- ‘Q »~

INTRODUCTIONTO

™

A : JAVA™ 7
A b - - /] 2 ™
< 4 | A\ .;,_/ 1) o and JAVA™ 8

INTRODUCTION TO

JAVA

PROGRAMMING

COMPREHENSIVE VERSION

Tenth Edition

Y. Daniel Liang

Armstrong Atlantic State University

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

To Samantha, Michael, and Michelle

Editorial Director, ECS: Marcia Horton Cover Designer: Marta Samsel

Executive Editor: Tracy Johnson (Dunkelberger) Permissions Supervisor: Michael Joyce

Editorial Assistant: Jenah Blitz-Stoehr Permissions Administrator: Jenell Forschler
Director of Marketing: Christy Lesko Director, Image Asset Services: Annie Atherton
Marketing Manager: Yez Alayan Manager, Visual Research: Karen Sanatar
Marketing Assistant: Jon Bryant Image Permission Coordinator:

Director of Program Management: Erin Gregg Cover Art: © Blend Images—PBNJ Productions/Getty
Program Management-Team Lead: Scott Disanno Images

Program Manager: Carole Snyder Media Project Manager: Renata Butera

Project Management-Team Lead: Laura Burgess Full-Service Project Management: Haseen Khan,
Project Manager: Robert Engelhardt Laserwords Pvt Ltd

Procurement Specialist: Linda Sager

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not
sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2015, 2013, 2011 Pearson Education, Inc., publishing as Prentice Hall, 1 Lake Street, Upper Saddle
River, New Jersey, 07458. All rights reserved. Printed in the United States of America. This publication is protected
by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in
a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request.

Prentice Hall
is an imprint of

10987654321

PEARSON

ISBN 10: 0-13-376131-2

A .
i www.pearsonhighered.com ISBN 13: 978-0-13-376131-3

PREFACE

Dear Reader,

Many of you have provided feedback on earlier editions of this book, and your comments and
suggestions have greatly improved the book. This edition has been substantially enhanced in
presentation, organization, examples, exercises, and supplements. The new edition:

B Replaces Swing with JavaFX. JavaFX is a new framework for developing Java GUI pro-
grams. JavaFX greatly simplifies GUI programming and is easier to learn than Swing.

B Introduces exception handling, abstract classes, and interfaces before GUI programming to
enable the GUI chapters to be skipped completely if the instructor chooses not to cover GUIL

m Covers introductions to objects and strings earlier in Chapter 4 to enable students to use
objects and strings to develop interesting programs early.

B Includes many new interesting examples and exercises to stimulate student interests. More
than 100 additional programming exercises are provided to instructors only on the Com-
panion Website.

Please visit www.pearsonhighered.com/liang for a complete list of new features as well as
correlations to the previous edition.

The book is fundamentals first by introducing basic programming concepts and techniques
before designing custom classes. The fundamental concepts and techniques of selection
statements, loops, methods, and arrays are the foundation for programming. Building this
strong foundation prepares students to learn object-oriented programming and advanced Java
programming.

This book teaches programming in a problem-driven way that focuses on problem solv-
ing rather than syntax. We make introductory programming interesting by using thought-
provoking problems in a broad context. The central thread of early chapters is on problem
solving. Appropriate syntax and library are introduced to enable readers to write programs for
solving the problems. To support the teaching of programming in a problem-driven way, the
book provides a wide variety of problems at various levels of difficulty to motivate students.
To appeal to students in all majors, the problems cover many application areas, including
math, science, business, financial, gaming, animation, and multimedia.

The book seamlessly integrates programming, data structures, and algorithms into one text.
It employs a practical approach to teach data structures. We first introduce how to use various
data structures to develop efficient algorithms, and then show how to implement these data
structures. Through implementation, students gain a deep understanding on the efficiency of
data structures and on how and when to use certain data structures. Finally we design and
implement custom data structures for trees and graphs.

The book is widely used in the introductory programming, data structures, and algorithms
courses in the universities around the world. This comprehensive version covers fundamentals
of programming, object-oriented programming, GUI programming, data structures, algorithms,
concurrency, networking, database, and Web programming. It is designed to prepare students
to become proficient Java programmers. A brief version (Introduction to Java Programming,
Brief Version, Tenth Edition) is available for a first course on programming, commonly known
as CS1. The brief version contains the first 18 chapters of the comprehensive version. The first
13 chapters are appropriate for preparing the AP Computer Science exam.

The best way to teach programming is by example, and the only way to learn program-
ming is by doing. Basic concepts are explained by example and a large number of exercises

what is new?

fundamentals-first

problem-driven

data structures

comprehensive version

brief version
AP Computer Science

examples and exercises

www.pearsonhighered.com/liang

iv Preface

with various levels of difficulty are provided for students to practice. For our programming
courses, we assign programming exercises after each lecture.

Our goal is to produce a text that teaches problem solving and programming in a broad
context using a wide variety of interesting examples. If you have any comments on and sug-
gestions for improving the book, please email me.

Sincerely,

Y. Daniel Liang
y.daniel.liang @ gmail.com
www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang

ACMV/IEEE Curricular 2013 and ABET
Course Assessment

The new ACM/IEEE Computer Science Curricular 2013 defines the Body of Knowledge
organized into 18 Knowledge Areas. To help instructors design the courses based on this book,
we provide sample syllabi to identify the Knowledge Areas and Knowledge Units. The sample
syllabi are for a three semester course sequence and serve as an example for institutional cus-
tomization. The sample syllabi are available to instructors at www.pearsonhighered.com/liang.
Many of our users are from the ABET-accredited programs. A key component of the ABET
accreditation is to identify the weakness through continuous course assessment against the course
outcomes. We provide sample course outcomes for the courses and sample exams for measuring
course outcomes on the instructor Website accessible from www.pearsonhighered.com/liang.

What’s New in This Edition?

This edition is completely revised in every detail to enhance clarity, presentation, content,
examples, and exercises. The major improvements are as follows:

B Updated to Java 8.

B Since Swing is replaced by JavaFX, all GUI examples and exercises are revised using
JavaFX.

B Lambda expressions are used to simplify coding in JavaFX and threads.

B More than 100 additional programming exercises with solutions are provided to the
instructor on the Companion Website. These exercises are not printed in the text.

B Math methods are introduced earlier in Chapter 4 to enable students to write code using
math functions.

B Strings are introduced earlier in Chapter 4 to enable students to use objects and strings to
develop interesting programs early.

B The GUI chapters are moved to after abstract classes and interfaces so that these chapters
can be easily skipped if the instructor chooses not to cover GUI.

m Chapters 4, 14, 15, and 16 are brand new chapters.

Chapters 28 and 29 have been substantially revised with simpler implementations for min-
imum spanning trees and shortest paths.

www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang
www.pearsonhighered.com/liang
www.pearsonhighered.com/liang

Preface v

Pedagogical Features

The book uses the following elements to help students get the most from the material:

B The Objectives at the beginning of each chapter list what students should learn from the
chapter. This will help them determine whether they have met the objectives after completing
the chapter.

B The Introduction opens the discussion with representative problems to give the reader an
overview of what to expect from the chapter.

B Key Points highlight the important concepts covered in each section.

B Check Points provide review questions to help students track their progress as they read
through the chapter and evaluate their learning.

B Problems and Case Studies, carefully chosen and presented in an easy-to-follow style,
teach problem solving and programming concepts. The book uses many small, simple, and
stimulating examples to demonstrate important ideas.

B The Chapter Summary reviews the important subjects that students should under-
stand and remember. It helps them reinforce the key concepts they have learned in the
chapter.

B Quizzes are accessible online, grouped by sections, for students to do self-test on pro-
gramming concepts and techniques.

B Programming Exercises are grouped by sections to provide students with opportunities
to apply the new skills they have learned on their own. The level of difficulty is rated as
easy (no asterisk), moderate (*), hard (**), or challenging (*#%). The trick of learning
programming is practice, practice, and practice. To that end, the book provides a great
many exercises. Additionally, more than 100 programming exercises with solutions are
provided to the instructors on the Companion Website. These exercises are not printed in
the text.

m Notes, Tips, Cautions, and Design Guides are inserted throughout the text to offer valu-
able advice and insight on important aspects of program development.

Note

Provides additional information on the subject and reinforces important concepts.

Tip

Teaches good programming style and practice.

Caution
Helps students steer away from the pitfalls of programming errors.

Design Guide
Provides guidelines for designing programs.

Flexible Chapter Orderings

The book is designed to provide flexible chapter orderings to enable GUI, exception handling,
recursion, generics, and the Java Collections Framework to be covered earlier or later. The
diagram on the next page shows the chapter dependencies.

IA

208j2ld

Part I: Fundamentals of Part II: Object-Oriented Part I1I: GUI Programming Part IV: Data Structures and Part V: Advanced Java
Programming

Programming Programming Algorithms

II

THIHAH

Note: Chapters 1-18 are in the
brief version of this book.

Note: Chapters 1-33 are in the
comprehensive version.

Note: Chapters 34—42 are bonus
chapters available from the
Companion Website.

Organization of the Book

The chapters can be grouped into five parts that, taken together, form a comprehensive introduc-
tion to Java programming, data structures and algorithms, and database and Web programming.
Because knowledge is cumulative, the early chapters provide the conceptual basis for under-
standing programming and guide students through simple examples and exercises; subsequent
chapters progressively present Java programming in detail, culminating with the development
of comprehensive Java applications. The appendixes contain a mixed bag of topics, including an
introduction to number systems, bitwise operations, regular expressions, and enumerated types.

Part I: Fundamentals of Programming (Chapters 1-8)

The first part of the book is a stepping stone, preparing you to embark on the journey of learning
Java. You will begin to learn about Java (Chapter 1) and fundamental programming techniques
with primitive data types, variables, constants, assignments, expressions, and operators (Chapter 2),
selection statements (Chapter 3), mathematical functions, characters, and strings (Chapter 4), loops
(Chapter 5), methods (Chapter 6), and arrays (Chapters 7-8). After Chapter 7, you can jump to
Chapter 18 to learn how to write recursive methods for solving inherently recursive problems.

Part I1: Object-Oriented Programming (Chapters 9-13, and 17)

This part introduces object-oriented programming. Java is an object-oriented programming
language that uses abstraction, encapsulation, inheritance, and polymorphism to provide
great flexibility, modularity, and reusability in developing software. You will learn program-
ming with objects and classes (Chapters 9—-10), class inheritance (Chapter 11), polymorphism
(Chapter 11), exception handling (Chapter 12), abstract classes (Chapter 13), and interfaces
(Chapter 13). Text I/O is introduced in Chapter 12 and binary I/O is discussed in Chapter 17.

Part III: GUI Programming (Chapters 14-16 and Bonus Chapter 34)

JavaFX is a new framework for developing Java GUI programs. It is not only useful for
developing GUI programs, but also an excellent pedagogical tool for learning object-oriented
programming. This part introduces Java GUI programming using JavaFX in Chapters 14-16.
Major topics include GUI basics (Chapter 14), container panes (Chapter 14), drawing shapes
(Chapter 14), event-driven programming (Chapter 15), animations (Chapter 15), and GUI
controls (Chapter 16), and playing audio and video (Chapter 16). You will learn the architec-
ture of JavaFX GUI programming and use the controls, shapes, panes, image, and video to
develop useful applications. Chapter 34 covers advanced features in JavaFX.

Part I'V: Data Structures and Algorithms (Chapters 18-29 and Bonus Chapters 40—41)

This part covers the main subjects in a typical data structures and algorithms course. Chapter 18
introduces recursion to write methods for solving inherently recursive problems. Chapter 19
presents how generics can improve software reliability. Chapters 20 and 21 introduce the
Java Collection Framework, which defines a set of useful API for data structures. Chapter 22
discusses measuring algorithm efficiency in order to choose an appropriate algorithm for
applications. Chapter 23 describes classic sorting algorithms. You will learn how to implement
several classic data structures lists, queues, and priority queues in Chapter 24. Chapters 25 and
26 introduce binary search trees and AVL trees. Chapter 27 presents hashing and implement-
ing maps and sets using hashing. Chapters 28 and 29 introduce graph applications. The 2-4
trees, B-trees, and red-black trees are covered in Bonus Chapters 40—41.

Part V: Advanced Java Programming (Chapters 30-33 and Bonus Chapters 35-39, 42)

This part of the book is devoted to advanced Java programming. Chapter 30 treats the use
of multithreading to make programs more responsive and interactive and introduces parallel
programming. Chapter 31 discusses how to write programs that talk with each other from
different hosts over the Internet. Chapter 32 introduces the use of Java to develop database

Preface wvii

viii Preface

IDE tutorials

projects. Chapter 33 introduces modern Web application development using JavaServer Faces.
Chapter 35 delves into advanced Java database programming. Chapter 36 covers the use of
internationalization support to develop projects for international audiences. Chapters 37 and
38 introduce how to use Java servlets and JavaServer Pages to generate dynamic content from
Web servers. Chapter 39 discusses Web services. Chapter 42 introduces testing Java programs
using JUnit.

Appendixes

This part of the book covers a mixed bag of topics. Appendix A lists Java keywords.
Appendix B gives tables of ASCII characters and their associated codes in decimal and in
hex. Appendix C shows the operator precedence. Appendix D summarizes Java modifiers and
their usage. Appendix E discusses special floating-point values. Appendix F introduces num-
ber systems and conversions among binary, decimal, and hex numbers. Finally, Appendix G
introduces bitwise operations. Appendix H introduces regular expressions. Appendix I covers
enumerated types.

Java Development Tools

You can use a text editor, such as the Windows Notepad or WordPad, to create Java programs
and to compile and run the programs from the command window. You can also use a Java
development tool, such as NetBeans or Eclipse. These tools support an integrated develop-
ment environment (IDE) for developing Java programs quickly. Editing, compiling, building,
executing, and debugging programs are integrated in one graphical user interface. Using these
tools effectively can greatly increase your programming productivity. NetBeans and Eclipse
are easy to use if you follow the tutorials. Tutorials on NetBeans and Eclipse can be found
under Tutorials on the Student Companion Website at www.pearsonhighered.com/liang.

Student Resource Website

The Student Resource Website www.pearsonhighered.com/liang provides access to some of the
following resources. Other resources are available using the student access code printed on the
inside front cover of this book. (For students with a used copy of this book, you can purchase
access to the premium student resources through www.pearsonhighered.com/liang.)

Answers to review questions

Solutions to even-numbered programming exercises
Source code for the examples in the book

Interactive quiz (organized by sections for each chapter)
Supplements

Debugging tips

Algorithm animations

Errata

Instructor Resource Website

The Instructor Resource Website, accessible from www.pearsonhighered.com/liang, provides
access to the following resources:

B Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted
source code and to run programs without leaving the slides.

B Solutions to all programming exercises. Students will have access to the solutions of even-
numbered programming exercises.

www.pearsonhighered.com/liang
www.pearsonhighered.com/liang
www.pearsonhighered.com/liang
www.pearsonhighered.com/liang

B More than 100 additional programming exercises organized by chapters. These exercises
are available only to the instructors. Solutions to these exercises are provided.

B Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than two thousand questions.)

B Sample exams. Most exams have four parts:
B Multiple-choice questions or short-answer questions
m Correct programming errors
B Trace programs
B Write programs

B ACM/IEEE Curricula 2013. The new ACM/IEEE Computer Science Curricula 2013
defines the Body of Knowledge organized into 18 Knowledge Areas. To help instructors
design the courses based on this book, we provide sample syllabi to identify the Knowl-
edge Areas and Knowledge Units. The sample syllabi are for a three semester course
sequence and serve as an example for institutional customization. Instructors can access
the syllabi at www.pearsonhighered.com/liang.

B Sample exams with ABET course assessment.

B Projects. In general, each project gives a description and asks students to analyze, design,
and implement the project.

Some readers have requested the materials from the Instructor Resource Website. Please
understand that these are for instructors only. Such requests will not be answered.

Online Practice and Assessment
with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of pro-
gramming. Through practice exercises and immediate, personalized feedback, MyProgram-
minglLab improves the programming competence of beginning students who often struggle
with the basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgramminglLab course consists of hundreds of
small practice problems organized around the structure of this textbook. For students, the sys-
tem automatically detects errors in the logic and syntax of their code submissions and offers
targeted hints that enable students to figure out what went wrong—and why. For instructors,
a comprehensive gradebook tracks correct and incorrect answers and stores the code inputted
by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgramminglab in
your course, Visit www.myprogramminglab.com.

VideoNotes

We are excited about the new VideoNotes feature that is found in this new edition. These
videos provide additional help by presenting examples of key topics and showing how to
solve problems completely, from design through coding. VideoNotes are available from
www.pearsonhighered.com/liang.

Preface ix

MyProgramminglLab’

VideoNote

www.pearsonhighered.com/liang
www.myprogramminglab.com
www.pearsonhighered.com/liang

x Preface

P

Animation

Algorithm Animations

We have provided numerous animations for algorithms. These are valuable pedagogical tools
to demonstrate how algorithms work. Algorithm animations can be accessed from the Com-
panion Website.

Acknowledgments

I would like to thank Armstrong Atlantic State University for enabling me to teach what I
write and for supporting me in writing what I teach. Teaching is the source of inspiration for
continuing to improve the book. I am grateful to the instructors and students who have offered
comments, suggestions, bug reports, and praise.

This book has been greatly enhanced thanks to outstanding reviews for this and previous
editions. The reviewers are: Elizabeth Adams (James Madison University), Syed Ahmed (North
Georgia College and State University), Omar Aldawud (Illinois Institute of Technology), Stefan
Andrei (Lamar University), Yang Ang (University of Wollongong, Australia), Kevin Bierre
(Rochester Institute of Technology), David Champion (DeVry Institute), James Chegwidden
(Tarrant County College), Anup Dargar (University of North Dakota), Charles Dierbach (Towson
University), Frank Ducrest (University of Louisiana at Lafayette), Erica Eddy (University of
Wisconsin at Parkside), Deena Engel (New York University), Henry A. Etlinger (Rochester Institute
of Technology), James Ten Eyck (Marist College), Myers Foreman (Lamar University), Olac
Fuentes (University of Texas at El Paso), Edward F. Gehringer (North Carolina State University),
Harold Grossman (Clemson University), Barbara Guillot (Louisiana State University), Stuart
Hansen (University of Wisconsin, Parkside), Dan Harvey (Southern Oregon University), Ron
Hofman (Red River College, Canada), Stephen Hughes (Roanoke College), Vladan Jovanovic
(Georgia Southern University), Edwin Kay (Lehigh University), Larry King (University of
Texas at Dallas), Nana Kofi (Langara College, Canada), George Koutsogiannakis (Illinois
Institute of Technology), Roger Kraft (Purdue University at Calumet), Norman Krumpe (Miami
University), Hong Lin (DeVry Institute), Dan Lipsa (Armstrong Atlantic State University),
James Madison (Rensselaer Polytechnic Institute), Frank Malinowski (Darton College),
Tim Margush (University of Akron), Debbie Masada (Sun Microsystems), Blayne Mayfield
(Oklahoma State University), John McGrath (J.P. McGrath Consulting), Hugh McGuire (Grand
Valley State), Shyamal Mitra (University of Texas at Austin), Michel Mitri (James Madison
University), Kenrick Mock (University of Alaska Anchorage), Frank Murgolo (California
State University, Long Beach), Jun Ni (University of lowa), Benjamin Nystuen (University of
Colorado at Colorado Springs), Maureen Opkins (CA State University, Long Beach), Gavin
Osborne (University of Saskatchewan), Kevin Parker (Idaho State University), Dale Parson
(Kutztown University), Mark Pendergast (Florida Gulf Coast University), Richard Povinelli
(Marquette University), Roger Priebe (University of Texas at Austin), Mary Ann Pumphrey (De
Anza Junior College), Pat Roth (Southern Polytechnic State University), Amr Sabry (Indiana
University), Ben Setzer (Kennesaw State University), Carolyn Schauble (Colorado State
University), David Scuse (University of Manitoba), Ashraf Shirani (San Jose State University),
Daniel Spiegel (Kutztown University), Joslyn A. Smith (Florida Atlantic University), Lixin
Tao (Pace University), Ronald F. Taylor (Wright State University), Russ Tront (Simon Fraser
University), Deborah Trytten (University of Oklahoma), Michael Verdicchio (Citadel), Kent
Vidrine (George Washington University), and Bahram Zartoshty (California State University
at Northridge).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank Tracy
Johnson and her colleagues Marcia Horton, Yez Alayan, Carole Snyder, Scott Disanno, Bob
Engelhardt, Haseen Khan, and their colleagues for organizing, producing, and promoting this
project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

BRIEF CONTENTS

AN B O IRV

10

12
13
14
15

16
17
18
19
20

21

22
23
24

25
26
27
28

Introduction to Computers, Programs,

and Java
Elementary Programming
Selections

Mathematical Functions, Characters,
and Strings

Loops

Methods

Single-Dimensional Arrays
Multidimensional Arrays

Objects and Classes
Object-Oriented Thinking
Inheritance and Polymorphism
Exception Handling and Text 1/O
Abstract Classes and Interfaces
JavaFX Basics

Event-Driven Programming
and Animations

JavaFX Ul Controls and Multimedia
Binary 1/O

Recursion

Generics

Lists, Stacks, Queues,
and Priority Queues

Sets and Maps
Developing Efficient Algorithms
Sorting

Implementing Lists, Stacks, Queues,
and Priority Queues

Binary Search Trees
AVL Trees

Hashing

Graphs and Applications

33
75

119
157
203
245
287
321
365
409
449
495
535

585
629
677
705
737

761
797
821
861

895
929
965
985
1015

29 Weighted Graphs and Applications

1061

30 Multithreading and Parallel Programming 1097

31 Networking
32 Java Database Programming

33 JavaServer Faces

1139
1173
1213

Chapters 34-42 are bonus Web chapters

34 Advanced JavaFX

35 Advanced Database Programming

36 Internationalization
37 Servlets

38 JavaServer Pages

39 Web Services

40 2-4 Trees and B-Trees
41 Red-Black Trees

42 Testing Using JUnit

APPENDIXES

Java Keywords

The ASCII Character Set
Operator Precedence Chart
Java Modifiers

Special Floating-Point Values
Number Systems

Bitwise Operatoirns

Regular Expressions

Enumerated Types

INDEX

34-1
35-1
36-1
37-1
38-1
39-1
40-1
41-1
42-1

1263
1266
1268
1270
1272
1273
1277
1278
1283

1289

Xi

CONTENTS

Chapter 1 Introduction to Computers, Programs,

and Java
Introduction

1

I.1 2
1.2 What Is a Computer? 2
1.3 Programming Languages 7
1.4 Operating Systems 9
1.5 Java, the World Wide Web, and Beyond 10
1.6 The Java Language Specification, API, JDK, and IDE 11
1.7 A Simple Java Program 12
1.8 Creating, Compiling, and Executing a Java Program 15
1.9 Programming Style and Documentation 18
1.10 Programming Errors 20
I.11 Developing Java Programs Using NetBeans 23
1.12 Developing Java Programs Using Eclipse 25
Chapter 2 Elementary Programming 33
2.1 Introduction 34
2.2 Writing a Simple Program 34
2.3 Reading Input from the Console 37
2.4 ldentifiers 39
2.5 Variables 40
2.6 Assignment Statements and Assignment Expressions 41
2.7 Named Constants 43
2.8 Naming Conventions 44
2.9 Numeric Data Types and Operations 44
2.10 Numeric Literals 48
2.11 Evaluating Expressions and Operator Precedence 50
2.12 Case Study: Displaying the Current Time 52
2.13 Augmented Assignment Operators 54
2.14 Increment and Decrement Operators 55
2.15 Numeric Type Conversions 56
2.16 Software Development Process 59
2.17 Case Study: Counting Monetary Units 63
2.18 Common Errors and Pitfalls 65
Chapter 3 Selections 75
3.1 Introduction 76
3.2 boolean Data Type 76
3.3 if Statements 78
3.4 Two-Way if-else Statements 80
3.5 Nested if and Multi-Way if-else Statements 81
3.6 Common Errors and Pitfalls 83
3.7 Generating Random Numbers 87
3.8 Case Study: Computing Body Mass Index 89
3.9 Case Study: Computing Taxes 90
3.10 Logical Operators 93
3.11 Case Study: Determining Leap Year 97
3.12 Case Study: Lottery 98
3.13 switch Statements 100
3.14 Conditional Expressions 103

xii

3.16

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Chapter 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Chapter 8

8.1
8.2

Operator Precedence and Associativity 104
Debugging 106
Mathematical Functions, Characters,

and Strings 119
Introduction 120
Common Mathematical Functions 120
Character Data Type and Operations 125
The String Type 130
Case Studies 139
Formatting Console Output 145
Loops 157
Introduction 158
The while Loop 158
The do-while Loop 168
The for Loop 170
Which Loop to Use? 174
Nested Loops 176
Minimizing Numeric Errors 178
Case Studies 179
Keywords break and continue 184
Case Study: Checking Palindromes 187
Case Study: Displaying Prime Numbers 188
Methods 203
Introduction 204
Defining a Method 204
Calling a Method 206
void Method Example 209
Passing Arguments by Values 212
Modularizing Code 215
Case Study: Converting Hexadecimals to Decimals 217
Overloading Methods 219
The Scope of Variables 222
Case Study: Generating Random Characters 223
Method Abstraction and Stepwise Refinement 225
Single-Dimensional Arrays 245
Introduction 246
Array Basics 246
Case Study: Analyzing Numbers 253
Case Study: Deck of Cards 254
Copying Arrays 256
Passing Arrays to Methods 257
Returning an Array from a Method 260
Case Study: Counting the Occurrences of Each Letter 261
Variable-Length Argument Lists 264
Searching Arrays 265
Sorting Arrays 269
The Arrays Class 270
Command-Line Arguments 272
Multidimensional Arrays 287
Introduction 288

Two-Dimensional Array Basics 288

xiii

xiv Contents

8.3
8.4
8.5
8.6
8.7
8.8

Chapter 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.11
9.12
9.13
9.14

Chapter

|
|
|
|
|
|
|
I

10

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

10.10
10.11

Chapter

|
|
|
I
|
|
|
I
|

.
.

.
.

Chapter

11

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

10

I
12
13
14
15

12

2.1
2.2

Processing Two-Dimensional Arrays

Passing Two-Dimensional Arrays to Methods
Case Study: Grading a Multiple-Choice Test
Case Study: Finding the Closest Pair

Case Study: Sudoku

Multidimensional Arrays

Objects and Classes

Introduction

Defining Classes for Objects

Example: Defining Classes and Creating Objects
Constructing Objects Using Constructors
Accessing Objects via Reference Variables
Using Classes from the Java Library

Static Variables, Constants, and Methods
Visibility Modifiers

Data Field Encapsulation

Passing Objects to Methods

Array of Objects

Immutable Objects and Classes

The Scope of Variables

The this Reference

Object-Oriented Thinking

Introduction

Class Abstraction and Encapsulation

Thinking in Objects

Class Relationships

Case Study: Designing the Course Class

Case Study: Designing a Class for Stacks
Processing Primitive Data Type Values as Objects
Automatic Conversion between Primitive Types
and Wrapper Class Types

The BigInteger and BigDecimal Classes
The String Class

The StringBuilder and StringBuffer Classes

Inheritance and Polymorphism

Introduction

Superclasses and Subclasses

Using the super Keyword

Overriding Methods

Overriding vs. Overloading

The Object Class and Its toString() Method
Polymorphism

Dynamic Binding

Casting Objects and the instanceof Operator
The Object’s equals Method

The ArrayList Class

Useful Methods for Lists

Case Study: A Custom Stack Class

The protected Data and Methods

Preventing Extending and Overriding

Exception Handling and Text 1/O

Introduction
Exception-Handling Overview

291
293
294
296
298
301

321

322
322
324
329
330
334
337
342
344
347
351
353
355
356

365

366
366
370
373
376
378
380

383
384
386
392

409

410
410
416
419
420
422
423
424
427
431
432
438
439
440
442

449

450
450

12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12

Chapter 15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12

Chapter 16

16.1
16.2

Exception Types

More on Exception Handling
The finally Clause

When to Use Exceptions
Rethrowing Exceptions
Chained Exceptions
Defining Custom Exception Classes
The FiTe Class

File Input and Output
Reading Data from the Web
Case Study: Web Crawler

Abstract Classes and Interfaces

Introduction

Abstract Classes

Case Study: the Abstract Number Class

Case Study: Calendar and GregorianCalendar
Interfaces

The ComparabTe Interface

The CloneabTe Interface

Interfaces vs. Abstract Classes

Case Study: The Rational Class

Class Design Guidelines

JavaFX Basics

Introduction

JavaFX vs Swing and AWT

The Basic Structure of a JavaFX Program
Panes, Ul Controls, and Shapes
Property Binding

Common Properties and Methods for Nodes
The CoTor Class

The Font Class

The Image and ImageView Classes
Layout Panes

Shapes

Case Study: The ClockPane Class

Event-Driven Programming

and Animations

Introduction

Events and Event Sources

Registering Handlers and Handling Events
Inner Classes

Anonymous Inner Class Handlers

Simplifying Event Handling Using Lambda Expressions

Case Study: Loan Calculator
Mouse Events

Key Events

Listeners for Observable Objects
Animation

Case Study: Bouncing Ball

JavaFX UI Controls and Multimedia

Introduction
Labeled and Label

455
458
466
467
468
469
470
473
476
482
484

495

496
496
501
503
506
509
513
517
520
525

535

536
536
536
539
542
545
546
547
549
552
560
572

585

586
588
589
593
594
597
600
602
603
606
608
616

629

630
630

Contents xv

xXvi

Contents

16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14

Chapter 17

17.1
17.2
17.3
17.4
17.5
17.6
17.7

Chapter 18

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10

Chapter 19

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9

Chapter 20

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8

Button

CheckBox

RadioButton

TextField

TextArea

ComboBox

ListView

Scroll1Bar

STider

Case Study: Developing a Tic-Tac-Toe Game
Video and Audio

Case Study: National Flags and Anthems

Binary 1/O

Introduction

How Is Text I/O Handled in Java?
Text 1/0O vs. Binary 1/O

Binary 1/O Classes

Case Study: Copying Files
Object 1/0

Random-Access Files

Recursion

Introduction

Case Study: Computing Factorials

Case Study: Computing Fibonacci Numbers
Problem Solving Using Recursion

Recursive Helper Methods

Case Study: Finding the Directory Size
Case Study: Tower of Hanoi

Case Study: Fractals

Recursion vs. Iteration

Tail Recursion

Generics

Introduction

Motivations and Benefits

Defining Generic Classes and Interfaces
Generic Methods

Case Study: Sorting an Array of Objects
Raw Types and Backward Compatibility
Wildcard Generic Types

Erasure and Restrictions on Generics
Case Study: Generic Matrix Class

Lists, Stacks, Queues,
and Priority Queues

Introduction

Collections

Iterators

Lists

The Comparator Interface

Static Methods for Lists and Collections
Case Study: Bouncing Balls

Vector and Stack Classes

632
634
637
639
641
644
647
651
654
657
662
665

677

678
678
679
680
691
692
697

705

706
706
709
712
714
717
719
722
726
727

737

738
738
740
742
744
746
747
750
752

761

762
762
766
767
772
773
777
781

20.9
20.10

Chapter 21

21.1
21.2
21.3
21.4
21.5
21.6
21.7

Chapter 22

22.1
22.2
223
22.4
22.5
22.6
22.7
22.8
22.9
22.10

Chapter 23

23.1
23.2
233
23.4
23.5
23.6
23.7
23.8

Chapter 24

24.1
24.2
24.3
24.4
24.5
24.6

Chapter 25

25.1
25.2
253
25.4
25.5
25.6

Chapter 26

26.1
26.2
26.3

Queues and Priority Queues
Case Study: Evaluating Expressions

Sets and Maps

Introduction

Sets

Comparing the Performance of Sets and Lists
Case Study: Counting Keywords

Maps

Case Study: Occurrences of Words

Singleton and Unmodifiable Collections and Maps

Developing Efficient Algorithms

Introduction

Measuring Algorithm Efficiency Using Big O Notation
Examples: Determining Big O

Analyzing Algorithm Time Complexity

Finding Fibonacci Numbers Using Dynamic Programming
Finding Greatest Common Divisors Using Euclid’s Algorithm
Efficient Algorithms for Finding Prime Numbers

Finding the Closest Pair of Points Using Divide-and-Conquer
Solving the Eight Queens Problem Using Backtracking
Computational Geometry: Finding a Convex Hull

Sorting

Introduction

Insertion Sort

Bubble Sort

Merge Sort

Quick Sort

Heap Sort

Bucket Sort and Radix Sort
External Sort

Implementing Lists, Stacks, Queues,
and Priority Queues

Introduction

Common Features for Lists
Array Lists

Linked Lists

Stacks and Queues
Priority Queues

Binary Search Trees

Introduction

Binary Search Trees

Deleting Elements from a BST
Tree Visualization and MVC
Iterators

Case Study: Data Compression

AVL Trees

Introduction
Rebalancing Trees
Designing Classes for AVL Trees

783
786

797

798
798
806
809
810
815
816

821

822
822
824
828
831
833
837
843
846
849

861

862
862
864
867
870
874
881
883

895

896
896
900
906
920
924

929
930
930
943
949
952
954

965
966
966
969

Contents xvii

xviii

Contents

26.4
26.5
26.6
26.7
26.8
26.9

Chapter 27

27.1
27.2
27.3
27.4
27.5
27.6
27.7
27.8

Chapter 28

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
28.10

Chapter 29

29.1
29.2
29.3
294
29.5
29.6

Chapter 30

30.1
30.2
30.3
30.4
30.5
30.6
30.7
30.8
30.9
30.10
30.11
30.12
30.13
30.14
30.15
30.16

Overriding the insert Method
Implementing Rotations
Implementing the deTete Method
The AVLTree Class

Testing the AVLTree Class

AVL Tree Time Complexity Analysis

Hashing

Introduction

What Is Hashing?

Hash Functions and Hash Codes

Handling Collisions Using Open Addressing
Handling Collisions Using Separate Chaining
Load Factor and Rehashing

Implementing a Map Using Hashing
Implementing Set Using Hashing

Graphs and Applications

Introduction

Basic Graph Terminologies

Representing Graphs

Modeling Graphs

Graph Visualization

Graph Traversals

Depth-First Search (DFS)

Case Study: The Connected Circles Problem
Breadth-First Search (BFS)

Case Study: The Nine Tails Problem

Weighted Graphs and Applications

Introduction

Representing Weighted Graphs

The WeightedGraph Class

Minimum Spanning Trees

Finding Shortest Paths

Case Study: The Weighted Nine Tails Problem

Multithreading and Parallel

Programming

Introduction

Thread Concepts

Creating Tasks and Threads
The Thread Class

Case Study: Flashing Text
Thread Pools

Thread Synchronization
Synchronization Using Locks
Cooperation among Threads
Case Study: Producer/Consumer
Blocking Queues
Semaphores

Avoiding Deadlocks

Thread States

Synchronized Collections
Parallel Programming

970
971
972
972
978
981

985

986
986
987
989
993
993
995
1004

1015

1016
1017
1019
1024
1034
1037
1038
1042
1045
1048

1061

1062
1063
1065
1072
1078
1086

1097

1098
1098
1098
1102
1105
1106
1108
1112
1114
1119
1122
1124
1126
1126
1127
1128

Chapter 31

31.1
31.2
31.3
31.4
31.5
31.6

Networking

Introduction

Client/Server Computing

The InetAddress Class

Serving Multiple Clients

Sending and Receiving Objects

Case Study: Distributed Tic-Tac-Toe Games

Chapter 32 Java Database Programming

32.1
32.2
323
32.4
32.5
32.6
32.7

Introduction

Relational Database Systems
saL

JDBC
PreparedStatement
CallableStatement
Retrieving Metadata

Chapter 33 JavaServer Faces

33.1
33.2
33.3
334
335
33.6
33.7
33.8
33.9

Introduction

Getting Started with JSF

JSF GUI Components
Processing the Form

Case Study: Calculator

Session Tracking

Validating Input

Binding Database with Facelets
Opening New JSF Pages

1139

1140
1140
1147
1148
1151
1156

1173

1174
1174
1178
1189
1197
1199
1202

1213

1214
1214
1222
1226
1230
1233
1235
1239
1245

Bonus Chapters 34-42 are available from the Companion Website at
www.pearsonhighered.com/liang:

Chapter 34 Advanced JavaFX

Chapter 35 Advanced Database Programming

Chapter 36 Internationalization

Chapter 37 Servlets

Chapter 38 JavaServer Pages
Chapter 39 Web Services

Chapter 40 2-4 Trees and B-Trees
Chapter 41 Red-Black Trees

Chapter 42 Testing Using JUnit

34-1

35-1

36-1

37-1

38-1

39-1

40-1

41-1

42-1

Contents xix

www.pearsonhighered.com/liang

xx Contents

APPENDIXES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I

INDEX

Java Keywords

The ASCII Character Set
Operator Precedence Chart
Java Modifiers

Special Floating-Point Values
Number Systems

Bitwise Operations

Regular Expressions

Enumerated Types

1263
1266
1268
1270
1272
1273
1277
1278
1283

1289

VideoNotes

Locations of VideoNotes
http://www.pearsonhighered.com/liang

Chapter | Introduction to Computers, Programs,

and Java

Your first Java program

Compile and run a Java program
NetBeans brief tutorial

Eclipse brief tutorial

Chapter 2 Elementary Programming
Obtain input
Use operators / and %
Software development process
Compute loan payments
Compute BMI

Chapter 3 Selections
Program addition quiz
Program subtraction quiz
Use multi-way if-else statements
Sort three integers
Check point location

Chapter 4 Mathematical Functions,
Characters, and Strings

Introduce math functions
Introduce strings and objects
Convert hex to decimal
Compute great circle distance
Convert hex to binary

Chapter 5 Loops
Guess a number
Multiple subtraction quiz
Minimize numeric errors
Display loan schedule
Sum a series

Chapter 6 Methods
Define/invoke max method
Use vo1id method
Modularize code
Stepwise refinement
Reverse an integer
Estimate 7

Chapter 7 Single-Dimensional Arrays
Random shuffling
Deck of cards
Selection sort

12
17
23
25

33
37
52
59
60
72

75
7
87
90
10
112

119
120
130
143
I51
153

157
161
164
178
194
195

203

206
209
215
225
234
237

245
250
254
269

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

VideoNote

Command-line arguments
Coupon collector’s problem
Consecutive four

Multidimensional Arrays

Find the row with the largest sum
Grade multiple-choice test
Sudoku

Multiply two matrices

Even number of Is

Objects and Classes

Define classes and objects
Use classes

Static vs. instance

Data field encapsulation
The Fan class

Object-Oriented Thinking

The Loan class

The BMI class

The StackOfIntegers class
Process large numbers

The String class

The MyPoint class

Inheritance and Polymorphism

Geometric class hierarchy

Polymorphism and dynamic binding demo
The ArrayList class

The MyStack class

New Account class

Exception Handling and Text 1/0
Exception-handling advantages

Create custom exception classes
Write and read data
HexFormatException

Abstract Classes and Interfaces

Abstract GeometricObject class
Calendar and GregorianCalendar classes
The concept of interface

Redesign the Rectangle class

JavaFX Basics

Understand property binding
Use Image and ImageView
Use layout panes

272
281
283

287

292
294
298
307
314

321

322
334
337
344
362

365

367
370
378
384
386
400

409
410
424
432
439
446

449
450
470
476
489

495
496
503
506
530

535
542
549
552

http://www.pearsonhighered.com/liang

xxii

Chapter 15

VideoNotes

Use shapes
Display a tictactoe board
Display a bar chart

Event-Driven Programming
and Animations

Handler and its registration
Anonymous handler

Move message using the mouse
Animate a rising flag

Flashing text

Simple calculator

Check mouse point location
Display a running fan

Chapter 16 JavaFX Ul Controls and Multimedia

Use ListView
Use STider

560
578
580

585
592
595
602
608
614
621
622
625

629

647
654

Chapter 17

Chapter 18

TicTacToe

Use Media, MediaPlayer, and MediaView
Audio and image

Use radio buttons and text fields

Set fonts

Binary 1/0
Copy file
Object 1/0
Split a large file

Recursion

Binary search

Directory size

Fractal (Sierpinski triangle)
Search a string in a directory
Recursive tree

657
662
666
669
671

677
691
693
702

705

716
7
722
733
736

INTRODUCTION
TO COMPUTERS,
PROGRAMS,
AND JAVA

Objectives

To understand computer basics, programs, and operating systems
(881.2-1.4).

To describe the relationship between Java and the World Wide Web
(8§1.5).

To understand the meaning of Java language specification, API, JDK,
and IDE (§1.6).

To write a simple Java program (§1.7).

To display output on the console (§1.7).

To explain the basic syntax of a Java program (§1.7).
To create, compile, and run Java programs (§1.8).

To use sound Java programming style and document programs properly

(81.9).

To explain the differences between syntax errors, runtime errors, and
logic errors (§1.10).

To develop Java programs using NetBeans (§1.11).

To develop Java programs using Eclipse (§1.12).

CHAPTER

2 Chapter | Introduction to Computers, Programs, and Java

K
Gﬁoifl);

what is programming?

programming
program
'St
Point
hardware
software
bus

.1 Introduction

The central theme of this book is to learn how to solve problems by writing a program.

This book is about programming. So, what is programming? The term programming means to
create (or develop) software, which is also called a program. In basic terms, software contains
the instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices that you might not think would need it. Of
course, you expect to find and use software on a personal computer, but software also plays a
role in running airplanes, cars, cell phones, and even toasters. On a personal computer, you use
word processors to write documents, Web browsers to explore the Internet, and e-mail pro-
grams to send and receive messages. These programs are all examples of software. Software
developers create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Java programming language.
There are many programming languages, some of which are decades old. Each language
was invented for a specific purpose—to build on the strengths of a previous language, for
example, or to give the programmer a new and unique set of tools. Knowing that there are
so many programming languages available, it would be natural for you to wonder which
one is best. But, in truth, there is no “best” language. Each one has its own strengths and
weaknesses. Experienced programmers know that one language might work well in some
situations, whereas a different language may be more appropriate in other situations. For this
reason, seasoned programmers try to master as many different programming languages as
they can, giving them access to a vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other languages.
The key is to learn how to solve problems using a programming approach. That is the main
theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it is
helpful to review computer basics, programs, and operating systems. If you are already familiar
with such terms as CPU, memory, disks, operating systems, and programming languages, you
may skip Sections 1.2—1.4.

[.2 What Is a Computer?

A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible,
physical elements of the computer, and software provides the invisible instructions that control
the hardware and make it perform specific tasks. Knowing computer hardware isn’t essential
to learning a programming language, but it can help you better understand the effects that
a program’s instructions have on the computer and its components. This section introduces
computer hardware components and their functions.

A computer consists of the following major hardware components (Figure 1.1):

B A central processing unit (CPU)
Memory (main memory)
Storage devices (such as disks and CDs)

Input devices (such as the mouse and keyboard)

Output devices (such as monitors and printers)
B Communication devices (such as modems and network interface cards)

A computer’s components are interconnected by a subsystem called a bus. You can think
of a bus as a sort of system of roads running among the computer’s components; data and
power travel along the bus from one part of the computer to another. In personal computers,

[.2 What Is a Computer? 3

Bus
Storage Communication Input Output
Devices L BuS 49 Devices Devices Devices
e.g., Disk, CD, e.g., Modem e.g., Keyboard, e.g., Monit(;r,
and Tape and NIC Mouse Printer
FiGure I.1 A computer consists of a CPU, memory, storage devices, input devices, output

devices, and communication devices.

the bus is built into the computer’s motherboard, which is a circuit case that connects all of
the parts of a computer together.

[.2.1 Central Processing Unit

The central processing unit (CPU) is the computer’s brain. It retrieves instructions from
memory and executes them. The CPU usually has two components: a control unit and an
arithmetic/logic unit. The control unit controls and coordinates the actions of the other
components. The arithmetic/logic unit performs numeric operations (addition, subtraction,
multiplication, division) and logical operations (comparisons).

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny
electric switches, called transistors, for processing information.

Every computer has an internal clock, which emits electronic pulses at a constant rate.
These pulses are used to control and synchronize the pace of operations. A higher clock speed
enables more instructions to be executed in a given period of time. The unit of measurement of
clock speed is the hertz (Hz), with 1 hertz equaling 1 pulse per second. In the 1990s, computers
measured clocked speed in megahertz (MHz), but CPU speed has been improving continuously;
the clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest proces-
sors run at about 3 GHz.

CPUs were originally developed with only one core. The core is the part of the processor
that performs the reading and executing of instructions. In order to increase CPU processing
power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore
CPU is a single component with two or more independent cores. Today’s consumer comput-
ers typically have two, three, and even four separate cores. Soon, CPUs with dozens or even
hundreds of cores will be affordable.

[.2.2 Bits and Bytes

Before we discuss memory, let’s look at how information (data and programs) are stored in
a computer.

A computer is really nothing more than a series of switches. Each switch exists in two
states: on or off. Storing information in a computer is simply a matter of setting a sequence of
switches on or off. If the switch is on, its value is 1. If the switch is off, its value is 0. These Os
and 1s are interpreted as digits in the binary number system and are called bits (binary digits).

The minimum storage unit in a computer is a byfe. A byte is composed of eight bits. A
small number such as 3 can be stored as a single byte. To store a number that cannot fit into a
single byte, the computer uses several bytes.

Data of various kinds, such as numbers and characters, are encoded as a series of bytes.
As a programmer, you don’t need to worry about the encoding and decoding of data, which
the computer system performs automatically, based on the encoding scheme. An encoding
scheme is a set of rules that govern how a computer translates characters, numbers, and sym-
bols into data the computer can actually work with. Most schemes translate each character

motherboard

CPU

speed
hertz
megahertz

gigahertz

core

bits
byte

encoding scheme

4 Chapter |

kilobyte (KB)
megabyte (MB)
gigabyte (GB)

terabyte (TB)

memory

unique address

RAM

storage devices

Introduction to Computers, Programs, and Java

into a predetermined string of bits. In the popular ASCII encoding scheme, for example, the
character C is represented as 01000011 in one byte.
A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

B A kilobyte (KB) is about 1,000 bytes.

B A megabyte (MB) is about 1 million bytes.
B A gigabyte (GB) is about 1 billion bytes.
B A terabyte (TB) is about 1 trillion bytes.

A typical one-page word document might take 20 KB. Therefore, 1 MB can store 50 pages
of documents and 1 GB can store 50,000 pages of documents. A typical two-hour high-
resolution movie might take 8 GB, so it would require 160 GB to store 20 movies.

[.2.3 Memory

A computer’s memory consists of an ordered sequence of bytes for storing programs as well as
data that the program is working with. You can think of memory as the computer’s work area
for executing a program. A program and its data must be moved into the computer’s memory
before they can be executed by the CPU.

Every byte in the memory has a unique address, as shown in Figure 1.2. The address is
used to locate the byte for storing and retrieving the data. Since the bytes in the memory can
be accessed in any order, the memory is also referred to as random-access memory (RAM).

Memory address Memory content

ooy

2000 | 01000011 | Encoding for character ‘C’
2001 | 01110010 | Encoding for character ‘r’

2002 | 01100101 | Encoding for character ‘e’
2003 [01110111 | Encoding for character ‘w’
2004 | 00000011 | Encoding for number 3

FiIGUure 1.2 Memory stores data and program instructions in uniquely addressed memory
locations.

Today’s personal computers usually have at least 4 gigabyte of RAM, but they more com-
monly have 6 to 8 GB installed. Generally speaking, the more RAM a computer has, the faster
it can operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program.
The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of transis-
tors embedded on their surface. Compared to CPU chips, memory chips are less complicated,
slower, and less expensive.

[.2.4 Storage Devices

A computer’s memory (RAM) is a volatile form of data storage: any information that has
been stored in memory (i.e., saved) is lost when the system’s power is turned off. Programs
and data are permanently stored on storage devices and are moved, when the computer

[.2 What Is a Computer? 5

actually uses them, to memory, which operates at much faster speeds than permanent storage
devices can.
There are three main types of storage devices:

B Magnetic disk drives
B Optical disc drives (CD and DVD)
m USB flash drives

Drives are devices for operating a medium, such as disks and CDs. A storage medium drive
physically stores data and program instructions. The drive reads data from the medium and
writes data onto the medium.

Disks

A computer usually has at least one hard disk drive. Hard disks are used for permanently stor- hard disk
ing data and programs. Newer computers have hard disks that can store from 500 gigabytes to

1 terabytes of data. Hard disk drives are usually encased inside the computer, but removable

hard disks are also available.

CDs and DVDs

CD stands for compact disc. There are two types of CD drives: CD-R and CD-RW. A CD-Ris CD-R
for read-only permanent storage; the user cannot modify its contents once they are recorded.
A CD-RW can be used like a hard disk; that is, you can write data onto the disc, and then ~CD-RW
overwrite that data with new data. A single CD can hold up to 700 MB. Most new PCs are
equipped with a CD-RW drive that can work with both CD-R and CD-RW discs.

DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and DVD
you can use either to store data. A DVD can hold more information than a CD; a standard
DVD’s storage capacity is 4.7 GB. Like CDs, there are two types of DVDs: DVD-R (read-
only) and DVD-RW (rewritable).

USB Flash Drives

Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral
devices to the computer. You can use a USB to connect a printer, digital camera, mouse,
external hard disk drive, and other devices to the computer.

A USB flash drive is a device for storing and transporting data. A flash drive is small—
about the size of a pack of gum. It acts like a portable hard drive that can be plugged into your
computer’s USB port. USB flash drives are currently available with up to 256 GB storage
capacity.

[.2.5 Input and Output Devices

Input and output devices let the user communicate with the computer. The most common input
devices are keyboards and mice. The most common output devices are monitors and printers.

The Keyboard

A keyboard is a device for entering input. Compact keyboards are available without a numeric
keypad.

Function keys are located across the top of the keyboard and are prefaced with the letter F. function key
Their functions depend on the software currently being used.

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the nor- modifier key
mal action of another key when the two are pressed simultaneously.

The numeric keypad, located on the right side of most keyboards, is a separate set of keys numeric keypad
styled like a calculator to use for entering numbers quickly.

Arrow keys, located between the main keypad and the numeric keypad, are used to move arrow keys
the mouse pointer up, down, left, and right on the screen in many kinds of programs.

6 Chapter | Introduction to Computers, Programs, and Java

Insert key
Delete key
Page Up key
Page Down key

screen resolution

pixels

dot pitch

dial-up modem
digital subscriber line (DSL)
cable modem

network interface card (NIC)
local area network (LAN)

million bits per second
(mbps)

ﬁheck
Point

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other
programs for inserting text and objects, deleting text and objects, and moving up or down
through a document one screen at a time.

The Mouse

A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of
an arrow) called a cursor around the screen or to click on-screen objects (such as a button) to
trigger them to perform an action.

The Monitor

The monitor displays information (text and graphics). The screen resolution and dot pitch
determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions
of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on
the screen. A common resolution for a 17-inch screen, for example, is 1,024 pixels wide and
768 pixels high. The resolution can be set manually. The higher the resolution, the sharper
and clearer the image is.

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller
the dot pitch, the sharper the display.

1.2.6 Communication Devices

Computers can be networked through communication devices, such as a dial-up modem
(modulator/demodulator), a DSL or cable modem, a wired network interface card, or a wire-
less adapter.

B A dial-up modem uses a phone line and can transfer data at a speed up to 56,000 bps
(bits per second).

B A digital subscriber line (DSL) connection also uses a standard phone line, but it can
transfer data 20 times faster than a standard dial-up modem.

B A cable modem uses the cable TV line maintained by the cable company and is gen-
erally faster than DSL.

B A network interface card (NIC) is a device that connects a computer to a local area
network (LAN). LANs are commonly used in universities, businesses, and government
agencies. A high-speed NIC called /000BaseT can transfer data at 1,000 million bits
per second (mbps).

B Wireless networking is now extremely popular in homes, businesses, and schools.
Every laptop computer sold today is equipped with a wireless adapter that enables
the computer to connect to a local area network and the Internet.

Note
Answers to checkpoint questions are on the Companion Website.
I.1 What are hardware and software?
1.2 List five major hardware components of a computer.
1.3 What does the acronym “CPU” stand for?
1.4 What unit is used to measure CPU speed?
1.5 Whatis a bit? What is a byte?
1.6 Whatis memory for? What does RAM stand for? Why is memory called RAM?

1.7 What unit is used to measure memory size?

[.3 Programming Languages 7

1.8 What unit is used to measure disk size?

1.9 What is the primary difference between memory and a storage device?

[.3 Programming Languages

Computer programs, known as software, are instructions that tell a computer what to do. fKey

Computers do not understand human languages, so programs must be written in a language a Point
computer can use. There are hundreds of programming languages, and they were developed
to make the programming process easier for people. However, all programs must be converted

into the instructions the computer can execute.

[.3.1 Machine Language

A computer’s native language, which differs among different types of computers, is its

machine language—a set of built-in primitive instructions. These instructions are in the form machine language
of binary code, so if you want to give a computer an instruction in its native language, you

have to enter the instruction as binary code. For example, to add two numbers, you might have

to write an instruction in binary code, like this:

1101101010011010

[.3.2 Assembly Language

Programming in machine language is a tedious process. Moreover, programs written in

machine language are very difficult to read and modify. For this reason, assembly language assembly language
was created in the early days of computing as an alternative to machine languages. Assembly

language uses a short descriptive word, known as a mnemonic, to represent each of the
machine-language instructions. For example, the mnemonic add typically means to add num-

bers and sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you

might write an instruction in assembly code like this:

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the
computer cannot execute assembly language, another program—called an assembler—is used assembler
to translate assembly-language programs into machine code, as shown in Figure 1.3.

Machine-Code File

1101101010011010

Assembly Source File

add 2, -3-,. result
FIGURE 1.3 An assembler translates assembly-language instructions into machine code.

Writing code in assembly language is easier than in machine language. However, it is
still tedious to write code in assembly language. An instruction in assembly language essen-
tially corresponds to an instruction in machine code. Writing in assembly requires that you
know how the CPU works. Assembly language is referred to as a low-level language, because low-level language
assembly language is close in nature to machine language and is machine dependent.

8 Chapter |

high-level language

statement

Introduction to Computers, Programs, and Java

[.3.3 High-Level Language

In the 1950s, a new generation of programming languages known as high-level languages
emerged. They are platform independent, which means that you can write a program in a high-
level language and run it in different types of machines. High-level languages are English-like
and easy to learn and use. The instructions in a high-level programming language are called
statements. Here, for example, is a high-level language statement that computes the area of a

circle with a radius of 5:

area = 5 * 5 * 3,14159;

There are many high-level programming languages, and each was designed for a specific

purpose. Table 1.1 lists some popular ones.

TABLE 1.1 Popular High-Level Programming Languages

Language Description

Ada Named for Ada Lovelace, who worked on mechanical general-purpose computers. The Ada language was
developed for the Department of Defense and is used mainly in defense projects.

BASIC Beginner’s All-purpose Symbolic Instruction Code. It was designed to be learned and used easily by beginners.

C Developed at Bell Laboratories. C combines the power of an assembly language with the ease of use and
portability of a high-level language.

C++ C++ is an object-oriented language, based on C.

C# Pronounced “C Sharp.” It is a hybrid of Java and C++ and was developed by Microsoft.

COBOL COmmon Business Oriented Language. Used for business applications.

FORTRAN FORmula TRANslation. Popular for scientific and mathematical applications.

Java Developed by Sun Microsystems, now part of Oracle. It is widely used for developing platform-independent
Internet applications.

Pascal Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. It is a simple,
structured, general-purpose language primarily for teaching programming.

Python A simple general-purpose scripting language good for writing short programs.

Visual Basic

source program
source code
interpreter
compiler

ﬁheck

Visual Basic was developed by Microsoft and it enables the programmers to rapidly develop graphical user
interfaces.

A program written in a high-level language is called a source program or source code.
Because a computer cannot execute a source program, a source program must be translated
into machine code for execution. The translation can be done using another programming tool

called an interpreter or a compiler.

B Aninterpreter reads one statement from the source code, translates it to the machine code
or virtual machine code, and then executes it right away, as shown in Figure 1.4a. Note
that a statement from the source code may be translated into several machine instructions.

B A compiler translates the entire source code into a machine-code file, and the

machine-code file is then executed, as shown in Figure 1.4b.

I.10 What language does the CPU understand?
Point [.1l1 Whatis an assembly language?

I.12 What is an assembler?

I.13 Whatis a high-level programming language?

1.14 What is a source program?

[.4 Operating Systems 9

I.15 Whatis an interpreter?
1.16 Whatis a compiler?
I.17 What is the difference between an interpreted language and a compiled language?

High-Level Source File

5 + 5 % 3, Jdi

Output

Interpreter

(a)
High-Level Source File Machine-Code File
i ; 0101100011011100 SRS
gigeas = 5 * 5 * 3.ANSE 1111100011000100 Executor

===y

FiGure 1.4 (a) An interpreter translates and executes a program one statement at a time. (b) A compiler translates the
entire source program into a machine-language file for execution.

(b)

.4 Operating Systems

The operating system (OS) is the most important program that runs on a computer. f

L Ke
The OS manages and controls a computer’s activities. poin{

The popular operating systems for general-purpose computers are Microsoft Windows, Mac operating system (OS)
OS, and Linux. Application programs, such as a Web browser or a word processor, cannot

run unless an operating system is installed and running on the computer. Figure 1.5 shows the

interrelationship of hardware, operating system, application software, and the user.

User

!

Application Programs

:

Operating System

:

Hardware

FiGure 1.5 Users and applications access the computer’s hardware via the operating system.

The major tasks of an operating system are as follows:
B Controlling and monitoring system activities
B Allocating and assigning system resources

B Scheduling operations

10 Chapter | Introduction to Computers, Programs, and Java

[.4.1 Controlling and Monitoring System Activities

Operating systems perform basic tasks, such as recognizing input from the keyboard, sending
output to the monitor, keeping track of files and folders on storage devices, and controlling
peripheral devices, such as disk drives and printers. An operating system must also ensure
that different programs and users working at the same time do not interfere with each other.
In addition, the OS is responsible for security, ensuring that unauthorized users and programs
are not allowed to access the system.

1.4.2 Allocating and Assigning System Resources

The operating system is responsible for determining what computer resources a program
needs (such as CPU time, memory space, disks, input and output devices) and for allocating
and assigning them to run the program.

1.4.3 Scheduling Operations

The OS is responsible for scheduling programs’ activities to make efficient use of system
resources. Many of today’s operating systems support techniques such as multiprogramming,
multithreading, and multiprocessing to increase system performance.

multiprogramming Multiprogramming allows multiple programs to run simultaneously by sharing the same
CPU. The CPU is much faster than the computer’s other components. As a result, it is idle
most of the time—for example, while waiting for data to be transferred from a disk or waiting
for other system resources to respond. A multiprogramming OS takes advantage of this
situation by allowing multiple programs to use the CPU when it would otherwise be idle. For
example, multiprogramming enables you to use a word processor to edit a file at the same time
as your Web browser is downloading a file.

multithreading Multithreading allows a single program to execute multiple tasks at the same time. For
instance, a word-processing program allows users to simultaneously edit text and save it to a
disk. In this example, editing and saving are two tasks within the same application. These two
tasks may run concurrently.

multiprocessing Multiprocessing, or parallel processing, uses two or more processors together to per-
form subtasks concurrently and then combine solutions of the subtasks to obtain a solution
for the entire task. It is like a surgical operation where several doctors work together on
one patient.

ﬁheck I.18 What is an operating system? List some popular operating systems.

Point |.19 What are the major responsibilities of an operating system?

1.20 What are multiprogramming, multithreading, and multiprocessing?

[.5 Java, the World Wide Web, and Beyond

Ke Java is a powerful and versatile programming language for developing software
6 poin); running on mobile devices, desktop computers, and servers.

This book introduces Java programming. Java was developed by a team led by James Gosling
at Sun Microsystems. Sun Microsystems was purchased by Oracle in 2010. Originally called
Oak, Java was designed in 1991 for use in embedded chips in consumer electronic appliances.
In 1995, renamed Java, it was redesigned for developing Web applications. For the history of
Java, see www.java.com/en/javahistory/index.jsp.

Java has become enormously popular. Its rapid rise and wide acceptance can be traced
to its design characteristics, particularly its promise that you can write a program once
and run it anywhere. As stated by its designer, Java is simple, object oriented, distributed,

www.java.com/en/javahistory/index.jsp

[.6 The Java Language Specification, API, JDK, and IDE 11

interpreted, robust, secure, architecture neutral, portable, high performance, multi-
threaded, and dynamic. For the anatomy of Java characteristics, see www.cs.armstrong.edu/
liang/JavaCharacteristics.pdf.

Java is a full-featured, general-purpose programming language that can be used to develop
robust mission-critical applications. Today, it is employed not only for Web programming but
also for developing standalone applications across platforms on servers, desktop computers,
and mobile devices. It was used to develop the code to communicate with and control the
robotic rover on Mars. Many companies that once considered Java to be more hype than sub-
stance are now using it to create distributed applications accessed by customers and partners
across the Internet. For every new project being developed today, companies are asking how
they can use Java to make their work easier.

The World Wide Web is an electronic information repository that can be accessed on the
Internet from anywhere in the world. The Internet, the Web’s infrastructure, has been around
for more than forty years. The colorful World Wide Web and sophisticated Web browsers are
the major reason for the Internet’s popularity.

Java initially became attractive because Java programs can be run from a Web browser.
Such programs are called applets. Applets employ a modern graphical interface with but-
tons, text fields, text areas, radio buttons, and so on, to interact with users on the Web and
process their requests. Applets make the Web responsive, interactive, and fun to use. Applets
are embedded in an HTML file. HTML (Hypertext Markup Language) is a simple scripting
language for laying out documents, linking documents on the Internet, and bringing images,
sound, and video alive on the Web. Today, you can use Java to develop rich Internet appli-
cations. A rich Internet application (RIA) is a Web application designed to deliver the same
features and functions normally associated with deskop applications.

Java is now very popular for developing applications on Web servers. These applications
process data, perform computations, and generate dynamic Web pages. Many commercial
Websites are developed using Java on the backend.

Java is a versatile programming language: you can use it to develop applications for desk-
top computers, servers, and small handheld devices. The software for Android cell phones is
developed using Java.

1.21 Who invented Java? Which company owns Java now? ﬁheck

1.22 What is a Java applet? " Point
1.23 What programming language does Android use?

[.6 The Java Language Specification, API, JDK, and IDE

Java syntax is defined in the Java language specification, and the Java library is Ke
defined in the Java API. The JDK is the software for developing and running Java gﬁmn}t’
programs. An IDE is an integrated development environment for rapidly developing

programs.

Computer languages have strict rules of usage. If you do not follow the rules when writing a
program, the computer will not be able to understand it. The Java language specification and
the Java API define the Java standards.

The Java language specification is a technical definition of the Java programming Java language specification
language’s syntax and semantics. You can find the complete Java language specification at
http://docs.oracle.com/javase/specs/.

The application program interface (API), also known as library, contains predefined
classes and interfaces for developing Java programs. The API is still expanding. You can API
view and download the latest version of the Java API at http://download.java.net/jdk8/docs/api/. library

www.cs.armstrong.edu/liang/JavaCharacteristics.pdf
www.cs.armstrong.edu/liang/JavaCharacteristics.pdf
http://docs.oracle.com/javase/specs/
http://download.java.net/jdk8/docs/api/

12 Chapter | Introduction to Computers, Programs, and Java

Java SE, EE, and ME

Java Development
Toolkit (JDK)

JDK 1.8 = JDK 8

Integrated development
environment

ﬁheck
Point

e
Point
what is a console?

console input
console output

class
main method
display message

VideoNote
Your first Java program

2

line numbers

Java is a full-fledged and powerful language that can be used in many ways. It comes in
three editions:

B Java Standard Edition (Java SE) to develop client-side applications. The applica-
tions can run standalone or as applets running from a Web browser.

B Java Enterprise Edition (Java EE) to develop server-side applications, such as Java
servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).

B Java Micro Edition (Java ME) to develop applications for mobile devices, such as
cell phones.

This book uses Java SE to introduce Java programming. Java SE is the foundation upon
which all other Java technology is based. There are many versions of Java SE. The latest,
Java SE 8, is used in this book. Oracle releases each version with a Java Development Toolkit
(JDK). For Java SE 8, the Java Development Toolkit is called JDK 1.8 (also known as Java 8
or JDK 8).

The JDK consists of a set of separate programs, each invoked from a command line, for
developing and testing Java programs. Instead of using the JDK, you can use a Java devel-
opment tool (e.g., NetBeans, Eclipse, and TextPad)—software that provides an integrated
development environment (IDE) for developing Java programs quickly. Editing, compiling,
building, debugging, and online help are integrated in one graphical user interface. You simply
enter source code in one window or open an existing file in a window, and then click a button
or menu item or press a function key to compile and run the program.

1.24 What is the Java language specification?
1.25 What does JDK stand for?
1.26 What does IDE stand for?

1.27 Are tools like NetBeans and Eclipse different languages from Java, or are they
dialects or extensions of Java?

[.7 A Simple Java Program

A Java program is executed from the main method in the class.
Let’s begin with a simple Java program that displays the message Welcome to Java! on the
console. (The word console is an old computer term that refers to the text entry and display

device of a computer. Console input means to receive input from the keyboard, and console
output means to display output on the monitor.) The program is shown in Listing 1.1.

LisTING I.1 Welcome.java

1 public class Welcome {

2 public static void main(String[] args) {

3 // Display message Welcome to Java! on the console
4 System.out.println("Welcome to Java!');

5 }

6 1}

Welcome to Javal!

Note that the line numbers are for reference purposes only; they are not part of the program.
So, don’t type line numbers in your program.

[.7 A Simple Java Program

Line 1 defines a class. Every Java program must have at least one class. Each class has a
name. By convention, class names start with an uppercase letter. In this example, the class
name is Welcome.

Line 2 defines the main method. The program is executed from the main method. A class
may contain several methods. The main method is the entry point where the program begins
execution.

A method is a construct that contains statements. The main method in this program con-
tains the System.out.println statement. This statement displays the string Welcome to
Java! on the console (line 4). String is a programming term meaning a sequence of charac-
ters. A string must be enclosed in double quotation marks. Every statement in Java ends with
a semicolon (;), known as the statement terminator.

Reserved words, or keywords, have a specific meaning to the compiler and cannot be used
for other purposes in the program. For example, when the compiler sees the word class, it
understands that the word after class is the name for the class. Other reserved words in this
program are public, static, and void.

Line 3 is a comment that documents what the program is and how it is constructed. Comments
help programmers to communicate and understand the program. They are not programming
statements and thus are ignored by the compiler. In Java, comments are preceded by two
slashes (//) on a line, called a line comment, or enclosed between /* and */ on one or several
lines, called a block comment or paragraph comment. When the compiler sees //, it ignores
all text after // on the same line. When it sees /#, it scans for the next */ and ignores any text
between /* and */. Here are examples of comments:

// This application
/* This application
/* This application

displays Welcome

program displays Welcome to Java!
program displays Welcome to Java! */
program

to Java! */

A pair of curly braces in a program forms a block that groups the program’s components.
In Java, each block begins with an opening brace ({) and ends with a closing brace (}). Every
class has a class block that groups the data and methods of the class. Similarly, every method
has a method block that groups the statements in the method. Blocks can be nested, meaning
that one block can be placed within another, as shown in the following code.

public class Welcome {
public static void main(String[] args) { <«——
System.out.println("Welcome to Java!"); Method block
}]

1
Class block

}

Tip

£

= An opening brace must be matched by a closing brace. Whenever you type an opening
brace, immediately type a closing brace to prevent the missing-brace error. Most Java
IDEs automatically insert the closing brace for each opening brace.

Bl Caution
=¥ Java source programs are case sensitive. It would be wrong, for example, to replace
main in the program with Main.

You have seen several special characters (e.g., { ¥, //, ;) in the program. They are used
in almost every program. Table 1.2 summarizes their uses.

The most common errors you will make as you learn to program will be syntax errors.
Like any programming language, Java has its own syntax, and you need to write code that

class name

main method

string

statement terminator
reserved word
keyword

comment

line comment
block comment

block

match braces

case sensitive

special characters

common errors

13

14 Chapter | Introduction to Computers, Programs, and Java

TaBLE 1.2 Special Characters

Character Name Description

{} Opening and closing braces Denote a block to enclose statements.
O Opening and closing parentheses Used with methods.

[1 Opening and closing brackets Denote an array.

// Double slashes Precede a comment line.

Opening and closing quotation marks ~ Enclose a string (i.e., sequence of characters).

; Semicolon Mark the end of a statement.

syntax rules conforms to the syntax rules. If your program violates a rule—for example, if the semicolon
is missing, a brace is missing, a quotation mark is missing, or a word is misspelled—the Java
compiler will report syntax errors. Try to compile the program with these errors and see what
the compiler reports.

Note

You are probably wondering why the main method is defined this way and why
System.out.printin(...) is used to display a message on the console. For the
time being, simply accept that this is how things are done. Your questions will be fully
answered in subsequent chapters.

The program in Listing 1.1 displays one message. Once you understand the program, it
is easy to extend it to display more messages. For example, you can rewrite the program to
display three messages, as shown in Listing 1.2.

LISTING 1.2 WelcomeWithThreeMessages.java

class
main method
display message

1 public class WelcomeWithThreeMessages {

2 public static void main(String[] args) {

3 System.out.printin("Programming is fun!");
4 System.out.printin("Fundamentals First");
5 System.out.println("Problem Driven');

6 }
7}

‘ Programming is fun!
E Fundamentals First
Problem Driven

Further, you can perform mathematical computations and display the result on the console.
105 +2 X 3

Listing 1.3 gives an example of evaluating 45 — 35

LisTiNG 1.3 ComputeExpression.java

class 1 public class ComputeExpression {

main method 2 public static void main(String[] args) {

compute expression 3 System.out.println((10.5 + 2 * 3) / (45 - 3.5));
4 }
5 3%

E 0.39759036144578314

[.8 Creating, Compiling, and Executing a Java Program

The multiplication operator in Java is *. As you can see, it is a straightforward process
to translate an arithmetic expression to a Java expression. We will discuss Java expressions
further in Chapter 2.

1.28 What is a keyword? List some Java keywords.
1.29 IsJava case sensitive? What is the case for Java keywords?

1.30 What is a comment? Is the comment ignored by the compiler? How do you denote a
comment line and a comment paragraph?

1.31 What is the statement to display a string on the console?
1.32 Show the output of the following code:

public class Test {
public static void main(String[] args) {
System.out.printin("3.5 * 4 / 2 - 2.5 is ");
System.out.println(3.5 * 4 / 2 - 2.5);
h
}

[.8 Creating, Compiling, and Executing a Java Program

You save a Java program in a .java file and compile it into a .class file. The .class file
is executed by the Java Virtual Machine.

You have to create your program and compile it before it can be executed. This process is
repetitive, as shown in Figure 1.6. If your program has compile errors, you have to modify
the program to fix them, and then recompile it. If your program has runtime errors or does not
produce the correct result, you have to modify the program, recompile it, and execute it again.

You can use any text editor or IDE to create and edit a Java source-code file. This section
demonstrates how to create, compile, and run Java programs from a command window.
Sections 1.10 and 1.11 will introduce developing Java programs using NetBeans and Eclipse.
From the command window, you can use a text editor such as Notepad to create the Java
source-code file, as shown in Figure 1.7.

- Note
The source file must end with the extension . java and must have the same exact name
as the public class name. For example, the file for the source code in Listing 1.1 should
be named Welcome.java, since the public class name is Welcome.

A Java compiler translates a Java source file into a Java bytecode file. The following com-
mand compiles Welcome.java:

javac Welcome.java

Note

You must first install and configure the DK before you can compile and run programs.
See Supplement 1.B, Installing and Configuring JDK 8, for how to install the JDK and set
up the environment to compile and run Java programs. If you have trouble compiling
and running programs, see Supplement |.C, Compiling and Running Java from the
Command Window. This supplement also explains how to use basic DOS commands
and how to use Windows Notepad to create and edit files. All the supplements are
accessible from the Companion Website at www.cs.armstrong.edu/liang/intro|0e/
supplement.html.

If there aren’t any syntax errors, the compiler generates a bytecode file with a .class
extension. Thus, the preceding command generates a file named Welcome.class, as shown

ﬁheck
Point

K
Gﬁoifl{

command window

file name Welcome.java,

compile

Supplement I.B

Supplement I.C

.class bytecode file

15

www.cs.armstrong.edu/liang/intro10e/supplement.html
www.cs.armstrong.edu/liang/intro10e/supplement.html

16 Chapter | Introduction to Computers, Programs, and Java

Source code (developed by the programmer)

| Create/Modify Source Code I

public class Wel
public static

}

void main(String[] args) {
System.out.printin("Welcome to Java!"); Source Code
3

come { Saved on the disk

Bytecode (generated by the compiler for JVM Compile Source Code
to read and interpret) e.g., javac Welcome.java

Method Welcome()
0 aload_0

3 Tdc #3 <Stri

8 return

Method void main(java.lang.String[]) 4—@

0 getstatic #2 ..

5 invokevirtual #4 ..

If compile errors occur

Stored on the disk

ng "Welcome to Java!">

“Welcome to Java” is displayed on the console

Run Bytecode
e.g., java Welcome

Welcome to Java!

e)

If runtime errors or incorrect result

FiGure 1.6 The Java program-development process consists of repeatedly creating/modifying source code, compiling,

and executing programs.

bytecode
Java Virtual Machine (JVM)

interpret bytecode

run

=1l x|

Fle EdE Format View Help

public Class welcome { . -
public static void main(String[] args) {
system.out.printin("welcome to Java!");

} |

FIGURE 1.7 You can create a Java source file using Windows Notepad.

in Figure 1.8a. The Java language is a high-level language, but Java bytecode is a low-level
language. The bytecode is similar to machine instructions but is architecture neutral and can
run on any platform that has a Java Virtual Machine (JVM), as shown in Figure 1.8b. Rather
than a physical machine, the virtual machine is a program that interprets Java bytecode. This
is one of Java’s primary advantages: Java bytecode can run on a variety of hardware plat-
forms and operating systems. Java source code is compiled into Java bytecode and Java byte-
code is interpreted by the JVM. Your Java code may use the code in the Java library. The JVM
executes your code along with the code in the library.

To execute a Java program is to run the program’s bytecode. You can execute the bytecode
on any platform with a JVM, which is an interpreter. It translates the individual instructions
in the bytecode into the target machine language code one at a time rather than the whole pro-
gram as a single unit. Each step is executed immediately after it is translated.

The following command runs the bytecode for Listing 1.1:

java Welcome

1.8 Creating, Compiling, and Executing a Java Program 17

java Bytec()de

jrtual
compiled executed @\] v Ma@«}f
Welcome.java by 3 generates | Welcome.class by A K
(Java source- C aV?I (Java bytecode JVM Any
code file) omprer executable file) Computer
Library Code
(a) (b)

FIGURre 1.8 (a) Java source code is translated into bytecode. (b) Java bytecode can be executed on any computer with a

Java Virtual Machine.

Figure 1.9 shows the javac command for compiling Welcome.java. The compiler gener-

ates the Welcome.class file, and this file is executed using the java command.

javac command
java command

Compile —— > e :sbookrjavac Welcome. java

Note
For simplicity and consistency, all source-code and class files used in this book are
placed under c:\book unless specified otherwise.

-

. B¥ Command Prompt

Show files —— »| e :“book>dir Welcome .

