
University of Oslo
Department of Informatics

Estimating
Object-Oriented
Software Projects
with Use Cases

Kirsten Ribu

Master of Science
Thesis

7th November 2001

ii

Abstract

In object-oriented analysis, use case models describe the functional re-
quirements of a future software system. Sizing the system can be done
by measuring the size or complexity of the use cases in the use case model.
The size can then serve as input to a cost estimation method or model, in
order to compute an early estimate of cost and effort.

Estimating software with use cases is still in the early stages. This thesis
describes a software sizing and cost estimation method based on use cases,
called the ’Use Case Points Method’. The method was created several years
ago, but is not well known. One of the reasons may be that the method
is best used with well-written use cases at a suitable level of functional
detail. Unfortunately, use case writing is not standardized, so there are
many different writing styles. This thesis describes how it is possible to
apply the use case points method for estimating object-oriented software,
even if the use cases are not written out in full. The work also shows how
use cases can be sized in alternative ways, and how to best write use cases
for estimation purposes. An extension of the method providing simpler
counting rules is proposed.

Two case studies have been conducted in a major software company,
and several student’s projects have been studied in order to investigate
the general usefulness of the method and its extension. The results have
been compared to results obtained earlier using the method in a different
company. The investigations show that the use case points method works
well for different types of software.

Data from the various projects have also been used as input to two
commercial cost estimation tools that attempt to estimate object-oriented
projects with use cases. The goal was to select a cost estimation method
or tool for a specific software company. The findings indicate that there is
no obvious gain in investing in expensive commercial tools for estimating
object-oriented software.

iii

iv

Acknowledgements

This thesis was written for my Master of Science Degree at the Department
of Informatics, the University of Oslo.

I would like to thank my advisors Bente Anda and Dag Sjøberg for their
support and co-operation, with special thanks to Bente who let me use her
research work for some of the investigations. I would also like to thank
everybody who contributed to this work by sharing their experience and
ideas with me: the participants on the various projects, fellow student
Kristin Skoglund for practical help, and Johan Skutle for his interest and
co-operation.

I want to thank my children Teresa, Erika and Patrick for their patience
and good-will during the last hectic weeks, and my special friend Yngve
Lindsjørn for his support all the way.

Oslo November 2001

Kirsten Ribu

v

vi

Contents

1 Introduction 1
1.1 The Problem of Object-Oriented Software Estimation 2
1.2 Problem Specification and Delimitation 3
1.3 Contribution . 4
1.4 Thesis Structure . 5

2 Cost Estimation of Software Projects 7
2.1 Software Size and Cost Estimation 7

2.1.1 Bottom-up and Top-down Estimation 7
2.1.2 Expert Opinion . 8
2.1.3 Analogy . 8
2.1.4 Cost Models . 8

2.2 Function Point Methods . 9
2.2.1 Traditional Function Point Analysis 9
2.2.2 MKII Function Point Analysis 10

2.3 The Cost Estimation Tools . 11
2.3.1 Optimize . 11
2.3.2 Enterprise Architect . 14

3 Use Cases and Use Case Estimation 15
3.1 Use Cases . 15

3.1.1 The History of the Use Case 15
3.1.2 Actors and Goals . 16
3.1.3 The Graphical Use Case Model 16
3.1.4 Scenarios and Relationships 16
3.1.5 Generalisation between Actors 18

3.2 The Use Case Points Method . 20
3.2.1 Classifying Actors and Use Cases 20
3.2.2 Technical and Environmental Factors 21
3.2.3 Problems With Use Case Counts 21

3.3 Producing Estimates Based on Use Case Points 23
3.4 Writing Use Cases . 23

3.4.1 The Textual Use Case Description 23
3.4.2 Structuring the Use Cases 25
3.4.3 Counting Extending and Included Use Cases 26

3.5 Related Work . 27
3.5.1 Mapping Use Cases into Function Point Analysis 27
3.5.2 Use Case Estimation and Lines of Code 27

vii

viii CONTENTS

3.5.3 Use Cases and Function Points 28
3.5.4 The COSMIC-FFP Approach 28
3.5.5 Experience from Industry 1 28
3.5.6 Experience from Industry 2 29

3.6 The Unified Modeling Language . 29
3.6.1 Using Sequence Diagrams to Assign Complexity 32

4 Research Methods 35
4.1 Preliminary work . 35
4.2 Case Studies . 35

4.2.1 Feature Analysis . 36
4.3 Interviews . 37

4.3.1 The Case Studies . 37
4.3.2 The Students’ Projects . 38

4.4 Analysis . 39

5 Industrial Case Studies 41
5.1 Background . 41

5.1.1 Information Meetings . 42
5.2 Case Study A . 42

5.2.1 Context . 42
5.2.2 Data Collection . 43
5.2.3 Setting the Values for the Environmental Factors 46
5.2.4 The Estimates . 46
5.2.5 Estimate Produced with the Use Case Points Method . . 48
5.2.6 Omitting the Technical Complexity Factor 48
5.2.7 Estimate produced by ’Optimize: 49
5.2.8 Estimate Produced by ’Enterprise Architect’ 49
5.2.9 Comparing the Estimates 49

5.3 Case Study B . 50
5.3.1 Context . 50
5.3.2 Data Collection . 51
5.3.3 Input to the Use Case Points Method and the Tools . . . 54
5.3.4 Estimates Produced with the Use Case Points Method . . 55
5.3.5 Assigning Actor Complexity 55
5.3.6 Assigning Use Case Complexity 55
5.3.7 Computing the Estimates 56
5.3.8 Subsystem 1 . 56
5.3.9 Subsystem 2 . 58
5.3.10 Subsystem 3 . 59
5.3.11 Subsystem 4 . 62
5.3.12 Estimation Results . 63
5.3.13 Estimate produced by ’Optimize: 64
5.3.14 Estimate produced by ’Enterprise Architect’ 64
5.3.15 Comparing the Estimates 65

5.4 Threats to Validity . 65
5.5 Summary . 66

CONTENTS ix

6 A Study of Students’ Projects 69
6.1 Background . 69

6.1.1 Context . 70
6.1.2 Data collection . 71

6.2 The Use Case Points Method - First Attempt 72
6.2.1 Editing the Use Cases . 75
6.2.2 A Use Case Example . 76

6.3 The Use Case Points Method - Second Attempt 77
6.4 Estimates Produced by ’Optimize’ 78
6.5 Threats to Validity . 80
6.6 Summary . 81

6.6.1 Establishing the Appropriate Level of Use Case Detail . . 81
6.6.2 Estimates versus Actual Effort 81
6.6.3 Omitting the Technical Factors 82
6.6.4 Comparing Estimates produced by ’Optimize’ and the

Use Case Points Method . 82

7 Evaluating the Results of the Investigations 83
7.1 The Goals of the Investigations . 83
7.2 Estimation Accuracy . 84

7.2.1 Threats to Validity . 87
7.3 Discarding the Technical Complexity Factor 88

7.3.1 Estimation Results Obtained without the Technical Com-
plexity Factors . 89

7.3.2 Omitting the Environmental Factors 90
7.4 Assigning Values to the Environmental Factors 90

7.4.1 General Rules for The Adjustment Factors 92
7.4.2 Special Rules for The Environmental Factors 93

7.5 Writing Use Cases for Estimation Purposes 95
7.6 Verifying the Appropriate Level of Use Case Detail 97
7.7 A Word about Quick Sizing with Use Cases 100
7.8 Summary . 101

8 Evaluation of Method and Tools 103
8.1 Determining the Features . 103
8.2 Evaluation Profiles . 104

8.2.1 The Learnability Feature Sets 105
8.2.2 The Usability Feature Sets 107
8.2.3 The Comparability Feature Sets 109

8.3 Evaluation . 111

9 An Extension of the Use Case Points Method 113
9.1 Alternative Counting Rules . 113

9.1.1 Omitting the Technical Complexity Factor 113
9.1.2 Alternative Approaches to Assigning Complexity 113
9.1.3 Converting Use Case Points to Staff Hours 114

9.2 Guidelines for Computing Estimates 115

x CONTENTS

10 Conclusions and Future Work 117
10.1 Conclusions . 117

10.1.1 The General Usefulness of the Use Case Points Method . 117
10.1.2 Omitting the Technical Complexity Factor 118
10.1.3 Writing Use Cases for Estimation Purposes 118
10.1.4 Specification of Environmental Factors 119
10.1.5 Evaluation of the Method and Tools 119

10.2 Future Work . 120

A Use Case Templates 121

B Regression-based Cost Models 125

C Software Measurement 127
C.1 Measurement and Measurement Theory 127
C.2 Software Metrics . 128
C.3 Measurement Scales . 128

Bibliography 131

List of Figures

2.1 A business concept model . 13

3.1 A graphical use case model . 17
3.2 The include relationship . 18
3.3 The extend relationship . 19
3.4 Generalisation between actors . 19
3.5 A state diagram . 30
3.6 An activity diagram . 31
3.7 A class diagram . 32
3.8 A sequence diagram . 33

5.1 Sequence diagram for ’Update Order’ Use case 61

7.1 SRE distributions for the use case points method 87
7.2 SRE distributions for Optimize . 88

xi

xii LIST OF FIGURES

List of Tables

3.1 Technical Complexity Factors . 22
3.2 Environmental Factors . 22

5.1 Estimates of the 2 Phases in Project A 43
5.2 Breakdown into Activities of Project A 44
5.3 Evaluation of the Technical Factors in Project A 45
5.4 Evaluation of the Environmental Factors in Project A 47
5.5 Technical Factors in Project A . 47
5.6 Environmental Factors in Project A 47
5.7 All estimates for Project A . 48
5.8 Evaluation of the Technical Factors in Project B 52
5.9 Evaluation of the Environmental Factors in Project B 53
5.10 Technical Complexity Factors in Project B 54
5.11 Environmental Factors in Project B 55
5.12 Estimates made with the use case points method in Project B . 56
5.13 Actors and their complexity in Project B 63
5.14 Use cases and their complexity in Project B 64
5.15 Estimates produced by ’Optimize’ 64
5.16 Estimates computed for Project B 65

6.1 Technical Complexity Factors assigned project ’Questionaire’-
’Q’. 72

6.2 Technical Complexity Factors assigned project ’Shift’- ’S’ 73
6.3 Environmental Factors assigned to students’ projects 73
6.4 Number of actors and their complexity, first attempt 74
6.5 Number of use cases and their complexity, first attempt 74
6.6 Estimates made with the use case points method, first attempt 75
6.7 Revised number of actors and their complexity, second at-

tempt . 78
6.8 Revised number of use cases and their complexity, second at-

tempt . 78
6.9 Revised estimates made with the use casepoints method, second

attempt . 79
6.10 First estimates obtained in the tool ’Optimize’ 79
6.11 New estimates computed by ’Optimize’ 80

7.1 Estimates computed for Project A 84
7.2 Estimates of the subsystems in Project B 84
7.3 Symmetric Relative Error for Projects A and B 85

xiii

xiv LIST OF TABLES

7.4 Symmetric Relative Error for the subsystems in Project B 86
7.5 Estimates made with Karner’s method of students’ projects . . 86
7.6 Symmetric Relative Error (SRE) for the students’ projects 87
7.7 Data Collection in projects A and B 90
7.8 Data Collection in projects C, D and E 91
7.9 Impact of TCF on Estimates . 91
7.10 Impact of ECF on Estimates . 91

8.1 Evaluation Profile for the Learnability set. The Use case points
method . 106

8.2 Evaluation Profile for the tool ’Optimize’. Learnability features 106
8.3 Evaluation Profile for the tool ’Enterprise Architect’ 106
8.4 Evaluation Profile for the Usability feature set. The Use case

points method . 108
8.5 Evaluation Profile for the Usability feature set. Optimize 108
8.6 Evaluation Profile for the Usability feature set. Enterprise Ar-

chitect . 108
8.7 Evaluation Profile for the Comparability feature set. The Use

case points method . 110
8.8 Evaluation Profile for the Comparability feature set. Optimize 110
8.9 Evaluation Profile for the Comparability Feature set. Enter-

prise Architect . 110
8.10 Evaluation Profile in percentages 111

B.1 Technology adjustment factors . 126

Chapter 1

Introduction

Estimates of cost and schedule in software projects are based on a predic-
tion of the size of the future system. Unfortunately, the software profes-
sion is notoriously inaccurate when estimating cost and schedule.

Preliminary estimates of effort always include many elements of insec-
urity. Reliable early estimates are difficult to obtain because of the lack of
detailed information about the future system at an early stage. However,
early estimates are required when bidding for a contract or determining
whether a project is feasible in the terms of a cost-benefit analysis. Since
process prediction guides decision-making, a prediction is useful only if it
is reasonably accurate [FP97].

Measurements are necessary to assess the status of the project, the
product, the process and resources. By using measurement, the project can
be controlled. By determining appropriate productivity values for the local
measurement environment, known as calibration, it is possible to make
early effort predictions using methods or tools.

But many cost estimation methods and tools are too difficult to use and
interpret to be of much help in the estimation process. Numerous studies
have attempted to evaluate cost models. Research has shown that estim-
ation accuracy is improved if models are calibrated to a specific organisa-
tion [Kit95]. Estimators often rely on their past experience when predicting
effort for software projects. Cost estimation models can support expert
estimation. It is therefore of crucial interest to the software industry to de-
velop estimation methods that are easy to understand, calibrate, and use.

Traditional cost models take software size as an input parameter, and
then apply a set of adjustment factors or ’cost drivers’ to compute an es-
timate of total effort. In object-oriented software production, use cases de-
scribe functional requirements. The use case model may therefore be used
to predict the size of the future software system at an early development
stage. This thesis describes a simple approach to software cost estimation
based on use case models: the ’Use Case Points Method’. The method is
not new, but has not become popular although it is easy to learn. Reliable
estimates can be calculated in a short time with the aid of a spreadsheet.
One of the reasons that the method has not caught on may be that there
are no standards for use case writing. In order for the method to be used
effectively, use cases must be written out in full. Many developers find it

1

2 CHAPTER 1. INTRODUCTION

difficult to write use case descriptions at an appropriate level of detail.
This thesis describes how a system may be sized in alternative ways if

the use case descriptions are lacking in detail, and presents guidelines for
writing use cases for estimation purposes. An extension of the use case
points method with simplified counting rules is also proposed.

