FROM THE NEW YORK TIMES BEST-SELLING AUTHOR
Edward Yourdon

" he Complete Software Developer's Guide fo
. Surviving “Mission Impossible” Pm]am

L RO

EDWARD YOURDON

Death March

The Complete
Software Developer's
Guide to Surviving

"Mission Impossible" Projects

Edward Yourdon

To obtain a Prentice Hall PTR mailing list, point to:
http://www.prenhall.com/mailjists/

=—¢— Prentice Hall PTR
= Upper Saddle River, New Jersey 07458

http://lwww.prenhall.com

Library of CongressCatal oginginPublicationData

Y ourdon, Edward.

Death march: managing "misson impossible" projects / Edward

Y ourdon.
. cm.

Includesbibliographical references and index.

ISBN 0-13-748310-4 (al k. paper)

1. Computer software—Devel opment. |. Title.
QAT76.76.D47Y 677 1997 97-2951
(K)5.1'068-dc21 OoP

Acquisitions editor: Paul W. Becker
Editorial/production supervision: Kathleen M. Caren
Interior design: Gail Cocker-Bogusz

Cover design director: Jerry Votta

jacket design: Scott G. Weiss

Jacket Illustration: Howard Kingsnorth/Masterfile
Manufacturing manager: Alexis R. Heydt

Editorial Assistant: Maureen Diana
MarketingManager: DanRush

& 1997 by Prentice Hal PTR
Prentice-Hall, Inc.

A Simon & Schuster Company

Upper Saddle River, New Jersey 07458

Prentice Hall books are widely-used by corporations and

government agenciesfor training, marketing, and resale.

The publisher offers discounts on thisbook when ordered in bulk quantities.

For more information, contact Corporate Sales Department, Phone: 800-382-3419;
FAX: 201-236-7141; E-mail: corpsa es@prenhall.com

PrenticeHall PTR, OneL akeStreet, Upper SaddleRiver, NJ07458.

All rightsreserved. No part of thisbook may be reproduced, in any form or by any
means, without permission inwriting from the publisher.

All product names mentioned herein are the trademarks of their respective owners.
PrintedintheUnited Statesof America
10 9 8 7654321

ISBN 0-13-748310-4

Preface

Chapter 1 Introduction
Death March Defined
Categories of Death March Projects
Why Do Death March Projects Happen?
Why Do People Participate in Death MarchProjects?
Summary

Chapter 1Politics
Identifying the Political "Players' Involved in theProject
Determining the Basic Nature of the Project
Identifying the Levels of Commitment of Project Participants

Summary

Chapter 3 Negotiations
Rational Negotiations

Vii

vi DEATH MARCH

Identifying AcceptableTrade-offs 7
Negotiating Games 80
Negotiating Strategies 85
What to Do When Negotiating Fails 89
Chapter 4 People in Death March Projects 99
Hiring and Staffing Issues 100
Loyaty, Commitment, Motivation, and Rewards 14
The Importance of Communication 114
Team-Building Issues 115
Workplace Conditions for Death March Projects 120
Summary 124
Chapter 5 Processes 131
The Concept of "Triage' 1
The Importance of Requirements Management 138
SEl, 1S0-9000, and Formal vs. Informal Processes 144
"Good Enough" Software 147
Best Practices and Worst Practices 150
The "Daily Build" Concept 157
Risk M anagement 10
Summary 166
Chapter 6 Tools and Technology 175
The Minimal Toolset 177
Tools and Process 182
The Risks of Choosing New Tools 185
Summary 18
Chapter 7 Death March as a Way of Life 195
Why Would Death March Projects Become theNorm? 197
Establishing a Death March "Culture" 200
Death March Training 202
The Concept of "War Games" 203
Summary 207

Index 215

Our achievements speak for themselves. What we haveto keep track
of are our failures, discouragements, and doubts. We tend to forget the
past difficulties, the many false starts, and the painful groping. We see
our past achievements as the end result of a clean forward thrust, and
our present difficulties as signs of decline and decay.

Eric Hoffer

Reflections on the Human Condition, aph. 157 (1973)

| know . . . you're intrigued by the title of this book, and you decided to
peek inside to see what it's al about. But, you're busy, busy, busy—and
you don't know if you have the timeto read yet another book about man-
aging software projects. Especially if it's a book that tells you how things
should be done in an ideal world where rational men and women make
cam, sensible decisions about the budget, schedule, and resources for
your software project.

However, you may have noticed that we don't live in an ideal

viii DEATH MARCH

world—and chances are that your project requiresyou to interact with
people who seem anything but rational and whose decisions hardly seem
calm or sensible. In other words, you're working on adeath march project.
The wonderful thing about the title of thisbook isthat | don't even have
to explainit. Every timel mention it to friends and colleagues, they just
laugh and say, "Oh, yeah, you must be talking about my project!"

These daysit'slikely to be my project, and your project, and everyone
else'sproject too—we'reall working on death march projects. It seemsto
me that thefirst question you should be asking yourself (though it may
not occur to you until the end of your project) is. "Why on earth did | |et
myself get suckered into such aproject?’ I'll discussthisin thefirst chap-
ter, because my experienceasaconsul tant—visitingand observingmany
such projects from the sidelines—is that the world would be a healthier
place if more of us had the guts to stand up and say, "Hell, no! | won't
jointhisdeathmarch!"

But, assuming there's no escape—e.g., there are no other jobs avail-
able or you've got some form of a "golden handcuff" relationship with
your employer that strongly discourages you from leaving—the next
guestionis. "How can | survivethisproject without ruining my health, my
sanity, and my dignity?' If you're an optimist, you might even bewonder-
ing how you can conquer the obstacles before you to finish the death
march project on time and under budget. But, if you've been through a
number of these projects before, you probably know that the odds are
stacked against you and that survival isthe best you can hopefor.

Having worked in the software industry for over 30 years, | find that
our profession has a rather interesting reaction to death march projects.
In some parts of the industry, especialy in Silicon Valey, such projects
are glorified as a test of fortitude, somewhat akin to climbing Mount
Everest barefoot. | feltthisway duringmyfirstfew software projectsback
in the mid-1960s, and the fact that the same attitude prevails a genera-
tion later suggests to me that it'slikely to be a permanent phenomenon,
aslong as technology continuesto change asrapidly asit has been during
my lifetime. Ours is not a mature industry. Every year there's a new
Mount Everest to climb and anew crop of hotshot programmerswho are
convinced that they can run barefoot all theway to thetop.

PREFACE iX

Another segment of our industry, however, regards death march
projects as embarrassing failures. Weve al been bombarded with statis-
tics about the prevalence of schedule delays, budget overruns, buggy
software, disgruntled users, and outright project failures. Weve been
told repeatedly by consultants, gurus, and methodologists that the rea-
son for al these embarrassments is that weve been using the wrong
methods (or no methods at al), or the wrong tools, or the wrong project
management techniques. In other words, death march projects exist be-
cause we're stupid or incompetent.

If you talk to battle-scarred veteransin the field—the oneswho have
gone through a couple of death march projects and have learned that it's
realy not fun to climb Mount Everest barefoot—you'll often hear them
say, "Hey! I'm not stupid! Of coursel would liketo use theright methods
and tools and project management approaches. But, my senior manage-
ment and my end userswon't let me. The reason we have such aridicu-
lous schedule for this project is that it was imposed upon us on the first
day, before we had the faintest ideawhat the project was all about!" Con-
clusion: Death march projects occur because senior managersare M achi-
avellian bastards and/or because our users are naive and unrealistic.

No doubt there's some truth to al this. We do make a lot of stupid
mi stakes managing our projects, our senior managersdoindulgein ridic-
ulous political games, and our end users do make unreasonable demands
on us. I'm convinced that much of thisis due to the rapid pace of change,
combined with the usual disrespect that each new generation has for the
advice offered by the previous generation. Why on earth should today's
generation of Java-oriented hotshots pay any attention to the advice of -
fered by my generation, whose formative programming experience took
place 30 years ago in Autocoder and assembly language? And, how
should today's generation of business users know what kind of Web-
based application is reasonable to ask for, considering that their prede-
cessors were asking for mainframe-based, on-line systems, with charac-
ter-based, dumb-terminal interfaces?

Whatever the explanation for the phenomenon, |'ve cometo asober-
ing conclusion: Death march projects are the norm, not the exception. | think
that today's software developers and project managers are pretty smart
and are eager to manage projects in arational way; 1 aso think that to-

DEATH MARCH

day's business users and senior managers are much more computer-
literate than they were a generation ago and much less naive about what
software devel opers can be expected to deliver with finite resources. That
doesn't stop both groups of smart individuals from embarking upon yet
another death march project—because the competitive business pres-
sures demand it and the new technological opportunities invite it. The
business managers may be fully aware that arational schedule for their
new system would require 12 calendar months, but they'll also tell you
emphatically that unless it's available in sx months, the competition will
grab the entire market for their new product or service. And, the techni-
cal staff may be fully aware that new technologies like the Internet are
still quiterisky, but they will tell you that if the new technology doeswork,
itwill provide a strategic competitive advantage that makes it well worth
therisk.

To put it another way, industry surveys from organizations such as
the Standish Group, aswell as statistical data from metrics gurus such as
Capers Jones, Howard Rubin, Paul Strassmann, and Larry Putnam, sug-
gest that theaverageprojectislikely to be 6 to 12 monthsbehind schedule
and 50 to 100 percent over budget. The situation varies depending on the
size of the project and various other factors, but the grim redlity is that
you should expect that your project will operate under conditions that will
almost certainly lead to some degree of death march behavior on the part
of the project manager and his or her technical staff. If aproject starts off
with these high-risk factors, there's going to be a lot of overtime and
wasted weekends, and there's likely to be alot of emotional and physical
burnout before the end of the project. Even if the project beginsin area-
sonably calm, rational fashion, there's a good chance that it will deterio-
rate into a death march project as time goes on—either because the
original schedule and budget will turn out to have been highly unrealis-
tic, or because the user will add more requirements to those upon which
the origina schedule and estimate was based.

So the real questions are: If you can't avoid death march projects,
how can you survive them?What should you do to increase your chances
of success? When should you be willing to compromise—and when
should you be willing to put your job on the line and resign if you can't
get your way? That iswhat thisbook isabout. Asyouwill cometo realize,

PREFACE Xi

the solution will involve issues of peopleware, processes and methodol o-
gies, aswell astools and technologies. If you're going to manage a death
march project, should you insst on the freedom to staff the team with
people of your own choosing? Should you take a hard-line approach
with process methodol ogies like the SEI-CMM model, or should you let
the project team abandon al formal methodologies if they feel it will help
them accomplish the job? Should you insist on adequate programming
languages, workstations, and CASE tools—or is it more important to
fight your political battles over the issues of people and processes?

These issues are as relevant to the manager in charge of the project,
as they are to the technical staff that actually does the hard work of de-
signing, coding, testing, and documenting the system; I'll address both
groups in the chapters that follow. A word about managers and technical
staff members: Some of the comments you'll see in the following chap-
terswill imply that management is"evil" and that the project team mem-
bers are innocent, downtrodden victims. Obvioudy, this is not the case
for all projects and al companies, though the very existence of a death
march project is usually the result of a conscious management decision.
While the project team members may be willing participants in such
projects, they usually don't propose them in the first place.

If you've decided at this point that you don't have rime to read this
book, here's a simple word of advice that may provide some value for the
time you've invested in reading the preface: triage. If you're on a death
march project, it's almost certain that you won't have the resources to
provide all the functionality or "features" requested by the end user with-
in the alotted schedule and budget. You'll have to make some cold-
blooded decisions about which features to sacrifice and which onesto fo-
cusyour resourceson. Indeed, some of the frivolous featureswill never be
implemented, and it's best to et them die on their own. Other features
areimportant, but also relatively easy to implement, e.g., because they're
by-products of the vendor-supplied class library or CASE tools that
you're using. To use the medical metaphor of triage, these features will
survive on their own. The difference between success and failure on a
death march project often lies in the project team's ahility to identify the
critical features of the system that would "die" without an investment of
substantial resources and energy.

Xii DEATH MARCH

Of course, there's more to surviving a death march project than just
triage (I'll cover triage in Chapter 3). We also need to look at peopleware
issues, "process' issues, and issues of tools and technology. I've tried to
be as concise as possible, so you should be able to finish the whole book
in a couple of hours; if nothing elsg, it should give you amoreredistic as-
sessment of your next death march project.

However, please don't get the impression that this is a "bible" or
that it will provide "silver bullet" solutionsto all of your problems. There
are no guaranteed right answers in this book; what works in some com-
panies and in some situations may not work in others. Equally important/
the compromises that some managers and technical staff members are
willing to make will prove unacceptable to others. I'll make what | con-
sider to be reasonable suggestions, but it's up to you to decide which
oneswill work inyour environment.

1 also intend, on an ongoing basis, to collect advice from the field on
my Web site at http://www.yourdon.com—from real project teams that
have some practical tips on best practices, worst practices, and "breatha-
lyzer test" questions. Even if you don't have enough money in your
project budget to buy this book (such penny-pinching budgets are anin-
dicator unto themselves of the risk associated with a death march
project!), it won't cost you a penny to check the Death March Web page.

Whatever you decide to do, best of luck on your next death march
project. And remember the words of Samuel Beckett:

Ever tried. Ever failed. No matter. Try Again.
Fail again. Fail better.

Samuel Beckett
WorstwardHo(1984)

chapter

It is only possible to succeed at second-rate pursuits—Ilike becoming
a millionaire or a prime minister, winning a war, seducing beautiful
women, flying through the stratosphere or landing on the moon. First-
rate pursuits—involving, as they must, trying to understand what lifeis
about and trying to convey that understanding—inevitably result in a
sense of failure. A Napoleon, a Churchill, a Roosevelt can feel
themselves to be successful, but never a Socrates, a Pascal, a Blake.
Understanding is forever unattainable. Therein lies the inevitability of
failure in embarking upon its quest, which is none the less the only one
worthy of serious attention.

Malcolm Muggeridge

"Woman's Hour," radio broadcast, August 5, 1965, Quoted
inMuggeridgethrough the Microphone, "Failure" (1967)

2 DEATH MARCH

Wheat are death march projects? Why do they happen? Why would any-
onein hisor her right mind agree to participate in such a project?

To many grizzled veterans, these are rhetorical questions. Every
project, in their experience, is a death march project. Why do they hap-
pen? Because corporations are insane, and as consultant Richard Sargent
commented to me, "Corporate insanity is doing the same thing again
and again, and each time expecting different results." [1] Why do we par-
ticipate in such projects? Because, asconsultant DaveKleist observedina
recent e-mail note,

"death march projects are rarely billed as such, and it
takes a lot of work when being hired from the outside
to discover if your hiring company is prone to creating
deathmarchprojects.” [2]

If you think the answers to these questions are obvious, feel free to
jump to the next chapter. I'm beginning to think they are obvious, snce
people rarely ask me what | mean by "death march.”

1.1 DEATH MARCH DEFINED

| define adeath march project as one whose "project parameters' exceed
the norm by at least 50 percent. This doesn't correspond to the "military"
definition, and it would be a travesty to compare even the worst software
project with the Bataan death march during the Second World War, or
the "trail of tears' death march imposed upon Native Americans in the
late 1700s. Instead, | use the term as a metaphor, to suggest a "forced
march" imposed upon relatively innocent victims, the outcome of which
isusually ahigh casualty rate.

In most software death march projects, this usually means one or
more of the following constraints has been imposed:

* The schedule has been compressed to less than half the amount of
time estimated by a rational estimating process; thus, the project
that would normally be expected to take 12 calendar months is
now required to be delivered in six months or less. Because of the

INTRODUCTION 3

pressures of business competition in today's global marketplace,
thisisprobably themost common form of death march project.

* The staff has been reduced to less than half the number of people
that would normally be assigned to a project of this size and scope;
thus, instead of a project team of ten people, the project manager
has been told that only five people are available. This may have
come about as aresult of someone's naive belief that a new CASE
tool or programming language will magically double the team's
productivity—despite the fact that the team was given no training
or practice with the new technology, and probably wasn't even
consulted about the decision to use the technology in the first
place. More commonly, though, it happens today because of
downsizing, reengineering, and various other forms of staff reduc-
tion.

* The budget and associated resources have been cut in half. Thisis
often the result of downsizing and other cost-cutting measures, but
it can ds0 be the result of competitive bidding on a fixed-price
contract, where the project manager in a consulting firm is
informed by the marketing department that,"the good news is we
won the contract; the bad news is we had to cut your budget in half
in order to beat out the competition." Thiskind of constraint often
has an immediateimpact on the number of project team personnel
that can be hired, but the consequences are sometimesalittle more
subtle—e.g., it may leadto adecisionto hirerelatively inexpensive,
inexperienced junior software developers, rather than higher-cost
veterans. And, it can lead to a pervasive atmosphere of penny-
pinching that makes it impossible for the project manager to order
pizza for the project team when they spend the entire weekend in
the office working overtime.

* The functiondity, features, performance requirements, or other
technical aspects of the project are twice what they would be under
normal circumstances. Thus, the project team may have been told
that they need to squeeze twice as many features into a fixed
amount of RAM or disk space as their competitor. Or, they may
have been told that their system must handl e twice the volume of
transactions that any comparable system has ever processed. Per-

4 DEATH MARCH

formance constraints may or may not lead to a death march
project; after al, we can always take advantage of cheaper, faster
hardware, and we can always search for amore clever algorithm or
design approach to accomplish improved performance (though,
given the constraint of a project deadline, there is a limit even to
the incredible ingenuity of the human brain). But, doubling the
functionality—i.e., the available features—usually means doubling
the amount of work that must be carried out and that does lead to a
death march project.

The immediate conseguence of these congtraints, in many organiza-
tions, is to ask the project team to work twice as hard, and/or twice as
many hours per week as would be expected in a"normal” project. If the
normal work week is 40 hours, a death march project team is often found
working 13- to 14-hour days, Sx days a week. Naturaly, the tension and
pressure escalate in such environments, so that the death march team
operates asif it ison a steady diet of Jolt cola

Another way to characterize such projects is

A death march project is one for which an unbiased,
objective risk assessment (which includes an assess-
ment of technical risks, personal risks, lega risks, po-
litical risks, etc.) determines that the likelihood of
failure is > 50 percent.

Of course, even a project without the schedule, staff, budget, or func-
tionality constraintsjust described could have ahighrisk of failure, eg.,
because of hostile politics between the IS1T department and the user
community. But most commonly, the reason for the high risk assessment
is a combination of the constraints I've just described.

1.2 CATEGORIES OF DEATH MARCH PROJECTS

Not all death march projects are the same; not only do they involve dif-
ferent combinations of schedule, staff, budget, and functionality con-
straints, but they come in different sizes, shapes, and flavors.

In my experience, sizeis the most important characteristic that distin-

INTRODUCTION 5

guishes one death march project from another. Consider four different
ranges of projects;

 Small-scale projects—the team consits of less than ten people who
are working against nearly impossible odds to finish a project in
three to 9x months.

» Medium-sized projects—the team consists of 20 to 30 people, who
are involved in a project expected to take one to two years.

* Large-scale projects—the project consists of 100 to 300 people, and
the project scheduleisthreetofiveyears.

» Mind-boggling projects—the project has an army of 1,000 to 2,000,
or more (including, in many cases, consultants and subcontrac-
tors), and the project is expected to last seven to ten years.

For a variety of reasons, small-scae death march projects are the
most common in the organizations that | visit around the world today;
and happily, they have the greatest chance of succeeding. A tight-knit
group of less than ten people is more likely to stick together through
thick and thin, aslong as the commitment isn't for more than sx months
or 0; and a group of highly motivated people is more likely to be willing
and able to sacrifice their personal lives (not to mention their health!) for
three to Sx months, aslong asthey know that the regimen of long nights,
wasted weekends, and postponed vacations will come to an end in a
matter of months.

The odds of successful completion drop noticesbly with medium-
sized projects, and disappear almost completely with large-scale projects.
With larger numbers of people involved, it'smore difficult to maintain a
sense of cohesive team spirit; and the satistica odds of someone quitting,
being run over by a truck, or succumbing to the various perils of modern
socidy increase rapidly. What's crucia hereis not just the number of peo-
ple involved, but the time-scae: working 80-hour weeks for sx months
may be tolerable, but doing it for two yearsis much more likely to cause
problems. And, even though a manager might be able to convince asmall
group of techno-nerds to make such a sacrifice, it's dmost impossible
with larger project teams; dtatistically, the chances are much higher that
some of themwill be married, or will have some outside hobbies.

6 DEATH MARCH

Asfor the "mind-boggling” death march projects, one would have to
wonderwhy they exist at al. Perhapsthe systemsdevelopment efforts as-
sociated with the NASA project that landed a man on the moon in 1969
could be considered a successful example of a death march project; but,
thevast mgjority of such projects are doomed from the beginning [3]. For-
tunately, most senior managers have figured this out, and most large or-
ganizations (which are the only ones that could afford them in the first
place!) have banned all such projects. Government organizations, alas,
still embark upon them from time to time; appealsto "national security”
or some other heart-warming emotion may be sufficient to blind senior
management to the reality that successisvirtually impossible.

In addition to project size, it may also be useful to characterize the
"degree” of a death march project by such criteria as the number of user
organizations that are involved. Things are hard enough when the
project team only has to satisfy one user, or one group of homogeneous
userswithin asingle department. Enterprise-wide projects are usually an
order of magnitude more difficult, smply because of the politics and
communication problemsinvolved in cross-functional activities of any
kind. Asaresult, thesystemsdevel opment projectsassociated withbusi-
ness reengineering projects often degenerate into a death march status—
even though the development effort is modest in terms of hardware and
software effort, the political battles can paralyze the entire organization
and causeendlessfrustrationfor the project team.

Finally, we should distinguish between projects that are incredibly
difficult, and those that are fundamentally impossible. As John Boddie,
author of Crunch Mode, points out,

The combination of excellent technical staff, superb
management, outstanding designers, and intelligent,
committed customersis not enough to guarantee suc-
cess for a crunch-mode project. There redly are such
things as impossible projects. New ones are started ev-
ery day. Most impossible projects can be recognized as
such early in the development cycle. There seem to be
two major types. "poorly understood systems' and
"very complex systems." [4]

INTRODUCTION

This ill leaves unanswered the questions of why a rationa organi-
zation would embark upon such a project, and why a rational project
manager or technical person would agree to participate in such aproject.
WEell deal with those questions below.

1.3 WHY DO DEATH MARCH
PROJECTS HAPPEN?

If you think about what goes on in your organization, it's not difficult to
understand why death march projects occur. As Scott Adams, author of
the incredibly popular "Dilbert” cartoons, points out,

When | first started hearing these stories [about irra-
tional corporate behavior] | was puzzled, but after
careful anaysis| have devel oped asophisticated theo-
rytoexplaintheexistenceof thisbizarreworkplacebe-
havior. Peopleareidiots.

Including me. Everyoneisanidiot, not just the people
with low SAT scores. The only difference among us is
that we're idiots about different things at different
times. No matter how smart you are, you spend much
of your day being anidiot [5].

Perhaps it's too depressing to imagine that you're an idiot, and that
you're surrounded by (and managed by!) idiots. Or perhaps you consider
it an insult that someone would even make such a suggestion. In that
case, Table 11 shows amore detailed list of reasons for the occurrence of
death march projects:

8 DEATH MARCH

Politics, politics, politics.

Naive promises made by marketing, senior executives, naive project managers, etc.
Naive optimism of youth: "We can do it over the weekend!"

The "start-up" mentality of fledgling, entrepreneurial companies.

The "Marine Corps" mentality: Real programmers don't need sleepl

Intense competition caused by globalization of markets.

Intense competition caused by the appearance of new technologies.

Intense pressure caused by unexpected government regulations.

Unexpected and/or unplanned crises —e.g., your hardware/software vendor just
went bankrupt, or your three best programmers just died of Bubonic Plague.

TABLE 1.1 Reasonsfor death march projects.

While the items in Table 11 may seem obvious, they're worth dis-
cussing—because they may indicate that your death march project is so
crazyandirrational thatit'snot worth participatingin at dl. Indeed, even
without an explicit rationale of the sort shown in Table 11, you should
serioudy consider whether you want to spend the next severd months
(or years) attached to such a project (well discuss that topic later in this
chapter).

1.3.1 Politics, Politics, Politics

Many software developers vow that they won't get involved in politics—
partly because they've learned that they're not very good at playing po-
litical games, but also because they feel that everything about palities is
repugnant. Alas, it cannot be avoided; as soon asyou've got two or more
people involved in somejoint enterprise, politics exigt.

But, when politics become the dominant force in alarge, complex
project, you're likely to find that it degenerates into a death march. Re-
member my definition of a death march project: it's one where the
schedule, budget, staff, or resources are 50 to 100 percent less than what

INTRODUCTION 9

they should be. Why are these constraints being placed on the project? There
are many possible explanations, aswell see in the discussion below; but
in many cases, the answeris simply, "Politics." It may be a power strug-
gle between two fast-track managers in your organization, or the project
may have been set up to fail, as a form of revenge upon some manager
who stepped on the wrong toes at the wrong time. The possibilities are
endless.

The chances are dim that you'll get the appropriate politicians to ad-
mit what's going on; however, if you're atechnical staff member, it's not
unreasonable to ask your project manager whether the entire death
march projectisapolitical sham. Evenif youdon'tlikepolitics, and even
if youthink you'reapoalitical neophyte, listen carefully totheanswer your
manager gives you. You're not stupid, and you're not that naive. If you
have a sixth sense that there's some ugly politics dominating the entire
project, chances are you're right; and, if your immediate supervisor gives
you a naive or ambiguous answer to your questions, you should draw
your own conclusions.

What if your manager openly agrees withyou? What if he or she says,
"Yes thiswhole project is nothing more than abitter power struggle be-
tween Vice President Smith and Vice President Jones."? If that's the case,
then why on earth is your manager participating in the project? As well
seein Section 1.4 below, there may be many reasons; but, your manager's
reasons are not necessarily your reasons. The existence of ugly politics
doesn't mean that you should abandon the project or quit your job right
away, but it does mean that you should keep your own priorities, objec-
tives, and sense of ethics separate from what's happening on the project—
for it's quite likely that many of the decisions that take place (beginning
with the schedul e/budget/resource decisions that defined the project asa
death march in the beginning) are not being made with the best interests
of theuser or the enterpriseinmind. If the project succeedsat all, it'slikely
to be an accident—or it may be because the intended victim (e.g., your
project manager, or amanager several levels above your immediate man-
ager) isacleverer palitician than the opposition counted on.

10 DEATH MARCH

1.3.2 Naive Promises Made by Marketing,
Senior Executives, Naive Project Managers, etc.

Naivete is often associated with inexperience, so it's not surprising to see
unrealistic commitments being made by people who have no idea how
much time or effort will be required to build the system they want. In the
extreme case, this can lead to what my friend Tom DeMarco cdls "hys-
terical optimism," which is when everyone in the organization desper-
ately wants to believe that a complex project, which has never been
attempted before, but which has been realisticaly estimated to require
three calendar years of effort, can somehow be finished in nine months.

The naivete and optimism extend to the technical staff too, as well
see. But for the moment, let's assume that it's your manager, or your
marketingdepartment, or theend user whoisresponsiblefor thenaively
optimistic schedule or budget. The questionis How will they react when
it eventually becomesclear that theinitial commitmentswereoptimistic?
Will they extend the schedule, increase the budget, and calmly agree that
things are tougher than they had imagined? Will they thank you for the
heroic efforts you and your colleagues have made up to that point? If s,
then it may turn out that the most important thing you need to do is to
replacetheclassical waterfall life cyclewithaRAD approach, sothat are-
alistic assessment of schedule, budget, and resources can be made after
the first prototype version of the systemis delivered.

However, in many death march projects, this kind of rational mid-
course correction isn't possible. This can happen, for example, if a senior
manager makes a naive promise to the customer, and then feelsthat the
commitment has to be honored—no matter what. In the worst case, the
person making the commitment knows full well what's going on. (It's
particularly apparent when the marketing manager confesses to the
project manager over a beer after the celebrations accompanying a new
contract from some gullible client, "Wdl, we wouldn't have gotten this
contract if we told the client how long it would really take; after al, we
knew that our competitors would be coming with some redly aggressve
proposals. And besides, you guys adways pad your schedules and budgets
anyway, don'tyou?")

The last comment is especidly onerous if it comes from your boss, or

INTRODUCTION 1

from some manager two or three levels above you. It suggests that the
entire process of estimating schedules and budgets is a negotiating game
(which I'll discuss in detail in Chapter 3). But, there is aso likely to be
some degree of naivete, for the unspoken implication in your manager's
complaintabout " padding” thescheduleandbudgetisthatyoucouldfin-
ish the death march project in time to meet the ridiculous deadline that
has been imposed upon you. On the other hand, it could have something
to do with the "Marine Corps' mindset, discussed in Section 1.35. Simi-
larly, the commitment to aridiculous schedule and budget by the mar-
keting department could turn out to be another form of poalitics,
discussed earlier; that is, the marketing representative probably doesn't
care whether or not the schedul e and budget he or she proposed is ridic-
ulous, because his or her primary objective is the sales commission, or
meeting quota, or pleasing his or her boss.

Assume for the moment that the death march project has been creat-
ed asaresult of "pure" naivete, absent of politics or other maliciousinflu-
ences. The question is: What should you do about it? As noted, a key
guestion isthe likelihood that the decision makerswill revise their bud-
gets and schedules when it becomes apparent that the original commit-
ments can't be met. This is difficult to predict in advance, though it
wouldn't hurt to check around and see what has happened to other
death march projectsin similar situations. (If thisisthe first such project
that has ever occurred in your company, then you really arein uncharted
territory!)

If you have the strong impression—either from your political in-
stincts or from the experiences of previous projects in your organiza-
tions—that management will hold fast to its original budget and
schedule, no matter how much of a"denial of reality" isinvolved, then
you need to make a much more fundamental decision about whether or
not to proceed. Some of thisinvolvesthe extent to which you can negoti-
ate other aspects of your project—e.g., the technical staff that will be as-
signed to the projects—which well discussin Chapter 2.

DEATH MARCH

1.3.3 Naive Optimism of Youth:
"We Can Do It over the Weekend!"

Though management is a convenient scapegoat for many of the idiotic
decisions associated with death march projects, the technical staff is not
entirely blameless. Indeed, in many cases, senior management will hap-
pily admit their naivete and lack of experience with the process of esti-
mating and scheduling complex projects. "How long do you think it will
take?" they'll ask the technical hotshot, who may have been promoted to
the rank of first-level supervisor just last week.

And, if the technical hotshot is ambitious and filled with youthful op-
timism (which often resembles the teenage delusions of immortality,
omnipotence, and omniscience), the answer is likely to be, "No problem!
We can probably knock it out over theweekend!" A really good software
engineer—well, "hacker" might be a more appropriate description
here—is firmly convinced that he or she can develop any system in a
weekend. Minor details like documentation, error-handling, editing of
user inputs, and testing are so boring that they don't count.

If you're the naively optimistic software engineer responsible for
making the death march estimate, chances are that you don't even know
what you're doing. You probably read the last paragraph, bristled at the
apparent insult, and muttered, "Damn right! | really can build any sys-
tem over the weekend!" God bless you; maybe you'll succeed. In any
case, hothing that you hear from an old fart like me is likely to change
your mind.

But, if you are a battle-scarred veteran, and you can see that you're
about to be roped into a death march project because some naive young
technical manager has made a ridiculously optimistic commitment re-
garding the project's schedule, budget, and resources, what should you
do? The best advice, 1 think, is "Run!" When such technical managersre-
alizethat they arein over their heads, they often collapse, resultingin tru-
ly irrational behavior or paralysis. In most cases, they haven't dealt with
anything before that was so big and complex that it couldn't be over-
whelmed by sheer cleverness or brute force (e.g., 48 hours of non-stop
coding over the weekend). In any case, they're certainly not in the mood
to hear you say, "1 told you so!" astheir project falls behind schedule.

13

1.3.4 The "Start-up” Mentality of Fledgling,
Entrepreneurial Companies

I've not only watched this occur, I've participated in such projects and
have been responsiblefor initiating them in several cases. Asthisbook is
being written, it appears that any start-up company with the name or
"Java' in its corporate name or product hame can get more venture cap-
ital than it knows what to do with. But in general, start-up organizations
areunderstaffed, underfinanced, undermanaged, and outrageously opti-
mistic about their chances of success. They have to be because a cautious,
conservative manager would never dream of starting a new company
without tons of careful planning and alarge bank account to deal with
unforeseen contingencies.

So, almost by definition, alarge percentage of the proj ects associated
with start-up companies are death march projects. A large percentage of
these projects will fail; a large percentage of the companies will fail with
them. Cest lavie—that'swhat high-tech capitalismisall about (particu-
larly in the U.S.). Having been raised in this culture al my life, | think it's
perfectly normal (my attitude is also colored by the fact that I've been
lucky enough to succeed in afew such ventures). Indeed, this scenariois
often one of the positive reasons for embarking upon a death march
project, as!'ll discussin more detail in Section 1.4.

Not everyone is familiar with the culture and environment of a cor-
porate start-up. If you've spent the past 20 years of your career working
with brain-dead COBOL zombiesin a moribund government agency (or,
for that matter, most banks, insurance companies, or telephone compa-
nies) and you've just taken ajob with a start-up firm because you were
downsized, outsourced, or reengineered, thenyou probably havelittle or
no ideawhat you'rein for. Death march projects occur in big companies
too, but they're often staffed by extras from Night of the Living Dead. The
environment is completely different in start-up company death march
projects; it'slike a rush of pure adrenaline.

At the same time, start-up companies often suffer from the kind of
naive optimism | discussed. Many start-up companies are founded by
technical hotshots convinced that their new technology will make them
richer than Bill Gates; othersarefounded by marketingwizardswhoare

14 DEATH MARCH

convinced they can sell Internet-enabled refrigerators to gullible Eski-
mos. Optimism is important in any start-up venture, and the success of
the corporate venture may depend on doing what nobody has ever been
able to do before. But, even an aggressive, optimistic start-up company
has to obey the basic laws of physics and mathematics. If you get in-
volved in astart-up company death march project, check to seewhether
there is some kind of plan for success, or whether the whole venture is
based on wishful dreaming.

1.35 The "Marine Corps" Mentality:
Real Programmers Don't Need Sleep!

Start-up companies are sometimes vulnerable to the "Marine Corps'
syndrome, but I've seen it most often in the consulting organizations like
EDS and the Big-6 accounting firms. It may reflect the persondity of the
corporate founder(s), and it may reflect the corporate culture in its earlier
days. The corporate behavior at Microsoft, for example, has often been
attributed to these factors. In essence, you'll be told by the appropriate
manager, "Every project is like this, because that's how we do things
around here. It works, we're successful, and we're damn proud of it. If
you can't handle it, then you don't belong here."

Whether an attitude like this is civilized, humane, or right is a topic
for separate discussion. Indeed, whether it's even successful is another
question. The important thing is to redize that it's deliberate, not acci-
dental. If you're a martyr or arevolutionary, you might decide to attack
the corporate culture. But, chances are that you won't succeed. It's quite
possible that there will be some negative long-term consequences of
the overall death march culture, eg., the best people may dowly drift
away, and the company may eventually fail. But, when it comes to this
death march project, there's no point questioning why it has been set
up with a nearly-impossible schedule and budget. Like the prototypical
manager of such acompany says, "If you can't handle it, then you don't
belong here.”

Sometimesthere'san official rationalefor such corporate behavior—
eg., "We compete in atough marketplace, and al of our competitors are
just as smart as we are. The only way we succeed is to work twice as

INTRODUCTION 15

hard." And sometimes, death march projects are set up to weed out the
younger (wesker) junior employees, so that only the survivors of the
death march projects will reach the exalted status of "partner” or "Vice
Presdent.” Whatever the raionae, it's usually fairly consistent; there's
not much point complaining about it for the sake of a single project.

That doesn't necessarily mean that you should accept an assignment
on such aproject; after dl, just because every other project within the or-
ganization is a death march doesn't necessarily mean that yours will suc-
ceed or that you will survive. It Smply means that the decision to create
such aproject has an understandable origin.

1.3.6 Intense Competition Caused by
Globalization of Markets

Organizations that might not have tolerated death march projects in the
past are sometimes being forced to do so in the 19905 smply because of
the increased level of competition associated with the globa market-
place. The secondary factors here are universal telecommunications (in-
cluding the Internet) and governmental decisons to open previoudy
protected markets or eliminate tariffs and quotas.

For some organizations, this is not a new phenomenon. The auto-
mobile and electronics indudtries, for example, have been facing stiff
competition since the 1970s But, for other organizations, the appear-
ance of European or Asian competitorsin the North American market-
place can come as a rude shock. Once senior management has accepted
the redlity of serious competition, it may decide to embark upon a vari-
ety of radical moves, ranging from downsizing to reengineering; but, it
may d decide to compete head-on with a new product or service that
requires a new, amhitious system to support it. Voilal A death march
project has begun.

Such projects are often accompanied by dire predictions from senior
management of the consequences of fallure—e.g., layoffs, or even corpo-
rate bankruptcy. And, as I'll discuss below, this may prove to be the pri-
mary justification for participatingin such projects.

1.3.7 Intense Competition Caused by the
Appearance of New Technologies

Competition from an expanded marketplace is often perceived as a de-
fensiveissue, but it can also be perceived as an aggressive, proactive op-
portunity—"If we build this new system, with double-byte characters,
then we can offer our company's products for sde in Japan." Similarly,
the introduction of radically improved technology may cause a defensive
response from a company that was reasonably happy with products built
around an older technology; or, it may lead to a proactive decision to uti-
lize the new technology for competitive advantage. At the time this book
was being written, technologies like Java and the World Wide Web were
an obvious example of this phenomenon; but, the amazing thing about
our industry isthat new examples appear every few years.

If the corporate response to the new-technology situation is essen-
tially defensive in nature, then the death march project may be one that
seeks to exploit the company's old technology far beyond its normal lim-
its. Thus, if the organization has too much invested in the old technology
(and theinfrastructure surroundingit) to abandon it entirely, it may em-
bark upon a rewrite of its old sysems, with demands that the program-
mersfind ways to makeit ten timesfaster and sexier.

Many death march projects in this category are the ones that involve
first-time usage of new technologies. Think back to thefirst client-server,
object-oriented, relational database, or Internet/Java projectsin your orga-
nization; some of them may have been modest experimentsto explorethe
potentia benefits of the technology, but some of them were probably cre-
ated as a competitive response to another company's introduction of the
sametechnology. And inthelatter case, these projects can be huge, aswell
isbeing saddled with outrageously aggressive schedul esand budgets.

But what really contributes to the death march nature of such
projects—beyond the obvious characteristics of sze, schedule, and bud-
get—is the attempt to use bleeding-edge technology for an indusrrial-
trength application. Even if the technology is basically usable, it often
doesnot scale up well for large-scale usage; and, nobody knows how to
exploitits strengths and avoid its wesknesses;, and, the vendors don't

know how to support it properly; and on, and on ...

17

While al of thismay be perceived as an unpl easant experience by the
older technical project team members (the ones who remember the
"good old days' of FORTRAN n and assembly language), it's important
to remember that the younger technicians and project managers prefer
these new technologies, precisely because they are new. And these are
the same folksthat | characterized above as naively optimistic about the
schedule and budget constraints within which they're working. Isit any
wonder that projects degenerate into a death march, with everyone
working late nights and long weekends to coax an experimental new
technology into some semblance of working order?

1.3.8 Intense Pressure Caused by
Unexpected Government Regulations

Asmentioned above, one of the reasons for death march projects associ-
ated with globalization of markets is the decison by governmental au-
thorities to reduce tariffs, eliminate import quotas, or make other such
decisionsto "open" apreviously closed market. But thisisjust one exam-
ple of governmental influences that can lead to a death march project.
Deregulation of controlled industries or privatization of government
agencies are two other obvious examples. Indeed, many of the death
march projects taking place today around the world are a direct result of
a government decision to deregulate the telecommunications industry,
thefinancial servicesindustry, the airline industry, and so on.

However, there are also many instances of increased regulatory pres-
sure from governmental authorities—especialy in the areas of taxation,
reporting of financial detailsto stock-market authorities, environmental
regulations, and the like. In any kind of democratic society, there'slikely
to be agreat dedl of advance notice about such regulations, because the
legidative body argues and debates and fusses over detailsfor monthsor
years before the relevant legidation is enacted. But, often the details
aren't clear until the last moment, and the typical reaction from senior
management is to ignore the whole thing until it becomes an unavoid-
ableredity. And thus, another death march project is created.

The particularly onerous thing about many of these government-
mandated death march projectsisthe deadline: The new system must be

18 DEATH MARCH

operationa by some arbitrary date, like the first of January, or fines of a
million dollarsaday will beimposed. There may be an opportunity to ask
for an extension or awaiver, but in many cases, the deadline is absolute.
And the consequences are usually as dire for the organization as those
mentioned above: layoffs, bankruptcy, or other calamitieswill occurif the
new system isn't finished on time.

Noticethat in projects like these, technology is usually not the issue
what characterizes projects asbeing death marchin natureisthe aggressve
timetable. Of course, management sometimes complicatesthe situation by
understaffing the project, or hobblingit with aninadequate budget.

1.3.9 Unexpected and/or unplanned crises

Y our two best programmers havejust marched into your office to inform
you that (a) they're getting married, (b) they're joining the Peace Corps,
and (c) today istheir last day on thejob. Or, your network services man-
ager cdls you to say that your vendor has just gone bankrupt and you'l
have to reprogram everythingin the next 30 daysto use another vendor's
network protocol. Or, your legal department cals you to say that the
company has been sued for ten zillion dollars because the company is not
in compliancewith Sub-paragraph 13(b) of Regulation Q of some arcane
tax code that nobody even knew about. Or,...

Of course, you could argue that in awell-managed company, theim-
pending departure of your two best programmers would have been an-
ticipated and planned for. And you wouldn't have been so silly asto be
wholly dependent on one telecommunications vendor. And manage-
ment would have had the foresight to check into the details of Regulation
Q. Such crises, according to the purigt, are the result of poor planning
and poor management; an "unplanned criss' is therefore an oxymoron.

Perhaps s0; but as a practical matter, it's becoming more and more
difficult to anticipate and plan for dl the crazy things that can happen in
the business world. For better or worse, we live in aworld of chaos, and
death march projects are a natural consegquence of this chaos. Indeed,
even if we have ageneral ideathat chaotic things could occur in the future,
we may ill have to respond to them in a death march fashion. Everyone
inthevicinity of the San Andreasfaultin California, for example, knows

INTRODUCTION 19

that atruly massive earthquake will occur sooner or later; but, that won't
prevent arash of death march projects from starting up the day after the
"bigone" drops thewestern half of the state into the Pacific Ocean.

Indeed, evenwhenweknow preciselywhenacrisiswill occur, it often
leads to a death march project—because management's tendency is to
avoid dealingwith the situation until the last possible moment. How else
canwe explain the panic that iscreepinginto many |S/IT organizationsas
the Y ear 2000 problem looms ahead of us? Weve known for along time
that January 1,2000, was coming, and we've known that it wasadeadline
that could not be postponed. We've known precisely what the nature of
theproblemis, andit doesn't require new-fangled technologieslikeJava.
So, why isit that I'm so certain that death march Y ear 2000 project teams
are formingwhile | write thisbook in the summer of 1996, and that even
more frantic projects will be initiated in 1997,1998, and 19997

In any case, unforeseen crises can lead to dl kinds of death march
projects. In theworst case, they create projects for which the deadlineis
"yesterday, if not sooner"—because the crisis has aready occurred, and
thingswill continue to get worse until anew system isinstalled to cope
with the problem. In other cases, such asthe unplanned departure of key
project personnel, it can rum an otherwise rational project into a death
march exercise because of the resulting shortage of manpower and the
loss of key intellectual resources.

For various reasons, these often turn out to be the worst kind of death
march projects because nobody anticipated that it would turn out this way. For
the "Marine Corps’ situation discussed above, there are no surprises. Ev-
eryoneknowsfrom thefirst day of theprojectthatthisone, likedl previous
projects, isgoingto requireextraordinary effort. And, for the start-up com-
panies, thedeath march projectisanticipated with excitement; not only will
it beexciting and challenging, but itssuccesscould makeeveryone rich.

14 WHY DO PEOPLE PARTICIPATE
IN DEATH MARCH PROJECTS?

The theme of the discussion in the previous section is that organizations
creste and/or tolerate death march projects for a number of reasons. We

20 DEATH MARCH

may agree or disagree with those reasons, and we may sympathize with
the ones caused by truly unexpected crises—but ultimately, as individu-
ds we must accept them as a fact of life.

But, that doesn't mean we must participate in them. Mot of this
book presumes that you will participate in adeath march project, though
1will specifically suggest that you resign under certain circumstances. But
the best timeto do 0, in most cases, is at the beginning. When told that
you have been assigned to such a project (either as a manager or atech-
nical staff member), you should consider saying, "No, thanks! I'll passon
thisone." If that's not an acceptable response within your corporate cul-
ture, you almost always have the option of saying, "No, thanks! | quit!"

Obvioudy, some developers—and probably alarger number of man-
agers—will argue that thisis not a practical choice for them. I'll discuss
thisdetail shortly, but for now, it'ssufficient to notethat it's one of sever-
a possible "negative" reasonsfor participatingin adeath march project;
it may not be fun, but perhapsit's not as bad as the aternatives.

On theother hand, some devel opers (and some managers) gladly sgn
up for such projects; asidefrom theissueof naiveoptimism, why would any
rational person volunteer to participate in a project thaf slikely to require
14-hour days, 7-day weeks, and ayear or two of postponed vacations?

The most common reasons are summarized in Table 1.2; I'll discuss
thembelow.

The risks are high, but so are the rewards.

The "Mt. Everest" syndrome.

The "buzz" of working intensely with other committed people.
The naivete and optimism of youth.

The alternative is unemployment.

It's required to be considered for future advancement.

The alternative is bankruptcy or some other calamity.

It's an opportunity to escape the "normal" bureaucracy.
Revenge.

TABLE 1.2 Reasons for participating in death march projects.

INTRODUCTION 21

This is not meant to be a complete list. Kevin Huigens [6] asked his
project team to do alittle brainstorming at one of their recent staff meet-
ings, and they came up with the following list of explanations for partici-
pation in death march projects:

Everybody wants to feel wanted.

Percelved opportunity.

Perceived money gain.

Can't afford to losejob.

Brought in from the outside to lead the project.
Willing suspension of disbelief.

Don't care whether project fails, get to work with cool technology.
On-the-job-rraining on new technology.
Eternal optimism.

Challenge.

Plainstupidity.

Chance to prove yourself.

To get the job done.

It'sthe only project.

Y our friend is running the project.

Y our brother isrunning the project (it'd take morethan friendship).
Y our boss said 0.

Y ou have no other life.