Yolume in drive C has no lahel.
Volume Serial Humber is 2EF7-CA%3

Directory of c:“book

n@-29-2811 B3:43 PH
18-29-2811 B3:42 PM
2 Pileds>
A Dirdsd

424 Yelcome.class

176 Uelcome.java

688 bytes
70.280,.397.824 bytes free

Run —— > c:\bhook>java Helcome
elcome to Java?!

"

& \book>,
|

.= =

Ficure 1.9 The output of Listing 1.1 displays the message “Welcome to Java!”

Caution

Do not use the extension .class in the command line when executing the program.
Use java ClassName to run the program. If you use java ClassName.class
in the command line, the system will attempt to fetch ClassName.class.class.

Tip

If you execute a class file that does not exist, a NoClassDefFoundError will occur.
If you execute a class file that does not have a main method or you mistype the main
method (e.g., by typing Ma‘in instead of main), a NoSuchMethodError will occur.

Note

When executing a Java program, the VM first loads the bytecode of the class to mem-
ory using a program called the class loader. If your program uses other classes, the class
loader dynamically loads them just before they are needed. After a class is loaded, the
JVM uses a program called the bytecode verifier to check the validity of the bytecode and

c:\book

VideoNote
Compile and run a Java
program

java ClassName

NoClassDefFoundError

NoSuchMethodError

class loader
bytecode verifier

18 Chapter | Introduction to Computers, Programs, and Java

to ensure that the bytecode does not violate Java’'s security restrictions. Java enforces
strict security to make sure that Java class files are not tampered with and do not harm
your computer.

Pedagogical Note

Your instructor may require you to use packages for organizing programs. For example,
you may place all programs in this chapter in a package named chapter /. For instructions
on how to use packages, see Supplement I.F, Using Packages to Organize the Classes
in the Text.

use package

ﬁheck 1.33 What is the Java source filename extension, and what is the Java bytecode filename
Point extension?

1.34 What are the input and output of a Java compiler?

1.35 What is the command to compile a Java program?

1.36 What is the command to run a Java program?

1.37 What is the JVM?

1.38 Can Java run on any machine? What is needed to run Java on a computer?

1.39 [IfaNoClassDefFoundError occurs when you run a program, what is the cause of
the error?

1.40 If a NoSuchMethodError occurs when you run a program, what is the cause of the
error?

[.9 Programming Style and Documentation
Ke Good programming style and proper documentation make a program easy to read and
Gﬁoin{ help programmers prevent errors.

programming style Programming style deals with what programs look like. A program can compile and run
properly even if written on only one line, but writing it all on one line would be bad pro-
documentation gramming style because it would be hard to read. Documentation is the body of explanatory

remarks and comments pertaining to a program. Programming style and documentation are
as important as coding. Good programming style and appropriate documentation reduce the
chance of errors and make programs easy to read. This section gives several guidelines. For
more detailed guidelines, see Supplement I.D, Java Coding Style Guidelines, on the Com-
panion Website.

1.9.1 Appropriate Comments and Comment Styles

Include a summary at the beginning of the program that explains what the program does, its
key features, and any unique techniques it uses. In a long program, you should also include
comments that introduce each major step and explain anything that is difficult to read. It is
important to make comments concise so that they do not crowd the program or make it dif-
ficult to read.
In addition to line comments (beginning with //) and block comments (beginning with
javadoc comment /%), Java supports comments of a special type, referred to as javadoc comments. javadoc com-
ments begin with /** and end with */. They can be extracted into an HTML file using the
JDK’s javadoc command. For more information, see Supplement III.Y, javadoc Comments,
on the companion Website.
Use javadoc comments (/** ... */) for commenting on an entire class or an entire
method. These comments must precede the class or the method header in order to be extracted
into a javadoc HTML file. For commenting on steps inside a method, use line comments (//).

1.9 Programming Style and Documentation 19

To see an example of a javadoc HTML file, check out www.cs.armstrong.edu/liang/javadoc/
Exercisel.html. Its corresponding Java code is shown in www.cs.armstrong.edu/liang/javadoc/
Exercisel .java.

[.9.2 Proper Indentation and Spacing

A consistent indentation style makes programs clear and easy to read, debug, and maintain.
Indentation is used to illustrate the structural relationships between a program’s components indent code
or statements. Java can read the program even if all of the statements are on the same long
line, but humans find it easier to read and maintain code that is aligned properly. Indent each
subcomponent or statement at least two spaces more than the construct within which it is
nested.
A single space should be added on both sides of a binary operator, as shown in the follow-
ing statement:

System.out.printin(3+4%4); Bad style

System.out.printin(3 + 4 * 4); Good style

1.9.3 Block Styles

A block is a group of statements surrounded by braces. There are two popular styles, next-line
style and end-of-line style, as shown below.

public class Test public class Test {
{ public static void main(String[] args) {

public static void main(String[] args) System.out.println("Block Styles");

{ }

System.out.printin("Block Styles"); }

}

}
Next-line style End-of-line style

The next-line style aligns braces vertically and makes programs easy to read, whereas the
end-of-line style saves space and may help avoid some subtle programming errors. Both are
acceptable block styles. The choice depends on personal or organizational preference. You
should use a block style consistently—mixing styles is not recommended. This book uses the
end-of-line style to be consistent with the Java API source code.

1.41 Reformat the following program according to the programming style and documen- ﬁh K
tation guidelines. Use the end-of-line brace style. Q P:i;t

public class Test

{
// Main method
public static void main(String[] args) {
/%% Display output */
System.out.println("Welcome to Java');

}

www.cs.armstrong.edu/liang/javadoc/Exercise1.html
www.cs.armstrong.edu/liang/javadoc/Exercise1.html
www.cs.armstrong.edu/liang/javadoc/Exercise1.java
www.cs.armstrong.edu/liang/javadoc/Exercise1.java

20 Chapter | Introduction to Computers, Programs, and Java

[.10 Programming Errors

Ke Programming errors can be categorized into three types: syntax errors, runtime
6 Poin); errors, and logic errors.

[.10.1 Syntax Errors

syntax errors Errors that are detected by the compiler are called syntax errors or compile errors. Syntax

compile errors errors result from errors in code construction, such as mistyping a keyword, omitting some
necessary punctuation, or using an opening brace without a corresponding closing brace.
These errors are usually easy to detect because the compiler tells you where they are and
what caused them. For example, the program in Listing 1.4 has a syntax error, as shown in
Figure 1.10.

LisTING 1.4 ShowSyntaxErrors.java

public class ShowSyntaxErrors {
public static main(String[] args) {
System.out.printin("Welcome to Java);
}
}

A wWwN PR

Four errors are reported, but the program actually has two errors:
B The keyword void is missing before main in line 2.
B The string Welcome to Java should be closed with a closing quotation mark in line 3.

Since a single error will often display many lines of compile errors, it is a good practice to
fix errors from the top line and work downward. Fixing errors that occur earlier in the program
may also fix additional errors that occur later.

E® Administrator: Command Prom)

:\hodﬂ)jauac ShouwSyntaxErrors_ java
EhowSyntaxErrors.java:2: error: invalid method declaration; return type required
public static ﬂain(String[] args) £

EhowSyntaxErrors.java:d: error: unclosed string literal
System.out.println(zwelcome to Javal;

BhowSyntaxErrors.javaz3d: error: ';' expected
System.out.println("lelcome to Jaua);A

ChowSyntaxErrors.javah: error: reached end of file while parsing

T EPIOPS

=nbook?

FIGURE .10 The compiler reports syntax errors.

M Tip
If you don’t know how to correct it, compare your program closely, character by char-
acter, with similar examples in the text. In the first few weeks of this course, you will
fix syntax errors probably spend a lot of time fixing syntax errors. Soon you will be familiar with Java
syntax and can quickly fix syntax errors.

1.10.2 Runtime Errors

runtime errors Runtime errors are errors that cause a program to terminate abnormally. They occur while
a program is running if the environment detects an operation that is impossible to carry out.
Input mistakes typically cause runtime errors. An input error occurs when the program is

[.10 Programming Errors 21

waiting for the user to enter a value, but the user enters a value that the program cannot handle.
For instance, if the program expects to read in a number, but instead the user enters a string,
this causes data-type errors to occur in the program.

Another example of runtime errors is division by zero. This happens when the divisor is
zero for integer divisions. For instance, the program in Listing 1.5 would cause a runtime
error, as shown in Figure 1.11.

LisTING 1.5 ShowRuntimeErrors.java

1 public class ShowRuntimeErrors {
public static void main(String[] args) {
System.out.println(l / 0); runtime error

2
3
4 3
5 %

-@ Administrator: Command Prompt !:!Eh_“ XN

-:\'i:'mukds;i;ua PS-i;anuntimeErrurs -
xception in thread "main® java.lang.fArithmeticException: ~ by zero
at ShowRuntimeErrors . main{ShowRuntimeErrors. java:4>»

sbook>

Run

FiGure 1.11 The runtime error causes the program to terminate abnormally.

[.10.3 Logic Errors

Logic errors occur when a program does not perform the way it was intended to. Errors of logic errors
this kind occur for many different reasons. For example, suppose you wrote the program in
Listing 1.6 to convert Celsius 35 degrees to a Fahrenheit degree:

LiIsTING 1.6 ShowlLogicErrors.java

1 public class ShowLogicErrors {

2 public static void main(String[] args) {

3 System.out.println("Celsius 35 1is Fahrenheit degree ");
4 System.out.println((9 / 5) * 35 + 32);

5 }

6 1}

Celsius 35 is Fahrenheit degree E
67

You will get Fahrenheit 67 degrees, which is wrong. It should be 95.0. In Java, the divi-
sion for integers is the quotient—the fractional part is truncated—so in Java 9 / 5is 1. To
get the correct result, you need to use 9.0 / 5, which results in 1. 8.

In general, syntax errors are easy to find and easy to correct because the compiler gives
indications as to where the errors came from and why they are wrong. Runtime errors are not
difficult to find, either, since the reasons and locations for the errors are displayed on the console
when the program aborts. Finding logic errors, on the other hand, can be very challenging. In the
upcoming chapters, you will learn the techniques of tracing programs and finding logic errors.

1.10.4 Common Errors

Missing a closing brace, missing a semicolon, missing quotation marks for strings, and mis-
spelling names are common errors for new programmers.

22 Chapter | Introduction to Computers, Programs, and Java

ﬁheck
Point

Common Error 1: Missing Braces

The braces are used to denote a block in the program. Each opening brace must be matched
by a closing brace. A common error is missing the closing brace. To avoid this error, type a
closing brace whenever an opening brace is typed, as shown in the following example.

public class Welcome {

} <«—Type this closing brace right away to match the opening brace

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing
brace for each opening brace typed.

Common Error 2: Missing Semicolons

Each statement ends with a statement terminator (;). Often, a new programmer forgets to place
a statement terminator for the last statement in a block, as shown in the following example.

public static void main(String[] args) {
System.out.printin("Programming is fun!');
System.out.println("Fundamentals First");
System.out.println("Problem Driven™)

}
Missing a semicolon
Common Error 3: Missing Quotation Marks
A string must be placed inside the quotation marks. Often, a new programmer forgets to place
a quotation mark at the end of a string, as shown in the following example.

System.out.println("Problem Driven);

Missing a quotation mark

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing
quotation mark for each opening quotation mark typed.

Common Error 4: Misspelling Names

Java is case sensitive. Misspelling names is a common error for new programmers. For exam-
ple, the word main is misspelled as Main and String is misspelled as string in the follow-
ing code.

1 public class Test {

2 public static void Main(string[] args) {

3 System.out.println((10.5 + 2 * 3) / (45 - 3.5));
4 }

5 3

1.42 What are syntax errors (compile errors), runtime errors, and logic errors?
1.43 Give examples of syntax errors, runtime errors, and logic errors.

1.44 If you forget to put a closing quotation mark on a string, what kind error will be
raised?

1.45 1If your program needs to read integers, but the user entered strings, an error would
occur when running this program. What kind of error is this?

1.46 Suppose you write a program for computing the perimeter of a rectangle and you
mistakenly write your program so that it computes the area of a rectangle. What kind
of error is this?

[.I'l Developing Java Programs Using NetBeans

1.47 Identify and fix the errors in the following code:

1 public class Welcome {

2 public void Main(String[] args) {

3 System.out.printin('Welcome to Javal);
4 h

5 1%

[.11 Developing Java Programs Using NetBeans

You can edit, compile, run, and debug Java Programs using NetBeans. fKey
NetBeans and Eclipse are two free popular integrated development environments for devel- 6 Point

oping Java programs. They are easy to learn if you follow simple instructions. We recom-

mend that you use either one for developing Java programs. This section gives the essential n

instructions to guide new users to create a project, create a class, compile, and run a class in VideoNote
NetBeans. The use of Eclipse will be introduced in the next section. For instructions on down- NetBeans brief tutorial

loading and installing latest version of NetBeans, see Supplement II.B.

[.11.1 Creating a Java Project

Before you can create Java programs, you need to first create a project. A project is like a
folder to hold Java programs and all supporting files. You need to create a project only once.
Here are the steps to create a Java project:

1. Choose File, New Project to display the New Project dialog box, as shown in Figure 1.12.

2. Select Java in the Categories section and Java Application in the Projects section and
click Next to display the New Java Application dialog box, as shown in Figure 1.13.

3. Type demo in the Project Name field and c: \michael in Project Location field. Uncheck
Use Dedicated Folder for Storing Libraries and uncheck Create Main Class.

4. Click Finish to create the project, as shown in Figure 1.14.

[.11.2 Creating a Java Class

After a project is created, you can create Java programs in the project using the following
steps:

1. Right-click the demo node in the project pane to display a context menu. Choose New,
Java Class to display the New Java Class dialog box, as shown in Figure 1.15.

@ New Project] il
Sleps Chuovse Project
1. Choose Project Q I
2.
Categories: Projects:
Yo | & Java Application
0 JavaFx & Java Class Library
1 Maven & Java Project wath Existing Sources
"] NetBeans Modules (1 Jova Frea: Form Project
1 samples
Description:
Creates a new Java SE application in a standard IDE project. You can ﬂ
also generate a main class in the praject. Standard projects use an LI
A mnnmenbad A bl T o i
I Next > l Anist | Cancel | Help [

Fiure .12 The New Project dialog is used to create a new project and specify a project type.

23

24 Chapter | Introduction to Computers, Programs, and Java

® New Java Application il

Steps Name and Location

1. Chaase Praject

Praject jame: demo
2. Name and Location LA [

Praject Location: [C:\michael

Project Foider: [CrimichaeRdema

I Use Dedicatad Folder far Staning Libranes

=< Back I Nex ” ﬁni.;;ﬁ I cancel | Help I

Ficure 1.13 The New Java Application dialog is for specifying a project name and location.

] S
Fle Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help Qr Search (crri=1) R
1?_—1 tl @ :_U = - |<defaultconﬁg> v] ['E‘ GE L) - @ - @ '; z_,%%@ k\;,

Servi. | Flles: | Proj. %] 11

) b

=73 Source Packages
. [<default package>
&g Libraries

o8 G Java call Hierarchy

o)

5y | NS
FiGure 1.14 A New Java project named demo is created.
x|

Steps Hame and Location

1. choose Ale Type Class Name: [welcome

2. Name and Location
Froject: Idemu
Location: |Sourcc Packages ;l
Parkage: I Ll

Created Fle: IC:\michaeI\de maol\src\Welcome java

/%, Warning: Tt is highly recommended that you do NO™

-cB_ackl Next > | Einish I Cancel | Help |

FiGure 1.15 The New Java Class dialog box is used to create a new Java class.

2. Type Welcome in the Class Name field and select the Source Packages in the Location
field. Leave the Package field blank. This will create a class in the default package.

3. Click Finish to create the Welcome class. The source code file Welcome.java is placed
under the <default package> node.

4. Modify the code in the Welcome class to match Listing 1.1 in the text, as shown in Figure 1.16.

[.12 Developing Java Programs Using Eclipse 25

® demo - NetBeans IDE Dev 201304132301 1 - ol x|
Fle Edit View Navigale Source Refactor Run Debug Profile Team Tools Window Help Q- Seach (Cli+l
) st o> =] % D - b (G- @ &g
Proj.. x| Files | Serv.. | O [la Welcome.java x| Start Page = «+i=|of
=& demo Source History |[@ @-Sl-QA XS BER | ¢ |6 5| =
=g Source Packages
B <defaull packaye > =
i Welcome.java 2 public class Welcome {
=g Lbraries 3 = public static void maim (Stringl[] args) | .
4 System.cut.println{"Welcome to Java!™); - - Edit pane
‘Welcome - Navigator ¥! = | |- }
Members Lll e.. =l (]] -
O 4y Welcome ‘I | L
{p main(String[] args) | output- demo (run) x| -
1?-ﬂen:l.ccme T
)| - e — Output pane
» |
. =
@) e6]2 |mns

FIGURE 1.16 You can edit a program and run it in NetBeans.

[.11.3 Compiling and Running a Class

To run Welcome.java, right-click Welcome.java to display a context menu and choose Run File,
or simply press Shift + F6. The output is displayed in the Output pane, as shown in Figure 1.16.
The Run File command automatically compiles the program if the program has been changed.

[.12 Developing Java Programs Using Eclipse

You can edit, compile, run, and debug Java Programs using Eclipse.

The preceding section introduced developing Java programs using NetBeans. You can also
use Eclipse to develop Java programs. This section gives the essential instructions to guide
new users to create a project, create a class, and compile/run a class in Eclipse. For instruc-
tions on downloading and installing latest version of Eclipse, see Supplement I1.D.

[.12.1 Creating a Java Project
Before creating Java programs in Eclipse, you need to first create a project to hold all files.

Here are the steps to create a Java project in Eclipse:
1. Choose File, New, Java Project to display the New Project wizard, as shown in Figure 1.17.

2. Type demo in the Project name field. As you type, the Location field is automatically set
by default. You may customize the location for your project.

3. Make sure that you selected the options Use project folder as root for sources and class
files so that the .java and .class files are in the same folder for easy access.

4. Click Finish to create the project, as shown in Figure 1.18.

[.12.2 Creating a Java Class

After a project is created, you can create Java programs in the project using the following steps:
1. Choose File, New, Class to display the New Java Class wizard.

2. Type We'lcome in the Name field.

K
foxe

VideoNote
Eclipse brief tutorial

26 Chapter | Introduction to Computers, Programs, and Java

=lolx|
Create a Java Project ":Ji...
Create a Java project in the workspace or in an external location. l:i_}f

Project name: [dcmo

[+ Use default location

Locatnn: I (= \usasiDanehworkspace\demo

Froiwse.

IRE

& Use an execution enyironment JRE: |OSG/Minimum-1.2

2
" Use a project specfic JRE: ik .66 |

" Use default JRE (currenthy ‘jdk1.8.07) Configure JR[Cs...

Project layout

@ Lse project folder as root for sources and dass files

(" Create separate folders for sources and class files onfigure defautt...

| Working sets
[~ Add project to working sets

Worklrg sets I LI Seiecl, |

(D) The default compicr compliance level for the current workspace & 1.7. The
new project wil use a project specfic compier compliance level of 1.4,

@

Lf) = Batk l Nexl > “ Finish I Cancel |

FIGUREe 1.17 The New Java Project dialog is for specifying a project name and properties.

& Java book/Server.java Edipse SDK :
File Edt Source Refactor Navigate Search Project Run Window Help
w5 BRI HFEE ST

e - - -

=1o1%]

-

! B ||&?Java PyDev 35 Debug | ™

|# PackageE. & < O Serverjava 32 ent K = 8

g; Ou.. 2 8
=l
-

A SRLIE
17 animation

-

7 book
o
17 exercise Ll
=3 myjavaprograms
1 pybouk - - 2 Consule & +B~-riv=0
L1 pybookl

No consules Lo display dl Lhis lime.
T pyexercise

i — L]

demo

FIGURE 1.18 A New Java project named demo is created.

3. Check the option public static void main(String[] args).

4. Click Finish to generate the template for the source code Welcome.java, as shown in
Figure 1.19.

[.12 Developing Java Programs Using Eclipse 27

o]

Java Class =

O

A, 1he use of the default package & discouraged.

Source folder: | demo
Package: |
[~ Cndlosing type: |
Name: [welcome
Maodifiers: ® publc (C defaut € [riv I proEckd
[~ abstract [final [T stafic
Superclass: |java.lang.0bject Browse... |
Interfaces:

Which method stubs would you ke to create?
[+ public static void main(String[] args)
[Construclors fom supet tdss
[~ Inherited abstract methads
Do you want to add comments? (Configure templates and default value here)
| Generate comments

Cancel |

FIGURE 1.19 The New Java Class dialog box is used to create a new Java class.

[.12.3 Compiling and Running a Class

To run the program, right-click the class in the project to display a context menu. Choose Run,
Java Application in the context menu to run the class. The output is displayed in the Console
pane, as shown in Figure 1.20.

= Tava - demo/Wekome. java - Folipse SDK = EIEZI
[le [dt Source Refactor MNavigate Search Project Run Window Lelp
rgw Cligs e Qe wigi @i vipe| s@midieg v o v| o=
JQuick Access ! B9 |[&1ava PyDev % Debug W
|% Package Ex.. 22 = B [i Serverjava [I) StudentClie... 0 welcomejavaz [= 8 oxn = 0
=5 - Sl 1 // This application program prints Welcome tcﬂ =R
121 animation 2 public class Welcome { < = Edit pane
7 book 3 public static void main(String[] args) { =@, welct
O 3 demo 4 System.out.println("Welcome to Java!"); ot
O fB (defauk package) 5 ¥
® 4] Welcome.java b }
o =4 JRE System Library / =
7 exercise | | » d |
-1 myjavaprograms
I_j thl & Console &2 =28
T pyl s e =
re bl X % |G bE[E[E| B -
<terminated> Welcome [Java Application] C:\Program Fies\Java\jdk1.8.0\bin\javaw.exe (Apr 18,
Welcome to Java! < = N Output pane
il — | H _*IJ
| Wiritabike | Smart sert | 7:1

FIGURE 1.20 You can edit a program and run it in Eclipse.

28 Chapter | Introduction to Computers, Programs, and Java

KEey TERMS
Application Program Interface (API) 11 Java Virtual Machine JVM) 16
assembler 7 javac command 17
assembly language 7 keyword (or reserved word) 13
bit 3 library 11
block 13 line comment 13
block comment 13 logic error 21
bus 2 low-level language 7
byte 3 machine language 7
bytecode 16 main method 13
bytecode verifier 17 memory 4
cable modem 6 modem 00
central processing unit (CPU) 3 motherboard 3
class loader 17 network interface card (NIC) 6
comment 13 operating system (OS) 9
compiler 8 pixel 6
console 12 program 2
dot pitch 6 programming 2
DSL (digital subscriber line) 6 runtime error 20
encoding scheme 3 screen resolution 6
hardware 2 software 2
high-level language 8 source code 8
integrated development environment source program 8
(IDE) 12 statement 8
interpreter 8 statement terminator 13
java command 17 storage devices 4
Java Development Toolkit (JDK) 12 syntax error 20

Java language specification 11

Note
£
Supplement I.A 1 The above terms are defined in this chapter. Supplement I.A, Glossary, lists all the key
terms and descriptions in the book, organized by chapters.

CHAPTER SUMMARY

I. A computer is an electronic device that stores and processes data.
2. A computer includes both hardware and software.
3. Hardware is the physical aspect of the computer that can be touched.

4. Computer programs, known as software, are the invisible instructions that control the
hardware and make it perform tasks.

5. Computer programming is the writing of instructions (i.e., code) for computers to perform.

6. The central processing unit (CPU) is a computer’s brain. It retrieves instructions from
memory and executes them.

7. Computers use zeros and ones because digital devices have two stable states, referred to
by convention as zero and one.

20.

2].

22.

23.

24.

25.
26.

27.

28.

29.

. A bitis abinary digit O or 1.
. A byte is a sequence of 8 bits.

. A kilobyte is about 1,000 bytes, a megabyte about 1 million bytes, a gigabyte about 1

billion bytes, and a terabyte about 1,000 gigabytes.

. Memory stores data and program instructions for the CPU to execute.
. A memory unit is an ordered sequence of bytes.
. Memory is volatile, because information is lost when the power is turned off.

. Programs and data are permanently stored on storage devices and are moved to memory

when the computer actually uses them.

. The machine language is a set of primitive instructions built into every computer.

. Assembly language is a low-level programming language in which a mnemonic is used

to represent each machine-language instruction.

. High-level languages are English-like and easy to learn and program.
. A program written in a high-level language is called a source program.

. A compiler is a software program that translates the source program into a machine-

language program.
The operating system (OS) is a program that manages and controls a computer’s activities.

Java is platform independent, meaning that you can write a program once and run it on
any computer.

Java programs can be embedded in HTML pages and downloaded by Web browsers to
bring live animation and interaction to Web clients.

The Java source file name must match the public class name in the program. Java source
code files must end with the . java extension.

Every class is compiled into a separate bytecode file that has the same name as the class
and ends with the . class extension.

To compile a Java source-code file from the command line, use the javac command.
To run a Java class from the command line, use the java command.

Every Java program is a set of class definitions. The keyword class introduces a class
definition. The contents of the class are included in a block.

A block begins with an opening brace ({) and ends with a closing brace (}).
Methods are contained in a class. To run a Java program, the program must have a

main method. The main method is the entry point where the program starts when it is
executed.

Chapter Summary 29

30 Chapter |

Introduction to Computers, Programs, and Java

30.

31.

32.

33.

34.

Every statement in Java ends with a semicolon (;), known as the statement terminator.

Reserved words, or keywords, have a specific meaning to the compiler and cannot be
used for other purposes in the program.

In Java, comments are preceded by two slashes (//) on a line, called a line comment, or
enclosed between /* and */ on one or several lines, called a block comment or para-
graph comment. Comments are ignored by the compiler.

Java source programs are case sensitive.

Programming errors can be categorized into three types: syntax errors, runtime errors,
and logic errors. Errors reported by a compiler are called syntax errors or compile
errors. Runtime errors are errors that cause a program to terminate abnormally. Logic
errors occur when a program does not perform the way it was intended to.

Quiz

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

MyProgrammingLab® PROGRAMMING EXERCISES

level of difficulty

Bl Note

= Solutions to even-numbered programming exercises are on the Companion Website.
Solutions to all programming exercises are on the Instructor Resource Website.
Additional programming exercises with solutions are provided to the instructors on the
Instructor Resource Website. The level of difficulty is rated easy (no star), moderate (*),

I.1 (Display three messages) Write a program that displays Welcome to Java,

Welcome to Computer Science, and Programming is fun.

1.2 (Display five messages) Write a program that displays Welcome to Java five times.

*1.3 (Display a pattern) Write a program that displays the following pattern:

] A \% \% A
J AA v Vv AA
J J AAAAA vV Vv AAAAA

JJ A A \% A A

I.4 (Print a table) Write a program that displays the following table:

a a2 an3
1 1 1

2 4 8

3 9 27
4 16 64

1.5 (Compute expressions) Write a program that displays the result of

95X 45 —-25X3
455 — 35

1.6 (Summation of a series) Write a program that displays the result of

1+2+3+4+5+6+7+8+0.

www.cs.armstrong.edu/liang/intro10e/quiz.html

1.8

.10

A2

“1.13

Programming Exercises 31

(Approximater) 1 can be computed using the following formula:

1 1 1 1 1
T=4X|l—-4+-—-+-———+ ...
35 7 9 11
Writ that displays th Itof4 X (1 1+1 1+1 !
ri rogram i T s e
e a program that displays the result o 3 ts 7t

11 1 1
and4><<1—3+—+ +>. Use 1.0 instead of 1 in your

1
5 7 9 11 13
program.

(Area and perimeter of a circle) Write a program that displays the area and perim-
eter of a circle that has a radius of 5.5 using the following formula:

perimeter = 2 X radius X

area = radius X radius X

(Area and perimeter of a rectangle) Write a program that displays the area and
perimeter of a rectangle with the width of 4.5 and height of 7.9 using the following
formula:

area = width X height

(Average speed in miles) Assume a runner runs 14 kilometers in 45 minutes and 30
seconds. Write a program that displays the average speed in miles per hour. (Note
that 1 mile is 1.6 kilometers.)

(Population projection) The U.S. Census Bureau projects population based on the
following assumptions:

B One birth every 7 seconds
B One death every 13 seconds
B One new immigrant every 45 seconds

Write a program to display the population for each of the next five years. Assume the
current population is 312,032,486 and one year has 365 days. Hint: In Java, if two
integers perform division, the result is an integer. The fractional part is truncated. For
example, 5/41is 1 (not 1.25)and 10/ 4 is 2 (not 2. 5). To get an accurate result with
the fractional part, one of the values involved in the division must be a number with a
decimal point. For example, 5.0/4is1.25and 10/4.0is 2.5.

(Average speed in kilometers) Assume a runner runs 24 miles in 1 hour, 40 minutes,
and 35 seconds. Write a program that displays the average speed in kilometers per
hour. (Note that 1 mile is 1.6 kilometers.)

(Algebra: solve 2 X 2 linear equations) You can use Cramer’s rule to solve the fol-
lowing 2 X 2 system of linear equation:

ax + by = e ed — bf af — ec
cx+dy=f x:ad—bc y:ad—bc
Write a program that solves the following equation and displays the value for x and y:
3.4x + 502y = 44.5
2.1x + .55y =59

This page intentionally left blank

ELEMENTARY
PROGRAMMING

Objectives

B To write Java programs to perform simple computations (§2.2).

B To obtain input from the console using the Scanner class (§2.3).

B To use identifiers to name variables, constants, methods, and classes (§2.4).

B To use variables to store data (§§2.5-2.6).

B To program with assignment statements and assignment expressions
(§2.6).

B To use constants to store permanent data (§2.7).

B To name classes, methods, variables, and constants by following their
naming conventions (§2.8).

B To explore Java numeric primitive data types: byte, short, int,
long, float, and double (§2.9.1).

B Toread abyte, short, int, Tong, float, or double value from the
keyboard (§2.9.2).

B To perform operations using operators +, -, *, /, and % (§2.9.3).

B To perform exponent operations using Math.pow(a, b) (§2.9.4).

B To write integer literals, floating-point literals, and literals in scientific
notation (§2.10).

B To write and evaluate numeric expressions (§2.11).

B To obtain the current system time using
System.currentTimeMillis() (§2.12).

B To use augmented assignment operators (§2.13).

B To distinguish between postincrement and preincrement and between
postdecrement and predecrement (§2.14).

B To cast the value of one type to another type (§2.15).

B To describe the software development process and apply it to develop
the loan payment program (§2.16).

B To write a program that converts a large amount of money into smaller
units (§2.17).

B To avoid common errors and pitfalls in elementary programming (§2.18).

CHAPTER

34 Chapter 2

K
Gﬁoifl);

K
6ﬁoi(r?;

problem
algorithm

pseudocode

Elementary Programming

2.1 Introduction

The focus of this chapter is on learning elementary programming techniques to solve
problems.

In Chapter 1 you learned how to create, compile, and run very basic Java programs. Now you
will learn how to solve problems by writing programs. Through these problems, you will learn
elementary programming using primitive data types, variables, constants, operators, expres-
sions, and input and output.

Suppose, for example, that you need to take out a student loan. Given the loan amount, loan
term, and annual interest rate, can you write a program to compute the monthly payment and
total payment? This chapter shows you how to write programs like this. Along the way, you
learn the basic steps that go into analyzing a problem, designing a solution, and implementing
the solution by creating a program.

2.2 Writing a Simple Program

Writing a program involves designing a strategy for solving the problem and then
using a programming language to implement that strategy.

Let’s first consider the simple problem of computing the area of a circle. How do we write a
program for solving this problem?

Writing a program involves designing algorithms and translating algorithms into pro-
gramming instructions, or code. An algorithm describes how a problem is solved by listing
the actions that need to be taken and the order of their execution. Algorithms can help the
programmer plan a program before writing it in a programming language. Algorithms can be
described in natural languages or in pseudocode (natural language mixed with some program-
ming code). The algorithm for calculating the area of a circle can be described as follows:

1. Read in the circle’s radius.
2. Compute the area using the following formula:
area = radius X radius X
3. Display the result.
Tip
It's always good practice to outline your program (or its underlying problem) in the form

of an algorithm before you begin coding.

When you code—that is, when you write a program—you translate an algorithm into a pro-
gram. You already know that every Java program begins with a class definition in which the
keyword class is followed by the class name. Assume that you have chosen ComputeArea
as the class name. The outline of the program would look like this:

public class ComputeArea {
// Details to be given later

3

As you know, every Java program must have a main method where program execution
begins. The program is then expanded as follows:
public class ComputeArea {
public static void main(String[] args) {
// Step 1: Read in radius

// Step 2: Compute area

2.2 Writing a Simple Program 35

// Step 3: Display the area
3
}

The program needs to read the radius entered by the user from the keyboard. This raises
two important issues:

B Reading the radius.
B Storing the radius in the program.

Let’s address the second issue first. In order to store the radius, the program needs to declare
a symbol called a variable. A variable represents a value stored in the computer’s memory. variable

Rather than using x and y as variable names, choose descriptive names: in this case, radius descriptive names
for radius, and area for area. To let the compiler know what radius and area are, specify their
data types. That is the kind of data stored in a variable, whether integer, real number, or some- data type
thing else. This is known as declaring variables. Java provides simple data types for represent- declare variables
ing integers, real numbers, characters, and Boolean types. These types are known as primitive primitive data types
data types or fundamental types.

Real numbers (i.e., numbers with a decimal point) are represented using a method known
as floating-point in computers. So, the real numbers are also called floating-point numbers. In floating-point number
Java, you can use the keyword doubTe to declare a floating-point variable. Declare radius
and area as doubTle. The program can be expanded as follows:

public class ComputeArea {
public static void main(String[] args) {
double radius;
double area;

// Step 1: Read 1in radius
// Step 2: Compute area

// Step 3: Display the area
}
}

The program declares radius and area as variables. The reserved word doub’ e indicates
that radius and area are floating-point values stored in the computer.

The first step is to prompt the user to designate the circle’s radius. You will soon learn
how to prompt the user for information. For now, to learn how variables work, you can assign
a fixed value to radius in the program as you write the code; later, you’ll modify the program
to prompt the user for this value.

The second step is to compute area by assigning the result of the expression radius #
radius * 3.14159 to area.

In the final step, the program will display the value of area on the console by using the
System.out.println method.

Listing 2.1 shows the complete program, and a sample run of the program is shown in
Figure 2.1.

LisTING 2.1 ComputeArea.java

1 public class ComputeArea {

2 public static void main(String[] args) {
3 double radius; // Declare radius

4 double area; // Declare area
5
6

// Assign a radius

36 Chapter 2

declare variable
assign value

tracing program

concatenate strings

concatenate strings with
numbers

break a long string

Elementary Programming

7 radius = 20; // radius 1is now 20
8
9 // Compute area
10 area = radius * radius * 3.14159;
11
12 // Display results
13 System.out.println("The area for the circle of radius " +
14 radius + " 1is " + area);
15 }
16 3}
#|Command Prompt ol x|
Compile —> G:sbook>javac Computefirea. java :I

Run ——> K:xhook>java Computefirea a4
he area for the circle of radius 28.8 is 1256.636

:SNbook> -
1] | H 4

FiGure 2.1 The program displays the area of a circle.

Variables such as radius and area correspond to memory locations. Every variable has
a name, a type, a size, and a value. Line 3 declares that radius can store a double value.
The value is not defined until you assign a value. Line 7 assigns 20 into variable radius.
Similarly, line 4 declares variable area, and line 10 assigns a value into area. The following
table shows the value in the memory for area and radius as the program is executed. Each
row in the table shows the values of variables after the statement in the corresponding line in
the program is executed. This method of reviewing how a program works is called tracing a
program. Tracing programs are helpful for understanding how programs work, and they are
useful tools for finding errors in programs.

line# radius area
3 no value
4 no value
7 20
10 1256.636

The plus sign (+) has two meanings: one for addition and the other for concatenating (com-
bining) strings. The plus sign (+) in lines 13—14 is called a string concatenation operator. It
combines two strings into one. If a string is combined with a number, the number is converted
into a string and concatenated with the other string. Therefore, the plus signs (+) in lines
13—14 concatenate strings into a longer string, which is then displayed in the output. Strings
and string concatenation will be discussed further in Chapter 4.

Caution
A string cannot cross lines in the source code. Thus, the following statement would
result in a compile error:

System.out.printin("Introduction to Java Programming,
by Y. Daniel Liang');

To fix the error, break the string into separate substrings, and use the concatenation
operator (+) to combine them:

System.out.printin("Introduction to Java Programming, " +
"by Y. Daniel Liang");

2.3 Reading Input from the Console 37

2.1 Identify and fix the errors in the following code: Check
. Point
1 public class Test {
2 public void main(string[] args) {
3 double i = 50.0;
4 double k = i + 50.0;
5 double j = k + 1;
6
7 System.out.printin("j is " + j + " and
8 kis " + k);
9 }
10 }
2.3 Reading Input from the Console
Reading input from the console enables the program to accept input from the user. 6 fKey
Point

In Listing 2.1, the radius is fixed in the source code. To use a different radius, you have to

modify the source code and recompile it. Obviously, this is not convenient, so instead you can

use the Scanner class for console input. u
Java uses System.out to refer to the standard output device and System.in to the

standard input device. By default, the output device is the display monitor and the input ~ VideoNote
device is the keyboard. To perform console output, you simply use the printTn method to Obtain input
display a primitive value or a string to the console. Console input is not directly supported
in Java, but you can use the Scanner class to create an object to read input from System.in,
as follows:
Scanner input = new Scanner(System.in);
The syntax new Scanner(System.in) creates an object of the Scanner type. The syntax
Scanner input declares that input is a variable whose type is Scanner. The whole line
Scanner input = new Scanner(System.in) creates a Scanner object and assigns its
reference to the variable input. An object may invoke its methods. To invoke a method on
an object is to ask the object to perform a task. You can invoke the nextDouble() method to
read a double value as follows:
double radius = input.nextDouble();
This statement reads a number from the keyboard and assigns the number to radius.
Listing 2.2 rewrites Listing 2.1 to prompt the user to enter a radius.
LIsTING 2.2 ComputeAreaWithConsoleInput.java
1 1dimport java.util.Scanner; // Scanner is in the java.util package import class
2
3 public class ComputeAreaWithConsoleInput {
4 public static void main(String[] args) {
5 // Create a Scanner object
6 Scanner input = new Scanner(System.in); create a Scanner
7
8 // Prompt the user to enter a radius
9 System.out.print("Enter a number for radius: ");
10 double radius = input.nextDouble(); read a double
11
12 // Compute area
13 double area = radius * radius * 3.14159;
14

15 // Display results

38 Chapter 2 Elementary Programming

Ll

prompt

printvs. println

specific import

wildcard import

no performance difference

import class

create a Scanner

16 System.out.println("The area for the circle of radius " +
17 radius + " is " + area);

18 }

19 1}

Enter a number for radius: 2.5 |—enter
The area for the circle of radius 2.5 is 19.6349375

Enter a number for radius: 23 —enter
The area for the circle of radius 23.0 is 1661.90111

Line 9 displays a string "Enter a number for radius: " to the console. This is
known as a prompt, because it directs the user to enter an input. Your program should always
tell the user what to enter when expecting input from the keyboard.

The print method in line 9

System.out.print("Enter a number for radius: ");

is identical to the print1n method except that print1n moves to the beginning of the next
line after displaying the string, but print does not advance to the next line when completed.
Line 6 creates a Scanner object. The statement in line 10 reads input from the keyboard.

double radius = input.nextDouble();

After the user enters a number and presses the Enfer key, the program reads the number
and assigns it to radius.

More details on objects will be introduced in Chapter 9. For the time being, simply accept
that this is how to obtain input from the console.

The Scanner class is in the java.util package. It is imported in line 1. There are two
types of import statements: specific import and wildcard import. The specific import spec-
ifies a single class in the import statement. For example, the following statement imports
Scanner from the package java.util.

import java.util.Scanner;

The wildcard import imports all the classes in a package by using the asterisk as the
wildcard. For example, the following statement imports all the classes from the package
java.util.

import java.uitl.*;

The information for the classes in an imported package is not read in at compile time or
runtime unless the class is used in the program. The import statement simply tells the compiler
where to locate the classes. There is no performance difference between a specific import and
a wildcard import declaration.

Listing 2.3 gives an example of reading multiple input from the keyboard. The program
reads three numbers and displays their average.

LiIsTING 2.3 ComputeAverage.java

1 dmport java.util.Scanner; // Scanner is in the java.util package

2
3 public class ComputeAverage {

4 public static void main(String[] args) {
5 // Create a Scanner object

6 Scanner input = new Scanner(System.in);
7

8 // Prompt the user to enter three numbers
9 System.out.print("Enter three numbers: ");
10 double numberl = input.nextDouble();
11 double number2 = input.nextDouble();
12 double number3 = input.nextDouble();
13
14 // Compute average
15 double average = (numberl + number2 + number3) / 3;
16
17 // Display results
18 System.out.printin("The average of " + numberl + " " + number2
19 + " " + number3 + " dis " + average);
20 }
21 %

Enter three numbers: 1 2 3 -enter
The average of 1.0 2.0 3.0 is 2.0

Enter three numbers: 10.5 |-enter

11 ~ Enter

11_5 I Enter

The average of 10.5 11.0 11.5 1is 11.0

The code for importing the Scanner class (line 1) and creating a Scanner object (line
6) are the same as in the preceding example as well as in all new programs you will write for
reading input from the keyboard.

Line 9 prompts the user to enter three numbers. The numbers are read in lines 10-12. You
may enter three numbers separated by spaces, then press the Enter key, or enter each number
followed by a press of the Enter key, as shown in the sample runs of this program.

If you entered an input other than a numeric value, a runtime error would occur. In Chapter 12,
you will learn how to handle the exception so that the program can continue to run.

Bl Note

. Most of the programs in the early chapters of this book perform three steps—input,
process, and output—called /PO. Input is receiving input from the user; process is pro-
ducing results using the input; and output is displaying the results.

2.2 How do you write a statement to let the user enter a double value from the keyboard?
What happens if you entered 5a when executing the following code?
double radius = input.nextDouble();

2.3 Are there any performance differences between the following two import statements?

import java.util.Scanner;
import java.util.¥;

2.4 ldentifiers

Identifiers are the names that identify the elements such as classes, methods, and
variables in a program.

As you see in Listing 2.3, ComputeAverage, main, input, numberl, number2, number3,
and so on are the names of things that appear in the program. In programming terminology,
such names are called identifiers. All identifiers must obey the following rules:

B An identifier is a sequence of characters that consists of letters, digits, underscores
(L), and dollar signs ($).

2.4 ldentifiers 39

read a double

2

enter input in one line

2

enter input in multiple lines

runtime error

IPO

Aheck
Point

K
foxe

identifiers
identifier naming rules

40 Chapter 2 Elementary Programming

case sensitive

descriptive names

the $ character

ﬁheck
Point

K
6ﬁoi‘z

why called variables?

start with a digit.

B An identifier cannot be true, false, or null.

B An identifier can be of any length.

B An identifier must start with a letter, an underscore (_), or a dollar sign ($). It cannot

B Anidentifier cannot be a reserved word. (See Appendix A for a list of reserved words.)

For example, $2, ComputeArea, area, radius, and print are legal identifiers, whereas
2A and d+4 are not because they do not follow the rules. The Java compiler detects illegal
identifiers and reports syntax errors.

Note
Since Java is case sensitive, area, Area, and AREA are all different identifiers.

Tip

Identifiers are for naming variables, methods, classes, and other items in a program.
Descriptive identifiers make programs easy to read. Avoid using abbreviations for identi-
fiers. Using complete words is more descriptive. For example, numberOfStudents
is better than numStuds, numOfStuds, or numOfStudents. We use descriptive
names for complete programs in the text. However, we will occasionally use variable
names such as i, j, k, x, and y in the code snippets for brevity. These names also
provide a generic tone to the code snippets.

Tip
Do not name identifiers with the $ character. By convention, the $ character should be
used only in mechanically generated source code.

2.4 Which of the following identifiers are valid? Which are Java keywords?

miles, Test, a++, —-a, 4#R, $4, #44, apps

class, public, int, x, y, radius

2.5 Variables

Variables are used to represent values that may be changed in the program.

As you see from the programs in the preceding sections, variables are used to store values
to be used later in a program. They are called variables because their values can be changed.
In the program in Listing 2.2, radius and area are variables of the doub'e type. You can
assign any numerical value to radius and area, and the values of radius and area can
be reassigned. For example, in the following code, radius is initially 1.0 (line 2) and then
changed to 2.0 (line 7), and area is set to 3.14159 (line 3) and then reset to 12.56636

(line 8).
1 // Compute the first area
2 radius = 1.0; radius: [1.0
3 area = radius * radius * 3.14159; area: |3.14159
4 System.out.printin("The area is " + area + " for radius " + radius);
5
6 // Compute the second area
7 radius = 2.0; radius: [2.0
8 area = radius * radius * 3.14159; area: |12.56636
9 System.out.printin("The area 1is " + area + " for radius " + radius);

Variables are for representing data of a certain type. To use a variable, you declare it by
telling the compiler its name as well as what type of data it can store. The variable declaration

2.6 Assignment Statements and Assignment Expressions 41

tells the compiler to allocate appropriate memory space for the variable based on its data type.
The syntax for declaring a variable is

datatype variableName;

Here are some examples of variable declarations: declare variable
int count; // Declare count to be an integer variable
double radius; // Declare radius to be a double variable

double interestRate; // Declare interestRate to be a double variable

These examples use the data types int and double. Later you will be introduced to addi-
tional data types, such as byte, short, Tong, float, char, and boolean.
If variables are of the same type, they can be declared together, as follows:

datatype variablel, variable2, ..., variablen;

The variables are separated by commas. For example,

int i, j, k; // Declare i, j, and k as int variables

Variables often have initial values. You can declare a variable and initialize it in one step. initialize variables
Consider, for instance, the following code:

int count = 1;
This is equivalent to the next two statements:

int count;
count = 1;

You can also use a shorthand form to declare and initialize variables of the same type
together. For example,

int i =1, j = 2;

Tip
A variable must be declared before it can be assigned a value. A variable declared in a
method must be assigned a value before it can be used.

Whenever possible, declare a variable and assign its initial value in one step. This will
make the program easy to read and avoid programming errors.

Every variable has a scope. The scope of a variable is the part of the program where the
variable can be referenced. The rules that define the scope of a variable will be introduced
gradually later in the book. For now, all you need to know is that a variable must be declared
and initialized before it can be used.

2.5 Identify and fix the errors in the following code: ﬁheck

public class Test { Point

public static void main(String[] args) {
int i = k + 2;
System.out.printin(i);
}
}

OV WNRE

2.6 Assignment Statements and Assignment
Expressions

An assignment statement designates a value for a variable. An assignment statement 6{ Key
can be used as an expression in Java. '/ Point

42 Chapter 2

assignment statement

assignment operator

expression

assignment expression

Elementary Programming

After a variable is declared, you can assign a value to it by using an assignment statement. In

Java, the equal sign (=) is used as the assignment operator. The syntax for assignment state-
ments is as follows:

variable = expression;

An expression represents a computation involving values, variables, and operators that,
taking them together, evaluates to a value. For example, consider the following code:

inty = 1; // Assign 1 to variable y

double radius = 1.0; // Assign 1.0 to variable radius

int x=5%* 3/ 2); // Assign the value of the expression to x
X =y + 1; // Assign the addition of y and 1 to x

double area = radius * radius * 3.14159; // Compute area

You can use a variable in an expression. A variable can also be used in both sides of the =
operator. For example,

X =X + 1;

In this assignment statement, the result of x + 1 is assigned to x. If x is 1 before the state-
ment is executed, then it becomes 2 after the statement is executed.

To assign a value to a variable, you must place the variable name to the left of the assign-
ment operator. Thus, the following statement is wrong:

1 =x; // Wrong

Bl Note
In mathematics, x = 2 * x + 1 denotes an equation. However, inJava, x = 2 * x

+ 1isan assignment statement that evaluates the expression 2 * x + 1 and assigns
the result to x.

In Java, an assignment statement is essentially an expression that evaluates to the value
to be assigned to the variable on the left side of the assignment operator. For this reason, an

assignment statement is also known as an assignment expression. For example, the following
statement is correct:

System.out.println(x = 1);
which is equivalent to

X = 1;
System.out.println(x);

If a value is assigned to multiple variables, you can use this syntax:

k = 1;
j=k;
i=73;

2 Note

In an assignment statement, the data type of the variable on the left must be compat-
ible with the data type of the value on the right. For example, int x = 1.0 would be

2.7 Named Constants 43

illegal, because the data type of x is int. You cannot assign a double value (1.0) to
an int variable without using type casting. Type casting is introduced in Section 2.15.

2.6 Identify and fix the errors in the following code: ﬁﬁeck

Point

1 public class Test {
2 public static void main(String[] args) {
3 int i = j = k = 2;
4 System.out.println(i + " " + j + " " + Kk);
5 }
6 1
2.7 Named Constants
A named constant is an identifier that represents a permanent value. 6 fKey
Point

The value of a variable may change during the execution of a program, but a named con-
stant, or simply constant, represents permanent data that never changes. In our ComputeArea constant
program, 7 is a constant. If you use it frequently, you don’t want to keep typing 3.14159;

instead, you can declare a constant for 7. Here is the syntax for declaring a constant:

final datatype CONSTANTNAME = value;

A constant must be declared and initialized in the same statement. The word final is final keyword
a Java keyword for declaring a constant. For example, you can declare 7 as a constant and
rewrite Listing 2.1 as in Listing 2.4.

LIsTING 2.4 ComputeAreaWithConstant.java

1 dmport java.util.Scanner; // Scanner is in the java.util package

2
3 public class ComputeAreaWithConstant {
4 public static void main(String[] args) {
5 final double PI = 3.14159; // Declare a constant
6
7 // Create a Scanner object
8 Scanner input = new Scanner(System.in);
9
10 // Prompt the user to enter a radius
11 System.out.print("Enter a number for radius: ");
12 double radius = input.nextDouble();
13
14 // Compute area
15 double area = radius * radius * PI;
16
17 // Display result
18 System.out.println("The area for the circle of radius " +
19 radius + " is " + area);
20 }
21 %

There are three benefits of using constants: (1) you don’t have to repeatedly type the same benefits of constants
value if it is used multiple times; (2) if you have to change the constant value (e.g., from 3. 14
to 3.14159 for PI), you need to change it only in a single location in the source code; and
(3) a descriptive name for a constant makes the program easy to read.

44 Chapter 2 Elementary Programming

e
Point
name variables and methods

name classes

name constants

name classes

ﬁheck
Point

K
ke

2.8 Naming Conventions

Sticking with the Java naming conventions makes your programs easy to read and
avoids errors.

Make sure that you choose descriptive names with straightforward meanings for the variables,
constants, classes, and methods in your program. As mentioned earlier, names are case sensi-
tive. Listed below are the conventions for naming variables, methods, and classes.

B Use lowercase for variables and methods. If a name consists of several words, con-
catenate them into one, making the first word lowercase and capitalizing the first
letter of each subsequent word—for example, the variables radius and area and
the method print.

B Capitalize the first letter of each word in a class name—for example, the class names
ComputeArea and System.

B Capitalize every letter in a constant, and use underscores between words—for exam-
ple, the constants PT and MAX_VALUE.

It is important to follow the naming conventions to make your programs easy to read.

Caution
Do not choose class names that are already used in the Java library. For example, since
the System class is defined in Java, you should not name your class System.

2.7 What are the benefits of using constants? Declare an int constant STZE with value 20.

2.8 What are the naming conventions for class names, method names, constants, and
variables? Which of the following items can be a constant, a method, a variable, or a
class according to the Java naming conventions?

MAX_VALUE, Test, read, readDouble
2.9 Translate the following algorithm into Java code:
Step 1: Declare a doube variable named m1i1es with initial value 100.

Step 2: Declare a double constant named KILOMETERS PER_MILE with value
1.609.

Step 3: Declare a double variable named kilometers, multiply miles and
KILOMETERS PER_MILE, and assign the result to kilometers.

Step 4: Display kilometers to the console.

What is kilometers after Step 4?7

2.9 Numeric Data Types and Operations

Java has six numeric types for integers and floating-point numbers with operators +,
- * 1, and %.

2.9.1 Numeric Types

Every data type has a range of values. The compiler allocates memory space for each var-
iable or constant according to its data type. Java provides eight primitive data types for
numeric values, characters, and Boolean values. This section introduces numeric data types
and operators.

Table 2.1 lists the six numeric data types, their ranges, and their storage sizes.

2.9 Numeric Data Types and Operations

TaBLE 2.1 Numeric Data Types

Name Range Storage Size

byte —2"t02" — 1(—128to 127) 8-bit signed

short —2510 215 — 1(—32768 to 32767) 16-bit signed

int —231t0 231 — 1 (—2147483648 to 2147483647) 32-bit signed

long —263 5203 — 64-bit signed
(i.e., —9223372036854775808 to 9223372036854775807)

float Negative range: —3.4028235E + 38 to —1.4E — 45 32-bit IEEE 754
Positive range: 1.4E — 45 to 3.4028235E + 38

double Negative range: —1.7976931348623157E + 308 to 64-bit IEEE 754

—49E — 324

Positive range: 4.9E — 324 to 1.7976931348623157E + 308

Note

H IEEE 754 is a standard approved by the Institute of Electrical and Electronics Engineers
for representing floating-point numbers on computers. The standard has been widely
adopted. Java uses the 32-bit IEEE 754 for the float type and the 64-bit IEEE 754
for the doube type. The IEEE 754 standard also defines special floating-point values,
which are listed in Appendix E.

Java uses four types for integers: byte, short, int, and Tong. Choose the type that is
most appropriate for your variable. For example, if you know an integer stored in a variable
is within a range of a byte, declare the variable as a byte. For simplicity and consistency, we

will use int for integers most of the time in this book.

Java uses two types for floating-point numbers: float and double. The double type
is twice as big as float, so the double is known as double precision and float as single
precision. Normally, you should use the double type, because it is more accurate than the

float type.

2.9.2 Reading Numbers from the Keyboard

You know how to use the nextDouble() method in the Scanner class to read a double
value from the keyboard. You can also use the methods listed in Table 2.2 to read a number

of the byte, short, int, Tong, and float type.

TABLE 2.2 Methods for Scanner Objects

Method Description

nextByte() reads an integer of the byte type.
nextShort(Q) reads an integer of the short type.
nextInt() reads an integer of the int type.
nextLong() reads an integer of the Tong type.
nextFloat() reads a number of the float type.
nextDouble() reads a number of the doubTe type.

byte type

short type

int type

Tong type

float type

double type

integer types

floating-point types

45

46 Chapter 2

operators +, -, *, /, %

operands

integer division

Elementary Programming

Here are examples for reading values of various types from the keyboard:

1 Scanner input = new Scanner(System.in);

2 System.out.print("Enter a byte value: ");
3 byte byteValue = input.nextByte();

4

5 System.out.print("Enter a short value: ");
6 short shortValue = input.nextShort();

7

8 System.out.print("Enter an int value: ");
9 nt intValue = input.nextInt();
10

11 System.out.print("Enter a long value: ");
12 long longValue = input.nextLong();

14 System.out.print("Enter a float value: ");
15 float floatValue = input.nextFloat();

If you enter a value with an incorrect range or format, a runtime error would occur. For
example, you enter a value 128 for line 3, an error would occur because 128 is out of range
for a byte type integer.

2.9.3 Numeric Operators

The operators for numeric data types include the standard arithmetic operators: addition (+),
subtraction (-), multiplication (*), division (/), and remainder (%), as shown in Table 2.3. The
operands are the values operated by an operator.

TABLE 2.3 Numeric Operators

Name Meaning Example Result

+ Addition 34 +1 35

- Subtraction 340-0.1 33.9
Multiplication 300 * 30 9000

/ Division 1.0/2.0 0.5

% Remainder 20 % 3 2

When both operands of a division are integers, the result of the division is the quotient
and the fractional part is truncated. For example, 5 / 2 yields 2, not 2.5, and -5 / 2 yields
-2,not -2.5. To perform a float-point division, one of the operands must be a floating-point
number. For example, 5.0 / 2 yields 2.5.

The % operator, known as remainder or modulo operator, yields the remainder after divi-
sion. The operand on the left is the dividend and the operand on the right is the divisor. There-
fore, 7 % 3yields 1,3 % 7 yields 3,12 % 4yields 0,26 % 8 yields 2,and 20 % 13 yields 7.

1 <—— Quotient

/ 7/ 3 4/ 1 / 26 Divisor —— 13/ 20 <—— Dividend

13
3 0 7 <—— Remainder

The % operator is often used for positive integers, but it can also be used with negative inte-
gers and floating-point values. The remainder is negative only if the dividend is negative. For
example, -7 % 3yields -1, -12 % 4 yields 0, -26 % -8 yields -2, and 20 % -13 yields 7

2.9 Numeric Data Types and Operations 47

Remainder is very useful in programming. For example, an even number % 2 is always 0
and an odd number % 2 is always 1. Thus, you can use this property to determine whether a
number is even or odd. If today is Saturday, it will be Saturday again in 7 days. Suppose you
and your friends are going to meet in 10 days. What day is in 10 days? You can find that the
day is Tuesday using the following expression:

Day 6 in a week is Saturday

l / A week has 7 days

(6+10)% Tis2

After 10 days Day 2 in a week is Tuesday
Note: Day 0 in a week is Sunday

The program in Listing 2.5 obtains minutes and remaining seconds from an amount of time
in seconds. For example, 500 seconds contains 8 minutes and 20 seconds.

LISTING 2.5 DisplayTime.java

1 dimport java.util.Scanner; import Scanner
2

3 public class DisplayTime {

4 public static void main(String[] args) {

5 Scanner input = new Scanner(System.in); create a Scanner
6 // Prompt the user for 1input

7 System.out.print("Enter an integer for seconds: ");

8 int seconds = input.nextInt(); read an integer
9
10 int minutes = seconds / 60; // Find minutes in seconds divide
11 int remainingSeconds = seconds % 60; // Seconds remaining remainder
12 System.out.println(seconds + " seconds is " + minutes +
13 " minutes and " + remainingSeconds + " seconds");
14 }
15 3}

Enter an integer for seconds: 500 |-enter E

500 seconds is 8 minutes and 20 seconds

line# seconds minutes remainingSeconds O\

8 500
10 8
11 20

The nextInt() method (line 8) reads an integer for seconds. Line 10 obtains the min-
utes using seconds / 60. Line 11 (seconds % 60) obtains the remaining seconds after
taking away the minutes.

The + and - operators can be both unary and binary. A unary operator has only one unary operator
operand; a binary operator has two. For example, the - operator in -5 is a unary operator binary operator
to negate number 5, whereas the - operator in 4 - 5 is a binary operator for subtracting 5
from 4.

48 Chapter 2 Elementary Programming

2.9.4 Exponent Operations

Math.pow(a, b) method The Math.pow(a, b) method can be used to compute a’. The pow method is defined in
the Math class in the Java APIL. You invoke the method using the syntax Math.pow(a, b)
(e.g., Math.pow(2, 3)), which returns the result of a’ (23). Here, a and b are parameters
for the pow method and the numbers 2 and 3 are actual values used to invoke the method. For
example,

System.out.println(Math.pow(2, 3)); // Displays 8.0
System.out.println(Math.pow(4, 0.5)); // Displays 2.0
System.out.printin(Math.pow(2.5, 2)); // Displays 6.25
System.out.println(Math.pow(2.5, -2)); // Displays 0.16

Chapter 5 introduces more details on methods. For now, all you need to know is how to
invoke the pow method to perform the exponent operation.

ﬁheck 2.10 Find the largest and smallest byte, short, int, Tong, float, and double. Which
Point of these data types requires the least amount of memory?

2.11 Show the result of the following remainders.

56 % 6
78 % -4
-34 % 5
-34 % -5
5% 1
1% 5

2.12 [Iftoday is Tuesday, what will be the day in 100 days?

2.13 Whatis the result of 25 / 4? How would you rewrite the expression if you wished
the result to be a floating-point number?

2.14 Show the result of the following code:

System.out.println(2 * (5 / 2 + 5 / 2));
System.out.println(2 * 5 / 2 + 2 * 5 / 2);
System.out.println(2 * (5 / 2));
System.out.println(2 * 5 / 2);

2.15 Are the following statements correct? If so, show the output.

System.out.println("25 / 4 1is " + 25 / 4);
System.out.println(25 / 4.0 is " + 25 / 4.0);
System.out.printin('3 * 2 / 4 s " + 3 * 2 / 4);
System.out.println(”3.0 * 2 / 4 is " + 3.0 * 2 / 4);
2.16 Write a statement to display the result of 2.

2.17 Suppose m and r are integers. Write a Java expression for mr? to obtain a floating-
point result.

2.10 Numeric Literals

fKey A literal is a constant value that appears directly in a program.
€ Point £, example, 34 and 0. 305 are literals in the following statements:
literal

int numberOfYears = 34;

double weight = 0.305;

2.10 Numeric Literals 49

2.10.1 Integer Literals

An integer literal can be assigned to an integer variable as long as it can fit into the variable. A
compile error will occur if the literal is too large for the variable to hold. The statement byte
b = 128, for example, will cause a compile error, because 128 cannot be stored in a variable
of the byte type. (Note that the range for a byte value is from -128 to 127.)

An integer literal is assumed to be of the 1int type, whose value is between
—231(—2147483648) and 2°! — 1 (2147483647). To denote an integer literal of the Tong
type, append the letter L or 1 to it. For example, to write integer 2147483648 in a Java pro-
gram, you have to write it as 2147483648 or 21474836481, because 2147483648 exceeds
the range for the int value. L is preferred because 1 (lowercase L) can easily be confused
with 1 (the digit one).

Note

By default, an integer literal is a decimal integer number. To denote a binary integer binary, octal, and hex literals
literal, use a leading 0b or 0B (zero B), to denote an octal integer literal, use a leading

0 (zero), and to denote a hexadecimal integer literal, use a leading Ox or 0X (zero X).

For example,

System.out.println(0B1111); // Displays 15
System.out.println(07777); // Displays 4095
System.out.printIn(OXFFFF); // Displays 65535

Hexadecimal numbers, binary numbers, and octal numbers are introduced in Appendix F.

2.10.2 Floating-Point Literals

Floating-point literals are written with a decimal point. By default, a floating-point literal is

treated as a doube type value. For example, 5.0 is considered a double value, not a float

value. You can make a number a float by appending the letter f or F, and you can make suffix for F
a number a double by appending the letter d or D. For example, you can use 100.2f or suffixdor D
100. 2F for a float number, and 100. 2d or 100. 2D for a double number.

Note

The doubTe type values are more accurate than the float type values. For example, double vs. float
System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 1is 0.3333333333333333
—_—

16 digits
System.out.printin("1.0F / 3.0F is " + 1.0F / 3.0F);

displays 1.0F / 3.0F 1is 0.33333334
——

8 digits

A float value has 7 to 8 number of significant digits and a double value has 15 to 17 number
of significant digits.

2.10.3 Scientific Notation

Floating-point literals can be written in scientific notation in the form of @ X 10°. For example,
the scientific notation for 123.456 is 1.23456 X 10% and for 0.0123456 is 1.23456 X 1072
A special syntax is used to write scientific notation numbers. For example, 1.23456 X 107 is
written as 1.23456E2 or 1.23456E+2 and 1.23456 X 10 2 as 1.23456E-2. E (or e) repre-
sents an exponent and can be in either lowercase or uppercase.

50 Chapter 2 Elementary Programming

Note
1 The float and double types are used to represent numbers with a decimal point.
why called floating-point? Why are they called floating-point numbers? These numbers are stored in scientific nota-
tion internally. When a number such as 50.534 is converted into scientific notation,
such as 5.0534E+1, its decimal point is moved (i.e., floated) to a new position.

Bl Note
= To improve readability, Java allows you to use underscores between two digits in a
number literal. For example, the following literals are correct.

long ssn = 232_45_4519;
long creditCardNumber = 2324 4545 4519 3415L;

underscores in numbers However, 45 or 45 is incorrect. The underscore must be placed between two digits.

ﬁheck 2.18 How many accurate digits are stored in a float or double type variable?

Point 2 19 Which of the following are correct literals for floating-point numbers?
12.3, 12.3e+2, 23.4e-2, -334.4, 20.5, 39F, 40D

2.20 Which of the following are the same as 52.534?
5.2534e+1, 0.52534e+2, 525.34e-1, 5.2534e+0

2.21 Which of the following are correct literals?
5_2534e+1, _2534, 5.2, 5_

2.11 Evaluating Expressions and Operator Precedence

fK Java expressions are evaluated in the same way as arithmetic expressions.
€7 point

Point Writing a numeric expression in Java involves a straightforward translation of an arithmetic

expression using Java operators. For example, the arithmetic expression

10y — 5)a + b +
3+4x 10y — 5)(a c)+9<4+9+x>
5 X X y

can be translated into a Java expression as:

BG+4*x)/5-10* (-5 *(@+b+ac)/x+
9% (4 /x+ O +x)/Y)

evaluating an expression Though Java has its own way to evaluate an expression behind the scene, the result of
a Java expression and its corresponding arithmetic expression is the same. Therefore, you
can safely apply the arithmetic rule for evaluating a Java expression. Operators contained
within pairs of parentheses are evaluated first. Parentheses can be nested, in which case the
expression in the inner parentheses is evaluated first. When more than one operator is used

operator precedence rule in an expression, the following operator precedence rule is used to determine the order of
evaluation.

B Multiplication, division, and remainder operators are applied first. If an expression
contains several multiplication, division, and remainder operators, they are applied
from left to right.

B Addition and subtraction operators are applied last. If an expression contains several
addition and subtraction operators, they are applied from left to right.

2.1'1 Evaluating Expressions and Operator Precedence 51

Here is an example of how an expression is evaluated:

344 %4 45% (4+3)-1

344 %445 %7 -1

(1) inside parentheses first

(2) multiplication

3+ 16 +5 %7 -1

4

3+ 16 + 35 -1

(3) multiplication

19 + 35 -1

(4) addition

54 - 1

(i

(5) addition

53

(6) subtraction

Listing 2.6 gives a program that converts a Fahrenheit degree to Celsius using the formula

celsius = (g)(fahrenheit — 32).

LisTING 2.6 FahrenheitToCelsius.java

1 dimport java.util.Scanner;

2
3 public class FahrenheitToCelsius {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 System.out.print("Enter a degree in Fahrenheit: ");
8 double fahrenheit = input.nextDouble();
9
10 // Convert Fahrenheit to Celsius
11 double celsius = (5.0 / 9) * (fahrenheit - 32); divide
12 System.out.printin("'Fahrenheit " + fahrenheit + " is " +
13 celsius + " in Celsius");
14 }
15 3
Enter a degree in Fahrenheit: 100 | -enter E
Fahrenheit 100.0 is 37.77777777777778 in Celsius
line# fahrenheit celsius O\
8 100
11 37.77777777777778

Be careful when applying division. Division of two integers yields an integer in Java. % is integer vs. floating-point
translated to 5.0 / 9instead of 5 / 9inline 11, because 5 / 9 yields 0 in Java. division

2.22 How would you write the following arithmetic expression in Java?

ﬁheck

4 34+ d2 + a) 7 Point

— 9(a + bc) +

30+ 34 a+ bd

b. 5.5 X (r + 2.5

52 Chapter 2 Elementary Programming

K
Gﬁoi;{

VideoNote
Use operators / and %

currentTimeMillis
UNIX epoch

totalMilliseconds
totalSeconds

currentSecond

2.12 Case Study: Displaying the Current Time

You can invoke System.currentTimeMil11is () to return the current time.

The problem is to develop a program that displays the current time in GMT (Greenwich Mean
Time) in the format hour:minute:second, such as 13:19:8.

The currentTimeMil11s method in the System class returns the current time in mil-
liseconds elapsed since midnight, January 1, 1970 GMT, as shown in Figure 2.2. This time
is known as the UNIX epoch. The epoch is the point when time starts, and 1970 was the year
when the UNIX operating system was formally introduced.

Elapsed
I — i
------- e Time
UNIX epoch Current time
01-01-1970 System.currentTimeMillis()

00:00:00 GMT

FIGURE 2.2 The System.currentTimeMil11is() returns the number of milliseconds
since the UNIX epoch.

You can use this method to obtain the current time, and then compute the current second,
minute, and hour as follows.

1.

Obtain the total milliseconds since midnight, January 1, 1970, in totalMil11iseconds
by invoking System.currentTimeMillis() (e.g., 1203183068328 milliseconds).

. Obtain the total seconds totalSeconds by dividing totalMilliseconds by 1000

(e.g., 1203183068328 milliseconds / 1000 = 1203183068 seconds).

. Compute the current second from totalSeconds % 60 (e.g., 1203183068 seconds

% 60 = 8, which is the current second).

. Obtain the total minutes totalMinutes by dividing totalSeconds by 60 (e.g.,

1203183068 seconds / 60 = 20053051 minutes).

. Compute the current minute from totalMinutes % 60 (e.g., 20053051 minutes %

60 = 31, which is the current minute).

Obtain the total hours totalHours by dividing totalMinutes by 60 (e.g., 20053051
minutes / 60 = 334217 hours).

. Compute the current hour from totalHours % 24 (e.g., 334217 hours % 24 = 17,

which is the current hour).

Listing 2.7 gives the complete program.

LisTING 2.7 ShowCurrentTime.java

1 public class ShowCurrentTime {

QUOUWoONOOUVITA WN

=

public static void main(String[] args) {
// Obtain the total milliseconds since midnight, Jan 1, 1970
Tong totalMilliseconds = System.currentTimeMillis();

// Obtain the total seconds since midnight, Jan 1, 1970
Tong totalSeconds = totalMilliseconds / 1000;

// Compute the current second in the minute in the hour
Tong currentSecond = totalSeconds % 60;

2.12 Case Study: Displaying the Current Time 53

11

12 // Obtain the total minutes

13 Tong totalMinutes = totalSeconds / 60; totalMinutes
14

15 // Compute the current minute in the hour

16 Tong currentMinute = totalMinutes % 60; currentMinute
17

18 // Obtain the total hours

19 long totalHours = totalMinutes / 60; totalHours
20

21 // Compute the current hour

22 Tong currentHour = totalHours % 24; currentHour
23

24 // Display results

25 System.out.printin("Current time is " + currentHour + ":" preparing output
26 + currentMinute + ":" + currentSecond + " GMT");

27 }

28 %

Current time is 17:31:8 GMT

2

Line 4 invokes System.currentTimeMillis() to obtain the current time in millisec-
onds as a Tong value. Thus, all the variables are declared as the long type in this program. The
seconds, minutes, and hours are extracted from the current time using the / and % operators

(lines 6-22).

line# 4 7

variables

10 13 16 19 22

totalMilliseconds 1203183068328

1203183068

totalSeconds

currentSecond

totalMinutes

currentMinute

totalHours

currentHour

20053051

31

334217

17

In the sample run, a single digit 8 is displayed for the second. The desirable output
would be 08. This can be fixed by using a method that formats a single digit with a prefix 0

(see Exercise 6.37).

2.23 How do you obtain the current second, minute, and hour?

/éiwck
Point

54 Chapter 2 Elementary Programming

2.13 Augmented Assignment Operators

Key The operators +, -, *, /, and % can be combined with the assignment operator to form
6 Point augmented operators.

Very often the current value of a variable is used, modified, and then reassigned back to the
same variable. For example, the following statement increases the variable count by 1:

count = count + 1;

Java allows you to combine assignment and addition operators using an augmented (or
compound) assignment operator. For example, the preceding statement can be written as

count += 1;

addition assignment operator The += is called the addition assignment operator. Table 2.4 shows other augmented
assignment operators.

TaBLE 2.4 Augmented Assignment Operators

Operator Name Example Equivalent
+= Addition assignment i+=38 i=1+38
-= Subtraction assignment i-=38 i=1-8
= Multiplication assignment i*=38 i=1%8
/= Division assignment i/= 8 i=1/8
%= Remainder assighment i%=8 i=1%8

The augmented assignment operator is performed last after all the other operators in the
expression are evaluated. For example,

X /=4 + 5.5 * 1.5;
is same as

Xx=x/ (4 +5.5%* 1.5);

Caution

There are no spaces in the augmented assignment operators. For example, + = should
be +=.

Note

Like the assignment operator (=), the operators (+=, -=, *=, /=, %=) can be used to

form an assignment statement as well as an expression. For example, in the following
code, x += 2 is a statement in the first line and an expression in the second line.

X += 2; // Statement
System.out.printin(x += 2); // Expression

ﬁheck 2.24 Show the output of the following code:

Point double a = 6.5;

a+=a+ 1;

2.14 Increment and Decrement Operators 55

System.out.println(a);
a = 6;
a /= 2;
System.out.println(a);

2.14 Increment and Decrement Operators

The increment operator (++) and decrement operator (——) are for incrementing and 6 f

Ke
decrementing a variable by 1. Poin{

The ++ and —— are two shorthand operators for incrementing and decrementing a variable by increment operator (++)
1. These are handy because that’s often how much the value needs to be changed in many pro- decrement operator (--)
gramming tasks. For example, the following code increments i by 1 and decrements j by 1.

int i =3, j = 3;
i++; // i becomes 4
j—; // j becomes 2

i++ is pronounced as i plus plus and i—— as i minus minus. These operators are known as
postfix increment (or postincrement) and postfix decrement (or postdecrement), because the postincrement
operators ++ and — are placed after the variable. These operators can also be placed before postdecrement
the variable. For example,

int i = 3, j = 3;
++i; // i becomes 4
—3j; // j becomes 2

++1 increments 1 by 1 and —j decrements j by 1. These operators are known as prefix preincrement
increment (or preincrement) and prefix decrement (or predecrement). predecrement
As you see, the effect of i++ and ++1 or i— and —1 are the same in the preceding exam-
ples. However, their effects are different when they are used in statements that do more than
just increment and decrement. Table 2.5 describes their differences and gives examples.

TABLE 2.5 Increment and Decrement Operators

Operator Name Description Example (assume i = 1)
++var preincrement Increment var by 1, and use the int j = ++i;

new var value in the statement // j is 2, i is 2
var++ postincrement Increment var by 1, but use the int j = i++;

original var value in the statement // j is 1, 1 is 2

——var predecrement Decrement var by 1, and use the int j = —1;
new var value in the statement // j is 0, i is 0
var— postdecrement Decrement var by 1, and use the int j = i—;

original var value in the statement // j is 1, 1 is 0

Here are additional examples to illustrate the differences between the prefix form of ++ (or
——) and the postfix form of ++ (or --). Consider the following code:

int i = 10; S Ffect
. _ Pa—— ame effect as _
int newNum = 10 * i++; > | int newNum = 10 * 1;
System.out.print("i is " + i i=1+1
+ ", newNum is " + newNum);

i is 11, newNum is 100 E

56 Chapter 2 Elementary Programming

In this case, 1 is incremented by 1, then the old value of 1 is used in the multiplication. So
newNum becomes 100. If i++ is replaced by ++1 as follows,

int i = 10; S "
int newNum = 10 * (44i); ameeffectas 4 _ 5, 4,

int newNum = 10 * 1;

System.out.print("i is " + i
+ ", newNum is " + newNum);

E i is 11, newNum is 110

1 is incremented by 1, and the new value of 1 is used in the multiplication. Thus newNum
becomes 110.
Here is another example:

double x = 1.0;
double y 5.0;
double z X—— + (++y);

After all three lines are executed, y becomes 6.0, z becomes 7.0, and x becomes 0. 0.

