however, that some of the more subtle miscommunications occur when two
people think they understand one another.These types of miscommunication
can be eliminated in this application if a common XML format is agreed upon.
However, it must be appreciated that potential trading partners might have
invested a lot of time and energy in building electronic exchange vocabularies in
XML or structured text (for EDI communications) format, so if Agora Markets
wants them aboard, then they must be prepared to translate the foreign formats
into the one that they employ. Luckily, in most cases, this can be accomplished
using XSLT. It should be noted that XSLT can potentially handle formatted text
as easily as it can handle XML. Figure 10.2 shows an example of using XSLT to
transform XML.

Data Typing Entries
Before any information is entered into our database, we need to data type it to
ensure that it is correct. Basically, we have two choices: we can let the database do
it, or we can do it prior to submission to the database. In ASP3, the second
course of action was preferable for a number of reasons:

■ Suitable error messages could be designed.

■ Some data types (such as an e-mail address, a zip code, or a URL) are
not recognized by databases.

■ It is always better to catch an error sooner rather than later.

www.syngress.com

Figure 10.2 Simple Transforms with XSLT

Foreign XML XSLT File

Structured Text XSLT File

<!DOCTYPE
Agoraxml

process.aspx

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 461

462 Chapter 10 • Building a Wholesale Catalog

Often, error trapping of database messages required quite complex and
tedious coding. However, now that ASP.NET supports the Try/Catch, error trap-
ping of data mismatches at the DB level becomes much easier for us, and we will
make liberal use of this triad in our code.

If we wanted to use custom data types, we could use either “hand-rolled”
functions or rely on XML schemas to do the data typing.We will be using stan-
dard data types in the application that we will be creating.

Catalog
Let’s look at the requirements for our catalog:

■ The catalog must have provisions for information about sales.

■ The catalog must be easily searchable.

■ The catalog must be accessible and searchable as a Web page.

■ The catalog must be accessible to business services.

Because we are using a database, we just have to make sure that our interfaces
use the power of SQL to efficiently sort the catalog. Luckily, the database pro-
grammers have done most of the work of optimization for us already. Since we
are also using ASP.NET, providing business services is, as we shall see, extremely
simple after we have done the initial catalog design.A full discussion of ASP.NET
can be found in The ASP.NET Web Developer’s Guide from Syngress Publishing
(ISBN: 1-928994-51-2).

Coding the Project
The coding process for our project falls neatly into the following five
categories:

■ Database design

■ XML packages design

■ Supplier interface and B2B design

■ Customer interface design

■ Business services

We will look at each of these in more depth in the following sections.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 462

Building a Wholesale Catalog • Chapter 10 463

Database Design
A basic understanding of relational database design will tell you that database
design is just a case of deciding what information you want to store, designing
the records to store this information, and then normalizing the database. If only it
were so simple; usually, the design of the database will change radically in the first
week or so of the project as programmers realize that their original design is seri-
ously flawed! The trick is to get the database design sorted out before we start
writing reams of code to analyze or manipulate the data.

Remember, databases are essentially just repositories of information, and there
are two broad uses to which we put that information:

■ We store and record transactions of some kind.

■ We analyze data that has been stored in the databases somehow.

The overwhelming majority of databases are of the transaction type, and the
design of this database aims at eliminating all redundancy of data for both perfor-
mance and data integrity reasons.Analytical databases are in many respects the
polar opposite to this; they are mainly used for analyzing data that has been
stored, so there is a lot of reading of data and very little writing.We will take a
closer look at these.

OLTP versus OLAP
Online Transaction Processing (OLTP) is concerned with the integrity of the
data stored in the database. It is not a good idea to have a name stored in two
separate tables in the database. If we do this, we run the risk of changing the
name in one location, and not changing it in the other.This will lead to a con-
tradiction in our database. Contradicting databases are said to lack integrity.The
way to prevent this from happening is to normalize the database; most databases
are normalized to at least the third normal form.

Online Analytical Processing (OLAP), on the other hand, is concerned with
analysis of the stored data.With OLAP, it is good practice to have derived data in
the database, as this speeds up analysis of the data considerably.Although the cat-
alog part of our DB could be considered an OLAP DB, we will not be carrying
out any complex analyses, which allows us to basically have a normalized
database.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 463

464 Chapter 10 • Building a Wholesale Catalog

www.syngress.com

Normalization
We have designed a database for you. If you are not familiar with
database design and need to be able to design a database, then it is sug-
gested that you consult any of the various books written on this subject.

For those who are rusty about their database design, here is a quick
“aide memoir”:

There are theoretically six levels of normalization (seven if you
include the Boyce-Codd level), but rarely is normalization carried past
the third level outside academic circles.

The first normal form is all about eliminating repeating instances of
data and ensuring that the data is atomic. In other words, the data is
independent and self-contained.

The second and third normal forms depend on The Primary Keys in
the records. In a second-level normalized DB, each column in a record
must depend on the whole primary key. In the third normal form, no
column can have a dependency on anything other than the primary key,
and there must be no derived data.

However, consider the following fragments from two different SQL
queries:

WHERE Qty * UnitPrice > 100

WHERE TotalPrice >100

The second query requires no computation and will run much faster
than the first, especially in large query sets. If we were dealing with
complex analyses, as we often are in OLAP procedures, we could prob-
ably eliminate several joins and computations, and so the speed of pro-
cessing can become very significant in large datasets.

Note that SQL Server 7.0 and later now supports computed
columns. These are columns that are derived from other columns, and
are built automatically when data is entered into the record. This means
that computing is done at the input side, rather than the output side, so
again speeding OLAP services. The bottom line is that OLAP services
should always be benchmarked for speed of delivery.

Developing & Deploying…

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 464

Building a Wholesale Catalog • Chapter 10 465

XML Packages Design
The XML package that will be used to pass information from the supplier to the
catalog needs to be designed with four thoughts in mind:

■ It needs to contain all the essential information.

■ It should lack ambiguity.

■ It should be relatively easy to parse.

■ It should as far as possible lack verbosity in order to conserve bandwidth.

As we are expecting to have to convert other document types to our docu-
ment type, we should not overdo the granularity.With XSLT, it is always rela-
tively easy to go from “more granular” to “less granular.”

In our case, we want to be able to fill in all the fields of the table in our
database, and we want the form to be able to carry information about sales, spe-
cial offers, and wholesale deals.This information can be carried either on
attributes or as element content.Which should we use?

The argument of “attribute” versus “element” is a longstanding one with
really no clear answer, but here are some points to bear in mind:

■ Parsing attributes usually take fewer resources than elements do (a tree
does not have to be built).

■ Quotes, both double and single, can be a problem in attribute values. If
you expect your values to contain quotes, then place that value in an
element.This is why we will put the product description as element
content in our application.

■ If you are using a DTD as your schema (as we are), you can make an
attribute a #REQUIRED attribute.

■ When the parser makes lists, attribute lists are unordered. If your code is
going to use relationships (e.g., firstChild, etc.), then don’t use attributes.

■ In ASP.NET, if we call for an attribute that is not there, an exception
will be thrown. (This is not so in ASP with its "getAttribute" DOM
method.) There is also no easy way to check to see whether the attribute
is present.Therefore, if information is optional and not required, it is best
to put it in an element.Although calling for an element that is not there

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 465

466 Chapter 10 • Building a Wholesale Catalog

will still cause an exception, there are easy ways to test for the
presence of an element or its content before calling it (hasChildren,
getElementsByTagName).

The design of the XML package file is quite simple.The supplier element is
used to pass login information, and the file can contain several batches of product
details. Each batch will contain product details requiring the same type of action.
They can be updated, inserted (new products), or deleted.

All the information about the products is carried on #REQUIRED
attributes, except the description, which is put in an obligatory element. Sale
and wholesale information is put in separate optional elements.

Figure 10.3 displays a typical XML file that will be passed to our database.
This file can be found on the complimentary Solutions Web site
(www.syngress.com/solutions) for readers of this book as filename bata2.xml.

Figure 10.3 bata2.xml

<!DOCTYPE catalog SYSTEM 'catalog.dtd'>

<catalog>

<supplier name="Bata Shoes" uid="bata" pw="bataboy"/>

<batch batch_type="cat_new">

<product prod_code="shoesformalblack1" prod_type="shoes"

prod_name="Formal Black Shoes" prod_class="footware" prod_price="49.95"

saleinfo="true" wholesaleinfo="true"

prod_imgurl="www.hypermedic.com/mygif.gif">

<description>

Bata's best black calf leather shoes for a formal occasion

</description>

<imageurl src="http://www.bata.com" height="300" width="800"

desc="Bata's best black formal calf leather"/>

<saleinfo sale_price="49.95" sale_date1="10/1/2001"

sale_date2="12/25/2001" conditions="While supplies last" promoblurb="A

once in a lifetime opportunity" />

<wholesaleinfo ws_price="480" ws_batch="12" />

</product>

</batch>

</catalog>

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 466

Building a Wholesale Catalog • Chapter 10 467

Note that when this is sent we will want the DOCTYPE declaration
removed from the file, because we will have to map it from a virtual path to a
relative path, and we can only do this on the server.

Figure 10.4 displays the DTD for the code shown in Figure 10.3.This code can
be found on the Solutions Web site (www.syngress.com/solutions) for this book.

Figure 10.4 Catalog.dtd

<!ELEMENT catalog (supplier,batch+) >

<!ELEMENT supplier EMPTY >

<!ATTLIST supplier

supp_name CDATA #IMPLIED

uid CDATA #REQUIRED

pw CDATA #REQUIRED

>

<!ELEMENT batch (product+) >

<!ATTLIST batch

batch_type (cat_new|cat_update|cat_delete) "cat_update"

>

<!ELEMENT product (description,saleinfo?,wholesaleinfo?) >

<!ATTLIST product

prod_code CDATA #REQUIRED

prod_type CDATA #REQUIRED

prod_name CDATA #IMPLIED

prod_imgurl CDATA #REQUIRED

prod_class CDATA #REQUIRED

prod_price CDATA #REQUIRED

saleinfo CDATA #REQUIRED

wholesaleinfo CDATA #REQUIRED

>

<!ELEMENT description (#PCDATA)* >

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 467

468 Chapter 10 • Building a Wholesale Catalog

Figure 10.4 Continued

<!ELEMENT saleinfo EMPTY >

<!ATTLIST saleinfo

sale_price CDATA #IMPLIED

sale_date1 CDATA #IMPLIED

sale_date2 CDATA #IMPLIED

conditions CDATA #IMPLIED

promoblurb CDATA #IMPLIED

>

<!ELEMENT wholesaleinfo EMPTY >

<!ATTLIST wholesaleinfo

ws_price CDATA #IMPLIED

ws_batch CDATA #IMPLIED

>

Figure 10.5 shows the same XML file displayed in Figure 10.3 (bata2.xml) as
it appears when it is opened in Internet Explorer 5 (IE5).

www.syngress.com

Figure 10.5 bata2.xml As It Appears When Opened in IE5

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 468

Building a Wholesale Catalog • Chapter 10 469

NOTE

As we work through the code for our application, you will notice that we
will not be working with code for processing the “saleinfo” and “whole-
saleinfo” elements, nor will we be adding this information to the cat-
alog. Adding such code would only serve to double or triple the size of
the code files without demonstrating any new methods or techniques.
Be aware, though, that these categories are an essential part of a “real-
world” catalog.

Supplier Interface and B2B Design
Now that we have the XML package, we need to send it to the server, and pro-
cess it so that the information is placed in the database. Suppliers come in all
shapes and sizes—both large corporations with fully integrated e-business ser-
vices, and smaller suppliers who are just beginning to get into e-business—and
we need to cater to both of these classes. Some suppliers will be manually con-
structing an XML file, while larger and more sophisticated suppliers will be
sending entire batches of information to insert new entries in the catalog, modify
others, and delete old entries.

As we discussed earlier, though, all the suppliers will want to know whether
the material they sent was received, what material we did receive, and were we
able to process it. If we were not able to process it, they will want an error mes-
sage containing at a minimum the reason we could not process it, and the place
in the file where the error occurred.As we will see,ASP.NET makes this quite
easy for us with the Try/Catch method of error trapping.

Fatal Errors versus Nonfatal Errors
In XML, if a fatal error occurs, the parser must cease processing the file in a
normal manner.With HTML, on the other hand, the browser will do the best it
can.When we receive an XML package, it might contain two kinds of errors that
we can also call “fatal” and “non-fatal.”The former would consist of a nonvalid or
unformed XML files, or incorrect password information. In this instance, all pro-
cessing should cease.A non-fatal error might consist of attempting to update a
file that is not in the database, or inserting a duplicate copy of a product. In this

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 469

470 Chapter 10 • Building a Wholesale Catalog

case, it would be possible to return a “partial error” and process the other correct
items in a batch.

In some instances, in a closed environment, this might be acceptable, but
when we are dealing with other unknown systems from unknown institutions,
then we cannot know their capabilities. It is thus preferable to either process all
the information sent to us, or none of it.The sending supplier can then fix the
error in the batch and resend it.

NOTE

We will develop two almost identical files to process the XML package,
one that will be viewable on a browser by a human viewer, and the
other that will just return a well-formed XML file for machine consump-
tion. The processing code is identical in both files. You will find two
simple files on the companion Web site for this book—“testupdate.htm”
and “testupdate2.htm”—that you can use to post packets to the
“updatecat1.aspx” and “updatecat2.aspx” files.

Coding updatecat1.aspx
Although this file consists of 300 + lines of code, it is really quite straightforward.
The code can be divided into the following sections:

■ Importing the namespaces.

■ Accepting the XML package.

■ Validating the XML package.

■ Checking the supplier’s UID (user identification) and passwordLoop
through the batches using a transaction.

■ For each batch, loop through the products.

■ Read all the values out of the XML file.

■ Check the values for correct type.

■ Read the values into the database

■ Send a success message.

■ If an error occurs anywhere, abort the session and send an appropriate
error message.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 470

Building a Wholesale Catalog • Chapter 10 471

The code for updatecat1.aspx is shown in Figure 10.6.The complete source
code for Figure 10.6 can also be found on the companion Web site for the book
(www.syngress.com/solutions).

Figure 10.6 Code Listing for updatecat1.aspx

<%@ Register tagprefix="netforce" tagname="header5"

src="usercontrols/header5.ascx" %>

<%@ Import Namespace="System.Data"%>

<%@ Import Namespace="System.Data.OleDb"%>

<%@ Import Namespace="System.XML"%>

<html>

<title>Shopping Cart View</title>

<link rel="stylesheet" type="text/css" href="genstyle.css">

<script language="VB" runat="server">

Sub Page_Load(Source As Object,E as EventArgs)

''''''''''''''''''''ACCEPTING THE XML PACKAGE'''''''''''''''''''''''''

'get xml document

Dim xmlfile as string

xmlfile=request.params("xmlfile")

'Misc variables

Dim nl as string

nl=chr(13) & chr(10)

'xml variables

Dim oXML as new XmlDocument

Dim xBatchList as XmlNodeList

Dim batchEl as XmlElement

Dim xProdList as XmlNodeList

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 471

472 Chapter 10 • Building a Wholesale Catalog

Figure 10.6 Continued

Dim xAttList as XmlNamedNodeMap

Dim oNode as XmlNode

'data variables

Dim oConn as OleDBConnection

Dim oComm as OleDBCommand

Dim oDataReader as OleDbDataReader

Dim strSQL as String

Dim strSQL2 as String

Dim strConn as String

Dim oTransaction as OleDBTransaction

Dim prod_code as string

Dim prod_type as string

Dim prod_name as string

Dim prod_desc as string

Dim prod_imgurl as string

Dim prod_class as string

Dim prod_price as string

Dim prod_saleinfo as string

Dim prod_wholesaleinfo as string

Dim batch_number as integer

Dim product_number as integer

'''''''''''''VALIDATING THE XML PACKAGE''''''''''''''''''

' Add a doctype declaration with link to catalog.dtd

Dim sDtdPath as string

'mapPath is now part of request class

sDTDPath=request.mapPath("catalog.dtd")

xmlfile="<!DOCTYPE catalog SYSTEM """ & sDTDPath & """>" & nl & xmlfile

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 472

Building a Wholesale Catalog • Chapter 10 473

Figure 10.6 Continued

Try

oXML.loadXML(xmlfile)

Catch oError as exception

outError.innerHTML="* Error while Loading XML document.
" _

& oError.Message & "
" & oError.Source

exit sub

End Try

'get uid and pw from'supplier' elements and read into variables

Dim uid as string

Dim pw as string

xAttList=oXML.documentElement.firstChild.Attributes

Try

uid=xAttList.GetNamedItem("uid").value

pw=xAttList.GetNamedItem("pw").value

Catch oError as exception

outError.innerHTML="* Could not find either 'pw' or 'uid' attribute_

vallues on the passed XML file.
" _

& oError.Message & "
" & oError.Source

exit sub

End Try

''''''''''''''''''CHECKING UID AND PW''''''''''''''''''''''''''''

'check the the uid and password in the data base

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 473

474 Chapter 10 • Building a Wholesale Catalog

Figure 10.6 Continued

strSQL="SELECT * FROM supplier WHERE supp_uid='" & uid &"' AND _

supp_pw='" & pw & "';"

strConn="Provider=Microsoft.Jet.OLEDB.4.0"

strConn=strConn & "; Data Source= _

c:\inetpub\wwwroot\syngress\dbases\catalog.mdb"

try

oConn=New OleDBConnection(strConn)

oConn.open

oComm=New OleDBCommand(strSQL,oConn)

oDataReader=oComm.ExecuteReader()

if oDataReader.Read()then

else

outError.innerHTML="* Password Error in passed XML file.
"

oConn.close()

exit sub

end if

'you may also want to check for case here

if pw <> oDataReader("supp_pw") then

outError.innerHTML="* Password Error in passed XML file.
"

oConn.close()

exit sub

end if

Catch oError as exception

outError.innerHTML="* There were errors accessing the _

database.
" _

& oError.Message & "
" & oError.Source

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 474

Building a Wholesale Catalog • Chapter 10 475

Figure 10.6 Continued

oConn.close()

exit sub

End Try

oDataReader.close()

oConn.close()

''''''''''''''''''LOOP THROUGH BATCHES''''''''''''''''''''''''''''