Nothing better to do.

Stock options.

Existing pay vs. expectation of raise.
Loveisblind.

Resumebuilding.

Ignorance.

Camaraderie.

22

Expectations for how long it will take are too low.

DEATH MARCH

Of courseg, all of this assumes that you know in advance that it is a
death march project. As consultant Dave Kleist [7] observed, that's not

always so easy when you're interviewing for anew job:

... it'srarely printed as part of the want ad. Not much
sense in saying, "Are you interested in working in-
credible hours for no additional benefit beyond your
hiring salary?' ... Serioudy, death march projects are
rarely billed as such, and it takes a lot of work when
being hired from the outside to discover if your hiring
company isproneto creating death march projects.

And, as Steve Benting [8] pointed out, sometimes you get taken by

surprise;

... itseemsto be awell-thought-out project thistime.
Y ou've got someone leading who hasareal sponsor in
management, the project plan appearsto be solid, the
people involved all appear to be good. Hell, you want
to work on this thing. Then it collapses because your
sponsor gets taken out in a political struggle, the
project plan turns out to be built on assumptions that
areincorrect, and one or two key people turn out to be
flaky. You canlearn to watch out for them, but some-
times you migudge. And you don't want to believe

that it's happening again.

1.4.1 The Risks Are High, But So Are the Rewards

The start-up company scenario discussed in Section 1.34 is a good ex-
ample of this situation. If you tell a project team that the success of their
project will mean the company can go public, and that their stock options
will make them instant millionaires, they'll happily work until they drop.
They realize—at least in an intellectual way—that there are risks associ-
ated with the venture; but, since many of them 4till believe that they're
immortal and omnipotent, they don't pay much attention to the risks.

Indeed, considering the influences of Western culture (especidly in

INTRODUCTION 3

the U.S)), it'snot at al surprising to see young software developers vol-
untarily sign up for death march projects. Weve been told in countless
ways that the success of movie stars, rock singers, sports heroes, and
Olympic athletes, as well as business executives and software entrepre-
neurs, depends largely on tireless energy, enormous commitment, long
hours, and personal sacrifice. We never hear about the guile and duplici-
ty, the shady deds, and illegd activities that are sometimes associated
with success. And, we rarely hear anything about luck and the impor-
tance of being in theright place at theright time. Bill Gates, for example,
certainly exhibits al the textbook characteristics of a successful business
executive; but, if agroup of IBM executives hadn't shown up in Seattlein
1980 to look for a PC operating system, and if Gates hadn't been avail-
able when IBM was unable to meet with its originally intended OS con-
tractor ... wel, who knows where Microsoft would be today?

And one more thing: We don't hear enough about the real conse-
quences of the "sacrifices' that a death march project usually requires—
sacrifices, that is in the areas of personal health, mental health, and per-
sonal relationships. None of these are likely to matter very much to a 22-
year-old technical person, and they often don't matter to theintroverted,
antisocial people who are attracted to the computer field. On the other
hand, it's smal wonder that you'll find fewer peoplein their mid-40s and
50s volunteering for death march projects; not only have they learned
that most of these projects really are doomed to fail, but they've also
learned (usudly the hard way!) that it's not worth sacrificing their mar-
riages and good relationshipswith their children.

Ultimately, thisis a personal choice, based on persond values. I'm in
no position to tell anyone else what's right or wrong. | should emphasize,
though, that I'm not as negative as one might think from the comments
above. Though | believe that I'm much less naive than | was 30 years ago,
I'm il attracted by entrepreneurial opportunities. Show me a sufficient-
ly exciting risk/reward formula, and I'll sgn up for yet another death
march.

Incidentaly, sometimes the rewards are psychological rather than fi-
nancia. As Sharon Marsh Roberts [9] observed:

?? of their place in history, if only they caaneep
this project from outright sinking under its own
weight.

The same people take on EMT work and enjoy fre-
ighting (literaly). If you only win once in ten times,
but everybody else logt dl ten, wouldn't you be a hero,
too?

Paul Neuhardt [10] put it another way:

For me, it wasego, pure and smple. They told me that
they just kneiv | could help prevent the project from
becoming a death march. | was made the "technica
project manager," given ego boosts on a regular besis,
then hung out to dry along with the rest of the team.
Left, right, left, right, left, plop!

1.4.2 The"Mt. Everest" Syndrome

Why do people climb dangerous peaks like Mt. Everest, despite the pain
and risk? Because it's there. Why do people run a marathon and drive
themselves to the point of physical collapse in triathlons? Because of the
challenge. It'sall the more excitingif the challenge is one that has never
yet been successfully accomplished; of thefivebillion peopleontheplan-
et, for example, only one can stand before us and say, "l was thefirst to
walk on the moon." Some may think it's crazy, egotitical, and sdlfish to
even try’, but others are willing to brave the odds and deal with horren-
dous obstacles for the private thrill and public glory of succeeding. As
consultant Al Christians [11] remarked to me in arecent e-mail note,

| am somehow prompted to reply "testosterone,"
which isabout the same as "becauseit'sthere." There
are plenty of jobs that raise the "why?" question. Un-
derground mining, cowboying, logging, smoke jump-
ing, jet fighting, submarining, even high rise window
washing all have serious drawbacks far beyond what
you describe for software projects, and yet all these

have practitioners whose sense of self is linked to their
profession.

And so it iswith death march software projects. | had the chance to
vigt the original Macintosh project in the fall of 1983, a few months be-
fore the product was officially unveiled, and | was humbled by the inten-
sity of the team members' commitment to their chalenge. In addition to
whatever other reasons they might have had for working long hours and
dedling with Steve Jobs's megalomaniacal ego, the team members were
utterly convinced (partly as a result of Jobs's charisma) that the Macin-
tosh would revolutionize personal computing. They were lucky—they
turned out to be right.

From this perspective, even death march projectsthat fail can be no-
blefailures. Countlessprojectsin SiliconValley havefallenintothiscate-
gory, often after burning tens of millions of dollars of venture capital; the
pen-based computing projects of the early 1990s are just one example.
But, even though they failed so badly that entire companies went bank-
rupt, and though they caused divorces, ulcers, and nervous break-
downs—even though they did dl of this and more—the people who
worked on those projects still speak of their experiencesin hushed tones.
"1 worked on the operating system at Go! Corp.," agrizzled veteran will
tell her awestruck apprentice. "Now that was a revolutionary piece of
software!"

Though it may never reach the front pages of Computerworld, there
are dso numerous death march projects with lofty ambitions buried
within large organizations—with application developers signing up
gladly because the "corporate Mt. Everest” seems such a worthy chal-
lenge. Sometimes these projectsfail because the marketplace, or the cor-
porate end users, don't want and don't need the glorious, revolutionary
systems being developed; sometimes they fail because the project team
bit off more than it could chew and promised more than it could deliver.

There are two things to watch for if you find yourself being swept up
inthe hysteria of a Mt. Everest-style death march project. First, watch out
for the projects that are predetermined failures. Suppose, for example,
that someone told you that you could be on the first mission to Mars, and
that you would even have the honor of being the first person to plant a

26 DEATH MARCH

foot on Martian soil. "Of course," your project manager would go on to
say, "you won't have any oxygen tanks, because we won't have enough
room on the gpace craft for al that extraweight. So it's a guaranteed fact
that you're going to die—but think of the honor and the glory!" [12] I'll
discuss these projects in more detail in Chapter 3 (under the heading of
"Kamikaze" projects), but for now, the scenario speaksfor itself.

The second thing to watch out for is that the challenge being de-
scribed by your corporate management (or by the entrepreneuria
founder of your software company) may not turn out to be such abig ded
after all. Thisisa particularly insidious danger if the chalenge istechnical
in nature, eg., "WEell bethefirst people on earth to put an operating sys-
tem with the functionality of Windows 95 into 4K of ROM!" Granted,
that would bean amazingtechnical accomplishment—but sowhat?

It's a good ideato ask the "So what?" question two or three times—
i.e., continue asking the question in response to each successive answer
you get from your corporate management. If the response to the Win-
dows 95 scenario posed above is, "Well, that means we could put all of
Windows 95 onto your wristwatch!" then ask, "Sowhat!" again. In some
cases, the answers will eventually become silly, and you'll be jerked back
into the real world. For example, suppose your boss answers the second
"So what?' question above with the explanation, "Wdl, if we can also
sgueeze in a full voice-recognition system, that means you'll be able to
write Visual Basc programs while you're walking down the street, by
talkingtoyourwristwatch!"

No doubt there are a few dozen programmers who would say,
"Coal!" and volunteer to spend the next three years of their lives on such
aproject. The fact that nobody in his right mind would ever use such a
projectisirrelevant tothem; thetechnical challengeissufficientjustifica-
tion. Putting Windows 95, full voicerecognition, and Visual Basicinto 4K
of ROM would give you supreme bragging rights at any convention of
hackers and programmers; if that'swhat you live for, then by al means,
go ahead and sign up for the project.

It'salso agoodideato explain theproject in simplified non-technical

terms to your spouse, or your "significant other,” or your parents—or,
even better, your children. They will ask the "So what?" question with

INTRODUCTION 27

out the burden of being tempted by the technical challenge. "Y ou're go-
ing to give up your nights and your weekends and your vacations for the
next two years in order to put Windows 95 on a wristwatch?' your
spouse will ask incredulously. And your children will ask, "Yeah, but
Mom/Dad, why would anyone do that?" If you can answer those ques-
tionswithout feeling utterly foolish, then you can sign up for the project
with aclear conscience.

A worse form of the Mt. Everest project is the one where the chal -
|lenge mattersenormouslyto corporatemanagement, but not at all toany-
onewho stops and thinks about the situation for a second. "Why are we
signing up for this death march project, boss?' the young programmer
asks innocently. "Because," the boss thunders righteoudly, "it will in-
crease our corporate earnings per share by a full 314159 cents!" This
means that if the programmer is lucky enough to have options on a hun-
dred shares of the company's stock, and if every penny of increased earn-
ings is paid out in dividends, the programmer would get a whopping
$314; and, if Wall Street gets so excited by al of this that it boosts the
price of the stock by adollar, the programmer's net worth would increase
by another hundred dollars. "And what elsewould | have to show for the
thousands of hours of overtime you're asking me to sign up for, boss?"
the young programmer asks. The boss is silent, for he knows that the
honest answer is: nothing. The project isintrinsically boring, involves no
interestingtechnology, andhasa 75 percent chanceof failinganyway.

But, thevery worst death march projects, in my opinion, arethe ones
where the boss deliberately manipulates the innocent project team into
believing that a Mt. Everest-style challenge is involved, when the boss
knows full well that it's not. Imagine the project team member who asks,
"Why are wetrying to build this batch, mainframe, COBOL airlinereser-
vation system in six months, boss?' The boss is likely to respond, "Be-
cause nobody in the entire airline industry has ever tried to do it in less
than three years before!" | suppose that one could argue that there is a
technical challenge involved in creating a batch-mode airline reservation
system, but it's not the kind of technology that | would want on my re-
sume in the late 1990s In any case, what makes this scenario a death
march project is not the technical challenge, but the ridiculous schedule

at your menus ayear from now.
1.4.3 The Naivete and Optimism of Youth

Oursisayoungindustry, and many of the most exciting and chalenging
projects are being performed by, and led by, people in their 20s. It's not
at all uncommon to see death march projects where the entire technical
team isunder the age of 25. Assuch, they remind me of the fighter pilots
and bombing crews recruited by the Air Force in the Second World War
and Vietnam War: young, idedigtic, and absolutely convinced that they
could do anything. As David Maxwell [13] putit:

Projectsare likeamarriage. Wetend to start off naively
and full of hopes and dowly as reality sgtsin, we have
to reassess our expectancies within the relationship.
There are many reasons apart from logic that attract
people together into amarriage and itis the same case
with projects. With a predominantly youthful work-
force, itislikely that the "death march" project will oc-
cur again and again as atraining ground for managers
and developers dike. And, as | know from personal
experience, | often repeat the same mistake many
times before the penny drops.

Indeed, it's this supreme confidence that enables a death march team
to succeed where traditional project teamshavefailed. Part of thefolklore
of ourindustry isthat the most successful products—rangingfromLotus
1-2-3to NetscapeNavigator—havebeen devel oped by ahandf ul of peo-
ple under conditions that no "rational" project team would have accept-
ed. When these projects succeed, they often bring fortune and fame to

he project team; and when they fail, they often provide some valuable
essons to everyone involved (though the corporate consequences may
till be disastrous!).

It'simportant to note that the naivete and optimism of youth are usu-
illy combined with enormous energy, single-minded focus, and freedom
from such distractions as family relationships. Obvioudy, youth doesn't

have a monopoly on any of this, but it's alot more common to see a 22-
year-old programmer willing and able to focus on the technical demands
of adeath march project for 100+ hoursper week, continuously for ayear
or two, than a 35-year-old programmer with a spouse and two children
and a moderate passion for mountain climbing. The young programmer
who signs up for a death march—as well as the relatively young project
manager who optimistically promises success to the corporate chief-
tains—is implicitly saying, "Of course I'll succeed with this project; I'll
overwhelm the obstacleswith sheer energy!"

I won't make any vaue judgments about dl of this, because it's
pointless. As noted above, oursisan industry that attractsyoung people,
and | don't think that will changein the next few years. | aso don't think
ifsunlikely that young people will abandon their optimism, energy, and
ability to focus single-mindedly on a problem. As for their naivete . . .
well, it doesn't help much for battle-scarred veterans to accuse their
younger colleagues of this disease.

144 The Alternative Is Unemployment

Because we do have an industry populated by young, optimistic people,
and because it's a vibrant industry that has been growing steadily {and
sometimes rapidly!) for the past 30 to 40 years, I'm always surprised to
hear this explanation for participation on death march projects.

But, were dso in an industry where rapid change renders some vet-
erans obsolete. Indeed, there has been such enormous change during
this decade that our profession—Ilike so many other white-collar profes-
sions—has experienced significant downsizing, reengineering, and out-
sourcing. Aggregate employment in the software industry may be rising
steadily, but we sometimes forget that this means only that C++ pro-
grammingjobs areincreasingmorerapidly than COBOL jobsaredeclin-
ing [14]. Additionally, the large IS/IT shops that have expanded into
bureaucracies of several thousand people have been particularly vulnera-
ble to reengineering and downsizing; senior management may not be
ready to reduce the ranks of technical staff, but they're often eliminating
the middle managers, administrators, and staff people.

All of this figures significantly in death march projects. Perhaps the

30 DEATH MARCH

reason your project team has only half asmany people asit should isthat
management has cut the entire software organization in half. And the
reason that your project schedule istwice as demandingasit should beis
that management is attempting to reengineer by edict: The entire organi-
zation must be twice as productive as before, which translates into the
simple commands of, "Work harder! Work faster!" [15]

Thisisnot abook about reengineering, and | don't want to comment
on the reengineering strategies employed by management. The signifi-
cant issue here is that many technical staffers and project managers feel
animplied threat when projects are created in thiskind of environment.
Oftentimes, if they don't agree to the death march project parameters,
they'll bethe onesto lose their jobs. For the 22-year-old, unmarried pro-
grammer, this shouldn't be a problem; for the 35-year-old project super-
visor with a family and a mortgage, it can be a more serious problem.
And, for the 45-year-old programmer whose only skills are COBOL and
CICS, it can be a serious problem indeed. Even though we do have a
young industry, it's been around long enough that there are even some
55- and 60-year-old programmers who are grimly holding on until their
pension is fully vested.

It's also common for middle-aged or older people to find that they're
locked into a community, because their spouse has ajob in the same
town, or their children can't be pulled out of the local schoals, or because
the prospect of leaving behind aging parents and other family members
is too painful. None of this seems a problem when the job market is
growing, but anyone living in Poughkeepsie, New Y ork today knows ex-
actly what I'm talking about. People living in Redmond, Washington
could conceivably find themselves faced with the same kind of rude
shock 5,10, or 20 years from now.

I'm generally sympathetic to the middie-aged and older software
professionals who find themselves in this position, though the reengi-
neering/downsizing phenomenon has been around long enough that
I'm amazed to find technical people who ignore the possibility that it
could happen to them. But this, too, isasubject for adifferent book; I've
discussed it at length in my books Decline and Fall of the American Pro-
grammer and Rise and Resurrection of the American Programmer, and I'll
confinemy remarksheretothereality of such death march projects

INTRODUCTION 31

If your company has told you—either explicitly or by innuendo—that
your job will disappear unlessyou sign up for aproject with a ridiculous
schedule, budget, and resource alocation, what should you do? Obvi-
oudy, this depends on your assessment of your financial, physical, emo-
tional, and psychological situation; but, you aso need to assess the
situation within your company accurately. In some cases, the real threat
isthat your promotion, bonus, or salary increasewill bewithheldif you
don't participate (I'll cover thisseparately below). But, evenif thethreatis
termination of employment, big companies can't usually carry out their
threat right away; you may havetwo or three monthsbefore your job dis-
gopears, and that may be enough time to find ajob elsewhere.

What if the threat is more immediate and blunt? "Sign up for this
death march project right now, or pack up your things and get out!" says
your boss. It'sinconceivable to methat arationa person would chooseto
work in such an environment, but let's assume the environment had
been reasonably friendly until the latest reengineering craze turned your
bossinto aravinglunatic. So, hereyou are; sign up, quit, or befired. What
canyou do?

If at al possible, my advice isto quit now, becauseit'sonly goingto
get worse. Y ou may have to live off your savingsfor afew months, and
you may even have to take a pay cut while you gain experience in some
newer technology, but chances are you'll be ahappier person than if you
knuckle under and continue on in a situation that has little or no upside
potential. Sometimes you can accomplish this by volunteering for the
death march project while simultaneously updating your resume and
starting the job search, though this can create some ethical dilemmas if
you feel that quitting in the middle of the death march project would
leave your teammates stranded and helpless.

Ifyoufeel that you aretruly stuck—because of imminent pension vest-
ing, or because of unmarketable technical kills, or because personal com-
mitments keep you locked into aone-employer town—then you might be
tempted to take a more postive approach to the death march project. "By
gosh, I'll show them that there's sill some bark left in this old dog," the
middle-aged veteran will say. "I'll show management that I'm ill just as
goad as those young whippersnappers, and well get this project done on

time" Thecourageandpositive

... Remember the theme at the beginning of thisbook: Death march
projectsarenot theexertion, they have becomethenorm.

145 It's Required to be Considered for
Future Advancement

Asdescribed, there aretimeswhen the "invitation" to join adeath march
project carrieswith it a threat that future promotions and raises will be
contingent upon,(a) acceptance, and (b) successin the project. Thisis of-
ten associated with a reengineering initiative—e.g., "The people who
lead the Megalith Bank into the twenty-first century will be the oneswho
lead us through this incredibly complex and challenging Total System
2000 reengineeringproject!" If youfindyourself in thissituation, remem-
ber that politics are a key factor. The people who eventualy take credit
for the success of the death march project may or may not be the people
who participatedin it. And the manager who proposes the death march
project may be using the reengineering "criss' solely as an opportunity
to advance his or her career, with little or no concern for whether the
project team members survive in the process.

Ifyou'vememorized every word of Machiavelli's TliePrince, andif you
enjoy playingpolitical games, then such death march projects might sound
like great fun. But most software professionals haven't read The Prince
sincetheir college days (if ever), and in addition to admitting their political
naivete, the/ll also express disgust at the whole concept of politics, and
enormous disrespect for those who indulge in it. If that's the casg, why
would anyone sign up tor the Megalith Bank's Total System 2000 project?
The only plausible answer: because you sincerely believe that it's a one-
time death march project, and because you redly believe that it will help
advanceyour long-term career within the Megalith Bank. And if you be-
lievethis, chances are pretty good that you also believe pigscan fly.

In the majority of cases|'ve observed, the threat of withholding pro-
motions and raises is part of the "Marine Corps' culture discussed earli-
er. Whether it's right or wrong doesn't matter at this point; what counts
isthat it'sfairly consistent. If you receive such threats on your first death
march project, you'll probably get them on your second, third, and

Y oumay have been too innocent to contemplate the long-term
implications of such a policy when you first joined the company, but
sooner or later it will sink in. There are redlly only two options in this
case accept it or quit.

1.4.6 The Alternative Is Bankruptcy or
Some Other Calamity

As | explained, some death march projects have been caused by the re-
engineering, downsizing, and outsourcing decisons made by senior
management, which in turn were often caused by global competition,
unexpected government regulations, and the like. Whatever the cause,
the results are the same: The employee signs up for the project because
he or she sincerely believes that the aternative is bankruptcy or some
other dire calamity. And the situation is often exacerbated by provocative
statements from management that anyone unwillingto participate in the
death march should resign forthwith, so that those who remain can con-
centrate on saving the company.

Again, the issue here is not whether the situation is right or wrong, or
whether management should have taken earlier steps to avoid the crisis.
The point is that once the crisis has arrived and management has initiat-
ed the death march project, you need to make arational decision about
whether or not to participate. As this book is being written, Apple Com-
puter isagood example of acompany filled with death march projectsas
itfightsfor survival (though | have no personal knowledge of any mana-
geria ultimatums to "sign up or leave").

From earlier discussions, you can anticipate my advice here: Step
back and ask yourself whether this death march project is a one-time ex-
ception, or the beginning of an ongoing pattern. Even if you win the bat-
tle, your company may have lost the war; indeed, your success with your
death march project may have the ironic consequence of delaying the fi-
nal demise of the company just long enough to sustain a second death
marchproject.

Again, thisisapersonal decision, and it may be colored by feelings of
loyalty, sympathy, or a Hollywood-inspired desire to "win one for the
Gipper"—a last hurrah to show the world that you and your company

34 DEATH MARCH

are not going to give up without afight. And who knows. maybe a tre-
mendous success with your death march project will turn things around,
as was gpparently the case when Borland delivered its Delphi product to
the marketplace in early 1995, None of ushasacrystal ball when it comes
to predicting the outcome of a death march project, nor can we accurately
predict what the consequences of adeath march success or failure will re-
ally be. Some companies die quickly, others die along, lingering death,
and gill others are acquired before the terminal rot setsin.

Asyou consult your own crysta ball, seek advice from as many peo-
ple as possible—especidly from thosewho have no vested interest in the
outcome. You may find some honest, objective managers in your com-
pany who will candidly discuss the consequences of the desth march fail-
ure/success; but, you should also remember that the same managers
have their own careers and paychecksto worry about, andthat their egos
and political ingtincts may prevent them from sharing the redlly vitd in-
formation you need to make an informed decision.

1.4.7 It's an Opportunity to Escape the
"Normal" Bureaucracy

Technica staffers and project managers often complain that their corpo-
rate bureaucracy gtifles productivity and introduces unnecessary ddays
into the software development process. But, the larger the organization,
the more entrenched the bureaucracy—especiadly in organizations
where the methodology police enforce strict adherence to SEI-CMM or
ISO-9000 processes. Similarly, the human resources department may
have elaborate procedures that must be followed before new people can
be hired, or before external contractors can be used on a project.

Death march projects often provide the opportunity to circumvent
some, if not dl, of the bureaucracy—and this is reason enough for frus-
trated software developers to sign up for such projects. In the extreme
case, the effort takes on the characterigtics of a "skunk works' project:
The project team moves out of the corporate facility into a separate build-
ing, where they can carry out their work without the digtractions of the
normal bureaucracy. But even in aless extreme situation, adeath march
project can often get permission to use its own tools and programming

INTRODUCTION 35

languages, to try new technologies like object-oriented programming,
andto short-circuit much of the ponderous proceduresand documenta-
tion that would otherwise be required. Equally important, the death
march project manager is often given far grester latitude when selecting
team membersthan would normally be the case.

In the best case, all of these changes can transform adeath march
into acivilized experience—that is, the very procedures (and technol ogy
and people) that threatened to turn the project into a death march have
been removed or replaced. And, if the death march project is eminently
successful, it can serve as a catalyst to make permanent changes to the
technology, peopleware, and processes used in other development
projects throughout the organization. Conversdy, if the death march
project fails, it might serveasan affirmation that the"standard” policies
aren't that bad after all.

In any case, a situation like this is a perfectly plausible reason for
working on a project that might otherwise seem uncivilized. In someor-
ganizations, certain software developers make a point of always signing
up for such projects, because it's the only way to avoid getting sucked
intothebureaucracy.

14.8 Revenge

Revenge may not seem like arational explanation for working on adeath
march project, but it's real nonetheless. The success of the death march
project might be sufficient to wrest power away from an incompetent
Vice President, or it might serve to humiliate an obnoxious critic who
continually tellsyou "it can't be done" within the schedule and budget
constraints of the death march project. Revenge is a powerful emation,
and itisparticularly evident in the senior management ranksof large or-
ganizations, where insults are remembered forever, and where crafty
politicians will sometimeswait months or yearsto wreak revenge upon
their enemies.

Revenge can beavery powerful personal motivator, butit'susually
somewhat more difficult to imbue an entire project team with the emo-
tion. And when it happens, it often creates a situation where the team
losestrack of the "official" objective of deliveringaworking system with-

36 DEATH MARCH

in aspecified budget and schedule—after al, their first and highest prior-
ityisrevenge.

If revenge is your motivation, then there's not much for me to say—
this is another personal judgment call. But, if you're signing up for a
project in which it's the manager'srevenge, or the team's revenge, fuel-
ing the project (and causing it to accept deadline and budget constraints
they normally wouldn't accept), then you should be very careful indeed.
"The Vice President is an idiot," your project manager might tell you,
"and if we finish thisproject in six months, helll be so humiliated in front
of the Board of Directors that hell have to resgn!” Well, that's fine—
maybe the VPredly isan idiot. But, do you really want to sacrifice your
personal lifefor the next two yearsto bringabout his or her demise? After
al, thenext VPislikely to bejust asmuch anidiot asthelast one.

On the other hand, if everyone perceives the Vice President to be the
personification of Darth VVader, and if the project manager isseen to bea
combination of Luke Skywalker and Y oda, then a death march project
can bevery invigoratingindeed. If thisisthe case, theentire projectisre-
cast into a battle of Good versus Evil, and that's enough to make people
accept incredible sacrificeswithout complaint.

15 SUMMARY

If the discussion in this chapter seems pessimistic and cynical, remem-
ber—it hasn't stopped death march projects from taking place. Compa-
nies both largeand small arefilled with politics, and staffed by managers
and technical developers who suffer from mind-boggling optimism, as
well asfromthe usual gamut of emotions like fear, insecurity, arrogance,
and cruelty. And, the combination of reengineering, downsizing, out-
sourcing, and global competition—al ong with the opportunities provid-
ed by new technologies like object-orientation, client-server, and the
Internet—suggests to me that death march projects are likely to be a
common occurrencefor yearsto come.

And that'sthe primary point of thischapter. Y ou may not agreewith
any of therational es suggested here; you may not like any of the reasons
for initiating such projects or joining such projects—but they're real
nonetheless. The key point is to recognize and understand your own mo-

INTRODUCTION 3

tivations at the beginning of adeath march project, sothatyou can make
arational decision to join the team or look elsewhere for your next job.
Since many of these projects are initiated during periods of great corpo-
rate stress and emotion, rational decisions are not as easy to make asyou
might think; it's all too easy to be swept away by the emotions of your fel-
low colleagues or your manager.

By the way, this doesn't mean that I'm opposed to death march
projects; 1 agree with my colleague Rick Zahniser [16] that such projects
can be an educationa experience, even if they fail:

I'vetoldyou before, | think everyone should be on at
least one of these projects. However, there are some
other things that you should do at least once:

» Spend anightinjail

¢ Get commode-hugging drunk
* Raise aboy

e Raseagirl

» Start your own business

¢ Climb Mount Fuji

For the remainder of this book, I'm going to assume that you have
made arational decision to join a death march project—though I'll re-
mind you from time to time that you aways have the option of quitting
duringthe project. Well assumethat your primary objective at thispoint
isto succeed, or at least survive the project, and in subsequent chapters,
welll see how that can be done.

38 DEATH MARCH

Notes

1. Ed,
A colleague of mine passed along this paraphrased quote. I think
it applies here.
The definition of (corporate) insanity is doing the same thing
again and again, and each time expecting different results.
I have no idea who originally framed the assertion, but it's gold!
Richard Sargent
5x5 Computing Solutions Inc.

2. E4,
» 1. Why would anyone in his right mind agree to work on a "death
march" project (defined in the terms above)? «
Because it' s rarely printed as part of the want ad. Not much sense
in saying, "Are you interested in working incredible hours for no
additional benefit beyond your hiring salary? Does the idea of
workingendlesslyonobsolete technologywhile 'waiting ' foraslot
to open up on that exciting GUI/DSS/warehouse/HTML subproject
really entice you? Do you define three-tier architecture as an
opportunity to hear what other project members will work on without
your help?"
Seriously, death march projects are rarely billed as such, and it
takes a lot of work when being hired from the outside to discover
if your hiring company is prone to creating death march projects .
In addition, death march projects only look that way. While they
demand the hours, every hour is not productive. After a while,
people find ways to do the things they are being deprived of (pay
bills, runerrands) . It just isn' tbilledthat way. The environment
still sucks, people hate it.
And, how accurate are those hours that are being billed? Where do
they come from? Got any contractors? Ever heard of "nuisance hours*
or "annoyance hours"? You know, where a contractor overbills
because they can' t stand some of the people they are working for.
(Let me say right now that I've never done it and never will do
it, but know people who have) . The lead or manager does what the
contractor thinks is stupid, and the contractor takes revenge (in
their own quiet way) . And, what about overhead? Are all hours to
be marked to the project, including corporate and department
meetings, training, etc.?
» 2. If a colleague of yours was about to take on the task of
managing a death march project, what is the ONE THING you would
advise him/her to do? «
Try to craft an exquisite exit clause in the contract <VBG>.

INTRODUCTION 39

Seriously, one of the reasons for a runaway is the inability of
someone to hear reality, usually upper management (either side, IT
or business) . Someone taking over a death march has got to find an
angle for them to get some maneuvering room (functionality, cost,
time) in at least one aspect or they are doomed.

» 3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances, when embarking upon
such a project? «

Acknowledge that it is going to be a death march. Doesn't sound
honest but admitting that it's going to be a Killer can be
demoralizing for two reasons: one, peopledon't liketo hear that
the next 6-12 months could be hell; two, management usually
underestimates the negatives. Not much hope if you know right out
of the gate that it's going to be ugly. | had friends who worked
ononeproject that had management openly admittingthat therewas
going to be road-kill on the project. Oddly enough, they had
trouble recruiting internal replacements once the turnover kicked
in.

Seriously, admitting up front that it' s out of control is already
saying very little for one's management skills. If you ask,
sometimes staff will volunteer ways to help keep it from becoming
adeath march. In the death marches I' ve seen, the one thing that
I've seen common to them all is a lack of empowerment among the
staff.

- Dave

3. Of course, the project might not have been planned as a mind-boggling
project, and the prospect of ultimate doom might not have been apparent to
anyone. A participant in the ill-fated Taligent joint venture between Apple and
IBM reminded me of this possibility. That project, he reminded me, had previ-
oudy existed within Apple under the code-name of "Pink." And, before that, it
was known as SNARC (for "Sexy New Architecture"). The amazing thing, rny
correspondent told me, wasthat at any point during itsseven-year lifetime, dur-
ing any of its three incarnations, it was always perceived as atwo-year project.
That perception was true on the first day of the project, and it was a perception
firmly believed by most of the managerswho were gtill working frantically seven
years |ater, when the project was shut down.

4. John Boddie, Crunch Mode (Englewood Cliffs, NJ. Yourdon Press/Prentice
Hal, 1987), page 20.
5. Scott Adams, TheDilbert Principle(NewY ork: HarperBusiness, 1996), page 2.

6. Ed:

DEATH MARCH

At our weekly staff meeting, my team and I had a brainstorming
session on your 3 questions. Here's our answers:

1. Why would anyone in his right mind agree to work on a "death
inarch" project (defined in the terms above)?

Everybody wants to feel wanted Perceived opportunity
Perceived money gain Can't afford to lose job
Brought in from the outside to lead the project

Willing suspension of disbelief

Don ' t care whether project fails, get toworkwith cool technology
On-the-job-training on new technology

Eternal optimism Challenge
Plain stupidity Chance to prove yourself
To get the job done It's the only project

Your friend is rumning the project
Your brother is running the project
(It'd take more than friendship)

Your boss said so You have no other life
Nothing better to do Stock options
Existing pay vs. expectation of raiselLove is blind

Resume building Ignorance

Camaraderie

Expectations for how long it will take are too low

2 . If a colleague of yours was about to take on the task of managing
a death inarch project, what is the ONE THING you would advise him/
hex to do?

Leave me out Run!

Keep your eyes open Ask "What's the pay?*
Get a lot of rest before you start the project

Make sure you can trust all of your co-workers

Realize the developers aren't your enemy, the managers are
Try to get management to understand the ramifications of the

project

Communicate. Communicate. Communicate.

Keep the team small Hire new graduates
Keep the team intact Manage scope

Review the design

Focus is a substitute for time

Make sure testing plan is ready when it's time to test

Make sure you have a test plan. Make sure everybody knows.what to do
Documentation is critical Don't rush to code

Keep documentation updated and current

Everyone should have access to documentation

Have regular weekly progress meetings

INTRODUCTION 4

Have daily progress meetings

All code works before you leave at the end of the day

Keep plenty of good coffee on hand Make sure team is happy
Make sure team has everything they need

Use management by walking around

Make sure everyone understands what they're doing

3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances, when embarking upon
such a project?

Don't plan a wedding

Don't have unclear areas of responsibility

Don't allow design changes 1lightly

Don't assume 1lst version is final

Don't become irritated or angry Don't lose your cool
Don't let others lose their cool

Don't forget to back stuff up

Don't expect everyone on the team to be dedicated

Don't get too personally involved in success or failure of the
project

Don't rely too heavily on 1 member of the team

Don't allocate resources lightly

Don't assume team members understand the entire project
Don't overcommit Don't underestimate
Don't refrain from asking questions when you don't understand
Don't start the project

Don't start the project if you haven't got the money to finish
Don't commit to unreasonable dates

Don't be afraid to quit if you feel management is unreasonable
Don't be too hard on overworked, underpaid workers

Don't let meetings last > 1.5 hours

Don't be afraid to bend the rules

Don't forget to have a life Don ' t sweat the small stuff
Don't be afraid to let management know you need something
Don't be afraid to stand up to management

Don't forget to keep your resume updated

Don't accept as gospel info from so-called experts

Don't forget that management doesn't understand how to develop
software

Don't forget that shortcuts just deferwork, theydon't eliminate
it

Is that enough for you?

-Kevin

7. See Note#2.

42 DEATH MARCH

8. Ed,
As long as you're asking...
»1. Why would anyone in his right mind agree to work on a "death
march* project (defined in the terms above) ?«
Because it seems tobeawell-thought-out project this time. You've
got someone leading who has a real sponsor in management, the
project plan appears to be solid, the people involved all appear
to be good. Hell, you *want* to work on this thing. Then it
collapses because your sponsor gets taken out in a political
struggle, the project plan turns out to be built on assumptions
that are incorrect, and one or two key people turn out to be flaky.
You can learn to watch out for them, but sometimes you misjudge.
And you don't want to believe that it's happening again. (I'm
assuming some things here. I've only been involved on one large
project, but it certainly went down hard. Delivery date was
October, '94 and later moved to March '95. I was working on the
contingency plan towards the end and left after most of the team
in January ' 95 . The new system still does not exist. The company
is now in the process of purchasing someone else's system that
doesn ' t have half of the functionality they originally required:.)
»2 . If a colleague of yours was about to take on the task of
managing a death march project, what is the ONE THING you would
advise him/her to do?«
I would say to take care of his/her people as much as possible.
Kick them all out of the office on Friday nights and try to make
sure they' re getting sleep. (Thosemonths of 12-hour days sixdays
per week can just burn out the developers, making them either quit
or make too many mistakes .) No matter how badly the work needs to
be done, you' ve got to take care of your people. Sometimes getting
the most out of them requires sending them home. (If you know the
project' s in trouble when you start, you' ve got a long haul ahead
during which you'll need good people.)
Also, make sure that you' ve got thebest salary scale possible. It
won't make all the difference, but it should be cheaper than
attrition if it's enough to keep some people on.
»3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances, when embarking upon
such a project?«
Don' t let anyone put seriouspressure on the employeesbesidesyou.
Run interference to keep the developers free from others who are
trying to ask them to run that 2-minute mile. (Wehad a developer
working for us when I was the IS Manager — and before the
aforementioned project was started -- who was writing a new

INTRODUCTION 43

commissions system. The Sales VP came down to tell her that until
she completed this system, her -- the sales manager's --
salespeople couldn ' tpaytheirmortgages . MyVPquiterightly threw
her out to let the developer work inpeace.) That' s not to say that
you can' t push those employees yourself, but youhave to have some
control over the stress levels in the organization if you' re going
to keep them going.

» I'dlike tosolicit input, feedback, war stories, case studies,
good jokes, etc.«

This must be where I tell you about how, on that infamous project,
the new President explained to me why he wouldn't sign off on
requirements when asked to. (Needless to say, scope creep was a
major factor in its death.) He was a down-home type who thrived on
people taking his southern drawl as a sign that they were dealing
with a country bumpkin. He had also just orchestrated the removal
of our sponsor -- the previous President -- bykilling theproject.
His reason for the management group's refusal to sign off on
requirements was that my VP was "going to hold our feet to the
fire" with that document. Inotherwords, hewouldn ' t agree to sign
the document because he would have to livewith it later! At this
time, I knew I really needed to get out of there, and quickly. . .
Steve

9.Ed--
» I. Why would anyone in his right mind agree to work on a "death
march" project (defined in the terms above) ? It' s understandable
that an inexperienced software developer (or someone who hasn't
had the pleasure of reading Scott Adams ' "The Dilbert Principle")
might be bamboozled by management' s claim that the deathmarch is
an anomaly, and that the superhuman efforts are going to
revolutionize thehhuman race, defeat Communism, cure cancer, etc.
But after you've heard this pitch two or three times, it sounds
like a broken record. So why do we get sucked into this again and
again?«
The "heros" are needed, wanted, desired. They are certain of their
place inhistory, if only they cankeep this project fromoutright
sinking under its own weight.
The same people take on EMT work and enjoy firefighting
(literally) . If you only win once in ten times, but everybody else
lost all ten, wouldn't you be a hero, too?
»2. If a colleague of yours was about to take on the task of
managing a death march project, what is the ONE THING you would
advise him/her to do? (The "one thing" motif was suggested by Jack
Palance in the wonderful movie "City Slicker", starring Billy

44 DEATH MARCH

Crystal) «

I ' d encourage him to keep his sense of humor. It may be gallows
humor, but it's all that such a group has. <sigh>

»3. Conversely: what is the ONE THING you would advise your
col league NOT to do, under any circumstances, when embarking upon
such a project? «

I would encourage him (and excuse me, it wouldbe a him in 99/100
attempts) to not invest in options or get a large mortgage. You
can only take high risk in one arena at a time, without risking a
total wipeout of personal assets.

I once said that I would be willing to take a certain job whose
incumbent tended over a seven year period to last no longer than
ayear . I figured that three months ' salary would provide enough
savings to recover from the inevitable.

—Sharon

W.Ed,

« 1. Why would anyone in his right mind agree to work on a "death
march" project (defined in the terms above)? »

For me, it was ego, pure and simple. They told me that they just
KNEW I couldhelp prevent the project frombecoming a deathmarch.

I wasmade the "technical project manager, " given-ego boosts on a
regular basis, then hung out to dry along with the rest of the
team. Left, right, left, right, left, PLOP!

(The really embarrassing thing is, I let these same people do it
tome AGAIN just one year later . Once I began to feel myself falling
into the step of the death march, I ran like hell for the door.
Me, and about 60% of the rest of the staff. BIW, It's been four
years now since I first got suckered in, and neither system has
ever seen the light of day, nor will they.)

« 2. If a colleague of yours was about to take on the task of
managing a death-march project, what is the ONE THING you would
advise him/her to do? »

To quote those mad Englishmen in "Monty Python and The Holy Grail *

I would say "RUNAWAAAAAYYYYYY! | I " . Tt sounds like a flip answer,
but it isn't really. Some of the most damaging effects of a death
march project are psychological. Lower self esteem, depression,
anxiety and sudden mood swings are all behaviors I have witnessed

(and sometimes experienced) during these projects. I've seen at
least one marriage break up in no small part because the partner
involved in a death march let it consume her so totally that she
became an entirely different person, one whomher husband (andmost
of the rest of us) hadno desire tobe around. I knowanother woman
who, when a three year "deathmarch" ended with the project being

INTRODUCTION 45

cancelled, said that it was the only experience in her 1life that
even approached the heartbreak she felt when she miscarried during
the sixth month of pregnancy. Now that's trauma. If you can get
out, go.

« 3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances, when embarking upon
such a project? »

If you can't beat 'em, this is one case where you do NOT want to
join 'em. Do not let yourself become too emotionally attached to
the outcome of thisproject. Like POWs ondeathinarches, thinkabout
anything else but the march in order to survive. Try to go to work,
grind out your day's brick for the wall, and go home. If you want
stimulation and personal reward, readabook, join a social club,
volunteer at the local animal shelter or buy a kiln and throw some
clay pots. Do anything to keep your mind off of work as much as
possible. The moment you get too attached to the project, the guards
with the rifles win and you, the lowly POW, lose.

Paul

11.Ed
Sounds like you are going to have a lot of fun this summer.
»1. Why would anyone in his right mind agree to work on a "death
march" project?
Since you mentioned "City Slickers', the movie that used such
regrettable sexual stereotypes, I am somehow prompted to reply
etestosterone*, which is about the same as "because it' s there."
There areplenty of jobs thatraise the'why? ' question. Underground
mining, cowboying, logging, smoke jumping, jet fighting,
submarining, even high rise window washing all have serious
drawbacks far beyond what you describe for software projects, and
yet all these have practitioners whose sense of self is linked to
their profession.
But if you really think that reasons are needed, here are a few:
a. We think we learned so much in the last experience that it would
be a waste to not find a project on which it could be applied.
b. We know that some of our colleagues are going to be suffering,
and we don't mind doing our part to lessen their burden.
c. It's like a lottery ticket — despite the odds, we can imagine
the possibility of large rewards if we win big.
d. The high level of urgency that arises during these difficult
projects redistributes power to those who know how to resolve
the crises, i.e. us, and we like power.
> 2. If a colleague of yours was about to take on the task of
managing a death march project, what is the ONE THING you would

46 DEATH MARCH

advise him/her to do?

Remember that the people who love him/her love him/her for reasons
that have nothing to do with the project.

> 3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances, when embarking upon
such a project?

Since "this is the way it's been for a long time, and this is the

way it's gonna continue to be, " don't try to work at a pace that
you can't sustain healthfully for a long time.
Al

12. Asl wasfinishingthewriting of thisbook inlate 1996, art articleappearedin
the New York Times describing a dightly modified strategy for the first mission to
Mars: send the astronauts with enough food and water to livea "norma" life of
40yearson Mars, but without any fuel for their return. Therationalewasthat a
lifetime supply of food and water would weigh considerably less than the fuel re-
quired to makeareturn trip. Theamazing thingisthat it was presented at are-
cent scientific conference as a serious proposal, and that approximately one-
third of the conferenceattendeesindi cated that they would bewillingto signup
for theone-way trip!

13.Ed,

As I talked on another thread the other day, projects are like a
marriage. We tend to start off naively and full of hopes and slowly
as reality sets in, we have to reassess our expectancies within
the relationship. There are many reasons apart from *logic* that
attract people together into a marriage and it is the same case
with projects. With a predominantly youthful workforce, it is
likely that the "death march* project will occur again and again
as a training ground for managers and developers alike. And, as I
know frompersonal experience, I often repeat the same mi stake many
times before the penny drops.

Nietzsche, the German philosopher in the last century said that
"society is governed by mediocrity". What he was presumably

implying here is the central, conservative-stream will tend to
dominate behaviour and control events. This central-stream is
hell-bent on preservation from the extremes and will draw the
blinds on anything that threatens their positions. What we are
really asking for in IT is a radical re-shaping of the way projects
aremanaged, withopenvertical andhorizontal communication. . and
an openness to radicalism. This is very threatening for the central
core of the typical task, role, club organisational culture. An
Organisation with a cuture of existentialism has a much better
chance of developing good project on a regular basis but these

INTRODUCTION 4

Organisations are still ararity.

Anold girl-friend of minewho is in a leading position in one of
the Major Business Schools regularly seeks advice from me as to
how to overcome the deluge of internal politics and methods that
arestifling their practices, certainly acase of not practicing
what they preach! In addition, Computer Science departments the
worldover arepaying scant regard to Peopl eand M anagement i ssues
as the L ecturers themselves are, in general, inept outside of the
technological framework.

So perhaps it is inevitable that, with an inappropriate education
and cultural backdrop, we can expect "death march" projects to
continue to be the norm... But looking at it from another
perspective, these "deathmarch"” proj ectsaretheessential grist-
for-the-mill for the few success stories that make thewhole show
worthwhile.

--David

14. My colleagues have reminded me that in the late 1990s COBOL program-
mers are actually in short supply because of the massive Y ear-2000 conversion
projects underway. However, | believethisisarelatively short-term phenome-
non; the prospects for COBOL programmers are pretty bleak after New Year's
Eve, 1999.

15 Thisscenario isfar more commonin North AmericathanitisinWestern Eu-
ropeor inthePacific Rim countriesthat I'vevisited. While companiesaround the
world have engaged in reengineering projects, it'sless common, outside North
America, to seethe "radical” reengineering projects that eliminate large num-
bers of employees. And for the same reasons—cultural traditions, socia policies,
government regul ations—there are fewer death march projects in these coun-
tries. Theworkers, especidly in Western Europe, arefar morelikely to be shield-
ed from excessive overtime and to refuse adamantly to give up their sick days,
vacation days, holidays, personal days, and other forms of time off. Whether this
isagood thing or abad thing is outside the scope of this book.

16.Ed,

»>why do they do it??«

I think they do it because, as Al, suggests, they think they're
better than others who have tried. And, sometimes they really are!
(That doesn't eliminate the death march. In fact, it probably
prolongs it.)

I've told you before, I think everyone should be on at least one
of these projects. However, there are some other things that you
should do at least once:

+ Spend a night in jail.

48

DEATH MARCH

o*- Get commode-hugging drunk

+ Raise a boy

+ Raise a girl

+ Start your own business

+ Climb Mount Fuji

(The Japanese have a saying:

"He who fails to climb Fuji-san is a fool. He who climbs Fuji-san
twice is an even greater fool.")

One thing to do:

Get a good manager, who is empowered to do the right things.
One thing not to do:

Kill yourself when the project goes south.

-Sr. ric

chapter

Beware the politically obsessed. They are often bright and
interesting, but they have something missing in their natures, there is a
hole, an empty place, and they use politics to fill it up. It leaves them
somehow misshapen.

