

Death March
The Complete

Software Developer's
Guide to Surviving

"Mission Impossible" Projects

Edward Yourdon

To obtain a Prentice Hall PTR mailing list, point to:
http://www.prenhall.com/mailjists/

Prentice Hall PTR
Upper Saddle River, New Jersey 07458
http://www.prenhall.com

Library of Congress Cataloging in Publication Data

Yourdon, Edward.
Death march: managing "mission impossible" projects / Edward

Yourdon.
p. cm.

Includes bibliographical references and index.
ISBN 0-13-748310-4 (alk. paper)
1. Computer software—Development. I. Title.

QA76.76.D47Y677 1997 97-2951
(K)5.1'068-dc21 OP

Acquisitions editor: Paul W. Becker
Editorial/production supervision: Kathleen M. Caren
Interior design: Gail Cocker-Bogusz
Cover design director: Jerry Votta
jacket design: Scott G. Weiss
Jacket Illustration: Howard Kingsnorth/Masterfile
Manufacturing manager: Alexis R. Heydt
Editorial Assistant: Maureen Diana
Marketing Manager: Dan Rush

& 1997 by Prentice Hall PTR
Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, New Jersey 07458

Prentice Hall books are widely-used by corporations and
government agencies for training, marketing, and resale.
The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact Corporate Sales Department, Phone: 800-382-3419;
FAX: 201-236-7141; E-mail: corpsales@prenhall.com
Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458.

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher.

All product names mentioned herein are the trademarks of their respective owners.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-748310-4

Preface vii

Chapter 1 Introduction 1
Death March Defined 2
Categories of Death March Projects 4
Why Do Death March Projects Happen? 7
Why Do People Participate in Death March Projects? 19
Summary 36

Chapter 1 Politics 49
Identifying the Political "Players" Involved in the Project 50
Determining the Basic Nature of the Project 59
Identifying the Levels of Commitment of Project Participants 64
Summary 67

Chapter 3 Negotiations 73
Rational Negotiations 75

vi DEATH MARCH

Identifying Acceptable Trade-offs 77
Negotiating Games 80
Negotiating Strategies 85
What to Do When Negotiating Fails 89

Chapter 4 People in Death March Projects 99
Hiring and Staffing Issues 100
Loyalty, Commitment, Motivation, and Rewards 104
The Importance of Communication 114
Team-Building Issues 115
Workplace Conditions for Death March Projects 120
Summary 124

Chapter 5 Processes 1 31
The Concept of "Triage" 132
The Importance of Requirements Management 138
SEI, ISO-9000, and Formal vs. Informal Processes 144
"Good Enough" Software 147
Best Practices and Worst Practices 150
The "Daily Build" Concept 157
Risk Management 159
Summary 165

Chapter 6 Tools and Technology 1 75
The Minimal Toolset 177
Tools and Process 182
The Risks of Choosing New Tools 185
Summary 188

Chapter 7 Death March as a Way of Life 195
Why Would Death March Projects Become the Norm? 197
Establishing a Death March "Culture" 200
Death March Training 202
The Concept of "War Games" 203
Summary 207

Index 21 5

Our achievements speak for themselves. What we have to keep track
of are our failures, discouragements, and doubts. We tend to forget the
past difficulties, the many false starts, and the painful groping. We see
our past achievements as the end result of a clean forward thrust, and
our present difficulties as signs of decline and decay.

Eric Hoffer

Reflections on the Human Condition, aph. 157 (1973)

I know . . . you're intrigued by the title of this book, and you decided to
peek inside to see what it's all about. But, you're busy, busy, busy—and
you don't know if you have the time to read yet another book about man-
aging software projects. Especially if it's a book that tells you how things
should be done in an ideal world where rational men and women make
calm, sensible decisions about the budget, schedule, and resources for
your software project.

However, you may have noticed that we don't live in an ideal

v i i

viii DEATH MARCH

world—and chances are that your project requires you to interact with
people who seem anything but rational and whose decisions hardly seem
calm or sensible. In other words, you're working on a death march project.
The wonderful thing about the title of this book is that I don't even have
to explain it. Every time I mention it to friends and colleagues, they just
laugh and say, "Oh, yeah, you must be talking about my project!"

These days it's likely to be my project, and your project, and everyone
else's project too—we're all working on death march projects. It seems to
me that the first question you should be asking yourself (though it may
not occur to you until the end of your project) is: "Why on earth did I let
myself get suckered into such a project?" I'll discuss this in the first chap-
ter, because my experience as a consultant—visiting and observing many
such projects from the sidelines—is that the world would be a healthier
place if more of us had the guts to stand up and say, "Hell, no! I won't
join this death march!"

But, assuming there's no escape—e.g., there are no other jobs avail-
able or you've got some form of a "golden handcuff" relationship with
your employer that strongly discourages you from leaving—the next
question is: "How can I survive this project without ruining my health, my
sanity, and my dignity?" If you're an optimist, you might even be wonder-
ing how you can conquer the obstacles before you to finish the death
march project on time and under budget. But, if you've been through a
number of these projects before, you probably know that the odds are
stacked against you and that survival is the best you can hope for.

Having worked in the software industry for over 30 years, I find that
our profession has a rather interesting reaction to death march projects.
In some parts of the industry, especially in Silicon Valley, such projects
are glorified as a test of fortitude, somewhat akin to climbing Mount
Everest barefoot. I felt this way during my first few software projects back
in the mid-1960s, and the fact that the same attitude prevails a genera-
tion later suggests to me that it's likely to be a permanent phenomenon,
as long as technology continues to change as rapidly as it has been during
my lifetime. Ours is not a mature industry. Every year there's a new
Mount Everest to climb and a new crop of hotshot programmers who are
convinced that they can run barefoot all the way to the top.

PREFACE ix

Another segment of our industry, however, regards death march
projects as embarrassing failures. We've all been bombarded with statis-
tics about the prevalence of schedule delays, budget overruns, buggy
software, disgruntled users, and outright project failures. We've been
told repeatedly by consultants, gurus, and methodologists that the rea-
son for all these embarrassments is that we've been using the wrong
methods (or no methods at all), or the wrong tools, or the wrong project
management techniques. In other words, death march projects exist be-
cause we're stupid or incompetent.

If you talk to battle-scarred veterans in the field—the ones who have
gone through a couple of death march projects and have learned that it's
really not fun to climb Mount Everest barefoot—you'll often hear them
say, "Hey! I'm not stupid! Of course I would like to use the right methods
and tools and project management approaches. But, my senior manage-
ment and my end users won't let me. The reason we have such a ridicu-
lous schedule for this project is that it was imposed upon us on the first
day, before we had the faintest idea what the project was all about!" Con-
clusion: Death march projects occur because senior managers are Machi-
avellian bastards and/or because our users are naive and unrealistic.

No doubt there's some truth to all this. We do make a lot of stupid
mistakes managing our projects, our senior managers do indulge in ridic-
ulous political games, and our end users do make unreasonable demands
on us. I'm convinced that much of this is due to the rapid pace of change,
combined with the usual disrespect that each new generation has for the
advice offered by the previous generation. Why on earth should today's
generation of Java-oriented hotshots pay any attention to the advice of-
fered by my generation, whose formative programming experience took
place 30 years ago in Autocoder and assembly language? And, how
should today's generation of business users know what kind of Web-
based application is reasonable to ask for, considering that their prede-
cessors were asking for mainframe-based, on-line systems, with charac-
ter-based, dumb-terminal interfaces?

Whatever the explanation for the phenomenon, I've come to a sober-
ing conclusion: Death march projects are the norm, not the exception. I think
that today's software developers and project managers are pretty smart
and are eager to manage projects in a rational way; 1 also think that to-

DEATH MARCH

day's business users and senior managers are much more computer-
literate than they were a generation ago and much less naive about what
software developers can be expected to deliver with finite resources. That
doesn't stop both groups of smart individuals from embarking upon yet
another death march project—because the competitive business pres-
sures demand it and the new technological opportunities invite it. The
business managers may be fully aware that a rational schedule for their
new system would require 12 calendar months, but they'll also tell you
emphatically that unless it's available in six months, the competition will
grab the entire market for their new product or service. And, the techni-
cal staff may be fully aware that new technologies like the Internet are
still quite risky, but they will tell you that if the new technology does work,
it will provide a strategic competitive advantage that makes it well worth
the risk.

To put it another way, industry surveys from organizations such as
the Standish Group, as well as statistical data from metrics gurus such as
Capers Jones, Howard Rubin, Paul Strassmann, and Larry Putnam, sug-
gest that the average project is likely to be 6 to 12 months behind schedule
and 50 to 100 percent over budget. The situation varies depending on the
size of the project and various other factors, but the grim reality is that
you should expect that your project will operate under conditions that will
almost certainly lead to some degree of death march behavior on the part
of the project manager and his or her technical staff. If a project starts off
with these high-risk factors, there's going to be a lot of overtime and
wasted weekends, and there's likely to be a lot of emotional and physical
burnout before the end of the project. Even if the project begins in a rea-
sonably calm, rational fashion, there's a good chance that it will deterio-
rate into a death march project as time goes on—either because the
original schedule and budget will turn out to have been highly unrealis-
tic, or because the user will add more requirements to those upon which
the original schedule and estimate was based.

So the real questions are: If you can't avoid death march projects,
how can you survive them? What should you do to increase your chances
of success? When should you be willing to compromise—and when
should you be willing to put your job on the line and resign if you can't
get your way? That is what this book is about. As you will come to realize,

PREFACE xi

the solution will involve issues of peopleware, processes and methodolo-
gies, as well as tools and technologies. If you're going to manage a death
march project, should you insist on the freedom to staff the team with
people of your own choosing? Should you take a hard-line approach
with process methodologies like the SEI-CMM model, or should you let
the project team abandon all formal methodologies if they feel it will help
them accomplish the job? Should you insist on adequate programming
languages, workstations, and CASE tools—or is it more important to
fight your political battles over the issues of people and processes?

These issues are as relevant to the manager in charge of the project,
as they are to the technical staff that actually does the hard work of de-
signing, coding, testing, and documenting the system; I'll address both
groups in the chapters that follow. A word about managers and technical
staff members: Some of the comments you'll see in the following chap-
ters will imply that management is "evil" and that the project team mem-
bers are innocent, downtrodden victims. Obviously, this is not the case
for all projects and all companies, though the very existence of a death
march project is usually the result of a conscious management decision.
While the project team members may be willing participants in such
projects, they usually don't propose them in the first place.

If you've decided at this point that you don't have rime to read this
book, here's a simple word of advice that may provide some value for the
time you've invested in reading the preface: triage. If you're on a death
march project, it's almost certain that you won't have the resources to
provide all the functionality or "features" requested by the end user with-
in the allotted schedule and budget. You'll have to make some cold-
blooded decisions about which features to sacrifice and which ones to fo-
cus your resources on. Indeed, some of the frivolous features will never be
implemented, and it's best to let them die on their own. Other features
are important, but also relatively easy to implement, e.g., because they're
by-products of the vendor-supplied class library or CASE tools that
you're using. To use the medical metaphor of triage, these features will
survive on their own. The difference between success and failure on a
death march project often lies in the project team's ability to identify the
critical features of the system that would "die" without an investment of
substantial resources and energy.

xii DEATH MARCH

Of course, there's more to surviving a death march project than just
triage (I'll cover triage in Chapter 3). We also need to look at peopleware
issues, "process" issues, and issues of tools and technology. I've tried to
be as concise as possible, so you should be able to finish the whole book
in a couple of hours; if nothing else, it should give you a more realistic as-
sessment of your next death march project.

However, please don't get the impression that this is a "bible," or
that it will provide "silver bullet" solutions to all of your problems. There
are no guaranteed right answers in this book; what works in some com-
panies and in some situations may not work in others. Equally important/
the compromises that some managers and technical staff members are
willing to make will prove unacceptable to others. I'll make what I con-
sider to be reasonable suggestions, but it's up to you to decide which
ones will work in your environment.

1 also intend, on an ongoing basis, to collect advice from the field on
my Web site at http://www.yourdon.com—from real project teams that
have some practical tips on best practices, worst practices, and "breatha-
lyzer test" questions. Even if you don't have enough money in your
project budget to buy this book (such penny-pinching budgets are an in-
dicator unto themselves of the risk associated with a death march
project!), it won't cost you a penny to check the Death March Web page.

Whatever you decide to do, best of luck on your next death march
project. And remember the words of Samuel Beckett:

Ever tried. Ever failed. No matter. Try Again.
Fail again. Fail better.

Samuel Beckett
WorstwardHo(1984)

It is only possible to succeed at second-rate pursuits—like becoming
a millionaire or a prime minister, winning a war, seducing beautiful
women, flying through the stratosphere or landing on the moon. First-
rate pursuits—involving, as they must, trying to understand what life is
about and trying to convey that understanding—inevitably result in a
sense of failure. A Napoleon, a Churchill, a Roosevelt can feel
themselves to be successful, but never a Socrates, a Pascal, a Blake.
Understanding is forever unattainable. Therein lies the inevitability of
failure in embarking upon its quest, which is none the less the only one
worthy of serious attention.

Malcolm Muggeridge

"Woman's Hour," radio broadcast, August 5, 1965, Quoted
in Muggeridge through the Microphone, "Failure" (1967)

DEATH MARCH

What are death march projects? Why do they happen? Why would any-
one in his or her right mind agree to participate in such a project?

To many grizzled veterans, these are rhetorical questions. Every
project, in their experience, is a death march project. Why do they hap-
pen? Because corporations are insane, and as consultant Richard Sargent
commented to me, "Corporate insanity is doing the same thing again
and again, and each time expecting different results." [1] Why do we par-
ticipate in such projects? Because, as consultant Dave Kleist observed in a
recent e-mail note,

"death march projects are rarely billed as such, and it
takes a lot of work when being hired from the outside
to discover if your hiring company is prone to creating
death march projects." [2]

If you think the answers to these questions are obvious, feel free to
jump to the next chapter. I'm beginning to think they are obvious, since
people rarely ask me what I mean by "death march."

1.1 DEATH MARCH DEFINED

I define a death march project as one whose "project parameters" exceed
the norm by at least 50 percent. This doesn't correspond to the "military"
definition, and it would be a travesty to compare even the worst software
project with the Bataan death march during the Second World War, or
the "trail of tears" death march imposed upon Native Americans in the
late 1700s. Instead, I use the term as a metaphor, to suggest a "forced
march" imposed upon relatively innocent victims, the outcome of which
is usually a high casualty rate.

In most software death march projects, this usually means one or
more of the following constraints has been imposed:

• The schedule has been compressed to less than half the amount of
time estimated by a rational estimating process; thus, the project
that would normally be expected to take 12 calendar months is
now required to be delivered in six months or less. Because of the

2

INTRODUCTION

pressures of business competition in today's global marketplace,
this is probably the most common form of death march project.

The staff has been reduced to less than half the number of people
that would normally be assigned to a project of this size and scope;
thus, instead of a project team of ten people, the project manager
has been told that only five people are available. This may have
come about as a result of someone's naive belief that a new CASE
tool or programming language will magically double the team's
productivity—despite the fact that the team was given no training
or practice with the new technology, and probably wasn't even
consulted about the decision to use the technology in the first
place. More commonly, though, it happens today because of
downsizing, reengineering, and various other forms of staff reduc-
tion.

The budget and associated resources have been cut in half. This is
often the result of downsizing and other cost-cutting measures, but
it can also be the result of competitive bidding on a fixed-price
contract, where the project manager in a consulting firm is
informed by the marketing department that,"the good news is we
won the contract; the bad news is we had to cut your budget in half
in order to beat out the competition." This kind of constraint often
has an immediate impact on the number of project team personnel
that can be hired, but the consequences are sometimes a little more
subtle—e.g., it may lead to a decision to hire relatively inexpensive,
inexperienced junior software developers, rather than higher-cost
veterans. And, it can lead to a pervasive atmosphere of penny-
pinching that makes it impossible for the project manager to order
pizza for the project team when they spend the entire weekend in
the office working overtime.

The functionality, features, performance requirements, or other
technical aspects of the project are twice what they would be under
normal circumstances. Thus, the project team may have been told
that they need to squeeze twice as many features into a fixed
amount of RAM or disk space as their competitor. Or, they may
have been told that their system must handle twice the volume of
transactions that any comparable system has ever processed. Per-

•

•

•

3

DEATH MARCH

formance constraints may or may not lead to a death march
project; after all, we can always take advantage of cheaper, faster
hardware, and we can always search for a more clever algorithm or
design approach to accomplish improved performance (though,
given the constraint of a project deadline, there is a limit even to
the incredible ingenuity of the human brain). But, doubling the
functionality—i.e., the available features—usually means doubling
the amount of work that must be carried out and that does lead to a
death march project.

The immediate consequence of these constraints, in many organiza-
tions, is to ask the project team to work twice as hard, and/or twice as
many hours per week as would be expected in a "normal" project. If the
normal work week is 40 hours, a death march project team is often found
working 13- to 14-hour days, six days a week. Naturally, the tension and
pressure escalate in such environments, so that the death march team
operates as if it is on a steady diet of Jolt cola.

Another way to characterize such projects is:

A death march project is one for which an unbiased,
objective risk assessment (which includes an assess-
ment of technical risks, personal risks, legal risks, po-
litical risks, etc.) determines that the likelihood of
failure is > 50 percent.

Of course, even a project without the schedule, staff, budget, or func-
tionality constraints just described could have a high risk of failure, e.g.,
because of hostile politics between the IS/IT department and the user
community. But most commonly, the reason for the high risk assessment
is a combination of the constraints I've just described.

1.2 CATEGORIES OF DEATH MARCH PROJECTS

Not all death march projects are the same; not only do they involve dif-
ferent combinations of schedule, staff, budget, and functionality con-
straints, but they come in different sizes, shapes, and flavors.

In my experience, size is the most important characteristic that distin-

4

INTRODUCTION

guishes one death march project from another. Consider four different
ranges of projects;

• Small-scale projects—the team consists of less than ten people who
are working against nearly impossible odds to finish a project in
three to six months.

• Medium-sized projects—the team consists of 20 to 30 people, who
are involved in a project expected to take one to two years.

• Large-scale projects—the project consists of 100 to 300 people, and
the project schedule is three to five years.

• Mind-boggling projects—the project has an army of 1,000 to 2,000,
or more (including, in many cases, consultants and subcontrac-
tors), and the project is expected to last seven to ten years.

For a variety of reasons, small-scale death march projects are the
most common in the organizations that I visit around the world today;
and happily, they have the greatest chance of succeeding. A tight-knit
group of less than ten people is more likely to stick together through
thick and thin, as long as the commitment isn't for more than six months
or so; and a group of highly motivated people is more likely to be willing
and able to sacrifice their personal lives (not to mention their health!) for
three to six months, as long as they know that the regimen of long nights,
wasted weekends, and postponed vacations will come to an end in a
matter of months.

The odds of successful completion drop noticeably with medium -
sized projects, and disappear almost completely with large-scale projects.
With larger numbers of people involved, it's more difficult to maintain a
sense of cohesive team spirit; and the statistical odds of someone quitting,
being run over by a truck, or succumbing to the various perils of modern
society increase rapidly. What's crucial here is not just the number of peo-
ple involved, but the time-scale: working 80-hour weeks for six months
may be tolerable, but doing it for two years is much more likely to cause
problems. And, even though a manager might be able to convince a small
group of techno-nerds to make such a sacrifice, it's almost impossible
with larger project teams; statistically, the chances are much higher that
some of them will be married, or will have some outside hobbies.

5

DEATH MARCH

As for the "mind-boggling" death march projects, one would have to
wonder why they exist at all. Perhaps the systems development efforts as-
sociated with the NASA project that landed a man on the moon in 1969
could be considered a successful example of a death march project; but,
the vast majority of such projects are doomed from the beginning [3]. For-
tunately, most senior managers have figured this out, and most large or-
ganizations (which are the only ones that could afford them in the first
place!) have banned all such projects. Government organizations, alas,
still embark upon them from time to time; appeals to "national security"
or some other heart-warming emotion may be sufficient to blind senior
management to the reality that success is virtually impossible.

In addition to project size, it may also be useful to characterize the
"degree" of a death march project by such criteria as the number of user
organizations that are involved. Things are hard enough when the
project team only has to satisfy one user, or one group of homogeneous
users within a single department. Enterprise-wide projects are usually an
order of magnitude more difficult, simply because of the politics and
communication problems involved in cross-functional activities of any
kind. As a result, the systems development projects associated with busi-
ness reengineering projects often degenerate into a death march status—
even though the development effort is modest in terms of hardware and
software effort, the political battles can paralyze the entire organization
and cause endless frustration for the project team.

Finally, we should distinguish between projects that are incredibly
difficult, and those that are fundamentally impossible. As John Boddie,
author of Crunch Mode, points out,

The combination of excellent technical staff, superb
management, outstanding designers, and intelligent,
committed customers is not enough to guarantee suc-
cess for a crunch-mode project. There really are such
things as impossible projects. New ones are started ev-
ery day. Most impossible projects can be recognized as
such early in the development cycle. There seem to be
two major types: "poorly understood systems" and
"very complex systems." [4]

6

INTRODUCTION

This still leaves unanswered the questions of why a rational organi-
zation would embark upon such a project, and why a rational project
manager or technical person would agree to participate in such a project.
We'll deal with those questions below.

1.3 WHY DO DEATH MARCH
PROJECTS HAPPEN?

If you think about what goes on in your organization, it's not difficult to
understand why death march projects occur. As Scott Adams, author of
the incredibly popular "Dilbert" cartoons, points out,

When I first started hearing these stories [about irra-
tional corporate behavior] I was puzzled, but after
careful analysis I have developed a sophisticated theo-
ry to explain the existence of this bizarre workplace be-
havior. People are idiots.

Including me. Everyone is an idiot, not just the people
with low SAT scores. The only difference among us is
that we're idiots about different things at different
times. No matter how smart you are, you spend much
of your day being an idiot [5].

Perhaps it's too depressing to imagine that you're an idiot, and that
you're surrounded by (and managed by!) idiots. Or perhaps you consider
it an insult that someone would even make such a suggestion. In that
case, Table 1.1 shows a more detailed list of reasons for the occurrence of
death march projects:

DEATH MARCH

TABLE 1.1 Reasons for death march projects.

While the items in Table 1.1 may seem obvious, they're worth dis-
cussing—because they may indicate that your death march project is so
crazy and irrational that it's not worth participating in at all. Indeed, even
without an explicit rationale of the sort shown in Table 1.1, you should
seriously consider whether you want to spend the next several months
(or years) attached to such a project (we'll discuss that topic later in this
chapter).

1.3.1 Politics, Politics, Politics

Many software developers vow that they won't get involved in politics—
partly because they've learned that they're not very good at playing po-
litical games, but also because they feel that everything about polities is
repugnant. Alas, it cannot be avoided; as soon as you've got two or more
people involved in some joint enterprise, politics exist.

But, when politics become the dominant force in a large, complex
project, you're likely to find that it degenerates into a death march. Re-
member my definition of a death march project: it's one where the
schedule, budget, staff, or resources are 50 to 100 percent less than what

Politics, politics, politics.

Naive promises made by marketing, senior executives, naive project managers, etc.

Naive optimism of youth: "We can do it over the weekend!"

The "start-up" mentality of fledgling, entrepreneurial companies.

The "Marine Corps" mentality: Real programmers don't need sleepl

Intense competition caused by globalization of markets.

Intense competition caused by the appearance of new technologies.

Intense pressure caused by unexpected government regulations.

Unexpected and/or unplanned crises — e.g., your hardware/software vendor just
went bankrupt, or your three best programmers just died of Bubonic Plague.

8

INTRODUCTION 9

they should be. Why are these constraints being placed on the project? There
are many possible explanations, as we'll see in the discussion below; but
in many cases, the answer is simply, "Politics." It may be a power strug-
gle between two fast-track managers in your organization, or the project
may have been set up to fail, as a form of revenge upon some manager
who stepped on the wrong toes at the wrong time. The possibilities are
endless.

The chances are slim that you'll get the appropriate politicians to ad-
mit what's going on; however, if you're a technical staff member, it's not
unreasonable to ask your project manager whether the entire death
march project is a political sham. Even if you don't like politics, and even
if you think you're a political neophyte, listen carefully to the answer your
manager gives you. You're not stupid, and you're not that naive. If you
have a sixth sense that there's some ugly politics dominating the entire
project, chances are you're right; and, if your immediate supervisor gives
you a naive or ambiguous answer to your questions, you should draw
your own conclusions.

What if your manager openly agrees with you? What if he or she says,
"Yes, this whole project is nothing more than a bitter power struggle be-
tween Vice President Smith and Vice President Jones."? If that's the case,
then why on earth is your manager participating in the project? As we'll
see in Section 1.4 below, there may be many reasons; but, your manager's
reasons are not necessarily your reasons. The existence of ugly politics
doesn't mean that you should abandon the project or quit your job right
away, but it does mean that you should keep your own priorities, objec-
tives, and sense of ethics separate from what's happening on the project—
for it's quite likely that many of the decisions that take place (beginning
with the schedule/budget/resource decisions that defined the project as a
death march in the beginning) are not being made with the best interests
of the user or the enterprise in mind. If the project succeeds at all, it's likely
to be an accident—or it may be because the intended victim (e.g., your
project manager, or a manager several levels above your immediate man-
ager) is a cleverer politician than the opposition counted on.

10 DEATH MARCH

1.3.2 Naive Promises Made by Marketing,
Senior Executives, Naive Project Managers, etc.

Naivete is often associated with inexperience, so it's not surprising to see
unrealistic commitments being made by people who have no idea how
much time or effort will be required to build the system they want. In the
extreme case, this can lead to what my friend Tom DeMarco calls "hys-
terical optimism," which is when everyone in the organization desper-
ately wants to believe that a complex project, which has never been
attempted before, but which has been realistically estimated to require
three calendar years of effort, can somehow be finished in nine months.

The naivete and optimism extend to the technical staff too, as we'll
see. But for the moment, let's assume that it's your manager, or your
marketing department, or the end user who is responsible for the naively
optimistic schedule or budget. The question is: How will they react when
it eventually becomes clear that the initial commitments were optimistic?
Will they extend the schedule, increase the budget, and calmly agree that
things are tougher than they had imagined? Will they thank you for the
heroic efforts you and your colleagues have made up to that point? If so,
then it may turn out that the most important thing you need to do is to
replace the classical waterfall life cycle with a RAD approach, so that a re-
alistic assessment of schedule, budget, and resources can be made after
the first prototype version of the system is delivered.

However, in many death march projects, this kind of rational mid-
course correction isn't possible. This can happen, for example, if a senior
manager makes a naive promise to the customer, and then feels that the
commitment has to be honored—no matter what. In the worst case, the
person making the commitment knows full well what's going on. (It's
particularly apparent when the marketing manager confesses to the
project manager over a beer after the celebrations accompanying a new
contract from some gullible client, "Well, we wouldn't have gotten this
contract if we told the client how long it would really take; after all, we
knew that our competitors would be coming with some really aggressive
proposals. And besides, you guys always pad your schedules and budgets
anyway, don't you?")

The last comment is especially onerous if it comes from your boss, or

INTRODUCTION 11

from some manager two or three levels above you. It suggests that the
entire process of estimating schedules and budgets is a negotiating game
(which I'll discuss in detail in Chapter 3). But, there is also likely to be
some degree of naivete, for the unspoken implication in your manager's
complaint about "padding" the schedule and budget is that you could f in-
ish the death march project in time to meet the ridiculous deadline that
has been imposed upon you. On the other hand, it could have something
to do with the "Marine Corps" mindset, discussed in Section 1.3.5. Simi-
larly, the commitment to a ridiculous schedule and budget by the mar-
keting department could turn out to be another form of politics,
discussed earlier; that is, the marketing representative probably doesn't
care whether or not the schedule and budget he or she proposed is ridic-
ulous, because his or her primary objective is the sales commission, or
meeting quota, or pleasing his or her boss.

Assume for the moment that the death march project has been creat-
ed as a result of "pure" naivete, absent of politics or other malicious influ-
ences. The question is: What should you do about it? As noted, a key
question is the likelihood that the decision makers will revise their bud-
gets and schedules when it becomes apparent that the original commit-
ments can't be met. This is difficult to predict in advance, though it
wouldn't hurt to check around and see what has happened to other
death march projects in similar situations. (If this is the first such project
that has ever occurred in your company, then you really are in uncharted
territory!)

If you have the strong impression—either from your political in-
stincts or from the experiences of previous projects in your organiza-
tions—that management will hold fast to its original budget and
schedule, no matter how much of a "denial of reality" is involved, then
you need to make a much more fundamental decision about whether or
not to proceed. Some of this involves the extent to which you can negoti-
ate other aspects of your project—e.g., the technical staff that will be as-
signed to the projects—which we'll discuss in Chapter 2.

DEATH MARCH

1.3.3 Naive Optimism of Youth:
"We Can Do It over the Weekend!"

Though management is a convenient scapegoat for many of the idiotic
decisions associated with death march projects, the technical staff is not
entirely blameless. Indeed, in many cases, senior management will hap-
pily admit their naivete and lack of experience with the process of esti-
mating and scheduling complex projects. "How long do you think it will
take?" they'll ask the technical hotshot, who may have been promoted to
the rank of first-level supervisor just last week.

And, if the technical hotshot is ambitious and filled with youthful op-
timism (which often resembles the teenage delusions of immortality,
omnipotence, and omniscience), the answer is likely to be, "No problem!
We can probably knock it out over the weekend!" A really good software
engineer—well, "hacker" might be a more appropriate description
here—is firmly convinced that he or she can develop any system in a
weekend. Minor details like documentation, error-handling, editing of
user inputs, and testing are so boring that they don't count.

If you're the naively optimistic software engineer responsible for
making the death march estimate, chances are that you don't even know
what you're doing. You probably read the last paragraph, bristled at the
apparent insult, and muttered, "Damn right! I really can build any sys-
tem over the weekend!" God bless you; maybe you'll succeed. In any
case, nothing that you hear from an old fart like me is likely to change
your mind.

But, if you are a battle-scarred veteran, and you can see that you're
about to be roped into a death march project because some naive young
technical manager has made a ridiculously optimistic commitment re-
garding the project's schedule, budget, and resources, what should you
do? The best advice, 1 think, is: "Run!" When such technical managers re-
alize that they are in over their heads, they often collapse, resulting in tru-
ly irrational behavior or paralysis. In most cases, they haven't dealt with
anything before that was so big and complex that it couldn't be over-
whelmed by sheer cleverness or brute force (e.g., 48 hours of non-stop
coding over the weekend). In any case, they're certainly not in the mood
to hear you say, "1 told you so!" as their project falls behind schedule.

13

1.3.4 The "Start-up" Mentality of Fledgling,
Entrepreneurial Companies

I've not only watched this occur, I've participated in such projects and
have been responsible for initiating them in several cases. As this book is
being written, it appears that any start-up company with the name or
"Java" in its corporate name or product name can get more venture cap-
ital than it knows what to do with. But in general, start-up organizations
are understaffed, underfinanced, undermanaged, and outrageously opti-
mistic about their chances of success. They have to be because a cautious,
conservative manager would never dream of starting a new company
without tons of careful planning and a large bank account to deal with
unforeseen contingencies.

So, almost by definition, a large percentage of the projects associated
with start-up companies are death march projects. A large percentage of
these projects will fail; a large percentage of the companies will fail with
them. Cest la vie—that's what high-tech capitalism is all about (particu-
larly in the U.S.). Having been raised in this culture all my life, I think it's
perfectly normal (my attitude is also colored by the fact that I've been
lucky enough to succeed in a few such ventures). Indeed, this scenario is
often one of the positive reasons for embarking upon a death march
project, as I'll discuss in more detail in Section 1.4.

Not everyone is familiar with the culture and environment of a cor-
porate start-up. If you've spent the past 20 years of your career working
with brain-dead COBOL zombies in a moribund government agency (or,
for that matter, most banks, insurance companies, or telephone compa-
nies) and you've just taken a job with a start-up firm because you were
downsized, outsourced, or reengineered, then you probably have little or
no idea what you're in for. Death march projects occur in big companies
too, but they're often staffed by extras from Night of the Living Dead. The
environment is completely different in start-up company death march
projects; it's like a rush of pure adrenaline.

At the same time, start-up companies often suffer from the kind of
naive optimism I discussed. Many start-up companies are founded by
technical hotshots convinced that their new technology will make them
richer than Bill Gates; others are founded by marketing wizards who are

14 DEATH MARCH

convinced they can sell Internet-enabled refrigerators to gullible Eski-
mos. Optimism is important in any start-up venture, and the success of
the corporate venture may depend on doing what nobody has ever been
able to do before. But, even an aggressive, optimistic start-up company
has to obey the basic laws of physics and mathematics. If you get in-
volved in a start-up company death march project, check to see whether
there is some kind of plan for success, or whether the whole venture is
based on wishful dreaming.

1.3.5 The "Marine Corps" Mentality:
Real Programmers Don't Need Sleep!

Start-up companies are sometimes vulnerable to the "Marine Corps"
syndrome, but I've seen it most often in the consulting organizations like
EDS and the Big-6 accounting firms. It may reflect the personality of the
corporate founder(s), and it may reflect the corporate culture in its earlier
days. The corporate behavior at Microsoft, for example, has often been
attributed to these factors. In essence, you'll be told by the appropriate
manager, "Every project is like this, because that's how we do things
around here. It works, we're successful, and we're damn proud of it. If
you can't handle it, then you don't belong here."

Whether an attitude like this is civilized, humane, or right is a topic
for separate discussion. Indeed, whether it's even successful is another
question. The important thing is to realize that it's deliberate, not acci-
dental. If you're a martyr or a revolutionary, you might decide to attack
the corporate culture. But, chances are that you won't succeed. It's quite
possible that there will be some negative long-term consequences of
the overall death march culture, e.g., the best people may slowly drift
away, and the company may eventually fail. But, when it comes to this
death march project, there's no point questioning why it has been set
up with a nearly-impossible schedule and budget. Like the prototypical
manager of such a company says, "If you can't handle it, then you don't
belong here."

Sometimes there's an official rationale for such corporate behavior—
e.g., "We compete in a tough marketplace, and all of our competitors are
just as smart as we are. The only way we succeed is to work twice as

INTRODUCTION 15

hard." And sometimes, death march projects are set up to weed out the
younger (weaker) junior employees, so that only the survivors of the
death march projects will reach the exalted status of "partner" or "Vice
President." Whatever the rationale, it's usually fairly consistent; there's
not much point complaining about it for the sake of a single project.

That doesn't necessarily mean that you should accept an assignment
on such a project; after all, just because every other project within the or-
ganization is a death march doesn't necessarily mean that yours will suc-
ceed or that you will survive. It simply means that the decision to create
such a project has an understandable origin.

1.3.6 Intense Competition Caused by
Globalization of Markets

Organizations that might not have tolerated death march projects in the
past are sometimes being forced to do so in the 1990s, simply because of
the increased level of competition associated with the global market-

 The secondary factors here are universal telecommunications (in-
cluding the Internet) and governmental decisions to open previously
protected markets or eliminate tariffs and quotas.

For some organizations, this is not a new phenomenon. The auto-
mobile and electronics industries, for example, have been facing stiff
competition since the 1970s. But, for other organizations, the appear-
ance of European or Asian competitors in the North American market-
place can come as a rude shock. Once senior management has accepted
the reality of serious competition, it may decide to embark upon a vari-
ety of radical moves, ranging from downsizing to reengineering; but, it
may also decide to compete head-on with a new product or service that
requires a new, ambitious system to support it. Voila! A death march
project has begun.

Such projects are often accompanied by dire predictions from senior
management of the consequences of failure—e.g., layoffs, or even corpo-
rate bankruptcy. And, as I'll discuss below, this may prove to be the pri-
mary justification for participating in such projects.

1.3.7 Intense Competition Caused by the
Appearance of New Technologies

Competition from an expanded marketplace is often perceived as a de-
fensive issue, but it can also be perceived as an aggressive, proactive op-
portunity—"If we build this new system, with double-byte characters,
then we can offer our company's products for sale in Japan." Similarly,
the introduction of radically improved technology may cause a defensive
response from a company that was reasonably happy with products built
around an older technology; or, it may lead to a proactive decision to uti-
lize the new technology for competitive advantage. At the time this book
was being written, technologies like Java and the World Wide Web were
an obvious example of this phenomenon; but, the amazing thing about
our industry is that new examples appear every few years.

If the corporate response to the new-technology situation is essen-
tially defensive in nature, then the death march project may be one that
seeks to exploit the company's old technology far beyond its normal lim-
its. Thus, if the organization has too much invested in the old technology
(and the infrastructure surrounding it) to abandon it entirely, it may em-
bark upon a rewrite of its old systems, with demands that the program-
mers find ways to make it ten times faster and sexier.

Many death march projects in this category are the ones that involve
first-time usage of new technologies. Think back to the first client-server,
object-oriented, relational database, or Internet/Java projects in your orga-
nization; some of them may have been modest experiments to explore the
potential benefits of the technology, but some of them were probably cre-
ated as a competitive response to another company's introduction of the
same technology. And in the latter case, these projects can be huge, as well
is being saddled with outrageously aggressive schedules and budgets.

But what really contributes to the death march nature of such
projects—beyond the obvious characteristics of size, schedule, and bud-
get—is the attempt to use bleeding-edge technology for an indusrrial-
trength application. Even if the technology is basically usable, it often
does not scale up well for large-scale usage; and, nobody knows how to
exploit its strengths and avoid its weaknesses; and, the vendors don't

know how to support it properly; and on, and on .. .

17

While all of this may be perceived as an unpleasant experience by the
older technical project team members (the ones who remember the
"good old days" of FORTRAN n and assembly language), it's important
to remember that the younger technicians and project managers prefer
these new technologies, precisely because they are new. And these are
the same folks that I characterized above as naively optimistic about the
schedule and budget constraints within which they're working. Is it any
wonder that projects degenerate into a death march, with everyone
working late nights and long weekends to coax an experimental new
technology into some semblance of working order?

1.3.8 Intense Pressure Caused by
Unexpected Government Regulations

As mentioned above, one of the reasons for death march projects associ-
ated with globalization of markets is the decision by governmental au-
thorities to reduce tariffs, eliminate import quotas, or make other such
decisions to "open" a previously closed market. But this is just one exam-
ple of governmental influences that can lead to a death march project.
Deregulation of controlled industries or privatization of government
agencies are two other obvious examples. Indeed, many of the death
march projects taking place today around the world are a direct result of
a government decision to deregulate the telecommunications industry,
the financial services industry, the airline industry, and so on.

However, there are also many instances of increased regulatory pres-
sure from governmental authorities—especially in the areas of taxation,
reporting of financial details to stock-market authorities, environmental
regulations, and the like. In any kind of democratic society, there's likely
to be a great deal of advance notice about such regulations, because the
legislative body argues and debates and fusses over details for months or
years before the relevant legislation is enacted. But, often the details
aren't clear until the last moment, and the typical reaction from senior
management is to ignore the whole thing until it becomes an unavoid-
able reality. And thus, another death march project is created.

The particularly onerous thing about many of these government-
mandated death march projects is the deadline: The new system must be

18 DEATH MARCH

operational by some arbitrary date, like the first of January, or fines of a
million dollars a day will be imposed. There may be an opportunity to ask
for an extension or a waiver, but in many cases, the deadline is absolute.
And the consequences are usually as dire for the organization as those
mentioned above: layoffs, bankruptcy, or other calamities will occur if the
new system isn't finished on time.

Notice that in projects like these, technology is usually not the issue;
what characterizes projects as being death march in nature is the aggressive
timetable. Of course, management sometimes complicates the situation by
understaffing the project, or hobbling it with an inadequate budget.

1.3.9 Unexpected and/or unplanned crises

Your two best programmers have just marched into your office to inform
you that (a) they're getting married, (b) they're joining the Peace Corps,
and (c) today is their last day on the job. Or, your network services man-
ager calls you to say that your vendor has just gone bankrupt and you'll
have to reprogram everything in the next 30 days to use another vendor's
network protocol. Or, your legal department calls you to say that the
company has been sued for ten zillion dollars because the company is not
in compliance with Sub-paragraph 13(b) of Regulation Q of some arcane
tax code that nobody even knew about. Or, . . .

Of course, you could argue that in a well-managed company, the im-
pending departure of your two best programmers would have been an-
ticipated and planned for. And you wouldn't have been so silly as to be
wholly dependent on one telecommunications vendor. And manage-
ment would have had the foresight to check into the details of Regulation
Q. Such crises, according to the purist, are the result of poor planning
and poor management; an "unplanned crisis" is therefore an oxymoron.

Perhaps so; but as a practical matter, it's becoming more and more
difficult to anticipate and plan for all the crazy things that can happen in
the business world. For better or worse, we live in a world of chaos, and
death march projects are a natural consequence of this chaos. Indeed,
even if we have a general idea that chaotic things could occur in the future,
we may still have to respond to them in a death march fashion. Everyone
in the vicinity of the San Andreas fault in California, for example, knows

INTRODUCTION 19

that a truly massive earthquake will occur sooner or later; but, that won't
prevent a rash of death march projects from starting up the day after the
"big one" drops the western half of the state into the Pacific Ocean.

Indeed, even when we know precisely when a crisis will occur, it often
leads to a death march project—because management's tendency is to
avoid dealing with the situation until the last possible moment. How else
can we explain the panic that is creeping into many IS/IT organizations as
the Year 2000 problem looms ahead of us? We've known for a long time
that January 1,2000, was coming, and we've known that it was a deadline
that could not be postponed. We've known precisely what the nature of
the problem is, and it doesn't require new-fangled technologies like Java.
So, why is it that I'm so certain that death march Year 2000 project teams
are forming while I write this book in the summer of 1996, and that even
more frantic projects will be initiated in 1997,1998, and 1999?

In any case, unforeseen crises can lead to all kinds of death march
projects. In the worst case, they create projects for which the deadline is
"yesterday, if not sooner"—because the crisis has already occurred, and
things will continue to get worse until a new system is installed to cope
with the problem. In other cases, such as the unplanned departure of key
project personnel, it can rum an otherwise rational project into a death
march exercise because of the resulting shortage of manpower and the
loss of key intellectual resources.

For various reasons, these often turn out to be the worst kind of death
march projects because nobody anticipated that it would turn out this way. For
the "Marine Corps" situation discussed above, there are no surprises. Ev-
eryone knows from the first day of the project that this one, like all previous
projects, is going to require extraordinary effort. And, for the start-up com-
panies, the death march project is anticipated with excitement; not only will
it be exciting and challenging, but its success could make everyone rich.

1.4 WHY DO PEOPLE PARTICIPATE
IN DEATH MARCH PROJECTS?

The theme of the discussion in the previous section is that organizations
create and/or tolerate death march projects for a number of reasons. We

20 DEATH MARCH

may agree or disagree with those reasons, and we may sympathize with
the ones caused by truly unexpected crises—but ultimately, as individu-
als, we must accept them as a fact of life.

But, that doesn't mean we must participate in them. Most of this
book presumes that you will participate in a death march project, though
1 will specifically suggest that you resign under certain circumstances. But
the best time to do so, in most cases, is at the beginning. When told that
you have been assigned to such a project (either as a manager or a tech-
nical staff member), you should consider saying, "No, thanks! I'll pass on
this one." If that's not an acceptable response within your corporate cul-
ture, you almost always have the option of saying, "No, thanks! I quit!"

Obviously, some developers—and probably a larger number of man-
agers—will argue that this is not a practical choice for them. I'll discuss
this detail shortly, but for now, it's sufficient to note that it's one of sever-
al possible "negative" reasons for participating in a death march project;
it may not be fun, but perhaps it's not as bad as the alternatives.

On the other hand, some developers (and some managers) gladly sign
up for such projects; aside from the issue of naive optimism, why would any
rational person volunteer to participate in a project thaf s likely to require
14-hour days, 7-day weeks, and a year or two of postponed vacations?

The most common reasons are summarized in Table 1.2; I'll discuss
them below.

TABLE 1.2 Reasons for participating in death march projects.

The risks are high, but so are the rewards.

The "Mt. Everest" syndrome.

The "buzz" of working intensely with other committed people.

The naivete and optimism of youth.

The alternative is unemployment.

It's required to be considered for future advancement.

The alternative is bankruptcy or some other calamity.

It's an opportunity to escape the "normal" bureaucracy.

Revenge.

INTRODUCTION 21

This is not meant to be a complete list. Kevin Huigens [6] asked his
project team to do a little brainstorming at one of their recent staff meet-
ings, and they came up with the following list of explanations for partici-
pation in death march projects:

Everybody wants to feel wanted.

Perceived opportunity.

Perceived money gain.

Can't afford to lose job.

Brought in from the outside to lead the project.

Willing suspension of disbelief.

Don't care whether project fails, get to work with cool technology.

On-the-job-rraining on new technology.

Eternal optimism.

Challenge.

Plain stupidity.

Chance to prove yourself.

To get the job done.

It's the only project.

Your friend is running the project.

Your brother is running the project (it'd take more than friendship).

Your boss said so.

You have no other life.

Nothing better to do.

Stock options.

Existing pay vs. expectation of raise.

Love is blind.

Resume building.

Ignorance.

Camaraderie.

22 DEATH MARCH

Expectations for how long it will take are too low.

Of course, all of this assumes that you know in advance that it is a
death march project. As consultant Dave Kleist [7] observed, that's not
always so easy when you're interviewing for a new job:

... it's rarely printed as part of the want ad. Not much
sense in saying, "Are you interested in working in-
credible hours for no additional benefit beyond your
hiring salary?" ... Seriously, death march projects are
rarely billed as such, and it takes a lot of work when
being hired from the outside to discover if your hiring
company is prone to creating death march projects.