Tip

Using increment and decrement operators makes expressions short, but it also
makes them complex and difficult to read. Avoid using these operators in expres-
sions that modify multiple variables or the same variable multiple times, such as this
one:intk = ++i + 1.

' 2.25 Which of these statements are true?
Check

Point a. Any expression can be used as a statement.

b. The expression x++ can be used as a statement.
c. The statement x = x + 5 is also an expression.

d. The statement x = y = x = 0isillegal.

2.26 Show the output of the following code:

int a = 6;

int b = a++;
System.out.println(a);
System.out.println(b);
a = 6;

b = ++a;
System.out.println(a);
System.out.println(b);

2.15 Numeric Type Conversions

6 fKey Floating-point numbers can be converted into integers using explicit casting.

Point oy you perform binary operations with two operands of different types? Yes. If an integer

and a floating-point number are involved in a binary operation, Java automatically converts
the integer to a floating-point value. So, 3 * 4.5issameas 3.0 * 4.5.

You can always assign a value to a numeric variable whose type supports a larger range of
values; thus, for instance, you can assign a 1ong value to a f1oat variable. You cannot, however,
assign a value to a variable of a type with a smaller range unless you use type casting. Casting is
an operation that converts a value of one data type into a value of another data type. Casting a type
with a small range to a type with a larger range is known as widening a type. Casting a type with
a large range to a type with a smaller range is known as narrowing a type. Java will automatically

2.15 Numeric Type Conversions

widen a type, but you must narrow a type explicitly.

The syntax for casting a type is to specify the target type in parentheses, followed by the

variable’s name or the value to be cast. For example, the following statement

System.out.println((int)1.7);

displays 1. When a doub’ e value is cast into an int value, the fractional part is truncated.

The following statement

System.out.println((double)l / 2);

displays 0.5, because 1 is cast to 1.0 first, then 1.0 is divided by 2. However, the statement

System.out.println(l / 2);

displays 0, because 1 and 2 are both integers and the resulting value should also be an integer.

The program in Listing 2.8 displays the sales tax with two digits after the decimal point.

Caution

Casting is necessary if you are assigning a value to a variable of a smaller type range,
such as assigning a doube value to an int variable. A compile error will occur if cast-
ing is not used in situations of this kind. However, be careful when using casting, as loss
of information might lead to inaccurate results.

Note
Casting does not change the variable being cast. For example, d is not changed after
casting in the following code:

double d = 4.5;
int i = (int)d; // i becomes 4, but d is still 4.5

Note
In Java, an augmented expression of the form x1 op= x2 is implemented as x1 =
(T) (x1 op x2), where T is the type for x1. Therefore, the following code is correct.

int sum = 0;
sum += 4.5; // sum becomes 4 after this statement
sum += 4.5 isequivalentto sum = (int) (sum + 4.5).

Note

To assign a variable of the int type to a variable of the short or byte type, explicit
casting must be used. For example, the following statements have a compile error:
int i = 1;

byte b = i; // Error because explicit casting is required

However, so long as the integer literal is within the permissible range of the target vari-
able, explicit casting is not needed to assign an integer literal to a variable of the short
or byte type (see Section 2.10, Numeric Literals).

casting

widening a type
narrowing a type

possible loss of precision

casting in an augmented
expression

57

58 Chapter 2

casting

formatting numbers

Elementary Programming

ﬁheck

Point

LISTING 2.8 SalesTax.java

1 import java.util.Scanner;

R
RFOwWoNOUVIA WN

13 1}

public class SalesTax {

public static void main(String[] args) {
Scanner input = new Scanner(System.in);

System.out.print("Enter purchase amount: ");
double purchaseAmount = input.nextDouble();

double tax = purchaseAmount * 0.06;
System.out.printin("Sales tax is $" + (int)(tax * 100) / 100.0);

Enter purchase amount: 197.55 | -enter
Sales tax is $11.85

line# purchaseAmount tax output
8 197.55
10 11.853
11 11.85

The variable purchaseAmount is 197.55 (line 8). The sales tax is 6% of the purchase, so
the tax is evaluated as 11.853 (line 10). Note that

tax *

100 is 1185.3

(int) (tax * 100) is 1185
(int) (tax * 100) / 100.0 is 11.85

So, the statement in line 11 displays the tax 11.85 with two digits after the decimal point.

2.27
2.28

2.29

2.30

2.31

Can different types of numeric values be used together in a computation?

What does an explicit casting from a doube to an int do with the fractional part of
the doubTle value? Does casting change the variable being cast?

Show the following output:

float f = 12.5F;

int i = (int)f;
System.out.printin("f is " + f);
System.out.printIn("i is " + 1i);

If you change (int) (tax * 100) / 100.0 to (int) (tax * 100) / 100 in line
11 in Listing 2.8, what will be the output for the input purchase amount of 197.557?

Show the output of the following code:
double amount = 5;

System.out.println(amount / 2);
System.out.println(5 / 2);

2.16 Software Development Process 59

2.16 Software Development Process

The software development life cycle is a multistage process that includes requirements 6 f

L . O . . . Key
specification, analysis, design, implementation, testing, deployment, and maintenance. Point

Developing a software product is an engineering process. Software products, no matter how
large or how small, have the same life cycle: requirements specification, analysis, design, u

implementation, testing, deployment, and maintenance, as shown in Figure 2.3. VideoNote
Software development process

Requirements
Specification I
A Input, Process, Output
1 S . IPO
——=— System Analysis
! System
=] Design l
4
- Implementation

——— Testing _l
===. Deployment _l
A
1 I

- —- Maintenance

FIGURE 2.3 At any stage of the software development life cycle, it may be necessary to go
back to a previous stage to correct errors or deal with other issues that might prevent the
software from functioning as expected.

Requirements specification is a formal process that seeks to understand the problem that requirements specification
the software will address and to document in detail what the software system needs to do.
This phase involves close interaction between users and developers. Most of the examples
in this book are simple, and their requirements are clearly stated. In the real world, however,
problems are not always well defined. Developers need to work closely with their customers
(the individuals or organizations that will use the software) and study the problem carefully to
identify what the software needs to do.
System analysis seeks to analyze the data flow and to identify the system’s input and out- system analysis
put. When you do analysis, it helps to identify what the output is first, and then figure out what
input data you need in order to produce the output.
System design is to design a process for obtaining the output from the input. This phase system design
involves the use of many levels of abstraction to break down the problem into manageable
components and design strategies for implementing each component. You can view each
component as a subsystem that performs a specific function of the system. The essence of
system analysis and design is input, process, and output (IPO). IPO
Implementation involves translating the system design into programs. Separate programs implementation
are written for each component and then integrated to work together. This phase requires
the use of a programming language such as Java. The implementation involves coding, self-
testing, and debugging (that is, finding errors, called bugs, in the code).

60 Chapter 2

testing

deployment

maintenance

VideoNote
Compute loan payments

Elementary Programming

Testing ensures that the code meets the requirements specification and weeds out bugs. An
independent team of software engineers not involved in the design and implementation of the
product usually conducts such testing.

Deployment makes the software available for use. Depending on the type of software,
it may be installed on each user’s machine or installed on a server accessible on the
Internet.

Maintenance is concerned with updating and improving the product. A software
product must continue to perform and improve in an ever-evolving environment. This
requires periodic upgrades of the product to fix newly discovered bugs and incorporate
changes.

To see the software development process in action, we will now create a program that
computes loan payments. The loan can be a car loan, a student loan, or a home mortgage loan.
For an introductory programming course, we focus on requirements specification, analysis,
design, implementation, and testing.

Stage 1: Requirements Specification
The program must satisfy the following requirements:

B It must let the user enter the interest rate, the loan amount, and the number of years
for which payments will be made.

B It must compute and display the monthly payment and total payment amounts.

Stage 2: System Analysis
The output is the monthly payment and total payment, which can be obtained using the fol-

lowing formulas:

loanAmount X monthlylnterestRate
1

(1 + monthlylnterestRate)"""¢rO/Years <12

monthlyPayment =

totalPayment = monthlyPayment X numberOfYears X 12

So, the input needed for the program is the monthly interest rate, the length of the loan in
years, and the loan amount.

Note

H The requirements specification says that the user must enter the annual interest rate, the
loan amount, and the number of years for which payments will be made. During analy-
sis, however, it is possible that you may discover that input is not sufficient or that some
values are unnecessary for the output. If this happens, you can go back and modify the
requirements specification.

Note

In the real world, you will work with customers from all walks of life. You may develop
software for chemists, physicists, engineers, economists, and psychologists, and of
course you will not have (or need) complete knowledge of all these fields. Therefore,
you don't have to know how formulas are derived, but given the monthly interest rate,
the number of years, and the loan amount, you can compute the monthly payment in
this program. You will, however, need to communicate with customers and understand
how a mathematical model works for the system.

2.16 Software Development Process 61

Stage 3: System Design
During system design, you identify the steps in the program.

Step 1. Prompt the user to enter the annual interest rate, the number of years, and the
loan amount.

(The interest rate is commonly expressed as a percentage of the principal for a period of
one year. This is known as the annual interest rate.)

Step 2. The input for the annual interest rate is a number in percent format, such as
4.5%. The program needs to convert it into a decimal by dividing it by 100. To
obtain the monthly interest rate from the annual interest rate, divide it by 12,
since a year has 12 months. So, to obtain the monthly interest rate in decimal
format, you need to divide the annual interest rate in percentage by 1200. For
example, if the annual interest rate is 4.5%, then the monthly interest rate is
4.5/1200 = 0.00375.

Step 3. Compute the monthly payment using the preceding formula.

Step 4. Compute the total payment, which is the monthly payment multiplied by 12 and
multiplied by the number of years.

Step 5. Display the monthly payment and total payment.

Stage 4: Implementation

Implementation is also known as coding (writing the code). In the formula, you have to com-
pute (1 + monthlylnterestRate)"">¢r0/YearsX12 "which can be obtained using Math.pow(1l + Math.pow(a, b) method
monthlyInterestRate, numberOfYears * 12).

Listing 2.9 gives the complete program.

LisTING 2.9 ComputelLoan.java

1 dimport java.util.Scanner; import class

2

3 public class ComputelLoan {

4 public static void main(String[] args) {

5 // Create a Scanner

6 Scanner input = new Scanner(System.in); create a Scanner
7

8 // Enter annual interest rate 1in percentage, e.g., 7.25%

9 System.out.print("Enter annual interest rate, e.g., 7.25%: ");
10 double annualInterestRate = input.nextDouble(); enter interest rate
11
12 // Obtain monthly interest rate
13 double monthlyInterestRate = annuallnterestRate / 1200;

14

15 // Enter number of years

16 System.out.print(

17 "Enter number of years as an integer, e.g., 5: '");

18 int numberOfYears = input.nextInt(); enter years

19

20 // Enter Tloan amount

21 System.out.print("Enter loan amount, e.g., 120000.95: ");

22 double ToanAmount = input.nextDouble(); enter loan amount
23

24 // Calculate payment

25 double monthlyPayment = loanAmount * monthlyInterestRate / (1 monthlyPayment

26 - 1 / Math.pow(l + monthlyInterestRate, numberOfYears * 12));

62 Chapter 2 Elementary Programming

totalPayment

casting

casting

27 double totalPayment = monthlyPayment * numberOfYears * 12;
28

29 // Display results

30 System.out.printTn("The monthly payment is $" +

31 (int) (monthlyPayment * 100) / 100.0);

32 System.out.printin("The total payment 1is $" +

33 (int) (totalPayment * 100) / 100.0);

34 }

35 }

Enter annual interest rate, e.g., 5.75%: 5.75 |-enter
Enter number of years as an integer, e.g., 5: 15 |-enter
Enter loan amount, e.g., 120000.95: 250000 | -enter

The monthly payment is $2076.02

The total payment is $373684.53

variables

line# 10 13 18 22 25 27

annualInterestRate 5.75

monthlyInterestRate 0.0047916666666
numberOfYears 15
ToanAmount

monthlyPayment 2076.0252175

totalPayment 373684.539

250000

java.lang package

incremental code and test

Line 10 reads the annual interest rate, which is converted into the monthly interest rate in
line 13.

Choose the most appropriate data type for the variable. For example, numberOfYears is
best declared as an int (line 18), although it could be declared as a Tong, float, or doubTe.
Note that byte might be the most appropriate for numberOfYears. For simplicity, however,
the examples in this book will use int for integer and doube for floating-point values.

The formula for computing the monthly payment is translated into Java code in lines 25-27.

Casting is used in lines 31 and 33 to obtain a new monthlyPayment and totalPayment
with two digits after the decimal points.

The program uses the Scanner class, imported in line 1. The program also uses the Math
class, and you might be wondering why that class isn’t imported into the program. The Math
class is in the java.lang package, and all classes in the java.lang package are implicitly
imported. Therefore, you don’t need to explicitly import the Math class.

Stage 5: Testing

After the program is implemented, test it with some sample input data and verify whether
the output is correct. Some of the problems may involve many cases, as you will see in later
chapters. For these types of problems, you need to design test data that cover all cases.

Tip

£

1 The system design phase in this example identified several steps. It is a good approach
to code and test these steps incrementally by adding them one at a time. This approach
makes it much easier to pinpoint problems and debug the program.

2.17 Case Study: Counting Monetary Units

2.32 How would you write the following arithmetic expression? ﬁheck

b+ V5~ dac " point

2a

2.17 Case Study: Counting Monetary Units

This section presents a program that breaks a large amount of money into smaller fKey
Units. 6 Point

Suppose you want to develop a program that changes a given amount of money into smaller
monetary units. The program lets the user enter an amount as a double value representing a
total in dollars and cents, and outputs a report listing the monetary equivalent in the maximum
number of dollars, quarters, dimes, nickels, and pennies, in this order, to result in the mini-
mum number of coins.

Here are the steps in developing the program:

1. Prompt the user to enter the amount as a decimal number, such as 11.56.
2. Convert the amount (e.g., 11.56) into cents (1156).

3. Divide the cents by 100 to find the number of dollars. Obtain the remaining cents using
the cents remainder 100.

4. Divide the remaining cents by 25 to find the number of quarters. Obtain the remaining
cents using the remaining cents remainder 25.

5. Divide the remaining cents by 10 to find the number of dimes. Obtain the remaining
cents using the remaining cents remainder 10.

6. Divide the remaining cents by 5 to find the number of nickels. Obtain the remaining
cents using the remaining cents remainder 5.

7. The remaining cents are the pennies.
8. Display the result.

The complete program is given in Listing 2.10.

LisTING 2.10 ComputeChange.java

1 dimport java.util.Scanner; import class

3 public class ComputeChange {

4 public static void main(String[] args) {
5 // Create a Scanner

6 Scanner input = new Scanner(System.in);
7

8

// Receive the amount
9 System.out.print(
10 "Enter an amount in double, for example 11.56: ");
11 double amount = input.nextDouble(); enter input

13 int remainingAmount = (int) (amount * 100);
15 // Find the number of one dollars
16 int numberOfOneDollars = remainingAmount / 100; dollars

17 remainingAmount = remainingAmount % 100;

19 // Find the number of quarters in the remaining amount
20 int numberOfQuarters = remainingAmount / 25; quarters

63

64 Chapter 2

dimes

nickels

pennies

output

Elementary Programming

21 remainingAmount = remainingAmount % 25;
22
23 // Find the number of dimes in the remaining amount
24 int numberOfDimes = remainingAmount / 10;
25 remainingAmount = remainingAmount % 10;
26
27 // Find the number of nickels in the remaining amount
28 int numberOfNickels = remainingAmount / 5;
29 remainingAmount = remainingAmount % 5;
30
31 // Find the number of pennies in the remaining amount
32 int numberOfPennies = remainingAmount;
33
34 // Display results
35 System.out.printIn("Your amount " + amount + " consists of");
36 System.out.println(" " + numberOfOneDollars + " dollars");
37 System.out.println(" " + numberOfQuarters + " quarters ");
38 System.out.println(" " + numberOfDimes + " dimes'");
39 System.out.println(" " + numberOfNickels + " nickels");
40 System.out.println(" " + numberOfPennies + " pennies');
41 }
42 }
E Enter an amount, for example, 11.56: 11.56 | -enter
Your amount 11.56 consists of
11 dollars
2 quarters
0 dimes
1 nickels
1 pennies
O line# 11 13 16 17 20 21 24 25 28 29 32
variables
amount 11.56
remainingAmount 1156 56 6 6 1
number0fOneDol1ars 11
numberOfQuarters 2
numberOfDimes 0
numberOfNickels 1
numberOfPennies 1

The variable amount stores the amount entered from the console (line 11). This variable
is not changed, because the amount has to be used at the end of the program to display the
results. The program introduces the variable remainingAmount (line 13) to store the chang-
ing remaining amount.

The variable amount is a doub’e decimal representing dollars and cents. It is converted to
an int variable remainingAmount, which represents all the cents. For instance, if amount

2.18 Common Errors and Pitfalls 65

is 11.56, then the initial remainingAmount is 1156. The division operator yields the inte-
ger part of the division, so 1156 / 100 is 11. The remainder operator obtains the remainder
of the division, so 1156 % 100 is 56.

The program extracts the maximum number of singles from the remaining amount and
obtains a new remaining amount in the variable remainingAmount (lines 16—17). It then
extracts the maximum number of quarters from remainingAmount and obtains a new
remainingAmount (lines 20-21). Continuing the same process, the program finds the maxi-
mum number of dimes, nickels, and pennies in the remaining amount.

One serious problem with this example is the possible loss of precision when casting a loss of precision
double amount to an int remainingAmount. This could lead to an inaccurate result. If you
try to enter the amount 10.03, 10.03 * 100 becomes 1002.9999999999999. You will
find that the program displays 10 dollars and 2 pennies. To fix the problem, enter the amount
as an integer value representing cents (see Programming Exercise 2.22).

2.33 Show the output with the input value 1.99. ﬁheck

Point

2.18 Common Errors and Pitfalls

Common elementary programming errors often involve undeclared variables, unini- 6 f

o L Ke
tialized variables, integer overflow, unintended integer division, and round-off errors. Poin);

Common Error 1: Undeclared/Uninitialized Variables and Unused Variables

A variable must be declared with a type and assigned a value before using it. A common error
is not declaring a variable or initializing a variable. Consider the following code:

double interestRate = 0.05;
double interest = interestrate * 45;

This code is wrong, because interestRate is assigned a value 0.05; but interestrate
has not been declared and initialized. Java is case sensitive, so it considers interestRate
and interestrate to be two different variables.

If a variable is declared, but not used in the program, it might be a potential programming
error. So, you should remove the unused variable from your program. For example, in the fol-
lowing code, taxRate is never used. It should be removed from the code.

double interestRate = 0.05;

double taxRate = 0.05;

double interest = interestRate * 45;
System.out.println("Interest is " + interest);

If you use an IDE such as Eclipse and NetBeans, you will receive a warning on unused
variables.

Common Error 2: Integer Overflow

Numbers are stored with a limited numbers of digits. When a variable is assigned a value that

is too large (in size) to be stored, it causes overflow. For example, executing the following what is overflow?
statement causes overflow, because the largest value that can be stored in a variable of the int

type is 2147483647. 2147483648 will be too large for an int value.

int value = 2147483647 + 1;
// value will actually be -2147483648

Likewise, executing the following statement causes overflow, because the smallest value that
can be stored in a variable of the int typeis -2147483648. -2147483649 is too large in size
to be stored in an int variable.

66 Chapter 2 Elementary Programming

what is underflow?

floating-point approximation

int value = -2147483648 - 1;
// value will actually be 2147483647

Java does not report warnings or errors on overflow, so be careful when working with num-
bers close to the maximum or minimum range of a given type.

When a floating-point number is too small (i.e., too close to zero) to be stored, it causes
underflow. Java approximates it to zero, so normally you don’t need to be concerned about
underflow.

Common Error 3: Round-off Errors

A round-off error, also called a rounding error, is the difference between the calculated
approximation of a number and its exact mathematical value. For example, 1/3 is approxi-
mately 0.333 if you keep three decimal places, and is 0.3333333 if you keep seven decimal
places. Since the number of digits that can be stored in a variable is limited, round-off errors
are inevitable. Calculations involving floating-point numbers are approximated because these
numbers are not stored with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);
displays 0.5000000000000001, not 0.5, and

System.out.printin(l.0 - 0.9);

displays 0.09999999999999998, not 0. 1. Integers are stored precisely. Therefore, calcula-
tions with integers yield a precise integer result.

Common Error 4: Unintended Integer Division

Java uses the same divide operator, namely /, to perform both integer and floating-point
division. When two operands are integers, the / operator performs an integer division. The
result of the operation is an integer. The fractional part is truncated. To force two integers to
perform a floating-point division, make one of the integers into a floating-point number. For
example, the code in (a) displays that average is 1 and the code in (b) displays that average
is 1.5.

int numberl = 1; int numberl = 1;

int number2 = 2; int number2 = 2;

double average = (numberl + number2) / 2; double average = (numberl + number2) / 2.0;
System.out.printin(average); System.out.printin(average);

(a) (b)

Common Pitfall 1: Redundant Input Objects

New programmers often write the code to create multiple input objects for each input. For
example, the following code reads an integer and a double value.

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int vl = input.nextInt();

Scanner inputl = new Scanner(System.in); BAD CODE

System.out.print("Enter a double value: ");
double v2 = inputl.nextDouble();

Chapter Summary 67

The code is not wrong, but inefficient. It creates two input objects unnecessarily and may
lead to some subtle errors. You should rewrite the code as follows:

Scanner input = new Scanner(System.in); GOOD CODE

System.out.print("Enter an integer: ");
int vl = input.nextInt();
System.out.print("Enter a double value: ");
double v2 = input.nextDouble();

2.34 Can you declare a variable as int and later redeclare it as double? ﬁheck

2.35 What is an integer overflow? Can floating-point operations cause overflow? /" Point

2.36 Will overflow cause a runtime error?

2.37 What is a round-off error? Can integer operations cause round-off errors? Can
floating-point operations cause round-off errors?

KEY TERMS

algorithm 34

assignment operator (=) 42
assignment statement 42
byte type 45

casting 57

constant 43

data type 35

declare variables 35
decrement operator (--) 55
doubTe type 45
expression 42

final keyword 43

float type 45
floating-point number 35
identifier 39

increment operator (++) 55
incremental code and testing 62
int type 45

IPO 39

literal 48

Tong type 45

CHAPTER SUMMARY

narrowing (of types) 57
operands 46
operator 46
overflow 65
postdecrement 55
postincrement 55
predecrement 55
preincrement 55
primitive data type 35
pseudocode 34
requirements specification 59
scope of a variable 41
short type 45
specific import 38
system analysis 59
system design 59
underflow 66

UNIX epoch 52
variable 35
widening (of types) 57
wildcard import 00

|. Identifiers are names for naming elements such as variables, constants, methods, classes,

packages in a program.

2. An identifier is a sequence of characters that consists of letters, digits, underscores (_),
and dollar signs ($). An identifier must start with a letter or an underscore. It cannot start
with a digit. An identifier cannot be a reserved word. An identifier can be of any length.

3. Variables are used to store data in a program. To declare a variable is to tell the compiler

what type of data a variable can hold.

68 Chapter 2

Elementary Programming

4. There are two types of import statements: specific import and wildcard import. The
specific import specifies a single class in the import statement; the wildcard import
imports all the classes in a package.

5. 1InJava, the equal sign (=) is used as the assignment operator.

6. A variable declared in a method must be assigned a value before it can be used.

. A named constant (or simply a constant) represents permanent data that never changes.

8. A named constant is declared by using the keyword final.

9. Java provides four integer types (byte, short, int, and Tong) that represent integers
of four different sizes.

10. Java provides two floating-point types (float and double) that represent floating-
point numbers of two different precisions.

I 1. Java provides operators that perform numeric operations: + (addition), — (subtraction),
* (multiplication), / (division), and % (remainder).

12. Integer arithmetic (/) yields an integer result.

I 3. The numeric operators in a Java expression are applied the same way as in an arithmetic
expression.

14. Java provides the augmented assignment operators += (addition assignment), —= (sub-
traction assignment), *= (multiplication assignment), /= (division assignment), and %=
(remainder assignment).

I5. The increment operator (++) and the decrement operator (--) increment or decrement
a variable by 1.

16. When evaluating an expression with values of mixed types, Java automatically converts
the operands to appropriate types.

I7. You can explicitly convert a value from one type to another using the (type)value
notation.

18. Casting a variable of a type with a small range to a variable of a type with a larger range
is known as widening a type.

19. Casting a variable of a type with a large range to a variable of a type with a smaller range
is known as narrowing a type.

20. Widening a type can be performed automatically without explicit casting. Narrowing a
type must be performed explicitly.

21. Incomputer science, midnight of January 1, 1970, is known as the UNIX epoch.

Quiz

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 69

PROGRAMMING EXERCISES MyProgramminglLab’

Bl Debugging TIP
= The compiler usually gives a reason for a syntax error. If you don’t know how to correct it,
compare your program closely, character by character, with similar examples in the text. learn from examples

Bl Pedagogical Note

& Instructors may ask you to document your analysis and design for selected exercises. Use document analysis and design
your own words to analyze the problem, including the input, output, and what needs to be
computed, and describe how to solve the problem in pseudocode.

Sections 2.2-2.12

2.1 (Convert Celsius to Fahrenheif) Write a program that reads a Celsius degree in
a doubTe value from the console, then converts it to Fahrenheit and displays the
result. The formula for the conversion is as follows:

fahrenheit = (9 / 5) * celsius + 32

Hint: InJava,9 / 5is1,but9.0 / 5is1.8.
Here is a sample run:

Enter a degree in Celsius: 43 |-enter E
43 Celsius 1is 109.4 Fahrenheit

2.2 (Compute the volume of a cylinder) Write a program that reads in the radius
and length of a cylinder and computes the area and volume using the following
formulas:

s

area = radius * radius *m
volume = area * length

Here is a sample run:

The area is 95.0331
The volume is 1140.4

Enter the radius and Tength of a cylinder: 5.5 12 |-enter E

2.3 (Convert feet into meters) Write a program that reads a number in feet, converts it
to meters, and displays the result. One foot is 0. 305 meter. Here is a sample run:

Enter a value for feet: 16.5 -enter ‘
16.5 feet is 5.0325 meters

70 Chapter 2

Elementary Programming

(Convert pounds into kilograms) Write a program that converts pounds into kilo-
grams. The program prompts the user to enter a number in pounds, converts it
to kilograms, and displays the result. One pound is 0.454 kilograms. Here is a
sample run:

Enter a number in pounds: 55.5 | -enter
55.5 pounds 1is 25.197 kilograms

(Financial application: calculate tips) Write a program that reads the subtotal
and the gratuity rate, then computes the gratuity and total. For example, if the
user enters 10 for subtotal and 15% for gratuity rate, the program displays $1.5
as gratuity and $11.5 as total. Here is a sample run:

Enter the subtotal and a gratuity rate: 10 15 -enter
The gratuity is $1.5 and total is $11.5

(Sum the digits in an integer) Write a program that reads an integer between 0 and
1000 and adds all the digits in the integer. For example, if an integer is 932, the
sum of all its digits is 14.

Hint: Use the % operator to extract digits, and use the / operator to remove the
extracted digit. For instance, 932 % 10 = 2 and 932 / 10 = 93.

Here is a sample run:

Enter a number between 0 and 1000: 999 | —enter
The sum of the digits is 27

(Find the number of years) Write a program that prompts the user to enter the
minutes (e.g., 1 billion), and displays the number of years and days for the min-
utes. For simplicity, assume a year has 365 days. Here is a sample run:

Enter the number of minutes: 1000000000 | -enter
1000000000 minutes is approximately 1902 years and 214 days

24

2
*2.5

2
*%2.6

2
*2.7

2
*2.8

(Current time) Listing 2.7, ShowCurrentTime.java, gives a program that displays
the current time in GMT. Revise the program so that it prompts the user to enter
the time zone offset to GMT and displays the time in the specified time zone. Here
is a sample run:

Enter the time zone offset to GMT: -5 | -Enter
The current time is 4:50:34

Programming Exercises 71

2.9 (Physics: acceleration) Average acceleration is defined as the change of velocity
divided by the time taken to make the change, as shown in the following formula:
Vi~ Vo
t

Write a program that prompts the user to enter the starting velocity v, in meters/
second, the ending velocity v; in meters/second, and the time span ¢ in seconds,
and displays the average acceleration. Here is a sample run:

a =

Enter vO, vl, and t: 5.5 50.9 4.5 |-enter i
The average acceleration is 10.0889 :

2.10 (Science: calculating energy) Write a program that calculates the energy needed
to heat water from an initial temperature to a final temperature. Your program
should prompt the user to enter the amount of water in kilograms and the initial
and final temperatures of the water. The formula to compute the energy is

Q =M * (finalTemperature - initialTemperature) * 4184

where M is the weight of water in kilograms, temperatures are in degrees Celsius,
and energy 0 is measured in joules. Here is a sample run:

Enter the amount of water in kilograms: 55.5 |-enter |
Enter the initial temperature: 3.5 |-enter E
Enter the final temperature: 10.5 |-enter
The energy needed is 1625484.0

2.11 (Population projection) Rewrite Programming Exercise 1.11 to prompt the user
to enter the number of years and displays the population after the number of years.
Use the hint in Programming Exercise 1.11 for this program. The population
should be cast into an integer. Here is a sample run of the program:

Enter the number of years: 5 |-ener
The population in 5 years 1is 325932970 -

2.12 (Physics: finding runway length) Given an airplane’s acceleration a and take-off
speed v, you can compute the minimum runway length needed for an airplane to
take off using the following formula:

V2

length >
Write a program that prompts the user to enter v in meters/second (m/s) and the
acceleration a in meters/second squared (m/s?), and displays the minimum run-
way length. Here is a sample run:

Enter speed and acceleration: 60 3.5 |-enter |
The minimum runway Tength for this airplane is 514.286

72 Chapter 2 Elementary Programming

**2.13 (Financial application: compound value) Suppose you save $100 each month
into a savings account with the annual interest rate 5%. Thus, the monthly inter-
est rate is 0.05/12 = 0.00417. After the first month, the value in the account
becomes

100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes
(100 + 100.417) * (1 + 0.00417) = 201.252
After the third month, the value in the account becomes
(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

Write a program that prompts the user to enter a monthly saving amount and
displays the account value after the sixth month. (In Exercise 5.30, you will use a
loop to simplify the code and display the account value for any month.)

| Enter the monthly saving amount: 100 |-enter
After the sixth month, the account value is $608.81

u *2.14 (Health application: computing BMI) Body Mass Index (BMI) is a measure of
: health on weight. It can be calculated by taking your weight in kilograms and
VideoNote dividing by the square of your height in meters. Write a program that prompts the
Compute BMI

user to enter a weight in pounds and height in inches and displays the BMI. Note
that one pound is 0.45359237 kilograms and one inch is 0.0254 meters. Here is
a sample run:

r| Enter weight in pounds: 95.5 | -enter
Enter height in inches: 50 —enter

BMI is 26.8573

2.15 (Geometry: distance of two points) Write a program that prompts the user to enter
two points (x1, yl1) and (x2, y2) and displays their distance between them.
The formula for computing the distance is \/(xz — x1)* + (», — y)>. Note that
you can use Math.pow(a, 0.5) to compute Va. Here is a sample run:

Enter x1 and yl: 1.5 -3.4 |-enter
Enter x2 and y2: 4 5 |-enter

The distance between the two points is 8.764131445842194

2.16 (Geometry: area of a hexagon) Write a program that prompts the user to enter the
side of a hexagon and displays its area. The formula for computing the area of a
hexagon is

3V3,

s,

Area =

Programming Exercises 73

where s is the length of a side. Here is a sample run:

Enter the side: 5.5 |-enter 2
The area of the hexagon 1is 78.5895

*2.17 (Science: wind-chill temperature) How cold is it outside? The temperature alone
is not enough to provide the answer. Other factors including wind speed, rela-
tive humidity, and sunshine play important roles in determining coldness outside.
In 2001, the National Weather Service (NWS) implemented the new wind-chill
temperature to measure the coldness using temperature and wind speed. The
formula is

t,e = 35.74 + 0.6215t, — 35.75v%1° + 0.4275¢,%1

where ?, is the outside temperature measured in degrees Fahrenheit and v is the
speed measured in miles per hour. t,,. is the wind-chill temperature. The formula
cannot be used for wind speeds below 2 mph or temperatures below —58°F or
above 41°F.

Write a program that prompts the user to enter a temperature between —58 °F and
41°F and a wind speed greater than or equal to 2 and displays the wind-chill tem-
perature. Use Math.pow(a, b) to compute v*!6. Here is a sample run:

Enter the temperature in Fahrenheit between -58°F and 41°F: E
53 — Enter -
Enter the wind speed (>=2) in miles per hour: 6 |-enter
The wind chill index is -5.56707

2.18 (Print a table) Write a program that displays the following table. Cast floating-
point numbers into integers.

a b pow(a, b)
1 2 1

2 3 8

3 4 81

4 5 1024

5 6 15625

*2.19 (Geometry: area of a triangle) Write a program that prompts the user to enter
three points (x1, y1), (x2, y2), (x3, y3) of a triangle and displays its area.
The formula for computing the area of a triangle is

s = (sidel + side2 + side3)/2;

area = \Vs(s — sidel)(s — side2)(s — side3)

Here is a sample run:

Enter three points for a triangle: 1.5 -3.4 4.6 5 9.5 -3.4 |—enter !
The area of the triangle is 33.6

74 Chapter 2

Elementary Programming

Sections 2.13-2.17

(Financial application: calculate interest) If you know the balance and the annual
percentage interest rate, you can compute the interest on the next monthly pay-
ment using the following formula:

interest = balance X (annuallnterestRate/1200)

Write a program that reads the balance and the annual percentage interest rate and
displays the interest for the next month. Here is a sample run:

Enter balance and interest rate (e.g., 3 for 3%): 1000 3.5 |-enter
The interest is 2.91667

(Financial application: calculate future investment value) Write a program that

reads in investment amount, annual interest rate, and number of years, and dis-

plays the future investment value using the following formula:
futurelnvestmentValue =

investmentAmount X (1 + monthlyInterestRate)™mberofYears12

For example, if you enter amount 1000, annual interest rate 3.25%, and number
of years 1, the future investment value is 1032 .98.

Here is a sample run:

Enter investment amount: 1000.56 |-enter

Enter annual interest rate in percentage: 4.25 |-enter
Enter number of years: 1 |-enter

Accumulated value is $1043.92

*2.20
*2.21
*2.22
*2.23

(Financial application: monetary units) Rewrite Listing 2.10, ComputeChange
.Jjava, to fix the possible loss of accuracy when converting a double value to an
int value. Enter the input as an integer whose last two digits represent the cents.
For example, the input 1156 represents 11 dollars and 56 cents.

(Cost of driving) Write a program that prompts the user to enter the distance to
drive, the fuel efficiency of the car in miles per gallon, and the price per gallon,
and displays the cost of the trip. Here is a sample run:

Enter the driving distance: 900.5 | -enter
Enter miles per gallon: 25.5 |-enter
Enter price per gallon: 3.55 -Enter

The cost of driving is $125.36

CHAPTER

SELECTIONS

Objectives

B To declare boolean variables and write Boolean expressions using
relational operators (§3.2).

B To implement selection control using one-way 1if statements (§3.3).

B To implement selection control using two-way 1if-else statements

(§3.4).

B To implement selection control using nested i f and multi-way if
statements (§3.5).

B To avoid common errors and pitfalls in 1 f statements (§3.6).
B To generate random numbers using the Math. random() method (§3.7).

B To program using selection statements for a variety of examples
(SubtractionQuiz, BMI, ComputeTax) (§§3.7-3.9).

B To combine conditions using logical operators (!, &, | |, and A)
(8§3.10).

B To program using selection statements with combined conditions
(LeapYear, Lottery) (§§3.11-3.12).

B To implement selection control using switch statements (§3.13).
B To write expressions using the conditional expression (§3.14).

B To examine the rules governing operator precedence and associativity
(8§3.15).

® To apply common techniques to debug errors (§3.16).

76 Chapter 3 Selections

K
gﬁoi?l,;

problem

selection statements

Boolean expression
Boolean value

K
A

boolean data type
relational operators

Boolean variable

3.1 Introduction

The program can decide which statements to execute based on a condition.

If you enter a negative value for radius in Listing 2.2, ComputeAreaWithConsoleInput.java,
the program displays an invalid result. If the radius is negative, you don’t want the program to
compute the area. How can you deal with this situation?

Like all high-level programming languages, Java provides selection statements: statements
that let you choose actions with alternative courses. You can use the following selection state-
ment to replace lines 12—17 in Listing 2.2:

if (radius < 0) {
System.out.printin("Incorrect input");

}

else {
area = radius * radius * 3.14159;
System.out.println("Area is " + area);

}

Selection statements use conditions that are Boolean expressions. A Boolean expression is
an expression that evaluates to a Boolean value: true or false. We now introduce Boolean
types and relational operators.

3.2 boolean Data Type

The boolean data type declares a variable with the value either true or false.

How do you compare two values, such as whether a radius is greater than 0, equal to 0, or less
than 0? Java provides six relational operators (also known as comparison operators), shown
in Table 3.1, which can be used to compare two values (assume radius is 5 in the table).

TaBLE 3.1 Relational Operators

Java Operator ~ Mathematics Symbol — Name Example (radius is 5) Result
< < less than radius < 0 false
<= < less than or equal to radius <= 0 false
> > greater than radius > 0 true
>= > greater than or equal to radius >= 0 true
== = equal to radius == 0 false
1= # not equal to radius != 0 true
Caution

The equality testing operator is two equal signs (==), not a single equal sign (=). The
latter symbol is for assignment.

The result of the comparison is a Boolean value: true or false. For example, the follow-
ing statement displays true:

double radius = 1;
System.out.println(radius > 0);

A variable that holds a Boolean value is known as a Boolean variable. The boolean
data type is used to declare Boolean variables. A boolean variable can hold one of the

3.2 boolean Data Type 77

two values: true or false. For example, the following statement assigns true to the

variable TightsOn:

boolean TightsOn = true;

true and false are literals, just like a number such as 10. They are treated as reserved words Boolean literals

and cannot be used as identifiers in the program.

Suppose you want to develop a program to let a first-grader practice addition. The program u
randomly generates two single-digit integers, number1 and number2, and displays to the student

a question such as “Whatis 1 + 7?,” as shown in the sample run in Listing 3.1. After the student
types the answer, the program displays a message to indicate whether it is true or false.

VideoNote
Program addition quiz

There are several ways to generate random numbers. For now, generate the first integer
using System.currentTimeMillis() % 10 and the second using System.current-
TimeMil1is() / 7 % 10. Listing 3.1 gives the program. Lines 5—6 generate two numbers,
numberl and number2. Line 14 obtains an answer from the user. The answer is graded in
line 18 using a Boolean expression numberl + number2 == answer.

LisTING 3.1 AdditionQuiz.java

1 import java.util.Scanner;

2

3 public class AdditionQuiz {

4 public static void main(String[] args) {

5 int numberl = (int)(System.currentTimeMillis() % 10); generate numberl
6 int number2 = (int) (System.currentTimeMillis() / 7 % 10); generate number?
7

8 // Create a Scanner

9 Scanner input = new Scanner(System.in);

10

11 System.out.print(show question

12 "What is " + numberl + + number2 + "? '");

13

14 int number = input.nextInt();

15

16 System.out.printin(display result

17 numberl + " + " + number2 + " =" + answer + " is " +

18 (numberl + number2 == answer));

19 }

20 %

What is 1 + 77 8 —enter
1+ 7 =8 1is true

o

What is 4 + 8?7 9 —enter
4 + 8 =9 is false

-

16

line# numberl number?2 answer output O\
5 4
6 8

14 9

4 + 8 =9 1is false

78 Chapter 3 Selections

ﬁheck
Point

K
6ﬁoif1)ll;

why if statement?

if statement

flowchart

FIGURE 3.1

|

boolean-

3.1 List six relational operators.

3.2 Assuming that x is 1, show the result of the following Boolean expressions:

x > 0)
x < 0)
(x !'=0)
(x >= 0)
(x !'= 1)

3.3 Can the following conversions involving casting be allowed? Write a test program to
verify your answer.

boolean b = true;
i = (int)b;

int i = 1;
boolean b = (boolean)i;

3.3 1if Statements

An 1f statement is a construct that enables a program to specify alternative paths of execution.

The preceding program displays a message such as “6 + 2 = 7 is false.” If you wish the
message to be “6 + 2 = 7 is incorrect,” you have to use a selection statement to make this
minor change.

Java has several types of selection statements: one-way 1 f statements, two-way if-else
statements, nested 1f statements, multi-way 1if-else statements, switch statements, and
conditional expressions.

A one-way 1 f statement executes an action if and only if the condition is true. The syntax
for a one-way 1 f statement is:

if (boolean-expression) {
statement(s);

}

The flowchart in Figure 3.1a illustrates how Java executes the syntax of an 1 f statement.
A flowchart is a diagram that describes an algorithm or process, showing the steps as boxes
of various kinds, and their order by connecting these with arrows. Process operations are
represented in these boxes, and arrows connecting them represent the flow of control. A dia-
mond box denotes a Boolean condition and a rectangle box represents statements.

|

false false

true true
R —) area = radius * radius * PI;
I System.out.printin("The area for the circle of" +
" radius " + radius + " is " + area);
© O

(a)

(b)

An 1f statement executes statements if the boolean-expression evaluates to true.

3.3 1if Statements 79

If the boolean-expression evaluates to true, the statements in the block are executed.
As an example, see the following code:

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("The area for the circle of radius " +
radius + " 1is " + area);

3

The flowchart of the preceding statement is shown in Figure 3.1b. If the value of radius
is greater than or equal to 0, then the area is computed and the result is displayed; otherwise,
the two statements in the block will not be executed.

The boolean-expression is enclosed in parentheses. For example, the code in (a) is
wrong. It should be corrected, as shown in (b).

if i >0 { if (3> 0) {
System.out.println("i is positive'); System.out.println("i 1is positive');

} 3
(a) Wrong (b) Correct

The block braces can be omitted if they enclose a single statement. For example, the fol-
lowing statements are equivalent.

if (3 >0) { . L e Equivalent if G > 0) . e . c
System.out.println("i is positive'); f— System.out.printin("i is positive");
i
(@) (b)
Note
Omitting braces makes the code shorter, but it is prone to errors. It is a common mistake Omitting braces or not

to forget the braces when you go back to modify the code that omits the braces.

Listing 3.2 gives a program that prompts the user to enter an integer. If the number is a
multiple of 5, the program displays H1iF1ive. If the number is divisible by 2, it displays HiEven.

LisTING 3.2 SimpleIfDemo.java

import java.util.Scanner;

1
2
3 public class SimpleIfDemo {

4 public static void main(String[] args) {

5 Scanner input = new Scanner(System.in);

6 System.out.printin("Enter an integer: ");

7 int number = input.nextInt(); enter input
8

9

10

11

if (number % 5 == 0) check 5
System.out.printin("HiFive');

12 if (number % 2 == 0) check even
13 System.out.printin("HiEven");

80 Chapter 3 Selections

E Enter an integer: 4 |-enter
HiEven

E Enter an integer: 30 | -Enter
HiFive

HiEven

The program prompts the user to enter an integer (lines 6—7) and displays HiFive if it is
divisible by 5 (lines 9-10) and HiEven if it is divisible by 2 (lines 12—-13).

ﬁheck 3.4 Write an 1if statement that assigns 1 to x if y is greater than 0.

Point 3.5 Write an 1if statement that increases pay by 3% if score is greater than 90.

3.4 Two-Way 1if-else Statements

fKey An if-else statement decides the execution path based on whether the condition is
6 Point !rue or false.
A one-way 1 f statement performs an action if the specified condition is true. If the condition
is false, nothing is done. But what if you want to take alternative actions when the condition
is false? You can use a two-way 1f-else statement. The actions that a two-way if-else
statement specifies differ based on whether the condition is true or false.
Here is the syntax for a two-way 1f-else statement:

if (boolean-expression) {
statement(s)-for-the-true-case;

}
else {
statement(s)-for-the-false-case;

}

The flowchart of the statement is shown in Figure 3.2.

I

true boolean- false
N\ expression 7
Statement(s) for the true case | Statement(s) for the false case
0O)

!

FIGURE 3.2 An 1if-else statement executes statements for the true case if the Boolean-
expression evaluates to true; otherwise, statements for the false case are executed.

3.5 Nested if and Multi-Way 1if-else Statements 81

If the boolean-expression evaluates to true, the statement(s) for the true case are
executed; otherwise, the statement(s) for the false case are executed. For example, consider
the following code:

if (radius >= 0) { two-way 1f-else statement
area = radius * radius * PI;
System.out.println("The area for the circle of radius " +

radius + " 1is " + area);
}
else {
System.out.printin("Negative input");
}

If radius >= 0is true, area is computed and displayed; if it is false, the message
"Negative 1input" is displayed.

As usual, the braces can be omitted if there is only one statement within them. The braces
enclosing the System.out.printin("Negative input") statement can therefore be
omitted in the preceding example.

Here is another example of using the if-else statement. The example checks whether a
number is even or odd, as follows:

if (number % 2 == 0)
System.out.println(number +

else
System.out.println(number + " 1is odd.");

is even.");

3.6 Write an 1 f statement that increases pay by 3% if score is greater than 90, other- ﬁh K
. . ec
wise increases pay by 1%. Point

3.7 What is the output of the code in (a) and (b) if number is 30? What if number is 35?

if (number % 2 == 0) if (number % 2 == 0)
System.out.println(number + " 1is even."); System.out.println(number + " 1is even.'");
else
System.out.printin(number + " 1is odd."); System.out.println(number + " 1is odd.");

(a) (b)

3.5 Nested if and Multi-Way if-else Statements

An 1if statement can be inside another it statement to form a nested 1t statement. GfKey
The statement in an if or if-else statement can be any legal Java statement, including Point
another if or 1f-else statement. The inner 1 f statement is said to be nested inside the outer nested i f statement
if statement. The inner 1f statement can contain another if statement; in fact, there is no

limit to the depth of the nesting. For example, the following is a nested i f statement:

if (G > k) {
if (3 > k)
System.out.printin("i and j are greater than k");

}
else
System.out.println("i is less than or equal to k');

The if (j > k) statement is nested inside the if (i > k) statement.

The nested 1f statement can be used to implement multiple alternatives. The statement
given in Figure 3.3a, for instance, prints a letter grade according to the score, with multiple
alternatives.

82 Chapter 3 Selections

if (score >= 90.0)
System.out.print("A");
else
if (score >= 80.0)
System.out.print("B");
else
if (score >= 70.0)
System.out.print("C");
else
if (score >= 60.0)
System.out.print("D");
else
System.out.print("F");

Equivalent

This is better

(a)

The execution of this if statement proceeds as shown in Figure 3.4. The first condition
(score >= 90.0) is tested. If it is true, the grade is A. If it is false, the second condition
(score >= 80.0) is tested. If the second condition is true, the grade is B. If that condition
is false, the third condition and the rest of the conditions (if necessary) are tested until a
condition is met or all of the conditions prove to be false. If all of the conditions are false,
the grade is F. Note that a condition is tested only when all of the conditions that come before
it are false.

false

false

score >= 70
is B \\\\\\ /’

score >= 60
is C \/

true

grade is D

if (score >= 90.0)
System.out.print("A");
else if (score >= 80.0)
System.out.print("B");
else if (score >= 70.0)
System.out.print("C");
else if (score >= 60.0)
System.out.print("D");
else
System.out.print("F');

(b)

FiGure 3.3 A preferred format for multiple alternatives is shown in (b) using a multi-way
if-else statement.

false

grade is F

true score >= 80 false
grade is A \ /
true
grade
true
grade
O

FIGURE 3.4 You can use a multi-way 1f-else statement to assign a grade.

3.6 Common Errors and Pitfalls 83

The 1 f statement in Figure 3.3a is equivalent to the if statement in Figure 3.3b. In fact,
Figure 3.3b is the preferred coding style for multiple alternative if statements. This style,
called multi-way 1if-else statements, avoids deep indentation and makes the program easy multi-way 1 f statement
to read.

3.8 Suppose x = 3andy = 2; show the output, if any, of the following code. What is ﬁh K
the outputif x = 3 andy = 4? What is the outputif x = 2andy = 2?Drawa ¢ P:i;t
flowchart of the code.

if (x > 2) {
if (y > 2) {
Z=X+Y;
System.out.println("z is " + z);
3
3
else
System.out.println("x is " + x);

3.9 Suppose x = 2andy = 3. Show the output, if any, of the following code. What is
the outputif x = 3 andy = 2?7 Whatis the outputif x = 3andy = 3?

if (x > 2)
if (y > 2) {
int z = X + vy;

System.out.println("z is " + z);
h
else
System.out.println("x is " + x);

3.10 What is wrong in the following code?

if (score >= 60.0)
System.out.printin(''D");
else if (score >= 70.0)
System.out.println("C");
else if (score >= 80.0)
System.out.println("B");
else if (score >= 90.0)
System.out.println("A");
else
System.out.printIn("F'");

3.6 Common Errors and Pitfalls

Forgetting necessary braces, ending an it statement in the wrong place, mistaking == fKey
for =, and dangling else clauses are common errors in selection statements. 6 Point
Duplicated statements in if-else statements and testing equality of double values

are common pitfalls.

The following errors are common among new programmers.

Common Error 1: Forgetting Necessary Braces

The braces can be omitted if the block contains a single statement. However, forgetting the
braces when they are needed for grouping multiple statements is a common programming
error. If you modify the code by adding new statements in an 1if statement without braces,
you will have to insert the braces. For example, the following code in (a) is wrong. It should
be written with braces to group multiple statements, as shown in (b).

84 Chapter 3 Selections

if (radius >= 0)
area = radius * radius * PI;
System.out.println("The area

+ is " + area);

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("The area

+ is " + area);

(a) Wrong

(b) Correct

Common Error 2: Wrong Semicolon at the i f Line

Adding a semicolon at the end of an 1 f line, as shown in (a) below, is a common mistake.

Logic error Empty block

{

if (radius >= 0);”

area = radius * radius * PI; Equivalent area = radius * radius * PI;
System.out.printin("The area " System.out.printin("The area "
" + area); + " ds " + area);

if (radius >= 0) {'};
{

() (b)

This mistake is hard to find, because it is neither a compile error nor a runtime error; it is a
logic error. The code in (a) is equivalent to that in (b) with an empty block.

This error often occurs when you use the next-line block style. Using the end-of-line block
style can help prevent this error.

Common Error 3: Redundant Testing of Boolean Values

To test whether a boolean variable is true or false in a test condition, it is redundant to
use the equality testing operator like the code in (a):

if (even == true)
System.out.println(
"It is even.");

(a)

Equivalent

This is better

if (even)
System.out.println(
"It is even.");

(b)

Instead, it is better to test the boolean variable directly, as shown in (b). Another good
reason for doing this is to avoid errors that are difficult to detect. Using the = operator instead
of the == operator to compare the equality of two items in a test condition is a common error.
It could lead to the following erroneous statement:

if (even = true)
System.out.println("It is even.'");

This statement does not have compile errors. It assigns true to even, so that even is
always true.

Common Error 4: Dangling else Ambiguity

The code in (a) below has two if clauses and one else clause. Which 1 f clause is matched
by the el se clause? The indentation indicates that the else clause matches the first 1 f clause.

3.6 Common Errors and Pitfalls 85

However, the else clause actually matches the second 1f clause. This situation is known as
the dangling else ambiguity. The else clause always matches the most recent unmatched if dangling else ambiguity
clause in the same block. So, the statement in (a) is equivalent to the code in (b).

inti=1, j =2, k =3; inti =1, j =2, k =3;
Equivalent
if (G >) —_— |if (G > P
if (> k) if (i > k)
System.out.println("A"); L System.out.printin("A");
else This is better else
System.out.println("B"); with correct —» System.out.printin("'B");
indentation
(a) (b)

Since (i > 7j) is false, nothing is displayed from the statements in (a) and (b). To force
the else clause to match the first i f clause, you must add a pair of braces:

int i =1, j =2, k =3;

if (> 3) {
if (i > k)
System.out.printin("A");
}

else
System.out.println("B");

This statement displays B.

Common Error 5: Equality Test of Two Floating-Point Values

As discussed in Common Error 3 in Section 2.18, floating-point numbers have a limited pre-
cision and calculations; involving floating-point numbers can introduce round-off errors. So,
equality test of two floating-point values is not reliable. For example, you expect the follow-
ing code to display true, but surprisingly it displays false.

double x = 1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1;
System.out.printin(x == 0.5);

Here, x is not exactly 0.5, but is 0.5000000000000001. You cannot reliably test equality
of two floating-point values. However, you can compare whether they are close enough by
testing whether the difference of the two numbers is less than some threshold. That is, two
numbers x and y are very close if Ix—yl < & for a very small value, ¢. €, a Greek letter pro-
nounced epsilon, is commonly used to denote a very small value. Normally, you set & to 1074
for comparing two values of the double type and to 10”7 for comparing two values of the
float type. For example, the following code

final double EPSILON = 1E-14;

double x = 1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1;

if (Math.abs(x - 0.5) < EPSILON)
System.out.println(x + " is approximately 0.5");

will display that
0.5000000000000001 is approximately 0.5

The Math.abs (a) method can be used to return the absolute value of a.

86 Chapter 3 Selections

Common Pitfall 1: Simplifying Boolean Variable Assignment

Often, new programmers write the code that assigns a test condition to a boolean variable
like the code in (a):

if (number % 2 == 0) Eauival boolean even
even = true; quivalent = number % 2 == 0;
else _
even = false; This is shorter
(a) (b)

This is not an error, but it should be better written as shown in (b).

Common Pitfall 2: Avoiding Duplicate Code in Different Cases

Often, new programmers write the duplicate code in different cases that should be combined
in one place. For example, the highlighted code in the following statement is duplicated.

if (inState) {
tuition = 5000;

System.out.printin("The tuition is " + tuition);
}
else {

tuition = 15000;

System.out.println("The tuition is " + tuition);

}
This is not an error, but it should be better written as follows:

if (inState) {
tuition = 5000;
}
else {
tuition = 15000;
}

System.out.println("The tuition fis

+ tuition);

The new code removes the duplication and makes the code easy to maintain, because you only
need to change in one place if the print statement is modified.

ﬁheck 3.1l Which of the following statements are equivalent? Which ones are correctly
Point indented?
if (G > 0) if if (G > 0) { if (G > 0) if (G > 0)
@G>0 if (3 > 0 if (3 > 0) if (5 > 0)
x = 0; else x = 0; x = 0; x = 0;
if (k > 0) y = 0; else if (k > 0) else if (k > 0) else if (k > 0)
else z = 0; y = 0; y = 0; y = 0;
else 1 ’
else z = 0; else
z = 0; z = 0;
(a) (b) (©) (d

3.12 Rewrite the following statement using a Boolean expression:

if (count % 10 == 0)
newLine = true;
else
newLine = false;

3.7 Generating Random Numbers 87

3.13 Are the following statements correct? Which one is better?

if (age < 16) if (age < 16)
System.out.println System.out.println
("Cannot get a driver's license"); ("Cannot get a driver's license'");
if (age >= 16) else
System.out.println System.out.println
("Can get a driver's license"); ("Can get a driver's license'");
(a) (b)

3.14 What s the output of the following code if number is 14, 15, or 30?

if (number % 2 == 0) if (number % 2 == 0)
System.out.println System.out.println
(number + " dis even"); (number + " is even');
if (number % 5 == 0) else if (number % 5 == 0)
System.out.println System.out.println
(number + " is multiple of 5"); (number + " dis multiple of 5");

(@ (b)

3.7 Generating Random Numbers

You can use Math.random() to obtain a random double value between 0.0 and 1.0,
excluding 1.0.

Suppose you want to develop a program for a first-grader to practice subtraction. The program
randomly generates two single-digit integers, numberl and number2, with numberl >=
number?2, and it displays to the student a question such as “What is 9 — 27" After the student
enters the answer, the program displays a message indicating whether it is correct.

The previous programs generate random numbers using System.currentTimeMilTlis().
A better approach is to use the random() method in the Math class. Invoking this method
returns a random double value d such that 0.0 = d < 1.0. Thus, (int) (Math.random() *
10) returns a random single-digit integer (i.e., a number between 0 and 9).

The program can work as follows:

1. Generate two single-digit integers into number1 and number?2.

2. If numberl < number2, swap numberl with number2.

3. Prompt the student to answer, "What is numberl - number2?"
4. Check the student’s answer and display whether the answer is correct.

The complete program is shown in Listing 3.3.

LISTING 3.3 SubtractionQuiz.java

1 import java.util.Scanner;

2

3 public class SubtractionQuiz {

4 public static void main(String[] args) {

5 // 1. Generate two random single-digit integers

6 int numberl = (int) (Math.random() * 10);

7 int number2 = (int) (Math.random() * 10);

8

9 // 2. If numberl < number2, swap numberl with number2
10 if (numberl < number2) {
11 int temp = numberl;

K
&;fioﬁz

VideoNote
Program subtraction quiz

random() method

random number

88 Chapter 3 Selections

get answer

check the answer

/%iwck

12 numberl = number2;

13 number2 = temp;

14 }

15

16 // 3. Prompt the student to answer "What is numberl - number2?”
17 System.out.print

18 ("What is " + numberl + " - " + number2 + "7 ");
19 Scanner input = new Scanner(System.in);

20 int answer = input.nextInt();

21

22 // 4. Grade the answer and display the result

23 if (numberl - number2 == answer)

24 System.out.println("You are correct!");

25 else {

26 System.out.printin("Your answer is wrong.");

27 System.out.printin(numberl + " - " + number2 +
28 " should be " + (numberl - number2));

29 }

30 }

31}

What is 6 - 6?7 0 | —enter
You are correct!

W

What is 9 - 2? 5 |~Enter
Your answer 1is wrong

-

9 -2 1is 7
O\ line# numberl number2 temp answer output
6 2
9

11 2

12 9

13 2

20 5

26 Your answer is wrong

9 - 2 should be 7

To swap two variables numberl and number2, a temporary variable temp (line 11) is used
to first hold the value in numberl. The value in number?2 is assigned to numberl (line 12),
and the value in temp is assigned to number2 (line 13).

3.15 Which of the following is a possible output from invoking Math.random()?
Point 323.4, 0.5, 34, 1.0, 0.0, 0.234

3.16 a. How do you generate a random integer 1 such that 0 = i < 20?
b. How do you generate a random integer i such that 10 = i < 207?
c. How do you generate a random integer i such that 10 = i = 50?

d. Write an expression that returns 0 or 1 randomly.

3.8 Case Study: Computing Body Mass Index 89

3.8 Case Study: Computing Body Mass Index

You can use nested if statements to write a program that interprets body mass index. GfK ey
Body Mass Index (BMI) is a measure of health based on height and weight. It can be cal- ~ Point
culated by taking your weight in kilograms and dividing it by the square of your height in
meters. The interpretation of BMI for people 20 years or older is as follows:
BMI Interpretation
BMI < 18.5 Underweight
18.5 < BMI <25.0 Normal
25.0 < BMI < 30.0 Overweight
30.0 < BMI Obese
Write a program that prompts the user to enter a weight in pounds and height in inches and
displays the BMI. Note that one pound is 0.45359237 kilograms and one inch is 0.0254
meters. Listing 3.4 gives the program.
LIsTING 3.4 ComputeAndInterpretBMI.java
1 import java.util.Scanner;
2
3 public class ComputeAndInterpretBMI {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 // Prompt the user to enter weight in pounds
8 System.out.print("Enter weight in pounds: ");
9 double weight = input.nextDouble(); input weight
10
11 // Prompt the user to enter height in inches
12 System.out.print("Enter height in inches: ");
13 double height = input.nextDouble(); input height
14
15 final double KILOGRAMS_PER_POUND = 0.45359237; // Constant
16 final double METERS_PER_INCH = 0.0254; // Constant
17
18 // Compute BMI
19 double weightInKilograms = weight * KILOGRAMS_PER_POUND;
20 double heightInMeters = height * METERS_PER_INCH;
21 double bmi = weightInKilograms / compute bmi
22 (heightInMeters * heightInMeters);
23
24 // Display result
25 System.out.printTn("BMI is " + bmi); display output
26 if (bmi < 18.5)
27 System.out.println("Underweight');
28 else if (bmi < 25)
29 System.out.println("Normal™);
30 else if (bmi < 30)
31 System.out.printin("Overweight");
32 else
33 System.out.println("Obese™);
34 }

35 }

90 Chapter 3 Selections

test all cases

VideoNote

2

K
Gﬁoii{

Use multi-way if-else

statements

Enter weight in pounds: 146 |-enter
Enter height in inches: 70 -enter
BMI is 20.948603801493316

Normal

line# weight height weightInKilograms heightInMeters bmi output

9 146
13 70
19 66.22448602
20 1.778
21 20.9486

25 BMI s
20.95

31 Normal

The constants KILOGRAMS_PER_POUND and METERS_PER_INCH are defined in lines
15-16. Using constants here makes programs easy to read.

You should test the input that covers all possible cases for BMI to ensure that the program
works for all cases.

3.9 Case Study: Computing Taxes

You can use nested it statements to write a program for computing taxes.

The United States federal personal income tax is calculated based on filing status and tax-
able income. There are four filing statuses: single filers, married filing jointly or qualified
widow(er), married filing separately, and head of household. The tax rates vary every year.
Table 3.2 shows the rates for 2009. If you are, say, single with a taxable income of $10,000,
the first $8,350 is taxed at 10% and the other $1,650 is taxed at 15%, so, your total tax is
$1,082.50.

TaBLE 3.2 2009 U.S. Federal Personal Tax Rates

Marginal Married Filing Jointly

Tax Rate Single or Qualifying Widow(er) Married Filing Separately Head of Household
10% $0 — $8,350 $0 - $16,700 $0 - $8,350 $0 - $11,950
15% $8,351 — $33,950 $16,701 — $67,900 $8,351 — $33,950 $11,951 — $45,500
25% $33,951 — $82,250 $67,901 — $137,050 $33,951 — $68,525 $45,501 — $117,450
28% $82,251 - $171,550 $137,051 — $208,850 $68,526 — $104,425 $117,451 — $190,200
33% $171,551 — $372,950 $208,851 — $372,950 $104,426 — $186,475 $190,201 — $372,950
35% $372,951+ $372,951+ $186,476+ $372,951+

You are to write a program to compute personal income tax. Your program should prompt
the user to enter the filing status and taxable income and compute the tax. Enter 0 for single
filers, 1 for married filing jointly or qualified widow(er), 2 for married filing separately, and
3 for head of household.

3.9 Case Study: Computing Taxes 91

Your program computes the tax for the taxable income based on the filing status. The filing
status can be determined using if statements outlined as follows:

if (status == 0) {
// Compute tax for single filers

}
else if (status == 1) {
// Compute tax for married filing jointly or qualifying widow(er)

}
else if (status == 2) {
// Compute tax for married filing separately

}
else if (status == 3) {

// Compute tax for head of household
}

else {
// Display wrong status
}

For each filing status there are six tax rates. Each rate is applied to a certain amount of
taxable income. For example, of a taxable income of $400,000 for single filers, $8,350 is
taxed at 10%, (33,950 — 8,350) at 15%, (82,250 — 33,950) at 25%, (171,550 — 82,250) at 28%,
(372,950 — 171,550) at 33%, and (400,000 — 372,950) at 35%.

Listing 3.5 gives the solution for computing taxes for single filers. The complete solution
is left as an exercise.

LisTiNG 3.5 ComputeTax.java

1 dmport java.util.Scanner;

2

3 public class ComputeTax {

4 public static void main(String[] args) {

5 // Create a Scanner

6 Scanner input = new Scanner(System.in);

7

8 // Prompt the user to enter filing status

9 System.out.print("(0-single filer, l-married jointly or " +
10 "qualifying widow(er), 2-married separately, 3-head of " +
11 "household) Enter the filing status: ");
12
13 int status = input.nextInt(); input status
14
15 // Prompt the user to enter taxable income
16 System.out.print("Enter the taxable income: ");
17 double income = input.nextDouble(); input income
18
19 // Compute tax
20 double tax = 0; compute tax
21
22 if (status == 0) { // Compute tax for single filers
23 if (income <= 8350)
24 tax = income * 0.10;
25 else if (income <= 33950)
26 tax = 8350 * 0.10 + (income - 8350) * 0.15;
27 else if (income <= 82250)
28 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
29 (income - 33950) * 0.25;

30 else if (income <= 171550)

31 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +

32 (82250 - 33950) * 0.25 + (income - 82250) * 0.28;

92 Chapter 3 Selections

exit program

display output

System.exit(status)

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59 }

}

el

el

}
else
//
}
else
//
}
else
//
}
else
Sy
Sy
}

// D
Syst

se if (income <= 372950)

tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
(82250 - 33950) * 0.25 + (171550 - 82250) * 0.28 +
(income - 171550) * 0.33;

se

tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
(82250 - 33950) * 0.25 + (171550 - 82250) * 0.28 +
(372950 - 171550) * 0.33 + (income - 372950) * 0.35;

if (status == 1) { // Left as an exercise
Compute tax for married file jointly or qualifying widow(er)

if (status == 2) { // Compute tax for married separately
Left as an exercise

if (status == 3) { // Compute tax for head of household
Left as an exercise

{
stem.out.println("Error: invalid status");
stem.exit(l);

isplay the result
em.out.printin("Tax is " + (int)(tax * 100) / 100.0);

(0-single filer, 1-married jointly or qualifying widow(er),
2-married separately, 3-head of household)

Enter the filing status: 0 |-enter

Enter the taxable income: 400000 |-enter

Tax is 117683.5

line# status income tax output
13 0
17 400000
20 0
38 117683.5
57 Tax 1is 117683.5

status.

The program receives the filing status and taxable income. The multi-way if-else state-
ments (lines 22, 42, 45, 48, 51) check the filing status and compute the tax based on the filing

System.exit(status) (line 53) is defined in the System class. Invoking this method
terminates the program. The status O indicates that the program is terminated normally. A
nonzero status code indicates abnormal termination.

An initial value of 0 is assigned to tax (line 20). A compile error would occur if it had
no initial value, because all of the other statements that assign values to tax are within the
if statement. The compiler thinks that these statements may not be executed and therefore
reports a compile error.

3.10 Logical Operators 93

To test a program, you should provide the input that covers all cases. For this program, test all cases
your input should cover all statuses (0, 1, 2, 3). For each status, test the tax for each of the six
brackets. So, there are a total of 24 cases.

Tip

' For all programs, you should write a small amount of code and test it before moving on
to add more code. This is called incremental development and testing. This approach incremental development and
makes testing easier, because the errors are likely in the new code you just added. testing

3.17 Are the following two statements equivalent? ﬁheck
Point

if (income <= 10000) if (income <= 10000)

tax = income * 0.1; tax = income * 0.1;
else if (income <= 20000) else if (income > 10000 &&

tax = 1000 + income <= 20000)

(income - 10000) * 0.15; tax = 1000 +
(income - 10000) * 0.15;

3.10 Logical Operators
The logical operators !, &&, ||, and A can be used to create a compound Boolean Ke
expression. 6 Poin)t,

Sometimes, whether a statement is executed is determined by a combination of several condi-
tions. You can use logical operators to combine these conditions to form a compound Boolean
expression. Logical operators, also known as Boolean operators, operate on Boolean values
to create a new Boolean value. Table 3.3 lists the Boolean operators. Table 3.4 defines the
not (!) operator, which negates true to false and false to true. Table 3.5 defines the and
(&&) operator. The and (&&) of two Boolean operands is true if and only if both operands are
true. Table 3.6 defines the or (| |) operator. The or (| |) of two Boolean operands is true
if at least one of the operands is true. Table 3.7 defines the exclusive or (A) operator. The
exclusive or (A) of two Boolean operands is true if and only if the two operands have differ-
ent Boolean values. Note that p1 A p2 is the same as pl = p2.

TABLE 3.3 Boolean Operators

Operator Name Description

! not logical negation
&& and logical conjunction
| or logical disjunction
A exclusive or logical exclusion

TABLE 3.4 Truth Table for Operator !

p 'p Example (assume age = 24, weight = 140)
true false ! (age > 18) is false, because (age > 18) is true.
false true ! (weight == 150) is true, because (weight == 150)

is false.

94 Chapter 3 Selections

TasLE 3.5 Truth Table for Operator &&

p1 P2 p; && p; Example (assume age = 24, weight = 140)

false false false

false true false (age > 28) && (weight <= 140) is true,
because (age > 28) is false.

true false false

true true true (age > 18) && (weight >= 140) is true,
because (age > 18) and (weight >= 140) are
both true.

TABLE 3.6 Truth Table for Operator | |

p1 P2 p1 || p2 Example (assume age = 24, weight = 140)

false false false (age > 34) || (weight >= 150) is false, because

(age > 34) and (weight >= 150) are both false.
false true true

true false true (age > 18) || (weight < 140) is true, because
(age > 18) is true.

true true true

TaBLE 3.7 Truth Table for Operator A

p1 P> p1 A p2 Example (assume age = 24, weight = 140)

false false false (age > 34) A (weight > 140) is false, because (age > 34) and
(weight > 140) are both false.

false true true (age > 34) A (weight >= 140) is true, because (age > 34) is
false but (weight >= 140) is true.

true false true

true true false

Listing 3.6 gives a program that checks whether a number is divisible by 2 and 3, by 2 or
3, and by 2 or 3 but not both:

LISTING 3.6 TestBooleanOperators.java

import class 1 dmport java.util.Scanner;
2
3 public class TestBooleanOperators {
4 public static void main(String[] args) {
5 // Create a Scanner
6 Scanner input = new Scanner(System.in);
7
8 // Receive an input
9 System.out.print("Enter an integer: ");
input 10 int number = input.nextInt();
11
and 12 if (number % 2 == 0 && number % 3 == 0)
13 System.out.println(number + " 1is divisible by 2 and 3.");

3.10 Logical Operators 95

15 if (number % 2 == 0 || number % 3 == 0) or

16 System.out.println(number + " dis divisible by 2 or 3.");

17

18 if (number % 2 == 0 A number % 3 == 0) exclusive or
19 System.out.println(number +

20 " is divisible by 2 or 3, but not both.");
21 }
22}

Enter an integer: 4 |-enter g

4 is divisible by 2 or 3.

4 is divisible by 2 or 3, but not both.

Enter an integer: 18 |-enter g
18 1is divisible by 2 and 3.

18 is divisible by 2 or 3.

(number % 2 == 0 && number % 3 == 0) (line 12) checks whether the number is
divisible by both 2 and 3. (number % 2 == 0 || number % 3 == 0) (line 15) checks
whether the number is divisible by 2 or by 3. (number % 2 == 0 A number % 3 == 0) (line
18) checks whether the number is divisible by 2 or 3, but not both.

Caution
In mathematics, the expression

1 <= numberOfDaysInAMonth <= 31

is correct. However, it is incorrect in Java, because 1 <= numberOfDaysInAMonth is

evaluated to a boolean value, which cannot be compared with 31. Here, two operands

(a boolean value and a numeric value) are incompatible. The correct expression in incompatible operands
Java is

(1 <= numberOfDaysInAMonth) && (numberOfDaysInAMonth <= 31)

Note
H De Morgan’s law, named after Indian-born British mathematician and logician Augustus De Morgan’s law
De Morgan (1806—1871), can be used to simplify Boolean expressions. The law states:

I (conditionl && condition2) is the same as
lconditionl || !condition2

I(conditionl || condition2) is the same as
lconditionl && !condition2

For example,

I (number % 2 == 0 & & number % 3 == 0)
can be simplified using an equivalent expression:
(number % 2 '= 0 || number % 3 != 0)
As another example,

I (number == 2 || number == 3)

is better written as

number != 2 && number != 3

96 Chapter 3 Selections

If one of the operands of an && operator is false, the expression is false; if one of the
operands of an || operator is true, the expression is true. Java uses these properties to
improve the performance of these operators. When evaluating p1 && p2, Java first evaluates
pl and then, if pl is true, evaluates p2; if pl is false, it does not evaluate p2. When

evaluating p1 || p2,Java first evaluates p1l and then, if p1 is false, evaluates p2; if p1 is
true, it does not evaluate p2. In programming language terminology, &% and | | are known
short-circuit operator as the short-circuit or lazy operators. Java also provides the unconditional AND (&) and OR
lazy operator (|) operators, which are covered in Supplement III.C for advanced readers.
ﬁheck 3.18 Assuming that x is 1, show the result of the following Boolean expressions.
Point (true) && (3 > 4)

I(x > 0) & (x > 0)
x>0 || (x<0

x I=0) || (x==0)
x>=0) || (x<0
x !1=1) == I(x ==1)

3.19 (a) Write a Boolean expression that evaluates to true if a number stored in variable
num is between 1 and 100. (b) Write a Boolean expression that evaluates to true if
a number stored in variable num is between 1 and 100 or the number is negative.

3.20 (a) Write a Boolean expression for]x - 5‘ < 4.5. (b) Write a Boolean expression
for [x — 5| > 4.5.

3.21 Assume that x and y are int type. Which of the following are legal Java expressions?

>y >0
y &'y

~ X X X X X

3.22 Are the following two expressions the same?

o o
X X
R
(<))
i
o

3.23 What is the value of the expression x >= 50 &% x <= 100 if x is 45, 67,or 101?

3.24 Suppose, when you run the following program, you enter the input 2 3 6 from the
console. What is the output?

public class Test {
public static void main(String[] args) {
java.util.Scanner input = new java.util.Scanner(System.in);
double x = input.nextDouble();
double y input.nextDouble();
double z = input.nextDouble();

System.out.printin("(x <y & y < 2z) is " + (x <y & y < 2));
System.out.printIn("(x <y || vy <2z) is " + (x <y y <
System.out.println("!(x < y) is " + I(x < y));
System.out.println("(x + y < z) is " + (X +y < 2));
System.out.println("(x + y > z) 1is + X +y > 2));

}

}

3.25 Write a Boolean expression that evaluates to true if age is greater than 13 and less
than 18.

3.1'1 Case Study: Determining Leap Year 97

3.26 Write a Boolean expression that evaluates to true if weight is greater than
50 pounds or height is greater than 60 inches.

3.27 Write a Boolean expression that evaluates to true if weight is greater than
50 pounds and height is greater than 60 inches.

3.28 Write a Boolean expression that evaluates to true if either weight is greater than
50 pounds or height is greater than 60 inches, but not both.

3.11 Case Study: Determining Leap Year

A year is a leap year if it is divisible by 4 but not by 100, or if it is divisible by 400. GfKey

You can use the following Boolean expressions to check whether a year is a leap year: Point

// A Teap year is divisible by 4
boolean isLeapYear = (year % 4 == 0);

// A leap year is divisible by 4 but not by 100
isLeapYear = islLeapYear && (year % 100 != 0);

// A leap year is divisible by 4 but not by 100 or divisible by 400
isLeapYear = islLeapYear || (year % 400 == 0);

Or you can combine all these expressions into one like this:
isLeapYear = (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);

Listing 3.7 gives the program that lets the user enter a year and checks whether it is a leap
year.

LISTING 3.7 LeapYear.java

1 import java.util.Scanner;

N

3 public class LeapYear {

4 public static void main(String[] args) {

5 // Create a Scanner

6 Scanner input = new Scanner(System.in);

7 System.out.print("Enter a year: ");

8 int year = input.nextInt(); input

10 // Check if the year is a leap year
11 boolean islLeapYear = leap year?
12 (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);

14 // Display the result
15 System.out.println(year +

is a leap year? " + islLeapYear); display result

Enter a year: 2008 |-enter E
2008 is a leap year? true

Enter a year: 1900 |-enter E
1900 1is a leap year? false

98 Chapter 3 Selections

2

K
foxes

generate a lottery number

enter a guess

exact match?

match all digits?

match one digit?

