
64 IT Pro July ❘ August 2002 1520-9202/02/$17.00 © 2002 IEEE

Seven Tips for Keeping
Software Development
Projects Healthy
Frank Hurley

In the beginning, most soft-
ware development projects
are a joy to work on.
People are excitedly draw-

ing on whiteboards, developing
use cases, building their UML
(Unified Modeling Language)
models—it’s the fun part of the
project. Pretty soon, some ini-
tial code is up and running;
clients adjust the requirements;
developers change the UML,
modify code, work out a few
minor glitches; and soon the
automated tests are giving the
software a virtual thumbs up.
Next, more functionality comes
into play, tests expand to check
the new code, developers
implement fixes,and tests finally
pass. Things are running fairly
smoothly and everybody’s rela-
tively happy.

However, toward the end of
the project’s life cycle, the situ-
ation often changes drastically.
Requirements have increased
and changed, some budgets
have been overrun, time has run
out,and developers are 100 per-
cent focused on patching bugs
quickly, often leading to more
bugs. Testing is haphazard at
best. Many automated regres-
sion tests (if there are any) no
longer work at all. Brain-
storming has turned into blame-
storming and nobody’s happy.

SO WHAT’S
THE PROBLEM?

For years, software manage-
ment texts have discussed rea-
sons for failures in software

development projects: require-
ment errors, outdated software
management methods, poor
customer management result-
ing in feature creep, unrealistic
scheduling—the list goes on and
on.Recently,new approaches to
software project manage-
ment—such as UML, XP
(Extreme Programming), and
various requirements-tracking
tools—have addressed some of
these issues.

Each of these has its own
guidelines and caveats, such as
a list of common modeling mis-
takes. But no matter what
approach or design and devel-
opment tools you use, problems
can easily topple the delicate
balance of running a software
development project. To pre-
vent these problems,you should
employ good basic-practice
techniques.

BASIC PRACTICES
The following tips form a

Every software
development
project goes
through
unplanned
twists and turns.
These tips help
keep things
on track.

guideline for basic practices that
keep a project on track.The dri-
ving force behind these tips is
efficiency; developers either
ignore inefficient development
processes, or progress slows to
a crawl. Although these tips
require some up-front work,
they are general and open-
ended enough to apply to any
development project.

Tip 1:
Keep the human
network up and running

Communication problems
often crop up during a typical
project. Developers complain
that management is not clear
about its goals. Management
complains that developers are
not forthcoming about prob-
lems. Unfortunately, the further
into the project you are, the

Continued on page 60

60 IT Pro July ❘ August 2002

P E R S P E C T I V E S

more people keep quiet and go on
with their jobs. This behavior occurs
because of the real concern that any
suggestions developers have will
directly affect (read “increase”) their
already overwhelming workload.

A project manager can only resolve
these issues if well-known project pre-
requisites—such as firm project goals,
source control, and so on—are in
place. Even then, communication
gaps occur in situations such as devel-
oper turnover or when no one owns a
certain design space of the project.

Here are a few ideas for building a
robust human network.
Establish point teams. Point teams
resolve conflicts associated with the
development project. Examples of
conflict include requirements clarifi-
cation, coding-style issues, errors in
survival guides (see the next point),
and changes to a class’ interface.
Developers contact one member of a
point team with an issue, and that
team member delivers an answer.

Normally, projects do have a point
person (such as a chief architect) to
resolve these issues,but often this one
person is heavily overloaded, and the
chances of getting a prompt answer
are slim. So more often than not, con-
flict remains unresolved, resulting in
inconsistencies throughout the pro-
ject.

A point team is most efficiently set
up as an e-mail group, so a disgruntled
person need only send one e-mail to
the group. Also, one person can
belong to more than one point team.
Publish survival guides. Survival
guides are short, project-specific doc-
uments describing how to work on a
particular project. Examples include
guides for source control, coding style,
UML modeling, and point teams. No
developer comes up to speed quickly
when just given a stack of manuals to
read. These guides should have spe-
cific examples, such as:

• to see the latest system-wide UML
diagram, open J:\proj\models\
latest\main.dlg;

• to get an example make file, from

the command line type: cvs update
-d /prog/example.mk; or

• if you don’t like prepending your
static final int variables with ‘sFi_’,
write to
coding_ptteam@mycompany.
com.