And, as Steve Benting [8] pointed out, sometimes you get taken by
surprise:

. . . it seems to be a well-thought-out project this time.
You've got someone leading who has a real sponsor in
management, the project plan appears to be solid, the
people involved all appear to be good. Hell, you want
to work on this thing. Then it collapses because your
sponsor gets taken out in a political struggle, the
project plan turns out to be built on assumptions that
are incorrect, and one or two key people turn out to be
flaky. You can learn to watch out for them, but some-
times you misjudge. And you don't want to believe
that it's happening again.

1.4.1 The Risks Are High, But So Are the Rewards

The start-up company scenario discussed in Section 1.3.4 is a good ex-
ample of this situation. If you tell a project team that the success of their
project will mean the company can go public, and that their stock options
will make them instant millionaires, they'll happily work until they drop.
They realize—at least in an intellectual way—that there are risks associ-
ated with the venture; but, since many of them still believe that they're
immortal and omnipotent, they don't pay much attention to the risks.

Indeed, considering the influences of Western culture (especially in

INTRODUCTION 23

the U.S.), it's not at all surprising to see young software developers vol-
untarily sign up for death march projects. We've been told in countless
ways that the success of movie stars, rock singers, sports heroes, and
Olympic athletes, as well as business executives and software entrepre-
neurs, depends largely on tireless energy, enormous commitment, long
hours, and personal sacrifice. We never hear about the guile and duplici-
ty, the shady deals, and illegal activities that are sometimes associated
with success. And, we rarely hear anything about luck and the impor-
tance of being in the right place at the right time. Bill Gates, for example,
certainly exhibits all the textbook characteristics of a successful business
executive; but, if a group of IBM executives hadn't shown up in Seattle in
1980 to look for a PC operating system, and if Gates hadn't been avail-
able when IBM was unable to meet with its originally intended OS con-
tractor . . . well, who knows where Microsoft would be today?

And one more thing: We don't hear enough about the real conse-
quences of the "sacrifices" that a death march project usually requires—
sacrifices, that is, in the areas of personal health, mental health, and per-
sonal relationships. None of these are likely to matter very much to a 22-
year-old technical person, and they often don't matter to the introverted,
antisocial people who are attracted to the computer field. On the other
hand, it's small wonder that you'll find fewer people in their mid-40s and
50s volunteering for death march projects; not only have they learned
that most of these projects really are doomed to fail, but they've also
learned (usually the hard way!) that it's not worth sacrificing their mar-
riages and good relationships with their children.

Ultimately, this is a personal choice, based on personal values. I'm in
no position to tell anyone else what's right or wrong. I should emphasize,
though, that I'm not as negative as one might think from the comments
above. Though I believe that I'm much less naive than I was 30 years ago,
I'm still attracted by entrepreneurial opportunities. Show me a sufficient-
ly exciting risk/reward formula, and I'll sign up for yet another death
march.

Incidentally, sometimes the rewards are psychological rather than fi-
nancial. As Sharon Marsh Roberts [9] observed:

J

??? of their place in history, if only they can keep
this project from outright sinking under its own
weight.

The same people take on EMT work and enjoy fre-
ighting (literally). If you only win once in ten times,
but everybody else lost all ten, wouldn 't you be a hero,
too?

Paul Neuhardt [10] put it another way:

For me, it was ego, pure and simple. They told me that
they just kneiv I could help prevent the project from
becoming a death march. I was made the "technical
project manager," given ego boosts on a regular basis,
then hung out to dry along with the rest of the team.
Left, right, left, right, left, plop!

1.4.2 The "Mt. Everest" Syndrome

Why do people climb dangerous peaks like Mt. Everest, despite the pain
and risk? Because it's there. Why do people run a marathon and drive
themselves to the point of physical collapse in triathlons? Because of the
challenge. It's all the more exciting if the challenge is one that has never
yet been successfully accomplished; of the five billion people on the plan-
et, for example, only one can stand before us and say, "I was the first to
walk on the moon." Some may think it's crazy, egotistical, and selfish to
even try7, but others are willing to brave the odds and deal with horren-
dous obstacles for the private thrill and public glory of succeeding. As
consultant Al Christians [11] remarked to me in a recent e-mail note,

I am somehow prompted to reply "testosterone,"
which is about the same as "because it's there." There
are plenty of jobs that raise the "why?" question. Un-
derground mining, cowboying, logging, smoke jump-
ing, jet fighting, submarining, even high rise window
washing all have serious drawbacks far beyond what
you describe for software projects, and yet all these

have practitioners whose sense of self is linked to their
profession.

And so it is with death march software projects. I had the chance to
visit the original Macintosh project in the fall of 1983, a few months be-
fore the product was officially unveiled, and I was humbled by the inten-
sity of the team members' commitment to their challenge. In addition to
whatever other reasons they might have had for working long hours and
dealing with Steve Jobs's megalomaniacal ego, the team members were
utterly convinced (partly as a result of Jobs's charisma) that the Macin-
tosh would revolutionize personal computing. They were lucky—they
turned out to be right.

From this perspective, even death march projects that fail can be no-
ble failures. Countless projects in Silicon Valley have fallen into this cate-
gory, often after burning tens of millions of dollars of venture capital; the
pen-based computing projects of the early 1990s are just one example.
But, even though they failed so badly that entire companies went bank-
rupt, and though they caused divorces, ulcers, and nervous break-
downs—even though they did all of this and more—the people who
worked on those projects still speak of their experiences in hushed tones.
"I worked on the operating system at Go! Corp.," a grizzled veteran will
tell her awestruck apprentice. "Now that was a revolutionary piece of
software!"

Though it may never reach the front pages of Computerworld, there
are also numerous death march projects with lofty ambitions buried
within large organizations—with application developers signing up
gladly because the "corporate Mt. Everest" seems such a worthy chal-
lenge. Sometimes these projects fail because the marketplace, or the cor-
porate end users, don't want and don't need the glorious, revolutionary
systems being developed; sometimes they fail because the project team
bit off more than it could chew and promised more than it could deliver.

There are two things to watch for if you find yourself being swept up
in the hysteria of a Mt. Everest-style death march project. First, watch out
for the projects that are predetermined failures. Suppose, for example,
that someone told you that you could be on the first mission to Mars, and
that you would even have the honor of being the first person to plant a

26 DEATH MARCH

foot on Martian soil. "Of course," your project manager would go on to
say, "you won't have any oxygen tanks, because we won't have enough
room on the space craft for all that extra weight. So it's a guaranteed fact
that you're going to die—but think of the honor and the glory!" [12] I'll
discuss these projects in more detail in Chapter 3 (under the heading of
"Kamikaze" projects), but for now, the scenario speaks for itself.

The second thing to watch out for is that the challenge being de-
scribed by your corporate management (or by the entrepreneurial
founder of your software company) may not turn out to be such a big deal
after all. This is a particularly insidious danger if the challenge is technical
in nature, e.g., "We'll be the first people on earth to put an operating sys-
tem with the functionality of Windows 95 into 4K of ROM!" Granted,
that would be an amazing technical accomplishment—but so what?

It's a good idea to ask the "So what?" question two or three times—
i.e., continue asking the question in response to each successive answer
you get from your corporate management. If the response to the Win-
dows 95 scenario posed above is, "Well, that means we could put all of
Windows 95 onto your wristwatch!" then ask, "So what!" again. In some
cases, the answers will eventually become silly, and you'll be jerked back
into the real world. For example, suppose your boss answers the second
"So what?" question above with the explanation, "Well, if we can also
squeeze in a full voice-recognition system, that means you'll be able to
write Visual Basic programs while you're walking down the street, by
talking to your wristwatch!"

No doubt there are a few dozen programmers who would say,
"Cool!" and volunteer to spend the next three years of their lives on such
a project. The fact that nobody in his right mind would ever use such a
project is irrelevant to them; the technical challenge is sufficient justifica-
tion. Putting Windows 95, full voice recognition, and Visual Basic into 4K
of ROM would give you supreme bragging rights at any convention of
hackers and programmers; if that's what you live for, then by all means,
go ahead and sign up for the project.

It's also a good idea to explain the project in simplified non-technical
terms to your spouse, or your "significant other," or your parents—or,
even better, your children. They will ask the "So what?" question with

INTRODUCTION 27

out the burden of being tempted by the technical challenge. "You're go-
ing to give up your nights and your weekends and your vacations for the
next two years in order to put Windows 95 on a wristwatch?" your
spouse will ask incredulously. And your children will ask, "Yeah, but
Mom/Dad, why would anyone do that?" If you can answer those ques-
tions without feeling utterly foolish, then you can sign up for the project
with a clear conscience.

A worse form of the Mt. Everest project is the one where the chal-
lenge matters enormously to corporate management, but not at all to any-
one who stops and thinks about the situation for a second. "Why are we
signing up for this death march project, boss?" the young programmer
asks innocently. "Because," the boss thunders righteously, "it will in-
crease our corporate earnings per share by a full 3.14159 cents!" This
means that if the programmer is lucky enough to have options on a hun-
dred shares of the company's stock, and if every penny of increased earn-
ings is paid out in dividends, the programmer would get a whopping
$3.14; and, if Wall Street gets so excited by all of this that it boosts the
price of the stock by a dollar, the programmer's net worth would increase
by another hundred dollars. "And what else would I have to show for the
thousands of hours of overtime you're asking me to sign up for, boss?"
the young programmer asks. The boss is silent, for he knows that the
honest answer is: nothing. The project is intrinsically boring, involves no
interesting technology, and has a 75 percent chance of failing anyway.

But, the very worst death march projects, in my opinion, are the ones
where the boss deliberately manipulates the innocent project team into
believing that a Mt. Everest-style challenge is involved, when the boss
knows full well that it's not. Imagine the project team member who asks,
"Why are we trying to build this batch, mainframe, COBOL airline reser-
vation system in six months, boss?" The boss is likely to respond, "Be-
cause nobody in the entire airline industry has ever tried to do it in less
than three years before!" I suppose that one could argue that there is a
technical challenge involved in creating a batch-mode airline reservation
system, but it's not the kind of technology that I would want on my re-
sume in the late 1990s. In any case, what makes this scenario a death
march project is not the technical challenge, but the ridiculous schedule

at your menus a year from now.

1.4.3 The Naivete and Optimism of Youth

Ours is a young industry, and many of the most exciting and challenging
projects are being performed by, and led by, people in their 20s. It's not
at all uncommon to see death march projects where the entire technical
team is under the age of 25. As such, they remind me of the fighter pilots
and bombing crews recruited by the Air Force in the Second World War
and Vietnam War: young, idealistic, and absolutely convinced that they
could do anything. As David Maxwell [13] put it:

Projects are like a marriage. We tend to start off naively
and full of hopes and slowly as reality sets in, we have
to reassess our expectancies within the relationship.
There are many reasons apart from logic that attract
people together into a marriage and it is the same case
with projects. With a predominantly youthful work-
force, it is likely that the "death march" project will oc-
cur again and again as a training ground for managers
and developers alike. And, as I know from personal
experience, I often repeat the same mistake many
times before the penny drops.

Indeed, it's this supreme confidence that enables a death march team
to succeed where traditional project teams have failed. Part of the folklore
of our industry is that the most successful products—ranging from Lotus
1-2-3 to Netscape Navigator—have been developed by a handful of peo-
ple under conditions that no "rational" project team would have accept-
ed. When these projects succeed, they often bring fortune and fame to
he project team; and when they fail, they often provide some valuable
essons to everyone involved (though the corporate consequences may
till be disastrous!).

It's important to note that the naivete and optimism of youth are usu-
illy combined with enormous energy, single-minded focus, and freedom
from such distractions as family relationships. Obviously, youth doesn't

have a monopoly on any of this, but it's a lot more common to see a 22-
year-old programmer willing and able to focus on the technical demands
of a death march project for 100+ hours per week, continuously for a year
or two, than a 35-year-old programmer with a spouse and two children
and a moderate passion for mountain climbing. The young programmer
who signs up for a death march—as well as the relatively young project
manager who optimistically promises success to the corporate chief-
tains—is implicitly saying, "Of course I'll succeed with this project; I'll
overwhelm the obstacles with sheer energy!"

I won't make any value judgments about all of this, because it's
pointless. As noted above, ours is an industry that attracts young people,
and I don't think that will change in the next few years. I also don't think
if s unlikely that young people will abandon their optimism, energy, and
ability to focus single-mindedly on a problem. As for their naivete . . .
well, it doesn't help much for battle-scarred veterans to accuse their
younger colleagues of this disease.

1.4.4 The Alternative Is Unemployment

Because we do have an industry populated by young, optimistic people,
and because it's a vibrant industry that has been growing steadily {and
sometimes rapidly!) for the past 30 to 40 years, I'm always surprised to
hear this explanation for participation on death march projects.

But, we're also in an industry where rapid change renders some vet-
erans obsolete. Indeed, there has been such enormous change during
this decade that our profession—like so many other white-collar profes-
sions—has experienced significant downsizing, reengineering, and out-
sourcing. Aggregate employment in the software industry may be rising
steadily, but we sometimes forget that this means only that C++ pro-
gramming jobs are increasing more rapidly than COBOL jobs are declin-
ing [14]. Additionally, the large IS/IT shops that have expanded into
bureaucracies of several thousand people have been particularly vulnera-
ble to reengineering and downsizing; senior management may not be
ready to reduce the ranks of technical staff, but they're often eliminating
the middle managers, administrators, and staff people.

All of this figures significantly in death march projects. Perhaps the

30 DEATH MARCH \

reason your project team has only half as many people as it should is that
management has cut the entire software organization in half. And the
reason that your project schedule is twice as demanding as it should be is
that management is attempting to reengineer by edict: The entire organi-
zation must be twice as productive as before, which translates into the
simple commands of, "Work harder! Work faster!" [15]

This is not a book about reengineering, and I don't want to comment
on the reengineering strategies employed by management. The signifi-
cant issue here is that many technical staffers and project managers feel
an implied threat when projects are created in this kind of environment.
Oftentimes, if they don't agree to the death march project parameters,
they'll be the ones to lose their jobs. For the 22-year-old, unmarried pro-
grammer, this shouldn't be a problem; for the 35-year-old project super-
visor with a family and a mortgage, it can be a more serious problem.
And, for the 45-year-old programmer whose only skills are COBOL and
CICS, it can be a serious problem indeed. Even though we do have a
young industry, it's been around long enough that there are even some
55- and 60-year-old programmers who are grimly holding on until their
pension is fully vested.

It's also common for middle-aged or older people to find that they're
locked into a community, because their spouse has a job in the same
town, or their children can't be pulled out of the local schools, or because
the prospect of leaving behind aging parents and other family members
is too painful. None of this seems a problem when the job market is
growing, but anyone living in Poughkeepsie, New York today knows ex-
actly what I'm talking about. People living in Redmond, Washington
could conceivably find themselves faced with the same kind of rude
shock 5,10, or 20 years from now.

I'm generally sympathetic to the middle-aged and older software
professionals who find themselves in this position, though the reengi-
neering/downsizing phenomenon has been around long enough that
I'm amazed to find technical people who ignore the possibility that it
could happen to them. But this, too, is a subject for a different book; I've
discussed it at length in my books Decline and Fall of the American Pro-
grammer and Rise and Resurrection of the American Programmer, and I'll
confine my remarks here to the reality of such death march projects

INTRODUCTION 31

If your company has told you—either explicitly or by innuendo—that
your job will disappear unless you sign up for a project with a ridiculous
schedule, budget, and resource allocation, what should you do? Obvi-
ously, this depends on your assessment of your financial, physical, emo-
tional, and psychological situation; but, you also need to assess the
situation within your company accurately. In some cases, the real threat
is that your promotion, bonus, or salary increase will be withheld if you
don't participate (I'll cover this separately below). But, even if the threat is
termination of employment, big companies can't usually carry out their
threat right away; you may have two or three months before your job dis-
appears, and that may be enough time to find a job elsewhere.

What if the threat is more immediate and blunt? "Sign up for this
death march project right now, or pack up your things and get out!" says
your boss. It's inconceivable to me that a rational person would choose to
work in such an environment, but let's assume the environment had
been reasonably friendly until the latest reengineering craze turned your
boss into a raving lunatic. So, here you are: sign up, quit, or be fired. What
can you do?

If at all possible, my advice is to quit now, because it's only going to
get worse. You may have to live off your savings for a few months, and
you may even have to take a pay cut while you gain experience in some
newer technology, but chances are you'll be a happier person than if you
knuckle under and continue on in a situation that has little or no upside
potential. Sometimes you can accomplish this by volunteering for the
death march project while simultaneously updating your resume and
starting the job search, though this can create some ethical dilemmas if
you feel that quitting in the middle of the death march project would
leave your teammates stranded and helpless.

If you feel that you are truly stuck—because of imminent pension vest-
ing, or because of unmarketable technical skills, or because personal com-
mitments keep you locked into a one-employer town—then you might be
tempted to take a more positive approach to the death march project. "By
gosh, I'll show them that there's still some bark left in this old dog," the
middle-aged veteran will say. "I'll show management that I'm still just as
good as those young whippersnappers, and we'll get this project done on
time" The courage and positive

... Remember the theme at the beginning of this book: Death march
projects are not the exertion, they have become the norm.

1.4.5 It's Required to be Considered for
Future Advancement

As described, there are times when the "invitation" to join a death march
project carries with it a threat that future promotions and raises will be
contingent upon,(a) acceptance, and (b) success in the project. This is of-
ten associated with a reengineering initiative—e.g., "The people who
lead the Megalith Bank into the twenty-first century will be the ones who
lead us through this incredibly complex and challenging Total System
2000 reengineering project!" If you find yourself in this situation, remem-
ber that politics are a key factor. The people who eventually take credit
for the success of the death march project may or may not be the people
who participated in it. And the manager who proposes the death march
project may be using the reengineering "crisis" solely as an opportunity
to advance his or her career, with little or no concern for whether the
project team members survive in the process.

If you've memorized every word of Machiavelli's Tlie Prince, and if you
enjoy playing political games, then such death march projects might sound
like great fun. But most software professionals haven't read The Prince
since their college days (if ever), and in addition to admitting their political
naivete, the/ll also express disgust at the whole concept of politics, and
enormous disrespect for those who indulge in it. If that's the case, why
would anyone sign up tor the Megalith Bank's Total System 2000 project?
The only plausible answer: because you sincerely believe that it's a one-
time death march project, and because you really believe that it will help
advance your long-term career within the Megalith Bank. And if you be-
lieve this, chances are pretty good that you also believe pigs can fly.

In the majority of cases I've observed, the threat of withholding pro-
motions and raises is part of the "Marine Corps" culture discussed earli-
er. Whether it's right or wrong doesn't matter at this point; what counts
is that it's fairly consistent. If you receive such threats on your first death
march project, you'll probably get them on your second, third, and

You may have been too innocent to contemplate the long-term
implications of such a policy when you first joined the company, but
sooner or later it will sink in. There are really only two options in this
case: accept it or quit.

1.4.6 The Alternative Is Bankruptcy or
Some Other Calamity

As I explained, some death march projects have been caused by the re-
engineering, downsizing, and outsourcing decisions made by senior
management, which in turn were often caused by global competition,
unexpected government regulations, and the like. Whatever the cause,
the results are the same: The employee signs up for the project because
he or she sincerely believes that the alternative is bankruptcy or some
other dire calamity. And the situation is often exacerbated by provocative
statements from management that anyone unwilling to participate in the
death march should resign forthwith, so that those who remain can con-
centrate on saving the company.

Again, the issue here is not whether the situation is right or wrong, or
whether management should have taken earlier steps to avoid the crisis.
The point is that once the crisis has arrived and management has initiat-
ed the death march project, you need to make a rational decision about
whether or not to participate. As this book is being written, Apple Com-
puter is a good example of a company filled with death march projects as
it fights for survival (though I have no personal knowledge of any mana-
gerial ultimatums to "sign up or leave").

From earlier discussions, you can anticipate my advice here: Step
back and ask yourself whether this death march project is a one-time ex-
ception, or the beginning of an ongoing pattern. Even if you win the bat-
tle, your company may have lost the war; indeed, your success with your
death march project may have the ironic consequence of delaying the fi-
nal demise of the company just long enough to sustain a second death
march project.

Again, this is a personal decision, and it may be colored by feelings of
loyalty, sympathy, or a Hollywood-inspired desire to "win one for the
Gipper"—a last hurrah to show the world that you and your company

34 DEATH MARCH

are not going to give up without a fight. And who knows: maybe a tre-
mendous success with your death march project will turn things around,
as was apparently the case when Borland delivered its Delphi product to
the marketplace in early 1995, None of us has a crystal ball when it comes
to predicting the outcome of a death march project, nor can we accurately
predict what the consequences of a death march success or failure will re-
ally be. Some companies die quickly, others die a long, lingering death,
and still others are acquired before the terminal rot sets in.

As you consult your own crystal ball, seek advice from as many peo-
ple as possible—especially from those who have no vested interest in the
outcome. You may find some honest, objective managers in your com-
pany who will candidly discuss the consequences of the death march fail-
ure/success; but, you should also remember that the same managers
have their own careers and paychecks to worry about, and that their egos
and political instincts may prevent them from sharing the really vital in-
formation you need to make an informed decision.

1.4.7 It's an Opportunity to Escape the
"Normal" Bureaucracy

Technical staffers and project managers often complain that their corpo-
rate bureaucracy stifles productivity and introduces unnecessary delays
into the software development process. But, the larger the organization,
the more entrenched the bureaucracy—especially in organizations
where the methodology police enforce strict adherence to SEI-CMM or
ISO-9000 processes. Similarly, the human resources department may
have elaborate procedures that must be followed before new people can
be hired, or before external contractors can be used on a project.

Death march projects often provide the opportunity to circumvent
some, if not all, of the bureaucracy—and this is reason enough for frus-
trated software developers to sign up for such projects. In the extreme
case, the effort takes on the characteristics of a "skunk works" project:
The project team moves out of the corporate facility into a separate build-
ing, where they can carry out their work without the distractions of the
normal bureaucracy. But even in a less extreme situation, a death march
project can often get permission to use its own tools and programming

INTRODUCTION 35

languages, to try new technologies like object-oriented programming,
and to short-circuit much of the ponderous procedures and documenta-
tion that would otherwise be required. Equally important, the death
march project manager is often given far greater latitude when selecting
team members than would normally be the case.

In the best case, all of these changes can transform a death march
into a civilized experience—that is, the very procedures (and technology
and people) that threatened to turn the project into a death march have
been removed or replaced. And, if the death march project is eminently
successful, it can serve as a catalyst to make permanent changes to the
technology, peopleware, and processes used in other development
projects throughout the organization. Conversely, if the death march
project fails, it might serve as an affirmation that the "standard" policies
aren't that bad after all.

In any case, a situation like this is a perfectly plausible reason for
working on a project that might otherwise seem uncivilized. In some or-
ganizations, certain software developers make a point of always signing
up for such projects, because it's the only way to avoid getting sucked
into the bureaucracy.

1.4.8 Revenge

Revenge may not seem like a rational explanation for working on a death
march project, but it's real nonetheless. The success of the death march
project might be sufficient to wrest power away from an incompetent
Vice President, or it might serve to humiliate an obnoxious critic who
continually tells you "it can't be done" within the schedule and budget
constraints of the death march project. Revenge is a powerful emotion,
and it is particularly evident in the senior management ranks of large or-
ganizations, where insults are remembered forever, and where crafty
politicians will sometimes wait months or years to wreak revenge upon
their enemies.

Revenge can be a very powerful personal motivator, but it's usually
somewhat more difficult to imbue an entire project team with the emo-
tion. And when it happens, it often creates a situation where the team
loses track of the "official" objective of delivering a working system with-

36 DEATH MARCH

in a specified budget and schedule—after all, their first and highest prior-
ity is revenge.

If revenge is your motivation, then there's not much for me to say—
this is another personal judgment call. But, if you're signing up for a
project in which it's the manager's revenge, or the team's revenge, fuel-
ing the project (and causing it to accept deadline and budget constraints
they normally wouldn't accept), then you should be very careful indeed.
"The Vice President is an idiot," your project manager might tell you,
"and if we finish this project in six months, he'll be so humiliated in front
of the Board of Directors that he'll have to resign!" Well, that's fine—
maybe the VP really is an idiot. But, do you really want to sacrifice your
personal life for the next two years to bring about his or her demise? After
all, the next VP is likely to be just as much an idiot as the last one.

On the other hand, if everyone perceives the Vice President to be the
personification of Darth Vader, and if the project manager is seen to be a
combination of Luke Skywalker and Yoda, then a death march project
can be very invigorating indeed. If this is the case, the entire project is re-
cast into a battle of Good versus Evil, and that's enough to make people
accept incredible sacrifices without complaint.

1.5 SUMMARY

If the discussion in this chapter seems pessimistic and cynical, remem-
ber—it hasn't stopped death march projects from taking place. Compa-
nies both large and small are filled with politics, and staffed by managers
and technical developers who suffer from mind-boggling optimism, as
well as from the usual gamut of emotions like fear, insecurity, arrogance,
and cruelty. And, the combination of reengineering, downsizing, out-
sourcing, and global competition—along with the opportunities provid-
ed by new technologies like object-orientation, client-server, and the
Internet—suggests to me that death march projects are likely to be a
common occurrence for years to come.

And that's the primary point of this chapter. You may not agree with
any of the rationales suggested here; you may not like any of the reasons
for initiating such projects or joining such projects—but they're real
nonetheless. The key point is to recognize and understand your own mo-

INTRODUCTION 37

tivations at the beginning of a death march project, so that you can make
a rational decision to join the team or look elsewhere for your next job.
Since many of these projects are initiated during periods of great corpo-
rate stress and emotion, rational decisions are not as easy to make as you
might think; it's all too easy to be swept away by the emotions of your fel-
low colleagues or your manager.

By the way, this doesn't mean that I'm opposed to death march
projects; 1 agree with my colleague Rick Zahniser [16] that such projects
can be an educational experience, even if they fail:

I've told you before, I think everyone should be on at
least one of these projects. However, there are some
other things that you should do at least once:

• Spend a night in jail

• Get commode-hugging drunk

• Raise a boy

• Raise a girl

• Start your own business

• Climb Mount Fuji

For the remainder of this book, I'm going to assume that you have
made a rational decision to join a death march project—though I'll re-
mind you from time to time that you always have the option of quitting
during the project. We'll assume that your primary objective at this point
is to succeed, or at least survive the project, and in subsequent chapters,
we'll see how that can be done.

38 DEATH MARCH

Notes
1. Ed,

A colleague of mine passed along this paraphrased quote. I think
it applies here.
The definition of (corporate) insanity is doing the same thing
again and again, and each time expecting different results.
I have no idea who originally framed the assertion, but it's gold!
Richard Sargent
5x5 Computing Solutions Inc.

2. Ed,
» 1. Why would anyone in his right mind agree to work on a "death
march" project (defined in the terms above)? «
Because it' s rarely printed as part of the want ad. Not much sense
in saying, "Are you interested in working incredible hours for no
additional benefit beyond your hiring salary? Does the idea of
working endlessly on obsolete technology while 'waiting ' for a slot
to open up on that exciting GUI/DSS/warehouse/HTML subproject
really entice you? Do you define three-tier architecture as an
opportunity to hear what other pro ject members will work on without
your help?"
Seriously, death march projects are rarely billed as such, and it
takes a lot of work when being hired from the outside to discover
if your hiring company is prone to creating death march projects .
In addition, death march projects only look that way. While they
demand the hours, every hour is not productive. After a while,
people find ways to do the things they are being deprived of (pay
bills , run errands) . It just isn ' t billed that way. The environment
still sucks, people hate it.
And, how accurate are those hours that are being billed? Where do
they come from? Got any contractors? Ever heard of "nuisance hours*
or "annoyance hours"? You know, where a contractor overbills
because they can' t stand some of the people they are working for.
(Let me say right now that I've never done it and never will do
it, but know people who have) . The lead or manager does what the
contractor thinks is stupid, and the contractor takes revenge (in
their own quiet way) . And, what about overhead? Are all hours to
be marked to the project, including corporate and department
meetings, training, etc.?
» 2. If a colleague of yours was about to take on the task of
managing a death march project, what is the ONE THING you would
advise him/her to do? «
Try to craft an exquisite exit clause in the contract <VBG>.

INTRODUCTION 39

Seriously, one of the reasons for a runaway is the inability of
someone to hear reality, usually upper management (either side, IT
or business) . Someone taking over a death march has got to find an
angle for them to get some maneuvering room (functionality, cost,
time) in at least one aspect or they are doomed.
» 3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances , when embarking upon
such a project? «
Acknowledge that it is going to be a death march. Doesn't sound
honest but admitting that it's going to be a killer can be
demoralizing for two reasons : one, people don't like to hear that
the next 6-12 months could be hell; two, management usually
underestimates the negatives . Not much hope if you know right out
of the gate that it 's going to be ugly. I had friends who worked
on one project that had management openly admitting that therewas
going to be road-kill on the project. Oddly enough, they had
trouble recruiting internal replacements once the turnover kicked
in.
Seriously, admitting up front that it ' s out of control is already
saying very little for one's management skills. If you ask,
sometimes staff will volunteer ways to help keep it from becoming
a death march. In the death marches I' ve seen, the one thing that
I've seen common to them all is a lack of empowerment among the
s taf f .
- Dave

3. Of course, the project might not have been planned as a mind-boggling
project, and the prospect of ultimate doom might not have been apparent to
anyone. A participant in the ill-fated Taligent joint venture between Apple and
IBM reminded me of this possibility. That project, he reminded me, had previ-
ously existed within Apple under the code-name of "Pink." And, before that, it
was known as SNARC (for "Sexy New Architecture"). The amazing thing, rny
correspondent told me, was that at any point during its seven-year lifetime, dur-
ing any of its three incarnations, it was always perceived as a two-year project.
That perception was true on the first day of the project, and it was a perception
firmly believed by most of the managers who were still working frantically seven
years later, when the project was shut down.

4. John Boddie, Crunch Mode (Englewood Cliffs, NJ: Yourdon Press/Prentice
Hall, 1987), page 20.

5. Scott Adams, The Dilbert Principle (New York: HarperBusiness, 1996), page 2.

6. Ed:

40 DEATH MARCH

At our weekly staff meeting, my team and I had a brainstorming
session on your 3 questions. Here's our answers:
1. Why would anyone in his right mind agree to work on a "death
inarch" project (defined in the terms above)?
Everybody wants to feel wanted Perceived opportunity
Perceived money gain Can't afford to lose job
Brought in from the outside to lead the project
Willing suspension of disbelief
Don ' t care whether project fails, get to work with cool technology
On-the-job-training on new technology
Eternal optimism Challenge
Plain stupidity Chance to prove yourself
To get the job done It's the only project
Your friend is running the project
Your brother is running the project

(It'd take more than friendship)
Your boss said so You have no other life
Nothing better to do Stock options
Existing pay vs. expectation of raiseLove is blind
Resume building Ignorance
Camaraderie
Expectations for how long it will take are too low
2 . If a colleague of yours was about to take on the task of managing
a death inarch project, what is the ONE THING you would advise him/
hex to do?
Leave me out Run!
Keep your eyes open Ask "What's the pay?*
Get a lot of rest before you start the project
Make sure you can trust all of your co-workers
Realize the developers aren't your enemy, the managers are
Try to get management to understand the ramifications of the
project
Communicate. Communicate. Communicate.
Keep the team small Hire new graduates
Keep the team intact Manage scope
Review the design
Focus is a substitute for time
Make sure testing plan is ready when it's time to test
Make sure you have a test plan. Make sure everybody knows.what to do
Documentation is critical Don't rush to code
Keep documentation updated and current
Everyone should have access to documentation
Have regular weekly progress meetings

INTRODUCTION 41

Have daily progress meetings
All code works before you leave at the end of the day
Keep plenty of good coffee on hand Make sure team is happy
Make sure team has everything they need
Use management by walking around
Make sure everyone understands what they're doing
3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances, when embarking upon
such a project?
Don't plan a wedding
Don't have unclear areas of responsibility
Don't allow design changes lightly
Don't assume 1st version is final
Don't become irritated or angry Don't lose your cool
Don't let others lose their cool
Don't forget to back stuff up
Don't expect everyone on the team to be dedicated
Don't get too personally involved in success or failure of the
project
Don't rely too heavily on 1 member of the team
Don't allocate resources lightly
Don't assume team members understand the entire project
Don't overcommit Don't underestimate
Don't refrain from asking questions when you don't understand
Don't start the project
Don't start the project if you haven't got the money to finish
Don't commit to unreasonable dates
Don't be afraid to quit if you feel management is unreasonable
Don't be too hard on overworked, underpaid workers
Don't let meetings last > 1.5 hours
Don't be afraid to bend the rules
Don't forget to have a life Don ' t sweat the small stuff
Don't be afraid to let management know you need something
Don't be afraid to stand up to management
Don't forget to keep your resume updated
Don't accept as gospel info from so-called experts
Don't forget that management doesn't understand how to develop
software
Don't forget that shortcuts just defer work, they don't eliminate
it
Is that enough for you?
-Kevin

7. See Note #2.

42 DEATH MARCH

8. Ed,
As long as you're asking...

»1. Why would anyone in his right mind agree to work on a "death
march* project (defined in the terms above)?«

Because it seems to be a well-thought-out project this time. You've
got someone leading who has a real sponsor in management, the
project plan appears to be solid, the people involved all appear
to be good. Hell, you *want* to work on this thing. Then it
collapses because your sponsor gets taken out in a political
struggle, the project plan turns out to be built on assumptions
that are incorrect, and one or two key people turn out to be flaky.
You can learn to watch out for them, but sometimes you misjudge.
And you don't want to believe that it's happening again. (I'm
assuming some things here. I've only been involved on one large
project, but it certainly went down hard. Delivery date was
October, '94 and later moved to March '95. I was working on the
contingency plan towards the end and left after most of the team
in January ' 95 . The new system still does not exist. The company
is now in the process of purchasing someone else's system that
doesn ' t have half of the functionality they originally required:.)
»2 . If a colleague of yours was about to take on the task of
managing a death march project, what is the ONE THING you would
advise him/her to do?«
I would say to take care of his/her people as much as possible.
Kick them all out of the office on Friday nights and try to make
sure they' re getting sleep. (Thosemonths of 12-hour days sixdays
per week can just burn out the developers, making them either quit
or make too many mistakes .) No matter how badly the work needs to
be done, you' ve got to take care of your people. Sometimes getting
the most out of them requires sending them home. (If you know the
proj ect' s in trouble when you start, you' ve got a long haul ahead
during which you'll need good people.)
Also, make sure that you' ve got the best salary scale possible. It
won't make all the difference, but it should be cheaper than
attrition if it's enough to keep some people on.
»3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances, when embarking upon
such a project?«

Don' t let anyone put serious pressure on the employees besides you.
Run interference to keep the developers free from others who are
trying to ask them to run that 2-minute mile. (Wehad a developer
working for us when I was the IS Manager — and before the .
aforementioned project was started -- who was writing a new

INTRODUCTION 43

commissions system. The Sales VP came down to tell her that until
she completed this system, her -- the sales manager's --
salespeople couldn ' tpay their mortgages . My VPquiterightly threw
her out to let the developer work in peace.) That' s not to say that
you can' t push those employees yourself, but you have to have some
control over the stress levels in the organization if you' re going
to keep them going.
» I' d like to solicit input, feedback, war stories, case studies ,
good jokes, etc.«
This must be where I tell you about how, on that infamous project,
the new President explained to me why he wouldn't sign off on
requirements when asked to. (Needless to say, scope creep was a
major factor in its death.) He was a down-home type who thrived on
people taking his southern drawl as a sign that they were dealing
with a country bumpkin. He had also just orchestrated the removal
of our sponsor -- the previous President -- by killing the project.
His reason for the management group's refusal to sign off on
requirements was that my VP was "going to hold our feet to the
fire" with that document. Inother words, he wouldn ' t agree to sign
the document because he would have to live with it later! At this
time, I knew I really needed to get out of there, and quickly. . .
Steve

9. Ed--
» I. Why would anyone in his right mind agree to work on a "death
march" project (defined in the terms above) ? It' s understandable
that an inexperienced software developer (or someone who hasn't
had the pleasure of reading Scott Adams ' "The Dilbert Principle")
might be bamboozled by management' s claim that the death march is
an anomaly, and that the superhuman efforts are going to
revolutionize the human race, defeat Communism, cure cancer, etc.
But after you've heard this pitch two or three times, it sounds
like a broken record. So why do we get sucked into this again and
again?«
The "heros" are needed, wanted, desired. They are certain of their
place in history, if only they can keep this project from outright
sinking under its own weight.
The same people take on EMT work and enjoy firefighting
(literally). If you only win once in ten times, but everybody else
lost all ten, wouldn't you be a hero, too?
»2. If a colleague of yours was about to take on the task of
managing a death march project, what is the ONE THING you would
advise him/her to do? (The "one thing" motif was suggested by Jack
Palance in the wonderful movie "City Slicker", starring Billy

44 DEATH MARCH

Crystal)«
I ' d encourage him to keep his sense of humor. It may be gallows
humor, but it's all that such a group has. <sigh>
»3. Conversely: what is the ONE THING you would advise your
col league NOT to do, under any circumstances, when embarking upon
such a project? «
I would encourage him (and excuse me, it would be a him in 99/100
attempts) to not invest in options or get a large mortgage. You
can only take high risk in one arena at a time, without risking a
total wipeout of personal assets.
I once said that I would be willing to take a certain job whose
incumbent tended over a seven year period to last no longer than
a year . I figured that three months ' salary would provide enough
savings to recover from the inevitable.
—Sharon

W.Ed,
« 1. Why would anyone in his right mind agree to work on a "death
march" project (defined in the terms above)? »
For me, it was ego, pure and simple. They told me that they just
KNEW I could help prevent the project from becoming a death march.
I was made the "technical project manager, " given-ego boosts on a
regular basis, then hung out to dry along with the rest of the
team. Left, right, left, right, left, PLOP!
(The really embarrassing thing is, I let these same people do it
to me AGAIN just one year later . Once I began to feel myself falling
into the step of the death march, I ran like hell for the door.
Me, and about 60% of the rest of the staff. BTW, It's been four
years now since I first got suckered in, and neither system has
ever seen the light of day, nor will they.)
« 2. If a colleague of yours was about to take on the task of
managing a death-march project, what is the ONE THING you would
advise him/her to do? »
To quote those mad Englishmen in "Monty Python and The Holy Grail *
I would say "RUN AWAAAAAYYYYYY! ! ! " . It sounds like a flip answer,
but it isn't really. Some of the most damaging effects of a death
march project are psychological. Lower self esteem, depression,
anxiety and sudden mood swings are all behaviors I have witnessed
(and sometimes experienced) during these projects. I've seen at
least one marriage break up in no small part because the partner
involved in a death march let it consume her so totally that she
became an entirely different person, one whom her husband (andmost
of the rest of us) had no desire to be around. I know another woman
who, when a three year "death march" ended with the project being

INTRODUCTION 45

cancelled, said that it was the only experience in her life that
even approached the heartbreak she felt when she miscarried during
the sixth month of pregnancy. Now that's trauma. If you can get
out, go.
« 3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances, when embarking upon
such a project? »
If you can't beat 'em, this is one case where you do NOT want to
join 'em. Do not let yourself become too emotionally attached to
the outcome of this project. Like POWs on death inarches, think about
anything else but the march in order to survive. Try to go to work,
grind out your day's brick for the wall, and go home. If you want
stimulation and personal reward, readabook, join a social club,
volunteer at the local animal shelter or buy a kiln and throw some
clay pots. Do anything to keep your mind off of work as much as
possible. The moment you get too attached to the project, the guards
with the rifles win and you, the lowly POW, lose.
Paul

ll.Ed
Sounds like you are going to have a lot of fun this summer.
»1. Why would anyone in his right mind agree to work on a "death
march" project?
Since you mentioned "City Slickers', the movie that used such
regrettable sexual stereotypes, I am somehow prompted to reply
•testosterone*, which is about the same as "because it' s there."
There areplenty of jobs thatraise the'why? ' question. Underground
mining, cowboying, logging, smoke jumping, jet fighting,
submarining, even high rise window washing all have serious
drawbacks far beyond what you describe for software projects, and
yet all these have practitioners whose sense of self is linked to
their profession.
But if you really think that reasons are needed, here are a few:
a. We think we learned so much in the last experience that it would
be a waste to not find a project on which it could be applied.
b. We know that some of our colleagues are going to be suffering,
and we don't mind doing our part to lessen their burden.
c. It's like a lottery ticket — despite the odds, we can imagine
the possibility of large rewards if we win big.
d. The high level of urgency that arises during these difficult
projects redistributes power to those who know how to resolve
the crises, i.e. us, and we like power.
> 2. If a colleague of yours was about to take on the task of
managing a death march project, what is the ONE THING you would

46 DEATH MARCH

advise him/her to do?
Remember that the people who love him/her love him/her for reasons
that have nothing to do with the project.
> 3. Conversely: what is the ONE THING you would advise your
colleague NOT to do, under any circumstances, when embarking upon
such a project?
Since "this is the way it's been for a long time, and this is the
way it's gonna continue to be, " don't try to work at a pace that
you can't sustain healthfully for a long time.
Al

12. As I was finishing the writing of this book in late 1996, art article appeared in
the New York Times describing a slightly modified strategy for the first mission to
Mars: send the astronauts with enough food and water to live a "normal" life of
40 years on Mars, but without any fuel for their return. The rationale was that a
lifetime supply of food and water would weigh considerably less than the fuel re-
quired to make a return trip. The amazing thing is that it was presented at a re-
cent scientific conference as a serious proposal, and that approximately one-
third of the conference attendees indicated that they would be willing to sign up
for the one-way trip!

13.Ed,
As I talked on another thread the other day, projects are like a
marriage. We tend to start off naively and full of hopes and slowly
as reality sets in, we have to reassess our expectancies within
the relationship. There are many reasons apart from *logic* that
attract people together into a marriage and it is the same case
with projects. With a predominantly youthful workforce, it is
likely that the "death march* project will occur again and again
as a training ground for managers and developers alike. And, as I
know from personal experience, I often repeat the same mi stake many
times before the penny drops.
Nietzsche, the German philosopher in the last century said that
"society is governed by mediocrity". What he was presumably
implying here is the central, conservative-stream will tend to
dominate behaviour and control events. This central-stream is
hell-bent on preservation from the extremes and will draw the
blinds on anything that threatens their positions. What we are
really asking for in IT is a radical re-shaping of the way projects
aremanaged, with open vertical andhorizontal communication. . and
an openness to radicalism. This is very threatening for the central
core of the typical task, role, club organisational culture. An
Organisation with a cuture of existentialism has a much better
chance of developing good project on a regular basis but these

INTRODUCTION 47

Organisations are still a rarity.
An old girl-friend of mine who is in a leading position in one of
the Major Business Schools regularly seeks advice from me as to
how to overcome the deluge of internal politics and methods that
are stifling their practices, certainly a case of not practicing
what they preach! In addition, Computer Science departments the
world over are paying scant regard to People and Management issues
as the Lecturers themselves are, in general, inept outside of the
technological framework.
So perhaps it is inevitable that, with an inappropriate education
and cultural backdrop, we can expect "death march" projects to
continue to be the norm. . . But looking at it from another
perspective, these "deathmarch" pro j ect s are the essential grist-
for-the-mill for the few success stories that make the whole show
worthwhile.
--David

14. My colleagues have reminded me that in the late 1990s, COBOL program-
mers are actually in short supply because of the massive Year-2000 conversion
projects underway. However, I believe this is a relatively short-term phenome-
non; the prospects for COBOL programmers are pretty bleak after New Year's
Eve, 1999.

15. This scenario is far more common in North America than it is in Western Eu-
rope or in the Pacific Rim countries that I've visited. While companies around the
world have engaged in reengineering projects, it's less common, outside North
America, to see the "radical" reengineering projects that eliminate large num-
bers of employees. And for the same reasons—cultural traditions, social policies,
government regulations—there are fewer death march projects in these coun-
tries. The workers, especially in Western Europe, are far more likely to be shield-
ed from excessive overtime and to refuse adamantly to give up their sick days,
vacation days, holidays, personal days, and other forms of time off. Whether this
is a good thing or a bad thing is outside the scope of this book.

16.Ed,
»why do they do it??«

I think they do it because, as Al, suggests, they think they're
better than others who have tried. And, sometimes they really are!
(That doesn't eliminate the death march. In fact, it probably

prolongs it.)
I've told you before, I think everyone should be on at least one
of these projects. However, there are some other things that you
should do at least once:
+ Spend a night in jail.

48 DEATH MARCH

•*- Get commode-hugging drunk
+ Raise a boy
+ Raise a girl
+ Start your own business
+ Climb Mount Fuji
(The Japanese have a saying:
"He who fails to climb Fuji-san is a fool. He who climbs Fuji-san
twice is an even greater fool.")
One thing to do:
Get a good manager, who is empowered to do the right things.
One thing not to do:
Kill yourself when the project goes south.
-Sr. ric

Beware the politically obsessed. They are often bright and
interesting, but they have something missing in their natures, there is a
hole, an empty place, and they use politics to fill it up. It leaves them
somehow misshapen.

Peggy Noonan

What 1 Saw at the Revolution, "Another Epilogue" (1990)

The political arena leaves one no alternative, one must either be a
dunce or a rogue.