Enter a year: 2002 -enter
2002 is a leap year? false

3.12 Case Study: Lottery

The lottery program involves generating random numbers, comparing digits, and
using Boolean operators.

Suppose you want to develop a program to play lottery. The program randomly generates a
lottery of a two-digit number, prompts the user to enter a two-digit number, and determines
whether the user wins according to the following rules:

1. If the user input matches the lottery number in the exact order, the award is $10,000.
2. If all digits in the user input match all digits in the lottery number, the award is $3,000.
3. If one digit in the user input matches a digit in the lottery number, the award is $1,000.

Note that the digits of a two-digit number may be 0. If a number is less than 10, we assume
the number is preceded by a 0 to form a two-digit number. For example, number 8 is treated
as 08 and number 0 is treated as 00 in the program. Listing 3.8 gives the complete program.
LiIsTING 3.8 Lottery.java

1 import java.util.Scanner;

2

3 public class Lottery {

4 public static void main(String[] args) {

5 // Generate a Tottery number

6 int lottery = (int) (Math.random() * 100);

7

8 // Prompt the user to enter a guess

9 Scanner input = new Scanner(System.in);
10 System.out.print("Enter your lottery pick (two digits): ");
11 int guess = input.nextInt();
12
13 // Get digits from lottery
14 int lotteryDigitl = lottery / 10;
15 int lotteryDigit2 = lottery % 10;
16
17 // Get digits from guess

18 int guessDigitl = guess / 10;

19 int guessDigit2 = guess % 10;

20

21 System.out.printin("The lottery number is " + Tlottery);
22

23 // Check the guess

24 if (guess == lottery)

25 System.out.printin("Exact match: you win $10,000");
26 else if (guessDigit2 == TotteryDigitl

27 && guessDigitl == TotteryDigit2)

28 System.out.printin("Match all digits: you win $3,000");
29 else if (guessDigitl == TotteryDigitl

30 || guessDigitl == TotteryDigit2

31 || guessDigit2 == lotteryDigitl

32 | | guessDigit2 == lotteryDigit2)

33 System.out.printin("Match one digit: you win $1,000");

3.12 Case Study: Lottery 99

34 else

35 System.out.println("Sorry, no match");
36 }

37 }

Enter your lottery pick (two digits): 15 —enter
The lottery number is 15
Exact match: you win $10,000

Enter your lottery pick (two digits): 45 —enter
The lottery number is 54
Match all digits: you win $3,000

Enter your Tottery pick: 23 |—enter
The lottery number is 34
Match one digit: you win $1,000

Enter your Tlottery pick: 23 |-enter
The lottery number is 14
Sorry: no match

L

line# 6 11 14 15 18 19 33 O

variable

lottery 34

guess 23

lotteryDigitl 3

lotteryDigit2 4

guessDigitl 2
guessDigit2 3

Output Match one digit:
you win $1,000

The program generates a lottery using the random () method (line 6) and prompts the user
to enter a guess (line 11). Note that guess % 10 obtains the last digit from guess and guess
/ 10 obtains the first digit from guess, since guess is a two-digit number (lines 18-19).

The program checks the guess against the lottery number in this order:

1. First, check whether the guess matches the lottery exactly (line 24).
2. If not, check whether the reversal of the guess matches the lottery (lines 26-27).
3. If not, check whether one digit is in the lottery (lines 29-32).

4. If not, nothing matches and display "Sorry, no match" (lines 34-35).

100 Chapter 3 Selections

3.13 switch Statements

Ke A switch statement executes statements based on the value of a variable or an
6 Poin)l,; expression.

The 1 f statement in Listing 3.5, ComputeTax.java, makes selections based on a single true
or false condition. There are four cases for computing taxes, which depend on the value of
status. To fully account for all the cases, nested 1 f statements were used. Overuse of nested
1if statements makes a program difficult to read. Java provides a switch statement to sim-
plify coding for multiple conditions. You can write the following sw1 tch statement to replace
the nested 1f statement in Listing 3.5:

switch (status) {
case 0: compute tax for single filers;
break;
case 1: compute tax for married jointly or qualifying widow(er);
break;
case 2: compute tax for married filing separately;
break;
case 3: compute tax for head of household;
break;
default: System.out.printin("Error: invalid status");
System.exit(l);
}

The flowchart of the preceding switch statement is shown in Figure 3.5.

@]
tatus is 0
ﬂ» Compute tax for single filers |-> break I—»
status is 1 s e .
Compute tax for married jointly or qualifying widow(er) |-> break |—>
status is 2 o
———— > Compute tax for married filing separately |-> break |—>
tatus is 3
SN Compute tax for head of household |-> break |—>
default .
——> Default actions |—>

3

FiGure 3.5 The switch statement checks all cases and executes the statements in the
matched case.

This statement checks to see whether the status matches the value 0, 1, 2, or 3, in that
order. If matched, the corresponding tax is computed; if not matched, a message is displayed.
switch statement Here is the full syntax for the switch statement:

switch (switch-expression) {
case valuel: statement(s)1;
break;

3.13 switch Statements 101

case value2: statement(s)2;
break;

case valueN: statement(s)N;
break;
default: statement(s)-for-default;
}

The switch statement observes the following rules:

B The switch-expression must yield a value of char, byte, short, int, or String
type and must always be enclosed in parentheses. (The char and String types will be
introduced in the next chapter.)

B Thevaluel,.. . and valueN musthave the same data type as the value of the switch-
expression. Note that valuel, ..., and valueN are constant expressions, meaning
that they cannot contain variables, such as 1 + x.

B When the value in a case statement matches the value of the switch-expression,
the statements starting from this case are executed until either a break statement or the
end of the switch statement is reached.

B The default case, which is optional, can be used to perform actions when none of the
specified cases matches the switch-expression.

B The keyword break is optional. The break statement immediately ends the switch

statement.
Caution
Do not forget to use a break statement when one is needed. Once a case is matched, without break
the statements starting from the matched case are executed until a break statement or
the end of the switch statement is reached. This is referred to as fall-through behavior. fall-through behavior

For example, the following code displays Weekdays for day of 1 to 5 and Weekends
for day 0 and 6.

switch (day) {
case 1:
case 2
case 3:
case 4:
case 5: System.out.printin("'Weekday"); break;

case 0:
6:

case System.out.printin("Weekend");

Tip
To avoid programming errors and improve code maintainability, it is a good idea to put
a comment in a case clause if break is purposely omitted.

Now let us write a program to find out the Chinese Zodiac sign for a given year. The
Chinese Zodiac is based on a twelve-year cycle, with each year represented by an animal—
monkey, rooster, dog, pig, rat, ox, tiger, rabbit, dragon, snake, horse, or sheep—in this cycle,
as shown in Figure 3.6.

Note that year % 12 determines the Zodiac sign. 1900 is the year of the rat because 1900
% 12 is 4. Listing 3.9 gives a program that prompts the user to enter a year and displays the
animal for the year.

102 Chapter 3 Selections

monkey
rooster
dog
pig

rat

ox
tiger
rabbit
dragon
snake
10: horse
_ 11: sheep

rooster

year % 12 =

monkey

LRI NRRY O

FiGure 3.6 The Chinese Zodiac is based on a twelve-year cycle.

LisTING 3.9 ChineseZodiac.java

1 import java.util.Scanner;

2

3 public class ChineseZodiac {

4 public static void main(String[] args) {

5 Scanner input = new Scanner(System.in);

6

7 System.out.print("Enter a year: ");

enter year 8 int year = input.nextInt(Q);
9
determine Zodiac sign 10 switch (year % 12) {

11 case 0: System.out.println("monkey"); break;
12 case 1: System.out.printin("rooster"); break;
13 case 2: System.out.println("dog"); break;
14 case 3: System.out.printin("pig"); break;
15 case 4: System.out.println("rat"); break;
16 case 5: System.out.println("ox"); break;
17 case 6: System.out.printin("tiger"); break;
18 case 7: System.out.println("rabbit"); break;
19 case 8: System.out.println("dragon"); break;
20 case 9: System.out.println("snake"); break;
21 case 10: System.out.println("horse"); break;
22 case 11: System.out.println("sheep");
23 }
24 }
25 '}

E Enter a year: 1963 |-enter
rabbit

E Enter a year: 1877 |-enter
oX

ﬁheck 3.29 What data types are required for a syritch variable? If the keyword break is not
Point used after a case is processed, what is the next statement to be executed? Can you
convert a switch statement to an equivalent 1if statement, or vice versa? What are

the advantages of using a sw1itch statement?

3.14 Conditional Expressions 103

3.30 Whatis y after the following switch statement is executed? Rewrite the code using
an 1if-else statement.

X =3;y=3;
switch (x + 3) {
case 6: y = 1;
default: y += 1;
}

3.31 What is x after the following if-else statement is executed? Use a switch state-
ment to rewrite it and draw the flowchart for the new switch statement.

int x = 1, a = 3;

if (a == 1)
X += 5;

else if (a == 2)
X += 10;

else if (a == 3)
X += 16;

else if (a == 4)
X += 34;

3.32 Write a switch statement that displays Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, if day is 0, 1, 2, 3, 4, 5, 6, accordingly.

3.14 Conditional Expressions

A conditional expression evaluates an expression based on a condition. 6 fKey

You might want to assign a value to a variable that is restricted by certain conditions. For Point
example, the following statement assigns 1 to y if x is greater than 0, and -1 to y if x is less

than or equal to 0.

if (x > 0)
y = 1;
else
y = -1;

Alternatively, as in the following example, you can use a conditional expression to achieve
the same result.

y=>0)?1:-1;

Conditional expressions are in a completely different style, with no explicit i f in the state- conditional expression
ment. The syntax is:

boolean-expression ? expressionl : expression2;

The result of this conditional expression is expressionl if boolean-expression is true;
otherwise the result is expression2.

Suppose you want to assign the larger number of variable num1 and num?2 to max. You can
simply write a statement using the conditional expression:

max = (numl > num2) ? numl : num2;

For another example, the following statement displays the message “num is even” if num is
even, and otherwise displays “num is odd.”

System.out.printin((num % 2 == 0) ? "num 1is even" : "num is odd");

104 Chapter 3 Selections

conditional operator
ternary operator

/Eheck
Point

K
6ﬁoif1)ll;

operator precedence

As you can see from these examples, conditional expressions enable you to write short and
concise code.

Bl Note

| The symbols ? and : appear together in a conditional expression. They form a
conditional operator and also called a ternary operator because it uses three operands.
It is the only ternary operator in Java.

3.33 Suppose that, when you run the following program, you enter the input 2 3 6 from
the console. What is the output?

public class Test {
public static void main(String[] args) {
java.util.Scanner input = new java.util.Scanner(System.in);
double x = input.nextDouble();

double y = input.nextDouble();

double z = input.nextDouble();

System.out.println((x <y & y < z) ? "sorted” : "not sorted");
3

}

3.34 Rewrite the following 1f statements using the conditional operator.

if (ages >= 16)
ticketPrice = 20;
else
ticketPrice = 10;

3.35 Rewrite the following conditional expressions using if-else statements.

a. score = (x > 10) ? 3 * scale : 4 * scale;
b. tax = (income > 10000) ? income * 0.2 : income * 0.17 + 1000;
c. System.out.printin((number % 3 == 0) ? i : j);

3.36 Write conditional expression that returns -1 or 1 randomly.

3.15 Operator Precedence and Associativity

Operator precedence and associativity determine the order in which operators are
evaluated.

Section 2.11 introduced operator precedence involving arithmetic operators. This section
discusses operator precedence in more detail. Suppose that you have this expression:

3+44%4>5% (4+3)-18 (4-3>5)

What is its value? What is the execution order of the operators?

The expression within parentheses is evaluated first. (Parentheses can be nested, in which
case the expression within the inner parentheses is executed first.) When evaluating an expres-
sion without parentheses, the operators are applied according to the precedence rule and the
associativity rule.

The precedence rule defines precedence for operators, as shown in Table 3.8, which con-
tains the operators you have learned so far. Operators are listed in decreasing order of prec-
edence from top to bottom. The logical operators have lower precedence than the relational
operators and the relational operators have lower precedence than the arithmetic operators.
Operators with the same precedence appear in the same group. (See Appendix C, Operator
Precedence Chart, for a complete list of Java operators and their precedence.)

3.15 Operator Precedence and Associativity 105

TABLE 3.8 Operator Precedence Chart

Precedence Operator

var++ and var-- (Postfix)

+, — (Unary plus and minus), ++var and ——var (Prefix)
(type) (Casting)

! (Not)

*, /, % (Multiplication, division, and remainder)
+, — (Binary addition and subtraction)

<, <=, >, >= (Relational)

==, I= (Equality)

A (Exclusive OR)

&& (AND)

|| (OR)

v =, +=, -=, ¥=, /=, %= (Assignment operator)

If operators with the same precedence are next to each other, their associativity determines
the order of evaluation. All binary operators except assignment operators are left associative.
For example, since + and — are of the same precedence and are left associative, the expression

is equivalent to

a-b+c-d —/]//m7m7mm ((a-b) +c) -d
Assignment operators are right associative. Therefore, the expression

is equivalent to

a=b+=c=5 —/]/]/]——— — a3 = (b += (c = 5))

Suppose a, b, and c are 1 before the assignment; after the whole expression is evaluated, a
becomes 6, b becomes 6, and c becomes 5. Note that left associativity for the assignment
operator would not make sense.

Bl Note

¥ Java has its own way to evaluate an expression internally. The result of a Java evaluation
is the same as that of its corresponding arithmetic evaluation. Advanced readers may
refer to Supplement 111.B for more discussions on how an expression is evaluated in Java
behind the scenes.

3.37 Listthe precedence order of the Boolean operators. Evaluate the following expressions:

true || true && false
true && true || false

3.38 True or false? All the binary operators except = are left associative.

3.39 Evaluate the following expressions:

o8

2-3>284-2>
*2-3>2] 4-2>

2 - 5
2 5

operator associativity

behind the scenes

ﬁheck
Point

106 Chapter 3 Selections

K
¢foxe

bugs
debugging
hand-traces

debugging in IDE

340 TIs(x > 0 & x < 10) thesameas ((x > 0) && (x < 10))?2Is(x > 0 ||
X < 10) thesameas ((x > 0) || (x < 10))?Is(x >0 || x < 10 & y
< 0)thesameas (x > 0 || (x < 10 & y < 0))?

3.16 Debugging
Debugging is the process of finding and fixing errors in a program.

As mentioned in Section 1.10.1, syntax errors are easy to find and easy to correct because the
compiler gives indications as to where the errors came from and why they are there. Runtime
errors are not difficult to find either, because the Java interpreter displays them on the console
when the program aborts. Finding logic errors, on the other hand, can be very challenging.

Logic errors are called bugs. The process of finding and correcting errors is called
debugging. A common approach to debugging is to use a combination of methods to help
pinpoint the part of the program where the bug is located. You can hand-trace the program
(i.e., catch errors by reading the program), or you can insert print statements in order to show
the values of the variables or the execution flow of the program. These approaches might work
for debugging a short, simple program, but for a large, complex program, the most effective
approach is to use a debugger utility.

JDK includes a command-line debugger, jdb, which is invoked with a class name. jdb is
itself a Java program, running its own copy of Java interpreter. All the Java IDE tools, such
as Eclipse and NetBeans, include integrated debuggers. The debugger utilities let you follow
the execution of a program. They vary from one system to another, but they all support most
of the following helpful features.

B Executing a single statement at a time: The debugger allows you to execute one
statement at a time so that you can see the effect of each statement.

B Tracing into or stepping over a method: If a method is being executed, you
can ask the debugger to enter the method and execute one statement at a time in the
method, or you can ask it to step over the entire method. You should step over the
entire method if you know that the method works. For example, always step over
system-supplied methods, such as System.out.printin.

B Setting breakpoints: You can also set a breakpoint at a specific statement. Your
program pauses when it reaches a breakpoint. You can set as many breakpoints as
you want. Breakpoints are particularly useful when you know where your program-
ming error starts. You can set a breakpoint at that statement and have the program
execute until it reaches the breakpoint.

m Displaying variables: The debugger lets you select several variables and display
their values. As you trace through a program, the content of a variable is continuously
updated.

m Displaying call stacks: The debugger lets you trace all of the method calls. This
feature is helpful when you need to see a large picture of the program-execution flow.

B Modifying variables: Some debuggers enable you to modify the value of a vari-
able when debugging. This is convenient when you want to test a program with dif-
ferent samples but do not want to leave the debugger.

M Tip

4 If you use an IDE such as Eclipse or NetBeans, please refer to Learning Java Effectively
with Eclipse/NetBeans in Supplements 11.C and II.E on the Companion Website. The
supplement shows you how to use a debugger to trace programs and how debugging
can help in learning Java effectively.

KEY TERMS

Chapter Summary 107

Boolean expression 76
boolean data type 76
Boolean value 76
conditional operator 104

flowchart 78

lazy operator 96
operator associativity 105
operator precedence 104

dangling else ambiguity 85
debugging 106

selection statement 76
short-circuit operator 96

fall-through behavior 101

CHAPTER SUMMARY

2,

3.

A booTlean type variable can store a true or false value.
The relational operators (<, <=, ==, =, >, >=) yield a Boolean value.

Selection statements are used for programming with alternative courses of actions.
There are several types of selection statements: one-way 1if statements, two-way
if-else statements, nested if statements, multi-way if-else statements, switch
statements, and conditional expressions.

The various 1f statements all make control decisions based on a Boolean expression.
Based on the true or false evaluation of the expression, these statements take one of
two possible courses.

The Boolean operators &&, | |, !, and A operate with Boolean values and variables.

When evaluating pl && p2, Java first evaluates pl and then evaluates p2 if pl is
true; if plis false, it does not evaluate p2. When evaluating p1 || p2, Java first
evaluates pl and then evaluates p2 if pl is false; if pl is true, it does not evaluate
p2. Therefore, && is referred to as the conditional or short-circuit AND operator, and
| | is referred to as the conditional or short-circuit OR operator.

The switch statement makes control decisions based on a switch expression of type
char, byte, short, int, or String.

The keyword break is optional in a switch statement, but it is normally used at the
end of each case in order to skip the remainder of the switch statement. If the break

statement is not present, the next case statement will be executed.

The operators in expressions are evaluated in the order determined by the rules of
parentheses, operator precedence, and operator associativity.

Parentheses can be used to force the order of evaluation to occur in any sequence.

Operators with higher precedence are evaluated earlier. For operators of the same
precedence, their associativity determines the order of evaluation.

All binary operators except assignment operators are left-associative; assignment
operators are right-associative.

108 Chapter 3 Selections

TEST QUESTIONS

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

MyProgrammingLab. PROGRAMMING EXERCISES

Bl Pedagogical Note
think before coding = For each exercise, carefully analyze the problem requirements and design strategies for
solving the problem before coding.

Debugging Tip
H Before you ask for help, read and explain the program to yourself, and trace it using
several representative inputs by hand or using an IDE debugger. You learn how to
learn from mistakes program by debugging your own mistakes.

Section 3.2

*3.1 (Algebra: solve quadratic equations) The two roots of a quadratic equation
ax* + bx + ¢ = 0 can be obtained using the following formula:

_ —b + Vb — dac —b — Vb — dac

> and n = >

n

b? — 4ac is called the discriminant of the quadratic equation. If it is positive, the
equation has two real roots. If it is zero, the equation has one root. If it is negative,
the equation has no real roots.

Write a program that prompts the user to enter values for a, b, and ¢ and displays
the result based on the discriminant. If the discriminant is positive, display two
roots. If the discriminant is 0, display one root. Otherwise, display “The equation
has no real roots”.

Note that you can use Math.pow(x, 0.5) to compute \/); Here are some
sample runs.

E Enter a, b, c: 1.0 3 1 |-enter
The equation has two roots -0.381966 and -2.61803

Enter a, b, c: 1 2.0 1 | -~enter
The equation has one root -1

W

E Enter a, b, c: 1 2 3 |-enter
The equation has no real roots

3.2 (Game: add three numbers) The program in Listing 3.1, AdditionQuiz.java, gen-
erates two integers and prompts the user to enter the sum of these two integers.
Revise the program to generate three single-digit integers and prompt the user to
enter the sum of these three integers.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 109

Sections 3.3-3.7

*3.3 (Algebra: solve 2 X 2 linear equations) A linear equation can be solved using
Cramer’s rule given in Programming Exercise 1.13. Write a program that prompts
the user to enter a, b, c, d, e, and f and displays the result. If ad — bc is 0, report
that “The equation has no solution.”

Enter a, b, c, d, e, f: 9.0 4.0 3.0 -5.0 -6.0 -21.0 |-enter E
X is -2.0 and y is 3.0

Enter a, b, c, d, e, f: 1.0 2.0 2.0 4.0 4.0 5.0 |~enter
The equation has no solution <

**3.4 (Random month) Write a program that randomly generates an integer between 1
and 12 and displays the English month name January, February, ..., December for
the number 1, 2, ..., 12, accordingly.

*3.5 (Find future dates) Write a program that prompts the user to enter an integer for
today’s day of the week (Sunday is 0, Monday is 1, ..., and Saturday is 6). Also
prompt the user to enter the number of days after today for a future day and dis-
play the future day of the week. Here is a sample run:

Enter today's day: 1 |-enter
Enter the number of days elapsed since today: 3 |-enter

Today is Monday and the future day is Thursday

Enter today's day: 0 |-enter E
Enter the number of days elapsed since today: 31 -enter
Today is Sunday and the future day is Wednesday

*3.6 (Health application: BMI) Revise Listing 3.4, Compute AndInterpretBMI.java, to
let the user enter weight, feet, and inches. For example, if a person is 5 feet and 10
inches, you will enter 5 for feet and 10 for inches. Here is a sample run:

Enter weight in pounds: 140 |-enter E
Enter feet: 5 |-enter

Enter inches: 10 | -enter
BMI 1is 20.087702275404553
Normal

3.7 (Financial application: monetary units) Modify Listing 2.10, ComputeChange
.java, to display the nonzero denominations only, using singular words for single
units such as 1 dollar and 1 penny, and plural words for more than one unit such
as 2 dollars and 3 pennies.

110 Chapter 3

VideoNote
Sort three integers

Selections

*3.8 (Sort three integers) Write a program that prompts the user to enter three integers
and display the integers in non-decreasing order.
*%*3.9 (Business: check ISBN-10) An ISBN-10 (International Standard Book Number)
consists of 10 digits: did,dsdsdsdgd;dgdyd,o. The last digit, d, is a checksum,
which is calculated from the other nine digits using the following formula:

@ X1+dyX2+dyX3+d, X4+dsX5+
dg X 6 +dy X T +dg X 8+ dy X 9)% 11

If the checksum is 10, the last digit is denoted as X according to the ISBN-10
convention. Write a program that prompts the user to enter the first 9 digits and
displays the 10-digit ISBN (including leading zeros). Your program should read
the input as an integer. Here are sample runs:

1 Enter the first 9 digits of an ISBN as integer: 013601267 -
The ISBN-10 number is 0136012671

Enter the first 9 digits of an ISBN as integer: 013031997 -
The ISBN-10 number is 013031997X

-

3.10 (Game: addition quiz) Listing 3.3, SubtractionQuiz.java, randomly generates a
subtraction question. Revise the program to randomly generate an addition ques-
tion with two integers less than 100.

Sections 3.8-3.16

*3.11 (Find the number of days in a month) Write a program that prompts the user
to enter the month and year and displays the number of days in the month. For
example, if the user entered month 2 and year 2012, the program should display
that February 2012 had 29 days. If the user entered month 3 and year 2015, the
program should display that March 2015 had 31 days.

3.12 (Palindrome number) Write a program that prompts the user to enter a three-digit
integer and determines whether it is a palindrome number. A number is palin-
drome if it reads the same from right to left and from left to right. Here is a sample
run of this program:

Enter a three-digit integer: 121 =
121 is a palindrome

-

Enter a three-digit integer: 123 -
123 is not a palindrome

-

*3.13 (Financial application: compute taxes) Listing 3.5, ComputeTax.java, gives the
source code to compute taxes for single filers. Complete Listing 3.5 to compute
the taxes for all filing statuses.

3.14 (Game: heads or tails) Write a program that lets the user guess whether the flip of
a coin results in heads or tails. The program randomly generates an integer 0 or 1,
which represents head or tail. The program prompts the user to enter a guess and
reports whether the guess is correct or incorrect.

Programming Exercises 111

**3.15 (Game: lottery) Revise Listing 3.8, Lottery.java, to generate a lottery of a three-
digit number. The program prompts the user to enter a three-digit number and
determines whether the user wins according to the following rules:

1. If the user input matches the lottery number in the exact order, the award is
$10,000.

2. If all digits in the user input match all digits in the lottery number, the award is
$3,000.

3. If one digit in the user input matches a digit in the lottery number, the award is
$1,000.

3.16 (Random point) Write a program that displays a random coordinate in a rectangle.
The rectangle is centered at (0, 0) with width 100 and height 200.

*3.17 (Game: scissor, rock, paper) Write a program that plays the popular scissor-rock-
paper game. (A scissor can cut a paper, a rock can knock a scissor, and a paper can
wrap a rock.) The program randomly generates a number O, 1, or 2 representing
scissor, rock, and paper. The program prompts the user to enter a number 0, 1, or
2 and displays a message indicating whether the user or the computer wins, loses,
or draws. Here are sample runs:

scissor (0), rock (1), paper (2): 1 |-enter g

The computer 1is scissor. You are rock. You won

The computer 1is paper. You are paper too. It is a draw

scissor (0), rock (1), paper (2): 2 |~enter E

*3.18 (Cost of shipping) A shipping company uses the following function to calcu-
late the cost (in dollars) of shipping based on the weight of the package (in
pounds).

35if 0 <w<=1
55ifl <w<=3
85,if3 <w<=10
10.5,if 10 < w <= 20

clw) =

Write a program that prompts the user to enter the weight of the package and
display the shipping cost. If the weight is greater than 50, display a message “the
package cannot be shipped.”

**3.19 (Compute the perimeter of a triangle) Write a program that reads three edges for
a triangle and computes the perimeter if the input is valid. Otherwise, display that
the input is invalid. The input is valid if the sum of every pair of two edges is
greater than the remaining edge.

*3.20 (Science: wind-chill temperature) Programming Exercise 2.17 gives a formula
to compute the wind-chill temperature. The formula is valid for temperatures in
the range between —58°F and 41°F and wind speed greater than or equal to 2.
Write a program that prompts the user to enter a temperature and a wind speed.
The program displays the wind-chill temperature if the input is valid; otherwise,
it displays a message indicating whether the temperature and/or wind speed is
invalid.

112 Chapter 3 Selections

VideoNote
Check point location

2

Comprehensive

**3.21

(Science: day of the week) Zeller’s congruence is an algorithm developed by
Christian Zeller to calculate the day of the week. The formula is

h=(g+ 2D kT e
-\ 10 4477

where

B h is the day of the week (0: Saturday, 1: Sunday, 2: Monday, 3: Tuesday, 4:
Wednesday, 5: Thursday, 6: Friday).

B ¢ is the day of the month.

B m is the month (3: March, 4: April, ..., 12: December). January and February
are counted as months 13 and 14 of the previous year.

ear

B j is the century (i.e., leO).

B k is the year of the century (i.e., year % 100).

Note that the division in the formula performs an integer division. Write a pro-
gram that prompts the user to enter a year, month, and day of the month, and
displays the name of the day of the week. Here are some sample runs:

Enter year: (e.g., 2012): 2015 -enter
Enter month: 1-12: 1 |-enter

Enter the day of the month: 1-31: 25 |-enter
Day of the week is Sunday

Enter year: (e.g., 2012): 2012 |-enter
Enter month: 1-12: 5 |-enter

Enter the day of the month: 1-31: 12 |-enter
Day of the week is Saturday

*%*3.22

(Hint: January and February are counted as 13 and 14 in the formula, so you need
to convert the user input 1 to 13 and 2 to 14 for the month and change the year to
the previous year.)

(Geometry: point in a circle?) Write a program that prompts the user to enter a
point (x, y) and checks whether the point is within the circle centered at (0, 0)
with radius 10. For example, (4, 5) is inside the circle and (9, 9) is outside the
circle, as shown in Figure 3.7a.

(Hint: A point is in the circle if its distance to (0, 0) is less than or equal to 10.

The formula for computing the distance is \/(x2 — x))* + (», — y)> Test your
program to cover all cases.) Two sample runs are shown below.

Enter a point with two coordinates: 4 5 -Enter
Point (4.0, 5.0) is in the circle

Enter a point with two coordinates: 9 9 | -enter
Point (9.0, 9.0) is not in the circle

Programming Exercises 113

y-axis y-axis

9,9
[)

4 f) (6,4)

[]
s
(0,0) x-axis (0,0) x-axis
(a) (b)
FiGure 3.7 (a) Points inside and outside of the circle. (b) Points inside and outside of the

rectangle.

*%3.23 (Geometry: point in a rectangle?) Write a program that prompts the user to enter
a point (x, y) and checks whether the point is within the rectangle centered at
(0, 0) with width 10 and height 5. For example, (2, 2) is inside the rectangle and
(6, 4) is outside the rectangle, as shown in Figure 3.7b. (Hint: A point is in the
rectangle if its horizontal distance to (0, 0) is less than or equal to 10 / 2 and its
vertical distance to (0, 0) is less than or equal to 5.0 / 2. Test your program to
cover all cases.) Here are two sample runs.

Enter a point with two coordinates: 2 2 |-enter E
Point (2.0, 2.0) is in the rectangle

Enter a point with two coordinates: 6 4 | -enter \;
Point (6.0, 4.0) 1is not in the rectangle

*%3.24 (Game: pick a card) Write a program that simulates picking a card from a deck
of 52 cards. Your program should display the rank (Ace, 2, 3, 4, 5,6, 7, 8, 9, 10,
Jack, Queen, King) and suit (Clubs, Diamonds, Hearts, Spades) of the card.
Here is a sample run of the program:

The card you picked is Jack of Hearts E

*3.25 (Geometry: intersecting point) Two points on line 1 are given as (x1, y1) and (x2,
y2) and on line 2 as (x3, y3) and (x4, y4), as shown in Figure 3.8a-b.

The intersecting point of the two lines can be found by solving the following
linear equation:

O = y)x = (¢ = xy = (v — y)x1 — (X1 —)y
(3 = y)x = (x3 = x)y = (3 = ya)x3 — (63 — X9)y3

This linear equation can be solved using Cramer’s rule (see Programming Exer-
cise 3.3). If the equation has no solutions, the two lines are parallel (Figure 3.8c).

114 Chapter3 Selections

Write a program that prompts the user to enter four points and displays the inter-
secting point. Here are sample runs:

(x2,y2) (x2,y2) (x2,y2) (x3,y3)
(x3,¥3)
\
(3. 3)
(x4, y4) \
(x1, y1) (x1, y1) (x4, y4) (x1,y1) (x4, y4)
(a) (b) (c)

FiGure 3.8 Two lines intersect in (a and b) and two lines are parallel in (c).

1 Enter x1, y1, x2, y2, x3, y3, x4, y4: 2 2 5 -1.0 4.0 2.0 -1.0 -2.0 |-—enter
The intersecting point is at (2.88889, 1.1111)

‘ Enter x1, yl1, x2, y2, x3, y3, x4, y4: 2 2 7 6.0 4.0 2.0 -1.0 -2.0 |-enter
The two lines are parallel

3.26 (Use the &&, || and operators) Write a program that prompts the user to enter
an integer and determines whether it is divisible by 5 and 6, whether it is divisible
by 5 or 6, and whether it is divisible by 5 or 6, but not both. Here is a sample run
of this program:

A Enter an integer: 10 |-enter
E Is 10 divisible by 5 and 6?7 false
Is 10 divisible by 5 or 6?7 true
Is 10 divisible by 5 or 6, but not both? true

*%3.27 (Geometry: points in triangle?) Suppose a right triangle is placed in a plane as
shown below. The right-angle point is placed at (0, 0), and the other two points
are placed at (200, 0), and (0, 100). Write a program that prompts the user to enter
a point with x- and y-coordinates and determines whether the point is inside the
triangle. Here are the sample runs:

(0, 100)
op2
opl
| (0,0) (200, 0)

r| Enter a point's x- and y-coordinates: 100.5 25.5 |-enter
The point is in the triangle

Programming Exercises 115

Enter a point's x- and y-coordinates: 100.5 50.5 |-enter E
The point is not in the triangle

*%3.28 (Geometry: two rectangles) Write a program that prompts the user to enter the
center x-, y-coordinates, width, and height of two rectangles and determines
whether the second rectangle is inside the first or overlaps with the first, as shown
in Figure 3.9. Test your program to cover all cases.

wl wl
w2
w2
| o . e (x1,y1) hl o (x1,y1) |
(x2,y2) i1 e
1(x2,y2)
|
(a) (b)

FIGURE 3.9 (a) A rectangle is inside another one. (b) A rectangle overlaps another one.

Here are the sample runs:

Enter r2's center x-, y-coordinates, width, and height: 1.5 5 0.5 3 |-enter
r2 is inside ril

Enter rl's center x-, y-coordinates, width, and height: 2.5 4 2.5 43 -enter g

Enter rl's center x-, y-coordinates, width, and height: 1 2 3 5.5 |-enter
Enter r2's center x-, y-coordinates, width, and height: 3 4 4.5 5 |-enter
r2 overlaps rl

Enter rl's center x-, y-coordinates, width, and height: 1 2 3 3 |-enter
Enter r2's center x-, y-coordinates, width, and height: 40 45 3 2 |-enter <
r2 does not overlap rl

*%3.29 (Geometry: two circles) Write a program that prompts the user to enter the center
coordinates and radii of two circles and determines whether the second circle is
inside the first or overlaps with the first, as shown in Figure 3.10. (Hint: circle2 is
inside circlel if the distance between the two centers <= Irl - r2l|and circle2
overlaps circlel if the distance between the two centers <= rl + r2. Test your
program to cover all cases.)

Here are the sample runs:

Enter circlel's center x-, y-coordinates, and radius: 0.5 5.1 13 |-enter
Enter circle2's center x-, y-coordinates, and radius: 1 1.7 4.5 —enter e
circle2 1is inside circlel

116 Chapter3

Selections

rl
(x1,y1)

(a) (b)

FIGURE 3.10 (a) A circle is inside another circle. (b) A circle overlaps another circle.

Enter circlel's center x-, y-coordinates, and radius: 3.4 5.7 5.5 |—enter
Enter circle2's center x-, y-coordinates, and radius: 6.7 3.5 3 |-enter
circle2 overlaps circlel

Enter circlel's center x-, y-coordinates, and radius: 3.4 5.5 1 |-&nter
Enter circle2's center x-, y-coordinates, and radius: 5.5 7.2 1 |-enter

circle2 does not overlap circlel

*3.30

(Current time) Revise Programming Exercise 2.8 to display the hour using a
12-hour clock. Here is a sample run:

Enter the time zone offset to GMT:
The current time is 4:50:34 AM

=5

I Enter

*3.31

(Financials: currency exchange) Write a program that prompts the user to enter
the exchange rate from currency in U.S. dollars to Chinese RMB. Prompt the user
to enter 0 to convert from U.S. dollars to Chinese RMB and 1 to convert from
Chinese RMB and U.S. dollars. Prompt the user to enter the amount in U.S. dol-
lars or Chinese RMB to convert it to Chinese RMB or U.S. dollars, respectively.
Here are the sample runs:

Enter the exchange rate from dollars to RMB: 6.81 |-enter
Enter 0 to convert dollars to RMB and 1 vice versa: 0
Enter the dollar amount: 100
$100.0 is 681.0 yuan

~ Enter

-~ Enter

2

Enter the exchange rate from dollars to RMB: 6.81 |-enter
Enter 0 to convert dollars to RMB and 1 vice versa: 5
Enter the RMB amount: 10000
10000.0 yuan is $1468.43

I Enter

~ Enter

Programming Exercises

Enter the exchange rate from dollars to RMB: 6.81 |-enter 1
Enter 0 to convert dollars to RMB and 1 vice versa: 5 |—enter <
Incorrect input

*3.32 (Geometry: point position) Given a directed line from point p0(x0, y0) to p1(x1,
y1), you can use the following condition to decide whether a point p2(x2, y2) is
on the left of the line, on the right, or on the same line (see Figure 3.11):

>0 p2 is on the left side of the line
xI = x0)*(y2 — y0) — (x2 — x0)*(yl — y0) § =0 p2 is on the same line
<0 p2 is on the right side of the line

1 1 1
2 p p p
o
p2 p2
o
p0 PO PO
(a) (b) ()

FIGURE 3.11 (a) p2 is on the left of the line. (b) p2 is on the right of the line. (c) p2 is on
the same line.

Write a program that prompts the user to enter the three points for p0, p1, and p2
and displays whether p2 is on the left of the line from p0 to p1, on the right, or on
the same line. Here are some sample runs:

Enter three points for p0, pl, and p2: 4.4 2 6.5 9.5 -5 4 -enter |
(-5.0, 4.0) is on the Tleft side of the Tine from (4.4, 2.0) to (6.5, 9.5)

Enter three points for p0, pl, and p2: 1 1 5 5 2 2 |enter i
(2.0, 2.0) is on the 1ine from (1.0, 1.0) to (5.0, 5.0) -

Enter three points for p0, pl, and p2: 3.4 2 6.5 9.5 5 2.5 |-enter
(5.0, 2.5) 1is on the right side of the Tine from (3.4, 2.0) to (6.5, 9.5)

*3.33 (Financial: compare costs) Suppose you shop for rice in two different packages.
You would like to write a program to compare the cost. The program prompts the
user to enter the weight and price of the each package and displays the one with
the better price. Here is a sample run:

Enter weight and price for package 1: 50 24.59 |-enter
Enter weight and price for package 2: 25 11.99 | -enter <
Package 2 has a better price.

117

118 Chapter3 Selections

2

-

Enter weight and price for package 1: 50 25 -enter
Enter weight and price for package 2: 25 12.5 | -enter
Two packages have the same price.

*3.34 (Geometry: point on line segment) Programming Exercise 3.32 shows how to test
whether a point is on an unbounded line. Revise Programming Exercise 3.32 to
test whether a point is on a line segment. Write a program that prompts the user
to enter the three points for p0, pl, and p2 and displays whether p2 is on the line
segment from p0 to p1. Here are some sample runs:

Enter three points for p0, pl, and p2: 1 1 2.5 2.5 1.5 1.5 |-enter
(1.5, 1.5) is on the Tine segment from (1.0, 1.0) to (2.5, 2.5) | —entr

Enter three points for p0, pl, and p2: 1 1 2 2 3.5 3.5 |-enter
(3.5, 3.5) is not on the Tine segment from (1.0, 1.0) to (2.0, 2.0)

MATHEMATICAL
FUNCTIONS,
CHARACTERS,
AND STRINGS

Objectives

To solve mathematical problems by using the methods in the Math class (§4.2).
To represent characters using the char type (§4.3).

To encode characters using ASCII and Unicode (§4.3.1).

To represent special characters using the escape sequences (§4.4.2).

To cast a numeric value to a character and cast a character to an integer (§4.3.3).

To compare and test characters using the static methods in the Character
class (§4.3.4).

To introduce objects and instance methods (§4.4).

To represent strings using the String object (§4.4).

To return the string length using the Tength () method (§4.4.1).

To return a character in the string using the charAt (i) method (§4.4.2).

To use the + operator to concatenate strings (§4.4.3).

To return an uppercase string or a lowercase string and to trim a string (§4.4.4).
To read strings from the console (§4.4.5).

To read a character from the console (§4.4.6).

To compare strings using the equals method and the compareTo methods
(8§4.4.7).

To obtain substrings (§4.4.8).
To find a character or a substring in a string using the index0f method (§4.4.9).
To program using characters and strings (GuessBirthday) (§4.5.1).

To convert a hexadecimal character to a decimal value (HexDigit2Dec)
(§4.5.2).

To revise the lottery program using strings (LotteryUsingStrings) (§4.5.3).
To format output using the System.out.printf method (§4.6).

CHAPTER

120 Chapter 4 Mathematical Functions, Characters, and Strings

K
¢fxe

problem

K
6ﬁ0i§{

VideoNote
Introduce math functions

4.1 Introduction

The focus of this chapter is to introduce mathematical functions, characters, string
objects, and use them to develop programs.

The preceding chapters introduced fundamental programming techniques and taught you how
to write simple programs to solve basic problems using selection statements. This chapter intro-
duces methods for performing common mathematical operations. You will learn how to create
custom methods in Chapter 6.

Suppose you need to estimate the area enclosed by four cities, given the GPS locations (latitude
and longitude) of these cities, as shown in the following diagram. How would you write a program
to solve this problem? You will be able to write such a program after completing this chapter.

Charlotte (35.2270869, —-80.8431267)

Atlanta

(33.7489954, ~84.3879824) Savannah (32.0835407, -81.0998342)

Orlando (28.5383355, -81.3792365)

Because strings are frequently used in programming, it is beneficial to introduce strings
early so that you can begin to use them to develop useful programs. This chapter gives a brief
introduction to string objects; you will learn more on objects and strings in Chapters 9 and 10.

4.2 Common Mathematical Functions

Java provides many useful methods in the Math class for performing common mathe-
matical functions.

A method is a group of statements that performs a specific task. You have already used the
pow(a, b) method to compute a” in Section 2.9.4, Exponent Operations and the random()
method for generating a random number in Section 3.7. This section introduces other useful
methods in the Math class. They can be categorized as trigonometric methods, exponent methods,
and service methods. Service methods include the rounding, min, max, absolute, and random meth-
ods. In addition to methods, the Math class provides two useful doubTe constants, PT and E (the
base of natural logarithms). You can use these constants as Math.PTI and Math.E in any program.

4.2.1 Trigonometric Methods

The Math class contains the following methods as shown in Table 4.1 for performing
trigonometric functions:

TABLE 4.1 Trigonometric Methods in the Math Class

Method Description

sin(radians) Returns the trigonometric sine of an angle in radians.
cos(radians) Returns the trigonometric cosine of an angle in radians.
tan(radians) Returns the trigonometric tangent of an angle in radians.
toRadians (degree) Returns the angle in radians for the angle in degree.
toDegree(radians) Returns the angle in degrees for the angle in radians.
asin(a) Returns the angle in radians for the inverse of sine.
acos(a) Returns the angle in radians for the inverse of cosine.

atan(a) Returns the angle in radians for the inverse of tangent.

4.2 Common Mathematical Functions 121

The parameter for sin, cos, and tan is an angle in radians. The return value for asin,
acos, and atan is a degree in radians in the range between —#/2 and 77/2. One degree is
equal to 7/180 in radians, 90 degrees is equal to 77/2 in radians, and 30 degrees is equal to
/6 in radians.

For example,

Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.

4.2.2

toDegrees(Math.PI / 2) returns 90.0
toRadians(30) returns 0.5236 (same as 1/6)
sin(0) returns 0.0
sin(Math.toRadians(270)) returns -1.0
sin(Math.PI / 6) returns 0.5
sin(Math.PI / 2) returns 1.0

cos(0) returns 1.0

cos(Math.PI / 6) returns 0.866
cos(Math.PI / 2) returns O

asin(0.5) returns 0.523598333 (same as n/6)
acos(0.5) returns 1.0472 (same as 71/3)
atan(1.0) returns 0.785398 (same as ni/4)

Exponent Methods

There are five methods related to exponents in the Math class as shown in Table 4.2.

TaABLE 4.2 Exponent Methods in the Math Class

Method Description

exp(x) Returns e raised to power of x (e*).

Tog(x) Returns the natural logarithm of x (In(x) = log.(x)).
Togl0(x) Returns the base 10 logarithm of x (log;o(x)).
pow(a, b) Returns a raised to the power of b @).

sqrt(x) Returns the square root of x (\/);) for x >= 0.

For example,

Math.
Math.
Math.
Math
Math.
Math
Math.
Math.

4.2.3

exp(1l) returns 2.71828
Tog(Math.E) returns 1.0
1og10(10) returns 1.0

.pow(2, 3) returns 8.0

pow(3, 2) returns 9.0

.pow(4.5, 2.5) returns 22.91765

sqrt(4) returns 2.0
sqrt(10.5) returns 4.24

The Rounding Methods

The Math class contains five rounding methods as shown in Table 4.3.

TABLE 4.3 Rounding Methods in the Math Class

Method Description

ceil(x) x is rounded up to its nearest integer. This integer is returned as a double value.

floor(x) x is rounded down to its nearest integer. This integer is returned as a double value.

rint(x) x is rounded up to its nearest integer. If x is equally close to two integers, the even one is returned as a double value.
round(x) Returns (int)Math.floor(x + 0.5) if x is a float and returns (long)Math.floor(x + 0.5) if x is a double.

122 Chapter 4 Mathematical Functions, Characters, and Strings
For example,

Math.ceil(2.1) returns 4.0

Math.ceil1(2.0) returns 2.0

Math.ceil(-2.0) returns -2.0
Math.ceil(-2.1) returns -2.0
Math.floor(2.1) returns 2.0
Math.floor(2.0) returns 2.0
Math.floor(-2.0) returns -2.0
Math.floor(-2.1) returns -4.0
Math.rint(2.1) returns 2.0

Math.rint(-2.0) returns -2.0
Math.rint(-2.1) returns -2.0
Math.rint(2.5) returns 2.0

Math.rint(4.5) returns 4.0

Math.rint(-2.5) returns -2.0
Math.round(2.6f) returns 3 // Returns int
Math.round(2.0) returns 2 // Returns long
Math.round(-2.0f) returns -2 // Returns int
Math.round(-2.6) returns -3 // Returns Tong
Math.round(-2.4) returns -2 // Returns Tlong

4.2.4 The min, max, and abs Methods

The min and max methods return the minimum and maximum numbers of two numbers (int,
Tong, float, or double). For example, max(4.4, 5.0) returns 5.0, and min(3, 2)
returns 2.

The abs method returns the absolute value of the number (int, Tong, float, or double).
For example,

Math.max(2, 3) returns 3
Math.max(2.5, 3) returns 4.0
Math.min(2.5, 4.6) returns 2.5
Math.abs(-2) returns 2
Math.abs(-2.1) returns 2.1

4.2.5 The random Method

You have used the random () method in the preceding chapter. This method generates a ran-
dom doubTe value greater than or equal to 0.0 and less than 1.0 (0 <= Math.random() <
1.0). You can use it to write a simple expression to generate random numbers in any range.
For example,

Returns a random integer
between 0 and 9.

)) Returns a random integer
50 + (int) Math.random() * 50) —— between 50 and 99

(int) (Math.random() * 10) B ———

In general,

Returns a random number between a

. * —_— .
a + Math.random() b anda + b, excluding a + b.

4.2.6 Case Study: Computing Angles of a Triangle

You can use the math methods to solve many computational problems. Given the three sides
of a triangle, for example, you can compute the angles by using the following formula:

X2, y2

ya
x1, yl

LISTING 4.1

1

A
B
C

ComputeAngles.java

import java.util.Scanner;

public class ComputeAngles {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

acos((a *

acos((c

4.2 Common Mathematical Functions

a-b*b-c*a /(2
acos((b * b -a*a-c*c)/ (-2*
)/ (-2

#:C_bv':b_a-«':a

// Prompt the user to enter three points
out.print("Enter three points: ");

System.
double
double
double
double
double
double

x1l =

yl

X2 =

y2

X3 =
y3 =

input.
input.
input.
input.
input.
input.

nextDouble();
nextDouble();
nextDouble();
nextDouble();
nextDouble();
nextDouble();

// Compute three sides
double a = Math.sqrt((x2 - x3) * (x2 - x3)
+ (y2 - y3) * (y2 - y3));
double b = Math.sqrt((x1 - x3) * (x1 - x3)
+ (yL - y3) * (yl - y3));
double c = Math.sqrt((x1 - x2) * (x1 - x2)
+ (yl - y2) = (yl - y2));

// Compute three angles

double A = Math.toDegrees(Math.acos((a a
/ (-2 * b * c)));

double B = Math.toDegrees(Math.acos((b * b - a *
/ (=2 *a* c)));

double C = Math.toDegrees(Math.acos((c * ¢ - b *
/ (-2 * a * b)));

// Display results

System.out.println("The three angles are +
Math.round(A * 100) / 100.0 + " " +

Don’t be intimidated by the mathematic formula. As we discussed early in Listing 2.9,
ComuteLoan.java, you don’t have to know how the mathematical formula is derived in order
to write a program for computing the loan payments. Here in this example, given the length of
three sides, you can use this formula to write a program to compute the angles without having
to know how the formula is derived. In order to compute the lengths of the sides, we need to
know the coordinates of three corner points and compute the distances between the points.

Listing 4.1 is an example of a program that prompts the user to enter the x- and y-coordinates
of the three corner points in a triangle and then displays the three angles.

*a-b*hbh-c*oa)

a-c*oc)

b -a* a)

b % Q)
a * c))
* g * b))

enter three points

compute sides

display result

123

124 Chapter 4 Mathematical Functions, Characters, and Strings

ﬁheck
Point

35 Math.round(B * 100) / 100.0 + " " +
36 Math.round(C * 100) / 100.0);

37 }

38 }

Enter three points: 1 1 6.5 1 6.5 2.5 |~enter
The three angles are 15.26 90.0 74.74

The program prompts the user to enter three points (line 8). This prompting message
is not clear. You should give the user explicit instructions on how to enter these points as
follows:

System.out.print("Enter the coordinates of three points separated "
+ "by spaces like x1 yl x2 y2 x3 y3: '");

Note that the distance between two points (x1, yl1) and (x2, y2) can be com-
puted using the f0rmu1a\/(x2 — x> + (» — y))>. The program computes the dis-
tances between two points (lines 17-22), and applies the formula to compute the angles
(lines 25-30). The angles are rounded to display up to two digits after the decimal point
(lines 34-36).

The Math class is used in the program, but not imported, because it is in the java.
Tang package. All the classes in the java. lang package are implicitly imported in a Java
program.

4.1 Evaluate the following method calls:

(a) Math.sqrt(4) (j) Math.floor(-2.5)

(b) Math.sin(2 * Math.PI) (k) Math.round(-2.5f)

(c) Math.cos(2 * Math.PI) (D) Math.round(-2.5)

(d) Math.pow(2, 2) (m) Math.rint(2.5)

(e) Math.Tog(Math.E) (n) Math.ceil(2.5)

(f) Math.exp(l) (0) Math.floor(2.5)

(g) Math.max(2, Math.min(3, 4)) (p) Math.round(2.5f)

(h) Math.rint(-2.5) (@) Math.round(2.5)

(i) Math.ceil(-2.5) (r) Math.round(Math.abs(-2.5))

4.2 True or false? The argument for trigonometric methods is an angle in radians.

4.3 Write a statement that converts 47 degrees to radians and assigns the result to a
variable.

4.4 Write a statement that converts m / 7 to an angle in degrees and assigns the result
to a variable.

4.5 Write an expression that obtains a random integer between 34 and 55. Write an
expression that obtains a random integer between 0 and 999. Write an expression
that obtains a random number between 5.5 and 55. 5.

4.6 Why does the Math class not need to be imported?

4.7 What is Math.Tog(Math.exp(5.5))? What is Math.exp(Math.1og(5.5))?
What is Math.asin(Math.sin(Math.PI / 6))? What is Math.sin(Math.
asin(Math.PI / 6))?

4.3 Character Data Type and Operations

4.3 Character Data Type and Operations

A character data type represents a single character. 6 fKey

In addition to processing numeric values, you can process characters in Java. The character Point
data type, char, is used to represent a single character. A character literal is enclosed in single char type

quotation marks. Consider the following code:

char Tetter = 'A';
char numChar = '4';

The first statement assigns character A to the char variable Tetter. The second statement
assigns digit character 4 to the char variable numChar.

B Caution
o A string literal must be enclosed in quotation marks (" ''). A character literal is a single char literal
character enclosed in single quotation marks (" "). Therefore, ""A" is a string, but "A"
is a character.

4.3.1 Unicode and ASCII code

Computers use binary numbers internally. A character is stored in a computer as a sequence
of Os and 1s. Mapping a character to its binary representation is called encoding. There are encoding
different ways to encode a character. How characters are encoded is defined by an encoding
scheme.
Java supports Unicode, an encoding scheme established by the Unicode Consortium to Unicode
support the interchange, processing, and display of written texts in the world’s diverse lan-
guages. Unicode was originally designed as a 16-bit character encoding. The primitive data original Unicode
type char was intended to take advantage of this design by providing a simple data type
that could hold any character. However, it turned out that the 65,536 characters possible in
a 16-bit encoding are not sufficient to represent all the characters in the world. The Unicode
standard therefore has been extended to allow up to 1,112,064 characters. Those characters
that go beyond the original 16-bit limit are called supplementary characters. Java supports supplementary Unicode
the supplementary characters. The processing and representing of supplementary characters
are beyond the scope of this book. For simplicity, this book considers only the original 16-bit
Unicode characters. These characters can be stored in a char type variable.
A 16-bit Unicode takes two bytes, preceded by \u, expressed in four hexadecimal digits that
run from \u0000 to \uFFFF. Hexadecimal numbers are introduced in Appendix F, Number
Systems. For example, the English word wel come is translated into Chinese using two char-
acters, XKJ@ The Unicodes of these two characters are \u6B22\u8FCE. The Unicodes for the
Greek letters o 8y are \u03b1 \u03b2 \u03b4.
Most computers use ASCII (American Standard Code for Information Interchange), an
8-bit encoding scheme for representing all uppercase and lowercase letters, digits, punctuation
marks, and control characters. Unicode includes ASCII code, with \u0000 to \uO07F cor-
responding to the 128 ASCII characters. Table 4.4 shows the ASCII code for some commonly
used characters. Appendix B, ‘The ASCII Character Set,” gives a complete list of ASCII
characters and their decimal and hexadecimal codes.

TABLE 4.4 ASCIl Code for Commonly Used Characters

Characters Code Value in Decimal Unicode Value
'0"to'9" 48 to 57 \u0030 to \u0039
'Ato 'Z" 65 to 90 \u0041 to \u0O05A

‘a'"to 'z’ 97 to 122 \u0061 to \uO07A

125

126 Chapter 4 Mathematical Functions, Characters, and Strings

ASCII You can use ASCII characters such as 'X", '1", and "$"' in a Java program as well as
Unicodes. Thus, for example, the following statements are equivalent:

char Tetter 'A';
char letter = '\u0041'; // Character A's Unicode is 0041

Both statements assign character A to the char variable Tetter.

Note
char increment and H The increment and decrement operators can also be used on char variables to get the
decrement next or preceding Unicode character. For example, the following statements display

character b.

char ch = 'a’';
System.out.println(++ch);

4.3.2 Escape Sequences for Special Characters

Suppose you want to print a message with quotation marks in the output. Can you write a
statement like this?

System.out.printin("He said "Java is fun"");

No, this statement has a compile error. The compiler thinks the second quotation character
is the end of the string and does not know what to do with the rest of characters.

To overcome this problem, Java uses a special notation to represent special characters, as

escape sequence shown in Table 4.5. This special notation, called an escape sequence, consists of a backslash

(\) followed by a character or a combination of digits. For example, \ t is an escape sequence
for the Tab character and an escape sequence such as \u03b1 is used to represent a Unicode.
The symbols in an escape sequence are interpreted as a whole rather than individually. An
escape sequence is considered as a single character.

So, now you can print the quoted message using the following statement:

System.out.printin("He said \"Java is fun\"");

The output is

He said "Java 1is fun"

Note that the symbols \ and " together represent one character.

TABLE 4.5 Escape Sequences

Escape Sequence Name Unicode Code Decimal Value
\b Backspace \u0008 8
\t Tab \u0009 9
\h Linefeed \u000A 10
\f Formfeed \u000C 12
\r Carriage Return \u000D 13
\\ Backslash \u005C 92
\" Double Quote \u0022 34
escape character The backslash \ is called an escape character. It is a special character. To display this

character, you have to use an escape sequence \\. For example, the following code
System.out.println("\\t is a tab character");
displays

\t is a tab character

4.3 Character Data Type and Operations

4.3.3 Casting between char and Numeric Types

A char can be cast into any numeric type, and vice versa. When an integer is cast into a char,
only its lower 16 bits of data are used; the other part is ignored. For example:

char ch = (char)0XAB0041; // The lower 16 bits hex code 0041 is
// assigned to ch
System.out.println(ch); // ch is character A

When a floating-point value is cast into a char, the floating-point value is first cast into an
int, which is then cast into a char.

char ch = (char)65.25; // Decimal 65 is assigned to ch
System.out.println(ch); // ch is character A

When a char is cast into a numeric type, the character’s Unicode is cast into the specified
numeric type.

int i = (int)'A'; // The Unicode of character A 1is assigned to i
System.out.println(i); // i is 65

Implicit casting can be used if the result of a casting fits into the target variable. Otherwise,
explicit casting must be used. For example, since the Unicode of "a’ is 97, which is within
the range of a byte, these implicit castings are fine:

byte b = 'a’';
int i = 'a’';

But the following casting is incorrect, because the Unicode \uFFF4 cannot fit into a byte:
byte b = "\uFFF4';

To force this assignment, use explicit casting, as follows:

byte b = (byte) '\uFFF4';

Any positive integer between 0 and FFFF in hexadecimal can be cast into a character
implicitly. Any number not in this range must be cast into a char explicitly.

All numeric operators can be applied to char operands. A char operand is automati-
cally cast into a number if the other operand is a number or a character. If the other oper- numeric operators on
and is a string, the character is concatenated with the string. For example, the following characters
statements

int i = '2" + '3'; // (@(int)'2' is 50 and (int)'3' is 51

System.out.println("i is " + i); // 1 is 101

int j =2+ 'a'; // (int)'a' is 97

System.out.printin("j is " + j); // j is 99

System.out.println(j + " is the Unicode for character
+ (char)j); // 99 is the Unicode for character c

System.out.println("Chapter " + "'2");

display

i dis 101

j is 99

99 is the Unicode for character c
Chapter 2

127

128 Chapter 4 Mathematical Functions, Characters, and Strings

4.3.4 Comparing and Testing Characters

Two characters can be compared using the relational operators just like comparing two
numbers. This is done by comparing the Unicodes of the two characters. For example,

‘a' < '"b'istrue because

the Unicode for 'a' (97) is less than the Unicode for "b"' (98).

'a' < "A'isfalse because the Unicode for "a' (97) is greater than the Unicode for ‘A" (65).

"1' < "8'istrue because

the Unicode for '1' (49) is less than the Unicode for "8" (56).

Often in the program, you need to test whether a character is a number, a letter, an uppercase
letter, or a lowercase letter. As shown in Appendix B, the ASCII character set, that the Uni-

codes for lowercase letters are

consecutive integers starting from the Unicode for "a ', then for

'b", 'c’,...,and "z". The same is true for the uppercase letters and for numeric characters.
This property can be used to write the code to test characters. For example, the following code

tests whether a character ch is

an uppercase letter, a lowercase letter, or a digital character.

if (ch >= 'A" && ch <= 'Z")

System.out.println(ch +

is an uppercase letter');

else if (ch >= 'a'" & ch <= 'z")

System.out.printin(ch +

is a lowercase letter');

else if (ch >= '0' && ch <= "9")

System.out.printin(ch +

is a numeric character');

For convenience, Java provides the following methods in the Character class for testing
characters as shown in Table 4.6.

TaABLE 4.6 Methods in the Character Class

Method

Description

isDigit(ch)
isLetter(ch)
isLetter0fDigit(ch)
isLowerCase(ch)
isUpperCase(ch)
toLowerCase(ch)

toUpperCase(ch)

For example,

System.out.printin("isDigit('a') is
System.out.println("isLetter('a') is
System.out.println("isLowerCase('a') is

Returns true if the specified character is a digit.

Returns true if the specified character is a letter.

Returns true if the specified character is a letter or digit.
Returns true if the specified character is a lowercase letter.
Returns true if the specified character is an uppercase letter.
Returns the lowercase of the specified character.

Returns the uppercase of the specified character.

+ Character.isDigit('a'));
+ Character.islLetter('a'));

+ Character.isLowerCase('a'));

System.out.println("isUpperCase('a') is

+ Character.isUpperCase('a'));

System.out.printin("toLowerCase('T") 1is

+ Character.toLowerCase('T"));

System.out.printIn("toUpperCase('q"') 1is

+ Character.toUpperCase('q'));

displays

isDigit('a') is false
isLetter('a') is true

4.3 Character Data Type and Operations
isLowerCase('a') is true
isUpperCase('a') 1is false
toLowerCase('T') 1is t
toUpperCase('q') is Q

4.8 Use print statements to find out the ASCII code for "1', 'A", "B', 'a’, and 'b".
Use print statements to find out the character for the decimal codes 40, 59, 79, 85,
and 90. Use print statements to find out the character for the hexadecimal code 40,
5A, 71,72, and 7A.

4.9 Which of the following are correct literals for characters?

'1', "\u345dE', '\u3fFa', '\b', '\t'
4.10 How do you display the characters \ and "?
4.11 Evaluate the following:
int i = '1";
_int j - ll' + l2| B3 (l4l - l3l) + lbl / la';
int k = 'a';
char c = 90;
4.12 Can the following conversions involving casting be allowed? If so, find the converted
result.
char c = 'A";
int i = (int)c;
float f = 1000.34f;
int i = (int)f;
double d = 1000.34;
int i = (int)d;
int i = 97;
char c = (char)i;
4.13 Show the output of the following program:
public class Test {
public static void main(String[] args) {
char x = 'a';
char y = 'c';
System.out.println(++x);
System.out.printin(y++);
System.out.printin(x - y);
}
}
4.14 Write the code that generates a random lowercase letter.
4.15 Show the output of the following statements:

System.out.println('a' < 'b");
System.out.println('a’' <= 'A");
System.out.printin('a' > 'b");
System.out.println('a’ >= 'A");
System.out.println('a’' == 'a');
System.out.printin('a" !'= 'b");

ﬁheck

Point

129

130 Chapter 4 Mathematical Functions, Characters, and Strings

K
ke

VideoNote
Introduce strings and objects

4.4 The String Type

A string is a sequence of characters.

The char type represents only one character. To represent a string of characters, use the data
type called String. For example, the following code declares message to be a string with
the value "Welcome to Java'.

String message = "Welcome to Java";

Stringis a predefined class in the Java library, just like the classes System and Scanner.
The String type is not a primitive type. It is known as a reference type. Any Java class can
be used as a reference type for a variable. The variable declared by a reference type is known
as a reference variable that references an object. Here, message is a reference variable that
references a string object with contents Welcome to Java.

Reference data types will be discussed in detail in Chapter 9, Objects and Classes. For the
time being, you need to know only how to declare a String variable, how to assign a string
to the variable, and how to use the methods in the String class. More details on using strings
will be covered in Chapter 10.

Table 4.7 lists the String methods for obtaining string length, for accessing characters
in the string, for concatenating strings, for converting a string to upper or lowercases, and for
trimming a string.

TABLE 4.7 Simple Methods for String Objects

Method Description

Tength(Q Returns the number of characters in this string.

charAt(index) Returns the character at the specified index from this string.
concat(sl) Returns a new string that concatenates this string with string s1.
toUpperCase() Returns a new string with all letters in uppercase.

toLowerCase() Returns a new string with all letters in lowercase

trimQ Returns a new string with whitespace characters trimmed on both sides.

instance method
static method

Strings are objects in Java. The methods in Table 4.7 can only be invoked from a spe-
cific string instance. For this reason, these methods are called instance methods. A non-
instance method is called a static method. A static method can be invoked without using
an object. All the methods defined in the Math class are static methods. They are not tied
to a specific object instance. The syntax to invoke an instance method is reference-
Variable.methodName (arguments). A method may have many arguments or no argu-
ments. For example, the charAt(index) method has one argument, but the Tength()
method has no arguments. Recall that the syntax to invoke a static method is ClassName
.methodName (arguments). For example, the pow method in the Math class can be invoked
using Math.pow(2, 2.5).

4.4.1 Getting String Length

You can use the Tength () method to return the number of characters in a string. For exam-
ple, the following code

String message = "Welcome to Java";
System.out.printin("The length of " + message + " is "
+ message.length());

4.4 The String Type 131
displays

The length of Welcome to Java is 15

Bl Note

1 When you use a string, you often know its literal value. For convenience, Java allows
you to use the string literal to refer directly to strings without creating new variables. string literal
Thus, "Welcome to Java".length() is correct and returns 15. Note that "
denotes an empty string and """ . Tength() is 0. empty string

4.4.2 Getting Characters from a String

The s.charAt(index) method can be used to retrieve a specific character in a string s, charAt(index)
where the index is between 0 and s.length()-1. For example, message.charAt(0)

returns the character W, as shown in Figure 4.1. Note that the index for the first character in

the string is 0.

Indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ree vlelifelofmle] [efo] Julalv]a]

T

message.charAt(0) message.length() is 15 message.charAt(14)

FIGURE 4.1 The characters in a String object can be accessed using its index.

Caution

Attempting to access characters in a string s out of bounds is a common pro- string index range
gramming error. To avoid it, make sure that you do not use an index beyond

s.length() - 1. For example, s.charAt(s.length()) would cause a

StringIndexOutOfBoundsException.

4.4.3 Concatenating Strings

You can use the concat method to concatenate two strings. The statement shown below, for
example, concatenates strings s1 and s2 into s3:

String s3 = sl.concat(s2); sl.concat(s2)
Because string concatenation is heavily used in programming, Java provides a convenient
way to accomplish it. You can use the plus (+) operator to concatenate two strings, so the

previous statement is equivalent to
String s3 = sl + s2; sl + s2
The following code combines the strings message, "' and ", and "HTML" into one string:
String myString = message + " and " + "HTML";
Recall that the + operator can also concatenate a number with a string. In this case, the concatenate strings and

number is converted into a string and then concatenated. Note that at least one of the operands numbers
must be a string in order for concatenation to take place. If one of the operands is a nonstring

132 Chapter 4 Mathematical Functions, Characters, and Strings

toLowerCase()
toUpperCase()

whitespace character

trim(Q)

read strings

(e.g., anumber), the nonstring value is converted into a string and concatenated with the other
string. Here are some examples:

// Three strings are concatenated
String message = "Welcome " + "to

+ "Java"';

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String sl = "Supplement" + 'B'; // sl becomes SupplementB

If neither of the operands is a string, the plus sign (+) is the addition operator that adds two
numbers.

The augmented += operator can also be used for string concatenation. For example, the
following code appends the string "and Java 1is fun" with the string "Welcome to
Java" in message.

message += " and Java is fun";

So the new message is "Welcome to Java and Java 1is fun'.
Ifi = 1land j = 2, what is the output of the following statement?

System.out.printin("i + j is " + 1 + j);
The outputis "i + j is 12" because "1 + j 1is " is concatenated with the value of
1 first. To force 1 + j to be executed first, enclose 1 + j in the parentheses, as follows:

System.out.printin("i + j is " + (i + j));

4.4.4 Converting Strings

The tolLowerCase() method returns a new string with all lowercase letters and the
toUpperCase () method returns a new string with all uppercase letters. For example,

"Welcome".toLowerCase () returns a new string we'l come.
"Welcome". toUpperCase () returns a new string WELCOME .

The trim() method returns a new string by eliminating whitespace characters from both
ends of the string. The characters ' ', \t, \f, \r, or \n are known as whitespace characters.
For example,

"\t Good Night \n".trim() returns a new string Good Night.

4.4.5 Reading a String from the Console

To read a string from the console, invoke the next() method on a Scanner object. For
example, the following code reads three strings from the keyboard:

Scanner input = new Scanner(System.in);
System.out.print("Enter three words separated by spaces: ");
String sl input.next();

String s2 input.next();

String s3 = input.next(Q);

System.out.printin("sl is " + sl);

System.out.println("s2 is " + s2);

System.out.println("s3 is " + s3);

4.4 The String Type 133

sl is Welcome
s2 is to
s3 is Java

Enter three words separated by spaces: Welcome to Java |-Enter E

The next() method reads a string that ends with a whitespace character. You can use whitespace character
the nextLine() method to read an entire line of text. The nextLine() method reads a
string that ends with the Enter key pressed. For example, the following statements read a

line of text.

Scanner input = new Scanner(System.in);
System.out.println("Enter a line: ");
String s = input.nextLine();

System.out.printin("The line entered 1is

+ S);

Enter a Tine: Welcome to Java |-Enter E
The Tine entered is Welcome to Java

Important Caution

To avoid input errors, do not use nextLine() after nextByte(), nextShort(), avoid input errors
nextInt(), nextLong(), nextFloat(), nextDouble(), or next(). The

reasons will be explained in Section 12.11.4, ‘How Does Scanner Work?

4.4.6 Reading a Character from the Console

To read a character from the console, use the nextLine() method to read a string and then
invoke the charAt (0) method on the string to return a character. For example, the following
code reads a character from the keyboard:

Scanner input = new Scanner(System.in);
System.out.print("Enter a character: ");

String s = input.nextLine();

char ch = s.charAt(0);

System.out.println("The character entered 1is " + ch);

4.4.7 Comparing Strings

The String class contains the methods as shown in Table 4.8 for comparing two strings.

TABLE 4.8 Comparison Methods for String Objects

Method

Description

equals(sl)
equalsIgnoreCase(sl)

compareTo(sl)

compareToIgnoreCase(sl)
startsWith(prefix)
endsWith(suffix)

contains(sl)

Returns true if this string is equal to string s1.
Returns true if this string is equal to string s1; it is case insensitive.

Returns an integer greater than 0, equal to 0, or less than O to indicate whether this string is greater
than, equal to, or less than s1.

Same as compareTo except that the comparison is case insensitive.
Returns true if this string starts with the specified prefix.
Returns true if this string ends with the specified suffix.

Returns true if s1 is a substring in this string.

134 Chapter 4 Mathematical Functions, Characters, and Strings

stringl.equals(string2)

sl.compareTo(s2)

How do you compare the contents of two strings? You might attempt to use the == operator,
as follows:

if (stringl == string2)

System.out.printin("stringl and string2 are the same object');
else

System.out.printin("stringl and string2 are different objects");

However, the == operator checks only whether stringl and string2 refer to the same
object; it does not tell you whether they have the same contents. Therefore, you cannot use the
== operator to find out whether two string variables have the same contents. Instead, you should
use the equals method. The following code, for instance, can be used to compare two strings:

if (stringl.equals(string2))

System.out.println("stringl and string2 have the same contents");
else

System.out.printin("stringl and string2 are not equal');

For example, the following statements display true and then false.

String sl "Welcome to Java";
String s2 = "Welcome to Java";
String s3 = "Welcome to C++";
System.out.printin(sl.equals(s2)); // true
System.out.println(sl.equals(s3)); // false

The compareTo method can also be used to compare two strings. For example, consider
the following code:

sl.compareTo(s2)

The method returns the value 0 if s1 is equal to s2, a value less than 0 if s1 is lexico-
graphically (i.e., in terms of Unicode ordering) less than s2, and a value greater than 0 if s1
is lexicographically greater than s2.

The actual value returned from the compareTo method depends on the offset of the first
two distinct characters in s1 and s2 from left to right. For example, suppose s1 is abc and s2
is abg, and s1.compareTo(s2) returns -4. The first two characters (a vs. a) from s1 and
s2 are compared. Because they are equal, the second two characters (b vs. b) are compared.
Because they are also equal, the third two characters (c vs. g) are compared. Since the char-
acter c is 4 less than g, the comparison returns -4.

Caution
Syntax errors will occur if you compare strings by using relational operators >, >=, <, or
<=. Instead, you have to use s1.compareTo(s2).

Note

The equals method returns true if two strings are equal and false if they are not.
The compareTo method returns 0, a positive integer, or a negative integer, depending
on whether one string is equal to, greater than, or less than the other string.

The String class also provides the equalsIgnoreCase and compareToIgnore-
Case methods for comparing strings. The equalsIgnoreCase and compareToIgnore-
Case methods ignore the case of the letters when comparing two strings. You can also
use str.startsWith(prefix) to check whether string str starts with a specified prefix,
str.endsWith(suffix) to check whether string str ends with a specified suffix, and str
.contains(sl) to check whether string str contains string s1 . For example,

"Welcome to Java'".startsWith('"'We") returns true.
"Welcome to Java".startsWith("we'") returns false.
"Welcome to Java'".endsWith('"va'") returns true.

4.4 The String Type

"Welcome to Java".endsWith("v") returns false.
"Welcome to Java'.contains("to") returns true.
"Welcome to Java'.contains("To") returns false.

Listing 4.2 gives a program that prompts the user to enter two cities and displays them in
alphabetical order.

LISTING 4.2 OrderTwoCities.java

1 mport java.util.Scanner;

N

public class OrderTwoCities {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

// Prompt the user to enter two cities
System.out.print("Enter the first city: ");
9 String cityl = input.nextLine(Q);

10 System.out.print("Enter the second city: ");
11 String city2 = input.nextLine();

13 if (cityl.compareTo(city2) < 0)

14 System.out.println("The cities in alphabetical order are " +
15 cityl + " " + city2);

16 else

17 System.out.println("The cities in alphabetical order are " +
18 city2 + " " + cityl);

19 }

20 1}

Enter the first city: New York |-enter
Enter the second city: Boston -enter
The cities in alphabetical order are Boston New York

The program reads two strings for two cities (lines 9, 11). If input.nextLine() isreplaced
by input.next() (line 9), you cannot enter a string with spaces for cityl. Since a city name
may contain multiple words separated by spaces, the program uses the nextLine method to
read a string (lines 9, 11). Invoking cityl.compareTo(city2) compares two strings cityl
with city2 (line 13). A negative return value indicates that cityl is less than city2.

4.4.8 Obtaining Substrings

You can obtain a single character from a string using the charAt method. You can also
obtain a substring from a string using the substring method in the String class, as shown
in Table 4.9.

For example,

String message = "Welcome to Java";
String message = message.substring(0, 11) + "HTML";
The string message now becomes Welcome to HTML.

TABLE 4.9 The String class contains the methods for obtaining substrings.

input cityl
input city?2

compare two cities

135

Method Description

substring(beginIndex) Returns this string’s substring that begins with the character at the specified beginIndex and extends

to the end of the string, as shown in Figure 4.2.

substring(beginIndex, Returns this string’s substring that begins at the specified beginIndex and extends to the character at index
endIndex) endIndex - 1, asshown in Figure 4.2. Note that the character at endIndex is not part of the substring.

136 Chapter 4 Mathematical Functions, Characters, and Strings

Indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
veselwleifefofmle] Jefo]

o]]a]
| N

message.substring(0, 11) message.substring(1l)

FIGURE 4.2 The substring method obtains a substring from a string.

Note
beginlndex <= endIndex If beginIndex is endIndex, substring(beginIndex, endIndex) returnsan
empty string with length 0. If beginIndex > endIndex, it would be a runtime error.

4.4.9 Finding a Character or a Substring in a String

The String class provides several versions of index0f and TastIndexOf methods to find
a character or a substring in a string, as shown in Table 4.10.

TABLE 4.10 The string class contains the methods for finding substrings.

Method Description

index(ch) Returns the index of the first occurrence of ch in the string. Returns -1 if not matched.

index0f(ch, fromIndex) Returns the index of the first occurrence of ch after fromIndex in the string. Returns -1 if not matched.

index0f(s) Returns the index of the first occurrence of string s in this string. Returns -1 if not matched.

index0f(s, fromIndex) Returns the index of the first occurrence of string s in this string after fromIndex. Returns -1 if not
matched.