Peggy Noonan
What 1 Saw at the Revolution, "Another Epilogue” (1990)

The political arena leaves one no alternative, one must either be a
dunce or a rogue.

Emma Goldman
Anarchismand Other Essays, "Anarchism: What |t Really Stands For" (1910)

To "know your place" is a good idea in politics. That is not to say
"stay in your place" or "hang on to your place" because ambition or
boredom may dictate upward or downward mobility, but a sense of
place—a feel for one's own position in the control room—is useful in
gauging what you should try to do.

William Sefire, Before Tht Fall, Prologue

49

50 DEATH MARCH

Palitics are a factor in every software development project, no matter how
much we might want to deny it; the distinguishing characteristics of
death march projects is that the palitics are usually so intense they can
overwhelm the effort to get any work done. Thus, while the process asso-
ciated with politics, namely the political process of negotiation, will be
discussed in a separate chapter, it's important to acknowledge the exis-
tence of politics in this chapter and to offer some general advice.

Many software developers will argue that while politics exist, they
would prefer to steer clear of the whole ugly mess. That's understand-
able—many of us who gravitate to the software field are socially inept
and politicaly naive: not only do we find political games nausesting, but
we know that we won't do well if we try to play the "game" of palitics.
That'sfine, aslong as someone (typicaly the project manager) can handle
the politics. But, if everyone participates in a death march project on the
assumption that, "because this project is so important, they'll leave us
aone and spare us the usual messy political negotiations,” then the
project hasfar fewer chances of success.

I'll discuss three aspects of palitics in this chapter:
* Identifying the palitical "players' involved in the project
» Determining the basic nature of the project
« ldentifying the levels of commitment of project participants

2.1 IDENTIFYING THE POLITICAL "PLAYERS"
INVOLVED IN THE PROJECT

The key point to remember hereisthat your chances of successinadeath
march project are effectively zero unless everyone on the project team
knows who the key playersare. Some of them will be noisier than others,
and some will be supporters and friends; but, some will be voca oppo-
nents of the project, and others will be waitingfor the chanceto stab the
project manager in theback. It's easy to forget this whilejuggling athou-
sand other management crises and technical problems® but it's essential.

| believe that it'simperative for everyone on the project to know who
the key players are—even if it'sthe project manager'sjob to interact with
al the external players on a day-to-day basis. On rare occasions, a

POLITICS 51

"skunk works" project will manage to isolate all of the project team
members from the rest of the human race while the work is being done,
but that's unusual. Indeed, in today's world, even a "skunk works"
project isn't completely isolated—because everyone is connected to ev-
eryone else via e-mail and the Internet. And in normal working environ-
ments, everyone isbound to have someinteraction with other technical
colleagues, as well as managers above and outside the project, and van
ousmembersof theuser community, duringthecourseof theproject. It's
inevitable—webumpintotheminthehallway, inthecafeteria, orinthe
restroom.

Thus, if a project team member receives an apparently innocent
phonecall, e-mail message, or casua question in the hallway from an ap-
parently friendly middle-level manager asking, "So, how's the project
coming along?' it's important for that team member to know whether
the message is from a friend or toe, and whether it's thus likely to have
political overtones. Whatever answer you provide to the casual question
islikely to be carried back to other part& of the organization, and it's not
uncommon to see the information amplified, distorted, or buried. As
Dale Emery observed in an e-mail messageto me([l]:

In general, I've observed that if there is a constituency
whose input isrelevant, the developers will often get it
anyway, though perhaps in a more expensive, more
distorted way than if the manager weren't trying to
keep it from them. Other times, the developers will
simply makeassumpti onsaboutwhat each stakehol d-
er needs.

The typical "players’ in adeath march project are the following:
* Owner
e Customer

Shareholder

Stakeholder

Champion

I'll discuss each of these below.

52 DEATH MARCH

211 Owner

The owner istraditionally the person who accepts, authorizes, or pays for
the system and/or the results of the project. It's obvioudy important to
identity this person and do anything possible to keep him or her happy
during the course of a death march project.

It's amazing how many software projects take place without anyone
having the faintest idea of who the owner is; this is particularly common
in organizations where projects are spawned by ambitious and over-
eager 1S/IT professionals who reassure one another with statements like,
"I'll bet the marketing department will be redly ecstatic when they see
this new sysem we're building for them." Obvioudy, well-managed or-
ganizations would never let such projects get started—but the major
point to keep in mind here is that you won't see many death march
projectsinitiated without aclear command from an owner. Thereasonis
simple: such projects involve extraordinary expense and/or risk and/or
schedule constraints. The IS/IT department is unlikely to invent such
projectson its own initiative, and the normal bureaucracy in the organi-
zation would prevent the project from being scheduled and funded un-
less a strong, vocal command is issued by someone willing to take
authority.

This raises another interesting point: The owner of a desth march
project often turns out to be a much higher-level manager than would be
the case for a normal software project. Indeed, it sometimes turns out to
be the President or CEO of the organization, because the project affects
the very survival of the company. Even if it's only a Vice President, the
point is that the owner of a death march project often has much more
clout, and much more latitude when it comes to authorizing expendi-
tures and exceptions to bureaucratic restrictions, than might be the case
foranormal project.

On the other hand, this doesn't mean that the rest of the political hi-
erarchy has disappeared; indeed, one of the problems with many death
march projects is that the project manager has little or no direct contact
with the owner. Authorization for the project, as well as periodic de-
mands for status reports, may be filtered down the chain of command
from the high-level owner to the middle-level manager who sts just

POLITICS 53

above the death march project manager. And al of these intermediate
managers between the real owner and the project manager may be, in
the terminology discussed below, either customers, shareholders, stake-
holders, or champions—or political enemies of the project.

The reason it's important to keep this in mind is that the owner's
original demand for adeath march project can be easily distorted before
the project manager receives hisor her marching orders. Most often, the
non-negotiable aspect of the death march project is the deadline: The
new Super-Widget System absolutely, positively must be finished by the
first of January or the world will come to an end! But, as that order is
transmitted down the chain of command, the organizational bureaucracy
will tack on its own ligt of additional constraints: The project must be pro-
grammed in a combination of Ada and RPG; the team must include
George, Harriet, and Melvin (because they're so incompetent that no
other project will take them); it must use the organization's newly-creat-
ed (but never-before-used) object-oriented methodology; it must suffer
weekly visits from the methodology police; the project team members
must fill out the 17-page form XJ13 in triplicate at the end of each work-
day; and,... the list goes on.

In situations like this, a face-to-face meeting with the high-level
project owner can sometimes result in all of these idiotic constraints be-
ing eliminated, by executive fiat—'all except one: the deadline. But, if the
project manager has a written authorization that exempts him or her
from the other ridiculous rules (which may well be the reason no other
project haseven been finished on time!), it may be possible to finish the
death march project within its required schedule constraint. And, if the
high-level owner can be convinced that some extra money is needed in
the budget for equipment, toals, or even a slush fund for weekly pizzas
fortheproject team, the project manager canusually obtainit, evenif the
bean-counters and penny-pinchers el sewherein the organi zation would
normally do their best to prevent it.

Obvioudy, not al high-level owners are so cooperative, and not al
project owners occupy lofty positions within the organization. But the
point remains. While it's important for any project to identify its owner,
it's doubly important for death march projects. And my experience has
been that in a majority of cases, the high-level project owner isfar more

) DEATH MARCH

likely to be a friend than afoe. It'sin the owner'sinterest to cut through
the red tape and eliminate the bureaucratic constraints, which is almost
alwaysablessing tor the project manager.

However, keep in mind that the project owner may not be the person
who actually uses the system when it's ingtalled; nor is the owner the
only onewho has a political impact upon the project. The other players,
discussed below, also must be kept in mind.

2.1.2 Customers

The customer is the person—or, in many cases, the group of persons—
who will use the system when it is finished by the death march project
team. It's common, in organizations around the world, to refer to this
person (or group) asthe "user." Customers may also be owners of death
march projects; but, a tar more common scenario is the one where the
customers are administrative or clerical users who will interact with, and
operate, the system developed by the death march project team.

The politics associated with project customers are discussed in most
project management textbooks, and | won't cover the subjectin much de-
tail; sufficeit tosay that all of the politics are magnified in a death march
project. We know, for example, that the customer isusually the source of
the detailed requirements for a system, because the owner (and various
other high-level managers) have little or no experience with the actual
operation of the business application, and tend to view the operational
terrain from a height of 30,000feet. But, despite the necessity of commu-
nicating directly with the customer/users to elicit the detailed require-
ments of the system, we know that in many projects, the owner (or other
managers) will tell the project team not to talk to the users because
" they'retoo busy," or because "I cantell you everythingyou need to know
abouttheirrequirements,” or various other excuses. Finally, we know that
in normal projects, the customers can ultimately sabotage the project by
refusingtouseit, or by complainingthat it doesn't meet their needs.

All of thisistrue for death march projectsaswell, with one additional
caveat: The customers) may not be aware of the extraordinary politics,
constraints, or pressures associated with the death march project. This
can create a disaster if someone on the project team marches up to a cus-

POLITICS %

tomer and says, "Hi—I'd really appreciate it if you could interrupt your
work now to describe your requirements, because if our project is late,
the entire company will go bankrupt. But of course, if the project does
succeed, you'll be out of ajob too, because the whole point of our new
system is to facilitate a massive downsizing effort that will eliminate the
entire 700-person clerical department you belong to."

2.1.3 Shareholders

Shareholders are effectively "co-owners' of asystem; while they may not
have the authority to initiate a project, or to accept its results, or to ap-
prove the budget, they have a vested interest in its outcome. Indeed, they
do share the budget in many cases, along with al of the other benefits
and risks associated with the project. Think of them as members of a
"Board of Directors’ with the owner as "Chairman of the Board." The
shareholders may or may not get together on a regular basis, and they
may not have any explicit contact with the project team; but they're
shareholders nonethel ess.

Thus, to alarge extent, the project team and project manager can treat
the shareholders in much the same way they treat the owner—the key
point here is that the shareholders must not be forgotten or ignored. It's
hard to overlook them, for they tend to throw their weight around and
maketheir voices heard; they're also present in many of the meetings and
presentations associated with the death march project. On the other
hand, there's atendency on the part of some project managers to avoid
these individuals if possible, on the theory that the project owner can
speak for the group—and understandably, the project manager feels that
every moment spent coddling a shareholder isamoment that could have
been spent working on the project. But, just as the shareholders can par-
ticipatein the decision to authorize, approve, and pay for thedeath march
project, they can beinvolved in the decision to cancel the project. If they
feel they are beingignored, they are that much morelikely to do so.

Consultant Dave Kleist identified an interesting form of sharehol der
in arecent e-mail communication [2]:

56 DEATH MARCH

In several of the death march projects I've experi-
enced, | believe that thereisavariation of sharehol der
that is very important to identify: the vendor, espe-
cialy if they have people on site to work on the
project.

Actually, if avendor(s) is involved, there may be several categories of
shareholders. The vendor's market representative is often more con-
cerned about making the sale and earning a commission than whether
thevendor's products actually work and the project succeeds. If the ven-
dor has installed consultants, technicians, or other individuals who will
work with the project team, then adightly different set of political agen-
daswill emerge.

2.1.4 Stakeholders

The distinction between shareholder and stakeholder may seem aca-
demic, but it's an important one. Stakeholders are those who have a
"stake" in the outcome of the project, even if they don't have an explicit
decision-making role in its conduct or progress. Customers, in the sense
discussed above, are obvioudly stakeholders, and so is the owner and
other shareholders.

Other stakeholders might be members of the management hierarchy
who will have to abandon their old information systems if the new sys-
tem isfinished on time. Or, they might be members of unions, or suppli-
ers, customers, or competitors. They might even beother members of the
IS/IT organization; for if the death march project succeeds, it could have
an impact on methods, tools, or other aspects of the way "normal”
projects are conducted. Paul Neuhardt pointed out another common
form of stakeholder in arecent e-mail message to me [3]:

You missed "the inner circle” These are the people
who have no direct stake in something yet they have
influence with those who do, an opinion on what
should be done and a burning need to inflict their
opinion on others. Also known as "the closest advi-
sors," these people often spend time whisperingin the
ears of decision makers in soft, subliminal tones and

POLITICS 57

can turn afriend into afoe overnight without you even
knowing that it happened.

This sounds like stakeholders are "enemies’ of the death march
project, and | don't mean to imply this, stakeholders can be alies anc
valuablesupporterstoo. They can putinagood word duringthekibitzing
that inevitably takes place behind the backs of the project team members;
and they can supply dl kinds of assistance—tangible and intangible—to
the project team if they feel it'sworthy of support. Indeed, if the death
march project isregarded as an "underdog" that somehow got involved
ina"David vs. Goliath" battle, even those members of the organization
who have no stake at all in the outcome of the project will sometimes
step forward and offer support.

Notwithstanding the possibility of thiskind of support, thereis prob-
ably a higher likelihood that the stakeholders will be critics and enemies
of the project. Thereason issimple: A death march project ismore likely
than anormal project to represent asevere changein the status quo; and
oneof thebasic principles of paliticsisthat individualsand organization-
al culturesautomatically resist achangein the statusquo, eveniif they can
be convinced intellectually that the change is important and necessary.
So, whilethe project team obviousy wantsto wel comestakehol derswho
turn out to be friends of the project, it aso needs to be alert to the possi-
bility of stakeholders who will throw road-blocks into the schedule and
the project plan.

One other point to keep in mind: The existence and identity of the
stakeholdersis not aways obvious, because they're not part of the formal
organization chart. If the system has an explicit impact on the labor
union, or on the clerksin the order-entry department, then itisn't hard to
identify them as stakeholders. But, if there'sacrusty old project manager
who plays golf with the VP of Information Systems, and if that project
manager is muttering to himsdf, "If that death march project succeeds,
thenwell all haveto learn Smalltalk, and I'm ill convinced Smalltalk is
aCommunist plot," then you've got a silent stakeholder that could have
asubtle, but important, impact on the project.

58 DEATH MARCH

215 Champions

Just as there are potential enemies of the death march project, there are
alsof riends—includingfriendssopowerful andsohel pful thatthey come
to be known as champions. The best of all worldsisthe championwhois
also the project owner; champions may aso come from the ranks of cus-
tomers, shareholders, or stakeholders. Champions, however, are often
outside the normal set of political playersin the project. The champion
might be rooting for the success of a young project manager that he or
she considers a protege; or, the champion might be concerned about the
overall success of the project because of the impact on the reputation and
credibility of the IS/IT department or entire organization. Most often, the
champion is intrigued by the technology "silver bullet" with which the
death march project manager hopes to accomplish miracles—whether
it's Java, OO technology, or a new client-server development tool, the
champion may have seen earlier demonstrations of it, and may even
have been the one who suggested that the project manager use it for the
death march project.

Every project can use a champion or two, but death march projects
really need them. The reason should be obvious from the discussion
above: Projectslikethis aready have plenty of criticsand enemies, along
with those who will second-guess every decison that the project manag-
er makes. There will be numerous occasions throughout the project
when someone in a management meeting will complain that, "Those
hotshot techno-nerds on the Titanic Project have ordered seven copies of
Visual Basic Enterprise without going through proper channels. Not only
that, the project manager took $32.98 out of petty cash to buy Mc-
Donad's hamburgers and French fries for the project team last Friday.
Why, | could smell the French fries al way down the hall in my office! [4]
We can't let them get away with thisblatant disregard for company poli-
cy!" The champion isthe onewho can stop all of thisnonsense by saying,
"Trust me; these kids might be alittle feisty, but they'll get thejob done.
Leavethemalone.”

Thiswon't work, of course, unless the champion has a great deal of
credibility within the organization's political circles—without this, he or
sheisnotachampionatall. But, it often meansthat the championwill be

POLITICS 59

aveteran within the organization, deemed older and wiser than the hot-
headed project manager and the death march volunteers who ill have
the stamina to work 18-hour days for months on end.

Bottom line: A project champion is more important than the latest
methodology or razzle-dazzle programming language. A death march
project without a champion to defend the team's disregard for bureau-
cratic rules and to support the team's decision to use risky techniques and
technology is a lonely, miserable experience. | don't recommend it. If
your champion is adso the project owner, and if there aren't any other
shareholders to worry about, and if your owner/champion is persuasive
enough and involved enough to deal with the stakeholders, then you
may have the luxury of ignoring dl of these political issues. But unfortu-
nately, most death march projects don't have that luxury; while it's usu-
aly the project manager who takes on most of the burden of dealingwith
the situation, everyone ese on the team needs to be at least minimally
aware of the cast of political characters.

2.2 DETERMINING THE BASIC
NATUREOF THEPROJECT

In the previous chapter, | described several characteristics of death march
projects. They can be big or small; they can involve one homogeneous set
of customers or an incompatible, heterogeneous group; and, they can be
affected by different combinations of schedule, budget, and resource
congtraints.

But, there's another way of characterizing these projects, and it's
likely to haveasignificant political impact onall concerned. Asillustrated
in Figure 2.1, there are two key issues that can be mapped onto a two-
dimensional grid; the horizontal axis represents the chances that the
project will succeed, while the vertical axis represents the satisfaction or
happiness that the project team members feel while the project contin-
ues. One way of determining where the team members would place
themselves on thevertical axisisto ask, "When thisproject isover, would
you consider taking on another death march project?' Or, more simply,
"Areyou in pain?"'

60 DEATH MARCH

A
high
Mission
Kamikaze .

w Impossible

i

£

(=8

[=%

o]

I

Suicide Ugly
L
[
low Chance of success high

FIGURE 21 THE DEATH MARCH PROJECT STYLE QUADRANT

There's no particular scale on this chart, and the boundaries between
the four quadrants are rather arbitrary; even o, | haveyet to find a death
march project that can't identify which quadrant they'rein (though they
may not have thought about it before | ask the question and draw the
picture for them). It's highly doubtful that anyone initiated the death
march project with the explicit intention of placingit into a specific place
on the chart, but the combination of politics and project constraints (bud-
get, schedule, etc.) will push the project in one direction or the other.

The descriptions of the four quadrants are also rather arbitrary, and
you should feel free to change them to fit your organization's cultural id-
iosyncrasies. Here are the basic characteristics of thefour quadrants:

« Mission Impossible projects—this is the kind of project glorified by
the old TV series and the new (vintage 1996) Tom Cruise movie.
The odds are heavily stacked against the project succeeding, and
there are all manner of villains and traitors plotting the demise of
the team. But, the project manager is a handsome Hollywood hero,
the technical hackers are clever geniuses, and the team has God on
its side. The team members are fanatically loya to one another
(notwithstanding the twist in the Tom Cruise movie), and it's clear

POLITICS 61

that each individual thrives on the challenge and thrill of "living on
the edge.” And, while it's rarely indicated in the old TV series, the
real-world mission impossible project teams typically do dream of
fame, glory, and riches if they succeed. And, their mission isto suc-
ceed; they are convinced that a combination of hard work and
technical virtuosity will makethat possible.

* Uglyprojects—these arethe projectswhose team membersare sac-
rificial lambs that will be slaughtered by a cold-blooded project
manager to bring the project to a successful end. Projects of this
kind usually have the"Marine Corps'mentality discussed in Chap-
ter 1—eg., the project manager will be constantly haranguing his
or her team that, "Real programmers don't need deep!” Theimpli-
caion is ds0 that "red" programmers don't have to go home to
vigit their families, nor do they have to vidt their aging parents in
the hospital, nor do they have to do anything else that would dis-
tract them for a moment from the demands of the project. In
projects like this, it'snot uncommon to seeone or two of the project
team members collgpse from exhaustion, suffer ulcers or a nervous
breakdown, or experience a divorce. And when it happens, the
project manager chuckles, and tells the other team members that
the unfortunate victim is a weakling who deserved his or her fare.

The key characteristics of the ugly project are that (8) the
project manager is determined to succeed, (b) the project manager
is determined to survive, and thus profit from the success of the
project, and (c) the project manager iswilling to (and indeed expects
to) sacrifice the health and happiness of the project team members
to succeed.

* Suicideprojects—intheseprojects, everyoneisdoomed, and every-
oneis miserable. The team members and the project manager have
typically agreed to work on the project only because the alternative
is being fired; and they know from the outset that there is no
chance at dl of succeeding. They can't afford to quit, they have no
project champion, they have dl the cards stacked against them...

* Kamikaze projects—these projects are doomed too, but everyone

agrees that it will be aglorious failure, and onethey will be proud
to be associated with. The technical members of the project team

62 DEATH MARCH

sometimes derive their happiness from the opportunity to work
with advanced technology they've never used before, and which
they assume they'll never see again after the project collapses. The
project manager hopes that the project will be an inspirationd les-
son to future project managers. Sometimes, kamikaze projects are
associated with a doomed company whose glorious past has cre-
ated such fierce loydty on the part of the team members that they
feel it is an honor and a privilege to be alowed to sacrifice them-
selvesin a doomed project whose failure will be the company's last
hurrah. Of course, there isasmall chance that the project will suc-
ceed, and the company may survive; and even if the project team
members utterly destroy themsdves in the course of bringing
about such amiracle, they will feel good about it.

From the comments above, you can probably tell that I'min favor of
mission impossible projects, and | admire kamikaze projects; | sympa-
thize with those who have ended up on suicide projects; and | detest ugly
projects. But that's my value system, and it may not be the same asyours.
More important, it may not be the same as your project manager's value
system; or, if you arethe project manager, you may find that your value
systemisdifferent thanthat of yourteam members'. For obviousreasons,
it's a good idea to have everyone in the same quadrant. It's difficult to
succeed with a mission impossible project if one or two key members
think they're on a suicide mission.

Also, remember that public assurances from the various sharehold-
ers, stakeholders, and miscellaneous managers surrounding the death
march project may or may not be honestindications of the real situation.
One would like to hope that a project owner would not create a suicide-
mi ssion-style of death march project, but stranger things have happened
in big companies—it may be part of a larger political battle that the
project owner isfighting. Quite often, senior management has abroader
scope of information which provides a more redlistic picture of the
project's chances of success. Your Vice President, for example, may be
fully aware that amerger/acquisition is goingto be publicly announced a
week before the deadline of your death march project, and your projectis

POLITICS 63

going to be canceled at that point, no matter how well or poorly it's do-
ing. C'est lavie,

The most common danger, though, is getting involved with an ugly-
dyle death march project, in which the project manager refuses to ac-
knowledge that he/she plansto sacrifice team memberswhenever it's ex-
pedient. Fortunately, it'susually easy to spot these situations, even when
the manager refuses to acknowledge it. The "macho” behavior, and the
denigrating references to weakling team members who can't keep up
with the performance of "real programmers' are dead give-aways to the
manager's attitude. Obvioudy, if you have a "Marine Corps' mentality,
and are both willing and able to meet any physica, emotional, political,
and psychological demands, then this won't matter to you.

Managers of ugly-style death march projects are often brought in
from the outside, either at the beginning of the project or after the first
project manager has quit or been fired. The new manager often has no
past history or personal relationship with anyone in the company, and
thus has less hesitation than might be expected when pushing the team
membersto work harder and longer. Indeed, I've seen severd situations
wherethe project manager isa"hired gun" who movesfrom company to
company to take on the chalenge of such projects. The manager typically
ddliversasuccessful project result—that'swhy he or she has got the rep-
utation that alows him or her to charge hefty consulting fees—but the
project team members are so disgusted and exhausted that they dl quit at
the end of the project (if not before), and the project manager has made
somany enemies that he or she, too, has no choice but to pack his or her
bags and move on to the next death march project. It's a perfect role for
Clint Eastwood, and it's a situation to watch out for if someone bearing
his likeness rides into town to take over the death march project you've
just sgned up for [5].

The best time to deal with these issuesiis hefore the project begins, as
part of choosing the team members, the project manager should provide
an assessment of what kind of death march project he or she expectsit to
be, and then ask prospective team members (8) how they assess the
project, and (b) how they feel about occupying one of the quadrantsin
the diagram above. As I'll discussin Chapter 4,1 feel very strongly that
the manager of adeath march project must have the freedom of choosing

64 DEATH MARCH

the members of his or her team; and in addition to choosing the appro-
priate technical <Kills, it's aso crucid to choose individuals who have a
compatible assessment of the "styl€" of the project.

Thesituationisdifferent, of course, if you'reaprospectivemember of
a death march project team, and you're being interviewed by the project
manager. As discussed in Chapter 1, sometimes you don't have a choice
about participating in the project, and contrary to the advice given in the
previous paragraph, sometimes the project manager doesn't have a
choi ce about whether to accept you asamember of theteam; in thiscase,
it'sat least hel pful to know how your manager assessesthe project. I1f you
do have the option of saying "No, thanks!" to the death march project,
then it's all the more important to ensure that your assessment of the
project is compatible with that of your manager. As discussed above, it's
doubly important if your manager intends to carry out an ugly-style
death march project; you need to ask yourself whether it'slikely that you
will be one of those sacrificed during the course of the project.

Remember aso that the situation can change dynamically during the
course of the project—because of the progress (or lack of progress) made
by the team, because of the political situation outside theteam, or because
of physical or emotional exhaustion on the part of team members, etc.

2.3 IDENTIFYING THE LEVELS OF
COMMITMENT OF PROJECT PARTICIPANTS

Onelastitem needsto be discussed: thelevel of commitment thevarious
project team members are willing and able to make to the project. To un-
derstand the notion of "commitment," recal the old parable about the
argument between the chicken and the pig as to whose contribution to a
bacon-and-eggs breakfast was most important.

"I work incredibly hard to produce those eggs each morning," the
chicken says. "And they are the centerpiece of the breakfast meal."

"Well, there'sno question that you'reinvolved,” repliesthepig. "But
I'm committed.”

Paul Maskens responded to this parable with the following observa-
tion [6]:

POLITICS 65

I'm not sureyou will find any old pigsin devel opment,
perhaps more chickens. | think that kind of commit-
ment continues until (inevitably?) you get into the first
death march project—then there is a rude awakening.
Either the pig realises what's happening, this is the
slaughterhouse! RUN!! Or the pigismakingbacon...

Thelevel of commitment by team membersisusually strongly influenced
by the overall "style" of the project, as discussed above; for example, if
everyone realizes they've been assigned to a suicide project, then they'll
probably exert no more effort and emotion than absolutely necessary.
And, even if management insists on large amounts of involuntary over-
time during the project, you'll find that team members are spending
evening hours and weekends (times when the high-level managerswho
imposed the overtime are virtually certain not to be present) catching up
with persona phone calls, writing letters to their families, or sitting
around the coffee machine shooting the breeze with one another.

Similarly, an ugly-style project will have alevel of commitment dic-
tated, or at least strongly influenced, by the demands of the project man-
ager. My experience has been that the ugly-style project manager is
willing and able to make the same leve of physical and emotional com-
mitment to the project that he or she is asking of everyone dsg; thus, if
the project team is in the office on Saturday and Sunday, the ugly-style
project manager will be cracking the whip over them.

But, what about the kamikaze- and mission impossible-style proj-
ects? And, what about adeath march project that nobody wants to char-
acterize as being in one of the four quadrants suggested in Figure 2.1? In
these situations, it's essential that the project manager get a redistic as-
sessment of the limits that the team members have placed on their com-
mitment to theproject; and, for any of the project team memberswho are
contemplating making an enormous sacrifice to their persona life for the
next several months, it'simportant that they know whether they can ex-
pect asimilar level of commitment from their colleagues.

Inthe best of dl cases, everyonewill provide an honest assessment of
their commitment and their constraints. "I'm 100 percent committed to
this project,” someone might say, "but my sister is getting married just

66 DEATH MARCH

before the deadline in June, and Til be gone for three weeks, no matter
what. I'm sorry the schedul eworked out that way, but herweddingisthe
most important thing in my lite." Since the rest of the project team
doesn't even know thesister, thismight be regarded asa frivol ous excuse
to disappear during the crucial final weeks of the project devel opment ef-
fort—but at least the team member is being honest about his or her level
of commitment [7].

Unfortunately, not everyoneis able to announce a schedule of their
personal commitments. A typical team member might promise a 100-
percent commitment to the project, but if he or shehasachild that hasto
betaken to the hospital, all betsare off. And of course, there'salwaysthe
chance that a team member will win the grand prize in a lottery and re-
ceive aonce-in-a-lifetime opportunity to takethe entire family to Tahiti

.. .and who knows what other unpredictable events might pose a chal-
lenge to an otherwise sincere promise to devote oneself to the death
march project on a 100-percent basis? [8] It's unrealistic to ask everyone
to anticipate all the possible situations that might arise, but it isrealistic
for the project manager to provide an explicit and redlistic picture of the
level of commitment he or she expectsfrom theteam members. If atwo-
week absence to attend your sister's wedding is going to be considered
an act of treason, far better to know about it in advance.

Brian Pioreck reminded me in a recent e-mail message that it'saso
crucial for theteam membersto be aware oteach other'slevel of commit-
ment, which the project manager can aso accomplish through appropri-
atecommunication[9]:

I think you aso have to make their commitments pub-
lic through the use of a project plan. Everyone seesthe
total involvement of dl team members this way and
what their own involvement means to the project. It is
up to the project manager to communicate this and
make their commitment match their effort.

POLITICS 67

2.4 SUMMARY

The discussion in this chapter doesn't provide any operational advice
about managing, planning, or carrying out a death march project. But,
style and substance are inextricably entwined in many aspects of life.
Even if a death march project isfollowing al of the "rules’ about design-
ing, coding, and testing a software system, the "styl€" issues discussed in
this chapter can kill it.

Onceweveidentified the key playersin the project, determined the
"style" of the project, and communicated the level of commitment that
the manager expects and the team members can realistically promise—
thenit'srimeto move on to the real work of the project. That beginswith
anevenlarger issue of palitics: negotiation, which I'll discussin Chapter 3.

Notes

l. Ed,
»Are there any other significant constituencies that I've
missed? «
Yes. Developers, the people whose death is referred to in your
title.
» How important do you think it is for _all of the project
team members to be aware of the existence of these
constituencies and whether or not they can be viewed as a
efriend" or "foe" of the death march project? I personally
believe that everyone on the team _should know this
information, but I have manager friends who believe that this
is too distracting, and that the developers should be spending
every ounce of their energy on the project itself, while the
project manager (who presumably is more politically adept)
spends his or her time dealing with the outsiders. What's your
opinion? «
I agree with your manager friends that the developers should
be spending every ounce of energy on the project itself. But
I also believe that information about each constituency is
part of the project, so it's better for everyone (the
constituencies, the managers, the developers) if the
developers have that information. Any information that's
relevant to the project but is hidden from the developers
brings the project one step closer to the edge of failure.
If the project manager were extremely talented at knowing what

DEATH MARCH

information was relevant, that might make a difference. I
haven't seen managers who were very good at that.

In general, I've observed that if there is a constituency
whose input is relevant, the developers will often get it
anyway, though perhaps in a more expensive, more distorted way
than if the manager weren't trying to keep it from them. Other
times, the developers will simply make assumptions about what
each stakeholder needs.

» mission impossible, kamikaze, ugly, suicide «

I like these terms. I'm not sure how to know which kind of
project I'm involved in until after the project succeeds/
crashes. I think developers involved in a death march always
believe (or are trying desperately to hold on to the belief)
that they are in a mission impossible project.

» How important do you think it is for the project manager
to get a really good assessment of each team member's Ilevel
of commitment? «

"Level of commitment" is way too vague to be useful to me. If
I am want to know what kind of "commitment" I can expect from
someone, I would want to know what things in particular are
more important to them than this project, and what things are
less important.

I've always liked Watts Humphrey's ideas about "commitment
discipline." He describes them in section 5.1 of "Managing the
Software Process.*

» Is the project manager just kidding himself/herself by
believing the team member's sincere statement of commitment,
given that things can change drastically during the project?
<

Any statement of commitment can only describe how the team
member feels right now, given what they know right now.

If a manager asking about commitment really wants to know,
"How committed will you be, regardless of what happens on the
project, regardless of what happens in our outside life,
regardless of what demands I may make of you?" then any answer
the team member gives is likely to be useless.

I've been asked many times to commit to achieving some result
that is not completely within my control. I can tell you what
actions I can commit to, but commit to a result and there are
factors beyond my control, what would my statement of
commitment do for you?

Dale

Ed,

POLITICS 69

»1. Are there any other significant constituencies that I've
missed? «

In several of the death march projects I've experienced, I
believe that there is a variation of shareholder that is very
important to identify: the vendor, especially if they nave
people on site to work on the project. Depending on who bought
the project or software from the vendor, you may have some
difficulties right away. A golf game sale for a package (my
president plays golf with your president) is a big predictor
for a death march, since the requirements process is typically
shorted severely. Don't be the first company to buy anything.
Once the vendor staff and client staff start banging heads,
things rarely improve. It makes progress that much slower
since positioning and putting spin on project news takes
precedence over real project status. Makes it that much harder
to manage if you don't know who is telling you the truth or
when they are doing it.

- Dave

. Ed,

« [Stuff about identifying the key political players in a
project] Are there any other significant constituencies that
I've missed? »

Unfortunately, yes. You missed "the imner circle." These are
the people who have no direct stake in something yet they have
influence with those who do, an opinion on what should be done
and a burning need to inflict their opinion on others. Also
known as "the closest advisors," these people often spend time
whispering in the ears of decision makers in soft, subliminal
tones and can turn a friend into a foe overnight without you
even knowing that it happened. It happens in any political
organization from the White House to the Congress to any
company with more than 3 people. Even if they have no apparent
stake, you had better have The Imner Circle on your side if
you want to make it. These people can be old college buddies,
the VP of Sales who has an opinion on everything and the
chutzpah to believe he is always right or the faithful
secretary of 20 years' service who has "seen it all" and knows
"what really works for us."

To put it another way, if you want to get anywhere with Mr.
Clinton you had better not make an enemy out of Mrs. Clinton.
« How important do you think it is for all of the project
team members to be aware of the existence of these
constituencies and whether or not they can be viewed as a

70 DEATH MARCH

"friend" or "foe" of the death-march project? »

Essential- Yes, lot's of people hate getting into politics and
want to be left alone to "do their jobs." My response to that
is, "It's your job to get this software written, and these
people can keep you from doing that just as easily as any
compiler fault or hardware crash will. If you don't keep them
happy, your job evaporates."

« I've identified four fundamental types of death march
projects in this chapter, from the perspective of the
political climate that will prevail during the project: »
I've seen another type of death march, but it sort of screws
up your quadrant concept. I would call it "the lost squadron":
We set out to go somewhere, but the destination changed in
mid-trip. And then it changed direction again and again and
again until finally we started wandering around without
knowing where we are or how to get home. If we actually ever
get finished it will only be because we stumbled on the
destination by accident.

« How important do you think it is for the project manager
to get a really good assessment of each team member's level
of commitment? »

Vital. Commitment breeds both efficiency and quality, and if
you can't get a reasonable handle on commitment, it makes
estimation and quality control that much harder.

« Is the project manager just kidding himself/herself by
believing the team member's sincere statement of commitment,
given that things can change drastically during the project?
>

Probably. At the outset, every one tells you they are
committed, and they may even believe it themselves. The trick
is to continually re-assess the team members' commitment
levels because they will almost certainly change over time and
thus the efficiency and quality of death march work will
change (almost certainly for the worse) over time as well. It
helps to be able to read minds <g>.

-Paul

, For some reason, politicians (other than Bill Clinton) hate French fries, and
ecm to regard the odor as a direct challenge to their authority. I began noticing
is on consulting engagements in the mid-1970s, whenmembers of a project
am I was working with told me in hushed tones that they had to keep the con-
ercnce room door closed lest the highly feared Vice President smell the odor. I
was delighted to see that Scott Adams remarked upon the problem in The Dilberi

POLITICS n

Principle. Could it be that university business schools are teaching MBAs that
French fries are a Communist plot? Or, could it be that the managers most of -
fended by the practice grew up before McDonald's started their enterprise in the
mid-1950s, and never got over their rage at having missed out on one of the im-
portant American childhood experiences?

5. One such manager, whom | observed operating in the Wall Street financial
services community, did have an interesting strategy for calibrating the physical
stamina and emotiona strength of his team: He would create a "false crisis’ at
the beginning of the project and immediately throw the entire team into a dou-
ble-overtime level of effort. Then, he would stand back and watch to see what
happened; one or two of the team members might quit, one or two might have
a nervous breakdown, and one or two "quiet heroes' might emerge to solve the
artificial crisis through hard work or a clever technical strategy. Having thus cal-
ibrated his team, the cold-blooded manager would then relax the pressure and
get on with the real work of the project—confident that once the real crises be-
gan to occur (which they inevitably will in a death march project), he would have
a good understanding of how his team would behave.

6. » How important do you think it is for the project manager
to get a really good assessment of each team member's level
of commitment? « I'm not sure you will find any old pigs in
development, perhaps more chickens.

I think that kind of commitment continues until (inevitably?)
you get into the first death march project - then there is a
rude awakening.

Either the pig realises what's happening, this is the
slaughterhouse! RUN!!

Or the pig is making bacon...

To my mind this fits in quite nicely with the death march
theme.

Paul

7. The manager of an ugly-style project would probably pounce on this situa-
tion, and loudly complain that it was unacceptable. That's okay too—if it hap-
pens at the beginning of the project. The project team member is thus made
aware of the need to make a binary choice; if the sister'swedding has the higher
priority, it's better for the team member to resign gracefully at the beginning of
the project than to be involved in an ugly personal crisis later on.

8. This is one good reason for having small project teams and short project
schedules. A five-person team working on a six-month death march project is
far less likely to be interrupted by unpredictable distractions than a 30-person

72 DEATH MARCH

team slaving away for three years. People do get married, they do have children,
and they do have to attend to the other demands of a persona life; sometimes
these events can be postponed for a few weeks or a few months, but it's aimost
impossible to block everything out of your life for three years.

9. Ed,
»>1.... Are there any other significant constituencies that
I'vemissed?«
I also include anyone who might be affected/involved by the
implementation of the project. People who are not exactly
stakeholders but whose cooperation is required for success.
Say, the DBA group for example.
»2 . How important do you think it is for _all of the project
team members to be aware of the existence of these
constituencies and whether or not they can be viewed as a
"friend" or "foe" of the death march project?«
It is critical to developing the kind of group consciousness
among team members that helps to compress time during a
project. It will help the requirements process to be more
accurate, cut down on the number of meetings required, and
deliver better information from the meeting you do have.
»..,1 have manager friends who believe that this is too
distracting, and that the developers should be spending every
ounce of their energy on the project itself, while the project
manager (who presumably is more politically adept) spends his
or her time dealing with the outsiders.«
The whole concept of "outsiders" has to be abolished. It feeds
the myth that developers are some kind of different family of
the human species. Without the other team members involvement
the developers could be spending every ounce of their energy
building a project that is off target.
»3. I've identified four fundamental types of death march
projects...
The premise is that none of these are worthwhile outcomes
right? I think it would be interesting to present these types
without any death march explanation and let people pick which
type of project they'd be willing to work on. The point is
that so many projects are like these and people are so used
to them they might not even question the categories.
»4. ...How important do you think it is, for the project
manager to get a really good assessment of each team member's
level of commitment?«
It is critical. Without commitment you don't really have a

chapter

A bargain isin its very essence a hostile transaction ... do not all men
try to abate the price of all they buy? ! contend that a bargain even
between brethren is adeclaration of war.

Lord Byron, Letter, July 14, 1821
(in Byron's jLdtm and Journals, vol. 8)

If you're the manager of a death march project, it's very easy to predict
the outcome of negotiations over budget, schedule, and resources: you
lose. Thisis dmost inevitable, because such negotiations take place at the
beginningof theproject (or even beforethe projectif formallyinitiated),
when the project owner/customer has neither the intellectual ability,
emotional stamina, or political need to accept the unpleasant counter-
offers being offered by the project manager. More rational negotiations
sometimestake place amonth or two beforethe deadline, when thefirst
project manager has quit or been fired, and when a new project manager
demands (asacondition of accepting the assignment) that everyone face

73

74 DEATH MARCH

up to the reality that the origina deadline, budget, and required func-
tionality will never be achieved.

Not one of us seems willing to accept this sad state of affairs. Thus,
even though this chapter probably could focus on rational negotiating
strategiesfor thereplacement project manager, I'll neverthelessconfront
the question most of uswrestlewith: How can we negotiate atolerable set
of conditionsat thebeginningof adeath march project?Alas, thereareno
magic secretsto berevededin this chapter; the dismal redlity isthat at the
end of the process, youlose. Sill, it's useful to be aware of the devious po-
litical games by which you'relikely to be outmaneuvered, aswell asthe
options that should be explored when you have been presented with a
completely unredlistic schedule, budget, and/or staffing constraint.

My assumption throughout this chapter is that you are the one in-
volved in the negotiations about death march projects, schedules, etc. If
you're a technical staff member, you may beindirectly involved—e.g., by
providing advice and estimating data to the project manager, so that he
or she can carry out the negotiating battles with higher levels of manage-
ment. But, in an e-mail communication with Doug Scott [1] recently, |
was reminded that in some projects, even the project manager has but an
indirect role, because all of the negotiations are being made on his or her
behal f by the next higher-up manager:

..my biggest single obstacle in deathwatch projects
has been my own management. | came to the UK in
1972, and moved onto big projectsalmostimmediate-
ly. I don't think | learnt anything about running
projectssincethat date (I learnt alot about politics, but
that's something else). You need to understand your
own management's negotiating stance, and if they
lovetoplay roll over, youhavetokeepthemwell away
from the project.

NEGOTIATIONS 75

3.1 RATIONAL NEGOTIATIONS

The suggestion that we realy do know how to accurately etimate the re-
quired schedule, budget, and resources for a non-trivial project will set up
anemotional debate among any group of software professionalsand man-
agers. Our track record over the years certainly hasn't been a very good
one; on the other hand, many would argue that the problems have been
the result of political games associated with the very death march projects
that we're discussing in this book. But, most large organizations can point
to dozens of projectswhere the software team made its own schedule, pro-
posed its own budget, and expressed supreme confidence that it would de-
liver a fully functional system within those constraints, the team then
proceeded to hoist itself on its own petard and failed to deliver anything, at
any time. So, it's no wonder that in many of these organizations, the user
community and senior management have given up on the negotiating
process, and have instead begun imposing "do-or-die” deadlines and
budgets. Such is the genesis of many a desth march project.

Sill, that doesn't mean that we should abandon &l efforts to derive a
"rationa" estimate that we can use in the preliminary negotiations for a
project. Indeed, it's crucial that the project manager beware the tempta-
tion to give up and smply accept the initiad death march project con-
straint as an edict. One of the common signs that a project team has
adopted what | called a"suicide-style" behavior in Chapter 2 is the atti-
tude—expressed by the project manager and echoed by the team mem-
bers—that "we have no idea how long this project will really take, and it
doesn't matter, since they've already told us the deadline. So welll just
work seven days aweek, 24 hoursaday, until we drop from exhaustion.
They can whip us and beat us, but we can't do any more than that..."

I'm not going to discuss estimating techniques at length in this book;
if the project manager has no skill or experience in estimating, .then a
death march project is no place to,begin learning. But let me point out
some of the obvious resources that we have available in this field:

» Commercial estimating tools—products such as SLIM, ESTTMACS,
and CHECKPOINT are available from Quantitative Systems Man-
agement, Computer Associates, and Software Productivity

76

DEATH MARCH

Research (SPR), respectively. SPR's Chairman, metrics guru Capers
Jones, estimates that there are some 50 commercial project esti-
mating tools. None of them are perfect, and al of them require
intelligence on the part of the user (garbage-in/garbage-out
applies in this field, too!), but in the best case, they can produce
estimates that are accurate to within £ 10%. Even if they're only
accurate to within £ 50%, it's better than the political demands that
the project manager is coping with—which are often 1,000%
beyond the ability of the team to deliver.

Systems dynamics model s—numerous simul ation model s have been
developed to explore the non-linear interactions between various
factors that affect a project's behavior. For example, if part of the
strategy of a death march project is to impose a demand for heavy
overtime on the part of the project manager, what will be the
effects over a period of weeks or months? The natural assumption
is that more"output"will be produced than would be the case with
anormal eight-hour workday; but, most experienced project man-
agers will also point out that productivity (measured in function-
points per day, or lines of code per hour, etc.) gradually decreases
as exhaustion builds up. Error rates aso begin to increase, which
has an obvious impact on the testing and debugging effort. And, if
the overtime continues long enough, the project team eventually
collapses from exhaustion. Of the simulation models that I've seen
in this area, the best is Tarek Abdel-Hamid's [2], which has been
implemented in languageslike DYNAMO and i Think.

Dozens of articles and books have been written on the topic of
project estimating. Barry Boehm'sSoftwar eEngineering Economics[3]
is a good place to begin; it's important to note that Boehm's
COCOMO model from the early 1980s has been updated to
OOCOMO-2 [4]. Another dassic is Fred Brooks The Mythical Man-
Month [5]; this has aso been updated recently, to reflect modern
technology and software practices. A more recent book on software
estimatingisJimM cCarthy'sDynami csof SystemsDevel opment[6] .

The process of estimation has been studied and documented, and
organizations like the Software Engineering Institute have pub-
lished useful guidelines and checklists for improving the process of

NEGOTIATIONS 7

estimation [7, 8]. Even if we aren't very good at it, we know how to
get better.

» Familiar techniques such as prototyping and time-boxing can be
used to get an accurate picture of how feasible or infeasible the
project constraintsare for the overall system being devel oped. This
is by no means a fool-proof approach, but it can inject a dose of
reality into the project team and the surrounding layers of manag-
ers and customers. If management is demanding a system that will
require a team of three to write a million lines of code in 12
months, then it should be possible to define a skeleton version of
the system that can be built within thefirst month; thiswill provide
at least a rough calibration of the team's level of productivity, as
well as a rough idea of the overall feasibility of the project.

3.2 IDENTIFYING ACCEPTABLE TRADE-OFFS

Let's assume that the project team has prepared a "rational” estimate of
the schedule, budget, and personnel required for a death march project;
and let's assume that management is prepared for some kind of give-
and-take process of negotiation before the final decisions are made. The
most common situation is that management will declare theinitial esti-
mates "unacceptable” and make counter-demands that are far more
stringent. What should: the project manager do?

As author/consultant John Boddie [9] pointed out to me in a recent
e-mall message, the crucial thing is to ensure that everyone agrees that
thereis more than one possible "scenario” for the project:

Some useful questions during negotiations,

"If the system isready on thefifth of September rather
than on the first, will we already have declared bank-
ruptcy September second?”

"Isthere an80/20 rule here? If we deliverthe critical 20
percent that gives eighty percent of the value, do we
need the twenty percent at initial roll-out?"

78 DEATH MARCH

"Everybody wants things good, wants them fast, and
wants them cheap. Everyone knowsthat you can actu-
ally achieve any two of the three. Which two do you
want?'