Emma Goldman

Anarchism and Other Essays, "Anarchism: What It Really Stands For" (1910)

To "know your place" is a good idea in politics. That is not to say
"stay in your place" or "hang on to your place," because ambition or
boredom may dictate upward or downward mobility, but a sense of
place—a feel for one's own position in the control room—is useful in
gauging what you should try to do.

William Safire, Before Tht Fall, Prologue

49

50 DEATH MARCH

Politics are a factor in every software development project, no matter how
much we might want to deny it; the distinguishing characteristics of
death march projects is that the politics are usually so intense they can
overwhelm the effort to get any work done. Thus, while the process asso-
ciated with politics, namely the political process of negotiation, will be
discussed in a separate chapter, it's important to acknowledge the exis-
tence of politics in this chapter and to offer some general advice.

Many software developers will argue that while politics exist, they
would prefer to steer clear of the whole ugly mess. That's understand-
able—many of us who gravitate to the software field are socially inept
and politically naive: not only do we find political games nauseating, but
we know that we won't do well if we try to play the "game" of politics.
That's fine, as long as someone (typically the project manager) can handle
the politics. But, if everyone participates in a death march project on the
assumption that, "because this project is so important, they'll leave us
alone and spare us the usual messy political negotiations," then the
project has far fewer chances of success.

I'll discuss three aspects of politics in this chapter:

• Identifying the political "players" involved in the project
• Determining the basic nature of the project
• Identifying the levels of commitment of project participants

2.1 IDENTIFYING THE POLITICAL "PLAYERS"
INVOLVED IN THE PROJECT

The key point to remember here is that your chances of success in a death
march project are effectively zero unless everyone on the project team
knows who the key players are. Some of them will be noisier than others,
and some will be supporters and friends; but, some will be vocal oppo-
nents of the project, and others will be waiting for the chance to stab the
project manager in the back. It's easy to forget this while juggling a thou-
sand other management crises and technical problems^ but it's essential.

I believe that it's imperative for everyone on the project to know who
the key players are—even if it's the project manager's job to interact with
all the external players on a day-to-day basis. On rare occasions, a

POLITICS 51

"skunk works" project will manage to isolate all of the project team
members from the rest of the human race while the work is being done,
but that's unusual. Indeed, in today's world, even a "skunk works"
project isn't completely isolated—because everyone is connected to ev-
eryone else via e-mail and the Internet. And in normal working environ-
ments, everyone is bound to have some interaction with other technical
colleagues, as well as managers above and outside the project, and van
ous members of the user community, during the course of the project. It 's
inevitable—we bump into them in the hallway, in the cafeteria, or in the
restroom.

Thus, if a project team member receives an apparently innocent
phone call, e-mail message, or casual question in the hallway from an ap-
parently friendly middle-level manager asking, "So, how's the project
coming along?" it's important for that team member to know whether
the message is from a friend or toe, and whether it's thus likely to have
political overtones. Whatever answer you provide to the casual question
is likely to be carried back to other part&of the organization, and it's not
uncommon to see the information amplified, distorted, or buried. As
Dale Emery observed in an e-mail message to me [I]:

In general, I've observed that if there is a constituency
whose input is relevant, the developers will often get it
anyway, though perhaps in a more expensive, more
distorted way than if the manager weren't trying to
keep it from them. Other times, the developers will
simply make assumptions about what each stakehold-
er needs.

The typical "players" in a death march project are the following:

 Owner

• Customer

• Shareholder

• Stakeholder

• Champion

I'll discuss each of these below.

52 DEATH MARCH

2.1.1 Owner

The owner is traditionally the person who accepts, authorizes, or pays for
the system and/or the results of the project. It's obviously important to
identity this person and do anything possible to keep him or her happy
during the course of a death march project.

It's amazing how many software projects take place without anyone
having the faintest idea of who the owner is; this is particularly common
in organizations where projects are spawned by ambitious and over-
eager IS/IT professionals who reassure one another with statements like,
"I'll bet the marketing department will be really ecstatic when they see
this new system we're building for them." Obviously, well-managed or-
ganizations would never let such projects get started—but the major
point to keep in mind here is that you won't see many death march
projects initiated without a clear command from an owner. The reason is
simple: such projects involve extraordinary expense and/or risk and/or
schedule constraints. The IS/IT department is unlikely to invent such
projects on its own initiative, and the normal bureaucracy in the organi-
zation would prevent the project from being scheduled and funded un-
less a strong, vocal command is issued by someone willing to take
authority.

This raises another interesting point: The owner of a death march
project often turns out to be a much higher-level manager than would be
the case for a normal software project. Indeed, it sometimes turns out to
be the President or CEO of the organization, because the project affects
the very survival of the company. Even if it's only a Vice President, the
point is that the owner of a death march project often has much more
clout, and much more latitude when it comes to authorizing expendi-
tures and exceptions to bureaucratic restrictions, than might be the case
for a normal project.

On the other hand, this doesn't mean that the rest of the political hi-
erarchy has disappeared; indeed, one of the problems with many death
march projects is that the project manager has little or no direct contact
with the owner. Authorization for the project, as well as periodic de-
mands for status reports, may be filtered down the chain of command
from the high-level owner to the middle-level manager who sits just

POLITICS 53

above the death march project manager. And all of these intermediate
managers between the real owner and the project manager may be, in
the terminology discussed below, either customers, shareholders, stake-
holders, or champions—or political enemies of the project.

The reason it's important to keep this in mind is that the owner's
original demand for a death march project can be easily distorted before
the project manager receives his or her marching orders. Most often, the
non-negotiable aspect of the death march project is the deadline: The
new Super-Widget System absolutely, positively must be finished by the
first of January or the world will come to an end! But, as that order is
transmitted down the chain of command, the organizational bureaucracy
will tack on its own list of additional constraints: The project must be pro-
grammed in a combination of Ada and RPG; the team must include
George, Harriet, and Melvin (because they're so incompetent that no
other project will take them); it must use the organization's newly-creat-
ed (but never-before-used) object-oriented methodology; it must suffer
weekly visits from the methodology police; the project team members
must fill out the 17-page form XJ13 in triplicate at the end of each work-
day; and, . . . the list goes on.

In situations like this, a face-to-face meeting with the high-level
project owner can sometimes result in all of these idiotic constraints be-
ing eliminated, by executive fiat—'all except one: the deadline. But, if the
project manager has a written authorization that exempts him or her
from the other ridiculous rules (which may well be the reason no other
project has even been finished on time!), it may be possible to finish the
death march project within its required schedule constraint. And, if the
high-level owner can be convinced that some extra money is needed in
the budget for equipment, tools, or even a slush fund for weekly pizzas
for the project team, the project manager can usually obtain it, even if the
bean-counters and penny-pinchers elsewhere in the organization would
normally do their best to prevent it.

Obviously, not all high-level owners are so cooperative, and not all
project owners occupy lofty positions within the organization. But the
point remains: While it's important for any project to identify its owner,
it's doubly important for death march projects. And my experience has
been that in a majority of cases, the high-level project owner is far more

54 DEATH MARCH

likely to be a friend than a foe. It's in the owner's interest to cut through
the red tape and eliminate the bureaucratic constraints, which is almost
always a blessing tor the project manager.

However, keep in mind that the project owner may not be the person
who actually uses the system when it's installed; nor is the owner the
only one who has a political impact upon the project. The other players,
discussed below, also must be kept in mind.

2.1.2 Customers

The customer is the person—or, in many cases, the group of persons—
who will use the system when it is finished by the death march project
team. It's common, in organizations around the world, to refer to this
person (or group) as the "user." Customers may also be owners of death
march projects; but, a tar more common scenario is the one where the
customers are administrative or clerical users who will interact with, and
operate, the system developed by the death march project team.

The politics associated with project customers are discussed in most
project management textbooks, and I won't cover the subject in much de-
tail; suffice it to say that all of the politics are magnified in a death march
project. We know, for example, that the customer is usually the source of
the detailed requirements for a system, because the owner (and various
other high-level managers) have little or no experience with the actual
operation of the business application, and tend to view the operational
terrain from a height of 30,000 feet. But, despite the necessity of commu-
nicating directly with the customer/users to elicit the detailed require-
ments of the system, we know that in many projects, the owner (or other
managers) will tell the project team not to talk to the users because
" they're too busy," or because "I can tell you everythingyou need to know
abouttheirrequirements," or various other excuses. Finally, we know that
in normal projects, the customers can ultimately sabotage the project by
refusing to use it, or by complaining that it doesn't meet their needs.

All of this is true for death march projects as well, with one additional
caveat: The customers) may not be aware of the extraordinary politics,
constraints, or pressures associated with the death march project. This
can create a disaster if someone on the project team marches up to a cus-

POLITICS 55

tomer and says, "Hi—I'd really appreciate it if you could interrupt your
work now to describe your requirements, because if our project is late,
the entire company will go bankrupt. But of course, if the project does
succeed, you'll be out of a job too, because the whole point of our new
system is to facilitate a massive downsizing effort that will eliminate the
entire 700-person clerical department you belong to."

2.1.3 Shareholders

Shareholders are effectively "co-owners" of a system; while they may not
have the authority to initiate a project, or to accept its results, or to ap-
prove the budget, they have a vested interest in its outcome. Indeed, they
do share the budget in many cases, along with all of the other benefits
and risks associated with the project. Think of them as members of a
"Board of Directors" with the owner as "Chairman of the Board." The
shareholders may or may not get together on a regular basis, and they
may not have any explicit contact with the project team; but they're
shareholders nonetheless.

Thus, to a large extent, the project team and project manager can treat
the shareholders in much the same way they treat the owner—the key
point here is that the shareholders must not be forgotten or ignored. It's
hard to overlook them, for they tend to throw their weight around and
make their voices heard; they're also present in many of the meetings and
presentations associated with the death march project. On the other
hand, there's a tendency on the part of some project managers to avoid
these individuals if possible, on the theory that the project owner can
speak for the group—and understandably, the project manager feels that
every moment spent coddling a shareholder is a moment that could have
been spent working on the project. But, just as the shareholders can par-
ticipate in the decision to authorize, approve, and pay for the death march
project, they can be involved in the decision to cancel the project. If they
feel they are being ignored, they are that much more likely to do so.

Consultant Dave Kleist identified an interesting form of shareholder
in a recent e-mail communication [2]:

56 DEATH MARCH

In several of the death march projects I've experi-
enced, I believe that there is a variation of shareholder
that is very important to identify: the vendor, espe-
cially if they have people on site to work on the
project.

Actually, if a vendor(s) is involved, there may be several categories of
shareholders. The vendor's market representative is often more con-
cerned about making the sale and earning a commission than whether
the vendor's products actually work and the project succeeds. If the ven-
dor has installed consultants, technicians, or other individuals who will
work with the project team, then a slightly different set of political agen-
das will emerge.

2.1.4 Stakeholders

The distinction between shareholder and stakeholder may seem aca-
demic, but it's an important one. Stakeholders are those who have a
"stake" in the outcome of the project, even if they don't have an explicit
decision-making role in its conduct or progress. Customers, in the sense
discussed above, are obviously stakeholders, and so is the owner and
other shareholders.

Other stakeholders might be members of the management hierarchy
who will have to abandon their old information systems if the new sys-
tem is finished on time. Or, they might be members of unions, or suppli-
ers, customers, or competitors. They might even be other members of the
IS/IT organization; for if the death march project succeeds, it could have
an impact on methods, tools, or other aspects of the way "normal"
projects are conducted. Paul Neuhardt pointed out another common
form of stakeholder in a recent e-mail message to me [3]:

You missed "the inner circle." These are the people
who have no direct stake in something yet they have
influence with those who do, an opinion on what
should be done and a burning need to inflict their
opinion on others. Also known as "the closest advi-
sors," these people often spend time whispering in the
ears of decision makers in soft, subliminal tones and

POLITICS 57

can turn a friend into a foe overnight without you even
knowing that it happened.

This sounds like stakeholders are "enemies" of the death march
project, and I don't mean to imply this; stakeholders can be allies anc
valuable supporters too. They can put in a good word during the kibitzing
that inevitably takes place behind the backs of the project team members;
and they can supply all kinds of assistance—tangible and intangible—to
the project team if they feel it's worthy of support. Indeed, if the death
march project is regarded as an "underdog" that somehow got involved
in a "David vs. Goliath" battle, even those members of the organization
who have no stake at all in the outcome of the project will sometimes
step forward and offer support.

Notwithstanding the possibility of this kind of support, there is prob-
ably a higher likelihood that the stakeholders will be critics and enemies
of the project. The reason is simple: A death march project is more likely
than a normal project to represent a severe change in the status quo; and
one of the basic principles of politics is that individuals and organization-
al cultures automatically resist a change in the status quo, even if they can
be convinced intellectually that the change is important and necessary.
So, while the project team obviously wants to welcome stakeholders who
turn out to be friends of the project, it also needs to be alert to the possi-
bility of stakeholders who will throw road-blocks into the schedule and
the project plan.

One other point to keep in mind: The existence and identity of the
stakeholders is not always obvious, because they're not part of the formal
organization chart. If the system has an explicit impact on the labor
union, or on the clerks in the order-entry department, then it isn't hard to
identify them as stakeholders. But, if there's a crusty old project manager
who plays golf with the VP of Information Systems, and if that project
manager is muttering to himself, "If that death march project succeeds,
then we'll all have to learn Smalltalk, and I'm still convinced Smalltalk is
a Communist plot," then you've got a silent stakeholder that could have
a subtle, but important, impact on the project.

58 DEATH MARCH

2.1.5 Champions

Just as there are potential enemies of the death march project, there are
also friends—includingfriends so powerful and so helpful that they come
to be known as champions. The best of all worlds is the champion who is
also the project owner; champions may also come from the ranks of cus-
tomers, shareholders, or stakeholders. Champions, however, are often
outside the normal set of political players in the project. The champion
might be rooting for the success of a young project manager that he or
she considers a protege; or, the champion might be concerned about the
overall success of the project because of the impact on the reputation and
credibility of the IS/IT department or entire organization. Most often, the
champion is intrigued by the technology "silver bullet" with which the
death march project manager hopes to accomplish miracles—whether
it's Java, OO technology, or a new client-server development tool, the
champion may have seen earlier demonstrations of it, and may even
have been the one who suggested that the project manager use it for the
death march project.

Every project can use a champion or two, but death march projects
really need them. The reason should be obvious from the discussion
above: Projects like this already have plenty of critics and enemies, along
with those who will second-guess every decision that the project manag-
er makes. There will be numerous occasions throughout the project
when someone in a management meeting will complain that, "Those
hotshot techno-nerds on the Titanic Project have ordered seven copies of
Visual Basic Enterprise without going through proper channels. Not only
that, the project manager took $32.98 out of petty cash to buy Mc-
Donald's hamburgers and French fries for the project team last Friday.
Why, I could smell the French fries all way down the hall in my office'! [4]
We can't let them get away with this blatant disregard for company poli-
cy!" The champion is the one who can stop all of this nonsense by saying,
"Trust me; these kids might be a little feisty, but they'll get the job done.
Leave them alone."

This won't work, of course, unless the champion has a great deal of
credibility within the organization's political circles—without this, he or
she is not a champion at all. But, it often means that the champion will be

POLITICS 59

a veteran within the organization, deemed older and wiser than the hot-
headed project manager and the death march volunteers who still have
the stamina to work 18-hour days for months on end.

Bottom line: A project champion is more important than the latest
methodology or razzle-dazzle programming language. A death march
project without a champion to defend the team's disregard for bureau-
cratic rules and to support the team's decision to use risky techniques and
technology is a lonely, miserable experience. I don't recommend it. If
your champion is also the project owner, and if there aren't any other
shareholders to worry about, and if your owner/champion is persuasive
enough and involved enough to deal with the stakeholders, then you
may have the luxury of ignoring all of these political issues. But unfortu-
nately, most death march projects don't have that luxury; while it's usu-
ally the project manager who takes on most of the burden of dealing with
the situation, everyone else on the team needs to be at least minimally
aware of the cast of political characters.

2.2 DETERMINING THE BASIC
NATURE OF THE PROJECT

In the previous chapter, I described several characteristics of death march
projects: They can be big or small; they can involve one homogeneous set
of customers or an incompatible, heterogeneous group; and, they can be
affected by different combinations of schedule, budget, and resource
constraints.

But, there's another way of characterizing these projects, and it's
likely to have a significant political impact on all concerned. As illustrated
in Figure 2.1, there are two key issues that can be mapped onto a two-
dimensional grid; the horizontal axis represents the chances that the
project will succeed, while the vertical axis represents the satisfaction or
happiness that the project team members feel while the project contin-
ues. One way of determining where the team members would place
themselves on the vertical axis is to ask, "When this project is over, would
you consider taking on another death march project?" Or, more simply,
"Are you in pain?"

60 DEATH MARCH

FIGURE 2.1 THE DEATH MARCH PROJECT STYLE QUADRANT

There's no particular scale on this chart, and the boundaries between
the four quadrants are rather arbitrary; even so, I have yet to find a death
march project that can't identify which quadrant they're in (though they
may not have thought about it before I ask the question and draw the
picture for them). It's highly doubtful that anyone initiated the death
march project with the explicit intention of placing it into a specific place
on the chart, but the combination of politics and project constraints (bud-
get, schedule, etc.) will push the project in one direction or the other.

The descriptions of the four quadrants are also rather arbitrary, and
you should feel free to change them to fit your organization's cultural id-
iosyncrasies. Here are the basic characteristics of the four quadrants:

• Mission Impossible projects—this is the kind of project glorified by
the old TV series and the new (vintage 1996) Tom Cruise movie.
The odds are heavily stacked against the project succeeding, and
there are all manner of villains and traitors plotting the demise of
the team. But, the project manager is a handsome Hollywood hero,
the technical hackers are clever geniuses, and the team has God on
its side. The team members are fanatically loyal to one another
(notwithstanding the twist in the Tom Cruise movie), and it's clear

POLITICS 61

that each individual thrives on the challenge and thrill of "living on
the edge." And, while it's rarely indicated in the old TV series, the
real-world mission impossible project teams typically do dream of
fame, glory, and riches if they succeed. And, their mission is to suc-
ceed; they are convinced that a combination of hard work and
technical virtuosity will make that possible.
Ugly projects—these are the projects whose team members are sac-
rificial lambs that will be slaughtered by a cold-blooded project
manager to bring the project to a successful end. Projects of this
kind usually have the"Marine Corps"mentality discussed in Chap-
ter 1—e.g., the project manager will be constantly haranguing his
or her team that, "Real programmers don't need sleep!" The impli-
cation is also that "real" programmers don't have to go home to
visit their families, nor do they have to visit their aging parents in
the hospital, nor do they have to do anything else that would dis-
tract them for a moment from the demands of the project. In
projects like this, it's not uncommon to see one or two of the project
team members collapse from exhaustion, suffer ulcers or a nervous
breakdown, or experience a divorce. And when it happens, the
project manager chuckles, and tells the other team members that
the unfortunate victim is a weakling who deserved his or her fare.

The key characteristics of the ugly project are that (a) the
project manager is determined to succeed, (b) the project manager
is determined to survive, and thus profit from the success of the
project, and (c) the project manager is willing to (and indeed expects
to) sacrifice the health and happiness of the project team members
to succeed.

Suicide projects—-in these projects, everyone is doomed, and every-
one is miserable. The team members and the project manager have
typically agreed to work on the project only because the alternative
is being fired; and they know from the outset that there is no
chance at all of succeeding. They can't afford to quit, they have no
project champion, they have all the cards stacked against them...

Kamikaze projects—these projects are doomed too, but everyone
agrees that it will be a glorious failure, and one they will be proud
to be associated with. The technical members of the project team

•

•

•

62 DEATH MARCH

sometimes derive their happiness from the opportunity to work
with advanced technology they've never used before, and which
they assume they'll never see again after the project collapses. The
project manager hopes that the project will be an inspirational les-
son to future project managers. Sometimes, kamikaze projects are
associated with a doomed company whose glorious past has cre-
ated such fierce loyalty on the part of the team members that they
feel it is an honor and a privilege to be allowed to sacrifice them-
selves in a doomed project whose failure will be the company's last
hurrah. Of course, there is a small chance that the project will suc-
ceed, and the company may survive; and even if the project team
members utterly destroy themselves in the course of bringing
about such a miracle, they will feel good about it.

From the comments above, you can probably tell that I'm in favor of
mission impossible projects, and I admire kamikaze projects; I sympa-
thize with those who have ended up on suicide projects; and I detest ugly
projects. But that's my value system, and it may not be the same as yours.
More important, it may not be the same as your project manager's value
system; or, if you are the project manager, you may find that your value
system is different than that of your team members'. For obvious reasons,
it's a good idea to have everyone in the same quadrant. It's difficult to
succeed with a mission impossible project if one or two key members
think they're on a suicide mission.

Also, remember that public assurances from the various sharehold-
ers, stakeholders, and miscellaneous managers surrounding the death
march project may or may not be honest indications of the real situation.
One would like to hope that a project owner would not create a suicide-
mission-style of death march project, but stranger things have happened
in big companies—it may be part of a larger political battle that the
project owner is fighting. Quite often, senior management has a broader
scope of information which provides a more realistic picture of the
project's chances of success. Your Vice President, for example, may be
fully aware that a merger/acquisition is going to be publicly announced a
week before the deadline of your death march project, and your project is

POLITICS 63

going to be canceled at that point, no matter how well or poorly it's do-
ing. C'est la vie.

The most common danger, though, is getting involved with an ugly-
style death march project, in which the project manager refuses to ac-
knowledge that he/she plans to sacrifice team members whenever it's ex-
pedient. Fortunately, it's usually easy to spot these situations, even when
the manager refuses to acknowledge it. The "macho" behavior, and the
denigrating references to weakling team members who can't keep up
with the performance of "real programmers" are dead give-aways to the
manager's attitude. Obviously, if you have a "Marine Corps" mentality,
and are both willing and able to meet any physical, emotional, political,
and psychological demands, then this won't matter to you.

Managers of ugly-style death march projects are often brought in
from the outside, either at the beginning of the project or after the first
project manager has quit or been fired. The new manager often has no
past history or personal relationship with anyone in the company, and
thus has less hesitation than might be expected when pushing the team
members to work harder and longer. Indeed, I've seen several situations
where the project manager is a "hired gun" who moves from company to
company to take on the challenge of such projects. The manager typically
delivers a successful project result—that's why he or she has got the rep-
utation that allows him or her to charge hefty consulting fees—but the
project team members are so disgusted and exhausted that they all quit at
the end of the project (if not before), and the project manager has made
so many enemies that he or she, too, has no choice but to pack his or her
bags and move on to the next death march project. It's a perfect role for
Clint Eastwood, and it's a situation to watch out for if someone bearing
his likeness rides into town to take over the death march project you've
just signed up for [5].

The best time to deal with these issues is before the project begins; as
part of choosing the team members, the project manager should provide
an assessment of what kind of death march project he or she expects it to
be, and then ask prospective team members (a) how they assess the
project, and (b) how they feel about occupying one of the quadrants in
the diagram above. As I'll discuss in Chapter 4,1 feel very strongly that
the manager of a death march project must have the freedom of choosing

64 DEATH MARCH

the members of his or her team; and in addition to choosing the appro-
priate technical skills, it's also crucial to choose individuals who have a
compatible assessment of the "style" of the project.

The situation is different, of course, if you're a prospective member of
a death march project team, and you're being interviewed by the project
manager. As discussed in Chapter 1, sometimes you don't have a choice
about participating in the project, and contrary to the advice given in the
previous paragraph, sometimes the project manager doesn't have a
choice about whether to accept you as a member of the team; in this case,
it's at least helpful to know how your manager assesses the project. If you
do have the option of saying "No, thanks!" to the death march project,
then it's all the more important to ensure that your assessment of the
project is compatible with that of your manager. As discussed above, it's
doubly important if your manager intends to carry out an ugly-style
death march project; you need to ask yourself whether it's likely that you
will be one of those sacrificed during the course of the project.

Remember also that the situation can change dynamically during the
course of the project—because of the progress (or lack of progress) made
by the team, because of the political situation outside the team, or because
of physical or emotional exhaustion on the part of team members, etc.

2.3 IDENTIFYING THE LEVELS OF
COMMITMENT OF PROJECT PARTICIPANTS

One last item needs to be discussed: the level of commitment the various
project team members are willing and able to make to the project. To un-
derstand the notion of "commitment," recall the old parable about the
argument between the chicken and the pig as to whose contribution to a
bacon-and-eggs breakfast was most important.

"I work incredibly hard to produce those eggs each morning," the
chicken says. "And they are the centerpiece of the breakfast meal."

"Well, there's no question that you're involved," replies the pig. "But
I'm committed."

Paul Maskens responded to this parable with the following observa-
tion [6]:

POLITICS 65

I'm not sure you will find any old pigs in development,
perhaps more chickens. I think that kind of commit-
ment continues until (inevitably?) you get into the first
death march project—then there is a rude awakening.
Either the pig realises what's happening, this is the
slaughterhouse! RUN!! Or the pig is making bacon...

The level of commitment by team members is usually strongly influenced
by the overall "style" of the project, as discussed above; for example, if
everyone realizes they've been assigned to a suicide project, then they'll
probably exert no more effort and emotion than absolutely necessary.
And, even if management insists on large amounts of involuntary over-
time during the project, you'll find that team members are spending
evening hours and weekends (times when the high-level managers who
imposed the overtime are virtually certain not to be present) catching up
with personal phone calls, writing letters to their families, or sitting
around the coffee machine shooting the breeze with one another.

Similarly, an ugly-style project will have a level of commitment dic-
tated, or at least strongly influenced, by the demands of the project man-
ager. My experience has been that the ugly-style project manager is
willing and able to make the same level of physical and emotional com-
mitment to the project that he or she is asking of everyone else; thus, if
the project team is in the office on Saturday and Sunday, the ugly-style
project manager will be cracking the whip over them.

But, what about the kamikaze- and mission impossible-style proj-
ects? And, what about a death march project that nobody wants to char-
acterize as being in one of the four quadrants suggested in Figure 2.1? In
these situations, it's essential that the project manager get a realistic as-
sessment of the limits that the team members have placed on their com-
mitment to the project; and, for any of the project team members who are
contemplating making an enormous sacrifice to their personal life for the
next several months, it's important that they know whether they can ex-
pect a similar level of commitment from their colleagues.

In the best of all cases, everyone will provide an honest assessment of
their commitment and their constraints. "I'm 100 percent committed to
this project," someone might say, "but my sister is getting married just

66 DEATH MARCH

before the deadline in June, and Til be gone for three weeks, no matter
what. I'm sorry the schedule worked out that way, but her wedding is the
most important thing in my lite." Since the rest of the project team
doesn't even know the sister, this might be regarded as a frivolous excuse
to disappear during the crucial final weeks of the project development ef-
fort—but at least the team member is being honest about his or her level
of commitment [7].

Unfortunately, not everyone is able to announce a schedule of their
personal commitments. A typical team member might promise a 100-
percent commitment to the project, but if he or she has a child that has to
be taken to the hospital, all bets are off. And of course, there's always the
chance that a team member will win the grand prize in a lottery and re-
ceive a once-in-a-lifetime opportunity to take the entire family to Tahiti
... and who knows what other unpredictable events might pose a chal-
lenge to an otherwise sincere promise to devote oneself to the death
march project on a 100-percent basis? [8] It's unrealistic to ask everyone
to anticipate all the possible situations that might arise, but it is realistic
for the project manager to provide an explicit and realistic picture of the
level of commitment he or she expects from the team members. If a two-
week absence to attend your sister's wedding is going to be considered
an act of treason, far better to know about it in advance.

Brian Pioreck reminded me in a recent e-mail message that it's also
crucial for the team members to be aware oteach other's level of commit-
ment, which the project manager can also accomplish through appropri-
ate communication [9]:

I think you also have to make their commitments pub-
lic through the use of a project plan. Everyone sees the
total involvement of all team members this way and
what their own involvement means to the project. It is
up to the project manager to communicate this and
make their commitment match their effort.

POLITICS 67

2.4 SUMMARY

The discussion in this chapter doesn't provide any operational advice
about managing, planning, or carrying out a death march project. But,
style and substance are inextricably entwined in many aspects of life.
Even if a death march project is following all of the "rules" about design-
ing, coding, and testing a software system, the "style" issues discussed in
this chapter can kill it.

Once we've identified the key players in the project, determined the
"style" of the project, and communicated the level of commitment that
the manager expects and the team members can realistically promise—
then it's rime to move on to the real work of the project. That begins with
an even larger issue of politics: negotiation, which I'll discuss in Chapter 3.

Notes

I. Ed,
»Are there any other significant constituencies that I've
missed? «
Yes. Developers, the people whose death is referred to in your
title.
» How important do you think it is for _all_ of the project
team members to be aware of the existence of these
constituencies and whether or not they can be viewed as a
•friend" or "foe" of the death march project? I personally
believe that everyone on the team _should_ know this
information, but I have manager friends who believe that this
is too distracting, and that the developers should be spending
every ounce of their energy on the project itself, while the
project manager (who presumably is more politically adept)
spends his or her time dealing with the outsiders. What's your
opinion? «
I agree with your manager friends that the developers should
be spending every ounce of energy on the project itself. But
I also believe that information about each constituency is
part of the project, so it's better for everyone (the
constituencies, the managers, the developers) if the
developers have that information. Any information that's
relevant to the project but is hidden from the developers
brings the project one step closer to the edge of failure.
If the project manager were extremely talented at knowing what

DEATH MARCH

information was relevant, that might make a difference. I
haven't seen managers who were very good at that.
In general, I've observed that if there is a constituency
whose input is relevant, the developers will often get it
anyway, though perhaps in a more expensive, more distorted way
than if the manager weren't trying to keep it from them. Other
times, the developers will simply make assumptions about what
each stakeholder needs.
» mission impossible, kamikaze, ugly, suicide «
I like these terms. I'm not sure how to know which kind of
project I'm involved in until after the project succeeds/
crashes. I think developers involved in a death march always
believe (or are trying desperately to hold on to the belief)
that they are in a mission impossible project.
» How important do you think it is for the project manager
to get a really good assessment of each team member's level
of commitment? «
"Level of commitment" is way too vague to be useful to me. If
I am want to know what kind of "commitment" I can expect from
someone, I would want to know what things in particular are
more important to them than this project, and what things are
less important.
I've always liked Watts Humphrey's ideas about "commitment
discipline." He describes them in section 5.1 of "Managing the
Software Process.*
» Is the project manager just kidding himself/herself by
believing the team member's sincere statement of commitment,
given that things can change drastically during the project?
«
Any statement of commitment can only describe how the team
member feels right now, given what they know right now.
If a manager asking about commitment really wants to know,
"How committed will you be, regardless of what happens on the
project, regardless of what happens in our outside life,
regardless of what demands I may make of you?" then any answer
the team member gives is likely to be useless.
I've been asked many times to commit to achieving some result
that is not completely within my control. I can tell you what
actions I can commit to, but commit to a result and there are
factors beyond my control, what would my statement of
commitment do for you?
Dale

2. Ed,

POLITICS 69

»1. Are there any other significant constituencies that I've
missed? «
In several of the death march projects I've experienced, I
believe that there is a variation of shareholder that is very
important to identify: the vendor, especially if they nave
people on site to work on the project. Depending on who bought
the project or software from the vendor, you may have some
difficulties right away. A golf game sale for a package (my
president plays golf with your president) is a big predictor
for a death march, since the requirements process is typically
shorted severely. Don't be the first company to buy anything.
Once the vendor staff and client staff start banging heads,
things rarely improve. It makes progress that much slower
since positioning and putting spin on project news takes
precedence over real project status. Makes it that much harder
to manage if you don't know who is telling you the truth or
when they are doing it.

- Dave

3. Ed,
« [Stuff about identifying the key political players in a
project] Are there any other significant constituencies that
I've missed? »
Unfortunately, yes. You missed "the inner circle." These are
the people who have no direct stake in something yet they have
influence with those who do, an opinion on what should be done
and a burning need to inflict their opinion on others. Also
known as "the closest advisors," these people often spend time
whispering in the ears of decision makers in soft, subliminal
tones and can turn a friend into a foe overnight without you
even knowing that it happened. It happens in any political
organization from the White House to the Congress to any
company with more than 3 people. Even if they have no apparent
stake, you had better have The Inner Circle on your side if
you want to make it. These people can be old college buddies,
the VP of Sales who has an opinion on everything and the
chutzpah to believe he is always right or the faithful
secretary of 20 years' service who has "seen it all" and knows
"what really works for us."

To put it another way, if you want to get anywhere with Mr.
Clinton you had better not make an enemy out of Mrs. Clinton.
« How important do you think it is for all of the project
team members to be aware of the existence of these
constituencies and whether or not they can be viewed as a

70 DEATH MARCH

"friend" or "foe" of the death-march project? »
Essential- Yes, lot's of people hate getting into politics and
want to be left alone to "do their jobs." My response to that
is, "It's your job to get this software written, and these
people can keep you from doing that just as easily as any
compiler fault or hardware crash will. If you don't keep them
happy, your job evaporates."
« I've identified four fundamental types of death march
projects in this chapter, from the perspective of the
political climate that will prevail during the project: »
I've seen another type of death march, but it sort of screws
up your quadrant concept. I would call it "the lost squadron":
We set out to go somewhere, but the destination changed in
mid-trip. And then it changed direction again and again and
again until finally we started wandering around without
knowing where we are or how to get home. If we actually ever
get finished it will only be because we stumbled on the
destination by accident.
« How important do you think it is for the project manager
to get a really good assessment of each team member's level
of commitment? »
Vital. Commitment breeds both efficiency and quality, and if
you can't get a reasonable handle on commitment, it makes
estimation and quality control that much harder.

« Is the project manager just kidding himself/herself by
believing the team member's sincere statement of commitment,
given that things can change drastically during the project?
»

Probably. At the outset, every one tells you they are
committed, and they may even believe it themselves. The trick
is to continually re-assess the team members' commitment
levels because they will almost certainly change over time and
thus the efficiency and quality of death march work will
change (almost certainly for the worse) over time as well. It
helps to be able to read minds <g>.
-Paul

, For some reason, politicians (other than Bill Clinton) hate French fries, and
•cm to regard the odor as a direct challenge to their authority. I began noticing
is on consulting engagements in the mid-1970s, when members of a project
am I was working with told me in hushed tones that they had to keep the con-

ercnce room door closed lest the highly feared Vice President smell the odor. I
was delighted to see that Scott Adams remarked upon the problem in The Dilberi

POLITICS 71

Principle. Could it be that university business schools are teaching MBAs that
French fries are a Communist plot? Or, could it be that the managers most of-
fended by the practice grew up before McDonald's started their enterprise in the
mid-1950s, and never got over their rage at having missed out on one of the im-
portant American childhood experiences?

5. One such manager, whom I observed operating in the Wall Street financial
services community, did have an interesting strategy for calibrating the physical
stamina and emotional strength of his team: He would create a "false crisis" at
the beginning of the project and immediately throw the entire team into a dou-
ble-overtime level of effort. Then, he would stand back and watch to see what
happened; one or two of the team members might quit, one or two might have
a nervous breakdown, and one or two "quiet heroes" might emerge to solve the
artificial crisis through hard work or a clever technical strategy. Having thus cal-
ibrated his team, the cold-blooded manager would then relax the pressure and
get on with the real work of the project—confident that once the real crises be-
gan to occur (which they inevitably will in a death march project), he would have
a good understanding of how his team would behave.

6. » How important do you think it is for the project manager
to get a really good assessment of each team member's level
of commitment? « I'm not sure you will find any old pigs in
development, perhaps more chickens.
I think that kind of commitment continues until (inevitably?)
you get into the first death march project - then there is a
rude awakening.
Either the pig realises what ' s happening, this is the
slaughterhouse! RUN!!
Or the pig is making bacon.. .
To my mind this fits in quite nicely with the death march
theme.
Paul

7. The manager of an ugly-style project would probably pounce on this situa-
tion, and loudly complain that it was unacceptable. That's okay too—if it hap-
pens at the beginning of the project. The project team member is thus made
aware of the need to make a binary choice; if the sister's wedding has the higher
priority, it's better for the team member to resign gracefully at the beginning of
the project than to be involved in an ugly personal crisis later on.

8. This is one good reason for having small project teams and short project
schedules. A five-person team working on a six-month death march project is
far less likely to be interrupted by unpredictable distractions than a 30-person

72 DEATH MARCH

team slaving away for three years. People do get married, they do have children,
and they do have to attend to the other demands of a personal life; sometimes
these events can be postponed for a few weeks or a few months, but it's almost
impossible to block everything out of your life for three years.

9. Ed,
»!.... Are there any other significant constituencies that
I've missed?«
I also include anyone who might be affected/involved by the
implementation of the project. People who are not exactly
stakeholders but whose cooperation is required for success.
Say, the DBA group for example.

»2 . How important do you think it is for _all_ of the project
team members to be aware of the existence of these
constituencies and whether or not they can be viewed as a
"friend" or "foe" of the death march project?«
It is critical to developing the kind of group consciousness
among team members that helps to compress time during a
project. It will help the requirements process to be more
accurate, cut down on the number of meetings required, and
deliver better information from the meeting you do have.

»..,1 have manager friends who believe that this is too
distracting, and that the developers should be spending every
ounce of their energy on the project itself, while the project
manager (who presumably is more politically adept) spends his
or her time dealing with the outsiders.«
The whole concept of "outsiders" has to be abolished. It feeds
the myth that developers are some kind of different family of
the human species. Without the other team members involvement
the developers could be spending every ounce of their energy
building a project that is off target.
»3. I've identified four fundamental types of death march
projects...
The premise is that none of these are worthwhile outcomes
right? I think it would be interesting to present these types
without any death march explanation and let people pick which
type of project they'd be willing to work on. The point is
that so many projects are like these and people are so used
to them they might not even question the categories.
»4. ...How important do you think it is, for the project
manager to get a really good assessment of each team member's
level of commitment?«
It is critical. Without commitment you don't really have a

A bargain is in its very essence a hostile transaction ... do not all men
try to abate the price of all they buy? ! contend that a bargain even
between brethren is a declaration of war.

Lord Byron, Letter, July 14, I 821

(in Byron's jLdtm and Journals, vol. 8)

If you're the manager of a death march project, it's very easy to predict
the outcome of negotiations over budget, schedule, and resources: you
lose. This is almost inevitable, because such negotiations take place at the
beginning of the project (or even before the project if formally initiated),
when the project owner/customer has neither the intellectual ability,
emotional stamina, or political need to accept the unpleasant counter-
offers being offered by the project manager. More rational negotiations
sometimes take place a month or two before the deadline, when the first
project manager has quit or been fired, and when a new project manager
demands (as a condition of accepting the assignment) that everyone face

73

74 DEATH MARCH

up to the reality that the original deadline, budget, and required func-
tionality will never be achieved.

Not one of us seems willing to accept this sad state of affairs. Thus,
even though this chapter probably could focus on rational negotiating
strategies for the replacement project manager, I'll nevertheless confront
the question most of us wrestle with: How can we negotiate a tolerable set
of conditions at the beginning of a death march project? Alas, there are no
magic secrets to be revealed in this chapter; the dismal reality is that at the
end of the process, you lose. Still, it's useful to be aware of the devious po-
litical games by which you're likely to be outmaneuvered, as well as the
options that should be explored when you have been presented with a
completely unrealistic schedule, budget, and/or staffing constraint.

My assumption throughout this chapter is that you are the one in-
volved in the negotiations about death march projects, schedules, etc. If
you're a technical staff member, you may be indirectly involved—e.g., by
providing advice and estimating data to the project manager, so that he
or she can carry out the negotiating battles with higher levels of manage-
ment. But, in an e-mail communication with Doug Scott [1] recently, I
was reminded that in some projects, even the project manager has but an
indirect role, because all of the negotiations are being made on his or her
behalf by the next higher-up manager:

...my biggest single obstacle in deathwatch projects
has been my own management. I came to the UK in
1972, and moved on to big projects almost immediate-
ly. I don't think I learnt anything about running
projects since that date (I learnt a lot about politics, but
that's something else). You need to understand your
own management's negotiating stance, and if they
love to play roll over, you have to keep them well away
from the project.

NEGOTIATIONS 75

3.1 RATIONAL NEGOTIATIONS

The suggestion that we really do know how to accurately estimate the re-
quired schedule, budget, and resources for a non-trivial project will set up
an emotional debate among any group of software professionals and man-
agers. Our track record over the years certainly hasn't been a very good
one; on the other hand, many would argue that the problems have been
the result of political games associated with the very death march projects
that we're discussing in this book. But, most large organizations can point
to dozens of projects where the software team made its own schedule, pro-
posed its own budget, and expressed supreme confidence that it would de-
liver a fully functional system within those constraints; the team then
proceeded to hoist itself on its own petard and failed to deliver anything, at
any time. So, it's no wonder that in many of these organizations, the user
community and senior management have given up on the negotiating
process, and have instead begun imposing "do-or-die" deadlines and
budgets. Such is the genesis of many a death march project.

Still, that doesn't mean that we should abandon all efforts to derive a
"rational" estimate that we can use in the preliminary negotiations for a
project. Indeed, it's crucial that the project manager beware the tempta-
tion to give up and simply accept the initial death march project con-
straint as an edict. One of the common signs that a project team has
adopted what I called a "suicide-style" behavior in Chapter 2 is the atti-
tude—expressed by the project manager and echoed by the team mem-
bers—that "we have no idea how long this project will really take, and it
doesn't matter, since they've already told us the deadline. So we'll just
work seven days a week, 24 hours a day, until we drop from exhaustion.
They can whip us and beat us, but we can't do any more than that..."

I'm not going to discuss estimating techniques at length in this book;
if the project manager has no skill or experience in estimating, .then a
death march project is no place tovbegin learning. But let me point out
some of the obvious resources that we have available in this field:

• Commercial estimating tools—products such as SLIM, ESTTMACS,
and CHECKPOINT are available from Quantitative Systems Man-
agement, Computer Associates, and Software Productivity

76 DEATH MARCH

Research (SPR), respectively. SPR's Chairman, metrics guru Capers
Jones, estimates that there are some 50 commercial project esti-
mating tools. None of them are perfect, and all of them require
intelligence on the part of the user (garbage-in/garbage-out
applies in this field, too!), but in the best case, they can produce
estimates that are accurate to within ± 10%. Even if they're only
accurate to within ± 50%, it's better than the political demands that
the project manager is coping with—which are often 1,000%
beyond the ability of the team to deliver.

Systems dynamics models—numerous simulation models have been
developed to explore the non-linear interactions between various
factors that affect a project's behavior. For example, if part of the
strategy of a death march project is to impose a demand for heavy
overtime on the part of the project manager, what will be the
effects over a period of weeks or months? The natural assumption
is that more"output"will be produced than would be the case with
a normal eight-hour workday; but, most experienced project man-
agers will also point out that productivity (measured in function-
points per day, or lines of code per hour, etc.) gradually decreases
as exhaustion builds up. Error rates also begin to increase, which
has an obvious impact on the testing and debugging effort. And, if
the overtime continues long enough, the project team eventually
collapses from exhaustion. Of the simulation models that I've seen
in this area, the best is Tarek Abdel-Hamid's [2], which has been
implemented in languages like DYNAMO and iThink.

Dozens of articles and books have been written on the topic of
project estimating. Barry Boehm's Software Engineering Economics [3]
is a good place to begin; it's important to note that Boehm's
COCOMO model from the early 1980s has been updated to
OOCOMO-2 [4]. Another classic is Fred Brooks' The Mythical Man-
Month [5]; this has also been updated recently, to reflect modern
technology and software practices. A more recent book on software
estimating is Jim McCarthy's Dynamics of Systems Development [6].

The process of estimation has been studied and documented, and
organizations like the Software Engineering Institute have pub-
lished useful guidelines and checklists for improving the process of

•

•

•

NEGOTIATIONS 77

estimation [7, 8]. Even if we aren't very good at it, we know how to
get better.

• Familiar techniques such as prototyping and time-boxing can be
used to get an accurate picture of how feasible or infeasible the
project constraints are for the overall system being developed. This
is by no means a fool-proof approach, but it can inject a dose of
reality into the project team and the surrounding layers of manag-
ers and customers. If management is demanding a system that will
require a team of three to write a million lines of code in 12
months, then it should be possible to define a skeleton version of
the system that can be built within the first month; this will provide
at least a rough calibration of the team's level of productivity, as
well as a rough idea of the overall feasibility of the project.

3.2 IDENTIFYING ACCEPTABLE TRADE-OFFS

Let's assume that the project team has prepared a "rational" estimate of
the schedule, budget, and personnel required for a death march project;
and let's assume that management is prepared for some kind of give-
and-take process of negotiation before the final decisions are made. The
most common situation is that management will declare the initial esti-
mates "unacceptable" and make counter-demands that are far more
stringent. What should: the project manager do?

As author/consultant John Boddie [9] pointed out to me in a recent
e-mail message, the crucial thing is to ensure that everyone agrees that
there is more than one possible "scenario" for the project:

Some useful questions during negotiations,

"If the system is ready on the fifth of September rather
than on the first, will we already have declared bank-
ruptcy September second?"

"Is there an 80/20 rule here? If we deliver the critical 20
percent that gives eighty percent of the value, do we
need the twenty percent at initial roll-out?"

78 DEATH MARCH

"Everybody wants things good, wants them fast, and
wants them cheap. Everyone knows that you can actu-
ally achieve any two of the three. Which two do you
want?"

The principle at work is to make those who are de-
manding the death march look unreasonable if they
are unwilling to consider more than one possible out-
come. Unless there is an acceptance of more than one
way to approach the problem, then there is no negoti-
ation. All the manager can say is, "We'll give it our best
shot, but there are no guarantees."