'run through the passed batches

Dim i as integer

Dim j as integer

Dim batch_type as string

xBatchList=oXML.getElementsByTagName("batch")

for i=0 to xBatchList.count-1

batch_number=batch_number+1

batch_type=xBatchList.item(i).Attributes.item(0).value

'xProdList=xBatchList.item(i).childNodes

batchEl=xBatchList.item(i)

xProdList=batchEl.getElementsByTagName("product")

try

oConn.Open()

oTransaction=oConn.BeginTransaction()

oComm.Connection=oConn

oComm.CommandType=CommandType.Text

oComm.Transaction=oTransaction

dim oComm2 as New OleDBCommand

''''''''''''''''''LOOP THROUGN PRODUCTS''''''''''''''''''''''''''''

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 475

476 Chapter 10 • Building a Wholesale Catalog

Figure 10.6 Continued

for j=0 to xProdList.count-1

product_number=product_number+1

xAttList=xProdList.item(j).Attributes

'Nested Try

try

''''''''''''''''''READ XML''''''''''''''''''''''''''''

prod_code=xAttList.GetNamedItem("prod_code").value

prod_code=uid & ":" & prod_code

''''''''''''''''''CHECK PROD_CODE''''''''''''''''''''''''''''

'check to see whether this product is in the DB

strSQL2="SELECT prod_code from products WHERE prod_code='" _

& prod_code & "';"

oComm2.Connection=oConn

oComm2=New OleDBCommand(strSQL2,oConn)

oComm2.Transaction=oTransaction

oDataReader=oComm2.ExecuteReader()

if batch_type="cat_new" then

if oDataReader.Read() then

outError.innerHTML="batch number-" & batch_number & " _

Product Number- " & product_number &"*Insertion:" _

& prod_code & ": There is already a product with _

this code in the database.
"

oTransaction.Rollback()

oDataReader.close()

oConn.close()

www.syngress.com
Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 476

Building a Wholesale Catalog • Chapter 10 477

Figure 10.6 Continued

exit sub

else

oDataReader.close()

end if

elseif batch_type="cat_delete" then

if oDataReader.Read() =false then

outError.innerHTML="batch number-" & batch_number & " _

Product Number- " & product_number &"*Deletion:" _

& prod_code & ": There is no product with this code _

in the database.
"

oTransaction.Rollback()

oDataReader.close()

oConn.close()

exit sub

else

oDataReader.close()

end if

elseif batch_type="cat_update" then

if oDataReader.Read() =false then

outError.innerHTML="batch number-" & batch_number & " _

Product Number- " & product_number &"*Update:" & _

prod_code & ": There is no product with this code _

in the database.
"

oTransaction.Rollback()

oDataReader.close()

oConn.close()

exit sub

else

oDataReader.close()

end if

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 477

478 Chapter 10 • Building a Wholesale Catalog

else

outError.innerHTML="batch number-" & batch_number & " _

Product Number- " & product_number &"*The Batch _

type" & batch_type & ": was not recognized.
"

oTransaction.Rollback()

oDataReader.close()

oConn.close()

exit sub

end if

''''''''''''''''''CONTINUE READ XML''''''''''''''''''''''''''''

prod_type=xAttList.GetNamedItem("prod_type").value

prod_name=xAttList.GetNamedItem("prod_name").value

prod_imgurl=xAttList.GetNamedItem("prod_imgurl").value

prod_class=xAttList.GetNamedItem("prod_class").value

prod_price=xAttList.GetNamedItem("prod_price").value

prod_saleinfo=xAttList.GetNamedItem("saleinfo").value

prod_wholesaleinfo=xAttList.GetNamedItem("wholesaleinfo").value

prod_desc=xProdList.item(j).firstChild.firstChild.value

'write different sqlStrings dependung on value ofbatch_type

''''''''''''''''''CHECK TYPES''''''''''''''''''''''''''''

'We are relying on the DB to check the type.

'The Try catch will allow us to capture the OleDB errors

''''''''''''''''''BUILD SQL''''''''''''''''''''''''''''

www.syngress.com
Continued

Figure 10.6 Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 478

Building a Wholesale Catalog • Chapter 10 479

Figure 10.6 Continued

if batch_type="cat_new" then

strSQL="INSERT INTO products _

(prod_code,prod_name,prod_desc,prod_price,prod_class,prod_type,_

prod_introdate,prod_saleinfo,prod_wholesaleinfo,prod_imgurl,_

supp_uid) VALUES ("

strSQL+= "'" & prod_code & "',"

strSQL+= "'" & replace(prod_name,"'","''") & "',"

strSQL+= "'" & replace(prod_desc,"'","''") & "',"

strSQL+= "" & prod_price & ","

strSQL+= "'" & prod_class & "',"

strSQL+= "'" & prod_type & "',"

strSQL+= "'" & now & "',"

strSQL+= "" & prod_saleinfo & ","

strSQL+= "" & prod_wholesaleinfo & ","

strSQL+= "'" & prod_imgurl & "',"

strSQL+= "'" & uid & "')"

elseif batch_type="cat_update" then

strSQL="UPDATE products SET "

strSQL+=" prod_code='" & prod_code & "',"

strSQL+=" prod_type='" & prod_type & "',"

strSQL+=" prod_name='" & replace(prod_name,"'","''") & "',"

strSQL+=" prod_class='" & prod_class & "',"

strSQL+=" prod_price='" & prod_price & "',"

strSQL+=" prod_desc='" & replace(prod_desc,"'","''") & "',"

strSQL+=" prod_saleinfo=" & prod_saleinfo & ","

strSQL+=" prod_lastupdate='" & now & "',"

strSQL+=" prod_wholesaleinfo=" & prod_saleinfo & ","

strSQL+=" prod_imgurl='" & prod_imgurl & "',"

strSQL+=" supp_uid='" & uid & "' "

strSQL+=" WHERE prod_code='" & prod_code & "';"

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 479

480 Chapter 10 • Building a Wholesale Catalog

elseif batch_type="cat_delete" then

strSQL="DELETE * FROM products WHERE prod_code='" & prod_code &

"';"

else

outError.innerHTML="batch number-" & batch_number & " Product _

Number- " & product_number &"* The batch type was not _

recognised..
" _

oConn.close()

exit sub

end if

''''''''''''''''''READ VALS TO DB''''''''''''''''''''''''''''

oComm.CommandText=strSQL

oComm.ExecuteNonQuery()

Catch oError as exception

outError.innerHTML="batch number-" & batch_number & " Product _

Number- " & product_number &"* Required Attribute Values _

were missing.
" _

& oError.Message & "
" & oError.Source

oConn.close()

exit sub

End Try

Next 'end product loop

oTransaction.Commit()

oConn.close()

Catch oError as Exception

www.syngress.com
Continued

Figure 10.6 Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 480

Building a Wholesale Catalog • Chapter 10 481

Figure 10.6 Continued

outError.innerHTML="batch number-" & batch_number & " Product Number-_

" & product_number &"* Error while accessing document.<br _

/>"' _

'& oError.Message & "
" & oError.Source

oTransaction.Rollback()

oDataReader.close()

oConn.close()

Exit Sub

End Try

Next 'end product loop

''''''''''''''''''SUCCESS MESSAGE''''''''''''''''''''''''''''

success.innerHTML="*" & batch_type & ":The update was successful.

The following file was uploaded.
"

xmlfile=replace(xmlfile,"<","<")

outxmlfile.innerHTML=xmlfile

End Sub

</script>

''''''''''''''''''PRINT PAGE''''''''''''''''''''''''''''

<netforce:header5 runat="server" />

<div id="outError" runat="server"></div>

<div id="success" runat="server"></div>

<pre id="outxmlfile" runat="server"></pre>

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 481

482 Chapter 10 • Building a Wholesale Catalog

Analysis of Code Listing updatecat1.aspx
This is the heart of our product, and many new concepts are introduced, so we
will spend a little time analyzing this code.The method we will use will be to
look at any new concepts or programming tasks, comparing them if appropriate
with similar ASP tasks, and then we will look at any salient code points.

NOTE

The ASP version of this code can be found on the Solutions Web site for
this book as “processxml1.asp.” However, although the output is similar,
you can see that the .NET code is much cleaner! When we benchmarked
the code, the .NET code ran about three times as fast as the ASP code!

Import the Namespaces
We will be working with a database here, so we will need to import the classes
that handle that.

<%@ Import Namespace="System.Data"%>

<%@ Import Namespace="System.Data.OleDb"%>

<%@ Import Namespace="System.XML"%>

Since we are prototyping in Access, we have imported the OleDb classes.
When we migrate to SQL Server, we will have to change these namespaces. (See
Installation, Migrating to SQL Server later in this chapter.)

Accepting the XML Package
This will be familiar to ASP coders.

xmlfile=request.params("xmlfile")

We could have used request.queryString() or request.form() methods to detail the
HTTP method, but the params.method makes things much easier. Like many
Internet developers, we tend to develop and debug with the HTTP get method
(we can see what is being passed to the server), and then we convert to the post
method.

Validating the XML Package
Here we have prefixed the file with a reference to our schema (we are using
DTDs, but if you would prefer to use XML schemas, .NET has full support for

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 482

Building a Wholesale Catalog • Chapter 10 483

them). Note that the mapPath() method is now part of the Request object.When
dealing with a B2B application, we sometimes do not have the ability to choose
what we will be using as our validation language; in this case, it’s DTD.

sDTDPath=request.mapPath("catalog.dtd")

xmlfile="<!DOCTYPE catalog SYSTEM """ & sDTDPath & """>" & nl_ &_

xmlfile

We now load the object (by default, load will validate the file).

Try

XML.loadXML(xmlfile)

Catch Error as exception

outError.innerHTML="* Error while Loading XML document.
"_

& Error.Message & "
" & oError.Source

exit sub

End Try

Unlike ASP, we no longer have to specifically trap any errors, as our
Try/Catch statement will catch them for us. Note that if there is an error, we pass
it to our error-catching element and exit the sub.This is the method that we will
use from this point forward.

Checking the Supplier’s User Identification and Password
In ADO.NET, opening a database and reading from it is very similar to ASP, it’s
just that the syntax might look a little strange.

1. We create a Connection object and open it.

2. We create a Command object, and execute it with a SQL statement and
a Connection object.

3. We create a DataReader for the Command object and execute it.

4. We read out the data from the reader.

This will be familiar to ASP programmers, except that ASP allowed us to
bypass the Command stage (although a Command object was always implicitly
created in the background), and the data was contained in a RecordSet.

The data variables must be declared and typed before implementation. (It is
possible to load them when they are declared, but we have not done this here for
reasons of clarity.)

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 483

484 Chapter 10 • Building a Wholesale Catalog

'data variables

Dim oConn as OleDBConnection

Dim oComm as OleDBCommand

Dim oDataReader as OleDbDataReader

The following code is quite straightforward; however, the Read() method
requires a little explanation.

oConn=New OleDBConnection(strConn)

oConn.open

oComm=New OleDBCommand(strSQL,oConn)

oDataReader=oComm.ExecuteReader()

if oDataReader.Read()then

In ASP, we would have to specifically loop through a recordset, testing each
time to see whether we had reached the End of the File.With the Read() method
of DataReader, these details are all taken care of. Read() returns a Boolean—true if
there is material in the DataReader; otherwise, false.

In our case here, we are trying see whether there is a matching UserID and
Password in the database. If there is, true will be returned. If false is returned, we
send an error message and exit the subroutine.

www.syngress.com

DataReader versus DataSet
DataReader for the most part works pretty much like the old recordset
with which ASP programmers are familiar. DataSet will create a virtual
database (preserved in XML) that we can work with even while discon-
nected to the database. It requires a complete new subset of objects and
methods to work with it. (We will use a small part of it to create an XML
file for our Web service later on.)

Developing & Deploying…

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 484

Building a Wholesale Catalog • Chapter 10 485

In ASP it was common to open the connection and keep it open throughout
the application. In .NET, we are told that it is preferable to close the connection
each time we are finished using it.The DataReader must also be closed, or we will
get an error next time we try to use it.

oDataReader.close()

oConn.close()

Loop through the Batches
The XML file that was passed to can contain several batch elements, each with
several product elements.We need to loop through these and find out what type
of batch update we are dealing with, and then loop through the product ele-
ments, writing their values to our database.

xBatchList=oXML.getElementsByTagName("batch")

for i=0 to xBatchList.count-1

batch_type=xBatchList.item(i).Attributes.item(0).value

'xProdList=xBatchList.item(i).childNodes

batchEl=xBatchList.item(i)

xProdList=batchEl.getElementsByTagName("product")

The simplest way to make a list of the batch elements is to use the
getElementsByTagName() method of the XmlDocument Class. Note also that the
XmlNodeList class uses the count property. Using length as we did in ASP will
throw an exception.

For every batch, we need to make a list of the product elements. Each item in
a node list is, of course, a node, and getElementsByTagName() is not a recognized
method of the XmlNode class.Therefore, in order to use it, we have to specifically
“cast” each node to be a member of the XmlElement class.An alternative method
would be to use the childNodes property, but in that case, all the “saleinfo” and
“wholesaleinfo” elements would be included.

Also at this stage, we find out what type of batch we are processing.

batch_type=xBatchList.item(i).Attributes.item(0).value

A "cat_new" value will mean we are processing a batch that is delivering new
entries, "cat_update" means that an existing entry has to be revised, and a
"cat_delete" value means of course that an existing entry should be deleted.We

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 485

486 Chapter 10 • Building a Wholesale Catalog

will have to generate different error strings and SQL strings depending on the
batch type.

Beginning a Transaction
As we discussed previously, we either want the whole of the batches passed in the
XML file to be entered in the database, or we want the whole thing to fail and
we want to return an error.ASP.NET has integral support for transactions that
makes this easy.We create a Transaction object and pass it to the Connection
object using the BeginTransaction() method.We must also pass it to every
Command object that we are going to use.

oConn.Open()

oTransaction=oConn.BeginTransaction()

oComm.Connection=oConn

oComm.CommandType=CommandType.Text

oComm.Transaction=oTransaction

dim oComm2 as New OleDBCommand

For Each Batch Loop through the Products
Now, start looping through the product elements in each batch and make a list of
attributes.

for j=0 to xProdList.count-1

xAttList=xProdList.item(j).Attributes

Check the Status of the Prod_Code
We already have the type of batch read into a variable; now we want to find out
what the prod_code value is. Remember that this is a unique value that identifies a
product in our database. It consists of a compound value, the first part being the
unique UID of the supplier; and the second part is a unique description of the
product provided by the supplier.

prod_code=xAttList.GetNamedItem("prod_code").value

prod_code=uid & ":" & prod_code

Once we have the prod_code, we need to see if it is already present in the
database. If it is, and the batch type is "cat_new", then we must generate an error.
If it is not present, and the batch type is "cat_update" or "cat_delete", then, again, we
must generate an error and terminate the transaction.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 486

Building a Wholesale Catalog • Chapter 10 487

'check to see whether this product is in the DB

strSQL2="SELECT prod_code from products WHERE prod_code='"_

& prod_code & "';"

oComm2.Connection=oConn

oComm2=New OleDBCommand(strSQL2,oConn)

oComm2.Transaction=oTransaction

oDataReader=oComm2.ExecuteReader()

Note how we must use a second Command object to do this, because the
first Command object is being used in the outer loop.We must also assign the
Transaction object to this Command object.

See how we generate the error message. Earlier on we had declared two
integer variables to represent the batch and the product loops, and we
advanced them with each loop.We use these to provide a location in our
error message.

if batch_type="cat_new" then

if oDataReader.Read() then

outError.innerHTML="batch number-" & batch_number & _

" Product Number- " & product_number &_

"*Insertion:" & prod_code & ": There is already _

a product with this code in the database.
"

oTransaction.Rollback()

oDataReader.close()

oConn.close()

exit sub

If there is an error, then we also must roll back the transaction, close both our
DataReader and Connection objects, and exit the subroutine.

Read All the Values Out of the XML File
If there is not an error, then we read the rest of our product values and assign
them to variables.

prod_type=xAttList.GetNamedItem("prod_type").value

prod_name=xAttList.GetNamedItem("prod_name").value

prod_imgurl=xAttList.GetNamedItem("prod_imgurl").value

prod_class=xAttList.GetNamedItem("prod_class").value

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 487

488 Chapter 10 • Building a Wholesale Catalog

prod_price=xAttList.GetNamedItem("prod_price").value

prod_saleinfo=xAttList.GetNamedItem("saleinfo").value

prod_wholesaleinfo=xAttList.GetNamedItem("wholesaleinfo").value

prod_desc=xProdList.item(j).firstChild.firstChild.value

Check the Values for Correct Type
We are cheating a little here. In ASP, we should check all the values using code,
to make sure they are the correct type. However, in ASP.NET it is easy to let the
database check the type, and use Try/Catch to return any errors. If we wanted to
check an e-mail or a URL format, or indeed if we wanted to write code to
check other values, this is where we would insert it.

Build SQL Strings
We now build different SQL strings depending on the batch type.The delete
string is the least verbose!

elseif batch_type="cat_delete" then

strSQL="DELETE * FROM products WHERE prod_code='" & prod_code _

& "';"

WARNING

Make sure that you have qualified all columns you use in your SQL
string, or you could end up deleting your entire database!

Read the Values into the Database
Once we have the correct SQL string, it is an easy matter to read it into the DB!

oComm.CommandText=strSQL

oComm.ExecuteNonQuery()

Send a Success Message
If we complete both loops we know there have been no errors, and we can send
a success message!

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 488

Building a Wholesale Catalog • Chapter 10 489

success.innerHTML="*" & batch_type & ":The update was _

successful. The following file was uploaded.
"

xmlfile=replace(xmlfile,"<","<")

Print Page
updatecat1.aspx will return a Web page suitable for human consumption.
updatecat2.aspx will return an XML file suitable for machine processing. Of
course, the suppliers can do what ever they want with the file.We have done our
job, by telling them that we have either processed the file or not, as the case may
be, and by supplying them with useful information that they can act on.

Figure 10.7 shows the result of a successful upload if updatecat1.aspx (Figure
10.6) is called.

www.syngress.com

Figure 10.7 Successful Upload

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 489

490 Chapter 10 • Building a Wholesale Catalog

Figure 10.8 shows the XML file that is send back to the supplier if
updatecat2.aspx is called.

Customer Interface Design
Now that we have our catalog in a database, and have provided a means for sup-
pliers to add items to the catalog, we need to display the products to our cus-
tomers and other businesses.We will do the former by designing a traditional
Web page interface, where our customers can select items from the catalog, put
them in a shopping cart, and finally check them out of the shopping cart.