A variety of commercial cost estimation tools are available on the mar-
ket. A few of these tools take use cases as input. The use case points
method and two tools have been subjected to a feature analysis, in order to
select the method or tool which best fits the needs of the software company
where the case studies described in this work were conducted.

1.1 The Problem of Object-Oriented Software Es-
timation

Cost models like COCOMO and sizing methods like Function Point Analysis
(FPA) are well known and in widespread use in software engineering. But
these approaches have some serious limitations. Counting function points
requires experts. The COCOMO model uses lines of code as input, which
is an ambiguous measure. None of these approaches are suited for sizing
object-oriented or real-time software.

Object-oriented analysis and design (OOAD) applies the Unified Model-
ing Language (UML) to model the future system, and use cases to describe
the functional requirements. The use case model serves as the early re-
quirements specification, defining the size of the future product. The size
may be translated into a number, which is used to compute the amount of
effort needed to build the software.

In 1993 the ’Use Case Points’ method for sizing and estimating pro-
jects developed with the object-oriented method was developed by Gustav
Karner of Objectory (now Rational Software). The method is an extension
of Function Point Analysis and Mk II Function Point Analysis (an adaption
of FPA mainly used in the UK), and is based on the same philosophy as
these methods. The philosophy is that the functionality seen by the user is
the basis for estimating the size of the software.

There has to date been little research done on the use case points method.
Applying use cases or use case points as a software sizing metric is still in
the early stages. A few cost estimation tools apply use case point count as
an estimation of size, adapting Karner’s method.

Karner’s work on Use Case Point metrics was written as a diploma thesis
at the University of Linköping. It was based on just a few small projects, so
more research is needed to establish the general usefulness of the method.
The work is now copyright of Rational Software, and is hard to obtain.
The method is described by Schneider and Winters [SW98], but the authors
leave many questions unanswered, for instance why Karner proposed the
metrics he did. Users of the method have had to guess what is meant by
some of the input factors [ADJS01].

Some work has been published on use case points in conjunction with
function points. Certain attempts have been made to combine function
points and use case points [Lon01]. A modification of Karner’s method to fit

1.2. PROBLEM SPECIFICATION AND DELIMITATION 3

the needs of a specific company is discussed by Arnold and Pedross [AP98],
where use case points are converted to function points. An attempt to map
the the object oriented approach into function points has been described
by Thomas Fetke et al. [FAN97], and converting use case point counts to
lines of code by John Smith [Smi99]. But there does not seem to be much
research done on these ideas.

1.2 Problem Specification and Delimitation

The purpose of this thesis is to present the results of my work on the
following problems:

Although the use case points method has shown promising results
[ADJS01], there are several unsolved problems. The projects described in
a research study by Bente Anda et al. were relatively small, and the use
cases were were well structured and written at a suitable level of functional
detail [ADJS01]. The overhead for all development projects increases with
increasing size, and it is not certain that the method would perform as
accurately in larger projects. The use case points method was created sev-
eral years ago, has been little used and has not been adjusted to meet the
demands of today’s software production. Although the method seems to
work well for smaller business applications, it has not been shown that it
can be used to size all kinds of software systems. More experience with
applying the method to estimating different projects in different compan-
ies is needed to be able to draw any final conclusions about the general
usefulness of the method.

The method is also dependent on well written, well structured use cases
with a suitable level of textual detail if it is to be used effectively, and this
is often not the case in the software industry. It is therefore necessary to
verify that use cases are written at an appropriate level of detail. if this is
not the case, alternative, reliable methods for defining use case complexity
must be applied. Use case descriptions vary in detail and style. There are no
formal standards for use case writing. The use case descriptions must not
be too detailed, but they must include enough detail to make sure that all
the system functionality is captured. Sometimes use case descriptions are
not detailed enough, or they are completely lacking. It may still be possible
to size the system with the use case points method, but other approaches
to defining use case size and complexity must be found.

Practitioners of function point methods have discarded the cost drivers
that measure technical and quality factors, because they have found that
unadjusted counts measure functional size as accurately as adjusted counts.
It is possible that the technical adjustment factors can be omitted in the use
case points method.

There are a few tools on the market that claim to support estimation
methods based on use cases. Some are expensive, and difficult to learn and
use. It has not been proved that there are any advantages to such tools.
Barbara Kitchenham states that little effort has been directed towards eval-
uating tools [Kit98]. I have therefore chosen to evaluate two tools, and
compare them with the use case points method.

4 CHAPTER 1. INTRODUCTION

In order to investigate these issues in depth, I have conducted case stud-
ies in a major software company. The projects in these case studies were
typical in that many of the use cases lacked detailed textual descriptions.
I have investigated several alternative ways of defining use case complex-
ity. Applying the use case points method, estimates have been made with
and without the technical adjustment factors. I have also studied students’
projects in order to define the appropriate level of textual detail necessary
for estimation purposes.

Estimates of effort have been computed for all the projects described
in the thesis with the use case points method and two commercial cost
estimation tools. An estimate is a value that is equally likely to be above or
below the actual result. Estimates are therefore often presented as a triple:
the most likely value, plus upper and lower bounds on that value [FP97].
The use case points method and the tools calculate estimates of effort as
numerical values, and this thesis therefore presents estimates as a single
number, not as a triple.

1.3 Contribution

My contribution to estimating effort with use cases is:

• To investigate the general usefulness of the use case points method
by applying the method to two industrial projects, as well as to ten
students’ projects.

I have compared the results to findings that have been made earlier in
a different company [ADJS01]. The results indicate that the method
can be used to size different kinds of object-oriented software applic-
ations.

• To establish that the Technical Value Adjustment Factor may be
discarded as a contributor to software size.

By applying the use case points method to several projects, I have un-
covered that the technical value adjustment factor may be dropped in
the use case points method. I have made estimates with and without
the technical adjustment factor, and observed that the estimates do
not differ much. Dropping the technical factors means simpler count-
ing rules and more concise measures.

• To define the appropriate level of detail in use case descriptions,
and provide guidelines for use case writing for estimation pur-
poses. I also describe alternative ways of sizing the software with
use cases, even when the use cases are not written in full detail.

In order to effectively produce estimates with use cases, these must be
written out in detail. I have described the appropriate level of detail
in textual use case descriptions necessary for estimation purposes.
These description may serve as a basis for company guidelines for use
case writing. If the use cases are lacking in textual descriptions, other
approaches to use case sizing must be applied, and I have described
several alternative approaches.

1.4. THESIS STRUCTURE 5

• To specify the environmental adjustment factors, and provide guide-
lines for setting values for the factors.

In the use case points method, a set of environmental factors are
measured and added to functional size in order to predict an estimate
of total effort. There are many uncertainties connected with assign-
ing values to these factors. I have defined guidelines for determining
the values for each factor in order to obtain more consistent counting
rules. This again means more accurate counts and estimates.

• To select an appropriate cost estimation method or tool for the soft-
ware company where the case studies were conducted.

The software company in question was interested in selecting a cost
estimation method or tool suited to their specific needs. To decide
which method or tool was the most appropriate, I conducted a fea-
ture analysis. I compared accuracy of estimates produced with the
use case points method with accuracy of estimates produced by two
commercial tools that take use cases as input. I also compared fea-
tures like usability and learnability. The goal was also to investigate if
there are any advantages to using commercial cost estimation tools.

1.4 Thesis Structure

• Chapter 2 presents software cost estimation techniques, traditional
cost estimation models, and the function point methods Function
Point Analysis (FPA) and MkII FPA. Two commercial cost estimation
tools are also described.

• Chapter 3 gives an overview of use cases and use case modeling, and
describes the use case points method in detail. Related work that has
been done on sizing object-oriented software is described, and the
Unified Modeling Language (UML) is presented.

• Chapter 4 describes the research methods that have been used in the
case studies and the studies of the students’ projects.

• Chapter 5 presents two case studies that were conducted in a ma-
jor software company. The two projects differ in several ways, al-
though they are similar in size. The first project is a Web application,
while the second project is a real-time system. Estimates were pro-
duced with the use case points method, an extension of the method
dropping the technical adjustment factor, and the tools described in
Chapter 2. Alternative approaches to sizing are studied in detail.

• Chapter 6 describes students’ projects that were studied in order to
try out the method and the tools on several more projects. Although
some of the data may be uncertain, the results indicate that the use
case points method produces fairly accurate estimates. A use case is
analysed to show how to write use cases at a suitable level of detail.

6 CHAPTER 1. INTRODUCTION

• Chapter 7 analyses the results from the investigations and case stud-
ies described in Chapters 5 and 6. The role of the technical factors
is discussed, and whether they may be omitted. I also describe how
to assign values to the environmental adjustment factors and define
guidelines for setting scores. The chapter describes how to define
complexity when the use cases are lacking in detail, and how writing
and structuring the use cases influence estimates.

• Chapter 8 presents an evaluation of method an tools based on a fea-
ture analysis. The goal was to choose the most appropriate method
or tool for the software company.

• Chapter 9 presents an extension of the use case points method, where
the technical adjustment factor is dropped, and describes how use
case complexity may be defined using alternative approaches.

• Chapter 10 presents conclusions and ideas for future work.

• Appendix A gives examples of textual use case descriptions.

• Appendix B describes regression-based cost models, the forerunner
of function points methods and the use case points method.

• Appendix C gives an overview of measurement and measurement the-
ory.

Chapter 2

Cost Estimation of Software
Projects

Sizing and estimating are two aspects or stages of the estimating proced-
ure [KLD97]. This chapter presents various approaches to sizing and cost
estimation. In Section 2.1, system sizing and cost estimation models and
methods are described. The Use Case Points method is inspired by tra-
ditional Function Point Analysis (FPA), and Mk II Function Point Analysis.
These two function point methods are described in Section 2.2. Two com-
mercial cost estimation tools are presented in Section 2.3.

2.1 Software Size and Cost Estimation

Software measurement is the process whereby numbers or symbols are as-
signed to entities in order to describe the entities in a meaningful way. For
software estimation purposes, software size must be measured and trans-
lated into a number that represents effort and duration of the project. See
Appendix C for more information on software measurement and measure-
ment theory.

Software size can be defined as a set of internal attributes: length, func-
tionality and complexity, and can be measured statically without execut-
ing the system. Reuse measures how much of a product was copied or
modified, and can also be identified as an aspect of size. Length is the
physical size of the product and can be measured for the specification, the
design, and the code. Functionality measures the functions seen by the
user. Complexity refers to both efficiency and problem complexity [FP97].
Approaches to estimation are expert opinion, analogy and cost models.
Each of these techniques can be applied using bottom-up or top-down es-
timation [FP97].

2.1.1 Bottom-up and Top-down Estimation

Bottom-up estimation begins with the lowest level components, and provides
an estimate for each. The bottom-up approach combines low-level estim-

7

8 CHAPTER 2. COST ESTIMATION OF SOFTWARE PROJECTS

ates into higher-level estimates. Top-down estimation begins with the over-
all product. Estimates for the component parts are calculated as relative
portions of the full estimate [FP97].

2.1.2 Expert Opinion

Expert opinion refers to predictions made by experts based on past ex-
perience. In general, the expert opinion approach can result in accurate
estimates, however it is entirely dependent on the experience of the ex-
pert. Expertise-based techniques are useful in the absence of quantified,
empirical data and are based on prior knowledge of experts in the field
[Boe81]. The drawbacks to this method are that estimates are only as good
as the expert’s opinion; they can be biased and may not be analyzable.
The advantages are that the method incorporates knowledge of differences
between past project experiences [FP97].

2.1.3 Analogy

Analogy is a more formal approach to expert opinion. Estimators com-
pare the proposed project with one or more past projects. Differences and
similarities are identified and used to adjust the estimate. The estimator
will typically identify the type of application, establish an initial prediction,
and then refine the prediction within the original range. The accuracy of
the analogy approach is dependent on the availability of historical project
information [FP97].

2.1.4 Cost Models

Cost models are algorithms that relate some input measure, usually a meas-
ure of product size, to some output measure such as project effort or dura-
tion. Cost models provide direct estimates of effort, and come in two main
forms; mathematical equations and look-up tables [KLD97].

Mathematical equations use size as the main input variable and effort
as the output variable. They often include a number of adjustment factors
called cost drivers. Cost drivers influence productivity, and are usually
represented as ordinal scale measures that are assigned subjectively, for
instance when measuring programmer experience: very good, good, aver-
age, poor, very poor.

The advantages of cost models are that the they can be used by non-
experts. The disadvantages are that the basic formula must be updated to
allow for changes in development methods. Models assume that the future
is the same as the past, and give results that apply to ’average’ projects
[KLD97].

The origin of the different cost models and methods described in this
work are the earlier developed regression-based models. See Appendix B.

2.2. FUNCTION POINT METHODS 9

2.2 Function Point Methods

The use case points method is based on the well-known Function Point
Analysis (FPA) developed by Allan Albrecht, and on the less well-known
Mk II Function Point Analysis, which is an adaption and improvement of
Albrecht’s method. In order to understand the use case points method, it is
necessary to have some knowledge of the two function points methods on
which it is based, FPA and Mk II FPA. The methods are therefore described
in some detail, and it will be made clear which features have been adopted
by the use case points method. The use case points method is more similar
to the Mk II method than to the traditional function points method FPA.

2.2.1 Traditional Function Point Analysis

Function Point Analysis was developed in the late seventies by Allan Al-
brecht, an employee of IBM, as a method for sizing, estimating and meas-
uring software projects [Sym91].

The Function Point metric measures the size of the problem seen from
a user point of view. The basic principle is to focus on the requirements
specification, thus making it possible to obtain an early estimate of devel-
opment cost and effort. It was the first method for sizing software which
was independent of the technology used for its development. The method
could therefore be used for comparing performance across projects using
different technologies, and to estimate effort early in a project’s life cycle.

The function point metric is based on five external attributes of software
applications:

• Inputs to the application

• Outputs from the application

• Inquiries by users

• Logical files or data files to be updated by the application

• Interfaces to other applications

The five components are weighted for complexity and added to achieve the
’unadjusted function points’, UFPs. Albrecht gave no justification for the
values used in this weighting system, except that they gave ’good results’,
and that they were determined by ’debate and trial.’ The total of UFPs is
then multiplied by a Technical Complexity Factor (TCF) consisting of four-
teen technical and quality requirements factors. The TCF is a cost driver
contributing to software size [FP97].