If the counter-proposal from senior management or the customer in-
volves only one "variable," the project manager can estimate the impact on
the other variables. For example, if the manager's first estimate is that the
project will take 12 months with three people and a budget of $200,000, it's
possible that senior management's first response will be, "Baloney! We
need to have that system up and running in sir months!" The obvious way
to accomplish this is to add more people and/or spend more money (e.g.,
pay higher salaries to hire more productive programmers).

But, Fred Brooks told us more than 20 years ago that the relationship
between time and people on a software project is not a linear one; the
term "man-month" (which would probably be expressed as "staff-
month" in today's politically correct organizations) was thus exposed as a
myth. Indeed, the relationship between all of the key variables in a
project is likely to be non-linear, and it's likely to be time-sensitive as
well. Because of the "feedback effect" of many management decisions, a
change in one variable (such as adding more staff) will not only have an
impact on other variables (such as productivity) over time, but will even-
tually have an impact on the original variable—e.g., the hiring of addi-
tional staff could lower morale, which in turn could raise the turnover
rate within the project, and ultimately reduce the size of the staff.

The non-linear, time-sensitive nature of these interactions is the es-
sence of the systems dynamics models mentioned above; but it's also the
reason for using the various commercial estimating tools described earli-
er. There is a key point here: The mathematics behind the systems dy-

NEGOTIATIONS 79

namics models are typically based on non-linear differential equations,
and most of us aren't very good at doing that level of mathematics in our
heads. Similarly, the commercial estimating tools carry out elaborate cal-
culations involving dozens of parameters; trying to do this intuitively,
based on a "gut" feeling for the situation, is likely to be quite error-prone.

Unfortunately, that's exactly the situation many death march project
managers find themselves in. Sometimes this is because of the nature of
the negotiating process (particularly a game called "Spanish Inquisition,"
which I'll discuss below); but, it's also caused by the lack of estimating
tools and expertise in many organizations. Again, this is not a problem
you're going to be able to solve in a death march project, if it hasn't been
addressed already. If the organization is accustomed to deriving its
project estimates by scribbling numbers on the back of an envelope, the
death march project manager probably won't get away with spending
$10,000 on a sophisticated estimating tool.

So, what should the manager do in a situation like this? In the ex-
treme case, the manager should recognize the futility of the situation and
respond appropriately; I'll discuss that in more detail in Section 3.5 be-
low. But, in the less extreme case, here are two guidelines:

• If the negotiating demand from users or senior management
involves a change of <10% in one project variable, then you can
compensate by increasing one of the other variables in a direct,
proportional fashion. Thus, if management wants the schedule
reduced by 10%, then add 10% to the size of the project team. This
isn't entirely accurate, but it's a good first-cut approximation, and
it's often all you can get away with from a negotiating perspective.

• If the change involves more than 10% in one dimension, then you
should assume it will have an "inverse square law" impact on any
other single dimension. Thus, in the scenario above, management
wants to cut the project schedule in half, 12 months to 6. Rather
than responding by doubling the size of the project team, the man-
ager should quadruple the team—or quadruple the budget, in order
to hire superprogrammers who can code with both hands at the
same time. Without a formal estimating model, there's no way to
know whether this crude heuristic will be accurate for any specific

80 DEATH MARCH

situation, but at least it's better than falling into the trap or negoti-
ating a "linear" exchange of time for people. Unfortunately, the
inverse square law is difficult to negotiate, and there's a good
chance that the project manager's "outrageous" demands will be
beaten down; but with luck, the manager will still end up in a bet-
ter position than the linear exchange would provide.

3.3 NEGOTIATING GAMES

Negotiating is a game, and it takes place on all software projects. What's
different about death march negotiations is that the stakes are much
higher, emotions are much more highly charged, and the demands of the
other side (in terms of schedule, budget, etc.) are usually so extreme that
they overwhelm any "safety factor" that we might have used in the past.
The most obvious safety factor in a traditional project, for example, is
overtime. Even if the project manager has been brow-beaten into a tight
schedule and restricted budget, success can still be achieved by asking
the project team to work 10 to 20 hours per week of overtime for the final
few months of the project. The additional effort doesn't show up in the
official records, because the programmers aren't paid for overtime work;
thus, the manager ends up looking like a hero.

But, in a death march project, modest amounts of overtime are typical-
ly inadequate to achieve the dramatic results that are being demanded. Be-
sides, the users and senior management aren't naive—they know that
overtime effort can be requested, and they've factored that into their own
estimate of the "required" schedule for the project—thus pre-empting the
manager's opportunity to hide that free resource. But, project managers
who are veterans of such negotiations should have a few tricks up their
sleeves, which can be pulled out when the bargaining sessions begin.

The neophyte project manager is at a terrible disadvantage; in the ex-
treme case, the neophyte isn't even aware that his past successes may have
occurred only because the project team voluntarily contributed sufficient
overtime effort to compensate for a ridiculous project schedule. And th#ri-
diculous schedule may have been imposed upon the team precisely be-
cause of the manager's naivete in the area of estimating negotiations.

NEGOTIATIONS 81

Management consultant Rob Thomsett has described the most com-
mon negotiating games in a wonderful article [10]; I've summarized the
more familiar games below:

• Doubling and Add Some—this is a ploy that has been used on
projects dating back to the Pyramids, if not earlier. Use whatever
estimating techniques you have available, then double the "ratio-
nal" estimate; and, for added safety, add three months (or three
weeks, or three years, depending on the overall size of the project).
The major problem with this strategy is that it runs head-on into
the most pressing constraint associated with death march projects:
schedule compression.

• Reverse Doubling—as noted earlier, management hasn't been obliv-
ious as software project managers have attempted to "pad" their
estimates by the doubling strategy discussed above. One reason for
this political astuteness is that the senior managers in many orga-
nizations today are former IS/IT project managers—so they're inti-
mately familiar with the games involved. As a result, they take the
initial estimates given to them by the project managers, and auto-
matically cut them in half. Pity the poor neophyte project manager
who doesn't realize that he or she is supposed to double his or her
estimate at the outset!

• "Guess the number I'm thinking of—this is a game I learned in one
of my first projects, as a junior programmer. The user or senior
manager has an "acceptable "figure for the schedule, budget, and/
or other aspects of the negotiation, but refuses to articulate it. When
the project manager offers his or her estimate of schedule and bud-
get, the user/senior manager simply shakes his or her head and
says, "No." The implied message is, "That's too much—guess
again." The hapless project manager eventually (sometimes after
half a dozen attempts!) comes up with an acceptable estimate, but
because it's his or her estimate, the user/senior manager is all the
more determined to hold him or her accountable.

• Double Dummy Spit—"dummy"is Australian slang for a baby's pac-
ifier, and "spit the dummy" is an Australian phrase describing a
baby so frustrated and angry that it spits out its pacifier. Thomsett

82 DEATH MARCH

uses this as a metaphor to describe negotiating session when a
senior manager erupts in a fit of rage when the project manager
first makes his or her proposal for the death march project schedule
and budget. The chastened manager scurries away, comes back
with a revised estimate, and the senior manager erupts again —
hence the "Double Dummy Spit." The idea is to get the manager
so cowed and terrified that he or she will go along with anything,
in order to avoid yet another temper tantrum

• Spanish Inquisition—this occurs when the project manager walks
into a meeting of higher-level managers, completely unaware that
he or she is going to be asked to make an "instant estimate" for the
death march project. Imagine a roomful of grouchy Vice Presidents
staring at you while the CEO asks you in thunderous tone, "So,
Smithcrs, when do you expect to get the Frozzle System done? I've
told the whole management team that we'll have it on-line by
mid-March—you're not going to let me down, are you?" It you're
brave enough to suggest that mid-November would be a more
realistic estimate, you'll have a dozen inquisitors questioning your
intellect your credentials, your loyalty, and perhaps even your reli-
gious faith.

• Lore Rid—with outsourcing an option in many organizations today,
this game is becoming more and more common; it's also common
in any situation where a software development organization is bid-
ding against other competitors for the privilege of developing a
system for a client organization.The game is obvious: The customer
(or sometimes the development organization's marketing repre-
sentative) tells the project manager that one of the other bidders
has proposed a faster development schedule and/or a lower bud-
get. This puts pressure on the project manager to not only match
the competing bid (which may or may not be a "real" bid), but to
improve upon it to raise the chances of getting the contract. A vari-
ation on this game occurs when the client lets it be known that he
or she is considering the option of not doing the project at all; a
software development organization that's desperate to get the
approval to initiate the project (perhaps because it will advance the
career of the IS/IT Vice President) will ensure that the project pro-

NEGOTIATIONS 83

posal is so attractive that it will be approved. Of course, this means
that in many cases, one or more members of the IS/IT hierarchy
knows that the project proposal is unrealistically optimistic, and
perhaps even a blatant lie. This in turn leads to the "Gotcha" and
"Chinese Water Torture" games described below.

Gotcha—-the "Gotcha" game is sometimes played by the project
manager as a way of getting revenge: Though he or she knows at the
outset that the project proposal is unrealistic, he or she accepts it
anyway—on the theory that by the time everyone is forced to face
up to reality (e.g., a week before the deadline), it will be too late for
the client to back out. But, it's a dangerous game, because the client
has to ask whether he or she wants to throw good money after bad.
If the organization has a track record of previous projects running
amok in this fashion, the client may decide to cancel the project and
write off the expenses as a bad investment. But, chances are that the
death march project won't be canceled right away, because it's usu-
ally associated with business objectives, legal requirements, or
political battles that are difficult to walk away from. However, that
doesn't prevent the customer from seeking revenge for having the
game played on him, and the most obvious form of revenge is to fire
the project manager. This is also a common political ploy for various
higher-level managers and marketing representatives (who may
have been responsible for the death march project commitments in
the first place) to escape the problem of "guilt by association."
Everyone can rationalize to themselves that the reason for the prob-
lem is the incompetence of the project manager; a new project man-
ager is brought in, a more realistic set of revised project schedules
and budgets may or may not be negotiated, and the project contin-
ues. Meanwhile, of course, nobody thinks to relax the pressure of
overtime work on the technical staff members of the team.

Chinese Water Torture—rather than faring a high risk, all-or-nothing
showdown near the end of the project, another common game is
to bring the bad news to the customer and/or higher management
in small pieces. Imagine the scenario, for example, where the
project manager's rational estimate for the project is 12 months;
with forced overtime and lots of miracles, he thinks it might be

•

•

84 DEATH MARCH

possible to finish in 6 months, but management has imposed a 4-
month deadline upon the project. Reluctantly, the manager con-
cedes and announces a series of "inch-pebble" deliverables for the
project—e.g., a new prototype version of the system will be deliv-
ered for customer review every week. The first deliverable turns
out to be a day late, but the manager reasons that the delay repre-
sents 14 to 20% of the deadline for that deliverable (depending on
whether the team is working a 5-day week or a 7-day week); thus,
he or she argues that the deadline for the final version of the sys-
tem should also be pushed back by 14 to 20%. Management
refuses to concede any slippage at this early point, but when the
second inch-pebble is also a day late (meaning a cumulative delay
of two days over a period of two weeks), the manager repeats his or
her argument. Drip, drip, drip; it's like Chinese water torture—no
one single piece of bad news is enough to kill you, but the cumula-
tive effect can be fatal.

Smoke and Mirrors—Pity the poor project manager whose higher-
level IS/IT Vice President has hired a metrics consultant with an
estimating model that nobody understands. Software metrics are
ultimately a form of statistics, and estimating models are based
upon sophisticated mathematics. When put in the hands of the
innocent, the naive, and/or the politically motivated, these tools
can be used to "prove" the validity of almost any estimate. All of
this is doubly dangerous if the metrics come from a vendor
attempting to prove that the death march project will succeed
because of the stupendous productivity of the vendor's CASE tools,
visual programming language, or newfangled software engineering
methodology.

Hidden Variables of Maintainability/Quality—this is one of the more
insidious games, and it can be played in a constructive or destruc-
tive fashion by knowledgeable project managers, higher-level IS/IT
managers, and/or customers. It's very simple: As a project manager,
I can deliver an infinite amount of software to the customer in zero
time, as long as it doesn't have to work and it doesn't have to be main-
tained. Obviously, it would be foolish to propose a scenario this
extreme, but the point is that quality (in the form of defects, porta-

•

•

NEGOTIATIONS 85

bility, maintainability, etc.) is a project "dimension" that has to be
taken into account when trade-offs are being considered between
time, money, staffing, and other resources. Some customers are too
naive to recognize this, and some of them have a very cold
blooded, short-term perspective: "I don't care if the system works
two years from now, because I think the business opportunity wi l l
be gone—and in any case, I ' l l be gone. All T care about is that the
system has to be available three months from now, and it has to
work for 12 months after that." If the political pressure is strong
enough, you may find IS/IT managers and the project manager
adopting this attitude; it's far less common to see the technical staff
members accepting it as a reasonable way of doing business. In the
best of cases, this"garne"represents the strategy of "good enough"
software that I described in my Rise and Resurrection of the American
Programmer [11]; in the worst case, it's as dishonest and reprehen-
sible as several of the other political games described above.

3.4 NEGOTIATING STRATEGIES

What should you do if you find yourself being sucked into one of the po-
litical games described above? Equally important, what should you do if
you're an innocent bystander—e.g., a technical staff member of the
project team—and you observe such games being played all around you
as the project deadline, functionality, and budget are being negotiated?
Thomsett makes the interesting point that we all learn these political
games from our mentors, our managers, and the "elders" of the poli t ical
culture in our organizations; thus, even if we can't escape the games our-
selves, perhaps we can refuse to teach them to our subordinates, in the
hope that the whole process of political games will die out after another
generation of two.

It's a noble thought, but I'm not so optimistic. I sometimes think that
political behavior is genetic, firmly imprinted on our DNA pattern. Hut
even if it's not this bad, the reality is that political games of the nature de-
scribed in this chapter are all around us; none of this is unique to software
projects, and all of us have been exposed to variations on these games
throughout our lives. Even if these games were unique to software

86 DEATH MARCH

projects, there's i-nough mobility within the software profession that an
organization is almost certain to be "infected" by highly political manag-
ers, vendors, and marketing representatives over a period of rime. Politi-
cal games are something we have to accept as an unavoidable
phenomenon, and we have to cope with them as best we can.

One thing we can do—and this also cornes from Thomsett's excellent
article—is to avoid getting sucked into the trap of producing an "instant
estimate" for a project. The Spanish Inquisition game is the worst form of
this , but there are many lesser forms that appear during the planning and
negotiation stages of death march projects. Whether it's innocent or ma-
licious, the project manager will often be asked for an instantaneous
"rough estimate" tor the time or staffing required for some aspect of the
pioject; and once it's been blurted out in public, it often becomes a hard,
immovable requirement for the project. So, in any situation of this kind,
the manager needs to respond with a statement like, "I'll need a day (or a
week or a month—or even an hour!) to make some calculations before I
ran give you an estimate. I'll let you know by e-mail." There are obvious
political advantages to being prepared in advance, so that you've already
done the necessary calculations before you get hit with the questions;
but, that's not always possible.

And it's not always possible to avoid the demand for an instant esti-
mate. Suppose you're sitting in a marketing presentation, and the client
turns to you and says, "Okay, Harriet, suppose we eliminate the interac-
tive Web browser portion of the system, agree to do the whole thing on
our in-house network, and add ten of our people to your project team.
How long will it take you to get the job done?" All eyes turn to you, and
you can see the marketing manager squirming; you probably know from
al l the discussions that have led up to this question that the politically ac-
ceptable answer is, "Three months—no problem!" What are the chances
tha t you will be able to say, "Gee, I don't really know; we'll have to go
back to the office and run that through our estimating model. And I'd
also have to interview your ten people to see what their skills are..."

In a situation like this—and even many of the situations where you
do have some time to put together a formal estimate—it's crucial to state
your estimates in terms of "confidence levels," or a "plus-or-minus"
idnge. If you have absolutely no data with which to construct a detailed

NEGOTIATIONS 87

estimate, and if the death march project involves completely new tech-
nology, and unknown people, then it might be prudent to say, "The
project will probably take between three and six months," or "1 think we
can finish in six months, plus-or-minus 50%."

Of course, most project managers are aware of this technique, and
they may or may not be using it already. Deciding how large or small the
"plus-or-minus" range should be is part of the science of estimating, and
I'll leave that to the textbooks listed at the end of this chapter. For death
march projects, it's important to keep in mind the politics of stating confi-
dence levels during the negotiating process. The most basic political real-
ity, for example, is that anything you say about a plus-or-minus range will
be ignored by everyone else that you're negotiating with. Thus, if you're
sitting in a planning session and you tell the customer and various other
senior managers, "We should be able to get this project done in six
months ±25%," everyone will write down "six months" on their note pad
[12]. No matter how many times you say it, they'll ignore it; and when
your boss feeds the information back to you, you'll find that your deadline
is six months. The only thing you can do is never drop the plus-or-minus
qualifier in any verbal or written statements, promises, commitments, or
estimates that you provide. It won't eliminate the problem, but it will pro-
vide an excuse if the project ends up at the high end of your estimate.

Unfortunately, there's an uglier aspect of the political negotiation
when you introduce the plus-or-minus qualifier into your estimate:
You'll be accused of uncertainty, wishy-washiness, weakness, or even in-
competence. This is particularly common in the "Marine Corps" style of
death march projects discussed earlier. What senior management really
wants is a firm commitment—a promise that the project will be finished
on a certain deadline, with a budget of a certain number of dollars, and a
staff of a certain size. This gives them the enormous luxury of (a) no long-
er having to worry about the problem for the duration of the project, and
(b) having a convenient scapegoat to blame if the promise is broken. An
estimate that takes the form of "X months ± 50%, for $500,000 ± 100%,
and with 10 people ± 25%" eliminates that luxury.

Jim McCarthy, in his excellent book Dynamics of Software Devetopauttt
[13], suggests that the project manager needs to confront this head-on,
and persuade the customer and/or senior management that they need to

88 DEATH MARCH

share some of the burden of uncertainty that the entire project team will
be living with on a day-to-day basis. Thus, the project manager effective-
ly says to the customer or the senior management group, "Look, I don't
know precisely when this project will finish—but since I'm the project
manager, I'm far more likely than anyone else in the organization to fig-
ure it out as soon as it can be figured out. I promise you that once I know,
I'll tell you right away."

Only a manager with a lot of self-confidence, and the ability to walk
away from the assignment, can have the chutzpah to say something like
this in the politically charged atmosphere of a death march project. But,
the time to say it is at the beginning of the project; after all, if the custom-
er and senior management don't respect your ability as a project manag-
er, and that you do have a better chance of knowing when the project will
finish than anyone else, then why are they putting you in charge of the
project in the first place? Are you being set up as a scapegoat? Are you
going to be a "puppet manager," with all the decisions being made by
other political manipulators in the organization? If so, now is the time to
get out!

Similarly, if you're a lowly programmer on the project team and you
see political games like this, it may be a strong indication that your project
manager (a) doesn't have the confidence to believe in any estimate that he
or she puts forth, (b) doesn't have the backbone to stand up for himself or
herself and for the project team, and/or (c) has gotten himself or herself
into a political situation where all the key decisions are going to be made
by people who are not directly involved in the project. Again, this is a
strong indication that the project is doomed; and before you get too deep-
ly involved, it might be a better idea to seek greener pastures.

Having said this, I'm nevertheless well aware that it's extremely diffi-
cult for the project manager to persuade the various "players" to share
the uncertainty of the project schedule, budget, and staffing decisions. A
savvy customer will indeed do this; a sophisticated IS/IT organization will
recognize all of this as an aspect of risk management, which needs to be
carried out in a blameless political environment; and human beings who
care about and respect one another will agree that it's unfair to make one
member of a group carry the ulcer-generating pressure of a high-risk sit-
uation.

NEGOTIATIONS 89

3.5 WHAT TO DO WHEN NEGOTIATING FAILS

In the discussion above, I suggested that if the project manager couldn't
persuade the customer or senior management to share some of the un-
certainty associated with the schedule or budget of a death march
project, he or she should seriously consider resigning from the assign-
ment; the same goes for technical members of the project team. But, this
is only one aspect of a "failed" negotiating process; what should the
manager do, for example, if he or she is 100% certain that the politically
mandated deadline of six months cannot and will not be achieved? What
should he or she do if he or she is 11)0% certain that the project must have
a minimum of three people, but management will only provide two?

I've mentioned the option of resigning a few times already in this
book, and I realize that it's not a practical option for some software pro-
fessionals; indeed, it's more likely to be a problem for project managers
than the technicians, for the simple reason that project managers tend to
be 5 to 10 years older, and thus saddled with the impediments of mort-
gages, dependent family members, half-vested pension plans, etc. They
also tend to be a little more insecure about their chances of getting an-
other job quickly, while the younger, unmarried project team members
are typically much more confident that they can land another job within
24 hours.

It's important to realize here that I'm not recommending resignation as
a form of punishment or revenge. It's simply the rational thing to clo when
faced withian impossible situation, and implacable negotiating adversaries.
Life will go on; there will be other projects; and there will be other jobs. As
Sue Peterson remarked to me in a recent e-mail message [14]:

I've learned something from my kids, and I think it ap-
plies to work just as much as it does to home lite... 1
have to protect myself, my energy level, my emotional
and physical health, my quiet-time, and my work
time. If I don't protect myself, I won't have anything
left for them anyway.

But, there's another issue associated with quitting that needs to be
confronted here: the issue of loyalty and the "social contract" between

90 DEATH MARCH

employer and employee. Up through the 1980s, many software profes-
sionals worked in large organizations whose corporate culture involved
an assumption of a ''job for life." While it was never as strict or as explicit
as in Japanese companies, most programmers and software engineers at
major banks, insurance companies, government agencies, and computer
companies (like IBM and DEC) assumed that in the absence of war, fam-
ine, or plague, they would continue to rise through the organization until
they finally retired at age 65, with a gold watch.

Small companies have never had this kind of culture, and many soft-
ware professionals have worked for small companies, especially as com-
puter technology has become cheap enough that even a Mom-and-Pop
grocery store could afford a PC and Web server. And, those of us who
have worked for consulting firms, service bureaus, and various forms of
entrepreneurial, high-tech start-up companies have always known that
there is no such thing as a lifetime social contract.

Software professionals in large companies have begun to learn this
too, because the era of downsizing, outsourcing, and reengineering has
caused major disruptions and unemployment in our field. This has been
exacerbated by mergers and acquisitions in the computer field, and also
in highly competitive industries where information processing is a major
part of the work-force. When Chemical Bank and Chase Manhattan
Bank merged a couple of years ago, for example, senior management had
to deal with the problem of merging two entirely different hardware en-
vironments, systems environments, and IS/IT management hierarchy.
And, as I mentioned in Chapter 1, it's exactly this kind of situation that
has led to many of the death march projects that have been taking place
all during the 1990s.

The problem in many of these large organizations is that while the
employer has definitely changed the social contract, the employee has
not reacted accordingly. Many software engineers who have put in 10
or 20 years of loyal service still assume that (a) the company will take
care of them, and (b) they should stand by the company, no matter
how unpleasant it might be. And "unpleasant" is the operative term
for most death march projects. It's not fun sacrificing all of your spare
time, working to the point of exhaustion, and coping with stress and
political tension. So why do we do it? Because we've signed on for life,

NEGOTIATIONS 91

and we feel that ethical people should honor their commitments.

However, if the employer has invalidated the social contract, then all
bets are off; it's crucial to re-evaluate the relationship and see whether it's
worth continuing at all. I certainly don't advocate unethical, immoral, or
even amoral behavior—but I see nothing wrong with limiting my com-
mitment to an employer to a period of a year or two, or for the extent of a
single project. An employer that says to the death march project, "Get
this system finished by December 31 or you're fired," is essentially artic-
ulating the same kind of "short-term" social contract.

The threat of being fired—which certainly does occur in death march
project negotiations—is only one form of "hard-ball" negotiating;
threats of being bypassed for a raise or promotion are also common. But
if the social contract has been abandoned, and if you're dealing with a
"hard-ball" negotiator in a death march project, then you have the right
to play "hard-ball" too. And, one of the strongest bargaining chips in a
negotiating session is your adversary's [15] recognition that you're ready
and willing to walk away from the relationship if the results aren't mutu-
ally acceptable.

If senior management threatens to fire you if the death march project
fails, or if you don't accept the unrealistic deadline they've imposed upon
you (which may be two different ways of saying the same thing), you
should be equally cold-blooded in your demands. You may not get them
to budge on the deadline, but you can probably be much more demand-
ing than otherwise possible when it comes to staffing your project (I'll
discuss this in more detail in the next chapter). And, you can definitely be
more cold-blooded when it comes to ignoring or breaking the adminis-
trative and bureaucratic rules and procedures that would otherwise guar-
antee failure for the death march project.

A variation on this is the old adage of, "act first, apologize later." It
may be a waste of rime to "negotiate" a reprieve from the various bureau-
cratic restrictions that you've decided will ham-string your project. It's
certainly worth attempting to do so, because an edict from a high-level
manager will usually give you sufficient authority to circumvent or ignore
the minions of administrators, committees, and standards-enforcers that
will swarm around the project. But, if you get a wishy-washy answer—

92 DEATH MARCH

e.g., "Well, we're not sure it's a good idea for your programmers to move
off-site and have two PCs in their office; we'll check with the Building
Services Committee and see what they think"—then stop wasting your
time. Just go ahead and do it!

If you're clever, you can probably find a way to circumvent many of
the bureaucratic obstacles in such a way that it will take six months for
the bureaucracy to notice, and to mount an offensive; by then, your
project may have finished (or failed) anyway. And, if the bureaucracy
does mount an offensive, be prepared to play hard-ball; after all, your
project is now well under-way, and management probably can't afford
the risk that you (and the entire project team) will walk out the door and
force the project to be re-started. There are two points to keep in mind if
you choose this approach:

• You have to be prepared to have your bluff called. If the Methodol-
ogy Police visit your project and throw a tantrum because you're
not using the company's official methodology, you may well get a
furious phone call from your boss's boss's boss. You need to be pre-
pared to say/'Mr./Ms. BigShot, we've decided not to use the meth-
odology because it will guarantee failure. If you feel strongly about
this, my team and I are prepared to resign today—otherwise, I'd
appreciate it if you would leave us alone, and tell the Methodology
Police to leave us alone, too. We have work to do."This won't work
unless the senior manager truly believes that you and your team will
resign on the spot, if pressed.

• You must be prepared to deal with enemies who will hold a grudge,
even if your project succeeds. In the scenario above, you've chal-
lenged the authority of the BigShot manager; he or she won't for-
get it. You've embarrassed the Methodology Police, and made it
more difficult to impose their methodology on other victims; they
won't forgive you. Indeed, you may have burned so many bridges
that at the end of the project, you (and perhaps the rest of the team
too) will be so unpopular that you'll have to quit.

If resignation and "hard-ball" negotiating isn't an option on your
death march project, then what should you do if the negotiating process

NEGOTIATIONS 93

yields unsatisfactory results? Very simple: re-define the nature of the
project, as suggested in Figure 2.1 (Chapter 2). In the early stages of ne-
gotiation, you may have thought you were beginning a mission impossi-
ble project. In fact, given adequate resources and a talented staff, you
might have been prepared to accomplish miracles. But, if you're given in-
adequate resources and brain-dead programmers, then miracles are not
going to occur.

Indeed, it's more likely that you're being pushed into a kamikaze or
suicide project; only as a variation of the "hard-ball" negotiating process
described above could we imagine that the outcome would be the ugly
style of project described in Chapter 2. In any case, the key point here is
that the project manager must believe in the possibility of achieving the
project goals (e.g., deadline, required functionality, etc.), and the manag-
er must be able to convince the team members of the viability of those
goals without "conning" them. As John Boddie [16] points out in a su-
perb book on managing "crunch-mode" software projects:

The project leader who cares about his people will not
try to sell them a bill of goods about the project. He
will be honest about the level of effort it will require
and its chances of success. Programmers aren't stupid.
The experienced ones will have a keenly developed
sense to tell them when they're being "fed a line."
Most of them won't be a party to project games be-
cause they know they are the ones who will shoulder
the burden when the crunch comes.

And, if the project manager has determined that the death inarch
project goals are not viable, but the project must continue anyway, then
it's crucial that the manager explain to the staff members that they are
signing on for a suicide or kamikaze mission. Some will accept the mis-
sion anyway, and it's important for the manager to understand what
their reasons are [17]; but, others will resign.

There's an interesting aspect of ethics here. As noted earlier, 1 don't
advocate unethical or immoral behavior, but I also believe that the nego-
tiations surrounding a death march project almost always force the
project manager to deal with the owner/customer and/or senior manage-

94 DEATH MARCH

ment as an adversary. The members of the project team, on the other
hand, are like one's family. More than just treating the team members
ethically and professionally, the manager should feel the responsibility of
" taking care" of the team, to ensure that they don't become innocent vic-
tims in the political battles. I'm indebted to John Boddie [18] for tracking
down a maxim from Napoleon that expresses this thought more elo-
quently than I could on my own:

It follows that any commander in chief who under-
takes to carry out a plan which he considers defective
is at fault; he must put forth his reasons, insist on the
plan being changed, and finally tender his resignation
rather than be the instrument of his army's downfall.

Napoleon, Military Maxims and Thoughts
Notes

1. Ed,

> I 'm going to be suggesting in this next chapter that the project
> manager be sure to identify
> Are there any other significant constituencies that I' ve missed?
I think simply identifying them is a good first step, and then you
need to understand why they would want the project to succeed. Many
don't care, and could thus get in the way. Opponents will stick
out like a sore thumb.
But my biggest single obstacle in death watch projects has been my
own management, I came to the UK in 1972, and moved on to big
projects almost immediately. I don ' t think I leamt anything about
running projects since that date (I learnt a lot about politics,
but that's something else). You need to understand your own
management's negotiating stance, and if they love to play roll
over, you have to keep them well away from the proj-ect.
> 2 . How important do you think it is for _all_ of the project team
> members to be aware of the existence of these constituencies and
> whether or not they can be viewed as a "friend" or "foe" of the
> death march project?

This has to be managed. In any project, having an external focus
to push against does help to solidify a team. But youmustn11 allow
this to stop them helping you. If you need this, I 'd say you need
to keep it to single individuals . Death march projects, because of
their size and importance, will usually attract hostility from
surrounding people anyway, so it won' t be too difficult to create

NEGOTIATIONS 95

an enemy - the trick will be to make sure that your potential
helpers aren't all enemies as well.
> * mission impossible: if we succeed, we live happily ever
after
Done that. I don't think I ever classified it as a deathmarch, in
the way I'd normally think of one. But I did develop an ulcer,
so... <g>
> * kamikaze: the project may succeed, but it will kill all
of us
Dunno. The certain death is so demotivating, I 'mnot sure if people
would continue. They'dprobably rationalise it into another type
of project.
> * ugly: the project manager is prepared to sacrifice any
> and all of the team members in order to succeed.

Well, I think this comes with the territory. It's part of being a
death march.
> * suicide: the project has no chance of success, and we ' re
the scapegoats
Yes, this seems to be one of the fears with death marches.
I don't think I can go along with your matrix, in this case. True
death marches have some characteristics - there is a (possibly
remote) possibility of success; it's so tightly time-boxed that
success within the timescales is difficult to imagine, and one of
the pastimes is to watch announced deadlines being slipped while
still being aware of the need for further slippage.
Personal satisfaction is never high on a deathmarch, and the chance
of success is low - I guess that' s what defines a death march. Most
death marches fall into your suicide category, I'm afraid. If you
had high personal satisfaction and high anticipation of success
(which I reckon are correlated anyway) , that's not a deathmarch.
As I say, I believe the true differentiator lies in the timescale,
rather than in personal feelings . If the timescale is impossible,
then you *know* you're on a deathmarch. The only question then is
whether you die expensively or slowly.
> How important do you think it is for the project manager to get a
> really good assessment of each team member's level-of
commitment?
If anyone asks me that question nowadays, I know to run a mile,
because that PM will turn the project into a death march. I've
never had trouble getting people committed, once I've set up an
environment where that commitment will pay results. But I have seen
many environments where overtime is regarded as more important than
what you're doing (a friend who's just joined Oracle is replete

96 DEATH MARCH

with that attitude now) , and I'm not at all impressed by their
output.
> _negotiations_. I'll deal with that in Chapter 3
Let me know, when you need stories here. Many are so unbelievable
that it's not worth even telling (such as "I don't mind you
refusing changes to the design even, if it is a fixed price project
- all I have to do is ring your chairman, and he'll always tell
you do it. ") .
--Doug (back on OS/2 and GCP)

2. Tarek Abdel-Hamid and Stuart Madnick, Software Project Dynamics (Engle-
wood Cliffs, NJ: Prentice-Hall, 1993).

3. Barry Boehm, Software Engineering Economics (Englewood Cliffs, NJ: Prentice-
Hall, 1981).

4. Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy,
and Richard Selby, "The COCOMO 2.0 Software Cost Estimation Model,"
American Programmer, July 1996.

5. Frederick Brooks, The Mythical Man-Month, 20th anniversary edition, (Read-
ing, MA: Addison-Wesley, 1995).

6. Jim McCarthy, Dynamics of Software Development (Redmond, WA: Microsoft
Press, 1995).

7. Robert E. Park, Wolfhart B. Goethert, and J. Todd Webb, Software Cost and
Schedule Estimating: A Process Improvement Initiative. Technical Report CMU/SEI-
94-SR-03 (Pittsburgh, PA: Software Engineering Institute, May 1994).

8. Robert E. Park, Checklists and Criteria for Evaluating the Cost and Schedule Esti-
mating Capabilities ofSoftivare Organizations, Technical Report CMU/SEI-95-SR-
005 (Pittsburgh, PA: Software Engineering Institute, January 1995).

9. Ed,
re: if you know of any good negotiating strategies (other than
blackmail and torture, which I can' t recommend in a book like this
<g>), let me know.
The only leverage that the manager has is to bring the risk of
failure out into the open and as publicly as possible start
postulating fallback positions.
Some useful questions during negotiations,
"If the system is ready on the fifth of September rather than on
the first, will we already have declared bankruptcy September
second?"

NEGOTIATIONS 97

"la there an 80/20 rule here? If we deliver the critical 20 percent
that gives eighty percent of the value, do we need the twenty
percent at initial roll-out?"
"Everybody wants things good, wants them fast, and wants ther
cheap. Everyone knows that you can actually achieve any two of th
three. Which two do you want?"
The principle at work is to make those who are demanding the deatl
march look unreasonable if they areunwilling to consider more tha;
one possible outcome. Unless there is an acceptance of more thai
oneway to approach the problem, then there is no negotiation. Al
the manager can say is, "We'll give it our best shot, but there
are no guarantees."
--JB

10. Rob Thomsett, "Double Dummy Spit and Other Estimating Games," Anm
icon Programmer, June 1996.

11. Rise and Resurrection of the American Programmer, Edward Yourdon (Uppt
Saddle River, NJ: Prentice Hall, 1996).

12. Actually, the politically astute people will take your worst-case estimate an
add another "safety factor" before reporting it to their next higher-level superiot
Your estimate of six months, ±25% thus becomes nine months or a year. Unfor
tunately, the politically naive, or the politically ambitious, will do just the oppo
site. Thus, the CEO may end up being told that your project will be done in fou
months or less.

13. See Note 6, above.

14. Ed,
»Another important question I want to discuss in this chapter:
what should the death-march project manager do when, in his/her
sincere opinion, the negotiations have failed? At what point doej
the manager resign, throw a tantrum, threaten to become the next
Unabomber, etc.? And when he/she reaches that stage, what
responsibility does he/she have to thepro ject team, whichmay hav<
already begun working? «
I' ve learned something from my kids, and I think it applies to wort
just as much as it does to home life... I _have_ to protect myself,
my energy level, my emotional and physical health, my quiet-time,
and my work time. If I don't protect myself, I won't have anything
left for them anyway.
— Sue P

15. Some readers will probably object to the notion of the customer, or one's se

98 DEATH MARCH

nior manager, being described as an "adversary." But, the very nature of a death
march project is that the owner/customer, and the various shareholders and
stakeholders, are consciously and deliberately pushing the manager into deci-
sions that he or she would not make on his or her own. And, if you don't think
that "adversary" is an appropriate characterization of someone with whom
you've had a warm, friendly, professional relationship for years—go back to the
beginning of the chapter and read Lord Byron's comment again.

16. John Boddie, Crunch Mode (Englewood Cliffs: Prentice Hall/Yourdon Press,
MB7).

17. It's possible, for example, that a disgruntled staff member may see the death
march project as an excellent way of wreaking revenge upon the organization—
and he or she may join the project team in order to make certain that the project
fails.

18. See Note 16.

When soldiers have been baptized in the fire of a battle-field, they
have all one rank in my eyes.

Napoleon Bonaparte, Quoted in: Ralph Waldo Emerson,
Repnsetttative Men. "Napoleon" (1850)

A general is just as good or just as bad as the troops under his
command make him.

Douglas MacArthur, Speech, August 16, 1962

Insist on the right to choose your own team. Expect the team to work
some overtime hours, but remember that they're on a marathon, and
they should only be expected to sprint for the final 100 yards. Reward
them handsomely if the project succeeds, but don't dangle extravagant
awards in front of them all through the project, for it will distract them.
Focus on building a loyal, cohesive, cooperative team; it's important to
have the necessary technical skills, but it's even more important to have

99

100 DEATH MARCH

complementary psychological constraints. That's all there is to success-
fully integrating peopleware in a software project.

Unfortunately, there's more to it for many death march project man-
agers, for they work in organizations that have a miserable peopleware
culture even for normal projects. Though it might seem that such a cul-
ture would doom a death march project to certain failure, it sometimes
turns out that just the opposite is true. As noted in Chapter 3, the project
manager may have to accept an unreasonable schedule or budget, but
can sometimes retaliate by being equally hard-nosed about various-peo-
pleware issues. Thus, the manager might insist on—and get away with—
the right to hire the right people for the team, reward them properly, and
provide them with adequate working conditions.

And, for precisely that reason, the death march project will be perceived
as a threat to those who want to maintain the bureaucratic status quo. The
project manager may be able to circumvent the peopleware restrictions
with an edict from senior management, but he or she must be aware that in
doing so, he or she will earn the permanent enmity of the Office Police, Hu-
man Resources department, and various administrators. However, if the
death march project is a tremendous success, it may prove to be a catalyst to
change the peopleware practices for subsequent "normal" projects.

In any case, my mission in this chapter is not to change the overall
peopleware culture in an organization. Much has already been written
about this, including chapters in my Rise and Resurrection of the American
Programmer and Decline and Fall of the American Programmer (I've also
provided a list of standard references at the end of this chapter). The basic
question addressed by this chapter is: If you're already familiar with the
"basics" of peopleware, what's different about a death march project?

4.1 HIRING AND STAFFING ISSUES

The first thing that's different about a death march project is the empha-
sis on forming the right team. In my work with software organizations
around the world, I've seen four common strategies for creating a death
march team:

• Hire superstars and turn them loose

PEOPLE IN DEATH MARCH PROJECTS 101

• Insist on a well-honed, mission impossible team that has worked
together before

• Choose mere mortals, but make sure they know what they're get-
ting in for

• Take whoever you're given and convert them into a mission impos-
sible team

The first strategy is tempting, because the presumption is that the su-
perstars will be enormously productive, and also clever enough to invent
novel solutions to the death march requirements. However, it's also a
risky strategy, because the superstars typically have super-large egos;

and may not work well together. And, it's impractical in many organiza-
tions, because management isn't willing to pay the higher salaries de-
manded by the superstars. And, even if you could afford them, chances
are they wouldn't be willing to work on the death march project—they're
all working at Netscape or Microsoft, or wherever they think the real!)
exciting projects are taking place.

The second strategy is almost certainly the ideal one for most organi
zations, because it doesn't require superstars; it's also the kind of projecf
team glorified by the Mission Impossible TV series. However, if your orga-
nization is embarking upon its first death march project, such a tearr
doesn't exist. And, if there were previous death march projects tha-

turned out to be suicide-, kamikaze-, or ugly-style projects> the teams an
probably no longer intact. Thus, a strategy of keeping a successful death
march project team intact usually must be planned in advance, as a cor-
porate strategy, on the assumption that death march projects will occui
again in the future (I'll discuss this in more detail in Chapter 7).

The third strategy is the most common in the organizations I visit, foj
obvious reasons. Most organizations have no superstars, and they have
no survivors from previous death march projects. Hence, each new death
march project is staffed anew. The team members are competent, ana
perhaps better than the average developers in the organization, but the)
can't be expected to perform miracles. What's vital in this scenario is thai
the team members understand what they're signing up for; even though
they're mere mortals, they will be called upon to perform extraordinary
feats of software development.

102 D£ATH MARCH

The final strategy is one to be avoided at all costs. If the project turns
out to be a dumping ground for personnel that no other project wants,
then it's almost certainly a suicide project. Again, this has been glorified
by Hollywood, especially in movies like The Dirty Dozen; the theme is that
outcasts and misfits can be motivated by a tough, charismatic leader to
perform miracles that nobody thought possible. Well, perhaps so, but
Hollywood doesn't tell us about all of the misfit-staffed projects that fail.
It seerns to me that if you accept the assignment of managing (or partici-
pating in) a project of this kind, you've accepted the fate of suicide.

This brings up the central issue of staffing the death march project
team: To what extent should the project manager insist on the right to
make the staffing decisions? As noted above, most project managers
have to accept the fact that they won't be given carte blanche to hire the
world's most talented superstars; and, politics within the organization
may make it impossible for the project manager to steal away the best
people within the organization, because they're already involved in other
critical projects, or fiercely defended by other managers. Nevertheless,
there is one aspect that I believe the manager should insist on, as an ab-
solute right: the right to veto an attempt by other managers to stick an un-
acceptable person onto the team. To do otherwise is to add an
unacceptable level of risk to a project that's probably already over-bur-
dened with other risks.

Obviously, this can lead to a variety of ugly political battles. The
project manager is likely to hear soothing statements like, "Don't worry,
Charlie has been having some problems on previous projects, but he'll be
fine on your project," or ego-boosfing statements like, "You're such a
terrific manager that I'm sure you'll be able to turn Charlie around and
get some real productivity out of him," or various appeals to loyalty,
bravery, and assorted Boy Scout-like virtues. My advice is to stand firm
and insist on the right to reject anyone that you don't think will fit well
into the team.

One of the criteria that should be used in such a decision is the likeli-
iood of the proposed staff member leaving before the project finishes.
Obviously, most software developers won't tell you if they're planning to
quit midway through the project; but, some of them will tell you about
anticipated personal priorities—marriage, divorce, a prolonged moun-

PEOPLE IN DEATH MARCH PROJECTS 103

tain-climbing expedition to the Himalayas, etc.—that could rule them
out of consideration. In general, it's crucial to avoid losing people in the
midst of a death march project; and, it's highly desirable to avoid having
to add new people in the middle of a project.

In Chapter 3,1 discussed the options available to the project manager
if negotiations fail: quit, appeal to a higher authority, ignore the rules and
make your own decisions, or redefine the project as a suicide mission.
The possibility of ignoring the rules is usually more difficult, because
adding extra personnel to the project team has payroll ramifications that
are beyond the manager's control. However, it is sometimes possible to
"borrow" people from another project, or perhaps even to hire some
temporary contractors.

It's also possible to isolate an unacceptable team member that has
been put onto the project against the manager's wishes; the unacceptable
team member can be given a harmless sub-project to work on, or sent
away to research the mating habits of African tsetse flies until the project
is finished. Doug Scott [1] described an even more elaborate version of
this strategy in a recent e-mail message to me:

Death Marches often end up in the desperate situation
where senior management will throw money at you—
"You want another twenty people?" And I always ac-
cept. I put the bozos onto manning the coffee machine,
changing fuses, and other essential work, while I hang
on to the better ones. (Randomly, you will get a few
good ones). Then you can assist the bozos to resign and
keep pressing for more and more people to replace
them. In one case, I cut to 20% of the original staffing
level, and still maintained work output—but the quali-
ty of that output was excellent. That's no surprise to
anybody, but it's by constantly demanding more re-
sources and losing them that you can achieve it.

104 DEATH MARCH

4.2 LOYALTY, COMMITMENT,
MOTIVATION, AND REWARDS

I discussed the issue of commitment to the death march project in Chapter
2; it's an essential element of the politics of such projects, and it's also a
key element in the team dynamics that the project manager must try to
maximize. Ideally (from the project manager's perspective), the team
members will swear an oath of loyalty and dedication to the death march
project above all else; for the young, unmarried techno-nerds, this is not
as ridiculous as it might sound. However, it depends heavily on such
things as the length of the project. Total devotion may be feasible for a
three to six month project, but probably not for a 36-month project.

Commitment also depends heavily on the ability of the project man-
ager to motivate the team members to feel loyal and committed. To some
extent, this is a matter of charisma. Some managers generate such feel-
ings of loyalty that their team members will follow them to the end of the
earth, no matter how risky the project; other managers are so uninspiring
that their teams wouldn't exert any extra effort, even if the project's ob-
jectives were to save mankind from an alien invasion.

Of course, one could argue that the project manager shouldn't allow
anyone to join the team unless they are highly motivated. One could also
argue that the issue is irrelevant, because most software developers are al-
ready motivated—as Tom DeMarco and Tim Lister argue in Peopleware [2]:

There is nothing more discouraging to any worker
than the sense that his own motivation is inadequate
and has to be "supplemented" by that of the boss...
You seldom need to take Draconian measures to keep
your people working; most of them love their work.