This interface will consist of three sections:

■ A page that accesses the catalogs content

■ Page(s) that show the contents of the shopping cart

■ Checkout page(s)

GUI: The Catalog Page
This page allows browsers of the Web to access our catalog.As with any modern
business Web page, the page should use readily understandable navigation and
layout paradigms, and its use should be intuitive.We will want:

www.syngress.com

Figure 10.8 File Sent to Supplier

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 490

Building a Wholesale Catalog • Chapter 10 491

■ A header containing announcements and a navigation strip.

■ An area in which we can search the contents of the catalog (in this case,
we have opted to do this via a left-hand column).

■ An area in which the results of our search are displayed.

■ An ability to load displayed articles into a shopping cart.

Figure 10.9 shows such a page as it might be displayed in a browser. Note
that Clothing has been selected, which has produced a drop-down list of sub-
headings, and Apparel/male has been selected from the subheadings.The page
also offers options to search by a selection string, and by vendor.

This page is certainly a serviceable page, but in a real world catalog, we would
probably introduce several enhancements; namely:

■ In this page, all the items in a selected group are displayed at one time.

■ An image accompanies every item.

www.syngress.com

Figure 10.9 Our Catalog GUI

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 491

492 Chapter 10 • Building a Wholesale Catalog

■ In a real-world page we would probably introduce a means to scroll
through the selected group with a backward and forward bar.

■ We would probably introduce some mechanism whereby the catalog
image would only be displayed on command.

However, this page should act as a good starting point for your own catalog.
The code that produced this page is surprisingly terse, thanks to the use of

user controls, and can be seen in Figure 10.10.The complete source code for
Figure 10.10 can be found on the companion Solutions Web site for the book
(www.syngress.com/solutions).

Figure 10.10 Code Listing for Catpage1.aspx

<%@ Register tagprefix="netforce" tagname="vendors" _

src="usercontrols/vendors.ascx" %>

<%@ Register tagprefix="netforce" tagname="header2" _

src="usercontrols/header2.ascx" %>

<%@ Register tagprefix="netforce" tagname="header1" _

src="usercontrols/header1.ascx" %>

<%@ Register tagprefix="netforce" tagname="classes" _

src="usercontrols/classes.ascx" %>

<%@ Register tagprefix="netforce" tagname="footer1" _

src="usercontrols/footer1.ascx" %>

<%@ Register tagprefix="netforce" tagname="body1" _

src="usercontrols/body1.ascx" %>

<html>

<head>

<title>Agora Markets Catalog</title>

<link rel="stylesheet" type="text/css" href="genstyle.css">

</head>

<body>

<netforce:header1 runat="server" />

<table border='1'>

<tr>

<!—Navigation Column—>

<td rowspan='2' valign='top'>

<h3>Search</h3>

www.syngress.com
Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 492

Building a Wholesale Catalog • Chapter 10 493

Figure 10.10 Continued

<form action='catpage1.aspx' method='post'>

<input type='text' name='searchval' />

<input type='submit' Value='Search' />

</form>

<h3>Vendors</h3>

<form action='catpage1.aspx' method='post'>

<netforce:vendors runat="server" />

<input type='submit' Value='Fetch' />

</form>

<h3>Categories</h3>

<netforce:classes runat="server" />

</td>

<td><netforce:header2 runat="server" /> </td>

</tr>

<tr><td valign='top'><netforce:body1 runat="server" /></td></tr>

</table>

<netforce:footer1 runat="server" />

</body>

</html>

Analysis of Code
This book is not a primer on XHTML, so for the most part we will only analyze
the areas that are pertinent to ASP.NET. However, note the use of UserControls to
compartmentalize the code. UserControls not only make it easier to reuse code,
but they make it easier to code, in that we can work on just one area of our code

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 493

494 Chapter 10 • Building a Wholesale Catalog

at a time.This makes coding in ASP.NET akin to coding in an object-orientated
language.

The code that produces the interface is standard XHTML, and the drop-
down menus are produced using Style properties and Java script.All the code is
reproduced on the companion Solutions Web Site (www.syngress.com/solutions)
and is well commented, therefore it will not be explained here, as it is assumed
the reader has more than a passing acquaintance with Web page design.

The part of the code that does the business is contained in body1.ascx and
the listing for this UserControl is shown in Figure 10.11 (both these files can be
found on the Solutions Web site for the book). Essentially, it takes the values that
are passed to it, looks in the database for matches, and then uses a loop to write
out a table of all the items that match the search items.

Figure 10.11 Listing for body1.ascx

<%@ Import Namespace="System.Data"%>

<%@ Import Namespace="System.Data.OleDb"%>

<script language="VB" runat="server">

Sub Page_Load(Source As Object,E as EventArgs)

'declare variables

Dim catClass as string

Dim catType as string

Dim vendors as string

Dim strResult as string

Dim searchval as string

Dim ordXML as string

Dim counter as integer

'database variables

Dim oConn as OleDBConnection

Dim oComm as OleDBCommand

Dim oDataReader as OleDbDataReader

Dim strSQL as String

Dim strConn as String

'misc variables

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 494

Building a Wholesale Catalog • Chapter 10 495

Figure 10.11 Continued

Dim imgpath as string

'makesure the correct namespace prefix is used from the array of user _

controls.

vendors=request.params("ctrl1:vendors")

searchval=request.params("searchval")

catClass=request.params("class")

catType=request.params("type")

strConn="Provider=Microsoft.Jet.OLEDB.4.0"

strConn=strConn & "; Data Source=

c:\inetpub\wwwroot\syngress\dbases\catalog.mdb"

oConn=New OleDBConnection(strConn)

oConn.open

if catClass="" AND vendors="" AND searchval="" then

' response.write ("<span style='font-weight:bold;font-size:14pt;_

'>Thankyou for shopping at Agora markets. In order to see our _

products, please select either a category or a vendor")

strSQL="SELECT * FROM products WHERE prod_type='XXXXXXX';"

else if searchval <> "" then

strSQL="SELECT products.*,supplier.supp_name FROM products,_

supplier WHERE products.supp_uid=supplier.supp_uid AND _

products.prod_name LIKE '%" & searchval & "%' ORDER BY _

prod_name;"

response.write(strSQL)

'exit sub

else if vendors <> "" then

strSQL="SELECT products.*,supplier.supp_name FROM

products,supplier WHERE products.supp_uid=supplier.supp_uid AND

supplier.supp_uid='" & vendors & "' ORDER BY prod_name;"

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 495

496 Chapter 10 • Building a Wholesale Catalog

else if catType<>"" then

strSQL="SELECT products.*,supplier.supp_name FROM products,supplier _

WHERE products.supp_uid=supplier.supp_uid AND products.prod_type='" _

& catType & "' ORDER BY prod_name;"

strResult=catType

else if catClass<>"" then

strSQL="SELECT products.*,supplier.supp_name FROM products,supplier _

WHERE products.supp_uid=supplier.supp_uid AND products.prod_class='"_

& catClass & "' ORDER BY prod_name;"

strResult=catClass

end if

'response.write(strSQL & "DDDDDDDD")

oComm=New OleDBCommand(strSQL,oConn)

oDataReader=oComm.ExecuteReader()

'response.write (oDataReader)

strResult="<table border='1' cellpadding='3' rules='rows'>"

strResult+="<tr><th>Vendor</th><th>Name</th><th>Description</th><th>_

Picture</th><th>Price</th><th>Qty</th><th>Add to cart</th></tr>"

Do While oDataReader.Read()

counter=counter+1

strResult+="<tr>"

strResult+="<td>" & oDataReader("supp_name") & "</td>"

strResult+="<td>" & oDataReader("prod_name") & "</td>"

strResult+="<td>" & oDataReader("prod_desc") & "</td>"

if oDataReader("prod_imgurl") <> "" then

imgpath=oDataReader("prod_imgurl")

strResult+="<td><img src='" & imgpath & "' alt='" &

oDataReader("prod_name") & "'/></td>"

else

www.syngress.com

Continued

Figure 10.11 Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 496

Building a Wholesale Catalog • Chapter 10 497

strResult+="<td>[No Image Available]</td>"

end if

strResult+="<td>" & oDataReader("prod_price") & "</td>"

strResult+="<form action='shopcartadd.aspx'><td>"

strResult+="<input style='width:0.6cm;' type='text' value='1' _

name='ord_qty' /></td>"

strResult+="<input type='hidden' name='supp_uid' value='" & _

oDataReader("supp_uid") & "' />"

strResult+="<input type='hidden' name='supp_name' value=""" & _

oDataReader("supp_name") & """ />"

strResult+="<input type='hidden' name='prod_name' value='" & _

oDataReader("prod_name") & "' />"

strResult+="<input type='hidden' name='prod_code' value='" & _

oDataReader("prod_code") & "' />"

strResult+="<input type='hidden' name='prod_price' value='" & _

oDataReader("prod_price") & "' />"

strResult+="<td><input style='width:1cm;' type='submit' value='Add' _

/></td></form>"

strResult+="</tr>"

loop

if counter=0 then

strResult+="<tr><th colspan='7'>No Catalog entries match the _

search criteria</th></tr>"

end if

strResult+="</table>"

'response.write(counter)

outResult.InnerHtml = strResult

'housekeeping

oDataReader.Close()

oConn.Close()

www.syngress.com

Figure 10.11 Continued

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 497

498 Chapter 10 • Building a Wholesale Catalog

end sub

</script>

<h3 id="outResult" runat="server"></h3>

Analysis of Code
First, the namespaces are imported in a standard fashion, and the Page_Load sub-
routine is run.

<%@ Import Namespace="System.Data"%>

<%@ Import Namespace="System.Data.OleDb"%>

<script language="VB" runat="server">

Sub Page_Load(Source As Object,E as EventArgs)

For readers familiar with ASP, the way the table is produced is a little dif-
ferent. Here are the OleDb objects that we will be using:

'database variables

Dim oConn as OleDBConnection

Dim oComm as OleDBCommand

Dim oDataReader as OleDbDataReader

The only part of the following code that needs explanation is the namespace
parameter passed from the "vendors" user control. In fact in Vendors.ascx we used
an asp.net control to produce our drop-down list.

<asp:DropDownList id="vendors"

DataTextField="supp_name" DataValueField="supp_uid"

runat="server"/>

And because we did this, the value gets passed with the index number of the
control attached to it.

'make sure the correct namespace prefix is used from the array of user

controls.

vendors=request.params("ctrl1:vendors")

searchval=request.params("searchval")

catClass=request.params("class")

catType=request.params("type")

www.syngress.com

Figure 10.11 Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 498

Building a Wholesale Catalog • Chapter 10 499

strConn="Provider=Microsoft.Jet.OLEDB.4.0"

strConn=strConn & "; Data Source=

c:\inetpub\wwwroot\syngress\dbases\catalog.mdb"

We create a Connection object and then write a suitable SQL statement
depending on which of the methods of browsing the catalog is selected; for
example, by search string, vendor name, or category.

oConn=New OleDBConnection(strConn)

oConn.open

if catClass="" AND vendors="" AND searchval="" then

' response.write ("<span style='font-weight:bold;font-size:14pt;_

'>Thankyou for shopping at Agora markets. In order to see our _

products, please select either a category or a vendor")

strSQL="SELECT * FROM products WHERE prod_type='XXXXXXX';"

else if searchval <> "" then

strSQL="SELECT products.*,supplier.supp_name FROM _

products,supplier WHERE products.supp_uid=supplier.supp_uid_

AND products.prod_name LIKE '%" & searchval & "%' ORDER BY _

prod_name;"

response.write(strSQL)

'exit sub

else if vendors <> "" then

strSQL="SELECT products.*,supplier.supp_name FROM _

products,supplier WHERE products.supp_uid=supplier.supp_uid _

AND supplier.supp_uid='" & vendors & "' ORDER BY _

prod_name;"

else if catType<>"" then

strSQL="SELECT products.*,supplier.supp_name FROM products,supplier _

WHERE products.supp_uid=supplier.supp_uid AND products.prod_type='"_

& catType & "' ORDER BY prod_name;"

strResult=catType

else if catClass<>"" then

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 499

500 Chapter 10 • Building a Wholesale Catalog

strSQL="SELECT products.*,supplier.supp_name FROM products,supplier _

WHERE products.supp_uid=supplier.supp_uid AND products.prod_class='"_

& catClass & "' ORDER BY prod_name;"

strResult=catClass

end if

'response.write(strSQL & "DDDDDDDD")

We now create a Command object (oComm), passing it both our
Connection object and our SQL string.

oComm=New OleDBCommand(strSQL,oConn)

In order to read this, we have to create a data reader by using the Command
object’s ExecuteReader() method.

oDataReader=oComm.ExecuteReader()

'response.write (oDataReader)

strResult="<table border='1' cellpadding='3' rules='rows'>"

strResult+="<tr><th>Vendor</th><th>Name</th><th>Description</th>_

<th>Picture</th><th>Price</th><th>Qty</th><th>Add to cart</th>_

</tr>"

Now we use the Read() method of our DataReader object to obtain the con-
tents of that object. Note that this method is a Boolean, and will remain true
until all of the content of our DataReader is read out. Unlike ASP, there is no
need to use the .moveNext method to advance the reader. For those of us
coming from ASP, this appears to be a little strange!

Do While oDataReader.Read()

counter=counter+1

strResult+="<tr>"

strResult+="<td>" & oDataReader("supp_name") & "</td>"

strResult+="<td>" & oDataReader("prod_name") & "</td>"

strResult+="<td>" & oDataReader("prod_desc") & "</td>"

if oDataReader("prod_imgurl") <> "" then

imgpath=oDataReader("prod_imgurl")

strResult+="<td><img src='" & imgpath & "' alt='" & _

oDataReader("prod_name") & "'/></td>"

else

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 500

Building a Wholesale Catalog • Chapter 10 501

strResult+="<td>[No Image Available]</td>"

end if

strResult+="<td>" & oDataReader("prod_price") & "</td>"

strResult+="<form action='shopcartadd.aspx'><td>"

strResult+="<input style='width:0.6cm;' type='text' value='1' _

name='ord_qty' /></td>"

strResult+="<input type='hidden' name='supp_uid' value='" & _

oDataReader("supp_uid") & "' />"

strResult+="<input type='hidden' name='supp_name' value=""" & _

oDataReader("supp_name") & """ />"

strResult+="<input type='hidden' name='prod_name' value='" & _

oDataReader("prod_name") & "' />"

strResult+="<input type='hidden' name='prod_code' value='" & _

oDataReader("prod_code") & "' />"

strResult+="<input type='hidden' name='prod_price' value='" & _

oDataReader("prod_price") & "' />"

strResult+="<td><input style='width:1cm;' type='submit' value='Add' _

/></td></form>"

strResult+="</tr>"

loop

if counter=0 then

strResult+="<tr><th colspan='7'>No Catalog entries match the search_

criteria</th></tr>"

end if

strResult+="</table>"

'response.write(counter)

We read out all the contents of the dataset into a string, and then publish the
string using the innerHtml method.

outResult.InnerHtml = strResult

'housekeeping

oDataReader.Close()

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 501

502 Chapter 10 • Building a Wholesale Catalog

oConn.Close()

end sub

</script>

<h3 id="outResult" runat="server"></h3>

GUI: The Shopping Cart Page(s)
When the Add button is clicked on a catalog page, the item is automatically
added to the shopping cart. Figure 10.12 shows what will be seen if the Letter
Jacket is selected.

NOTE

For the purposes of this book, we have added a “textarea” that shows
what is going on behind the screens. The textarea displays the XML file
that represents the shopping cart. Of course, this would be removed in a
real world application.

The shopping cart is represented by an XML file that is stored as a Session
variable.

www.syngress.com

Figure 10.12 Letter Jacket Selection

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 502

Building a Wholesale Catalog • Chapter 10 503

Note that if the user refreshes this page, the item will be added again to the
shopping cart! In a real-life application, this problem can be overcome by writing
all the code that adds the XML to the XML string on one page, and then redi-
recting to a display page.This has not been done here for reasons of clarity.

Figure 10.13 shows the listing for shopcartadd.aspx.The source code for
shopcartadd.aspx can be found on the Solutions Web site for this book
(www.syngress.com/solutions).

Figure 10.13 Listing for shopcartadd.aspx

<%@ Register tagprefix="netforce" tagname="header3" _

src="usercontrols/header3.ascx" %>

<%@ Import Namespace="System.XML"%>

<html>

<title>Shopping Cart Add</title>

<link rel="stylesheet" type="text/css" href="genstyle.css">

<script language="VB" runat="server">

Sub Page_Load(Source As Object,E as EventArgs)

'declare variables

www.syngress.com

Session Objects in ASP.NET
In ASP, session variables could be unreliable in large-scale applications
that employed a server farm. To overcome this, we had to write quite
complex code to make sure that a session call was carried out on the
same server on which the session variable was stored. In ASP.NET, we no
longer have to worry about this.

The details of how ASP.NET accomplishes this are outside the scope
for this book and are explained fully in the text of The ASP.NET Web
Developer’s Guide (ISBN: 1-928994-51-2), also from Syngress Publishing.