The original Function Point method has been modified and refined a
number of times. But the method has serious limitations. One of these is
that function points were developed for data-processing applications. Their
use in real-time and scientific applications is controversial [FP97]. Counts
appear to be misleading for software that is high in algorithmic complex-
ity, but sparse in inputs and outputs [Jon]. Also, object oriented software
development and function points have not come to terms [SK]. Concepts

10 CHAPTER 2. COST ESTIMATION OF SOFTWARE PROJECTS

such as objects, use cases and Graphical User Interfaces (GUIs) can not be
translated into the twenty year old concepts of ’elementary inputs’ and ’lo-
gical files’ [Rul01]. The research of Kitchenham and Känsälä has also shown
that the value adjustment factor does not improve estimates, and that an
effort prediction based on simple counts of the number of files is only
slightly worse than an effort prediction based on total function points. Us-
ing simple counts may improve counting consistency as a result of simpler
counting rules [KK97].

2.2.2 MKII Function Point Analysis

MKII Function Point Analysis is a variation of Function Point analysis used
primarily in the United Kingdom. The method was proposed by Charles Sy-
mons to take take better account of internal processing complexity [Sym91].
Symons had observed a number of problems with the original function
point counts, amongst them that the choice of the values complex, aver-
age and simple was oversimplified. This meant that very complex items
were not properly weighted.

MK II function points, like the original function points, are not typic-
ally useful for estimating software projects that include many embedded
or real-time calculations, projects that have a substantial amount of under-
lying algorithms, or Internet projects [Rul01].

Instead of the five component types defined in the function point method,
MkII sees the system as a collection of logical transactions. Each transac-
tion consists of an input, process and output component [Sym91]. A logical
transaction type is defined as a unique input/process/output combination
triggered by a unique event of interest to the user, for instance

• Create a customer

• Update an account

• Enquire on an order status

• Produce a report

I made the observation that the definition of a logical transactions is
very similar to the concept of a use case. See Chapter 3 on use cases.
Because of these similarities between the concepts, the two approaches
can be combined to produce better estimates under certain circumstances.
The Mk II function points method is therefore described in some detail.

The Mk II function point method modified the Function Point Analysis
approach by extending the list of Technical Adjustment Factors. These
factors were discarded a few years ago because it was decided that they
were no longer meaningful in modern software development. For both the
function point methods FPA and MkII FPA, the adjustment factors have
been discredited as being unrealistic. Therefore, many practitioners have
ignored the adjustment and work using the unadjusted function points
instead [Rul01].

The list of general application characteristics is presented here in order
to show that Karner adapted the factors T15, T16, T17 and T18 for the

2.3. THE COST ESTIMATION TOOLS 11

use case points method, in addition to the original factors proposed by
Albrecht, T1 to T14.

T1 Data Communications
T2 Distributed Functions
T3 Performance
T4 Heavily used configuration
T5 Transaction Rate
T6 On-line Data Entry
T7 Design for End User Efficiency
T8 On-line Update
T9 Complexity Processing
T10 Usable in Other Applications
T11 Installation Ease
T12 Operations Ease
T13 Multiple Sites
T14 Facilitate Change
T15 Requirements of Other Applications
T16 Security, Privacy, Auditability
T17 User Training Needs
T18 Direct Use by Third Parties
T19 Documentation
T20 Client Defined Characteristics

This list may be compared to the list of technical factors in the use case
points method, see Table 3.1 on page 22, to verify that many of these
factors are indeed the same.

2.3 The Cost Estimation Tools

There are a number of commercial cost estimation tools on the market. A
few of them take use cases as input. For the feature analysis described
in Chapter 8, I selected the cost estimation tool ’Optimize’ and the UML
modeling tool ’Enterprise Architect’. ’Enterprise Architect’ also has an es-
timation function, which was the feature that was evaluated.

I first read the documentation that came with the tools. The approach
is called qualitative screening, where in order to get an impression of a
number of tools, evaluations are based on literature describing the tools,
rather than actual use of the tools [KLD97]. The documentation for ’Op-
timize’ is found on the web-site of the tool vendor. The documentation for
’Enterprise Architect’ is found as help files in the tool.

The tools were used for computing estimates for the projects in Case
Studies A and B, and the students’ projects. The evaluation of the use case
points method and the tools is presented in Chapter 8.

2.3.1 Optimize

The cost and effort estimating tool ’Optimize’ applies use cases and classes
in the computation of estimates of cost and effort early in the project life
cycle, as well as during the whole project process.

12 CHAPTER 2. COST ESTIMATION OF SOFTWARE PROJECTS

According to the documentation, [Fac], the default metrics used by the
tool have been extrapolated from real project experience on hundreds of
medium to large client-server projects. The tool uses a technique that is
object-oriented, based on an incremental development life-cycle. Estima-
tion results can be obtained early in the project and may be continually
refined.

An Object-oriented development project needs information about the
number of subsystems, use cases and classes. A Component-based pro-
ject needs information about the number of components, interfaces and
classes, whereas a web-based project uses the number of web pages, use
cases and scripts to compute an estimate. These elements are called scope
elements.

The size of the problem is measured by counting and classifying scope
elements in a project. At an early stage, a top-down approach is used, as
the amount of information is limited. Bottom-up estimating is used later in
the project.

Optimize can import from design models in CASE tools. Importing a use
case model from for instance Rational Rose will create a list of use cases.
The tool will then create an early estimate based solely on the number of
use cases. However, this estimate is not very accurate. To produce more
reliable estimates, additional information must be used as input.

A productivity metric of person-days effort is assigned for each type
of scope element. Time allocated for each scope element is worked out
for different development activities such as planning, analysis, design, pro-
gramming, testing, integration and review. Qualifiers are applied to each
scope element. The complexity qualifier defines each task as simple, me-
dium or complex. The tool provides a set of default metric values based
on data collected from real projects, but the user can customize her own
metric data to produce more accurate estimates.

The use cases alone do not yield enough information to compute a re-
liable estimate. One must therefore find analysis classes that implement
the functionality expressed in the use cases, and use this number and their
complexity as input. It is not quite clear what is meant by ’analysis classes’.
An analysis model can be a domain model or a Business Concept Model,
which is a a high level analysis model showing the business classes for the
system. Figure 2.1 shows a Business Concept Model for the Hour Registra-
tion System described in Section 3.4.1.

There are five levels of size and five levels of complexity for each ele-
ment. A use case or class can range from tiny to huge in size, and trivial to
complex in complexity.

Assessing the levels for setting qualifiers is subjective. The following
guidelines provide rules of thumb for choosing between the levels during
the elaboration phase of the project.

• Setting size for use cases is done by applying the textual descriptions,
or if they have yet to be written, by considering the amount which
would have to be written to comprehensively document the specific
business activity. A couple of lines sets size to tiny, a short paragraph
sets size to small, a couple of paragraphs sets size to medium, a page
sets size to large, and several pages set size to huge.

2.3. THE COST ESTIMATION TOOLS 13

ProjectAccount

Project

Employee

Time

Registration

TimeList

TimeAccount

*1

1

*

1

1

11

**

1
*

**

Figure 2.1: A business concept model

• When setting complexity for use cases, the number of decision points
or steps in the use case description and the number of exceptions
to be handled are used. Basic sequential steps sets complexity to
trivial, a single decision point or exception sets complexity to simple,
a couple of decision points or exceptions sets complexity to medium,
several decision points or exceptions sets complexity to difficult, many
decision points and exceptions set complexity to complex.

• Sizing classes is done by considering the amount of business data that
is needed to adequately model the business concept: 1 to 3 attributes
sets size to tiny, 4 to 6 attributes set size to small, 7 to 9 attributes
set size to medium, 10 to 12 attributes set size to large, 13 or more
attributes set size to huge.

• When setting the complexity for business classes, algorithms required
to process business data are considered.

The scope elements and metric data are organized to compute an es-
timate of effort and costs. The estimate is given as a total number of staff
hours. Duration is also expressed in months. The skills and number of
team members are then taken into account and a final estimation for the
duration of the project is made.

14 CHAPTER 2. COST ESTIMATION OF SOFTWARE PROJECTS

2.3.2 Enterprise Architect

Enterprise Architect is a CASE tool for creating UML model elements, doc-
umenting the elements and generating code. The use case model is impor-
ted into an estimating tool. A total estimate of effort is calculated from the
complexity level of the use cases, project environment factors and build
parameters. The method corresponds exactly to Karner’s method. Inputs
to the application are the number of use cases and their complexity, the
number of actors and their complexity, technical complexity factors (TCF),
and environmental complexity factors (ECF). The tool computes unadjusted
use case points (UUCP), adjusted use case points (UPC), and the total effort
in staff hours.

Use case complexity has to be manually defined for each use case. The
following ratings are assigned by defining complexity as described:

• If the use case is considered a simple piece of work, uses a simple
user interface and touches only a single database entity, the use case
is marked as ’Easy’. Rating: 5.

• If the use case is more difficult, involves more interface design and
touches 2 or more database entities, the use case is defined as ’Me-
dium’. Rating 10.

• If the use case is very difficult, involves a complex user interface or
processing and touches 3 or more database entities, the use case is
’Complex’. Rating: 15.

The user may assign other complexity ratings, for instance by counting
use case steps or implementing classes. The use cases can be assigned to
phases, and later estimates will be based on the defined phases.

The technical and environmental complexity factors are calculated from
the information entered. The unadjusted use case points (UUCP) is the sum
of use case complexity ratings. The UUCP are multiplied together with
the TCF and ECF factors to produce a weighted Use Case Points number
(UCP). This number is multiplied with the assigned hours per UCP (10 is
the application default value), to produce a total estimate of effort. For
a given project, effort per use case is shown for each category of use case
complexity. For instance, staff hours for a simple use case may be 40 hours,
for an average use case 80 hours, and for a complex use case 120 hours.
These figures are project-specific, depending on the number of use cases
and default staff hours per use case point.

Chapter 3

Use Cases and Use Case
Estimation

This chapter describes use cases and how to write them, and presents the
Use Case Points method. Section 3.1 gives an overview of the history of
use cases, and explains the use case model. Section 3.2 describes the use
case points method in detail, Section 3.3 explains how to convert use case
point to effort, and Section 3.4 describes how to structure and write use
cases. Section 3.5 describes related work on estimating with use cases. The
Unified Modling language (UML) is presented in Section 3.6.

3.1 Use Cases

3.1.1 The History of the Use Case

While working at Ericsson in the late 1960s, Ivar Jacobson devised what
later became known as use cases. Ericsson at the time modeled the whole
system as a set of interconnected blocks, which later became ’subsystems’
in UML. The blocks were found by working through previously specified
’traffic cases’, later known as use cases [Coc00].

Jacobsen left Ericsson in 1987 and established Objectory AB in Stock-
holm, where he and his associates developed a process product called ’Ob-
jectory’, an abbreviation of ’Object Factory’. A diagramming technique was
developed for the concept of the use case.

In 1992, Jacobson devised the software methodology OOSE (Object Ori-
ented Software Engineering), a use case driven methodology, one in which
use cases are involved at all stages of development. These include analysis,
design, validation and testing [JCO92].

In 1993, Gustav Karner developed the Use case Points method for es-
timating object-oriented software.

In 1994, Alistair Cockburn constructed the ’Actors and Goals concep-
tual model’ while writing use case guides for the IBM Consulting Group. It
provided guidance as how to structure and write use cases.

15

16 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

3.1.2 Actors and Goals

The term ’use case’ implies ’the ways in which a user uses a system’. It is a
collection of possible sequences of interactions between the system under
construction and its external actors, related to a particular goal. Actors
are people or computer systems, and the system is a single entity, which
interacts with the actors [Coc00] .

The purpose of a use case is to meet the immediate goal of an actor,
such as placing an order. To reach a goal, some action must be performed
[Ric01]. All actors have a set of responsibilities. An action connects one
actor’s goal with another’s responsibility [Coc97].

A primary actor is an actor that needs the assistance of the system to
achieve a goal. A secondary actor supplies the system with assistance to
achieve that goal. When the primary actor triggers an action, calling up the
responsibilities of the other actor, the goal is reached if the secondary actor
delivers [Coc97].

3.1.3 The Graphical Use Case Model

The use case model is a set of use cases representing the total functionality
of the system. A complete model also specifies the external entities such
as human users and other systems that use those functions. UML provides
two graphical notations for defining a system functional model:

• The use case diagram depicts a static view of the system functions
and their static relationships with external entities and with each
other. Stick figures represent the actors, and ellipses represent the
use cases. See figure3.1.

• The activity diagram imparts a dynamic view of those functions.

The use case model depicted in Figure 3.1 is the model of an hour regis-
tration system. The user enters user name and password, is presented with
a calendar and selects time periods, and then selects the projects on which
to register hours worked. The example is taken from a students’ project
on a course in object modeling at the University of Oslo, Department of
Informatics. The textual use case description of this use case is shown in
Section 3.4.1 on page 23, ’The Textual Use Case Description’.

3.1.4 Scenarios and Relationships

A scenario is a use case instance, a specific sequence of actions that illus-
trates behaviours. A main success scenario describes what happens in the
most common case when nothing goes wrong. It is broken into use case
steps, and these are written in natural language or depicted in a state or an
activity diagram [CD00].

Different scenarios may occur, and the use case collects together those
different scenarios [Coc00].

Use cases can include relationships between themselves. Since use cases
represent system functions, these relationships indicate corresponding re-
lationships between those system functions. A use case may either always

3.1. USE CASES 17

Add Employee

<<extends>>

Group
Manager

Employee

Project
Management

 System

Employee
Management

System

Register Hours

Show Registered
Hours

Finalize
Week

Delete
Registration

Find Valid
Project

Hours worked
per Time Period

Find Emolyee
Information

Find Valid
Employee

<<include>>

<<include>>

<<include>>

Figure 3.1: A graphical use case model

18 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

Register Hours

Find Valid
Projects

Employee

<<includes>>

Figure 3.2: The include relationship

or sometimes include the behaviour of another use case; it may use either
an ’include’ or an ’extend’ relationship. Common behaviour is factored out
in included use cases. Optional sequences of events are separated out in
extending use cases.

An include relation from use case A to use case B indicates that an in-
stance of the use case A will also include the behaviour as specified by use
case B [Ric01]. The include relationship is used instead of copying the same
text in alternative flows for several use cases. It is another way of capturing
alternative scenarios [Fow97]. When an instance of the including use case
reaches a step where the included use case is named, it invokes that use
case before it proceeds to the next step. See figure 3.2. The use case ’Find
Valid Project’ is included in the use case ’Register Hours’.