But, there are levels, or degrees, of motivation. We might expect a
software developer to exhibit a certain degree of motivation for a normal
project, but death march projects demand a higher degree of motivation
to sustain the team members through months of exhausting work, polit-
ical pressure, and technical difficulties. And, the project manager faces
the practical difficulty of not knowing just how motivated the team mem-
bers are when the project begins. As Doug Scott [3] puts it:

PEOPLE IN DEATH MARCH PROJECTS 105

You're assuming that he knows who these people are
when he gets them. I've usually had them assigned to
me before I know how good/bad they are.

In many cases, the biggest factors in motlvation/de-motivation will
revolve around the dynamics of the overall team (I'll discuss this in more
detail below). But, there are two specific issues that also have a significant
impact on motivation, and which are usually under the manager's direct
control: rewards and overtime.

4.2.1 Rewarding Project Team Members

Things would be difficult enough if we could solve the motivation prob-
lem by dangling large sums of money in front of all of the project team
members (and the manager, too!). But, Frederick Herzberg [4] suggests
that money is not always the answer:

Money, benefits, comfort, and so on are "hygiene"
factors—they create dissatisfaction if they're absent,
but they don't make people feel good about their jobs
and give them the needed internal generator. What
does produce the generator are recognition of
achievement, pride in doing.a good job, more respon-
sibility, advancement, and personal growth. The secret
is job enrichment.

This may be an accurate assessment for normaL projects, but money
does play a factor in many death march projects. Indeed, it may be an
overriding objective for the project as a whole. Many Silicon Valley start-
up companies embark upon frantic death march projects, hoping that
they will be able to develop a "killer app" for a new hardware device and
sell millions of copies to an eager marketplace. If the project team mem-
bers have stock options and profit-sharing plans, financial rewards are
obviously a very large part of the motivational structure of the project. In-
deed, many Silicon Valley companies deliberately peg their salaries at 20-
30% below the prevailing market rates, but provide ample stock options
and/or profit-sharing plans to motivate the members of their technical
staff. The strategy is not only to increase motivation, but also to reduce

106 DEATH MARCH

the fledgling company's cash outflow, since salaries are often the single
biggest expenditure for a start-up software company.

Of course, there are legitimate, exciting death march projects for which
money is irrelevant. A software developer who is offered the once-in-a-
litetime chance to work on the equivalent of the Apollo 11 lunar landing
doesn't need money; he or she will cheerfully agree with Steve Jobs' com-
ment about the Macintosh project that "The journey is the reward."

At the other extreme, I find death march projects taking place in mor-
ibund government agencies where the project is intrinsically boring, and
where there is no hope of increased financial reward tor anyone in the or-
ganization. Salaries are determined by one's civil-service grade-level,
and the salary structure is fixed by law—there are no bonuses, profit-
sharing rewards, or stock options. In cases like these, it's obviously silly
to even discuss financial rewards as a motivator—all it can do is frustrate
-he team.

But, what about the organizations that have flexibility? If the death
narch project is important enough to the organization, then it's not be-
'ond the realm of possibility to set aside a significant bonus pool to re-
gard the team if it succeeds in delivering the project on time. The
•ossibility of bonuses comes up in normal projects too, but the monies
tvolved are usually much more modest. It's nice to get a bonus check of
1,000 at the end of a normal project, but the tax authorities usually take
third for themselves, and the remainder is not enough to have a notice-
Die impact on the lifestyle of a typical middle-income software profes-
onal. But, death march projects are different: a $10,000 bonus check
dght be enough to buy a new car (albeit a pretty modest one these
iys!), or finance a vacation to Bali. A $100,000 bonus check is enough to
nance a child's Ivy League college education, or to buy a house (or at
ast the down payment on a house). And, a $1,000,000 bonus check is
tough to make retirement a serious possibility.

Assuming that such a bonus is possible, here are a few observations:

• Remember that a 20% salary increase means much more to a jun-
ior programmer earning $25,000 per year than it does to a senior
programmer making $75,000 per year. At the higher salary, the

PEOPLE IN DEATH MARCH PROJECTS 107

marginal tax rate is usually much higher, often approaching 50%;
thus, the programmer doesn't take home much more, and conse-
quently the salary issue is more likely to be regarded as a hygiene
factor. For the junior programmer though, the tax rate is still rea-
sonably low, and the extra 20% might be sufficient to cover the
monthly payments on the programmer's first car, or to justify mov-
ing out of his/her parents'home to an apartment.

Remember that the possibility of large sums of money can motivate
people in a variety of ways. Management may assume that it will sim-
ply make everyone work harder, but it can also make team members
excessively critical and suspicious of each other—e.g., a team mem-
ber will complain bitterly/'George had the audacity to take Christmas
Eve off, just to be with his stupid family, right when we were at a crit-
ical stage of testing. He's gonna screw us out of our bonus!"

Remember that the size of the bonus doesn't have a direct, linear
correlation with the productivity or number of hours worked by the
project team. I've watched senior management in some organiza-
tions attempt to bribe the death march project team by offering to
double the size of the bonus—usually because the project is behind
schedule, and because management apparently believes that dou-
bling the bonus will double the number of work hours by the
project team. But, if the team members are already working 18
hours per day, the laws of physics prevent even the most dedicated
person to double the work hours.

For the bonus to work as a motivator, the project team must believe
that it really exists and that senior management won't find a devi-
ous excuse to withhold it. Obviously, if the rewards are associated
with success in the marketplace—e.g., if the project succeeds, then
the company can go public, unless the stock market has col-
lapsed—there are no guarantees. But, if the reward is entirely at the
discretion of senior management, and if the team believes that pre-
vious death march project teams have been unjustly cheated out of
their rewards, the "promise" of a bonus will probably be a negative
motivator. Similarly, if the project team concludes that it has little
control over the successful outcome of the project—e.g., because,
in addition to their software, the project depends on new hardware

•

•

•

108 DEATH MARCH

being developed by an outside vendor—they may view the bonus
being promised by management as a "random lottery," rather than
as a motivating device.

• The team must also believe that the bonus will be distributed in an
equitable fashion. That doesn't necessarily mean that every team
member gets exactly the same share; but, if the team believes that
the project manager will get the lion's share of the reward, and that
they'll end up with the crumbs, the results are predictable. This
needs to be discussed at the beginning of the project; it's unlikely
that the team members will be pacified by statements from the
manager like, "Trust me, don't worry—I'll make sure everyone is
taken care of in a fair manner."

For projects that cannot or will not consider extravagant bonuses, it's
important for the project manager to remember that there is a wide variety
of non-financial rewards that can have an enormous impact on the moti-
vation of the project staff. Again, this is an issue that we frequently see on
"normal" projects, but it's more important here because everyone is being
stretched to his or her limits. It's also important to remember that the pres-
sure of the death march project team is felt by the spouse and/or family
members of the death march staffers. As Doug Scott puts it [5],

The first priority is to take pressure off your staff, so the
first recipient of the rewards should be to the partner
and family of said staff—it's all very well in career/
money terms, but it's the family who have to make the
sacrifices. Bouquets of flowers are a start. Support the
whole family—they're the ones doing it.

While a bouquet of flowers is a nice gesture, it's sometimes more
meaningful to provide "practical" rewards to the family members—espe-
cially the spouse who is left juggling all of the household and child-care
responsibilities while his or her "significant other" is working 'round the
clock on the death march project. A thoughtful project manager might
check to see whether the spouse needs a taxi service to pick up or drop off
a child from school, or whether someone from the office could pick up
some groceries on the way home to help the spouse who is stuck at home

PEOPLE IN DEATH MARCH PROJECTS 109

with sick children. And, if the children are really sick and need medical
attention, the project manager will move heaven and earth—and utterh
destroy any bureaucratic obstacles—to ensure that the appropriate ser
vices are provided, in order to minimize anxiety on the part of the deal
march project member.

Of course, the examples mentioned above do require money, but it'
usually a very small amount of money, and it can usually be covered r,
the "miscellaneous" part of the project budget Again, the corporate bu
reaucrats will probably whine and complain if they find out about it, fo
such expenditures usually don't conform to officially sanctioned proce
dures. The project manager who caves in to this kind of pressure is
spineless wimp; if necessary, the manager should pay for such expense
out of his own pocket, since he's usually making a much higher salar
than the technical staff members. In any case, it's the manager's job t
deal with the corporate bureaucracy here; the last thing we want is t«
have the technical staffers wasting their time and their emotional energ
fighting with the accounting department about whether it was reason
able to order a pizza with two extra toppings, rather than the econom
pizza, for a midnight dinner when the team is working late.

Modest rewards of this kind throughout the project will certain I
help; but, what about non-financial rewards of a more lasting natur
when the project finishes? I'm not thinking of promotions or new caree
opportunities here, for those fall into the same category as overt financia
rewards. Here are some examples of rewards that might not be quite a:
motivating as a million-dollar bonus check, but would nevertheless helj
ease the pain of a death march project:

* An extended vacation—if the project succeeds, give the team mem
bers a vacation of the same duration as the project. Most of us aren'
quite sure what to do with a two-week vacation—but if we had ;
six-month paid vacation, it might motivate us to take that 'round
the-world sailing trip we've always dreamed of. An interesting test
Try this idea out on your manager and watch the reaction. If it';
something like,"What?!? Are you nuts? Six months vacation for £
six-month death march project?!? We'll give you a couple days off
but don't push your luck!" it will give you a strong indication o
management's implicit belief that software developers are nothing

110 DEATH MARCH

more than indentured servants. Such an attitude speaks volumes
about the organization's concept of a social contract.

• A paid sabbatical—when the death march project is done, assign
the team members to a six-month stint on "Project X"[6]. Ques-
tion: What's "X"? Answer: Anything they want it to be. Rather than
immediately being assigned to another death march project (or
equally bad, an utterly boring non-death march project), the team
members can look forward to six months of learning about Java,
researching the latest object-oriented methodologies, or even
returning to college to get their Master's degree. You'll have to be a
little creative about the "official" name for X to confuse the bureau-
crats; something like "the advanced nimbo-heuristic, object-
oriented, Internet-savvy, Java-based, strategic-forecasting client-
server system"might do the trick.

• A fully-equipped computing environment at home—even though PC
hardware has gotten much cheaper and we all have something set
up in our home office, it's usually not the most up-to-date equip-
ment. Many of us have a sluggish 486-, or even an ancient 386-
based machine, while the rest of the world races ahead to 200 MHz
Pentium machines. The interesting thing about death march
projects is that they often accumulate extra computer equipment,
because management is prepared to throw extravagant sums of
money into the budget on the theory that advanced technology will
save the project. If there is leftover equipment at the end of the
project, give it to the team members as a bonus; if an outright gift
breaks too many bureaucratic rules, then loan it to them.

4.2.2 The Issue of Overtime

If bonuses and extended vacations are a motivator, then overtime during
the project would normally be considered a "de-motivator." But, it's al-
most inevitable on death march projects; indeed, it's usually the only
way that the project manager has any hope of achieving the tight dead-
line for the project. And, as noted earlier, it often occurs without any ex-
plicit requests from the manager: young, fanatical, unmarried team
members who are excited by the challenge and advanced technology as-

PEOPLE IN DEATH MARCH PROJECTS 111

sociated with the project will happily work 60, 80, or 100 hours per week.

Nevertheless, overtime must be managed properly to avoid demoti-
vating the team and endangering the success of the project. One way to
manage overtime is to ensure that senior management knows how much
it costs; as consultant Dave Kleist puts it [7],

Unless stock options for the company are distributed
to team members as generously to senior manage-
ment, there are no forms of compensation for a death
march that would qualify as a reward (I'm using re-
ward as a term with a positive tone). While the PM
rarely has this control over compensation, what really
should be done is immediate compensated overtime
in the next paycheck. This gives something back to the
people sacrificing the most for the project, and punish-
es (through the budget) the people who need to learn
the real cost of a project (senior management, etc).

If you're going to do a deathmarch, it's best to get paid
by the mile.

Regardless of whether or not the team members are being compen-
sated for their overtime work, the worst mistake is not recording the
overtime, on the theory that since the team members aren't being paid
for it, it's "free." While this may be an accurate perception on the part of
the accounting department, overtime is not free from the project manag-
er's perspective. Even if we assumed that all team members could work
18-hour days forever, without ever becoming tired, it's crucial for the
manager to keep track of how many "invisible" overtime hours are being
contributed throughout the project. This is the only way the manager can
accurately gauge the productivity of the team and the likelihood of reach-
ing each mini-deadline throughout the project.

And, as everyone knows, people can't work 18-hour days forever;
even if they try, they get tired. When they get tired, they get cranky and
short-tempered, they work less productively, and they make many more
mistakes. All of this has a dramatic impact on the progress of the overall
project, and the manager has to know when to relax the pressure, and
when to ask for more overtime.

112 DEATH MARCH

This may not seem so important for a three to six month project,
when a young, energetic project team can work "flat-out" from begin-
ning to end. But, on longer projects, careful management of the overtime
effort is crucial; the effects of long periods of heavy overtime are insidi-
ous, but nevertheless quite real. As Doug Scott suggested to me in a re-
cent e-mail message [8]:

Part of scheduling deliveries is to ensure that the over-
time comes in bursts and is then allowed to diminish -
you can't keep people working at 90% and over for
very long.

And as John Boddie, [9] points out, it's important that the manager
recognize that each team member will have a different tolerance for over-
time work:

Individuals have different metabolisms. Some are
night people, others work better in the early morning.
Irrespective of type, nobody's health is going to be ru-
ined by working ten-hour days. Once the project gets
rolling, you should expect members to be putting in at
least 60 hours per week. If they're not, check first to
see if there's something in the way the project is orga-
nized that's frustrating them.

The project leader must expect to put in as many hours
as possible. This is done for two reasons. First, he must
provide an example. You cannot expect people to work
overtime if you're not doing it yourself. Overtime must
be led. Second, he must be there to answer questions,
cut through red tape, and fix problems that come up
during odd hours.

One of the dangers that the project manager must watch for is exces-
sive voluntary overtime on the part of enthusiastic young software engi-
neers who don't know their own limits, and who don't appreciate the
potential side-effects of working when the/re exhausted. As suggested
by Figure 4.1, net productivity might actually increase during the first 20
hours of overtime work, based on adrenaline, concentration, etc. But

PEOPLE IM DEATH MARCH PROJECTS 113

sooner or later, everyone reaches a point of diminishing returns; and at
some point, productivity begins to decline because of increased errors
and lack of focus and concentration. Indeed, there comes a point where
the team member becomes a "net negative producer," because the re-
work effort caused by mistakes and defects exceeds the positive contribu-
tion of new software developed. Thus, assuming that the scale in Figure
4.1 is accurate (which it may or may not be, for any individual software
developer), the manager will probably want to encourage the developer
to work as much as 60 hours per week; the period between 60 and 80
hours per week isr where the manager should begin letting the developer
set his or her own limits; and beyond 80-90 hours per week, the manager
should insist that the developer go home and rest.

Note that the shape of this curve depends on age, motivation^ and length
of the-overall project

FIGURE 4.1 NET PRODUCTIVITY VS. HOURS WORKED

114 DEATH MARCH

4.3 THE IMPORTANCE OF COMMUNICATION

One of the important peopleware issues for death march projects is the na-
ture and extent of communications between the project manager and the
rest of the team. In my opinion, the ideal situation is one where the project
manager has no secrets—everyone on the team knows everything about
the project. This means that everyone on the team knows the current infor-
mation about the project status, priorities, risks, constraints, politics, etc.

One reason for suggesting this is that it builds trust and loyalty
among team members. If the team members are making extraordinary
personal sacrifices on behalf of the project, it's very disillusioning to dis-
cover that the project manager has been withholding crucial information,
or has been playing political games behind the backs of the project team
members. And because death march projects tend to be intense and fast-
moving, there's more of a chance than in normal projects that the team
members will find out that information has been withheld, or that politi-
cal shenanigans are going on.

The obvious counter-argument to this philosophy is that the project
manager should be buffering the team from distractions—especially the
petty political games that surround the project on a day-to-day basis.
And in most cases, the team members will appreciate being spared all of
the politics; but, they also need to know that if they ask a direct question,
their project manager won't obfuscate or lie to them. In most projects,
normal or death march, there's a regular status meeting where questions
of this kind can be raised; if the staff members are satisfied that they can
find out what's going on whenever they need to, they'll be happy to con-
centrate 99% of their energy on their technical work.

Communication between team members is also crucial, especially in
the unfortunate situation where the team members have not worked to-
gether before. It's crucial that inrra-team communication be kept confi-
dential (from outsiders) to encourage honest and frank exchanges of
information. For most projects today, this strongly implies the need for
electronic mail and various forms of groupware along the lines of Lotus
Notes. But in addition, the project manager should plan for weekly lunch,
beer, or dinner sessions so that the staff members can interact with one
another outside the normal office environment.

PEOPLE IN DEATH MARCH PROJECTS 115

4.4 TEAM-BUILDING ISSUES

Open, honest communications are an important ingredient in the pro-
cess of building an effective team. Choosing individuals who are compat-
ible with one another is another key ingredient. As mentioned earlier, it's
crucial that the project manager have the freedom to choose his or her
team members, and it can be helpful to use techniques such as Briggs-
Meyers personality assessment tests to help anticipate how team mem-
bers will interact with one another.

Yet another ingredient involves the concept of team roles. Many
project managers focus on "technical" roles such as database designers,
network specialists, user-interface experts, and so forth. But while these
roles are important, it's also important to think about the "psychological"
roles that will be played by one or more team members. These roles are
visible in "normal" software projects too, but they are all the more crucial
in death march projects. Rob Thomsett [10] has described the eight key
project roles as follows:

• Chairman—controls the way in which a team moves forward
toward the group objectives by making the best use of team
resources, recognizes where the team's strengths and weaknesses
lie, and ensures that the best use is made of each team member's
potential. As might be imagined, this person is often the official
project leader; but in self-managing teams, it could be any one of
the individuals.

• Shaper—shapes the way in which the team effort is applied, and
directs attention and seeks to impose some shape or pattern on
group discussion and on the outcome of group activities. This indi-
vidual may have the official title of "architect" or "lead designer,"
but the key point is that ifs a "visionary" role. Especially in a death
march project, it's crucial to have a single, clear focus on what the
problem is, and what the solution (design) should be.

• Plant—advances new ideas and strategies with special attention to
major issues, and looks for possible new approaches to the prob-
lems with which the group is confronted. I like to think of this per-
son as the "provocateur"—the person who introduces somewhat

116 DEATH MARCH

radical ideas and technologies into the group, to help find innova-
tive solutions to help solve the technical problems confronting the
death march team.

Monitor-Evaluator—analyzes problems in a practical manner, and
evaluates ideas and suggestions so that the team is better placed to
make balanced decisions. In many cases, this person acts as the
"skeptic" or "critic," thus balancing the optimistic proposals of the
shaper and plant. The monitor-evaluator is aware that new tech-
nologies don't always work, vendor promises about the features of
new tools and languages are sometimes broken, and things in gen-
eral don't always go as planned.
Company Worker—turns concepts and plans into practical working
procedures, and carries out agreed-upon plans systematically and
efficiently. In other words, while the shaper is spouting grand tech-
nological visions, the plant is proposing radical new solutions, and
the monitor-evaluator is looking for the flaws and shortcomings in
those proposals, the company worker is the person who hunkers
down in a corner and chums out tons of code. Qearly, a death
march project needs to have at least a couple of these folks; but on
their own, they may not bring the project to success because they
don't have any grand visions of their own.

Team Worker—supports members in their strengths (e.g., building
on suggestions), underpins members in their shortcomings,
improves communications between members, and generally fos-
ters team spirit. In other words, this person is the "diplomat" of the
team. It may be the project manager, but it could also be any one of
the individuals on the team who happens to be a little more sensi-
tive than the others about bruised egos and sensitive personalities.
Again, this is often a crucial role in death march projects, because
the team is often under a great deal of stress, and at least one or
two of the team members is likely to begin behaving in an insensi-
tive, " macho" fashion.

Resource Investigator—explores and reports on ideas, develop-
ments, and resources outside the group, creates external contacts
that may be useful to the team, and conducts any subsequent
negotiations. I like to call this person the "scavenger," because he

•

•

•

•

IH DEATH MARCH PROJECTS 117

or she knows where to find a spare PC, an available conference
room, an extra desk, or almost any other resource that the team
needs. Such resources might or might not be available through
official channels; but even if they can be procured in the "normal"
fashion, it often requires filling out 17 forms in triplicate and then
waiting six months for the bureaucracy to process everything. A
death march project can't wait that long, and can't afford to have all
its progress brought to a halt because the Vice President's adminis-
trative assistant jealously guards access to the organization's only
available conference room. The team scavenger often has a net-
work of friends and contacts throughout the organization from
whom the critical resources can be begged, borrowed, or stolen.
The most important thing is that the scavenger enjoys this activity.

• Completer—ensures that the team is protected as far as possible
from mistakes of both commission and omission, actively searches
for aspects of work which need a more than usual degree of atten-
tion, and maintains a sense of urgency within the team. It's com-
mon to see this person taking on the dominant role during the
testing activities at the end of the project life cycle, but it's just as
important in the earlier stages too. The team sometimes needs to
be reminded—daily!—that ifs not involved in a lifetime career, but
rather a project with a hard deadline, with intermediate inch-
pebbles that need to be accomplished in a timely fashion to avoid
falling behind.

Unfortunately, even with all this effort, there's no guarantee that the
project team will come together, or "jell," in a cohesive fashion. As Tom
DeMarco and Tim Lister put it in Peopleware:

You can't make teams jell. You can hope they will jell;
you can cross your fingers; you can act to improve the
odds of jelling; but you can't make it happen. The pro-
cess is much too fragile to be controlled.

If the jelling process is successful, there will usually be some visible
signs. As DeMarco and Lister observe, successful teams typically have a
strong sense of identity, a sense of eliteness, a feeling of joint ownership,

116 DEATH MARCH

and (at least on mission impossible-style death march projects) a feeling
that they can do good work and have fun. On the other hand, while the
organization may not be able to guarantee a successfully jelled team, it
can cause what DeMarco and Lister refer to as "teamicide"—i.e., a con-
scious or unconscious decision to give up and abandon all efforts to
maintain a focused, cohesive team structure. The practices that typically
lead to teamicide are these:

• Defensive management—not trusting the team. Note that this is an
area where the notion of a team "champion, "as discussed in Chap-
ter 2, becomes essential.

• Bureaucracy—too much paperwork. If the team has any sense, it
will simply refuse to do the paperwork, or will make vague prom-
ises to catch tip with all of it after the project has finished.

• Physical separation of team members—(e.g., in different buildings,
different cities, different countries)—electronic mail and groupware
tools can obviously reduce this problem, but physical proximity is
essential to maintain the team spirit so essential to the success of a
death march project.

• Fragtnentation of people's time—especially in situations where the
team members devote part of their time to the official death march
project, and another part of their time maintaining an old legacy
system, or serving on the committee for the company Christmas
party. It's mind-boggling to imagine that such a thing could hap-
pen in a death march project, but it does happen in large corporate
bureaucracies.

• Quality reduction of the product—while the team may be prepared to
accept a certain level of quality-reduction in order to deliver//good-
enough" software on time, there is usually a threshold below
which they refuse to go. The quality issue may involve defects
(bugs), missing functionality, primitive user interface, or shoddy
documentation.

• Phony deadlines—for example, deadlines so aggressive that the
team has absolutely no faith in its ability to meet them. This form of
teamicide usually transforms a mission impossible team into a sui-
cide team.

IN DEATH MARCH PROJECTS 119

• Clique control—splitting up teams when the project finishes. As
noted earlier in this book, some teams find that the project they're
working on is intrinsically boring, and the users to whom they
deliver their software are ungrateful louts; so, the satisfaction to be
derived from the project comes from the pleasure of working with a
certain group of people. Indeed, the satisfaction may be so great
that the team members look forward to the prospect of continuing
to work together on future projects. But ironically, the team spirit
that made the team succeed is often regarded as a political threat to
management; hence, the common practice of breaking the team
apart upon the completion of the project. This in turn is such a
demoralizing prospect that the team disintegrates even before the
project deadline.

A final point about team jelling: even when it happens, it doesn't
happen on the first day of the project. As Robert Binder [11] observes, a
typical team goes through a four-stage evolutionary process, which also
applies to the vision-building process of developing a shared under-
standing of the application problem and general structure of the solution:

• Forming: team members define goals, roles, and team direction.

• Storming: the team sets rules and decision-making processes, and
often renegotiates (argues) over team roles and responsibilities.

• Norming: procedures, standards, and criteria are agreed upon.

• Performing: the team begins to function as a system.

In the ideal case, a project team may have gone through most of the
"forming" and "storming" stages before the project even begins—be-
cause the team members have worked together on previous projects.
However, every project is different, and every project team usually in-
cludes one or two new people, which is bound to cause a certain amount
of forming and storming. But, whether the overall process takes a day, or
a week, or a month, it must occur; if at all possible, the project manager
will try to get the team members assigned to the project well before the
official "kick-off" date of the project, in order to be at the "performing"
stage when the project officially begins.

120 DEATH MARCH

It's also important to remember that even when a team has jelled, it
can fall apart because of the pressure of the death march project. In an
e-mail note to me, Dale Emery [12] recommended that the project
manager keep a watchful eye on the team dynamics:

Pay attention to the relationships within the team, and
put some effort into maintaining people's ability to
work together over time. A death march project cre-
ates tremendous pressure that can amplify small dis-
turbances into major conflicts. Periodic check-ins to
"take the temperature" of the group can help you and
the team deal with relationship and communication
problems while they are still small.

In the worst case, though, the team might never get past the first two
stages; or to put it another way, the team may commit teamicide because
of the various problems listed earlier. And, by the time the project man-
ager (or some level of management above the project manager) notices
that teamicide has occurred, it's probably too late to form a new team.
C'est la vie.

4.5 WORKPLACE CONDITIONS
FOR DEATH MARCH PROJECTS

The issue of decent offices—versus Dilbert-style cubicles—has been de-
bated for so many years in the software development field that it seems
pointless to bring it up again. Tom DeMarco and Tim Lister, whose work
has already been cited numerous times in this chapter, have discussed
the benefits of decent office working conditions at length in their People-
ware opus; software developers who say their workplace is acceptably
quiet, for example, are one-third more likely to deliver zero-defect work
than those who work in noisy office environments with uncontrollable
interruptions. And, in a survey of some 600 software developers, DeMar-
co and Lister were able to make a persuasive argument that those work-
ing in reasonable office conditions—with the ability to divert phone calls,
silence the phone, close the door, and prevent needless interruptions—
were approximately 2.6 times more productive than those working in the
usual office environment.

PEOPLE IN DEATH MARCH PROJECTS 121

Though DeMarco and Lister published their work in 1987, it doesn't
seem to have done much to the workplace conditions for most software
developers—except in software-product companies. The working conditions
at Microsoft, and in most of the software companies throughout Silicon
Valley, are civilized indeed; private offices with doors that close, access to
kitchens stocked with soda, juice, and other beverages, and a "perma-
nent" phone number that follows the programmer in the event that he or
she is reassigned to a different office.

As for the software developers who work in banks, insurance compa-
nies, government agencies, manufacturing organizations, and the hun-
dreds of other companies for whom software is still generally regarded as
an "overhead" expense, offices tend to be replaced with cubicles, and the
ability to concentrate on one's intellectual efforts ranges from poor to
non-existent. Stale Muzak wafts through the air, phones ring incessantly,
dogs bark, people yell, and there is no way to prevent anyone from the
mailroom messenger to the CEO from butting their head into your office
to interrupt you. As DeMarco and Lister put it:

"Police-mentality planners design workplaces the way
they would design prisons: optimized for containment
at minimal cost. We have unthinkingly yielded to
them on the subject of workplace design, yet for most
organizations with productivity problems, there is no
more fruitful area for improvement than the work-
place.

As long as workers are crowded into noisy, sterile, dis-
ruptive space, it's not worth improving anything but
the workplace."

Unfortunately, my complaining about the situation isn't likely to have
any more of an effect on the industry than DeMarco and Lister's far more
detailed and eloquent discussion. But remember that we're talking about
death march projects here—different rules apply, and I believe that the
project manager should adopt the philosophical position thatra rulesapply.

If you're a death march project manager with a nearly-impossible
deadline, the message that decent office conditions can lead to a 2.6-fold

DEATH MARCH

improvement in productivity should be enough to motivate you to break
lots of rules. Whatever you accomplish probably won't be permanent; in
fact, as soon as the project is over, the furniture police will swoop in and
reassign everyone to the same miserable cubicles occupied by the rest of
the staff. But, if the death march project only lasts six months, and if
you're clever, you might be able to provide decent working conditions
without the furniture police even figuring out what's going on.

Here are some possibilities:

• Frontal attack—if you have a project champion and/or project
owner desperate to get the project finished, explain to him or her
just how important it is to put your project team into an effective
environment. If the project champion is a high-level manager, it
should be relatively easy to arrange a temporary transfer of the
project team.

• The "skunk works" mystique—most senior managers have heard of
the notion of a "skunk works"; thus, rather than asking to locate
your project team in the executive suite, where each office has its
own private bathroom, ask for permission to relocate the team to
an abandoned warehouse.

• Squatter's rights—commandeer empty office space that has been
sitting unoccupied while the furniture police try to figure out how
many hundreds of people they can cram into it. Pbssession is 90
percent of the battle; while the bureaucracy complains, debates,
and sends angry memos back and forth, you might even be able to
finish your project and disappear back into the anonymous cubicles
again.

• Telecommute—tell everyone to work at home, and arrange to have
your weekly status meetings at the local McDonald's (at 9AM,
when the place is likely to be empty). It may take weeks for anyone
to notice that the project team has disappeared. As an additional
diversion, you can put scarecrow-style dummies at the desks nor-
mally occupied by the project team; management will have a hard
time distinguishing them from the other zombies in the office.

• Switch to the graveyard shift—this is more extreme, but can be effec-
tive if most of the project work can be carried out without interact-

•FHPEO;OPLE IN DEATH MARCH PROJECTS 123

ing with the user community. It's unpleasant asking everyone to
change their work schedule to the midnight-to-eight shift, but it's
virtually guaranteed to eliminate normal interruptions. A strategy
like this is sure to evoke the wrath of bureaucrats throughout the
organization, but the wonderful thing is that the bureaucrats aren't
in the office in the middle of the night! They'll send angry memos
and e-mail messages; but, the best strategy is to ignore them and
pretend that you never received them. If that doesn't work, then
simply refuse to change your schedule; unless they turn off the
lights or change the locks on the office door, there's not much they
can do within the duration of a typical death march project.

• Barricades and buffers—if your team is in a typical "open office"
environment and the strategies discussed above aren't feasible,
then do whatever you can to ensure that the project team members
are located in contiguous cubicles. Then, take whatever further
steps are necessary to barricade that set of cubicles from access by
the rest of the office herd. Disable the intercom and loudspeaker
that blares noise from the ceiling (and be prepared to do so weekly,
as the janitorial service will probably do its best to repair it).
Unplug the phones, or as DeMarco/Lister recommend, stuff cotton
into the ringer portion of the hand-set. If you can take over an
entire floor, or a whole building, so much the better. Erect a pirate
flag atop the building, as Steve Jobs did with the Macintosh project
team at Apple. Install a guard to shoo away unwanted visitors.

Some of these actions will provoke a more violent response from the
corporate bureaucracy than others; the team and its manager will have to
decide which strategy is most effective. But, I want to emphasize that I'm
serious about all of these strategies, despite the obvious fact that they vio-
late the "rules" that one finds in almost every large company. Confronting
the bureaucracy in this fashion is not for the timid; but, by the same token,
death march projects are not for the timid. If the death march project man-
ager isn't willing to stand up and fight for decent working conditions, then
why should the project team be willing to make extraordinary sacrifices on
behalf of the organization and project manager [13]? [14]

124 DEATH MARCH

4.6 SUMMARY

Talented people, cohesive teams, and decent working conditions are not
enough to guarantee success in a death march project. The absence of
these elements, however, is almost enough to guarantee the project's
failure. As we'll see in the next two chapters, good software processes and
good technology are also important ingredients for success; but, the most
important ingredient of all is the people. As Ronald Reagan put it:

Surround yourself with the best people you can find,
delegate authority, and don't interfere.

Ronald Reagan, from Reagan's Reign of Error,
"Mission Impossible" (ed. Mark Green

and Gail MacColl, 1987).

Notes

1. Ed,
> 1. How crucial is it for the death inarch project manager to have
> the freedom to choose his/her project team members?
It's another aspect of death inarch projects that the PM usually
has no (or not enough) choice in the people. Having said that, it
would be a dream project indeed if you had all the people you wanted
- there just aren't enough good people to go around.
>should the project manager resign on the spot?
You' re assuming that he knows who these people are when he gets
them. I' ve usually had them assigned to me before I know how good/
bad they are.
There is a counter-measure to this, which I have used successfully.
Death Marches often end up in the desperate situation where senior
management will throw money at you - "You want another twenty
people?". And I always accept. I put the bozos onto manning the
coffee machine, changing fuses, and other essential work, while I
hang on to the better ones. (Randomly, you will get a few good
ones) . Then you can assist the bozos to resign and keep pressing
for more and more people to replace them. In one case, I cut to
20% of the original staffing level, and still maintained work
output - but the quality of that output was excellent. That's no
surprise to anybody, but it's by constantly demanding more
resources and losing them that you can achieve it.
> 2 . How should the project manager handle the issue of rewards?
The first priority is to take pressure off your staff, so the first

PEOPLE IN DEATH MARCH PROJECTS 125

recipient of the rewards should be to the partner and family of
said staff - it's all very well in career/money terms, but it's
the family who have to make the sacrifices. Bouquets of flowers
are a start. Support the whole family - they're the ones doing it.
> 3. What about overtime?
In a death march, it's unavoidable, as you suggest. But part of
scheduling deliveries is to ensure that the overtime comes in
bursts and is then allowed to diminish - you can't keep people
working at 90% and over for very long. I've never been in an
organisation which paid overtime, and I really don't like it—it
smacks of rewarding those who aren' t doing well enough. Better to
reward those still standing at the end with bonuses - and that' s
counted in months ' salaries, not a pie and a pint at the local pub.
> what are the most important things for the manager to do in a
> death march project, vis-a-vis peopleware and teamwork?
Be there. Listen. Represent their views back to senior management,
and ensure that the trivia is dealt with quickly and efficiently.
Get the coffee, if that's all he can effectively do. Contribute.
> what are the most important things they should do for themselves,
> and for their fellow team-mates, during the project?

The same. Help each other, so that the work gets done in the
quickest possible time. You might even get home early.
I note that I'm worrying a lot about married folk, but that's
because the spouses are often ignored in death marches, and I' ve
seen many a marriage (including my own) go west because of a death
march. It needn't be so, if managed well. Single folk have more
freedom to choose, and less reason to feel trapped.
--Doug

2. Tom DeMarco and Tim Lister, Peopleware (Dorset House Publishing, 1987).

3. See Note 1.

4. Frederick Herzberg, "One More Time: How Do You Motivate Employees?"
Harvard Business Rcvieiu, September-October 1987.

5. See Note 1.

6. This wonderful strategy was suggested by Peopleware guru Larry Constantine
at a software conference in Melbourne, sponsored by the Australian Computer
Society in 1995.

7. Ed,
» 2 . How should the project manager handle the issue of rewards?

DEATH MARCH

» 3 . What about overtime? While rational people might argue that
overtime is not a good idea for "normal* projects, it' s pretty hard
to avoid in a death march project. How much should be expected? «
How much can be afforded? Unless stock options for the company are
distributed to team members as generously to senior management,
there are no forms of compensation for a death march that would
qualify as a reward (I'm using reward as a term with a positive
tone) . While the PMrarelyhas this control over compensation, what
really should be done is immediate compensated over time in the next
paycheck. This gives something back to the people sacrificing the
most for the project, and punishes (through the budget) the people
who need to learn the real cost of a project (senior mgmt, etc) .
If you're going to do a death march, it's best to get paid by the
mile.
- Dave

8. See note 1.

9. John Boddie, Crunch Mode (Prenrice-Hall/Yourdon Press, 1987), page 124.

10. Rob Thomsett, "Effective Project Teams: A Dilemma, a Model, a Solution,"
American Programmer, July-August 1990.

11. Binder's article on team evolution.

12.Ed,

» 1. How crucial is it for the death march project manager to have
the freedom to choose his/her project team members? No one doubts
that it's important, but _how_ important? If senior management
says, "Sorry, but the only available people for this project are
Neurotic Ned, Moron Mary, and Zombie Zack", should the project
manager resign on the spot? «
Freedom to choose project team members is about as crucial as your
freedom to decide any other parameter of the project. Even if you
can't choose the schedule, you can still be honest about how that
schedule will affect other parameters . Even if you can choose the
project team members, you can still be honest about how their
capabilities will affect other parameters.
» 4. Aside from the issue of managing overtime, what are the most
important things for the manager to do in a death march project,
vis-a-vis peopleware and teamwork? «
Always remember that the people working for you on the project are
exactly as important as you and your manager, and exactly as
important as the project' s customers . If you allow this balance to
tilt, and start treating the people on the team as if their needs

PEOPLE IN DEATH MARCH PROJECTS 127

are not important to you, they' 11 very quickly get the hint. Then,
guess what happens to the commitment you wrote about earlier.
Pay attention to the relationships within the team, and put some
effort into maintaining people's ability to work together over
time. A death march project creates tremendous pressure that can
amplify small disturbances into major conflicts . Periodic check-
ins to "take the temperature" of the group can help you and the
team deal with relationship and communication problems while they
are still small.
» 5 . Same question from the perspective of the team members : what
are the most important things they should do for themselves, and
for their fellow team-mates, during the project? «
Stay in touch with what you are giving up and what you are gaining
by working on the project. Check now and then to make sure the
balance is in your favor. If it isn't, do something to get it back
in your favor. The key is to stay aware of what you need and what
you're willing to do to get it.
Remember that you are here by choice. Work on improving your
alternatives to continuing on the death march project. It is
marvelous what having choices can do for your attitude.
--Dale

13. On the other hand, one of the problems of tactics that is guaranteed to annoy
the bureaucracy is that key people outside the team may become reluctant to
help you. As Paul Neuhardt explained in a recent e-mail message to me:

When it became obvious that we were lost in the desert, I
kept things going for a time with the old "We'll get things
going again soon" speech. Before long, any moron could see
this project wasn't going anywhere, so I looked for a new ap-
proach. I tried "Hey, let's do it our way and to heck with
management." This worked for awhile, but some of the key
people we needed outside of the team were so scared of
management that they wouldn't help us until we got the
green light from the executive suite. Next was, "There's a
management shakeup in the works. If we outlive the current
managers, we can get back on track." Yeah, right. The faces
changed but the song remained the same.

14.Ed,
I will confess here and publicly: I was a failure as a death march
manager. At least, I think I was. The reason I say that is that
eventually I lost the ability to keep my team motivated.
My experiences as manager of death inarches are both what I
described earlier as "Lost Patrol" projects. They might not have

128 DEATH MARCH

been death inarches if we ever had a fixed target to shoot for, but
with the goal changing daily we thrashed along forever with
expectations from senior management high and our ability to succeed
becoming increasingly low. I had built a team of people who
genuinely believed in the project. They wanted to learn new
technologies, broaden themselves and improve the state of the
systems at the company. And, while bonuses for completing a project
weren' t going to be handed out, there were promotions, raises and
prestige to be had, all of which motivated my team.
When it became obvious that we were lost in the desert, I kept
things going for a time with the old "We111 get things going again.
soon" speech. Before long, any moron could see this project wasn't
going anywhere, so I looked for a new approach. I tried "Hey, let's
do it our way and to heck with management. " This worked: for awhile,
but some of the key people we needed outside of the team were so
scared of management that they wouldn' t help us until we got the
green light from the executive suite. Next was, "There's a
management shakeup in the works. If we outlive the current
managers, we can get back on track. " Yeah, right. The faces changed
but the song remained the same.
By this time I was probably the most disgruntled person on the
project. I had not only been sent into the desert to die, but I
had convinced several people I liked and respected to come with
me. I was not only mad, I was guilty. Needless to say, when all
you want to do is throw one rip-snorter of tantrum ending in the
words "Take this job and shove it" it is pretty close to impossible
to motivate people to keep marching. I know I couldn' t find what
it took inside of me. I found another job, apologized to the team
for taking them into Hell with me, and left. In this at least I
managed to lead by example. Of the 10 people on my team one year
ago, only one still works for that company.
Not that this is what you asked for, but I feel better for having
gotten to say it. And no, I'm not paying you $150/hr (or whatever
it is that shrinks get these days). I will, however, buy you a
drink next time you are in Boston. Look me up.
--Paul

PEOPLE IN DEATH MARCH PROJECTS 129

Additional References

Rich Cohen and Warren Keuffel, "Pull Together," Software Magazine, August
1991.

Larry Constantine, Constantine on Peopleware (Englewood Cliffs, NJ: Prentice
Hall, 1995). ISBN: 0-13-331976-8.

Daniel J. Couger and Robert A. Zawacki, Motivating and Managing Computer Per-
sonnel (New York: John Wiley & Sons, 1980). ISBN: 0-471084-85-9.

B. Curtis, W.E. Hefley, and S. Miller, People Capability Maturity Model, Draft ver-
sion 0.3 (Pittsburgh, PA: Software Engineering Institute, April 1995).

Tom DeMarco and Timothy Lister, "Programmer Productivity and the Effects of
the Workplace," Proceedings of the 8th 1CSE (Washington, DC: IEEE Press, 1985).

Richard J. Hackman (ed.), Groups That Work (and Those TJiat Don't): Creating
Conditions for Effective Teamwork (San Francisco, CA: Jossey-Bass, 1990). ISBN:
1-555421-87-3.

Watts Humphrey, Managing for Innovation: Leading Technical People (New York:
McGraw-Hill, 1987). ISBN: 0-135503-02-07.

Magid Igbaria and Jeffrey H. Greenhaus, "Determinants of MIS Employees'
Turnover Intentions," Communications of the ACM, February 1992.

J.R. Katzenbach and D.K. Smith, The Wisdom of Teams (Boston, MA: Harvard
University Press, 1993). ISBN: 0-8754843067-0.

Guy Kawasaki, The Macintosh Way: The Art of Guerrilla Management (Glenview,
IL: Scott Foresman and Company, 1989). ISBN 0-06-097338-2.

J. P. Klubnik, Rewarding and Recognizing Employees (Chicago, IL: Irwin Publish-
ers, 1995).

Otto Kroeger and Janet M. Thuesen, Type Talk: The 16 Personalities Tliat Deter-
mine How We Live, Love, and Work (New York: Bantam Doubleday, 1988). ISBN:
0-440-50704-9.

Susan A. Mohrman, Susan G. Cohen, and Allan M. Mohrman, Jr., Designing
Team-Based Organizations (San Francisco, CA: Jossey-Bass, 1995).

Peter Senge, The Fifth Discipline: The Art and Practice of the Learning Organization
(New York: Doubleday, 1990). ISBN: 0-385260-94-6.

MARCH

S.B. Sheppard, B. Curtis, P. Milliman, and T. Love, "Modem Coding Practices
and Programmer Performance," IEEE Computer, December 1979.

Paul Strassmann, "Internet: A Way for Outsourcing Infomercenaries?" American
Programmer, August 1995.

Auren Uris, 88 Mistakes Intennewers Make and Haw to Avoid Them (New York:
American Management Association, 1988).

J.D. Yalett and F.E. McGarry, "A Summary of Software Measurement Experienc-
es in the Software Engineering Laboratory," Journal of Systems and Software, Vol.
4 No. 2, 1989, pp. 137-148.

Susan Webber, "Performance Management: A New Approach to Software En-
gineering Management," American Programmer, July-August 1990.

Gerald M. Weinberg, The Psychology of Computer Programming (New York: Van
Nostrand Reinhold, 1971). ISBN: 0-442-29264-3.

Gerald M. Weinberg, Understanding the Professional Programmer (New York:
Dorset House, 19B8), ISBN: 0-932633-09-9.

Mike West, "Empowerment: Five Meditations on the Soul of Software Develop-
ment" American Programmer, July-August 1990.

<en Whitaker, Managing Software Maniacs (New York: John Wiley & Sons,
1994). ISBN: 0-471-00997-0.'

No delusion is greater than the notion that method and industry can
make up for lack of mother-wit, either in science or in practical life.

Thomas Henry Huxley

"On the Advisableness of Improving Natural Knowledge"
(1866; reprinted in Collected Essays,

vol. 1, 1893)

There is a point at which methods devour themselves.

Frantz Fanon, Black Skins, White Masks,

Introduction (1952, translated 1967)

If you remember only one word from this chapter—or for that matter, the
entire book you are now reading—it should be triage. You might have as-
sumed, from the title of this chapter, that I would be concentrating on fa-
miliar methodologies like structured analysis, or formal process
disciplines like the SEI Capability Maturity Model (CMM), or various

131

132 DEATH MARCH

prototyping approaches generically referred to as RAD (for "Rapid Ap-
plication Development"). These are all important and relevant ideas, but
the most important idea of all is this: You don't have enough time in a death
march project to do even/thing the users are asking for. If you build your pro-
cesses and methods around that sobering fact, you have a chance of suc-
ceeding; if you begin the project with the notion that coding can't
commence until all the structured analysis data flow diagrams have been
approved by the user, you'll definitely fail.