The principle at work is to make those who are de-
manding the death march look unreasonable if they
are unwilling to consider more than one possible out-
come. Unless there is an acceptance of more than one
way to approach the problem, then there isno negoti-
ation. All themanager cansay is, "Well giveit our best
shot, but there are no guarantees.”

If the counter-proposal from senior management or the customer in-
volves only one "variable," the project manager can estimate the impact on
the other variables. For example, if the manager'sfirst estimate isthat the
project will take 12 monthswith three people and a budget of $200,000, it's
possible that senior management's first response will be, "Baloney! We
need to have that system up and runningin sirmonths!" The obviousway
to accomplish this is to add more people and/or spend more money (eg.,
pay higher salariesto hire more productive programmers).

But, Fred Brookstold us more than 20 years ago that the relationship
between time and people on a software project is not a linear one; the
term "man-month" (which would probably be expressed as "staff-
month" intoday'spolitically correct organi zations) wasthusexposed asa
myth. Indeed, the relationship between all of the key variables in a
project is likely to be non-linear, and it's likely to be time-sensitive as
well. Because of the "feedback effect” of many management decisions, a
change in one variable (such as adding more staff) will not only have an
impact on other variables (such as productivity) over time, but will even-
tually have an impact on the origina variable—e.g., the hiring of addi-
tional staff could lower morae, which in turn could raise the turnover
rate within the project, and ultimately reduce the size of the staff.

The non-linear, time-sensitive nature of these interactions is the es-
sence of the systems dynamics models mentioned above; but it's dso the
reason for using thevariouscommercial estimating toolsdescribed earli-
er. Thereis akey point here: The mathematics behind the systems dy-

NEGOTIATIONS 79

namics models are typically based on non-linear differential equations,
and most of us aren't very good at doing that level of mathematicsin our
heads. Similarly, the commercial estimating tools carry out elaborate cal-
culations involving dozens of parameters; trying to do this intuitively,
based on a"gut" feeling for the situation, islikely to be quite error-prone.

Unfortunately, that's exactly the situation many death march project
managers find themselvesin. Sometimes this is because of the nature of
the negotiating process (particularly agame called " Spanish Inquisition,”
which I'll discuss below); but, it's dso caused by the lack of estimating
tools and expertise in many organizations. Again, this is not a problem
you're going to be able to solve in adeath march project, if it hasn't been
addressed dready. If the organization is accustomed to deriving its
project estimates by scribbling numbers on the back of an envelope, the
death march project manager probably won't get away with spending
$10,000 on a sophisticated estimating tool.

So, what should the manager do in a situation like this? In the ex-
treme case, the manager should recognize the futility of the situation and
respond appropriately; I'll discuss that in more detail in Section 35 be-
low. But, in the lessextreme case, here are two guidelines:

 If the negotiating demand from users or senior management
involves a change of <10% in one project variable, then you can
compensate by increasing one of the other variables in a direct,
proportional fashion. Thus, if management wants the schedule
reduced by 10%, then add 10% to the size of the project team. This
isnt entirely accurate, but it's a good first-cut approximation, and
itsoften all you can get away with from a negotiating perspective.

* |f the change involves more than 10% in one dimension, then you
should assume it will have an"inverse square law" impact on any
other single dimension. Thus, in the scenario above, management
wants to cut the project schedule in half, 12 months to 6. Rather
than responding by doubling the size of the project team, the man-
ager should quadruple the team—or quadruple the budget, in order
to hire superprogrammers who can code with both hands at the
same time. Without a formal estimating model, there€'s no way to
know whether this crude heuristic will be accurate for any specific

80 DEATH MARCH

situation, but at least it's better than falling into the trap or negoti-
ating a"linear" exchange of time for people. Unfortunately, the
inverse square law is difficult to negotiate, and there's a good
chance that the project manager's "outrageous' demands will be
beaten down; but with luck, the manager will still end up in a bet-

ter position than the linear exchange would provide.

3.3 NEGOTIATING GAMES

Negotiating isa game, and it takes place on all software projects. What's
different about death march negotiations is that the stakes are much
higher, emotions are much more highly charged, and the demands of the
other side (in terms of schedule, budget, etc.) are usually so extreme that
they overwhelm any "safety factor” that we might have used in the past.
The most obvious safety factor in a traditional project, for example, is
overtime. Even if the project manager has been brow-beaten into atight
schedule and restricted budget, success can still be achieved by asking
the project team to work 10 to 20 hours per week of overtime for thefinal
few months of the project. The additional effort doesn't show up in the
official records, because the programmersaren't paid for overtime work;
thus, the manager ends up looking like a hero.

But, inadeath march project, modest amounts of overtime aretypical-
ly inadequateto achieve the dramatic resultsthat are being demanded. Be-
sides, the users and senior management aren't naive—they know that
overtime effort can be requested, and they've factored that into their own
estimateof the"required" schedulefor the project—thuspre-emptingthe
manager's opportunity to hide that free resource. But, project managers
who are veterans of such negotiations should have a few tricks up their
deeves, which can be pulled out when the bargaining sessons begin.

The neophyte project manager is at aterrible disadvantage; in the ex-
treme case, the neophyteisn't even aware that his past successes may have
occurred only because the project team voluntarily contributed sufficient
overtime effort to compensate for aridiculousproject schedule. And th#ri-
diculous schedule may have been imposed upon the team precisely be-
cause of the manager's naivete in the area of estimating negotiations.

NEGOTIATIONS 81

Management consultant Rob Thomsett has described the most com-
mon negotiating gamesin awonderful article [10]; I've summarized the
more familiar games below:

» Doubling and Add Some—this is a ploy that has been used on
projects dating back to the Pyramids, if not earlier. Use whatever
estimating techniques you have available, then double the"ratio-
nal" estimate; and, for added safety, add three months (or three
weeks, or threeyears, depending on the overall size of the project).
The major problem with this strategy isthat it runs head-on into
the most pressing constraint associated with death march projects:
schedule compression.

* Reverse Doubling—as noted earlier, management hasn't been obliv-
ious as software project managers have attempted to "pad" their
estimates by the doubling strategy discussed above. One reason for
this political astuteness is that the senior managers in many orga-
nizationstoday are former 1S1T project managers—so they're inti-
mately familiar with the games involved. As aresult, they take the
initial estimates given to them by the project managers, and auto-
matically cut them in half. Pity the poor neophyte project manager
who doesn't redlize that he or she is supposed to double his or her
estimate at the outset!

* "Guess the number I'm thinking of—thisis a game | learned in one
of my first projects, as a junior programmer. The user or senior
manager has an"acceptable"figure for the schedule, budget, and/
or other aspects of the negotiation, but refuses to articulateit. When
the project manager offershisor her estimate of scheduleand bud-
get, the user/senior manager simply shakes his or her head and
says, "No." The implied message is "That's too much—guess
again." The hapless project manager eventually (sometimes after
half adozen attempts!) comes up with an acceptable estimate, but
because it's his or her estimate, the user/senior manager is all the
more determined to hold him or her accountable.

 Double Dummy Spit—"dummy"isAustralian slang for a baby's pac-
ifier, and "spit the dummy" is an Australian phrase describing a
baby so frustrated and angry that it spits out its pacifier. Thomsett

82

DEATH MARCH

uses this as a metaphor to describe negotiating session when a
senior manager erupts in a fit of rage when the project manager
first makes hisor her proposal for the death march project schedule
and budget. The chastened manager scurries away, comes back
with a revised estimate, and the senior manager erupts again —
hence the "Double Dummy Spit." The idea is to get the manager
so cowed and terrified that he or she will go along with anything,
in order to avoid yet another temper tantrum

Spanish Inquisition—this occurs when the project manager walks
into a meeting of higher-level managers, completely unaware that
he or she is going to be asked to make an"instant estimate" for the
death march project. Imagine aroomful of grouchy Vice Presidents
staring at you while the CEO asks you in thunderous tone, "So,
Smithcrs, when do you expect to get the Frozzle System done? I've
told the whole management team that we'll have it on-line by
mid-March—you're not going to let me down, are you?"' It you're
brave enough to suggest that mid-November would be a more
realistic estimate, you'll have a dozen inquisitors questioning your
intellect your credentials, your loyalty, and perhaps even your reli-
giousfaith.

Lore Rid—with outsourcing an option in many organizations today,
this game is becoming more and more common; it's also common
in any situation where a software development organization is bid-
ding against other competitors for the privilege of developing a
system for aclient organization.Thegameisobvious: The customer
(or sometimes the development organization's marketing repre-
sentative) tells the project manager that one of the other bidders
has proposed a faster development schedule and/or a lower bud-
get. This puts pressure on the project manager to not only match
the competing bid (which may or may not be a"real" bid), but to
improve upon it to raise the chances of getting the contract. A vari-
ation on this game occurs when the client lets it be known that he
or she is considering the option of not doing the project at all; a
software development organization that's desperate to get the
approval to initiate the project (perhaps because it will advance the
career of the IS/IT Vice President) will ensure that the project pro-

NEGOTIATIONS 83

posal is so attractive that it will be approved. Of course, this means
that in many cases, one or more members of the IS/IT hierarchy
knows that the project proposal is unreaistically optimistic, and
perhaps even a blatant lie. Thisin turn leads to the"Gotcha" and
"Chinese Water Torture" games described below.

* Gotcha—-the "Gotcha' game is sometimes played by the project
manager as away of getting revenge: Though he or she knows at the
outset that the project proposal is unrealistic, he or she accepts it
anyway—on the theory that by the time everyoneisforced to face
up toreality (e.g., aweek before the deadline), it will be too late for
the client to back out. But, it's adangerous game, because the client
has to ask whether he or she wants to throw good money after bad.
If the organization has a track record of previous projects running
amok in thisfashion, the client may decide to cancel the project and
write off the expenses as abad investment. But, chances are that the
death march project won't be canceled right away, because it's usu-
dly associated with business objectives, legal requirements, or
political battles that are difficult to walk away from. However, that
doesn't prevent the customer from seeking revenge for having the
game played on him, and the most obviousform of revengeisto fire
the project manager. Thisisalso acommon political ploy for various
higher-level managers and marketing representatives (who may
have been responsible for the death march project commitments in
the first place) to escape the problem of "guilt by association."
Everyone can rationalize to themselves that the reason for the prob-
lem isthe incompetence of the project manager; anew project man-
ager is brought in, a more redlistic set of revised project schedules
and budgets may or may not be negotiated, and the project contin-
ues. Meanwhile, of course, nobody thinks to relax the pressure of
overtime work on the technical staff members of the team.

* ChineseWater Torture—rather thanfaringahighrisk,all-or-nothing
showdown near the end of the project, another common game is
to bring the bad news to the customer and/or higher management
in small pieces. Imagine the scenario, for example, where the
project manager's rational estimate for the project is 12 months;
with forced overtime and lots of miracles, he thinks it might be

84

DEATH MARCH

possible to finish in 6 months, but management has imposed a 4-
month deadline upon the project. Reluctantly, the manager con-
cedes and announces a series of "inch-pebble" deliverables for the
project—e.g., a hew prototype version of the system will be deliv-
ered for customer review every week. The first deliverable turns
out to be a day late, but the manager reasons that the delay repre-
sents 14 to 20% of the deadline for that deliverable (depending on
whether the team is working a 5-day week or a 7-day week); thus,
he or she argues that the deadline for the final version of the sys
tem should also be pushed back by 14 to 20%. Management
refuses to concede any slippage at this early point, but when the
second inch-pebbleis also a day late (meaning a cumul ative delay
of two days over a period of two weeks), the manager repeats his or
her argument. Drip, drip, drip; it's like Chinese water torture—no
one single piece of bad news is enough to kill you, but the cumula-
tive effect can be fatal.

Smoke and Mirrors—Pity the poor project manager whose higher-
level 1S/1T Vice President has hired a metrics consultant with an
estimating model that nobody understands. Software metrics are
ultimately a form of statistics, and estimating models are based
upon sophisticated mathematics. When put in the hands of the
innocent, the naive, and/or the politically motivated, these tools
can be used to "prove' the validity of aimost any estimate. All of
this is doubly dangerous if the metrics come from a vendor
attempting to prove that the death march project will succeed
because of the stupendous productivity of the vendor's CASE tools,
visual programming language, or newfangled software engineering
methodology.

Hidden Variables of Maintainability/Quality—this is one of the more
insidious games, and it can be played in a constructive or destruc-
tive fashion by knowledgeable project managers, higher-level IS/IT
managers, and/or customers. It's very simple: Asa project manager,
| can deliver an infinite amount of software to the customer in zero
time, as long as it doesn't have to work and it doesn't have to be main-
tained. Obvioudly, it would be foolish to propose a scenario this
extreme, but the point is that quality (in the form of defects, porta-

NEGOTIATIONS 85

bility, maintainability, etc.) isaproject"dimension” that has to be
taken into account when trade-offs are being considered between
time, money, staffing, and other resources. Some customers are too
naive to recognize this, and some of them have a very cold
blooded, short-term perspective: "I don't care if the system works
two years from now, because | think the business opportunity will
be gone—and in any case, | 'l be gone. All T care about isthat the
system has to be available three months from now, and it has to
work for 12 months after that." If the political pressure is strong
enough, you may find IS/IT managers and the project manager
adopting this attitude; it's far lesscommon to see the technical staff
members accepting it as a reasonabl e way of doing business. In the
best of cases, this"garne"representsthe strategy of "good enough"
software that | described in my Rise and Resurrection of the American
Programmer [11]; in the worst case, it's as dishonest and reprehen-
sible as several of the other political games described above.

3.4 NEGOTIATING STRATEGIES

What should you do if you find yourself being sucked into one of the po-
litical gamesdescribed above?Equally important, what shouldyoudoif
you're an innocent bystander—e.g., a technical staff member of the
project team—and you observe such games being played all around you
astheproject deadline, functionality, and budget are being negotiated?
Thomsett makes the interesting point that we all learn these political
gamesfrom our mentors, our managers, and the "elders" of thepolitical
culturein our organizations; thus, even if we can't escape the gamesour-
sves, perhaps we can refuse to teach them to our subordinates, in the
hope that the whol e process of political gameswill die out after another
generation of two.

It'sanoblethought, but I'm not so optimistic. | sometimesthink that
political behavior isgenetic, firmly imprinted on our DNA pattern. Hut
evenifit'snot thisbad, thereality isthat political games of the naturede-
scribed inthischapter areall around us; noneof thisisuniqueto software
projects, and all of us have been exposed to variations on these games
throughout our lives. Even if these games were unique to software

86 DEATH MARCH

projects, there'si-nough mobility within the software profession that an
organization is amost certain to be "infected" by highly political manag-
ers, vendors, and marketing representatives over a period of rime. Politi-
cal games are something we have to accept as an unavoidable
phenomenon, and we have to cope with them as best we can.

One thing we can do—and this also cornes from Thomsett's excellent
article—is to avoid getting sucked into the trap of producing an "instant
estimate" for aproject. The Spanish Inquisition gameistheworst form of
this, but there are many lesser forms that appear during the planning and
negotiation stages of death march projects. Whether it's innocent or ma-
licious, the project manager will often be asked for an instantaneous
"rough estimate" tor the time or staffing required for some aspect of the
pioject; and once it's been blurted out in public, it often becomes a hard,
immovable requirement for the project. So, in any situation of this kind,
the manager needs to respond with a statement like, "I'll need aday (or a
week or amonth—or even an hour!) to make some cal culations before |
ran giveyou an estimate. I'll let you know by e-mail." There are obvious
political advantages to being prepared in advance, so that you've aready
done the necessary calculations before you get hit with the questions;
but, that's not always possible.

And it's not always possible to avoid the demand for an instant esti-
mate. Suppose you're sitting in a marketing presentation, and the client
turnsto you and says, "Okay, Harriet, suppose we eliminate the interac-
tive Web browser portion of the system, agree to do the whole thing on
our in-house network, and add ten of our people to your project team.
How long will it take you to get the job done?" All eyesturn to you, and
you can seethe marketing manager squirming; you probably know from
all thediscussionsthat haveled up to thisquestion that the politically ac-
ceptable answer is, "Three months—no problem!" What are the chances
that you will be able to say, "Gee, | don't realy know; we'll have to go
back to the office and run that through our estimating model. And I'd
also have to interview your ten people to see what their skills are..."

In a situation like this—and even many of the situations where you
do have some time to put together aformal estimate—it's crucia to state
your estimates in terms of "confidence levels" or a "plus-or-minus'
idnge. If you have absolutely no data with which to construct a detailed

NEGOTIATIONS 87

estimate, and if the death march project involves completely new tech-
nology, and unknown people, then it might be prudent to say, "The
project will probably take between three and sx months," or "1 think we
canfinishinsix months, plus-or-minus50%."

Of course, most project managers are aware of this technique, and
they may or may not be using it already. Deciding how large or small the
"plus-or-minus" range should be is part of the science of estimating, and
I'll leave that to the textbooks listed at the end of this chapter. For death
march projects, it'simportant to keep in mind the politics of stating confi-
dence levels during the negotiating process. The most basic political real-
ity, for example, isthat anythingyou say about aplus-or-minusrangewill
be ignored by everyone dse that you're negotiating with. Thus, if you're
sitting in a planning session and you tell the customer and various other
senior managers, "We should be able to get this project done in six
months £25%," everyone will write down "six months" on their note pad
[12]. No matter how many times you say it, they'll ignore it; and when
your boss feeds the information back toyou, you'll find that your deadline
is six months. The only thing you can do is never drop the plus-or-minus
qualifier in any verbal or written statements, promises, commitments, or
estimates that you provide. It won't eliminate the problem, but it will pro-
vide an excuse if the project ends up at the high end of your estimate.

Unfortunately, there's an uglier aspect of the political negotiation
when you introduce the plus-or-minus qualifier into your estimate:
You'll be accused of uncertainty, wishy-washiness, weakness, or even in-
competence. Thisis particularly common in the "Marine Corps" style of
death march projects discussed earlier. What senior management really
wants is a firm commitment—a promise that the project will be finished
on a certain deadline, with a budget of a certain number of dollars, and a
staff of acertain size. Thisgivesthem theenormous|uxury of (a) nolong-
er having to worry about the problem for the duration of the project, and
(b) having a convenient scapegoat to blame if the promiseis broken. An
estimate that takes the form of "X months + 50%, for $500,000 + 100%,
andwith 10 people+ 25%" eliminatesthat luxury.

JimM cCarthy, inhisexcellent book Dynamicsof Softwar e Devetopauttt
[13], suggests that the project manager needs to confront this head-on,
and persuade the customer and/or senior management that they need to

88 DEATH MARCH

share some of the burden of uncertainty that the entire project team will
belivingwith onaday-to-day basis. Thus, theproject manager effective-
ly says to the customer or the senior management group, "Look, | don't
know precisely when this project will finish—but since I'm the project
manager, I'm far more likely than anyone else in the organization to fig-
ureitout assoon asit can befigured out. | promiseyou that oncel know,
I'll tell you right away.”

Only amanager with alot of self-confidence, and the ability to walk
away from the assignment, can have the chutzpah to say something like
thisin the politically charged atmosphere of a death march project. But,
thetimeto say it isat the beginning of the project; after all, if the custom-
er and senior management don't respect your ability as a project manag-
er, and that you do have a better chance of knowing when the project will
finish than anyone else, then why are they putting you in charge of the
project in the first place? Are you being set up as a scapegoat? Are you
going to be a "puppet manager,” with al the decisions being made by
other political manipulatorsin the organization? If so, now isthe timeto
get out!

Similarly, if you're alowly programmer on the project team and you
see political gameslike this, it may be a strongindication that your project
manager (a) doesn't have the confidence to believe in any estimate that he
or she puts forth, (b) doesn't have the backbone to stand up for himself or
herself and for the project team, and/or (c) has gotten himself or herself
into a political situation where all the key decisions are going to be made
by people who are not directly involved in the project. Again, thisisa
strong indication that the project is doomed; and before you get too deep-
ly involved, it might be a better idea to seek greener pastures.

Having said this, I'm nevertheless well aware that it's extremely diffi-
cult for the project manager to persuade the various "players' to share
the uncertainty of the project schedule, budget, and staffing decisions. A
savvy customer will indeed do this; asophisticated |S/IT organization will
recognize al of this as an aspect of risk management, which needsto be
carried out in ablameless political environment; and human beingswho
care about and respect one another will agree that it'sunfair to make one
member of a group carry the ulcer-generating pressure of a high-risk sit-
uation.

NEGOTIATIONS 89

3.5 WHAT TO DO WHEN NEGOTIATING FAILS

In the discussion above, | suggested that if the project manager couldn't
persuade the customer or senior management to share some of the un-
certainty associated with the schedule or budget of a death march
project, he or she should seriously consider resigning from the assign-
ment; the same goes for technical members of the project team. But, this
is only one aspect of a "failed" negotiating process, what should the
manager do, for example, if he or sheis 100% certain that the politically
mandated deadline of six months cannot and will not be achieved? What
should he or she do if he or she is 11)0% certain that the project must have
aminimum of three people, but management will only provide two?

I've mentioned the option of resigning a few times already in this
book, and | realize that it's not a practical option for some software pro-
fessonds, indeed, it's more likely to be a problem for project managers
than the technicians, for the simple reason that project managers tend to
be 5to 10 years older, and thus saddled with the impediments of mort-
gages, dependent family members, half-vested pension plans, etc. They
aso tend to be a little more insecure about their chances of getting an-
other job quickly, while the younger, unmarried project team members
are typically much more confident that they can land another job within
24hours.

Itsimportant to redlize here that I'm not recommending resignation as
aform of punishment or revenge. It's smply therational thing to clo when
facedwithian impossible situation, andimplacable negotiating adversaries.
Lifewill go on; there will be other projects; and there will be other jobs. As
SuePeterson remarked to mein arecent e-mail message [14]:

I'velearned something from my kids, and | think it ap-
plies to work just as much as it does to home lite... 1
have to protect myself, my energy level, my emotional
and physical health, my quiet-time, and my work
time. If | don't protect myself, | won't have anything
|eft for them anyway.

But, there's another issue associated with quitting that needs to be
confronted here: the issue of loyalty and the "socia contract" between

%0 DEATH MARCH

employer and employee. Up through the 19805 many software profes-
sionalsworked in large organizations whaose corporate culture involved
an assumption of a "job for life." Whileit was never as strict or as explicit
as in Japanese companies, most programmers and software engineers at
maj or banks, insurance companies, government agencies, and computer
companies (like IBM and DEC) assumed that in the absence of war, fam-
ine, or plague, they would continueto risethrough the organization until
they finally retired at age 65, with a gold watch.

Small companieshave never had thiskind of culture, and many soft-
ware professionals haveworked for small companies, especialy as com-
puter technology has become cheap enough that even a Mom-and-Pop
grocery store could afford a PC and Web server. And, those of us who
have worked for consulting firms, service bureaus, and various forms of
entrepreneurial, high-tech start-up companies have aways known that
thereis no such thingasa lifetime socid contract.

Software professionals in large companies have begun to learn this
too, because the era of downsizing, outsourcing, and reengineering has
caused major disruptions and unemployment in our field. This has been
exacerbated by mergers and acquisitions in the computer field, and dso
in highly competitiveindustries where information processingis amajor
part of the work-force. When Chemica Bank and Chase Manhattan
Bank merged a couple of years ago, for example, senior management had
to deal with the problem of merging two entirely different hardware en-
vironments, systems environments, and ISIT management hierarchy.
And, as | mentioned in Chapter 1, it'sexactly thiskind of situation that
has led to many of the death march projects that have been taking place
all during the 1990s

The problem in many of these large organizations is that while the
employer has definitely changed the socid contract, the employee has
not reacted accordingly. Many software engineers who have put in 10
or 20 years of loya service ill assume that (8) the company will take
care of them, and (b) they should stand by the company, no matter
how unpleasant it might be. And "unpleasant” is the operative term
for most death march projects. It's not fun sacrificing al of your spare
time, working to the point of exhaustion, and coping with stress and
political tension. So why do we do it? Because weve signed on for life,

NEGOTIATIONS 9

and we fed that ethical people should honor their commitments.

However, if the employer has invalidated the socid contract, then all
betsare off; it'scrucial to re-evaluate the relationship and seewhether it's
worth continuing at al. | certainly don't advocate unethical, immoral, or
even amoral behavior—but | see nothing wrong with limiting my com-
mitment to an employer to aperiod of ayear or two, or for the extent of a
single project. An employer that says to the death march project, "Get
this system finished by December 31 or you're fired," is essentidly artic-
ulating the same kind of "short-term" socia contract.

The threat of being fired—which certainly does occur in death march
project negotiations—is only one form of "hard-ball" negotiating;
threats of being bypassed for araise or promotion are also common. But
if the socid contract has been abandoned, and if you're dealing with a
"hard-ball" negotiator in a death march project, then you have the right
to play "hard-ball" too. And, one of the strongest bargaining chips in a
negotiating session is your adversary's [15] recognition that you're ready
and willing to walk away from the relationship if the results aren't mutu-
aly acceptable.

If senior management threatensto fire you if the death march project
fails, or if you don't accept the unrealistic deadline they've imposed upon
you (which may be two different ways of saying the same thing), you
should be equally cold-blooded in your demands. Y ou may not get them
to budge on the deadline, but you can probably be much more demand-
ing than otherwise possible when it comes to staffing your project (I'll
discuss thisin more detail in the next chapter). And, you can definitely be
more cold-blooded when it comes to ignoring or breaking the adminis-
trative and bureaucratic rules and procedures that would otherwise guar-
anteefailurefor the death march project.

A variation on thisis the old adage of, "act first, apologize later.” It
may be awaste of rimeto "negotiate” areprievefromthevariousbureau-
cratic redtrictions that you've decided will ham-string your project. It's
certainly worth attempting to do so, because an edict from a high-level
manager will usually give you sufficient authority to circumvent or ignore
the minions of administrators, committees, and standards-enforcersthat
will swarm around the project. But, if you get a wishy-washy answer—

92 DEATH MARCH

eg. "Wdl, were not sure it's a good idea for your programmers to move
off-site and have two PCs in their office; well check with the Building
Services Committee and see what they think"—then stop wasting your
time. Just go ahead and do it!

If you're clever, you can probably find away to circumvent many of
the bureaucratic obstacles in such away that it will take six months for
the bureaucracy to notice, and to mount an offensive; by then, your
project may have finished (or failed) anyway. And, if the bureaucracy
does mount an offensive, be prepared to play hard-bal; after al, your
project is now well under-way, and management probably can't afford
therisk that you (and the entire project team) will walk out the door and
force the project to be re-started. There are two pointsto keep in mind if
you choose this approach:

* You have to be prepared to have your bluff caled. If the Methodol-
ogy Police visit your project and throw a tantrum because you're
not using the company's official methodology, you may well get a
furious phone call from your bosss boss's boss. Y ou need to be pre-
pared to say/'Mr./Ms. BigShot, weve decided not to use the meth-
odology becauseit will guarantee failure. If you feel strongly about
this, my team and | are prepared to resign today—otherwise, I'd
appreciate it if you would leave us aone, and tell the Methodology
Police to leave us aone, too. We have work to do." This won't work
unless the senior manager truly believes that you and your team will
resign on the spot, ifpressed.

* You must be prepared to deal with enemies who will hold a grudge,
even if your project succeeds. In the scenario above, you've chal-
lenged the authority of the BigShot manager; he or she won't for-
get it. Youve embarrassed the Methodology Police, and made it
more difficult to impose their methodology on other victims, they
won't forgive you. Indeed, you may have burned so many bridges
that at the end of the project, you (and perhaps the rest of the team
too) will be so unpopular that you'll have to quit.

If resignation and "hard-ball" negotiating isn't an option on your
death march project, then what should you do if the negotiating process

NEGOTIATIONS 93

yidds unsatisfactory results? Very simple: re-define the nature of the
project, as suggested in Figure 2.1 (Chapter 2). In the early stages of ne-
gotiation, you may have thought you were beginning a mission impossi-
ble project. In fact, given adequate resources and a talented staff, you
might havebeen prepared toaccomplish miracles. But, if you'regivenin-
adequate resources and brain-dead programmers, then miracles are not
going to occur.

Indeed, it's more likely that you're being pushed into a kamikaze or
auicide project; only as avariation of the "hard-ball" negotiating process
described above could we imagine that the outcome would be the ugly
style of project described in Chapter 2. In any case, the key point here is
that the project manager must believe in the possibility of achieving the
project gods (e.g., deadline, required functionality, etc.), and the manag-
er must be able to convince the team members of the viability of those
gods without "conning" them. As John Boddie [16] points out in a su-
perb book on managing "crunch-mode" software projects:

The project |eader who cares about his peoplewill not
try to sl them a hill of goods about the project. He
will be honest about the level of effort it will require
anditschancesof success. Programmersaren'tstupid.
The experienced ones will have a keenly developed
sense to tell them when they're being "fed a line."
Most of them won't be a party to project games be-
cause they know they are the oneswho will shoulder
the burden when the crunch comes.

And, if the project manager has determined that the death inarch
project gods are not viable, but the project must continue anyway, then
it's crucial that the manager explain to the staff members that they are
signing on for a suicide or kamikaze mission. Some will accept the mis-
sion anyway, and it's important for the manager to understand what
their reasons are [17]; but, otherswill resign.

There's an interesting aspect of ethics here. As noted earlier, 1 don't
advocate unethical or immoral behavior, but | also believethat the nego-
tiations surrounding a death march project almost always force the
project manager to deal with theowner/customer and/or senior manage-

A DEATH MARCH

ment as an adversary. The members of the project team, on the other
hand, are like one's family. More than just treating the team members
ethically and professionally, the manager should feel the responsibility of
"taking care" of theteam, to ensurethat they don't becomeinnocent vic-
tims in the political battles. 1I'm indebted to John Boddie [18] for tracking
down a maxim from Napoleon that expresses this thought more elo-
quently than | could on my own:

It follows that any commander in chief who under-
takes to carry out a plan which he considers defective
is at fault; he must put forth his reasons, insist on the
plan being changed, and finally tender his resignation
rather than betheinstrument of hisarmy'sdownfall.

Napoleon, Military Maxims and Thoughts
Notes

1. Ed,
> I 'mgoing to be suggesting in this next chapter that the project
> manager be sure to identify
>Are there any other significant constituencies that I' vemissed?
I think simply identifying them is a good first step, and then you
need to understand why theywould want the project to succeed. Many
don't care, and could thus get in the way. Opponents will stick
out like a sore thumb.
But my biggest single obstacle in death watch projects has been my
own management, I came to the UK in 1972, and moved on to big
projects almost immediately. Idon 't think I leamt anythingabout
running projects since that date (I learnt a lot about politics,
but that's something else). You need to understand your own
management 's negotiating stance, and if they love to play roll
over, you have to keep them well away from the proj-ect.
> 2 . How important doyou think it is for all of the project team
> members to be aware of the existence of these constituencies and
> whether or not they can be viewed as a "friend" or "foe" of the
> death march project?
This has to be managed. In any project, having an external focus
to push against does help to solidify a team. But youmustn'l allow
this to stop themhelping you. If youneed this, I 'd say youneed
tokeep it tosingle individuals . Deathmarchprojects, because of
their size and importance, will usually attract hostility from
surrounding people anyway, so it won' t be toodifficult tocreate

NEGOTIATIONS 95

an enemy - the trick will be to make sure that your potential
helpers aren't all enemies as well.
> * mission impossible: if we succeed, we live happily ever
after
Done that. I don't think I ever classified it as a deathmarch, in
the way I'dnormally think of one. But I did develop an ulcer,
SO... <g>
> *x kamikaze: the project may succeed, but it will kill all
of us
Dunno. The certaindeath is so demotivating, I 'mnot sure if people
would continue. They'dprobably rationalise it into another type
of project.
> % ugly: the project manager is prepared to sacrifice any
> and all of the team members in order to succeed.
Well, I think this comes with the territory. It's part of beinga
death march.
> ¥ suicide: the project has no chance of success, and we ' re
the scapegoats
Yes, this seems to be one of the fears with death marches.
I don't think I can go along with your matrix, in this case. True
death marches have some characteristics - there is a (possibly
remote) possibility of success; it's so tightly time-boxed that
success within the timescales is difficult to imagine, and one of
the pastimes is to watch announced deadlines being slipped while
still being aware of the need for further slippage.
Personal satisfaction is never high on a deathmarch, and the chance
of success is low - I guess that' s what defines a deathmarch. Most
deathmarches fall into your suicide category, I'mafraid. If you
had high personal satisfaction and high anticipation of success
(which I reckon are correlated anyway) , that's not a deathmarch.
As I say, I believe the true differentiator lies in the timescale,
rather than inpersonal feelings . If the timescale is impossible,
then you *know* you're on a deathmarch. The only question then is
whether you die expensively or slowly.
> How important do you think it is for the project manager to get a
> really good assessment of each team member's level-of
commitment?
If anyone asks me that question nowadays, I know to run a mile,
because that PM will turn the project into a death march. I've
never had trouble getting people committed, once I've set up an
environment where that commitment will pay results. But I have seen
many environments where overtime is regarded asmore important than
what you're doing (a friend who's just joined Oracle is replete

9% DEATH MARCH

with that attitude now) , and I'm not at all impressed by their
output.

> _negotiations . I'll deal with that in Chapter 3

Let me know, when you need stories here. Many are so unbelievable
that it's not worth even telling (such as "I don't mind you
refusing changes to the design even, if it is a fixed price project
- all I have to do is ring your chairman, and he'll always tell
you do it. ") .

--Doug (back on 0S/2 and GCP)

2. Tarek Abdel-Hamid and Stuart Madnick, Software Project Dynamics (Engle-
wood Cliffs, NJ Prentice-Hall, 1993).

3. Barry Boehm, Software Engineering Economics (Englewood Cliffs, NJ: Prentice-
Hall, 1981).

4. Barry Boehm, Bradford Clark, Ellis Horowitz, ChrisWestland, Ray Madachy,
and Richard Sdby, "The COCOMO 2.0 Software Cogt Estimation Model,"
American Programmer, July 1996.

5. Frederick Brooks, The Mythical Man-Month, 20th anniversary edition, (Read-
ing, MA: Addison-Wesley, 1995).

6. Jm McCarthy, Dynamics of Software Development (Redmond, WA: Microsoft
Press, 1995).

7. Robert E. Park, Wolfhart B. Goethert, and J. Todd Webb, Software Cost and
Schedule Estimating: A Process Improvement Initiative. Technical Report CMU/SEI-
94-SR-03 (Pittsburgh, PA: SoftwareEngineering| nstitute, May 1994).

8. Robert E. Park, Checklists and Criteriafor Evaluating the Cost and Schedule Esti-
mating Capabilities ofSoftivare Organizations, Technicd Report CMU/SEI-95-SR-
005 (Pittsburgh, PA: Software Engineering I nstitute, January 1995).

9. E4,
re: 1if you know of any good negotiating strategies (other than
blackmail and torture, which I can' t recommend in a book like this
<g>), let me know.
The only leverage that the manager has is to bring the risk of
failure out into the open and as publicly as possible start
postulating fallback positions.
Some useful questions during negotiations,
"If the system is ready on the fifth of September rather than on
the first, will we already have declared bankruptcy September
second?"

NEGOTIATIONS 97

"la there an 80/20 rule here? If we deliver the critical 20 percent
that gives eighty percent of the value, do we need the twenty
percent at initial roll-out?"

"Everybody wants things good, wants them fast, and wants ther

cheap. Everyone knows that you can actually achieve any two of th

three. Which two do you want?"

The principle at work is to make those who are demanding the deatl

march look unreasonable if they areunwilling to consider more tha;
one possible outcome. Unless there is an acceptance of more thai
oneway to approach the problem, then there is nonegotiation. Al

the manager can say is, "We'll give it our best shot, but there
are no guarantees."

--JB

10. Rob Thomsett, " Double Dummy Spit and Other Estimating Games," Anm
icon Programmer, June 1996.

11 Rise and Resurrection of the American Programmer, Edward Yourdon (Uppt
Saddle River, NJ: Prentice Hall, 1996).

12 Actudly, thepoliticaly astute peoplewill takeyour worst-caseestimatean
add another "safety factor" before reportingit to their next higher-level superiot
Y our estimate of six months, +25% thus becomes nine monthsor ayear. Unfor
tunately, the politically naive, or the politically ambitious, will do just the oppo
site. Thus, the CEO may end up being told that your project will be done in fou
months or less.

13 See Note 6, above.

14. Ed,
»Another important question I want to discuss in this chapter:
what should the death-march project manager do when, in his/her
sincere opinion, the negotiations have failed? At what point doej
the manager resign, throw a tantrum, threaten to become the next
Unabomber, etc.? And when he/she reaches that stage, what
responsibility does he/she have to thepro ject team, whichmay hav<
already begun working? «
I' ve learned something frommy kids, and I think it applies towort
just asmuchas it does tohome 1life... I _have toprotectmyself,
my energy level, my emotional andphysical health, myquiet-time,
andmy work time. If I don't protect myself, I won't have anything
left for them anyway.
—Sue P

15. Some readers will probably object to the notion of the customer, or ane's se

% DEATH MARCH

nior manager, being described as an "adversary.” But, the very nature of adezath
march project is that the owner/customer, and the various shareholders and
stakeholders, are consciously and deliberately pushing the manager into deci-
sions that he or she would not make on his or her own. And, if you don't think
that "adversary" is an appropriate characterization of someone with whom
you've had awarm, friendly, professional relationship for years—go back to the
beginning of the chapter and read Lord Byron's comment again.

16. John Boddie, Crunch Mode (Englewood Cliffs: Prentice Hall/Y ourdon Press,
MB?7).

17. It's possible, for example, that adisgruntled staff member may see the death
march project as an excellent way of wreaking revenge upon the organization—
and he or she may join the project teamin order to make certain that the project
fails.

18 See Note 16.

AP T T
SR S

chapter

oy

When soldiers have been baptized in the fire of a battle-field, they
have all onerank in my eyes.
Napoleon Bonaparte, Quoted in: Ralph Waldo Emerson,
Repnsetttative Men. "Napoleon” (1850)
A general is just as good or just as bad as the troops under his
commandmakehim.

Douglas MacArthur, Speech, August 16, 1962

Insist on the right to choose your own team. Expect the team to work
some overtime hours, but remember that they're on a marathon, and
they should only be expected to sprint for the final 100 yards. Reward
them handsomely if the project succeeds, but don't dangle extravagant
awards in front of them dl through the project, for it will distract them.
Focus on building a loyal, cohesive, cooperative team; it's important to
have the necessary technical skills, but it's even more important to have

99

100 DEATH MARCH

complementary psychologica constraints. That's all there is to success-
fully integrating peopleware in a software project.

Unfortunately, there'smoreto it for many death march project man-
agers, for they work in organizations that have a miserable peopleware
culture even for normal projects. Though it might seem that such a cul-
ture would doom a death march project to certain failure, it sometimes
turns out that just the opposite istrue. As noted in Chapter 3, the project
manager may have to accept an unreasonable schedule or budget, but
can sometimes retaliate by being equally hard-nosed about various-peo-
pleware issues. Thus, the manager might insist on—and get away with—
the right to hire the right people for the team, reward them properly, and
provide them with adequate working conditions.

And, for precisaly thatreason, thedeathmarch proj ectwill beperceived
asathreat to thosewho want to maintain the bureaucratic status quo. The
project manager may be able to circumvent the peopleware restrictions
withan edict from senior management, but heor shemustbeawarethatin
doing s, heor shewill earnthe permanent enmity of the OfficePolice, Hu-
man Resources department, and various administrators. However, if the
death march project isatremendoussuccess, itmay provetobeacataystto
changethe peoplewarepracticesfor subsegquent "normal" projects.

In any case, my mission in this chapter is not to change the overall
peopleware culture in an organization. Much has already been written
about this, including chaptersinmy Riseand Resurrection oftheAmerican
Programmer and Decline and Fall of the American Programmer (I've dso
provided alist of standard references at the end of this chapter). The basic
question addressed by this chapter is. If you're aready familiar with the
"basics' of peopleware, what's different about a death march project?

4.1 HIRING AND STAFFING ISSUES

The first thing that's different about a death march project is the empha-
gs on forming the right team. In my work with software organizations
around the world, I've seen four common strategies for creating a death
marchteam:

* Hire superstars and turn them loose

PEOPLE IN DEATH MARCH PROJECTS 101

* Insst on a well-honed, mission impossible team that has worked
together before

e Choose mere mortals, but make sure they know what they're get-
tingin for

» Takewhoever you're given and convert them into amission impos-
sibleteam

The first strategy is tempting, because the presumption isthat the su-
perstars will be enormoudly productive, and aso clever enough to invent
novel solutions to the death march requirements. However, it's dso a
risky strategy, because the superstars typically have super-large egos
and may notwork well together. And, it'simpractical in many organiza-
tions, because management isn't willing to pay the higher saaries de-
manded by the superdars. And, even if you could afford them, chances
are they wouldn't bewillingto work on the death march project—they're
al working at Netscape or Microsoft, or wherever they think the red!)
exciting projects are taking place.

The second strategy isamost certainly the ideal onefor most organi
zations, because it doesn't require superdars, it's dso the kind of projecf
team glorified by theMissionImpossible TV saries However, if yourorga
nization is embarking upon its first death march project, such a tearr
doesn't exig. And, if there were previous death march projects tha
turned out to be suicide-, kamikaze-, or ugly-style projects> theteamsan
probably no longer intact. Thus, astrategy of keeping asuccessful death
march project team intact usually must be planned in advance, asacor-
porate strategy, on the assumption that death march projects will occui
again in the future (I'll discussthisin more detail in Chapter 7).

Thethird strategy isthe most common in the organizationsl visit, foj
obvious reasons. Most organizations have no superstars, and they have
no survivorsfrom previousdeath march projects. Hence, each new death
march project is staffed anew. The team members are competent, ana
perhaps better than the average developersin the organization, but the)
can't be expected to perform miracles. What'svital in thisscenario isthai
the team members understand what they're signing up for; even though
they're mere mortals, they will be caled upon to perform extraordinary
featsof softwaredevel opment.

102 DEATH MARCH

Thefinal strategy isoneto beavoided at all coss. If the project turns
out to be a dumping ground for personnd that no other project wants,
then it's almost certainly a suicide project. Again, this has been glorified
by Hollywood, especiadly in movieslike TheDirty Dozen; thethemeisthat
outcasts and misfits can be motivated by a tough, charismatic leader to
perform miracles that nobody thought possble. Well, perhaps so, but
Hollywood doesn't tell usabout all of themisfit-staffed projectsthat fail.
It seernsto methat if you accept the assignment of managing (or partici-
patingin) aproject of thiskind, you've accepted thefate of suicide.

This brings up the central issue of staffing the death march project
team: To what extent should the project manager insist on the right to
make the staffing decisions? As noted above, most project managers
have to accept the fact that they won't be given carte blancheto hire the
world's most talented superstars; and, politics within the organization
may make it impossible for the project manager to steal away the best
peoplewithin the organi zation, because they'realready involved in other
critical projects, or fiercely defended by other managers. Nevertheless,
there is one aspect that | believe the manager should insist on, asan ab-
soluteright: theright to veto an attempt by other managersto stick an un-
acceptable person onto the team. To do otherwise is to add an
unacceptable level of risk to a project that's probably already over-bur-
dened with other risks.

Obvioudly, this can lead to a variety of ugly political battles. The
project manager is likely to hear soothing statements like, "Don't worry,
Charlie has been having some problems on previousprojects, but he'll be
fine on your project,” or ego-boosfing statements like, "You're such a
terrific manager that I'm sureyou'll be ableto turn Charlie around and
get some real productivity out of him,"” or various appeals to loyalty,
bravery, and assorted Boy Scout-like virtues. My advice isto stand firm
and insist on the right to reject anyone that you don't think will fit well
intotheteam.

One of the criteriathat should be used in such adecision isthelikeli-
iood of the proposed staff member leaving before the project finishes.
Obvioudy, most software devel operswon't tell you if they're planning to
quit midway through the project; but, some of them will tell you about
anticipated persona priorities—marriage, divorce, a prolonged moun-

PEOPLE IN DEATH MARCH PROJECTS 103

tain-climbing expedition to the Himalayas, etc.—that could rule them
out of consideration. In generd, it's crucia to avoid losing peoplein the
midst of adeath march project; and, it's highly desirable to avoid having
to add new peoplein the middle of a project.

In Chapter 3,1 discussed the options available to the project manager
if negotiationsfail: quit, appeal to ahigher authority, ignoretherulesand
make your own decisions, or redefine the project as a suicide mission.
The possibility of ignoring the rules is usualy more difficult, because
adding extra personnel to the project team has payroll ramifications that
are beyond the manager's control. However, it is sometimes possible to
"borrow" people from another project, or perhaps even to hire some
temporary contractors.

It's dso possible to isolate an unacceptable team member that has
been put onto the proj ect against the manager'swishes; the unacceptable
team member can be given a harmless sub-project to work on, or sent
away to research the mating habits of African tsetse flies until the project
is finished. Doug Scott [1] described an even more elaborate verson of
this strategy in a recent e-mail message to me:

Death Marches often end up in the desperate situation
where senior management will throw money at you—
"Y ou want another twenty people?' And | dways ac-
cept. | put the bozos onto manning the coffee machine,
changing fuses, and other essentid work, while | hang
on to the better ones. (Randomly, you will get a few
good ones). Then you can assis the bozos to resign and
keep pressng for more and more people to replace
them. In one case, | cut to 20% of the original staffing
level, and till maintained work output—Dbut the quali-
ty of that output was excellent. That's no surprise to
anybody, but it's by constantly demanding more re-
sources and losing them that you can achieve it.

104 DEATH MARCH

4.2 LOYALTY, COMMITMENT,
MOTIVATION, AND REWARDS

| discussed theissue of commitment to the death march project in Chapter
2; it'san essential element of the politics of such projects, and it'sdso a
key element in the team dynamics that the project manager must try to
maximize. Idedly (from the project manager's perspective), the team
memberswill swear an oath of loyalty and dedication to the death march
project above all ese; for the young, unmarried techno-nerds, thisisnot
as ridiculous as it might sound. However, it depends heavily on such
things as the length of the project. Totd devotion may be feasible for a
three to six month project, but probably not for a 36-month project.

Commitment also depends heavily on the ability of the project man-
ager to motivate the team members tofeel loya and committed. To some
extent, thisis a matter of charisma. Some managers generate such feel-
ings of loyalty that their team members will follow them to the end of the
earth, no matter how risky the project; other managers are so uninspiring
that their teamswouldn't exert any extra effort, even if the project's ob-
jectives were to save mankind from an dien invasion.

Of course, one could argue that the project manager shouldn't alow
anyone to join the team unless they are highly motivated. One could aso
argue that the issue is irrdlevant, because most software developers are d-
ready motivated—as Tom DeMarco and Tim Lister arguein Peopleware[2]:

There is nothing more discouraging to any worker
than the sense that his own motivation is inadequate
and has to be "supplemented” by that of the boss...
You seldom need to take Draconian measures to keep
your people working; most of them love their work.