Developing & Deploying…

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 503

504 Chapter 10 • Building a Wholesale Catalog

Figure 10.13 Continued

Dim prod_code as string

Dim prod_name as string

Dim supp_uid as String

Dim supp_name as string

Dim ord_qty as string

Dim prod_price as string

'

Dim ordXML as string

Dim cartXML as string

Dim displayXML as string

Dim nl as string

Dim orderCount as integer

Dim strResult as string

'declare table values

Dim qty as string

Dim iQty as integer

Dim price as string

Dim dPrice as double

Dim total as string

Dim dTotal as double

Dim dGrandTotal as double

'xml variables

Dim oXML as new XmlDocument

Dim xList as XmlNodeList

Dim oNode as XmlNode

nl=chr(13) & chr(10)

'retrieve variables

prod_code=request.params("prod_code")

prod_name=request.params("prod_name")

prod_price=request.params("prod_price")

supp_uid=request.params("supp_uid")

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 504

Building a Wholesale Catalog • Chapter 10 505

Figure 10.13 Continued

supp_name=request.params("supp_name")

ord_qty=request.params("ord_qty")

session("orderCount")=session("orderCount")+1

orderCount=cStr(session("orderCount"))

'add the order

ordXML="<prod_name>" & prod_name & "</prod_name><prod_code>" & _

prod_code & "</prod_code><supp_name>" & supp_name & _

"</supp_name><supp_uid>" & supp_uid & "</supp_uid><ord_qty>" & _

ord_qty & "</ord_qty><prod_price>" & prod_price & "</prod_price>"

session("cartXML")=session("cartXML") & "<orderitem orderCount='" _

& orderCount & "'>" & nl & ordXML & nl & "</orderitem>" & nl

'response.write (ordXML)

displayXML="<display>" & nl & session("cartXML") & nl & _

"</display>"

Try

oXML.loadXML(displayXML)

'response.write("*Document Loaded")

Catch oError as exception

response.write("* Error while accessing document.
" _

& oError.Message & "
" & oError.Source)

exit sub

End Try

xList=oXML.documentElement.childNodes

strResult="<table border='1' cellpadding='5' rules='rows'>"

strResult+="<tr><th>Order #</th><th>Product Name</th><th>_

Vendor</th><th>Qty.</th><th>Price</th><th>Total</th><th>Remove_

</th></tr>"

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 505

506 Chapter 10 • Building a Wholesale Catalog

Figure 10.13 Continued

For Each oNode In xList

strResult+="<tr>"

strResult+="<td>" & oNode.Attributes.item(0).Value & _

"</td>" 'GetAttribute("ordercount")& "</td>" '

strResult+="<td>" & oNode.FirstChild().FirstChild().Value &_

"</td>"

strResult+="<td>" & oNode.FirstChild().nextSibling_

.nextSibling.FirstChild().Value & "</td>"

strResult+="<td>" & oNode.FirstChild().nextSibling_

.nextSibling.nextSibling.nextSibling.FirstChild().Value _

& "</td>"

strResult+="<td>" & oNode.FirstChild().nextSibling_

.nextSibling.nextSibling.nextSibling.nextSibling_

.FirstChild().Value & "</td>"

iQty=cInt(oNode.FirstChild().nextSibling.nextSibling_

.nextSibling.nextSibling.FirstChild().Value)

dPrice=cDbl(oNode.FirstChild().nextSibling.nextSibling_

.nextSibling.nextSibling.nextSibling.FirstChild().Value)

if iQty < 0 then

iQty=0

end if

strResult+="<td align='right'>" & iQty*dPrice & "</td>"

dGrandTotal=dGrandTotal +0 + (iQty*dPrice)

strResult+="<td><form action='shopcartremove.aspx'><input _

type='hidden' name='removeoc' value='" & _

oNode.Attributes.item(0).Value & "' /><input type='hidden'_

name='remove' value='remove' /><input type='submit' _

value='Remove' /></form></td>"

strResult+="</tr>"

Next

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 506

Building a Wholesale Catalog • Chapter 10 507

Figure 10.13 Continued

strResult+="<tr><th colspan='5'> Grand Total</th><th _

align='right'>" & dGrandTotal & "</th><th> </th></tr>"

strResult+="</table>"

cartitems.innerHtml=strResult

ta.innerHTML=displayXML

end sub

</script>

<netforce:header3 runat="server" />

catalog

<div id="cartitems" runat="server"></div>

<table>

<tr><td>

<form action="shopcartremove.aspx">

<input type="hidden" name="clearall" value="clearall"/>

<input type="submit" Value="Clear Basket" />

</form>

</td>

<td><form action="checkout.aspx">

<input type="hidden" name="checkout" value="checkout"/>

<input type="submit" Value="Checkout" />

</form>

</td></tr>

</table>

<form>

<textarea id="ta" rows="10" cols="80" runat="server"></textarea>

</form>

</html>

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 507

508 Chapter 10 • Building a Wholesale Catalog

Analysis of Code Listing ‘shopcartadd.aspx’
Shopcartadd.aspx takes the variables passed to it from catpage1.aspx and builds an
XML fragment that is added to the XML fragment that is already stored in the
session variable.This is converted to a well-formed XML document by wrapping
it in a root element, it is loaded into an XML object, and this object is then used
to print out our display. Only the parts of the code pertinent to creating the
XML object are analyzed here.

The namespace is imported:

<%@ Import Namespace="System.XML"%>

Here are the XML variables from this namespace that we will be using:

'xml variables

Dim oXML as new XmlDocument

Dim xList as XmlNodeList

Dim oNode as XmlNode

We need to be able to keep track of all the orders.This will be important if
we want to remove an order at a later date.We do this simply by using a session
orderCount variable, and advancing it every time this page is called.

session("orderCount")=session("orderCount")+1

orderCount=cStr(session("orderCount"))

We now build an XML fragment from the information passed
fromcatpage1.aspx.

'add the order

ordXML="<prod_name>" & prod_name & "</prod_name><prod_code>" & _

prod_code & "</prod_code><supp_name>" & supp_name & _

"</supp_name><supp_uid>" & supp_uid & "</supp_uid><ord_qty>" & _

ord_qty & "</ord_qty><prod_price>" & prod_price & "</prod_price>"

We might already have an order list stored as an XML fragment in session
(“cartXML”). If so, we add this XML fragment to session (“cartXML”); if not, we
create the new session variable:

session("cartXML")=session("cartXML") & "<orderitem orderCount='" _

& orderCount & "'>" & nl & ordXML & nl & "</orderitem>" & nl

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 508

Building a Wholesale Catalog • Chapter 10 509

To make this XML fragment into a well-formed XML document, we need to
enclose it in a root element.

displayXML="<display>" & nl & session("cartXML") & nl & _

"</display>"

Now we’ll use the Try/Catch to load our XML document into a DOM object.

Try

oXML.loadXML(displayXML)

'response.write("*Document Loaded")

Catch oError as exception

response.write("* Error while accessing document.
" _

& oError.Message & "
" & oError.Source)

exit sub

End Try

Now, it is just a simple matter of iterating through this object and writing it
out for display.

xList=oXML.documentElement.childNodes

strResult="<table border='1' cellpadding='5' rules='rows'>"

strResult+="<tr><th>Order #</th><th>Product Name</th>_

<th>Vendor</th><th>Qty.</th><th>Price</th><th>Total</th>_

<th>Remove</th></tr>"

For Each oNode In xList

strResult+="<tr>"

strResult+="<td>" & oNode.Attributes.item(0).Value & _

"</td>" 'GetAttribute("ordercount")& "</td>" '

strResult+="<td>" & oNode.FirstChild().FirstChild().Value _

& "</td>"

strResult+="<td>" & oNode.FirstChild().nextSibling_

.nextSibling.FirstChild().Value & "</td>"

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 509

510 Chapter 10 • Building a Wholesale Catalog

strResult+="<td>" & oNode.FirstChild().nextSibling_

.nextSibling.nextSibling.nextSibling.FirstChild().Value _

& "</td>"

strResult+="<td>" & oNode.FirstChild().nextSibling_

.nextSibling.nextSibling.nextSibling.nextSibling_

.FirstChild().Value & "</td>"

iQty=cInt(oNode.FirstChild().nextSibling.nextSibling_

.nextSibling.nextSibling.FirstChild().Value)

dPrice=cDbl(oNode.FirstChild().nextSibling.nextSibling_

.nextSibling.nextSibling.nextSibling.FirstChild().Value)

if iQty < 0 then

iQty=0

end if

strResult+="<td align='right'>" & iQty*dPrice & "</td>"

dGrandTotal=dGrandTotal +0 + (iQty*dPrice)

strResult+="<td><form action='shopcartremove.aspx'><input _

type='hidden' name='removeoc' value='" & _

oNode.Attributes.item(0).Value & "' /><input _

type='hidden' name='remove' value='remove' /><input _

type='submit' value='Remove' /></form></td>"

strResult+="</tr>"

Next

strResult+="<tr><th colspan='5'> Grand Total</th><th _

align='right'>" & dGrandTotal & "</th><th> </th></tr>"

strResult+="</table>"

cartitems.innerHtml=strResult

ta.innerHTML=displayXML

end sub

</script>

<netforce:header3 runat="server" />

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 510

Building a Wholesale Catalog • Chapter 10 511

catalog

<div id="cartitems" runat="server"></div>

<table>

<tr><td>

<form action="shopcartremove.aspx">

<input type="hidden" name="clearall" value="clearall"/>

<input type="submit" Value="Clear Basket" />

</form>

</td>

<td><form action="checkout.aspx">

<input type="hidden" name="checkout" value="checkout"/>

<input type="submit" Value="Checkout" />

</form>

</td></tr>

</table>

<form>

<textarea id="ta" rows="10" cols="80" runat="server"></textarea>

</form>

</html>

When our client is at this page, he or she has the option to remove an indi-
vidual item from the basket, clear the whole basket, check out, or, of course, go
back to the catalog and add another item!

If the client chooses to remove an item, the item will be removed in
shopcartremove.aspx.We will not show the complete listing here; we will just
show the part where the item is removed.

The session XML string fragment is retrieved and converted to a well-formed
document.

displayXML="<display>" & nl & session("cartXML") & nl & "</display>"

It is then loaded into an XML object.

Try

oXML.loadXML(displayXML)

'response.write("*Document Loaded")

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 511

512 Chapter 10 • Building a Wholesale Catalog

Catch oError as exception

response.write("* Error while accessing document.
" _

& oError.Message & "
" & oError.Source)

exit sub

End Try

You will remember that we gave each item in the shopping basket a unique
number.When the client clicked on the button to remove the item, this number
was passed to :shopcartremove.aspx: as :removeoc:. In the following code, a search is
made for this number, and when found, the element is removed from the XML
document.

xList=oXML.documentElement.childNodes

'response.write (xList.count)

' here we need to remove the node, and redeclare the xList

dim i as integer

if remove="remove" then

For i=0 to xList.count-1

if xList.item(i).Attributes.item(0).Value=removeoc then

'response.write("CCCCC" & removeoc)

oXML.documentElement.removeChild(xList.item(i))

exit for

end if

next

end if

The session (“cartXML”) string is then rebuilt with this value removed, and
the page is displayed.

If the Checkout button is clicked, the client is taken to the page seen in
Figure 10.14.

After this, the client is taken to a Thank You page (Figure 10.15).

NOTE

These pages displayed in Figures 10.14 and 10.15 feature no new tech-
niques, so we will not analyze them here, but the commented code is
available on the Solutions Web site for the book.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 512

Building a Wholesale Catalog • Chapter 10 513

www.syngress.com

Figure 10.14 GUI: The Checkout Page

Figure 10.15 checkout2.aspx

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 513

514 Chapter 10 • Building a Wholesale Catalog

Business and Web Services
This catalog is fine, and is like thousands of other similar Internet applications
that are available on the Web.What Agora Markets would like to do, though, is
implement the catalog as a Web service.They would like any application any-
where to be able to pass a parameter—say, a search string to this service—and get
back an XML file of all the items from the catalog.

In ASP.NET it is unbelievably easy to convert an Internet application such ours
into a Web service.We will look at how this is done in the rest of this chapter, first
converting the catalog into a “home rolled” business service, and then with the
alteration of a few lines of code, converting it into an ASP.NET Web service.

Business versus Web Services
These terms are relatively new terms in the Internet Lexicon, and are often used
interchangeably. Like many new words, though, their meaning is evolving.A con-
sensus seems to be emerging that a business service is a transaction or some other
interchange instituted between cooperating business partners. On the other hand,
a Web service is an interchange between anonymous business partners. In any case,
this is the way we will be using the two terms here.

In a business service, the trading partners will know what to expect of one
another. In a Web service, we must not only supply the service, we must also let
the client know what the service is about, what he can expect to receive when
he initiates it, and in what format he will receive his information.

Coding a Business Service
First, we will institute a business service.We will code an ASP.NET page that,
after being passed a search string for an article in our catalog, will return an
XML recordset containing all the pertinent records that match the string.The
code in Figure 10.16 is a modification of the code that we used in the “body1”
userControl called bservices2.aspx that can be found on the Solutions Web site
for the book. Our code will be recyclable; this can make our coding really
simple.

Figure 10.16 Code Listing of bservices2.aspx

<%@ Import Namespace="System.Data"%>

<%@ Import Namespace="System.Data.OleDb"%>

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 514

Building a Wholesale Catalog • Chapter 10 515

Figure 10.16 Continued

<html>

<title>bservice1 file</title>

<script language="VB" runat="server">

Sub Page_Load(Source As Object,E as EventArgs)

'declare variables

Dim prod_name as string

Dim strResult as string

prod_name=request.params("prod_name")

'database variables

Dim oConn as OleDBConnection

Dim oComm as OleDBCommand

Dim oDataAdapter as OleDbDataAdapter

'Dim oDataSet as DataSet()

Dim strSQL as String

Dim strConn as String

strConn="Provider=Microsoft.Jet.OLEDB.4.0"

strConn=strConn & "; Data Source=

c:\inetpub\wwwroot\syngress\dbases\catalog.mdb"

strSQL="SELECT products.*,supplier.supp_name FROM products,supplier _

WHERE products.supp_uid=supplier.supp_uid AND products.prod_name _

LIKE'%" & prod_name & "%' ORDER BY prod_name;"

oConn=New OleDBConnection(strConn)

oConn.open

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 515

516 Chapter 10 • Building a Wholesale Catalog

Figure 10.16 Continued

oDataAdapter=New OleDbDataAdapter(strSQL,oConn)

oDataSet=New DataSet()

oDataAdapter.Fill(oDataSet,"item")

'oDataSet.WriteXML("c:\frank\dataset.xml")

strResult=oDataSet.GetXML

outResult.InnerHtml =replace(strResult,"<","<")

'response.write (strResult)

'housekeeping

oConn.close

'note let and set not needed or supported

end sub

</script>

<pre id="outResult" runat="server"></pre>

In this example, the code will be printed out as a Web page, so that it can be
clearly presented in the book. However, in reality, you would probably want to
wrap it in something more accessible to client-side code, such as a hidden
attribute in a form.A screenshot of a sister application is shown in Figure 10.17.
This application accepts a vendor’s user IDs as a parameter and returns an XML
file of all that vendor’s products. Both sets of code (which are almost identical)
can be found on the Solutions Web site for the book.

Analysis of Code

NOTE

We will only discuss the aspects of code that differs from the discussion
of the code in “body1.ascx”.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:20 PM Page 516

Building a Wholesale Catalog • Chapter 10 517

We have imported the namespaces in the usual way, and the first part of the code
is similar to our userControl “body1.ascx”, right up to where we open our
Connection object. Of course, because we are only going to be servicing one
type of parameter, we have removed some of the string declarations.We have also
declared two new objects:

Dim oDataAdapter as OleDbDataAdapter

Dim oDataSet as DataSet()

The DataAdapter object serves as a pipeline and provides the logic to pop-
ulate the DataSet object.The DataSet object provides the basis for the storage
and manipulation of data that we have downloaded from our data store. It
allows us to work with it while disconnected from our data store; then, if nec-
essary, we can pass all the changes back into our data store when we have
finished.

www.syngress.com

Figure 10.17 bservice1.aspx Showing an XML Record Set of the Products of
King’s Hardware

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 517

518 Chapter 10 • Building a Wholesale Catalog

The DataAdapter object is instantiated, and takes our SQL query and the
Connection object as a parameter.This fills it with the equivalent of a recordset.

oDataAdapter=New OleDbDataAdapter(strSQL,oConn)

Once the DataAdapter has been instantiated, we can use it to fill the DataSet.

oDataSet=New DataSet()

oDataAdapter.Fill(oDataSet,"item")

The Fill method fills the DataSet that is passed to it with the data that has
been downloaded from the data store.The second parameter “item” is the name
we wish to give the table in the DataSet.

Now that we have all the information in the DataSet, we need to write it out
as XML. In ASP .NET, this is almost trivial (although of course the “behind the
scenes” code is far from trivial).The GetXML method returns all the dataset as an
XML string.

'oDataSet.WriteXML("c:\frank\dataset.xml")

strResult=oDataSet.GetXML

Note that it is equally easy to write the XML to file for debugging or other
purposes! The line of code that does this is commented out here.

Once we get the XML, all we need to do is clean up, and display the XML
in the Web browser.

outResult.InnerHtml =replace(strResult,"<","<")

'response.write (strResult)

'housekeeping

oConn.close

'note let and set not needed or supported in ASP.NET

end sub

</script>

<pre id="outResult" runat="server"></pre>

Note that in ASP.NET, it is no longer necessary to set the Connection object
to Nothing after we have closed it.This is due to the efficient method of
Garbage Collection that the .NET Framework employs.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 518

Building a Wholesale Catalog • Chapter 10 519

Creating a Web Service
This code is fine between cooperating business partners, because all the partners
know what to expect and how to handle it.What if we want to release the code
on the wide world that has no idea as to our methods? To do this, we will need
to use a Web service. Luckily, once we have the code in place,ASP.NET makes it
is a simple matter to convert it to a Web service.

An Overview of Web Services
Every day, millions of Web pages are opened in browsers, information is scanned,
and, if necessary, it is acted upon.This is the default operation of the World Wide
Web.This is accomplished via. HTML streams sent using the HTTP protocol.
However, all these operations have one thing in common: they require a human
intermediary.

Although impressive, current usage is just scratching the surface of the Web’s
capabilities.Among others, the inventor of the Web—Tim Berners-Lee—envis-
ages a world where Web application will be able to talk to Web application
without human intervention.To do this, resources must be both discoverable and
programmable.This is where Web services will be required.

A Web service allows any user application to access our service, find out
whether it is suitable for their use and matches their needs, and if it is, incorpo-
rate it into their own application. The implementation is language neutral. Our
Web service is written in VB using ASP.NET, but it could just as well have been
written in Perl or Java, and the accessing application can also be written in any
language. Using a standard information exchange protocol such as SOAP (Simple
Object Access Protocol), SOAP-enabled applications will be able to speak to
other machines and use the methods built into these machines, thus allowing
cooperation between various distributed applications.

For all this to happen, though, in order to add our catalog to the list of such
cooperating machines, we must first expose it as a Web service.

Coding a Web Service
In order to convert the code from our own “hand-rolled”“business service’ into
an ASP.NET Web service, it is necessary to make a few alterations, and save it with
the extension “.asmx”. Figure 10.18 is the code listing for bservice2.asmx, and the
source code in its entirety can be found on the Solutions Web site for the project.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 519

520 Chapter 10 • Building a Wholesale Catalog

Figure 10.18 Code Listing bservice2.asmx

<%@ Webservice class="Catalog" Language="VB"%>

Imports System.Web.Services

Imports System.Data

Imports System.Data.OleDb

<WebService(Description:="Get all the items in the catalog that match _

the string passed to the web Service", Namespace:=_

"http://www.nforce.com/webservices/")> Public Class Catalog

<WebMethod> Public Function getCatItems(prod_name as String) as String

'declare variables

'Dim prod_name as string

Dim strResult as string

'database variables

Dim oConn as OleDBConnection

Dim oComm as OleDBCommand

Dim oDataAdapter as OleDbDataAdapter

'Dim oDataSet as DataSet()

Dim strSQL as String

Dim strConn as String

strConn="Provider=Microsoft.Jet.OLEDB.4.0"

strConn=strConn & "; Data Source=

c:\inetpub\wwwroot\syngress\dbases\catalog.mdb"

'vendors="toolking"

strSQL="SELECT products.*,supplier.supp_name FROM products,supplier _

WHERE products.supp_uid=supplier.supp_uid AND products.prod_name _

LIKE'%" & prod_name & "%' ORDER BY prod_name;"

oConn=New OleDBConnection(strConn)

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 520

Building a Wholesale Catalog • Chapter 10 521

Figure 10.18 Continued

oConn.open

oDataAdapter=New OleDbDataAdapter(strSQL,oConn)

Dim oDataSet as New DataSet()

oDataAdapter.Fill(oDataSet,"item")

strResult=oDataSet.GetXML

Return strResult

'housekeeping

oConn.close

'note let and set not needed or supported

end function

end class

You can see that we have only made a few changes from bservice2.aspx.