An extend relation from use case A to use case B indicates that an in-
stance of the use case A may or may not include the behaviour as specified
by use case B.

Extensions describe alternatives or additions to the main success scen-
ario, and are written separately. They contain the step number in the main
success scenario at which the extension applies, a condition that must be
tested before that step, and a numbered sequence of steps that constitute
the extension [CD00]. See the use case template in Section 3.4.1. Exten-
sion use cases can contain much of the most interesting functionality in
the software [Coc00]. The use case ’Add Employee’ is an extension of the
use case ’Find Valid Employee’, since this is a ’side-effect’ of not finding a
valid employee. See Figure 3.3.

3.1.5 Generalisation between Actors

A clerk may be a specialisation of an employee, and an employee may be a
generalisation of a clerk and a group manager, see Figure 3.4 on the next
page. Generalisations are used to collect together common behaviour of
actors.

3.1. USE CASES 19

Find Valid
Employee

Employee

Add Employee

<<extends>>

Figure 3.3: The extend relationship

Group
Manager

Employee

Clerk

Figure 3.4: Generalisation between actors

20 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

3.2 The Use Case Points Method

An early estimate of effort based on use cases can be made when there is
some understanding of the problem domain, system size and architecture
at the stage at which the estimate is made [SK]. The use case points method
is a software sizing and estimation method based on use case counts called
use case points.

3.2.1 Classifying Actors and Use Cases

Use case points can be counted from the use case analysis of the system.
The first step is to classify the actors as simple, average or complex. A
simple actor represents another system with a defined Application Pro-
gramming Interface, API, an average actor is another system interacting
through a protocol such as TCP/IP, and a complex actor may be a person
interacting through a GUI or a Web page. A weighting factor is assigned to
each actor type.

• Actor type: Simple, weighting factor 1

• Actor type: Average, weighting factor 2

• Actor type: Complex, weighting factor 3

The total unadjusted actor weights (UAW) is calculated by counting how
many actors there are of each kind (by degree of complexity), multiplying
each total by its weighting factor, and adding up the products.

Each use case is then defined as simple, average or complex, depending
on number of transactions in the use case description, including secondary
scenarios. A transaction is a set of activities, which is either performed
entirely, or not at all. Counting number of transactions can be done by
counting the use case steps. The use case example in 3.4.1 on page 23 con-
tains 6 steps in the main success scenario, and one extension step. Karner
proposed not counting included and extending use cases, but why he did is
not clear. Use case complexity is then defined and weighted in the following
manner:

• Simple: 3 or fewer transactions, weighting factor 5

• Average: 4 to 7 transactions, weighting factor 10

• Complex: More than 7 transactions, weighting factor 15

Another mechanism for measuring use case complexity is counting ana-
lysis classes, which can be used in place of transactions once it has been
determined which classes implement a specific use case [SW98]. A simple
use case is implemented by 5 or fewer classes, an average use case by 5 to
10 classes, and a complex use case by more than ten classes. The weights
are as before.

Each type of use case is then multiplied by the weighting factor, and the
products are added up to get the unadjusted use case weights (UUCW).

3.2. THE USE CASE POINTS METHOD 21

The UAW is added to the UUCW to get the unadjusted use case points
(UUPC):

UAW+UUCW=UUCP

3.2.2 Technical and Environmental Factors

The method also employs a technical factors multiplier corresponding to
the Technical Complexity Adjustment factor of the FPA method, and an en-
vironmental factors multiplier in order to quantify non-functional require-
ments such as ease of use and programmer motivation.

Various factors influencing productivity are associated with weights,
and values are assigned to each factor, depending on the degree of influ-
ence. 0 means no influence, 3 is average, and 5 means strong influence
throughout. See Table 3.1 and Table 3.2.

The adjustment factors are multiplied by the unadjusted use case points
to produce the adjusted use case points, yielding an estimate of the size
of the software.

The Technical Complexity Factor (TCF) is calculated by multiplying the
value of each factor (T1- T13) by its weight and then adding all these num-
bers to get the sum called the TFactor. The following formula is applied:

TCF=0.6+(0.01*TFactor)

The Environmental Factor (EF) is calculated by multiplying the value of
each factor (F1-F8) by its weight and adding the products to get the sum
called the EFactor. The following formula is applied:

EF= 1.4+(-0.03*EFactor)

The adjusted use case points (UPC) are calculated as follows:

UPC= UUCP*TCF*EF

3.2.3 Problems With Use Case Counts

There is no published theory for how to write or structure use cases. Many
variations of use case style can make it difficult to measure the complexity
of a use case [Smi99]. Free textual descriptions may lead to ambiguous
specifications [AP98]. Since there is a large number of interpretations of
the use case concept, Symons concluded that one way to solve this problem
was to view the MkII logical transaction as a specific case of a use case, and
that using this approach leads to requirements which are measurable and
have a higher chance of unique interpretation [Sym01]. This approach will
be described in Chapter 7.

22 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

Factor Description Weight
T1 Distributed System 2
T2 Response adjectives 2
T3 End-user efficiency 1
T4 Complex processing 1
T5 Reusable code 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent 1
T11 Security features 1
T12 Access for third parties 1
T13 Special training required 1

Table 3.1: Technical Complexity Factors

Factor Description Weight
F1 Familiar with RUP 1.5
F2 Application experience 0.5
F3 Object-oriented experience 1
F4 Lead analyst capability 0.5
F5 Motivation 1
F6 Stable requirements 2
F7 Part-time workers -1
F8 Difficult programming language 2

Table 3.2: Environmental Factors

3.3. PRODUCING ESTIMATES BASED ON USE CASE POINTS 23

3.3 Producing Estimates Based on Use Case Points

Karner proposed a factor of 20 staff hours per use case point for a pro-
ject estimate. Field experience has shown that effort can range from 15 to
30 hours per use case point, therefore converting use case points points
directly to hours may be an uncertain measure. Steve Sparks therefore sug-
gests it should be avoided [SK].

Schneider and Winters suggest a refinement of Karner’s proposition
based on experience level of staff and stability of the project [SW98]. The
number of environmental factors in F1 through F6 that are above 3 are
counted and added to the number of factors in F7 through F8 that are be-
low 3. If the total is 2 or less, they propose 20 staff hours per UCP; if the
total is 3 or 4, the value is 28 staff hours per UCP. When the total exceeds
4, it is recommended that changes should be made to the project so that
the value can be adjusted. Another possibility is to increase the number
of staff hours to 36 per use case point. The reason for this approach is
that the environmental factors measure the experience level of the staff
and the stability of the project. Negative numbers mean extra effort spent
on training team members or problems due to instability. However, using
this method of calculation means that even small adjustments of an envir-
onmental factor, for instance by half a point, can make a great difference
to the estimate. In an example from the project in Case Study A, adjust-
ing the environmental factor for object-oriented experience from a rating
of 3 to 2.5 increased the estimate by 4580 hours, from 10831 to 15411
hours, or 42.3 percent. This means that if the values for the environmental
factors are not set correctly, there may be disastrous results. The COSMIC
approach which is described in Section 3.5.4 does not take the technical
and quality adjustment factors into the effect on size. Therefore, many
practitioners have sought to convert use case measures to function points,
because there is extended experience with the function point metrics and
conversion to effort [Lon01].

3.4 Writing Use Cases

The use cases of the system under construction must be written at a suit-
able level of detail. It must be possible to count the transactions in the
use case descriptions in order to define use case complexity. The level of
detail in the use case descriptions and the structure of the use case have
an impact on the precision of estimates based on use cases. The use case
model may also contain a varying number of actors and use cases, and
these numbers will again affect the estimates [ADJS01].

3.4.1 The Textual Use Case Description

The details of the use case must be captured in textual use case descrip-
tions written in natural language, or in state or activity diagrams. A use case
description should at at least contain an identifying name and/or number,
the name of the initiating actor, a short description of the goal of the use

24 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

case, and a single numbered sequence of steps that describe the main suc-
cess scenario [CD00].

The main success scenario describes what happens in the most com-
mon case when nothing goes wrong. The steps are performed strictly se-
quentially in the given order. Each step is an extension point from where
alternative behaviour may start if it is described in an extension. The use
case model in Figure 3.1 is written out as follows:

--

Use Case Descriptions for Hour Registration System

--
Use case No. 1
Name: Register Hours
Initiating Actor: Employee
Secondary Actors: Project Management System

Employee Management System
Goal: Register hours worked for each employee

on all projects the employee participates on
Pre-condition: None

MAIN SUCCESS SCENARIO

1. The Systen displays calendar (Default: Current Week)
2. The Employee chooses time period
3. Include Use Case ’Find Valid Projects’
4. Employee selects project
5. Employee registers hours spent on project

Repeat from 4 until done
6. The System updates time account

EXTENSIONS

2a. Invalid time period
The System sends an error message and prompts
user to try again

--

This use case consists of 6 use case steps, and one extension step, 2a.
Step 2 acts as an extension point. If the selected time period is invalid, for
instance if the beginning of the period is after the end of the period, the
system sends an error message, and the user is prompted to enter a differ-
ent period. If the correct time period is entered, the use case proceeds. The
use case also includes another use case, ’Find Valid Projects’. This use case
is invoked in step 3. When a valid project is found by the Project Manage-
ment System, it is returned and the use case proceeds. The use case goes
into a loop in step 5, and the employee may register hours worked for all
projects he/she has worked on during the time period.

The use case ’Find Valid Employee’ is extended by the use case ’Add
Employee’.

3.4. WRITING USE CASES 25

--
Use case No. 2
Name: Find Valid Employee
Initiating Actor: Employee
Secondary Actor: Employee Management System

Goal: Check if Employee ID exists
Pre-condition: None

MAIN SUCCESS SCENARIO

1. Employee enters user name and password
2. Employee Mangement System verifies user name and

password
3. Employee Mangement System returns Employee ID

EXTENSIONS
2a. Error message is returned
2b. Use Case ’Add Employee’

Extensions handle exceptions and alternative behaviour and can be can
be described either by extending use cases, as in this case, or as alternative
flows, as in the use case ’Register Hours’. In this use case, the system
verifies if the user name and password are correct in step 2. If there are no
such entries, the user name and password may be incorrect, in which case
an error message is returned. Another option is that no such employee
exists, in which case the new employee may be registered in the Employee
Management System, involving the use case ’Add Employee’. Invoking this
use case is therefore a side effect of the use case ’Find Valid Employee.’

3.4.2 Structuring the Use Cases

The Unified Modeling Language, (UML), does not go into details about how
the use case model should be structured nor how each use case should be
documented. Still, a minimum level of detail must be agreed on, as it is
necessary to establish that all the functionality of the system is captured in
the given set of use cases. Ivar Jacobsen provided the following advice for
use case creation:

’If we try to describe a use case that contains a great many courses of
events, our text can easily become difficult to understand. Therefore, it is
wise to use some form of structured writing approach’ [JEJ95].

’Scenario explosion’ must be avoided [Ber97]. Writing several pages de-
scriptions makes it difficult to control what is actually happening. Scenario
explosion is avoided using the three techniques: included use cases, exten-
sions and variations.

The behaviour of included use cases is always invoked when the in-
cluded use case is named in a use case step. See Section 3.2.4. Alternative
behaviour and failure in a step are handled by an extension scenario. Many

26 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

structuring techniques may be used to combine main and extension scen-
arios. Some people use if statements and alternatives within a scenario,
others write the entire alternate scenario from the beginning, so that each
scenario can be read independently. Others again write scenario fragments
as extensions to other scenarios, to save writing and reading [Coc97]. Func-
tionality can also be separated out in alternative flows instead of in extend-
ing use cases, but this is a choice of design. Writing extending and included
use cases is more effective than writing alternative flows [Coc00] [CD00]. It
is also in accordance with the principles for good object-oriented analysis
and design [Ric01].

Variations are a section of the use case text describing different altern-
atives of action. Often, a use case at a high level uses input or output of one
of several types. An example is payment by cash, check, credit, credit card,
or electronic funds transfer. The differences between all those possibilities
will have to be described at some point in a lower-level, but it would be
wasteful to spend the time doing so at the higher levels [Coc97].

The projects described in this thesis demonstrate various approaches
to use case writing. I have studied approximately one hundred and fifty
different use case descriptions, and observed that there was no ’scenario
explosion’ to be found anywhere. I therefore believe that people are nat-
urally inclined to limit the size of the use cases, and prefer writing many
smaller use cases instead of several large ones with many alternative scen-
arios. According to Alistair Cockburn, most well-written use cases have 3
to 8 steps, probably because people do not think in terms of processes that
take more than 10 intermediate steps [Coc00]. This observation is sup-
ported by the research of George A. Miller, who states that there seems to
be some limitations built into the human brain, either by learning or by
the design of the nervous system. There is a span of absolute judgment
that can distinguish about seven plus minus two different categories, and
a finite span of immediate memory which is about seven plus minus two
items in length. This imposes severe limitations on the amount of inform-
ation that human beings are able to process and remember [Mil56]. These
issues will be discussed in further detail in Section 7.5.

3.4.3 Counting Extending and Included Use Cases

Although Karner recommended that included and extending use cases should
not be counted, the functionality described in these use cases must still be
implemented [ADJS01]. If these use cases contain much of the essential
functionality, it is necessary to include them in the counts. However, there
is a danger that when writing included and extending use cases one may
be more concerned with identifying opportunities for reuse, than with ana-
lyzing the problem and describing requirements [Rul01]. Bente Anda et
al. describe how omitting extending and included use cases resulted in
an estimate that was closer to the actual effort, after first having counted
these use cases and obtained an estimate that was much higher than the
actual effort. In a different project, the extending and included use cases
were counted, because much of the essential functionality was described in
these use cases [ADJS01]. According to Alistair Cockburn, this is often the

3.5. RELATED WORK 27

case [Coc00].
It seems difficult to form a precise rule for when to count extending

and included use cases. But the findings of Bente Anda et al. make it clear
that one should not always follow Karner’s recommendations. In some
projects, extending and included use cases contain a lot of the important
functionality. If in doubt, I believe that it is better to count extending and
included use cases to be sure that all the functionality is sized, in order to
avoid underestimation.

3.5 Related Work

Different methods for sizing object-oriented software projects and com-
puting estimates of effort have been proposed over the last years. Some of
these methods are presented in the following.