But, there are levels, or degrees, of motivation. We might expect a
software developer to exhibit a certain degree of motivation for a normal
project, but death march projects demand a higher degree of motivation
to sustain the team members through months of exhausting work, polit-
ical pressure, and technical difficulties. And, the project manager faces
the practical difficulty of not knowingjust how motivated the team mem-
bers are when the project begins. As Doug Scott [3] putsit:

PEOPLE IN DEATH MARCH PROJECTS 105

Y ou're assuming that he knows who these people are
when he gets them. I've usually had them assigned to
me before | know how good/bad they are.

In many cases, the biggest factors in motlvation/de-motivation will
revolve around the dynamics of the overall team (I'll discussthisin more
detall below). But, there aretwo specific issuesthat dso have a significant
impact on motivation, and which are usually under the manager's direct
control: rewardsand overtime.

4.2.1 Rewarding Project Team Members

Things would be difficult enough if we could solve the motivation prob-
lem by dangling large sums of money in front of al of the project team
members (and the manager, too!). But, Frederick Herzberg [4] suggests
that money is not dways the answer:

Money, benefits, comfort, and so on are "hygiene'
factors—they create dissatisfaction if they're absent,
but they don't make people feel good about their jobs
and give them the needed internal generator. What
does produce the generator are recognition of
achievement, pridein doing.a good job, more respon-
shility, advancement, and personal growth. The secret
isjobenrichment.

Thismay be an accurate assessment for normal projects, but money
does play a factor in many death march projects. Indeed, it may be an
overriding objective for the project asawhole. Many Silicon Valley start-
up companies embark upon frantic death march projects, hoping that
they will be able to develop a "killer app" for a new hardware device and
sl millions of copiesto an eager marketplace. If the project team mem-
bers have stock options and profit-sharing plans, financial rewards are
obvioudy avery large part of the motivational structure of the project. In-
deed, many SiliconVdley companiesdeliberately pegtheir sdaries at 20-
30% below the prevailing market rates, but provide ample stock options
and/or profit-sharing plans to motivate the members of their technica
staff. The strategy is not only to increase motivation, but also to reduce

106 DEATH MARCH

the fledgling company's cash outflow, since sdaries are often the single
biggest expenditure for a start-up software company.

Of course, therearelegitimate, excitingdeath march projectsforwhich
money isirrelevant. A software developer who is offered the once-in-a-
litetime chance to work on the equivaent of the Apollo 11 lunar landing
doesn't need money; he or shewill cheerfully agree with Steve Jobs com-
ment about the Macintosh project that "Thejourney is the reward."

At the other extreme, | find death march projects taking place in mor-
ibund government agencieswhere the project isintrinsically boring, and
where there is no hope of increased financial reward tor anyonein the or-
ganization. Salaries are determined by one's civil-service grade-leve,
and the salary structure is fixed by law—there are no bonuses, profit-
sharing rewards, or stock options. In cases like these, it's obvioudly slly
to even discussfinancial rewards asamotivator—all it can doisfrustrate
-heteam.

But, what about the organizations that haveflexibility?If the death
narch project is important enough to the organization, then it's not be-
‘ond the realm of possibility to set aside a significant bonus pool to re-
gard the team if it succeeds in ddivering the project on time. The
«ossibility of bonuses comes up in normal projects too, but the monies
tvolved are usually much more modest. It's nice to get abonus check of
1,000 at the end of anormal project, but thetax authoritiesusually take
third forthemselves, and the remainder is not enough to have a notice-
Die impact on the lifestyle of a typica middle-income software profes-
onal. But, death march projects are different: a $10,000 bonus check
dght be enough to buy a new car (albeit a pretty modest one these
iys!), or finance avacation to Bali. A $100,000 bonus check isenough to

nance a child's Ivy League college education, or to buy a house (or at
ast the down payment on a house). And, a $1,000,000 bonus check is
tough to make retirement aserious possibility.

Assumingthat such abonusis possible, here are afew observations:
» Remember that a 20% salary increase means much more to ajun-

ior programmer earning $25,000 per year than it does to a senior
programmer making $75000 per year. At the higher saary, the

PEOPLE IN DEATH MARCH PROJECTS 107

marginal tax rate is usualy much higher, often approaching 50%;
thus, the programmer doesn't take home much more, and conse-
quently the salary issue ismore likely to be regarded as a hygiene
factor. For the junior programmer though, the tax rate is dill rea-
sonably low, and the extra 20% might be sufficient to cover the
monthly payments on the programmer'sfirst car, or to justify mov-
ing out of his’her parentshome to an apartment.

* Remember that the possihility of large sums of money can motivate
peopleinavariety of ways. Management may assumethat itwill Sm-
ply make everyonework harder, but it can aso make team members
excessivey critical and suspicious of each othe—e.g., ateam mem-
ber will complain bitterly/'George had the audacity to take Christmas
Eveoff, just tobewith hisstupid family, right whenwewere a acrit-
ical stage of testing. He's gonna screw us out of our bonus!™

* Remember that the sze of the bonus doesn't have a direct, linear
correlation with the productivity or number of hoursworked by the
project team. |'ve watched senior management in some organiza-
tions attempt to bribe the death march project team by offering to
double the sze of the bonus—usually because the project is behind
schedule, and because management apparently believes that dou-
bling the bonus will double the number of work hours by the
project team. But, if the team members are already working 18
hours per day, the laws of physics prevent even the most dedicated
person to double the work hours.

* For the bonus to work as a motivator, the project team must believe
that it really exigts and that senior management won't find a devi-
ous excuse to withhold it. Obvioudly, if the rewards are associated
with success in the marketplace—e.g., if the project succeeds, then
the company can go public, unless the sock market has col-
|lapsed—there are no guarantees. But, if thereward isentirely at the
discretion of senior management, and if the team believes that pre-
vious death march proj ect teams have been unjustly cheated out of
their rewards, the"promise” of a bonus will probably be a negative
motivator. Similarly, if the project team concludesthat it haslittle
control over the successful outcome of the project—e.g., because,
in addition to their software, the project depends on new hardware

108 DEATH MARCH

being developed by an outside vendor—they may view the bonus
being promised by management as a"random lottery," rather than
as a motivating device.

e The team must also believe that the bonus will be distributed in an
equitable fashion. That doesn't necessarily mean that every team
member gets exactly the same share; but, if the team believes that
the project manager will get the lion's share of the reward, and that
they'll end up with the crumbs, the results are predictable. This
needs to be discussed at the beginning of the project; it's unlikely
that the team members will be pacified by statements from the
manager like, "Trust me, don't worry—I'll make sure everyone is
taken care of in afair manner."

For projects that cannot or will not consider extravagant bonuses, it's
important for the project manager to remember that thereis awide variety
of non-financial rewards that can have an enormousimpact on the moti-
vation of the project staff. Again, thisis an issue that we frequently see on
"normal" projects, but it's more important here because everyoneisbeing
stretched to hisor her limits. It's also important to remember that the pres-
sure of the death march project team is felt by the spouse and/or family
members of the death march staffers. As Doug Scott putsit [5],

Thefirst priority isto take pressure of f your staff, sothe
first recipient of the rewards should be to the partner
and family of sad staff—it's al very well in career/
money terms, but it'sthe family who have to make the
sacrifices. Bouquets of flowers are a start. Support the
whole family—they're the ones doingit.

While a bouquet of flowers is a nice gesture, it's sometimes more
meaningful to provide"practical" rewardsto thefamily members—espe-
cially the spouse who is left juggling al of the household and child-care
responsibilitieswhile his or her "significant other" isworking 'round the
clock on the death march project. A thoughtful project manager might
check to see whether the spouse needs a taxi service to pick up or drop off
achild from school, or whether someone from the office could pick up
some groceries on the way home to help the spouse who is stuck at home

PEOPLE IN DEATH MARCH PROJECTS 109

with sck children. And, if the children are really sick and need medical
attention, the project manager will move heaven and earth—and utterh
destroy any bureaucratic obstacles—to ensure that the appropriate ser
vices areprovided, in order to minimize anxiety on the part of the deal
march project member.

Of course, the examples mentioned above do require money, but it'
usualy avery small amount of money, and it can usually be covered r,
the "miscellaneous" part of the project budget Again, the corporate bu
reaucrats will probably whine and complain if they find out about it, fo
such expenditures usually don't conform to officially sanctioned proce
dures. The project manager who caves in to this kind of pressure is
spindless wimp; if necessary, the manager should pay for such expense
out of his own pocket, since he's usually making a much higher salar
than the technical staff members. In any casg, it's the manager's job t
deal with the corporate bureaucracy here; the last thing we want is t«
have thetechnical stafferswastingtheir time and their emotional energ
fighting with the accounting department about whether it was reason
able to order a pizza with two extra toppings, rather than the econom
pizza, for amidnight dinner when theteam isworking late.

Modest rewards of this kind throughout the project will certainl
help; but, what about non-financial rewards of a more lasting natur
when the project finishes? I'm not thinking of promotions or new caree
opportunities here, for thosefall into thesamecategory asovert financia
rewards. Here are some examples of rewards that might not be quite a
motivating as amillion-dollar bonus check, but would nevertheless helj
ea2the pain of a death march project:

* An extended vacation—if the project succeeds, give the team mem
bers avacation of the same duration asthe project. Most of usaren’
quite sure what to do with a two-week vacation—but if we had ;
six-month paid vacation, it might motivate us to take that 'round
the-world sailing trip we've aways dreamed of . An interesting test
Try this idea out on your manager and watch the reaction. If it
something like,"What?!? Areyou nuts? Six months vacation for £
six-month death march project? ?WEelll give you acouple days of f
but don't push your luck!" it will give you a strong indication o
management'simplicit belief that software devel opersare nothing

110 DEATH MARCH

more than indentured servants. Such an attitude speaks volumes
about the organization's concept of a socia contract.

« A paid sabbatical—when the death march project is done, assign
the team members to a six-month stint on "Project X"[6]. Ques-
tion: What's"X"? Answer: Anything they want it to be. Rather than
immediately being assgned to another death march project (or
equally bad, an utterly boring non-death march project), the team
members can look forward to six months of learning about Java,
researching the latest object-oriented methodologies, or even
returning to college to get their Master's degree. Y ou'll have to be a
little creative about the" official” namefor X to confusethe bureau-
crats, something like "the advanced nimbo-heuristic, object-
oriented, Internet-savvy, Javarbased, strategic-forecasting client-
server system"might do the trick.

 Afully-equipped computing environment at home—even though PC
hardware has gotten much cheaper and we all have something set
up in our home office, it's usually not the most up-to-date equip-
ment. Many of us have a duggish 486-, or even an ancient 386-
based machine, while the rest of the world races ahead to 200 MHz
Pentium machines. The interesting thing about death march
projects is that they often accumulate extra computer equipment,
because management is prepared to throw extravagant sums of
money into the budget on the theory that advanced technology will
save the project. If there is leftover equipment at the end of the
project, giveit to the team members as a bonus; if an outright gift
breakstoo many bureaucratic rules, then |oan it to them.

422 The Issue of Overtime

If bonuses and extended vacations are a motivator, then overtime during
the project would normally be considered a "de-motivator.” But, it's al-
most inevitable on death march projects; indeed, it's usually the only
way that the project manager has any hope of achieving the tight dead-
line for the project. And, as noted earlier, it often occurs without any ex-
plicit requests from the manager: young, fanatical, unmarried team
members who are excited by the challenge and advanced technology as-

PEOPLE IN DEATH MARCH PROJECTS m

sociated with the project will happily work 60, 80, or 100 hours per week.

Nevertheless, overtime must be managed properly to avoid demoti-
vating the team and endangering the success of the project. One way to
manage overtimeisto ensure that senior management knows how much
it codts, as consultant Dave Kleist putsit [7],

Unless stock options for the company are distributed
to team members as generoudly to senior manage-
ment, there are no forms of compensation for adeath
march that would qualify as a reward (I'm using re-
ward as a term with a positive tone). While the PM
rarely has this control over compensation, what really
should be done is immediate compensated overtime
inthe next paycheck. This gives something back to the
people sacrificing the most for the project, and punish-
es (through the budget) the people who need to learn
the real cogt of a project (senior management, €tc).

If you're going to do adeathmarch, it's best to get paid
by the mile.

Regardiess of whether or not the team members are being compen-
sated for their overtime work, the worst mistake is not recording the
overtime, on the theory that since the team members aren't being paid
for it, it's "free." While this may be an accurate perception on the part of
the accounting department, overtime is not free from the project manag-
er's perspective. Even if we assumed that al team members could work
18-hour days forever, without ever becoming tired, it's crucial for the
manager to keep track of how many "invishle' overtime hours are being
contributed throughout the project. Thisisthe only way the manager can
accurately gauge the productivity of theteam and the likelihood of reach-
ing each mini-deadline throughout the project.

And, as everyone knows, people can't work 18-hour days forever;
even if they try, they get tired. When they get tired, they get cranky and
short-tempered, they work less productively, and they make many more
mistakes. All of this has a dramatic impact on the progress of the overall
project, and the manager has to know when to relax the pressure, and
when to ask for more overtime.

112 DEATH MARCH

This may not seem so important for a three to Sx month project,
when ayoung, energetic project team can work “flat-out" from begin-
ningto end. But, on longer projects, careful management of the overtime
effortiscrucia; the effects of long periods of heavy overtime areinsidi-
ous, but nevertheless quite real. As Doug Scott suggested to mein are-
cente-mail message[8]:

Part of scheduling deliveriesisto ensure that the over-
time comes in bursts and is then dlowed to diminish -
you can't keep people working a 90% and over for

very long.

And as John Boddie, [9] points out, it's important that the manager
recognizethat eachteammemberwill haveadifferenttolerancefor over-
timework:

Individuals have different metabolisms. Some are
night people, others work better in the early morning.
Irrespective of type, nobody's health is going to be ru-
ined by working ten-hour days. Once the project gets
rolling, you should expect members to be putting in at
least 60 hours per week. If they're not, check first to
e if there's something in the way the project is orga-
nized that's frustrating them.

The project leader must expect to put in as many hours
aspossible. Thisis done for two reasons. First, he must
provide an example. Y ou cannot expect people towork
overtimeif you're not doingit yourself. Overtime must
be led. Second, he must be there to answer questions,
cut through red tape, and fix problems that come up
during odd hours.

One of the dangers that the project manager must watch for is exces-
sve voluntary overtime on the part of enthusiastic young software engi-
neers who don't know their own limits, and who don't appreciate the
potential side-effects of working when the/re exhausted. As suggested
by Figure4.1, net productivity might actually increaseduringthefirst 20
hours of overtime work, based on adrenaline, concentration, eic. But

PEOPLE IM DEATH MARCH PROJECTS 113

sooner or later, everyone reaches a point of diminishing returns; and at
some point, productivity begins to decline because of increased errors
and lack of focus and concentration. Indeed, there comes a point where
the team member becomes a "net negative producer,” because the re-
work effort caused by mistakes and defectsexceedsthe positive contribu-
tion of new software developed. Thus, assuming that the scalein Figure
41 isaccurate (which it may or may not be, for any individual software
developer), the manager will probably want to encourage the devel oper
to work as much as 60 hours per week; the period between 60 and 80
hours per week isr where the manager should begin letting the devel oper
st hisor her own limits; and beyond 80-90 hours per week, the manager
should insist that the developer go home and rest.

Productivity
(new work minus
lost time: for rework)

Hours
per week

v

40 60 80 90 100 120 5

A 4

-

Note that the shape of this curve depends on age, motivation”® and length
of the-overall project

FIGURE 41 NET PRODUCTIVITY VS. HOURS WORKED

114 DEATH MARCH

4.3 THE IMPORTANCE OF COMMUNICATION

One of theimportant peopleware issuesfor death march projects isthe na-
ture and extent of communications between the project manager and the
rest of theteam. In my opinion, theided situationisonewherethe project
manager has no secrets—everyone on the team knows everything about
the project. This means that everyone on the team knows the current infor-
mation about the project status, priorities, risks, congtraints, palitics, etc.

One reason for suggesting this is that it builds trust and loyalty
among team members. If the team members are making extraordinary
personal sacrificeson behalf of the project, it'svery disillusioningto dis-
cover thattheproject manager hasbeenwithhol dingcrucial information,
or has been playing political games behind the backs of the project team
members. And because death march projectstend to be intense and fast-
moving, there's more of a chance than in normal projects that the team
memberswill find out that information hasbeenwithheld, or that politi-
cal shenanigansaregoing on.

The obvious counter-argument to this philosophy is that the project
manager should be buffering the team from distractions—especidly the
petty political games that surround the project on a day-to-day bass.
Andin mogt cases, theteam memberswill appreciate being spared dl of
the politics; but, they aso need to know that if they ask adirect question,
their project manager won't obfuscate or lieto them. In most projects,
normal or death march, there'saregular status meeting where questions
of this kind can beraised; if the staff members are satisfied that they can
find out what's going on whenever they need to, they'll be happy to con-
centrate 99% of their energy on their technical work.

Communi cation between team membersisasocrucial, especialyin
the unfortunate situation where the team members have not worked to-
gether before. It's crucid that inrra-team communication be kept confi-
dential (from outsiders) to encourage honest and frank exchanges of
information. For most projectstoday, this strongly impliesthe need for
electronic mail and variousforms of groupware along the lines of Lotus
Notes. Butinaddition, theproject manager should planforweeklylunch,
beer, or dinner sessions so that the staff members can interact with one
another outsidethe normal office environment.

PEOPLE IN DEATH MARCH PROJECTS 115

4.4 TEAM-BUILDING ISSUES

Open, honest communications are an important ingredient in the pro-
cess of building an effective team. Choosingindividualswho are compat-
iblewith one another is another key ingredient. As mentioned earlier, it's
crucial that the project manager have the freedom to choose his or her
team members, and it can be helpful to use techniques such as Briggs-
Meyers personality assessment tests to help anticipate how team mem-
bers will interact with one another.

Yet another ingredient involves the concept of team roles. Many
project managers focus on "technical” roles such as database designers,
network specialists, user-interface experts, and so forth. But while these
roles are important, it's also important to think about the "psychological”
roles that will be played by one or more team members. These roles are
visblein "normal" software projectstoo, but they are all the more crucial
in death march projects. Rob Thomsett [10] has described the eight key
project roles as follows:

» Chairman—controls the way in which a team moves forward
toward the group objectives by making the best use of team
resources, recognizes where the team's strengths and weaknesses
lie, and ensures that the best use is made of each team member's
potential. As might be imagined, this person is often the official
project leader; but in self-managing teams, it could be any one of
the individuals.

» Shaper—shapes the way in which the team effort is applied, and
directs attention and seeks to impose some shape or pattern on
group discussion and on the outcome of group activities. This indi-
vidua may have the officia title of "architect" or "lead designer,”
but the key point is that ifs a"visionary" role. Especidly in a death
march project, it's crucial to have a Sngle, clear focus on what the
problem is, and what the solution (design) should be.

» Plant—advances new ideas and strategies with specia attention to
major issues, and looks for possible new approaches to the prob-
lemswith which the group is confronted. | like to think of this per-
son as the "provocateur"—the person who introduces somewhat

116

DEATH MARCH

radical ideas and technologies into the group, to help find innova-
tive solutions to help solve the technical problems confronting the
death march team.

Monitor-Evaluator—analyzes problemsin a practical manner, and
evaluates ideas and suggestions so that the team is better placed to
make baanced decisons. In many cases, this person acts as the
"skeptic" or"critic,” thus balancing the optimistic proposals of the
shaper and plant. The monitor-evaluator is aware that new tech-
nologies don't always work, vendor promises about the features of
new tools and languages are sometimes broken, and things in gen-
eral don't aways go as planned.

Company Wor ker—turns concepts and plans into practical working
procedures, and carries out agreed-upon plans systematically and
efficiently. In other words, while the shaper is spouting grand tech-
nological visons, the plant is proposing radical new solutions, and
the monitor-evaluator is looking for the flaws and shortcomings in
those proposas, the company worker is the person who hunkers
down in a corner and chums out tons of code. Qearly, a death
march project needs to have at least a couple of these folks, but on
their own, they may not bring the project to success because they
don't have any grand visions of their own.

Team Wor ker—supports members in their strengths (e.g., building
on suggestions), underpins members in their shortcomings,
improves communications between members, and generally fos-
ters team spirit. In other words, this person is the"diplomat” of the
team. It may be the project manager, but it could also be any one of
the individuals on the team who happens to be a little more sensi-
tive than the others about bruised egos and sensitive persondlities.
Again, this is often a crucia role in death march projects, because
the team is often under a great deal of stress, and at least one or
two of the team membersis likely to begin behaving in an insensi-
tive," macho"fashion.

Resource Investigator—explores and reports on ideas, develop-
ments, and resources outside the group, crestes external contacts
that may be useful to the team, and conducts any subsequent
negotiations. | like to call this person the "scavenger,” because he

IH DEATH MARCH PROJECTS 117

or she knows where to find a spare PC, an available conference
room, an extra desk, or amost any other resource that the team
needs. Such resources might or might not be available through
official channels; but even if they can be procured in the"normal"
fashion, it often requires filling out 17 forms in triplicate and then
waiting Sx months for the bureaucracy to process everything. A
death march project can't wait that long, and can't afford to have all
its progress brought to a halt because theVice President's adminis-
trative assigtant jealously guards access to the organization's only
available conference room. The team scavenger often has a net-
work of friends and contacts throughout the organization from
whom the critical resources can be begged, borrowed, or stolen.
The most important thing is that the scavenger enjoys this activity.

« Completer—ensures that the team is protected as far as possible
from mistakes of both commission and omission, actively searches
for aspects of work which need a more than usual degree of atten-
tion, and maintains a sense of urgency within the team. It's com-
mon to see this person taking on the dominant role during the
testing activities at the end of the project life cycle, but it'sjust as
important in the earlier stages too. The team sometimes needs to
be reminded—daily!—that ifs not involved in alifetime career, but
rather a project with a hard deadline, with intermediate inch-
pebbles that need to be accomplished in a timely fashion to avoid
falling behind.

Unfortunately, even with all thiseffort, there's no guarantee that the
project team will come together, or "jell,”" in a cohesive fashion. As Tom
DeMarcoand Tim Lister putitin Peopleware:

Y ou can't make teams;jell. Y ou can hope they will jell;
you can cross your fingers, you can act to improve the
odds of jelling; but you can't make it happen. The pro-
cessismuch too fragileto becontrolled.

If the jelling process is successful, there will usually be some visible
sgns. As DeMarco and Lister observe, successful teamstypically have a
strong sense of identity, a sense of eliteness, afeelingof joint ownership,

116

DEATH MARCH

and (at least on mission impossible-style death march projects) afeeling
that they can do good work and have fun. On the other hand, while the
organization may not be able to guarantee a successfully jelled team, it
can cause what DeMarco and Lister refer to as "teamicide’—i.e., a con-
scious or unconscious decision to give up and abandon al efforts to
mai ntain afocused, cohesive team structure. The practicesthat typically
lead toteamicidearethese:

Defensive management—not trusting the team. Note that this is an
area where the notion of a team" champion,"as discussed in Chap-
ter 2, becomes essential.

Bureaucracy—too much paperwork. If the team has any sense, it
will simply refuse to do the paperwork, or will make vague prom-
isesto catch tip with al of it after the project has finished.

Physical separation of team members—(e.g., in different buildings,
different cities, different countries)—el ectronic mail and groupware
tools can obvioudly reduce this problem, but physical proximity is
essential to maintain the team spirit S0 essentia to the success of a
death march project.

Fragtnentation of people's time—especialy in situations where the
team members devote part of their time to the official death march
project, and another part of their time maintaining an old legacy
system, or serving on the committee for the company Christmas
party. It's mind-boggling to imagine that such a thing could hap-
pen in a death march project, but it does happen in large corporate
bureaucracies.

Quiality reduction ofthe product—while the team may be prepared to
accept a certain level of quality-reduction in order to deliver’good-
enough” software on time, there is usualy a threshold below
which they refuse to go. The quality issue may involve defects
(bugs), missing functionality, primitive user interface, or shoddy
documentation.

Phony deadlines—for example, deadlines so aggressive that the
team has absolutely nofaith inits ability to meet them. Thisform of
teamicide usually transforms a mission impossible team into a sui-
cide team.

IN DEATH MARCH PROJECTS 119

* Clique control—splitting up teams when the project finishes. As
noted earlier in this book, some teams find that the project they're
working on is intrinsically boring, and the users to whom they
deliver their software are ungrateful louts; so, the satisfaction to be
derived from the project comes from the pleasure of workingwith a
certain group of people. Indeed, the satisfaction may be so great
that the team members look forward to the prospect of continuing
to work together on future projects. But ironically, the team spirit
that made the team succeed is often regarded as a political threat to
management; hence, the common practice of breaking the team
apart upon the completion of the project. This in turn is such a
demoralizing prospect that the team disintegrates even before the
projectdeadline.

A find point about team jelling: even when it happens, it doesn't
happen on thefirst day of the project. As Robert Binder [11] observes, a
typical team goes through a four-stage evolutionary process, which aso
applies to the vision-building process of developing a shared under-
standing of the application problem and general structure of the solution:

* Forming: team members define gods, roles, and team direction.

o Storming: the team sets rules and decision-making processes, and
often renegotiates (argues) over team roles and responsibilities.

» Norming: procedures, standards, and criteria are agreed upon.
« Performing: the team begins to function as a system.

In the ided case, aproject team may have gone through most of the
"forming” and "storming" stages before the project even begins—be-
cause the team members have worked together on previous projects.
However, every project is different, and every project team usually in-
cludes one or two new people, which isbound to cause a certain amount
of forming and storming. But, whether the overall process takes aday, or
aweek, or amonth, it must occur; if at al possible, the project manager
will try to get the team members assigned to the project well before the
official "kick-off" date of the project, in order to be at the "performing”
stage when the project officially begins.

120 DEATH MARCH

It's dso important to remember that even when ateam hasjelled, it
can fall apart because of the pressure of the death march project. Inan
e-mail note to me, Dale Emery [12] recommended that the project
manager keep awatchful eye on the team dynamics:

Pay attention to the relationships within the team, and
put some effort into maintaining people's ability to
work together over time. A death march project cre-
ates tremendous pressure that can amplify small dis-
turbances into major conflicts. Periodic check-ins to
"take the temperature” of the group can help you and
the team ded with relationship and communication
problems while they are till small.

In the worst case, though, the team might never get past thefirst two
stages; or to put it another way, the team may commit teamicide because
of the various problems listed earlier. And, by the time the project man-
ager (or some level of management above the project manager) notices
that teamicide has occurred, it's probably too late to form a new team.
Clestlavie.

4.5 WORKPLACE CONDITIONS
FOR DEATH MARCH PROJECTS

The issue of decent offices—versus Dilbert-style cubicles—has been de-
bated for so many yearsin the software development field that it seems
pointlessto bringit up again. Tom DeMarco and Tim Lister, whosework
has already been cited numerous times in this chapter, have discussed
the benefits of decent office working conditions at length in their People-
ware opus; software developers who say their workplace is acceptably
quiet, for example, are one-third more likely to deliver zero-defect work
than those who work in noisy office environments with uncontrollable
interruptions. And, inasurvey of some 600 software developers, DeMar-
co and Lister were able to make a persuasive argument that those work-
ing in reasonabl e office conditions—with the ahility to divert phone cals,
silence the phone, dose the door, and prevent needless interruptions—
were approximately 2.6 times more productive than those working in the
usua office environment.

PEOPLE IN DEATH MARCH PROJECTS 121

Though DeMarco and Lister published their work in 1987, it doesn't
seem to have done much to the workplace conditions for most software
devel opers—except in software-product companies. The working conditions
at Microsoft, and in most of the software companies throughout Silicon
Valey, arecivilized indeed; private officeswith doorsthat close, accessto
kitchens stocked with soda, juice, and other beverages, and a "perma-
nent" phone number that followsthe programmer in the event that he or
sheisreassigned to adifferent office.

Asfor the software developerswho work in banks, insurance compa-
nies, government agencies, manufacturing organizations, and the hun-
dreds of other companies for whom softwareisstill generally regarded as
an "overhead" expense, offices tend to be replaced with cubicles, and the
ability to concentrate on one's intellectual efforts ranges from poor to
non-existent. Stale Muzak wafts through the air, phonesring incessantly,
dogs bark, peopleyell, and there is no way to prevent anyone from the
mailroom messenger to the CEO from butting their head into your office
tointerrupt you. As DeMarco and Lister put it;

"Police-mentality plannersdesign workplacestheway
they would design prisons. optimized for containment
a minimal cost. We have unthinkingly yielded to
them on the subject of workplace design, yet for most
organizations with productivity problems, there isno
more fruitful area for improvement than the work-
place.

Aslong asworkersare crowded into noisy, sterile, dis-
ruptive space, it's not worth improving anything but
the workplace."

Unfortunately, my complaining about the situation isn't likely to have
any more of an effect on the industry than DeMarco and Lister'sfar more
detailed and eloquent discussion. But remember that we're talking about
death march projects here—different rules apply, and | believe that the
project manager should adopt the philosophica position thatra rulesapply.

If you're a death march project manager with a nearly-impossible
deadline, the message that decent office conditionscan lead to a 2.6-fold

DEATH MARCH

improvement in productivity should be enough to motivate you to break
lots of rules. Whatever you accomplish probably won't be permanent; in
fact, as soon as the project is over, the furniture police will swoop in and
reassign everyone to the same miserable cubicles occupied by the rest of
the staff. But, if the death march project only lasts six months, and if
you're clever, you might be able to provide decent working conditions
without the furniture police even figuring out what's going on.

Here are some possibilities:

» Frontal attack—if you have a project champion and/or project
owner desperate to get the project finished, explain to him or her
just how important it is to put your project team into an effective
environment. If the project champion is a high-level manager, it
should be relatively easy to arrange a temporary transfer of the
projectteam.

« The "skunk works' mystiqgue—maost senior managers have heard of
the notion of a "skunk waorks'; thus, rather than asking to locae
your project team in the executive suite, where each office has its
own private bathroom, ask for permission to relocate the team to
an abandoned warehouse.

* Squatter's rights—commandeer empty office space that has been
sitting unoccupied while the furniture police try to figure out how
many hundreds of people they can cram into it. Pbssesson is 90
percent of the battle; while the bureaucracy complains, debates,
and sends angry memos back and forth, you might even be able to
finish your project and disappear back into the anonymous cubicles
again.

« Telecommute—tell everyone to work at home, and arrange to have
your weekly status meetings a the locad McDonald's (at 9AM,
when the placeis likely to be empty). It may take weeks for anyone
to notice that the project team has disappeared. As an additiona
diversion, you can put scarecrow-style dummies at the desks nor-
mally occupied by the project team; management will have a hard
time distinguishing them from the other zombies in the office.

« Switch to thegraveyard shift—thisis more extreme, but can be effec-
tive if most of the project work can be carried out without interact-

~FHPECOPLE IN DEATH MARCH PROJECTS 123

ing with the user community. It's unpleasant asking everyone to
change their work schedule to the midnight-to-eight shift, but it's
virtually guaranteed to diminate normal interruptions. A strategy
like this is sure to evoke the wrath of bureaucrats throughout the
organization, but the wonderful thing isthat the bureaucrats aren't
in the office in the middle of the night! They'll send angry memos
and e-mail messages; but, the best strategy is to ignore them and
pretend that you never received them. If that doesn't work, then
simply refuse to change your schedule; unless they turn off the
lights or change the locks on the office door, there's not much they
can do within the duration of atypica death march project.

» Barricades and huffers—if your team is in a typica "open office"
environment and the strategies discussed above aren't feasible,
then do whatever you can to ensure that the project team members
are located in contiguous cubicles. Then, take whatever further
steps are necessary to barricade that set of cubicles from access by
the rest of the office herd. Disable the intercom and loudspeaker
that blares noise from the ceiling (and be prepared to do so weekly,
as the janitorial service will probably do its best to repair it).
Unplug the phones, or as DeMarco/Lister recommend, stuff cotton
into the ringer portion of the hand-set. If you can take over an
entire floor, or awhole building, so much the better. Erect a pirate
flag atop the building, as Steve Jobs did with the Macintosh project
team at Apple. Ingtall a guard to shoo away unwanted visitors.

Some of these actions will provoke a more violent response from the
corporate bureaucracy than others; the team and its manager will have to
decide which strategy is most effective. But, | want to emphasize that I'm
serious about all of these strategies, despite the obvious fact that they vio-
laethe "rules’ that onefindsin aimost every large company. Confronting
thebureaucracy in thisfashion is not for thetimid; but, by the same token,
death march projects are not for thetimid. If the death march project man-
ager isn't willing to stand up and fight for decent working conditions, then
why should the project team be willing to make extraordinary sacrificeson
behaf of the organization and project manager [13]? [14]

124 DEATH MARCH

4.6 SUMMARY

Taented people, cohesive teams, and decent working conditions are not
enough to guarantee success in a death march project. The absence of
these elements, however, is amost enough to guarantee the project's
failure. Aswell seein the next two chapters, good software processes and
good technology are al so important ingredientsfor success; but, the most
important ingredient of dl isthe people. As Ronald Reagan put it:

Surround yourself with the best people you can find,
delegate authority, and don't interfere.

Ronald Reagan, from Reagan's Reign of Error,
"Mission Impossible” (ed. Mark Green
and Gail MacColl, 1987).

Notes
1. Ed,

> 1. How crucial is it for the death inarch project manager to have
> the freedom to choose his/her project team members?
It's another aspect of death inarch projects that the PM usually
has no (or not enough) choice in the people. Having said that, it
wouldbe a dreamproject indeed if you had all the people you wanted
- there just aren't enough good people to go around.
>should the project manager resign on the spot?
You' re assuming that he knows who these people are when he gets
them. I've usually had them assigned to me before I know how good/
bad they are.
There is a counter-measure to this, which I haveused successfully.
DeathMarches often end up in the desperate situation where senior
management will throw money at you - "You want another twenty
people?". And I always accept. I put the bozos onto manning the
coffeemachine, changing fuses, andother essential work, while I
hang on to the better ones. (Randomly, you will get a few good
ones) . Then you can assist the bozos to resign and keep pressing
for more and more people to replace them. In one case, I cut to
20% of the original staffing level, and still maintained work
output - but the quality of that output was excellent. That's no
surprise to anybody, but it's by constantly demanding more
resources and losing them that you can achieve it.
> 2 . How should the project manager handle the issue of rewards?
The first priority is to take pressure off your staff, so the first

PEOPLE IN DEATH MARCH PROJECTS 125

recipient of the rewards should be to the partner and family of
said staff - it's all very well in career/money terms, but it's
the family who have to make the sacrifices. Bouquets of flowers
are a start. Support the whole family - they're the ones doing it.
> 3. What about overtime?
In a deathmarch, it's unavoidable, as you suggest. But part of
scheduling deliveries is to ensure that the overtime comes in
bursts and is then allowed to diminish - you can't keep people
working at 90% and over for very long. I've never been in an
organisation which paid overtime, and I really don't like it—it
smacks of rewarding those who aren' t doingwell enough. Better to
reward those still standing at the end with bonuses - and that' s
counted inmonths ' salaries, not apie and apint at the local pub.
> what are the most important things for the manager to do in a
> death march project, vis-a-vis peopleware and teamwork?
Be there. Listen. Represent theirviews back to senior management,
and ensure that the trivia is dealt with quickly and efficiently.
Get the coffee, if that's all he can effectively do. Contribute.
>what are themost important things they should do for themselves,
> and for their fellow team-mates, during the project?
The same. Help each other, so that the work gets done in the
quickest possible time. You might even get home early.
I note that I'm worrying a lot about married folk, but that's
because the spouses are often ignored in death marches, and I've
seenmany a marriage (includingmy own) go west because of a death
march. It needn't be so, if managed well. Single folk have more
freedom to choose, and less reason to feel trapped.
--Doug

2. Tom DeMarco and Tim Lister, Peopleware (Dorset House Publishing, 1987).
3. See Note 1.

4. Frederick Herzberg, "One More Time: How Do Y ou Motivate Employees?”
Harvard Business Revieiu, September-October 1987.

5. S Note 1.

6. Thiswonderful strategy was suggested by Peopleware guru Larry Constantine
at asoftware conferencein Melbourne, sponsored by the Australian Computer
Society in 1995.

7. Ed,
» 2 . How should the project manager handle the issue of rewards?

DEATH MARCH

» 3 . What about overtime? While rational people might argue that
overtime isnot agood idea for "normal* projects, it' sprettyhard
to avoid in a death march project. How much should be expected? «
Howmuch can be afforded? Unless stock options for the company are
distributed to team members as generously to senior management,
there are no forms of compensation for a death march that would
qualify as a reward (I'm using reward as a term with a positive
tone) . While the PMrarelyhas this control over compensation, what
reallyshouldbe done is immediate compensatedovertime in the next
paycheck. This gives something back to the people sacrificing the
most for theproject, andpunishes (through the budget) the people
who need to learn the real cost of a project (senior mgmt, etc)
If you're going to do a deathmarch, it's best to get paid by the
mile.

- Dave

8. Seenote 1.
9. John Boddie, Crunch Mode (Prenrice-Hall/Y ourdon Press, 1987), page 124.

10. Rob Thomsett, "Effective Project Teams. A Dilemma, aModd, aSolution,"
American Programmer, July-August 1990.

11. Binder'sarticle on team evolution.

12.Ed,
» 1. How crucial is it for the deathmarch project manager to have
the freedom to choose his/her project teammembers? No one doubts
that it's important, but how important? If senior management
says, "Sorry, but the only available people for this project are
Neurotic Ned, Moron Mary, and Zombie Zack", should the project
manager resign on the spot? «
Freedom to choose project teammembers is about as crucial as your
freedom to decide any other parameter of the project. Even if you
can't choose the schedule, you can still be honest about how that
schedule will affect other parameters . Even if you can choose the
project team members, you can still be honest about how their
capabilities will affect other parameters.
» 4. Aside from the issue of managing overtime, what are the most
important things for the manager to do in a death march project,
vis-a-vis peopleware and teamwork? «
Always remember that the people working for you on the project are
exactly as important as you and your manager, and exactly as
important as the project' s customers . If youallow this balance to
tilt, and start treating the people on the team as if their needs

PEOPLE IN DEATH MARCH PROJECTS 127

are not important to you, they' 11 very quickly get the hint. Then,
guess what happens to the commitment you wrote about earlier.
Pay attention to the relationships within the team, and put some
effort into maintaining people's ability to work together over
time. A death march project creates tremendous pressure that can
amplify small disturbances into major conflicts. Periodic check-
ins to "take the temperature" of the group can help you and the
team deal with relationship and communication problemswhilethey
are still small.

» 5. Same question from the perspective of the team members: what
are the most important things they should do for themselves, and
for their fellow team-mates, during the project? «

Stay in touch with what you are giving up and what you are gaining
by working on the project. Check now and then to make sure the
balance is in your favor. If it isn't, do something to get it back
inyour favor. The key is to stay aware of what you need and what
you're willing to do to get it.

Remember that you are here by choice. Work on improving your
alternatives to continuing on the death march project. It is
marvelous what having choices can do for your attitude.
--Dale

13. On the other hand, one of the problems of tactics that is guaranteed to annoy
the bureaucracy is that key people outside the team may become reluctant to
help you. As Paul Neuhardt explained in arecent e-mail message to me:

When it became obvious that we were lost in the desert, |
kept things going for a time with the old "WEell get things
going again soon" speech. Before long, any moron could see
this project wasn't going anywhere, so | looked for anew ap-
proach. | tried "Hey, let's do it our way and to heck with
management." Thisworked for awhile, but some of the key
people we needed outside of the team were so scared of
management that they wouldn't help us until we got the
green light from the executive suite. Next was, "There's a
management shakeup in the works. If we outlive the current
managers, we can get back on track.” Yesh, right. The faces
changed but the song remained the same.

14.Ed,
Iwill confess here and publicly: I was a failure as a deathmarch
manager. At least, I think I was. The reason I say that is that
eventually I lost the ability to keep my team motivated.
My experiences as manager of death inarches are both what I
described earlier as "Lost Patrol" projects. They might not have

128 DEATH MARCH

been death inarches if we ever had a fixed target to shoot for, but
with the goal changing daily we thrashed along forever with
expectations from senior management high and our ability to succeed
becoming increasingly low. I had built a team of people who
genuinely believed in the project. They wanted to learn new
technologies, broaden themselves and improve the state of the
systems at the company. And, whilebonuses for completingaproject
weren' t going to be handed out, there were promotions, raises and
prestige to be had, all of which motivated my team.

When it became obvious that we were lost in the desert, I kept
things going for a time with the old "We'll get things going again.
soon" speech. Before long, anymoron could see this project wasn't
going anywhere, so I looked for anewapproach. I tried "Hey, let's
do it our way and to heck withmanagement. " This worked: for awhile,
but some of the key people we needed outside of the team were so
scared of management that they wouldn' t help us until we got the
green light from the executive suite. Next was, "There's a
management shakeup in the works. If we outlive the current
managers, we canget backontrack. " Yeah, right. The faces changed
but the song remained the same.

By this time I was probably the most disgruntled person on the
project. I had not only been sent into the desert to die, but I
had convinced several people I liked and respected to come with
me. I was not only mad, I was guilty. Needless to say, when all
you want to do is throw one rip-snorter of tantrum ending in the
words "Take this joband shove it" it isprettyclose to impossible
tomotivate people to keep marching. I know I couldn't findwhat
it took inside of me. I found another job, apologized to the team
for taking them into Hell with me, and left. In this at least I
managed to lead by example. Of the 10 people on my team one year
ago, only one still works for that company.

Not that this is what you asked for, but I feel better for having
gotten to say it. Andno, I'mnot paying you $150/hr (or whatever
it is that shrinks get these days). I will, however, buy you a
drink next time you are in Boston. Look me up.

--Paul

PEOPLE IN DEATH MARCH PROJECTS 129

Additional References

Rich Cohen and Warren Keuffel, "Pull Together," Software Magazine, August
1991

Larry Constantine, Constantine on Peopleware (Englewood Cliffs, NJ: Prentice
Hall, 1995). ISBN: 0-13-331976-8.

Danid J. Cougerand Robert A. Zawacki, Motivatingand Managing Computer Per -
sonnel (New Y ork: John Wiley & Sons, 1980). ISBN: 0-471084-85-9.

B. Curtis, W.E. Hefley, and S. Miller, People Capability Maturity Model, Draft ver-
sion 0.3 (Pittsburgh, PA: Software Engineering Institute, April 1995).

Tom DeMarco and Timothy Lister, "Programmer Productivity and the Effects of
theWorkplace," Proceedingsofthe8th 1CSE (Washington, DC: | EEE Press, 1985).

Richard J. Hackman (ed.), Groups That Work (and Those TJiat Don't): Creating
Conditions for Effective Teamwork (San Francisco, CA: Jossey-Bass, 1990). ISBN:
1-555421-87-3.

Watts Humphrey, Managingfor Innovation: Leading Technical People (New Y ork:
McGraw-Hill, 1987). ISBN: 0-135503-02-07.

Magid Igbaria and Jeffrey H. Greenhaus, "Determinants of MIS Employees
Turnover Intentions," CommunicationsoftheACM, February 1992,

JR. Katzenbach and D.K. Smith, The Wisdom of Teams (Boston, MA: Harvard
University Press, 1993). ISBN: 0-8754843067-0.

Guy Kawasaki, TheMacintosh Way: TheArt of GuerrillaManagement (Glenview,
IL: Scott Foresman and Company, 1989). ISBN 0-06-097338-2.

J. P. Klubnik, Rewar ding and Recognizing Employees (Chicago, IL: Irwin Publish-
ers, 1995).

Otto Kroeger and Janet M. Thuesen, Type Talk: The 16 Personalities Tliat Deter-
mine How We Live, Love, and Work (New Y ork: Bantam Doubleday, 1988). ISBN:
0-440-50704-9.

Susan A. Mohrman, Susan G. Cohen, and Allan M. Mohrman, Jr., Designing
Team-Based Organizations (San Francisco, CA: Jossey-Bass, 1995).

Peter Senge, The Fifth Discipline: The Art and Practice of the Learning Organization
(NewY ork: Doubleday, 1990). |SBN: 0-385260-94-6.

MARCH

S.B. Sheppard, B. Curtis, P. Milliman,and T. Love, "M odem Coding Practices
and Programmer Performance," |IEEE Computer, December 1979.

Paul Strassmann, "Internet: A Way for OutsourcingInfomercenaries?’ American
Programmer, August 1995.

Auren Uris, 88 Mistakes Intennewers Make and Haw to Avoid Them (New York:
American Management Association, 1938).

J.D.Yalettand F.E. McGarry, " A Summary of SoftwareM easurement Experienc-
es in the Software Engineering Laboratory," Journal of Systems and Software, Vol.
4No.2,1989, pp. 137-148.

Susan Webber, "Performance Management: A New Approach to Software En-
gineeringManagement,” AmericanProgrammer, July-August 1990.

Gerald M. Weinberg, The Psychology of Computer Programming (New York: Van
Nostrand Reinhold, 1971). ISBN: 0-442-29264-3.

Gerald M. Weinberg, Understanding the Professional Programmer (New York:
Dorset House, 19B8), | SBN: 0-932633-09-9.

MikeWest, "Empowerment: Five M editationson the Soul of Software Devel op-
ment" AmericanProgrammer, July-August 1990.

<en Whitaker, Managing Software Maniacs (New York: John Wiley & Sons
1994). ISBN: 0-471-00997-0."

G P S e

chapter

et e

,W..__..:_._.

No delusion is greater than the notion that method and industry can
make up for lack of mother-wit, either in science or in practical life.
Thomas Henry Huxley

"OntheAdvisablenessof Improving Natural Knowledge"
(1866; reprinted in Collected Essays,
vol. 1, 1893)

There is a point at which methods devour themselves.
Frantz Fanon, Black Skins, White Masks,
Introduction (1952, translated 1967)

If you remember only one word from this chapter—or for that matter, the
entirebook you are now reading—it should betriage. Y ou might have as-
sumed, from the title of this chapter, that | would be concentrating on fa-
miliar methodologies like structured anayss, or formal process
disciplines like the SEI Capability Maturity Model (CMM), or various

131

132 DEATH MARCH

prototyping approaches generically referred to as RAD (for "Rapid Ap-
plication Development™). These are all important and relevant ideas, but
themostimportantideaof all isthis: Youdon't haveenoughtimeinadeath
march project to do even'thing the users are askingfor. If you build your pro-
cesses and methods around that sobering fact, you have achance of suc-
ceeding; if you begin the project with the notion that coding can't
commence until al the structured analysis data flow diagrams have been
approved by the user, you'll definitely fail.