TastIndex0f(ch) Returns the index of the last occurrence of ch in the string. Returns -1 if not matched.

TastIndexOf(ch, fromIndex) Returns the index of the last occurrence of ch before fromIndex in this string. Returns -1 if not
matched.

TastIndexOf(s) Returns the index of the last occurrence of string s. Returns -1 if not matched.

TastIndexOf(s, fromIndex) Returns the index of the last occurrence of string s before fromIndex. Returns -1 if not matched.

For example,

index0Of "Welcome to Java".indexOf('W') returns O.
"Welcome to Java".indexOf('o') returns 4.
"Welcome to Java".indexOf('o', 5) returns 9.
"Welcome to Java'".indexOf("come') returns 3.
"Welcome to Java'".indexOf("Java", 5) returns 11.
"Welcome to Java".indexOf("java", 5) returns -1.

JastIndexOf "Welcome to Java'.lastIndexOf('W') returns O.
"Welcome to Java".lastIndexOf('o') returns 9.
"Welcome to Java".lastIndexOf('o', 5) returns 4.
"Welcome to Java".lastIndexOf("come'") returns 3.
"Welcome to Java'".lastIndexOf('Java", 5) returns -1.
"Welcome to Java'".lastIndexOf('Java") returns 11.

Suppose a string s contains the first name and last name separated by a space. You can use the
following code to extract the first name and last name from the string:

int k = s.indexOf(" ");
String firstName = s.substring(0, k);
String lastName = s.substring(k + 1);

4.4 The String Type 137

For example, if s is Kim Jones, the following diagram illustrates how the first name and last
name are extracted.

Indices O 1 2 3 4 5 6 7 8
Message K m| |J | o

i n

k is 3

s.substring
(0, k) is Kim

s.substring
(k + 1) is Jones

4.4.10 Conversion between Strings and Numbers

You can convert a numeric string into a number. To convert a string into an int value, use the
Integer.parselnt method, as follows:

int intValue = Integer.parseInt(intString);

where intString is a numeric string such as "123".
To convert a string into a double value, use the Double.parseDouble method, as
follows:

double doubleValue = Double.parseDouble(doubleString);

where doubleString is a numeric string such as "123.45".

If the string is not a numeric string, the conversion would cause a runtime error. The
Integer and Double classes are both included in the java.lang package, and thus they are
automatically imported.

You can convert a number into a string, simply use the string concatenating operator as
follows:

String s = number + ;

4.16 Suppose that s1, s2, and s3 are three strings, given as follows:

String sl = "Welcome to Java";
String s2 = "Programming is fun";
String s3 = "Welcome to Java";

What are the results of the following expressions?

(a) s1 == s2 (1) s1.lastIndex0f("o", 15)
(b) s2 == s3 (m) sl.lengthQ)

(c) sl.equals(s2) (n) sl.substring(5)

(d) sl.equals(s3) (0) sl.substring(5, 11)

(e) sl.compareTo(s2) (p) sl.startsWith("wel™)
(f) s2.compareTo(s3) (@) sl.endsWith("Java™)

(g) s2.compareTo(s2) (r) sl.toLowerCase()

(h) s1.charAt(0) (s) s1.toUpperCase()

(i) s1.index0f('j") (t) sl.concat(s2)

(G) sl.index0f("to") (u) sl.contains(s2)

(k) sl.lastIndexOf('a") (v) "\t Wel \t".trim(Q)

Integer.parseInt method

Double.parseDouble
method

number to string

ﬁheck
Point

138 Chapter 4 Mathematical Functions, Characters, and Strings

4.17

4.18

4.19

4.20

Suppose that s1 and s2 are two strings. Which of the following statements or
expressions are incorrect?

String s = "Welcome to Java";
String s3 = sl + s2;

String s3 = sl - s2;

sl == s2;

sl >= s2;

sl.compareTo(s2);

int i = sl.lengthQ);

char c = s1(0);

char ¢ = sl.charAt(sl.length(Q));

Show the output of the following statements (write a program to verify your results):

System.out.println("1" + 1);
System.out.printin('1l" + 1);
System.out.println("1l" + 1 + 1);
System.out.println("1" + (1 + 1));
System.out.printIn('1l" + 1 + 1);

Evaluate the following expressions (write a program to verify your results):

1 + "Welcome " + 1 + 1

1 + "Welcome " + (1 + 1)

1 + "Welcome " + ('\u0001' + 1)
1 + "Welcome " + 'a' + 1

Letslbe " Welcome "ands2be'" welcome ". Write the code for the following
statements:

(a) Check whether sl is equal to s2 and assign the result to a Boolean variable
isEqual.

(b) Check whether s1 is equal to s2, ignoring case, and assign the result to a
Boolean variable isEqual.

(c) Compare sl with s2 and assign the result to an int variable x.

(d) Compare sl with s2, ignoring case, and assign the result to an ‘int
variable x.

(e) Check whether sl has the prefix AAA and assign the result to a Boolean
variable b.

(f) Check whether s1 has the suffix AAA and assign the result to a Boolean
variable b.

(g) Assign the length of s1 toan int variable x.
(h) Assign the first character of s1 to a char variable x.
(i) Create a new string s3 that combines s1 with s2.
(j) Create a substring of s1 starting from index 1.
(k) Create a substring of s1 from index 1 to index 4.
(1) Create a new string s3 that converts s1 to lowercase.
(m) Create a new string s3 that converts s1 to uppercase.

(n) Create a new string s3 that trims whitespace characters on both ends of s1.

4.5 Case Studies 139

(o) Assign the index of the first occurrence of the character e in sl to an int
variable x.

(p) Assign the index of the last occurrence of the string abc in sl to an int
variable x.

4.5 Case Studies

Strings are fundamental in programming. The ability to write programs using strings 6 f

. . . . Key
is essential in learning Java programming. Point

You will frequently use strings to write useful programs. This section presents three examples
of solving problems using strings.

4.5.1 Case Study: Guessing Birthdays

You can find out the date of the month when your friend was born by asking five questions.
Each question asks whether the day is in one of the five sets of numbers.

=19
+
1] 3 s 7| [2]3 6 7 4 5 6 7 8 9 10 11 | [16] 17 18 19
9 11 13 15| 10 11 14 15 12 13 14 15 12 13 14 15 20 21 22 23
17 19 21 23| 18 19 22 23 20 21 22 23 24 25 26 27 | 24 25 26 27
25 27 29 31| 26 27 30 31 28 29 30 31 28 29 30 31 28 29 30 31
Setl Set2 Set3 Set4 Set5

The birthday is the sum of the first numbers in the sets where the day appears. For example,
if the birthday is 19, it appears in Setl, Set2, and Set5. The first numbers in these three sets
are 1, 2, and 16. Their sum is 19.

Listing 4.3 gives a program that prompts the user to answer whether the day is in Setl
(lines 41-44), in Set2 (lines 50-53), in Set3 (lines 59-62), in Set4 (lines 68-71), and in Set5
(lines 77-80). If the number is in the set, the program adds the first number in the set to day
(lines 47, 56, 65, 74, 83).

LIsTING 4.3 GuessBirthday.java

1 import java.util.Scanner;

N

3 public class GuessBirthday {

4 public static void main(String[] args) {
5 String setl =

6 "1 3 5 7\n" +

7 "9 11 13 15\n" +

8 "17 19 21 23\n" +

9 25 27 29 31";
10
11 String set2 =

12 "2 3 6 7\n" +

140 Chapter 4 Mathematical Functions, Characters, and Strings

day to be determined

in Set1?

in Set2?

in Set3?

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

"10 11 14 15\n" +
"18 19 22 23\n" +
26 27 30 31";

String set3 =
"4 5 6 7\n" +
"12 13 14 15\n"
20 21 22 23\n" +
28 29 30 31";

+

String set4 =
"8 9 10 11\n" +
"12 13 14 15\n"
"24 25 26 27\n" +
28 29 30 31";

+

String set5 =
"16 17 18 19\n" +
20 21 22 23\n"
"24 25 26 27\n" +
"28 29 30 31";

+

int day = 0;

// Create a Scanner
Scanner input = new Scanner(System.in);

// Prompt the user to answer questions
System.out.print("Is your birthday in Setl?\n");
System.out.print(setl);

System.out.print("“\nEnter 0 for No and 1 for Yes:

int answer = input.nextInt();

if (answer == 1)
day += 1;

// Prompt the user to answer questions

System.out.print("\nIs your birthday in Set2?\n");

System.out.print(set2);

System.out.print("\nEnter 0 for No and 1 for Yes:

answer = input.nextInt();

if (answer == 1)
day += 2;

// Prompt the user to answer questions
System.out.print("Is your birthday in Set3?\n");
System.out.print(set3);

System.out.print("\nEnter 0 for No and 1 for Yes:

answer = input.nextInt();

if (answer == 1)
day += 4;

// Prompt the user to answer questions

System.out.print("\nIs your birthday in Set4?\n");

System.out.print(setd);

System.out.print("“\nEnter 0 for No and 1 for Yes:

answer = input.nextInt();

")

")

")

")

4.5 Case Studies

73 if (answer == 1) in Set4?
74 day += 8;

75

76 // Prompt the user to answer questions

77 System.out.print("\nIs your birthday in Set5?\n");

78 System.out.print(set5);

79 System.out.print("\nEnter 0 for No and 1 for Yes: ");
80 answer = input.nextInt();

81

82 if (answer == 1)

83 day += 16;

84

85 System.out.printin("\nYour birthday is " + day + "!");
86 }

87 %

Is your birthday in Setl?
1 3 5 7
9 11 13 15

17 19 21 23

25 27 29 31

Enter 0 for No and 1 for Yes:

Is your birthday in Set2?
2 3 6 7
10 11 14 15
18 19 22 23
26 27 30 31

Enter 0 for No and 1 for Yes:

Is your birthday in Set3?
4 5 6 7
12 13 14 15
20 21 22 23
28 29 30 31

Enter 0 for No and 1 for Yes:

Is your birthday in Set4?
8 9 10 11
12 13 14 15
24 25 26 27
28 29 30 31

Enter 0 for No and 1 for Yes:

Is your birthday in Set5?
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

Enter 0 for No and 1 for Yes:

Your birthday is 19!

~ Enter

~ Enter

~ Enter

~ Enter

! Enter

141

142 Chapter 4 Mathematical Functions, Characters, and Strings

O

mathematics behind the game

ﬁheck
Point

line# day answer output
35 0

44 1

47 1

53 1

56 3

62 0

71 0

80 1

83 19

85 Your birthday is 19!

This game is easy to program. You may wonder how the game was created. The mathematics
behind the game is actually quite simple. The numbers are not grouped together by accident—
the way they are placed in the five sets is deliberate. The starting numbers in the five sets are
1, 2,4, 8, and 16, which correspond to 1, 10, 100, 1000, and 10000 in binary (binary num-
bers are introduced in Appendix F, Number Systems). A binary number for decimal integers
between 1 and 31 has at most five digits, as shown in Figure 4.3a. Let it be bsb,b3b,b,. Thus,
bsbybib,by = bs0000 + 4,000 + b3;00 + b0 + by,as shown in Figure 4.3b. If a day’s binary
number has a digit 1 in by, the number should appear in Setk. For example, number 19 is
binary 10011, so it appears in Setl, Set2, and Set5. It is binary 1 + 10 + 10000 = 10011
ordecimal 1 + 2 + 16 = 19. Number 31 is binary 11111, so it appears in Setl, Set2, Set3,
Set4, and Set5. Itis binary 1 + 10 + 100 + 1000 + 10000 = 11111 ordecimal 1 + 2 +
4 + 8 + 16 = 31.

ll)ecimal Bolél(;l;i, bs00 00 10000
b 1000
2 00010 W9 8 8 10000 100
3 00011 3b 0 10 10
zb + 1 + 1
19 10011 + 1 10011 11111
bsbybsbyb
31 11111 STarsT2m 19 31

(a) (b)

FIGURE 4.3 (a) A number between 1 and 31 can be represented using a five-digit binary
number. (b) A five-digit binary number can be obtained by adding binary numbers 1, 10,
100, 1000, or 10000.

4.21 If yourun Listing 4.3 GuessBirthday.java with input 1 for Setl, Set3, and Set4 and 0
for Set2 and Set5, what will be the birthday?

4.5.2 Case Study: Converting a Hexadecimal Digit to a Decimal Value
The hexadecimal number system has 16 digits: 0-9, A-F. The letters A, B, C, D, E, and F
correspond to the decimal numbers 10, 11, 12, 13, 14, and 15. We now write a program that
prompts the user to enter a hex digit and display its corresponding decimal value, as shown
in Listing 4.4.

LisTING 4.4 HexDigit2Dec.java

1 mport java.util.Scanner;

3 public class HexDigit2Dec {

4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.1in);
6 System.out.print("Enter a hex digit: ");
7 String hexString = input.nextLine();

8

9 // Check if the hex string has exactly one character
10 if (hexString.length() !'= 1) {

11 System.out.println("You must enter exactly one character');
12 System.exit(l);

13 }

14

15 // Display decimal value for the hex digit

16 char ch = hexString.charAt(0);

17 if (ch <= "F' && ch >= 'A") {

18 int value = ch - "A" + 10;

19 System.out.printin("The decimal value for hex digit
20 + ch + " is " + value);

21 }

22 else if (Character.isDigit(ch)) {

23 System.out.println("The decimal value for hex digit
24 + ch + " is " + ch);

25 }

26 else {

27 System.out.printin(ch + " 1is an dinvalid input");

28 }

29 }

30 }

Enter a hex digit: AB7C | -enter
You must enter exactly one character

Enter a hex digit: B |-enter
The decimal value for hex digit B is 11

Enter a hex digit: 8 |-enter
The decimal value for hex digit 8 is 8

Enter a hex digit: T |-enter
T is an invalid input

The program reads a string from the console (line 7) and checks if the string contains a

single character (line 10). If not, report an error and exit the program (line 12).

The program invokes the Character . toUpperCase method to obtain the character ch as
an uppercase letter (line 16). If ch is between "A" and 'F' (line 17), the corresponding deci-
mal valueisch — "A" + 10 (line 18). Note thatch — "A"isOifchis "A",ch - "A"is1

4.5 Case Studies 143

VideoNote
Convert hex to decimal

input string

check length

is A-F?

is 0-9?

o R

144 Chapter 4 Mathematical Functions, Characters, and Strings

generate a lottery

enter a guess

exact match?

match all digits?

match one digit?

if chis "B', and so on. When two characters perform a numerical operation, the characters’
Unicodes are used in the computation.
The program invokes the Character.isDigit(ch) method to check if ch is between
'0" and "9" (line 22). If so, the corresponding decimal digit is the same as ch (lines 23-24).
If chisnotbetween 'A" and 'F' nor a digit character, the program displays an error message
(line 27).

4.5.3 Case Study: Revising the Lottery Program Using Strings

The lottery program in Listing 3.8, Lottery.java, generates a random two-digit number, prompts
the user to enter a two-digit number, and determines whether the user wins according to the
following rule:

1. If the user input matches the lottery number in the exact order, the award is $10,000.

2. If all the digits in the user input match all the digits in the lottery number, the award is
$3,000.

3. If one digit in the user input matches a digit in the lottery number, the award is $1,000.

The program in Listing 3.8 uses an integer to store the number. Listing 4.5 gives a new
program that generates a random two-digit string instead of a number and receives the user
input as a string instead of a number.

LISTING 4.5 LotteryUsingStrings.java

1 import java.util.Scanner;

N

3 public class LotteryUsingStrings {

4 public static void main(String[] args) {

5 // Generate a lottery as a two-digit string

6 String lottery = "" + (int) (Math.random() * 10)
7 + (int) (Math.random() * 10);

8

9 // Prompt the user to enter a guess

10 Scanner input = new Scanner(System.in);

11 System.out.print("Enter your lottery pick (two digits): ");
12 String guess = input.nextLine();

13

14 // Get digits from lottery

15 char TotteryDigitl = Tottery.charAt(0);

16 char TotteryDigit2 = lottery.charAt(l);

17

18 // Get digits from guess

19 char guessDigitl = guess.charAt(0);

20 char guessDigit2 = guess.charAt(l);

21

22 System.out.println("The Tottery number is " + Tottery);
23

24 // Check the guess

25 if (guess.equals(lottery))

26 System.out.printin("Exact match: you win $10,000");
27 else if (guessDigit2 == TotteryDigitl

28 && guessDigitl == TotteryDigit2)

29 System.out.printTn("Match all digits: you win $3,000™);
30 else if (guessDigitl == TotteryDigitl

31 || guessDigitl == lotteryDigit2

32 || guessDigit2 == lotteryDigitl

33 | | guessDigit2 == lotteryDigit2)

34 System.out.printin("Match one digit: you win $1,000");

35 else

36 System.out.println("Sorry, no match");
37 }

38 }

4.6 Formatting Console Output 145

Enter your lottery pick (two digits): 00 —enter
The lottery number is 00
Exact match: you win $10,000

Enter your Tottery pick (two digits): 45 |-enter
The lottery number is 54
Match all digits: you win $3,000

Enter your Tlottery pick: 23 |-enter
The lottery number is 34
Match one digit: you win $1,000

Enter your Tlottery pick: 23 |-enter
The lottery number is 14
Sorry: no match

L N

The program generates two random digits and concatenates them into the string lTottery

(lines 6-7). After this, Tottery contains two random digits.

The program prompts the user to enter a guess as a two-digit string (line 12) and checks the

guess against the lottery number in this order:

B First check whether the guess matches the lottery exactly (line 25).

B If not, check whether the reversal of the guess matches the lottery (line 27).

B If not, check whether one digit is in the lottery (lines 30-33).

B If not, nothing matches and display “Sorry, no match” (line 36).

4.6 Formatting Console Output

You can use the System.out.printf method to display formatted output on the GfK

console.

ey
Point

Often, it is desirable to display numbers in a certain format. For example, the following code

computes interest, given the amount and the annual interest rate.

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;

System.out.println("Interest is $" + interest);

Interest is $16.404674

146 Chapter 4 Mathematical Functions, Characters, and Strings

Because the interest amount is currency, it is desirable to display only two digits after the
decimal point. To do this, you can write the code as follows:

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.printin("Interest is $"
+ (int) (interest * 100) / 100.0);

E Interest is $16.4

However, the format is still not correct. There should be two digits after the decimal point:
printf 16.40 rather than 16.4. You can fix it by using the printf method, like this:

double amount = 12618.98;

double interestRate = 0.0013;

double interest = amount * interestRate;
System.out.printf("Interest is $%4.2f", field width

) <— format specifier

conversion code

interest);
precision
E Interest is $16.40
The syntax to invoke this method is
System.out.printf(format, iteml, item2, ..., itemk)

where format is a string that may consist of substrings and format specifiers.

format specifier A format specifier specifies how an item should be displayed. An item may be a numeric
value, a character, a Boolean value, or a string. A simple format specifier consists of a percent
sign (%) followed by a conversion code. Table 4.11 lists some frequently used simple format
specifiers.

TaBLE 4.11 Frequently Used Format Specifiers

Format Specifier Output Example

%b a Boolean value true or false
%C a character ‘a’

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01
%S a string “Java is cool”

Here is an example:

int count = 5; items
double amount = 45.56;
System.out.printf("count is %d and amount is %f", count, amount);

t |

display count is 5 and amount is 45.560000

4.6 Formatting Console Output

Items must match the format specifiers in order, in number, and in exact type. For example,
the format specifier for count is %d and for amount is %f. By default, a floating-point value
is displayed with six digits after the decimal point. You can specify the width and precision in
a format specifier, as shown in the examples in Table 4.12.

TABLE 4.12 Examples of Specifying Width and Precision

Example Output

%5¢c Output the character and add four spaces before the character item, because the
width is 5.

%6b Output the Boolean value and add one space before the false value and two spaces

before the true value.

%5d Output the integer item with width at least 5. If the number of digits in the item is
<5, add spaces before the number. If the number of digits in the item is > 5, the
width is automatically increased.

%10.2f Output the floating-point item with width at least 10 including a decimal point
and two digits after the point. Thus, there are 7 digits allocated before the decimal
point. If the number of digits before the decimal point in the item is < 7, add spaces
before the number. If the number of digits before the decimal point in the item is
> 7, the width is automatically increased.

%10.2e Output the floating-point item with width at least 10 including a decimal point, two
digits after the point and the exponent part. If the displayed number in scientific
notation has width less than 10, add spaces before the number.

%12s Output the string with width at least 12 characters. If the string item has fewer
than 12 characters, add spaces before the string. If the string item has more than
12 characters, the width is automatically increased.

If an item requires more spaces than the specified width, the width is automatically
increased. For example, the following code

System.out.printf("%3d#%2s#%4.2f\n", 1234, "Java", 51.6653);
displays
1234#Java#51.67

The specified width for int item 1234 is 3, which is smaller than its actual size 4. The
width is automatically increased to 4. The specified width for string item Java is 2, which is
smaller than its actual size 4. The width is automatically increased to 4. The specified width
for doubleitem 51.6653 is 4, but it needs width 5 to display 51.67, so the width is automati-
cally increased to 5.

By default, the output is right justified. You can put the minus sign (-) in the format
specifier to specify that the item is left justified in the output within the specified field. For
example, the following statements

System.out.printf("%8d%8s%8.1f\n", 1234, "Java'", 5.63);
System.out.printf("%-8d%-8s%-8.1f \n", 1234, "Java", 5.63);

display

|<—8—>|<—8—>|<—8—>|
oM 12340 Javardrrds. 6
1234 00 Javard 5.6 o1

where the square box () denotes a blank space.

right justify
left justify

147

148 Chapter 4 Mathematical Functions, Characters, and Strings

display table header

values for 30 degrees

values for 60 degrees

ﬁheck

Point

Caution

The items must match the format specifiers in exact type. The item for the format
specifier %f or %e must be a floating-point type value such as 40.0, not 40. Thus, an
int variable cannot match %f or %e.

Tip
The % sign denotes a format specifier. To output a literal % in the format string, use %%.

Listing 4.6 gives a program that uses printf to display a table.

LISTING 4.6 FormatDemo.java

1 public class FormatDemo {

2 public static void main(String[] args) {

3 // Display the header of the table

4 System.out.printf("%-10s%-10s%-10s%-10s%-10s\n", "Degrees",
5 "Radians", "Sine", "Cosine", "Tangent");

6

7 // Display values for 30 degrees

8 int degrees = 30;

9 double radians = Math.toRadians(degrees);
10 System.out.printf("%-10d%-10.4f%-10.4f%-10.4f%-10.4f\n", degrees,
11 radians, Math.sin(radians), Math.cos(radians),
12 Math.tan(radians));
13
14 // Display values for 60 degrees
15 degrees = 60;
16 radians = Math.toRadians(degrees);
17 System.out.printf("%-10d%-10.4f%-10.4f%-10.4f%-10.4f\n", degrees,
18 radians, Math.sin(radians), Math.cos(radians),
19 Math.tan(radians));
20 }
21 %

Degrees Radians Sine Cosine Tangent

30 0.5236 0.5000 0.8660 0.5773

60 1.0472 0.8660 0.5000 1.7320

The statement in lines 4-5 displays the column names of the table. The column names are
strings. Each string is displayed using the specifier %-10s, which left-justifies the string. The
statement in lines 10—12 displays the degrees as an integer and four float values. The integer is
displayed using the specifier %-10d and each float is displayed using the specifier %-10.4f,
which specifies four digits after the decimal point.

4.22 What are the format specifiers for outputting a Boolean value, a character, a decimal
integer, a floating-point number, and a string?

4.23 What is wrong in the following statements?
(a) System.out.printf("%5d %d", 1, 2, 3);
(b) System.out.printf("%5d %f", 1);
(c) System.out.printf("%5d %f", 1, 2);

Chapter Summary

4.24 Show the output of the following statements.

(a) System.out.printf("amount 1is %f %e\n", 32.32, 32.32);

(b) System.out.printf("amount is %5.2%% %5.4e\n", 32.327, 32.32);
(c) System.out.printf("%6b\n", (1 > 2));

(d) System.out.printf("%6s\n", "Java");

(e) System.out.printf("%-6b%s\n", (1 > 2), "Java');

(f) System.out.printf("%6b%-8s\n", (1 > 2), "Java');

KEy TERMS

char type 125 instance method 130
encoding 125 static method 130

escape character 127 supplementary Unicode 125
escape sequence 126 Unicode 125

format specifier 146 whitespace character 133

CHAPTER SUMMARY

Java provides the mathematical methods sin, cos, tan, asin, acos, atan, toRadians,
toDegree, exp, log, 1ogl0, pow, sqrt, cell, floor, rint, round, min, max,
abs, and random in the Math class for performing mathematical functions.

. The character type char represents a single character.

. An escape sequence consists of a backslash (\) followed by a character or a combina-

tion of digits.

. The character \ is called the escape character.
. The characters ' ', \t, \f, \r, and \n are known as the whitespace characters.

. Characters can be compared based on their Unicode using the relational operators.

The Character class contains the methods isDigit, isLetter, isLetterOrDigit,
isLowerCase, isUpperCase for testing whether a character is a digit, letter, lower-
case, and uppercase. It also contains the toLowerCase and toUpperCase methods for
returning a lowercase or uppercase letter.

. A string is a sequence of characters. A string value is enclosed in matching double

quotes (""). A character value is enclosed in matching single quotes ().

. Strings are objects in Java. A method that can only be invoked from a specific object is

called an instance method. A non-instance method is called a static method, which can
be invoked without using an object.

149

150 Chapter 4 Mathematical Functions, Characters, and Strings

MyProgramminglLab’

10. Youcan get the length of a string by invoking its Tength () method, retrieve a char-
acter at the specified index in the string using the charAt(index) method, and
use the index0Of and TastIndexOf methods to find a character or a substring in
a string.

I'I. You can use the concat method to concatenate two strings, or the plus (+) operator to
concatenate two or more strings.

12. You can use the substring method to obtain a substring from the string.

I3. You can use the equals and compareTo methods to compare strings. The equals
method returns true if two strings are equal, and false if they are not equal. The
compareTo method returns 0, a positive integer, or a negative integer, depending on
whether one string is equal to, greater than, or less than the other string.

14. The printf method can be used to display a formatted output using format
specifiers.

Quiz

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Section 4.2
4.1 (Geometry: area of a pentagon) Write a program that prompts the user to enter

the length from the center of a pentagon to a vertex and computes the area of the
pentagon, as shown in the following figure.

5% s
, where

T
4 X tan| —
o 2)
™

s is the length of a side. The side can be computed using the formula s = 2r sin 5

The formula for computing the area of a pentagon is Area =

where r is the length from the center of a pentagon to a vertex. Round up two digits
after the decimal point. Here is a sample run:

Enter the length from the center to a vertex: 5.5 |-Enter
The area of the pentagon is 71.92

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 151

*4.2 (Geometry: great circle distance) The great circle distance is the distance between u
two points on the surface of a sphere. Let (x1, y1) and (x2, y2) be the geographi-
cal latitude and longitude of two points. The great circle distance between the two
points can be computed using the following formula:

VideoNote
Compute great circle distance

d = radius X arccos(sin(x;) X sin(x,) + cos(x;) X cos(xy) X cos(y; — ¥,))

Write a program that prompts the user to enter the latitude and longitude of two
points on the earth in degrees and displays its great circle distance. The average
earth radius is 6,371.01 km. Note that you need to convert the degrees into radians
using the Math.toRadians method since the Java trigonometric methods use
radians. The latitude and longitude degrees in the formula are for north and west.
Use negative to indicate south and east degrees. Here is a sample run:

Enter point 1 (latitude and Tlongitude) in degrees: 39.55, -116.25 —enter E
Enter point 2 (latitude and Tongitude) in degrees: 41.5, 87.37 |-enter
The distance between the two points is 10691.79183231593 km

*4.3 (Geography: estimate areas) Find the GPS locations for Atlanta, Georgia;
Orlando, Florida; Savannah, Georgia; and Charlotte, North Carolina from
www.gps-data-team.com/map/ and compute the estimated area enclosed by these
four cities. (Hint: Use the formula in Programming Exercise 4.2 to compute the
distance between two cities. Divide the polygon into two triangles and use the
formula in Programming Exercise 2.19 to compute the area of a triangle.)

4.4 (Geometry: area of a hexagon) The area of a hexagon can be computed using the
following formula (s is the length of a side):

6 X s

T
4 X tan<>
6

Write a program that prompts the user to enter the side of a hexagon and displays
its area. Here is a sample run:

Area =

Enter the side: 5.5 ~enter _
The area of the hexagon is 78.59

*4.5 (Geometry: area of a regular polygon) A regular polygon is an n-sided polygon in
which all sides are of the same length and all angles have the same degree (i.e., the
polygon is both equilateral and equiangular). The formula for computing the area
of a regular polygon is

www.gps-data-team.com/map/

152 Chapter 4 Mathematical Functions, Characters, and Strings

Here, s is the length of a side. Write a program that prompts the user to enter the
number of sides and their length of a regular polygon and displays its area. Here is
a sample run:

Enter the number of sides: 5 |-enter
Enter the side: 6.5 |-enter

The area of the polygon is 74.69017017488385

*4.6 (Random points on a circle) Write a program that generates three random points
on a circle centered at (0, 0) with radius 40 and display three angles in a triangle
formed by these three points, as shown in Figure 4.7a. (Hint: Generate a random
angle « in radians between 0 and 27, as shown in Figure 4.7b and the point deter-
mined by this angle is (r*cos(«), r*sin(«)).)

x =rxcos(o) and y = rxsin(o) 0 o’clock position
Py

(a) (b)

FIGURE 4.7 (a) A triangle is formed from three random points on the circle. (b) A random
point on the circle can be generated using a random angle «. (c) A pentagon is centered at
(0, 0) with one point at the 0 o’clock position.

*4.7 (Corner point coordinates) Suppose a pentagon is centered at (0, 0) with one point
at the 0 o’clock position, as shown in Figure 4.7c. Write a program that prompts
the user to enter the radius of the bounding circle of a pentagon and displays the
coordinates of the five corner points on the pentagon. Here is a sample run:

Enter the radius of the bounding circle: 100 | -enter
E The coordinates of five points on the pentagon are
(95.1057, 30.9017)
(0.000132679, 100)
(-95.1056, 30.9019)
(-58.7788, -80.9015)
(58.7782, -80.902)

Sections 4.3-4.6

*4.8 (Find the character of an ASCII code) Write a program that receives an ASCII code
(an integer between 0 and 127) and displays its character. Here is a sample run:

1 Enter an ASCII code: 69 —enter
The character for ASCII code 69 is E

Programming Exercises 153

*4.9 (Find the Unicode of a character) Write a program that receives a character and
displays its Unicode. Here is a sample run:

Enter a character: E |-enter
The Unicode for the character E is 69

*4.10 (Guess birthday) Rewrite Listing 4.3, GuessBirthday.java, to prompt the user to
enter the character Y for Yes and N for No rather than entering 1 for Yes and 0
for No.

*4.11 (Decimal to hex) Write a program that prompts the user to enter an integer between
0 and 15 and displays its corresponding hex number. Here are some sample runs:

Enter a decimal value (0 to 15): 11 |-enter
The hex value is B

Enter a decimal value (0 to 15): 5 | -enter
The hex value is 5

Enter a decimal value (0 to 15): 31 | -enter
31 is an invalid input

4.12 (Hex to binary) Write a program that prompts the user to enter a hex digit and
displays its corresponding binary number. Here is a sample run:

VideoNote
Convert hex to binary

Enter a hex digit: B |-enter

The binary value is 1011 .

Enter a hex digit: G |-enter

G is an invalid input

*4.13 (Vowel or consonant?) Write a program that prompts the user to enter a letter and

check whether the letter is a vowel or consonant. Here is a sample run:

Enter a letter: B |-enter

B is a consonant

Enter a letter grade: a |-enter

a is a vowel

Enter a letter grade: # -enter
is an invalid input -

154 Chapter 4 Mathematical Functions, Characters, and Strings

L

meomo

*4.14 (Convert letter grade to number) Write a program that prompts the user to enter a
letter grade A, B, C, D, or F and displays its corresponding numeric value 4, 3, 2,
1, or 0. Here is a sample run:

Enter a Tetter grade: B |-enter
The numeric value for grade B 1is 3

Enter a Tetter grade: T |-enter
T is an invalid grade

*4.15 (Phone key pads) The international standard letter/number mapping found on the
telephone is shown below:

Write a program that prompts the user to enter a letter and displays its correspond-
ing number.

Enter a letter: A |-enter
The corresponding number is 2

Enter a letter: a |-Enter
The corresponding number is 2

Enter a letter: + |~Enter
+ is an invalid input

4.16 (Random character) Write a program that displays a random uppercase letter
using the Math. random() method.

*4.17 (Days of a month) Write a program that prompts the user to enter a year and the
first three letters of a month name (with the first letter in uppercase) and displays
the number of days in the month. Here is a sample run:

Enter a year: 2001 |-—enter
Enter a month: Jan |-enter
Jan 2001 has 31 days

Programming Exercises 155

Enter a year: 2016 —Enter
Enter a month: Feb | -enter
Jan 2016 has 29 days

2

*4.18 (Student major and status) Write a program that prompts the user to enter two
characters and displays the major and status represented in the characters. The first
character indicates the major and the second is number character 1, 2, 3, 4, which
indicates whether a student is a freshman, sophomore, junior, or senior. Suppose

the following chracters are used to denote the majors:

M: Mathematics
C: Computer Science

I: Information Technology

Here is a sample run:

Enter two characters: M1 |-enter
Mathematics Freshman

Enter two characters: C3 |-enter
Computer Science Junior

o

Enter two characters: T3 |—enter
Invalid input

4.19 (Business: check ISBN-10) Rewrite the Programming Exercise 3.9 by entering the

ISBN number as a string.

4.20 (Process a string) Write a program that prompts the user to enter a string and dis-

plays its length and its first character.

*4.21 (Check SSN) Write a program that prompts the user to enter a Social Security
number in the format DDD-DD-DDDD, where D is a digit. Your program should

check whether the input is valid. Here are sample runs:

Enter a SSN: 232-23-5435 |-enter

232-23-5435 is a valid social security number

2

Enter a SSN: 23-23-5435 |-enter

23-23-5435 is an invalid social security number

2

4.22 (Check substring) Write a program that prompts the user to enter two strings and

reports whether the second string is a substring of the first string.

Enter string sl: ABCD |-enter
Enter string s2: BC |-enter
BC is a substring of ABCD

2

156 Chapter 4 Mathematical Functions, Characters, and Strings

] Enter string sl: ABCD |-enter
S Enter string s2: BDC |-enter

BDC is not a substring of ABCD

*4.23 (Financial application: payroll) Write a program that reads the following infor-
mation and prints a payroll statement:

Employee’s name (e.g., Smith)

Number of hours worked in a week (e.g., 10)
Hourly pay rate (e.g., 9.75)

Federal tax withholding rate (e.g., 20%)
State tax withholding rate (e.g., 9%)

A sample run is shown below:

| Enter employee's name: Smith | -enter
Enter number of hours worked in a week: 10 | -enter

Enter hourly pay rate: 9.75 -Enter
Enter federal tax withholding rate: 0.20 |-enter
Enter state tax withholding rate: 0.09 | -enter

Employee Name: Smith

Hours Worked: 10.0

Pay Rate: $9.75

Gross Pay: $97.5

Deductions:
Federal Withholding (20.0%): $19.5
State Withholding (9.0%): $8.77
Total Deduction: $28.27

Net Pay: $69.22

*4.24 (Order three cities) Write a program that prompts the user to enter three cities and
displays them in ascending order. Here is a sample run:

i Enter the first city: Chicago | -enter
g Enter the second city: Los Angeles | -enter
Enter the third city: Atlanta | -enter
The three cities in alphabetical order are Atlanta Chicago Los Angeles

*4.25 (Generate vehicle plate numbers) Assume a vehicle plate number consists of three
uppercase letters followed by four digits. Write a program to generate a plate
number.

*4.26 (Financial application: monetary units) Rewrite Listing 2.10, ComputeChange.
java, to fix the possible loss of accuracy when converting a float value to an int
value. Read the input as a string such as "11.56". Your program should extract
the dollar amount before the decimal point and the cents after the decimal amount
using the index0f and substring methods.

LOOPS

Objectives

To write programs for executing statements repeatedly using a while
loop (§5.2).

To follow the loop design strategy to develop loops (§§5.2.1-5.2.3).

B To control a loop with a sentinel value (§5.2.4).

To obtain large input from a file using input redirection rather than
typing from the keyboard (§5.2.5).

To write loops using do-whi1e statements (§5.3).

B To write loops using for statements (§5.4).

To discover the similarities and differences of three types of loop
statements (§5.5).

To write nested loops (§5.6).

B To learn the techniques for minimizing numerical errors (§5.7).

To learn loops from a variety of examples (GCD, FutureTuition,
Dec2Hex) (§5.8).

To implement program control with break and continue (§5.9).

To process characters in a string using a loop in a case study for check-
ing palindrome (§5.10).

To write a program that displays prime numbers (§5.11).

CHAPTER

158 Chapter 5 Loops

K
gﬁoifl{

problem
loop
efss
Point
wh1ile loop
loop body

iteration

Tloop-continuation-
condition

5.1 Introduction

A loop can be used to tell a program to execute statements repeatedly.

Suppose that you need to display a string (e.g., Welcome to Javal!) a hundred times. It
would be tedious to have to write the following statement a hundred times:

System.out.println("Welcome to Java!");

100 times System.out.printin("Welcome to Java!');

System.out.println("Welcome to Java!");

So, how do you solve this problem?

Java provides a powerful construct called a loop that controls how many times an operation
or a sequence of operations is performed in succession. Using a loop statement, you simply
tell the computer to display a string a hundred times without having to code the print statement
a hundred times, as follows:

int count = 0;

while (count < 100) {
System.out.println("Welcome to Java!");
count++;

3

The variable count is initially 0. The loop checks whether count < 100 is true. If so, it
executes the loop body to display the message Welcome to Java! and increments count
by 1. It repeatedly executes the loop body until count < 100 becomes false. When count
< 100 is false (i.e., when count reaches 100), the loop terminates and the next statement
after the loop statement is executed.

Loops are constructs that control repeated executions of a block of statements. The concept
of looping is fundamental to programming. Java provides three types of loop statements:
whiTe loops, do-while loops, and for loops.

5.2 The while Loop

A while loop executes statements repeatedly while the condition is true.

The syntax for the while loop is:

while (loop-continuation-condition) {
// Loop body
Statement(s);

}

Figure 5.1a shows the whi1e-loop flowchart. The part of the loop that contains the state-
ments to be repeated is called the loop body. A one-time execution of a loop body is referred to
as an iteration (or repetition) of the loop. Each loop contains a loop-continuation-condition, a
Boolean expression that controls the execution of the body. It is evaluated each time to deter-
mine if the loop body is executed. If its evaluation is true, the loop body is executed; if its
evaluation is false, the entire loop terminates and the program control turns to the statement
that follows the while loop.

The loop for displaying Welcome to Java! a hundred times introduced in the pre-
ceding section is an example of a while loop. Its flowchart is shown in Figure 5.1b. The

5.2 The while Loop 159

3} count = 0;|

loop-
continuation-
condition?

false (count < 100)7 —1aIs¢

true

Statement(s) | System.out.println("Welcome to Java!");
(loop body) count++;

(a) (b)

FiGure 5.1 The while loop repeatedly executes the statements in the loop body when the
Toop-continuation-condition evaluates to true.

Toop-continuation-conditionis count < 100 and the loop body contains the follow-
ing two statements:

loop-continuation-condition
int count = 0; /

while (count < 100) {
System.out.printIn('Welcome to Java!'); loop body
count++;

}

In this example, you know exactly how many times the loop body needs to be executed
because the control variable count is used to count the number of executions. This type of
loop is known as a counter-controlled loop. counter-controlled loop

Note

The Toop-continuation-condition must always appear inside the parentheses.
The braces enclosing the loop body can be omitted only if the loop body contains one
or no statement.

Here is another example to help understand how a loop works.

int sum = 0, i = 1;

while (i < 10) {
sum = sum + 1i;
i++;

}

System.out.println("sum is

"+ sum); // sum is 45
If i < 10is true, the program adds i to sum. Variable 1 is initially set to 1, then is incre-
mented to 2, 3, and up to 10. When i is 10, i < 10is false, so the loop exits. Therefore,
thesumis1l + 2 + 3 + ... + 9 = 45,

What happens if the loop is mistakenly written as follows?

int sum = 0, i = 1;
while (i < 10) {
sum = sum + 1i;

}

This loop is infinite, because 1 is always 1 and 1 < 10 will always be true.

160 Chapter 5 Loops

Note
H Make sure that the Toop-continuation-condition eventually becomes false
infinite loop so that the loop will terminate. A common programming error involves infinite loops
(i. e., the loop runs forever). If your program takes an unusually long time to run and
does not stop, it may have an infinite loop. If you are running the program from the
command window, press CTRL+C to stop it.

Caution
H Programmers often make the mistake of executing a loop one more or less time. This
off-by-one error is commonly known as the off-by-one error. For example, the following loop displays
Welcome to Java 10l times rather than 100 times. The error lies in the condition,
which should be count < 100 rather than count <= 100.

int count = 0;

while (count <= 100) {
System.out.println("Welcome to Java!");
count++;

}

Recall that Listing 3.1, AdditionQuiz.java, gives a program that prompts the user to enter
an answer for a question on addition of two single digits. Using a loop, you can now rewrite
the program to let the user repeatedly enter a new answer until it is correct, as shown in
Listing 5.1.

LIsTING 5.1 RepeatAdditionQuiz.java

1 import java.util.Scanner;

2

3 public class RepeatAdditionQuiz {

4 public static void main(String[] args) {
generate numberl 5 int numberl = (int) (Math.random() * 10);
generate humber?2 6 int number2 = (int) (Math.random() * 10);

7

8 // Create a Scanner

9 Scanner input = new Scanner(System.in);

10
show question 11 System.out.print(

12 "What is " 4+ numberl + " + " + number2 + "? ");
get first answer 13 int answer = input.nextInt();

14
check answer 15 while (numberl + number2 !'= answer) {

16 System.out.print("Wrong answer. Try again. What is "

17 + numberl + " + " + number2 + "? '");
read an answer 18 answer = input.nextInt();

19 }

20

21 System.out.printin("You got 1it!");

22 }

23 %

E What is 5 + 97 12 |-enter
Wrong answer. Try again. What is 5 + 97 34 | -enter

Wrong answer. Try again. What is 5 + 9?7 14 -enter
You got it!

5.2 The while Loop

The loop in lines 15-19 repeatedly prompts the user to enter an answer when numberl
+ number2 != answer is true. Once numberl + number2 != answer is false, the
loop exits.

5.2.1 Case Study: Guessing Numbers

The problem is to guess what number a computer has in mind. You will write a program that
randomly generates an integer between 0 and 100, inclusive. The program prompts the user
to enter a number continuously until the number matches the randomly generated number. For
each user input, the program tells the user whether the input is too low or too high, so the user
can make the next guess intelligently. Here is a sample run:

Guess a magic number between 0 and 100
Enter your guess: 50 |-enter

Your guess is too high

Enter your guess: 25 |-enter

Your guess is too low

Enter your guess: 42 |-enter

Your guess is too high

Enter your guess: 39 |-enter

Yes, the number is 39

The magic number is between 0 and 100. To minimize the number of guesses, enter 50
first. If your guess is too high, the magic number is between 0 and 49. If your guess is too
low, the magic number is between 51 and 100. So, you can eliminate half of the numbers from
further consideration after one guess.

How do you write this program? Do you immediately begin coding? No. It is important to
think before coding. Think how you would solve the problem without writing a program. You
need first to generate a random number between 0 and 100, inclusive, then to prompt the user
to enter a guess, and then to compare the guess with the random number.

It is a good practice to code incrementally one step at a time. For programs involving loops,
if you don’t know how to write a loop right away, you may first write the code for executing
the loop one time, and then figure out how to repeatedly execute the code in a loop. For this
program, you may create an initial draft, as shown in Listing 5.2.

LISTING 5.2 GuessNumberOneTime. java

1 import java.util.Scanner;

2

3 public class GuessNumberOneTime {

4 public static void main(String[] args) {

5 // Generate a random number to be guessed
6 int number = (int) (Math.random() * 101);
7

8 Scanner input = new Scanner(System.in);

9 System.out.printin("Guess a magic number between 0 and 100");
10
11 // Prompt the user to guess the number
12 System.out.print("\nEnter your guess: ");
13 int guess = input.nextInt();
14
15 if (guess == number)

16 System.out.printin("Yes, the number is + number);

VideoNote
Guess a number

2

intelligent guess

think before coding

code incrementally

generate a number

enter a guess

correct guess?

161

162 Chapter 5

too high?

too low?

generate a number

Loops

17
18
19
20
21
22

else if (guess > number)
System.out.printin("Your guess is too high");
else
System.out.println("Your guess 1is too Tow");
}
}

When you run this program, it prompts the user to enter a guess only once. To let the user

enter a guess repeatedly, you may wrap the code in lines 11-20 in a loop as follows:

while (true) {

// Prompt the user to guess the number
System.out.print("\nEnter your guess: ");
guess = input.nextInt();

if (guess == number)
System.out.println("Yes, the number 1is
else if (guess > number)
System.out.println("Your guess 1is too high');
else
System.out.printin("Your guess is too low");

+ number);

} // End of Toop

This loop repeatedly prompts the user to enter a guess. However, this loop is not correct,
because it never terminates. When guess matches number, the loop should end. So, the loop

can be revised as follows:

while (guess != number) {

// Prompt the user to guess the number
System.out.print("\nEnter your guess: ");
guess = input.nextInt();

if (guess == number)
System.out.printin("Yes, the number 1is
else if (guess > number)
System.out.printin("Your guess is too high");
else
System.out.println("Your guess 1is too Tow");

+ number);

} // End of Toop

The complete code is given in Listing 5.3.

LISTING 5.3 GuessNumber.java

1

ey
RO WwWoNOUVIh WN

import java.util.Scanner;

public class GuessNumber {
public static void main(String[] args) {
// Generate a random number to be guessed
int number = (int) (Math.random() * 101);

Scanner input = new Scanner(System.in);
System.out.println("Guess a magic number between 0 and 100");

int guess = -1;

while (guess != number) {
// Prompt the user to guess the number
System.out.print("\nEnter your guess: ");

5.2 The while Loop 163

15 guess = input.nextInt(); enter a guess
16
17 if (guess == number)
18 System.out.println("Yes, the number is " + number);
19 else if (guess > number)
20 System.out.printin("Your guess is too high"); too high?
21 else
22 System.out.println("Your guess 1is too low'); too low?
23 } // End of Toop
24 }
25 %
line# number guess output O\
6 39
11 -1
o 15 50
iteration 1
20 Your guess 1is too high

o 15 25
iteration 2 .
Your guess is too low

- 15 42

iteration 3 . .
20 Your guess 1is too high
15 39

18 Yes, the number is 39

iteration 4

N
N

The program generates the magic number in line 6 and prompts the user to enter a guess
continuously in a loop (lines 12-23). For each guess, the program checks whether the guess
is correct, too high, or too low (lines 17-22). When the guess is correct, the program exits the
loop (line 12). Note that guess is initialized to - 1. Initializing it to a value between 0 and 100
would be wrong, because that could be the number to be guessed.

5.2.2 Loop Design Strategies

Writing a correct loop is not an easy task for novice programmers. Consider three steps when
writing a loop.

Step 1: Identify the statements that need to be repeated.
Step 2: Wrap these statements in a loop like this:

while (true) {
Statements;

3

Step 3: Code the Toop-continuation-condition and add appropriate statements for
controlling the loop.

while (loop-continuation-condition) {
Statements;
Additional statements for controlling the Toop;

3

164 Chapter 5

VideoNote
Multiple subtraction quiz

get start time

loop

display a question

grade an answer

increase correct count

increase control variable

prepare output

Loops

5.2.3 Case Study: Multiple Subtraction Quiz

The Math subtraction learning tool program in Listing 3.3, SubtractionQuiz.java, generates just
one question for each run. You can use a loop to generate questions repeatedly. How do you
write the code to generate five questions? Follow the loop design strategy. First identify the
statements that need to be repeated. These are the statements for obtaining two random numbers,
prompting the user with a subtraction question, and grading the question. Second, wrap the state-
ments in a loop. Third, add a loop control variable and the Toop-continuation-condition
to execute the loop five times.

Listing 5.4 gives a program that generates five questions and, after a student answers all
five, reports the number of correct answers. The program also displays the time spent on the
test and lists all the questions.

LISTING 5.4 SubtractionQuizLoop.java

1 import java.util.Scanner;

2

3 public class SubtractionQuizLoop {

4 public static void main(String[] args) {

5 final int NUMBER_OF_QUESTIONS = 5; // Number of questions

6 int correctCount = 0; // Count the number of correct answers
7 int count = 0; // Count the number of questions

8 long startTime = System.currentTimeMillis(Q);

9 String output = " "; // output string is initially empty
10 Scanner input = new Scanner(System.in);
11
12 while (count < NUMBER_OF_QUESTIONS) {
13 // 1. Generate two random single-digit integers
14 int numberl = (int) (Math.random() * 10);
15 int number2 = (int) (Math.random() * 10);
16
17 // 2. If numberl < number2, swap numberl with number2
18 if (numberl < number2) {
19 int temp = numberl;
20 numberl = number?2;
21 number2 = temp;

22 }

23

24 // 3. Prompt the student to answer "What is numberl - number2?"
25 System.out.print(

26 "What is " + numberl + " - " + number2 + "7 ");

27 int answer = input.nextInt();

28

29 // 4. Grade the answer and display the result

30 if (numberl - number2 == answer) {

31 System.out.printin("You are correct!");

32 correctCount++; // Increase the correct answer count

33 }

34 else

35 System.out.println("Your answer 1is wrong.\n" + numberl
36 + " = " + number2 + " should be " + (numberl - number2));
37

38 // Increase the question count

39 count++;

40

41 output += "\n" + numberl + "-" + number2 + "=" + answer +

42 ((numberl - number2 == answer) ? " correct" : wrong") ;

5.2 The while Loop 165

43 } end loop
44

45 long endTime = System.currentTimeMillis(); get end time
46 long testTime = endTime - startTime; test time
47

48 System.out.printin("Correct count is " + correctCount + display result
49 "\nTest time is " + testTime / 1000 + " seconds\n" + output);

50 }

51 3}

What is 9 — 27 7 —enter i

You are correct! E

What is 3 — 07 3 —enter
You are correct!

What is 3 - 27 1 |-enter
You are correct!

What is 7 - 4?7 4 |-enter
Your answer is wrong.
7 — 4 should be 3

What is 7 — 57 4 —enter
Your answer is wrong.
7 — 5 should be 2

Correct count is 3
Test time is 1021 seconds

9-2=7 correct
3-0=3 correct
3-2=1 correct
7-4=4 wrong
7-5=4 wrong

The program uses the control variable count to control the execution of the loop. count
is initially O (line 7) and is increased by 1 in each iteration (line 39). A subtraction question is
displayed and processed in each iteration. The program obtains the time before the test starts
in line 8 and the time after the test ends in line 45, and computes the test time in line 46. The
test time is in milliseconds and is converted to seconds in line 49.

5.2.4 Controlling a Loop with a Sentinel Value

Another common technique for controlling a loop is to designate a special value when read-

ing and processing a set of values. This special input value, known as a sentinel value, signi- sentinel value

fies the end of the input. A loop that uses a sentinel value to control its execution is called a

sentinel-controlled loop. sentinel-controlled loop
Listing 5.5 writes a program that reads and calculates the sum of an unspecified number

of integers. The input 0 signifies the end of the input. Do you need to declare a new variable

for each input value? No. Just use one variable named data (line 12) to store the input value

and use a variable named sum (line 15) to store the total. Whenever a value is read, assign it

to data and, if it is not zero, add it to sum (line 17).

166 Chapter 5 Loops

LISTING 5.5 SentinelValue.java

1 import java.util.Scanner;

2
3 public class SentinelValue {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Read an initial data
10 System.out.print(
11 "Enter an integer (the input ends if it is 0): ");
input 12 int data = input.nextInt();
13
14 // Keep reading data until the input is 0
15 int sum = 0;
loop 16 while (data != 0) {
17 sum += data;
18
19 // Read the next data
20 System.out.print(
21 "Enter an integer (the 1input ends if it is 0): ');
22 data = input.nextInt();
end of loop 23 }
24
display result 25 System.out.printIn("The sum 1is " + sum);
26 }
27 %
E Enter an integer (the input ends if it is 0): 2 |-enter
Enter an integer (the input ends if it is 0): 3 |-enter
Enter an integer (the input ends if it is 0): 4 |-enter
Enter an integer (the input ends if it is 0): 0 -enter
The sum is 9
O« line# Data sum output
12 2
15 0
17 2
iteration 1
22 3
o 17 5
iteration 2
22 4
. . 17 9
iteration 3 {
22 0
25 The sum is 9

If data is not 0, it is added to sum (line 17) and the next item of input data is read (lines
20-22). If data is 0, the loop body is no longer executed and the whi1e loop terminates. The
input value 0 is the sentinel value for this loop. Note that if the first input read is 0, the loop
body never executes, and the resulting sum is 0.

5.2 The while Loop 167

Caution
Don’t use floating-point values for equality checking in a loop control. Because floating-
point values are approximations for some values, using them could result in imprecise
counter values and inaccurate results.

Consider the following code for computingl + 0.9 + 0.8 + ... + 0.1:

double item = 1; double sum = 0;

while (item != 0) { // No guarantee item will be 0
sum += item;
item -= 0.1;

}

System.out.println(sum);

Variable item starts with 1 and is reduced by 0. 1 every time the loop body is executed.
The loop should terminate when item becomes 0. However, there is no guarantee that
item will be exactly 0, because the floating-point arithmetic is approximated. This loop
seems okay on the surface, but it is actually an infinite loop. numeric error

5.2.5 Input and Output Redirections

In the preceding example, if you have a large number of data to enter, it would be cumbersome
to type from the keyboard. You can store the data separated by whitespaces in a text file, say
input.txt, and run the program using the following command:

java SentinelValue < 1input.txt

This command is called input redirection. The program takes the input from the file input input redirection
.txt rather than having the user type the data from the keyboard at runtime. Suppose the con-
tents of the file are

2345678912 23 32
23 45 67 89 92 12 343531240

The program should get sum to be 518.
Similarly, there is output redirection, which sends the output to a file rather than displaying output redirection
it on the console. The command for output redirection is:

java ClassName > output.txt

Input and output redirection can be used in the same command. For example, the following
command gets input from input.txt and sends output to output.txt:

java SentinelValue output.txt

Try running the program to see what contents are in output.txt.

5.1 Analyze the following code. Is count < 100 always true, always false, or some- ﬁheck
times true or sometimes false at Point A, Point B, and Point C? /' Point

int count = 0;
while (count < 100) {
// Point A
System.out.println("Welcome to Java!");
count++;
// Point B
}
// Point C

168 Chapter 5 Loops
5.2 What is wrong if guess is initialized to 0 in line 11 in Listing 5.3?
5.3 How many times are the following loop bodies repeated? What is the output of each
loop?
'in1_: i :‘1; int i = 1; int i = 1;
while Gi < 10) while (i < 10) while (i < 10)
if G %2==0) _ if (%2 =0 if ((i+) % 2 == 0)
System.out.printin(i); System.out.println(i++); System.out.println(i);
(a) (b) (©)
5.4 Suppose theinputis 2 3 4 5 0. What is the output of the following code?
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int number, max;
number = input.nextInt();
max = number;
while (number != 0) {
number = input.nextInt();
if (number > max)
max = number;
}
System.out.println("max is " + max);
System.out.println("number " + number);
}
}
5.5 What is the output of the following code? Explain the reason.

K
gﬁoi?;;

do-whiTe loop

int x = 80000000;

while (x > 0)
X++;

System.out.println('x is + X);

5.3 The do-while Loop

A do-while loop is the same as a while loop except that it executes the loop body
first and then checks the loop continuation condition.

The do-whiTe loop is a variation of the while loop. Its syntax is:

do {
// Loop body;
Statement(s);
} while (Toop-continuation-condition);

Its execution flowchart is shown in Figure 5.2.
The loop body is executed first, and then the Toop-continuation-condition is evalu-
ated. If the evaluation is true, the loop body is executed again; if it is false, the do-while

Statement(s)
(loop body)

|

loop-
true continuation-
condition?

5.3 The do-while Loop 169

FIGURe 5.2 The do-wh1ile loop executes the loop body first, then checks the Toop-
continuation-condition to determine whether to continue or terminate the loop.

loop terminates. The difference between a while loop and a do-whiTe loop is the order in
which the Toop-continuation-condition is evaluated and the loop body executed. You
can write a loop using either the whiTe loop or the do-whiTe loop. Sometimes one is a more
convenient choice than the other. For example, you can rewrite the while loop in Listing 5.5
using a do-whi1e loop, as shown in Listing 5.6.

LISTING 5.6 TestDoWhile.java

1 dimport java.util.Scanner;

2

3 public class TestDoWhile {

4 /** Main method */

5 public static void main(String[] args) {

6 int data;

7 int sum = 0;

8

9 // Create a Scanner

10 Scanner input = new Scanner(System.in);

11

12 // Keep reading data until the input is 0

13 do { loop
14 // Read the next data

15 System.out.print(

16 "Enter an integer (the 1input ends if it is 0): ');

17 data = input.nextInt();
18
19 sum += data;
20 } while (data != 0); end loop
21
22 System.out.println("The sum 1is " + sum);
23 }
24 %

Enter an integer (the input ends if it is 0): 3 |-enter g
Enter an integer (the input ends if it is 0): 5 -enter

Enter an integer (the input ends if it is 0): 6 -enter

Enter an integer (the input ends if it is 0): 0 -enter

The sum is 14

170 Chapter 5 Loops

Tip

Use a do-whiTe loop if you have statements inside the loop that must be executed
at least once, as in the case of the do-wh1ile loop in the preceding TestDoWhile
program. These statements must appear before the loop as well as inside it if you use
awhile loop

Aeck 5.6 Suppose the inputis 2 3 4 5 0. What is the output of the following code?

Point . . .
om import java.util.Scanner;

public class Test {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

int number, max;
number = input.nextInt();
max = number;

do {
number = input.nextInt();
if (number > max)
max = number;
} while (number != 0);
System.out.printin("max is "
System.out.println("number

+ max);
+ number);

5.7 What are the differences between a while loop and a do-wh1ile loop? Convert the
following wh1iTe loop into a do-wh1iTe loop.

Scanner input = new Scanner(System.in);
int sum = 0;
System.out.printin("Enter an integer " +
"(the 1input ends if it is 0)");
int number = input.nextInt();
while (number != 0) {
sum += number;
System.out.printin("Enter an integer " +
"(the 1input ends if it is 0)");
number = input.nextInt();

}

5.4 The for Loop

A for loop has a concise syntax for writing loops.

Key
€7 point Often you write a loop in the following common form:

i = initialvalue; // Initialize loop control variable
while (i < endValue)
// Loop body

i++; // Adjust loop control variable

}

5.4 The for Loop 171

A for loop can be used to simplify the preceding loop as:

for (i = initialvalue; i < endValue; i++)
// Loop body

}
In general, the syntax of a for loop is:
for (initial-action; Tloop-continuation-condition; for loop
action-after-each-iteration) {
// Loop body;
Statement(s);
}

The flowchart of the for loop is shown in Figure 5.3a.

@) o

initial-action I 1= 0|

loop-
continuation- false (i < 100)? false
WV \ /_
true true
Statement(s) System.out.printin(
(loop body) "Welcome to Java");

— action-after-each-iteration | — i+
(a) (b)

FiIGUure 5.3 A for loop performs an initial action once, then repeatedly executes
the statements in the loop body, and performs an action after an iteration when the
Toop-continuation-condition evaluates to true.

The for loop statement starts with the keyword for, followed by a pair of parenthe-
ses enclosing the control structure of the loop. This structure consists of initial-action,
Toop-continuation-condition, and action-after-each-iteration. The control
structure is followed by the loop body enclosed inside braces. The initial-action, Toop-
continuation-condition, and action-after-each-iteration are separated by
semicolons.

A for loop generally uses a variable to control how many times the loop body is executed
and when the loop terminates. This variable is referred to as a control variable. The initial- control variable
action often initializes a control variable, the action-after-each-iteration usually
increments or decrements the control variable, and the Toop-continuation-condition

172 Chapter 5

initial-action

action-after-each-iteration

omitting braces

declare control variable

for loop variations

Loops

tests whether the control variable has reached a termination value. For example, the following
for loop prints Welcome to Java! ahundred times:
int i;
for (i = 0; i < 100; i++) {
System.out.println("Welcome to Java!");

}

The flowchart of the statement is shown in Figure 5.3b. The for loop initializes i to 0, then
repeatedly executes the printTn statement and evaluates i++ while 1 is less than 100.

The initial-action, i = 0, initializes the control variable, i. The Toop-
continuation-condition,i < 100, is a Boolean expression. The expression is evaluated
right after the initialization and at the beginning of each iteration. If this condition is true,
the loop body is executed. If it is false, the loop terminates and the program control turns to
the line following the loop.

Theaction-after-each-iteration, i++,isastatement that adjusts the control variable.
This statement is executed after each iteration and increments the control variable. Eventually,
the value of the control variable should force the Toop-continuation-condition to
become false; otherwise, the loop is infinite.

The loop control variable can be declared and initialized in the for loop. Here is an example:

for (int i = 0; i < 100; i++) {
System.out.println("Welcome to Java!");

}

If there is only one statement in the loop body, as in this example, the braces can be omitted.

Tip

The control variable must be declared inside the control structure of the loop or before
the loop. If the loop control variable is used only in the loop, and not elsewhere, it is a
good programming practice to declare it in the initial-action of the for loop. If
the variable is declared inside the loop control structure, it cannot be referenced outside
the loop. In the preceding code, for example, you cannot reference i outside the for
loop, because it is declared inside the for loop.

Note
The initial-action in a for loop can be a list of zero or more comma-separated
variable declaration statements or assignment expressions. For example:

for (int i =0, j =0; i + Jj < 10; i++, j++) {
// Do something
}

The action-after-each-iteration ina for loop can be a list of zero or more
comma-separated statements. For example:

for (int i = 1; i < 100; System.out.println(i), i++);

This example is correct, but it is a bad example, because it makes the code difficult to
read. Normally, you declare and initialize a control variable as an initial action and incre-
ment or decrement the control variable as an action after each iteration.

Note

H If the Toop-continuation-condition in a for loop is omitted, it is implicitly
true. Thus the statement given below in (a), which is an infinite loop, is the same as
in (b). To avoid confusion, though, it is better to use the equivalent loop in (c).

5.4 The for Loop 173

for (; ;) { Equivalent for (; true;) { Equivalent while (true) {
// Do something _ // Do something _ // Do something
b } F}
This is better
(@) (b) (©
. . . N
5.8 Do the following two loops result in the same value in sum? ﬁheck
Point
for (int i = 0; i < 10; ++1) { for (int i = 0; i < 10; i++) {
sum += i; sum += 1;
3 b
(@ (b)
5.9 What are the three parts of a for loop control? Write a for loop that prints the num-
bers from 1 to 100.
5.10 Suppose the inputis 2 3 4 5 0. What is the output of the following code?
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int number, sum = 0, count;
for (count = 0; count < 5; count++) {
number = input.nextInt();
sum += number;
}
System.out.printin("sum is " + sum);
System.out.println("count is " + count);
}
}
5.11 What does the following statement do?
for (5 5) {
// Do something
}
5.12 [If avariable is declared in a for loop control, can it be used after the loop exits?
5.13 Convert the following for loop statement to a while loop and to a do-wh1iTe loop:
Tong sum = 0;
for (int i = 0; i <= 1000; 1i++)
sum = sum + 1i;
5.14 Count the number of iterations in the following loops.

int count = 0; for (int count = 0;

while (count < n) { count <= n; count++) {
count++; }

}

(a) (b)

174 Chapter 5

pretest loop

posttest loop

Loops

int count = 5;

count++;

}

while (count < n) {

int count = 5;
while (count < n) {
count = count + 3;

}

(©)

5.5 Which Loop to Use?

K
ke

(d)

You can use a for loop, a while loop, or a do-while loop, whichever is convenient.

The while loop and for loop are called pretest loops because the continuation condition

is checked before the loop body is executed. The do-while loop is called a posttest loop
because the condition is checked after the loop body is executed. The three forms of loop
statements—while, do-while, and for—are expressively equivalent; that is, you can write
a loop in any of these three forms. For example, a while loop in (a) in the following figure
can always be converted into the for loop in (b).

while (Toop-continuation-condition) {
// Loop body
}

(a)

Equivalent

for (; loop-continuation-condition;) {
// Loop body
}

(b)

A for loop in (a) in the next figure can generally be converted into the while loop in
(b) except in certain special cases (see Checkpoint Question 5.25 for such a case).

for (initial-action;
loop-continuation-condition;
action-after-each-iteration) {
// Loop body;
}

(a)

Equivalent

initial-action;

while (Toop-continuation-condition) {
// Loop body;
action-after-each-iteration;

}

(b)

Use the loop statement that is most intuitive and comfortable for you. In general, a for
loop may be used if the number of repetitions is known in advance, as, for example, when
you need to display a message a hundred times. A while loop may be used if the number of
repetitions is not fixed, as in the case of reading the numbers until the input is 0. A do-while
loop can be used to replace a while loop if the loop body has to be executed before the con-

tinuation condition is tested.

Caution

Adding a semicolon at the end of the for clause before the loop body is a common
mistake, as shown below in (a). In (a), the semicolon signifies the end of the loop pre-
maturely. The loop body is actually empty, as shown in (b). (a) and (b) are equivalent.

Both are incorrect.

Error

/

Empty body

{
3

System.out.println("i 1is

Y

for (int i = 0; 1 < 10; i++);

+ 1)

for (int i = 0; i < 10; i++) {3;
{

System.out.printIn("i fis
}

"

+ 1)

(a)

(b)

5.5 Which Loop to Use? 175

Similarly, the loop in (c) is also wrong. (c) is equivalent to (d). Both are incorrect.

Error Empty body
int i = 0; / int i = 0; /
while (i < 10); while (i < 10) { };
{ {
System.out.printin("i is " + 1i); System.out.printin("i is " + 1i);
i++; i++;
} b
© (d)
These errors often occur when you use the next-line block style. Using the end-of-line
block style can avoid errors of this type.
In the case of the do-wh1i1e loop, the semicolon is needed to end the loop.
int i = 0;
do {
System.out.println("i is " + 1i);
T4++;
while (i < 10);
3 () -
Correct
5.15 Canyou converta for loop to awhile loop? List the advantages of using for loops.
5.16 Can you always convert a while loop into a for loop? Convert the following while
loop into a for loop.
int i = 1;
int sum = 0;
while (sum < 10000) {
sum = sum + i;
i++;
}
5.17 Identify and fix the errors in the following code:

1 public class Test {
2 public void main(String[] args) {
3 for (int i = 0; 1 < 10; i++);
4 sum += i;
5
6 if (< J3);
7 System.out.println(i)
8 else
9 System.out.println(j);
10
11 while (j < 10);
12 {
13 J++;
14 }
15
16 do {
17 J++;
18 } while (j < 10)
19 }

20 1}

ﬁheck

Point

176 Chapter5 Loops

5.18 What is wrong with the following programs?

1 public class ShowErrors {

2 public static void main(String[] args) {
3 int i = 0;

4 do {

5 System.out.printin(i + 4);

6 i++;

7 }

8 while (i < 10)

9 1}
10 }

1 public class ShowErrors {

2 public static void main(String[] args) {
3 for (int i = 0; i < 10; i++);

4 System.out.printin(i + 4);

5 %

6}

(@
5.6 Nested Loops
efoss

nested loop

(b)

A loop can be nested inside another loop.

Nested loops consist of an outer loop and one or more inner loops. Each time the outer loop is

repeated, the inner loops are reentered, and started anew.
Listing 5.7 presents a program that uses nested for loops to display a multiplication table.

LISTING 5.7 MultiplicationTable.java
1 public class MultiplicationTable {

2 /** Main method */
3 public static void main(String[] args) {
4 // Display the table heading
table title 5 System.out.println(" Multiplication Table');
6
7 // Display the number title
8 System.out.print(" s
9 for (int j = 1; j <= 9; j++)
10 System.out.print(" "+ 3);
11
12 System.out.println('"\n ;3
13
14 // Display table body
outer loop 15 for (int i = 1; i <= 9; i++) {
16 System.out.print(i + " | '");
inner loop 17 for (int j = 1; j <= 9; j++) {
18 // Display the product and align properly
19 System.out.printf("%4d", i * j);
20 }
21 System.out.println();
22 }
23 }
24 %
Multiplication Table
Q!!L> 1 2 3 4 5 6 7 8 9
1| 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5| 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

5.6 Nested Loops

The program displays a title (line 5) on the first line in the output. The first for loop (lines
9-10) displays the numbers 1 through 9 on the second line. A dashed (-) line is displayed on
the third line (line 12).

The next loop (lines 15-22) is a nested for loop with the control variable 1 in the outer
loop and j in the inner loop. For each 1, the product i * j is displayed on a line in the inner
loop, with j being 1, 2, 3, ..., 9.

Note

Be aware that a nested loop may take a long time to run. Consider the following loop
nested in three levels:

for (int i = 0; i < 10000; i++)
for (int j = 0; j < 10000; j++)
for (int k = 0; k < 10000; k++)
Perform an action

The action is performed one trillion times. If it takes | microsecond to perform the action,
the total time to run the loop would be more than 277 hours. Note that | microsecond
is one millionth (107) of a second.

) L . 9 ,

5.19 How many times is the print1n statement executed A heck

for (int i = 0; i < 105 i++) Point
for (int j = 0; j < i; j++)
System.out.printin(i * j)

5.20 Show the output of the following programs. (Hint: Draw a table and list the variables
in the columns to trace these programs.)

public class Test { public class Test {
public static void main(String[] args) { public static void main(String[] args) {
for (int i = 1; i < 5; i++) { int i = 0;
int j = 0; while (i < 5) {
while (J < 1) { for (int j =1; j > 1; j--)
System.out.print(j + " "); System.out.print(j + " ");
J++; System.out.printin("###*");
} 443
} }
} }
} }
(a) (b)
public class Test { public class Test {
public static void main(String[] args) { public static void main(String[] args) {
int i = 5; int i = 1;
while (i >= 1) { do {
int num = 1; int num = 1;
for (int j = 1; j <= 1; j++) { for (int j = 1; j <= 1; j++) {
System.out.print(num + "xxx"); System.out.print(num + "G");
num *= 2; num += 2;
} }
System.out.println(); System.out.printin(Q);
i--; T+
} } while (i <= 5);
} }
} }

© (d)

177

178 Chapter 5 Loops

K
Gﬁoifl)l’;

VideoNote
Minimize numeric errors

loop

double precision

numeric error

5.7 Minimizing Numeric Errors

Using floating-point numbers in the loop continuation condition may cause numeric errors.

Numeric errors involving floating-point numbers are inevitable, because floating-point num-
bers are represented in approximation in computers by nature. This section discusses how to
minimize such errors through an example.

Listing 5.8 presents an example summing a series that starts with 0.01 and ends with 1.0.
The numbers in the series will increment by 0. 01, as follows: 0.01 + 0.02 + 0.03, and so on.

LISTING 5.8 TestSum.java
1 public class TestSum {

2 public static void main(String[] args) {

3 // Initialize sum

4 float sum = 0;

5

6 // Add 0.01, 0.02, ..., 0.99, 1 to sum

7 for (float i = 0.01f; i <= 1.0f; i =i + 0.01f)
8 sum += i;

9
10 // Display result
11 System.out.println("The sum 1is " + sum);
12 }
13 1}

The sum is 50.499985

The for loop (lines 7-8) repeatedly adds the control variable i to sum. This variable, which
begins with 0.01, is incremented by 0.01 after each iteration. The loop terminates when ‘i
exceeds 1.0.

The for loop initial action can be any statement, but it is often used to initialize a control
variable. From this example, you can see that a control variable can be a float type. In fact,
it can be any data type.

The exact sum should be 50.50, but the answer is 50.499985. The result is imprecise
because computers use a fixed number of bits to represent floating-point numbers, and thus
they cannot represent some floating-point numbers exactly. If you change float in the pro-
gram to double, as follows, you should see a slight improvement in precision, because a
doub' e variable holds 64 bits, whereas a float variable holds 32 bits.

// Initialize sum
double sum = 0;

// Add 0.01, 0.02, ..., 0.99, 1 to sum
for (double i = 0.01; i <= 1.0; i =1 + 0.01D)
sum += 1i;

However, you will be stunned to see that the result is actually 49.50000000000003. What
went wrong? If you display 1 for each iteration in the loop, you will see that the last i is
slightly larger than 1 (not exactly 1). This causes the last i not to be added into sum. The
fundamental problem is that the floating-point numbers are represented by approximation. To
fix the problem, use an integer count to ensure that all the numbers are added to sum. Here is
the new loop:

double currentValue = 0.01;

for (int count = 0; count < 100; count++) {

sum += currentValue;
currentValue += 0.01;

3

After this loop, sum is 50.50000000000003. This loop adds the numbers from smallest to
biggest. What happens if you add numbers from biggest to smallest (i.e., 1.0, 0.99, 0.98,
...,0.02,0.01 in this order) as follows:

double currentValue = 1.0;

for (int count = 0; count < 100; count++) {
sum += currentValue;
currentValue -= 0.01;

}

After this loop, sumis 50.49999999999995. Adding from biggest to smallest is less accurate
than adding from smallest to biggest. This phenomenon is an artifact of the finite-precision arith-
metic. Adding a very small number to a very big number can have no effect if the result requires
more precision than the variable can store. For example, the inaccurate result of 100000000.0
+ 0.000000001 is 100000000. 0. To obtain more accurate results, carefully select the order
of computation. Adding smaller numbers before bigger numbers is one way to minimize errors.

5.8 Case Studies

Loops are fundamental in programming. The ability to write loops is essential in
learning Java programming.

If you can write programs using loops, you know how to program! For this reason, this section
presents four additional examples of solving problems using loops.

5.8.1 Case Study: Finding the Greatest Common Divisor

The greatest common divisor (gcd) of the two integers 4 and 2 is 2. The greatest common
divisor of the two integers 16 and 24 is 8. How would you write this program to find the great-
est common divisor? Would you immediately begin to write the code? No. It is important to
think before you code. Thinking enables you to generate a logical solution for the problem
without concern about how to write the code.

Let the two input integers be n1 and n2. You know that number 1 is a common divisor, but
it may not be the greatest common divisor. So, you can check whether k (for k = 2, 3, 4, and
so on) is a common divisor for nl and n2, until k is greater than n1 or n2. Store the common
divisor in a variable named gcd. Initially, gcd is 1. Whenever a new common divisor is found,
it becomes the new gcd. When you have checked all the possible common divisors from 2 up
to nl or n2, the value in variable gcd is the greatest common divisor. Once you have a logical
solution, type the code to translate the solution into a Java program as follows:

int gcd = 1; // Initial gcd is 1
int k = 2; // Possible gcd

while (k <= n1 & k <= n2) {
if (n1 % k == 0&& n2 % k == 0)
gcd = k; // Update gcd
k++; // Next possible gcd
}

// After the loop, gcd is the greatest common divisor for nl and n2

Listing 5.9 presents the program that prompts the user to enter two positive integers and
finds their greatest common divisor.