3.5.1 Mapping Use Cases into Function Point Analysis

A method for mapping the object-oriented approach into Function point
analysis is described by Thomas Fetke et al., [FAN97]. The authors propose
mapping the use cases directly into the Function point model using a set of
concise rules that support the measurement process. These mapping rules
are based on the standard FPA defined in the IFPUG Counting Practices
manual.

Since the concept of actors in the use case model is broader than the
concept of users and external applications in FPA, there cannot be a one-
to-one mapping of actors and users to external applications. But each user
of the system is defined as an actor. In the same manner, all applications
which communicate with the system under consideration must also appear
as actors. This corresponds to Karner’s use case point method.

The level of detail in the use case model may vary, and the use case
model does not provide enough information to how to count a specific use
case according to function point rules. Therefore, as in Karner’s method,
the use cases must be described in further detail in order to be able to
count transactions.

The authors conclude that Function Point Analysis can be used in the
object-oriented paradigm, as the findings support the thesis that the func-
tion point method is technology independent. However, the method does
not seem to have been used in software development projects apart from
the projects described in the article. In referring to this work, John Smith
states that the level of the use case must be described appropriately for the
mapping to be valid, and asks if drawing parallels between function points
and use case points may be misguided [Smi99].

3.5.2 Use Case Estimation and Lines of Code

John Smith of Rational Software describes a method presenting a frame-
work for estimation based on use cases translated into lines of code [Smi99].

28 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

There does not seem to be any more research done on this method, al-
though the tool ’Estimate Professional’, which is supplied by the Software
Productivity Center Inc, and the tool ’CostXpert’ from Marotz Inc. produce
estimates of effort per use case calculated from the number of lines of
code.

3.5.3 Use Cases and Function Points

David Longstreet of Software Metrics observed that applying function points
helps to determine if the use case is written at a suitable level of detail
[Lon01]. If it is possible to describe how data passes from the actor to in-
side the boundary or how data flows from inside the application boundary
to the actor, then that is the right level of detail, otherwise the use case
needs more detail. By adopting both the use case method and the function
points method, the quality of the requirement documents can be improved.
Thus, sizing and estimating is improved.

3.5.4 The COSMIC-FFP Approach

Over the last 15 years or so, advances have been made towards a general
Functional Size Measurement (FSM) method for measuring real-time soft-
ware. Recently, the COSMIC FFP (Full Function Points) method has been
developed as an improvement of the earlier function point methods. It
is designed to work for both business applications and real-time software
[Rul01].

When sizing software using the traditional function point methods, it is
possible to measure only the functionality as seen by the human end-user.
The large amounts of functionality that must be developed in today’s ad-
vanced software systems are invisible to the users and cannot be measured
by these methods. Using the traditional methods may correctly size the
functionality seen by the user, but grossly undersize the total functionality
that actually has to be developed.

The Full Function Points (FFP) methodology is a functional size meas-
urement technique specifically designed to address the requirements of
embedded and real-time software. The FFP methodology is based on a ’unit
of software delivered’ metric called the FFP point, which is a measure of
the functional size of the software. The total FFP points of an application
being measured is called an FFP count.

Functional user requirements are decomposed into ‘functional processes’
which in turn can be decomposed into ‘functional sub-processes’. The func-
tional processes are equivalent to the MKII logical functions and also to use
cases. The method can therefore be used to size object-oriented software.
The method does not take into account the effect on size of technical or
quality requirements. These are measured separately [Ser01].

3.5.5 Experience from Industry 1

At the end of 1993, Martin Arnold and Peter Pedross developed a use case
point method inspired by Karner for a major Swiss Banking Institute. The

3.6. THE UNIFIED MODELING LANGUAGE 29

purpose was to measure the size of large-scale software systems based on
requirements specifications. Although they used the same name as Karner
did, the concept was new. In this method, use case points are compared
directly to function points, and the function points method is used to cal-
ibrate the use case points method.

The quality of requirements documents and the measured use case
points were analyzed in order to test and calibrate the use case point
method. The analysis showed that requirements specifications with use
cases and scenarios can be used to measure the size of a software system,
and that measurement can normally be done in a couple of hours [AP98].

3.5.6 Experience from Industry 2

The work of Bente Anda et al. [ADJS01] shows that the use case points
method computes fairly accurate estimates for projects from a specific
company where the method was tried on historical project data. The method
was used on three projects similar in size and functionality. In order to es-
tablish the general usefulness of the method, the authors state that it must
be tried out on different projects in different companies. I have used data
from the three projects in question to investigate certain aspects of the
method. The results are presented in Chapter 7.

3.6 The Unified Modeling Language

The Unified Modeling Language is used for analysis and design of object-
oriented software. The language is based on earlier modeling languages
like the Object modeling Technique (OMT), and Object-Oriented Software
Engineering (OOSE) [JCO92]. The UML has been used to model all the pro-
jects studied in this thesis, but with a varying degree of detail. I have used
the various UML diagrams in the project documentation for data collection.
I will therefore give a brief description of UML and the different diagrams.

In Object-oriented analysis and design (OOAD), use cases describe the
functional requirements. The use case diagram has been incorporated into
the UML standard and is therefore part of the UML notation. The UML
standard does not discuss the content or writing of a use case. One may
therefore be led to think that use cases are a graphical, not a textual, con-
struction [Coc00].

Using UML, the developer can construct the following views of a system
through the use of diagrams:

• The functional view describes the basic functional requirements of
the system. Use case diagrams depict a static functional view and
their static relationships. Activity diagrams depict a dynamic func-
tional view, and are used to show activities, work flows, conditional
processing and how work in general is done in the organisation.

• The static structural view defines the static structure of the system
and is represented by class diagrams and object diagrams.

30 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

Start

End

Processing request

Delete AddView

Figure 3.5: A state diagram

• The behavioural view describes the temporal behaviour of the sys-
tem using interaction diagrams like collaboration diagrams and se-
quence diagrams to depict sequences of interactions between objects
in different scenarios.

The UML specifications states:

A use case is a kind of classifier representing a coherent unit of func-
tionality provided by a system, a subsystem, or a class as manifested by
sequences of messages exchanged among the system and one or more out-
side interactors (called actors) together with actions performed by the sys-
tem. The behavior of a use case can be described in several different ways,
depending on what is convenient: often plain text is used, but state ma-
chines, operations, and methods are examples of other ways of describing
the behavior of the use case. A use case diagram is shown in Figure 3.1 on
page 17.

A state diagram is used to show how an element, usually a class, changes
state over time, and the allowable transitions and conditions for transition.
Statechart diagrams represent the behavior of entities capable of dynamic
behavior by specifying its response to the receipt of event instances. Typ-
ically, this diagram is used for describing the behavior of classes, but a
statechart may also describe the behavior of other model entities such as
use-cases, actors, subsystems, operations, or methods. A state diagram is
shown in Figure 3.5.

An activity diagram is a special case of a state diagram in which all of
the states are action or sub activity states and in which all of the transitions
are triggered by completion of the actions or sub activities in the source
states. An activity diagram is shown in Figure 3.6.

A class diagram is a graph of classifier elements connected by their vari-

3.6. THE UNIFIED MODELING LANGUAGE 31

Data not OK

Transfer data

Check log

Check consistency

Find and
correct error

Fid and
correct error

Transfer not OK

Figure 3.6: An activity diagram

32 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

Registration

TimePeriod

TimeList

Week

TimeAccount

1

1

1*1*

1*

*

1

string:ProjectAccountID

date:Date
int:WeekNo
time:Start
time:End

string:Employee

int:WeekNO
date:StartDate
date:EndDate
bool:Finalized

int:VacatiobDaysUsed
int:VacationDaysLeft
int:TimeUsed
int:TimeLeft

Figure 3.7: A class diagram

ous static relationships. Note that a diagram may also contain interfaces,
packages, relationships, and even instances, such as objects and links. A
simple class diagram for the hour registration system described by the use
case model in Figure is 3.1 on page 17 is shown in Figure 3.7.

An interaction defined in the context of a collaboration specifies the de-
tails of the communications that should take place in accomplishing a par-
ticular task. A communication is specified with a message, which defines
the roles of the sender and the receiver instances, as well as the action that
will cause the communication. The order of the communications is also
specified by the Interaction.

A sequence diagram presents an interaction, which is a set of Messages
between classifier roles within a collaboration to effect a desired operation
or result [Spe01]. A simple sequence diagram is shown in Figure 3.8.

For the work done on this thesis, use case models, their textual descrip-
tions, activity diagrams, class diagrams and sequence diagrams have been
used.

3.6.1 Using Sequence Diagrams to Assign Complexity

When there are no detailed use cases, use case complexity can be assigned
by counting transactions from the sequence diagrams. Sequence diagrams
belong to the behavioural view according to the UML standard. They are at
a lower level of detail than the use cases, and one must therefore be careful
not to count too many transactions. Only the actual behaviour: ’what’ to
do, not’ how’ to do it, must be counted.

In order to find out how to count transactions in the sequence diagrams
without counting too many, subsystem number 3 in Case study B was stud-
ied in detail. See Section 5.2. This was the only system that had detailed

3.6. THE UNIFIED MODELING LANGUAGE 33

Customer

ManageTrade Trade TradeData

DeleteTrade
DeleteTrade

cacelTrade

handleTrade

Figure 3.8: A sequence diagram

use case descriptions as well as sequence diagrams. In order to verify that
use case transaction steps were written correctly, I compared the number
of use case steps to the number of transactions found in the sequence dia-
grams. By omitting transactions in the sequence diagrams that were at too
low a level of functional detail, describing ’how to do’ things, not ’what to
do’ , as well as omitting the ’logging on’ procedures that were the same in
all the sequence diagrams for this subsystem, I arrived at a number that
was comparable to the number of use case steps. In this manner, I also
verified that the way I counted transactions from the sequence diagrams
was reliable.

34 CHAPTER 3. USE CASES AND USE CASE ESTIMATION

Chapter 4

Research Methods

In this chapter, the methods used in the work on the thesis are described.
These methods include preliminary literature studies, case studies, inter-
views and feature analysis of methods and tools. Section 4.1 describes
preliminary work. Section 4.2 describes the interviews I conducted with
the team members of the projects of the case studies, and on the student’s
projects. Section 4.2 describes the case studies, and Section 4.3 explains
the use of feature analysis.

4.1 Preliminary work

• The literature studies have covered measurement theory, process im-
provement, estimation techniques, function point analysis, use case
point counts.

• Learning to use the methods and tools has been part of the prelim-
inary studies. The use case points method is easy to learn, and the
counts are entered into a spreadsheet which then computes the es-
timates. I selected two cost estimation tools to study. The tools have
been used to compute estimates of the projects in the case studies,
and the students’ projects.

4.2 Case Studies

Case studies are a standard method of empirical studies in various ’soft’
sciences such as sociology, medicine and psychology. Case studies usu-
ally look at a typical project, and are used to evaluate different methods
and tools and select the one that best fits the needs of a specific company
[KLD97].

I have conducted two case studies in a major software company in Nor-
way. I started this work in April 2001, and finished in November 2001. The
first decision when undertaking a case study is to determine what you want
to know or investigate. [KP98]. The software company was interested in ob-
taining a cost estimation method or tool. In a case study, ideally only one

35

36 CHAPTER 4. RESEARCH METHODS

method or tool should be used per project, in order to study the effects of
using the specific method or tool [KJ97]. But since I needed to investigate
many aspects of the method and tools, I used the method and the tools on
all the projects, including the students’ projects.

I conducted a feature analysis with case studies to decide which method
or tool would be the most appropriate for this specific company. I also
compared the estimates obtained with the use case points method on the
projects in the case studies with the results of the research described by
Bente Anda et al. [ADJS01], in order to investigate the general usefulness
of the method, and the effect of discarding the technical value adjustment
factor as a contributor to software size. During this process, I uncovered
certain weaknesses inherent in the method. I have therefore proposed an
extension of the method which provides simpler counting rules. This ex-
tension is presented in Chapter 9.

4.2.1 Feature Analysis

In order to select an appropriate method or tool for the software company,
qualitative case studies were conducted.

A qualitative case study is a feature-based evaluation of methods and
tools performed by staff who have used the method or tool on a real pro-
ject [KLD97]. Qualitative evaluation aims at establishing method/tool ap-
propriateness: how well a method or tool fits the needs of an organization
[KLD97]. This type of analysis is referred to as a feature analysis, and the
evaluation as a qualitative or subjective evaluation.

In a feature analysis, there are four major roles. Some of them may be
performed by the same person [KJ97]:

• The sponsor is the person who wants to know what purchasing de-
cision to make, given a requirement for investment in some techno-
logy

• The evaluator(s) is the person or team responsible for running the
evaluation exercise

• The technology user(s) are the people who will use the method/tool
chosen

• The method/tool assessors are the people who will score each feature
for the candidate methods and tools. The method/tool assessor can
be the evaluator or current users of the method or tool

The responsibility of the evaluator is to select the method and tools to
be investigated, decide which features to investigate, organise the assess-
ments whereby each of the methods or tools is scored, analyze the scores
and prepare the evaluation report. The responsibility of the assessor is
to assign scores to the different features. The responsibility of the spon-
sor is to provide the funds, and receive and act on the evaluation report.
Defining how evaluations are to be carried out include how the candidate
method/tools will be identified, how the feature-sets and criteria of rejec-
tion or acceptability will be derived, how the results will be arrived at and
presented, and how the evaluations are to be organised [KJ97].

4.3. INTERVIEWS 37

After a a set of methods and tools have been assessed, the scores are
analyzed and it is determined which method or tool is best suited to the
needs of the organisation.

4.3 Interviews

Interviews can be formal, semi-formal or informal. Informal interviews are
like ordinary conversations. I used interviews both in the case studies and
when studying the students’ projects.

4.3.1 The Case Studies

Semi-formal interviews were conducted with the project manager and the
supervisor in Case Study A, and the mentor and the project manager in
Case Study B. The reason for conducting the interviews was to gather in-
formation and data that could not be found in the project documents or the
use case models. Some of the interviews were ordinary conversations. The
interviews were conducted face to face and by telephone. The results of
the interviews are presented in Sections 5.1.2 and 5.2.2, ’Data Collection’.

After a brief explanation of the use case points method, I asked general
questions about the projects, the choice of technology and the teams, and
specific questions about the actors and the technical and environmental
factors.