This doesn't mean that we should ignore al of the other process-
related ideas and strategies (I'll cover them later in this chapter); but as
you'll see, my general opinion isthat they should be introduced as part of
a strategic corporate decision, rather than foisted upon a death-project
team as adesperate tactical ploy to avoid what would otherwise be afail-
ure. And the concept of triage applies here, too—if pressed, a death
march project team will abandon the methods it fedsisunhel pful or un-
essential (like detailed mini-specs in a structured analysis model), and
devote its resources to whatever it feels is most helpful. Smilarly, a
project manager who has only afew momentsto read thischapter should
read the most important information, and skip the rest if necessary; I've
organized the discussion in this chapter with that in mind.

5.1 THE CONCEPT OF "TRIAGE"

The word "triage” comes from the Old French trier, which means "to
sort." The American Heritage Dictionary (3rd edition) defines it as follows:

tri-age (tre-azh', treazh'y) noun

1. A process for sorting injured people into groups
based on their need for or likely benefit from immedi-
ate medical treatment. Triage is used on the battlefield,
a disaster dtes, and in hospital emergency rooms
when limited medical resources must be alocated.

2. A system used to alocate a scarce commodity,
such as food, only to those capable of deriving the
greatest benefit fromit.

PROCESSES 133

Most of usare familiar with the medical connotation of triage, but the
second dictionary definition is more relevant for our discusson of death
march projects. alocating a scarce commodity (the scarcest of which is
usudly time) in such away as to derive the greatest benefit fromit. Or, as
Stephen Covey putsitinFirst ThingsFirst [1], "themain thingisto make
sure that the main thing is the main thing." (Indeed, the project is likely
to achieve far more benefit by giving every staff member a copy of Cov-
gy's excdlent book than a ponderous tome on software engineering
methodol ogies!)

Most prototyping and RAD approaches are compatible with triage,
and afew even mention the concept explicitly. But, the emphasisin most
RAD approaches is simply to get something—anything!—working
quickly, so that it can be demonstrated to the user in order to (a) demon-
strate that tangible progress has been made, and (b) solicit feedback on
thefunctionality of the system and (mostly) on theuser interface. That's
al very useful, but if the project team has devoted its resources to build-
inginitia prototypeswith "sexy" but nonetheless non-essential features,
theteam and the user are wasting their time.

The reason for thisisbecause of the subtle, but insidious, assumption
made by most software engineering methodol ogies—whether they are
based on the classic "waterfall” life cycle, or the more recent "spiral” and
prototyping methodologies. The assumption isthat, "somehow, we'll get
it all done by the time the deadline arrives.” Perhapsthisis because many
of us grew up in households where we were told by our parents that we
had to finish euerything on our platesbeforewecould leave thedinner ta-
ble; in any case, the unspoken motto of many project teamsis, "we will
leavenorequirementunfulfilled.”

A noble motto indeed, but amost always unachievable in a death
march project. As | mentioned in Chapter 1, most death march projects
have "officia" reguirements that exceed the team's resources—specifi-
cdly, people resources and time resources—by 50-100 percent. The re-
sponse by the naive death march project team isto hope that by working
double overtime, the deficit can somehow be overcome; the response by
the cynical suicide mission team is to assume that the project will end up
50-100 percent behind schedule, just like every other project. But, even
the cynical team isusually wrong, for they gtill assume that sooner or lat-

DEATH MARCH

er (usualy much later!) they'll eventuallyimplement al of thefunctional-
ity requested by the user.

The key point about death march projectsis that not only will some
requirements remain unfulfilled when the official deadline arives, but
some of them will never be implemented. Assuming that the familiar "80-
20" rule holdstrue, theproj ect team might beableto deliver 80 percent of
the "benefit" of the system by implementing 20 percent of the require-
ments—iftheyimplement theright 20 percent. And, sincethe user isof-
ten desperate to put the system into operation far earlier than the project
team thinks reasonable, the user might take that 20 percent, begin using
it, and never bother asking for the remaining 80 percent of the system's
functionality.

This is extreme and smpligtic, of course, but in virtualy all of the
death march projects that I've been involved with, it made enormous
good sense to separate the system requirements, triage-style, into
"must-do," "should-do," and "could-do" categories. The meaning of
hese three terms is obvious, and the fact that there are only three pre-
vents any irrelevant squabbles as to whether a specific requirement
should be categorized as a "priority-6" or "priority-7" requirement. Hav-
ingperformed such a triage, the obvious project strategy is to focus on
the"must-do" requirements first; if there is time left over, then focus on
the "should-do" requirements; and, if a miracle occurs, then work on the
"could-do" requirements.

Failureto follow such a strategy from the beginning of the project usually
leadsto an ugly criss toward the end of the project; in addition to the
nasty politics, it aso produces what my colleague Dean Leffingwell at
Requisite, Inc. referstoas"wastedinventory.” To understand why, con-
sider thetypical projecttime-lineshownin Figure5.1:

Project begins Mid-point Crisis Deadline

RS 3 5 e

FIGURE 51 A PROECT TIME-LINE

PROCESSES 135

When the project begins, nobody iswillingto admit that the schedule
is unredistic—least of al the user and senior management! The project
manager and team members may have a bad fedling in the pit of their
stomachthat they've gotteninto asuicide mission, but if they'reoptimis-
tic, they may believe that it will be a mission impossible-style project
where a miracle saves them later on. The key point here isthat the dead-
lineisfar enough away—typically sx monthsor ayear—that nobody has
to face up to the reality that the objectives are impossible.

Indeed, the political pressures and the team's naivete may even pre-
vent areassessment midway through the project. Ironically, the problem
isoften compoundedif the project team hasbeen foll owing someform of
RAD/prototyping approach, for they've probably demonstrated one or
more prototype versons of the system to the user, which can prolong the
illusion that everything will be done on time. But by now, the project
team is probably beginning to realize that they're in over their heads; and
if it's the manager's first death march project, he or she often has the na-
ive belief that senior management and the user will eventually come to
their senses.

Alas, things don't usually work out that way. An "ugly criss' finally
occurs when the user and/or senior management finally must face the
undeniable reality that despite the demands and despite the sincere
promises from the project manager, the system is not going to be deliv-
ered on time. This often occurs amonth before the deadline, sometimes a
week before, and sometimes the day after the officia deadline! Depend-
ing on how the political battles have been proceeding up to this point,
and depending on how exhausted and frustrated the project manager
has become, there are several possible outcomes. But, what often hap-
pensisthat senior management concludes that the entire problem isthe
fault of the project manager; that haplessindividua is summarily fired (if
he hasn't quit aready!), and a new project manager is brought in with
blunt instructionsto "clean this mess up, and get the system delivered."

The replacement manager may be a battle-scarred veteran from
within the organization, or perhaps a consultant from the outside. And
sometimes, the new manager doesfind that his predecessor made anum-
ber of basic management mistakes (eg., no schedule at dl, or no work
breakdown schedule); sometimes, the new manager's 20-20 hindsight

136 DEATH MARCH

concludes that the original manager was basically doing the right things,
but couldn't avoid becoming the sacrificia scapegoat when senior man-
agement finally had to accept the fact that their origina demands were
impossibletoachieve.

But whatever the assessment, one thing is amost certain: The re-
placement project manager must addressthe fact that the compl ete set of
project requirements cannot be finished in time for the origina dead-
line—if that weren't the case, the original project manager probably
wouldn't have beenfiredinthefirst place. So, what doesthe replacement
manager do? The two most obvious options [2] are:

* Renegotiate the deadline
 Renegotiate the system requirements

The first option might be acceptable, but it's unlikely in a death
march project. After all, the reason the users were asking for an unrea-
sonable schedule in the first place is that they desperately need the sys
tem to cope with some business demand. And, since the negotiation
being carried out by the replacement project manager istaking place at a
point in time relatively close to the origina deadline, there's a good
chance that the user community has aready begun making plans of its
own to put the new system into operation. The last thing they want to
hear is that it's going to be delayed another 6-12 months.

Thus, the most common—and successful—negotiating ploy involves
a triage of the original requirements. Note that the replacement project
manager is negotiating from a position of strength—it's not his or her
fault that the project isin such a mess, and there's an unspoken aware-
ness that management and the users were pretty stupid to have gotten
themselvesinto this situation in thefirst place. The new project manager
may even base his or her acceptance of the assignment on a successful
outcome of the negotiations—e.g., with a statement like, "If you want me
to take over this disastrous project, then you're going to haveto accept
the fact that we can only deliver a small percentage of the original func-
tionality in timefor your deadline. That's the Situation; takeit or leaveit.”

So far, dl of thisis fairly straightforward—even though it's discour-
aging, as a consultant, to seeit happening over and over again. But, thisis

PROCESSES 137

where Requisite Inc.'s Dean L effingwell asks the question, "What about
the inventory?' That is, what about all of the work-in-progress created
by the project team before the "ugly crisis’ occurred and the new project
manager took over? Chances are that the project team haswritten alot of
code, and maybe some test cases, they might even have some documen-
tation, and design models, and structured analysis models. What hap-
pensto all of that "inventory" of partially completed work? The sobering
answer: most of it gets throum away.

This might seem like an unnecessarily pessimistic statement. After
al, why not simply put all of that partly-finished work aside, and return
toitlateron?Inthebest of al worlds, thi& isexactly what happens; but, it
presumes the existence of a good set of tools and processes for version
contral, configuration management, source code control, etc.—all of
which may have been abandoned in the heat of battle, when the team
was concentrating on producing as much output as possible.

The red reason why al of this partially-completed work ends up be-
ingwastedinventory isthat no onewill ever havetimeto comebacktoit. As-
suming that the project team members (now under the control of a new
manager, whom they may or may not respect) isableto deliver the "bare
minimum” of critical functionality, they're usually so exhausted that hal f
of them quit. And the users are so disgusted with the project that they
never bother asking for the rest of the unfinished functionality; or con-
versdly, they'reso satisfied with theminimal functionality that they never
bother asking for the rest of the system. Even if they do, and even if the
origina team is till intact, there'sa good chance that so many architec-
tural changeswere madein the attempt to deliver a "bare-bones" system
that the hal f-finished pieces of work (which relateto non-critical require-
ments) can no longer be used.

Note that none of this discussion has anything to do with structured
andysis, the SEI-CMM, or any other "textbook" methodologies and
software processes. If Sjust common sense; butit'scritical common sense
inadeath march project. For it towork, all of the shareholdersand stake-
holders must agree asto which requirementsfall into the "must-do" cat-
egory, which ones are "should-do," and which ones are "could-do"
requirements. Obvioudly, if the project owner categoricaly insiststhat all
of the requirements are "must-do" items, and that nothing fals into the

UEATH

other two categories, this whole discussion is a waste of time [3]. And, if
the various shareholders and stakeholders cannot reech a consensus
about the triage items, then the project team will be paralyzed, attempt-
ingto do everythingfor everybody when they lack the resources to do so.

Unfortunately, the "ultimate redity" is that most organizations lack
the discipline, experience, or political strength to ded with theseissuesat
the beginning of the project. Nothingthat I've described in the preceding
paragraphsis "rocket science,” and even the most technologically illiter-
ate manager or business user can understand the issues, indeed, they
would apply just aswell to anykind of project that has to cope with lim-
ited resources and inadequate time. But even though everyone under-
stands the issues intellectually, the political battles surrounding death
march projectsmakesit almostimpossibleto reach aconsensuson area-
sonable triage. It's only when the "ugly crisis' occurs that the various
parties finally agree on something that they should have agreed upon
when the project began.

The exception to this gloomy prognosisis the organization that has
adopted death march projectsasaway of life. Obvioudly, usersand senior
managers are not stupid, and they usually learn from their experiences—
even if it takes three or four disasters for the lessons to sink in. As men-
tioned above, theoriginal death march project managerisusually avictim
of theinability to perform an early triage, but thesurvivorsgradualy fig-
ureout what it'sal about. I'll have moreto say about thisin Chapter 7.

5.2 THE IMPORTANCE OF
REQUIREMENTS MANAGEMENT

The discussion above suggests that death march projects need to focus
on a new aspect of the system development life cycle: requirements. Why
do | say "new"? After al, every project has requirements, and it'snot as
it software devel opersare completely unaware of the concept.

Traditional softwareengineeringmethodol ogies—includingthevar-
ious "structured" and "object-oriented” methodologies that several of
my colleagues and | have devel oped over the past 20 years—have con-
centrated on modeling the requirements, usually with graphica tech-

~PROCESSES 139

niquessuchasdatafl ow diagramsor entity-rel ationshipdiagrams. What
I'mtalkingaboutinthischapterismanagingtherequirementsduringthe
hectic daysof adeath march project.

Thesetwo concepts—modeling and managing—are not contradicto-
ry or incompatible. Y ou can devote time and energy to both of them; if a
death march project team finds that it's hel pful to draw object-oriented
andysis models to form a better understanding of the requirements of
their system, | have no objection. My only cavest is that the team should
do what it thinks important and helpful, not what the Methodology Po-
licethinkis"proper." [4]

My experience has been that the majority of death march projectsdo
not use formal modeling techniques such as SA/SD or OOA/OQOD.
Sometimes it's because they think these methodol ogies are too cumber-
some and bureaucratic; sometimesit'sbecausethey think the CASE tools
that support them are too clumsy; and often, it's because they don't see
an automated means of trandating their andysis models into working
code—which, they realize, isthe only thingtheuser cares about [5].

Indeed, inthe extreme case, the project team won't document any of
the user requirements; their defense (which every project manager has
heard by now!) is that it takes too long, it is too susceptible to change,
and besides, the users don't redly know what they want anyway. Thus,
the team typically relies on prototyping tools and methods, both to pro-
duce the all-important visible evidence of progress throughout the death
march schedule, and aso to dicit the true requirements of the system.

From the "triage" perspective of Section 5.1, there's one major prob-
lemwith this: It doesn't give us an organized way to managetherequire-
ments. At any moment intime, how can we tell which requirements are
"must-do," which ones are "should-do," and which ones are "could-
do"?It'sinteresting to note that the SA/SD and OOA/OOD methodolo-
giesdon't focus on this either. One could document the prioritization de-
cisonshby color-coding the bubblesin adata-flow diagram, but that's not
what the diagram was originally intended for. SA/SD and OOA/OOD
are intended more for understanding and explaining the requirements
thanfor managingtheminadynamicfashion.

It's the dynamic element of requirements management that usually

140 DEATH MARCH

causes the difficulties. If we could get al of the shareholders and stake-
holders to agree on the triage priorities at the beginning of the project,
and if those priorities never changed throughout the duration of the
project.... well, if you believe that, then you probably believein the tooth
fairy, too. What happens in real death march projectsis usually a combi-
nation of the following dilemmas:

¢ The shareholders and stakeholders can't agree completely on the
triage priorities. Of course, if they are in total disagreement, the
project is paralyzed; but, it's not uncommon to see 80 percent of
the requirements prioritized, and then the project commences
while the paliticians continue to squabble about the remaining 20
percent. High-priority requirements sometimes emerge at the last
moment from this squabbling. This drives the project team nuts,
but that doesn't prevent it from happening.

¢ Circumstances change within the team, while the project contin-
ues. For example, the project manager arrives in the office one
morning and discovers that his two best programmers, Matilda and
Ezekiel, have decided to form a reggae band, and havejust I eft for
Nashville to seek a recording contract. These things aren't sup-
posed to happen, but they do. The manager's first three questions
are, "What 'must-do’' requirements were those two scoundrels
working on, what was the status of those requirements, and to
whom can | reassign them?"

» Circumstances change outside the project team. Budgets are
expanded or reduced, depending on the company's financial for-
tunes. Deadlines are moved up or moved back (though hardly ever
back!) as the marketing department becomes aware of changesin
the competitive situation of the marketplace. Government regula-
tions change, technology changes (not aways for the betterl), sup-
pliers come and go, etc., etc. Each of these externa eventsis likely
to have some impact on the triage decisions.

e Thereis often a"moment of truth" when the users, senior manage-
ment, and project team members have to admit that they won't fin-
ish the system in time. Of course, if they have done a good job of
triage prioritization at the beginning of the project, this crisis might

PROCESSES 141

not occur at al. But, what if the team has to confess that it can't
even finish all of the"must-do” requirements in time for the dead-
line? As noted earlier, the origind project manager is usually
beheaded and a replacement is brought in; and, if the new man-
ager can extend the deadline, then the triage decisions may not
have to be changed. But, it's dso common &t this point to see a
hard-nosed reevaluation of those early triage decisions. With the
deadline looming only a few weeks away, the users might be forced
to admit that some requirements they had earlier described as abso-
lutely essential arenot so essential after al.

| could continue with these scenarios, but you get the point: manag-
ingthe priority of requirements is a criticd part of the "process’ of death
march projects. Now, this would be a straightforward activity if adeath
march project only had a dozen requirements; we could scribblethem on
a paper napkin and ssimply review them whenever necessary. But, most
projects have hundreds of requirements, and many have thousands; the
Boeing 777 aircraft (which could be regarded asabunch of softwarewith
wings) isrumored to have had 300,000 requirements. Not only that, the
requirements usually can't be treated as independent, stand-alone items;
some requirements are dependent on other requirements, and some re-
quirements spawn (or are further described by) sub-requirements.

This implies the need for methods, processes, and tools for repre-
senting the relationships between requirements, and for managing large
quantities of relationships. Andin this area, familiar techniques such as
structured analysis and object-oriented anaysis do help; unfortunately,
those techniques have traditionally ignored the attributes of a require-
ment, such as priority, cod, risk, schedule, owner, and the developer to
whom it has been assigned. Asaresult, the project teamsthat have been
aware of the need for managing their requirements have used home-
grown tools based on spreadsheets, word processors, or jury-rigged 4GL
databases to provide some degree of automation support.

Fortunately, a new breed of software tools is emerging to provide a
more comprehensive and sophigticated degree of support. Some of the
tools now available are: Requisite (from Requisite, Inc.), DOORS (from
Zycad Corp.), and RTM (from Marconi Systems). Since this chapter is

concerned with processes rather than toals, | won't go into the details of
these three products; but since tools affect processes, it's important that
you know they exist [6].

There is one aspect of the process-tool combination that deserves
specia mention here. As noted earlier, many death march project teams
abandon forma SA/SD or OOA/OOD methodologies because they feel
they are too bureaucratic and time-consuming. Interestingly, the share-
holders and stake-holders feel the same way. Given their choice, they
would prefer not to beforced to learn how to read data flow diagrams; in-
deed, the higher-level echelons of managers and end userswill complain
that they don't understand al of those "technicd" diagrams. They dso
have little patience for wading through hundreds of pages of diagrams
and meticul ous details about data element definitions or process specifi-
cations. With enough time and patience, the project team can overcome
the resistance and persuade the end users that the elaborate models are
useful indeed—but in death march projects, thereisvery littletime and
very little patience.

What the users can understand is their own native language—e.g.,
English for most North American projects. And, what most usersarewill-
ing to read is a terse document of 10-20 pages that summarizes the re-
quirements for the system. The requirements may be referred to as
"features" in such adocument, and the overall document may be known
as a "Product Reguirements Document” (PRD) or "high-level specifica
tion" or some other convenient phrase. But, the key point is that it's En-
glish, it's terse, and it's to the point. It shouldn't contain a lot of
marketing "fluff," and it shouldn't have obscure terminology or notation
that makes key users stop and ask, "What on earth does this mean?' Ide-
ally, each paragraph, or eveneach individual sentence, should be directly
related to a requirement that both users and project team members can
use as astarting point for their subsequent work.

Theinteresting thing about thisisthat we already have afamiliar tool
for creating such requirements documents; it's called a word processor.
"ndeed, theinitial version of such a document often emerges from the us-
er'sworld—e.g., in the form of a memo from the Marketing VP to the
CEO about the need for a sexy new Widget product with features X, Y,
and Z to compete againgt the Whizbang product from Blatzco, Inc.—

"PROCESSES 143

even before the IS1T department hears about it. At this early stage, the
usersview the word processor as their tool, and they view the marketing
memo astheir document; as,aresult, they're usually far morewilling to
participate in subsequent discussions about triage prioritization if the
same tools and documents can continue to be used. Thus, we're begin-
ning to see ashift towards document-centric requirements management,
wherethetoolsused by the IS/IT specidists (eg., Requisite, DOORS, or
RTM) are tightly integrated with the word processing tools and docu-
mentsthat the users understand [7].

Onelast point about al of this: It's essential that all of the sharehol d-
ers and stakeholders be involved in the process of creating theinitial re-
quirements document and carrying out the triage prioritization. Thisis
truefor dl projects, of course, but the time-pressure and political squab-
bles associated with death march projects often tempts the project man-
agerintothinking, "Wél, well justforgeaheadwithout thatidiotMelvin
in Marketing; dl hell do is disagree with everything, anyway..." The
problem isthat Mevin often turns out to have some significant political
clout, and if he feels he's being ignored (and that the project manager
thinkshe'sanidiot!), helll probably find away to sabotage the project.

In theory, everyone understands and agreeswith this point—but in
practice, it's amazing to see how many requirements sneak into death
march projects. Additional requirements, modifications to existing re-
quirements, and not-so-subtle suggestions to ignore certain require-
ments—all of these will come in "over the transom” to the project team,
in the form of conversations, e-mail messages, and one-on-one meet-
ings with the project manager. Many of these suggestions will be pref-
aced by such smooth words as, "Sorry | didn't think about bringing this
up in our meeting last week, but..." or "I wish we had time to run this
new requirement by theformal steeringgroup, but..."

Whether the project manager has a formal steering group-i.e., a
group that represents the shareholders and stakeholders, and that re-
views the progress of the project and makes the definitive decisons
about triage priorities—is something | won't comment on; this depends
oneach organi zation'sstyle of managingand running projects. Butwhat
isessentia, forthesurviva of thedeathmarchproject, isthat themodifi-
cations to the origina requirements "basdine’ be documented and be

144 DEATH MARCH

made publicly visible for dl of the shareholders and stakeholdersto see.
If the VP of Finance wants to dip a new high-priority requirement into
theproject, that'sfine; but the project manager should ensure that theV P
of Marketing and the CEO can seethat it's there.

5.3 SEl, ISO-9000, AND FORMAL
VS. INFORMAL PROCESSES

Some project managers might read the preceding section of this chapter
and complain, "Wow! That sounds much more formal than anything
we've ever donel" Having encountered such a reaction in some consult-
ing engagements, I'm often stymied. On the one hand, | believe that the
documentation, prioritization, and management of requirements is es-
sential (regardless of what tools or techniques are used to accomplish the
task); on the other hand, | worry that if an entirely new, aien processis
introduced into a project team that already has more than it can handle,
the new concept—e.g., requirements management—may rum out to be
the straw that breaks the camel's back.

Indeed, | don't have agood answer for thisdilemma, other than hop-
ing that perhaps the project team will be able to manage one new idea
among their collection of tools and processes. But, | worry even more
when | see teams embarking upon a death march project with the deci-
sion (or more commonly, the edict foisted upon them by the Methodolo-
gy Palice) that they must embrace aformal process approach such asthe
SEI-CMM or 1SO-9000. Formal processes are great if you know what
you're doing, and if you've used the processes before. But, the redlity is
that such formal processestypically haven'i been used at all in the organi-
zation; the death march project is the pilot project for structured anaysis
or 1SO-9000.

Whatinsanity! It really isthe straw that breaksthe camel'sback; after
all, the typical death march project istrying to do something that's never
been done before, and (despite my warningsin Chapter 4) the team often
consists of people who have never worked together before. As if that
wasn't enough, now they have to learn how to' use an unfamiliar meth-
odology or process, one which they're not sure they believe in the first
place, and one which they're convinced will dow them down. Why isit

PROCESSES 145

that the Methodol ogy Palice are so surprised to seeresistance in circum-
stanceslikethese? Consultant Doug Scott gave mean exampleof thissit-
uation in arecent e-mail message [8]:

On one project | know, they needed adiagrammer for
the ERDs, so they bought Excelerator. Having found
that it supported SSADM (which must be the method-
ologjst's methodology) they adopted it without any
training or induction for the staff. Then they found
that the pace of the project dowed significantly (in
fact, it nearly halted) while everyone was busy reading
manuals and learning software tools and deciding
what they should do next (and re-doing what they had
done earlier in the "wrong" sequence). For death
march watchers, an amost ideal scenario. Oh, and the
project manager was sacked haf way through the
project, but that'snormal.

And asPaul Maskensargued in another e-mail message [9J:

A death march project is not the timefor staff to learn
anew (or their first) methodology. OTOH it would
contribute greatly to the chances of project death if
they did leam a new methodology at the same time.

To succeed, the death march project team needs to agree on which
processes will be formalized—perhaps source code control and change
management, and (hopefully) requirements management—and which
processes will be carried out on a completely ad hoc bass (eg., user-
interface design). There's no point mandating a particul ar software pro-
cessif if snot going to be followed. The M ethodology Policeiswasting its
timeif it triesto do o, and itwill causethe project team to waste itstime,
whichisfar morevaluable (in many cases, theM ethodol ogy Police mem-
bers have nothing useful to do anyway, other than to run around the IS/
IT department harassing hapless project teams!).

This means that the death march project manager must impose the
processes that he or she feels essentia, in a dictatorial fashion—e.g.,
"Anyone who modifies our source code without going through the

MARCF

change management process will be fired summarily!" Or, the project
team must sincerely agree to adopt the process, because they believe that
itwill be cogt-effective. Thisismorelikely to occur if the project team has
worked together before, so that they share a common experience with
various software development processes; it's less likely to occur if one
team member standsup and says, "1 deeply believe that structured anal-
yssis critical to the success of our project,” when the other team mem-
bers have no idea what he or she is talking about. Another corollary of
this principle: It'susually a disaster to introduce a new, unfamiliar pro-
cessinto adeath march project, even if theteam collectively believesthat
itwill help. Thelearning curve, and theinevitable confusion and bicker-
ing over the details of the process, will usually outweigh its benefits.

This means that such formal gpproaches as SEI-CMM, 1S0-9000, or
the introduction of new analysisdesign methodologies should be done
somewhere outside the death march project. The sensible thing to do is
to introduce these processes as part of a long-term corporate strategy, to
experiment first with a pilot project (which should not be a death march
project), and then support it with appropriate training. As Sharon Marsh
Raobertsputitinarecent e-mail message [10] to me:

Cowpokes don't need the manure to be cleaned from
the pasture. Programmers don't need to have the
"methodology" gurus clean up the deliverables.

But if someone wantsto have aformal software pro-
cess, then the folks doing the programming should be
protected fromthat extraeffort.

If all of these things have been done, and if all the other development
projects are already operating at level-3 on the SEI-CMM scde, then it
becomes interesting to ask whether such processes should aso be used
on adeath march project. As Watts Humphrey once remarked in a con-
"erence speech about the SEI-CMM, "If aprocess can't be used in acriss,
t shouldn't be used at all."

I'm not sure that many would agree with Humphrey's assertion, par-
icularly if thedeath march projectisviewed asaonce-in-a-lifetimeexcep-
tion to the norm. If indeed thisisthe case, then perhapsit does make sense

147

to abandon the formal processes, and |et the death march team use what-
ever ad hoc techniques they feel appropriate. But remember my assertion
in Chapter 1: Death march projects arebecoming the norm, not the excep-
tion. If this is the case, then the official corporate processes should be
amended, asnecessary, to makethem suitable for the death march project.
Then, and only then, does Humphrey's statement make sense.

In the meantime, if you do feel compelled to make a death march
project team practice some form of process improvement, my recom-
mendation is to look at Watts Humphrey's PSP, or Persond Software
Process. | summarized its characteristicsin my Riseand Resurrection ofthe
American Programmer. Y ou should aso read Humphrey's A Discipline of
Software Engineering [11]. Fair warning though: It's 789 pages|ong.

5.4 "GOOD ENOUGH" SOFTWARE

The triage prioritization discussed above can go along way toward mak-
ing a death march project "rational” in its behavior. For success, it's not
required to implement all of the requirements; it's "good enough" if we
can implement the "must-do” requirements and a reasonable number of
the"should-do" requirements.

But, there's another aspect of software devel opment that causes diffi-
culty in death march projects. the implicit demand for absolute quality.
Thisis usualy expressed in terms of defects (bugs), but it may aso be ex-
pressed in terms of portability, platform independence, flexibility, main-
tainability, and a few dozen other "ilities" It's hard enough to achieve
these objectives in normal projects; it's almost impossible to do so in
death march projects. Instead, the project team must decide—and if at all
possible, get concurrence from the shareholders and stakeholders—
what's good enough.

The reason that this is so important is that the achievement of abso-
lute "ilities" consumes project resources—especially time. If you want to
develop a certifiably bug-free program, complete with a mathematical
proof of correctness, it's going to take time. It may aso require a higher
level of talent than the project team can provide. It's dso going to con-
sume some of the energy of one or more people on the project team,
which means that those people won't be available to work on other re-

148 DEATH MARCH

guirements. In short, achieving such "ilities' such as réiability, portabil-
ity, and maintainability requires a trade-off, and it must be taken into
account as part of the triage prioritization discussed above.

Death march project teams must confront this unpleasant redlity, be-
cause the aternative is usualy "perfect" software that isn't finished
when the all-important deadline arrives. It's better if the team is aware of
the pragmatics of good-enough software at the beginning of the project;
but, my experience has been that many traditional software developers
accept the notion of good-enough software development only when
their backs are against the wal—e.g., when they're facing the "ugly cri-
ss' discussed earlier, amonth or two before the deadline.

Up to that point, they'll complain, "How would you like it if we used
your 'good-enough' approach for the software in anuclear reactor or an
air traffic control system?' The answer, of course, isthat | wouldn't likeit
at dl; and, if someone proposed a death march project for those kinds of
high-reliability applications, | would stop flying on airplanes, and |
would move as far away as possible from nuclear power plants. But, we
don't usually see death march projects of thiskind; ifs more likely to be
the payroll system for the nuclear power facility, or the airline reservation
system used by the airline. Payroll systems and airline reservation sys
tems aren't supposed to fail either, but the immediate consequences of a
failure aren't as serious.

Inany case, perfect reliability, maintainability, portability, etc., arenot
necessary, practical, or even desirable in most desth march projects. In-
deed, perfection isn't possible even in normal projects—it's just that we
can afford to st our standards much higher because we usudly have
fewer constraints on time, budget, or personnel resources. For death
march projects, what the users really want i& a system thafs cheap
enough, fast enough, feature-rich enough, stable enough, and available
soon enough—that's their definition of "good enough.”

Why do we fail to achieve "good enough” software? It's usually be-
cause of acombination of the following reasons:

» We have atendency to define quality only in terms of defects, with-
out thinking about other aspects of quality—which include, from

PROCESSES 149

the user's perspective, the"quality" associated with having the sys
tem ready for use on a certain date.

» We assume that fewer defects = better quality, and we assume that
"mo' better" quality is always preferred by user—even thougl
there are circumstances when the user would be willing to trade ol
some defectsin return for an earlier delivery, or a product that rune
on awider variety of hardware/software platforms, etc.

* Wetend to define quality (defect) objectivesonce, at the beginning
of the project, and keep it fixed, even though circumstances change
dynamically throughout the project.

* Weve been told for such along time that processes are crucial, tha
we often forget that processes are"neutral"—afool with a"process
tool" is dill a fool. You don't get quality by blindly following tht
details of structured analysis or the recommendations of SE1
CMM.

* We pursue quality with afixed process that we define once, at tht
beginning of the project (or, even worse, for al projects in tht
whole company).

¢ We underestimate the non-linear trade-offs between such ke\
parameters as staff size, schedule, budget, and defects—all ol
which are key issues for death march projects.

* We ignore the dynamics of the processes. time-delays, feedback
loops, etc. Heavy overtime by the project team this week may
appear to increase productivity and advance the progress of the
overal project; but, it can lead to more bugs next week (something
the end user and senior management may not be aware of), which
will lower next week's productivity (in terms of productive output),
and perhaps set the project even further behind.

« Weignore the"soft factors'associated with the process like morale,
adequacy of office space, etc.

How do we achieve "good enough” software? As James Bach [12]
points out, it requires several things:

» A utilitarian strategy—the art of quditatively analyzing and maximiz-
ing net positive consequences in an ambiguous situation—encom-

VIAHCH'

passing ideas from systems thinking, risk management, economics,
decison theory, gametheory, control theory, and fuzzy logic.

« An evolutionary strategy—not only with regard to the project life
cycle, but also an evolutionary view of our people, processes, and
resources.

» Heroic teams—not the Mighty Morphin Genius Programmers, but
ordinary, skillful peoplecollaboratingeffectively.

« Dynamic infrastructure—the antithesis of bureaucracy and power
politics. Upper management pays attention to projects, pays atten-
tion to the market, identifies and resolves conflicts between
projects, and alows the project to "win" when there are conflicts
between projects and organizational bureaucracy.

« Dytiamic processes—processes that support work in an evolving,
collaborative environment. Dynamic processes are ones you can
always question because every dynamic processis part of an identi-
fiable meta-process.

5.5 BEST PRACTICES AND WORST PRACTICES

On more than one occasion in this book, I've warned about the dangers
of allowing the Methodology Police to impose a set of rigid methodolo-
gies or software processes upon a death march project team. The same
advice holdsfor external consultants, gurus, witch doctors, faith hedlers,
snake-oil salesmen, and textbooks. Even this textbook: If I've recom-
mended something that doesn't make sense and that the project team
can't carry out with enthusiasm and sincerity, then ignore it!

But, thisis particularly true of methodol ogies and software processes.
Rather than following a st of practices that somebody €se has recom-
mended—or even worse, a set of practicesimposed in atop-down fash-
ion by managers and methodology committees who usually don't know
what they're talking about—it's far better to follow a sat of practices that
theteam itself regards as "best" for the circumstances. That's the essence
of the "best practices' approach that has been gaining popularity in the
past couple of years: a grass-roots approach to identifying, documenting,
andevangelizingsoftwaredevel opmentorganizationsthatreal devel oper s
have found successful.

"PROCESSES 151

Unfortunately, death march project teams often don't have much to
go on, because theirsis often regarded as thefirst such project within the
organization. Or evenifitisn't thefirst one, it's till regarded as an excep-
tion—so nobody has bothered cataloging the techniques that worked
and the techniquesthat didn't. Even worse, death march projectstend to
have a high mortality rate (otherwise, they wouldn't be called "death
march" in thefirst place!). Thus, the people who would be most likely to
provide useful advicefor the next such project have quit, beenfired, com-
mitted suicide, suffered a nervous breakdown, or have withdrawn into a
shell of cynicism.

If you are indeed embarking upon the first death march project the
organization has seen, then it's likely that the best you can do is docu-
ment whatever practices and processes have worked in your project, for
the benefit of the next death march that follows. Oneway of doing thisis
by conducting a "project audit" at the end of the project. This rarely oc-
curs, however, and the results are usually so boring that nobody bothers
reading it. The reasons are obvious: as mentioned earlier, the project
team is so exhausted, frustrated, and frazzled by the end of the project
that the notion of documenting their experiencesis likely to be met with
hoots of scorn; furthermore, many of the most valuable contributors have
long since disappeared by the end of the project.

Thus, what you should consider as an dternative is a series of "mini-
audits' throughout the project. If you have mini-milestones (sometimes
known as "inch-pebbles") such as delivering a new version of a proto-
type to the user, schedule a half-day mini-audit immediately after the
inch-pebble. Decide on which practices worked well, and which were di-
sasters? What should be emphasized more heavily for the next inch-peb-
ble, and what should be abandoned? The point here is that thiskind of
self-reflection is useful for the project team itself; the fact that it will also
be helpful to future death march project teamsisicing on the cake. Also,
theteam isusually in better spirits during theseintermediateinch-pebble
meetings, and their comments are likely to be fresher, more candid, and
yetlesscynical.

For the organizations that have no best-practices material available,
I'll recommend a few sources. | covered the topic in one chapter of my
Rise and Resurrection of the American Programmer, you should also look at

152 DEATH MARCH

the World Wide Web site maintained by consultant Christine Comaford
at http://www.christine.com for another collection of best-practice mate-
rial. Perhaps the most ambitious project underway today is the Airlie
Council's effortswithin the U.S. Defense Department; you can find this
information on the Web at http://spmn.com.

I've listed below the "principal best practices' that the Airlie Council
has recommended. Remember my earlier advice not to adopt thiskind of
information as a "stone tablet" containing "commandments" that must
be followed. Rather, it could be auseful starring point for your own col-
lection of best-practiceideas.

» Formal risk management—this is a concept I'll discuss later in this
chapter.

» Agreement on interfaces—hardware interfaces, software interfaces,
and interfaces between your system and other external systems.

» Peer reviews—ingspections, walkthroughs, reviews, etc. These are
commonly understood, but often rejected by death march projects,
for they feel the effort will dow them down. Intellectually, most of
us agree that peer reviews are beneficial, but given the kind of
pressure we see in death march projects, there's a tendency for
everyone to hunker down and churn out his or her own work,
without bothering to have it reviewed by other team members.

» Metric-based scheduling and management—this says that we should
base our schedules and estimates on metrics derived from previous
projects. But as noted earlier, there may not have been any previous
death march projects, and if there were any, it's unlikely that any-
one bothered recording any useful metrics (other than a body
count of human casualties). But, if there are any metrics available
from"normal" projects, these can be used to calibrate the estimates
being produced in the death march project—if only to see how
hysterically optimistic those estimates redly are!

* Binaryqualitygatesat the"inch-pebble"level—i.e., rather than having
milestones every three months, during which the project team
reports that they're 97 percent done with all coding, there should
be weekly, or even daily inch-pebbles with "binary" indications of

PROCESSES 153

progress. One means of accomplishing this is the "daily build'
strategy discussed later in this chapter.

* Project-wide visibility of project plan and progress vs. plan—this
consistent with my recommendations in earlier chapters. Thin
are tough enough in a death march project without having t:
manager hide the statusfrom the rest of the team.

+ Defect tracking against quality targets—one of the ideas here is th
defects identified, tracked, and resolved early in the developme
process cannot only give an indication of the defect levelsin tl
final delivered system, but can dso eliminatedefectswhen they a
relatively inexpensive, rather than waiting until the system testi;
stage of the project

« Configuration management—whether thisiscaled version conrr
source code management, or some other term, it's usually regard
asan essentia practicein most high-pressure projects.

* People-aware managenient accountability—alas, this is somethi
that most death march projects don't pay enough attention to;
mentioned earlier, many death march projects are set up as suici
missions or kamikaze-style projects.

One of the most important contributions of the Airlie Council is't
notion of worst practices; thisis particularly applicable to death mar
projects, whereit'soften more important to avoid disastersthan itis
find the best possible way to do things. The Airlie Council'slistissur
marized below:

+ Don't expect schedule compression of>10% compared to the statistu
normfor similar projects—of course, if you really believed this or
youwouldn't even start adeath march project!

+ Don't justify new technology by the need for schedule compression
you've got enough problems in a death march project witho
debugging new tools and technology by using beta versions
software from your friendly tool vendor. I'll discuss thisin me
detail in Chapter 6.

+ Don't force customer-specific implementation solutions on the project
useful advice for any project

DEATH MARCH

+ Don't advocate the use of silver bullet approaches—something worth
remembering when your management proposes (right after they've
been visited by a persuasive vendor!) that your project can be
"saved'by some new fangled tool or development methodology

» Don't miss an opportunity to move items that are under external control
offthe critical path—if your project team can't control it, then having
it on the critical path makes it al the more risky. This applies to
things like vendor tools, hardware boxes, software packages, and
other components from external vendors. It aso applies to both
tangible deliverables and political decisions made by various share-
holders and stakeholders surrounding the project.

+ Don't expect to achieve an accurate view of project health from a formal
review attended by a large number of unprepared, active reviewers—the
project team doesn't haveto worry about this, for they already know
that such review sessions are political rituals. This advice is aimed
more at the senior managers who watch the death march project
from a safe distance, trying to find out whether it'sin trouble.

+ Don't expect to reamer from a schedule dlip of>10 percent without a 2:10
percent reduction in softwarefunctionality to be delivered—this is cru-
cia advice for a death march team, because there's a good chance
that the schedule will dip by more than 10 percent during the
course of the project. Indeed, even a 10 percent dippage is danger-
ous in a death march project, for the team is probably aready
working so much overtime that they don't have the additional
capacity to work 10 percent more hours in each day. But, the main
point of this suggestion from the Airlie Council is to remind the
project manager that people-time and software-functionality are
not exchangeablein alinear fashion.

During the past year, I've posed two questions to several hundred
software managers in seminar audiences around the world: "If a col-
league of yourswas about to embark upon adeath march project, what is
the one thing that you would advise him/her to do in order to succeed?
And what is the one thing you would advise him/her not to do?" I'vebeen
intrigued to find that nobody has ever identified tools or technology asthe
"one most important thing," nor has anyone mentioned formal methods

PROCESSES 155

or techniquessuch asstructured analysisor object-oriented design. A few
people have recommended peopleware drategies (eg., "hire good peo-
ple" and "make sure that the team is really committed to succeed"), but
amog dl of the recommendations have centered on the issue of negoti-
ations, scope management (which is handled well by the triage concept
discussed earlier), and risk management (which I'll discuss below).

One last concept from the Airlie Council might be useful for death
march projects, though it'slikely to be used more by the managers outside
the project than the manager or team members inside the project. It's
caled the "breathalyzer test": What questions should you ask a death
march project team to quickly determine whether it was so out of touch
with redlity that it should be shut down? These are d0 the sort of ques-
tions that consultants often ask when they are commissioned by senior
management to review the status of a project. I've been in that position
myself, and | can usualy tdl the project is in trouble when | see the
glazed eyes of the project manager, who looks like a deer caught in the
headlights of an onrushing car.

Sometimes a question like "Do you know who your customer is? Do
you know who you're supposed to deliver this stuff to?" leads to an em-
barrassed silence, while everyone on the project team looks blankly at
one another and then stares at the floor. But, if you need some more
breathalyzer test questions, here's the list from the Airlie Council:

» Do you have a current, credible activity network supported by a
Work Breakdown Structure (WBS)?

» Do you have a current, credible schedule and budget?

« Do you know what software you are responsible for delivering?
» Canyou list the top ten project risks?

» Do you know your schedule compression percentage?

» What is the estimated size of your software deliverable? How was
it derived?

e Do you know the percentage of externa interfaces that are not
under your control?

» Doesyour staff have sufficient expertise in the project domain?

156 DEATH MARCH

» Haveyou identified adequate staff to allocate to the various tasks at
the scheduled time?

As mentioned earlier, the reason the breathalyzer test is adminis-
tered is that someone in the organization—usually not the project man-
ager, but someone much higher in the management ranks—has a "gut
feeling" that the project isin trouble. For their own political survivd, the
project manager and the entire team should ask the same questions of
one another periodically. And, the project manager should be on the
lookout for other signs that the project is in trouble even when things
look okay ontheofficial PERT chart:

» Key project team members are quitting—this may occur for a num-
ber of reasons, but it's important to get a sense of whether team
members are losing faith in their ability to finish the project. If key
members begin quitting, others may follow.

» The"inverse Dilbert correlation factor"—the more Dilbert cartoons
pasted on office doors and bulletin boards, the less well off the
projectis.

 Excessive gallows humor—if the project team begins wearing black
shirtsto the office, or piping funeral dirges through the Muzak sys-
tem, you're in trouble.

* New names for the project, eg., "Project Titanic"—another form of
gallows humor, but usually a more serious indication that the
project team has lost faith, lost respect, and lost any real interest in
whether the project will ever succeed.

» An ominous silence from end users and senior management, who
used to ask on a daily basis how the project was coming along—by
the time you recognize this, it may be too late to recover, but you
should have at least a few days to update your resume.

» Thrashing—Iots of activity but no sign of forward progress. Avoid-
ing this is what the "inch-pebble" idea and the"daily build" strat-
egy areall about.

PROCESSES 157

5.6 THE "DAILY BUILD" CONCEPT

In the discussion about prototyping, milestones, and inch-pebbles
above, there was an unspoken assumption that the incremental "deliv-
erables’ produced by the project team would appear at intervals mea-
sured in months or weeks. That's what most of us are accustomed to
from our past experience with "normal" projects, and it's consistent with
the usual pace of businesslife—e.g., weekly staff meetings, monthly sta-
tusreviews, quarterly presentations to senior management, etc.

But, death march projects, aswe've seen throughout this book, typi-
caly need adifferent approach. When it comesto prototyping and incre-
mental development, it often makes sense to organize the entire project
around the concept of a"daily build." By this, | mean: compile, link, in-
ddl, and test the entire collection of code produced by the team every
day, asif this was the last day before the deadline and you had to ship
whatever you've got to the user tomorrow morning.

Redidticaly, you can't start the daily build on the first day of the
project. And whileit might be possibleto build the equivalent of a"Hello
World" subroutine on the second day of the project, it won't impress
anyone unless everything about the project involves completely new
technology (e.g., many of the Java-based projects that are underway as
thisbook isbeingwrittenin 1996). But, there'susually apoint well before
the first "officid" demonstration or delivery of a prototype version of the
system when the software developers have a reasonable collection of
components, subroutines, or modules—at least a few hundred lines of
code, and perhaps a few thousand lines—that actually accepts real input,
doesredl calculationsor processing, and produces real output. That's the
point when the daily build should begin, and a new (and hopefully bet-
ter) version of the system should be built every day theresfter.

Why is this so important? AsJim McCarthy, Microsoft's Visual C++-
product manager and author of Dynamics of Software Development [13],
likesto say, "The daily build isthe heartbeat of the project. It's how you
know you're alive." And, there can hardly be amoreimportant priority
for the manager of adeath march project. If aweek goesby when every-
one is spinning their wheels and nobody has quite had the nerve to tell
the project manager that they just can't manage to get the newfangled

18 DEATH MARCH

object-oriented database to communicateproperly with the client-server
application they're working on, the project may have fallen hopelessly
behind schedule. Aslong asthe project manager hears status reports de-
livered in a verbal fashion, or documented in written memos (or with
dataflow diagrams), it'sall too easy to confuse motion with progress, and
effort with achievement. But, if the project manager insists on physicaly
observing the behavior of each day's "daily build," it's much more diffi-
cult to hide whatever problems are plaguing the project.

Some project managers will nod their headsand confirm that thisis
how they've always done it; but, most will admit that they've settled for
weekly builds, or monthly builds, or semi-annual relesses of a system.
While nobody can rightly claim to have "invented" the concept, many
feel that Dave Cutler should be given the credit for popularizingit during
the development of the Windows NT operating system (an interesting
discussion can befound in Greg Zachary's Show Sopper! [14] description
of the project). It's dso interesting to note that Microsoft's Windows 95
devel opment project aso used the daily build concept; the final betaver-
sion before the production system was released in August 1995 was
known as"Build 951"

It's important to recognize that an approach like this effectively be-
comes part of the project team's processfor devel oping the system. Imag-
ine what it must be like to be part of a team that must demonstrate a
working version of its software on 951 consecutive days [15 Further-
more, to be effective, the daily build should be automated, and should
run unattended in the middle of the night, when al of the programmers
have gone home (or have climbed under their desks and into their deep-
ing bagdl). This implies the existence of automated configuration man-
agement and source code control mechanisms, as well as automated
"scripts’ of some kind to carry out the compiling and linking activities.
But mostimportantly, itimpliesthe existence of an automated test man-
agement system that can run al night long, pounding away on the new
version of code to seeif it ill runsyesterday'stest cases properly. Thus,
to makethedaily build concept work, it'salmost certain that a reasonable
&t of tools and technology are readily available; well discuss this in
Chapter 6.