Survival guides should evolve and
be republished regularly, ideally as an
intranet Web page. Most importantly,
changes should be highlighted.
Nothing is worse than reading weekly
updates to a document and trying to
pick through the whole thing looking
for the lone change.
Use (but don’t abuse) e-mail. E-mail
can be the hero of efficiency when
used properly. In particular, tools such
as bug trackers that send out an auto-
matic e-mail to the owner of the prob-
lem space prevent human error from
causing unnecessary issues and wast-
ing time.

However, too much e-mail can
bring productivity to a screeching
halt. Most of us have come into the
office after a few days off, only to
spend the first full day back slogging
through unread mail. Here are three
ideas for fighting off the e-mail flood:

• Publish information such as sur-
vival guides to an intranet Web site
(as suggested earlier).

• Consolidate announcements into a
single, scheduled e-mail. For exam-
ple, write “new CVS guide is up,
interface to the advertisement-
ToXml class has changed, and team
lunch is tomorrow”instead of send-
ing out multiple messages. Or,
instead of e-mail, set up internal
newsgroups (or some similar com-
munication mechanism) for
announcements, topic discussions,
and so on.

• Finish off runaway e-mail threads,
which can severely reduce produc-
tivity. My suggestion is to alert the
point team that owns the topic
under discussion or establish a run-
away-thread point team to summa-
rize opposing arguments and
present them for decision.

Tip 2:
Constantly look for
and plug time/effort leaks

Worse than memory leaks,
time/effort leaks insidiously sap the
strength and morale out of develop-
ers. An outdated process that man-
agement still mandates is often the
culprit here; technology can also
waste time and effort.Three examples
come to mind.

For one, many projects use UML-
modeling tools that go the extra step
of generating code skeletons for
developers. This capability has the
perceived double benefit of saving
developer time and keeping the
model and the code in sync.However,
as the project goes into a mode that
tracks down bugs, the cycle of chang-
ing UML, regenerating and testing
code, finding more problems, and
starting the process all over again can
be severely debilitating.At this point
in the project, it’s often better to get
things working and modify the UML
model afterward.

Secondly, when deploying a project
in a test environment, developers
must often bounce—stop and
restart—each component of the sys-
tem. Depending on the project’s size,
the time required for bouncing can
grow from several minutes to an hour
or more, especially for multitiered
applications running on more than
one host machine.

To plug these time/effort leaks and
other technology-oriented woes, the
solution is to pull together a tempo-
rary tiger team (or person) to identify
the problem and propose a solution.
For example, instead of having a per-
son sit there and bounce a multitiered,
multihosted application, it might be
possible to use a script. Such a script
can be quite complicated and out of
any single developer’s realm, but well
within the capabilities of a person or
team with more cross-functional
authority.

Finally, consider a situation in which
management requires that develop-
ers not change the production system

Continued from page 64

July ❘ August 2002 IT Pro 61

The major culprit—not checking an
input string’s size—has led to numer-
ous security problems. Most of the
time, user interfaces check parame-
ters after manual testing uncovers
problems. But often, the developers
of internal functionality assume that
data passed to them is valid, an overly
optimistic assumption. On the other
hand, having functions check all
parameters all of the time is ineffi-
cient.

In 1985,Bertrand Meyer developed
the Eiffel programming language that
mandated functional contracts, which
define and assign responsibility (to
the function’s caller or the function
itself) for validating parameters.
“Function”can literally refer to a pro-
grammatic function or a larger system
component (for example, the B2B
exchange server). Any development
project can use this concept of func-
tional contracts and reap three major
benefits:

• Reduced testing effort (and failures).
Test planners know which functions
or components to create invalid-
data tests for, and which ones
assume validated data.

• Increased code efficiency.Functional
contracts prevent data validation in
more than one place. However,
increasing robustness can require
checking data validation in more
than one place in the system.

• Increased code reliability. Invalid
data never makes it into the pro-
duction testing, preventing it from
wreaking havoc on the system.

Tip 4:
Test early, but not too early

The golden rule of “test early, test
often” is golden for good reason but
often misunderstood.Although some
projects start off with well-defined
requirements (such as “play the

without checking it into source con-
trol,building it on a development box,
and then moving it to production.
Along comes a tough bug, and this
process turns hours of work into days.