5.8 Case Studies 179

avoiding numeric error

K
foxe

ged

think before you code

logical solution

180 Chapter 5 Loops

LISTING 5.9 GreatestCommonDivisor.java

1 import java.util.Scanner;

3 public class GreatestCommonDivisor {

4 /** Main method */

5 public static void main(String[] args) {
6 // Create a Scanner

7 Scanner input = new Scanner(System.in);
8

9 // Prompt the user to enter two integers
10 System.out.print("Enter first integer: ");
input 11 int nl = input.nextInt();
12 System.out.print("Enter second integer: ");
input 13 int n2 = input.nextInt();
14
gcd 15 int gcd = 1; // Initial gcd is 1
16 int k = 2; // Possible gcd
17 while (k <= nl & k <= n2) {
check divisor 18 if (n1 % k == 0 && n2 % k == 0)
19 gcd = k; // Update gcd
20 k++;
21 }
22
output 23 System.out.println("The greatest common divisor for " + nl +
24 “and "+ n2 + " dis " + gcd);
25 }
26 %

E Enter first integer: 125 |-enter
Enter second integer: 2525 | -enter

The greatest common divisor for 125 and 2525 1is 25

Translating a logical solution to Java code is not unique. For example, you could use a for
loop to rewrite the code as follows:

for (int k = 2; k <= nl1 && k <= n2; k++) {
if (N1 % k == 0 && n2 % k == 0)
gcd = k;

multiple solutions A problem often has multiple solutions, and the gcd problem can be solved in many ways.
Programming Exercise 5.14 suggests another solution. A more efficient solution is to use the
classic Euclidean algorithm (see Section 22.6).

erroneous solutions You might think that a divisor for a number nl cannot be greater than n1 / 2 and would
attempt to improve the program using the following loop:

for (int k = 2; k<=nl / 2 & k <=n2 / 2; k++) {
if (n1 % k == 0&& n2 % k == 0)
gcd = k;

5.8 Case Studies

This revision is wrong. Can you find the reason? See Checkpoint Question 5.21 for the
answer.

5.8.2 Case Study: Predicting the Future Tuition

Suppose that the tuition for a university is $10,000 this year and tuition increases 7% every
year. In how many years will the tuition be doubled?
Before you can write a program to solve this problem, first consider how to solve it by
hand. The tuition for the second year is the tuition for the first year * 1.07. The tuition for a think before you code
future year is the tuition of its preceding year * 1.07. Thus, the tuition for each year can be
computed as follows:

double tuition = 10000; int year = 0; // Year 0
tuition = tuition * 1.07; year++; // Year 1
tuition = tuition * 1.07; year++; // Year 2
tuition = tuition * 1.07; year++; // Year 3

Keep computing the tuition for a new year until it is at least 20000. By then you will know
how many years it will take for the tuition to be doubled. You can now translate the logic into
the following loop:

double tuition = 10000; // Year O
int year = 0;
while (tuition < 20000) {

tuition = tuition * 1.07;

year++;

}

The complete program is shown in Listing 5.10.

LISTING 5.10 FutureTuition.java

1 public class FutureTuition {

2 public static void main(String[] args) {

3 double tuition = 10000; // Year 0O

4 int year = 0;

5 while (tuition < 20000) { loop
6 tuition = tuition * 1.07; next year’s tuition
7 year++;

8 b

9

10 System.out.println("Tuition will be doubled in "

11 + year + " years');

12 System.out.printf("Tuition will be $%.2f in %1d years",

13 tuition, year);

14 }

15 1}

Tuition will be doubled in 11 years E
Tuition will be $21048.52 in 11 years

The whiTe loop (lines 5-8) is used to repeatedly compute the tuition for a new year. The
loop terminates when the tuition is greater than or equal to 20000.

181

182 Chapter 5

input decimal

decimal to hex

Loops

5.8.3 Case Study: Converting Decimals to Hexadecimals

Hexadecimals are often used in computer systems programming (see Appendix F for an
introduction to number systems). How do you convert a decimal number to a hexadecimal
number? To convert a decimal number d to a hexadecimal number is to find the hexadecimal
digits h,,, h,_1, h,—», ... , h, hy, and kg such that

d=h, X 16"+ h,_y X 16" "+ h,_, X 16" 2+ ---
+ hy X 16° + hy X 16" + hy X 16°

These hexadecimal digits can be found by successively dividing d by 16 until the quotient is
0. The remainders are hg, hy, ho, ... , h,—», h,_, and h,. The hexadecimal digits include the
decimal digits 0, 1, 2,3, 4,5, 6,7, 8, and 9, plus A, which is the decimal value 10; B, which
is the decimal value 11; C, which is 12; D, which is 13; E, which is 14; and F, which is 15.

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as
follows. Divide 123 by 16. The remainder is 11 (B in hexadecimal) and the quotient is 7.
Continue divide 7 by 16. The remainder is 7 and the quotient is 0. Therefore 7B is the
hexadecimal number for 123.

16 16

112
11 <—— Remainder

/

1 ho

0 /7 -<—— Quotient
) 123

-3

S -

Listing 5.11 gives a program that prompts the user to enter a decimal number and converts
it into a hex number as a string.

LIsTING 5.11 Dec2Hex.java

1 import java.util.Scanner;

2

3 public class Dec2Hex {

4 /** Main method */

5 public static void main(String[] args) {

6 // Create a Scanner

7 Scanner input = new Scanner(System.in);

8

9 // Prompt the user to enter a decimal integer
10 System.out.print("Enter a decimal number: ");
11 int decimal = input.nextInt();
12

13 // Convert decimal to hex

14 String hex = "";

15

16 while (decimal != 0) {

17 int hexValue = decimal % 16;

18

19 // Convert a decimal value to a hex digit
20 char hexDigit = (hexValue <= 9 && hexValue >= 0) ?
21 (char) (hexvValue + '0") : (char) (hexValue - 10 + "A");
22

23 hex = hexDigit + hex;

24 decimal = decimal / 16;
25 }
26
27 System.out.println("The hex number is " + hex);
28 }
29 3}
Enter a decimal number: 1234 -enter
The hex number is 4D2
line# decimal hex hexValue hexDigit
14 1234 e
;
17 2
iteration 1 4 23 " 2
24 77
\
e
17 13
iteration2 <{ 23 "D2" D
| 24 4
3
17 4
iteration 3 § 23 "4D2" 4
L 24 0

The program prompts the user to enter a decimal integer (line 11), converts it to a hex num-
ber as a string (lines 14-25), and displays the result (line 27). To convert a decimal to a hex
number, the program uses a loop to successively divide the decimal number by 16 and obtain
its remainder (line 17). The remainder is converted into a hex character (lines 20-21). The
character is then appended to the hex string (line 23). The hex string is initially empty (line
14). Divide the decimal number by 16 to remove a hex digit from the number (line 24). The
loop ends when the remaining decimal number becomes 0.

The program converts a hexValue between 0 and 15 into a hex character. If hexValue is
between 0 and 9, it is converted to (char) ChexValue + '0") (line 21). Recall that when
adding a character with an integer, the character’s Unicode is used in the evaluation. For
example, if hexValue is 5, (char) (hexValue + '0") returns 5. Similarly, if hexValue
is between 10 and 15, it is converted to (char) ChexValue - 10 + "A') (line 21). For
instance, if hexValueis 11, (char) ChexValue - 10 + 'A'") returns B.

5.21 Will the program work if n1 and n2 are replaced by n1 / 2 and n2 / 2 inline 17
in Listing 5.9?

5.22 InListing 5.11, why is it wrong if you change the code (char) (hexValue + '0')
to hexValue + "0' in line 217

5.23 InListing 5.11, how many times the loop body is executed for a decimal number 245
and how many times the loop body is executed for a decimal number 3245?

5.8 Case Studies 183

get a hex char

get a letter

ﬁheck
Point

184 Chapter 5

©

break statement

break

continue statement

Loops

Key
Point

2

5.9 Keywords break and continue

The break and continue keywords provide additional controls in a loop.

Pedagogical Note

Two keywords, break and continue, can be used in loop statements to provide addi-
tional controls. Using break and continue can simplify programming in some cases.
Overusing or improperly using them, however, can make programs difficult to read and
debug. (Note to instructors: You may skip this section without affecting students’ under-
standing of the rest of the book.)

You have used the keyword break in a switch statement. You can also use break in a loop
to immediately terminate the loop. Listing 5.12 presents a program to demonstrate the effect
of using break in a loop.

LISTING 5.12 TestBreak.java

1 public class TestBreak {

public static void main(String[] args) {
int sum = 0;
int number = 0;

while (number < 20) {
number++;
sum += number;
if (sum >= 100)

10 break;
11 }
12

LooNOoOOuUVIA~ WN

13 System.out.printIn("The number is + number);
14 System.out.println("The sum 1is " + sum);

15 }

16 1}

The number is 14
The sum is 105

The program in Listing 5.12 adds integers from 1 to 20 in this order to sum until sum is
greater than or equal to 100. Without the if statement (line 9), the program calculates the
sum of the numbers from 1 to 20. But with the if statement, the loop terminates when sum
becomes greater than or equal to 100. Without the 1 f statement, the output would be:

The number is 20
The sum is 210

You can also use the continue keyword in a loop. When it is encountered, it ends the cur-
rent iteration and program control goes to the end of the loop body. In other words, continue
breaks out of an iteration while the break keyword breaks out of a loop. Listing 5.13 presents
a program to demonstrate the effect of using continue in a loop.

LIsTING 5.13 TestContinue.java

1 public class TestContinue {
2 public static void main(String[] args) {
3 int sum = 0;

5.9 Keywords break and continue

4 int number = 0;
5
6 while (nhumber < 20) {
7 number++;
8 if (number ==10 || number == 11)
9 continue;
10 (sum += number;
11 }
12
13 System.out.println("The sum 1is " + sum);
14 }
15 }

The sum is 189

The program in Listing 5.13 adds integers from 1 to 20 except 10 and 11 to sum. With
the i f statement in the program (line 8), the continue statement is executed when number
becomes 10 or 11. The continue statement ends the current iteration so that the rest of the
statement in the loop body is not executed; therefore, number is not added to sum when it is
10 or 11. Without the 1 f statement in the program, the output would be as follows:

The sum is 210

In this case, all of the numbers are added to sum, even when number is 10 or 11. Therefore,
the result is 210, which is 21 more than it was with the 1 f statement.

Note

= The continue statement is always inside a loop. In the while and do-wh1iTe loops,
the Toop-continuation-condition isevaluated immediately after the continue
statement. In the for loop, the action-after-each-1iteration is performed,
then the Toop-continuation-condition is evaluated, immediately after the
continue statement.

You can always write a program without using break or continue in a loop (see Check-
point Question 5.26). In general, though, using break and continue is appropriate if it
simplifies coding and makes programs easier to read.

Suppose you need to write a program to find the smallest factor other than 1 for an integer
n (assume n >= 2). You can write a simple and intuitive code using the break statement as
follows:

int factor = 2;
while (factor <= n) {
if (n % factor == 0)
break;
factor++;
}
System.out.printin("The smallest factor other than 1 for "
+n+ " dis " 4+ factor);

You may rewrite the code without using break as follows:

boolean found = false;

int factor = 2;

while (factor <= n && !found) {
if (n % factor == 0)

continue

185

186 Chapter 5

goto

/%iwck
Point

Loops

found = true;
else
factor++;

3

System.out.println("The smallest factor other than 1 for "

+n + is + factor);

Obviously, the break statement makes this program simpler and easier to read in this case.
However, you should use break and continue with caution. Too many break and con-
tinue statements will produce a loop with many exit points and make the program difficult

to read.

Note

Some programming languages have a goto statement. The goto statement indiscrimi-
nately transfers control to any statement in the program and executes it. This makes
your program vulnerable to errors. The break and continue statements in Java are
different from goto statements. They operate only in a loop or a switch statement.
The break statement breaks out of the loop, and the continue statement breaks out
of the current iteration in the loop.

Note

fact, you can find a smallest factor using a rather simple code as follows:

int factor = 2;

while (factor <= n & n % factor != 0)

factor++;

Programming is a creative endeavor. There are many different ways to write code. In

5.24 What is the keyword break for? What is the keyword continue for? Will the fol-
lowing programs terminate? If so, give the output.

int balance = 10;
while (true) {
if (balance < 9)
break;
balance = balance - 9;

}

System.out.println("Balance is
+ balance);

int balance = 10;
while (true) {
if (balance < 9)
continue;
balance = balance - 9;

}

System.out.println("Balance 1is
+ balance);

()

(b)

5.25 The for loop on the left is converted into the while loop on the right. What is

wrong? Correct it.

int sum = 0;
for (int i = 0; i < 4; i++) {
if (i % 3 == 0) continue;

sum += 1i;

}

int i = 0, sum = 0;
Converted while (i < 4) {
— if (i % 3 == 0) continue;
Wrong conversion sum += '|,
T++;

}

5.26 Rewrite the programs TestBreak and TestContinue in Listings 5.12 and 5.13
without using break and continue

5.10 Case Study: Checking Palindromes

5.27 After the break statement in (a) is executed in the following loop, which statement
is executed? Show the output. After the continue statement in (b) is executed in the
following loop, which statement is executed? Show the output.

for (int i = 1; i < 4; i++) { for (int i =1; i < 4; i++) {
for (int j =1; j < 4; j++) { for (int j =1; j < 4; j++) {
if (%] > 2) if (% 3> 2)
break; continue;
System.out.println(i * j); System.out.println(i * j);
} }
System.out.println(i); System.out.printin(i);
} }

(@) (b)

5.10 Case Study: Checking Palindromes

This section presents a program that checks whether a string is a palindrome. 6 fKey

A string is a palindrome if it reads the same forward and backward. The words “mom,” “dad,” Point
and “noon,” for instance, are all palindromes.

The problem is to write a program that prompts the user to enter a string and reports
whether the string is a palindrome. One solution is to check whether the first character in the
string is the same as the last character. If so, check whether the second character is the same
as the second-to-last character. This process continues until a mismatch is found or all the
characters in the string are checked, except for the middle character if the string has an odd think before you code
number of characters.

Listing 5.14 gives the program.

LIsTING 5.14 Palindrome.java

1 import java.util.Scanner;

2

3 public class Palindrome {

4 /** Main method */

5 public static void main(String[] args) {

6 // Create a Scanner

7 Scanner input = new Scanner(System.in);

8

9 // Prompt the user to enter a string
10 System.out.print("Enter a string: ");
11 String s = input.nextLine(); input string
12
13 // The index of the first character in the string

14 int Tow = 0; low index
15

16 // The index of the last character in the string

17 int high = s.length() - 1; high index
18

19 boolean isPalindrome = true;

20 while (low < high) {

21 if (s.charAt(low) != s.charAt(Chigh)) {

22 isPalindrome = false;

23 break;

24 }

187

188 Chapter 5 Loops

update indices 26 Tow++;
27 high--;
28 }
29
30 if (isPalindrome)
31 System.out.printin(s + " 1is a palindrome');
32 else
33 System.out.printin(s + " 1is not a palindrome™);
34 }
35 }

Enter a string: noon |-enter
noon is a palindrome

-

Enter a string: moon | -enter
moon is not a palindrome

o

The program uses two variables, Tow and high, to denote the position of the two charac-
ters at the beginning and the end in a string s (lines 14, 17). Initially, Towis 0 and highis s.
Tength() - 1.If the two characters at these positions match, increment 1ow by 1 and decre-
ment high by 1 (lines 26-27). This process continues until (Tow >= h1igh) or a mismatch
is found (line 21).

The program uses a boolean variable isPalindrome to denote whether the string s is pal-
indrome. Initially, it is set to true (line 19). When a mismatch is discovered (line 21), isPal-
indrome is to false (line 22) and the loop is terminated with a break statement (line 23).

5.11 Case Study: Displaying Prime Numbers

fKey This section presents a program that displays the first fifty prime numbers in five lines,
6 Point each containing ten numbers.
An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,
5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.
The problem is to display the first 50 prime numbers in five lines, each of which contains
ten numbers. The problem can be broken into the following tasks:

B Determine whether a given number is prime.

B For number = 2, 3,4, 5,6, ..., test whether it is prime.

® Count the prime numbers.

B Display each prime number, and display ten numbers per line.

Obviously, you need to write a loop and repeatedly test whether a new number is prime.
If the number is prime, increase the count by 1. The count is 0 initially. When it reaches 50,
the loop terminates.

Here is the algorithm for the problem:

Set the number of prime numbers to be printed as
a constant NUMBER_OF_PRIMES;

Use count to track the number of prime numbers and
set an initial count to O;

Set an initial number to 2;

5.1'1 Case Study: Displaying Prime Numbers 189

while (count < NUMBER_OF_PRIMES) {
Test whether number is prime;

if number 1is prime {
Display the prime number and increase the count;

}

Increment number by 1;

3

To test whether a number is prime, check whether it is divisible by 2, 3, 4, and so on up to
number/2. If a divisor is found, the number is not a prime. The algorithm can be described
as follows:

Use a boolean variable isPrime to denote whether
the number is prime; Set isPrime to true initially;

for (int divisor = 2; divisor <= number / 2; divisor++) {
if (number % divisor == 0) {
Set isPrime to false
Exit the Tloop;
}
}

The complete program is given in Listing 5.15.

LISTING 5.15 PrimeNumber. java

1 public class PrimeNumber {

2 public static void main(String[] args) {

3 final int NUMBER_OF_PRIMES = 50; // Number of primes to display

4 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per Tine

5 int count = 0; // Count the number of prime numbers

6 int number = 2; // A number to be tested for primeness

7

8 System.out.printin("The first 50 prime numbers are \n');

9
10 // Repeatedly find prime numbers
11 while (count < NUMBER_OF_PRIMES) { count prime numbers
12 // Assume the number 1is prime
13 boolean isPrime = true; // Is the current number prime?
14
15 // Test whether number 1is prime
16 for (int divisor = 2; divisor <= number / 2; divisor++) { check primeness
17 if (number % divisor == 0) { // If true, number 1is not prime

18 isPrime = false; // Set isPrime to false

19 break; // Exit the for Toop exit loop

20 }

21 }

22

23 // Display the prime number and increase the count

24 if (isPrime) { display if prime
25 count++; // Increase the count

26

27 if (count % NUMBER_OF_PRIMES_PER_LINE == 0) {

28 // Display the number and advance to the new Tine

29 System.out.printin(number);

30 }

31 else

32 System.out.print(number + " ");

190 Chapter 5

subproblem

Loops

33 }

34

35 // Check if the next number is prime
36 number++;

37 }

38 }

39 }

The first 50 prime numbers are

2 357 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71

73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

This is a complex program for novice programmers. The key to developing a programmatic
solution for this problem, and for many other problems, is to break it into subproblems and
develop solutions for each of them in turn. Do not attempt to develop a complete solution
in the first trial. Instead, begin by writing the code to determine whether a given number is
prime, then expand the program to test whether other numbers are prime in a loop.

To determine whether a number is prime, check whether it is divisible by a number between
2 and number/2 inclusive (lines 16-21). If so, it is not a prime number (line 18); otherwise, it
is a prime number. For a prime number, display it. If the count is divisible by 10 (lines 27-30),
advance to a new line. The program ends when the count reaches 50.

The program uses the break statement in line 19 to exit the for loop as soon as the num-
ber is found to be a nonprime. You can rewrite the loop (lines 16-21) without using the break
statement, as follows:

for (int divisor = 2; divisor <= number / 2 &% isPrime;
divisor++) {
// If true, the number 1is not prime
if (number % divisor == 0) {
// Set isPrime to false, if the number is not prime
isPrime = false;
}
}

However, using the break statement makes the program simpler and easier to read in this case.

KEy TERMS

break statement 184 loop body 158
continue statement 184 nested loop 176
do-whileloop 168 off-by-one error 160
forloop 171 output redirection 167
infinite loop 160 posttest loop 174
input redirection 167 pretest loop 174
iteration 158 sentinel value 165

loop 158 whileloop 158

Programming Exercises 191

CHAPTER SUMMARY

Ul-.wa

9.
10.

14.
I5.
16.

There are three types of repetition statements: the while loop, the do-wh1iTe loop, and
the for loop.

The part of the loop that contains the statements to be repeated is called the loop body.
A one-time execution of a loop body is referred to as an iteration of the loop.
An infinite loop is a loop statement that executes infinitely.

In designing loops, you need to consider both the loop control structure and the loop
body.

The whiiTle loop checks the Toop-continuation-condition first. If the condition
is true, the loop body is executed; if it is false, the loop terminates.

The do-wh1iTe loop is similar to the while loop, except that the do-wh+ile loop exe-
cutes the loop body first and then checks the Toop-continuation-condition to
decide whether to continue or to terminate.

The while loop and the do-wh-i1e loop often are used when the number of repetitions
is not predetermined.

A sentinel value is a special value that signifies the end of the loop.
The for loop generally is used to execute a loop body a fixed number of times.

The for loop control has three parts. The first part is an initial action that often ini-
tializes a control variable. The second part, the Toop-continuation-condition,
determines whether the loop body is to be executed. The third part is executed after
each iteration and is often used to adjust the control variable. Usually, the loop control
variables are initialized and changed in the control structure.

The whiTe loop and for loop are called pretest loops because the continuation condi-
tion is checked before the loop body is executed.

The do-wh1iTle loop is called a posttest loop because the condition is checked after the
loop body is executed.

Two keywords, break and continue, can be used in a loop.
The break keyword immediately ends the innermost loop, which contains the break.

The continue keyword only ends the current iteration.

Quiz

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Pedagogical Note
Read each problem several times until you understand it. Think how to solve the prob-
lem before starting to write code. Translate your logic into a program.

A problem often can be solved in many different ways. Students are encouraged to
explore various solutions.

MyProgramminglLab’

read and think before coding

explore solutions

www.cs.armstrong.edu/liang/intro10e/quiz.html

192 Chapter 5

Loops

2

Sections 5.2-5.7

*5.1 (Count positive and negative numbers and compute the average of numbers) Write
a program that reads an unspecified number of integers, determines how many
positive and negative values have been read, and computes the total and average of
the input values (not counting zeros). Your program ends with the input 0. Display
the average as a floating-point number. Here is a sample run:

Enter an integer, the input ends if it is 0: 1 2 -1 3 0 | -enter
The number of positives is 3
The number of negatives is 1
The total is 5.0
The average is 1.25
Enter an integer, the input ends if it is 0: 0 | -enter
No numbers are entered except 0
5.2 (Repeat additions) Listing 5.4, SubtractionQuizLoop.java, generates five random
subtraction questions. Revise the program to generate ten random addition ques-
tions for two integers between 1 and 15. Display the correct count and test time.
5.3 (Conversion from kilograms to pounds) Write a program that displays the follow-
ing table (note that 1 kilogram is 2.2 pounds):
Kilograms Pounds
1 2.2
3 6.6
197 433.4
199 437.8
5.4 (Conversion from miles to kilometers) Write a program that displays the follow-
ing table (note that 1 mile is 1.609 kilometers):
Miles KiTometers
1 1.609
2 3.218
9 14.481
10 16.090
5.5 (Conversion from kilograms to pounds and pounds to kilograms) Write a program
that displays the following two tables side by side:
Kilograms Pounds | Pounds KiTlograms
1 2.2 | 20 9.09
3 6.6 | 25 11.36
197 433.4 | 510 231.82
199 437.8 | 515 234.09
5.6 (Conversion from miles to kilometers) Write a program that displays the follow-

ing two tables side by side:

Programming Exercises 193

MiTes Kilometers | Kilometers MiTes

1 1.609 | 20 12.430
2 3.218 | 25 15.538
9 14.481 | 60 37.290
10 16.090 | 65 40.398

**5.7 (Financial application: compute future tuition) Suppose that the tuition for a uni-
versity is $10,000 this year and increases 5% every year. In one year, the tuition
will be $10,500. Write a program that computes the tuition in ten years and the
total cost of four years’ worth of tuition after the tenth year.

5.8 (Find the highest score) Write a program that prompts the user to enter the num-
ber of students and each student’s name and score, and finally displays the name
of the student with the highest score.

*5.9 (Find the two highest scores) Write a program that prompts the user to enter the
number of students and each student’s name and score, and finally displays the
student with the highest score and the student with the second-highest score.

5.10 (Find numbers divisible by 5 and 6) Write a program that displays all the num-
bers from 100 to 1,000, ten per line, that are divisible by 5 and 6. Numbers are
separated by exactly one space.

5.11 (Find numbers divisible by 5 or 6, but not both) Write a program that displays
all the numbers from 100 to 200, ten per line, that are divisible by 5 or 6, but not
both. Numbers are separated by exactly one space.

5.12 (Find the smallest nsuch that n” > 12,000) Use a wh1ile loop to find the smallest
integer n such that n’ is greater than 12,000.

5.13 (Find the largest n such that n* < 12,000) Use a while loop to find the largest
integer n such that n® is less than 12,000.

Sections 5.8-5.10

*5.14 (Compute the greatest common divisor) Another solution for Listing 5.9 to find
the greatest common divisor of two integers nl and n2 is as follows: First find d
to be the minimum of nl and n2, then check whether d, d-1, d-2, ..., 2, or 1is
a divisor for both nl and n2 in this order. The first such common divisor is the
greatest common divisor for nl and n2. Write a program that prompts the user to
enter two positive integers and displays the ged.

*5.15 (Display the ASCII character table) Write a program that prints the characters in
the ASCII character table from ! to ~. Display ten characters per line. The ASCII
table is shown in Appendix B. Characters are separated by exactly one space.

*5.16 (Find the factors of an integer) Write a program that reads an integer and displays
all its smallest factors in increasing order. For example, if the input integer is
120, the output should be as follows: 2, 2, 2, 3, 5.

**5.17 (Display pyramid) Write a program that prompts the user to enter an integer from
1 to 15 and displays a pyramid, as shown in the following sample run:

Enter the number of lines: 7 |-enter E

1
2 1 2
3 2 1 2 3
4 3 2 1 2 3 4
5 4 3 2 1 2 3 4 5
6 5 4 3 2 1 2 3 4 5 6
7 6 5 4 3 2 1 2 3 4 5 6 7

194 Chapter5 Loops

*5.18 (Display four patterns using loops) Use nested loops that display the following
patterns in four separate programs:
Pattern A Pattern B Pattern C Pattern D
1 123456 1 123456
12 12345 21 12345
123 1234 321 1234
1234 123 4321 123
12345 12 54321 12
123456 1 654321 1
**5.19 (Display numbers in a pyramid pattern) Write a nested for loop that prints the
following output:
1
1 2 1
1 2 4 2 1
1 2 4 8 4 2 1
1 2 4 8 16 8 4 2 1
2 4 8 16 32 16 8 4 2
2 4 8 16 32 64 32 16 8 4 1
1 2 4 8 16 32 64128 64 32 16 8 4 2 1
*5.20 (Display prime numbers between 2 and 1,000) Modify Listing 5.15 to display all
the prime numbers between 2 and 1,000, inclusive. Display eight prime numbers
per line. Numbers are separated by exactly one space.
Comprehensive
**5.21 (Financial application: compare loans with various interest rates) Write a pro-
gram that lets the user enter the loan amount and loan period in number of years
and displays the monthly and total payments for each interest rate starting from
5% to 8%, with an increment of 1/8. Here is a sample run:
E Loan Amount: 10000 |-enter
Number of Years: 5 |-enter
Interest Rate Monthly Payment Total Payment
5.000% 188.71 11322.74
5.125% 189.29 11357.13
5.250% 189.86 11391.59
7.875% 202.17 12129.97
8.000% 202.76 12165.84
For the formula to compute monthly payment, see Listing 2.9, ComputeLoan.java.
*%5.22 (Financial application: loan amortization schedule) The monthly payment for a

VideoNote
Display loan schedule

given loan pays the principal and the interest. The monthly interest is computed
by multiplying the monthly interest rate and the balance (the remaining princi-
pal). The principal paid for the month is therefore the monthly payment minus
the monthly interest. Write a program that lets the user enter the loan amount,

Programming Exercises 195

number of years, and interest rate and displays the amortization schedule for the
loan. Here is a sample run:

Loan Amount: 10000 -enter _
Number of Years: 1 |~enter E
Annual Interest Rate: 7 |~Enter

Monthly Payment: 865.26
Total Payment: 10383.21

Payment# Interest Principal Balance
1 58.33 806.93 9193.07
2 53.62 811.64 8381.43
11 10.0 855.26 860.27
12 5.01 860.25 0.01
Note

The balance after the last payment may not be zero. If so, the last payment should be
the normal monthly payment plus the final balance.

Hint: Write a loop to display the table. Since the monthly payment is the
same for each month, it should be computed before the loop. The balance
is initially the loan amount. For each iteration in the loop, compute the
interest and principal, and update the balance. The loop may look like this:

for (i = 1; i <= numberOfYears * 12; i++) {
interest = monthlyInterestRate * balance;
principal = monthlyPayment - interest;
balance = balance - principal;
System.out.println(i + "\t\t" + interest
+ "\t\t" + principal + "\t\t" + balance);
}

*5.23 (Demonstrate cancellation errors) A cancellation error occurs when you are
manipulating a very large number with a very small number. The large number
may cancel out the smaller number. For example, the result of 100000000.0 +
0.000000001 is equal to 100000000 . 0. To avoid cancellation errors and obtain
more accurate results, carefully select the order of computation. For example, in
computing the following series, you will obtain more accurate results by comput-
ing from right to left rather than from left to right:

1 1 1
l+—-+-+ ... +—
2 3 n

Write a program that compares the results of the summation of the preceding
series, computing from left to right and from right to left with n = 50000.

*5.24 (Sum a series) Write a program to sum the following series: u

1 3 5 7 9 11 o 95 97 VideoNote
3 5 7 9 11 13 97 99 Sum a series

196 Chapter5

Loops

**5.25

**5.26

**5.27

**5.28

**5.29

(Compute 1) You can approximate 7 by using the following series:

_1\it1
L, e
11 2i — 1

Write a program that displays the 7 value for i = 10000, 20000, ..., and
100000.

(Compute e) You can approximate e using the following series:

111
r=41-—+---+
35 7

O | —

1 1
e=1+—+—+—+—+ + =
21 31 4 i
Write a program that displays the e value for i = 10000, 20000, ..., and
100000. (Hint: Because i! = i X (i — 1) X ... X 2 X 1, then
1. 1
TR v
i — 1!

Initialize e and 1tem to be 1 and keep adding a new item to e. The new item is
the previous item divided by 1 for i = 2,3,4,....)

(Display leap years) Write a program that displays all the leap years, ten per line,
from 101 to 2100, separated by exactly one space. Also display the number of
leap years in this period.

(Display the first days of each month) Write a program that prompts the user to
enter the year and first day of the year, and displays the first day of each month
in the year. For example, if the user entered the year 2013, and 2 for Tuesday,
January 1, 2013, your program should display the following output:

January 1, 2013 is Tuesday
December 1, 2013 is Sunday

(Display calendars) Write a program that prompts the user to enter the year and
first day of the year and displays the calendar table for the year on the console. For
example, if the user entered the year 2013, and 2 for Tuesday, January 1, 2013,
your program should display the calendar for each month in the year, as follows:

January 2013
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26

27 28 29 30 31

*5.30

*5.31

Programming Exercises

December 2013

Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

(Financial application: compound value) Suppose you save $100 each month
into a savings account with the annual interest rate 5%. So, the monthly interest
rate is 0.05 / 12 = 0.00417. After the first month, the value in the account
becomes

100 * (1 + 0.00417) = 100.417
After the second month, the value in the account becomes
(100 + 100.417) * (1 + 0.00417) = 201.252
After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

Write a program that prompts the user to enter an amount (e.g., 100), the annual
interest rate (e.g., 5), and the number of months (e.g., 6) and displays the amount
in the savings account after the given month.

(Financial application: compute CD value) Suppose you put $10,000 into a CD
with an annual percentage yield of 5.75%. After one month, the CD is worth

10000 + 10000 * 5.75 / 1200 = 10047.92

After two months, the CD is worth

10047.91 + 10047.91 * 5.75 / 1200 = 10096.06
After three months, the CD is worth
10096.06 + 10096.06 * 5.75 / 1200 = 10144.44

and so on.

Write a program that prompts the user to enter an amount (e.g., 10000), the
annual percentage yield (e.g., 5.75), and the number of months (e.g., 18) and
displays a table as shown in the sample run.

197

198 Chapter 5

Loops

2

Enter the initial deposit amount: 10000 | -enter
Enter annual percentage yield: 5.75 |-enter
Enter maturity period (number of months): 18 | -enter

Month CD Value

1 10047.92
2 10096.06
17 10846.57
18 10898.54

**5.32

**5.33

**%5 34

*5.35

**5.36

**5.37

**5.38

*5.39

(Game: lottery) Revise Listing 3.8, Lottery.java, to generate a lottery of a two-
digit number. The two digits in the number are distinct. (Hint: Generate the first
digit. Use a loop to continuously generate the second digit until it is different
from the first digit.)

(Perfect number) A positive integer is called a perfect number if it is equal to
the sum of all of its positive divisors, excluding itself. For example, 6 is the first
perfect number because 6 = 3 + 2 + 1.Thenextis28 = 14 + 7 + 4 + 2
+ 1. There are four perfect numbers less than 10,000. Write a program to find all
these four numbers.

(Game: scissor, rock, paper) Programming Exercise 3.17 gives a program that
plays the scissor-rock-paper game. Revise the program to let the user continu-
ously play until either the user or the computer wins more than two times than its
opponent.

(Summation) Write a program to compute the following summation.
1 1 1 1

- + T
1+V2 V2+V3 V3+ Va4 V624 + V625

(Business application: checking ISBN) Use loops to simplify Programming
Exercise 3.9.

(Decimal to binary) Write a program that prompts the user to enter a decimal
integer and displays its corresponding binary value. Don’t use Java’s Integer
.toBinaryString(int) in this program.

(Decimal to octal) Write a program that prompts the user to enter a decimal
integer and displays its corresponding octal value. Don’t use Java’s Integer
.toOctalString(int) in this program.

(Financial application: find the sales amount) You have just started a sales job
in a department store. Your pay consists of a base salary and a commission. The
base salary is $5,000. The scheme shown below is used to determine the commis-
sion rate.

Sales Amount Commission Rate
$0.01-$5,000 8 percent
$5,000.01-$10,000 10 percent
$10,000.01 and above 12 percent

Note that this is a graduated rate. The rate for the first $5,000 is at 8%, the next
$5000 is at 10%, and the rest is at 12%. If the sales amount is 25,000, the com-
mission is 5,000 * 8% + 5,000 * 10% + 15,000 * 12% = 2,700.

Programming Exercises 199

Your goal is to earn $30,000 a year. Write a program that finds the minimum sales
you have to generate in order to make $30,000.

5.40 (Simulation: heads or tails) Write a program that simulates flipping a coin one
million times and displays the number of heads and tails.

*5.41 (Occurrence of max numbers) Write a program that reads integers, finds the larg-
est of them, and counts its occurrences. Assume that the input ends with number
0. Suppose that youentered 3 5 2 5 5 5 0;the program finds that the largest
is 5 and the occurrence count for 5 is 4.

(Hint: Maintain two variables, max and count. max stores the current max num-
ber, and count stores its occurrences. Initially, assign the first number to max
and 1 to count. Compare each subsequent number with max. If the number is
greater than max, assign it to max and reset count to 1. If the number is equal to
max, increment count by 1.)

Enter numbers: 3 52 55 5 0 |-enter E
The largest number is 5

The occurrence count of the largest number is 4

*5.42 (Financial application: find the sales amount) Rewrite Programming Exercise
5.39 as follows:

m Use a for loop instead of a do-wh-iTe loop.
B Let the user enter COMMISSION SOUGHT instead of fixing it as a constant.

*5.43 (Math: combinations) Write a program that displays all possible combinations
for picking two numbers from integers 1 to 7. Also display the total number of
all combinations.

[
w N

The total number of all combinations is 21

*5.44 (Computer architecture: bit-level operations) A short value is stored in 16 bits.
Write a program that prompts the user to enter a short integer and displays the 16
bits for the integer. Here are sample runs:

Enter an integer: 5 |-entr
The bits are 0000000000000101
Enter an integer: -5 |-enter
The bits are 1111111111111011

(Hint: You need to use the bitwise right shift operator (>>) and the bitwise AND
operator (&), which are covered in Appendix G, Bitwise Operations.)

*%5.45 (Statistics: compute mean and standard deviation) In business applications, you
are often asked to compute the mean and standard deviation of data. The mean is
simply the average of the numbers. The standard deviation is a statistic that tells

200 Chapter 5

Loops

you how tightly all the various data are clustered around the mean in a set of data.
For example, what is the average age of the students in a class? How close are the
ages? If all the students are the same age, the deviation is 0.

Write a program that prompts the user to enter ten numbers, and displays the
mean and standard deviations of these numbers using the following formula:

,, (3

2
Xi 25%'_
= Xy tx+ - +Xx = n
i=1 1 2 n . i=1
mean = = deviation =
n n n—1

Here is a sample run:

Enter ten numbers: 1 2 3 4.5 5.6 6 7 8 9 10 | -enter
The mean is 5.61
The standard deviation is 2.99794

*5.46 (Reverse a string) Write a program that prompts the user to enter a string and
displays the string in reverse order.
Enter a string: ABCD |-enter
The reversed string is DCBA

*5.47 (Business: check ISBN-13) ISBN-13 is a new standard for indentifying books. It

uses 13 digits d d,d3dydsded;dgdod,odydy2d, 3. The last digit dy3 is a checksum,
which is calculated from the other digits using the following formula:

10 — (dy + 3d, + dy + 3d, + ds + 3dg + dy + 3dg + do + 3d,p + dy; + 3d,)%10

If the checksum is 10, replace it with 0. Your program should read the input as a
string. Here are sample runs:

Enter the first 12 digits of an ISBN-13 as a string: 978013213080 |-enter
The ISBN-13 number 1is 9780132130806

Enter the first 12 digits of an ISBN-13 as a string: 978013213079 |-enter
The ISBN-13 number is 9780132130790

Enter the first 12 digits of an ISBN-13 as a string: 97801320 |-enter
97801320 is an invalid input

*5.48

(Process string) Write a program that prompts the user to enter a string and dis-
plays the characters at odd positions. Here is a sample run:

2

Enter a string: Beijing Chicago |-enter
BiigCiao

Programming Exercises 201

*5.49 (Count vowels and consonants) Assume letters A, E, T, 0, and U as the vowels.
Write a program that prompts the user to enter a string and displays the number
of vowels and consonants in the string.

Enter a string: Programming is fun |—enter E

The number of vowels is 5
The number of consonants 1is 11

*5.50 (Count uppercase letters) Write a program that prompts the user to enter a string
and displays the number of the uppercase letters in the string.

Enter a string: Welcome to Java | -enter E
The number of uppercase letters is 2

*5.51 (Longest common prefix) Write a program that prompts the user to enter two
strings and displays the largest common prefix of the two strings. Here are some
sample runs:

Enter the first string: Welcome to C++ | —enter E

Enter the second string: Welcome to programming |-enter
The common prefix is Welcome to

Enter the first string: Atlanta |-enter E

Enter the second string: Macon |-enter
Atlanta and Macon have no common prefix

This page intentionally left blank

METHODS

Objectives

To define methods with formal parameters (§6.2).

To invoke methods with actual parameters (i.e., arguments) (§6.2).
To define methods with a return value (§6.3).

To define methods without a return value (§6.4).

To pass arguments by value (§6.5).

To develop reusable code that is modular, easy to read, easy to debug,
and easy to maintain (§6.6).

To write a method that converts hexadecimals to decimals (§6.7).

To use method overloading and understand ambiguous overloading

(§6.8).

B To determine the scope of variables (§6.9).

To apply the concept of method abstraction in software development
(86.10).

To design and implement methods using stepwise refinement (§6.10).

CHAPTER

204 Chapter 6 Methods

problem

why methods?

define sum method

main method
invoke sum

method

6.1 Introduction

Methods can be used to define reusable code and organize and simplify coding.

Suppose that you need to find the sum of integers from 1 to 10, from 20 to 37, and from 35
to 49, respectively. You may write the code as follows:

int sum = 0;
for (int i = 1; i <= 10; i++)
sum += 1;

System.out.printIn("Sum from 1 to 10 is " + sum);
sum = 0;
for (int i = 20; i <= 37; i++)
sum += 1i;
System.out.printin("Sum from 20 to 37 1is " + sum);
sum = 0;
for (int i = 35; i <= 49; i++)
sum += 1;
System.out.println("Sum from 35 to 49 is " + sum);

You may have observed that computing these sums from 1 to 10, from 20 to 37, and from

35 to 49 are very similar except that the starting and ending integers are different. Wouldn’t
it be nice if we could write the common code once and reuse it? We can do so by defining a
method and invoking it.

The preceding code can be simplified as follows:

public static int sum(int il, int i2) {
int result = 0;
for (int i = 1il; i <= 12; i++)
result += 1i;

return result;

}

OooNOUVIA WN R

public static void main(String[] args) {

10 System.out.println("Sum from 1 to 10 is " + sum(l, 10));
11 System.out.printIn("Sum from 20 to 37 1is " + sum(20, 37));
12 System.out.println("Sum from 35 to 49 is " + sum(35, 49));
13 3}

Lines 1-7 define the method named sum with two parameters i1l and 2. The statements in
the main method invoke sum(1l, 10) to compute the sum from 1 to 10, sum(20, 37) to
compute the sum from 20 to 37, and sum(35, 49) to compute the sum from 35 to 49.

A methodis a collection of statements grouped together to perform an operation. In earlier chap-

ters you have used predefined methods such as System.out.printin, System.exit, Math
.pow, and Math . random. These methods are defined in the Java library. In this chapter, you will
learn how to define your own methods and apply method abstraction to solve complex problems.

6.2 Defining a Method

A method definition consists of its method name, parameters, return value type, and body.

The syntax for defining a method is as follows:

modifier returnValueType methodName(list of parameters) {
// Method body;
}

6.2 Defining a Method 205

Let’s look at a method defined to find the larger between two integers. This method, named
max, has two int parameters, numl and num2, the larger of which is returned by the method.
Figure 6.1 illustrates the components of this method.

Define a method Invoke a method

return value method formal

modifier type name parameters
methOd—»pub'l'ic static int[max(int numl, int num2)| { int z = max(x, y);
header e i i
hod int result; T T T
E](i;yo F parameter list method actual parameters
if (numl > num2) signature (arguments)

result = numl;
else
result = num2;

| return result; <——— return value

}

FIGURE 6.1 A method definition consists of a method header and a method body.

The method header specifies the modifiers, return value type, method name, and parameters — method header
of the method. The stat1ic modifier is used for all the methods in this chapter. The reason for modifier
using it will be discussed in Chapter 8, Objects and Classes.
A method may return a value. The returnValueType is the data type of the value the
method returns. Some methods perform desired operations without returning a value. In this
case, the returnValueType is the keyword void. For example, the returnValueType
is void in the main method, as well as in System.exit, and System.out.printin. If
a method returns a value, it is called a value-returning method; otherwise it is called a void value-returning method
method. void method
The variables defined in the method header are known as formal parameters or simply formal parameter
parameters. A parameter is like a placeholder: when a method is invoked, you pass a value parameter
to the parameter. This value is referred to as an actual parameter or argument. The param- actual parameter
eter list refers to the method’s type, order, and number of the parameters. The method name argument
and the parameter list together constitute the method signature. Parameters are optional; that parameter list
is, a method may contain no parameters. For example, the Math.random() method has no method signature
parameters.
The method body contains a collection of statements that implement the method. The
method body of the max method uses an if statement to determine which number is larger
and return the value of that number. In order for a value-returning method to return a result, a
return statement using the keyword return is required. The method terminates when a return
statement is executed.

Bl Note

4 Some programming languages refer to methods as procedures and functions. In those
languages, a value-returning method is called a function and a void method is called a
procedure.

Bl Caution
In the method header, you need to declare each parameter separately. For instance,
max(int numl, int num2) is correct, but max(int numl, num2) is wrong.

206 Chapter 6 Methods

define vs. declare

K
foxe

VideoNote
Define/invoke max method

main method

invoke max

define method

Note

We say “define a method” and “declare a variable.” We are making a subtle distinction
here. A definition defines what the defined item is, but a declaration usually involves
allocating memory to store data for the declared item.

6.3 Calling a Method

Calling a method executes the code in the method.

In a method definition, you define what the method is to do. To execute the method, you have
to call or invoke it. There are two ways to call a method, depending on whether the method
returns a value or not.

If a method returns a value, a call to the method is usually treated as a value. For example,

int Targer = max(3, 4);

callsmax(3, 4) and assigns the result of the method to the variable Targer. Another exam-
ple of a call that is treated as a value is

System.out.println(max(3, 4));

which prints the return value of the method call max(3, 4).
If a method returns void, a call to the method must be a statement. For example, the
method printTn returns void. The following call is a statement:

System.out.println("Welcome to Java!');

Note

A value-returning method can also be invoked as a statement in Java. In this case, the
caller simply ignores the return value. This is not often done, but it is permissible if the
caller is not interested in the return value.

When a program calls a method, program control is transferred to the called method. A called
method returns control to the caller when its return statement is executed or when its method-
ending closing brace is reached.

Listing 6.1 shows a complete program that is used to test the max method.

LISTING 6.1 TestMax.java

1 public class TestMax {
2 /** Main method */
3 public static void main(String[] args) {
4 int i = 5;
5 int j = 2;
6 int k = max(i, j);
7 System.out.printin("The maximum of " + i +
8 "and "+ j+ " is " + k);
9 }
10
11 /** Return the max of two numbers */
12 public static int max(int numl, int num2) {
13 int result;
14
15 if (numl > num2)
16 result = numl;
17 else
18 result = num2;
19
20 return result;
21 }

22}

6.3 Calling a Method

The maximum of 5 and 2 is 5

line# i j k numl num2 result

12 5 2
Invoking max 13 undefined
16 5

This program contains the main method and the max method. The main method is just like
any other method except that it is invoked by the JVM to start the program.

The main method’s header is always the same. Like the one in this example, it includes the
modifiers public and static, return value type void, method name main, and a parameter
of the String[] type. String[] indicates that the parameter is an array of String, a sub-
ject addressed in Chapter 7.

The statements in main may invoke other methods that are defined in the class that contains
the main method or in other classes. In this example, the main method invokes max(i, 3j),
which is defined in the same class with the main method.

When the max method is invoked (line 6), variable 1i’s value 5 is passed to num1, and vari-
able j’s value 2 is passed to num2 in the max method. The flow of control transfers to the max
method, and the max method is executed. When the return statement in the max method is
executed, the max method returns the control to its caller (in this case the caller is the main
method). This process is illustrated in Figure 6.2.

pass the value i

2

main method

max method

result = numl;
else
result = num2;

System.out.println(
"The maximum of " + i +
"and "+ j o+ " s "+ k);

} return result;

}

i pass the value j
. L Y . Y
public static void main(String[] args) { | ,| public static int max(int numl, dint num2) {
int i =5; | ! int result;
int j =2; '
int k = max(i, j); if (numl > num2)

207

FIGURE 6.2 When the max method is invoked, the flow of control transfers to it. Once the max method is finished, it

returns control back to the caller.

Bl Caution

A return statement is required for a value-returning method. The method shown
below in (a) is logically correct, but it has a compile error because the Java compiler
thinks that this method might not return a value.

208 Chapter 6 Methods

reusing method

activation record

call stack

Activation record
for the main method

k:
j: 2
i: 5

Activation record for
the max method

public static int sign(int n) { public static int sign(int n) {
if (n > 0) if (n > 0)
return 1; Shouldbe return 1;
else if (n == 0) > else if (n == 0)
return 0; return 0;
else if (n < 0) else
return -1; return -1;
b }
(a) (b)

To fix this problem, delete if (n < 0) in (a), so the compiler will see a return
statement to be reached regardless of how the 1 f statement is evaluated.

B Note
Methods enable code sharing and reuse. The max method can be invoked from any
class, not just TestMax. If you create a new class, you can invoke the max method
using ClassName.methodName (i.e., TestMax.max).

Each time a method is invoked, the system creates an activation record (also called an acti-
vation frame) that stores parameters and variables for the method and places the activation
record in an area of memory known as a call stack. A call stack is also known as an execution
stack, runtime stack, or machine stack, and it is often shortened to just “the stack.” When a
method calls another method, the caller’s activation record is kept intact, and a new activation
record is created for the new method called. When a method finishes its work and returns to
its caller, its activation record is removed from the call stack.

A call stack stores the activation records in a last-in, first-out fashion: The activation record
for the method that is invoked last is removed first from the stack. For example, suppose
method m1 calls method m2, and m2 calls method m3. The runtime system pushes m1’s activa-
tion record into the stack, then m2’s, and then m3’s. After m3 is finished, its activation record is
removed from the stack. After m2 is finished, its activation record is removed from the stack.
After ml is finished, its activation record is removed from the stack.

Understanding call stacks helps you to comprehend how methods are invoked. The vari-
ables defined in the main method in Listing 6.1 are 1, j, and k. The variables defined in
the max method are numl, num2, and result. The variables numl and num2 are defined
in the method signature and are parameters of the max method. Their values are passed
through method invocation. Figure 6.3 illustrates the activation records for method calls in
the stack.

Activation record for
the max method

result: result: St=—=—f=-=—=======———+ r=-
num2: 2 <« num2: 2
numl: 5{<gn numl: 5

Activation record for
the main method

Activation record
for the main method

1

: Activation record for
\ the main method
1

1

1

k: k: k: 5« Stack is empty
j: 2F- jr 2 j: 2
it Sp==d it 5 it 5

(a) The main
method is invoked.

(b) The max
method is invoked.

(c) The max method
is being executed.

(d) The max method is
finished and the return
value is sent to k.

(e) The main
method is finished.

FIGURE 6.3 When the max method is invoked, the flow of control transfers to the max method. Once the max method is
finished, it returns control back to the caller.

6.4 void Method Example 209

6.4 void Method Example

A void method does not return a value.

The preceding section gives an example of a value-returning method. This section shows how
to define and invoke a void method. Listing 6.2 gives a program that defines a method named
printGrade and invokes it to print the grade for a given score.

LISTING 6.2 TestVoidMethod. java
1 public class TestVoidMethod {

2 public static void main(String[] args) {
3 System.out.print("The grade 1is ");
4 printGrade(78.5);

5

6 System.out.print("The grade is ");
7 printGrade(59.5);

8 }

9
10 public static void printGrade(double score) {
11 if (score >= 90.0) {
12 System.out.println('A");
13 }
14 else if (score >= 80.0) {
15 System.out.println('B");
16 }
17 else if (score >= 70.0) {
18 System.out.println('C");
19 }
20 else if (score >= 60.0) {
21 System.out.println('D");
22 }
23 else {
24 System.out.println('F");
25 }
26 }
27 %

The grade is C
The grade is F

The printGrade method is a void method because it does not return any value. A call to a
void method must be a statement. Therefore, it is invoked as a statement in line 4 in the main
method. Like any Java statement, it is terminated with a semicolon.

To see the differences between a void and value-returning method, let’s redesign the
printGrade method to return a value. The new method, which we call getGrade, returns
the grade as shown in Listing 6.3.

LIsTING 6.3 TestReturnGradeMethod. java

1 public class TestReturnGradeMethod {

2 public static void main(String[] args) {
3 System.out.print("The grade is " + getGrade(78.5));
4 System.out.print("\nThe grade is " + getGrade(59.5));
5 }
6

K
Gﬁoiﬁ

VideoNote
Use void method

main method

invoke printGrade

printGrade method

invoke void method

void vs. value-returned

main method

invoke getGrade

210 Chapter 6 Methods

getGrade method 7 public static char getGrade(double score) {
8 if (score >= 90.0)
9 return 'A';
10 else if (score >= 80.0)
11 return 'B';
12 else if (score >= 70.0)
13 return 'C';
14 else if (score >= 60.0)
15 return 'D';
16 else
17 return 'F';
18 }
19 3}

E The grade is C
The grade is F

The getGrade method defined in lines 7-18 returns a character grade based on the numeric
score value. The caller invokes this method in lines 3—4.

The getGrade method can be invoked by a caller wherever a character may appear. The
printGrade method does not return any value, so it must be invoked as a statement.

Note
return in void method A return statement is not needed for a void method, but it can be used for terminat-
ing the method and returning to the method’s caller. The syntax is simply

return;
This is not often done, but sometimes it is useful for circumventing the normal flow of

control in a void method. For example, the following code has a return statement to
terminate the method when the score is invalid.

public static void printGrade(double score) {

if (score < 0 || score > 100) {
System.out.println("Invalid score");
return;

}

if (score >= 90.0) {
System.out.printin('A");

}

else if (score >= 80.0) {
System.out.printin('B');

else if (score >= 70.0) {
System.out.printin('C");

}

else if (score >= 60.0) {
System.out.printin('D");

}

else {
System.out.printin('F');

}

}

6.4 void Method Example 211

6.1 What are the benefits of using a method? ﬁﬁeck
6.2 How do you define a method? How do you invoke a method? Point
6.3 How do you simplify the max method in Listing 6.1 using the conditional operator?

6.4 True or false? A call to a method with a void return type is always a statement itself,
but a call to a value-returning method cannot be a statement by itself.

6.5 What is the return type of a main method?

6.6 What would be wrong with not writing a return statement in a value-returning
method? Can you have a return statement in a void method? Does the return
statement in the following method cause syntax errors?
public static void xMethod(double x, double y) {

System.out.println(x + y);
return x + y;

}

6.7 Define the terms parameter, argument, and method signature.
6.8 Write method headers (not the bodies) for the following methods:

Return a sales commission, given the sales amount and the commission rate.

ISE

Display the calendar for a month, given the month and year.
Return a square root of a number.
Test whether a number is even, and returning true if it is.

Display a message a specified number of times.

- 0 a0

Return the monthly payment, given the loan amount, number of years, and annual
interest rate.

g. Return the corresponding uppercase letter, given a lowercase letter.
6.9 Identify and correct the errors in the following program:

1 public class Test {

2 public static methodl(int n, m) {
3 n += m;

4 method2(3.4);

5 3

6

7 public static int method2(int n) {
8 if (n > 0) return 1;

9 else if (n == 0) return 0;
10 else if (n < 0) return -1;
11 }
12 3}

6.10 Reformat the following program according to the programming style and documen-
tation guidelines proposed in Section 1.9, Programming Style and Documentation.
Use the next-line brace style.

public class Test {
public static double method(double i, double j)

{

while (i < j) {
j--;

h

return j;

h

212 Chapter 6 Methods

K
6ﬁoi‘1?;

parameter order association

pass-by-value

invoke increment

increment n

6.5 Passing Arguments by Values

The arguments are passed by value to parameters when invoking a method.

The power of a method is its ability to work with parameters. You can use println to print
any string and max to find the maximum of any two int values. When calling a method, you
need to provide arguments, which must be given in the same order as their respective param-
eters in the method signature. This is known as parameter order association. For example, the
following method prints a message n times:

public static void nPrintln(String message, int n) {
for (int i = 0; i < n; i++)
System.out.printin(message);

YoucanusenPrintIn(""Hello", 3) toprintHelTlo three times. The nPrint1n("Hello",
3) statement passes the actual string parameter Hello to the parameter message, passes 3 to
n, and prints He'l To three times. However, the statement nPrintTn(3, "Hello") would be
wrong. The data type of 3 does not match the data type for the first parameter, message, nor
does the second argument, He'll o, match the second parameter, n.

Caution

The arguments must match the parameters in order, number, and compatible type, as
defined in the method signature. Compatible type means that you can pass an argument
to a parameter without explicit casting, such as passing an int value argument to a
doube value parameter.

When you invoke a method with an argument, the value of the argument is passed to the
parameter. This is referred to as pass-by-value. If the argument is a variable rather than a
literal value, the value of the variable is passed to the parameter. The variable is not affected,
regardless of the changes made to the parameter inside the method. As shown in Listing 6.4,
the value of x (1) is passed to the parameter n to invoke the increment method (line 5). The
parameter n is incremented by 1 in the method (line 10), but x is not changed no matter what
the method does.

LISTING 6.4 Increment.java

1 public class Increment {

2 public static void main(String[] args) {

3 int x = 1;

4 System.out.printin("Before the call, x is " + x);
5 increment(x);

6 System.out.println("After the call, x is " + x);
7 }

8

9 public static void increment(int n) {
10 n++;
11 System.out.println("n inside the method is " + n);
12 }
13 3}

Before the call, x is 1
n inside the method is 2
After the call, x is 1

6.5 Passing Arguments by Values 213

Listing 6.5 gives another program that demonstrates the effect of passing by value. The pro-
gram creates a method for swapping two variables. The swap method is invoked by passing
two arguments. Interestingly, the values of the arguments are not changed after the method
is invoked.

LISTING 6.5 TestPassByValue.java
1 public class TestPassByValue {

2 /** Main method */

3 public static void main(String[] args) {

4 // Declare and initialize variables

5 int numl = 1;

6 int num2 = 2;

7

8 System.out.printin("Before invoking the swap method, numl 1is " +
9 numl + " and num2 is " + num2);
10
11 // Invoke the swap method to attempt to swap two variables
12 swap(numl, num2); false swap
13
14 System.out.printin("After invoking the swap method, numl 1is " +
15 numl + " and num2 is " 4+ num2);
16 }
17

18 /** Swap two variables */
19 public static void swap(int nl, int n2) {

20 System.out.println("\tInside the swap method");

21 System.out.printIn("\t\tBefore swapping, nl is " + nl

22 + " and n2 is " + n2);

23

24 // Swap nl with n2

25 int temp = nl;

26 nl = n2;

27 n2 = temp;

28

29 System.out.printin("\t\tAfter swapping, nl is " + nl

30 + " and n2 is " + n2);

31 }

32}

Before invoking the swap method, numl is 1 and num2 is 2 ‘
Inside the swap method g

Before swapping, nl is 1 and n2 is 2
After swapping, nl is 2 and n2 is 1
After invoking the swap method, numl is 1 and num2 is 2

Before the swap method is invoked (line 12), num1 is 1 and num2 is 2. After the swap method
is invoked, numl is still 1 and num2 is still 2. Their values have not been swapped. As shown
in Figure 6.4, the values of the arguments numl and num2 are passed to nl and n2, but n1 and
n2 have their own memory locations independent of numl and num2. Therefore, changes in
nl and n2 do not affect the contents of numl and num2.

Another twist is to change the parameter name nl in swap to numl. What effect does this
have? No change occurs, because it makes no difference whether the parameter and the argu-
ment have the same name. The parameter is a variable in the method with its own memory
space. The variable is allocated when the method is invoked, and it disappears when the
method is returned to its caller.

214 Chapter 6 Methods

The values of numl and num2 are

passed to nl and n2.

The values for nl and n2 are
swapped, but it does not affect
numl and num?2.

Activation record for Activation record for
the swap method the swap method
temp: temp: 1
n2: 2 <7 n2: 1
nl: 1 [< ':'| nl: 2
1
Activation record for Activation record for : 1 Activation record for Activation record for
the main method the main method : : the main method the main method Stack is empty
1
1
num2: 2 num2: 2pF-- : num2: 2 num2: 2
numl: 1 numl: 1pF=-== numl: 1 numl: 1

The main method
is invoked.

The swap method
is invoked.

The swap method
is executed.

The main method
is finished.

The swap method
is finished.

FIGURE 6.4 The values of the variables are passed to the method’s parameters.
Note

For simplicity, Java programmers often say passing x to y, which actually means passing
the value of argument x to parameter .

ﬁﬂeck 6.11 How is an argument passed to a method? Can the argument have the same name as
Point its parameter?
6.12 Identify and correct the errors in the following program:

1 public class Test {
2 public static void main(String[] args) {
3 nPrintln(5, "Welcome to Java!');
4 }
5
6 public static void nPrintln(String message, int n) {
7 int n = 1;
8 for (int i = 0; i < n; i++)
9 System.out.println(message);

10 }

11 }

6.13 What is pass-by-value? Show the result of the following programs.

public class Test {
public static void main(String[] args) {
int max = 0;

public class Test {
public static void main(String[] args) {
int i = 1;

max(l, 2, max); while (i <= 6) {
System.out.println(max); methodl(i, 2);
} T4++;
3
public static void max(}

int valuel, int value2, int max) {

if (valuel > value2) public static void methodl(

max = valuel; int i, int num) {
else for (int j = 1; j <=1; j++) {
max = value2; System.out.print(num + " ");
} num *= 2;
} 3

System.out.println();
}
B

(@) (b)

6.6 Modularizing Code 215

public class Test {
public static void main(String[] args) {
// Initialize times
int times = 3;
System.out.printin("Before the call,"”

+ " variable times is + times);

// Invoke nPrintTn and display times
nPrintin("Welcome to Java!', times);
System.out.printin("After the call,"

public class Test {
public static void main(String[] args) {
int i = 0;
while (i <= 4) {
methodl(i);
T++;
}

System.out.printin("i is " + 1i);

}

+ " variable times 1is " + times);
} public static void methodl(int i) {
do {
// Print the message n times if (A% 3 !'=0)
public static void nPrintin(System.out.print(i + " ");
String message, int n) { i--;
while (n > 0) { }
System.out.printin("n = " + n); while (i >= 1);
System.out.printin(message);
n--; System.out.println();
} }
B }

}

(©) (d)

6.14 For (a) in the preceding question, show the contents of the activation records in the
call stack just before the method max is invoked, just as max is entered, just before
max is returned, and right after max is returned.

6.6 Modularizing Code

Modularizing makes the code easy to maintain and debug and enables the code to be 6 fK

€y
reused.

Point

Methods can be used to reduce redundant code and enable code reuse. Methods can also be

used to modularize code and improve the quality of the program. u
Listing 5.9 gives a program that prompts the user to enter two integers and displays \.io00 o

their greatest common divisor. You can rewrite the program using a method, as shown in

Listing 6.6.

Modularize code

LISTING 6.6 GreatestCommonDivisorMethod.java

1 import java.util.Scanner;

3 public class GreatestCommonDivisorMethod {
4 /** Main method */

5 public static void main(String[] args) {
6 // Create a Scanner

7 Scanner input = new Scanner(System.in);
8

9 // Prompt the user to enter two integers
10 System.out.print("Enter first integer: ");
11 int nl = input.nextInt();

12 System.out.print("Enter second 1integer: ");
13 int n2 = input.nextInt();

216 Chapter 6 Methods

15 System.out.println("The greatest common divisor for " + nl +
invoke gcd 16 “and " + n2 + " dis " + gcd(nl, n2));

17 }

18

19 /** Return the gcd of two integers */
compute gcd 20 public static int gcd(int nl, int n2) {

21 int gcd = 1; // Initial gcd is 1

22 int k = 2; // Possible gcd

23

24 while (k <= nl && k <= n2) {

25 if (n1 % k == 08 n2 % k == 0)

26 gcd = k; // Update gcd

27 k++;

28 }

29
return gcd 30 return gcd; // Return gcd

31 }

32}

E Enter first integer: 45 |-enter
Enter second integer: 75 -enter

The greatest common divisor for 45 and 75 is 15

By encapsulating the code for obtaining the gcd in a method, this program has several
advantages:

1. It isolates the problem for computing the gcd from the rest of the code in the main
method. Thus, the logic becomes clear and the program is easier to read.

2. The errors on computing the gcd are confined in the gcd method, which narrows the
scope of debugging.

3. The gcd method now can be reused by other programs.
Listing 6.7 applies the concept of code modularization to improve Listing 5.15,

PrimeNumber.java.

LISTING 6.7 PrimeNumberMethod. java

1 public class PrimeNumberMethod {
2 public static void main(String[] args) {
3 System.out.printin("The first 50 prime numbers are \n'");
invoke printPrimeNumbers 4 printPrimeNumbers(50);
5 }
6
printPrimeNumbers 7 public static void printPrimeNumbers(int numberOfPrimes) {
method 8 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per Tine
9 int count = 0; // Count the number of prime numbers
10 int number = 2; // A number to be tested for primeness
11
12 // Repeatedly find prime numbers
13 while (count < numberOfPrimes) {
14 // Print the prime number and increase the count
invoke isPrime 15 if (isPrime(number)) {
16 count++; // Increase the count

6.7 Case Study: Converting Hexadecimals to Decimals 217

18 if (count % NUMBER_OF_PRIMES_PER_LINE == 0) {

19 // Print the number and advance to the new line

20 System.out.printf("%-5s\n", number);

21 }

22 else

23 System.out.printf("%-5s", number);

24 }

25

26 // Check whether the next number is prime

27 number++;

28 h

29 }

30

31 /** Check whether number is prime */

32 public static boolean isPrime(int number) { isPrime method
33 for (int divisor = 2; divisor <= number / 2; divisor++) {

34 if (number % divisor == 0) { // If true, number is not prime
35 return false; // Number is not a prime

36 }

37 }

38

39 return true; // Number is prime

40 }

41 }

The first 50 prime numbers are E

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 50 61 67 71
73 79 83 8 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

We divided a large problem into two subproblems: determining whether a number is a prime
and printing the prime numbers. As a result, the new program is easier to read and easier to
debug. Moreover, the methods printPrimeNumbers and isPrime can be reused by other
programs.

6.7 Case Study: Converting Hexadecimals to Decimals

This section presents a program that converts a hexadecimal number into a decimal Key
number. 6 Point

Listing 5.11, Dec2Hex.java, gives a program that converts a decimal to a hexadecimal. How
would you convert a hex number into a decimal?
Given a hexadecimal number h,h,_1h,—> ... hhihy, the equivalent decimal value is

hy, X 16" + h,_; X 16" " + h,_, X 16" 2+ ...
+ hy X 167 + h; X 16" + hy X 16°

For example, the hex number AB8C is
10 X 16> + 11 X 162 + 8 X 16" + 12 X 16° = 43916

Our program will prompt the user to enter a hex number as a string and convert it into a deci-
mal using the following method:

public static int hexToDecimal(String hex)

218 Chapter 6 Methods

A brute-force approach is to convert each hex character into a decimal number, multiply it by
16" for a hex digit at the 1’s position, and then add all the items together to obtain the equiva-
lent decimal value for the hex number.

Note that

hy X 16" + h,_; X 16"V 4+ h,_, X 16" 2+ ... + hy X 16" + hy X 16°
=(...((h, X 16+ h, — 1) X 16 + h, —2) X 16 + ... + h) X 16 + h

This observation, known as the Horner’s algorithm, leads to the following efficient code for
converting a hex string to a decimal number:

int decimalValue = 0;
for (int i = 0; i < hex.length(Q); i++) {
char hexChar hex.charAt(i);
decimalValue = decimalValue * 16 + hexCharToDecimalChexChar);

}

Here is a trace of the algorithm for hex number AB8C:

Q\ . hexCharToDecimal .
i hexChar (hexChar) decimalValue
before the loop 0
after the Istiteration 0 A 10 10
after the 2nd iteration 1 B 11 10 * 16 + 11
after the 3rd iteration 2 8 8 (10 * 16 + 11) * 16 + 8
after the 4th iteration 3 C 12 (10 * 16 + 11)

* 16 + 8) * 16 + 12

Listing 6.8 gives the complete program.

LISTING 6.8 Hex2Dec.java

1 dimport java.util.Scanner;
2
3 public class Hex2Dec {
4 /** Main method */
5 public static void main(String[] args) {
6 // Create a Scanner
7 Scanner input = new Scanner(System.in);
8
9 // Prompt the user to enter a string
10 System.out.print("Enter a hex number: ");
input string 11 String hex = input.nextLine();
12
13 System.out.println("The decimal value for hex number "
hex to decimal 14 + hex + " is " + hexToDecimal(hex.toUpperCase()));
15 }
16
17 public static int hexToDecimal(String hex) {
18 int decimalValue = 0;
19 for (int i = 0; i < hex.TengthQ); i++) {
20 char hexChar = hex.charAt(i);
21 decimalValue = decimalValue * 16 + hexCharToDecimalChexChar);

6.8 Overloading Methods 219

22 }

23

24 return decimalValue;

25 }

26

27 public static int hexCharToDecimal(char ch) { hex char to decimal
28 if (ch >= "A" && ch <= 'F") check uppercase
29 return 10 + ch - 'A";

30 else // ch is '0', '"1', ..., or '9'

31 return ch - '0';

32 }

33 }

Enter a hex number: AB8C |-&nter E

The decimal value for hex number AB8C 1is 43916 S

Enter a hex number: af71 |-enter E

The decimal value for hex number af71 is 44913

The program reads a string from the console (line 11), and invokes the hexToDecimal method
to convert a hex string to decimal number (line 14). The characters can be in either lowercase
or uppercase. They are converted to uppercase before invoking the hexToDecimal method.

The hexToDecimal method is defined in lines 17-25 to return an integer. The length of
the string is determined by invoking hex.length() in line 19.

The hexCharToDecimal method is defined in lines 27-32 to return a decimal value for
a hex character. The character can be in either lowercase or uppercase. Recall that to subtract
two characters is to subtract their Unicodes. For example, ‘5" - '0' is 5.

6.8 Overloading Methods

Overloading methods enables you to define the methods with the same name as long 6 f

. . Ke
as their signatures are different. Poin{

The max method that was used earlier works only with the int data type. But what if you
need to determine which of two floating-point numbers has the maximum value? The solu-
tion is to create another method with the same name but different parameters, as shown in the
following code:

public static double max(double numl, double num2) {
if (numl > num2)
return numl;
else
return num2;

3

If you call max with int parameters, the max method that expects int parameters will be

invoked; if you call max with double parameters, the max method that expects double

parameters will be invoked. This is referred to as method overloading; that is, two methods method overloading
have the same name but different parameter lists within one class. The Java compiler deter-

mines which method to use based on the method signature.

220 Chapter 6 Methods

overloaded max

overloaded max

overloaded max

Listing 6.9 is a program that creates three methods. The first finds the maximum integer,
the second finds the maximum double, and the third finds the maximum among three double
values. All three methods are named max.

LISTING 6.9 TestMethodOverloading.java

1 public class TestMethodOverloading {

2 /** Main method */

3 public static void main(String[] args) {

4 // Invoke the max method with int parameters

5 System.out.printIn("The maximum of 3 and 4 1is "

6 + max(3, 4));

7

8 // Invoke the max method with the double parameters
9 System.out.printin("The maximum of 3.0 and 5.4 1is "
10 + max(3.0, 5.4));
11
12 // Invoke the max method with three double parameters
13 System.out.println("The maximum of 3.0, 5.4, and 10.14 1is "
14 + max(3.0, 5.4, 10.14));
15 }
16
17 /** Return the max of two int values */
18 public static int max(int numl, int num2) {
19 if (numl > num2)
20 return numl;
21 else
22 return num2;
23 }
24

25 /** Find the max of two double values */
26 public static double max(double numl, double num2) {

27 if (numl > num2)
28 return numl;
29 else

30 return num?2;
31 }

32

33 /** Return the max of three double values */

34 public static double max(double numl, double num2, double num3) {
35 return max(max(numl, num2), num3);

36 }

37 }

The maximum of 3 and 4 is 4
The maximum of 3.0 and 5.4 is 5.4
The maximum of 3.0, 5.4, and 10.14 is 10.14

When calling max (3, 4) (line 6), the max method for finding the maximum of two integers is
invoked. When calling max (3.0, 5.4) (line 10), the max method for finding the maximum
of two doubles is invoked. When calling max (3.0, 5.4, 10.14) (line 14), the max method
for finding the maximum of three double values is invoked.

Can you invoke the max method with an int value and a doubTe value, such as max(2,
2.5)? If so, which of the max methods is invoked? The answer to the first question is yes.
The answer to the second question is that the max method for finding the maximum of two
doube values is invoked. The argument value 2 is automatically converted into a double
value and passed to this method.

6.8 Overloading Methods

You may be wondering why the method max(double, double) is not invoked for the
call max(3, 4).Both max(double, double) and max(int, int) are possible matches
for max (3, 4). The Java compiler finds the method that best matches a method invocation.
Since the method max(int, 1int) is a better matches for max(3, 4) than max(double,
double), max(int, 1int) is used to invoke max(3, 4).

Tip

H Overloading methods can make programs clearer and more readable. Methods that per-
form the same function with different types of parameters should be given the same
name.

Note
H Overloaded methods must have different parameter lists. You cannot overload methods
based on different modifiers or return types.

Note

H Sometimes there are two or more possible matches for the invocation of a method, but
the compiler cannot determine the best match. This is referred to as ambiguous invo- ambiguous invocation
cation. Ambiguous invocation causes a compile error. Consider the following code:

public class AmbiguousOverloading {
public static void main(String[] args) {
System.out.println(max(l, 2));
}

public static double max(int numl, double num2) {
if (numl > num2)
return numl;
else
return num?2;

}

public static double max(double numl, int num2) {
if (numl > num2)
return numl;
else
return num2;
}
}

Both max(int, double) and max(double, int) are possible candidates to match
max(1l, 2). Because neither is better than the other, the invocation is ambiguous,
resulting in a compile error.

6.15 What is method overloading? Is it permissible to define two methods that have the ﬁheck
same name but different parameter types? Is it permissible to define two methodsina (/' pgjnt
class that have identical method names and parameter lists but different return value
types or different modifiers?

6.16 What is wrong in the following program?

public class Test {
public static void method(int x) {
h;

public static int method(int y) {

221

222 Chapter 6 Methods

return y;
}
}

6.17 Given two method definitions,
public static double m(double x, double y)
public static double m(int x, double y)
tell which of the two methods is invoked for:

a. double z = m(4, 5);

b. double z = m(4, 5.4);

c. double z m(4.5, 5.4);

6.9 The Scope of Variables

Ke The scope of a variable is the part of the program where the variable can be
6 Poin); referenced.

scope of variables Section 2.5 introduced the scope of a variable. This section discusses the scope of vari-

local variable ables in detail. A variable defined inside a method is referred to as a local variable. The
scope of a local variable starts from its declaration and continues to the end of the block
that contains the variable. A local variable must be declared and assigned a value before
it can be used.

A parameter is actually a local variable. The scope of a method parameter covers the
entire method. A variable declared in the initial-action part of a for-loop header has its
scope in the entire loop. However, a variable declared inside a for-loop body has its scope
limited in the loop body from its declaration to the end of the block that contains the variable,
as shown in Figure 6.5.

public static void methodl() {

—— for (int 7 = 1; i < 10; i++) {

The scope of 1 ———> .
int j;

The scope of j

}

FIGURE 6.5 A variable declared in the initial action part of a for-loop header has its scope
in the entire loop.

You can declare a local variable with the same name in different blocks in a method, but
you cannot declare a local variable twice in the same block or in nested blocks, as shown in
Figure 6.6.

6.10 Case Study: Generating Random Characters 223

— It is fine to declare i in two It is wrong to declare i in two
nonnested blocks. nested blocks.
public static void methodl() { public static void method2() {
int x = 1; _
inty = 1; int 7 = 1;
- int sum = 0;
for (int 7 = 1; i < 10; i++) {

> X += 1; for (int 7 = 1; i < 10; 1i++)
L} sum += 1i;
}

\ for (int 7 = 1; i < 10; i++) { L
y += 1; ¥
B

}

FIGURE 6.6 A variable can be declared multiple times in nonnested blocks, but only once in nested blocks.

Caution
Do not declare a variable inside a block and then attempt to use it outside the block.
Here is an example of a common mistake:

for (int i = 0; i < 10; i++) {
}

System.out.println(i);

The last statement would cause a syntax error, because variable 1 is not defined outside
of the for loop.

. o
6.18 What is a local variable? ﬁheck
6.19 What s the scope of a local variable? " Point

6.10 Case Study: Generating Random Characters

A character is coded using an integer. Generating a random character is to generate Key
an integer. 6 Point

Computer programs process numerical data and characters. You have seen many examples
that involve numerical data. It is also important to understand characters and how to process
them. This section presents an example of generating random characters.