This doesn't mean that we should ignore all of the other process-
related ideas and strategies (I'll cover them later in this chapter); but as
you'll see, my general opinion is that they should be introduced as part of
a strategic corporate decision, rather than foisted upon a death-project
team as a desperate tactical ploy to avoid what would otherwise be a fail-
ure. And the concept of triage applies here, too—if pressed, a death
march project team will abandon the methods it feels is unhelpful or un-
essential (like detailed mini-specs in a structured analysis model), and
devote its resources to whatever it feels is most helpful. Similarly, a
project manager who has only a few moments to read this chapter should
read the most important information, and skip the rest if necessary; I've
organized the discussion in this chapter with that in mind.

5.1 THE CONCEPT OF "TRIAGE"

The word "triage" comes from the Old French trier, which means "to
sort." The American Heritage Dictionary (3rd edition) defines it as follows:

tri-age (tre-azh', tre'azh'y) noun

1. A process for sorting injured people into groups
based on their need for or likely benefit from immedi-
ate medical treatment. Triage is used on the battlefield,
at disaster sites, and in hospital emergency rooms
when limited medical resources must be allocated.

2. A system used to allocate a scarce commodity,
such as food, only to those capable of deriving the
greatest benefit from it.

PROCESSES 133

Most of us are familiar with the medical connotation of triage, but the
second dictionary definition is more relevant for our discussion of death
march projects: allocating a scarce commodity (the scarcest of which is
usually time) in such a way as to derive the greatest benefit from it. Or, as
Stephen Covey puts it in First Things First [I], "the main thing is to make
sure that the main thing is the main thing." (Indeed, the project is likely
to achieve far more benefit by giving every staff member a copy of Cov-
ey's excellent book than a ponderous tome on software engineering
methodologies!)

Most prototyping and RAD approaches are compatible with triage,
and a few even mention the concept explicitly. But, the emphasis in most
RAD approaches is simply to get something—anything!—working
quickly, so that it can be demonstrated to the user in order to (a) demon-
strate that tangible progress has been made, and (b) solicit feedback on
the functionality of the system and (mostly) on the user interface. That's
all very useful, but if the project team has devoted its resources to build-
ing initial prototypes with "sexy" but nonetheless non-essential features,
the team and the user are wasting their time.

The reason for this is because of the subtle, but insidious, assumption
made by most software engineering methodologies—whether they are
based on the classic "waterfall" life cycle, or the more recent "spiral" and
prototyping methodologies. The assumption is that, "somehow, we'll get
it all done by the time the deadline arrives." Perhaps this is because many
of us grew up in households where we were told by our parents that we
had to finish euery thing on our plates before we could leave the dinner ta-
ble; in any case, the unspoken motto of many project teams is, "we will
leave no requirement unfulfilled."

A noble motto indeed, but almost always unachievable in a death
march project. As I mentioned in Chapter 1, most death march projects
have "official" requirements that exceed the team's resources—specifi-
cally, people resources and time resources—by 50-100 percent. The re-
sponse by the naive death march project team is to hope that by working
double overtime, the deficit can somehow be overcome; the response by
the cynical suicide mission team is to assume that the project will end up
50-100 percent behind schedule, just like every other project. But, even
the cynical team is usually wrong, for they still assume that sooner or lat-

DEATH MARCH

er (usually much later!) they'll eventually implement all of the functional-
ity requested by the user.

The key point about death march projects is that not only will some
requirements remain unfulfilled when the official deadline arrives, but
some of them will never be implemented. Assuming that the familiar "80-
20" rule holds true, the project team might be able to deliver 80 percent of
the "benefit" of the system by implementing 20 percent of the require-
ments—if they implement the right 20 percent. And, since the user is of-
ten desperate to put the system into operation far earlier than the project
team thinks reasonable, the user might take that 20 percent, begin using
it, and never bother asking for the remaining 80 percent of the system's
functionality.

This is extreme and simplistic, of course, but in virtually all of the
death march projects that I've been involved with, it made enormous
good sense to separate the system requirements, triage-style, into
"must-do," "should-do," and "could-do" categories. The meaning of
hese three terms is obvious, and the fact that there are only three pre-
vents any irrelevant squabbles as to whether a specific requirement
should be categorized as a "priority-6" or "priority-7" requirement. Hav-
ing performed such a triage, the obvious project strategy is to focus on
the "must-do" requirements first; if there is time left over, then focus on
the "should-do" requirements; and, if a miracle occurs, then work on the
"could-do" requirements.

Failure to follow such a strategy from the beginning of the project usually
leads to an ugly crisis toward the end of the project; in addition to the
nasty politics, it also produces what my colleague Dean Leffingwell at
Requisite, Inc. refers to as "wasted inventory." To understand why, con-
sider the typical project time-line shown in Figure 5.1:

FIGURE 5.1 A PROJECT TIME-LINE

PROCESSES 135

When the project begins, nobody is willing to admit that the schedule
is unrealistic—least of all the user and senior management! The project
manager and team members may have a bad feeling in the pit of their
stomach that they've gotten into a suicide mission, but if they're optimis-
tic, they may believe that it will be a mission impossible-style project
where a miracle saves them later on. The key point here is that the dead-
line is far enough away—typically six months or a year—that nobody has
to face up to the reality that the objectives are impossible.

Indeed, the political pressures and the team's naivete may even pre-
vent a reassessment midway through the project. Ironically, the problem
is often compounded if the project team has been following some form of
RAD/prototyping approach, for they've probably demonstrated one or
more prototype versions of the system to the user, which can prolong the
illusion that everything will be done on time. But by now, the project
team is probably beginning to realize that they're in over their heads; and
if it's the manager's first death march project, he or she often has the na-
ive belief that senior management and the user will eventually come to
their senses.

Alas, things don't usually work out that way. An "ugly crisis" finally
occurs when the user and/or senior management finally must face the
undeniable reality that despite the demands and despite the sincere
promises from the project manager, the system is not going to be deliv-
ered on time. This often occurs a month before the deadline, sometimes a
week before, and sometimes the day after the official deadline! Depend-
ing on how the political battles have been proceeding up to this point,
and depending on how exhausted and frustrated the project manager
has become, there are several possible outcomes. But, what often hap-
pens is that senior management concludes that the entire problem is the
fault of the project manager; that hapless individual is summarily fired (if
he hasn't quit already!), and a new project manager is brought in with
blunt instructions to "clean this mess up, and get the system delivered."

The replacement manager may be a battle-scarred veteran from
within the organization, or perhaps a consultant from the outside. And
sometimes, the new manager does find that his predecessor made a num-
ber of basic management mistakes (e.g., no schedule at all, or no work
breakdown schedule); sometimes, the new manager's 20-20 hindsight

136 DEATH MARCH

concludes that the original manager was basically doing the right things,
but couldn't avoid becoming the sacrificial scapegoat when senior man-
agement finally had to accept the fact that their original demands were
impossible to achieve.

But whatever the assessment, one thing is almost certain: The re-
placement project manager must address the fact that the complete set of
project requirements cannot be finished in time for the original dead-
line—if that weren't the case, the original project manager probably
wouldn't have been fired in the first place. So, what does the replacement
manager do? The two most obvious options [2] are:

• Renegotiate the deadline
• Renegotiate the system requirements

The first option might be acceptable, but it's unlikely in a death
march project. After all, the reason the users were asking for an unrea-
sonable schedule in the first place is that they desperately need the sys-
tem to cope with some business demand. And, since the negotiation
being carried out by the replacement project manager is taking place at a
point in time relatively close to the original deadline, there's a good
chance that the user community has already begun making plans of its
own to put the new system into operation. The last thing they want to
hear is that it's going to be delayed another 6-12 months.

Thus, the most common—and successful—negotiating ploy involves
a triage of the original requirements. Note that the replacement project
manager is negotiating from a position of strength—it's not his or her
fault that the project is in such a mess, and there's an unspoken aware-
ness that management and the users were pretty stupid to have gotten
themselves into this situation in the first place. The new project manager
may even base his or her acceptance of the assignment on a successful
outcome of the negotiations—e.g., with a statement like, "If you want me
to take over this disastrous project, then you're going to have to accept
the fact that we can only deliver a small percentage of the original func-
tionality in time for your deadline. That's the situation; take it or leave it."

So far, all of this is fairly straightforward—even though it's discour-
aging, as a consultant, to see it happening over and over again. But, this is

PROCESSES 137

where Requisite Inc.'s Dean Leffingwell asks the question, "What about
the inventory?" That is, what about all of the work-in-progress created
by the project team before the "ugly crisis" occurred and the new project
manager took over? Chances are that the project team has written a lot of
code, and maybe some test cases; they might even have some documen-
tation, and design models, and structured analysis models. What hap-
pens to all of that "inventory" of partially completed work? The sobering
answer: most of it gets throum away.

This might seem like an unnecessarily pessimistic statement. After
all, why not simply put all of that partly-finished work aside, and return
to it later on? In the best of all worlds, thi& is exactly what happens; but, it
presumes the existence of a good set of tools and processes for version
control, configuration management, source code control, etc.—all of
which may have been abandoned in the heat of battle, when the team
was concentrating on producing as much output as possible.

The real reason why all of this partially-completed work ends up be-
ing wasted inventory is that no one will ever have time to come back to it. As-
suming that the project team members (now under the control of a new
manager, whom they may or may not respect) is able to deliver the "bare
minimum" of critical functionality, they're usually so exhausted that half
of them quit. And the users are so disgusted with the project that they
never bother asking for the rest of the unfinished functionality; or con-
versely, they're so satisfied with the minimal functionality that they never
bother asking for the rest of the system. Even if they do, and even if the
original team is still intact, there's a good chance that so many architec-
tural changes were made in the attempt to deliver a "bare-bones" system
that the half-finished pieces of work (which relate to non-critical require-
ments) can no longer be used.

Note that none of this discussion has anything to do with structured
analysis, the SEI-CMM, or any other "textbook" methodologies and
software processes. If S just common sense; butit's critical common sense
in a death march project. For it to work, all of the shareholders and stake-
holders must agree as to which requirements fall into the "must-do" cat-
egory, which ones are "should-do," and which ones are "could-do"
requirements. Obviously, if the project owner categorically insists that all
of the requirements are "must-do" items, and that nothing falls into the

UEATH

other two categories, this whole discussion is a waste of time [3]. And, if
the various shareholders and stakeholders cannot reach a consensus
about the triage items, then the project team will be paralyzed, attempt-
ing to do everything for everybody when they lack the resources to do so.

Unfortunately, the "ultimate reality" is that most organizations lack
the discipline, experience, or political strength to deal with these issues at
the beginning of the project. Nothing that I've described in the preceding
paragraphs is "rocket science," and even the most technologically illiter-
ate manager or business user can understand the issues; indeed, they
would apply just as well to any kind of project that has to cope with lim-
ited resources and inadequate time. But even though everyone under-
stands the issues intellectually, the political battles surrounding death
march projects makes it almost impossible to reach a consensus on a rea-
sonable triage. It's only when the "ugly crisis" occurs that the various
parties finally agree on something that they should have agreed upon
when the project began.

The exception to this gloomy prognosis is the organization that has
adopted death march projects as a way of life. Obviously, users and senior
managers are not stupid, and they usually learn from their experiences—
even if it takes three or four disasters for the lessons to sink in. As men-
tioned above, the original death march project manager is usually a victim
of the inability to perform an early triage, but the survivors gradually fig-
ure out what it's all about. I'll have more to say about this in Chapter 7.

5.2 THE IMPORTANCE OF
REQUIREMENTS MANAGEMENT

The discussion above suggests that death march projects need to focus
on a new aspect of the system development life cycle: requirements. Why
do I say "new"? After all, every project has requirements, and it's not as
it software developers are completely unaware of the concept.

Traditional software engineering methodologies—including the var-
ious "structured" and "object-oriented" methodologies that several of
my colleagues and I have developed over the past 20 years—have con-
centrated on modeling the requirements, usually with graphical tech-

^PROCESSES 139

niques such as data flow diagrams or entity-relationship diagrams. What
I'm talking about in this chapter is managing the requirements during the
hectic days of a death march project.

These two concepts—modeling and managing—are not contradicto-
ry or incompatible. You can devote time and energy to both of them; if a
death march project team finds that it's helpful to draw object-oriented
analysis models to form a better understanding of the requirements of
their system, I have no objection. My only caveat is that the team should
do what it thinks important and helpful, not what the Methodology Po-
lice think is "proper." [4]

My experience has been that the majority of death march projects do
not use formal modeling techniques such as SA/SD or OOA/OOD.
Sometimes it's because they think these methodologies are too cumber-
some and bureaucratic; sometimes it's because they think the CASE tools
that support them are too clumsy; and often, it's because they don't see
an automated means of translating their analysis models into working
code—which, they realize, is the only thing the user cares about [5].

Indeed, in the extreme case, the project team won't document any of
the user requirements; their defense (which every project manager has
heard by now!) is that it takes too long, it is too susceptible to change,
and besides, the users don't really know what they want anyway. Thus,
the team typically relies on prototyping tools and methods, both to pro-
duce the all-important visible evidence of progress throughout the death
march schedule, and also to elicit the true requirements of the system.

From the "triage" perspective of Section 5.1, there's one major prob-
lem with this: It doesn't give us an organized way to manage the require-
ments. At any moment in time, how can we tell which requirements are
"must-do," which ones are "should-do," and which ones are "could-
do"? It's interesting to note that the SA/SD and OOA/OOD methodolo-
gies don't focus on this either. One could document the prioritization de-
cisions by color-coding the bubbles in a data-flow diagram, but that's not
what the diagram was originally intended for. SA/SD and OOA/OOD
are intended more for understanding and explaining the requirements
than for managing them in a dynamic fashion.

It's the dynamic element of requirements management that usually

140 DEATH MARCH

causes the difficulties. If we could get all of the shareholders and stake-
holders to agree on the triage priorities at the beginning of the project,
and if those priorities never changed throughout the duration of the
project.... well, if you believe that, then you probably believe in the tooth
fairy, too. What happens in real death march projects is usually a combi-
nation of the following dilemmas:

• The shareholders and stakeholders can't agree completely on the
triage priorities. Of course, if they are in total disagreement, the
project is paralyzed; but, it's not uncommon to see 80 percent of
the requirements prioritized, and then the project commences
while the politicians continue to squabble about the remaining 20
percent. High-priority requirements sometimes emerge at the last
moment from this squabbling. This drives the project team nuts,
but that doesn't prevent it from happening.

• Circumstances change within the team, while the project contin-
ues. For example, the project manager arrives in the office one
morning and discovers that his two best programmers, Matilda and
Ezekiel, have decided to form a reggae band, and have just left for
Nashville to seek a recording contract. These things aren't sup-
posed to happen, but they do. The manager's first three questions
are, "What 'must-do' requirements were those two scoundrels
working on, what was the status of those requirements, and to
whom can I reassign them?"

• Circumstances change outside the project team. Budgets are
expanded or reduced, depending on the company's financial for-
tunes. Deadlines are moved up or moved back (though hardly ever
back!) as the marketing department becomes aware of changes in
the competitive situation of the marketplace. Government regula-
tions change, technology changes (not always for the betterl), sup-
pliers come and go, etc., etc. Each of these external events is likely
to have some impact on the triage decisions.

• There is often a "moment of truth" when the users, senior manage-
ment, and project team members have to admit that they won't fin-
ish the system in time. Of course, if they have done a good job of
triage prioritization at the beginning of the project, this crisis might

PROCESSES 141

not occur at all. But, what if the team has to confess that it can't
even finish all of the "must-do" requirements in time for the dead-
line? As noted earlier, the original project manager is usually
beheaded and a replacement is brought in; and, if the new man-
ager can extend the deadline, then the triage decisions may not
have to be changed. But, it's also common at this point to see a
hard-nosed reevaluation of those early triage decisions. With the
deadline looming only a few weeks away, the users might be forced
to admit that some requirements they had earlier described as abso-
lutely essential are not so essential after all.

I could continue with these scenarios, but you get the point: manag-
ing the priority of requirements is a critical part of the "process" of death
march projects. Now, this would be a straightforward activity if a death
march project only had a dozen requirements; we could scribble them on
a paper napkin and simply review them whenever necessary. But, most
projects have hundreds of requirements, and many have thousands; the
Boeing 777 aircraft (which could be regarded as a bunch of software with
wings) is rumored to have had 300,000 requirements. Not only that, the
requirements usually can't be treated as independent, stand-alone items;
some requirements are dependent on other requirements, and some re-
quirements spawn (or are further described by) sub-requirements.

This implies the need for methods, processes, and tools for repre-
senting the relationships between requirements, and for managing large
quantities of relationships. And in this area, familiar techniques such as
structured analysis and object-oriented analysis do help; unfortunately,
those techniques have traditionally ignored the attributes of a require-
ment, such as priority, cost, risk, schedule, owner, and the developer to
whom it has been assigned. As a result, the project teams that have been
aware of the need for managing their requirements have used home-
grown tools based on spreadsheets, word processors, or jury-rigged 4GL
databases to provide some degree of automation support.

Fortunately, a new breed of software tools is emerging to provide a
more comprehensive and sophisticated degree of support. Some of the
tools now available are: Requisite (from Requisite, Inc.), DOORS (from
Zycad Corp.), and RTM (from Marconi Systems). Since this chapter is

concerned with processes rather than tools, I won't go into the details of
these three products; but since tools affect processes, it's important that
you know they exist [6].

There is one aspect of the process-tool combination that deserves
special mention here. As noted earlier, many death march project teams
abandon formal SA/SD or OOA/OOD methodologies because they feel
they are too bureaucratic and time-consuming. Interestingly, the share-
holders and stake-holders feel the same way. Given their choice, they
would prefer not to be forced to learn how to read data flow diagrams; in-
deed, the higher-level echelons of managers and end users will complain
that they don't understand all of those "technical" diagrams. They also
have little patience for wading through hundreds of pages of diagrams
and meticulous details about data element definitions or process specifi-
cations. With enough time and patience, the project team can overcome
the resistance and persuade the end users that the elaborate models are
useful indeed—but in death march projects, there is very little time and
very little patience.

What the users can understand is their own native language—e.g.,
English for most North American projects. And, what most users are will-
ing to read is a terse document of 10-20 pages that summarizes the re-
quirements for the system. The requirements may be referred to as
"features" in such a document, and the overall document may be known
as a "Product Requirements Document" (PRD) or "high-level specifica-
tion" or some other convenient phrase. But, the key point is that it's En-
glish, it's terse, and it's to the point. It shouldn't contain a lot of
marketing "fluff," and it shouldn't have obscure terminology or notation
that makes key users stop and ask, "What on earth does this mean?" Ide-
ally, each paragraph, or even each individual sentence, should be directly
related to a requirement that both users and project team members can
use as a starting point for their subsequent work.

The interesting thing about this is that we already have a familiar tool
for creating such requirements documents; it's called a word processor.
fndeed, the initial version of such a document often emerges from the us-
er's world—e.g., in the form of a memo from the Marketing VP to the
CEO about the need for a sexy new Widget product with features X, Y,
and Z to compete against the Whizbang product from Blatzco, Inc.—

"PROCESSES 143

even before the IS/IT department hears about it. At this early stage, the
users view the word processor as their tool, and they view the marketing
memo as their document; as ,a result, they're usually far more willing to
participate in subsequent discussions about triage prioritization if the
same tools and documents can continue to be used. Thus, we're begin-
ning to see a shift towards document-centric requirements management,
where the tools used by the IS/IT specialists (e.g., Requisite, DOORS, or
RTM) are tightly integrated with the word processing tools and docu-
ments that the users understand [7].

One last point about all of this: It's essential that all of the sharehold-
ers and stakeholders be involved in the process of creating the initial re-
quirements document and carrying out the triage prioritization. This is
true for all projects, of course, but the time-pressure and political squab-
bles associated with death march projects often tempts the project man-
ager into thinking, "Well, we'll just forge ahead without that idiot Melvin
in Marketing; all he'll do is disagree with everything, anyway..." The
problem is that Melvin often turns out to have some significant political
clout, and if he feels he's being ignored (and that the project manager
thinks he's an idiot!), he'll probably find a way to sabotage the project.

In theory, everyone understands and agrees with this point—but in
practice, it's amazing to see how many requirements sneak into death
march projects. Additional requirements, modifications to existing re-
quirements, and not-so-subtle suggestions to ignore certain require-
ments—all of these will come in "over the transom" to the project team,
in the form of conversations, e-mail messages, and one-on-one meet-
ings with the project manager. Many of these suggestions will be pref-
aced by such smooth words as, "Sorry I didn't think about bringing this
up in our meeting last week, but..." or "I wish we had time to run this
new requirement by the formal steering group, but..."

Whether the project manager has a formal steering group-i.e., a
group that represents the shareholders and stakeholders, and that re-
views the progress of the project and makes the definitive decisions
about triage priorities—is something I won't comment on; this depends
on each organization's style of managing and running projects. But what
is essential, for the survival of the death march project, is that the modifi-
cations to the original requirements "baseline" be documented and be

144 DEATH MARCH

made publicly visible for all of the shareholders and stakeholders to see.
If the VP of Finance wants to slip a new high-priority requirement into
the project, that's fine; but the project manager should ensure that the VP
of Marketing and the CEO can see that it's there.

5.3 SEI, ISO-9000, AND FORMAL
VS. INFORMAL PROCESSES

Some project managers might read the preceding section of this chapter
and complain, "Wow! That sounds much more formal than anything
we've ever done!" Having encountered such a reaction in some consult-
ing engagements, I'm often stymied. On the one hand, I believe that the
documentation, prioritization, and management of requirements is es-
sential (regardless of what tools or techniques are used to accomplish the
task); on the other hand, I worry that if an entirely new, alien process is
introduced into a project team that already has more than it can handle,
the new concept—e.g., requirements management—may rum out to be
the straw that breaks the camel's back.

Indeed, I don't have a good answer for this dilemma, other than hop-
ing that perhaps the project team will be able to manage one new idea
among their collection of tools and processes. But, I worry even more
when I see teams embarking upon a death march project with the deci-
sion (or more commonly, the edict foisted upon them by the Methodolo-
gy Police) that they must embrace a formal process approach such as the
SEI-CMM or ISO-9000. Formal processes are great if you know what
you're doing, and if you've used the processes before. But, the reality is
that such formal processes typically haven 'i been used at all in the organi-
zation; the death march project is the pilot project for structured analysis
or ISO-9000.

What insanity! It really is the straw that breaks the camel's back; after
all, the typical death march project is trying to do something that's never
been done before, and (despite my warnings in Chapter 4) the team often
consists of people who have never worked together before. As if that
wasn't enough, now they have to learn how to' use an unfamiliar meth-
odology or process, one which they're not sure they believe in the first
place, and one which they're convinced will slow them down. Why is it

PROCESSES 145

that the Methodology Police are so surprised to see resistance in circum-
stances like these? Consultant Doug Scott gave me an example of this sit-
uation in a recent e-mail message [8]:

On one project I know, they needed a diagrammer for
the ERDs, so they bought Excelerator. Having found
that it supported SSADM (which must be the method-
ologjst's methodology) they adopted it without any
training or induction for the staff. Then they found
that the pace of the project slowed significantly (in
fact, it nearly halted) while everyone was busy reading
manuals and learning software tools and deciding
what they should do next (and re-doing what they had
done earlier in the "wrong" sequence). For death
march watchers, an almost ideal scenario. Oh, and the
project manager was sacked half way through the
project, but that's normal.

And as Paul Maskens argued in another e-mail message [9J:

A death march project is not the time for staff to learn
a new (or their first) methodology. OTOH it would
contribute greatly to the chances of project death if
they did leam a new methodology at the same time.

To succeed, the death march project team needs to agree on which
processes will be formalized—perhaps source code control and change
management, and (hopefully) requirements management—and which
processes will be carried out on a completely ad hoc basis (e.g., user-
interface design). There's no point mandating a particular software pro-
cess if if s not going to be followed. The Methodology Police is wasting its
time if it tries to do so, and it will cause the project team to waste its time,
which is far more valuable (in many cases, the Methodology Police mem-
bers have nothing useful to do anyway, other than to run around the IS/
IT department harassing hapless project teams!).

This means that the death march project manager must impose the
processes that he or she feels essential, in a dictatorial fashion—e.g.,
"Anyone who modifies our source code without going through the

MARCF

change management process will be fired summarily!" Or, the project
team must sincerely agree to adopt the process, because they believe that
it will be cost-effective. This is more likely to occur if the project team has
worked together before, so that they share a common experience with
various software development processes; it's less likely to occur if one
team member stands up and says, "I deeply believe that structured anal-
ysis is critical to the success of our project," when the other team mem-
bers have no idea what he or she is talking about. Another corollary of
this principle: It's usually a disaster to introduce a new, unfamiliar pro-
cess into a death march project, even if the team collectively believes that
it will help. The learning curve, and the inevitable confusion and bicker-
ing over the details of the process, will usually outweigh its benefits.

This means that such formal approaches as SEI-CMM, ISO-9000, or
the introduction of new analysis/design methodologies should be done
somewhere outside the death march project. The sensible thing to do is
to introduce these processes as part of a long-term corporate strategy, to
experiment first with a pilot project (which should not be a death march
project), and then support it with appropriate training. As Sharon Marsh
Roberts put it in a recent e-mail message [10] to me:

Cowpokes don't need the manure to be cleaned from
the pasture. Programmers don't need to have the
"methodology" gurus clean up the deliverables.

But if someone wants to have a formal software pro-
cess, then the folks doing the programming should be
protected from that extra effort.

If all of these things have been done, and if all the other development
projects are already operating at level-3 on the SEI-CMM scale, then it
becomes interesting to ask whether such processes should also be used
on a death march project. As Watts Humphrey once remarked in a con-
"erence speech about the SEI-CMM, "If a process can't be used in a crisis,
t shouldn't be used at all."

I'm not sure that many would agree with Humphrey's assertion, par-
icularly if the death march project is viewed as a once-in-a-lifetime excep-

tion to the norm. If indeed this is the case, then perhaps it does make sense

147

to abandon the formal processes, and let the death march team use what-
ever ad hoc techniques they feel appropriate. But remember my assertion
in Chapter 1: Death march projects are becoming the norm, not the excep-
tion. If this is the case, then the official corporate processes should be
amended, as necessary, to make them suitable for the death march project.
Then, and only then, does Humphrey's statement make sense.

In the meantime, if you do feel compelled to make a death march
project team practice some form of process improvement, my recom-
mendation is to look at Watts Humphrey's PSP, or Personal Software
Process. I summarized its characteristics in my Rise and Resurrection of the
American Programmer. You should also read Humphrey's A Discipline of
Software Engineering [11]. Fair warning though: It's 789 pages long.

5.4 "GOOD ENOUGH" SOFTWARE

The triage prioritization discussed above can go a long way toward mak-
ing a death march project "rational" in its behavior. For success, it's not
required to implement all of the requirements; it's "good enough" if we
can implement the "must-do" requirements and a reasonable number of
the "should-do" requirements.

But, there's another aspect of software development that causes diffi-
culty in death march projects: the implicit demand for absolute quality.
This is usually expressed in terms of defects (bugs), but it may also be ex-
pressed in terms of portability, platform independence, flexibility, main-
tainability, and a few dozen other "ilities." It's hard enough to achieve
these objectives in normal projects; it's almost impossible to do so in
death march projects. Instead, the project team must decide—and if at all
possible, get concurrence from the shareholders and stakeholders—
what's good enough.

The reason that this is so important is that the achievement of abso-
lute "ilities" consumes project resources—especially time. If you want to
develop a certifiably bug-free program, complete with a mathematical
proof of correctness, it's going to take time. It may also require a higher
level of talent than the project team can provide. It's also going to con-
sume some of the energy of one or more people on the project team,
which means that those people won't be available to work on other re-

148 DEATH MARCH

quirements. In short, achieving such "ilities" such as reliability, portabil-
ity, and maintainability requires a trade-off, and it must be taken into
account as part of the triage prioritization discussed above.

Death march project teams must confront this unpleasant reality, be-
cause the alternative is usually "perfect" software that isn't finished
when the all-important deadline arrives. It's better if the team is aware of
the pragmatics of good-enough software at the beginning of the project;
but, my experience has been that many traditional software developers
accept the notion of good-enough software development only when
their backs are against the wall—e.g., when they're facing the "ugly cri-
sis" discussed earlier, a month or two before the deadline.

Up to that point, they'll complain, "How would you like it if we used
your 'good-enough' approach for the software in a nuclear reactor or an
air traffic control system?" The answer, of course, is that I wouldn't like it
at all; and, if someone proposed a death march project for those kinds of
high-reliability applications, I would stop flying on airplanes, and I
would move as far away as possible from nuclear power plants. But, we
don't usually see death march projects of this kind; if s more likely to be
the payroll system for the nuclear power facility, or the airline reservation
system used by the airline. Payroll systems and airline reservation sys-
tems aren't supposed to fail either, but the immediate consequences of a
failure aren't as serious.

In any case, perfect reliability, maintainability, portability, etc., are not
necessary, practical, or even desirable in most death march projects. In-
deed, perfection isn't possible even in normal projects—it's just that we
can afford to set our standards much higher because we usually have
fewer constraints on time, budget, or personnel resources. For death
march projects, what the users really want i& a system thafs cheap
enough, fast enough, feature-rich enough, stable enough, and available
soon enough—that's their definition of "good enough."

Why do we fail to achieve "good enough" software? It's usually be-
cause of a combination of the following reasons:

• We have a tendency to define quality only in terms of defects, with-
out thinking about other aspects of quality—which include, from

PROCESSES 149

the user's perspective, the "quality" associated with having the sys-
tem ready for use on a certain date.

• We assume that fewer defects = better quality, and we assume that
"mo' better" quality is always preferred by user—even thougl
there are circumstances when the user would be willing to trade ol
some defects in return for an earlier delivery, or a product that rune
on a wider variety of hardware/software platforms, etc.

• We tend to define quality (defect) objectives once, at the beginning
of the project, and keep it fixed, even though circumstances change
dynamically throughout the project.

• We've been told for such a long time that processes are crucial, tha
we often forget that processes are "neutral"—a fool with a "process
tool" is still a fool. You don't get quality by blindly following tht
details of structured analysis or the recommendations of SE1
CMM.

• We pursue quality with a fixed process that we define once, at tht
beginning of the project (or, even worse, for all projects in tht
whole company).

• We underestimate the non-linear trade-offs between such ke\
parameters as staff size, schedule, budget, and defects—all ol
which are key issues for death march projects.

• We ignore the dynamics of the processes: time-delays, feedback
loops, etc. Heavy overtime by the project team this week may
appear to increase productivity and advance the progress of the
overall project; but, it can lead to more bugs next week (something
the end user and senior management may not be aware of), which
will lower next week's productivity (in terms of productive output),
and perhaps set the project even further behind.

• We ignore the"soft factors"associated with the process like morale,
adequacy of office space, etc.

How do we achieve "good enough" software? As James Bach [12]
points out, it requires several things:

• A utilitarian strategy—the art of qualitatively analyzing and maximiz-
ing net positive consequences in an ambiguous situation—encom-

IVIAHCH'

passing ideas from systems thinking, risk management, economics,
decision theory, game theory, control theory, and fuzzy logic.

• An evolutionary strategy—not only with regard to the project life
cycle, but also an evolutionary view of our people, processes, and
resources.

• Heroic teams—not the Mighty Morphin Genius Programmers, but
ordinary, skillful people collaborating effectively.

• Dynamic infrastructure—the antithesis of bureaucracy and power
politics. Upper management pays attention to projects, pays atten-
tion to the market, identifies and resolves conflicts between
projects, and allows the project to "win" when there are conflicts
between projects and organizational bureaucracy.

• Dytiamic processes—processes that support work in an evolving,
collaborative environment. Dynamic processes are ones you can
always question because every dynamic process is part of an identi-
fiable meta-process.

5.5 BEST PRACTICES AND WORST PRACTICES

On more than one occasion in this book, I've warned about the dangers
of allowing the Methodology Police to impose a set of rigid methodolo-
gies or software processes upon a death march project team. The same
advice holds for external consultants, gurus, witch doctors, faith healers,
snake-oil salesmen, and textbooks. Even this textbook: If I've recom-
mended something that doesn't make sense and that the project team
can't carry out with enthusiasm and sincerity, then ignore it!

But, this is particularly true of methodologies and software processes.
Rather than following a set of practices that somebody else has recom-
mended—or even worse, a set of practices imposed in a top-down fash-
ion by managers and methodology committees who usually don't know
what they're talking about—it's far better to follow a set of practices that
the team itself regards as "best" for the circumstances. That's the essence
of the "best practices" approach that has been gaining popularity in the
past couple of years: a grass-roots approach to identifying, documenting,
and evangelizing software development organizations that real developers
have found successful.

"PROCESSES 151

Unfortunately, death march project teams often don't have much to
go on, because theirs is often regarded as the first such project within the
organization. Or even if it isn't the first one, it's still regarded as an excep-
tion—so nobody has bothered cataloging the techniques that worked
and the techniques that didn't. Even worse, death march projects tend to
have a high mortality rate (otherwise, they wouldn't be called "death
march" in the first place!). Thus, the people who would be most likely to
provide useful advice for the next such project have quit, been fired, com-
mitted suicide, suffered a nervous breakdown, or have withdrawn into a
shell of cynicism.

If you are indeed embarking upon the first death march project the
organization has seen, then it's likely that the best you can do is docu-
ment whatever practices and processes have worked in your project, for
the benefit of the next death march that follows. One way of doing this is
by conducting a "project audit" at the end of the project. This rarely oc-
curs, however, and the results are usually so boring that nobody bothers
reading it. The reasons are obvious: as mentioned earlier, the project
team is so exhausted, frustrated, and frazzled by the end of the project
that the notion of documenting their experiences is likely to be met with
hoots of scorn; furthermore, many of the most valuable contributors have
long since disappeared by the end of the project.

Thus, what you should consider as an alternative is a series of "mini-
audits" throughout the project. If you have mini-milestones (sometimes
known as "inch-pebbles") such as delivering a new version of a proto-
type to the user, schedule a half-day mini-audit immediately after the
inch-pebble. Decide on which practices worked well, and which were di-
sasters? What should be emphasized more heavily for the next inch-peb-
ble, and what should be abandoned? The point here is that this kind of
self-reflection is useful for the project team itself; the fact that it will also
be helpful to future death march project teams is icing on the cake. Also,
the team is usually in better spirits during these intermediate inch-pebble
meetings, and their comments are likely to be fresher, more candid, and
yet less cynical.

For the organizations that have no best-practices material available,
I'll recommend a few sources. I covered the topic in one chapter of my
Rise and Resurrection of the American Programmer, you should also look at

152 DEATH MARCH

the World Wide Web site maintained by consultant Christine Comaford
at http://www.christine.com for another collection of best-practice mate-
rial. Perhaps the most ambitious project underway today is the Airlie
Council's efforts within the U.S. Defense Department; you can find this
information on the Web at http://spmn.com.

I've listed below the "principal best practices" that the Airlie Council
has recommended. Remember my earlier advice not to adopt this kind of
information as a "stone tablet" containing "commandments" that must
be followed. Rather, it could be a useful starring point for your own col-
lection of best-practice ideas.

• Formal risk management—this is a concept I'll discuss later in this
chapter.

• Agreement on interfaces—hardware interfaces, software interfaces,
and interfaces between your system and other external systems.

• Peer reviews—inspections, walkthroughs, reviews, etc. These are
commonly understood, but often rejected by death march projects,
for they feel the effort will slow them down. Intellectually, most of
us agree that peer reviews are beneficial, but given the kind of
pressure we see in death march projects, there's a tendency for
everyone to hunker down and churn out his or her own work,
without bothering to have it reviewed by other team members.

• Metric-based scheduling and management—this says that we should
base our schedules and estimates on metrics derived from previous
projects. But as noted earlier, there may not have been any previous
death march projects, and if there were any, it's unlikely that any-
one bothered recording any useful metrics (other than a body
count of human casualties). But, if there are any metrics available
from "normal" projects, these can be used to calibrate the estimates
being produced in the death march project—if only to see how
hysterically optimistic those estimates really are!

• Binary quality gates at the "inch-pebble"level—i.e., rather than having
milestones every three months, during which the project team
reports that they're 97 percent done with all coding, there should
be weekly, or even daily inch-pebbles with "binary" indications of

PROCESSES 153

progress. One means of accomplishing this is the "daily build'
strategy discussed later in this chapter.

• Project-wide visibility of project plan and progress vs. plan—this
consistent with my recommendations in earlier chapters. Thin
are tough enough in a death march project without having t:
manager hide the status from the rest of the team.

• Defect tracking against quality targets—one of the ideas here is th
defects identified, tracked, and resolved early in the developme
process cannot only give an indication of the defect levels in tl
final delivered system, but can also eliminate defects when they a
relatively inexpensive, rather than waiting until the system testi;
stage of the project

• Configuration management—whether this is called version conrr
source code management, or some other term, it's usually regard
as an essential practice in most high-pressure projects.

• People-aware managenient accountability—alas, this is somethi
that most death march projects don't pay enough attention to;
mentioned earlier, many death march projects are set up as suici
missions or kamikaze-style projects.

One of the most important contributions of the Airlie Council is t
notion of worst practices; this is particularly applicable to death mar
projects, where it's often more important to avoid disasters than it is
find the best possible way to do things. The Airlie Council's list is sur
marized below:

• Don't expect schedule compression of>10% compared to the statistu
norm for similar projects—of course, if you really believed this or
you wouldn't even start a death march project!

• Don't justify new technology by the need for schedule compression
you've got enough problems in a death march project witho
debugging new tools and technology by using beta versions
software from your friendly tool vendor. I'll discuss this in me
detail in Chapter 6.

• Don't force customer-specific implementation solutions on the project
useful advice for any project

DEATH MARCH

• Don't advocate the use of silver bullet approaches—something worth
remembering when your management proposes (right after they've
been visited by a persuasive vendor!) that your project can be
"saved"by some new fangled tool or development methodology

• Don't miss an opportunity to move items that are under external control
off the critical path—if your project team can't control it, then having
it on the critical path makes it all the more risky. This applies to
things like vendor tools, hardware boxes, software packages, and
other components from external vendors. It also applies to both
tangible deliverables and political decisions made by various share-
holders and stakeholders surrounding the project.

• Don't expect to achieve an accurate view of project health from a formal
review attended by a large number of unprepared, active reviewers—the
project team doesn't have to worry about this, for they already know
that such review sessions are political rituals. This advice is aimed
more at the senior managers who watch the death march project
from a safe distance, trying to find out whether it's in trouble.

• Don't expect to reamer from a schedule slip of>10 percent without a 2:10
percent reduction in software functionality to be delivered—this is cru-
cial advice for a death march team, because there's a good chance
that the schedule will slip by more than 10 percent during the
course of the project. Indeed, even a 10 percent slippage is danger-
ous in a death march project, for the team is probably already
working so much overtime that they don't have the additional
capacity to work 10 percent more hours in each day. But, the main
point of this suggestion from the Airlie Council is to remind the
project manager that people-time and software-functionality are
not exchangeable in a linear fashion.

During the past year, I've posed two questions to several hundred
software managers in seminar audiences around the world: "If a col-
league of yours was about to embark upon a death march project, what is
the one thing that you would advise him/her to do in order to succeed?
And what is the one thing you would advise him/her not to do?" I've been
intrigued to find that nobody has ever identified tools or technology as the
"one most important thing," nor has anyone mentioned formal methods

PROCESSES 155

or techniques such as structured analysis or object-oriented design. A few
people have recommended peopleware strategies (e.g., "hire good peo-
ple," and "make sure that the team is really committed to succeed"), but
almost all of the recommendations have centered on the issue of negoti-
ations, scope management (which is handled well by the triage concept
discussed earlier), and risk management (which I'll discuss below).

One last concept from the Airlie Council might be useful for death
march projects, though it's likely to be used more by the managers outside
the project than the manager or team members inside the project. It's
called the "breathalyzer test": What questions should you ask a death
march project team to quickly determine whether it was so out of touch
with reality that it should be shut down? These are also the sort of ques-
tions that consultants often ask when they are commissioned by senior
management to review the status of a project. I've been in that position
myself, and I can usually tell the project is in trouble when I see the
glazed eyes of the project manager, who looks like a deer caught in the
headlights of an onrushing car.

Sometimes a question like "Do you know who your customer is? Do
you know who you're supposed to deliver this stuff to?" leads to an em-
barrassed silence, while everyone on the project team looks blankly at
one another and then stares at the floor. But, if you need some more
breathalyzer test questions, here's the list from the Airlie Council:

• Do you have a current, credible activity network supported by a
Work Breakdown Structure (WBS)?

• Do you have a current, credible schedule and budget?

• Do you know what software you are responsible for delivering?

• Can you list the top ten project risks?

• Do you know your schedule compression percentage?

• What is the estimated size of your software deliverable? How was
it derived?

• Do you know the percentage of external interfaces that are not
under your control?

• Does your staff have sufficient expertise in the project domain?

156 DEATH MARCH

• Have you identified adequate staff to allocate to the various tasks at
the scheduled time?

As mentioned earlier, the reason the breathalyzer test is adminis-
tered is that someone in the organization—usually not the project man-
ager, but someone much higher in the management ranks—has a "gut
feeling" that the project is in trouble. For their own political survival, the
project manager and the entire team should ask the same questions of
one another periodically. And, the project manager should be on the
lookout for other signs that the project is in trouble even when things
look okay on the official PERT chart:

• Key project team members are quitting—this may occur for a num-
ber of reasons, but it's important to get a sense of whether team
members are losing faith in their ability to finish the project. If key
members begin quitting, others may follow.

• The "inverse Dilbert correlation factor"—the more Dilbert cartoons
pasted on office doors and bulletin boards, the less well off the
project is.

• Excessive gallows humor—if the project team begins wearing black
shirts to the office, or piping funeral dirges through the Muzak sys-
tem, you're in trouble.

• New names for the project, e.g., "Project Titanic"—another form of
gallows humor, but usually a more serious indication that the
project team has lost faith, lost respect, and lost any real interest in
whether the project will ever succeed.

• An ominous silence from end users and senior management, who
used to ask on a daily basis how the project was coming along—by
the time you recognize this, it may be too late to recover, but you
should have at least a few days to update your resume.

• Thrashing—lots of activity but no sign of forward progress. Avoid-
ing this is what the "inch-pebble" idea and the"daily build" strat-
egy are all about.

PROCESSES 157

5.6 THE "DAILY BUILD" CONCEPT

In the discussion about prototyping, milestones, and inch-pebbles
above, there was an unspoken assumption that the incremental "deliv-
erables" produced by the project team would appear at intervals mea-
sured in months or weeks. That's what most of us are accustomed to
from our past experience with "normal" projects, and it's consistent with
the usual pace of business life—e.g., weekly staff meetings, monthly sta-
tus reviews, quarterly presentations to senior management, etc.

But, death march projects, as we've seen throughout this book, typi-
cally need a different approach. When it comes to prototyping and incre-
mental development, it often makes sense to organize the entire project
around the concept of a "daily build." By this, I mean: compile, link, in-
stall, and test the entire collection of code produced by the team every
day, as if this was the last day before the deadline and you had to ship
whatever you've got to the user tomorrow morning.

Realistically, you can't start the daily build on the first day of the
project. And while it might be possible to build the equivalent of a "Hello
World" subroutine on the second day of the project, it won't impress
anyone unless everything about the project involves completely new
technology (e.g., many of the Java-based projects that are underway as
this book is being written in 1996). But, there's usually a point well before
the first "official" demonstration or delivery of a prototype version of the
system when the software developers have a reasonable collection of
components, subroutines, or modules—at least a few hundred lines of
code, and perhaps a few thousand lines—that actually accepts real input,
does real calculations or processing, and produces real output. That's the
point when the daily build should begin, and a new (and hopefully bet-
ter) version of the system should be built every day thereafter.

Why is this so important? As Jim McCarthy, Microsoft's Visual C++-
product manager and author of Dynamics of Software Development [13],
likes to say, "The daily build is the heartbeat of the project. It's how you
know you're alive." And, there can hardly be a more important priority
for the manager of a death march project. If a week goes by when every-
one is spinning their wheels and nobody has quite had the nerve to tell
the project manager that they just can't manage to get the newfangled

158 DEATH MARCH

object-oriented database to communicate properly with the client-server
application they're working on, the project may have fallen hopelessly
behind schedule. As long as the project manager hears status reports de-
livered in a verbal fashion, or documented in written memos (or with
data flow diagrams), it's all too easy to confuse motion with progress, and
effort with achievement. But, if the project manager insists on physically
observing the behavior of each day's "daily build," it's much more diffi-
cult to hide whatever problems are plaguing the project.

Some project managers will nod their heads and confirm that this is
how they've always done it; but, most will admit that they've settled for
weekly builds, or monthly builds, or semi-annual releases of a system.
While nobody can rightly claim to have "invented" the concept, many
feel that Dave Cutler should be given the credit for popularizing it during
the development of the Windows NT operating system (an interesting
discussion can be found in Greg Zachary's Show Stopper! [14] description
of the project). It's also interesting to note that Microsoft's Windows 95
development project also used the daily build concept; the final beta ver-
sion before the production system was released in August 1995 was
known as "Build 951."

It's important to recognize that an approach like this effectively be-
comes part of the project team's process for developing the system. Imag-
ine what it must be like to be part of a team that must demonstrate a
working version of its software on 951 consecutive days! [15] Further-
more, to be effective, the daily build should be automated, and should
run unattended in the middle of the night, when all of the programmers
have gone home (or have climbed under their desks and into their sleep-
ing bags!). This implies the existence of automated configuration man-
agement and source code control mechanisms, as well as automated
"scripts" of some kind to carry out the compiling and linking activities.
But most importantly, it implies the existence of an automated test man-
agement system that can run all night long, pounding away on the new
version of code to see if it still runs yesterday's test cases properly. Thus,
to make the daily build concept work, it's almost certain that a reasonable
set of tools and technology are readily available; we'll discuss this in
Chapter 6.