Obviously, you cannot build a pro-
ject of any magnitude without some
process, but a rigid process can often
override common sense.One solution
is to establish a point team to collect
opinions about the process. Even if
long-term benefits outweigh public
opinion, the point team should clearly
publicize that decision. Keeping peo-
ple in the dark often causes mistrust
and, more importantly, substandard
work output.

Tip 3:
Establish functional
contracts (who checks what)

Invalid input data can cause big
problems in software development.

Get access
to individual IEEE Computer Society

documents online.

More than 57,000 articles

and conference papers available!

US$9 per article for members

US$19 for nonmembers

http://computer.org/publications/dlib/

62 IT Pro July ❘ August 2002

DVD” or “fly the airplane”), many do
not.They may look like they do,but as
the project progresses, new require-
ments creep in, the user interface
changes, reports need new fields, and
so on.Often,automated tests designed
to test the system according to the
original spec are constantly playing
catch-up with the new system code.

Generally,you should develop high-
level test plans early in the project,
with test cases such as “enter the
order, then cancel it, then reenter the
order.” Early on, avoid explicitly
detailed test cases, such as “enter
‘04356’ in the SKU field, hit the
‘Submit’ button, then hit the ‘Cancel
order’ button.” Although they might
apply to an early system,such detailed
test cases can fall by the wayside as
the project progresses. Even worse,
coding this detail into an automated
test too early in the project will cer-
tainly become wasted effort. Save
detailed automated regression tests
for when the project has stabilized.

The golden rule, however, applies

quite literally to unit testing. Follow
the XP approach of writing tests
before the code for functions, public
class methods, and so on. Ensure that
these tests cover all error conditions
that can arise. Build or use stub code
for dependencies (see tip 7, which fol-
lows) so that the test can control what
is returned to it. Use a code coverage
tool to gauge how well tests check the
code. Remember the second golden
rule of testing:“Assume code that has
never been executed is broken.”

Tip 5:
Support manual testing
with automated tools

To maximize information about a
bug, manual testers often go beyond
the user interface, especially when
testing a complicated, multitiered
application. They will check log files,
database information, and other
sources to determine the state of the
system. To duplicate an error condi-

tion, testers often repeat many steps
to return to the state where the error
condition occurred. Each of these
steps can be time-consuming and are
often easily automated.So supporting
the test team with automated tools
can greatly increase its efficiency.

Scripting tools, such as those writ-
ten in Perl or Visual Basic, can inter-
rogate databases, scan log files, and
then calculate and combine as neces-
sary to present useful information to
the tester. They can also perform
repetitive tasks to return to a specific
state. For example, the script could
login a test user, go to a specific prod-
uct screen, select several products, go
to the order screen, then stop and let
the tester take over. Depending on
the tester’s technical knowledge, these
scripts will require a developer’s time
and effort to implement. But testers
should develop what the script does,
and in many cases they can also sup-
port and modify these scripts.

Tip 6:
Use automated code
checkers/generators

Modern software development
involves the use of many other soft-
ware tools to aid the development
process. From yesteryear’s Case tools
to today’s UML modeling tools, rapid-
application-development tools,and the
“wizards” integrated development
environments,these tools increase pro-
ductivity by eliminating manual work.

Building custom tools to parse code
and automatically perform tasks that
otherwise take up time during code
reviews or, worse, debugging sessions,
can extend this idea. These custom
tools can be a tough sell, because
building them often involves a lot of
up-front work, but the payoff is well
worth it.

Automated code checkers/genera-
tors provide three major benefits:
They enforce a coding style,catch cod-
ing errors,and generate test skeletons.
Enforcing coding style. Any software
development project involving two or

P E R S P E C T I V E S

computer.org/e-News

Available for
FREE to members.