As introduced in Section 4.3, every character has a unique Unicode between 0 and FFFF in
hexadecimal (65535 in decimal). To generate a random character is to generate a random integer
between 0 and 65535 using the following expression (note that since 0 <= Math.random() <
1.0, you have to add 1 to 65535):

(int) (Math.random() * (65535 + 1))

Now let’s consider how to generate a random lowercase letter. The Unicodes for lowercase
letters are consecutive integers starting from the Unicode for a, then that for b, c, . . ., and z.
The Unicode for a is

(int) 'a’
Thus, a random integer between (int) 'a’ and (int) 'z’ is

(int) ((int)'a" + Math.random() * ((int)'z"' - (int)'a' + 1))

224 Chapter 6 Methods

As discussed in Section 4.3.3, all numeric operators can be applied to the char operands. The
char operand is cast into a number if the other operand is a number or a character. Therefore,
the preceding expression can be simplified as follows:

'a' + Math.random() * ('z' - 'a' + 1)
and a random lowercase letter is
(char)('a' + Math.random() * ('z' - 'a'" + 1))

Hence, a random character between any two characters chl and ch2 with chl < ch2 can be
generated as follows:

(char) (chl + Math.random() * (ch2 - chl + 1))

This is a simple but useful discovery. Listing 6.10 defines a class named RandomCharacter
with five overloaded methods to get a certain type of character randomly. You can use these
methods in your future projects.

LisTING 6.10 RandomCharacter.java

1 public class RandomCharacter {
2 /** Generate a random character between chl and ch2 */
getRandomCharacter 3 public static char getRandomCharacter(char chl, char ch2) {
4 return (char) (chl + Math.random() * (ch2 - chl + 1));
5 }
6
7 /** Generate a random lowercase Tletter */
getRandomLower 8 public static char getRandomLowerCaselLetter() {
Caseletter() 9 return getRandomCharacter('a', 'z');
10 }
11
12 /** Generate a random uppercase letter */
getRandomUpper 13 public static char getRandomUpperCaselLetter() {
Caseletter() 14 return getRandomCharacter('A', 'Z");
15 }
16
17 /** Generate a random digit character */
getRandomDigit 18 public static char getRandomDigitCharacter() {
Character() 19 return getRandomCharacter('0', '9");
20 }
21
22 /** Generate a random character */
getRandomCharacter() 23 public static char getRandomCharacter() {
24 return getRandomCharacter('\u0000', '\uFFFF');
25 }
26}
Listing 6.11 gives a test program that displays 175 random lowercase letters.
LIsTING 6.11 TestRandomCharacter.java
1 public class TestRandomCharacter {
2 /** Main method */
public static void main(String[] args) {
constants final int NUMBER_OF_CHARS = 175;

final 1int CHARS_PER_LINE = 25;
// Print random characters between 'a' and 'z', 25 chars per line

3
4
5
6
7
8 for (int i = 0; i < NUMBER_OF_CHARS; i++) {

6.1 Method Abstraction and Stepwise Refinement 225

9 char ch = RandomCharacter.getRandomLowerCaselLetter();
10 if ((i + 1) % CHARS_PER_LINE == 0)

11 System.out.printin(ch);

12 else

13 System.out.print(ch);

14 }

15 }

16 3}

gmjsohezfkgtazggmswfclrao
pnrunulnwmaztl]fjedmpchcif
Talqdgivxkxpbzulrmgmbhikr
Tbnrjlsopfxahssghwuuljvbe
xbhdotzhpehbgmuwsfktwsoli
cbuwkzgxpmtzihgatdsTvbwbz
bfesoklwbhnooygiigzdxuqgni

Line 9 invokes getRandomLowerCaselLetter () defined in the RandomCharacter class.
Note that getRandomLowerCaselLetter () does not have any parameters, but you still have
to use the parentheses when defining and invoking the method.

6.11 Method Abstraction and Stepwise Refinement

The key to developing software is to apply the concept of abstraction.

You will learn many levels of abstraction from this book. Method abstraction is achieved by
separating the use of a method from its implementation. The client can use a method without
knowing how it is implemented. The details of the implementation are encapsulated in the
method and hidden from the client who invokes the method. This is also known as information
hiding or encapsulation. If you decide to change the implementation, the client program will
not be affected, provided that you do not change the method signature. The implementation of
the method is hidden from the client in a “black box,” as shown in Figure 6.7.

Optional arguments Optional return
for input value

' T

| Method Header |

—<— Black box

Method Body

FiGure 6.7 The method body can be thought of as a black box that contains the detailed
implementation for the method.

You have already used the System. out. print method to display a string and the max method
to find the maximum number. You know how to write the code to invoke these methods in your
program, but as a user of these methods, you are not required to know how they are implemented.

The concept of method abstraction can be applied to the process of developing programs.
When writing a large program, you can use the divide-and-conquer strategy, also known
as stepwise refinement, to decompose it into subproblems. The subproblems can be further
decomposed into smaller, more manageable problems.

Suppose you write a program that displays the calendar for a given month of the year. The
program prompts the user to enter the year and the month, then displays the entire calendar for
the month, as shown in the following sample run.

lower-case letter

parentheses required

K
6foxe

VideoNote
Stepwise refinement

method abstraction

information hiding

divide and conquer
stepwise refinement

226 Chapter 6 Methods

E Enter full year (e.g., 2012): 2012 -enter
Enter month as number between 1 and 12: 3 |-enter

March 2012
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

Let us use this example to demonstrate the divide-and-conquer approach.

6.11.1 Top-Down Design

How would you get started on such a program? Would you immediately start coding? Begin-
ning programmers often start by trying to work out the solution to every detail. Although
details are important in the final program, concern for detail in the early stages may block
the problem-solving process. To make problem solving flow as smoothly as possible, this
example begins by using method abstraction to isolate details from design and only later
implements the details.

For this example, the problem is first broken into two subproblems: get input from the
user and print the calendar for the month. At this stage, you should be concerned with
what the subproblems will achieve, not with how to get input and print the calendar for the
month. You can draw a structure chart to help visualize the decomposition of the problem
(see Figure 6.8a).

printCalendar
(main)

printMonth |
Y v Y

readInput | printMonth | pr'intMonthT'it'Iel pr'intMonthBodyl

(a) (b)

FIGURE 6.8 The structure chart shows that the printCalendar problem is divided into two subproblems, readInput
and printMonth in (a), and that printMonth is divided into two smaller subproblems, printMonthTitle and
printMonthBody in (b).

You can use Scanner to read input for the year and the month. The problem of printing the
calendar for a given month can be broken into two subproblems: print the month title and print
the month body, as shown in Figure 6.8b. The month title consists of three lines: month and
year, a dashed line, and the names of the seven days of the week. You need to get the month
name (e.g., January) from the numeric month (e.g., 1). This is accomplished in getMonth-
Name (see Figure 6.9a).

In order to print the month body, you need to know which day of the week is the first day of
the month (getStartDay) and how many days the month has (getNumberOfDaysInMonth),

6.1 Method Abstraction and Stepwise Refinement 227

printMonthBody |
pr'intMonthT‘it'Iel |
getMonthName | getStartDay | getNumberOfDaysInMonth
(a) (b)

FIGURE 6.9 (a) To printMonthTitle, you need getMonthName. (b) The printMonthBody
problem is refined into several smaller problems.

as shown in Figure 6.9b. For example, December 2013 has 31 days, and December 1, 2013,
is a Sunday.

How would you get the start day for the first date in a month? There are several ways to do
so. For now, we’ll use an alternative approach. Assume you know that the start day for January
1, 1800, was a Wednesday (START_DAY_FOR_JAN_1 1800 = 3). You could compute the
total number of days (totalNumberOfDays) between January 1, 1800, and the first date of the
calendar month. The start day for the calendar month is (totalNumberOfDays + START_
DAY_FOR_JAN_1_1800) % 7, since every week has seven days. Thus, the getStartDay
problem can be further refined as getTotalNumberOfDays, as shown in Figure 6.10a.

getStartDay | getTotalNumberOfDays |

getNumberOfDaysInMonth

getTota'INumber‘OfDaysl 1'sLeapYear|

(a) (b)

FIGURE 6.10 (a) To getStartDay, you need getTotalNumberOfDays. (b) The
getTotalNumberOfDays problem is refined into two smaller problems.

To get the total number of days, you need to know whether the year is a leap year and the
number of days in each month. Thus, getTotalNumberOfDays can be further refined into
two subproblems: isLeapYear and getNumberOfDaysInMonth, as shown in Figure 6.10b.
The complete structure chart is shown in Figure 6.11.

6.11.2 Top-Down and/or Bottom-Up Implementation

Now we turn our attention to implementation. In general, a subproblem corresponds to a
method in the implementation, although some are so simple that this is unnecessary. You
would need to decide which modules to implement as methods and which to combine with
other methods. Decisions of this kind should be based on whether the overall program will be
easier to read as a result of your choice. In this example, the subproblem readInput can be
simply implemented in the main method.

You can use either a “top-down” or a “bottom-up” approach. The top-down approach top-down approach
implements one method in the structure chart at a time from the top to the bottom. Stubs— stub
a simple but incomplete version of a method—can be used for the methods waiting to be
implemented. The use of stubs enables you to quickly build the framework of the program.
Implement the main method first, and then use a stub for the printMonth method. Forexample,

228 Chapter 6 Methods

FIGURE 6.11

printCalendar
(main)

Y Y
readInput | printMonth |
I
Y
printMonthTit]el printMonthBody |
Y Y
getMonthName | getStartDay |
Y
getTota]NumberOfDaysl

—

getNumberOfDaysInMonth

isLeapYearl

the program.

The structure chart shows the hierarchical relationship of the subproblems in

let printMonth display the year and the month in the stub. Thus, your program may begin
like this:

public class PrintCalendar {

/** Main method */

public static void main(String[] args) {

}

Scanner input = new Scanner(System.in);

// Prompt the user to enter year
System.out.print("Enter full year (e.g., 2012): ");
int year = input.nextInt();

// Prompt the user to enter month

System.out.print("Enter month as a number between 1 and 12:

int month = input.nextInt();

// Print calendar for the month of the year
printMonth(year, month);

/** A stub for printMonth may Took 1like this */
public static void printMonth(int year, int month){

}

System.out.print(month + + year);

/** A stub for printMonthTitle may Took 1like this */
public static void printMonthTitle(int year, int month){

}

/** A stub for getMonthBody may look Tike this */
public static void printMonthBody(int year, int month){

¥

");

6.1 Method Abstraction and Stepwise Refinement 229

/** A stub for getMonthName may Took 1like this */
public static String getMonthName(int month) {
return "January"; // A dummy value

¥

/** A stub for getStartDay may look like this */
public static int getStartDay(int year, int month) {
return 1; // A dummy value

}

/** A stub for getTotalNumberOfDays may look Tike this */

public static int getTotalNumberOfDays(int year, int month) {
return 10000; // A dummy value

}

/** A stub for getNumberOfDaysInMonth may Took 1like this */
public static int getNumberOfDaysInMonth(int year, int month) {
return 31; // A dummy value

}

/** A stub for islLeapYear may look like this */
public static Boolean islLeapYear(int year) {
return true; // A dummy value
}
}

Compile and test the program, and fix any errors. You can now implement the printMonth
method. For methods invoked from the printMonth method, you can again use stubs.
The bottom-up approach implements one method in the structure chart at a time from the bottom-up approach
bottom to the top. For each method implemented, write a test program, known as the driver, driver
to test it. The top-down and bottom-up approaches are equally good: Both approaches imple-
ment methods incrementally, help to isolate programming errors, and make debugging easy.
They can be used together.

6.11.3 Implementation Details

The isLeapYear(int year) method can be implemented using the following code from
Section 3.11:

return year % 400 == 0 || (year % 4 == 0 & year % 100 != 0);

Use the following facts to implement getTotalNumberOfDaysInMonth(int year, fint
month):

B January, March, May, July, August, October, and December have 31 days.
B April, June, September, and November have 30 days.

B February has 28 days during a regular year and 29 days during a leap year. A regular
year, therefore, has 365 days, a leap year 366 days.

To implement getTotalNumberOfDays (int year, int month), you need to compute
the total number of days (totalNumberOfDays) between January 1, 1800, and the first day
of the calendar month. You could find the total number of days between the year 1800 and the
calendar year and then figure out the total number of days prior to the calendar month in the
calendar year. The sum of these two totals is totalNumberOfDays.

To print a body, first pad some space before the start day and then print the lines for every
week.

The complete program is given in Listing 6.12.

230 Chapter 6 Methods

printMonth

printMonthTitle

getMonthName

LIsTING 6.12 PrintCalendar.java

1

import java.util.Scanner;

public class PrintCalendar {

/*% Main method */
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

// Prompt the user to enter year
System.out.print("Enter full year (e.g., 2012): ");
int year = input.nextInt();

// Prompt the user to enter month

System.out.print("Enter month as a number between 1 and 12:

int month = input.nextInt();

// Print calendar for the month of the year
printMonth(year, month);
}

/** Print the calendar for a month in a year */

public static void printMonth(int year, int month) {
// Print the headings of the calendar
printMonthTitle(year, month);

// Print the body of the calendar
printMonthBody (year, month);
}

/** Print the month title, e.g., March 2012 */
public static void printMonthTitle(int year, int month) {
System.out.printin(" " + getMonthName (month)
+ """ + year);
System.out.println("-----------------c-om o ");
System.out.printin(" Sun Mon Tue Wed Thu Fri Sat");

}

/** Get the English name for the month */
public static String getMonthName(int month) {

String monthName = ;
switch (month) {

case 1: monthName = "January"; break;
case 2: monthName = "February"; break;
case 3: monthName = "March"; break;
case 4: monthName = "April"; break;
case 5: monthName = "May"; break;

case 6: monthName = "June"; break;

case 7: monthName = "July"; break;

case 8: monthName = "August'"; break;
case 9: monthName = "September'"; break;
case 10: monthName = "October"; break;
case 11: monthName = "November'"; break;

case 12: monthName = "December";

}

return monthName;

}

/** Print month body */

")

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

6.1 Method Abstraction and Stepwise Refinement 231

public static void printMonthBody(int year, int month) {

3

// Get start day of the week for the first date in the month
int startDay = getStartDay(year, month)

// Get number of days in the month
int numberOfDaysInMonth = getNumberOfDaysInMonth(year, month);

// Pad space before the first day of the month

int i = 0;
for (i = 0; i < startDay; i++)
System.out.print(" ";

for (i = 1; i <= numberOfDaysInMonth; i++) {
System.out.printf("%4d", 1i);

if ((i + startDay) % 7 == 0)
System.out.printinQ);

}

System.out.println(Q);

/** Get the start day of month/1/year */
public static int getStartDay(int year, int month) {

}

final 1int START_DAY_FOR_JAN_1 1800 = 3;
// Get total number of days from 1/1/1800 to month/1/year
int totalNumberOfDays = getTotalNumberOfDays(year, month);

// Return the start day for month/1/year
return (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7;

/** Get the total number of days since January 1, 1800 */
public static int getTotalNumberOfDays(int year, int month) {

}

int total = 0;

// Get the total days from 1800 to 1/1/year
for (int i = 1800; i < year; i++)
if (isLeapYear(i))
total = total + 366;
else
total = total + 365;

// Add days from Jan to the month prior to the calendar month
for (int i = 1; i < month; i++)
total = total + getNumberOfDaysInMonth(year, i);

return total;

/** Get the number of days in a month */
public static int getNumberOfDaysInMonth(int year, int month) {

if (month == 1 || month == || month == || month == 7 |
month == 8 || month == 10 || month == 12)
return 31;

if (month == 4 || month == 6 || month == 9 || month == 11)
return 30;

if (month == 2) return islLeapYear(year) ? 29 : 28;

printMonthBody

getStartDay

getTotalNumberOfDays

getNumberOfDaysInMonth

232 Chapter 6 Methods

isLeapYear

incremental development and
testing

119

120

121 }
122

123 /** Determine if it is a leap year */

124 public static boolean isLeapYear(int year) {

125 return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);
126 }

127 }

return 0; // If month 1is incorrect

The program does not validate user input. For instance, if the user enters either a month not in
the range between 1 and 12 or a year before 1800, the program displays an erroneous calen-
dar. To avoid this error, add an 1if statement to check the input before printing the calendar.

This program prints calendars for a month but could easily be modified to print calendars
for a whole year. Although it can print months only after January 1800, it could be modified
to print months before 1800.

6.11.4 Benefits of Stepwise Refinement

Stepwise refinement breaks a large problem into smaller manageable subproblems. Each sub-
problem can be implemented using a method. This approach makes the program easier to
write, reuse, debug, test, modify, and maintain.

Simpler Program

The print calendar program is long. Rather than writing a long sequence of statements in one
method, stepwise refinement breaks it into smaller methods. This simplifies the program and
makes the whole program easier to read and understand.

Reusing Methods

Stepwise refinement promotes code reuse within a program. The isLeapYear method is
defined once and invoked from the getTotalNumberOfDays and getNumberOfDayInMonth
methods. This reduces redundant code.

Easier Developing, Debugging, and Testing

Since each subproblem is solved in a method, a method can be developed, debugged, and tested
individually. This isolates the errors and makes developing, debugging, and testing easier.

When implementing a large program, use the top-down and/or bottom-up approach. Do
not write the entire program at once. Using these approaches seems to take more development
time (because you repeatedly compile and run the program), but it actually saves time and
makes debugging easier.

Better Facilitating Teamwork

When a large problem is divided into subprograms, subproblems can be assigned to different
programmers. This makes it easier for programmers to work in teams.

KEY TERMS

actual parameter 205

ambiguous invocation 221

argument 205

divide and conquer 225

formal parameter (i.e., parameter) 205
information hiding 225

method 204

method abstraction 225

method overloading 219
method signature 205
modifier 205

parameter 205
pass-by-value 212
scope of a variable 222
stepwise refinement 225
stub 227

Chapter Summary 233

CHAPTER SUMMARY

I. Making programs modular and reusable is one of the central goals in software engineer-
ing. Java provides many powerful constructs that help to achieve this goal. Methods are
one such construct.

2. The method header specifies the modifiers, return value type, method name, and param-
eters of the method. The static modifier is used for all the methods in this chapter.

3. A method may return a value. The returnValueType is the data type of the value the
method returns. If the method does not return a value, the returnValueType is the
keyword void.

4. The parameter list refers to the type, order, and number of a method’s parameters. The
method name and the parameter list together constitute the method signature. Param-
eters are optional; that is, a method doesn’t need to contain any parameters.

5. A return statement can also be used in a void method for terminating the method and
returning to the method’s caller. This is useful occasionally for circumventing the nor-
mal flow of control in a method.

6. The arguments that are passed to a method should have the same number, type, and
order as the parameters in the method signature.

7. When a program calls a method, program control is transferred to the called method. A
called method returns control to the caller when its return statement is executed or when
its method-ending closing brace is reached.

8. A value-returning method can also be invoked as a statement in Java. In this case, the
caller simply ignores the return value.

9. A method can be overloaded. This means that two methods can have the same name, as
long as their method parameter lists differ.

10. A variable declared in a method is called a local variable. The scope of a local variable
starts from its declaration and continues to the end of the block that contains the vari-
able. A local variable must be declared and initialized before it is used.

I 1. Method abstraction is achieved by separating the use of a method from its implementa-
tion. The client can use a method without knowing how it is implemented. The details
of the implementation are encapsulated in the method and hidden from the client who
invokes the method. This is known as information hiding or encapsulation.

12. Method abstraction modularizes programs in a neat, hierarchical manner. Programs
written as collections of concise methods are easier to write, debug, maintain, and
modify than would otherwise be the case. This writing style also promotes method
reusability.

I3. When implementing a large program, use the top-down and/or bottom-up coding
approach. Do not write the entire program at once. This approach may seem to take
more time for coding (because you are repeatedly compiling and running the program),
but it actually saves time and makes debugging easier.

234 Chapter 6 Methods

Quiz

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

MyProgrammingLab® PROGRAMMING EXERCISES

VideoNote
Reverse an integer

Note

A common error for the exercises in this chapter is that students don’t implement
the methods to meet the requirements even though the output from the main pro-
gram is correct. For an example of this type of error see www.cs.armstrong.edu/liang/
CommonMethodErrorjava.pdf.

Sections 6.2-6.9

6.1

*6.2

*%6.3

*6.4

*6.5

(Math: pentagonal numbers) A pentagonal number is defined as n(3n—1)/2 for
n=1,2,...,and so on. Therefore, the first few numbers are 1, 5, 12, 22,
Write a method with the following header that returns a pentagonal number:

public static int getPentagonalNumber(int n)

Write a test program that uses this method to display the first 100 pentagonal
numbers with 10 numbers on each line.

(Sum the digits in an integer) Write a method that computes the sum of the digits
in an integer. Use the following method header:

public static int sumDigits(long n)

For example, sumDigits(234) returns 9 (2 + 3 + 4). (Hint: Use the % opera-
tor to extract digits, and the / operator to remove the extracted digit. For instance,
to extract 4 from 234, use 234 % 10 (= 4). To remove 4 from 234, use 234 / 10
(= 23). Use a loop to repeatedly extract and remove the digit until all the digits
are extracted. Write a test program that prompts the user to enter an integer and
displays the sum of all its digits.

(Palindrome integer) Write the methods with the following headers

// Return the reversal of an integer, i.e., reverse(456) returns 654
public static int reverse(int number)

// Return true if number is a palindrome
public static boolean isPalindrome(int number)

Use the reverse method to implement isPalindrome. A number is a palin-
drome if its reversal is the same as itself. Write a test program that prompts the
user to enter an integer and reports whether the integer is a palindrome.

(Display an integer reversed) Write a method with the following header to display
an integer in reverse order:

public static void reverse(int number)

For example, reverse(3456) displays 6543. Write a test program that prompts
the user to enter an integer and displays its reversal.

(Sort three numbers) Write a method with the following header to display three
numbers in increasing order:

public static void displaySortedNumbers(
double numl, double num2, double num3)

www.cs.armstrong.edu/liang/intro10e/quiz.html
www.cs.armstrong.edu/liang/CommonMethodErrorJava.pdf
www.cs.armstrong.edu/liang/CommonMethodErrorJava.pdf

Programming Exercises 235

Write a test program that prompts the user to enter three numbers and invokes the
method to display them in increasing order.

*6.6 (Display patterns) Write a method to display a pattern as follows:

1

21

321

n n-1 . 321
The method header is

public static void displayPattern(int n)

*6.7 (Financial application: compute the future investment value) Write a method that
computes future investment value at a given interest rate for a specified number
of years. The future investment is determined using the formula in Programming
Exercise 2.21.

Use the following method header:

public static double futureInvestmentValue(
double investmentAmount, double monthlyInterestRate, int years)

For example, futureInvestmentValue(10000, 0.05/12, 5) returns
12833.59.

Write a test program that prompts the user to enter the investment amount (e.g.,
1000) and the interest rate (e.g., 9%) and prints a table that displays future value
for the years from 1 to 30, as shown below:

The amount invested: 1000 | -enter E
Annual interest rate: 9 |-enter

Years Future Value

1 1093.80

2 1196.41

29 13467.25

30 14730.57

6.8 (Conversions between Celsius and Fahrenheit) Write a class that contains the fol-
lowing two methods:

/** Convert from Celsius to Fahrenheit */
public static double celsiusToFahrenheit(double celsius)

/** Convert from Fahrenheit to Celsius */
public static double fahrenheitToCelsius(double fahrenheit)

The formula for the conversion is:

fahrenheit = (9.0 / 5) * celsius + 32
celsius = (5.0 / 9) * (fahrenheit - 32)

236 Chapter 6 Methods

Write a test program that invokes these methods to display the following tables:

Celsius Fahrenheit | Fahrenheit Celsius
40.0 104.0 | 120.0 48.89
39.0 102.2 | 110.0 43.33
32.0 89.6 | 40.0 4.44

31.0 87.8 | 30.0 -1.11

6.9 (Conversions between feet and meters) Write a class that contains the following
two methods:

/** Convert from feet to meters */
public static double footToMeter(double foot)

/** Convert from meters to feet */
public static double meterToFoot(double meter)

The formula for the conversion is:

meter = 0.305 * foot
foot = 3.279 * meter

Write a test program that invokes these methods to display the following tables:

Feet Meters | Meters Feet

1.0 0.305 | 20.0 65.574
2.0 0.610 | 25.0 81.967
9.0 2.745 | 60.0 196.721
10.0 3.050 | 65.0 213.115

6.10 (Use the isPrime Method) Listing 6.7, PrimeNumberMethod.java, provides the
isPrime(int number) method for testing whether a number is prime. Use this
method to find the number of prime numbers less than 10000.

6.11 (Financial application: compute commissions) Write a method that computes the
commission, using the scheme in Programming Exercise 5.39. The header of the
method is as follows:

public static double computeCommission(double salesAmount)

Write a test program that displays the following table:

Sales Amount Commission
10000 900.0
15000 1500.0
95000 11100.0

100000 11700.0

*6.13

*6.14

*6.15

Programming Exercises

(Display characters) Write a method that prints characters using the following
header:

public static void printChars(char chl, char ch2, int
numberPerLine)

This method prints the characters between chl and ch2 with the specified num-
bers per line. Write a test program that prints ten characters per line from 1 to Z.
Characters are separated by exactly one space.

(Sum series) Write a method to compute the following series:

2 i
+o 4+
3 i+1

N | =

m(i) =

Write a test program that displays the following table:

i m(i)
0.5000
2 1.1667
19 16.4023
20 17.3546
(Estimate) 7 can be computed using the following series: u
1 1 1 1 1 (— 1)i+l VideoNote
m(i)=4<1_3+5_7+9_11+'“+2i—1> Estimate 77

Write a method that returns m(i) for a given i and write a test program that dis-
plays the following table:

i m(i)

1 4.0000
101 3.1515
201 3.1466
301 3.1449
401 3.1441
501 3.1436
601 3.1433
701 3.1430
801 3.1428
901 3.1427

(Financial application: print a tax table) Listing 3.5 gives a program to compute
tax. Write a method for computing tax using the following header:

public static double computeTax(int status, double taxableIncome)

237

238 Chapter 6 Methods

*6.16

Use this method to write a program that prints a tax table for taxable income from
$50,000 to $60,000 with intervals of $50 for all the following statuses:

Taxable Single Married Joint Married Head of

Income or Qualifying Separate a House
Widow(er)

50000 8688 6665 8688 7353

50050 8700 6673 8700 7365

59950 11175 8158 11175 9840

60000 11188 8165 11188 9853

Hint: round the tax into integers using Math.round (ie., Math
.round(computeTax(status, taxableIncome)).

(Number of days in a year) Write a method that returns the number of days in a
year using the following header:

public static int numberOfDaysInAYear(int year)

Write a test program that displays the number of days in year from 2000 to 2020.

Sections 6.10-6.11

*6.17

(Display matrix of Os and 1s) Write a method that displays an n-by-n matrix using
the following header:

public static void printMatrix(int n)

Each element is O or 1, which is generated randomly. Write a test program that
prompts the user to enter n and displays an n-by-n matrix. Here is a sample run:

n: 3 ~ Enter

Rroom
[
Rroo-n

**%6.18 (Check password) Some websites impose certain rules for passwords. Write a

*6.19

method that checks whether a string is a valid password. Suppose the password
rules are as follows:

B A password must have at least eight characters.
B A password consists of only letters and digits.
B A password must contain at least two digits.

Write a program that prompts the user to enter a password and displays Valid
Password if the rules are followed or Invalid Password otherwise.

(The MyTriangle class) Create a class named MyTriangle that contains the
following two methods:

/** Return true if the sum of any two sides is
greater than the third side. */
public static boolean isValid(
double sidel, double side2, double side3)

Programming Exercises 239

/** Return the area of the triangle. */
public static double area(
double sidel, double side2, double side3)

Write a test program that reads three sides for a triangle and computes the area if
the input is valid. Otherwise, it displays that the input is invalid. The formula for
computing the area of a triangle is given in Programming Exercise 2.19.

*6.20 (Count the letters in a string) Write a method that counts the number of letters in
a string using the following header:

public static int countLetters(String s)

Write a test program that prompts the user to enter a string and displays the num-
ber of letters in the string.

*6.21 (Phone keypads) The international standard letter/number mapping for telephones
is shown in Programming Exercise 4.15. Write a method that returns a number,
given an uppercase letter, as follows:

int getNumber(char uppercaselLetter)

Write a test program that prompts the user to enter a phone number as a string.
The input number may contain letters. The program translates a letter (uppercase
or lowercase) to a digit and leaves all other characters intact. Here is a sample run
of the program:

Enter a string: 1-800-Flowers |-enter
1-800-3569377

.

Enter a string: 1800fTowers |-enter
18003569377

W

*%6.22 (Math: approximate the square root) There are several techniques for implement-
ing the sqrt method in the Math class. One such technique is known as the
Babylonian method. It approximates the square root of a number, n, by repeatedly
performing a calculation using the following formula:

nextGuess = (lastGuess + n / lastGuess) / 2

When nextGuess and lTastGuess are almost identical, nextGuess is the
approximated square root. The initial guess can be any positive value (e.g., 1).
This value will be the starting value for TastGuess. If the difference between
nextGuess and lTastGuess is less than a very small number, such as 0.0001,
you can claim that nextGuess is the approximated square root of n. If not, next-
Guess becomes lastGuess and the approximation process continues. Imple-
ment the following method that returns the square root of n.

public static double sqrt(long n)

*6.23 (Occurrences of a specified character) Write a method that finds the number of
occurrences of a specified character in a string using the following header:

public static int count(String str, char a)

240 Chapter 6 Methods

For example, count("Welcome", 'e') returns 2. Write a test program that
prompts the user to enter a string followed by a character and displays the number
of occurrences of the character in the string.

Sections 6.10-6.12

*%6.24

*%*6.25

(Display current date and time) Listing 2.7, ShowCurrentTime.java, displays the
current time. Improve this example to display the current date and time. The cal-
endar example in Listing 6.12, PrintCalendar.java, should give you some ideas on
how to find the year, month, and day.

(Convert milliseconds to hours, minutes, and seconds) Write a method that con-
verts milliseconds to hours, minutes, and seconds using the following header:

public static String convertMillis(long millis)

The method returns a string as hours:minutes:seconds. For example,
convertMillis(5500) returns a string 0:0:5, convertMi111is(100000) returns
astring 0:1:40, and convertMil1is(555550000) returns a string 154:19:10.

Comprehensive

*%6.26

**6.27

*%6.28

**6.29

(Palindromic prime) A palindromic prime is a prime number and also palindro-
mic. For example, 131 is a prime and also a palindromic prime, as are 313 and
757. Write a program that displays the first 100 palindromic prime numbers. Dis-
play 10 numbers per line, separated by exactly one space, as follows:

2 357 11 101 131 151 181 191
313 353 373 383 727 757 787 797 919 929

(Emirp) An emirp (prime spelled backward) is a nonpalindromic prime number
whose reversal is also a prime. For example, 17 is a prime and 71 is a prime, so 17
and 71 are emirps. Write a program that displays the first 100 emirps. Display 10
numbers per line, separated by exactly one space, as follows:

13 17 31 37 71 73 79 97 107 113
149 157 167 179 199 311 337 347 359 389

(Mersenne prime) A prime number is called a Mersenne prime if it can be written
in the form 2”7 — 1 for some positive integer p. Write a program that finds all
Mersenne primes with p = 31 and displays the output as follows:

27p -1
3

7
31

Ui W N |T

(Twin primes) Twin primes are a pair of prime numbers that differ by 2. For exam-
ple, 3 and 5 are twin primes, 5 and 7 are twin primes, and 11 and 13 are twin primes.
Write a program to find all twin primes less than 1,000. Display the output as follows:

3, 9
G, D

Programming Exercises 241

*%6.30 (Game: craps) Craps is a popular dice game played in casinos. Write a program
to play a variation of the game, as follows:

Roll two dice. Each die has six faces representing values 1, 2, ..., and 6, respec-
tively. Check the sum of the two dice. If the sum is 2, 3, or 12 (called craps), you
lose; if the sum is 7 or 11 (called natural), you win; if the sum is another value
(i.e.,4,5,6,8,9,or 10), a point is established. Continue to roll the dice until either
a 7 or the same point value is rolled. If 7 is rolled, you lose. Otherwise, you win.

Your program acts as a single player. Here are some sample runs.

You rolled 5 + 6
You win

11

You rolled 1 + 2 = 3
You lose

You rolled 4 + 4 = 8
point is 8

You rolled 6 + 2 = 8
You win

ol L

You rolled 3 + 2 = 5
point is 5

You rolled 2 + 5 =7
You lose

o

**6.31 (Financial: credit card number validation) Credit card numbers follow certain pat-
terns. A credit card number must have between 13 and 16 digits. It must start with:

B 4 for Visa cards

W 5 for Master cards

H 37 for American Express cards
B 6 for Discover cards

In 1954, Hans Luhn of IBM proposed an algorithm for validating credit card
numbers. The algorithm is useful to determine whether a card number is entered
correctly or whether a credit card is scanned correctly by a scanner. Credit card
numbers are generated following this validity check, commonly known as the
Luhn check or the Mod 10 check, which can be described as follows (for illustra-
tion, consider the card number 4388576018402626):

1. Double every second digit from right to left. If doubling of a digit results in a
two-digit number, add up the two digits to get a single-digit number.

4388576018402626

2x2=4
2x2=4
4x2=8

1%2=2
6+2=12 (1+2=3)
5%2=10 (1+0=1)
8%2=16 (1+6=7)

L > 4%2=8

242 Chapter 6 Methods

L

2. Now add all single-digit numbers from Step 1.
4+4+8+2+3+1+7+8=37
3. Add all digits in the odd places from right to left in the card number.
6+6+0+8+0+7+8+3 =38
4. Sum the results from Step 2 and Step 3.
37 + 38 =75

5. If the result from Step 4 is divisible by 10, the card number is valid; otherwise,
it is invalid. For example, the number 4388576018402626 is invalid, but the
number 4388576018410707 is valid.

Write a program that prompts the user to enter a credit card number as a Tong
integer. Display whether the number is valid or invalid. Design your program to
use the following methods:

/** Return true if the card number is valid */
public static boolean isValid(long number)

/** Get the result from Step 2 */
public static int sumOfDoubleEvenPlace(long number)

/** Return this number if it is a single digit, otherwise,
* return the sum of the two digits */
public static int getDigit(int number)

/** Return sum of odd-place digits in number */
public static int sumOfOddPlace(long number)

/** Return true if the digit d is a prefix for number */
public static boolean prefixMatched(long number, int d)

/** Return the number of digits in d */
public static int getSize(long d)

/** Return the first k number of digits from number. If the
* number of digits in number 1is less than k, return number. */
public static long getPrefix(long number, int k)

Here are sample runs of the program: (You may also implement this program by
reading the input as a string and processing the string to validate the credit card.)

Enter a credit card number as a long integer:
4388576018410707 | -enter
4388576018410707 1is valid

Enter a credit card number as a long integer:
4388576018402626 |- enter
4388576018402626 is invalid

*%6.32

*%6.33

(Game: chance of winning at craps) Revise Exercise 6.30 to run it 10,000 times
and display the number of winning games.

(Current date and time) Invoking System.currentTimeMilT11is() returns the

elapsed time in milliseconds since midnight of January 1, 1970. Write a program
that displays the date and time. Here is a sample run:

Current date and time is May 16, 2012 10:34:23

Programming Exercises 243

*%6.34 (Print calendar) Programming Exercise 3.21 uses Zeller’s congruence to calcu-
late the day of the week. Simplify Listing 6.12, PrintCalendar.java, using Zeller’s
algorithm to get the start day of the month.

6.35 (Geometry: area of a pentagon) The area of a pentagon can be computed using the
following formula:

5 X s

T
4 X tan()
5

Write a method that returns the area of a pentagon using the following header:

Area =

public static double area(double side)

Write a main method that prompts the user to enter the side of a pentagon and
displays its area. Here is a sample run:

Enter the side: 5.5 |<enter
The area of the pentagon is 52.04444136781625 <

*6.36 (Geometry: area of a regular polygon) A regular polygon is an n-sided polygon
in which all sides are of the same length and all angles have the same degree (i.e.,
the polygon is both equilateral and equiangular). The formula for computing the
area of a regular polygon is

n X s*

4 X tan<7T>
n

Write a method that returns the area of a regular polygon using the following header:

Area =

public static double area(int n, double side)

Write a main method that prompts the user to enter the number of sides and the
side of a regular polygon and displays its area. Here is a sample run:

Enter the number of sides: 5 |-enter =
Enter the side: 6.5 ~enter E
The area of the polygon is 72.69017017488385

6.37 (Format an integer) Write a method with the following header to format the inte-
ger with the specified width.

public static String format(int number, int width)

The method returns a string for the number with one or more prefix Os. The size
of the string is the width. For example, format (34, 4) returns 0034 and for-
mat(34, 5) returns 00034. If the number is longer than the width, the method

244 Chapter 6 Methods

U L

*6.38

6.39

returns the string representation for the number. For example, format(34, 1)
returns 34.

Write a test program that prompts the user to enter a number and its width and
displays a string returned by invoking format(number, width).

(Generate random characters) Use the methods in RandomCharacter in Listing
6.10 to print 100 uppercase letters and then 100 single digits, printing ten per line.

(Geometry: point position) Programming Exercise 3.32 shows how to test whether
a point is on the left side of a directed line, on the right, or on the same line. Write
the methods with the following headers:

/** Return true if point (x2, y2) 1is on the Teft side of the
directed 1line from (x0, y0) to (x1, yl) */
public static boolean TeftOfTheLine(double x0, double yO,
double x1, double yl, double x2, double y2)

/** Return true if point (x2, y2) 1is on the same
Tine from (x0, y0) to (x1, yl) */
public static boolean onTheSamelLine(double x0, double yO,
double x1, double yl, double x2, double y2)

/** Return true if point (x2, y2) is on the
Tine segment from (x0, y0) to (x1, yl) */
public static boolean onTheLineSegment(double x0, double yO,
double x1, double yl, double x2, double y2)

Write a program that prompts the user to enter the three points for p0, p1, and p2
and displays whether p2 is on the left of the line from pO to p1, right, the same
line, or on the line segment. Here are some sample runs:

Enter three points for p0, pl, and p2: 1 1 2 2 1.5 1.5 -enter
(1.5, 1.5) is on the Tine segment from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0, pl, and p2: 1 1 2 2 3 3 |enter
(3.0, 3.0) is on the same 1line from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0O, pl, and p2: 1 1 2 2 1 1.5 |~enter
(1.0, 1.5) is on the Teft side of the Tine
from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0, pl, and p2: 1 1 2 2 1 -1 |enter
(1.0, -1.0) is on the right side of the Tine
from (1.0, 1.0) to (2.0, 2.0)

SINGLE-DIMENSIONAL
ARRAYS

Objectives

To describe why arrays are necessary in programming (§7.1).

To declare array reference variables and create arrays (§§7.2.1-7.2.2).

B To obtain array size using arrayRefVar.length and know default

values in an array (§7.2.3).
To access array elements using indexes (§7.2.4).
To declare, create, and initialize an array using an array initializer (§7.2.5).

To program common array operations (displaying arrays, summing
all elements, finding the minimum and maximum elements, random
shuffling, and shifting elements) (§7.2.6).

To simplify programming using the for each loops (§7.2.7).

To apply arrays in application development (AnalyzeNumbers,
DeckOfCards) (§87.3-7.4).

m To copy contents from one array to another (§7.5).

To develop and invoke methods with array arguments and return values
(887.6-7.8).

To define a method with a variable-length argument list (§7.9).

To search elements using the linear (§7.10.1) or binary (§7.10.2)
search algorithm.

B To sort an array using the selection sort approach (§7.11).

B To use the methods in the java.util.Arrays class (§7.12).

To pass arguments to the main method from the command line (§7.13).

CHAPTER

246 Chapter 7 Single-Dimensional Arrays

7.1 Introduction
6 fKey A single array variable can reference a large collection of data.

Point fep you will have to store a large number of values during the execution of a program.

problem Suppose, for instance, that you need to read 100 numbers, compute their average, and find

why array? out how many numbers are above the average. Your program first reads the numbers and
computes their average, then compares each number with the average to determine whether
it is above the average. In order to accomplish this task, the numbers must all be stored in
variables. You have to declare 100 variables and repeatedly write almost identical code
100 times. Writing a program this way would be impractical. So, how do you solve this
problem?

An efficient, organized approach is needed. Java and most other high-level languages pro-
vide a data structure, the array, which stores a fixed-size sequential collection of elements of
the same type. In the present case, you can store all 100 numbers into an array and access them
through a single array variable.

This chapter introduces single-dimensional arrays. The next chapter will introduce two-
dimensional and multidimensional arrays.

7.2 Array Basics

Key Once an array is created, its size is fixed. An array reference variable is used to
6 Point access the elements in an array using an index.

index An array is used to store a collection of data, but often we find it more useful to think of an
array as a collection of variables of the same type. Instead of declaring individual variables,
such as number0, numberl, . .., and number99, you declare one array variable such as
numbers and use numbers[0], numbers[1], . .., and numbers[99] to represent indi-
vidual variables. This section introduces how to declare array variables, create arrays, and
process arrays using indexes.

7.2.1 Declaring Array Variables

To use an array in a program, you must declare a variable to reference the array and specify
element type the array’s element type. Here is the syntax for declaring an array variable:

elementType[] arrayRefVar;

The elementType can be any data type, and all elements in the array will have the same
data type. For example, the following code declares a variable myList that references an
array of double elements.

double[] myList;

Bl Note
You can also use elementType arrayRefVar[] to declare an array variable. This
style comes from the C/C++ language and was adopted in Java to accommodate C/C++
preferred syntax programmers. The style elementType[] arrayRefVar is preferred.

7.2.2 Creating Arrays

Unlike declarations for primitive data type variables, the declaration of an array variable does
not allocate any space in memory for the array. It creates only a storage location for the refer-
ence to an array. If a variable does not contain a reference to an array, the value of the variable
null is nul1. You cannot assign elements to an array unless it has already been created. After an

7.2 Array Basics 247
array variable is declared, you can create an array by using the new operator and assign its
reference to the variable with the following syntax:

arrayRefVar = new elementTypel[arraySize]; new operator

This statement does two things: (1) itcreates an array using new elementType[arraySize];
(2) it assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to
the variable can be combined in one statement as:

new elementType[arraySize];

elementType[] arrayRefVar
or

elementType arrayRefVar[] = new elementType[arraySize];
Here is an example of such a statement:

double[] myList = new double[10];

This statement declares an array variable, myList, creates an array of ten elements of
doub’e type, and assigns its reference to myList. To assign values to the elements, use
the syntax:

arrayRefVar[index] = value;

For example, the following code initializes the array.

myList[0] = 5.6;
myList[1l] = 4.5;
myList[2] = 3.3;
myList[3] = 13.2;

myList[4] = 4.0;
myList[5] = 34.33;
myList[6] = 34.0;
myList[7] = 45.45;
myList[8] = 99.993;
myList[9] = 11123;

This array is illustrated in Figure 7.1.

double[] myList = new double[10];

myList |reference ayList[0] Py

T myList[1] 4.5
Array reference myList[2] 33
variable myList[3] 13.2
myList[4] 4.0

Array element at >myList[5] 3433 <— Element value

index 5

myList[6] 34.0
myList[7] 45.45
myList[8] | 99.993
myList[9] 11123

FIGURe 7.1 The array myList has ten elements of doubTle type and int indices from O to 9.

248 Chapter 7 Single-Dimensional Arrays

array vs. array variable

array length

default values

0 based

indexed variable

array initializer

Note

H An array variable that appears to hold an array actually contains a reference to that array.
Strictly speaking, an array variable and an array are different, but most of the time the
distinction can be ignored. Thus it is all right to say, for simplicity, that myList is an
array, instead of stating, at greater length, that myList is a variable that contains a
reference to an array of ten double elements.

7.2.3 Array Size and Default Values

When space for an array is allocated, the array size must be given, specifying the number of ele-
ments that can be stored in it. The size of an array cannot be changed after the array is created.
Size can be obtained using arrayRefVar.length. For example, myList.Tength is 10.

When an array is created, its elements are assigned the default value of 0 for the numeric
primitive data types, \u0000 for char types, and false for boolean types.

7.2.4 Accessing Array Elements

The array elements are accessed through the index. Array indices are 0 based; that is, they
range from O to arrayRefVar.Tength-1. In the example in Figure 7.1, myList holds ten
double values, and the indices are from 0 to 9.

Each element in the array is represented using the following syntax, known as an indexed
variable:

arrayRefVar[index];

For example, myList[9] represents the last element in the array myList.

Caution
Some programming languages use parentheses to reference an array element, as in
myList(9), but Java uses brackets, as in myList[9].

An indexed variable can be used in the same way as a regular variable. For example, the
following code adds the values in myList[0] and myList[1] to myList[2].

myList[2] = myList[0] + myList[1];
The following loop assigns 0 to myList[0], 1 to myList[1], ..., and 9 to myList[9]:
for (int i = 0; i < myList.length; i++) {

myList[i] = 1;
}

7.2.5 Array Initializers

Java has a shorthand notation, known as the array initializer, which combines the declaration,
creation, and initialization of an array in one statement using the following syntax:

elementType[] arrayRefVar = {valueO, valuel, ..., valuek};

For example, the statement
double[] myList = {1.9, 2.9, 3.4, 3.5};

declares, creates, and initializes the array myList with four elements, which is equivalent to
the following statements:

double[] myList = new double[4];
myList[0] = 1.9;
myList[1] 2.9;

7.2 Array Basics

myList[2] = 3.4;
myList[3] = 3.5;
- Caution

The new operator is not used in the array-initializer syntax. Using an array initializer, you
have to declare, create, and initialize the array all in one statement. Splitting it would
cause a syntax error. Thus, the next statement is wrong:

double[] myList;
myList = {1.9, 2.9, 3.4, 3.5};

7.2.6 Processing Arrays

When processing array elements, you will often use a for loop—for two reasons:

B All of the elements in an array are of the same type. They are evenly processed in the
same fashion repeatedly using a loop.

B Since the size of the array is known, it is natural to use a for loop.

Assume the array is created as follows:

double[] myList = new double[10];

The following are some examples of processing arrays.

1. Initializing arrays with input values: The following loop initializes the array myList
with user input values.

java.util.Scanner input = new java.util.Scanner(System.in);
System.out.print("Enter " + myList.length + " values: ");
for (int i = 0; i < myList.length; i++)

myList[i] = input.nextDouble();

2. Initializing arrays with random values: The following loop initializes the array myList
with random values between 0.0 and 100. 0, but less than 100.0.

for (int i = 0; i < myList.length; i++) {
myList[i] = Math.random() * 100;
}

3. Displaying arrays: To print an array, you have to print each element in the array using a
loop like the following:

for (int i = 0; i < myList.length; i++) {
System.out.print(myList[i] + " ");

}

Tip
S .
For an array of the char[] type, it can be printed using one print statement. For exam- print character array
ple, the following code displays Dallas:
char[] city = {'D", 'a', '1', '"1', "a', 's'};
System.out.println(city);

4. Summing all elements: Use a variable named total to store the sum. Initially total
is 0. Add each element in the array to total using a loop like this:

double total = 0;

for (int i = 0; i < myList.length; i++) {
total += myList[i];

}

249

250 Chapter 7 Single-Dimensional Arrays

Random shuffling

VideoNote
Random shuffling

5. Finding the largest element: Use a variable named max to store the largest element.
Initially max is myList[0]. To find the largest element in the array myL1ist, compare
each element with max, and update max if the element is greater than max.

double max = myList[0];

for (int i = 1; i < myList.length; i++) {
if (myList[i] > max) max = myList[i];

}

6. Finding the smallest index of the largest element: Often you need to locate the largest
element in an array. If an array has multiple elements with the same largest value, find the
smallest index of such an element. Suppose the array myList is {1, 5, 3, 4, 5, 5}. The
largest element is 5 and the smallest index for 5 is 1. Use a variable named max to store
the largest element and a variable named indexOfMax to denote the index of the largest
element. Initially max is myList[0], and indexOfMax is 0. Compare each element in
myList with max, and update max and indexOfMax if the element is greater than max.

double max = myList[0];
int indexOfMax = 0;
for (int i = 1; i < myList.length; i++) {
if (myList[i] > max) {
max = myList[i];
indexOfMax = 1i;
}
}

7. Random shuffling: In many applications, you need to randomly reorder the elements
in an array. This is called shuffling. To accomplish this, for each element myList[1i],
randomly generate an index j and swap myList[i] with myList[j], as follows:

for (int i = mylList.length - 1; i > 0; i--) { myList
// Generate an index j randomly with 0 <= j <=1 i— [0]
int j = (int) (Math.random() [1]
0o+ 1));

A random index [j]
// Swap myList[i] with myList[j]
double temp = myList[i];
myList[i] myList[j];
myList[j] temp; [i]

swap

)
L

8. Shifting elements: Sometimes you need to shift the elements left or right. Here is an
example of shifting the elements one position to the left and filling the last element with
the first element:

double temp = myList[0]; // Retain the first element

// Shift elements Teft myList

for (int i = 1; i < myList.length; i++) {
myList[i - 1] = myList[i];
h é 5

// Move the first element to fill in the Tast position
myList[myList.length - 1] = temp;

9. Simplifying coding: Arrays can be used to greatly simplify coding for certain tasks. For
example, suppose you wish to obtain the English name of a given month by its number.
If the month names are stored in an array, the month name for a given month can be

7.2 Array Basics 251

accessed simply via the index. The following code prompts the user to enter a month
number and displays its month name:

String[] months = {"January", "February", ..., "December'};
System.out.print("Enter a month number (1 to 12): ");

int monthNumber = input.nextInt();
System.out.println("The month 1is "

+ months[monthNumber - 1]);
If you didn’t use the months array, you would have to determine the month name using
a lengthy multi-way 1f-else statement as follows:

if (monthNumber == 1)

System.out.println("The month 1is January");
else if (monthNumber == 2)

System.out.println("The month 1is February");
else

System.out.println("The month 1is December');

7.2.7 Foreach Loops

Java supports a convenient for loop, known as a foreach loop, which enables you to traverse
the array sequentially without using an index variable. For example, the following code dis-
plays all the elements in the array myList:

for (double e: myList) {
System.out.printin(e);
}

You can read the code as “for each element e in myList, do the following.” Note that the
variable, e, must be declared as the same type as the elements in myList.
In general, the syntax for a foreach loop is

for (elementType element: arrayRefVar) {
// Process the element

3

You still have to use an index variable if you wish to traverse the array in a different order or
change the elements in the array.

Caution

Accessing an array out of bounds is a common programming error that throws a runtime
ArrayIndexOutOfBoundsException. To avoid it, make sure that you do not use ArrayIndexOutOfBounds-
an index beyond arrayRefVar.length - 1. Exception

Programmers often mistakenly reference the first element in an array with index 1, but
it should be 0. This is called the off-by-one error. Another common off-by-one error in off-by-one error
a loop is using <= where < should be used. For example, the following loop is wrong.

for (int i = 0; i <= list.length; i++)
System.out.print(list[i] + " ");

The <= should be replaced by <.

7.1 How do you declare an array reference variable and how do you create an array? ﬁﬂeck

7.2 When is the memory allocated for an array? Point

252 Chapter 7 Single-Dimensional Arrays

7.3

7.4

7.5

7.6
1.7

7.8

7.9

7.10

7.11

What is the output of the following code?

int x = 30;
int[] numbers = new int[x];
X = 60;

System.out.println("x is + X);
System.out.println("The size of numbers fis

+ numbers.length);

Indicate true or false for the following statements:

B Every element in an array has the same type.

B The array size is fixed after an array reference variable is declared.
B The array size is fixed after it is created.

B The elements in an array must be a primitive data type.

Which of the following statements are valid?

int i = new int(30);

double d[] = new double[30];
char[] r = new char(1l..30);
int i[] = (3, 4, 3, 2);
float f[] = {2.3, 4.5, 6.6};
char[] c = new char();

How do you access elements in an array?

What is the array index type? What is the lowest index? What is the representation of
the third element in an array named a?

Write statements to do the following:

Create an array to hold 10 double values.

Assign the value 5.5 to the last element in the array.

Display the sum of the first two elements.

Write a loop that computes the sum of all elements in the array.
Write a loop that finds the minimum element in the array.

Randomly generate an index and display the element of this index in the array.

@ - 0 &0 T

Use an array initializer to create another array with the initial values 3.5, 5.5,
4.52,and 5.6.

What happens when your program attempts to access an array element with an inva-
lid index?

Identify and fix the errors in the following code:

1 public class Test {

2 public static void main(String[] args) {
3 double[100] r;

4

5 for (int i = 0; i < r.lengthQ; i++);
6 r(i) = Math.random * 100;

7 3

8 1

What is the output of the following code?

1 public class Test {
2 public static void main(String[] args) {
3 int 1ist[] = {1, 2, 3, 4, 5, 6};

7.3 Case Study: Analyzing Numbers 253

4 for (int i = 1; i < Tist.length; i++)
5 Tist[i] = Tlist[i - 1];

6

7 for (int i = 0; i < Tist.length; i++)
8 System.out.print(list[i] + " ");

9 3

10 3}

7.3 Case Study: Analyzing Numbers

The problem is to write a program that finds the number of items above the average of K
all items. Gﬁoif,{
Now you can write a program using arrays to solve the problem proposed at the beginning of
this chapter. The problem is to read 100 numbers, get the average of these numbers, and find the
number of the items greater than the average. To be flexible for handling any number of input, we
will let the user enter the number of input, rather than fixing it to 100. Listing 7.1 gives a solution.
LisTING 7.1 AnalyzeNumbers.java
1 public class AnalyzeNumbers {
2 public static void main(String[] args) { numbers[0]
3 java.util.Scanner input = new java.util.Scanner(System.in); numbers[1]:
4 System.out.print("Enter the number of items: "); numbers[2]:
5 int n = input.nextInt(Q);
6 double [] numbers = new double[n]; . create array
7 double sum = 0;
8 numbers[i]:
9 System.out.print("Enter the numbers: ");
10 for (int i = 0; i < n; i++) { numbers[n - 3]:
11 numbers[i] = input.nextDouble(); numbers[n - 2]: store number in array
12 sum += numbers[i]; numbers[n - 1]:
13 }
14
15 double average = sum / n; get average
16
17 int count = 0; // The number of elements above average
18 for (int i = 0; i < n; i++)
19 if (numbers[i] > average) above average?
20 count++;
21
22 System.out.printin("Average is " + average);
23 System.out.printin("Number of elements above the average is "
24 + count);
25 }
26}
Enter the number of items: 10 | -enter E

Enter the numbers: 3.4 5 6 1 6.5 7.8 3.5 8.5 6.3 9.5 |~enter
Average is 5.75

Number of elements above the average is 6

The program prompts the user to enter the array size (line 5) and creates an array with the
specified size (line 6). The program reads the input, stores numbers into the array (line 11),
adds each number to sum in line 11, and obtains the average (line 15). It then compares

254 Chapter 7 Single-Dimensional Arrays

each number in the array with the average to count the number of values above the average
(lines 17-20).

7.4 Case Study: Deck of Cards

fKey The problem is to create a program that will randomly select four cards from a deck
6 Point Of cards.

Say you want to write a program that will pick four cards at random from a deck of 52 cards.
All the cards can be represented using an array named deck, filled with initial values 0 to 51,
as follows:

int[] deck = new int[52];

VideoNote // Initialize cards
Deck of cards for (int i = 0; i < deck.length; i++)
deck[i] = 1;

Card numbers 0 to 12, 13 to 25, 26 to 38, and 39 to 51 represent 13 Spades, 13 Hearts,
13 Diamonds, and 13 Clubs, respectively, as shown in Figure 7.2. cardNumber / 13 deter-
mines the suit of the card and cardNumber % 13 determines the rank of the card, as shown
in Figure 7.3. After shuffling the array deck, pick the first four cards from deck. The program
displays the cards from these four card numbers.

deck_ deck_
[0]] O [0]| 6 |———— Card number 6 is the

. . [1]| 48 7(6 % 13=6) of
13 Spades (#) . 2]] 11— | Spades (7/13is 0)
. 3] | 24|
31) Card number 48 is the

[12]{ 12 (4] 10 (48 % 13 = 9) of

13 5 .
: [13]] 13 Bl Clubs (48 /13 is 3)
: 13 Hearts (v) - Sl L—> Card number 11 is the

Queen (11 % 13 =11) of

25 [25]|25| Randomshuffle [25] .
—_—
26 [26]| 26 26] Spades (11 /13 is 0)
. 13 Diamonds (¢) —> Card number 24 is the
: R o Queen (24 % 13 =11) of
38 [38]] 38 [38]] . Hearts (24 /13 is 1)
39

[39]| 39 [39]

13 Clubs ()

[51]| 51 [51]

51

FIGURE 7.2 52 cards are stored in an array named deck.

P
0 —> Ace
1 —_ 2
0 —> Spades
1 —> Hearts
cardNumber / 13 = cardNumber % 13 = <
2 —> Diamonds
10 —— Jack
3 —> C(Clubs
11 —> Queen
12— King

FiGure 7.3 CardNumber identifies a card’s suit and rank number.

Listing 7.2 gives the solution to the problem.

LiIsTING 7.2 DeckOfCards.java
1 public class DeckOfCards {

28 }
29 1}

public static void main(String[] args) {

int[] deck = new int[52];

String[] suits = {"Spades'", "Hearts'", "Diamonds",

Str‘_ing[] r‘anks {IlAcell, IIZII’ llgll’ Il4ll’ IISII’ ll6ll,
llloll’ llJackll’ llQueenll’ IlK.ingll};

// Initialize the cards
for (int i = 0; i < deck.length; i++)
deck[i] = 1;

// Shuffle the cards
for (int i = 0; i < deck.length; i++) {
// Generate an index randomly
int index = (int) (Math.random() * deck.length);
int temp = deck[i];
deck[i] = deck[index];
deck[index] = temp;

}

// Display the first four cards

for (Ant i =0; i < 4; i++) {
String suit = suits[deck[i] / 13];
String rank = ranks[deck[i] % 13];

System.out.println("Card number " + deck[i] + ":

+ rank + " of " + suit);

}

7.4 Case Study: Deck of Cards 255

create array deck
array of strings
array of strings

"Clubs"};
Il7ll’ |I8II’ Il9ll’

initialize deck

shuffle deck

suit of a card
rank of a card

Card number
Card number
Card number
Card number

6: 7 of Spades

48: 10 of Clubs

11: Queen of Spades
24: Queen of Hearts

2

The program creates an array su‘its for four suits (line 4) and an array ranks for 13 cards in
a suit (lines 5-6). Each element in these arrays is a string.

The program initializes deck with values 0 to 51 in lines 9-10. The deck value 0 repre-
sents the card Ace of Spades, 1 represents the card 2 of Spades, 13 represents the card Ace of
Hearts, and 14 represents the card 2 of Hearts.

Lines 13-19 randomly shuffle the deck. After a deck is shuffled, deck[i] contains an
arbitrary value. deck[i] / 13is0, 1, 2, or 3, which determines the suit (line 23). deck[1]
% 13 is a value between 0 and 12, which determines the rank (line 24). If the suits array is
not defined, you would have to determine the suit using a lengthy multi-way 1f-else state-
ment as follows:

if (deck[i] / 13 == 0)

System.out.print("suit
else if (deck[i] / 13 ==
System.out.print("suit
else if (deck[i] / 13 ==
System.out.print("suit

else

System.out.print("suit

is Spades');
D)
is Hearts");
2)

is Diamonds');

is Clubs™);

256 Chapter 7 Single-Dimensional Arrays

ﬁheck
Point

K
foxes

copy reference

garbage collection

With suits = {"Spades", "Hearts", "Diamonds", "Clubs"} created in an array,
suits[deck / 13] gives the suit for the deck. Using arrays greatly simplifies the solution
for this program.

7.12 Wil the program pick four random cards if you replace lines 22-27 in Listing 7.2
DeckOfCards.java with the following code?

for (int i =0; i < 4; i++) {
int cardNumber = (int) (Math.random() * deck.length);
String suit = suits[cardNumber / 13];
String rank = ranks[cardNumber % 13];
System.out.println("Card number " + cardNumber +
+ rank + " of " + suit);

7.5 Copying Arrays
To copy the contents of one array into another, you have to copy the array’s individual
elements into the other array.

Often, in a program, you need to duplicate an array or a part of an array. In such cases you
could attempt to use the assignment statement (=), as follows:

Tist2 = Tistl;

However, this statement does not copy the contents of the array referenced by Tistl to
Tist2, but instead merely copies the reference value from Tistl to Tist2. After this state-
ment, 1istland11st2 reference the same array, as shown in Figure 7.4. The array previously
referenced by 1ist2 is no longer referenced; it becomes garbage, which will be automatically
collected by the Java Virtual Machine (this process is called garbage collection).

Before the assignment
Tist2 = 1listl;
Tistl ——
Contents
of Tistl

Tist2 ——>
Contents

of Tist2

After the assignment
Tist2 = Tistl;
Tistl ——
Contents
of Tistl

Tist2
Contents
of Tist2

FiIGUre 7.4 Before the assignment statement, 1ist1 and 11st2 point to separate memory
locations. After the assignment, the reference of the Tistl array is passed to 1ist2.

In Java, you can use assignment statements to copy primitive data type variables, but not
arrays. Assigning one array variable to another array variable actually copies one reference to
another and makes both variables point to the same memory location.

There are three ways to copy arrays:

B Use a loop to copy individual elements one by one.
B Use the static arraycopy method in the System class.

B Use the clone method to copy arrays; this will be introduced in Chapter 13, Abstract
Classes and Interfaces.

7.6 Passing Arrays to Methods

You can write a loop to copy every element from the source array to the corresponding element
in the target array. The following code, for instance, copies sourceArray to targetArray
using a for loop.

int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray new int[sourceArray.length];

for (int i = 0; i < sourceArray.length; i++) {
targetArray[i] = sourceArray[i];

3

Another approach is to use the arraycopy method in the java.lang.System class to copy arraycopy method
arrays instead of using a loop. The syntax for arraycopy is:

arraycopy(sourceArray, srcPos, targetArray, tarPos, length);

The parameters srcPos and tarPos indicate the starting positions in sourceArray and
targetArray, respectively. The number of elements copied from sourceArray to targ-
etArray is indicated by Tength. For example, you can rewrite the loop using the following
statement:

System.arraycopy(sourceArray, 0, targetArray, 0, sourceArray.length);

The arraycopy method does not allocate memory space for the target array. The target array
must have already been created with its memory space allocated. After the copying takes place,
targetArray and sourceArray have the same content but independent memory locations.

Note
The arraycopy method violates the Java naming convention. By convention, this
method should be named arrayCopy (i.e., with an uppercase C).

7.13 Use the arraycopy method to copy the following array to a target array t: ﬁﬁeck

int[] source = {3, 4, 5}; /" Point

7.14 Once an array is created, its size cannot be changed. Does the following code resize
the array?

int[] myList;

myList = new 1int[10];

// Sometime later you want to assign a new array to myList
myList = new int[20];

7.6 Passing Arrays to Methods

When passing an array to a method, the reference of the array is passed to the method. fKey
Just as you can pass primitive type values to methods, you can also pass arrays to methods. 6 Point

For example, the following method displays the elements in an int array:

public static void printArray(int[] array) {
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
}

You can invoke it by passing an array. For example, the following statement invokes the
printArray method to display 3, 1, 2, 6, 4, and 2.

printArray(new int[]{3, 1, 2, 6, 4, 2});

257

258 Chapter 7

anonymous array

pass-by-value

pass-by-sharing

X is 1
y[0] is 5555

Single-Dimensional Arrays

Note

The preceding statement creates an array using the following syntax:
new elementType[]{value0, valuel, ..., valuek};

There is no explicit reference variable for the array. Such array is called an anonymous
array.

Java uses pass-by-value to pass arguments to a method. There are important differences
between passing the values of variables of primitive data types and passing arrays.

B For an argument of a primitive type, the argument’s value is passed.

B For an argument of an array type, the value of the argument is a reference to an array;
this reference value is passed to the method. Semantically, it can be best described as
pass-by-sharing, that is, the array in the method is the same as the array being passed.
Thus, if you change the array in the method, you will see the change outside the method.

Take the following code, for example:

public class Test {
public static void main(String[] args) {
int x = 1; // x represents an int value
int[] vy = new int[10]; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y
System.out.println("x is " + x);

System.out.println("y[0] is " + y[0]);
}

public static void m(int number, int[] numbers) {
number = 1001; // Assign a new value to number
numbers[0] = 5555; // Assign a new value to numbers[0]
}
}

You may wonder why after m is invoked, x remains 1, but y[0] become 5555. This is
because y and numbers, although they are independent variables, reference the same array, as
illustrated in Figure 7.5. When m(x, y) is invoked, the values of x and y are passed to num-
ber and numbers. Since y contains the reference value to the array, numbers now contains
the same reference value to the same array.

Stack Heap

Activation record for

method m ’\
int[] numbers:

A

't number: | ~——======1 i < Arrays are

int number: i ! An array of stored in a

Activation record for the g tenint heap.
values is

stored here

main method
intf] :

int X 1 =—=======-1 L

l._|__

FIGURE 7.5 The primitive type value in x is passed to number, and the reference value in y
is passed to numbers.

7.6 Passing Arrays to Methods 259

Note

Arrays are objects in Java (objects are introduced in Chapter 9). The JVM stores the

objects in an area of memory called the heap, which is used for dynamic memory heap
allocation.

Listing 7.3 gives another program that shows the difference between passing a primitive data
type value and an array reference variable to a method.

The program contains two methods for swapping elements in an array. The first method,
named swap, fails to swap two int arguments. The second method, named swapFirst-
TwoInArray, successfully swaps the first two elements in the array argument.

LisTING 7.3 TestPassArray.java

1 public class TestPassArray {

2 /** Main method */

3 public static void main(String[] args) {

4 int[] a = {1, 23};

5

6 // Swap elements using the swap method

7 System.out.println("Before invoking swap");

8 System.out.println("array is {" + a[0] + ", " + a[l] + "}'D;

9 swap(a[0], a[l1]); false swap
10 System.out.printIn("After invoking swap");
11 System.out.println("array is {" + a[0] + ", " + a[l] + "}'D;
12
13 // Swap elements using the swapFirstTwoInArray method
14 System.out.printin("Before invoking swapFirstTwoInArray");
15 System.out.printin("array is {" + a[0] + ", " + a[l] + "}'D);
16 swapFirstTwoInArray(a); swap array elements
17 System.out.printIn("After invoking swapFirstTwoInArray');
18 System.out.println("array is {" + a[0] + ", " + a[l] + "}'D;
19 }
20

21 /** Swap two variables */
22 public static void swap(int nl, int n2) {

23 int temp = nl;
24 nl = n2;
25 n2 = temp;
26 }
27
28 /** Swap the first two elements in the array */
29 public static void swapFirstTwoInArray(int[] array) {
30 int temp = array[0];
31 array[0] = array[1];
32 array[1l] = temp;
33 }
34}
Before invoking swap E
array is {1, 2}

After invoking swap

array is {1, 2}

Before invoking swapFirstTwoInArray
array is {1, 2}

After invoking swapFirstTwoInArray
array is {2, 1}

260 Chapter 7 Single-Dimensional Arrays

As shown in Figure 7.6, the two elements are not swapped using the swap method. However,
they are swapped using the swapFirstTwoInArray method. Since the parameters in the
swap method are primitive type, the values of a[0] and a[1] are passed to n1 and n2 inside
the method when invoking swap(a[0], a[1]). The memory locations for nl and n2 are
independent of the ones for a[0] and a[1]. The contents of the array are not affected by

this call.
Stack Heap Stack
Activation record for the
swapFirstTwoInArray
Activation record for method
the swap method int[] array | reference |<- 1
n2:2 &«--, :
nl:1 4, : 1
Activation record for : 1 Activation record for the :
the main method : : main method :
int[] a |reference :__i___ a[0]:1 | int[] a_..
I-4afl1]:2
Invoke swap(int nl, int n2). Thearraysare Invoke swapFirstTwoInArray(int[]
The primitive type values in stored in a array). The reference value in a is passed
a[0] and a[1] are passed to the heap. to the swapFirstTwoInArray method.

swap method.

FIGURE 7.6 When passing an array to a method, the reference of the array is passed
to the method.

The parameter in the swapFirstTwoInArray method is an array. As shown in Figure 7.6,
the reference of the array is passed to the method. Thus the variables a (outside the method)
and array (inside the method) both refer to the same array in the same memory location.
Therefore, swapping array[0] with array[1] inside the method swapFirstTwoInArray
is the same as swapping a[0] with a[1] outside of the method.

7.7 Returning an Array from a Method

6 fKey When a method returns an array, the reference of the array is returned.

Point vou can pass arrays when invoking a method. A method may also return an array. For exam-

ple, the following method returns an array that is the reversal of another array.

1 public static int[] reverse(int[] Tist) {
create array 2 int[] result = new int[list.length];
3
4 for (int i = 0, j = result.length - 1;
5 i < list.length; i++, j--) {
6 result[j] = 1ist[i]; .
7 3 115t|=|=| [[]
8
9
0

1|
return array return result; result ||] [YTY]

10 }

Line 2 creates a new array result. Lines 4-7 copy elements from array Tist to array
result. Line 9 returns the array. For example, the following statement returns a new array
14ist2 with elements 6, 5, 4, 3, 2, 1.

int[] Tistl {1, 2, 3, 4, 5, 6};
int[] 1ist2 = reverse(listl);

7.8 Case Study: Counting the Occurrences of Each Letter 261

7.15 Suppose the following code is written to reverse the contents in an array, explain Afneck
why it is wrong. How do you fix it? " Point

int[] Tist

{1, 2’ 3! 51 4};

for (int i = 0, j = Tist.length - 1; i < Tlist.length; i++, j--) {
// Swap Tist[i] with Tist[j]
int temp = list[i];
Tist[i] = Tist[j];
Tist[j] = temp;
}

7.8 Case Study: Counting the Occurrences
of Each Letter

This section presents a program to count the occurrences of each letter in an array of 6 f

Key
characters. Point

The program given in Listing 7.4 does the following:

1. Generates 100 lowercase letters randomly and assigns them to an array of characters, as
shown in Figure 7.7a. You can obtain a random letter by using the getRandomlLower-
Caseletter () method in the RandomCharacter class in Listing 6.10.

2. Count the occurrences of each letter in the array. To do so, create an array, say counts,
of 26 int values, each of which counts the occurrences of a letter, as shown in
Figure 7.7b. That is, counts[0] counts the number of a’s, counts[1] counts the
number of b’s, and so on.

chars[0] counts[0]
chars[1] counts[1]

chars[98] counts[24]
chars[99] counts[25]
(a) (b)

FIGURE 7.7 The chars array stores 100 characters, and the counts array stores 26 counts,
each of which counts the occurrences of a letter.

LIsTING 7.4 CountlLettersInArray.java

1 public class CountLettersInArray {
/** Main method */
public static void main(String[] args) {
// Declare and create an array
char[] chars = createArray(); create array

// Display the array
System.out.println("The Towercase letters are:");
dispTlayArray(chars); pass array

QUOVWooNOUVIh WN

[

262 Chapter 7 Single-Dimensional Arrays

return array

pass array

increase count

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

// Count the occurrences of each letter
int[] counts = countlLetters(chars);

// Display counts
System.out.println();
System.out.printIin("The occurrences of each letter are:");
displayCounts(counts);
}

/** Create an array of characters */

public static char[] createArray() {
// Declare an array of characters and create it
char[] chars = new char[100];

// Create Towercase letters randomly and assign
// them to the array
for (int i = 0; i < chars.length; i++)
chars[i] = RandomCharacter.getRandomLowerCaselLetter();

// Return the array
return chars;

}

/** Display the array of characters */
public static void displayArray(char[] chars) {
// Display the characters in the array 20 on each line
for (int i = 0; i < chars.length; i++) {
if (G + 1) % 20 == 0)
System.out.println(chars[i]);
else
System.out.print(chars[i] + " ");
3
}

/** Count the occurrences of each letter */
public static int[] countlLetters(char[] chars) {
// Declare and create an array of 26 int
int[] counts = new int[26];

// For each lowercase letter in the array, count it
for (int i = 0; i < chars.length; i++)
counts[chars[i] - 'a'l++;

return counts;

3

/** Display counts */
public static void displayCounts(int[] counts) {
for (int i = 0; i < counts.length; i++) {
if (G + 1) % 10 == 0)
System.out.println(counts[i] + " " + (char) (i + "a'));
else
System.out.print(counts[i] +

+ (char)(i + 'a") +

7.8 Case Study: Counting the Occurrences of Each Letter 263

The lowercase letters are:

eylsribkjvjhabznwbtyv E
scckrdwampwvungamplo
azgdegfindxmzoulozijv
hwiwntgxwcdotxhyvzyz
geamfwpgugtrennwfcrf

The occurrences of each letter are:

5a3b4cdddsedfdag3h3i3j
2k314m6nd403p3gdr2sit

BuS5v8w3x3y6z

The createArray method (lines 21-32) generates an array of 100 random lowercase let-
ters. Line 5 invokes the method and assigns the array to chars. What would be wrong if you
rewrote the code as follows?

char[] chars = new char[100];
chars = createArray(Q);

You would be creating two arrays. The first line would create an array by using new char[100].
The second line would create an array by invoking createArray () and assign the reference
of the array to chars. The array created in the first line would be garbage because it is no longer
referenced, and as mentioned earlier Java automatically collects garbage behind the scenes.
Your program would compile and run correctly, but it would create an array unnecessarily.

Invoking getRandomLowerCaselLetter () (line 28) returns a random lowercase letter.
This method is defined in the RandomCharacter class in Listing 6.10.

The countlLetters method (lines 46-55) returns an array of 26 int values, each of
which stores the number of occurrences of a letter. The method processes each letter in the
array and increases its count by one. A brute-force approach to count the occurrences of each
letter might be as follows:

for (int i = 0; i < chars.length; i++)
if (chars[i] == 'a'")
counts[0]++;
else if (chars[i] == 'b")
counts[1]++;

But a better solution is given in lines 51-52.

for (int i = 0; i < chars.length; i++)
counts[chars[i] - 'a']++;

If the letter (chars[1i]) is a, the corresponding count is counts['a' - 'a'] (ie.,
counts[0]). If the letter is b, the corresponding count is counts['b" - 'a'] (ie.,
counts[1]), since the Unicode of b is one more than that of a. If the letter is z, the cor-
responding count is counts['z" - "a'] (i.e., counts[25]), since the Unicode of z is 25
more than that of a.

Figure 7.8 shows the call stack and heap during and after executing createArray. See
Checkpoint Question 7.18 to show the call stack and heap for other methods in the program.

264 Chapter 7 Single-Dimensional Arrays

Stack Heap Stack Heap
Activation record for the Array of 100 (Array of 100
createArray method //ﬁchmaaem characters

char[] chars:ref
Activation record for the Activation record for the
main method main method
char[] chars:ref char[] chars:ref
(a) Executing (b) After exiting
createArray inline 5 createArray in line 5

FIGURE 7.8 (a) An array of 100 characters is created when executing createArray.
(b) This array is returned and assigned to the variable chars in the main method.

ﬁheck 7.16 True or false? When an array is passed to a method, a new array is created and passed
Point to the method.