A few small tricks can add even more value to the daily build concept:

PROCESSES 159

• The project manager should move his or her office to the test site,
or operation center, once the daily build process begins. Dave Cut-
ler did this at Microsoft, and there are apocryphal stories of the
tantrums that he threw when he arrived at the office and found
that the daily build had crashed in the middle of the night. Tan-
trums or not, the point is that the project manager wants to be very
visible, and very involved in the daily build process, rather than
being the commanding general at the rear of the army, receiving
daily reports on a battle taking place miles away.

• Since it's likely that the daily build will require at least a small
amount of manual supervision while it runs in the middle of the
night, it may help to establish the following policy: Any programmer
whose buggy code causes the daily build to crash gets the honor of
supervising the operation of the (nightly) daily build until the next
victim causes a crash. Obviously, there are advantages and disad-
vantages of such a policy, but at the very least, it makes the whole
concept of the daily build much more"rearto the project team!

• Assign one of the programmers who normally comes into the
office early in the morning the task of checking whether the daily
build ran successfully, and then posting the results in a visible
place. If nobody is willing or able to show up early, then hire a col-
lege student. One company instructed the student to plant a flag
outside the building to warn everyone whether it was going to be a
good day or bad day when they arrived: a green flag meant the
daily build had succeeded, while a red flag meant that it had failed.

5.7 RISK MANAGEMENT

If requirements management—particularly the triage prioritization of re-
quirements—is the most important process within a death march
project, the second most important is risk management. If "risk" weren't
such a critical issue, we wouldn't apply the adjective "death march" to
the project. It's interesting to note that one of the breathalyzer test ques-
tions identified by the Airlie Council is concerned with identification of
project risks; and while that question might draw a blank stare from the
manager of a "normal" project (even if that normal project has gotten

160 DEATH MARCH

into terrible trouble), it's one that can typically be answered fairly crisply
by the manager of a death march project. A manager would be a fool if
he or she initiated a death march without having had some serious
thought about the primary risks and how they might be mitigated.

Alas, things sometimes get out of hand as the death march project
continues. That is, because the risk management activity is addressed in
terms of ad hoc emotions and instinct rather than as a formal process, the
manager often misses the emergence of new risks as the project contin-
ues. In the best case, the risks that were visible at the beginning of the
project will be eliminated; in the normal case, they continue to be worri-
some risks throughout the project (e.g., the risk that a key team member
will quit). But, entirely new risks—things that nobody anticipated—can
suddenly emerge, and because the team typically has very little "slack" or
"reserve" capacity, in terms of schedule, budget, and resources, these
new risks can be killers.

If this whole discussion of software risks strikes you as excessive or ir-
relevant, feel free to skip to the next chapter. My biggest concern is for the
project manager who has survived several "normal" projects with an in-
tuitive, ad hoc risk management approach; that usually won't work in a
death march project. Indeed, it's the existence of an effective, formal
Software Risk Management (SRM) process that makes some organiza-
tions willing to "go out on a limb" and take on a death march project that
would otherwise be certain suicide.

There is a substantial body of literature on risk management, and if s
beyond the scope of this book to cover it all. The references at the end of
this chapter [16,17,18,19] will provide as much detail as you need, though
it's important here too to avoid having the "risk management police"
overwhelm the project with forms, reports, and other aspects of bureau-
cracy. For example, some death march project managers follow a very
simple process of having the team identify and monitor the top ten risks in
the project; these can be printed on a one-page form, and their status can
be quickly reviewed on a weekly basis.

Obviously, other approaches can work just as well; but, the key is to
ensure that it's one that will be understood, accepted, and followed by
everyone on the project team—for it's the peons at the bottom of the hi-

PROCESSES 161

erarchy who are usually the first to see the emergence of new risks. In a
death march project, we don't have time to let the information trickle up
to the top of the management hierarchy by whatever antiquated commu-
nication mechanisms are used to convey other forms of political informa-
tion; the risks must be pounced on and attacked by the team as a whole
to prevent them from getting out of control.

The word "control" is crucial here, for the project team must distin-
guish between risk assessment, risk control, and risk avoidance. In the
worst case, the project team reacts to risks as they occur—e.g., by allocat-
ing additional resources for additional testing to alleviate the conse-
quences of a bug. This kind of "fix on failure" approach, where the risks
are addressed after they have surfaced, often leads to a crisis-mode form
of "fire fighting" that can lead to utter collapse of the death march project
team. Risk prevention :s usuaUy far better, and it means that the team
agrees to follow a formal process of assessment and control to preclude
potential risks from occurring.

An even more proactive form of risk management seeks to eliminate
theroot causes of failures and risk; this is often the focus of quality man-
agement initiatives within an organization. It tends to expand the scope
of risk assessment to a broader horizon, to allow the anticipation of risks,
and it Can lead to a very aggressive management culture, which incorpo-
rates a "risk-taking" ethic by engineering the degree of risk that the orga-
nization can tolerate. I'm all in favor of such an approach, but it's a more
strategic issue than ought to be discussed and implemented outside the
context of a death march project The death march project team has a
very tactical perspective: It's not trying to change the culture of the orga-
nization, but merely survive and finish the project.

However, this may involve some culture problems in the organiza-
tion, especially if there is a perception that other projects have not been
risky, and that this one is the first, last, and only death march project the
organization will ever see. The problem is that the project team is not an
island unto itself; if it were, then it could simply focus on the cultural
problem of "shooting the messenger" who reports problems to higher-
level authorities.

But, as Rob Charette observes [20], the major causes of project fail-

DEATH MARCH

ures often exist in the organizational environment, and/or in the business
environment, which surround the project; this is illustrated in Figure 5.2.
The organizational and business environments are almost always outside
the project manager's jurisdiction and political control; but equally im-
portant, the project manager often doesn't know about these "external"
risks until they come crashing into his or her project.

FIGURE 5.2. THE SCOPE OF PROJECT RISKS

Of course, the converse can be true also: The software project creates
risks that can affect the organization and external business environment.
But, everyone knows that! Indeed, the project manager can expect to be
reminded ad nauseam that the entire organization—if not civilization,
and the entire universe!—is imperiled by the death march project. But,
these same managers, who whine and complain about the fact that the
project team is only working 127 hours per week to get the project fin-

PROCESSES 163

ished, are often blissfully unaware of things going on in their sphere of
control which could de-rail the death march project.

That's why it's important to have a risk management process that can
assess project risks from several different organizational perspectives and
balance them appropriately; after all, what engineering (and the software
developers) sees as a risk might be seen as an opportunity by the market-
ing department. This kind of "global" view of risk management is impor-
tant but I don't see it as often as I would like when I visit death march
projects. And as noted above, the project team doesn't have the time, en-
ergy, or political clout to change the organizational culture by installing a
global risk management process. Thus, the absence of such an organiza-
tional process becomes a risk of its own, which the team must assess.

Risk assessment is usually performed by evaluating the complexity of
the system or product being developed, as well as evaluating the client
and project team environments. Product complexity can be assessed in
terms of size (e.g., number of function points), performance constraints,
technical complexity, etc. Risks associated with the client environment
are often a factor of the number of user constituencies involved, the level
of user knowledge, the perceived importance of the system within the
user's business area, the likelihood that when/if the new system is in-
stalled it will lead to a reorganization or downsizing activity, etc. And, the
risks associated with the team environment include the capabilities, ex-
perience, morale, and physical/emotional health of the project team.

Typically, there are a hundred or more risk factors that could be in-
cluded in a comprehensive risk model; as noted earlier, some project
teams will consciously narrow their focus to just the top ten risks. Some
of the risks can be quantified in an objective fashion—e.g., the response-
time performance requirements, or the size of the system in function
points. But other factors—e.g., the degree of user cooperation or hostili-
ty—may have to be assessed on a qualitative basis. As a practical man-
agement approach, it's usually appropriate to categorize such risks as
"high," "low," or "medium" and to focus on getting a consensus on the
state, or level, of the risk on the part of everyone involved.

Once the risks have been identified and assessed, the manager and
the team can sometimes identify appropriate strategies to minimize or

164 DEATH MARCH

eliminate as many as possible. This is common sense, of course, but it
must be remembered that the very nature of a death march project is that
there are usually more than the usual number of risks, and that they're
more severe, and they cannot be eliminated through simple actions. On
the other hand, if the risks are extraordinary, sometimes the solutions are
too: While the project team might never have dared to ask the CEO or
Senior Vice President to eliminate a project risk on a normal project by
spending an extraordinary sum of money or eliminating a severe bureau-
cratic constraint, it's not unreasonable to ask for such things in a death
march project. And if you don't ask—which will often require going
around the chain of command, and circumventing several levels of brain-
dead middle managers—then you'll never know whether you could have
acquired the solution to your problems.

In any case, if there are high risk factors that cannot be summarily
eliminated—which is almost always the situation in a death march
project—then they should be documented with a "risk memorandum"
that identifies the risk impact, the possible higher-level actions, the con-
tingency plans that need to be set in place, etc. This is not just a "cover
your ass" political act, for if the risks do materialize, and if they cause the
project to fail, there will usually be dire consequences for everyone in-
volved; after all, that's part of the reality of a death march project. How-
ever, denying reality is also a common phenomenon on death march
projects. It's common for both members of the project team, and for the
various levels of users and managers surrounding the team to put on
their blindfolds and steadfastly ignore the existence of serious project
risks. It's not unreasonable to expect the project manager and team
members to focus on "internal" risks with extreme diligence; but as not-
ed earlier, the "external" risks often can't be controlled by the team
members, because they're associated with organizational or business is-
sues beyond their jurisdiction. Thus, a risk memorandum is an important
practical activity, to force the user and management communities to ac-
knowledge what they would prefer to overlook and ignore.

PROCESSES 165

5.8 SUMMARY

It's all too easy to go overboard with many of the ideas that I've discussed
in this chapter, and thus fall into the deadly trap of mind-numbing, time-
wasting bureaucracy. But, as Stephen Nesbitt reminded me in an e-mail
message [21] that arrived just as I had reached the end of this chapter
without a clever way of bringing things to an end:

...the absence of standards and methodology can also
turn a project into a Death March. On my last project
for example, the unrealistic delivery schedule was used
as an excuse to avoid the following:

1) Checking source code into the configuration man-
agement system resulting in project source code
spread across 3 different computer systems at 2 geo-
graphic locations. As a consequence a significant
amount of time was wasted trying:

a) to build the software.

b) to determine who had what version.

c) to determine why the software worked on one
system and not another.

2) Registering features/defects into the configuration
management system. This effectively crippled QA be-
cause it was impossible to easily determine what was
in work and could be ignored, what was completed
and could be tested, and what was pending so that ap-
propriate test plans could be designed.

3) Recording basic requirements, design decisions and
assumptions, milestones within the development of
project modules, and appropriate unit tests. The con-
sequence here was to drastically impede communica-
tions within the project team not only on current
project status but also basic decisions made at the be-
ginning of the project.

166 DEATH MARCH

Inevitably development response was that these pro-
cess activities represented "overhead" and thus, by
definition, were useless activities. Technical manage-
ment generally concurred and, when the drop dead
date loomed, process and methodology were given the
heave ho.

So, please don't interpret this chapter as an excuse not to have any
processes, methods, or techniques at all; indeed, that will kill a death
march project, too! The trick is to find the ones that matter, the ones that
work, and the ones that the team will follow naturally and unconsciously.
This last point is crucial: the team will be under a lot of stress and pres-
sure, and will have to do a lot of things fey instinct. If they are
overburdened with new, unfamiliar processes so complex that they have
to stop every five minutes and consult a textbook to figure out what to do,
then all is lost. So keep it simple—and if the team can only remember one
word, remember what it is: triage,

Notes/References

1. Stephen R. Covey, A. Roger Merrill, and Rebecca R. Merrill, First Things First
(New York: Simon & Schuster, 1994).

2. Consultant John Boddie suggests a third option: The new manager might be
the one to officially kill the project if it really is unsalvageable. This is much easier
for the new manager than for his or her predecessor, for the original project
manager has so much ego and emotion invested in the project that it's difficult
for him or her to admit that the best thing to do is kill the project. Boddie pro-
vides some excellent advice on politically acceptable ways to kill a project in
"Calling Doctor Kevorkian!" American Programmer, February 1997.

3. Indeed, I would suggest that the project manager and his or her team mem-
bers use this as a litmus test at the beginning of the project. If the user, project
owner, senior managers, shareholders, and stakeholders all refuse to accept the
notion of this kind of hard-nosed triage prioritizarion, then the most rational
thing to do is resign from the project before things get any worse! As a further
litmus test, Dean Leffingwell argues that the users should be required to divide
the entire set of requirements into equal groups of three: one third of the re-
quirements can be put into the "rnust-do" category, one-third into the "should-
do" category, and one-third into the "could-do" category. This prevents the

PROCESSES 167

common problem of finding that 90 percent of the requirements have been cat-
egorized as critical.

4. This is a preview of a more elaborate discussion of "best practices" that you'll
find later in this chapter.

5. By contrast, in a "normal" project, the SA/OOA models are often perceived as
useful products in their own right. The users and business policy-makers will
huddle around the data flow diagrams and mutter to one another, "So that's
what our business is all about! Maybe we should do a business reengineering
project and change all of that before we build a new software system!"

6. Veteran software engineers will recall the old adage, "If your only tool is a
hammer, then all the problems facing you look like nails."

7.1 must confess that this is a disguised marketing pitch, since it's one of the key
features of the Requisite product, and 1 was a member of Requisite's Board when
I wrote this book. In my role as an objective author, I heartily encourage you to
investigate all three requirements management products mentioned here.

8. Ed,
> 1. How important is it to use traditional methodologies like SA/
SD > or OOA/OOD in a death-march project?
I' d have thought that they can contribute to the deathmarch more
effectively than most. On one project I know, they needed a
diagrammer f or theEKDs, so they bought Excellerator. Having found
that it supported SSADM (which must be the methodologist's
methodology) adopted it without any training or induction for the
staff. Then they found that the pace of the project slowed
significantly (in fact, it nearly halted) while everyone was busy
reading manuals and learning software tools and deciding what they
should do next (and re-doing what they had done earlier in the
"wrong" sequence) . For death march watchers, and almost ideal
scenario. Oh, and the project manager was sacked half way through
the project, but that's normal.
> How important is it to teach those methodologies (whichever one
> you think is best) to the team before the project begins?

Well, I guess you can gather from the above that I believe in
training for ANYTHING before applying it. The fact that you're
adopting a technique which will fundamentally decide the way you
work, record all your requirements, and govern the nature of the
generated code, you' d think that a slight amount of training would
be beneficial, wouldn' t you? A lot of training would be better, of
course. But when you' re on a death march, you don' t have time for
that.

168 DEATH MARCH

A little sideline quote that I received from a Systems Manager the
other day: I said I wanted to spend the first nine months of the
project getting the design right, and he responded by saying "You
can't do that - you've got to deliver the Name and Address file in
twelve months . " (!) It's not a death march .It's not a death march.
It's not a death march. Yet.
> 3 . How important is the SEI-CMM or ISO-9000 or any other "formal"
> software process approach within the context of a death march
> project team?

Not at all, I'd say. I don't know SEI-CMM, apart from what I've
seen here, but ISO-9000 is self-certified, so it doesn't pose a
problem here at all. If it does, you hire a specialist whose job
is to cook the books.
> 4. Almost all death march projects follow a RAD or prototyping
> approach

Well, what' s worse is that suddenly when people realise that the
deadline's going to slip, RAD suddenly rears its ugly head.
Obviously, RAD is all about tightly constrained environments,
whereas the death march is plagued by vague or exaggerated
requirements . I can' t see how an attempt to RAD a death march can
succeed, unless you turn it into producing a "navigable model" or
some such prototype so as to get the management off your back.
> 5 . If you could only get the project team to focus on ONE process
> approach, what would it be?

Forme, it' s all working in small teams, tightly focussed, and each
one delivering *something*, so there's an end in sight. Checking
each others' work is the other aspect I'd introduce. Not
necessarily walkthroughs (although that' s a more formal part of
it) , but simply ensuring that someone else who is knowledgeable
can help with any task. Share the workload, the problems, and the
vision.
> 6. If there was one kind of process approach that you would
> strongly advise the death march project to AVOID
Large user groups (such as a Model Office) who have control of the
design. If the number of users involved is too great, the business
will give you only those it can spare, and they will continually
argue amongst themselves because they don't know. We ' ve had to pull
a project to a dead halt while we pulled in some senior users to
go through all the requirements and sort out the wheat from the
chaff. Meanwhile 60 implementors twiddled their thumbs for a couple
of weeks.
> 7. How important is all of this process stuff, in comparison to
> the issues of peopleware

PROCESSES 169

People, people, and people - the three most important things you
need on any project. Get the best and keep them, and lose the rest.
You can work with a team one-third the size of what you think if
they're good, and if they're that good, they'll adopt a common,
useful process. So process is important, but good people come
first,and when they're that good, they'll adopt good practices
which aren't a drag on the project.
Tools/technology come ahead of processes, I believe, and it's the
one thing the managers can do for their staff that can help
significantly.

--Doug

9; Ed
» 2. What if the death march project team has never used such
methodologies before? How important is it to teach those
methodologies (whichever one you think is best) to the team before
the project begins? «

Is there any time at all "before the project begins"?
A death march project is not the time for staff to learn a new (or
their first) methodology. OTOH it would contribute greatly to the
chances of project death if they DID learn a new methodology at
the same time.
Paul

IQ.Ed,
» 1. How important is it to use traditional methodologies like
SA/SD or OOA/OOD in a death march project?«

It can11 hurt to have clear ways of communicating with the users
and clear deliverables to them.
»2 . What if the death inarch project team has never used such
methodologies before? How important is it to teach those
methodologies (whichever one you think is best) to the team before
the project begins?«

It depends on whether members of the team have theexperience that
the team as a whole lacks. I'd say that the core members need to
"know their stuff" for the most part.
»3 . How important is theSEI-CMMor ISO-9000 or any other " formal"
software process approach within the context of a death march
project team? Is it better to follow an "adhoc" approach, and just
assume that the pressures of a death march will force everyone to
operate as a "cowboy" programmer? ("cowperson" would probably be
more politically correct, but it sounds too clumsy <g>)«
Cowpokes don't need the manure to be cleaned from the pasture.

170 DEATH MARCH

Programmers don't need to have the "methodology" gurus cleanup
the deliverables.

But if someone wants to have a formal software process, then the
folks doing the programming should be protected from that extra
effort.

»4 . Almost all death march projects follow a RAD or prototyping
approach to systems development (orspiral, or scrum, oriterative,
or various other related ideas) instead of the old-fashioned
waterfall approach. That point hardly seems worth emphasizing --
but are there any special caveats or exceptions or details about
RAD/prototyping/etc, that you would be sure that a death march
project manager understood?«

Understand this: the feedback that you got from the user is
critical. They don ' t care how you meet their requirements, and if
they have seen "early miracles" of pretty screens and promised
functionality, don't ever let them down.

»5 . If you could only get the proj-ect team to focus on ONE process
approach, what would it be? Walkthroughs? Change management (aka
versioncontrol,configurationmanagement,etc.)? formalanalysis/
design methodologies? something else?«

Walkthoughs or reviews with the key (or a few key) user(s)? I
really think that one of the more major problems of systems
projects is that there is a cycle of delivery and failure to
satisfy.

»6. If there was one kind of process approach that you would
strongly advise the death inarch project to AVOID (because it takes
too much time, is too risky, or whatever) , what would it be?«

Anything that is extremely complex and technical and theoretical
is wasted on a death march. Nobody can see further than the next
deliverable.
»7 , How important is all of this process stuff, in comparison to
the issues of peopleware (which I discussed in Chapter 4) , and
tools/technology (which I'll get to in Chapter 6)? «

The tools are useful, but they should only illustrate and enable.
The process is a means of getting to the human side of the effort.
The peopleware is the most important.

Sharon

11. Watts Humphrey, A Discipline of Software Engineering (Reading, MA: Addi-
son-Wesley, 1995).

12. James Bach, "The Challenge of 'Good Enough' Software," American Program-
mer, October 1995.

PROCESSES 171

13. Jim McCarthy, Dynamics of Software Development (Redmond, WA: Microsoft
Press, 1995).

14. G. Pascal Zachary, Show-Stopper! (New York: Free Press, 1994).

15. To be honest, I don't know if the Microsoft team actually did this religiously
on a daily basis. It's certainly possible that more than one "build" was produced
within a single 24-hour period, and it's even possible that the team took a day
or two off during their marathon death march.

16. See Note 13.

17. See Note 14.

18. Rob Thomsett, "The Indiana Jones School of Risk Management," American
Programmer, September 1992.

19. Capers Jones, Assessment and Control of Software Risks, (Englewood Cliffs, NJ:
Prentice Hall, 1994).

20. Rob Charette, "Building Bridges over Intellectual Rivers," American Program-
mer, September 1992.

21. Ed:
Three weeks ago I was 35 year old [xxx] systems engineer providing
quality assurance services on an ugly Death March project here in
Bozeman,MT. I 'mstill 35 but I resignedmy position because, after
18 months, the stress, despair and lack of job satisfaction were
simply too much to take. With no dependents I could afford to
simply walk away even if it is financially uncomfortable.
As such, I am finding your draft chapters for Death March
particularly relevant as I try to understand what happened over
the last 18 months, and as I start the process of looking for an
employer where Death Marches are not the norm (or at least not
ugly or suicidal ones!)
In reading Chapter 2 you made a number of references to the
"methodology police" as one of the factors which can turn a project
into a Death March - the implication being that methodology and
standards can cripple an already marginal project. I think this is
absolutely true . lambothered, however, that the converse was not
mention that the absence of standards andmethodology can also turn
a project into a Death March.
On my last project for example, the unrealistic delivery schedule
was used as an excuse to avoid the following:
1) Checking source code into the configuration management system
result ing in project source code spread across 3 different computer

172 DEATH MARCH

systems at 2 geographic locations . As a consequence a significant
amount of time was
wasted trying:
a) to build the software.
b) to determine who had what version.
c) to determine why the software worked on one system and not
another.

2)Registering features/defectsintotheconfignrationmanagement
system. This effectively crippled; QA because it was impossible to
easily determine what was in work and could be ignored, what was
completed and could be tested, and what was pending so that
appropriate test plans could be designed.

3)Recordingbasic requirements, designdecisionsandassumptiona,
milestones _within_ the development of project modules, and
appropriate unit tests. The consequence here was to drastically
impede communications within the project teamnot only on current
project status but also basic decisions made at the beginning of
the project. Inevitably development response was that these
processactivities represented "overhead" andthus, bydef inition,
were _useless_ activities. Technical management generally
concurred and, when the drop dead date loomed, process and
methodology were given the heave ho.
The results were significant:
1) One system was finally put into production 1 year after
delivery. That additional year was spent correcting significant
design and implementation flaws which, in addition to requiring
massive amounts of engineering
resources, also resulted in millions of dollars of fines.
2) One system was put in production with three brand new, never
tested
systems . The result was the need to dedicate engineering resources
for a period of one month to provide continuous around the clock
supervision. It also led to the general perception by the customer
that the system was not working - a perception that has not yet
been changed.
3) One system was put in and totally failed leading to:
a) $20 million dollars in fines on a $35 million contract.
b) Loss of another multimillion dollar contract.
c) Removal of the system by the customer.
Perhaps a little methodology would not have made any difference.
On the other hand, how could it have made things worse?
I hope that the final form of Death March will address this very
issue recognizing that absence of _appropriate_ methodologies can

PROCESSES 173

transform a project into a Death March just as completely as the
overzealous application of _inappropriate_ processes,
methodologies and standards . As a battle weary infantryman, I also
hope that the final book will provide insight into recognizing the
appropriate from the inappropriate.
Thanks for your time, and I apologize for the length of my post.
Enjoy your summer along Flathead Lake.
-Steve

Additional References

Alan M. Davis, Software Requirements: Objects, Functions, and States (Englcvvood
Cliffs, NJ: Prentice Hall, 1993).

Mark C. Paulk, Charles V. Weber, Bill Curds, Mary Beth Chrissis, et al., The Ca-
pability Maturity Model: Guidelines for Improving the Software Process (Reading,
MA: Addison-Wesley, 1995).

Robert N. Charette, Application Strategies for Risk Analysis, (New York: McGraw-
Hill, 1990).

Robert N. Charette, Software Engineering Risk Analysis and Management, (New
York: McGraw-Hill, 1989).

A worker may be the hammer's master, but the hammer still prevails.
A tool knows exactly how it is meant to be handled, while the user of
the tool can only have an approximate idea.

Milan Kundera, Tfor Book of Laugbler and Forgetting,

Pt. 7, Chapter 8 (1978, tr. 1980)

Back in the summer of 1992,1 had dinner with an amiable group of mid-
level Microsoft managers. During the course of the discussion, I asked if
it was common for Microsoft project teams to use such methodologies as
structured analysis or object-oriented design. The answers ranged from
"sometimes" to "ummm, I guess so" to "not consistently" to "what's
that?" And when I asked about the use of CASE tools (which were still
fairly popular throughout the rest of the industry at that point in time), I
was told that the common opinion of Microsofties was that such tools

175

176 DEATH MARCH

were for "people off the street." This was a term I hadn't heard before,
but the rough translation is "ignorant savages who have just come out of
the primeval forest and who are just learning to program, unlike real pro-
grammers, who don't need no such artsy-fartsy tools."

Somewhat depressed, I asked whether the project teams used any
tools, and was told that in fact, each Microsoft team can choose whatever
tools it feels are appropriate for the project it's working on. Seizing on
that, I asked: what does a typical project team consider its most important
tool for a software project?

"I asked one of the project teams the same question the other day,"
replied one of the managers. "And you know what their answer was?"

"A high-speed C++ compiler?" 1 asked. "An assembler? A powerful
debugging tool for all those bugs in their code, heh heh heh?"

"None of the above," the manager responded, ignoring my snide
joke. "Their answer was: electronic mail. The average Microsoft program-
mer gets a hundred e-mail messages a day; he lives on e-mail. Take away
e-mail and the project stops dead in its tracks."

There's a reason why I began this anecdote by pointing out that it
took place in 1992: this was before the explosive growth of the Internet
had begun, and before the World Wide Web was available. I was stag-
gered at the thought of anyone getting a hundred e-mail messages a day;
in 1992, I was deliriously happy if I got two or three e-mail messages a
day. But as you can imagine, if the same question about "most important
tool" was raised in 1996, the answer might well be "World Wide Web"
rather than e-mail; by contrast, the answer might have been "fax ma-
chine" in 1987, "PC workstation" in 1983, "on-line terminal" in 1976,
and "my own telephone on my desk" when I began my programming ca-
reer in 1964.

Obviously, we don't expect a death march project team to survive
with only one tool. Most teams—even for normal projects—have a wide
variety of tools, and quite an assortment of technology, to accomplish
their day-to-day work. But sometimes, they have too much, and some-
times they have technology that's tod new, and sometimes they have
tools they don't want foisted upon them by Dilbertesque managers. And,
in some cases, they're prevented—for financial, political, or cultural rea-

TOOLS AND TECHNOLOGY 177

sons—from getting the one tool they believe critical for accomplishing
their objectives.

In case you were worried, let me reassure you that I'm not going to
advocate esoteric, advanced software tools that somehow communicate
telepathically with the programmer to generate well-structured code
from disorganized thoughts. But, I do want to discuss the notion of a
"minimal toolset" for death march projects, 1 also want to emphasize the
critical relationship between tools and processes, especially since the
processes in a death march project are likely to be different from those
used in the rest of the organization. And finally, I want to issue a warning
against introducing completely new tools, of any kind, into a death march
project team environment.

6.1 THE MINIMAL TOOLSET

In the previous chapter, I strongly recommended the notion of triage as a
prioritization strategy for dealing with user requirements. The same con-
cept applies to tools and technology for the project team: There are some
tools the team "must have," and some that they "should have," and a be-
wildering variety of tools they "could have." There are also some good
reasons for applying the triage prioritization in a conscious, cold-blooded
fashion at the beginning of the project.

The most obvious reason is economics. Even if the tools worked and
everyone was familiar with them, it would cost too much money to ac-
quire them. And it would take too long to order them—by the time the
procurement process in a normal corporate bureaucracy was finished,
the project would be finished [1]. In many death march projects, it's im-
portant to focus on a few critical tools, and then try to persuade senior
management (or the Tools Police) to acquire them.

But, suppose the team is operating in a large environment that al-
ready has hundreds of different tools that have been acquired over the
years. Should they all be used? Obviously not! Even if they all work, the
mental effort required to remember how they work, and the additional ef-
fort to make them all work together, usually exceeds the incremental ben -
efit obtained. Consider the analogy of a team of mountain-climbers,
trying to decide what equipment to take with them as they prepare for an

178 DEATH MARCH

assault on the peak. There are some essentials (tents, drinking water, etc.)
they'd better have; and, if it's an easy climb, they might want to take along
some new-fangled gadgets they read about in their favorite mountain-
climbing magazine. But, if they're planning to climb Mt. Everest, without
the assistance of burros or Sherpas to carry everything, then they can't af-
ford the burden of carrying 300 pounds of gear per person on their backs.

Exactly what tools are critical, and what should be left behind, is a de-
cision the death march project should be allowed to make on its own—
regardless of whether it conforms to organizational standards. I'm stag-
gered by the number of organizations 1 visit where the death march
project manager tells me sadly that there's an organizational mandate
that all projects be done in COBOL (or, in other organizations, Visual Ba-
sic, or Oracle, or whatever...), even though that technology is utterly in-
appropriate for his or her project. Baloney! Throw it out! Use the tools
and technology that make sense! To do otherwise is roughly analogous
to someone telling the leader of the Mt. Everest mountain-climbing
team, "Our committee has decided that your project team should take
along a detailed map of the New York City subway system, because most
projects have found it very helpful."(2]

1 think it's essential that the team members agree on common tools
within the project; otherwise, chaos will ensue. Obviously, this must be
interpreted with a certain degree of common sense; it probably doesn't
matter which word processor the team members use to write their docu-
mentation, but it probably is important that they all use the same compil-
er for their C++ code. One of the problems with a death march project is
that the software developers believe that it creates a license for complete
anarchy at the individual level (e.g., if they want to use an obscure C++
compiler they downloaded from a university Web site, they believe it's
their inalienable right). Not so: It's the team that has the inalienable right,
and the project manager must enforce this strictly in any area where in-
compatible tools could make a significant difference.

This means that unless the team members have worked together on
several previous death march projects, they will have to come up with a
"minimal" toolset that everyone agrees to use. Thus, triage emerges
again: The "must-have" toolset is also the "must-use" toolset. Once a
consensus has emerged on a set of tools, the team can discuss the

TOOLS AND TECHNOLOGY 179

"should-have" tools, where the problems are likely to be a combination
of consensus-building within the team, and management approval for
the purchase of new tools. Beyond that, there may or may not be suffi-
cient time and energy to discuss the merits of the nearly-infinite number
of "could-have" tools that various team members might be interested in.

I suggested above that the project manager must be prepared to en-
force the consensus; indeed, this could be one of the criteria used by the
manager to select potential members of the team. Note that the same
could be said about the software processes that we discussed in Chapter
6. And as we'll see below, it's even more important than that—because
tools and processes are intimately related to one another.

With all of these caveats in mind, it's impossible for an "outsider" like
me to casually enumerate the recommended tools for a death march
project. When asked the question, my answer—"It depends..."—is usu-
ally confused for the consultant's weasel-worded tendency to avoid giv-
ing a straight answer to any question. So, as long as you keep my earlier
advice firmly in mind, here is the list of tools I would normally look for:

• E-mail, groupware, Internet/Web tools—like the Microsoft anecdote
above, this tool is at the top of my list. Thafs because electronic-
interaction tools are not only a means for communicating much
more efficiently than memos and faxes, but also because they facil-
itate coordination and collaboration. Basic e-mail and access to the
Internet is something I would insist upon as a project manager,
though I would be happy to negotiate as to which vendors and
products should be used. It matters far less to me whether we're
using Microsoft Mail, cc:Mail, Netscape Collabra, or Lotus Notes,
than the concept that the whole team is on the network and keeps
all of its "project memory" on the network. Beyond that, there are
some wonderful new tools available, but they're likely to fall into
the category of "could have" rather than "must have."

• Prototyping/RAD development tools—as discussed earlier, almost all
death march projects use some form of prototyping or incremental
development approach; consequently, they need tools to support
this effort. It's hard finding a popular development environment
today that describes itself as anything else but a RAD environment,

180 DEATH MARCH

and the majority of such tools today have a visual, drag-and-drop
user interface to help the programmer get more code developed
more quickly. Whether the tool should be based on Delphi, C++,
Visual Basic, or Smalltalk (or a dozen other possible choices) is
something I can't recommend on any kind of global basis. But
remember the comment above: It's not sufficient to have a consen-
sus that we're all going to use a language like C++ or Smalltalk; we
have to agree on a common toolset from a common vendor. To
have part of the team using RarcPlace-Digitalk's VisualWorks envi-
ronment while the others use IBM's VisualAge for Smalltalk prod-
uct may be technologically feasible, but it's still downright stupid.

• Configuration Management (CM)/version control—Several of my col-
leagues feel that this should be at the top of the list. As John Bod-
die, author of Crunch Mode, said in a recent e-mail communication
to me [3]:

I would say that a configuration management tool is a
real "must have." There is going to be lots of confusion
among the pieces of the project and the manager and
the team needs a way to establish and track versions of
the system as they move toward completion, termina-
tion or whatever.

• There is an obvious benefit to having the CM tools well-integrated
with the other primary development tools. Thus, Microsoft's Source-
Safe may or may not be the best version-control software, but the
fact that it's well-integrated with Visual Basic is a big argument in its
favor. Similarly, many other development tools are integrated with
InterSolvs PVCS, IBM's ENVY/Developer, or other comparable CM
tools.

• Testing, debugging tools—many of us would automatically include
these tools with the "basic" development tools that allow us to cre-
ate code, compile it, and run it. But, as we moved from mainframe
on-line applications to GUI-oriented client-server systems, we
gradually realized that an entirely new set of testing tools were not
only appropriate, but often essential;' and, tools from vendors like
SQA and Mercury Interactive still aren't widely enough distributed
in the organizations I visit. Similarly, project teams moving into the

TOOLS AND TECHNOLOGY 181

world of the Internet and Web-based applications probably need a
whole new set of testing and debugging tools.

Project management (estimating, scheduling, PERT/GANTT, etc.)—
there's a tendency to think of these as the"manager's toolkit," and
that may be the case; perhaps it's only the project manager that
needs to recompute the projectV'critical path" on a daily basis. But,
in this same category, I would include estimating tools like ESTI-
MACS (developed by Howard Rubin, and available from Computer
Associates), CHECKPOINT (from Software Productivity Research),
and SLIM (from Quantitative Software Management). These are
essential tools, in my opinion, because they support the dynamic re-
evaluation of schedules and deadlines throughout the project.

Toolkit of reusable components—if the project team is familiar with
the concept of software reuse, and if it regards reuse as a strategic
weapon with which to accomplish high levels of productivity, a
toolkit of reusable components needs to be on the list of "must-
have" tools. This might be a collection of VBX components for
Visual Basic, the ParcPlace-Digitalk Smalltalk class library, or
Microsoft's MFC class library for C++; obviously, it could also
include some in-house components developed by other project
teams within the organization. The choice is usually language-
dependent, and it's another one of those areas that needs to be
used consistently by everyone within the project team.

CASE tools for analysis/design—some project teams regard CASE
tools as a "crutch" for novice developers, but others consider them
as essential as word processors. My preference is for the CASE tool
that's simple, inexpensive, and flexible; aside from that, I won't rec-
ommend any particular product or vendor, because the real answer
to the question of which CASE tool to use is,"it depends..."Indeed,
as Doug Scott suggested in a recent e-mail message [4] to me, it
might not require any technology at all:

The best device is a large diagram pinned to the wall.
It might contain the (partially complete) E/R diagrams
for the system, or the process flows, or whatever. But
it gives people a focus for discussing the design, and it
costs next to nothing.

182 DEATH MARCH

As I'll discuss below, the biggest problem with CASE tools is that
they encourage (and sometimes enforce) a methodology that the project
team doesn't understand and doesn't particularly want to use.

6.2 TOOLS AND PROCESS

The issue of CASE tools, mentioned above, is probably the most obvious
example of a truism: tools and processes are inextricably linked together.
There's no point in using a structured analysis CASE tool if you've never
heard of the acronyms DFD and ERD. Such a CASE tool is not only use-
less, but an incredible burden, if the project team sincerely believes that
ERDs and DFDs are meaningless forms of bureaucratic documentation
produced solely to get the Methodology Police off their backs.

The situation is not always so black-and-white. For example, the
project team might feel that data flow diagrams are useful, but only as an
"informal" modeling tool. Thus, a "flexible" CASE tool might be consid-
ered a benefit, while a "hard-line" CASE tool would be rejected. Consid-
er the obvious analog)' with a word processor: We all appreciate the
benefits of the spell-checker, but we don't want to be forced to use it, and
it's quite likely that we never use the grammar-checker because it's too
slow and clumsy (at least, that's my excuse for not using it on Microsoft
Word!). We would be even more annoyed if the word processor stead-
fastly refused to allow the word "ain't" within a document, or required
that any phrases considered racist or sexist be approved in advance by
the Political Correctness Committee. A few more "features" like that
would be enough to make us all go back to paper and pencil.

What this means, of course, is that the death march project team
must first agree on the processes and methodologies it intends to follow,
and it must decide which of those processes are going to be followed re-
ligiously—and which ones will be honored in spirit, but perhaps not to
the letter of the law. Once this has been decided, the tools and technolo-
gy can be chosen—or rejected!—accordingly. In this same fashion, the
project manager may decide to adopt a particular tool to enforce a pro-
cess that everyone agrees on intellectually, but is likely to practice in a
sloppy fashion; two good examples are version control and configuration
management.

TOOLS AND TECHNOLOGY 183

One of the biggest myths about software tools in any software
project—and a particular danger in a death march project—is that the
tool will be a "silver bullet" that will somehow accomplish miracles. Mir-
acles, of course, is what senior management is looking for; and even the
project manager may be tempted by the vendors' advertising claims that
programming, testing, or various other activities will be improved by a
factor of ten through the genius of their tools.

Aside from the problem that such tools are usually brand-new and
that nobody knows how to use them (which I'll discuss below), there's a
more fundamental point to consider: The only way such a tool could be a
silver bullet is if it allows or forces the developers to change their process.
For example, if I write a program and then compile it, I do so according to
a particular process. Perhaps I conduct a peer-level walkthrough before
the compilation, or perhaps I precede the programming activity with a
formal, detailed design process. Now, if you give me a compiler that's ten
percent faster than the one I've been using, I'll be happier and somewhat
more efficient; maybe the productivity of the overall project will increase
by some incremental amount. But I won't change my process.

On the other hand, if you give me a compiler that's ten times faster,
then it will change my process. That's what happened when we went from
batch-mode, overnight compiles to on-line compilation in the 1970s, and
then compilation on one's own PC/workstation in the 1980s, and then
various combinations of incremental compiling (a la Delphi) and inter-
pretive execution (a la Visual Basic). Because of this, many developers
have eliminated detailed design prior to coding, on the theory that they
can compose programs extemporaneously; the practice of walkthroughs
has also been eliminated in many projects, on the assumption that the
programmer can find and change his or her own defects efficiently.

Hardly anyone objects to the prospect of using improved technology
that permits the elimination of processes that were considered boring and
tedious. But, it's more difficult to introduce new technology that requires
us to add processes, or modify processes that we were comfortable with. A
good example is the process of reuse and the associated technology of re-
use libraries, browsers, and related tools. The project teams that use this
technology can effectively raise their level of reuse from approximately 20
percent (a level that I call "accidental" or "ad hoc" reuse) to 60 percent or

184 DEATH MARCH

more; indeed, if the technology is matched with a corporate-wide reuse
process, the level of reuse can reach 80-90 percent or more.

The difference between a 20 percent level of reuse and an 80 percent
level of reuse is equivalent to a four-fold improvement in productivity.
And, as Paul Bassett points out in a new book on reuse [2], the subse-
quent incremental increases in reuse have more profound benefits than
you might think. If the level of reuse rises from 80 percent to 90 percent,
it means that instead of having to develop 20 percent of the code "from
scratch," the project team only has to develop 10 percent. Thus, their
workload has effectively been cut in half.

This is all very exciting—indeed, worthy of being called a "silver bul-
let"—but it's utterly irrelevant if the project team (and ultimately the en-
tire organization) is unable or unwilling to change its software processes
with regard to reuse. The irony is that most organizations will blame their
failures on the technology itself: They'll buy an expensive class library, or
they'll replace their old software development methodology with object-
oriented techniques on the theory that objects are synonymous with re-
use; and, when they eventually find they've achieved no measurable in-
crease in reuse, they'll blame the problem on objects, or on the vendor of
the class library, or on whatever other technology they've depended on.
Meanwhile, the process is exactly the same as it was before. The culture of
the organization is expressed with the following phrase: "Only wimps re-
use other people's code; real programmers write their own damn code!"

From the perspective of a death march project, there's a very simple
moral here: If the introduction of new tools requires the team's "stan-
dard" process to be changed dramatically, then it will add significantly to
the project risk and probably contribute to the failure of the project. This
sometimes gets muddled with the issues of training and of learning the
mechanics of how to operate the tools (I'll discuss that below). But, the
more fundamental problem is usually that of changing behavior, which is
what software processes are all about. It's hard enough to do under nor-
mal circumstances, when we feel that we have lots of time and a support-
ive environment to slowly become comfortable with the new process.
And for obvious reasons, it's usually a disaster in a death march project,
when we don't have enough time, and we don't have a supportive envi-
ronment.

TOOLS AND TECHNOLOGY 185

6.3 THE RISKS OF CHOOSING NEW TOOLS

As noted above, some death march projects grab onto new tools and tech-
nology as- a silver bullet to achieve far higher levels of productivity than
would otherwise be possible. Let's assume for the moment that we've
found some way to solve the cultural and political problems of process
change that were discussed above. What else do we have to worry about?

The two most likely risks- are technology and training. In many cases,
the silver bullet tool is so new that it's not even available in a commercial
form; usually, someone on the project team downloads the beta version
from the Internet. Or, the tool can't be integrated with any of the other
tools used by the project team; the vendor has made vague promises, but
in the meantime, the tool's import-export capability is riddled with bugs.
Or, the tool isn't supported—it was developed by a graduate student in
Uzbekistan, or (even worse!) it was developed in-house by one of the
software developers who sees nothing strange about the idea of a bank
developing its own CASE tool or an insurance company developing its
own DBMS.

Let's assume for the moment that the tool is solid, reliable, and avail-
able from a reputable vendor that provides top-notch support. In that
case, the problem is likely to be one of training—for if the tool was al-
ready being widely used throughout the organization, nobody would
have characterized it as a "silver bullet" that would miraculously save the
death march team from certain disaster. Occasionally, you'll find a death
march project team that begs for permission to use a powerful tool its
members have all used in a previous job—but this is rare indeed. In most
cases, neither the project team members nor anyone else in the organiza-
tion has ever seen or used the tool before.

As mentioned before, any non-trivial tool usually has strong implica-
tions about the corresponding software process; thus, a new tool often
implies a new process. Though such a correspondence should be obvi-
ous, it's remarkable how often the vendor's training representative gets
half-way through a five-day workshop on how to operate the tool before
finding that the students (whose managers are already panicked about
falling five days behind schedule as a consequence of attending the
workshop!) have absolutely no understanding of the process supported

186 DEATH MARCH

by the tool. It's awfully demoralizing, for example, to spend two days
showing a reluctant student how to draw an ERD and then have him or
her ask, "By the way, what is an entity? And since I'm gonna program ev-
erythingin C++, why should I care about all of this stuff?"

But, let's assume that the project team members understand the pro-
cess supported (and automated), by the tool, and that they have enthusi-
astically agreed that they will carry' out the practice in their project; from
20 years of experience teaching structured and object-oriented methods,
1 know that this is a naive assumption, but there's no point in going fur-
ther unless we do. So, if we assume that there are no technical problems
with the tool, and //we assume that the corresponding software process-
es won't cause a problem, then all that is left is the training and practice
associated with the tool itself.

How long does this take? Obviously, it depends on the nature and
complexity of the tool—as well as its user interface, its on-line help fea-
tures, and assorted other issues. In the best case, the developers will be
able to figure out how to use the tool without any formal training at all;
that's what the project manager and various other managers outside the
project desperately want to believe, for they regard any training as a waste
of time, and a distraction from the "real work" of the project. But, the
more realistic estimate is that it will take an hour, a day, or a week to learn
how to use the tool. Whether that takes the form of a classroom session,
or reading a book, or just "playing" with the tool, it still takes time.

And, the training activity does not provide a thoroughly trained, infi-
nitely experienced user of the tool. Training is not a binary phenomenon:
The project team members don't go from a state of utter ignorance to a
state of sublime mastery of the tool at the end of a one-week training
class. This should be obvious, but it somehow baffles senior manage-
ment, which tends to grumble and complain, "Okay, we spent all that
money for those high-priced trainers, and we wasted all that rime in the
classroom when those lazy, good-for-nothin' programmers could have
been coding. Now I want to see some real productivity with that silver
bullet tool you talked us into getting for them!" Perhaps it's not so sur-
prising that senior management would be so naive, since they wouldn't
know a software tool if they fell over one; but sadly, I've seen the same
reaction from many technically-oriented death march project managers.