Be alerted to

• articles and
special issues

• conference news

• submission and
registration deadlines

• interactive forums

Sign Up Today
for the IEEE

Computer
Society’s

e-News

Sign Up Today
for the IEEE

Computer
Society’s

e-News

Circulation: IT Professional (ISSN 1520-9202) is published bimonthly by
the IEEE Computer Society. IEEE Headquarters, Three Park Avenue, 17th
Floor, New York, NY 10016-5997; IEEE Computer Society Publications
Office, 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos, CA 90720-
1314; voice +714 821 8380; fax +714 821 4010; IEEE Computer Society Head-
quarters, 1730 Massachusetts Ave. NW, Washington, DC 20036-1903. Annual
subscription: $38 in addition to any IEEE Computer Society dues. Nonmem-
ber rates are available on request. Back issues: $10 for members, $20 for non-
members. This magazine is also available on microfiche.

Postmaster: Send address changes and undelivered copies to IT Professional,
IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08855. Periodicals
Postage Paid at New York, N.Y., and at additional mailing offices. Canadian
GST #125634188. Canada Post Publications Mail (Canadian Distribution)
Agreement Number 1445669. Printed in USA.

Editorial: Unless otherwise stated, bylined articles, as well as product and
service descriptions, reflect the author’s or firm’s opinion. Inclusion in IT
Professional does not necessarily constitute
endorsement by the IEEE or the Computer
Society. All submissions are subject to editing
for style, clarity, and space.

July ❘ August 2002 IT Pro 63

more people requires a coding style
(such as Hungarian notation), and
many books have emphasized the rea-
sons for adopting a style. However,
these standards are typically enforced
during code reviews;a fact that kills the
review’s efficiency. It’s better to use a
tool that parses the code and checks
that developers have followed the cor-
rect naming conventions (among other
things) than to spend person-hours on
such routine checking.
Catching coding errors. Besides
checking for coding policy, such a tool
can also perform limited checking for
code known to cause problems. For
example, in some cases, Java code for
a servlet cannot use any class instance
variables. The solution is to build a
tool that automatically detects and
flags these conditions and to run this
tool for all project code as part of a
normal build process.
Generating test skeletons. As it is,
having to write unit tests drags on
developers’ time; make their lives a
little easier by automating at least part
of the task. For example, a Java pro-
ject that contains the class
XmlOrderAdapter could have a
script that creates XmlOrder
Adapter_test, which subclasses JUnit
and contains a call to each method of
the class.The developer still needs to
fill out the code but the script saves
the effort of creating another file and
putting in the method calls—it’s not a
very time-consuming task, but every
little bit helps.

As mentioned earlier, these auto-
mated tools involve plenty of work,
but the time saved in catching errors
that would otherwise cause hours or
days of debugging makes the effort
worthwhile. Rather than building
these tools from scratch, you can buy
one of many third-party parsing prod-
ucts and configure and extend it to do
the job.

For example, JavaCC is a freeware
package for parsing Java (and other
languages) and is extendable. C/C++
code checking tools such as lint help
catch errors early.Also,you must strike
a balance between the complexity of

developing such tools and their poten-
tial benefits. The more complex the
tool, the more time and energy you will
spend to develop, debug, and support
it. So choose the problems you solve
with automation wisely.

Tip 7:
Write stub code where
possible

Stub code acts like real code with-
out doing very much. The advantage
behind stub code is that developers
who depend on another class that is
still under development can continue
working if stub code for that class is
available.

For example, a class ProductOrder
might need a class called
OrderFulfillment. Depending on
resource scheduling and the complex-
ity of each class,ProductOrder may be
ready to use OrderFulfillment before
it’s been developed.However, if devel-
opers initially write OrderFulfillment
as stub code, methods like
IsOrderShipped can just return True
instead of checking the database.

For stub code to be effective, it must
look just like the real code. If using

stub code requires code changes on
the dependent’s part, it won’t be
worth it. For example, do not name
the stub code for OrderFulfillment
something else, like OrderFulfillment-
_stub, or name it in another name-
space. Naming can be tricky, but
clever use of location facilities (such
as CLASSPATH for Java) can make it
possible to name stub code without
requiring changes to dependent
classes.

A s mentioned earlier, I don’t
intend for these tips to replace
the need for well-known pre-

requisites in software development,
such as clear requirements, reason-
able scheduling, and so on. But these
tips will help keep a basically sound
project running smoothly. �

Frank Hurley is a senior consultant at
Cigital in Dulles, Va. Contact him at
fhurley@cigital.com.

For further information on this or any
other computing topic, visit our Digi-
tal Library at http://computer.org/
publications/dlib.