Analysis of Code
The main thrust of our changes has been to convert the page from a standalone
page to a WebService class.We announce this as follows:

<%@ Webservice class="Catalog" Language="VB"%>

Next, we need to change the way we import our ASP.NET namespaces:

Imports System.Web.Services

Imports System.Data

Imports System.Data.OleDb

Next, we need to declare the class as Public, and to associate it with a name-
space and also provide a description of the Web service that we are offering (note
that this should all be on one line).

<WebService(Description:="Get all the items in the catalog that match _

the string passed to the web Service", Namespace:=_

"http://www.nforce.com/webservices/")> Public Class Catalog

If we omit the Webservice namespace declaration, then ASP.NET will provide
a default namespace. However, eventually, in order to make our class unique amid

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 521

522 Chapter 10 • Building a Wholesale Catalog

the millions of other ASP.NET classes, we will have to provide one, so we might
as well do it from the get go.

Next, we declare our function. Note that this is a function and not a subrou-
tine (as it was in “bservices2.aspx”) (note that this should all be on one line).

<WebMethod> Public Function getCatItems(prod_name as String) as String

The rest of the code is identical until:

Return strResult

'housekeeping

oConn.close

'note let and set not needed or supported

end function

end class

The strResult variable is now mapped as a return value for the function.We
close both the function and the class.

Now that we have persisted our application as a Web service, we need to test it.

Testing the Web Service
We now have a functional Web service “catalog.” ASP.NET allows us to test it by
requesting the URI in our browser. Here is what we get when we enter the
“bservice2.asmx” address. (Keep in mind that this functionality is only for testing
our product, it is not part of what we are going to be sending to the customers
of our Web service.)

The first line shows the description that we have given to our Web service.
The bulleted item shows the public function that we have declared. Figure 10.19
shows our catalog as a Web service.

www.syngress.com

Figure 10.19 bservice2.amx

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 522

Building a Wholesale Catalog • Chapter 10 523

When we click on the bulleted item, we will get a screen that will invite us
to insert a parameter (Figure 10.20).

Note also that the default way to send the parameter is as a SOAP message.
Then, when we insert the parameter Jacket and click the Invoke button, we

will get a screen showing the return value, which in our case is an XML file
(Figure 10.21).

If you click the View/Source header, you will see that all our opening angle
brackets (“<”) have been converted to the XML attribute “<”.This is because
we have returned the information as a string in our function, and the testing
application chooses to display it as a string in the browser.

We have gone to all this trouble to create a Web service, but who is going to use
it? Indeed, why should we create a Web service? We create a Web service so that a
third party can use it.Although a full description of using Web services is beyond the
scope of this book, in the next section we will look at the current technologies
available, and point you to where you can find out more about using Web services.

www.syngress.com

Figure 10.20 Insert Parameter Screen

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 523

524 Chapter 10 • Building a Wholesale Catalog

Using Web Services
In the previous section we used ASP.NET to create a Web service out of our cat-
alog.This section just gives a brief overview as to how this service could be used
by a third-party application.

For clients to use a Web service, they first have to find a suitable Web service,
and then they have to get a description of that service. If this process is to be
automated, these processes must be accessible to machines.We will see how this
can be done using UDDI and WSDL.

Universal Description, Discovery, and Integration
UDDI is an open venture initially sponsored by Ariba, IBM, and Microsoft in
September 2000. Since then, more than 200 other companies have joined the
project. For more information on UDDI, you should refer to Microsoft’s UDDI
documentation at http://uddi.Microsoft.com; you can find the UDDI white
paper from Microsoft at http://uddi.microsoft.com/developer/default.aspx.

In order to register a service, the service must be described in a standard way.
One way to do this, and a way made almost trivial by ASP.NET, is to use the Web
Service Description Language (WSDL).We will look at this now.

Web Service Description Language
The Web Service Description Language (WSDL) can be found in a W3C note
dated March 21 2001 at www.w3.org/TR/wsdl. In an nutshell,WSDL is a way
to use XML to describe various network services as endpoints of messages; each
message can contain document or procedural information.

www.syngress.com

Figure 10.21 The Invoke Return Value

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 524

Building a Wholesale Catalog • Chapter 10 525

In order to expose our Web service, we need to create a WSDL document.
We have in fact already done all the work to create a WSDL file when we cre-
ated bservice2.asmx! You will obtain an interface identical to Figure 10.19 when
we went to test our Web service.

If we click on Service Description, we will get the screen shown in
Figure 10.22.

View/Source will show us the underlying WSDL file (Figure 10.23)!

Figure 10.23 bservice2.asmx WSDL Source

<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:s0="http://www.nforce.com/webservices/"

targetNamespace="http://www.nforce.com/webservices/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

www.syngress.com

Figure 10.22 WSDL Service Description Screen

Continued

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 525

526 Chapter 10 • Building a Wholesale Catalog

Figure 10.23 Continued

<types>

<s:schema attributeFormDefault="qualified" _

elementFormDefault="qualified" targetNamespace=_

"http://www.nforce.com/webservices/">

<s:element name="getCatItems">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="prod_name" _

nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

<s:element name="getCatItemsResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" _

name="getCatItemsResult" nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

<s:element name="string" nillable="true" type="s:string" />

</s:schema>

</types>

<message name="getCatItemsSoapIn">

<part name="parameters" element="s0:getCatItems" />

</message>

<message name="getCatItemsSoapOut">

<part name="parameters" element="s0:getCatItemsResponse" />

</message>

<message name="getCatItemsHttpGetIn">

<part name="prod_name" type="s:string" />

</message>

<message name="getCatItemsHttpGetOut">

<part name="Body" element="s0:string" />

</message>

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 526

Building a Wholesale Catalog • Chapter 10 527

Figure 10.23 Continued

<message name="getCatItemsHttpPostIn">

<part name="prod_name" type="s:string" />

</message>

<message name="getCatItemsHttpPostOut">

<part name="Body" element="s0:string" />

</message>

<portType name="CatalogSoap">

<operation name="getCatItems">

<input message="s0:getCatItemsSoapIn" />

<output message="s0:getCatItemsSoapOut" />

</operation>

</portType>

<portType name="CatalogHttpGet">

<operation name="getCatItems">

<input message="s0:getCatItemsHttpGetIn" />

<output message="s0:getCatItemsHttpGetOut" />

</operation>

</portType>

<portType name="CatalogHttpPost">

<operation name="getCatItems">

<input message="s0:getCatItemsHttpPostIn" />

<output message="s0:getCatItemsHttpPostOut" />

</operation>

</portType>

<binding name="CatalogSoap" type="s0:CatalogSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" _

style="document" />

<operation name="getCatItems">

<soap:operation soapAction="http://www.nforce.com/webservices/_

getCatItems" style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 527

528 Chapter 10 • Building a Wholesale Catalog

Figure 10.23 Continued

<soap:body use="literal" />

</output>

</operation>

</binding>

<binding name="CatalogHttpGet" type="s0:CatalogHttpGet">

<http:binding verb="GET" />

<operation name="getCatItems">

<http:operation location="/getCatItems" />

<input>

<http:urlEncoded />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<binding name="CatalogHttpPost" type="s0:CatalogHttpPost">

<http:binding verb="POST" />

<operation name="getCatItems">

<http:operation location="/getCatItems" />

<input>

<mime:content type="application/x-www-form-urlencoded" />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<service name="Catalog">

<documentation>Get all the items in the catalog that match the string _

passed to the web Service</documentation>

<port name="CatalogSoap" binding="s0:CatalogSoap">

<soap:address location="http://localhost/syngress/bservice2.asmx" />

</port>

www.syngress.com

Continued

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 528

Building a Wholesale Catalog • Chapter 10 529

Figure 10.23 Continued

<port name="CatalogHttpGet" binding="s0:CatalogHttpGet">

<http:address location="http://localhost/syngress/bservice2.asmx" />

</port>

<port name="CatalogHttpPost" binding="s0:CatalogHttpPost">

<http:address location="http://localhost/syngress/bservice2.asmx" />

</port>

</service>

</definitions>

This document is divided into five major sections:

■ Types The types section of the document is simply an XML schema
used to define the message section.

■ Message For each Web service, there will be at least one message. In our
case, there is e reply, so there is a minimum of two messages.Two message
elements, an in and an out, are generated for the SOAP, GET, and POST
protocols. Here are the message elements for the SOAP protocol:

<message name="getCatItemsSoapIn">

<part name="parameters" element="s0:getCatItems" />

</message>

<message name="getCatItemsSoapOut">

<part name="parameters" element="s0:getCatItemsResponse" />

</message>

The information that is expected—namely, a string in and a string out—is
defined in the types section of the document.You will notice that the messages
describing the GET and the POST messages carry the parameter type and the
response type as attributes.

Installation: Migrating to SQL Server
Like many developers, I prototype and develop many applications in Access with
the idea of migrating to a more robust database at a later stage.This makes sense
for most of us; I travel a lot, and although I do have a copy of SQL Server on my
laptop, it is much handier to just use Access as the test bed. Furthermore, not all
of my applications will be deployed on SQL Server; they might be deployed on
numerous other databases.The description of the migration process that is given

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 529

530 Chapter 10 • Building a Wholesale Catalog

here is for SQL Server, but the general principles apply to other databases.The
general processes that we need to go through are:

1. Change the connection string.

2. Make sure that the data types are compatible.

3. Make any necessary changes to the SQL strings.

4. If converting to SQL Server, change all namespaces to the SQL equivalent.

Changing the Connection String
Here is the connection string I have been using on my laptop:

strConn="Provider=Microsoft.Jet.OLEDB.4.0"

strConn=strConn & "; Data Source=

c:\inetpub\wwwroot\syngress\dbases\catalog.mdb"

Here is a typical SQL server connection string:

strConn="Provider=SQLOLEDB;Data Source=D1C4FN01;Initial Catalog=catolog;"

strConn=strConn & "User Id=frankb;Password=dogs;Network Library=dbmssocn;"

You can see that the provider name has been changed, the data source is no
longer a path, but the address of the database server, and the name of the database
to be accessed is given by the parameter “Initial Catalog”. (Somewhat confusingly
our database is named “catalog,” but if it was named “tradelist”, then the parameter
and value would be “Initial Catalog=tradelist;”) The other information just passes
the password and user ID to the server.

Connection strings for other providers are listed in Table 10.1.

Table 10.1 Database Connection Strings

MySQL "DRIVER={MySQL};SERVER=MySQL_development;

UID=frankb;PWD=dogs;DATABASE=MySQL"

Oracle 8 and 8i "Provider=MSDAORA;Data Source=Oracle8_development; User

ID=frankb;PWD=dogs;"

IBM DB2 "DSN=catalog;UID=frankb;PWD=dogs;Database=catalog;"

Compatible Data Types
Different databases use different data type definitions. For example, the text data
type in Access can hold a maximum of 255 characters. It’s equivalent in SQL
Server is the “char” data type that can hold 1024 characters. Obviously, there is

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 530

Building a Wholesale Catalog • Chapter 10 531

no problem going from Access to SQL Server in this case, but there could be if
we were going in the opposite direction.

SQL Strings
The main problem here is with date and time data types. Most databases want
these values in either a “bare” form or as character date.

Consider the following SQL string:

SELECT * FROM invoices WHERE inv_date > '1/1/01';

This would select all records dated after January 1, 2001.This would work
perfectly well with SQL Server, as would the following “bare” date.

SELECT * FROM invoices WHERE inv_date > 1/1/01;

NOTE

The ANSI SQL standard calls for dates to be put in single quotes, so they
should always be used where supported by the DB. To my knowledge,
Access97 and earlier is the only mainline DB that does not support this format.

However, both of these would cause an error in Access.Access requires the
date data type to be between hash marks, thus:

SELECT * FROM invoices WHERE inv_date > #1/1/01#;

Unfortunately, this form is not ANSI SQL, so it will fail in just about every
other type of database.This means that you should go through and convert all
your dates to the correct format. (A simple regular expression can be used for
Access to ANSI SQL, but it is not so simple the other way around.)

Converting to SQL Server
In order to convert to SQL Server, the names of the namespaces must be altered, and
all the “oledb” methods need to be altered to their SQL equivalents. For example, the
following code contains the headers and data variables from one of our applications:

<%@ Register tagprefix="netforce" tagname="header5" _

src="usercontrols/header5.ascx" %>

<%@ Import Namespace="System.Data"%>

<%@ Import Namespace="System.Data.OleDb"%>

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 531

532 Chapter 10 • Building a Wholesale Catalog

www.syngress.com

<%@ Import Namespace="System.XML"%>

'data variables

Dim oConn as OleDBConnection

Dim oComm as OleDBCommand

Dim oDataReader as OleDbDataReader

Dim strSQL as String

Dim strSQL2 as String

Dim strConn as String

Dim oTransaction as OleDBTransaction

Change these as follows:

<%@ Register tagprefix="netforce" tagname="header5" _

src="usercontrols/header5.ascx" %>

<%@ Import Namespace="System.Data"%>

<%@ Import Namespace="System.Data.SQLClient"%>

<%@ Import Namespace="System.XML"%>

'data variables

Dim oConn as SQLConnection

Dim oComm as SQLCommand

Dim oDataReader as SQLDataReader

Dim strSQL as String

Dim strSQL2 as String

Dim strConn as String

Dim oTransaction as SQLTransaction

This is quite easily done with the search and replace functions in the IDE or
text editor that you use.

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 532

Building a Wholesale Catalog • Chapter 10 533

Summary
In this chapter, we looked at using ASP.NET to build a real-world application;
namely, a catalog attached to a shopping cart.We also looked at how this catalog
could be automatically updated using XML messages, and how the catalog could
be converted to both a business service and a Web service.

We took a look at some real-world situations in which modeling took place.
A business model is essential when working for almost any company; although, if
you are working as a contractor or subcontractor, the business model might be
given to you by the client or another contractor. Having a business model also
helps you with your database design.

XML versus traditional database design was another topic we touched on;
XML, while a powerful tool for transmitting database information, does not cur-
rently have adequate encryption and cannot perform as fast as a database when
dealing with large recordsets. However, XML is perfect for dealing with small
parts of data that do not pose any type of security problem.We also looked at
how to transport this data and how it might be wrapped.

Our final database application enveloped all of the skills found in this book,
along with some pretty neat coding. By being able to work with both XML and
ADO.NET, a developer will be able to both expand his programming skills and
facilitate data communication.

Solutions Fast Track
Basic Design Considerations

While XML is a robust data storage language, it is unable to cope with
large transactions, which are typically handled by databases such as SQL
Server.A combination of both XML and a database is the best solution.

EDI, while an option, is usually too expensive for a small or medium-
sized business.A .NET application with XML can usually compensate
for an EDI system without requiring EDI itself.

Proper organization at the beginning stages of an application
development is vital for the overall development, since it helps to
remove possible errors and unneeded functionality early on.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 533

534 Chapter 10 • Building a Wholesale Catalog

Coding the Project
A database needs to avoid redundant entries of data; this is normally
referred to as the normalization process.

There are seven levels of normalization for a database, but the majority
of database applications only require at least three levels of
normalization.

A database can be either OLTP (transitional) or OLAP (application).

XML Packages Design
An XML file needs to be able to meet goals, just like a database, and
provide the needed functionality.

XML files also need to adhere to the normalization levels a database
needs.

In many applications, including B2B, a schema for validating the XML
file is agreed upon by the parties involved.This can mean that the
schema might be in DTD.

Customer Interface Design
Our customer interface always needs to be pleasing to the eye and able
to allow customers to easily find the information they require.

By using XHTML with ASP.NET, we are able to provide a majority of
the functionality we require for our customers to use.

By properly using a combination of XSLT and XML, we are able to
accurately portray the items to the customers.

Business and Web Service
A business service is a transaction between two businesses that are
working together and have full knowledge of the data that is being
passed to each other.This also means that both sides know what to
expect at all points and are familiar with the service being used.

A Web service, on the other hand, is a transaction between two users
who are anonymous and are not related to each other.This means that

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 534

Building a Wholesale Catalog • Chapter 10 535

we need to supply the service, information about the service, what data
will be received, and the format of the data that will be received.

There are various platforms for Web services, such as SOAP or LDAP. If
you are working 100 percent with .NET, you might want to consider
using SOAP, since it is Microsoft’s initiative and is integrated into .NET.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What is OLAP?

A: OLAP, Online Analytical Processing, is a database that is geared toward the
analytical processing of its data.These databases are usually configured for
speed and are used heavily when serious analytical processes are required.

Q: What is OLTP?

A: OLTP, Online Transactional Processing, is a database that is geared toward
perfecting the integrity of a database.These databases will usually fulfill all
three normalization levels or more.

Q: What is meant by ADO.NET?

A: ADO.NET is the .NET version of ADO.ADO.NET is able to take advantage
of the improvements .NET provides, and uses XML heavily internally.

Q: What is SOAP, and how can I find out more about it?

A: SOAP, the Simple Object Access Protocol, is a protocol for processing remote
objects through standard HTTP requests.You can find out more about SOAP
at www.microsoft.com/mind/0100/soap/soap.asp.

Q: When should I validate a document?

A: Anytime you have to work with an XML structure that is either used repeat-
edly or repeatedly generated dynamically, you should provide validation in
order to promote proper XML formation and to test to see if the XML file
generated is correct.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 535

536 Chapter 10 • Building a Wholesale Catalog

Q: When I validate a document, should I use a DTD or XML schemas?