The general questions were the following:

• What is your role on the team?

• What sort of system is this?

• How many members are there on the development team?

• What sort of programming experience do the team members have?

• Are the team members familiar with object-oriented analysis and design?

• What was the starting date of the project?

• When is the deadline for the project?

• How was the project estimated?

The specific questions were asked in order to achieve the values for the
technical and environmental factors, using the Tables 3.1 and 3.2. The val-
ues were defined on a scale from 0 to 5. Some of the factors were unclear,
and had to be specified through discussions about the meanings of each
factor.

In Case Study A, the interview with the supervisor was conducted as an
informal conversation. The interview lasted for half an hour. I asked her
about the number of use cases and their size and complexity. She counted
the use cases from the use case model as I watched her. While we were
talking, I took notes of the conversation.

38 CHAPTER 4. RESEARCH METHODS

I conducted two interviews with the project manager. They both lasted
one hour. In the course of the first interview, the values for the technical
and environmental factors were defined. The second interview established
which features should be investigated in the feature analysis described in
Chapter 8.

Setting scores for the technical and environmental factors was an iter-
ative process. The project manager first assigned values to the specific
factors. Later, he asked the advice of two leading developers, who re-
fined the values. The project manager then decided that the environmental
factors had been set too high, and made some adjustments.

In Case Study B, the interview with the mentor was both a semi-structured
interview and an informal conversation, and lasted for one and a half hours.
I had a short conversation with the project manager after interviewing the
mentor, and asked how estimation had been done. One interview was con-
ducted on the telephone with the project manager. I asked him about the
estimation process, and about the estimates for each subsystem, also how
many members there were on each team.

The results of these interviews, and the data collected for input to the
method and tools are presented in Chapter 6, Sections 6.1 (Case study A)
and 6.2, (Case study B).

4.3.2 The Students’ Projects

Students’ projects from a course in Software Engineering at the Univer-
sity of Oslo have also been studied in order to try out the use case points
method on several more projects. These projects were small and not very
complex, and the data were somewhat unreliable. Still, the results are use-
ful for studying use case writing, and as a basis for defining guidelines for
writing use cases.

I selected 10 projects to study. Most of the project data was collected
from the project documents. However, I needed the values for the tech-
nical and environmental factors, and conducted semi-structured interviews
with one student from each project group. Each interview lasted about 20
minutes.

The questions were the following:

• What sort of system is this?

• What is your role on the team?

• How many members are there on the development team?

• What sort of programming experience do the team members have?

• How did you organize work on the different tasks?

• How many team members did the programming work?

• How did you estimate effort?

• How did you register actual effort?

4.4. ANALYSIS 39

• Did you deliver all the modeled functionality?

The Tables 3.1 and 3.2 were used for setting scores for the technical
and environmental factors. The students assigned the values. There was
much insecurity here. Setting these factors requires some experience from
past projects [SW98]. The final value were obtained through discussions
between the students and the author.

The results of the interviews are presented in Section 6.1.2, ’Data Col-
lection’.

4.4 Analysis

In the feature analysis, I used qualitative evaluation of method and tools
order to select the most appropriate method or tool for use in the spe-
cific software company. I have applied the case study approach, using the
method and the tools to compute estimates of both projects in Case Stud-
ies A and B. These projects were typical of the projects undertaken by the
software company.

All the estimates for a project were compared to the expert estimate
and the actual effort spent on the project. The results were used to find
the estimation accuracy of the method or tool by using the ’Symmetrical
Relative Error’ [MJ01] as a measure of accuracy. The results were used as
input to the Evaluation Profiles of the tools.

The software company wanted an estimation method or tool that com-
puted accurate estimates and was easy to learn and use. The project man-
ager of Case Study A was the sponsor and initiator of the feature analysis,
and provided the funds for the study. I have played the part of both the
evaluator and the assessor. The technology users were the people in the
software company who would use the selected method or tool. I chose the
features to be investigated after interviewing the project manager of the
project in Case Study A. I also set the scores for each feature. The results
are presented in Chapter 8.

40 CHAPTER 4. RESEARCH METHODS

Chapter 5

Industrial Case Studies

In this chapter, I present two case studies which I conducted in a soft-
ware company in order to investigate various aspects of the use case points
method. Case Study A is described in Section 5.2, and Case Study B in Sec-
tion 5.3.

My task was also to select an estimation method or tool that would
be appropriate for the needs of the software company in question. The
tools ’Optimize’ and ’Enterprise Architect’ described in Section 2.3, and the
use case points method described in Section 3.2 were used to compute
estimates of the development projects. The results of the method and tool
evaluation are presented in Chapter 8.

5.1 Background

The two Case Studies A and B were conducted in a local branch of a major
European software company, situated in Norway. The goal of the studies
was to add to existing experience with the use case points method, to de-
termine the appropriate level of detail in use cases written for estimation
purposes, and to investigate if the Technical Complexity Factor TCF) can be
dropped in the use case points method.

The software company in question wished to select a cost estimation
method or tool suited to their specific needs. I was therefore given access
to project data from two projects. Software development in the organisa-
tion is now mainly object-oriented, and the Rational Unified Process (RUP)
is used in many development projects. It was therefore natural for the or-
ganisation to consider adopting a use case-driven approach to estimation.

The local branch of the company has a total of 600 employees. Among
the main areas of business are Internet Application Development, Cus-
tomer Relationship Management (CRM), and Extended Enterprise Applic-
ations (ERP). The department where the case studies were conducted uses
UML and RUP in their development projects. There is a lack of methodolo-
gical support in the estimation process, and estimates are based on expert
knowledge and successive calculation. Successive calculation is a bottom-
up approach to cost estimation. The principle is to control and reduce

41

42 CHAPTER 5. INDUSTRIAL CASE STUDIES

uncertainties in estimates by splitting up development tasks into smaller
tasks and estimating each task separately.

The projects in the two Case Studies A and B differed in many ways.
In Case Study A, there were no textual use case descriptions, and I there-
fore found it necessary to search for approaches to sizing that extended
the original use case points method. In Case Study B, some of the use case
descriptions were lacking in detail, and sequence diagrams had to be used
for counting transactions and defining complexity. Both projects are prob-
ably typical of much of today’s software development, where not enough
attention is given to writing fully dressed use case descriptions. Estimat-
ing effort therefore becomes more complex than when the use cases are
written at an appropriate level of detail.

5.1.1 Information Meetings

Before I commenced my investigations in the software company, I was in-
vited to a meeting with the project manager and supervisor of the devel-
opment team in Case Study A, and two senior consultants. I explained the
use case points method and that I needed data from real projects for my
investigations. It was decided that I could have access to data from two pro-
jects, one that was finished, and one that was in the starting phase.After
having received all the necessary documentation, I computed estimates of
the projects. The data collection is described in Section 5.2.2.

A second meeting was held with the same participants where I presen-
ted the estimation results of Project A. Actual effort had not been revealed
before I made the estimates, in order to avoid biases and effects of an-
choring and adjustment - the insufficient adjustment up or down from an
original starting value, or ’anchor’ [Plo93]. The results shows that the es-
timates obtained with the use case points method were very close to actual
effort. The project manager had underestimated the project, and to him,
the results of estimates produced with the use case points method were
very inspiring. He therefore applied for financial funds for a small project
that was to further investigate the results of applying the use case points
method to project data, and comparing these to estimates produced with
the two commercial tools.

After the investigations were finished, I was again present at a meet-
ing that involved a group studying the use of object-oriented analysis and
design in the company. I presented the results of my investigations and the
feature analysis described in Chapter 8. The use case points method had
performed very well, and was accepted as an estimation method to be stud-
ied in further detail in the development department where the case studies
had been conducted.

5.2 Case Study A

5.2.1 Context

The developed software was an Internet application for a major bank in
Norway. The purpose of the software solution was to improve communic-

5.2. CASE STUDY A 43

Phase Estimate in hours Actual effort in hours
1 3950 4971
2 3820 5072
Total 7770 10043

Table 5.1: Estimates of the 2 Phases in Project A

ation between customers and their contacts by enabling users to upload
news, download documents and view current activities.

The development team consisted of five programmers and one technical
supervisor who was responsible for analysis and testing. The application
was built using a standard three-layer model with a presentation layer, ap-
plication layer and a database layer, with Java2Enterprise on the application
side. The development tools used were Websphere from IBM, and Dynamo
from ATG. The project started on October 1st 2000, and finished on May
24th 2001. Early estimates were made using successive calculation. These
estimates and the actual effort spent on the project were not revealed until
the estimates produced by the use case points method and the tools were
presented, in order to avoid biased results.

The project was divided into two phases. Phase 1 was concerned with
requirements specification and technical issues, and was supposed to start
in August 2000. However, it was delayed, and started on October 1st 2000.
Actual staff hours spent on this phase were 4971. The preliminary estimate
was 3950 staff hours. Phase 2 was the development phase. Actual staff
hours spent on the project were 5072, and the preliminary estimate was
calculated to 3820 staff hours.

These Figures are shown in Table 5.1. The project was grossly underes-
timated.

The application was developed in accordance with the client’s new e-
infrastructure. It soon became clear that the infrastructure was neither
ready nor well documented, so much time was spent trying to find out de-
tails. Phase 1 therefore did not start until the beginning of October 2000.
The original development plan, which was written at the end of August, was
based on an incremental development method; IAD (Incremental Applica-
tion Development) with two-week cycles. Owing to uncertainties concern-
ing the framework, Phase 1 was not conducted in accordance with the IAD
method or the planned schedule. The team had little experience with Java,
two of the developers were novices, and the selected development techno-
logy was unknown to the whole team, so the time schedule turned out to
be unrealistic. In Phase 2 the IAD method was used, and development pro-
ceeded according to the project plan. The activity breakdown is shown in
Table 5.2.

5.2.2 Data Collection

This project was finished when the investigations started. Interviews were
conducted with the project manager to establish the values of the technical
and environmental factors, and with the supervisor to obtain the use case

44 CHAPTER 5. INDUSTRIAL CASE STUDIES

Activity Percentage Staff hours
Programming 58 5831
Testing 22 2230
Data capture 5 493
Project Management 11 1.100
Planning 4 389
SUM 100 10043

Table 5.2: Breakdown into Activities of Project A

models and class models, and define use case and class complexity. The
supervisor had three years of experience with UML and use case modeling.

The documentation that was made available to me were project plans,
use case models, class diagrams, technical reports and the evaluation re-
port. The use case model did not have extending and included use cases.
The reason for this choice of design was to make the model more under-
standable to the customer. Unfortunately, there were no textual use case
descriptions to be found in the use case model, and no use case documents.
There were also no sequence diagrams. The team had made the use case
model with stick figures and ellipses, and started coding right away.

The supervisor was responsible for the analysis phase, and for testing.
Since the use cases did not have textual descriptions, I asked her how she
would define use case complexity. She decided that the amount of reuse
of code in each use case was a measure of the amount of work needed to
be done. Reuse implies less programming effort. She therefore assigned
complexity by using degree of reuse as a complexity measure:

• A simple use case has extended reuse of code,

• a medium use case has some reuse of code, and

• a complex use case has no reuse of code.

Looking back on this process, I concluded that complexity could also
have be assigned in the way described in the tool ’Optimize’. This approach
is to consider the amount of use case description which would have to
be written to document the specific business activity. See Section 4.1.1.
The supervisor could also have used the approach proposed for signing
complexity in the tool ’Enterprise Architect’, where amount of work coupled
with how many database entities are involved is a complexity measure.
See Section 4.2. However, none of these approaches are as prescribed by
Karner, so they are really variations of sizing in the use case points method.

A question is whether the supervisor decided complexity on the grounds
of the source code. If this had been the approach, applying the use case
points method would have little meaning, as estimates should be made
at the beginning of a project with the aid of the use case model. But as
pointed out by Bente Anda et al., the source code can be used to verify that
use case complexity is assigned correctly, by comparing the size of each use
case with the number of classes or lines of code necessary to implement it
[ADJS01]. I did not, however, use this approach in this case.

5.2. CASE STUDY A 45

Factor Description Value Reason
T1 Distributed System 5 Yes
T2 Response adjectives 4 Response time is important
T3 End-user efficiency 5 Must be efficient
T4 Complex processing 3 Average complexity
T5 Reusable code 3 Some reuse planned
T6 Easy to install 4 Customer requirement
T7 Easy to use 4 Customer requirement
T8 Portable 0 No issue
T9 Easy to change 4 Changes will be made
T10 Concurrent 4 Interfacing with other systems
T11 Security features 3 Average
T12 Access for third parties 1 Not important
T13 Special training required 3 Some training needed

Table 5.3: Evaluation of the Technical Factors in Project A

Asking the supervisor how she had assigned complexity revealed that
although she knew the source code, she stated that she had based her de-
cisions on her knowledge of the amount of functionality in each use case
coupled with her experience of how much work had to be done to imple-
ment it. This was the approach she would have used if she had been as-
signed the task of sizing the use cases at the beginning of the project. I
decided that the method applied by the supervisor for assigning use case
complexity may be used as a general approach when the use cases have
little or no textual descriptions.

The technical and environmental factors were set by the project man-
ager with the aid of two senior developers. Some of the technical factors
were unclear. Factor T10 ’Concurrent’, presented a certain difficulty. This
could for instance mean parallel processing, parallel programming, or whe-
ther the system is stand-alone or interfaces with several more applications.
There are no guidelines in the use case points method explaining exactly
what this factor is supposed to measure. The project manager decided that
in this case it meant interfacing with other systems, and gave the factor a
high score. The reasons given for setting the technical factors are shown in
Table 5.3.

The second interview with the project manager lasted one hour and
consisted of an informal talk of the results obtained so far, and a short
interview about the preliminary estimation process. We established that
the use case points method should be used without the technical complex-
ity values, because of the difficulties with the counting rules, and because
estimates produced without the technical complexity factor are not very
different from estimates with the technical complexity factor. This talk
also established the features to be investigated in the feature analysis. See
Chapter 8.

46 CHAPTER 5. INDUSTRIAL CASE STUDIES

5.2.3 Setting the Values for the Environmental Factors

The project manager set the factors based on the following reflections:

1. F1: Familiar with Development Process

The team members were not very familiar with RUP, but used a differ-
ent development process, IAD, Incremental Application Development.
IAD was known to the team. Score 3.

2. F2: Application experience

The technology used was new to most of the team members, but they
all had some application experience. Score 3.