A few small trickscan add even moreval uetothedaily build concept:

PROCESSES 159

 The project manager should move his or her office to the test site,
or operation center, once the daily build process begins. Dave Cut-
ler did this at Microsoft, and there are apocrypha stories of the
tantrums that he threw when he arrived at the office and found
that the daily build had crashed in the middle of the night. Tan-
trums or not, the point is that the project manager wantsto be very
visible, and very involved in the daily build process, rather than
being the commanding general at the rear of the army, receiving
daily reports on a battle taking place miles away.

» Since it's likely that the daily build will require at least a small
amount of manual supervison while it runs in the middie of the
night, it may help to establish the following policy: Any programmer
whose buggy code causes the daily build to crash gets the honor of
supervising the operation of the (nightly) daily build until the next
victim causes a crash. Obvioudy, there are advantages and disad-
vantages of such a palicy, but at the very least, it makes the whole
concept of the daily build much more"rearto the project team!

» Asign one of the programmers who normaly comes into the
office early in the morning the task of checking whether the daily
build ran successfully, and then posting the results in a visible
place. If nobody iswilling or able to show up early, then hire a col-
lege student. One company instructed the student to plant a flag
outside the building to warn everyone whether it was going to be a
good day or bad day when they arrived: a green flag meant the
daily build had succeeded, while a red flag meant that it had failed.

5.7 RISK MANAGEMENT

If requirements management—aparticul arly the triage prioritization of re-
quirements—is the most important process within a death march
project, the second most important is risk management. If "risk" weren't
such a critical issue, we wouldn't apply the adjective "death march” to
the project. It's interesting to note that one of the breathalyzer test ques-
tionsidentified by the Airlie Council is concerned with identification of
project risks; and while that question might draw a blank stare from the
manager of a "normal” project (even if that normal project has gotten

160 DEATH MARCH

into terrible trouble), it's one that can typically be answered fairly crisply
by the manager of a death march project. A manager would be a fool if
he or she initiated a death march without having had some serious
thought about the primary risks and how they might be mitigated.

Alas, things sometimes get out of hand as the death march project
continues. That is, because the risk management activity is addressed in
terms of ad hoc emotions and instinct rather than as aformal process, the
manager often misses the emergence of new risks as the project contin-
ues. In the best case, the risks that were visble at the beginning of the
project will be eliminated; in the normal case, they continue to be worri-
some risks throughout the project (eg., the risk that a key team member
will quit). But, entirely new risks—things that nobody anticipated—can
suddenly emerge, and because the team typicaly hasvery little "dack" or
"reserve’ capacity, in terms of schedule, budget, and resources, these
new risks can bekillers.

If thiswhole discussion of software risks strikesyou as excessive or ir-
relevant, feel freeto skip to the next chapter. My biggest concernisfor the
project manager who has survived several "normal” projects with an in-
tuitive, ad hoc risk management approach; that usually won't work in a
death march project. Indeed, it's the exisence of an effective, formal
Software Risk Management (SRM) process that makes some organiza
tions willingto "go out on alimb" and take on a death march project that
would otherwise be certain suicide.

There is a substantial body of literature on risk management, and ifs
beyond the scope of this book to cover it al. The references at the end of
this chapter [16,17,1819] will provide as much detail asyou need, though
it's important here too to avoid having the "risk management police"
overwhelm the project with forms, reports, and other aspects of bureau-
cracy. For example, some death march project managers follow a very
simple process of havingtheteamidentify and monitor thetop tenrisksin
the project; these can beprinted on a one-page form, and their status can
be quickly reviewed on aweekly basis.

Obvioudy, other approaches can work just as well; but, the key isto
ensure that it's one that will be understood, accepted, and followed by
everyone on the project team—for it's the peons at the bottom of the hi-

PROCESSES 161

erarchy who are usually the first to see the emergence of new risks. In a
death march project, we don't have time to let the information trickle up
to the top of the management hierarchy by whatever antiquated commu-
nication mechanisms are used to convey other forms of political informa-
tion; the risks must be pounced on and attacked by the team as a whole
to prevent them from getting out of control.

The word "control" iscrucial here, for the project team must distin-
guish between risk assessment, risk control, and risk avoidance. In the
worst case, the project team reactsto risksasthey occur—e.g., by allocat-
ing additiona resources for additiona testing to alleviate the conse-
quences of abug. Thiskind of "fix on failure" approach, where the risks
are addressed after they have surfaced, often leads to a crisismode form
of "firefighting" that can lead to utter collapse of the death march project
team. RisKk prevention :s usuaUy far better, and it means that the team
agrees to follow aformal process of assessment and control to preclude
potential risksfrom occurring.

An even more proactive form of risk management seeks to eliminate
theroot causes of failures andrisk; thisis often thefocus of quality man-
agement initiatives within an organization. It tends to expand the scope
of risk assessment to a broader horizon, to allow the anticipation of risks,
and it Can lead to avery aggressive management culture, which incorpo-
ratesa "risk-taking" ethic by engineering the degree of risk that the orga-
nization can tolerate. I'mall in favor of such an approach, but it's a more
strategic issue than ought to be discussed and implemented outside the
context of a death march project The death march project team has a
very tacticd pergpective: It's not trying to change the culture of the orga-
nization, but merely survive and finish the project.

However, this may involve some culture problems in the organiza-
tion, especidly if there isaperception that other projects have not been
risky, and that thisoneisthefirst, last, and only death march project the
organization will ever see. The problem isthat the project team is not an
idand unto itself; if it were, then it could simply focus on the cultural
problem of "shooting the messenger" who reports problems to higher-
level authorities.

But, as Rob Charette observes [20], the major causes of project fail-

DEATH MARCH

ures often exist in the organizational environment, and/or in the business
environment, which surround the project; thisisillustrated in Figure 5.2,
The organizational and business environments are almost always outside
the project manager's jurisdiction and political control; but equally im-
portant, the project manager often doesn't know about these "external”
risks until they come crashinginto hisor her project.

Organizational
Environment

Software

FIGURE 52. THE SCOPE OF PROJECT RIXS

Of course, the converse can be true aso: The software project creates
risks that can affect the organization and external business environment.
But, everyone knows that! Indeed, the project manager can expect to be
reminded ad nauseam that the entire organization—if not civilization,
and the entire universel—is imperiled by the death march project. But,
these same managers, who whine and complain about the fact that the
project team is only working 127 hours per week to get the project fin-

PROCESSES 163

ished, are often blissfully unaware of things going on in their sphere of
control which could de-rail the death march project.

That'swhy it'simportant to have arisk management processthat can
assessprojectrisksfrom severa different organizational perspectivesand
balancethem appropriately; after al, what engineering (and the software
devel opers) sees asarisk might be seen as an opportunity by the market-
ingdepartment. Thiskind of "globa" view of risk management isimpor-
tant but | don't see it as often as | would like when | visit death march
projects. And asnoted above, the project team doesn't have the time, en-
ergy, or political clout to change the organizational culture by installinga
globd risk management process. Thus, the absence of such an organiza-
tional process becomes arisk of its own, which the team must assess.

Risk assessment isusually performed by eval uating the compl exity of
the system or product being developed, as well as evauating the client
and project team environments. Product complexity can be assessed in
terms of size (eg., number of function points), performance constraints,
technical complexity, etc. Risks associated with the client environment
are often afactor of the number of user constituenciesinvolved, the level
of user knowledge, the perceived importance of the system within the
user's business area, the likelihood that when/if the new system isin-
salled it will lead to areorganization or downsizing activity, etc. And, the
risks associated with the team environment include the capabilities, ex-
perience, morae, and physical/emotional health of the project team.

Typically, there are ahundred or morerisk factorsthat could bein-
cluded in a comprehensive risk model; as noted earlier, some project
teamswill consciously narrow their focus to just the top ten risks. Some
of theriskscan be quantifiedin an objectivefashion—e.g., theresponse-
time performance requirements, or the size of the system in function
points. But other factors—e.g., the degree of user cooperation or hostili-
ty—may have to be assessed on a qualitative basis. As apractical man-
agement approach, it's usually appropriate to categorize such risks as
"high," "low," or "medium" and to focus on getting a consensus on the
state, or level, of therisk on the part of everyoneinvolved.

Once therisks have been identified and assessed, the manager and
the team can sometimes identify appropriate strategies to minimize or

164 DEATH MARCH

eliminate as many as possible. This is common sense, of course, but it
must be remembered that the very nature of a death march projectisthat
there are usually more than the usual number of risks, and that they're
more severe, and they cannot be eliminated through simple actions. On
the other hand, if the risks are extraordinary, sometimesthe solutions are
too: While the project team might never have dared to ask the CEO or
Senior Vice President to eliminate a project risk on anormal project by
spendingan extraordinary sum of money or eliminating asevere bureau-
cratic constraint, it's not unreasonable to ask for such things in a death
march project. And if you don't ask—which will often require going
around the chain of command, and circumventing severa levelsof brain-
dead middle managers—then you'll never know whether you could have
acquired the solution to your problems.

In any casg, if there are high risk factors that cannot be summarily
eliminated—which is almost aways the situation in a death march
project—then they should be documented with a "risk memorandum”
that identifies the risk impact, the possible higher-level actions, the con-
tingency plans that need to be set in place, etc. Thisis not just a "cover
your ass' political act, for if therisksdo materiaize, and if they cause the
project to fail, there will usually be dire consequences for everyone in-
volved; after dl, that's part of the reality of a death march project. How-
ever, denying reality is also a common phenomenon on death march
projects. It's common for both members of the project team, and for the
various levels of users and managers surrounding the team to put on
their blindfolds and steadfastly ignore the existence of serious project
risks. It's not unreasonable to expect the project manager and team
members to focus on "internal” risks with extreme diligence; but as not-
ed earlier, the "external” risks often can't be controlled by the team
members, because they're associated with organizational or businessis-
suesbeyond their jurisdiction. Thus, arisk memorandum is animportant
practical activity, to force the user and management communitiesto ac-
knowledge what they would prefer to overlook and ignore.

PROCESSES 165

5.8 SUMMARY

It'sdl too easy to go overboard with many of theideasthat I've discussed
inthischapter, and thusfall into the deadly trap of mind-numbing, time-
wasting bureaucracy. But, as Stephen Neshitt reminded mein an e-mail
message [21] that arrived just as | had reached the end of this chapter
without a clever way of bringing things to an end:

...the absence of standards and methodology can dso
turn aproject into a Death March. On my last project
for example, theunrealistic delivery schedulewasused
as an excuse to avoid the following:

1) Checking source code into the configuration man-
agement system resulting in project source code
spread across 3 different computer systems at 2 geo-
graphic locations. As a consequence a significant
amount of time was wasted trying:

a) to build the software.
b) to determine who had what version.

¢) to determinewhy the softwareworked on one
system and not another.

2) Registering features/defects into the configuration
management system. This effectively crippled QA be-
cause it was impossible to eedly determine what was
in work and could be ignored, what was completed
and could betested, and what was pending so that ap-
propriate test plans could be designed.

3) Recording basic requirements, design decisionsand
assumptions, milestones within the development of
project modules, and appropriate unit tests. The con-
sequence here was to drastically impede communica-
tions within the project team not only on current
project status but dso basic decisons made at the be-
ginning of the project.

166 DEATH MARCH

Inevitably development response was that these pro-
cess activities represented "overhead" and thus, by
definition, were useless activities. Technica manage-
ment generally concurred and, when the drop dead
date loomed, process and methodology were given the
heave ho.

So, please don't interpret this chapter as an excuse not to have any
processes, methods, or techniques at dl; indeed, that will kill a death
march project, too! Thetrick istofindthe onesthat matter, the onesthat
work, and the onesthat theteam will follow naturally and unconscioudly.
Thislast point is crucia: the team will be under a lot of stress and pres-
sure, and will have to do a lot of things fey instinct. If they are
overburdened with new, unfamiliar processes so complex that they have
to stop every five minutes and consult a textbook to figure out what to do,
then all islost. So keep it simple—and if theteam can only remember one
word, remember what itis. triage,

Notes/References

1. Stephen R. Covey, A. Roger Merrill, and RebeccaR. Merrill, First ThingsFirst
(New York: Smon & Schuster, 1994).

2. Consultant John Boddie suggests athird option: The new manager might be
the oneto officialy kill theproject if it redly is unsalvageable. Thisismuch essier
for the new manager than for his or her predecessor, for the origina project
manager has so much ego and emotion invested in the project that it's difficult
for him or her to admit that the best thing to do is kill the project. Boddie pro-
vides some excellent advice on politically acceptable ways to kill a project in
"CallingDoctor Kevorkian!" AmericanProgrammer, February 1997.

3. Indeed, | would suggest that the project manager and his or her team mem-
bers use this as a litmus test at the beginning of the project. If the user, project
owner, senior managers, shareholders, and stakeholders all refuse to accept the
notion of this kind of hard-nosed triage prioritizarion, then the most rational
thing to do is resign from the project before things get any worse! As a further
litmus test, Dean Leffingwell argues that the users should be required to divide
the entire s&t of requirements into equal groups of three: one third of the re-
quirements can be put into the "rnust-do" category, one-third into the "should-
do" category, and one-third into the "could-do" category. This prevents the

PROCESSES 167

common problem of findingthat 90 percent of therequirementshavebeen cat-
egorized as critical.

4. Thisisapreview of amore elaborate discussion of "best practices' thatyou'll
findlaterinthischapter.

5. By contragt, ina"normal” project, the SA/OOA models are often perceived as
useful products in their own right. The users and business policy-makers will
huddle around the data flow diagrams and mutter to one another, "So that's
what our businessisdl about! Maybewe should do abusinessreengineering
project and change dl of that before we build a new software system!"

6. Veteran software engineers will recdl the old adage, "If your only tool is a
hammer, then al the problems facing you look like nails"

7.1 must confessthat thisis a disguised marketing pitch, sinceit's one of the key
features of the Requisite product, and 1 wasamember of Requisite's Board when
| wrote this book. In my role as an objective author, | heartily encourage you to
investigated| threerequirementsmanagement productsmentionedhere.

8. Ed,
> 1. How important is it to use traditional methodologies like SA/
SD > or OOA/OOD in a death-march project?
I' d have thought that they can contribute to the deathmarch more
effectively than most. On one project I know, they needed a
diagrammer f or theEKDs, so theybought Excellerator. Having found
that it supported SSADM (which must be the methodologist's
methodology) adopted it without any training or induction for the
staff. Then they found that the pace of the project slowed
significantly (in fact, it nearlyhalted) while everyone was busy
reading manuals and learning software tools and deciding what they
should do next (and re-doing what they had done earlier in the
"wrong" sequence) . For death march watchers, and almost ideal
scenario. Oh, and the project manager was sacked half way through
the project, but that's normal.
> How important is it to teach those methodologies (whichever one
> you think is best) to the team before the project begins?
Well, I guess you can gather from the above that I believe in
training for ANYTHING before applying it. The fact that you're
adopting a technique which will fundamentally decide the way you
work, record all your requirements, and govern the nature of the
generated code, you' d think that a slight amount of training would
bebeneficial, wouldn' t you? A lot of trainingwouldbebetter, of
course. But when you' re on a deathmarch, youdon' t have time for
that.

168 DEATH MARCH

Alittle sideline quote that I received froma Systems Manager the
other day: I said I wanted to spend the first nine months of the
project getting the design right, and he responded by saying "You
can't do that - you've got to deliver the Name and Address file in
twelvemonths . " (!) It'snot adeathmarch.It'snotadeathmarch.
It's not a death march. Yet.
> 3 . How important is the SEI-CMM or ISO-9000 or any other "formal"
> software process approach within the context of a death march
> project team?
Not at all, I'dsay. I don't know SEI-CMM, apart from what I've
seen here, but ISO-9000 is self-certified, so it doesn't pose a
problem here at all. If it does, you hire a specialist whose job
is to cook the books.
> 4. Almost all death march projects follow a RAD or prototyping
> approach
Well, what' s worse is that suddenly when people realise that the
deadline's going to slip, RAD suddenly rears its ugly head.
Obviously, RAD is all about tightly constrained environments,
whereas the death march is plagued by vague or exaggerated
requirements . I can't see how an attempt to RAD a death march can
succeed, unless you turn it into producing a "navigable model" or
some such prototype so as to get the management off your back.
> 5 . If you could only get the project team to focus on ONE process
> approach, what would it be?
Forme, it' sallworkinginsmall teams, tightly focussed, andeach
one delivering *something*, so there's an end in sight. Checking
each others' work is the other aspect I'd introduce. Not
necessarily walkthroughs (although that' s a more formal part of
it) , but simply ensuring that someone else who is knowledgeable
can help with any task. Share the workload, the problems, and the
vision.
> 6. If there was one kind of process approach that you would
> strongly advise the death march project to AVOID
Large user groups (such as a Model Office) who have control of the
design. If the number of users involved is too great, the business
will give you only those it can spare, and they will continually
argue amongst themselves because theydon't know. We ' ve had topull
a project to a dead halt while we pulled in some senior users to
go through all the requirements and sort out the wheat from the
chaff. Meanwhile 60 implementors twiddled their thumbs for acouple
of weeks.
> 7. How important is all of this process stuff, in comparison to
> the issues of peopleware

PROCESSES 169

People, people, andpeople - the three most important things you
need on any project. Get the best and keep them, and lose the rest.
You can work with a team one-third the size of what you think if
they're good, and if they're that good, they'll adopt a common,

useful process. So process is important, but good people come
first,and when they're that good, they'll adopt good practices
which aren't a drag on the project.

Tools/technology come ahead of processes, Ibelieve, andit's the
one thing the managers can do for their staff that can help

significantly.

--Doug

9; Ed
» 2. What if the death march project team has never used such
methodologies before? How important is it to teach those
methodologies (whichever oneyou think isbest) to the teambefore
the project begins? «
Is there any time at all "before the project begins"?
A death march project is not the time for staff to learn a new (or
their first) methodology. OTOH it would contribute greatly to the
chances of project death if they DID learn a new methodology at
the same time.
Paul

IQ.Ed,

» 1. How important is it to use traditional methodologies like
SA/SD or OOA/OOD in a death march project?«

It can'l hurt to have clear ways of communicating with the users
and clear deliverables to them.

»2 . What if the death inarch project team has never used such
methodologies before? How important is it to teach those
methodologies (whichever one you think is best) to the teambefore
the project begins?«

It depends on whether members of the team have theexperience that
the team as a whole lacks. I'd say that the core members need to
"know their stuff" for the most part.

»3 . How important is theSEI-CMMor ISO-9000 or any other " formal"
software process approach within the context of a death march
project team? Is it better to followan "adhoc" approach, and just
assume that the pressures of a deathmarchwill force everyone to
operate as a "cowboy" programmer? ("cowperson" would probably be
more politically correct, but it sounds too clumsy <g>)«
Cowpokes don't need the manure to be cleaned from the pasture.

170 DEATH MARCH

Programmers don't need to have the "methodology" gurus cleanup
the deliverables.

But if someone wants to have a formal software process, then the
folks doing the programming should be protected from that extra
effort.

»4 . Almost all death march projects follow a RAD or prototyping
approach to systems development (orspiral, or scrum, oriterative,
or various other related ideas) instead of the old-fashioned
waterfall approach. That point hardly seems worth emphasizing --
but are there any special caveats or exceptions or details about
RAD/prototyping/etc, that you would be sure that a death march
project manager understood?«

Understand this: the feedback that you got from the user is

critical. Theydon 't care howyoumeet their requirements, and if
they have seen '"early miracles" of pretty screens and promised
functionality, don't ever let them down.

»5 . If you could only get the proj-ect team to focus on ONE process
approach, what would it be? Walkthroughs? Change management (aka
versioncontrol, configurationmanagement,etc.)? formalanalysis/
design methodologies? something else?«

Walkthoughs or reviews with the key (or a few key) user(s)? I
really think that one of the more major problems of systems

projects is that there is a cycle of delivery and failure to
satisfy.

»6. If there was one kind of process approach that you would
strongly advise the death inarchproject to AVOID (because it takes
too much time, is too risky, or whatever) , what would it be?«
Anything that is extremely complex and technical and theoretical
is wasted on a death march. Nobody can see further than the next
deliverable.

»7 , How important is all of this process stuff, in comparison to
the issues of peopleware (which I discussed in Chapter 4) , and
tools/technology (which I'll get to in Chapter 6)? «

The tools are useful, but they should only illustrate and enable.

The process is a means of getting to the human side of the effort.

The peopleware is the most important.

Sharon

11. Watts Humphrey, A Discipline of Software Engineering (Reading, MA: Addi-
on-Wedey, 199%).

12, James Bach, "The Challenge of 'Good Enough' Software," American Program-
mer, October 1995.

PROCESSES 171

13. Jim McCarthy, Dynamics of Software Development (Redmond, WA: Microsoft
Press, 1995).
14. G. Pascal Zachary, Show-Sopper! (New York: Free Press, 1994).

15 To behonest, | don't know if the Microsoft team actually did thisreligiously
onadaily basis. It's certainly possible that more than one "build" was produced
within a single 24-hour period, and it's even possible that the team took a day
or two off during their marathon death march.

16. See Note 13
17.See Note 14.

18 Rob Thomsett, "The Indiana Jones School of Risk Management,” American
Programmer, September 1992,

19, Capers Jones, Assessment and Control of Software Risks, (Englewood Cliffs, NJ:
Prentice Hall, 1994).

20.RobCharette, "BuildingBridgesover Intellectua Rivers," AmericanProgram-
mer, September 1992,

21. Ed:
Three weeks ago I was 35 year old [xxx] systems engineer providing
quality assurance services on an ugly Death March project here in
Bozeman,MT. I 'mstill 35but I resignedmypositionbecause, after
18 months, the stress, despair and lack of job satisfaction were
simply too much to take. With no dependents I could afford to
simply walk away even if it is financially uncomfortable.
As such, I am finding your draft chapters for Death March
particularly relevant as I try to understand what happened over
the last 18 months, and as I start the process of looking for an
employer where Death Marches are not the norm (or at least not
ugly or suicidal ones!)
In reading Chapter 2 you made a number of references to the
"methodologypolice" as one of the factors which can turnaproject
into a Death March - the implication being that methodology and
standards can cripple an alreadymarginal project. I think this is
absolutely true . lambothered, however, that the converse was not
mention that the absence of standards andmethodology can also turn
a project into a Death March.
Onmy last project for example, the unrealistic delivery schedule
was used as an excuse to avoid the following:
1) Checking source code into the configuration management system
result ing inproject source code spread across 3 different computer

172 DEATH MARCH

systems at 2 geographic locations . As a consequence a significant
amount of time was

wasted trying:

a) to build the software.

b) to determine who had what version.

c) to determine why the software worked on one system and not
another.

2)Registering features/defectsintotheconfignrationmanagement
system. This effectively crippled; QA because it was impossible to
easily determine what was in work and could be ignored, what was
completed and could be tested, and what was pending so that
appropriate test plans could be designed.

3)Recordingbasic requirements, designdecisionsandassumptiona,
milestones within the development of project modules, and
appropriate unit tests. The consequence here was to drastically
impede communications within the project teamnot only on current
project status but also basic decisions made at the beginning of
the project. Inevitably development response was that these
processactivitiesrepresented "overhead" andthus, bydefinition,
were useless activities. Technical management generally
concurred and, when the drop dead date loomed, process and
methodology were given the heave ho.

The results were significant:

1) One system was finally put into production 1 year after
delivery. That additional year was spent correcting significant
design and implementation flaws which, in addition to requiring
massive amounts of engineering

resources, also resulted in millions of dollars of fines.

2) One system was put in production with three brand new, never
tested

systems . The result was the need todedicate engineering resources
for a period of one month to provide continuous around the clock
supervision. It also led to the general perceptionby the customer
that the system was not working - a perception that has not yet
been changed.

3) One system was put in and totally failed leading to:

a) $20 million dollars in fines on a $35 million contract.
b) Loss of another multimillion dollar contract.

c) Removal of the system by the customer.

Perhaps a little methodology would not have made any difference.
On the other hand, how could it have made things worse?

I hope that the final form of Death March will address this very
issue recognizing that absence of _appropriate_methodologies can

PROCESSES 173

transform a project into a Death March just as completely as the
overzealous application of _inappropriate processes,
methodologies and standards . As abattleweary infantryman, I also
hope that the final bookwill provide insight into recognizing the
appropriate from the inappropriate.

Thanks for your time, and I apologize for the length of my post.
Enjoy your summer along Flathead Lake.

-Steve

Additional References

Alan M. Davis, Software Reguirements. Objects, Functions, and Sates (Englcvvood
Cliffs, NJ Prentice Hall, 1993).

Mark C. Paulk, CharlesV. Weber, Bill Curds, Mary Beth Chrissis, et al., The Ca-
pability Maturity Model: Guidelines for Improving the Software Process (Reading,
MA: Addison-Wesley, 1995).

Robert N. Charette, Application Strategiesfor Risk Analysis, (New York: McGraw-
Hill, 1990).

Robert N. Charette, Software Engineering Risk Analysis and Management, (New
York: McGraw-Hill, 1989).

£
p

chapter

448
b
i
‘L:

s i PO R LA S

A worker may be the hammer's master, but the hammer still prevails.
A tool knows exactly how it is meant to be handled, while the user of
the tool can only have an approximate idea.

Milan Kundera, Tfor Book of Laugbler and Forgetting,
Pt. 7, Chapter 8 (1978, tr. 1980)

Back in the summer of 1992,1 had dinner with an amiable group of mid-
levd Microsoft managers. During the course of the discusson, | asked if
it was common for Microsoft project teams to use such methodologies as
structured analysis or object-oriented design. The answers ranged from
"sometimes' to "ummm, | guess s0" to "not consistently” to "what's
that?' And when | asked about the use of CASE tools (which were il
fairly popular throughout the rest of theindustry at that point in time), |
was told that the common opinion of Microsofties was that such tools

175

176 DEATH MARCH

were for "people off the street.” This was aterm | hadn't heard before,
but the rough translation is "ignorant savageswho have just come out of
the primeval forest and who arejust learning to program, unlike real pro-
grammers, who don't need no such artsy-fartsy tools."

Somewhat depressed, | asked whether the project teams used any
tools, and wastold that in fact, each Microsoft team can choose whatever
tools it feels are appropriate for the project it's working on. Seizing on
that, | asked: what doesatypical project team consider itsmost important
tool for asoftware project?

"I asked one of the project teams the same question the other day,"
replied one of the managers. "And you know what their answer was?'

"A high-speed C++ compiler?' 1 asked. "An assembler? A powerful
debugging tool for all those bugsin their code, heh heh heh?'

"None of the above" the manager responded, ignoring my snide
joke. "Their answer was: electronicmail. The average Microsoft program-
mer getsahundred e-mail messagesaday; heliveson e-mail. Take away
e-mail and the project stops dead in itstracks.”

There's a reason why | began this anecdote by pointing out that it
took placein 1992: thiswas before the explosive growth of the Internet
had begun, and before the World Wide Web was available. | was stag-
gered at the thought of anyone getting a hundred e-mail messages a day;
in 1992, | was deliriously happy if I got two or three e-mail messagesa
day. But asyou can imagine, if the same question about "most important
tool" was raised in 1996, the answer might well be "World Wide Web"
rather than e-mail; by contrast, the answer might have been "fax ma-
chine" in 1987, "PC workstation" in 1983, "on-line termina" in 1976,
and "my owntelephone on my desk" when | began my programmingca
reerin 1964.

Obvioudy, we don't expect a death march project team to survive
with only one tool. Most teams—even for normal projects—have awide
variety of tools, and quite an assortment of technology, to accomplish
their day-to-day work. But sometimes, they have too much, and some-
times they have technology that's tod new, and sometimes they have
tools they don't want foisted upon them by Dilbertesque managers. And,
in some cases, they're prevented—for financial, political, or cultura rea-

TOOLS AND TECHNOLOGY 1

sons—from getting the one tool they bdlieve critical for accomplishing
their objectives.

In caseyou wereworried, let me reassureyou that I'm not going to
advocate esoteric, advanced software tools that somehow communicate
telepathicaly with the programmer to generate well-structured code
from disorganized thoughts. But, | do want to discuss the notion of a
"minimal tool set" for deathmarch projects, 1adsowanttoemphasizethe
critical relationship between tools and processes, especiadly since the
processss in a death march project are likely to be different from those
used in the rest of theorganization. Andfinally, | want to issueawarning
against introducing completely new tools, of any kind, into adeath march
project team environment.

6.1 THE MINIMAL TOOLSET

Inthepreviouschapter, | strongly recommended thenotion of triageasa
prioritizationstrategy for dealingwithuser requirements. Thesamecon-
cept gpplies to tools and technology for the project team: There are some
toolstheteam "must have," and somethat they "should have," and abe-
wildering variety of tools they "could have." There are aso some good
reasonsfor applying thetriage prioritization in aconscious, cold-blooded
fashion at the beginning of the project.

The most obviousreason iseconomics. Evenif thetoolsworked and
everyone was familiar with them, itwould cost too much money to ac-
quire them. And it would take too long to order them—by the time the
procurement processin anormal corporate bureaucracy was finished,
the project would be finished [1]. In many death march projects, it's im-
portant to focus on a few critica tools, and then try to persuade senior
management (or the Tools Police) to acquirethem.

But, suppose the team is operating in a large environment that al-
ready has hundreds of different tools that have been acquired over the
years. Should they dl be used? Obvioudly not! Even if they all work, the
mental effortrequiredto remember howthey work, and theadditional ef -
forttomakethemall work together, usually exceedsthei ncremental ben-
efit obtained. Consider the analogy of a team of mountain-climbers,
trying to decide what equi pment to takewith them asthey preparefor an

1 DEATH MARCH

assault onthe peak. There are someessentias (tents, drinkingwater, etc.)
they'd better have; and, if it's an easy climb, they might want to take along
some new-fangled gadgets they read about in their favorite mountain-
climbing magazine. But, if they're planning to climb Mt. Everest, without
the assistance of burros or Sherpasto carry everything, then they can't af-
ford the burden of carrying 300 pounds of gear per person on their backs.

Exactly what toolsarecritical, and what should beleft behind, isade-
cision the death march project should be alowed to make on its own—
regardless of whether it conforms to organizational standards. I'm stag-
gered by the number of organizations 1 visit where the death march
project manager tells me sadly that there's an organizational mandate
that all projectsbe donein COBOL (or, in other organizations, Visual Ba-
dc¢, or Oracle, or whatever...), even though that technology is utterly in-
appropriate for his or her project. Baloney! Throw it out! Use the tools
and technology that make sense! To do otherwise is roughly analogous
to someone telling the leader of the Mt. Everest mountain-climbing
team, "Our committee has decided that your project team should take
along a detailed map of the New Y ork City subway system, because most
projectshavefounditvery helpful." (2]

1 think it's essential that the team members agree on common tools
within the project; otherwise, chaoswill ensue. Obvioudly, this must be
interpreted with a certain degree of common sensg; it probably doesn't
matter which word processor the team members use to write their docu-
mentation, but it probably isimportant that they al use the same compil-
er for their C++ code. One of the problemswith a death march project is
that the software devel opers believe that it creates a license for complete
anarchy at theindividual level (eg., if they want to use an obscure C++
compiler they downloaded from a university Web site, they believe it's
theirinalienableright). Not s0: It'stheteamthat hastheinalienableright,
and the project manager must enforce thisstrictly in any areawhere in-
compatibletools could make asignificant difference.

This means that unless the team members have worked together on
several previous death march projects, they will have to come up with a
"minimal" toolset that everyone agrees to use. Thus, triage emerges
again: The "must-have" toolset is aso the "must-use" toolset. Once a
consensus has emerged on a set of tools, the team can discuss the

TOOLS AND TECHNOLOGY 179

"should-have" tools, where the problems are likely to be a combination
of consensus-building within the team, and management approval for
the purchase of new tools. Beyond that, there may or may not be suffi-
cient time and energy to discuss the merits of the nearly-infinite number
of "could-have" tools that various team members might be interested in.

| suggested above that the project manager must be prepared to en-
force the consensus; indeed, this could be one of the criteria used by the
manager to sdlect potential members of the team. Note that the same
could be said about the software processes that we discussed in Chapter
6. And aswell see below, it's even more important than that—because
tools and processes are intimately related to one another.

With all of these caveatsin mind, it'simpossible for an "outsider" like
me to casually enumerate the recommended tools for a death march
project. When asked the question, my answer—"It depends..."—is usu-
ally confused for the consultant's weasel-worded tendency to avoid giv-
ing a straight answer to any question. So, aslong asyou keep my earlier
advicefirmly inmind, hereisthelist of tools | would normally look for:

+ E-mail, groupware, Internet/Web tools—like the Microsoft anecdote
above, this tool is at the top of my list. Thafs because electronic-
interaction tools are not only a means for communicating much
more efficiently than memos and faxes, but also because they facil-
itate coordination and collaboration. Basc e-mail and access to the
Internet is something | would insist upon as a project manager,
though | would be happy to negotiate as to which vendors and
products should be used. It matters far less to me whether were
using Microsoft Mail, cc:Mail, Netscape Collabra, or Lotus Notes,
than the concept that the whole team is on the network and keeps
al of its"project memory" on the network. Beyond that, there are
some wonderful new tools available, but they're likely to fal into
the category of "could have" rather than "must have."

* Prototyping/RAD development tools—as discussed earlier, aimost all
death march projects use some form of prototyping or incremental
development approach; consequently, they need tools to support
this effort. It's hard finding a popular development environment
today that describes itself as anything else but a RAD environment,

180

DEATH MARCH

and the majority of such tools today have a visua, drag-and-drop
user interface to help the programmer get more code developed
more quickly. Whether the tool should be based on Delphi, C++,
Visual Basic, or Smaltak (or a dozen other possible choices) is
something | can't recommend on any kind of globa basis. But
remember the comment above: It's not sufficient to have a consen-
sus that we're al going to use alanguage like C++ or Smalltalk; we
have to agree on a common toolset from a common vendor. To
have part of the team using RarcPlace-Digitalk'sVisuaWorks envi-
ronment while the others use IBM'sVisua Age for Smalltalk prod-
uct may be technologically feasible, but it's till downright stupid.

Configuration Management (CM)/version control—Several of my cal-
leagues feel that this should be at the top of the list. As John Bod-
die, author of Crunch Mode, said in arecent e-mail communication
to me [3]:

I would say that aconfiguration management tool isa
real "must have." Thereisgoingto belotsof confusion
among the pieces of the project and the manager and
the team needsaway to establish and track versions of
the system as they move toward completion, termina-
tion or whatever.

» There is an obvious benefit to having the CM tools well-integrated

with the other primary development tools. Thus, Microsoft's Source-
Safe may or may not be the best version-control software, but the
fact that it'swell-integrated withVisua Basicisabig argumentinits
favor. Similarly, many other development tools are integrated with
InterSolvs PVCS, IBM's ENV'Y/Devel oper, or other comparable CM
tools.

Testing, debugging tools—many of us would automatically include
these tools with the"basic" development tools that dlow usto cre-
ate code, compile it, and run it. But, aswe moved from mainframe
on-line applications to GUI-oriented client-server systems, we
gradually realized that an entirely new set of testing tools were not
only appropriate, but often essentia;' and, tools from vendors like
SQA and Mercury Interactive ill aren't widely enough distributed
in the organizations | visit. Similarly, project teams moving into the

TOOLS AND TECHNOLOGY 181

world of the Internet and Web-based applications probably need a
whole new set of testing and debugging tools.

Project management (estimating, scheduling, PERT/GANTT, etc.)—
there's a tendency to think of these as the"manager's toolkit," and
that may be the case; perhaps it's only the project manager that
needs to recompute the projectV'critical path” on adaily basis. But,
in this same category, | would include estimating tools like ESTI-
MACS (devel oped by Howard Rubin, and availablefrom Computer
Associates), CHECKPOINT (from Software Productivity Research),
and SLIM (from Quantitative Software Management). These are
essential toals, in my opinion, because they support the dynamic re-
evaluation of schedules and deadlines throughout the project.

Toolkit of reusable components—if the project team is familiar with
the concept of software reuse, and if it regards reuse as a strategic
weapon with which to accomplish high levels of productivity, a
toolkit of reusable components needs to be on the list of "must-
have' tools. This might be a collection of VBX components for
Visual Basic, the ParcPlace-Digitalk Smalltalk class library, or
Microsoft's MFC class library for C++; obvioudy, it could also
include some in-house components developed by other project
teams within the organization. The choice is usualy language-
dependent, and it's another one of those areas that needs to be
used consistently by everyone within the project team.

CASE tools for analysis/design—some project teams regard CASE
tools as a"crutch" for novice developers, but others consider them
as essential as word processors. My preferenceis for the CASE tool
that'ssimple, inexpensive, and flexible; asidefrom that, | won't rec-
ommend any particular product or vendor, because the real answer
to the question of which CASE tool to useis,"it depends..."Indeed,
as Doug Scott suggested in a recent e-mail message [4] to me, it
might not require any technology at al:

The best device is a large diagram pinned to the wall.
It might contain the (partially complete) E/R diagrams
for the system, or the processflows, or whatever. But
it gives people a focus for discussing the design, and it
costs next to nothing.

182 DEATH MARCH

As I'll discuss below, the biggest problem with CASE tools is that
they encourage (and sometimes enforce) a methodol ogy that the project
team doesn't understand and doesn't particularly want to use.

6.2 TOOLS AND PROCESS

The issue of CASE tools, mentioned above, is probably the most obvious
exampl e of atruism: tools and processes are inextricably linked together.
There's no point in using a structured analysis CASE tool if you've never
heard of the acronyms DFD and ERD. Such a CASE tool is not only use-
less, but an incredible burden, if the project team sincerely believes that
ERDs and DFDs are meaningless forms of bureaucratic documentation
produced solely to get the Methodology Police off their backs.

The situation is not aways so black-and-white. For example, the
project team might feel that dataflow diagramsare useful, but only asan
"informal" modelingtool. Thus, a"flexible" CASE tool might be consid-
ered abenefit, whilea "hard-line" CASE tool would be rejected. Consid-
er the obvious analog)' with a word processor: We all appreciate the
benefits of the spell-checker, but we don't want to be forced to useit, and
it's quite likely that we never use the grammar-checker because it's too
slow and clumsy (at least, that's my excuse for not using it on Microsoft
Word!). We would be even more annoyed if the word processor stead-
fastly refused to alow the word "ain't" within a document, or required
that any phrases considered racist or sexist be approved in advance by
the Political Correctness Committee. A few more "features' like that
would be enough to make us al go back to paper and pencil.

What this means, of course, is that the death march project team
must first agree on the processes and methodologies it intends to follow,
and it must decide which of those processes are going to be followed re-
ligiously—and which ones will be honored in spirit, but perhaps not to
the letter of the law. Once this has been decided, the tools and technolo-
gy can be chosen—or rejected!—accordingly. In this same fashion, the
project manager may decide to adopt a particular tool to enforce a pro-
cess that everyone agrees on intellectually, but is likely to practice in a
sloppy fashion; two good examples are version control and configuration
management.

TOOLS AND TECHNOLOGY 183

One of the biggest myths about software tools in any software
project—and a particular danger in a death march project—is that the
tool will bea"slver bullet" that will somehow accomplish miracles. Mir-
adles, of course, iswhat senior management is looking for; and even the
project manager may be tempted by the vendors advertising claims that
programming, testing, or various other activities will be improved by a
factor of ten through the genius of their tools.

Aside from the problem that such tools are usually brand-new and
that nobody knows how to use them (which I'll discuss below), there'sa
more fundamental point to consider: The only way such atool could be a
slver bullet isif it alows or forcesthe devel opers to change their process.
For example, if | write aprogram and then compileit, | do so according to
aparticular process. Perhaps | conduct a peer-level walkthrough before
the compilation, or perhaps | precede the programming activity with a
formal, detailed design process. Now, if you give me acompiler that'sten
percent faster than the one I've been using, I'll be happier and somewhat
more efficient; maybethe productivity of the overall project will increase
by someincremental amount. But | won't changemy process.

On the other hand, if you give me a compiler that's ten times faster,
thenitwill change my process. That'swhat happened when wewent from
batch-mode, overnight compilesto on-line compilation in the 1970s, and
then compilation on one's own PC/workstation in the 19805 and then
various combinations of incremental compiling (ala Delphi) and inter-
pretive execution (a la Visua Basic). Because of this, many developers
have eliminated detailed design prior to coding, on the theory that they
can compose programs extemporaneoudly; the practice of walkthroughs
has dso been eliminated in many projects, on the assumption that the
programmer can find and change his or her own defects efficiently.

Hardly anyone objects to the prospect of using improved technology
that permits the elimination of processes that were considered boring and
tedious. But, it'smoredifficult to introduce new technology that requires
usto add processes, or modify processesthat wewere comfortablewith. A
good example is the process of reuse and the associated technology of re-
use libraries, browsers, and related tools. The project teams that use this
technol ogy can effectively raisetheir level of reusefrom approximately 20
percent (aleve that | cal "accidenta" or "ad hoc" reuse) to 60 percent or

184 DEATH MARCH

more; indeed, if the technology is matched with a corporate-wide reuse
process, the level of reuse can reach 80-90 percent or more.

Thedifference between a 20 percent leve of reuse and an 80 percent
level of reuseis equivalent to afour-fold improvement in productivity.
And, as Paul Bassett points out in a new book on reuse [2], the subse-
guent incremental increases in reuse have more profound benefits than
you might think. If the level of reuserises from 80 percent to 90 percent,
it means that instead of having to develop 20 percent of the code "from
scratch," the project team only has to develop 10 percent. Thus, their
workload haseffectively been cutin half.

Thisisal very exciting—indeed, worthy of being called a"silver bul-
let"—but it's utterly irrelevant if the project team (and ultimately theen-
tire organization) is unable or unwilling to change its software processes
with regard to reuse. Theirony isthat most organizationswill blame their
failures on thetechnology itself: They'll buy an expensive classlibrary, or
they'll replace their old software devel opment methodol ogy with object-
oriented techniques on the theory that objects are synonymous with re-
use; and, when they eventually find they've achieved no measurablein-
creasein reuse, they'll blame the problem on objects, or on the vendor of
the class library, or on whatever other technology they've depended on.
Meanwhile, the processisexactly thesameasitwasbefore. Theculture of
the organization isexpressed with the following phrase: "Only wimpsre-
use other peopl€'s code; real programmers write their own damn codel"

From the perspective of adeath march project, there'savery smple
moral here: If the introduction of new tools requires the team's "stan-
dard" processto be changed dramatically, then it will add significantly to
the project risk and probably contribute to the failure of the project. This
sometimes gets muddled with the issues of training and of learning the
mechanics of how to operate the tools (I'll discussthat below). But, the
morefundamental problem isusually that of changing behavior, whichis
what software processes are dl about. It's hard enough to do under nor-
mal circumstances, when we feel that we havelotsof time and a support-
ive environment to dowly become comfortable with the new process.
And for obvious reasons, it's usually a disaster in a death march project,
when we don't have enough time, and we don't have a supportive envi-
ronment.

TOOLS AND TECHNOLOGY 185

6.3 THE RISKS OF CHOOSING NEW TOOLS

Asnoted above, some death march projectsgrab onto new toolsand tech-
nology as aslver bullet to achieve far higher levels of productivity than
would otherwise be possible. Let's assume for the moment that we've
found some way to solve the cultural and political problems of process
changethat were discussed above. What € se do we havetoworry about?

Thetwomost likely risks- aretechnol ogy andtraining. Inmany cases,
the slver bullet tool isso new that it's not even available in acommercid
form; usually, someone on the proj ect team downloadsthe betaversion
from the Internet. Or, the tool can't be integrated with any of the other
tools used by the project team; thevendor has made vague promises, but
in the meantime, thetool's import-export capability is riddled with bugs.
Or, the tool isn't supported—it was developed by a graduate student in
Uzbekistan, or (even worse!) it was developed in-house by one of the
software devel opers who sees nothing strange about the idea of a bank
developing its own CASE tool or an insurance company developing its
own DBMS.

Let'sassumefor themoment that thetool issolid, reliable, and avail -
able from areputable vendor that provides top-notch support. In that
case, the problem is likely to be one of training—for if the tool was al-
ready being widely used throughout the organization, nobody would
havecharacterizeditasa"silver bullet" thatwould miraculously savethe
death marchteam from certain disaster. Occasionally, you'll findadeath
march project team that begs for permission to use apowerful tool its
membershave dl used in apreviousjob—but thisisrareindeed. In most
cases, neither the project teeam members nor anyone elsein the organi za-
tion has ever seen or used the tool before.

Asmentionedbefore, any non-trivial tool usually hasstrongimplica-
tions about the corresponding software process; thus, a new tool often
impliesa new process. Though such a correspondence should be obvi-
ous, it'sremarkable how often the vendor's training representative gets
half-way through a five-day workshop on how to operate the tool before
finding that the students (whose managers are already panicked about
falling five days behind schedule as a consequence of attending the
workshop!) have absolutely no understanding of the process supported

18 DEATH MARCH

by the tool. It's awfully demoralizing, for example, to spend two days
showing a reluctant student how to draw an ERD and then have him or
her ask, "By theway, what is an entity? And since I'm gonna program ev-
erythingin C++, why should | care about all of thisstuff?"

But, let'sassume that the project team members understand the pro-
cess supported (and automated), by the tool, and that they have enthusi-
astically agreed that they will carry' out the practice in their project; from
20 years of experience teaching structured and object-oriented methods,
1 know that thisis a naive assumption, but there's no point in going fur-
ther unless we do. So, if we assume that there are no technical problems
with the tool, and //we assume that the corresponding software process-
eswon't cause aproblem, then al that is left is the training and practice
associated with the tool itself.

How long does this take? Obvioudy, it depends on the nature and
complexity of the tool—aswell asits user interface, itson-line help fea-
tures, and assorted other issues. In the best case, the developers will be
ableto figure out how to use the tool without any formal training at dl;
that's what the project manager and various other managers outside the
project desperately want to believe, for they regard any training as a waste
of time, and a distraction from the "real work" of the project. But, the
morerealisticestimateisthatitwill takean hour, aday, or aweek to learn
how to use the tool. Whether that takes the form of a classroom sesson,
or reading abook, or just "playing” with thetool, it still takestime.