A: This answer is a toss-up, really. Generally, you should use what you are com-
fortable with, but, as this example showed us, sometimes the choice is not left
to us.While .NET is geared toward working with schemas, DTDs have been
around longer and many still use them.You should learn to work with both
types of validation and understand their strengths and weaknesses.

www.syngress.com

155_xml_net_pd_C10.qk 3/7/02 1:21 PM Page 536

537

Index

3DES. See Triple DES

A
Abstract classes, 31–32
acceptNode(), 121
Access

database. See Disconnected access
database; Microsoft access database

object, creation. See Data
permissions. See Code

limitation, 166
security. See Code access

Access (Microsoft), 285, 313, 445
database, 286
usage, 456

Account element, 254, 261
Active connection, 417
ActiveState, 69
ActiveX Data Objects (ADO), usage,

441, 443. See also Message board
creation

addCategory() method, 149
addEntry() method, 151
AddRef, 4
Address block, returning, 34
addressBook

element, 122, 146–147
node, 150

Adjust Security Wizard, 200
admin.aspx, 372
Admin/banned status, 390
Administrative interface, construction,

389–402, 405
Administrator policy, applying, 16–17

ADO. See ActiveX Data Objects
ADO.NET, 93, 136

architecture, 409, 410
comparison, 414. See ADO
Framework, 273
understanding, 408–414, 448
usage, 233. See also Data

Advanced Network eXchange (ANX),
455, 457

Algorithm. See Asymmetric key
algorithm; Hash algorithm;
Symmetric key algorithm

All Code, 170, 202
All_Code, 194

code, 205
group, 201

Allocated space, 33
American Standards Institute, 456
Analytical databases, 463
Anchor tag. See HyperText Markup

Language
ANSI SQL, 531
ANX. See Advanced Network eXchange
API. See Application Programming

Interface
AppBindingMode element, 14
AppDomain element, 14, 16
Application. See Self-describing

application
creation. See Console applications
design, 321–357, 404
domains, 46–47
enforcement, 23
exposure, 180
interaction, 4

537

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 537

538 Index

role-based verification, 188
Application Programming Interface

(API), 4, 441. See also Metadata
capabilities. See Document Object

Model
differences, 233
set, 18

ApplyStyles method, 365
AppSettings, 361, 365
ArgumentException, 330–331, 338, 343
ArrayList, 347
Arrays, 20
ASC X12 standards, 455, 456
ASCII text, 429–431
ASP

code, 258
programmers, 483
scripting, 233
scripts. See Top-down ASP scripts
usage, 484–485
version 4, 232

ASPcontrol declaration, 293
ASP.NET, 5, 46, 232, 288, 290, 457

applications, copying, 357, 358
classes, 522
development, 65
FAQs, 281–282
languages, choice, 233
namespaces, 521
page, 460
platform, 232–233, 278–279
session objects, 503
solutions, 278–281
usage, 457, 465, 503
XML control, 298

ASPX, 70
ASPX code, 298

Assembly, 6. See also Policy; Static
assembly

access, 22
binding, 12
cache, 11–12

usage. See Global assembly cache
code. See Unmanaged assembly code
creation, 5–17, 50, 174. See also

Multifile assemblies
dependencies, 21
description, 2
enabling, 166
enumeration, 22
filename, 6
files. See Private assembly files; Shared

assembly files
granting, 166
identification, metadata usage, 18–19
incorporated evidence, 168
locating, 12–17
location, 22, 168
members. See Local assembly members
options, 8–10
references. See External assembly
request. See Permissions
trust, 176, 194
trustworthiness, 169
unit, 3

AssemblyRef, 12, 15
Assert Override (command), 179–182
Assert (security action), 179
Assigned permission list, 196, 197
Asymmetric algorithm, 209
Asymmetric key algorithm, 208, 209
Asymmetric key-pair, 209
attribute(), 22
Attribute (Attr) element, 117
AttributeCount property, 234

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 538

Index 539

Attributes, 22, 89, 122
interface, 117
label, 90
list, 113
name, 92
tag name, 113
value, 113

Authentication, 165, 207
determination. See Principal
methods, 165

AuthenticationType (property), 192
Author

comment, display. See Message
e-mail address, identification, 284
identification, 284

Authorization, 165
Auto hide (setting), 75
Automatic resource management,

reliance, 32–41, 51

B
Backward compatibility, 23. See also

Dynamic Link Library
Backward-compatible class, creation, 24
Balance node, 262
Bank/Account, 258
Bank/Account/Name, 257
Banner user, 393
Base64

algorithm, 430, 432
encoded data, reading, 436–440
encoding

process, 439
usage, 408

format, binary data conversion,
431–436

formatted data, 431

function, 429–431
usage, 429, 437. See also Binary data

Basket, clearing, 511
Batches

looping, 485–486
loops, 486

Binary conversion algorithm, 429
Binary data

conversion. See Base64
Base64, usage, 428–440, 449

handling, 429
Binary format, 432
Binary formatted data, 439
Binding mode, 14
BindingRedir element, 14
Bit stream, encoding, 429
bmp

format, 431
node, 439
subelement, 435

Board
browsing, 373–382
class, design, 335–357
deletion, 396, 399
name, 378

BoardDescription, 313, 314
BoardID, 313, 314, 340, 345
BoardName, 313–314
Body field, 353
Boolean operators, 105
Boolean property, 360
Boundary. See Reference; Security;

Types;Version boundary
points, 122

Boyce-Codd level, 464
Browsing. See Board; Message

interface, design, 373–382, 404
btnCreate_Click method, 395

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 539

540 Index

btnEditPost_Click method, 402
BtnLogin_Click, 372, 385
btnRegister_Click subroutine, 368
Build errors, 67
Built-in classes, 65
Built-in XSL transformer, 264
Business

services, 462, 519
coding, 514–518, 534

Web services, interaction, 514–532,
534–535

contrast, 514
Business-logic processing, 409
Business-related information, 161
Business-to-business (B2B)

application, 452, 483
design, 462, 469–490
e-communications, 459–460
system architecture, 84

C
C#, 5, 69, 99, 232

code, 121, 122
pages, XML document comments

(addition), 74–75
security, 162
Web application, 59
Windows application, 145

C++, 5, 69
ATL

code, 322
COM, 322

user, 58
CA. See Certificate authority
Cache. See Assembly; Download cache;

Machinewide code cache
usage. See Global assembly cache

Caller identity, usage, 166
Calling chain, 173
Calling code class, 22
CanonicalizationMethod element, 220
cartXML, 508, 512
CAS. See Code Access Security
Cascading Style Sheets (CSS), 69

file, 361
script, 301

caspol.exe, usage, 201
Catalog, 462

analysis, 457–462
construction. See Wholesale catalog
content

page access, 490
searching, 491

element, 89
image, 492
implementation, 456–457
nodes, 91
page, 490–501
project, coding, 462–463
requirements, 457
updating, 459

Category
creation/deletion, 149–151
node, 123

C/C++, 24, 208. See also ISO C/C++
usage, 31

CDATA section, 113
node, 118

Certificate authority (CA), 209
Certificate file, importation, 203
CFG files, 181
Character date, 531
CharacterData, 122
Check. See Role-based security

overriding. See Security

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 540

Index 541

routine, 39
Checkout page, 490
Child nodes, 144. See also

DocumentElement
ChildNode, 242
ChildNodes.Count, 242
ChildPost, 348–350
ChildThread, 338
CipherText, 216

element, 218
Class. See Built-in classes; Count class;

External class; Framework;
Skeleton class

design. See Board; MessageBoard class;
Post; PostList class;Thread;
ThreadList class; User

loader, 42
organization, 28–29, 51
view, 65–66

Class contracts, 20
ClassAct class, 176, 178
ClassActing, 178
Class-level variable, 147
ClassName, 22
ClassReacting, 178
Class_Terminate event, 39
CLI. See Command-line interface
Click event, 239
Client application, 428–429
Client-server applications, 441
Client-server approach, 442
Client-server Web, 441
Client-side cursor location, 409
Client-side JavaScript, 366
Client-side transformations, 162
Client-side XSL transformations, 212
Close, 239
CLR. See Common Language Runtime

CLS. See Common Language
Specification

Code. See ASP;ASPX code; Just-in-
time; Managed code; Submit
button;Type-safe code

access, permissions, 163
amount, 192
analysis, 482, 493–501, 516–518,

521–522
change. See Development code
class. See Calling code class
compilation, 27
compiling, 168
completion technology, 68
groups, 166, 169–171, 206. See also

Zone-based code groups
construction, 194
hierarchy, 193
structure, modification, 200–207

identity, 166, 168–169
impersonation. See WindowsPrincipal
protection, 166
sandboxing, 162
trust, 163, 179
window, 59–60

Code Access Security (CAS), 43–44,
162, 166–185, 224–226

model. See .NET code
CodeAccess Permission namespace,

22, 186
Codebases, 11. See also Uniform

Resource Locator (URL)
usage, 16

Code-behind, 369, 379
pages, 69, 401
update, 374

COFF. See Common Object File
Format

Colors, manipulation, 301–305

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 541

542 Index

COM, 33. See also C++; Unmanaged
COM

centricity, 414
components, 233
marshalling, 408
object, 113, 321. See alsoVisual Basic

COM+
applications, 164
components, 185

Command, 411
object, 487, 500

Command-line applications, 26
Command-line Interface (CLI), 192
Command-line programs, 24
Command-line security tools, 210
Command-line tools, 233
Command-line VB application, 27
CommandText property, 424–426
Comment, 88, 285

display. See Message
replying, 285

Common Language Runtime (CLR),
2–4, 50, 162, 173

CLR-compliant compiler, 29
usage, 193, 194, 232

Common Language Specification (CLS),
4

Common Object File Format (COFF),
27

Common Type System (CTS), 2, 29–32,
51, 233

Communication, sequence, 459
Compatibility version, 23
Compiler, 18. See also Just-in-time
Compile-time description, 19
complexType data structures, 94, 95
Compression, 34
Con object, 424, 432

Confidentiality, concerns, 161–162
Configuration file, 12
Connection, 411

object, 517
creation, 499

string, changing, 530
Connection-oriented protocol, 441
ConnectionString, 361
Console applications, creation, 334
Console I/O, 26–27
Constructor, calling, 34
Content nodes, 237
Contracts, usage, 20–21
Control.ChildControls

ControlCollection, 366
ControlCollection, 365
ControlEvidence, 168
Copy-only installations, 3
Count class, 29
Count() function, 417
Create Post page, 386, 401
CreateBoard method, 338
CreatePost method, 350
CreateRange, 123
CreateThread method, 341, 350
CreateUser method, 329, 333, 368
Creator field, 350
CreatorID, 314
Cross-language support, 29
Cross-platform development, 3
CryptoAPI, 207
Cryptographic Service Providers (CSPs),

207, 208
Cryptography, 207–210, 227
CSPs. See Cryptographic Service

Providers
CSS. See Cascading Style Sheets
CssClass property, 366

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 542

Index 543

CTS. See Common Type System
CType, 347
CurRec, 417, 419
CurrentUser

object, 371
property, 372

Current.Value property, 260
Custom DataSet, 373
Custom permissions, 163, 167, 184–185,

194
Custom principal, 164
Custom token, 67–68
Customer

element, 254
interface design, 462, 490–513, 534

Customer_Id attribute, 255
CustomPrincipal, 186
CustomValidator control, 366
Cyclic objects, 33

D
Data

access
advantages/disadvantages. See

Remote data access
database,ADO.NET usage, 414–428,

448–449
object, creation, 323–325

conversion, Base64 usage. See Binary
data conversion

integrity, 212
management, 442
mismatches, error trapping, 462
retrieval, XML document navigation

(usage), 236–239
source, 377. See also Disconnected data

sources
storage, 453, 456, 458–459

stream. See Forward-only data stream
structures, 91. See also complexType

data structures; simpleType data
structures

transformation. See HyperText Markup
Language

types, 124, 461. See also Decimal data
type; Derived data type; Integer
data type; Primitive data type;Text;
User-defined data types

compatibility, 530–531
typing entries, 461–462
variables, 483

Data Adapter, 412
Data Encryption Standard (DES), 208
Data Reader, 411
Data Signature Algorithm (DSA), 208
Databases. See Access;Analytical

databases; Mini database;Virtual
database

ADO.NET, usage. See Data
contrast. See Extensible Markup

Language
design, 415, 431–436, 462, 463
name, 444
node, 317
query, usage. See Extensible Markup

Language document
setup. See Message board creation
usage, 273–277, 281
value, reading, 488
viewer, construction. See Remote

database viewer
DataBind, 379, 390
DataBinds, 377
DataColumns, 414
Data-consuming application, 409
DataControl, 323–325

class, 361

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 543

544 Index

DataDocument, 251
object, 247

DataGrid, 249, 253
DataReader, 411

content, 500
creation, 483
DataSet, contrast, 484

DataRow, 331–332, 355, 414
objects, 346–347

DataRowCollection, 417, 446
creation, 435

DataSet, 136, 255, 273, 305, 390. See also
Custom DataSet;
XmlDataDocument

class, 435
contrast. See DataReader
creation, 378
object, 517
property, 247
table, 375
usage, 325, 332, 340, 409, 413–414
XML document, reading, 276–277

DataTable, 247, 255–256
usage, 413–414

DataType object, 296
DB. See Second-level normalized DB
DB2, usage, 453
dbCmd object, 417, 422, 434
Debugging, 39

situations, 45
Decimal data type, 97
Declaration, 88. See also Descriptive

declarations
Declarative code,VB.NET syntax, 172
Declarative security, 42, 166, 172–173
Default rights, 193
Default tokens, 68
Delete

form, 422–428
method, 342

DeletePost method, 342, 344
DeleteThread method, 342–344
Demands, 44, 164, 191. See also

Inheritance
request, 183

Deny Override (command), 182–183
Deny (security action), 179
Deployment unit, 8
Depth, 234
Derived data type, 97
DES. See Data Encryption Standard
descendant::Account, 258
descendant::Name, 257
Description, 313
Descriptive declarations, 22
DESCryptoServiceProvider, 208
Design window, 59
Desktop application, 3
Deterministic finalization, 32
Development code, change, 2
different-tag-name, 105
DigestMethod, 220
DigestValue, 220
Digital certificates, 212

verification, 219
Digital signatures, 7, 218. See also

Extensible Markup Language
Disconnected access database, 409
Disconnected data sources, 413
DisplayNode(node as XmlNode), 245
DisplayRec() function, 419
Distributed applications, 166
DLL. See Dynamic Link Library
DNS. See Domain Name System
Dockable (setting), 75
Docking windows, 62–63

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 544

Index 545

DOCTYPE declaration, 467
Document

format. See Self-defined document
format

generation. See Extensible Markup
Language documents

interface, 116
navigation. See Extensible Markup

Language
XPathDocument/XPathNavigator

objects, usage, 261–264
parsing. See Extensible Markup

Language documents
Document Object Model (DOM), 242

API capabilities, 112–113
document. See Extensible Markup

Language
DOM-compliant System.Xml classes,

145
exploration. See Extensible Markup

Language DOM
levels, 131. See also Extensible Markup

Language DOM
object, 509
range, 122–123
Ranges, 114
recommendations. See World Wide

Web Consortium
specifications, 114
Traversal, 114
traversal, 118–122
tree, 244, 247, 256
XML parser, 116
XPath, 123

Document Type Definition (DTD), 89,
93, 483

display, 467

maintenance, 457
usage, 465, 482

Documentation generation, 73–75
DocumentElement, 244

child nodes, 150
DocumentFragment, 122
DocumentRange interface, 123
Documents. See Extensible Markup

Language
root element, 92

Do.Loop structure, 180
DOM. See Document Object Model
Domain Name System (DNS), 233
Domains. See Application
dotBoard, 322

construction, 373
dotBoardObjects, 334, 358
dotBoardObjects.User object, 360
dotBoardUI, 357, 358
Download cache, 11
Drop-down list, 391
DropDownList control, 390, 392
dRow, 435
DSA. See Data Signature Algorithm
DSACryptoServiceProvider, 208
DSN, creation, 443, 444
DTD. See Document Type Definition
dtSet object, 434, 435
Dynamic Help, 66–67
Dynamic Link Library (DLL), 4

backward compatibility, 22
breaking, 8
file, 4, 10, 12, 25

usage, 23
problems, 22–24

Dynamic reference, 12

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 545

546 Index

E
E-business, 458
E-communications. See Business-to-

business
Economy JIT, 28
EDI. See Electronic Document

Interchange
Electronic Document Interchange

(EDI), 454–456
communication, 461
disadvantage, 456

Element, 89, 122, 237. See also Root
element

authentication, 440
content, 465
nesting, 92
tag name, 113
usage, 92

Element-type node, 91
e-mail, 285

address, 313, 382
identification. See Author

validation, 294
e-mail element, nesting, 299
Embedded commenting. See Extensible

Markup Language
Embedded XML tagging structure, 73
Emoticon element, 303
emp table, 417
empCmd, 424–428
emp_code, 415, 424
emp_firstname, 415
emp_lastname, 415
Employee code, 425–427
Employee Code field, 420
empReader, 424, 425
Empty element, 91

EnableAssemblyExecution (security
permission), 193

Encoded data, reading. See Base64
Encrypted data element, 213, 216
Encrypted XML instances, 217
Encryption. See Extensible Markup

Language
EncryptionMethod, 216
End Element, 237
EndEntity nodes, 237
End-tag, 92, 212
End-user security, 12
Enterprise

security
level, 170, 192
policy, 200

systems, 233
Enterprise Manager. See Structured

Query Language
EntityReference, 122, 237
Entries, creation/editing/deletion,

151–155
Entry

addition/viewing, 285
element, 152
list box, 153
node, 123
point, 8

text areas, location, 285
EOF, 234
Equals() method, 440
ErrorMessage property, 368
Errors. See Partial error

catching, 461
contrast. See Fatal errors
description, 26
message, 198, 487
trapping. See Data

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 546

Index 547

Try/Catch method, 469
Event contract, 21
EveryThing (permission set), 193
Exception

class, 25
handling, 24–26
object, 24

ExecuteNonQuery method, 323, 428
ExecuteReader() method, 424, 500
Execution

engine, 30
permission set, 176, 193

Extensible Markup Language Schema
Definition (XSD), 93–94, 124

Authority, 93
Extensible Markup Language (XML)

address book
construction, 145–155
loading, 145–149

code, 302
compatibility. See SGML
construction, 286–288
control. See ASP.NET
data, 99, 119, 135, 233, 250

querying,
XPathDocument/XPathNavigator
(usage), 256–264, 280

representation, class decisions, 138
design, 85
Designer, 87
digital signatures, 218–221
documentation

comments, addition, 74
file, 73

DOM documents, 106
Editor, 70–72
element, 91, 102, 140
embedded commenting, 73–75

encryption, 160, 212–218
FAQs, 109–110, 228–230
file, 14, 268, 274, 436–440

creation, 66
usage, 460–461

file, values (reading), 487–488
format, 268, 444, 461
fragment, 217, 508
fundamentals, 84
goals, 85
guestbook, functional design

requirements, 285–288
interaction. See World Wide Web
markup, terseness, 85
overview, 84–92
parser, 114, 118. See also Document