3. F3: Object-oriented experience

Most of the team had experience with object-oriented analysis and
design. The supervisor who was responsible for analysis knew Ra-
tional Rose. Score 3.

4. F4: Lead analyst capability

The lead analyst was in this case the supervisor who had 3 years of
experience with UML modeling. Score 4.

5. F5: Motivation

After the initial period with unstable requirements, motivation was
high. Score was set to 4.

6. F6: Stable requirements

The requirements were unstable due to the insecurities on the cus-
tomer’s side. Score 2.

7. F7: Part-time workers

This was not an issue, as there were no part time workers. Score 0.

8. F8: Difficult programming language

The team had little experience with Java, two of the developers were
novices. However, they had general programming experience. Score
3.

These reflections and the scores are shown in Table 5.4.

5.2.4 The Estimates

The technical complexity factor, TCF, and the environmental factor, EF, are
computed in the following manner:

TCF = 0.6 + (0.01*44) = 1.04
EF = 1.4 + (-0.03*16)= 0.92

5.2. CASE STUDY A 47

Factor Description Value Reason
F1 Familiar with IAD 3 Average experience
F2 Application experience 3 Average experience
F3 Object-oriented experience 3 Average experience
F4 Lead analyst capability 4 3 years of experience
F5 Motivation 4 Highly motivated
F6 Stable requirements 2 Quite unstable
F7 Part-time workers 0 No issue
F8 Difficult programming language 3 Average experienced team

Table 5.4: Evaluation of the Environmental Factors in Project A

Factor Description Weight Value Weighted value
T1 Distributed System 2 5 10
T2 Response adjectives 1 4 4
T3 End-user efficiency 1 5 5
T4 Complex processing 1 3 3
T5 Reusable code 1 3 3
T6 Easy to install 0.5 4 2
T7 Easy to use 0.5 4 2
T8 Portable 2 0 0
T9 Easy to change 1 4 4
T10 Concurrent 1 4 4
T11 Security features 1 3 3
T12 Access for third parties 1 1 1
T13 Special training required 1 3 3
TFactor 44

Table 5.5: Technical Factors in Project A

Factor Description Weight Value Weighted value
F1 Familiar with RUP 1.5 3 4.5
F2 Application experience 0.5 3 1.5
F3 Object-oriented experience 1 3 3
F4 Lead analyst capability 0.5 4 2
F5 Motivation 1 4 4
F6 Stable requirements 2 2 4
F7 Part-time workers -1 0 0
F8 Difficult programming language -1 3 -3
EFactor 16

Table 5.6: Environmental Factors in Project A

48 CHAPTER 5. INDUSTRIAL CASE STUDIES

Effort Expert estimate With TFC Without TCF Optimize EA
10043 7770 10831 10414 10856 10831

Table 5.7: All estimates for Project A

I made four estimates: two with the use case points method in a spread-
sheet, with and without the technical complexity factor, one with the tool
’Enterprise Architect’, and one with the tool ’Optimize’. The estimates are
shown in Table 5.7. ’Effort’ means actual effort spent on the project, ’With
TCF’ is the estimate made with the use case points method with the tech-
nical complexity factor, without TCF is the use case points method without
the technical complexity factor, ’Optimize’ is the effort produced by the
tool ’Optimize’, and ’EA’ the estimate produced with the tool ’Enterprise
Architect’.

5.2.5 Estimate Produced with the Use Case Points Method

Actor complexity was defined according to Karner’s method. The two act-
ors were both people acting through a GUI. The following input values were
used:

2 complex actors, 18 simple, 41 medium and 4 complex use cases.

The UUCP are the unadjusted use case points obtained from adding
the unadjusted actor weights, UAW, and the unadjusted use case weights
UUCW:

UUCP = 2*3 + 18*5 + 41*10 + 4*15 = 566

The adjusted use case points were worked out:

UCP = UUCP*TCF*EF = 566*1.04*0.92 = 541.54 = 542

The UCP were multiplied by staff hours per use case point, which in
this case is 20, owing to team experience and stability expressed in the
environmental factors. See section 3.3. This yielded an estimate of 10831
hours.

The results of the estimation process are shown in Table 5.7.

5.2.6 Omitting the Technical Complexity Factor

An estimate was also produced omitting the TCF. The UCP were calculated
in the following manner:

UCP = UUCP*EF = 566*0.92 = 520.72

Multiplying this figure with 20 staff hours per use case point yielded a total
effort of 10414 staff hours. The difference between this estimate and the
estimate made with the TCF was 417 hours, and the estimate without the
TCF was closer to the actual effort of 10043 hours.

5.2. CASE STUDY A 49

5.2.7 Estimate produced by ’Optimize:

For computing estimates with the tool ’Optimize’, the number of analysis
classes are needed as well as the number of use cases and their complexity.
I applied the use case complexity that had been defined by the supervisor.
There were therefore 18 simple, 41 medium and 4 complex use cases.

Unfortunately, there is no proven relationship between number of use
cases and number of classes, so it is important to spend time during ana-
lysis finding the classes that implement the functionality described in the
use cases [Fac]. There was no business concept model or analysis model, so
the supervisor provided all the class models and a high level class diagram
of the Enterprise Java Beans (EJB). The application had 16 session beans,
and I decided to use these as input to the tool, because they implemented
the functionality described in the use cases. I used the default value ’me-
dium’ for describing complexity, as there was no information about class
size and complexity at this stage.

The estimate yielded a total effort of 5536 staff hours. This is about half
of the estimate obtained with the use case points method. However, there
is no activity called ’Project management’ in the breakdown into specific
activities. Including this activity in the estimate would have increased the
total number of staff hours.

The project manager would have liked a tool functionality mapping the
development hours back to specific use cases, in order to see the amount a
work connected with a specific use case.

5.2.8 Estimate Produced by ’Enterprise Architect’

Because input to the estimation function in the tool is the same as in the
use case points method, estimates produced with ’Enterprise Architect’ are
the same as those produced with the use case points method when the
effort per use case point is set to 20 staff hours: 10831 staff hours. See
Table 5.7. Staff hours per use case point must be defined for each specific
project. I have therefore used the same value as in the use case points
method.

5.2.9 Comparing the Estimates

Karner’s method produces an estimate of 10831 hours. Actual effort spent
on the project was 10043 hours. However, omitting the technical com-
plexity factors produces an estimate of 10414 hours, which is closer to
the actual effort. The tool ’Optimize’ produces an estimate of 5536 hours,
which is roughly half of the estimate produced using Karner’s method. One
of the reasons is that project management was not included as an activity.
Another reason may be that the number of classes that implement the use
cases is incorrect. When I discussed this issue with the supervisor, we
agreed to count session beans, without knowing whether they actually im-
plement all the functionality described in the use cases. In order to obtain
an estimate more in accordance with the estimate obtained using Karner’s
method, it is necessary to include all the 130 classes, defining the 35 sub-
classes as ’small’ in size with ’trivial’ complexity, and the rest of the classes

50 CHAPTER 5. INDUSTRIAL CASE STUDIES

as ’medium’ sized with ’medium’ complexity (tool default values), since
little is currently known about the actual values. These values produce an
estimate of 10856 staff hours.

However, this approach gives very biased results, as I already knew the
value for the estimate computed by the use case points method, and adjus-
ted the number of classes and their complexity to fit this value. Still, I did
use all the classes as input, not just a selection. Whether this result really
does indicate that all the design classes should be used as input, will have
to be verified by trying out the same approach on several more projects.

In the use case points method, effort per use case is 20 hours, because
the number of environmental factors in F1 through F6 that are above 3
added to the number of factors in F7 through F8 that are below 3 are 2.
Therefore, the estimates produced with the use case points method in a
spreadsheet are identical to the estimates produced by the tool ’Enterprise
Architect’, when effort is set to 20 hours per use case point.

Omitting the TCF results in an estimate closer to the actual effort. Also,
it is not very different from the estimate with the TCF. I conclude that
this indicates that the TCF does not improve estimates in general. All the
estimates are shown in Table 5.7.

5.3 Case Study B

5.3.1 Context

The application in question was a real-time system developed as part of a
large commercial system. A new system was to substitute the existing sys-
tem, and the development task was to build an application that interfaced
with existing internal systems. The application consisted of four subsys-
tems, and these subsystems were developed by separate teams. The teams
consisted of 3-4 members, and were composed of developers coming from
both the customer and the software company. The project started in Febru-
ary 2001, and the dead-line for development was supposed to be November
1st 2001.

The modeling tool was Rational Rose, the programming language C++
for UNIX, and the development process was RUP. An iterative development
approach was used. Programming started before all the design was fin-
ished. Team 4 started coding before analysis was completed, so the use
cases were not written in full detail.

The project manager had assigned the task of making estimates to the
team leaders of the separate teams. This decision was based on internal
knowledge of who was good at coming up with reliable figures. Estimates
were made using successive calculation.

The teams were supervised by a mentor, who had two and a half years of
experience with use case modeling, Rational Rose, and UML when the pro-
ject started. The mentor had been assigned the job on the project because
she had knowledge of UML and use case modeling. The teams had very
little or no experience with UML, so the role of the mentor was essential.
She worked on the project until the start of the design phase.

5.3. CASE STUDY B 51

The customer’s developers had no experience with use case modeling,
less programming experience than those who came from the software com-
pany, and no experience whatever with Rational Rose or RUP. The develo-
pers from the software company had some knowledge of object-oriented
modeling, but only one had experience with Rational Rose. Learning RUP
was one of the difficulties and frustrations the teams had to cope with.
They were unfamiliar with producing great amounts of documentation, and
wanted to get quickly down to programming. Learning Rational Rose was
comparatively simple. Programming in C++ on the UNIX platform was a
source of frustration to the teams, and also a potential risk, as the de-
velopers were unfamiliar with the tools and with UNIX.

This application was very different from the one in Case Study A, in
the respect that it consisted of four subsystems developed by four differ-
ent teams. Three of the subsystems were real-time systems, and system
security was crucial.

The software solution was technically complex. The application had to
interface with many existing internal systems. The mentor expressed a
wish to be able to account for more of this complexity by including some
factor to describe it. This shows that the technical complexity factor does
not account well enough for the complexity of today’s software systems,
and this is one of the weaknesses of the use case points method.

5.3.2 Data Collection

The UML models for all the subsystems were sent by e-mail from the mentor
on the project before I interviewed her. From these models I collected the
following data: use case diagrams, textual descriptions of use cases, class
diagrams, a few state transition diagrams and sequence diagrams. Tech-
nical and environmental complexity factors were set by the mentor in the
course of one interview. The project manager supplied all the estimates
after I had computed the first estimates, as I wished to avoid biased res-
ults.

Actor complexity and values for the technical and environmental factors
were assigned by the mentor, who knew the system and all the teams well
after working with them for several months.

The use cases had in part very technical textual descriptions. The actors
were mostly other systems, also very technically complex. According to the
mentor, one goal when modeling the use cases was to avoid special use
case documents, so all the use case documentation was written in the use
case model.

When assigning values to the technical factors, the mentor felt the need
for some factor to describe that the application was very technically com-
plex. Unfortunately, there are no ways to add to the lists of the technical
or environmental factors. Again, the factor T10 ’Concurrent’ presented a
problem. Since a factor was needed to describe that the four subsystems
processed data in parallel, and that it was a real-time solution, this factor
could be used. Multiple processors are used for real-time systems need-
ing a lot of computational performance. Often large amounts of data must
shift between data acquisition, data display, and processor boards. The

52 CHAPTER 5. INDUSTRIAL CASE STUDIES

Factor Description Value Reason
T1 Distributed System 0 No issue
T2 Response adjectives 5 Response time is crucial
T3 End-user efficiency 5 No ’bottle necks’ tolerated
T4 Complex processing 5 Very technically complex system
T5 Reusable code 3 Some reuse planned
T6 Easy to install 0 No issue
T7 Easy to use 0 No issue
T8 Portable 4 Planned portability
T9 Easy to change 4 Requirements will change
T10 Concurrent 4 Multiple processing
T11 Security features 5 Security is crucial
T12 Access for third parties 4 Must give access
T13 Special training required 0 No issue

Table 5.8: Evaluation of the Technical Factors in Project B

data must move quickly and efficiently [Rul01].
Considering these issues, the mentor decided that in this case, ’Concur-

rent’ meant multi-processing. The other technical factors were straightfor-
ward, and the mentor spent about 20 minutes assigning the values. The
reasons for assigning the specific values are given in Table 5.8.

The mentor also assigned values for the environmental factors, sharing
her reflections while I took notes. The scores and the reasons for each score
are shown in Table 5.9 on the next page. The following is an explanation of
the specific scores.

1. F1: Familiar with RUP

The team members were unfamiliar with RUP. They wanted to learn
more, but there was little time. The mentor had both knowledge and
experience, but this knowledge was difficult impart. The result was
that the teams used what they could of RUP. The score was set to 1.

2. F2: Application experience

Some of the technology used was new to most of the teams, but they
all had extensive application experience. Score 4.

3. F3: Object-oriented experience

Only one person on all the teams apart from the mentor had experi-
ence with Rational Rose. This could have been a potential problem. As
it turned out, learning the tool and modeling use cases went smoothly.
Score 3.

4. F4: Lead analyst capability

The mentor evaluated her own capability. She had two and a half
years of experience with object-oriented analysis and design, and set
the score to 4.

5.3. CASE STUDY B 53

Factor Description Value Reason
F1 Familiar with RUP 1 Unexperienced teams
F2 Application experience 4 Average experience
F3 Object-oriented experience 3 Average experience
F4 Lead analyst capability 4 Experience from several projects
F5 Motivation 4 Highly motivated
F6 Stable requirements 4 Yes
F7 Part-time workers 0 No issue
F8 Difficult programming language 3 C++ for UNIX

Table 5.9: Evaluation of the Environmental Factors in Project B

5. F5: Motivation

After a period of resistance to using a new development method (RUP),
which the teams characterized as ’office work only’, things went smoo-
ther and the teams settled down to work, and were now doing very
well. Motivation was therefore high, although it was not so in the
beginning. Score was set to 4.

6. F6: Stable requirements

The requirements phases lasted several months, and there were no
changes up to the the moment when scores for the environmental
factors were set. All the teams wrote requirements in collaboration
with the customer. However, some major changes were expected. The
score was therefore set to 4.