7.17 Show the output of the following two programs:

public class Test { public class Test {
public static void main(String[] args) { public static void main(String[] args) {
int number = 0; int[] 1ist = {1, 2, 3, 4, 5};
int[] numbers = new int[1]; reverse(list);
for (int i = 0; i < Tist.length; i++)
m(number, numbers); System.out.print(Tist[i] + " ");
}
System.out.printin("number is " + number
+ " and numbers[0] 1is " + numbers[0]); public static void reverse(int[] Tist) {
} int[] newlList = new int[list.length];
public static void m(int x, int[] y) { for (int i = 0; i < Tist.length; i++)
X = 3; newList[i] = Tist[list.length - 1 - i];
y[0] = 3;
} Tist = newlList;
} }
}
(a) (b)

7.18 Where are the arrays stored during execution? Show the contents of the stack and
heap during and after executing displayArray, countlLetters, displayCounts
in Listing 7.4.

7.9 Variable-Length Argument Lists

Ke A variable number of arguments of the same type can be passed to a method and
6 poin); treated as an array.
You can pass a variable number of arguments of the same type to a method. The parameter in

the method is declared as follows:

typeName... parameterName

In the method declaration, you specify the type followed by an ellipsis (. ..). Only one
variable-length parameter may be specified in a method, and this parameter must be the last
parameter. Any regular parameters must precede it.

7.10 Searching Arrays 265

Java treats a variable-length parameter as an array. You can pass an array or a variable
number of arguments to a variable-length parameter. When invoking a method with a vari-
able number of arguments, Java creates an array and passes the arguments to it. Listing 7.5
contains a method that prints the maximum value in a list of an unspecified number of values.

LISTING 7.5 VarArgsDemo. java

1 public class VarArgsDemo {

2 public static void main(String[] args) {

3 printMax(34, 3, 3, 2, 56.5); pass variable-length arg list
4 printMax(new double[]{1, 2, 3}); pass an array arg

5 }

6

7 public static void printMax(double... numbers) { a variable-length arg
8 if (numbers.length == 0) { parameter

9 System.out.println('No argument passed");

10 return;

11 }

12

13 double result = numbers[0];

14

15 for (int i = 1; i < numbers.length; i++)

16 if (numbers[i] > result)

17 result = numbers[i];

18

19 System.out.println("The max value is " + result);

20 }

21 %

Line 3 invokes the printMax method with a variable-length argument list passed to the array
numbers. If no arguments are passed, the length of the array is 0 (line 8).
Line 4 invokes the printMax method with an array.

7.19 What is wrong in the following method header? Aﬁeck

public static void print(String... strings, double... numbers) Point

public static void print(double... numbers, String name)
public static double... print(double dl1, double d2)

7.20 Canyou invoke the printMax method in Listing 7.5 using the following statements?

printMax(l, 2, 2, 1, 4);
printMax(new double[]1{1, 2, 3});
printMax(new int[]1{1, 2, 3});

7.10 Searching Arrays

If an array is sorted, binary search is more efficient than linear search for finding an 6{

. Key
element in the array. Point

Searching is the process of looking for a specific element in an array—for example, discov-

ering whether a certain score is included in a list of scores. Searching is a common task in

computer programming. Many algorithms and data structures are devoted to searching. This

section discusses two commonly used approaches, linear search and binary search. linear search
binary search

7.10.1 The Linear Search Approach

The linear search approach compares the key element key sequentially with each element in
the array. It continues to do so until the key matches an element in the array or the array is
exhausted without a match being found. If a match is made, the linear search returns the index

266 Chapter 7 Single-Dimensional Arrays

- of the element in the array that matches the key. If no match is found, the search returns -1.
8 The TinearSearch method in Listing 7.6 gives the solution.

linear search animation on

Companion Website LISTING 7.6 LinearSearch. java

1 public class LinearSearch {

2 /** The method for finding a key in the Tist */

3 public static int TinearSearch(int[] 1list, int key) {

4 for (int i = 0; i < Tist.length; i++) {

5 if (key == Tlist[i])

6 return i; [oymy2] ---

7 list [[[] [11

8 return -1;

9 3 key Compare key with 1ist[i] fori=0,1, ...
10 3

To better understand this method, trace it with the following statements:

int[] 1list = {1, 4, 4, 2, 5, -3, 6, 2};

int i = TinearSearch(list, 4); // Returns 1
int j = linearSearch(list, -4); // Returns -1
int k = TinearSearch(list, -3); // Returns 5

B WN PR

The linear search method compares the key with each element in the array. The elements can
be in any order. On average, the algorithm will have to examine half of the elements in an
array before finding the key, if it exists. Since the execution time of a linear search increases
linearly as the number of array elements increases, linear search is inefficient for a large array.

7.10.2 The Binary Search Approach

Binary search is the other common search approach for a list of values. For binary search to
work, the elements in the array must already be ordered. Assume that the array is in ascending
order. The binary search first compares the key with the element in the middle of the array.
Consider the following three cases:

B If the key is less than the middle element, you need to continue to search for the key
only in the first half of the array.

B If the key is equal to the middle element, the search ends with a match.

B If the key is greater than the middle element, you need to continue to search for the
key only in the second half of the array.

Clearly, the binary search method eliminates at least half of the array after each comparison.
Sometimes you eliminate half of the elements, and sometimes you eliminate half plus one.
Suppose that the array has n elements. For convenience, let n be a power of 2. After the first
comparison, n/2 elements are left for further search; after the second comparison, (n/2) /2
elements are left. After the kth comparison, n/ 2% elements are left for further search. When
lk = Tog;n, only one element is left in the array, and you need only one more comparison.

8 Therefore, in the worst case when using the binary search approach, you need Tog,n+1 com-

parisons to find an element in the sorted array. In the worst case for a list of 1024 (2'°) ele-
binary search animation on ments, binary search requires only 11 comparisons, whereas a linear search requires 1023
Companion Website comparisons in the worst case.

The portion of the array being searched shrinks by half after each comparison. Let Tow and
high denote, respectively, the first index and last index of the array that is currently being
searched. Initially, Tow is 0 and high is Tist.length-1. Let mid denote the index of the
middle element, so mid is (Tow + high) /2. Figure 7.9 shows how to find key 11 in the list
{2,4,7,10,11, 45, 50, 59, 60, 66, 69, 70, 79} using binary search.

7.10 Searching Arrays 267

You now know how the binary search works. The next task is to implement it in Java.
Don’t rush to give a complete implementation. Implement it incrementally, one step at a time.
You may start with the first iteration of the search, as shown in Figure 7.10a. It compares the
key with the middle element in the list whose Tow index is 0 and high index is Tist.Tength
- 1.Ifkey < Tist[mid], setthe highindextomid - 1;if key == Tist[mid], a match
is found and return mid; if key > Tist[mid], set the Tow index to mid + 1.

Next consider implementing the method to perform the search repeatedly by adding a loop,
as shown in Figure 7.10b. The search ends if the key is found, or if the key is not found when
Tow > high.

When the key is not found, Tow is the insertion point where a key would be inserted to
maintain the order of the list. It is more useful to return the insertion point than -1. The = why not —1?
method must return a negative value to indicate that the key is not in the list. Can it simply
return —-Tow? No. If the key is less than 1ist[0], Tow would be 0. -0 is 0. This would indi-
cate that the key matches 1ist[0]. A good choice is to let the method return ~Tow - 1 if the
key is not in the list. Returning ~Tow - 1 indicates not only that the key is not in the list, but
also where the key would be inserted.

keyis 11 Tow mid high

Y Y Y
(0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10][11][12]
list [2 4 7 10 11 45 50 59 60 66 69 70 79|

key < 50

L

Tow mid high

Y Y Y
(0] [1] 2] [3] [4] [5]
key > 7 list [2 4 7 10 11 45

TJow mid high

Ny
31 [4] [5]
key == 11 list | 10 11 45 |

FIGURE 7.9 Binary search eliminates half of the list from further consideration after each
comparison.

public static 1int binarySearch(public static 1int binarySearch(

int[] Tist, int key) {
int Tow = 0;
int high = 1list.length - 1;

int mid = (low + high) / 2;
if (key < Tlist[mid])
high = mid - 1;
else if (key == Tist[mid])
return mid;
else
Tow = mid + 1;

int[] Tist, int key) {
int Tow = 0;
int high = Tist.length - 1;

while Chigh >= Tow) {

int mid = (low + high) / 2;

if (key < Tlist[mid])
high = mid - 1;

else if (key == list[mid])
return mid;

else
Tow = mid + 1;

3

return -1; // Not found

(a) Version 1

(b) Version 2

FIGURE 7.10 Binary search is implemented incrementally.

268 Chapter 7 Single-Dimensional Arrays

first half

second half

binary search benefits

The complete program is given in Listing 7.7.

LISTING 7.7

1 public class BinarySearch {

BinarySearch. java

2 /** Use binary search to find the key in the Tist */
3 public static 1int binarySearch(int[] Tist, 1int key) {
4 int Tow = 0;

5 int high = 1ist.length - 1;

6

7 while Chigh >= Tow) {

8 int mid = (low + high) / 2;

9 if (key < Tlist[mid])
10 high = mid - 1;
11 else if (key == Tist[mid])
12 return mid;
13 else
14 Tow = mid + 1;
15 b
16
17 return -low - 1; // Now high < low, key not found
18 }
19 1}

The binary search returns the index of the search key if it is contained in the list (line 12).
Otherwise, it returns ~Tow - 1 (line 17).

What would happen if we replaced Chigh >= Tow) in line 7 with (high > Tow)? The
search would miss a possible matching element. Consider a list with just one element. The
search would miss the element.

Does the method still work if there are duplicate elements in the list? Yes, as long as the
elements are sorted in increasing order. The method returns the index of one of the matching
elements if the element is in the list.

To better understand this method, trace it with the following statements and identify Tow
and h1igh when the method returns.

int[] Tist = {2, 4, 7, 10, 11, 45, 50,

int i = BinarySearch.binarySearch(list,
int j = BinarySearch.binarySearch(list,
int k = BinarySearch.binarySearch(list,
int 1 = BinarySearch.binarySearch(list,
int m = BinarySearch.binarySearch(list,

59, 60, 66, 69, 70, 79};

2); // Returns 0O

11); // Returns 4
12); // Returns -6
1); // Returns -1
3); // Returns -2

Here is the table that lists the Tow and high values when the method exits and the value

returned from invoking the method.

Method Low

High Value Returned

binarySearch(list, 2)
binarySearch(1list, 11)
binarySearch(list, 12)
binarySearch(1list, 1)

= O v W O

binarySearch(list, 3)

Note

1 0
5 4
4 -6
-1 -1
0 -2

Linear search is useful for finding an element in a small array or an unsorted array, but
it is inefficient for large arrays. Binary search is more efficient, but it requires that the
array be presorted.

7.1'1 Sorting Arrays 269

7.21 If high is a very large integer such as the maximum int value 2147483647, (low
+ high) / 2 may cause overflow. How do you fix it to avoid overflow?

7.22 Use Figure 7.9 as an example to show how to apply the binary search approach to a
search for key 10 and key 12 in list {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79}.

7.23 If the binary search method returns -4, is the key in the list? Where should the key
be inserted if you wish to insert the key into the list?

7.11 Sorting Arrays

Sorting, like searching, is a common task in computer programming. Many different
algorithms have been developed for sorting. This section introduces an intuitive sort-
ing algorithm: selection sort.

Suppose that you want to sort a list in ascending order. Selection sort finds the smallest
number in the list and swaps it with the first element. It then finds the smallest number
remaining and swaps it with the second element, and so on, until only a single number
remains. Figure 7.11 shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using selection sort.

swap

Select 1 (the smallest) and swap it
with 2 (the first) in the list.

)
o
W
~
o)
—_
(@)}

ﬁheck
Point

K
foxe

VideoNote
Selection sort

selection sort

swap
The number 1 is now in the + + Select 2 (the smallest) and swap it
correct position and thus no 19 5 4 8 2 6 with 9 (the first) in the remaining
longer needs to be considered. list.

swap

The number 2 is now in the ; 1 Select 4 (the smallest) and swap it
correct position and thus no 1 25 4 8 9 6 with 5 (the first) in the remaining
longer needs to be considered. list.

The number 4 is now in the
correct position and thus no 1 2 4 5 8 9 6
longer needs to be considered.

5 is the smallest and in the right
position. No swap is necessary.

swap
The number 5 is now in the ﬁ Select 6 (the smallest) and swap it
correct position and thus no 1 2 4 5 8 9 6 with 8 (the first) in the remaining
longer needs to be considered. list.

swap

The number 6 is now in the { } Select 8 (the smallest) and swap it
correct position and thus no 1 2 4 5 6 9 8 with 9 (the first) in the remaining
longer needs to be considered. list.
The number 8 is now in the Since there is only one element
correct position and thus no 1 2 4 5 6 8 9 remaining in the list, the sort is
longer needs to be considered. completed.

FiGure 7.11 Selection sort repeatedly selects the smallest number and swaps it with the first number in the list.

You know how the selection-sort approach works. The task now is to implement it in Java.
Beginners find it difficult to develop a complete solution on the first attempt. Start by writing
the code for the first iteration to find the smallest element in the list and swap it with the first
element, and then observe what would be different for the second iteration, the third, and so
on. The insight this gives will enable you to write a loop that generalizes all the iterations.

©

selection sort animation on
Companion Website

270 Chapter 7 Single-Dimensional Arrays

The solution can be described as follows:

for (int i = 0; i < Tist.length - 1; i++) {
select the smallest element in 1list[i..list.length-1];
swap the smallest with Tist[i], if necessary;
// Tist[i] is in 1its correct position.
// The next iteration applies on 1list[i+l..list.length-1]

3

Listing 7.8 implements the solution.

LisTING 7.8 SelectionSort.java

1 public class SelectionSort {

2 /** The method for sorting the numbers */

3 public static void selectionSort(double[] Tist) {
4 for (int i = 0; i < list.length - 1; i++) {

5 // Find the minimum in the Tist[i..list.length-1]
6 double currentMin = 1ist[i];

7 int currentMinIndex = 1i;

8

select 9 for (int j =1 + 1; j < list.length; j++) {
10 if (currentMin > Tist[j]) {
11 currentMin = 1ist[j];
12 currentMinIndex = j;
13 }
14 }
15
16 // Swap Tist[i] with Tist[currentMinIndex] if necessary
swap 17 if (currentMinIndex != i) {

18 Tist[currentMinIndex] = Tist[i];
19 Tist[i] = currentMin;
20 }
21 }
22 }
23}

The selectionSort(double[] Tist) method sorts any array of double elements. The
method is implemented with a nested for loop. The outer loop (with the loop control vari-
able 1) (line 4) is iterated in order to find the smallest element in the list, which ranges from
Tist[i] to Tist[list.length-1], and exchange it with Tist[1i].
The variable 1 is initially 0. After each iteration of the outer loop, 1ist[1] is in the right
place. Eventually, all the elements are put in the right place; therefore, the whole list is sorted.
To understand this method better, trace it with the following statements:

double[] Tist = {1, 9, 4.5, 6.6, 5.7, -4.5};
SelectionSort.selectionSort(list);

ﬁheck 7.24 Use Figure 7.11 as an example to show how to apply the selection-sort approach to
Point sort {3.4,5,3,3.5,2.2,1.9,2}.

7.25 How do you modify the selectionSort method in Listing 7.8 to sort numbers in
decreasing order?

7.12 The Arrays Class

Key The java.util.Arrays class contains useful methods for common array operations
6 Point Such as sorting and searching.

7.12 The Arrays Class 271

The java.util.Arrays class contains various static methods for sorting and searching
arrays, comparing arrays, filling array elements, and returning a string representation of the
array. These methods are overloaded for all primitive types.
You can use the sort or parallelSort method to sort a whole array or a partial array. sort
For example, the following code sorts an array of numbers and an array of characters. parallelSort

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util.Arrays.sort(numbers); // Sort the whole array
java.util.Arrays.parallelSort(numbers); // Sort the whole array

char[] chars = {'a', 'A", '4', 'F', 'D', 'P'};
java.util.Arrays.sort(chars, 1, 3); // Sort part of the array
java.util.Arrays.parallelSort(chars, 1, 3); // Sort part of the array

Invoking sort (numbers) sorts the whole array numbers. Invoking sort(chars, 1, 3)
sorts a partial array from chars[1] to chars[3-1]. parallelSort is more efficient if
your computer has multiple processors.

You can use the binarySearch method to search for a key in an array. The array must be pre- binarySearch
sorted in increasing order. If the key is not in the array, the method returns — (insertionIndex
+ 1). For example, the following code searches the keys in an array of integers and an array
of characters.

int[] 1ist = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};

System.out.println("1l. Index 1is " +

java.util.Arrays.binarySearch(list, 11));

System.out.printin("2. Index is " +

java.util.Arrays.binarySearch(list, 12));
char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};
System.out.println(”3. Index 1is " +

java.util.Arrays.binarySearch(chars, 'a'));
System.out.println("4. Index 1is " +

java.util.Arrays.binarySearch(chars, 't'));

The output of the preceding code is
1. Index is 4
2. Index is —6
3. Index is O
4. Index is —4

You can use the equals method to check whether two arrays are strictly equal. Two arrays equals
are strictly equal if their corresponding elements are the same. In the following code, Tistl
and Tist2 are equal, but Tist2 and Tist3 are not.

int[] 1istl = {2, 4, 7, 10};
int[] 1ist2 = {2, 4, 7, 10};
int[] 1ist3 = {4, 2, 7, 10};
System.out.printin(java.util.Arrays.equals(listl, 1ist2)); // true
System.out.println(java.util.Arrays.equals(list2, 1ist3)); // false

You can use the f1171 method to fill in all or part of the array. For example, the following code fi11
fills Tist1 with 5 and fills 8 into elements 1ist2[1] through Tist2[5-1].

int[] Tlistl {2, 4, 7, 10};

int[] 1ist2 = {2, 4, 7, 7, 7, 10};

java.util.Arrays.fi11(listl, 5); // Fill 5 to the whole array
java.util.Arrays.fil1(list2, 1, 5, 8); // Fill 8 to a partial array

272 Chapter 7 Single-Dimensional Arrays

toString You can also use the toString method to return a string that represents all elements in the array.
This is a quick and simple way to display all elements in the array. For example, the following code

int[] 1ist = {2, 4, 7, 10};
System.out.printin(Arrays.toString(list));

displays [2, 4, 7, 10].

ﬁheck 7.26 What types of array can be sorted using the java.util.Arrays.sort method?
Point Does this sort method create a new array?

7.27 To apply java.util.Arrays.binarySearch(array, key), should the array
be sorted in increasing order, in decreasing order, or neither?

7.28 Show the output of the following code:

int[] 1istl = {2, 4, 7, 10};
java.util.Arrays.fil1(listl, 7);
System.out.println(java.util.Arrays.toString(listl));

int[] 1ist2 = {2, 4, 7, 10};
System.out.println(java.util.Arrays.toString(list2));
System.out.print(java.util.Arrays.equals(listl, 1ist2));

7.13 Command-Line Arguments

6 fKey The main method can receive string arguments from the command line.

Point Perhaps you have already noticed the unusual header for the main method, which has the

parameter args of String[] type. It is clear that args is an array of strings. The main
u method is just like a regular method with a parameter. You can call a regular method by pass-
ing actual parameters. Can you pass arguments to main? Yes, of course you can. In the fol-
lowing examples, the main method in class TestMa‘in is invoked by a method in A.

VideoNote
Command-line arguments

public class A { public class TestMain {
public static void main(String[] args) { public static void main(String[] args) {
String[] strings = {"New York", for (int i = 0; i < args.length; i++)
"Boston", "Atlanta"}; System.out.printin(args[i]);
TestMain.main(strings); }
¥ }
}

A main method is just a regular method. Furthermore, you can pass arguments from the
command line.

7.13.1 Passing Strings to the main Method

You can pass strings to a main method from the command line when you run the program.
The following command line, for example, starts the program TestMain with three strings:
arg0, argl, and arg2:

java TestMain arg0 argl arg2

arg0, argl, and arg2 are strings, but they don’t have to appear in double quotes on the
command line. The strings are separated by a space. A string that contains a space must be
enclosed in double quotes. Consider the following command line:

java TestMain "First num" alpha 53

7.13 Command-Line Arguments

It starts the program with three strings: First num, alpha, and 53. Since First numisa
string, it is enclosed in double quotes. Note that 53 is actually treated as a string. You can use
""53" instead of 53 in the command line.

When the main method is invoked, the Java interpreter creates an array to hold the com-
mand-line arguments and pass the array reference to args. For example, if you invoke a
program with n arguments, the Java interpreter creates an array like this one:

args = new String[n];

The Java interpreter then passes args to invoke the main method.

Bl Note

=~ [fyou run the program with no strings passed, the array is created with new String[0].
In this case, the array is empty with length 0. args references to this empty array.
Therefore, args is not nul1, but args.lengthis 0.

7.13.2 Case Study: Calculator

Suppose you are to develop a program that performs arithmetic operations on integers. The
program receives an expression in one string argument. The expression consists of an inte-
ger followed by an operator and another integer. For example, to add two integers, use thiS yigeoNote
command:

java Calculator 2 + 3

The program will display the following output:
2+3=35

Figure 7.12 shows sample runs of the program.

The strings passed to the main program are stored in args, which is an array of strings. The
first string is stored in args[0], and args. lTength is the number of strings passed.

Here are the steps in the program:

1. Use args.length to determine whether the expression has been provided as three
arguments in the command line. If not, terminate the program using System.exit(1).

2. Perform a binary arithmetic operation on the operands args [0] and args[2] using the
operator in args[1].

BR Administrator: Command Prompt |ﬂlﬁ

Add —| eixbook>java Calculator 45 + 56
5 + 56 = 181

Subtract —>| £ :sbook>java Calculator 45 LY

5 — 56 = 11

Multiply —>| €=%book>java Calculator 45 . 56
5 . 56 = 2528

Divide ——>| gixbook>java Calculator 45 ~ 56
L /756 =8

tshook>
| |

e

FIGURE 7.12 The program takes three arguments (operandl operator operand?2) from
the command line and displays the expression and the result of the arithmetic operation.

273

Command-line argument

274 Chapter 7 Single-Dimensional Arrays

check argument

check operator

ﬁheck

Point

The program is shown in Listing 7.9.

LiIsTING 7.9 Calculator.java

1 public class Calculator {

2 /** Main method */

3 public static void main(String[] args) {

4 // Check number of strings passed

5 if (args.length !'= 3) {

6 System.out.printin(

7 "Usage: java Calculator operandl operator operand2');
8 System.exit(0);

9 }
10
11 // The result of the operation
12 int result = 0;
13
14 // Determine the operator
15 switch (args[1l].charAt(0)) {
16 case '+': result = Integer.parselnt(args[0]) +
17 Integer.parselnt(args[2]);
18 break;
19 case '-': result = Integer.parselnt(args[0]) -
20 Integer.parselnt(args[2]);
21 break;
22 case '.': result = Integer.parselnt(args[0]) *
23 Integer.parselnt(args[2]);
24 break;
25 case '/': result = Integer.parselnt(args[0]) /
26 Integer.parselnt(args[2]);
27 }
28
29 // Display result

30 System.out.println(args[0] + ' ' + args[1l] + ' ' + args[2]
31 + " =" 4+ result);

32 }

33 3}

Integer.parselInt(args[0]) (line 16) converts a digital string into an integer. The string

must consist of digits. If not, the program will terminate abnormally.

We used the . symbol for multiplication, not the common * symbol. The reason for this is
that the * symbol refers to all the files in the current directory when it is used on a command
line. The following program displays all the files in the current directory when issuing the

command java Test *:

public class Test {
public static void main(String[]

args) {

for (int i = 0; i < args.length; i++)

System.out.printin(args[i]);
}
}

To circumvent this problem, we will have to use a different symbol for the multiplication operator.

7.29 This book declares the main method as

public static void main(String[] args)

Can it be replaced by one of the following lines?

public static void main(String args[])
public static void main(String[] x)

Chapter Summary 275

public static void main(String x[])
static void main(String x[]1)
7.30 Show the output of the following program when invoked using
1. java Test I have a dream
2. java Test “1 2 3”
3. java Test

public class Test {
public static void main(String[] args) {
System.out.printin("Number of strings is
for (int i = 0; i < args.length; i++)
System.out.println(args[i]);

+ args.length);

}

3
KEey TERMS
anonymous array 258 index 246
array 246 indexed variable 248
array initializer 248 linear search 265
binary search 265 off-by-one error 251
garbage collection 256 selection sort 269

CHAPTER SUMMARY

I. A variable is declared as an array type using the syntax elementType[] arrayRefVar
or elementType arrayRefVar[]. The style elementType[] arrayRefVar is
preferred, although elementType arrayRefVar[] is legal.

2. Unlike declarations for primitive data type variables, the declaration of an array variable
does not allocate any space in memory for the array. An array variable is not a primitive
data type variable. An array variable contains a reference to an array.

3. You cannot assign elements to an array unless it has already been created. You
can create an array by using the new operator with the following syntax: new
elementType[arraySize].

4. Each element in the array is represented using the syntax arrayRefVar[index]. An
index must be an integer or an integer expression.

5. After an array is created, its size becomes permanent and can be obtained using
arrayRefVar.length. Since the index of an array always begins with 0, the last
index is always arrayRefVar.length - 1. An out-of-bounds error will occur if you
attempt to reference elements beyond the bounds of an array.

6. Programmers often mistakenly reference the first element in an array with index 1, but
it should be 0. This is called the index off-by-one error.

276 Chapter 7 Single-Dimensional Arrays

7.

When an array is created, its elements are assigned the default value of O for the numeric
primitive data types, \u0000 for char types, and false for boolean types.

Java has a shorthand notation, known as the array initializer, which combines declaring
an array, creating an array, and initializing an array in one statement, using the syntax
elementType[] arrayRefVar = {valueO, valuel, ..., valuek}.

When you pass an array argument to a method, you are actually passing the reference
of the array; that is, the called method can modify the elements in the caller’s original
array.

If an array is sorted, binary search is more efficient than linear search for finding an
element in the array.

Selection sort finds the smallest number in the list and swaps it with the first element.
It then finds the smallest number remaining and swaps it with the first element in the
remaining list, and so on, until only a single number remains.

Quiz

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

MyProgramminglLab’ PROGRAMMING EXERCISES

Sections 7.2-7.5

*T7.1 (Assign grades) Write a program that reads student scores, gets the best score,
and then assigns grades based on the following scheme:

Grade is A if score is = best — 10
Grade is B if score is = best — 20;
Grade is C if score is = best — 30;
Grade is D if score is = best — 40;
Grade is F otherwise.

The program prompts the user to enter the total number of students, then prompts
the user to enter all of the scores, and concludes by displaying the grades. Here
is a sample run:

Enter the number of students: 4 -enter

Enter 4 scores: 40 55 70 58 |-enter

Student 0 score is 40 and grade is C
Student 1 score is 55 and grade is B
Student 2 score is 70 and grade is A
Student 3 score is 58 and grade is B

7.2 (Reverse the numbers entered) Write a program that reads ten integers and dis-
plays them in the reverse of the order in which they were read.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 277

**7.3 (Count occurrence of numbers) Write a program that reads the integers between 1
and 100 and counts the occurrences of each. Assume the input ends with 0. Here
is a sample run of the program:

Enter the integers between 1 and 100: 2 5 6 5 4 3 23 43 2 O | -enter E
occurs 2 times e

occurs 1 time
occurs 1 time
occurs 2 times
occurs 1 time
23 occurs 1 time
43 occurs 1 time

o v b WN

Note that if a number occurs more than one time, the plural word “times” is used
in the output.

7.4 (Analyze scores) Write a program that reads an unspecified number of scores and
determines how many scores are above or equal to the average and how many
scores are below the average. Enter a negative number to signify the end of the
input. Assume that the maximum number of scores is 100.

**7.5 (Print distinct numbers) Write a program that reads in ten numbers and displays
the number of distinct numbers and the distinct numbers separated by exactly one
space (i.e., if a number appears multiple times, it is displayed only once). (Hint:
Read a number and store it to an array if it is new. If the number is already in the
array, ignore it.) After the input, the array contains the distinct numbers. Here is
the sample run of the program:

Enter ten numbers: 1 2 3 2 1 6 3 4 5 2 |-enter E
The number of distinct number is 6
The distinct numbers are: 1 2 3 6 4 5

*7.6 (Revise Listing 5.15, PrimeNumber.java) Listing 5.15 determines whether a num-
ber n is prime by checking whether 2, 3, 4, 5, 6, ..., n/2 is a divisor. If a divisor
is found, n is not prime. A more efficient approach is to check whether any of the
prime numbers less than or equal to V n can divide n evenly. If not, n is prime.
Rewrite Listing 5.15 to display the first 50 prime numbers using this approach.
You need to use an array to store the prime numbers and later use them to check
whether they are possible divisors for n.

*7.7T (Count single digits) Write a program that generates 100 random integers between
0 and 9 and displays the count for each number. (Hint: Use an array of ten integers,
say counts, to store the counts for the number of Os, s, ..., 9s.)

Sections 7.6-7.8
7.8 (Average an array) Write two overloaded methods that return the average of an
array with the following headers:

public static int average(int[] array)
public static double average(double[] array)

Write a test program that prompts the user to enter ten double values, invokes this
method, and displays the average value.

278 Chapter 7 Single-Dimensional Arrays

(Find the smallest element) Write a method that finds the smallest element in an
array of double values using the following header:

public static double min(double[] array)

Write a test program that prompts the user to enter ten numbers, invokes this
method to return the minimum value, and displays the minimum value. Here is a
sample run of the program:

Enter ten numbers: 1.9 2.5 3.7 2 1.5 6 3 4 5 2 -enter
The minimum number is: 1.5

(Find the index of the smallest element) Write a method that returns the index of
the smallest element in an array of integers. If the number of such elements is
greater than 1, return the smallest index. Use the following header:

public static int indexOfSmallestElement(double[] array)

Write a test program that prompts the user to enter ten numbers, invokes this
method to return the index of the smallest element, and displays the index.

(Statistics: compute deviation) Programming Exercise 5.45 computes the stand-
ard deviation of numbers. This exercise uses a different but equivalent formula to
compute the standard deviation of n numbers.

2%
i=1 XI+X2+"'+Xn

.o i=1
mean = = deviation =
n

i(xi - mecm)2

n—1

To compute the standard deviation with this formula, you have to store the indi-
vidual numbers using an array, so that they can be used after the mean is obtained.

Your program should contain the following methods:

/** Compute the deviation of double values */
public static double deviation(double[] x)

/** Compute the mean of an array of double values */
public static double mean(double[] x)

Write a test program that prompts the user to enter ten numbers and displays the
mean and standard deviation, as shown in the following sample run:

Enter ten numbers: 1.9 2.5 3.7 2 1 6 3 4 5 2 -—enter
The mean is 3.11
The standard deviation is 1.55738

7.9

2
7.10
*7.11

2
*7.12

(Reverse an array) The reverse method in Section 7.7 reverses an array by
copying it to a new array. Rewrite the method that reverses the array passed in
the argument and returns this array. Write a test program that prompts the user to

Programming Exercises 279

enter ten numbers, invokes the method to reverse the numbers, and displays the
numbers.

Section 7.9

*7.13 (Random number chooser) Write a method that returns a random number between
1 and 54, excluding the numbers passed in the argument. The method header is
specified as follows:

public static int getRandom(int... numbers)

7.14 (Computing gcd) Write a method that returns the ged of an unspecified number
of integers. The method header is specified as follows:

public static int gcd(int... numbers)

Write a test program that prompts the user to enter five numbers, invokes the
method to find the gcd of these numbers, and displays the ged.

Sections 7.10-7.12

7.15 (Eliminate duplicates) Write a method that returns a new array by eliminating the
duplicate values in the array using the following method header:

public static int[] eliminateDuplicates(int[] Tist)

Write a test program that reads in ten integers, invokes the method, and displays
the result. Here is the sample run of the program:

Enter ten numbers: 1 2 32 1 6 3 4 5 2 |-enter g
The distinct numbers are: 1 2 3 6 4 5 5

7.16 (Execution time) Write a program that randomly generates an array of 100,000
integers and a key. Estimate the execution time of invoking the 1inearSearch
method in Listing 7.6. Sort the array and estimate the execution time of invok-
ing the binarySearch method in Listing 7.7. You can use the following code
template to obtain the execution time:

long startTime = System.currentTimeMillis(Q);
perform the task;

Tong endTime = System.currentTimeMillis(Q);
long executionTime = endTime - startTime;

**T.UT (Sort students) Write a program that prompts the user to enter the number of stu-
dents, the students’ names, and their scores, and prints student names in decreas-
ing order of their scores.

**7.18 (Bubble sort) Write a sort method that uses the bubble-sort algorithm. The bubble-
sort algorithm makes several passes through the array. On each pass, successive
neighboring pairs are compared. If a pair is not in order, its values are swapped;
otherwise, the values remain unchanged. The technique is called a bubble sort or
sinking sort because the smaller values gradually “bubble” their way to the top
and the larger values “sink” to the bottom. Write a test program that reads in ten
double numbers, invokes the method, and displays the sorted numbers.

280 Chapter 7 Single-Dimensional Arrays

**7.19

(Sorted?) Write the following method that returns true if the list is already sorted
in increasing order.

public static boolean isSorted(int[] 1ist)

Write a test program that prompts the user to enter a list and displays whether
the list is sorted or not. Here is a sample run. Note that the first number in the
input indicates the number of the elements in the list. This number is not part
of the list.

Enter Tlist: 8 10 1 5 16 61 9 11 1 |-enter
The Tist is not sorted

Enter 1list: 10 1 1 3 4 4 57 9 11 21 -—enter
The 1list is already sorted

*7.20

***7.21

FIGURE 7.13

(Revise selection sort) In Section 7.11, you used selection sort to sort an array.
The selection-sort method repeatedly finds the smallest number in the current
array and swaps it with the first. Rewrite this program by finding the largest num-
ber and swapping it with the last. Write a test program that reads in ten double
numbers, invokes the method, and displays the sorted numbers.

(Game: bean machine) The bean machine, also known as a quincunx or the Gal-
ton box, is a device for statistics experiments named after English scientist Sir
Francis Galton. It consists of an upright board with evenly spaced nails (or pegs)
in a triangular form, as shown in Figure 7.13.

y Z
(o o (o o 0o
o\o o o\° © o o\o
o oNo o o oyo0 o o o o\o

oo Po o oo/ooo o o olo o

0o00o0oO0O ooQooo 0 0 0 o\o o

©0o0000oO © 0 O\No 0 0 0O 000000 O

(a) (b) (©)

Each ball takes a random path and falls into a slot.

Balls are dropped from the opening of the board. Every time a ball hits a nail, it
has a 50% chance of falling to the left or to the right. The piles of balls are accu-
mulated in the slots at the bottom of the board.

Write a program that simulates the bean machine. Your program should prompt
the user to enter the number of the balls and the number of the slots in the machine.
Simulate the falling of each ball by printing its path. For example, the path for
the ball in Figure 7.13b is LLRRLLR and the path for the ball in Figure 7.13c is

Programming Exercises 281

RLRRLRR. Display the final buildup of the balls in the slots in a histogram. Here
is a sample run of the program:

Enter the number of balls to drop: 5 -enter E
Enter the number of slots in the bean machine: 8 |-enter 3

LRLRLRR
RRLLLRR
LLRLLRR
RRLLLLL
LRLRRLR

0
0
000

(Hint: Create an array named slots. Each element in sTots stores the num-
ber of balls in a slot. Each ball falls into a slot via a path. The number of Rs in
a path is the position of the slot where the ball falls. For example, for the path
LRLRLRR, the ball falls into sTots[4], and for the path is RRLLLLL, the ball
falls into sTots[2].)

*%%7.22 (Game: Eight Queens) The classic Eight Queens puzzle is to place eight queens
on a chessboard such that no two queens can attack each other (i.e., no two queens
are on the same row, same column, or same diagonal). There are many possible
solutions. Write a program that displays one such solution. A sample output is
shown below:

Q
Q
Q

Q
Q
Q

**7.23 (Game: locker puzzle) A school has 100 lockers and 100 students. All lockers are
closed on the first day of school. As the students enter, the first student, denoted
S1, opens every locker. Then the second student, S2, begins with the second
locker, denoted L2, and closes every other locker. Student S3 begins with the
third locker and changes every third locker (closes it if it was open, and opens it if
it was closed). Student S4 begins with locker L4 and changes every fourth locker.
Student S5 starts with LS and changes every fifth locker, and so on, until student
S100 changes L.100.

After all the students have passed through the building and changed the lockers,
which lockers are open? Write a program to find your answer and display all
open locker numbers separated by exactly one space.

LT
e
Qi
L
[Qp I
el
LT
Ll

(Hint: Use an array of 100 Boolean elements, each of which indicates whether a
locker is open (true) or closed (false). Initially, all lockers are closed.)

**%7.24 (Simulation: coupon collector’s problem) Coupon collector is a classic statistics B
problem with many practical applications. The problem is to pick objects from VideoNote
a set of objects repeatedly and find out how many picks are needed for all the Coupon collector's problem

282 Chapter 7 Single-Dimensional Arrays

2

objects to be picked at least once. A variation of the problem is to pick cards from
a shuffled deck of 52 cards repeatedly and find out how many picks are needed
before you see one of each suit. Assume a picked card is placed back in the deck
before picking another. Write a program to simulate the number of picks needed
to get four cards from each suit and display the four cards picked (it is possible a
card may be picked twice). Here is a sample run of the program:

Queen of Spades

5 of Clubs

Queen of Hearts

4 of Diamonds
Number of picks: 12

7.25 (Algebra: solve quadratic equations) Write a method for solving a quadratic
equation using the following header:
public static int solveQuadratic(double[] eqn, double[] roots)
The coefficients of a quadratic equation ax®> + bx + ¢ = 0 are passed to the
array eqn and the real roots are stored in roots. The method returns the num-
ber of real roots. See Programming Exercise 3.1 on how to solve a quadratic
equation.
Write a program that prompts the user to enter values for a, b, and ¢ and displays
the number of real roots and all real roots.

7.26 (Strictly identical arrays) The arrays 1istl and 1ist2 are strictly identical
if their corresponding elements are equal. Write a method that returns true if
Tistl and Tist2 are strictly identical, using the following header:
public static boolean equals(int[] Tistl, int[] 1ist2)
Write a test program that prompts the user to enter two lists of integers and dis-
plays whether the two are strictly identical. Here are the sample runs. Note that
the first number in the input indicates the number of the elements in the list. This
number is not part of the list.
Enter Tistl: 52 5 6 1 6 -enter
Enter 1list2: 52 5 6 1 6 |-enter
Two Tlists are strictly identical
Enter Tistl: 52 5 6 6 1 |-enter
Enter Tist2: 52 5 6 1 6 |-enter
Two lists are not strictly identical

7.27 (Identical arrays) The arrays 1istl and 1ist2 are identical if they have the

same contents. Write a method that returns true if Tistl and T1ist2 are identi-
cal, using the following header:

public static boolean equals(int[] 1istl, int[] 1ist2)

Programming Exercises 283

Write a test program that prompts the user to enter two lists of integers and dis-
plays whether the two are identical. Here are the sample runs. Note that the first
number in the input indicates the number of the elements in the list. This number
is not part of the list.

Enter 1listl: 52 5 6 6 1 |-enter E
Enter 1ist2: 55 2 6 1 6 |~enter S

Two lists are identical

Enter 1listl: 55 5 6 6 1 |-enter E
Enter 1ist2: 52 5 6 1 6 |-enter

Two Tists are not identical

*7.28 (Math: combinations) Write a program that prompts the user to enter 10 integers
and displays all combinations of picking two numbers from the 10.

*7.29 (Game: pick four cards) Write a program that picks four cards from a deck of 52
cards and computes their sum. An Ace, King, Queen, and Jack represent 1, 13,
12, and 11, respectively. Your program should display the number of picks that
yields the sum of 24.

*7.30 (Pattern recognition: consecutive four equal numbers) Write the following u
method that tests whether the array has four consecutive numbers with the same

VideoNote
value.

Consecutive four
public static boolean isConsecutiveFour(int[] values)

Write a test program that prompts the user to enter a series of integers and dis-
plays if the series contains four consecutive numbers with the same value. Your
program should first prompt the user to enter the input size—i.e., the number of
values in the series. Here are sample runs:

Enter the number of values: 8 |-Enter E

Enter the values: 3 4 55 5 5 4 5 |-énter
The 1ist has consecutive fours

Enter the number of values: 9 |-enter E

Enter the values: 3 4 55 6 5 5 4 5 |<enter
The 1ist has no consecutive fours

**T7.31 (Merge two sorted lists) Write the following method that merges two sorted lists
into a new sorted list.

public static int[] merge(int[] 1istl, int[] 1ist2)

284 Chapter 7 Single-Dimensional Arrays

Implement the method in a way that takes at most Tistl.length + Tist2.
Tength comparisons. Write a test program that prompts the user to enter two
sorted lists and displays the merged list. Here is a sample run. Note that the first
number in the input indicates the number of the elements in the list. This number
is not part of the list.

Enter 1listl: 5 1 5 16 61 111 -enter

Enter 1list2: 4 2 4 5 6 |~Enter
The merged Tist is 1 2 4 55 6 16 61 111

**7.32

(Partition of a list) Write the following method that partitions the list using the
first element, called a pivot.

public static int partition(int[] 1ist)

After the partition, the elements in the list are rearranged so that all the elements
before the pivot are less than or equal to the pivot and the elements after the pivot
are greater than the pivot. The method returns the index where the pivot is located
in the new list. For example, suppose the list is {5, 2, 9, 3, 6, 8}. After the parti-
tion, the list becomes {3, 2, 5, 9, 6, 8}. Implement the method in a way that takes
at most Tist.Tength comparisons. Write a test program that prompts the user
to enter a list and displays the list after the partition. Here is a sample run. Note
that the first number in the input indicates the number of the elements in the list.
This number is not part of the list.

Enter Tist: 8 10 1 5 16 61 9 11 1 |-enter
After the partition, the 1list is 9 1 5 1 10 61 11 16

*7.33

**7.34

***7.35

(Culture: Chinese Zodiac) Simplify Listing 3.9 using an array of strings to store
the animal names.
(Sort characters in a string) Write a method that returns a sorted string using the
following header:

public static String sort(String s)

For example, sort("ach") returns abc.

Write a test program that prompts the user to enter a string and displays the sorted
string.

(Game: hangman) Write a hangman game that randomly generates a word and
prompts the user to guess one letter at a time, as shown in the sample run. Each
letter in the word is displayed as an asterisk. When the user makes a correct
guess, the actual letter is then displayed. When the user finishes a word, display

Programming Exercises 285

the number of misses and ask the user whether to continue to play with another
word. Declare an array to store words, as follows:

// Add any words you wish in this array
String[] words = {"write", "that", ...};

(Guess) Enter a letter in word #*#¥%%¥% 5 p |ienter g

(Guess) Enter a letter in word p**#*** > p |Jenter

(Guess) Enter a letter in word pr**r#** > p |-enter
p is already in the word

(Guess) Enter a letter in word

(Guess) Enter a letter in word

-~ Enter

I Enter

(Guess) Enter a letter in word
n is not in the word
(Guess) Enter a letter in word progr#** > m |-Enter
(Guess) Enter a letter in word progr*m > a |-Enter

The word is program. You missed 1 time
Do you want to guess another word? Enter y or n>

> N | ~Enter

This page intentionally left blank

MULTIDIMENSIONAL
ARRAYS

Objectives

To give examples of representing data using two-dimensional arrays

(88.1).

To declare variables for two-dimensional arrays, create arrays, and
access array elements in a two-dimensional array using row and col-
umn indexes (§8.2).

To program common operations for two-dimensional arrays (display-
ing arrays, summing all elements, finding the minimum and maximum
elements, and random shuffling) (§8.3).

To pass two-dimensional arrays to methods (§8.4).

To write a program for grading multiple-choice questions using two-
dimensional arrays (§8.5).

To solve the closest-pair problem using two-dimensional arrays (§8.6).

B To check a Sudoku solution using two-dimensional arrays (§8.7).

To use multidimensional arrays (§8.8).

CHAPTER

288 Chapter 8 Multidimensional Arrays

8.1 Introduction

6 fKey Data in a table or a matrix can be represented using a two-dimensional array.

Point

problem dimensional array named distances.

Distance Table (in miles)

The preceding chapter introduced how to use one-dimensional arrays to store linear collec-
tions of elements. You can use a two-dimensional array to store a matrix or a table. For
example, the following table that lists the distances between cities can be stored using a two-

Chicago Boston New York Atlanta Miami Dallas Houston
Chicago 0 983 787 714 1375 967 1087
Boston 983 0 214 1102 1763 1723 1842
New York 787 214 0 888 1549 1548 1627
Atlanta 714 1102 888 0 661 781 810
Miami 1375 1763 1549 661 0 1426 1187
Dallas 967 1723 1548 781 1426 0 239
Houston 1087 1842 1627 810 1187 239 0

double[][] distances = {

{0, 983, 787, 714, 1375, 967, 1087},
{983, 0, 214, 1102, 1763, 1723, 1842},

{787, 214, 0, 838, 1549, 1548, 1627},

{714, 1102, 888, 0, 661, 781, 810},

{1375, 1763, 1549, 661, 0, 1426, 1187},

{967, 1723, 1548, 781, 1426, 0, 239},

{1087, 1842, 1627, 810, 1187, 239, 0},

};

8.2 Two-Dimensional Array Basics

6 fKey An element in a two-dimensional array is accessed through a row and column index.

Point

addresses these issues.

8.2.1 Declaring Variables of Two-Dimensional Arrays and Creating

Two-Dimensional Arrays

The syntax for declaring a two-dimensional array is:

elementType[][] arrayRefVar;

or

How do you declare a variable for two-dimensional arrays? How do you create
dimensional array? How do you access elements in a two-dimensional array? This section

elementType arrayRefVar[]1[]; // Allowed, but not preferred

As an example, here is how you would declare a two-dimensional array variable matrix

of int values:

int[][] matrix;

a two-

8.2 Two-Dimensional Array Basics 289

or

int matrix[][]; // This style is allowed, but not preferred

You can create a two-dimensional array of 5-by-5 int values and assign it to matrix
using this syntax:

matrix = new int[5][5];

Two subscripts are used in a two-dimensional array, one for the row and the other for the
column. As in a one-dimensional array, the index for each subscript is of the int type and
starts from 0, as shown in Figure 8.1a.

[01[11[2]1[3][4] [01[11[2][3][4] [o1r11r21]
[0]J|0]|O|0OfO]|O [0]J|0fO0|0O|O|O [0]|1]2]3
[1]|{0]|0|0fO]|O [1]1{0f(0|0|O|O [11(4]|5]|6
[2]|0]|0|0fO]|O [2]|0|7]|0|0(O [2]1(7]18]|9
[31/|0|0|0f0O]|O [31|0(0|0|O0|O [3](10|11|12
[41/{0|0|0]|0]|O [41|0|0|0OfO|O int[][] array = {

1, 2, 3%,
matrix = new int[5][5]; matrix[2][1] = 7; %4, 5, 6%,
{7! 8! 9}!
{10, 11, 12}
};
(a) (b) (©)

FiGure 8.1 The index of each subscript of a two-dimensional array is an int value,
starting from 0.

To assign the value 7 to a specific element at row 2 and column 1, as shown in Figure 8.1b,
you can use the following syntax:

matrix[2][1] = 7;

Caution
It is a common mistake to use matrix[2, 1] to access the element at row 2 and
column 1. In Java, each subscript must be enclosed in a pair of square brackets.

You can also use an array initializer to declare, create, and initialize a two-dimensional
array. For example, the following code in (a) creates an array with the specified initial values,
as shown in Figure 8.1c. This is equivalent to the code in (b).

int[][] array = { int[][] array = new int[4][3];
{1, 2, 33}, array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;
{4, 5, 6}, Equivalent array[1]1[0] = 4; array[1][1] = 5; array[1][2] = 6;
{7, 8, 9%, ————— |array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;
{10, 11, 12} array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;
}
(a) (b)

8.2.2 Obtaining the Lengths of Two-Dimensional Arrays

A two-dimensional array is actually an array in which each element is a one-dimensional
array. The length of an array x is the number of elements in the array, which can be obtained
using x.length. x[0], x[1], ..., and x[x.length-1] are arrays. Their lengths can be
obtained using x[0] . Tength, x[1].Tength, ..., and x[x.1ength-1].length.

290 Chapter 8 Multidimensional Arrays

ragged array

For example, suppose x = new int[3][4], x[0], x[1], and x[2] are one-dimensional
arrays and each contains four elements, as shown in Figure 8.2. x.length is 3, and
x[0].T1ength, x[1].1length, and x[2] . T1ength are 4.

X T— / x[01[0]|x[0][1]|x[0][2]1{x[0]1[3]| x[0].Tengthis4

x[0]
x[1] - x[1]1[0][x[1]1[1]|x[1][2]|x[1]1[3]| x[1].lengthis4
x[2] —

x[21[07x[21[1]|x[21[21{x[2]1[3]] x[2].lengthis4

x.lengthis 3

FIGURE 8.2 A two-dimensional array is a one-dimensional array in which each element is
another one-dimensional array.

8.2.3 Ragged Arrays

Each row in a two-dimensional array is itself an array. Thus, the rows can have different
lengths. An array of this kind is known as a ragged array. Here is an example of creating a
ragged array:

int[1[] triangleArray = { 1[2[3]4]5
{1, 2, 3, 4, 5}, ~ T——u 1[2[3]4]5]

Brags
Ei o —+ "[3]4]5
}s =

As you can see, triangleArray[0].length is 5, triangleArray[1].Tlength is 4,
triangleArray[2].length is 3, triangleArray[3].length is 2, and triangle-
Array[4].lengthis 1.

If you don’t know the values in a ragged array in advance, but do know the sizes—say, the
same as before—you can create a ragged array using the following syntax:

int[]J[] triangleArray = new int[5][];

triangleArray[0] = new int[5];
triangleArray[1l] = new 1int[4];
triangleArray[2] = new int[3];
triangleArray[3] = new int[2];
triangleArray[4] = new 1int[1];

You can now assign values to the array. For example,

triangleArray[0][3]

50;
triangleArray[4][0] 45;

Note
The syntax new int[5] [] for creating an array requires the first index to be specified.
The syntax new 1int[][] would be wrong.

8.3 Processing Two-Dimensional Arrays

8.1 Declare an array reference variable for a two-dimensional array of int values, create ﬁheck
a 4-by-5 int matrix, and assign it to the variable. /' Point

8.2 Can the rows in a two-dimensional array have different lengths?
8.3 What is the output of the following code?

int[][] array = new 1int[5][6];

int[] x = {1, 2};

array[0] = x;
System.out.println("array[0][1] is " + array[0][1]);

8.4 Which of the following statements are valid?

int[]J[] r = new int[2];

int[] x = new int[];

int[]J[] vy = new int[3][];
int[1[] z = {{1, 2}};

int[1[]1 m = {{1, 23}, {2, 3}};
int[1[] n = {{1, 23}, {2, 3}, };

8.3 Processing Two-Dimensional Arrays

Nested for loops are often used to process a two-dimensional array. 6 fKey

Suppose an array matrix is created as follows: Point

int[][] matrix = new int[10][10];

The following are some examples of processing two-dimensional arrays.

1. Initializing arrays with input values. The following loop initializes the array with user
input values:

java.util.Scanner input = new Scanner(System.in);
System.out.println("Enter " + matrix.length + " rows and " +
matrix[0].Tength + " columns: ");
for (int row = 0; row < matrix.length; row++) {
for (int column = 0; column < matrix[row].length; column++) {
matrix[row] [column] = input.nextInt();
}
}

2. Initializing arrays with random values. The following loop initializes the array with
random values between 0 and 99:

for (int row = 0; row < matrix.length; row++) {
for (int column = 0; column < matrix[row].length; column++) {
matrix[row] [column] = (int) (Math.random() * 100);
}
}

3. Printing arrays. To print a two-dimensional array, you have to print each element in the
array using a loop like the following:

for (int row = 0; row < matrix.length; row++) {
for (int column = 0; column < matrix[row].Tlength; column++) {
System.out.print(matrix[row] [column] + " ");

}

System.out.println(Q;
}

291

292 Chapter 8 Multidimensional Arrays

4. Summing all elements. Use a variable named total to store the sum. Initially total is
0. Add each element in the array to total using a loop like this:

int total = 0;
for (int row = 0; row < matrix.length; row++) {
for (int column = 0; column < matrix[row].length; column++) {
total += matrix[row][column];
3
}

5. Summing elements by column. For each column, use a variable named total to store
its sum. Add each element in the column to total using a loop like this:

for (int column = 0; column < matrix[0].length; column++) {
int total = 0;
for (int row = 0; row < matrix.length; row++)
total += matrix[row][column];

System.out.println("Sum for column " + column + " is "
+ total);
}

6. Which row has the largest sum? Use variables maxRow and indexOfMaxRow to track

VideoNot the largest sum and index of the row. For each row, compute its sum and update maxRow
ideoNote

}) and indexOfMaxRow if the new sum is greater.
Find the row with the largest

sum int maxRow = 0;

int indexOfMaxRow = 0;

// Get sum of the first row in maxRow

for (int column = 0; column < matrix[0].length; column++) {
maxRow += matrix[0] [column];

}

for (int row = 1; row < matrix.length; row++) {
int totalOfThisRow = 0;

for (int column = 0; column < matrix[row].length; column++)
totalOfThisRow += matrix[row][column];

if (totalOfThisRow > maxRow) {
maxRow = totalOfThisRow;
indexOfMaxRow = row;
}
}

System.out.printin("Row " + indexOfMaxRow
+ " has the maximum sum of " + maxRow);

7. Random shuffling. Shuffling the elements in a one-dimensional array was introduced
in Section 7.2.6. How do you shuffle all the elements in a two-dimensional array? To
accomplish this, for each element matrix[i1][j], randomly generate indices il and
j1 and swap matrix[i][j] withmatrix[i1][j1], as follows:

for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].Tength; j++) {
int il = (int) (Math.random() * matrix.length);
int j1 = (int) (Math.random() * matrix[i].length);

// Swap matrix[i][j] with matrix[i1][j1]

8.4 Passing Two-Dimensional Arrays to Methods 293

int temp = matrix[i][j];
matrix[i]1[j] = matrix[i1][j1];
matrix[11]1[j1] = temp;
}
}

8.5 Show the output of the following code:

ﬁheck

int[1[1 array = {{1, 2}, {3, 4}, {5, 6}}; Point
for (int i = array.length - 1; i >= 0; i—) {
for (int j = array[i].length - 1; j >= 0; j—)
System.out.print(array[i][j] + " ");
System.out.println();
}
8.6 Show the output of the following code:
int[1[] array = {{1, 2}, {3, 4}, {5, 6}};
int sum = 0;
for (int i = 0; i < array.length; i++)
sum += array[i][0];
System.out.println(sum);
8.4 Passing Two-Dimensional Arrays to Methods
When passing a two-dimensional array to a method, the reference of the array is fK
€y
passed to the method. 6 Point
You can pass a two-dimensional array to a method just as you pass a one-dimensional array.
You can also return an array from a method. Listing 8.1 gives an example with two methods.
The first method, getArray (), returns a two-dimensional array, and the second method,
sumCint[][] m), returns the sum of all the elements in a matrix.
LisTING 8.1 PassTwoDimensionalArray.java
1 import java.util.Scanner;
2
3 public class PassTwoDimensionalArray {
4 public static void main(String[] args) {
5 int[J[] m = getArray(); // Get an array get array
6
7 // Display sum of elements
8 System.out.printin("\nSum of all elements is " + sum(m)); pass array
9 }
10
11 public static int[][] getArray({ getArray method
12 // Create a Scanner
13 Scanner input = new Scanner(System.in);
14
15 // Enter array values
16 int[]J[] m = new int[3][4];
17 System.out.printin("Enter " + m.length + " rows and "
18 + m[0].Tlength + " columns: ");
19 for (int i = 0; i < m.length; i++)
20 for (int j = 0; j < m[i].length; j++)
21 m[i][j] = input.nextInt();

294 Chapter 8 Multidimensional Arrays

return array 23 return m;
24 }
25
sum method 26 public static int sumCint[]1[] m) {
27 int total = 0;
28 for (int row = 0; row < m.length; row++) {
29 for (int column = 0; column < m[row].Tength; column++) {
30 total += m[row] [column];
31 }
32 }
33
34 return total;
35 }
36 }

E Enter 3 rows and 4 columns:
12 3 4 | -Enter

56 7 8 —Enter
9 10 11 12 |-enter

Sum of all elements is 78

The method getArray prompts the user to enter values for the array (lines 11-24) and
returns the array (line 23).

The method sum (lines 26-35) has a two-dimensional array argument. You can obtain the
number of rows using m. Tength (line 28) and the number of columns in a specified row using
m[row] . 1ength (line 29).

ﬁhe'ck 8.7 Show the output of the following code:
Point public class Test {
public static void main(String[] args) {
1nt[][] array = {{1’ 2’ 31 4}1 {5’ 61 71 8}};
System.out.println(ml(array) [0]);
System.out.println(ml(array)[1]);

}

public static int[] ml1Cint[I[] m) {
int[] result = new 1int[2];
result[0] = m.length;
result[1] = m[0].length;
return result;

8.5 Case Study: Grading a Multiple-Choice Test

The problem is to write a program that will grade multiple-choice tests.

f Key

B 6 Point Suppose you need to write a program that grades multiple-choice tests. Assume there are eight
VideoNote students and ten questions, and the answers are stored in a two-dimensional array. Each row
Grade multiple-choice test records a student’s answers to the questions, as shown in the following array.

8.5 Case Study: Grading a Multiple-Choice Test 295

Students’ Answers to the Questions:

0123456789
Student 0 ABACCDEEAD
Student 1 DBABCAEEAD
Student 2 EDDACBEEAD
Student 3 CBAEDCEEAD
Student 4 ABDCCDEEAD
Student 5 BBECCDEEAD
Student 6 BBACCDEEAD
Student 7 EBECCDEEAD

The key is stored in a one-dimensional array:

Key to the Questions:
0123456789
Key DBDCCDAEAD

Your program grades the test and displays the result. It compares each student’s answers
with the key, counts the number of correct answers, and displays it. Listing 8.2 gives the
program.

LisTING 8.2 GradeExam.java

1 public class GradeExam {

2 /** Main method */
3 public static void main(String[] args) {
4 // Students' answers to the questions
5 char[][] answers = { 2-D array
6 {'A', 'B', 'A', 'C', 'C', 'D', "E', '"E', 'A', 'D'},
7 {'n', 'B', 'A', 'B', 'C', 'A', '"E', "E', 'A', 'D'},
8 {'E', 'D', 'D', 'A', 'C', 'B', '"E', '"E', 'A', 'D'},
9 {'c', 'B', 'A', '"E', 'D', 'C', "E', '"E', 'A', 'D'},
10 {'A', 'B', 'D', 'C', 'C', 'D', '"E', "E', 'A', 'D'},
11 {'s8', 'B', 'E', 'C', 'C', 'D', "E', '"E', 'A', 'D'},
12 {'B', 'B', 'A', 'C', 'C', 'D', "E', "E', 'A', 'D'},
13 {'E', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}};
14
15 // Key to the questions
16 char[] keys = {'D', 'B', 'D', 'C', 'C', 'D', 'A', "E', 'A', 'D'}; 1-Darray
17
18 // Grade all answers
19 for (int i = 0; i < answers.length; i++) {
20 // Grade one student
21 int correctCount = 0;
22 for (int j = 0; j < answers[i].length; j++) {
23 if (answers[i][j] == keys[j]) compare with key
24 correctCount++;
25 }
26
27 System.out.printin("Student " + i + "'s correct count 1is " +
28 correctCount);
29 b
30 }

296 Chapter 8 Multidimensional Arrays

2

5 o
Point
closest-pair animation on the
Companion Website

number of points

Student 0's correct count is 7
Student 1's correct count is 6
Student 2's correct count is 5
Student 3's correct count is 4
Student 4's correct count is 8
Student 5's correct count is 7
Student 6's correct count is 7
Student 7's correct count is 7

The statement in lines 5—13 declares, creates, and initializes a two-dimensional array of
characters and assigns the reference to answers of the char[][] type.

The statement in line 16 declares, creates, and initializes an array of char values and
assigns the reference to keys of the char[] type.

Each row in the array answers stores a student’s answer, which is graded by comparing
it with the key in the array keys. The result is displayed immediately after a student’s answer
is graded.

8.6 Case Study: Finding the Closest Pair

This section presents a geometric problem for finding the closest pair of points.

Given a set of points, the closest-pair problem is to find the two points that are nearest to
each other. In Figure 8.3, for example, points (1, 1) and (2, 0.5) are closest to each
other. There are several ways to solve this problem. An intuitive approach is to compute the
distances between all pairs of points and find the one with the minimum distance, as imple-
mented in Listing 8.3.

(-1,3) o ° (3,3)

°(4.2)

e
-«

(L1

-1

N N T R

e (2,0.5)

0.5

o (4,-0.5) o

(-1,-1) o(2,-1)

NN AN = O

-0.5

FiGure 8.3 Points can be represented in a two-dimensional array.

LisTING 8.3 FindNearestPoints.java

1 import java.util.Scanner;

2

3 public class FindNearestPoints {

4 public static void main(String[] args) {

5 Scanner input = new Scanner(System.in);

6 System.out.print("Enter the number of points: ");
7 int numberOfPoints = input.nextInt();

8

9

// Create an array to store points

8.6 Case Study: Finding the Closest Pair 297

10 double[][] points = new double[numberOfPoints][2];

11 System.out.print("Enter " + numberOfPoints + " points: ");
12 for (int i = 0; i < points.length; i++) {

13 points[i][0] = input.nextDouble();

14 points[i][1] = input.nextDouble();

15 }

16

17 // pl and p2 are the indices in the points' array

18 int pl = 0, p2 = 1; // Initial two points

19 double shortestDistance = distance(points[pl][0], points[pl][1],
20 points[p2][0], points[p2][1]); // Initialize shortestDistance
21

22 // Compute distance for every two points

23 for (int i = 0; i < points.length; i++) {

24 for (int j =1 + 1; j < points.length; j++) {

25 double distance = distance(points[i][0], points[i][1l],
26 points[j]1[0], points[j1[1]); // Find distance

27

28 if (shortestDistance > distance) {

29 pl = i; // Update pl

30 p2 = j; // Update p2

31 shortestDistance = distance; // Update shortestDistance
32 }

33 }

34 }

35

36 // Display result

37 System.out.println("The closest two points are " +

38 "(" + points[pl][0] + ", " + points[pl][1] + ") and (" +
39 points[p2][0] + ", " + points[p2][1] + ")");

40 }

41

42 /** Compute the distance between two points (x1, yl) and (x2, y2)*/
43 public static double distance(

44 double x1, double yl, double x2, double y2) {

45 return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
46 }

47 }

Enter the number of points: 8 | -enter
Enter 8 points: -1 3 -1 -1 11 20.5 2 -1 33 424 -0.5 -enter
The closest two points are (1, 1) and (2, 0.5)

The program prompts the user to enter the number of points (lines 6-7). The points are
read from the console and stored in a two-dimensional array named points (lines 12-15).
The program uses the variable shortestDistance (line 19) to store the distance between
the two nearest points, and the indices of these two points in the points array are stored in
pl and p2 (line 18).

For each point at index 1, the program computes the distance between points[i] and
points[j] forall j > 1 (lines 23-34). Whenever a shorter distance is found, the variable
shortestDistance and p1 and p2 are updated (lines 28-32).

The distance between two points (x1, yl) and (x2, y2) can be computed using the
formula V(x, — x,)* + (v, — y)* (lines 43-46).

The program assumes that the plane has at least two points. You can easily modify the
program to handle the case if the plane has zero or one point.

2-D array

read points

track two points
track shortestDistance

for each point i

for each point j

distance between i and j
distance between two points

update shortestDistance

298 Chapter 8 Multidimensional Arrays

multiple closest pairs

input file
'S f
7 Point
VideoNote
Sudoku

fixed cells
free cells

representing a grid

Note that there might be more than one closest pair of points with the same minimum dis-
tance. The program finds one such pair. You may modify the program to find all closest pairs
in Programming Exercise 8.8.

Tip
It is cumbersome to enter all points from the keyboard. You may store the input in a file, say
FindNearestPoints.txt, and compile and run the program using the following command:

java FindNearestPoints < FindNearestPoints.txt

8.7 Case Study: Sudoku

The problem is to check whether a given Sudoku solution is correct.

This section presents an interesting problem of a sort that appears in the newspaper every
day. It is a number-placement puzzle, commonly known as Sudoku. This is a very challeng-
ing problem. To make it accessible to the novice, this section presents a simplified version of
the Sudoku problem, which is to verify whether a Sudoku solution is correct. The complete
program for finding a Sudoku solution is presented in Supplement VI.A.

Sudoku is a 9 X 9 grid divided into smaller 3 X 3 boxes (also called regions or blocks), as
shown in Figure 8.4a. Some cells, called fixed cells, are populated with numbers from 1 to 9. The
objective is to fill the empty cells, also called free cells, with the numbers 1 to 9 so that every
row, every column, and every 3 X 3 box contains the numbers 1 to 9, as shown in Figure 8.4b.

513 5(3(4|16|7(8|9]|1]2
6 1 5 671211951348
918 6 1(9(8|3|4(2|5]|6]|7
6 3) 81519761423
s| |3 1| —Solution al2]6]s|s[3]7]9]1
2 6 TII[3]19]|2[4|8]|5]|6
6 916 (1|53 |712|8]|4
41119 218|714 (1]9]6|3]|5
8 7 314|512 (8|6|1|7|9

(a) Puzzle (b) Solution

FIGURE 8.4 The Sudoku puzzle in (a) is solved in (b).

For convenience, we use value O to indicate a free cell, as shown in Figure 8.5a. The grid
can be naturally represented using a two-dimensional array, as shown in Figure 8.5b.

5(3|l0fo|7(0o]ofo]|o0 int[][] grid =
6|lolol1]|9]|5|o]o]o {{5, 3, 0, 0, 7, 0, 0, O, O},
{6’ 0! 0’ 1! 9’ 5! 0’ O! 0}’
0}°1810]010f0]60 {0, 9, 8, 0, 0, 0, 0, 6, 0},
810/0f0]6]0]0]0]|3 {8, 0, 0, 0, 6, 0, 0, 0, 3},
4lolofs8|of[3]ofo]|1 {4, o0, 0, 8, 0, 3, 0, O, 1},
7 O 0 O 2 O 0 0 6 {7! O! O! O! 2! O! O! O! 6}!
{o, 6, 0, 0, 0, O, 2, 8, 0},
DI[o [WI W0 @ W] 0|0 {0, 0, 0, 4, 1, 9, 0, 0, 5},
0jojof4j1]9]0|0]S5 {0, o, 0, 0, 8, 0, 0, 7, 9}
ofojofo|8fo]o|[7]|9 1
(a) (b)

FIGURE 8.5 A grid can be represented using a two-dimensional array.

8.7 Case Study: Sudoku 299

To find a solution for the puzzle, we must replace each 0 in the grid with an appropriate
number from 1 to 9. For the solution to the puzzle in Figure 8.5, the grid should be as shown
in Figure 8.6.

Once a solution to a Sudoku puzzle is found, how do you verify that it is correct? Here are
two approaches:

B Check if every row has numbers from 1 to 9, every column has numbers from 1 to 9,
and every small box has numbers from 1 to 9.

B Check each cell. Each cell must be a number from 1 to 9 and the cell must be unique
on every row, every column, and every small box.

A solution grid is

{{s5, 3, 4, 6, 7, 8, 9, 1, 2},
{6, 7, 2,1, 9,5, 3, 4, 8},
{1, 9, 8, 3, 4, 2, 5, 6, 7},
{8, 5,9, 7,6, 1, 4, 2, 3},
{4, 2, 6, 8, 5, 3, 7, 9, 1},
{7, 1, 3,9, 2, 4, 8, 5, 6},
{9, 6, 1, 5, 3, 7, 2, 8, 4},
{2, 8,7, 4,1, 9, 6, 3, 5},
{3, 4,5, 2,8,6,1, 7, 9}
};

FIGURE 8.6 A solution is stored in grid.

The program in Listing 8.4 prompts the user to enter a solution and reports whether it is
valid. We use the second approach in the program to check whether the solution is correct.

LisTING 8.4 CheckSudokuSolution.java

1 dmport java.util.Scanner;

2

3 public class CheckSudokuSolution {

4 public static void main(String[] args) {

5 // Read a Sudoku soTlution

6 int[]J[] grid = readASolution(); read input
7

8 System.out.printin(isValid(grid) ? "valid solution" : solution valid?
9 "Invalid solution");
10 }
11
12 /** Read a Sudoku solution from the console */
13 public static int[][] readASolution() { read solution
14 // Create a Scanner
15 Scanner input = new Scanner(System.in);
16
17 System.out.printin("Enter a Sudoku puzzle solution:");
18 int[]J[] grid = new int[9][9];
19 for (int i =0; 1 < 9; i++)
20 for (int j = 0; j < 9; j++)
21 grid[i][j] = input.nextInt();
22
23 return grid;
24 }
25

26 /** Check whether a solution is valid */
27 public static boolean isValid(int[][] grid) { check solution

300 Chapter 8 Multidimensional Arrays

check rows

check columns

check small boxes

isValid method

overloaded isValid method

28
29
30
31
32
33
34 }
35

36 /:‘:7‘:

for (int i
for (int j = 0; j < 9; j++)
if (grid[i]1[j] < 1 || grid[i][3j] > 9

= 0;

1isV

i< 9; i+4)

alid@, j, grid))

return false;
return true; // The solution 1is valid

Check whether grid[i][j] is valid in the grid */

37 public static boolean isValid(int i, int j, int[][] grid) {

38 // Check whether grid[i][j] is unique in i's row
39 for (int column = 0; column < 9; column++)
40 if (column != j && grid[i][column] == grid[i][j])
41 return false;
42
43 // Check whether grid[i][j] is unique in j's column
44 for (int row = 0; row < 9; row++)
45 if (row != i && grid[row] [j] == grid[i]l[j])
46 return false;
47
48 // Check whether grid[i][j] is unique in the 3-by-3 box
49 for (int row = (i / 3) * 3; row< (i / 3) * 3 + 3; row++)
50 for (int col = (3 / 3) * 3; col < (3 / 3) * 3 + 3; col++)
51 if (row != 1 && col !'= j && grid[row][col] == grid[i][j])
52 return false;
53
54 return true; // The current value at grid[i][j] is valid
55 }
56 1}
Enter a Sudoku puzzle solution:
96 317425 8 -enter
178325649 -ente
2546897 31 -entr
82143759 6 —cnter
496852317 |-Enter
735961824 -cntr
58971346 2 -enter
3172469 85 -entr
64259817 3 -entr
Valid solution

The program invokes the readASolution() method (line 6) to read a Sudoku solution

and return a two-dimensional array representing a Sudoku grid.

The isValid(grid) method checks whether the values in the grid are valid by verifying

that each value is between 1 and 9 and that each value is valid in the grid (lines 27-34).

The isValid(i, j, grid) method checks whether the value at grid[i][j] is valid.
It checks whether grid[1] [j] appears more than once in row i (lines 39-41), in column j

(lines 44-46), and in the 3 X 3 box (lines 49-52).

How do you locate all the cells in the same box? For any grid[i][j], the starting cell
of the 3 X 3 box that contains itis grid[(i / 3) * 31[(j / 3) * 3], as illustrated in

Figure 8.7.

8.8 Multidimensional Arrays 301

grid[0][0] — ~ grid[0][6]

“~ For any grid[i][j] in this 3 by 3 box, its starting cell
is grid[3#(1/3)][3*(j/3)] (i.e., grid[0][6]). For
example, for grid[2][8], i=2 and j=8, 3*(i/3)=0 and
3%(j/3)=6.

grid([6](3]

For any grid[i][j] in this 3 by 3 box, its
starting cell is grid[3#(i/3)][3*(j/3)] ——|
(i.e., grid[6][3]). For example, for
¢grid[8][5], i=8 and j=5, 3%(i/3)=6 and
3%(j/3)=3.

FIGURE 8.7 The location of the first cell in a 3 X 3 box determines the locations of other cells in the box.

With this observation, you can easily identify all the cells in the box. For instance, if
grid[r][c] is the starting cell of a 3 X 3 box, the cells in the box can be traversed in a
nested loop as follows:

// Get all cells in a 3-by-3 box starting at grid[r][c]
for (int row = r; row < r + 3; row++)
for (int col = c; col < c + 3; col++)
// grid[row][col] is in the box

It is cumbersome to enter 81 numbers from the console. When you test the program, you
may store the input in a file, say CheckSudokuSolution.txt (see www.cs.armstrong.edu/liang/ input file
data/CheckSudokuSolution.txt), and run the program using the following command:

java CheckSudokuSolution < CheckSudokuSolution.txt

8.8 Multidimensional Arrays

A two-dimensional array consists of an array of one-dimensional arrays and a three- 6 f

Key
dimensional array consists of an array of two-dimensional arrays. Point

In the preceding section, you used a two-dimensional array to represent a matrix or a table.
Occasionally, you will need to represent n-dimensional data structures. In Java, you can create
n-dimensional arrays for any integer n.

The way to declare two-dimensional array variables and create two-dimensional arrays can
be generalized to declare n-dimensional array variables and create n-dimensional arrays for
n >= 3. For example, you may use a three-dimensional array to store exam scores for a class
of six students with five exams, and each exam has two parts (multiple-choice and essay). The
following syntax declares a three-dimensional array variable scores, creates an array, and
assigns its reference to scores.

double[][][] scores = new double[6][5]1[2];
You can also use the short-hand notation to create and initialize the array as follows:

double[][][] scores = {

{{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},
{{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},
{{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},
{{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},
{{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},
{{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}};

www.cs.armstrong.edu/liang/data/CheckSudokuSolution.txt
www.cs.armstrong.edu/liang/data/CheckSudokuSolution.txt

302 Chapter 8 Multidimensional Arrays

scores[0][1][0] refers to the multiple-choice score for the first student’s second exam,
which is 9.0. scores[0][1][1] refers to the essay score for the first student’s second
exam, which is 22. 5. This is depicted in the following figure:

Which student Which exam Multiple-choice or essay

y v

scores [i] [j1 [k]

A multidimensional array is actually an array in which each element is another array. A three-
dimensional array consists of an array of two-dimensional arrays. A two-dimensional array
consists of an array of one-dimensional arrays. For example, suppose x = new int[2]
[2]1[5], and x[0] and x[1] are two-dimensional arrays. X[0][0], x[0][1], x[1][0],
and x[1][1] are one-dimensional arrays and each contains five elements. x.length
is 2, x[0] .Tength and x[1] .Tength are 2, and X[0] [0] . Tength, x[0][1].Tength,
x[1][0].Tength, and x[1][1].Tength are 5.

8.8.1 Case Study: Daily Temperature and Humidity

Suppose a meteorology station records the temperature and humidity every hour of every
day and stores the data for the past ten days in a text file named Weather.txt (see www
.cs.armstrong.edu/liang/data/Weather.txt). Each line of the file consists of four numbers that
indicate the day, hour, temperature, and humidity. The contents of the file may look like
the one in (a).

Day Temperature Day Temperature

l Hour l Humidity l Hour Humidity
1 1 76.4 0.92 10 24 98.7 0.74
1 2 77.7 0.93 1 2 77.7 0.93
10 23 97.7 0.71 10 23 97.7 0.71
10 24 98.7 0.74 1 1 76.4 0.92

(a) (®)

Note that the lines in the file are not necessarily in increasing order of day and hour. For exam-
ple, the file may appear as shown in (b).

Your task is to write a program that calculates the average daily temperature and humid-
ity for the 10 days. You can use the input redirection to read the file and store the data in
a three-dimensional array named data. The first inde