Object Model; Microsoft XML
parser

parsing, 234–239, 279
processors, 455
reading, 234–239, 279
recordset, 514
schema. See World Wide Web

Consortium
data types, 97–98

securing, practices, 212–221, 227
security, understanding, 160
solutions, 107–108, 223–227
string, 503. See also Session
tagging structure. See Embedded XML

tagging structure
tags, 363
traditional databases, contrast, 453–454
transformation, XSLT usage, 98–105
tree, 234
usage, 273–277, 281, 360. See also

Message board creation; .NET
framework

risks. See .NET framework

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 547

548 Index

validation. SeeVisual Studio.NET
vocabularies, 456
XML-code files, 201
XML-coded file, 199
XML-coded permission sets, 177,

195–197
Extensible Markup Language (XML)

documents, 85–86, 102, 512. See
also Well-formed XML documents

appearance, 85–86
comments, addition. See C#
components, 88–91
creation, 86–88. See alsoVisual

Studio.NET
database query, usage, 274–276

fragment, 120
generation, XmlTextWriter (usage),

239–241
loading, 247
navigation, usage. See Data
object model, 112–123
parsing, 235–236

XmlDocument object, usage,
244–246

reading. See DataSet
structure, 91–92
transformation, 268–273. See also

HyperText Markup Language
document

XSLT, usage, 264–273, 280
validity, 93–98
viewing, 72
writing, XmlTextWriter class (usage),

239–241, 279
Extensible Markup Language (XML)

DOM
core interfaces, 114
exploration, 242–256, 280
levels, 113–114

mapping. See System.Xml namespace
structure model, 115–118

Extensible Markup Language (XML)
packages

acceptance, 482
design, 462, 465–490, 534
validation, 482–483

Extensible Stylesheet Language
Transformation (XSLT), 56, 456

code, 269, 271
file, 269
plug-in, 69
style sheet, 101
transformations, 220
usage. See Extensible Markup

Language; Extensible Markup
Language document

Extensible Stylesheet Language (XSL).
See Built-in XSL transformer

debugger. See HyperText Markup
Language

debugging, 105
pattern usage, 102–105
style sheet, 102

External assembly, 21
references, 18

External class, 65

F
Family access, invoking, 22
Fatal errors, nonfatal errors (contrast),

469–470
Fields, 19, 20, 22

subvalues, 20
FileCodeGroup, 201, 202
FileIO, 197
FileIOPermission, 172, 177

addition, 197

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 548

Index 549

granting, 176
permission, 183

FileMode.Open, 296
Files

locking, 297
uploading, 232

FileStream
class, 440
object, 296, 307

fillData method, 332
Finalization. See Deterministic

finalization
FirstChild, 242
Floating (setting), 75
Flow layout, 65
Flush, 239
Foreach iteration, 144
foreach, usage. See XmlNodeList class
Formatting, 239
FormBase class, 360, 368
Forward-only data stream, 411
Foundation class libraries, 233
Foward-only cursor, 242
Framework

permission classes, 184
security, 43–47

Free store (freestore), 33
frmViewBitmap, 437
FtpChannel, 207
FullTrust (permission set), 176, 193

G
Garbage Collection (GC), 26, 33, 518

calling, 34
namespace, 37
usage. See Managed heap

GC. See Garbage Collection
Generations, assigning, 40–41

Generic principal, 164
GenericPrincipal

(command), 187–188
usage, 190

GET messages, 529
getAttribute, 465
GetBoards, 356
GetDataSet, 323
GetElementsByTagName method, 117,

145, 149
GetStyleName function, 365, 366
GetXML method, 273, 518
GetXmlSchema, 273
GIF file, 212
Global assembly cache, 11–12

usage, 16–17
Global pointers, 35
Granted permissions, 193
Grants, 164
Graphic drawing, 233
Graphical add-ons, 307
Graphical User Identification (GUID), 4

change, 23
inclusion, 21

Graphical User Interface (GUI), 59, 288,
490–513

GUI-based format, 447
Guest user, 327
Guestbook

creation. See XML.NET guestbook
entry page, 301
interface, advanced options, 301–307,

309
records, addition, 288–297, 308–309
viewing, 298–300, 309

Guests, message entry, 284
GUI. See Graphical User Interface
GUID. See Graphical User Identification

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 549

550 Index

H
HACK, 68
Hackers. See Malicious hackers
HasAttributes property, 234
HasChildNodes, 242
Hash algorithm, 208, 209. See also One-

way hash algorithm
Hash digest, 209–210
Hash value, 219
HasValue, 234
Header, announcements, 491
Heap. See Managed heap

objects, placement, 34
strain, 39
unnecessary usage, 39

Help link, discovery, 301
HelpLink, 25, 26
Hide (setting), 75
Hierarchy, root, 170
HiveKey, 200
HKEY value, 198
HKEY_LOCAL_MACHINE, 198
Host, evidence, 168
href attribute, 299
HRESULTS, 4
HTML. See HyperText Markup

Language
HtmlAnchor control, 396
HTTP. See HyperText Transfer Protocol
HttpChannel, 207
HTTPS, 212
HyperText Markup Language (HTML),

69, 84. See also Quasi-HTML;
XHTML

anchor tag, 400
code, 292
data transformation, 104
document, 92, 99, 264–265

XML document transformation,
266–267

file, 12, 292
form, 292
format, 442
functions, 298
HTML-based XSL debugger, 105
page, 441
streams, 519
string, 382
table, 99, 100, 266

HyperText Transfer Protocol (HTTP),
84, 212, 457

method, 482
protocol, 441, 442, 519

I
IDE. See Integrated Development

Environment
Identity

manipulation, 188–190
permissions, 163

if (statement), 382
IIS, access, 207
IIS server, 76
Images, 491. See also Catalog

generation, 232
manipulation, 301–305

Imperative security, 166, 172–173
Impersonate (method), usage, 189
Industry-related information, 161
InferXmlSchema, 273
inflate (method), 331, 332
Information. See Business-related

information; Industry-related
information

storage. See Metadata
transport methods, 454–455

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 550

Index 551

Informational version, 23
InheritAct, 178
Inheritance

capabilities, 233
demand, 178

Initialization
code, 305
times, increase, 39

InitializeThreads method, 341–347
initMenuItems method, 148
In-memory data, 17
InnerException, 25, 26
InnerText, 242

property, 243
Input/output (I/O). See Console I/O
Integer data type, 97
Integer variables, 487
Integrated Development Environment

(IDE), 56, 77. See alsoVisual Basic;
Visual Interdev IDE;Visual
Studio.NET IDE

customization, 68, 75
view, 62

Integrity checks, 12
IntelliSense, 68–70
Interactive user, 189
Interdev user, 58
Interface

contract, 20
name, 18
type, 19
visibility, 18

Internal security. See .NET internal
security

Internet
developers, 482
(permission set), 176, 193

Internet Explorer, 92, 99, 264–265

version 5 (IE5), 468
Internet Protocol (IP) address, 444
Internet Services Manager, 357
Internet Zone, 204
Internet_Zone, 204, 206
Interoperability, 3, 27, 233, 409

allowing, 21
Intranet zone, 171
Invoke button, 523
IP. See Internet Protocol
IPermission, 185
iRows, 427
IsAdmin property, 393
IsAnonymous (property), 192
IsAuthenticated, 186
IsBanned property, 393
IsDefault, 234
IsEmptyElement, 234
IsGuest (property), 192
IsInRole (method), 191
ISO C/C++, 3
IsSystem (property), 192
Item, 234

function, 353
property, 344, 346

Iterator object, 260, 262
IUnrestrictedPermission, 185

J
Java, 24, 65

script, 494
JavaScript. See Client-side JavaScript
JIT. See Just-in-time
JOIN

clause, 409
usage, 414

jpeg format, 431

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 551

552 Index

Jscript, 232
Jscript.NET, 5
Just-in-time (JIT), 42. See also Economy

JIT; Normal JIT
code, 6
compilation, 22, 323

phase, 165, 177
compiler, 2, 27–28, 35

K
Kerberos, 192, 207
KeyPress, 428

L
LAN. See Local Area Network
Languages, usage. See .NET-compliant

programming languages
Last in first out (LIFO), 25
Last known good system, 23
LastChild, 242
Layout paradigm, 490
Legacy-code platform, 42
LevelFinal, 206
Levels, number (limitation), 170
LIFO. See Last in first out
Link demand, 177
LinkButton, 394
loadAddressBook() method, 148
Loader optimization, 6
Local Area Network (LAN), 441
Local assembly members, 18
Local variables, 42
LocalIntranet (permission set), 176, 193,

195, 206
LocalIntranet_Zone group, 201,

205–207
Location

option, 6, 10
process, 16

Logged-in user, 360, 368, 372, 391, 402
Log-in interface, construction, 366–372,

404
LogonUser, 189
Loops. See Product

M
Machine

policy, 46
security

level, 170, 192
policy, 200

Machinewide code cache, 11
Main, 8
Maintainability, 409–410
Malicious code, 163, 169, 173
Malicious hackers, 455
Managed code, 4, 192. See also

Unmanaged code
usage, 193

Managed extensions, 5
Managed heap, 33–34

garbage collection, usage, 35–38
Manifest, usage, 8–11
MD5. See Message Digest 5
MD5CryptoServiceProvider, 208
Members. See Local assembly members;

Public members
defining, 19–20
profile, editing, 383–385

Membership conditions, 171
usage, 170

Memory
management, 32
overhead, 10

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 552

Index 553

resources, 6
Memory-intensive objects, 41
Message, 25, 26, 529. See also Errors;

GET messages; POST messages
author comment, display, 284
browsing, 379–382
digest, 209–210
display, 284, 298–300, 427
entry. See Guests
property, 368
sending. See Success message

Message board creation
ADO/XML usage, 312

FAQs, 405–406
solutions, 403–405

database, setup, 312–321, 403
general functions, setup, 358–366, 404

Message Digest 5 (MD5), 208
MessageBoard class, 375

design, 356–357
Metadata, 4, 7

APIs, 18
benefits, 18
information, storage, 8
storage, 22
understanding, 17–24, 50
usage. See Assembly

MethodInfo object, 178
Methods, 20. See also Static methods;

Virtual methods
contract, 20

Microsoft Intermediate Language
(MSIL), 2, 27–28, 41, 51

code. See Portable Executable
transformation, 17

Microsoft Management Console
(MMC), 202

snap-in, 192
Microsoft (MS) access database, 313–317
Microsoft XML (MSXML) parser, 113
Mini database, 409
MMC. See Microsoft Management

Console
Moderator, 313, 326
ModeratorID, 313

location, 342
Modify User button, 390, 392
Modules

enumeration, 22
location, 22

Monitors, visible area, 301
MoveNext method, 262
MoveToAttribute(i) method, 234
MoveToContent(), 237–239
MoveToElement method, 234
msdata, 288
MSDN, 206

Help files, 67
Subscribers, 203

MSIL. See Microsoft Intermediate
Language

MSXML. See Microsoft XML
Multi-assembly

scenario, 7
situations, 12

Multidomain host, 6
optimization route, 6

Multifile assemblies, creation, 12
Multiple tables, viewing. See

XmlDataDocument
Multiple-table views, providing, 247
myThread variable, 338, 340

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 553

554 Index

N
Name, 313

collision, 7
information, 285

Namespace, 112–114, 498. See also
CodeAccess Permission
namespace; Garbage Collection;
System.Collections;
System.Reflection namespace;
System.Xml namespace

system, usage, 28–29, 51
usage, 160

name=value pair protocol, 89
Naming option, 6
Navigation

paradigm, 490
strip, 491

Nested elements, 252, 256
.NET applications, 2, 408
.NET code, 21

access security model, 166–185
.NET Configuration Tool, usage, 201
.NET data provider. See Structured

Query Language server
usage, 410–412

.NET DOM, 132

.NET environment, 274

.NET Framework, 2–3, 193, 443
classes, 17
definition, 3, 49
FAQs, 52–53
permissions, 193
security system, 208
software libraries, 232
solutions, 49–52
XML usage, 112

FAQs, 158
risks, 160–162, 223–224

solutions, 157
.NET internal security, 162–166
.NET languages, 232–233
.NET provider. See OLEDB .NET

provider
.NET security, 41, 224

FAQs, 228–230
framework, 163
solutions, 223–227
understanding, 160

NetCodeGroup, 201, 202
.NET-compliant language, 5
.NET-compliant programming

languages, usage, 5, 50
Netforce, 452
Network-handling functions, 233
nextNode(), 119, 120, 122
NodeFilter interface, 118, 121–122
NodeIterator, 118–121
NodeList, 117–118
nodeName property, 130
Nodes, 113. See also Product; Subnodes

authentication, 440
interface, 115

Nodes, values retrieval, 248–249
nodeValue property, 130
Nonfatal errors, contrast. See Fatal errors
Nonpublic information, 21
Nonpublic types, enumeration, 22
Nonwhitespace, 237
Non-x86 architecture, 27
Normal JIT, 28
Normal mode, 14
Normalization, 464
Nothing (permission set), 176, 194
NTLM, 192, 207
Null values, 415, 422

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 554

Index 555

O
OASIS, 456, 457
obj.Control.GetType().ToString(), 365
Object Browser, 65
Object-oriented (OO) approach,

321–322
Object-oriented (OO) language, 323
Object-oriented (OO) objects, 326
Object-oriented (OO) technique, 323
Object-oriented programming (OOP),

29
Objects, 19. See also ASP.NET;

Exception
creation, 34
design, 323
destruction, 37
hierarchy, 397
holding, 29
lifetime, increase, 39
navigation. See XmlDocument
orientation, 233
placement. See Heap
recreating/reinitializing, 41
relational view, usage. See

XmlDataDocument
usage. See XPathDocument;

XPathNavigator
oComm, 500
ODBC

connections, 286
usage, 440

OldDbCommand method, 424
OLE objects, 408
OLEDB. See SQLOLEDB

usage, 412
OleDb classes, 482
oledb methods, 531
OLEDB .NET provider, 412

OleDbConnection class, 422, 432, 445
OleDbDataAdapter class, 417, 422, 434,

445–446
OLTP. See Online Transaction

Processing
One-way hash algorithm, 209–210
Online Analytical Processing (OLAP),

contrast. See Online Transaction
Processing

Online forms, 296
Online Transaction Processing (OLTP),

Online Analytical Processing
(OLAP) contrast, 463

OnLoad, 290
On-the-fly call, 12
OO. See Object-oriented
OOP. See Object-oriented programming
Open function, usage, 411
Operator, usage, 34
Oracle, 445, 453
orderCount variable, 508
OuterXml, 137

P
Packages. See Extensible Markup

Language packages
Page. See Real-world page; Shopping

cart
access. See Catalog
design. See World Wide Web
load code, 305

Page.Init event, 371
Page_Init subroutine, 371
Page_Load

event, 237, 243
method, 375, 385, 402
sub, 307

Page.Load event, 368

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 555

556 Index

Page_Load() event, 245
Page_Load subroutine, 368
pagename.aspx.cs, 69
Pages. See C#; Code-behind pages;

User-created page
output, modification, 305–307

Parent-child relationships, 93
Parents, 113
Parser, usage, 465
Parsing attributes, 465
Partial error, 470
Partial references, usage, 15
Passwords, 444, 530. See also User

information, 469
Patterns, usage. See Extensible Stylesheet

Language
PE. See Portable Executable
Performance, 409
Perl, 232
Permission sets, 170, 193, 206. See also

Extensible Markup Language
creation, 195–200
determination, 194
management/configuration, 166
usage, 200

Permissions, 163–164. See also Code;
Custom permissions; Granted
permissions; Identity; .NET
framework; Role-based security
permissions; Security

assembly request, 173
assignation, 170
classes. See Framework
creation, 195
demanding, 166, 177–179
granting, 43–45, 170
having, 180
layer, 44
list. See Assigned permission list

needing, 22
obtaining, 166
releasing, 171
requesting, 164, 166, 173–177

PermissionState, 191
PermitOnly Override, 183–184
PermitOnly (security action), 179
Persistence, snap-in type, 18
Pid, 91
Plain text, 408
Plaintext e-mail, 210
PName node, 91
pnlAdd panel, understanding, 292–293
PnlThank, usage. See Thank You panel
Pointer. See Global pointers; Static

pointers
creation, 33
type, 19

Policy. See Security
assemblies, 194
checking. SeeVersion
level, 200, 206

Policyholders, 46
Portable Executable (PE)

format, 5
MSIL code, 8
syntax, 27

Post, 313
class, design, 353–355
creation, 385–389
deletion, 394
editing, 399

POST messages, 529
PostID, 314
PostList class, design, 350–353
Precoding analysis, 458
previousNode(), 119
Price node, 91

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 556

Index 557

Primitive data type, 97
Princauthenticated, 191
Principal, 43, 164, 186–190. See also

Custom principal; Generic
principal;Windows

authentication, determination, 192
usage. See Representation

PrincipalPermission, 186, 190–191
PrincState, 191
Print page, 489–490
Private assembly files, 17
Private fields, updating, 329
PrivatePath attribute, 14, 16
PrivatePermissions, 205
Probing, usage, 16
prod_code, 486
Prod_Code, status (checking), 486–487
Product

loops, 487
nodes, 91
selection page, 243
values, 487

Product Name data, 236
ProductID, 95, 98, 265
ProductName, 89, 98, 265

node, 237
Programming

elements, 22
language, 99

users. See Third-party programming
language users

tool, 113
Projects, 64, 76

construction, 77
creation, 76–77
debugging, 77

Properties, 19, 22
contract, 20

Properties Explorer, 63–64
Protected operations, access, 193
Protected resources, access, 166, 180, 193
Public access, invoking, 22
Public key

algorithm, 209
security services, 212

Public members, 22
Public types, 22

enumeration, 22
Publishers certificate, 170

Q
QFE. See Quick Fix Engineering
Quasi-HTML, 373, 376, 379
Query Analyzer, 61. See also Structured