TOOLS AND TECHNOLOGY 187

In a wonderful article [5], my colleague Meilir Page-Jones argues that
there are seven stages of mastery in software engineering; his article fo-
cuses on methodologies, but I believe that it applies equally well to tools
and technology. In the list below, I've added my own estimates for how
long it would take the average software developer to reach various stag-
es, assuming that the tool or technology was of average sophistication
and complexity:

TABLE 6.1 PAGE-JONES' SEVEN STAGES OF SOFTWARE ENGINEERING MASTERY

1 . Innocent (has never heard of Technology X) — this obviously requires no time at
all.

2. Aware (has read an article about Technology X) — roughly an hour, in most cases,
is enough for a software developer to be in a position where he or she can voice
strong opinions about the advantages and disadvantages of the tool, even though
he or she has never seen or used it.

3. Apprentice (has attended a five-day workshop) — a week, perhaps compressed
into two days because of the pressure of a death march project. But, note that at
this point, the developer has probably done nothing more than play with canned
tutorials provided by the vendor, or dabbled with a small exercise to illustrate the
features of the tool. He or she hasn't encountered the glitches, shortcomings, and
"gotchas" of the tool; he or she hasn't seen how (or if) it will scale up for large, com-
plex projects; he or she hasnt tried to integrate it with most of the other tools in the
environment.

4. Practitioner (ready to use Technology X on a real project) — a month is probably
required to explore the nuances of the tool and become sufficiently comfortable to
use the tool on a "real" project.

5. Journeyman (uses Technology X naturally on the job; complains bitterly if it is
taken away) — this usually takes 6-12 months, and if the tool really is a silver bullet,
the developer becomes an evangelist, doing his or her best to persuade everyone
that It's the most wonderful tool on earth.

6. Master (has internalized the details of Technology X; knows when to break the
rules) — usually two to three years, which also means that the developer has sur-
vived through two or three new product releases, has found all of the support
groups and discussion groups on the Internet, and knows all of the unlisted phone
numbers for the technical support gurus at the vendor's organization.

7. Expert (writes books, gives lectures at conferences, looks for ways to extend
Technology X into new galaxies) — Page-Jones was focusing on methodologies in
his paper, and it's not clear that this applies to tools and technology.

188 DEATH MARCH

6.4 SUMMARY

Does the gloomy discussion in this chapter mean that we should use no
tools at all? Are we supposed to abandon all technology and resort to
old-fashioned keypunch machines? Should we assume that technology
can never save us?

The rhetorical nature of these questions is intended to remind you
that common sense should prevail in all such discussions. When the stars
and planets align themselves just so, maybe technology will save us, at
least on one or two death march projects. And we should certainly take
advantage of as much advanced technology as we can, because it can le-
verage our intellectual efforts, and relieve us of time-consuming, error-
prone tedious tasks associated with software development.

In the best of all worlds, the software developers will have had a
chance to learn, experiment, and practice with high-powered tools in a
less-risky environment; indeed, in the best case, advanced tools have al-
ready been deployed throughout the organization, and are part of the
culture and infrastructure of the organization. And in this case, we
wouldn't need to have any discussion about tools and technology at all;
we would simply pick up our tools and go to work on the death march
project.

The reason for the discussion in this chapter—and the reason all of
this is relevant in most death march projects—is that the organization is
using mediocre tools, or someone believes that a completely new form of
technology, just announced breathlessly by a start-up vendor last week,
will somehow save the day. The former scenario is depressing, but all too
common; and the latter scenario is also common, for the simple reason
that technology advances quickly and relentlessly in our field.

If new technology could be introduced without any impact on our
software processes, and if it didn't require training and practice on the
part of the developers, then we would be faced with a simple cost-benefit
decision. And, since the natural instinct of many higher-level managers
is to assume that a problem can be eliminated by simply throwing money
at it, I find that there tends to be far more brand-new technology used on
death march projects than on normal projects. The irony, as I've tried to

TOOLS AND TECHNOLOGY 189

explain in this chapter, is that the new tool can be the straw that breaks
the camel's back; thus, project failure is blamed on the tool. As Sharon
Marsh Roberts put it [6]:

When the team is required to think clearly more than
60 hours per week, it's a bad time to invoke complex
logic. Anything that requires a new mode of effort or a
more sophisticated way of thinking is a problem.

Doing something new requires the flexibility to "get it
wrong" on the first iteration without becoming des-
perate.

So, use whatever tools make sense for your death march project, re-
gardless of whether the rest of the world thinks they are advanced or old-
fashioned. And remember that if you do use new tools, it's going to have
an impact on the people and processes within the death march project.
As Thoreau put it so eloquently 150 years ago:

Notes

But lo! men have become the tools of their tools.

Henry David Thoreau, Walden, "Economy" (1854).

1. When this book was being written in the summer of 1996, there were grave
concerns that exactly this phenomenon would prevent many U.S. government
agencies from finishing the biggest death march project of all time by the non-
negotiable deadline. I'm talking, of course, about the Year-2000 project.

2. Sometimes the politics can get pretty nasty here. During the past year, I've ob-
served a number of forlorn IBM employees using Lotus Freelance instead of
PowerPoint and Lotus 1-2-3 instead of Excel, because it wasn't worth the polit-
ical battles they would have faced otherwise. Similarly, I'm not sure I would
want to be part of a project team at Microsoft that decided, circa August 1996, to
use Netscape Navigator rather than Internet Explorer.

3. Ed,
Ch 6 comments follow -
1. If your team had only ONE kind of "optional" or "discretionary"
tool/technology to support them in a death march project, what
would it be? My assumption here is that every project has an
absolute bare-minimum of required things like compilers and
debuggers, but there's an awful lot that (a) the project team may

190 DEATH MARCH

not have immediately available, (b) senior management would
perceive the acquisition of such new technology as expensive, and
(c) one or more managers or kibitzers on the sidelines would say
"oh, you don't need THAT tool!".
 would say that a configuration management tool is a real "must

have. " There is going to be lots of confusion among the pieces of
the project and the manager and the team needs a way to establish
and track versions of the system as they move toward completion,
termination or whatever.
2 . How important are CASE tools for death march projects? In this
context, I mean what we used to call "upper-CASE" tools that
support analysis and design-level stuff; depending on how much
money you spend, they might also generate code, wash the dishes,
and provide various other useful services.
I find them very useful - at the same level as word processors . They
allow the team to communicate using a standard format. I've found
that inexpensive CASE tools work just fine.
3. How important are "visual" development environments in death
march projects? I don't want to be language-specific here, since
there are visual versions of most of the high-level programming
languages available today. But the issue here is using a "drag-
and-drop" kind of development tool for building programs, versus
the older style of text editors to type in lines of code, followed
by compile, link, test, etc.?
In the situations where 1 have seen these used, I've been
impressed.
They appear to remove a lot of the "housekeeping" that takes
programmer and analyst time . I have yet to lead a project that uses
these tools, but I'm hopeful.
4 . How important do you think "groupware" tools are? I don't want
to be too specific here, since everyone has a slightly different
definition — but. I'm thinking of tools similar to Lotus Notes
for organizing "threads" of discussions and fostering
collaboration, coordination, and communication. I would be
interested to know if anyone has used more exotic forms of
groupware; if you want to see examples, readMichael Schrage'sbook
"No More Teams! " . (And if you've never heard of the book, take a
look at my review of his book, which I' ve posted in the "articles"
section of my Web site at http://www.yourdon.com)
E-Mail is critical and document and code libraries are a "must, "
but the benefits of other groupware functionality might be harder
to identify. In a crunch-mode environment, face-to-face working
has a lot to recommend it.

TOOLS AND TECHNOLOGY 191

5 . Are there any tools , or technology-approach, that you consider
highly risky or dangerous for death-march projects? If you had to
advise a death march project manager to AVOID a particular tool or
technology, what would it be?
The standard rules apply here. You don' t pick a technology that is
inappropriate for the task at hand. Using DO and the Web as
building blocks for a telephone company's billing system might
sound sexy, but the nature of the job is batch processing and you
might be better off with COBOL.
Hope this helps,
--JB

4. Ed,
> 1. If your team had only ONE kind of "optional" or
"discretionary"
> tool/technology to support them in a death march project, what
> would it be?
I' d get a CASE tool which could enable requirements through to
module/object definition. Code generation is not IMHO a real
problem, but taking requirements through to low-level models is.
And yes, we still have those who think you can just sit down and
write an OLTP system in assembler.
Failing the CASE tool, then an integrated set of tools such as
Smartsuite or Office, so that we could come up with something
similar cheaply and quickly. And we need the spreadsheet.
HOWEVER. The best device is a large diagram pinned to the wall. It
might contain the (partiallycomplete) E/R diagrams for the system,
or the process flows, or whatever. But it gives people a focus for
discussing the design, and it costs next to nothing.
> 2. How important are CASE tools for death march projects?
Important, if introduced with appropriate training at the
beginning of the project. A disaster if not.
> 3. How important are "visual" development environments in
> death inarch projects?
I 'mbeginning to accept that the "visual" revolution is to do with
right-andleft-brainedness , andsinceprogrammersare supposed to
be left-brained (or is it right?) they would be quite happy with
command line tools. Analysts, however, and designers, need to be
able to visualise things, and if the tool gives the ability to do
that (some do, but the resultant diagrams simply don11 help) then
they're useful.
Tha wall chart (see above) does help, though.
>5. Are there any tools, or technology-approach, that you consider
> highly risky or dangerous for death march projects

192 DEATH MARCH

Most project management tools are, IMHO, a load of rubbish. PERT
is enough to find the critical path, but many tools insist that
you do full resource allocation before the project even starts. I
use a spreadsheet, but I'd love a copy of an old-fashioned PERT
diagrammer where I could add resources during the project (which
is when I find out what I'm getting) rather than months before.

--Doug

5. Meilir Page-Jones, "The Seven Stages in Software Engineering," American
Programmer, July-August 1990.

6. Ed,
» 1. If your team had only ONE kind of "optional" or
"discretionary" tool/technology to support them in a death march
project, what would it be? My as sumption here is that every project
has an absolute bare-minimum of required things like compilers and
debuggers, but there's an awful lot that (a) the project team may
not have immediately available, (b) senior management would
perceive the acquisition of such new technology as expensive, and
(c) one or more managers or kibitzers on the sidelines would say
"oh, you don't need THAT tool!".«

I'd choose Infornodeler or something similar. Inexpensive tool
which functions to do some elementary things . Feature it, for the
CASE-weary, as a drawing tool, so that we can communicate with the
users.

»2 . How important are CASE tools for death march projects? In this
context, I mean what we used to call "upper-CASE" tools that
support analysis and design-level stuff; depending on how much
money you spend, they might also generate code, wash the dishes,
and provide various other useful services.«

Pick one that supports high-level design and communications. If
it happens to also generate code, fine. If not, that's OK. Just
don't pick something that does the dishes, because it will be too
hard to learn and too easy to blame for design delays.

»3 . How important are "visual" development environments in death
march projects? I don't want to be language-specific here, since
there are visual versions of most of the high-level programming
languages available today. But the issue here is using a "drag-
and-drop" kind of development tool for building programs, versus
the older style of text editors to type in lines of code, followed
by compile, link, test, etc?«

If it works for the programming team, it' s important. If the team
is accustomed to text-edited COBOL code, who am I to complain?

TOOLS AND TECHNOLOGY 193

At this point there are plenty of experienced VB programmers, for
example.

»4. How important do you think "groupware" tools are? I don't want
to be too specific here, since everyone has a slightly different
definition -- but I 'm thinking of tools similar to Lotus Notes for
organizing "threads" of discussions and fostering collaboration,
coordination, and communication. I would be interested to know if
anyone has used more exotic forms of groupware; if you want to see
examples, read Michael Schrage's book "No More Teams! " . (And if
you've never heard of the book, take a look at my review of his
book, which I've posted in the "articles" section of my Web site
at http://www.yourdon.com)«

I'll go see your Web site and the review. "I'll be back."

»5 . Are there any tools, or technology-approach, that you consider
highly risky or dangerous for death march projects? If you had to
advise a death march project manager to AVOID a particular tool or
technology, what would it be? «

Pick one of the following, depending upon prior experience of the
team:

a. C or C++

b. Smalltalk

c. AI

d. any new full-lifecycle CASE tool

e. UNIX or any other operating system that's new for the team

When the team is required to think clearly more than 60 hours per
week, it's a bad time to invoke complex logic. Anything that
requires a new mode of effort or a more sophisticated way of
thinking is a problem.

Doing something new requires the flexibility to "get it wrong" on
the first iteration without becoming desperate.

--Sharon

Additional References

Michael Schrage, No More Teams! Mastering the Dynamics of Creative Collabora-
tion (New York: Doubleday-Dell Publishing Company, 1995).

Paul G. Bassett, Framing Software Reuse: Lessons from the Real World (Upper S
die River, NJ: Prentice Hall, 1996). ISBN 0-13-327859-X.

Culture is a sham if it is only a sort of Gothic front put on an iron
building—like Tower Bridge—or a classical front put on a steel frame—
like the Daily Telegraph building in Fleet Street. Culture, if it is to be a real
thing and a holy thing, must be the product of what we actually do for a
living—not something added, like sugar on a pill.

Eric Gill, Essays, "Education for What" (1948)

Throughout this book, I've perpetuated a contradiction which we now
need to confront. On the one hand, I've argued that death march projects
are qualitatively different from all of the other "normal" projects that take
place within a software development organization. On the other hand, I
suggested in Chapter 1 that the circumstances leading to death march
projects—schedules and budgets 50-100 percent more ambitious than
normal, functionality requests 50-100 percent more advanced than nor-
mal—occur more and frequently in today's organizations.

195

196 DEATH MARCH

Many developers and managers might ask whether it's rational to
plan on having death march projects. As John Boddie [1], author of
Crunch Mode, points out about the industry in which he has worked:

I spent years in the lottery business, where everything
is in crunch mode because that is the way that the in-
dustry grew up. If you don't want to work in this fash-
ion, you can't play in this sandbox. Developers in this
industry put up with it because they have tasted suc-
cess in short, high-intensity projects and have been
given considerable freedom to do things like take two
months off between projects. The teams consider
themselves to be elite and the companies in this busi-
ness treat them that way.

And, as Doug Scott suggests [2],

Management have different drivers. They know that
the risk of outsourcing their empires is higher now
than it's ever been, and want to deliver. They also
know that we take an awfully long time to deliver be-
cause there are all sorts of bureaucratic time-wasting
procedures in place. They think that, if they stress the
importance of this particular project over all others,
these procedures will be trimmed without them hav-
ing to do anything specific about it. They accept that
they can't put the best people on the job, and they ac-
cept that better technology might help if it weren't for
the long learning curve which prohibits the use of new
technology on this project, so they can't use it. Or al-
ternatively, they believe industry hype and think that
the new technology will magically be mature, error-
free, and instantly understandable to all concerned.

But, if death march projects are the norm, then should we even call
them "death march"? Doesn't it just become part of the overall corporate
culture? I'll begin by discussing why such a transformation might take
place within a rational software organization, and then move on to the
more significant question of: How can we change the culture of today's

DEATH MARCH AS A WAY OF LIFE 197

traditional organization so that it can effectively support death march
projects without making them seem like such an anomaly?

7.1 WHY WOULD DEATH MARCH
PROJECTS BECOMETHE NORM?

Let's begin by reviewing the likelihood of death march projects becom-
ing the norm. I've suggested throughout this book that there are at least
three reasons this could occur:

• The organization is in the midst of ongoing crises—this might be the
result of an unfortunate coincidence of several unexpected crises
occurring within a short period of time; but, it's more commonly
associated with organizations that are in serious trouble, desper-
ately trying to cope with a "sea of change" in the marketplace, or
with the technology that people are using. In most cases, such an
organization is in far too desperate a position to be able to step
back and reorganize itself to carry on all of its projects in a planned,
rational fashion that achieves the dramatic improvements associ-
ated with death march projects. The rare exception is when a "turn-
around" senior manager is brought in to lead the company out of
crisis; the new manager might adopt an entirely different way of
doing things.

• Management/'customers have adopted the approach as their standard
negotiating position—as noted in Chapters 1 and 2, this is often how
the first death march project begins; but if it works once, why not
do it again? If the marketing department, or the finance depart-
ment, or some other part of the organization is faced with the need
for a "permanent" reengineering to achieve a competitive level of
productivity and profitability, that might also include a permanent
decision to insist that all of the vendors and suppliers with whom it
interacts reengineer themselves in a similar way. From the perspec-
tive of these internal corporate departments, the IS/FT department
is just another "supplier" of goods and services. A variation of this
is the edict from senior management to the IS/IT department:

198 DEATH MARCH

"Unless you people radically improve your productivity on all your
projects, we're going to outsource the whole thing to India!"

• It's part of the company's "strategic advantage"—this appears to be the
case with organizations like EDS, and it's the explicit approach of
organizations like Cambridge Technology Partners. It makes sense
for a software consulting organization, where the performance of
software project teams is the business. But, we could easily imagine
the same thing in other"informarion-rich"businesses like banking,
insurance, and telecommunications—where the ability to deliver
new software-based "products"to the marketplace depends largely
on how quickly the software can be developed. To the extent that
this is true, I expect to see more and more organizations adopting
an overall death march culture.

Whether this makes sense for an organization is one thing; whether
it makes sense for the individual software developers and project manag-
ers is likely to be something else indeed. The organization's perspective is
obviously important, but I want to focus on the perspective of the indi-
vidual and project manager here; after all, I don't expect many CEOs and
marketing VPs to read this book.

The key question for the software developer and project manager is:
Having survived one death march project, would you be willing to do it
again? The answer to this question depends largely, as you might imag-
ine, on whether the first project succeeded. After all, if you've just fin-
ished a suicide- or ugly-style project, you're likely to be physically and
emotionally exhausted. Your ego and sense of self-worth have been
shattered, and your personal life may be in shambles. Who on earth
would want to do it again? Even the so-called kamikaze projects, where
you sacrificed your own personal needs for a glorious (but losing) corpo-
rate cause, must be recognized, at the end, as failures. You may feel that it
was a noble sacrifice, but unless you have the personality of a martyr, it's
not likely that you would volunteer to repeat the experience.

Note that the "ugly-style" project, as I described it in Chapter \, may
have succeeded; thus, senior management and the end users may be
thrilled. And the project manager may be thrilled too, especially if he or
she reaped a huge reward of some kind at the end of the project. If you're

DEATH MARCH AS A WAY OF LIFE 199

one of the surviving team members, you may or may not be thrilled with
the results; the fact that there's a lot of blood on the floor, and that nu-
merous lives and careers may have been wasted, might not bother you at
all. Indeed, it becomes part of the culture—part of the thrill is associated
with the fact that there is a lot of blood on the floor.

Obviously, the kind of project where the chances are greatest of find-
ing volunteers for a repeat performance is the mission impossible project:
the project that not only succeeded, but left everyone feeling really proud
of the miracle they performed. If there is time for a project post-mortem,
ifs crucial to ask at this point: "What made it possible for us to succeed?"
Was it only luck? Was it entirely due to the charisma of the project man-
ager, or the genius of the database designer, or the fact that the end user
and systems analyst fell madly in love and got married at the end of the
project? The underlying question is: Is there any rational reason to expect
that we could pull off such a stunt again?

It's important to ask these questions as early as possible, because the
organization is likely to repeat the experience whether or not the individ-
uals think it's a good idea. As noted above, in the extreme case, the orga-
nization does so because it must; some organizations take a long time to
die, and the last five to ten years might be nothing but an endless succes-
sion of death marches. Even in less extreme cases, the failure of one
death march project is not necessarily enough to make the organization
abandon its approach; as noted in previous chapters, the failure is often
blamed on the project manager or the silver bullet technology. "Next
time," the CEO vows, "we won't make those mistakes again; we'll have a
new project manager and a new silver bullet technology."

Obviously, if the first death march project succeeded, there's a much
higher chance that the end users and senior management will try to do it
again; but, this may be the point where the project team individuals decide
to say "Sayonara," form a conga line, and dance right out the door. There's
not much point using this action as a threat; management generally be-
lieves—rightly or wrongly—that fresh new volunteers can be obtained.
The best thing for the exhausted death march survivors to do is wish every-
one well, and go look for a calmer, saner existence somewhere else.

200 DEATH MARCH

7.2 ESTABLISHING A DEATH MARCH "CULTURE"

Let's assume that the organization has decided to change its culture and
begin carrying out all of its projects in a death march style. As noted
above, this might happen without any conscious decision, and it might
happen whether or not the individuals are willing to tolerate more than
a single death march project. But, let's assume that it's a conscious strate-
gy on the part of IS/IT management, or senior managers above the IS/IT
department. What are the consequences, and how can a typical organi-
zation bring about such a change?

The most important thing that must happen is the replacement of the
"normal" culture for developing software with the "radical" culture em-
bodied by the death march project. This change won't happen quickly or
easily, for much of the bureaucracy will argue strenuously for the contin-
uation of the older approaches. But, the savvy organization will acknowl-
edge that if the first death march project succeeds, the success will be
largely a matter of luck and stubbornness on the part of the team. If the
organization wants subsequent death march projects to succeed with any
predictability, it must change.

The changes will affect the tools and technologies, the processes and
methodologies, the management styles, and the planning and schedul-
ing strategies used by the IS/IT organization. It will involve issues like
these:

• What kind of people should the organization hire? Within the legal
and ethical constraints of non-discrimination policies, chances are
that the organization will be looking for younger, more energetic
people, and it may even show a preference for unmarried people,
and people with few outside interests. Young/ unmarried, anti-
social, workaholic techno-nerds are just what many organizations
need for their death march projects.

• What should prospective new employees be told about the organi-
zation? It seems to me not only unethical, but downright stupid, to
hide the fact that the organization intends to pursue a death march
strategy on its projects. Indeed, the organizations that do adopt
this approach are usually quite proud of it, just as organizations are

DEATH MARCH AS A WAY OF LIFE 201

proud of any other aspect of their culture. The organization may
not want to point out that only a small percentage of incoming
recruits will survive the first death march profect (just as colleges
often don't want to admit that they flunk out a large percentage of
the incoming freshman class), but it should point out that it expects
more than a 9-to-5 workday.
What impact should death march projects have on formal career
advance policies—e.g., promotions, raises, and bonuses? It's rela-
tively common in law firms and Big-6 accounting firms, for exam-
ple, to tell incoming recruits that they should expect a period of
seven to nine years to elapse before they become partners; there
may be intermediate steps of "manager" and"senior manager," but
nobody has any illusions that the long hours and hard work are
going to disappear after the first year or two.
What impact should death march projects have on the style of
management? Should managers be expected to "burn out" their
team members and discard them at the beginning of their project?
Or, does the project manager have the added responsibility of
making the team members feel good about themselves, as welt as
delivering a successful system to the end users? Note that if a ratio-
nal organization decides to adopt a death march culture (as
opposed to having a series of such projects forced upon it), it pre-
sumably wants those projects to succeed; in the vocabulary of
Chapter 1, this means that the projects will be"mission impossible"
or"ugly"as a matter of conscious, corporate choice. But, if things
are going to be ugly, and if people are going to be burned up and
thrown away at the end of a project, why not use consultants?
Sharon Marsh Roberts puts it this way [3]:

I believe the organization needs to find ways of renew-
ing resources. One alternative is to use many consult-
ants, who are expected to buy into the "earn lots of
money and get out of here" workstyle. Another is to
have a "safe haven" (maintenance assignments)
where employees can be transferred between death
marches.

•

•

202 DEATH MARCH

• What kinds of tools should the organization equip itself with if
even/ project is going to be a death march project? If it appears that
a major factor in the success of the first death march project was a
reusable class library of objects, or a RAD-oriented visual program-
ming tool, then perhaps every project should have it.

• What kind of infrastructure does the organization need to support
death march projects? This might involve company-wide e-mail or
a more elaborate groupware infrastructure based on Lotus Notes.
But, it could also involve significant changes in the human infra-
structure—i.e., the network of administrators and support staff that
perhaps needs to be augmented, and the layers of bureaucracy that
need to be pruned.

• What kind of processes are appropriate tor a death march culture?
Triage, formal vs. informal processes, and many of the other issues
discussed in Chapter 5 need to be addressed at the organizational
level, so that each team will get the kind of support that it needs
when it attempts to implement and practice death march processes.
Note also that processes are subtly influenced by the length of a
project; most organizations find that death march projects are more
likely to succeed if they're kept short. As Bill Hamaker puts it [4],

Do it as lots of small death marches rather than a few
big ones. Concentrate on creating an organization that
can learn from the systems that resulted from the
death marches. In particular have adequate "non-
project" time for staff to evaluate what's good and bad
about the systems, maybe use this time as a way for
staff to rest between death marches.

7.3 DEATH MARCH TRAINING

In Chapters 6 and 7, 1 discussed the issue of training for a death march
project team being exposed to new processes and tools. But, the need for
such training changes if death march projects become part of the corpo-
rate culture. In these cases, the appropriate processes and tools should be
part of the "standard" approach, which eliminates the need for introduc-
ing them as something new and radical at the beginning of each project.

DEATH MARCH AS A WAY OF LIFE 203

Realistically, though, there will be a transition period while the orga-
nization shifts its mode of operation from the older form of projects to the
newer style. But even during the transition period, the ideal situation
would be to shift the required training out of the death march project en-
vironment and into the normal environment; indeed, such training
should be considered part of the transition process. With any luck, this
will enable the training to be carried out in a more orderly basis, without
the time pressures that are normally a factor when the training occurs in
the midst of a death march project.

Appropriate training must also be provided for new people hired into
the organization. Novices—e.g., new college graduates who have never
had a full-time software development job—don't have to be told that the
new approach is different from the old approach; indeed, they don't even
have to hear the term "death march." But they do need to be given the
appropriate training in the methods, processes, and tools that the organi-
zation has found effective in death march projects. This is likely to be
quite different from the older-style processes and tools that such recruits
previously had to endure. (The irony is that as soon as the former recruits
moved into their first project, they were often told by their project man-
ager to ignore "all that classroom stuff" and adopt a more pragmatic atti-
tude toward software development.) New recruits need to understand
that the death march processes and tools are being adopted as a matter of
proactive choice, rather than reactive desperation.

7.4 THE CONCEPT OF "WAR GAMES"

While these forms of training sound reasonable and rational, they're ig-
nored in many smaller organizations; on-the-job training takes its place,
and developers are expected to leam the processes and tools through
some form of osmosis. It's even worse for managers—as my friend Tim
Lister has remarked, the only training that most software project manag-
ers receive is the two words, "Good luck!"

Obviously, textbooks and classroom training on project management
techniques, processes, and tools are important and helpful. But, many or-
ganizations feel that there's no substitute for the "real thing"—indeed,
they consciously ignore classroom training, on the theory that once

204 DEATH MARCH

you've gone through a real death march project, you're a veteran in ways
that you could never become through classroom exercises.

Rather than arguing whether the classroom is preferable to the "bat-
tlefield" of a death march project, I believe that organizations consider a
compromise: a death march simulator. The analogy with "flight simula-
tors" is more appropriate than you might think at first: Airline pilots use
their simulators not only to practice normal takeoffs and landings, but for
a wide variety of emergency situations they could not afford to carry out
in a real airplane. And, flight simulators have the wonderful capability of
letting you fly your airplane head-on into a mountain without killing
anyone. Why not let a project manager, together with all of the members
of the project team, fly their project into the equivalent of a mountain, so
they can experience the problems without killing anyone? And, why not
require both developers and managers to make an annual visit to the
death march project simulator, just as airline pilots do?

Skeptics might argue that such a simulator would not replicate the
pressure and tension that one experiences in a real project; airline pilots
who have used their simulators to practice emergency situations would
strenuously disagree. But, if we really need to simulate stress in a soft-
ware project, we can borrow a familiar tactic from the military: war
games. As DeMarco and Lister explain in their Peopleware book [5],

War games help you to evaluate your relative
strengths and weaknesses and help the organization
to observe its global strengths and weaknesses.

For the purpose of stimulative creative disorder, the
most effective form of war game calls for participants
to take part in teams.

Thus, a death march war game could consist of giving several differ-
ent project teams the same "project scenario"—the same requirements,
the same (compressed) amount of time, the same resources to work with.
Or, if the death march culture still hasn't been standardized and formal-
ized within the organization, tell each team that it can use whatever tools
and processes it wants to—anything they can beg, borrow, or steal is fair
game. The Australian Computer Society has been hosting such a war

DEATH MARCH AS A WAY OF LIFE 205

game at its annual conference since 1994, and several local consulting or-
ganizations now use it as part of their own training process.

To conduct a war game, or any other kind of "flight simulator" for
death march projects, one needs to have a simulation model that can
mimic the cause-and-effect consequences of various technical and man-
agerial decisions in a project. I discussed this concept at length in my Rise
and Resurrection of the American Programmer, and Fve provided a list of
references at the end of this chapter; of particular importance is Tarek
Abdel-Hamid and Stuart E. Madnick's Software Project Dynamics: An Inte-
grated Approach [6], which provides a complete, detailed simulation
model of a medium-sized software project.

A simulation model can be implemented in virtually any program-
ming language, but there are specialized languages and tools for such
purposes. Of these, SIMSCRIPT, DYNAMO, and GPSS are perhaps the
best known; the model described by Abdel-Hamid and Madniek is im-
plemented in DYNAMO (and the entire program listing is published in
the book's appendix). More recently, a number of "visual" modeling
tools have appeared, most of them modestly priced. Of the commercial
tools, the ones listed below are my favorites.

iThink (Macintosh, Windows)
High Performance Systems Inc., Hanover, NH
Phone: 603-643-9636, Fax: 603-643-9502

VenSim (Windows)
Ventana Systems, Belmont, MA

Phone: 617-489-5234, Fax: 617-489-5316

Professional DYNAMO (Windows)
Pugh-Robert Associates, Cambridge, MA
Phone: 617-864-8880, Fax: 617-864-8884

Extend (Macintosh and Windows)
Imagine That, Inc., San Jose, CA
Phone: 408-365-0305, Fax: 408-629-1251

Even with elegant tools and a wealth of published literature, there's
no way of escaping the fact that it requires a serious investment and com-
mitment to build a model that reflects a particular company's environ-
ment, and allows management to demonstrate the particular death
march scenarios they feel important. Having been involved in several of
these simulator projects and war game scenarios since the early 1990s,
my experience is that it typically requires at least a few person-months of
effort to have a realistic and well-tuned model; and as another illustra-
tion, it's interesting to note that the model published in Software Project
Dynamics: An Integrated Approach [7] was Abdel-Hamid's Ph.D. thesis.

This means that such an effort is clearly beyond the ability of an indi-j J J

vidual project manager to develop as part of the training experience for a
single death march project. It's clearly a corporate, strategic invest-
ment—and it may be more than a small, ten-person software company
can afford to think about. But, for software organizations with hundreds,
or even thousands, of people, it's a small investment indeed. Keep in
mind the context in which all of this occurs: Management is looking for
ways of institutionalizing processes and technology that will enable
projects to confidently promise schedules, budgets, and deliverable func-
tionality two or three times more ambitious than "normal" projects have
experienced in the same environment. In planning for such a radical
change, management is often prepared to spend vast sums of money—
literally millions of dollars in some cases—to equip the developers with
new workstations, visual programming tools, and object-oriented meth-
odologies. To complain about the cost of a six-person-month effort to
build a simulator is ludicrous; and to deny their project teams the experi-
ence of simulating a death march project before they risk millions of dol-
lars on a real death march project is pig-headed.

Alas, senior management typically doesn't see it this way. They gen-
erally resent the time, effort, and cost of any training, and the cost and ef-
fort associated with death march simulators is seen as even less
justifiable. This is one of the key reasons that a death march culture will
never be successfully implemented in most large organizations.

vm MARCH AS A WAY OF LIFE 207

7.5 SUMMARY

As noted throughout this book, death march projects have become inev-
itable in today's competitive and chaotic business environment. A few
organizations have acknowledged this situation, and have begun plan-
ning for it in a rational manner. However, the history of the software in-
dustry for the past 40 years suggests that most of our organizations don't
learn much from their past experiences, and are likely to regard each new
death march project as a unique and novel experience. Even the organi-
zations that realize death march projects are no longer isolated accidents
will have a difficult time, for the established bureaucracy will continue to
defend old standards, procedures, methodologies, and tools regardless of
how inappropriate they may be.

One cheerful exception to this is the entrepreneurial start-up organi-
zation. By definition, such organizations have no prior culture to replace,
and they are likely to regard death march projects as perfectly normal—
after all, it's part of the mythos of start-up companies that everyone
works insane hours while the company takes insane risks to compete
against larger, established companies. And, if the fledgling company
comes to the conclusion that its success is precisely because of this behav-
ior, then it will probably try to institutionalize the behavior.

Of course, I'm speaking in generalities here, and there are lots of rea-
sons why such an approach won't succeed. It's interesting, for example,
that veteran software developers often bring much of their culture and
work habits with them when they leave a large bureaucracy to start a new
software venture. On the other hand, it seems just as common today as it
was in the early days of my career for the younger generation of software
developers to plunge into new projects on a work schedule that regards
18-hour days as "resting up" while the team gets ready for the real work.
But, among the many things that have changed dramatically is the overall
pace of work, which the folks at Netscape and Microsoft and .numerous
other organizations refer to simply as "Internet time." It's a concept that
simply didn't exist for previous generations of software developers, and
it's far more likely to lead to death march projects.

Regardless of whether the industry adopts death march projects as
the norm, and regardless of whether your company manages such

208 DEATH MARCH

projects in a rational fashion, the fact remains that death march projects
are carried out by individuals. I don't have a great deal of hope for the se-
nior management and bureaucratic committees in most software organi-
zations, but I do have a great deal of concern for the individuals who
work the long nights and weekends on projects that are often doomed
from the beginning. Bringing a death march project to a successful con-
clusion is obviously important, and I hope this book has provided some
practical advice for doing just that; but surviving them is even more im-
portant! In the best of all worlds, our death march projects should deliver
glorious results to the end user with a schedule and budget that will daz-
zle senior management, and we should do all of this with our health, our
wits, our family, and our sense of humor firmly intact.

As E.B. White put it, perhaps in the midst of one of his own death
march projects:

I wake up each morning determined to change the
World ... and also to have one hell of a good time.

Sometimes that makes planning the day a little difficult.

E.B. White
Notes
1. Ed,

Ch 7 query comments follow:
1. Does the concept make sense? Is there any rational reason why an
organization would choose to make ALL of its software development
projects death marches? Is there any rational reason why software
developers would continue working in such an environment?
Ed, I spent years in the lottery business, where everything is in
crunch mode because that is the way that the industry grew up. If
you don't want to work in this fashion, you can't play in this
sandbox. Developers in this industry put up with it because they
have tasted success in short, high-intensityprojects andhavebeen
given considerable freedom to do things like take two months off
between projects. The teams consider themselves to be elite and
the companies in this business treat them that way.
2 . If it IS rational, how should the organization adapt itself to
succeed?I'mparticularlyinterestedin"strategic"decisions that
you could get the VP of Software, or the MIS Director, to support
and pay for. Should all programmers be fitted with bulletproof
vests? Should the organization scrap all of its existing tools and

DEATH MARCH AS A WAY OF LIFE 209

buy a completely new set of "death march programming tools" for
everyone on the staff?
Since the staffs are reasonably small, there is seldom a problem
putting a lot of capital into each member of the team. A six-person
team may have exclusive use of a dual-system configuration for
testing and a third system for development. Team members will have
a lot of power on their desks and there will seldom be a problem
in finding money to try out something new that sounds promising.
If you are a VP and know you have a twenty-person team to deal
with, there are a lot of amenities you can consider that wouldmake
no sense if you had to direct 400 people.
3. The problem with most death march projects that I've seen is
that nobody -- including the pro ject manager ! -- has any previous
experience in such things . If it ' s going to be a " standard" way of
organ! zing and carry ing out projects within the organization, then
what about the idea of a " flight simulator" (just like the airlines
do for their pilots) for training fledgling death march project
managers? I've run such things on an ad hoc basis in a couple of
organizations, and I know that there are tools available (e.g. ,
the iThink implement at ion of TarekAbdel-Hamid' s model of software
projects) . Has anyone seen this on a sustained basis, as part of
standard corporate policy?
I haven ' t seen anything along the lines you mention . Death marches
are sort of like a fraternity. You pledge and then you go through
your initiation. Eventually, you may be named as Rush chairman and
assigned to go get new members.
4. If you were a consultant, and you had 15 minutes to advise the
VP of Software about what to do in order to make death march
projects succeed on an on-going basis , what is the MOST important
thing you would advise him/her to do?
Concentrate on getting the right people and finding ways to keep
them sane.
5. Similarly, what' s themost important thing you would advise him/
her NOT to do?
Call in a nationally recognized consult ing firm to re-engineer the
software development process.
--JB

2. Ed,
Having been involved in death marches many times previously, and
being faced with the start of a large project right now, I' d be
really interested in what you find in Chapter 7.
> "death march projects as a way of life".
> 1. Does the concept make sense?

210 DEATH MARCH

It has to, because it' s pandemic (as you suggest). 1 think you've
got a lot of the reasons from earlier threads.
Most of our estimates, we know, are only very approximate. I've
been in the game a long time, and I know I won' t get to within 50%
of the real-time. But if there's time left over at the end of the
project, it gets consumed in testing. So you know, within your
bones, that time can be cut at the expense of quality. If the
quality suffers, then they deserve it because they asked for a
truncated job, so there's a blameless way of agreeing to a tight
schedule.
Management have different drivers. They know that the risk of
outsourcing their empires is higher now than it's ever been, and
want to deliver. They also know that we take an awfully long time
todeliverbecause thereareallsorts of bureaucratic time-wasting
procedures in place . They think that, if they stress the importance
of this particular project overall others, these procedures will
be trimmed without them having to do anything specific about it.
They accept that they can't put the best people on the job, and
they accept that better technology might help if it weren't for
the long learning curve which prohibits the use of new technology
on this project, so they can't use it. Or alternatively, they
believe industry hype and think that the new technology will
magically be mature, error-free, and instantly understandable to
all concerned.
So the next project will be better, and it' 11 be done quicker, and
i t ' 11 be done more cheaply. So you can pass that wonderful message
back to the business - quicker and cheaper, and less to maintain.
Who could object to that?
We are exactly in that situation. The guy who wants us to put it
all on PCs and do away with the mainframe is the guy who's just
come of f a PC-based project which signally failed to deliver. But
he knows what the problems are now (!)
>2. If it IS rational, how should the organization adapt itself to
> succeed?

Forme, it's small systems and small teams . Much architectural work
up-front to split things right down to under 1000FP. But I can't
tell you whether or not it works for me, because we haven't done
it yet.
More later
Doug

3. Ed,
» 1. Does the concept make sense? Is there any rational reason
why an organization would choose to make ALL of its software

DEATH MARCH AS A WAY OF LIFE 211

development projects death marches? Is there any rational reason
why software developers would continue working in such an
environment ?«
Perhaps. Perhaps the environment does not allow for consensus-
building on a timely basis. By the time a business decision is
reached, the system must be built. By the time a design is built
to accommodate the business process, it's time to deliver the
system that supports the process.
»2 . If it IS rational, how should the organization adapt itself
to succeed? I 'mparticularly interested in "strategic" decisions
that you could get the VP of Software, or the MIS Director, to
support and pay for.«
I believe the organization needs to find ways of renewing
resources. One alternative is to use many consultants, who are
expected to buy into the "earn lots of money and get out of here"
workstyle. Another is to have a "safe haven" (maintenance
assignments) where employees can be transferred between death
marches.
» Should all programmers be fitted with bulletproof vests? Should
the organization scrap all of its existing tools and buy a
completely new set of "deathmarch programming tools" for everyone
on the staff?«
No weapons should be allowed in such environments . Clowns should
be on site to deliver the joke of the day. Folks need to have ways
of reducing frustration without creating more frustration for
others.
And learning new tools is hardly apropos.
»??3. The problem with most death march projects that I've seen
is that nobody -- including the project manager! -- has any
previous experience in such things. If it's going to be a
"standard" way of organizing and carrying out projects within the
organization, then what about the idea of a "flight simulator"
(just like the air lines do for their pilots) for training fledgling
death inarch project managers? I 've run such things on an ad hoc
basis in a couple of organizations, and I know that there are tools
available (-e.g,, the iThink implementation of TarekAbdel-Hamid's
model of software projects) . Has anyone seen this on a sustained
basis, as part of standard corporate policy?«
This is an interesting thought. However, I suspect that inmost
of the death inarches I've seen (or observed from a distance) are
a core of folks who are always asked to work with the project when
it becomes most critical. Such folks never have been asked if this
is the right way to proceed. Such folks have a tendency to tell

212 DEATH MARCH

theirpeers, and perhaps even their bosses , howmisspent the effort
is.
I know who those folks were in a project in which my husband was
involved. I know who was always asked to "help" at critical
moments when I was in a corporate job. I suspect that I 've worked
with some of the folks who filled that role on some consulting
assignments.
»4. If you were a consultant, and you had 15 minutes to advise
the VP of Software about what to do in order to make death march
projects succeed on an on-going basis, what is the MOST important
thing you would advise him/her to do?«
Build the teams and nurture the staff relationships. These folks
are required to grind away at the projects for most of their
working days . They are the ones who will either cooperate to make
a success or to make a failure.
»5 . Similarly, what' s the most important thing you would advise
him/her NOT to do?«
Don't lose touch with the users and their requirements. They,
beyond all else, will determine the ultimate outcome.
Sharon

4. Ed,
» 1. Does the concept make sense? Is there any rational reason
why an organization would choose to make ALL of its software
development projects death marches? Is there any rational reason
why software developers would continue working in such an
environment? «
I doubt it. The only possible rational reason I can think of is
that the organization is not capable of controlling the IS group
in any other way.
» 4. If you were a consultant, and you had 15 minutes to advise
the VP of Software about what to do in order to make death march
projects succeed on an on-going basis, what is the MOST important
thing you would advise him/her to do? «
Do it as lots of small death marches rather than a few big ones.
Concentrate on creating an organization that can learn from the
systems that resulted from the death marches . In particular have
adequate "non-project* time for staff to evaluate what' s good and
bad about the systems, maybe use this time as a way for staff to
rest between death marches.
--Bill

5. Tom DeMarco and Tim Lister, Peopleware (New York: Dorset House, 1987),
page 162.

DEATH MARCH AS A WAY OF LIFE 213

6. Tarek Abdel-Hamid and Stuart E. Madnick, Software Project Dynamics: An In-
tegrated Approach (Englewood Cliffs, NJ: Prentice-Hall, 199-1).

7. See Note 6.

Additional References

Tarek Abdel-Hainid, "Organizational Learning: the key to software manage-
ment Innovation," American Programmer, June 1991.

Tarek Abdel-Hamid and Stuart E. Madnick, "Impact of Schedule Estimation on
Software Project Behavior," IEEE Software, May 1986.

Tarek Abdel-Hamid and S. E. Madnick, "Lessons Learned from Modeling the dy-
namics of software project management," Comm. of the ACM (December 1989).

Tarek Abdel-Hamid, "Thinking in Circles," American Programmer, May 1993.

Rembert Aranda, Thomas Fiddaman, and Rogelio Oliva, "Quality Microworlds:
modeling the impact of quality initiatives over the software product life cycle,"
American Programmer, May 1993.

Karim J. Chichakly, "The Bifocal Vantage Point: Managing software projects
from a systems thinking perspective," American Programmer, May 1993.

Kenneth G. Cooper and Thomas W. Mullen, "Swords and Plowshares: the re-
work cycles of defense and commercial software development projects," Ameri-
can Programmer, May 1993.

Ernst W. Diehl, "The Analytical Lens: Strategy-support software to enhance ex-
ecutive dialog and debate," American Programmer, May 1993.

Jay Forrester, Industrial Dynamics (Cambridge, MA: MFT Press, 1961).

Chi Y. Lin, "Walking on Battlefields: tools for strategic software management,"
American Programmer, May 1993.

G.P. Richardson and G.L. Pugh III, Introduction to Systems Dynamics Modeling
with Dynamo (Cambridge, MA: MIT Press, 1981).

P.M. Senge, The Fifth Discipline: The Art and Practice of the Learning Organization
(New York: Doubleday, 1990).

Brad Smith, Nghia Nguyen, and Richard Vidale, "Death of a Software Manager:
how to avoid career suicide though dynamic software process modeling," Amer-
ican Programmer, May 1993.

Abdel-Hamid, Tarek 76, 96, 205, 213
Adams, Scott 7, 39, 70
Airlie Council 152,159
Aranda, Rembert 213
Australian Computer Society 204

B
Bach, James 149,170
Bassett, Paul 184,193
Beckett, Samuel xii
Benting, Steve 22
Big-6 accounting firms 14
Binder, Robert 119
Boddie,John6,39, 77,93,94,98,112,126,

166,180,196
Boehm, Barry 76, 96
Boeing 777 141
Bonaparte, Napoleon 99

breathalyzer test 155
Brooks, Fred 76, 78, 96
Byron, Lord 73

Cambridge Technology Partners 198
Charette,Robl61,171,173
CHECKPOINT 75,181
Chichakly,KarimJ.213
Chrissis, Mary Beth 173
Christians, Al 24
"City Slickers" 43
clique control 119
Cohen, Rich 129
Cohen, Susan G. 129
Comaford, Christine 152
Constantine, Larry 125,129
Cooper, Kenneth G. 213
corporate insanity 2

215