And, thetraining activity does not provide athoroughly trained, infi-
nitely experienced user of thetool. Trainingisnot a binary phenomenon:
The project team members don't go from a state of utter ignorance to a
state of sublime mastery of the tool at the end of a one-week training
class. This should be obvious, but it somehow baffles senior manage-
ment, which tends to grumble and complain, "Okay, we spent all that
money for those high-priced trainers, and we wasted all that rimein the
classroom when those lazy, good-for-nothin' programmers could have
been coding. Now | want to see some real productivity with that slver
bullet tool you talked us into getting for them!" Perhaps it's not so sur-
prising that senior management would be so naive, since they wouldn't
know a software tool if they fell over one; but sadly, I've seen the same
reaction from many technically-oriented death march project managers.

TOOLS AND TECHNOLOGY 187

Inawonderful article[5], my colleague Meilir Page-Jones argues that
there are seven stages of mastery in software engineering; his article fo-
cuses on methodologies, but | believe that it applies equally well to tools
and technology. In the list below, I've added my own estimates for how
long it would take the average software developer to reach various stag-
es, assuming that the tool or technology was of average sophistication
andcomplexity:

1.Innocent (has never heard of Technology X) —this obviously requires notime at
all.

2. Aware (has read an article about Technology X) — roughly an hour, in most cases,
is enough for a software developer to be in a position where he or she can voice
strong opinions about the advantages and disadvantages of the tool, even though
he or she has never seen or used it.

3. Apprentice (has attended a five-day workshop) — aweek, perhaps compressed
into two days because of the pressure of a death march project. But, note that at
this point, the developer has probably done nothing more than play with canned
tutorials provided by the vendor, or dabbled with a small exercise to illustrate the
features of the tool. He or she hasn'tencountered the glitches, shortcomings, and
"gotchas" of the tool; he or she hasn't seen how (or if) it will scale up for large, com-
plex projects; he or she hasnt tried to integrate it with most of the other tools in the
environment.

4. Practitioner (ready to use Technology X on a real project) — a month is probably
required to explore the nuances of the tool and become sufficiently comfortable to
use the tool on a'real" project.

5. Journeyman (uses Technology X naturally on the job; complains bitterly if it is
taken away) — this usually takes 6-12 months, and if the tool really is a silver bullet,
the developer becomes an evangelist, doing his or her best to persuade everyone
that It's the most wonderful tool on earth.

6. Master (has internalized the details of Technology X; knows when to break the
rules) — usually two to three years, which also means that the developer has sur-
vived through two or three new product releases, has found all of the support
groups and discussion groups on the Internet, and knows all of the unlisted phone
numbers for the technical support gurus at the vendor's organization.

7. Expert (writes books, gives lectures at conferences, looks for ways to extend
Technology X into new galaxies) — Page-Jones was focusing on methodologies in
his paper, and it's not clear that this applies to tools and technology.

TABLE 61 PAGE-JONES SEVEN STAGES OF SOFTWARE ENGINEERING MASTERY

188 DEATH MARCH

6.4 SUMMARY

Does the gloomy discussion in this chapter mean that we should use no
tools at all? Are we supposed to abandon al technology and resort to
old-fashioned keypunch machines? Should we assume that technology
can never save us?

The rhetorical nature of these questions is intended to remind you
that common sense should prevail in all such discussions. When the stars
and planets align themselves just 0, maybe technology will save us, at
least on one or two death march projects. And we should certainly take
advantage of as much advanced technology as we can, because it can le-
verage our intellectual efforts, and relieve us of time-consuming, error-
prone tedious tasks associ ated with software devel opment.

In the best of al worlds, the software developers will have had a
chance to learn, experiment, and practice with high-powered toolsin a
less-risky environment; indeed, in the best case, advanced tools have a-
ready been deployed throughout the organization, and are part of the
culture and infrastructure of the organization. And in this case, we
wouldn't need to have any discussion about tools and technology at dl;
we would simply pick up our tools and go to work on the death march
project.

The reason for the discussion in this chapter—and the reason al of
thisisrelevant in most death march projects—is that the organizationis
using mediocre tools, or someone believesthat acompletely new form of
technology, just announced breathlessly by a start-up vendor last week,
will somehow save the day. The former scenario is depressing, but al too
common; and the latter scenario is also common, for the simple reason
that technology advances quickly and relentlessly in our field.

If new technology could be introduced without any impact on our
software processes, and if it didn't require training and practice on the
part of the developers, then wewould be faced with a smple cost-benefit
decison. And, since the natural instinct of many higher-level managers
isto assume that a problem can be eliminated by simply throwing money
atit, I find that there tends to be far more brand-new technology used on
death march projects than on normal projects. The irony, as I've tried to

TOOLS AND TECHNOLOGY 189

explain in this chapter, is that the new tool can be the straw that breaks
the camd's back; thus, project failure is blamed on the tool. As Sharon
Marsh Roberts put it [6]:

When the team is required to think clearly more than
60 hours per week, it's abad time to invoke complex
logic. Anything that requires anew mode of effort or a
more sophisticated way of thinkingisaproblem.

Doing something new requiresthe flexibility to "get it
wrong" on the first iteration without becoming des-
perate.

So, use whatever tools make sense for your death march project, re-
gardless of whether therest of the world thinks they are advanced or old-
fashioned. And remember that if you do use new toadls, it'sgoingto have
an impact on the people and processes within the death march project.
AsThoreau put it so eloquently 150 years ago:

But lo! men havebecome thetoolsof their tools.

Henry David Thoreau, Walden, " Economy” (1854).
Notes

1. When this book was being written in the summer of 1996, there were grave
concerns that exactly this phenomenon would prevent many U.S. government
agenciesfrom finishing the biggest death march project of dl time by the non-
negotiable deadline. I'm talking, of course, about the Y ear-2000 project.

2. Sometimesthe politics can get pretty nasty here. Duringthepastyear, I've ob-
served a number of forlorn IBM employees using Lotus Freelance instead of
PowerPoint and Lotus 1-2-3 instead of Excel, because it wasn't worth the polit-
ical battles they would have faced otherwise. Similarly, I'm not sure | would
want to be part of a project team at Mi crosoft that decided, circa August 1996, to
use Netscape Navigator rather than Internet Explorer.

3. Ed,
Ch 6 comments follow -
1. If your teamhad only ONE kind of "optional" or "discretionary"
tool/technology to support them in a death march project, what
would it be? My assumption here is that every project has an
absolute bare-minimum of required things like compilers and
debuggers, but there's an awful lot that (a) the project teammay

190 DEATH MARCH

not have immediately available, (b) senior management would
perceive the acquisition of suchnew technology as expensive, and
(c) one or more managers or kibitzers on the sidelines would say
"oh, you don't need THAT tool!".
T would say that a configuration management tool is a real "must
have. " There is going to be lots of confusion among the pieces of
the project and the manager and the teamneeds a way to establish
and track versions of the system as they move toward completion,
termination or whatever.
2 . How important are CASE tools for deathmarchprojects? In this
context, I mean what we used to call "upper-CASE" tools that
support analysis and design-level stuff; depending on how much
money you spend, theymight also generate code, wash the dishes,
and provide various other useful services.
I find themveryuseful - at the same level as wordprocessors . They
allow the team to communicate using a standard format. I've found
that inexpensive CASE tools work just fine.
3. How important are "visual" development environments in death
march projects? I don't want to be language-specific here, since
there are visual versions of most of the high-level programming
languages available today. But the issue here is using a "drag-
and-drop" kind of development tool for building programs, versus
the older style of text editors to type in lines of code, followed
by compile, link, test, etc.?
In the situations where 1 have seen these used, I've been
impressed.
They appear to remove a lot of the "housekeeping" that takes
programmer and analyst time . I haveyet to leadaproject that uses
these tools, but I'm hopeful.
4 . How important do you think "groupware" tools are? I don't want
to be too specific here, since everyone has a slightly different
definition — but. I'm thinking of tools similar to Lotus Notes
for organizing "threads" of discussions and fostering
collaboration, coordination, and communication. I would be
interested to know if anyone has used more exotic forms of
groupware; if youwant to see examples, readMichael Schrage'sbook
"No More Teams! " . (And if you've never heard of the book, take a
look at my review of his book, which I' ve posted in the "articles"
section of my Web site at http://www.yourdon.com)
E-Mail is critical and document and code libraries are a "must, "
but the benefits of other groupware functionality might be harder
to identify. Ina crunch-mode environment, face-to-face working
has a lot to recommend it.

TOOLS AND TECHNOLOGY 191

5 . Are there any tools , or technology-approach, that you consider
highly risky or dangerous for death-marchprojects? If youhad to
advise a deathmarch project manager to AVOID a particular tool or
technology, what would it be?

The standard rules apply here. Youdon' t picka technology that is
inappropriate for the task at hand. Using DO and the Web as
building blocks for a telephone company's billing system might
sound sexy, but the nature of the job is batch processing and you
might be better off with COBOL.

Hope this helps,

--JB

4. E4,
> 1. If your team had only ONE kind of "optional" or
"discretionary"

> tool/technology to support them in a deathmarchproject, what
> would it be?
I'd get a CASE tool which could enable requirements through to
module/object definition. Code generation is not IMHO a real
problem, but taking requirements through to low-level models is.
And yes, we still have those who think you can just sit down and
write an OLTP system in assembler.
Failing the CASE tool, then an integrated set of tools such as
Smartsuite or Office, so that we could come up with something
similar cheaply and quickly. And we need the spreadsheet.
HOWEVER. The best device is a large diagrampinned to the wall. It
might containthe (partiallycomplete) E/Rdiagrams for the system,
or the process flows, or whatever. But it gives people a focus for
discussing the design, and it costs next to nothing.
> 2. How important are CASE tools for death march projects?
Important, if introduced with appropriate training at the
beginning of the project. A disaster if not.
> 3. How important are "visual" development environments in
> death inarch projects?
I 'mbeginning to accept that the "visual" revolutionis todowith
right-andleft-brainedness , andsinceprogrammersare supposed to
be left-brained (or is it right?) they wouldbe quite happy with
command line tools. Analysts, however, and designers, need to be
able to visualise things, and if the tool gives the ability to do
that (some do, but the resultant diagrams simply don'1 help) then
they're useful.
Tha wall chart (see above) does help, though.
>5. Are there any tools, or technology-approach, that youconsider
> highly risky or dangerous for death march projects

192 DEATH MARCH

Most project management tools are, IMHO, a load of rubbish. PERT
is enough to find the critical path, but many tools insist that
you do full resource allocation before the project even starts. I
use a spreadsheet, but I'd love a copy of an old-fashioned PERT
diagrammer where I could add resources during the project (which
is when I find out what I'mgetting) rather than months before.

--Doug

5. Meilir Page-Jones, "The Seven Stages in Software Engineering," American
Programmer, July-August 1990.

6. Ed,

» 1. If your team had only ONE kind of "optional" or
"discretionary" tool/technology to support them in a deathmarch
project, what would it be? My as sumptionhere is that everyproject
has an absolute bare-minimum of required things like compilers and
debuggers, but there's an awful lot that (a) the project teammay
not have immediately available, (b) senior management would
perceive the acquisition of such new technology as expensive, and
(c) one or more managers or kibitzers on the sidelines would say
"oh, you don't need THAT tool!".«
I'd choose Infornodeler or something similar. Inexpensive tool
which functions to do some elementary things . Feature it, for the
CASE-weary, as a drawing tool, so that we can communicatewith the
users.
»2 . How important are CASE tools for deathmarchprojects? In this
context, I mean what we used to call "upper-CASE" tools that
support analysis and design-level stuff; depending on how much
money you spend, they might also generate code, wash the dishes,
and provide various other useful services.«
Pick one that supports high-level design and communications. If
it happens to also generate code, fine. If not, that's OK. Just
don't pick something that does the dishes, because it will be too
hard to learn and too easy to blame for design delays.
»3 . How important are "visual" development environments indeath
march projects? I don't want to be language-specific here, since
there are visual versions of most of the high-level programming
languages available today. But the issue here is using a "drag-
and-drop" kind of development tool for building programs, versus
the older style of text editors to type in lines of code, followed
by compile, 1link, test, etc?«
If it works for the programming team, it' s important. If the team
is accustomed to text-edited COBOL code, who am I to complain?

TOOLS AND TECHNOLOGY 193

At this point there are plenty of experienced VB programmers, for
example.

»4. How important do you think "groupware" tools are? I don't want
to be too specific here, since everyone has a slightly different
definition -- but I 'mthinkingof tools similar to Lotus Notes for
organizing "threads" of discussions and fostering collaboration,
coordination, and communication. I wouldbe interested to know if
anyone has used more exotic forms of groupware; if you want to see
examples, read Michael Schrage's book "No More Teams! " . (And if
you've never heard of the book, take a look at my review of his
book, which I've posted in the "articles" section of my Web site
at http://www.yourdon.com) «

I'll go see your Web site and the review. "I'll be back."
»5 . Are there any tools, or technology-approach, that youconsider
highly risky or dangerous for death march projects? If you had to
advise a deathmarch project manager to AVOID a particular tool or
technology, what would it be? «

Pick one of the following, depending upon prior experience of the
team:

a. C or C++

b. Smalltalk

c. AI

d. any new full-lifecycle CASE tool

e. UNIX or any other operating system that's new for the team
When the team is required to think clearly more than 60 hours per
week, it's a bad time to invoke complex logic. Anything that
requires a new mode of effort or a more sophisticated way of
thinking is a problem.

Doing something new requires the flexibility to "get it wrong" on
the first iteration without becoming desperate.

--Sharon

Additional References

Michael Schrage, No More Teams! Mastering the Dynamics of Creative Collabora-
tion (New York: Doubleday-Dell Publishing Company, 1995).

Paul G. Bassett, Framing Software Reuse: Lessons from the Real World (Upper S
die River, NJ: Prentice Hall, 1996). ISBN 0-13-327859-X.

chapter

Culture is a sham if it is only a sort of Gothic front put on an iron
building—Iike Tower Bridge—or aclassical front put on asteel frame—
like the Daily Telegraph building in Fleet Street. Culture, if it isto be areal
thing and a holy thing, must be the product of what we actually do for a
living—not something added, like sugar on a pill.

Eric Gill, Essays, "Education for What" (1948)

Throughout this book, I've perpetuated a contradiction which we now
need to confront. On the one hand, I've argued that death march projects
arequalitatively differentfromall of theother "normal" projectsthat take
place within a software devel opment organization. On the other hand, |
suggested in Chapter 1 that the circumstances leading to death march
projects—schedules and budgets 50-100 percent more ambitious than
normal, functionality requests 50-100 percent more advanced than nor-
mal—occur more and frequently in today's organizations.

195

1% DEATH MARCH

Many developers and managers might ask whether it's rational to
plan on having death march projects. As John Boddie [1], author of
Crunch Mode, points out about the industry in which he has worked:

| spent yearsin the lottery business, where everything
is in crunch mode because that is the way that the in-
dustry grew up. If you don't want to work in this fash-
ion, you can't play in this sandbox. Developersin this
industry put up with it because they have tasted suc-
cess in short, high-intensity projects and have been
given considerable freedom to do things like take two
months off between projects. The teams consider
themselves to be elite and the companiesin this busi-
ness treat them that way.

And, as Doug Scott suggests [2],

Management have different drivers. They know that
the risk of outsourcing their empires is higher now
than it's ever been, and want to deliver. They dso
know that we take an awfully long time to deliver be-
cause there are all sorts of bureaucratic time-wasting
proceduresin place. They think that, if they stress the
importance of this particular project over al others,
these procedures will be trimmed without them hav-
ing to do anything specific about it. They accept that
they can't put the best people on thejob, and they ac-
cept that better technology might help if it weren't for
the long learning curve which prohibits the use of new
technology on this project, so they can't useit. Or a-
ternatively, they believe industry hype and think that
the new technology will magically be mature, error-
free, and instantly understandable to dl concerned.

But, if death march projects are the norm, then should we even call
them "death march"? Doesn't it just become part of the overall corporate
culture? I'll begin by discussing why such a transformation might take
place within a rational software organization, and then move on to the
more significant question of: How can we change the culture of today's

DEATH MARCH AS AWAY OF LIFE 197

traditional organization so that it can effectively support death march
projectswithout making them seem like such an anomaly?

7.1 WHY WOULD DEATH MARCH
PROJECTS BECOMETHE NORM?

Let'sbegin by reviewing thelikelihood of death march projects becom-
ing the norm. I've suggested throughout this book that there are at least
three reasons this could occur:

« The organization is in the midst of ongoing crises—this might be the
result of an unfortunate coincidence of several unexpected crises
occurring within a short period of time; but, it's more commonly
associated with organizations that are in serious trouble, desper-
ately trying to cope with a"sea of change" in the marketplace, or
with the technology that people are using. In most cases, such an
organization is in far too desperate a position to be able to step
back and reorganizeitself to carry on all of itsprojectsin aplanned,
rational fashion that achieves the dramatic improvements associ-
ated with death march projects. The rare exception is when a"turn-
around"” senior manager is brought in to lead the company out of
criss; the new manager might adopt an entirely different way of
doing things.

* Management/'customers have adopted the approach as their standard
negotiating position—asnoted in Chapters 1 and 2, thisisoften how
the first death march project begins; but if it works once, why not
do it again? If the marketing department, or the finance depart-
ment, or some other part of the organization is faced with the need
for a"permanent" reengineering to achieve a competitive level of
productivity and profitability, that might aso include a permanent
decison to ingst that dl of the vendors and suppliers with whom it
interacts reengineer themselvesin asimilar way. From the perspec-
tive of these internal corporate departments, the IS/FT department
is just another "supplier" of goods and services. A variation of this
is the edict from senior management to the IS/IT department:

198 DEATH MARCH

"Unless you people radically improve your productivity on all your
projects, we're going to outsource the whole thing to Indial"

* It's part of the company's "strategic advantage'—this appears to be the
case with organizations like EDS, and it's the explicit approach of
organizations like Cambridge Technology Partners. It makes sense
for a software consulting organization, where the performance of
software project teams is the business. But, we could easily imagine
the same thingin other"informarion-rich"businesses like banking,
insurance, and telecommunications—where the ability to deliver
new software-based "products'to the marketplace depends largely
on how quickly the software can be developed. To the extent that
thisis true, | expect to see more and more organizations adopting
anoverall death march culture.

Whether this makes sense for an organization is one thing; whether
it makes sensefor theindividual software developersand project manag-
ersislikely to be something e seindeed. The organization's perspectiveis
obviously important, but | want to focus on the perspective of the indi-
vidual and project manager here; after all, | don't expect many CEOs and
marketing VPsto read thisbook.

The key question for the software developer and project manager is
Having survived one death march project, would you be willing to do it
again? The answer to this question depends largely, asyou might imag-
ine, on whether the first project succeeded. After al, if you've just fin-
ished a suicide- or ugly-style project, you're likely to be physicaly and
emotionally exhausted. Your ego and sense of self-worth have been
shattered, and your personal life may be in shambles. Who on earth
would want to do it again? Even the so-called kamikaze projects, where
you sacrificed your own personal needsfor aglorious (but losing) corpo-
rate cause, must berecognized, at theend, asfailures. Y ou may feel that it
was a noble sacrifice, but unlessyou have the personality of amartyr, it's
not likely that you would volunteer to repeat the experience.

Note that the "ugly-style" project, as | described it in Chapter \, may
have succeeded; thus, senior management and the end users may be
thrilled. And the project manager may be thrilled too, especidly if he or
she reaped a huge reward of some kind at the end of the project. If you're

DEATH MARCH AS AWAY OF LIFE 199

one of the surviving team members, you may or may not be thrilled with
the results, the fact that there's alot of blood on the floor, and that nu-
merous lives and careers may have been wasted, might not bother you at
al. Indeed, it becomes part of the culture—part of the thrill is associated
with the fact that there is alot of blood on the floor.

Obvioudy, the kind of project where the chances are greatest of find-
ing volunteers for arepeat performance is the misson impossible project:
the project that not only succeeded, but |eft everyone feeling really proud
of the miracle they performed. If there istime for a project post-mortem,
ifs crucid to ask at this point: "What made it possible for us to succeed?'
Wasit only luck? Wasit entirely due to the charisma of the project man-
ager, or the genius of the database designer, or the fact that the end user
and systems andyst fell madly in love and got married at the end of the
project? The underlying question is Isthere any rational reason to expect
that we could pull off such a stunt again?

It's important to ask these questions as early as possible, because the
organization islikely to repeat the experience whether or not the individ-
uasthink it'sagood idea. As noted above, in the extreme case, the orga-
nization does so because it must; some organizations take along time to
die, and the last five to ten years might be nothing but an endless succes-
sion of death marches. Even in less extreme cases, the failure of one
death march project is not necessarily enough to make the organization
abandon its approach; as noted in previous chapters, the failure is often
blamed on the project manager or the silver bullet technology. "Next
time," the CEO vows, "we won't make those mistakes again; we'll have a
new project manager and a new silver bullet technology.”

Obvioudy, if the first death march project succeeded, there's a much
higher chance that the end users and senior management will try to do it
again; but, thismay be the point where the project team individual s decide
to say "Sayonara," form acongaline, and dance right out the door. There's
not much point using this action as a threat; management generally be-
lieves—rightly or wrongly—that fresh new volunteers can be obtained.
The best thing for the exhausted death march survivorsto doiswish every-
onewdl, and go look for acamer, saner existence somewhere else.

200 DEATH MARCH

7.2 ESTABLISHING A DEATH MARCH "CULTURE"

Let's assume that the organization has decided to change its culture and
begin carrying out dl of its projects in a death march style. As noted
above, this might happen without any conscious decision, and it might
happen whether or not the individuals are willing to tolerate more than
asingle death march project. But, let's assume that it's a conscious strate-
gy on the part of IS/IT management, or senior managers above the ISIT
department. What are the conseguences, and how can a typical organi-
zation bring about such achange?

The most important thing that must happen isthe replacement of the
"norma" culture for developing software with the "radical" culture em-
bodied by the death march project. Thischangewon't happen quickly or
easily, for much of the bureaucracy will argue strenuously for the contin-
uation of the older approaches. But, the savvy organization will acknowl-
edge that if the first death march project succeeds, the success will be
largely a matter of luck and stubbornness on the part of the team. If the
organi zation wants subsequent death march proj ects to succeed with any
predictability, it must change.

The changes will affect the tools and technologies, the processes and
methodologies, the management styles, and the planning and schedul-
ing strategies used by the ISIT organization. It will involve issues like
these:

» What kind of people should the organization hire? Within the legal
and ethical constraints of non-discrimination policies, chances are
that the organization will be looking for younger, more energetic
people, and it may even show a preference for unmarried people,
and people with few outside interests. Young, unmarried, anti-
social, workaholic techno-nerds are just what many organizations
need for their death march projects.

» What should prospective new employees be told about the organi-
zation? It seems to me not only unethical, but downright stupid, to
hidethe fact that the organization intends to pursue a death march
strategy on its projects. Indeed, the organizations that do adopt
this approach are usually quite proud of it, just as organizations are

DEATH MARCH AS AWAY OF LIFE 201

proud of any other aspect of their culture. The organization may
not want to point out that only a small percentage of incoming
recruits will survive the first death march profect (just as colleges
often don't want to admit that they flunk out alarge percentage of
the incoming freshman class), but it should point out that it expects
more than a 9-to-5 workday.

* What impact should death march projects have on formal career
advance policies—e.g., promotions, raises, and bonuses? It'srela-
tively common in law firms and Big-6 accounting firms, for exam-
ple, to tell incoming recruits that they should expect a period of
seven to nine years to elapse before they become partners; there
may be intermediate steps of "manager" and" senior manager," but
nobody has any illusions that the long hours and hard work are
going to disappear after the first year or two.

* What impact should death march projects have on the style of
management? Should managers be expected to "burn out” their
team members and discard them at the beginning of their project?
Or, does the project manager have the added responsibility of
making the team members feel good about themselves, as welt as
ddivering a successful system to the end users? Note that if a ratio-
nal organization decides to adopt a death march culture (as
opposed to having a series of such projects forced upon it), it pre-
sumably wants those projects to succeed; in the vocabulary of
Chapter 1, thismeans that the projects will be'mission impossible"
or"ugly"as a matter of conscious, corporate choice. But, if things
are going to be ugly, and if people are going to be burned up and
thrown away at the end of a project, why not use consultants?
Sharon Marsh Robertsputsit thisway [3]:

| believetheorganization needstofindwaysof renew-
ingresources. Onealternativeisto use many consult-
ants, who are expected to buy into the "earn lots of
money and get out of here" workstyle. Another isto
have a "safe haven" (maintenance assignments)
where employees can be transferred between death
marches.

202 DEATH MARCH

* What kinds of tools should the organization equip itself with if
even/ project isgoingto be adeath march project? If it appears that
a major factor in the success of the first death march project was a
reusableclasslibrary of objects, oraRAD-oriented visual program-
mingtool, then perhapsevery project should haveit.

» What kind of infrastructure does the organization need to support
death march projects? This might involve company-wide e-mail or
a more elaborate groupware infrastructure based on Lotus Notes.
But, it could also involve significant changes in the human infra-
structure—i.e., the network of administrators and support staff that
perhaps needs to be augmented, and the layers of bureaucracy that
need to be pruned.

* What kind of processes are appropriate tor a death march culture?
Triage, formal vs. informal processes, and many of the other issues
discussed in Chapter 5 need to be addressed at the organizational
level, so that each team will get the kind of support that it needs
when it attemptsto implement and practice death march processes.
Note aso that processes are subtly influenced by the length of a
project; most organizations find that death march projects are more
likely to succeed if they're kept short. AsBill Hamaker putsit [4],

Dot as lots of small death marchesrather than afew
big ones. Concentrate on creating an organization that
can learn from the systems that resulted from the
death marches. In particular have adequate "non-
project" time for staff to evaluate what's good and bad
about the systems, maybe use this time as away for
staff to rest between deasth marches.

7.3 DEATH MARCH TRAINING

In Chapters6 and 7, 1 discussed the issue of training for adeath march
project team being exposed to new processes and tools. But, the need for
such training changesif death march projects become part of the corpo-
rate culture. In these cases, the appropriate processesand tools should be
part of the "standard" approach, which eliminates the need for introduc-
ing them as something new and radical at the beginning of each project.

DEATH MARCH AS AWAY OF LIFE 203

Redligtically, though, there will be atransition period while the orga-
nization shiftsits mode of operation from the older form of projectsto the
newer style. But even during the trangtion period, the ided Situation
would be to shift the required training out of the death march project en-
vironment and into the norma environment; indeed, such training
should be considered part of the transition process. With any luck, this
will enable thetraining to be carried out in a more orderly bads, without
the time pressuresthat are normally a factor when the training occursin
the midst of a death march project.

Appropriate training must aso be provided for new people hired into
the organization. Novices—e.g., new college graduates who have never
had afull-time software development job—don't have to betold that the
new approach is different from the old approach; indeed, they don't even
have to hear the term "death march." But they do need to be given the
appropriate trainingin the methods, processes, and tools that the organi-
zation has found effective in death march projects. This is likely to be
quite different from the older-style processes and tools that such recruits
previoudy had to endure. (Theirony isthat as soon asthe former recruits
moved into their first project, they were often told by their project man-
ager toignore "al that classroom stuff" and adopt amore pragmatic atti-
tude toward software development.) New recruits need to understand
that the death march processes and tools are being adopted as a matter of
proactive choice, rather than reactive desperation.

7.4 THE CONCEPT OF "WAR GAMES"

While these forms of training sound reasonable and rational, they're ig-
nored in many smdler organizations; on-the-job training takesits place,
and developers are expected to leam the processes and tools through
some form of camogs. It's even worse for managers—as my friend Tim
Lister has remarked, the only training that most software project manag-
ersreceive is the two words, "Good luck!"

Obvioudy, textbooks and classroom training on project management
techniques, processes, and tools are important and hel pful. But, many or-
ganizations fed that there's no subgtitute for the "red thing"—indeed,
they conscioudy ignore classroom training, on the theory that once

204 DEATH MARCH

you've gone through areal death march project, you're aveteran in ways
that you could never become through classroom exercises.

Rather than arguing whether the classroom is preferable to the "bat-
tlefield" of a death march project, | believe that organizations consider a
compromise: a death march simulator. The analogy with "flight simula-
tors' is more appropriate than you might think at first: Airline pilots use
their simulators not only to practice normal takeoffs and landings, but for
awide variety of emergency situations they could not afford to carry out
inareal airplane. And, flight simulators have thewonderful capability of
letting you fly your airplane head-on into a mountain without killing
anyone. Why not let a project manager, together with dl of the members
of the project team, fly their project into the equivalent of amountain, so
they can experience the problems without killing anyone? And, why not
require both developers and managers to make an annual visit to the
death march project simulator, just asairline pilots do?

Skeptics might argue that such a simulator would not replicate the
pressure and tension that one experiencesin areal project; airline pilots
who have used their simulators to practice emergency situations would
strenuously disagree. But, if we really need to simulate stress in a soft-
ware project, we can borrow a familiar tactic from the military: war
games. AsDeMarco and Lister explain in their Peopleware book [5],

War games help you to evauate your relative
strengths and weaknesses and help the organization
to observe its global strengths and weaknesses.

For the purpose of stimulative cregtive disorder, the
most effective form of war game cdls for participants
to take part in teams.

Thus, a death march war game could consist of giving severd differ-
ent project teams the same "project scenario”"—the same requirements,
the same (compressed) amount of time, the same resources to work with.
Or, if the death march culture gill hasn't been standardized and formal-
ized within the organization, tell each team that it can use whatever tools
and processes it wants to—anything they can beg, borrow, or stedl is fair
game. The Australian Computer Society has been hosting such a war

DEATH MARCH AS AWAY OF LIFE 205

gameatitsannual conference since 194, and severa local consulting or-
ganizations now use it as part of their own training process.

To conduct awar game, or any other kind of "flight simulator" for
death march projects, one needs to have a smulation model that can
mimic the cause-and-effect consequences of various technical and man-
agerid decisionsin aproject. | discussed thisconcept at length in my Rise
and Resurrection of the American Programmer, and Fveprovided alist of
references a the end of this chapter; of particular importance is Tarek
Abdel-Hamid and Stuart E. Madnick's Software Project Dynamics: An Inte-
grated Approach [6], which provides a complete, detailed simulation
model of a medium-sized software project.

A simulation model can be implemented in virtudly any program-
ming language, but there are specialized languages and tools for such
purposes. Of these, IMSCRIPT, DYNAMO, and GPSS are perhaps the
best known; the model described by Abdel-Hamid and Madniek isim-
plemented in DYNAMO (and the entire program ligting is published in
the book's appendix). More recently, a number of "visua" modeling
tools have appeared, most of them modestly priced. Of thecommercial
tools, the ones listed below are my favorites.

iThink (Macintosh, Windows)
High Performance Systemslinc., Hanover, NH
Phone: 603-643-9636, Fax: 603-643-9502

VenSim(Windows)
VentanaSystems, Belmont, MA
Phone: 617-489-5234, Fax: 617-489-5316

Professond DYNAMO (Windows)
Pugh-Robert Associates, Cambridge, MA
Phone: 617-864-8380, Fax: 617-864-8884

Extend (Macintosh and Windows)
Imagine That, Inc., San Jose, CA
Phone: 408-365-0305, Fax: 408-629-1251

Even with elegant tools and awealth of published literature, there's
no way of escaping the fact that it requires a serious investment and com-
mitment to build a model that reflects a particular company's environ-
ment, and allows management to demonstrate the particular death
march scenarios they feel important. Having been involved in severd of
these simulator projects and war game scenarios since the early 19905
my experienceisthat it typically requiresat least afew person-months of
effort to have aredligtic and well-tuned modd; and as another illustra-
tion, it's interesting to note that the model published in Software Project
Dynamics: Anlntegrated Approach [7] wasAbdel-Hamid'sPh.D. thesis.

This means that such an effort is clearly beyond the ability of an indi-
vidual project manager to develop as part of the training experience for a
single death march project. It's clearly a corporate, Strategic invest-
ment—and it may be more than a small, ten-person software company
can afford to think about. But, for software organizationswith hundreds,
or even thousands, of people, it's a smal investment indeed. Keep in
mind the context in which al of this occurs: Management is looking for
ways of ingtitutionalizing processes and technology that will enable
projects to confidently promise schedules, budgets, and deliverable func-
tionality two or three times more ambitious than "normal" projects have
experienced in the same environment. In planning for such a radica
change, management is often prepared to spend vast sums of money—
literally millions of dollars in some cases—to equip the developers with
new workstations, visual programming tools, and object-oriented meth-
odologies. To complain about the cost of a six-person-month effort to
build a simulator is ludicrous; and to deny their project teams the experi-
ence of simul atingadeath march project before they risk millions of dol-
lars on a real death march project is pig-headed.

Alas, senior management typically doesn't seeitthisway. They gen-
erally resent thetime, effort, and cost of any training, and thecost and ef -
fort associated with death march simulators is seen as even less
justifiable. Thisis one of the key reasonsthat a death march culture will
never be successfully implemented in most large organizations.

vm MARCH AS AWAY OF LIFE 207

7.5 SUMMARY

Asnoted throughout thisbook, death march projects have becomeinev-
itable in today's competitive and chaotic business environment. A few
organizations have acknowledged this situation, and have begun plan-
ning for it in arational manner. However, the history of the softwarein-
dustry for the past 40 years suggests that most of our organizations don't
learn much from their past experiences, and are likely to regard each new
death march project as aunique and novel experience. Even the organi-
zations that realize death march projects are no longer isolated accidents
will have adifficult time, for the established bureaucracy will continueto
defend old standards, procedures, methodologies, and tools regardless of
how inappropriate they may be.

One cheerful exception to thisisthe entrepreneurial start-up organi-
zation. By definition, such organizationshaveno prior cultureto replace,
and they are likely to regard death march projects as perfectly normal—
after dl, it's part of the mythos of start-up companies that everyone
works insane hours while the company takes insane risks to compete
againg larger, established companies. And, if the fledgling company
comestotheconclusionthatitssuccessisprecisaly becauseof thisbehav-
ior, then it will probably try to ingtitutionalize the behavior.

Of course, I'm speaking in generdities here, and there are lots of rea-
sonswhy such an approach won't succeed. It'sinteresting, for example,
that veteran software developers often bring much of their culture and
work habitswith them when they leave alarge bureaucracy to start anew
software venture. On the other hand, it seemsjust ascommon today asit
wasin the early days of my career for theyounger generation of software
developersto plunge into new projects on awork schedul e that regards
18-hour daysas "restingup” while the team getsready for the real work.
But, amongthemany thingsthat havechanged dramaticallyistheoverall
pace of work, which the folks at Netscape and Microsoft and .numerous
other organizationsrefer to simply as"Internet time." It'saconcept that
simply didn't exist for previous generations of software developers, and
itsfar morelikely to lead to death march projects.

Regardless of whether the industry adopts death march projects as
the norm, and regardless of whether your company manages such

208 DEATH MARCH

projectsin arational fashion, the fact remains that death march projects
are carried out by individuals. | don't have agreat deal of hopefor the se-
nior management and bureaucratic committeesin most software organi-
zations, but | do have a great deal of concern for the individuals who
work the long nights and weekends on projects that are often doomed
from the beginning. Bringing a death march project to a successful con-
clusion is obvioudly important, and | hope this book has provided some
practical advice for doing just that; but surviving them is even more im-
portant! In the best of all worlds, our death march projects should deliver
glorious results to the end user with a schedule and budget that will daz-
zle senior management, and we should do all of thiswith our health, our
wits, our family, and our sense of humor firmly intact.

As E.B. White put it, perhapsin the midst of one of his own death
march projects:

I wake up each morning determined to change the
World ... and dso to have one hell of agood time.

Sometimes that makes planning the day alittle difficult.

E.B. White
Notes

1. Ed,
Ch 7 query comments follow:
1. Does the concept make sense? Is there any rational reason why an
organization would choose to make ALL of its software development
projects deathmarches? Is there any rational reason why software
developers would continue working in such an environment?
Ed, I spent years in the lottery business, where everything is in
crunch mode because that is the way that the industry grew up. If
you don't want to work in this fashion, you can't play in this
sandbox. Developers in this industry put up with it because they
have tasted success in short, high-intensityprojects andhavebeen
given considerable freedom to do things like take two months off
between projects. The teams consider themselves to be elite and
the companies in this business treat them that way.
2 . If it IS rational, how should the organization adapt itself to
succeed?I'mparticularlyinterestedin"strategic"decisionsthat
you could get the VP of Software, or the MIS Director, to support
and pay for. Should all programmers be fitted with bulletproof
vests? Should the organization scrap all of its existing tools and

DEATH MARCH AS A WAY OF LIFE 209

buy a completely new set of "death march programming tools" for

everyone on the staff?

Since the staffs are reasonably small, there is seldom a problem
putting a lot of capital into eachmember of the team. A six-person
team may have exclusive use of a dual-system configuration for

testing and a third system for development . Teammembers will have
a lot of power on their desks and there will seldom be a problem
in finding money to try out something new that sounds promising.
If you are a VP and know you have a twenty-person team to deal

with, thereare a lot of amenities you can consider that wouldmake
no sense if you had to direct 400 people.

3. The problem with most death march projects that I've seen is

that nobody -- including the project manager ! -- has any previous
experience in such things . If it ' s going to be a " standard" way of
organ! zingand carryingout projectswithintheorganization, then
what about the ideaof a " flight simulator" (just like theairlines
do for their pilots) for training fledgling death march project
managers? I've run such things on an ad hoc basis in a couple of
organizations, and I know that there are tools available (e.g. ,

the iThink implement at ion of TarekAbdel-Hamid' smodel of software
projects) . Has anyone seen this on a sustained basis, as part of
standard corporate policy?

I haven ' t seenanythingalong the lines youmention . Deathmarches
are sort of like a fraternity. You pledge and then you go through
your initiation. Eventually, you may be named as Rush chairman and
assigned to go get new members.

4. If you were a consultant, and you had 15 minutes to advise the
VP of Software about what to do in order to make death march

projects succeed on an on-going basis , what is the MOST important
thing you would advise him/her to do?

Concentrate on getting the right people and finding ways to keep
them sane.

5. Similarly, what' s themost important thingyouwouldadvisehim/
her NOT to do?

Call in anationally recognized consult ing firm to re-engineer the
software development process.

--JB

2. Ed,
Havingbeen involved in deathmarches many times previously, and
being faced with the start of a large project right now, I'd be
really interested in what you find in Chapter 7.
> "death march projects as a way of life".
> 1. Does the concept make sense?

210 DEATH MARCH

It has to, because it' s pandemic (as you suggest) . 1 thinkyou've
got a lot of the reasons from earlier threads.

Most of our estimates, we know, are only very approximate. I've
been in the game a long time, and I know I won' t get towithin 50%
of the real-time. But if there's time left over at the end of the
project, it gets consumed in testing. So you know, within your
bones, that time can be cut at the expense of quality. If the
quality suffers, then they deserve it because they asked for a
truncated job, so there's a blameless way of agreeing to a tight
schedule.
Management have different drivers. They know that the risk of
outsourcing their empires is higher now than it's ever been, and
want to deliver. They also know that we take an awfully long time
todeliverbecause thereareallsorts of bureaucratic time-wasting
procedures inplace . They think that, if they stress the importance
of this particular project overall others, these procedures will
be trimmed without them having to do anything specific about it.
They accept that they can't put the best people on the job, and
they accept that better technology might help if it weren't for
the long learning curve which prohibits the use of new technology
on this project, so they can't use it. Or alternatively, they
believe industry hype and think that the new technology will
magically be mature, error-free, and instantly understandable to
all concerned.

So the next project will be better, and it' 11 be done quicker, and
it ' 11 be done more cheaply. So you can pass that wonderful message
back to the business - quicker and cheaper, and less tomaintain.
Who could object to that?

We are exactly in that situation. The guy who wants us to put it
all on PCs and do away with the mainframe is the guy who's just
come of £ a PC-based project which signally failed to deliver. But
he knows what the problems are now (!)

>2. If it IS rational, how should the organization adapt itself to

> succeed?

Forme, it's small systemsandsmall teams . Mucharchitectural work
up-front to split things right down to under 1000FP. But I can't
tell you whether or not it works for me, because we haven't done
it yet.

More later

Doug

Ed,

» 1. Does the concept make sense? Is there any rational reason
why an organization would choose to make ALL of its software

DEATHMARCHAS AWAY OF LIFE 211

development projects deathmarches? Is there any rational reason
why software developers would continue working in such an
environment ?«
Perhaps. Perhaps the environment does not allow for consensus-
building on a timely basis. By the time a business decision is
reached, the systemmust be built. By the time a design is built
to accommodate the business process, it's time to deliver the
system that supports the process.
»2 . If it IS rational, how should the organization adapt itself
to succeed? I 'mparticularly interested in "strategic" decisions
that you could get the VP of Software, or the MIS Director, to
support and pay for.«
I believe the organization needs to find ways of renewing
resources. One alternative is to use many consultants, who are
expected to buy into the "earn lots of money and get out of here"
workstyle. Another is to have a "safe haven" (maintenance
assignments) where employees can be transferred between death
marches.
»Shouldall programmers be fittedwithbulletproof vests? Should
the organization scrap all of its existing tools and buy a
completelynewset of "deathmarchprogrammingtools" foreveryone
on the staff?«
No weapons shouldbe allowed in such environments . Clowns should
be on site to deliver the joke of the day. Folks need to have ways
of reducing frustration without creating more frustration for
others.
And learning new tools is hardly apropos.
»??3. The problemwith most death march projects that I've seen
is that nobody -- including the project manager! -- has any
previous experience in such things. If it's going to be a
"standard" way of organizing and carrying out projects within the
organization, then what about the idea of a "flight simulator"
(just like theairlinesdo for theirpilots) for training fledgling
death inarch project managers? I 've run such things on an ad hoc
basis ina couple of organizations, and I know that there are tools
available (-e.g,, the iThink implementation of TarekAbdel-Hamid's
model of software projects) . Has anyone seen this on a sustained
basis, as part of standard corporate policy?«
This is an interesting thought. However, I suspect that inmost
of the death inarches I've seen (or observed froma distance) are
a core of folks who are always asked to work with the project when
it becomesmost critical. Such folks never have beenasked if this
is the right way to proceed. Such folks have a tendency to tell

212 DEATH MARCH

theirpeers, andperhaps eventheirbosses , howmisspent theeffort
is.

I know who those folks were in a project in which my husband was
involved. I know who was always asked to "help" at critical
moments when I was in a corporate job. I suspect that I 've worked
with some of the folks who filled that role on some consulting
assignments.

»4. If you were a consultant, and you had 15 minutes to advise
the VP of Software about what to do in order to make death march
projects succeed on an on-going basis, what is the MOST important
thing you would advise him/her to do?«

Build the teams and nurture the staff relationships. These folks
are required to grind away at the projects for most of their
working days . They are the ones who will either cooperate to make
a success or to make a failure.

»5 . Similarly, what' s the most important thing you would advise
him/her NOT to do?«

Don't lose touch with the users and their requirements. They,
beyond all else, will determine the ultimate outcome.

Sharon

4. E4,
» 1. Does the concept make sense? Is there any rational reason
why an organization would choose to make ALL of its software
development projects death marches? Is there any rational reason
why software developers would continue working in such an
environment? «
I doubt it. The only possible rational reason I can think of is
that the organization is not capable of controlling the IS group
in any other way.
» 4. If you were a consultant, and you had 15 minutes to advise
the VP of Software about what to do in order to make death march
projects succeed on an on-going basis, what is theMOST important
thing you would advise him/her to do? «
Do it as lots of small death marches rather than a few big ones.
Concentrate on creating an organization that can learn from the
systems that resulted from the deathmarches . Inparticular have
adequate "non-project* time for staff to evaluatewhat' s good and
bad about the systems, maybe use this time as a way for staff to
rest between death marches.
--Bill

5. Tom DeMarco and Tim Lister, Peopleware (New Y ork: Dorset House, 1987),
page 162.

DEATH MARCH AS A WAY OF LIFE 213

6. Tarek Abdel-Hamid and Stuart E. Madnick, Software Project Dynamics: An In-
tegrated Approach (Englewood Cliffs, NJ: Prentice-Hall, 199-1).

7. See Note 6.

Additional References

Tarek Abdel-Hainid, "Organizational Learning: the key to software manage-
ment Innovation," American Programmer, June 1991

Tarek Abdel-Hamid and Stuart E. Madnick, "Impact of Schedule Estimation on
Software Project Behavior," |IEEE Software, May 1986.

Tarek Abdel-Hamid and S. E. Madnick, "Lessons Learned from Modding the dy-
namics of software project management,” Comm. ofthe ACM (December 1989).

Tarek Abdel-Hamid, "Thinkingin Circles,"” American Programmer, May 1993,

Rembert Aranda, Thomas Fiddaman, and Rogdlio Oliva, "Quality Microworlds:
modeling the impact of quality initiatives over the software product life cycle"
American Programmer, May 1993

Karim J. Chichakly, "The Bifocal Vantage Point: Managing software projects
fromasystemsthinkingperspective," AmericanProgrammer, May 1993.

Kenneth G. Cooper and Thomas W. Mullen, "Swords and Plowshares: the re-
work cycles of defense and commercia software development projects,” Ameri-
can Programmer, May 1993

Ernst W. Diehl, "TheAnalytical Lens: Strategy-support softwareto enhance ex-
ecutivedialogand debate,” American Programmer, May 1993,

Jay Forrester, Industrial Dynamics (Cambridge, MA: MFT Press, 1961).

Chi Y. Lin, "Walking on Battlefields: toolsfor strategic software management,”
American Programmer, May 1993,

G.P. Richardson and G.L. Pugh IllI, Introduction to Systems Dynamics Modeling
with Dynamo (Cambridge, MA: MIT Press, 1981).

P.M. Senge, The Fifth Discipline: The Art and Practice of the Learning Organization
(New York: Doubleday, 1990).

Brad Smith, NghiaNguyen, and RichardVidale, "Death of a Software M anager:
how to avoid career suicide though dynamic software processmodeling," Amer-
ican Programmer, May 1993

Abdedl-Hamid, Tarek 76, 96, 205, 213
Adams, Scott 7, 39, 70

Airlie Council 152,159

Aranda, Rembert 213

Australian Computer Society 204

B

Bach, James149,170
Basett, Paul 184,193
Beckett, Samud xii
Benting, Steve22

Big-6 accounting firms 14
Binder, Robert 119

Boddie,John6,39, 77,93,94,98,112,126,

166,180,196
Boehm, Barry 76, 96
Boeing 777 141
Bonaparte, Napoleon 99

breathalyzer test 156
Brooks, Fred 76, 78, 96
Byron,Lord 73

Cambridge Technology Partners 193
Charette,Robl61,171,173
CHECKPOINT 75,181
Chichakly,KarimJ.213
Chrisss Mary Beth 173
Chrigians, Al 24

"City Sickers' 43

clique control 119

Cohen, Rich129

Cohen, Susan G. 129
Comeaford, Chrigtine 152
Congantine, Larry 125129
Cooper, Kenneth G. 213
corporate insanity 2