Query Language
Query expressions, 257–258
Query string, 378
Quick Fix Engineering (QFE), 14, 24

usage, 16
Quotes, 465

R
RAD. See Rapid Application

Development
Random Number Generator (RNG),

208
Rapid Application Development

(RAD), 63
RC1. See Release Candidate 1
RC2. See Rivest Cipher 2
RC2CryptoServiceProvider, 208
RDBMS. See Relational Database

Management System
Read(), 237, 238
ReadIN (variable), 27

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 557

558 Index

ReadState, 234
ReadString(), 238
ReadXml method, 273, 276
readXML object, 439–440
ReadXmlSchema, 273
Real-time validation, 285
Real-world page, 492
Records

addition. See Guestbook
form, addition, 419–422
navigation, 415–422
updating, 426

RecordSet, 413, 414
Recordset. See Extensible Markup

Language
Recursive procedure, 245
Red-colored controls, 366
Reference. See Dynamic reference;

External assembly references; Static
reference; Strong reference

addition, 77
counting, 33
locating, 12
placement, 28
scope boundary, 8
types, 19
usage. See Partial references;Weak

references
Reflection, 21–22

emit services, 18
services, 18

ReflectionPermission, 21–22
Register page, 366–369, 383
Registered User, 326, 358, 382, 385. See

also Unregistered user
Registry, 4

keys, 180
resource, 163

RegistryPermission, 172
addition, 197
demand, 177

Relational collection, 413
Relational data, 250
Relational DataBase Management

System (RDBMS), 453
Relational table, 253
Release Candidate 1 (RC1), 144
Remote data access,

advantages/disadvantages, 442–445
Remote database, definition, 441–442
Remote database viewer

construction, 408
FAQs, 449–450
solutions, 448–449

design, 440–447, 449
implementation, 440, 445–447, 449

RemoveChild() method, 150
Repeater, 307

code, 377
control, 373–375, 379

Representation, gaining (principal,
usage), 45–46

RequestMinimum, 173
RequestOptional, 174
RequestRefuse, 174
Requests, 164

username, 333
REQUIRED attribute, 465, 466
RequiredFieldValidator, 293
Reset (command), usage, 200
Response.Redirect, 240
Restore Policy, usage, 200
Restrictive policy, 192
Reverse engineering, 93
Rivest Cipher 2 (RC2), 208

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 558

Index 559

Rivest Shamir Adleman (RSA)
algorithm, 209

RNG. See Random Number Generator
RNGCryptoServiceProvider, 208
Role-based security, 43–44, 162,

185–192, 226
checks, 190–192
permissions, 163

Role-based validations, 186, 187
Role-based verification, 189. See also

Application
Root element, 89, 136. See also

Documents
Root tags, 287
Rows collection, 375
RSA. See Rivest Shamir Adleman
RSACryptoServiceProvider, 209
Rules, built-in check system, 21
Runtime

execution, 8
security policy levels, 192
usage, 33–34

S
Safe mode, 14
Sandboxing, 166. See also Code
Scalability, 409
Schema, 89, 93–98. See also Text-based

schema
data types. See Extensible Markup

Language
specification, 93

Schema Object Model (SOM), 125
SchemaProject folder, 126
Screen scrape, 232
SDK, 11
Second-level normalized DB, 464

Secure Hash Algorithm 1 (SHA1), 209,
210

Secure Sockets Layer (SSL), 160
usage, 203

Security. See C#; Code Access Security;
Declarative security; Extensible
Markup Language; Framework;
Imperative security; .NET internal
security

boundary, 8
characteristics, 22
checks, overriding, 167, 179–184
issues, 207
levels, 194
model. See .NET code
permission, 18. See also Execution;

Role-based security;
SkipVerification

policy, 43, 46–47, 165, 192–207, 226
application, 166
level, 204. See also Runtime

profile, 173
remoting, 207
services, 41–47, 52
system. See .NET framework
tools, 210–212, 227
vulnerabilities, 163, 164

security.config, 200
security.config.cch, 200
security.config.old, 200
SecurityPermission

permission, 187
properties, modification, 197

SelectedIndex property, 244
SelectedItem, 392
Selection page. See Product
SelectSingleNode function, 365
Self-defined data, 84
Self-defined document format, 84

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 559

560 Index

Self-describing application, 23
Self-describing value, 19
Self-description, 27
Server database. See Structured Query

Language
Server Explorer, 60–61
Server.MapPath(), usage, 296
Service account, 189
Serviceable page, 491
Session

key, 209
objects. See ASP.NET
userId value, 371
variable, 502, 508
XML string, 511

SetAttributeNode method, 141
Sets. See Permission sets
SetXmlFileName property, 437
SGML

creation, 84
XML compatibility, 85

SHA1. See Secure Hash Algorithm 1
SHA1CryptoServiceProvider, 209
ShadowCopy attributes, 14
Shared assembly files, 17
Shared names, 7
Shell host, 46
Shopcartadd.aspx, code listing (analysis),

508–513
Shopping cart

articles, loading, 491
content, 490
page, 502–513

ShowTransformed() subprocedure, 271
Side-by-side deployment, 23
Side-by-side execution, 8
SignatureMethod element, 220
SignedInfo element, 220

Simple Object Access Protocol (SOAP),
519

protocol, 529
simpleType data structures, 94
Single domain, 6
Skeleton class, 31
SkipVerification (permission set), 176,

193, 194
Snap-in type. See Persistence
SOAP. See Simple Object Access

Protocol
Solution Explorer, 64–65
Solutions, 64
SOM. See Schema Object Model
Source Safe, usage, 67
SQL. See Structured Query Language
SQLOLEDB, 412
SSL. See Secure Sockets Layer
Stack slots, 42
Stack walking, 166–168, 181
StackTrace, 25–26
Start-tag, 89, 92, 212
Static assembly, 6
Static methods, 20
Static pointers, 35
Static reference, 12
Storage, 453–454
streamFile object, 440
Strings

construction, 382
description, 23

Strong reference, 41
Structured Query Language (SQL), 256

database, 286
Enterprise Manager, 320, 443
query, 273, 411, 422, 426–427

deletion, 428
Query Analyzer, 317, 443

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 560

Index 561

script, 317, 325
statements, 138, 313, 323, 333, 391

construction, 342, 346
generation, 335, 339
usage, 417, 499

strings, 486, 531
construction, 488

Structured Query Language (SQL)
Server, 312, 445, 453, 457

conversion, 531–532
database, 285, 317–321
migration, 529–532
.NET data provider, 412
version 7.0, 464

Northwind database, 274
version 2000, 443

Style sheet, 266. See also Extensible
Stylesheet Language; Extensible
Stylesheet Language
Transformation

Subject line, 285
Submit button

code, 294
handler code, 294–298

Subnodes, 113
Subroutine, exiting, 487
Success message, sending, 488–489
Supplier

interface, 462, 469–490
user identification/password, checking,

483–485
Symmetric key algorithm, 208, 209
System

account, 189
architecture. See Business-to-business
files, 180
object, 2
services, usage, 24–27, 50–51

System.Collections namespace, 338
System.Collections.IEnumerable, 142
System.Data namespace, 286, 288
System.Object, 142
System.Reflection namespace, 21
System.Security.Cryptography, 208

X509 certificates, 208
System.Security.Cryptography.Xml, 208
System.Web.UI.Page, 359
System.Web.UI.WebControls, 365
System.Xml classes. See Document

Object Model
selection, 132–145
usage, 122

System.Xml namespace, 124–145, 286
usage, 145–155
XML DOM, mapping, 130–132

System.Xml.Schema classes, 124–129
System.Xml.Schema namespace, 127

T
Table collection, 413, 414
Tag name, 113. See also Attributes;

Elements; User-given tag names
tag-name, 105
targetNamespace attribute, 288
Task List explorer, 67–68
TCP/IP. See Transmission Control

Protocol/Internet Protocol
Template-based declarative language, 98
template-name, 105
Termination control, 39
Testing situations, 45
Text

areas, location. See Entry
boxes

control, 402

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 561

562 Index

validation, 154
data type, 530
file, 85

Text-based approach, 286
Text-based schema, 125
Text-type, 91
Thank You page, 512
Thank You panel (addition), PnlThank

(usage), 294
Third-party application, 524
Third-party programming language

users, 5
Thread

browsing, 376–379
class, 353

design, 347–350
creation, 385–389
ID, 313
object, 347
panel, 387

ThreadID, 314, 316, 336–338, 388
field, 389

ThreadList class, 350, 352
design, 344–347

TIBCO. See XML Authority
TODO, 68
Token. See Custom token; Default

tokens
property, 192

Toolbox, 61–62
Top-down ASP scripts, 321
Top-level root, 116
Transaction, beginning, 486
Transform method, 271
Transform() method, 98
TransformSource attribute, 267
Translators, 455

Transmission Control Protocol/Internet
Protocol (TCP/IP), 233

Transport protocols, 457
TravelDownATree(tree as XmlNode),

245
Tree-oriented view, 120
TreeWalker, 118, 120–121
Triple DES (3DES), 209
TripleDESCryptoServiceProvider, 209
try block, 422, 424
Try/Catch

method. See Errors
segment, 296
set, 25
statement, 26, 483
support, 462
system, 24
usage, 509

txtEmpCode, 422
txtSalary, 428
Types, 19–22, 529. See also Public types

boundary, 8
conversions. SeeVariable type

conversions
enumerating. See Nonpublic types
exportation, 18
safety, 32, 165–166
values, checking, 488

Type-safe code, 32

U
UDA. See Universal data access
UDDI. See Universal Description

Discovery and Integration
UDL. See Universal Data Link
UID, 486
UIPermission, 167, 180, 183
UML. See Unified Modeling Language

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 562

Index 563

UNC names, 198
UNDONE, 68
Unified Modeling Language (UML),

323
diagram, 336, 351

Uniform Resource Locator (URL)
codebase, 16
format, 488

Unique Identifier, 313
Universal data access (UDA), 408
Universal Data Link (UDL), 61
Universal Description Discovery and

Integration (UDDI), 524
Unmanaged assembly code, 21
Unmanaged code, 4, 180, 189

interop, 42
Unmanaged COM, 21
Unregistered user, 382
Update

form, 422–428
method, 329, 335

Update(), 326
updatecat1.aspx

code listing, analysis, 482–490
coding, 470–481

URI, 522
URL. See Uniform Resource Locator
URN, 26
User. See Banned user

account, usage, 189
class, 336–342

design, 325–333
code group, 194
constructor, 331
Control, 366
functions, creation, 382–389, 405
ID, 331–332, 360, 372, 516, 530

obtaining, 383, 392

identification/password, checking. See
Supplier

name, 191
object, 326–327, 368, 383

password, 385
security level, 170, 193
table, 331, 352, 393

User interface (UI), 290, 312, 321, 399
design, 357–358
determination, 404

userArea.ascx control, 368
UserControls, 493, 517
User-created page, 75
User-defined data types, 97
User-given tag names, 92
UserID, 316, 331
userId value. See also Session
User Interface processing, 409
UserLatestBuildVersion, 14
Username, 383, 424, 444. See also

Requests
field, 332

UTF-8 encoded string, 217

V
Validate method, 329–330, 333
Validation. See Real-time validation

expression, 293
ValidationSummary, 366, 383
Value, 20, 234

property, 234
Value-added network (VAN), 454, 456
VAN. SeeValue-added network
Variable type conversions, 233
VB. SeeVisual Basic
Vendors, 498
Verification. See Role-based verification

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 563

564 Index

Version
boundary, 8
policy, checking, 12

Versioning
constraints, 17
support, 23–24

VersionNew, 14
VES. SeeVirtual Execution System
View/Source header, 523
Virtual database, 484
Virtual Execution System (VES), 30, 42
Virtual methods, 20
Virtual Private Network (VPN), 160
Virtual Private Networking (VPN), 455
Visual Basic (VB), 162

application. See Command-line VB
application

COM objects, 322
IDE, 63
Profile, 334
recursive procedure, 244
VB.NET, 5, 56, 69, 99. See also

Declarative code
class, 325

VBScript, 232
Visual Interdev IDE, 63
Visual Studio.NET IDE, 56

FAQs, 81
solutions, 79–80

Visual Studio.NET (VS.NET), 56–58,
86, 251–254

components, 58–68
features, 68–75
usage, 250
XML Designer, XML document

creation, 87–88
XML validation, 96

Vocabularies, 457. See Extensible
Markup Language

VPN. SeeVirtual Private Network;
Virtual Private Networking

VS.NET. SeeVisual Studio.NET

W
W3C. See World Wide Web Consortium
Weak references, usage, 41
Web Service Description Language

(WSDL), 524–529
file, 77

WebControl, 366
WebService class, 521
Well-formed document, 92
Well-formed XML documents, 92–98
Whitespace node, 238
Wholesale catalog

construction, 452–453
FAQs, 535–536
solutions, 533–535

design considerations, 453–462, 533
WindowIdentity object, 189, 190
WindowIdentity properties, 192
Windows

2000, 207
domain, 165
environment, 164
servers, 209

directory, 16
NT

environment, 164
systems, 23

platform, 189
principal, 164
token, 189
user, 164, 186

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 564

Index 565

WindowsIdentity object, 187, 189
WindowsImpersonationContext

(command), 189
WindowsPrincipal (command),

186–187, 191
code, impersonation, 189

WindowsPrincipal.Identity
.IsAuthenticated, 192

WindowsPrincipal.Identity.Name
(value), 191

WinMain, 8
Wizard_Machine_Policy (code group),

200–201
World Wide Web Consortium (W3C),

84, 98, 105, 218, 264
DOM recommendations, 130
recommendations, 88, 90, 112–113
software development, 123
specification, finalization, 114
standards, 130
XMLSchema, 70
XPath 1.0 recommendation, 256

World Wide Web (WWW / Web)
applications, 104, 232
development, 233, 288
page, 516

design, 494
server, 212, 441
Web-based applications, 409
Web-related classes, 28
Web-usable application, 3
XML interaction, 232

FAQs, 281–282
solutions, 278–281

World Wide Web (WWW / Web)
services, 56, 76

coding, 519–521
interaction. See Business
overview, 519

testing, 522–524
usage, 524–529

WriteAttributes, 239
WriteAttributeString, 239
WriteComment, 239
WriteElementString, 239
WriteEndAttribute, 239
WriteEndDocument, 239
WriteStartDocument, 239
WriteStartDocument() method, 435
WriteState, 239
WriteXml method, 273, 275
WriteXML class, 297
WriteXmlSchema, 273

method, 275
WSDL. See Web Service Description

Language

X
X509 certificates. See

System.Security.Cryptography
XHTML, 493, 494
XLink, 218
XML. See Extensible Markup Language
XML Authority (TIBCO), 96
XmlAddressBook folder, 145, 151
XmlAttribute, 140, 149
XmlAttributeElementProject folder, 140
XmlConfigFile, 361
XmlDataDocument, 136–138, 144

class, usage, 247–256
creation, 137
DataSet, 247
object, 247

multiple tables, viewing, 252–256
relational view (usage), 249–252

usage, 145

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 565

566 Index

XmlDataDocumentProject folder, 136
XmlDocument

class, 133–134, 234, 485
creation, 141
loading, 248–249
object, 365

navigation, 243–244
usage. See Extensible Markup

Language documents
XmlDocumentProject, 135
XmlElement

class, 139
creation, 149

XML.NET guestbook
creation, 284–285

FAQs, 310
solutions, 308–309

functional design requirements, 308
XmlNode, 139

base class, 133
class, 132–134, 485

XmlNodeList, 144
class, 485
collection, 248

XmlNodeList class, 142
foreach usage, 144

xmlns attribute, 288
XmlSchemaComplexType, 125
XmlSchemaObject class, 125
XmlTextReader, 138, 234, 239, 439

object, 235, 236, 237, 243
XmlTextWriter, 435

class, 234
usage. See Extensible Markup

Language documents
object, 239–240

xmlWrite object, 435
XMLWriteMode.WriteSchema, 297
XPath, 105–106. See also Document

Object Model
expression, 153, 257
queries, 257

string, 365
XPathDocument

objects, usage, 259–260. See also
Document

usage. See Extensible Markup
Language

XPathExpression, 123
XPathIterator object, 248
XPathNavigator

objects, 256
usage, 259–260. See also Document

usage. See Extensible Markup
Language

XPathNodeIterator, 258, 259
XPathResult interface, 123
XPathSetIterator, 123
XPointer, 218
XSD. See Extensible Markup Language

Schema Definition
XSL. See Extensible Stylesheet Language
XSLT. See Extensible Stylesheet

Language Transformation
XSLTransform class, 98, 264
XSLTransform object, 271

Z
_Zone (ending), 200
Zone evidence, 201
Zone-based code groups, 201
Zoned evidence, 201

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 566

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 567

SYNGRESS SOLUTIONS…

soluti o n s @ s y n g r e s s . c o m

.NET Mobile Web Developer’s Guide
The .NET Mobile Web Developer’s Guide provides a solid foundation
for developing mobile applications using Microsoft technologies. With
a focus on using ASP .NET and the .NET Mobile Internet Toolkit, this
book will give you the insight to use Microsoft technologies for devel-
oping mobile applications. It will also show how to avoid having to
customize the output of your application.
ISBN: 1-928994-56-3

Price: $49.95 USA, $77.95 CAN

AVAILABLE NOW
ORDER at
www.syngress.com

AVAILABLE NOW!
ORDER at
www.syngress.com

.NET Developer’s Kit, Including ASP, C#, and
Visual Basic
This 3-book box set will help developers build solutions for
the .NET platform. The set includes: ASP .NET Web
Developer’s Guide, C# .NET Web Developer’s Guide, and
VB .NET Developer’s Guide.
ISBN: 1-928994-61-x

Price: $119.95 USA, $185.95 CAN

BizTalk Server 2000 Developer’s Guide for .NET
BizTalk Server 2000 is part of the .NET family of Enterprise Servers
designed to work together to provide e-business solutions. The .NET
Enterprise Servers are based on open Web standards, such as XML,
to allow an organization to integrate and orchestrate their applica-
tions and service needs into a single comprehensive solution. This
book shows how to use BizTalk Server 2000 to create, integrate,
manage, and automate business processes for the exchange of
business documents.
ISBN: 1-928994-40-7

Price: $49.95 USA, $77.95 CAN

AVAILABLE NOW
ORDER at
www.syngress.com

155_XML_NET_index.qxd 3/7/02 3:22 PM Page 568

http://www.syngress.com/catalog/sg_main.cfm?pid=1753
http://www.syngress.com/catalog/sg_main.cfm?pid=1452
http://www.syngress.com/

	Cover
	Table of Contents
	Foreword
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Index
	Related Titles