7. F7: Part-time workers

This was not an issue, as there were no part time workers. But one
problem was for all the developers to get time off from their daily
tasks to participate on the projects, so the number of team members
could vary somewhat from time to time. Score 0.

8. F8: Difficult programming language

The development language was C++ for UNIX. This was seen as a po-
tential risk at the beginning of the project. However, the developers
grew comfortable with the programming environment after a while.
Score 3.

The four subsystems and the teams were different in some respects, and
I had expected that the technical factors would vary somewhat. However,
when going through the details, the mentor assigned the same technical
factors to all the subsystems. The environmental factors were the same for
all teams, as the level of experience was the same. This factor demands
that the team must be seen as a whole, even if one or several team member
are more experienced than the others.

54 CHAPTER 5. INDUSTRIAL CASE STUDIES

Factor Description Weight Value Weighted value
T1 Distributed System 2 0 0
T2 Response adjectives 1 5 5
T3 End-user efficiency 1 5 5
T4 Complex processing 1 5 5
T5 Reusable code 1 3 3
T6 Easy to install 0.5 0 0
T7 Easy to use 0.5 0 0
T8 Portable 2 4 8
T9 Easy to change 1 4 4
T10 Concurrent 1 4 4
T11 Security features 1 5 5
T12 Access for third parties 1 4 4
T13 Special training required 1 0 0
TFactor 43

Table 5.10: Technical Complexity Factors in Project B

5.3.3 Input to the Use Case Points Method and the Tools

I counted all the use cases and defined use case complexity for each system
separately. Complexity was assigned by counting either use case transac-
tions, transactions from sequence diagrams or implementing classes. The
approach for each subsystem is described below, and is dependent on the
level of textual detail in the use cases. Actor complexity was assigned by
the mentor. The value for the actors and use cases were used as input to
the use case points method, together with the values for the technical com-
plexity and environmental factors. I used an Excel spreadsheet to compute
the estimates.

The same input was used in the tool ’Enterprise Architect.’ Since ’En-
terprise Architect’ is primarily a UML CASE-modeling tool, I had to enter
all the use cases into the Use Case view of the analysis phase, which was
rather tedious work. I then set the values for the technical and environ-
mental factors, and the default value for staff effort per use case point to
28, to be in accordance with the value in the use case points method.

Input to the tool ’Optimize’ was the number of use cases and their com-
plexity, and the number of classes. I decided that there was no need to
count complexity twice, even though the approach to defining use case
complexity is slightly different than in the use cases points method. Classes
are also defined by their size, which ranges from ’tiny’ to ’huge’ on an or-
dinal scale of five steps. I decided that if use case complexity was ’simple’,
I would set size to ’small’. Similarly, if use case complexity was ’medium’,
size would be ’medium’, and if use case complexity was ’complex’, size
would be ’large’. I based this decision on the fact that I did not have enough
information on the classes to differentiate this more. Besides, ideally the
estimate should be computed using analysis classes, not design classes.

5.3. CASE STUDY B 55

Factor Description Weight Value Weighted value
F1 Familiar with RUP 1.5 1 1.5
F2 Application experience 0.5 4 2
F3 Object-oriented experience 1 3 3
F4 Lead analyst capability 0.5 4 2
F5 Motivation 1 4 4
F6 Stable requirements 2 4 8
F7 Part-time workers -1 0 0
F8 Difficult programming language -1 3 -3
EFactor 17.5

Table 5.11: Environmental Factors in Project B

5.3.4 Estimates Produced with the Use Case Points Method

Estimates were made for each subsystem separately. The total size of the
system was obtained by adding up these estimates. The results are shown
in Table 5.12. The details of the estimation process are as follows:

5.3.5 Assigning Actor Complexity

Deciding the complexity of the actors was not straightforward, as the act-
ors did not quite fit the actor definitions in the original method. Although
there is a ’customer’ actor in Subsystem 1, it does not interact with the sys-
tem through a web page or GUI, but is an internal user with an automated
subscription to internal information. This actor is in fact more like a sys-
tem acting through a protocol. This actor was therefore characterized as
’average’. All the other actors are other systems, but with different degrees
of complexity. Three of the subsystems are real-time applications, feeding
each other with real-time data, and appearing as actors to each other. Since
some of these actors are very complex, there should have been a complex-
ity scale that could account for more levels of complexity than the ’simple’,
’average’ and ’medium’ of the original use case points method. Since this
is not the case, the most complex actor only gets 3 points, and this may
be misgiving. The mentor assigned complexity to the actors after a round
of discussion with myself as to which kind of systems the different actors
interacted with.

5.3.6 Assigning Use Case Complexity

I counted use case steps and assigned use case complexity from the use
case models and descriptions. For subsystems 1 and 3 this was straightfor-
ward. Subsystem 2 had use case descriptions that seemed to be lacking in
detail to some extent. However, I could not be sure if this was the case, or if
most the use cases were simply small. Complexity was assigned by count-
ing the use case transactions, and verifying the count by viewing the class
diagrams. Use case complexity can be assigned by counting the number of
implementing analysis classes. This was done for Module 2 of Subsystem 4,

56 CHAPTER 5. INDUSTRIAL CASE STUDIES

Subsyst. UUCP UC Estimate Without TCF Expert Estimate Actual effort
1 163 4113 3994 3450 3723
2 161 4062 3920 2615 3665
3 145 3659 3553 3235 3835
4 123 3129 3038 3300 2710
Total 593 14965 14528 12600 13933

Table 5.12: Estimates made with the use case points method in Project B

since it had scanty use case descriptions. For Module 1 in Subsystem 4 the
use cases had very little detail, and complexity was assigned with the use
of sequence diagrams. Ideally, transactions should be counted at an earlier
stage in development, directly from the use case descriptions to be in ac-
cordance with the prescriptions of the use case points method. In reality,
most people write either detailed use cases or make sequence diagrams,
seldom both. It is a question of time. So when use cases lack textual de-
tail or there are no use case descriptions at all, counting transactions from
sequence diagrams is a possible approach to sizing.

5.3.7 Computing the Estimates

By studying the use case models and the textual use case descriptions, I
saw that the four teams had very different approaches to writing use cases.
Team number 1 wrote detailed use cases where it was easy to count the
transactions. Teams number 2 wrote less detailed use cases, Team 3 wrote
very well structured use cases with detailed documentation of the purpose
and functionality of each use case. Subsystem number 4 consisted of two
modules. One module had use case descriptions that were not very de-
tailed. The second module had no textual use case descriptions, therefore,
complexity was defined by counting the classes that implemented these use
cases.

There were several extending and included use cases. Karner recom-
mended not counting these use cases, but in this application, much of the
technically complex functionality was expressed in included and extend-
ing use cases. Not counting them might mean that important functionality
would not be sized. I therefore decided to count all the extending and
included use cases.

Actors and their complexity for all the sub-systems are shown in Table
5.13, use cases and their complexity in Table 5.14. The estimates with and
without the technical complexity factor, actual effort, and expert estimates
are shown in Table 5.12.

The estimation processes for the specific sub-systems are described in
the next sections.

5.3.8 Subsystem 1

Subsystem 1 was not a real-time application. The team consisted of 4 de-
velopers. The documentation available was the use case model, with tex-

5.3. CASE STUDY B 57

tual descriptions of the use cases written as use case steps, and a few state
transition diagrams. There were also class diagrams, but no sequence dia-
grams. There were 19 use cases and 6 actors. The use case descriptions
were detailed and captured all the functionality, so I assigned use case com-
plexity by counting the transaction steps. The following use case example
shows how this team wrote use cases:

Use Case example, Team 1

--

This use-case allows IT operations to do a
consistency check to verify that basis data updated
in xxxx-system is correctly transferred to the xxx database.

Pre-conditions:
1. xxxx -system is started.

Basic Flow:
Steps:
1. Get data from xxx.
2. Get extract from xxx database.
3. Run consistency check.
4. Report discrepancies.
5. Verify discrepancies.

Alternative Flow:
Described in the activity diagram "Verify Consistency".

Post-conditions:
2. The two databases are consistent
--

There are 5 use cases steps in this use case. The alternative flow is de-
scribed in a state diagram. The digram shows two transitions, or transac-
tions. The main success scenario has 5 steps, and the alternative flow has
two. Counting these transactions gives a total of seven transactions. Use
case complexity is therefore ’medium’. I counted transactions for all the
use cases in the same manner. 2 of the use cases had alternative flows de-
scribed in state diagrams, and one in an extended use case. There were 10
simple, 7 medium and 2 complex use cases.

The actors were other systems and one customer actor. However, most
of the other systems were highly complex, being real-time systems feeding
each other continuously with data. Security was crucial. It did not seem
correct to characterize the 5 other systems as ’simple’ actors, because of all
the interfacing and processing between the systems. The mentor therefore

58 CHAPTER 5. INDUSTRIAL CASE STUDIES

decided that there were 2 complex actors, 3 medium actors and 1 simple
actor.

The actors and use cases were counted, sized, and the the values entered
into a spreadsheet with the technical and environmental factors. Two es-
timates were then computed, with and without the technical complexity
factor.

The UUCP are the unadjusted use case points obtained from adding
the unadjusted actor weights, UAW, and the unadjusted use case weights
UUCW:

UUCP = 1*1+ 3*2+ 2*3 + 10*5 + 7*10 + 2*15 = 163

The adjusted use case points were worked out and multiplied by staff
hours per use case point, which in this case was 28, owing to team experi-
ence and stability expressed in the environmental factors. This yielded an
estimate of 4133 staff hours with the TCF, and 3994 staff hours without
the TCF. The estimate without the TCF was the closest to the actual effort.
See Table 5.12.

5.3.9 Subsystem 2

Team 2 consisted of 3-4 developers. The subsystem was a real-time system
and was modeled by 21 use cases, all described in use cases steps, and 4
medium and 1 complex actor. An example of use case writing in this team
is the following:

Use Case example, team 2

--

Use case Get dynamic data

The use case executes when a received broadcast is
received.
Pre-Conditions:
The getStaticData use case has ended, and a broadcast
transaction has been received

Basic flow:
Scenario:
* Identify transaction
* Forward transaction to appropriate subroutine.

Alternative flow:
*If transaction is not of any value, ignore transaction.

Post-Condition:
An acknowledgment has been received
--

5.3. CASE STUDY B 59

I counted the transactions from the use case steps. There were 12
simple and 9 medium use cases. The use cases looked as if they might not
have enough detail. For instance step 2 ’Forward transaction to appropri-
ate subroutine’, may include some functionality that is not seen. I therefore
studied the class diagrams to count classes that implement these use cases,
to verify if complexity was correct. A simple use case is implemented by
less than 5 classes, and medium use case by 5 to 10 classes [SW98]. Most
of the use cases were implemented by less than 10 classes, and many by
less than 5, so I decided that use case complexity was assigned correctly.
There were no sequence diagrams by which I could verify that the counts
were quite correct, but this is one of the uncertainties of the method.

The UUCP are obtained from the formula

UUCP = 0*1+ 4*2+ 0*3 + 12*5 + 9*10 + 0*15 = 161

The estimate for subsystem 2 was 4062 staff hours with TCF, and 3920
staff hours without TCF. The estimate without the TCF was the closest to
actual effort. See Table 5.12.

5.3.10 Subsystem 3

Subsystem 3 was a real-time system with 5 actors and 13 use cases. The
development team consisted of 3-4 people. The use cases were written in
detail, and contained extensive documentation and explanations of the use
cases in the the textual descriptions. This system was one of the most
complex subsystems, the other was Subsystem 4.

The model also included sequence diagrams for all the use cases. This
made it possible to verify that the use case transaction counts were cor-
rect. When counting transactions from the sequence diagrams, I observed
that they all had the same logging on and security issues. This means re-
use, and these transactions should not counted for each use case, since the
functionality is implemented only once. I compared the transaction counts
from the use cases to the transaction counts from the sequence diagrams.
These were practically the same, and yielded the same use case complexity.
This also verified that I had counted transactions correctly for subsystem
4, module 1.

An example of use case writing in team 3 is as follows:

Use Case Example, Team 3

--
Use case Update Order.
The use case updates orders in the Order Book.

Pre-Conditions:
Assumes that a message of type update order is received.

60 CHAPTER 5. INDUSTRIAL CASE STUDIES

Sequence :
1. Find correct order if it exists
2. Delete/update volume on the order
3. Calculate new value
4. Calculate sum
5. Get number of orders in OrderBookLine
6. Create ’OrderbookStatus’ message

Post-Conditions:
The message is processed and updated in the order book,
and a valid message is made.

This use case has 6 transaction steps. Exceptions are handled in extend-
ing use cases, which are counted separately. This means that the use case
is of medium complexity. The corresponding sequence diagram is shown
in Figure5.1.

The sequence diagram has 9 transactions:

1. Handle Order

2. decodeMessage

3. updateOrder

4. getParticipants

5. calculateValue

6. calculateSum

7. getNumberofOrders

8. returnOrders

9. writeMessage

However, not all these transactions describe ’what’ to do, but ’how’ to
do it. For instance step 2, ’decodeMessage’ is too detailed, the same goes
for ’returnOrders.’ The functionality is expressed in ’getOrders’. I removed
these two transactions and obtained 7 transactions, or a use case of me-
dium complexity.

Considering the use case description again, I decided that use case step
2 ’Delete/update volume on the order ’ should really be written something
like this:

• if it is a ’update order’ message, then update order

• else include use case ’Delete Order’.

5.3. CASE STUDY B 61

:ManageOrderBook :OrderBook :OrderBookLine :Order

Handle order

decodeMessage

updateOrder
getParticipants

updateOrder

calculateValue

calculateSum

getNumberofOrders

updateOrder

Orders

Orders

writeMessage

Figure 5.1: Sequence diagram for ’Update Order’ Use case

62 CHAPTER 5. INDUSTRIAL CASE STUDIES

The reason is that both the ’Delete Order’ and the ’Update Order’ func-
tionality must be described, ’Delete order’ by invoking the use case ’Delete
Order.’ This step should be counted as two steps. The use case would
then have 7 transactions like the sequence diagram. The transaction ’get-
Participants’ in the sequence diagram can not be seen in the use case de-
scription, and is probably hidden in the functionality of some other step.
A use case of medium complexity has from 4 to 7 use case steps. Using
the sequence diagram therefore verified that complexity had been assigned
correctly.

I counted the use case steps for all the use cases, and compared them
to the transactions of the sequence diagrams. This process resulted in the
following values:

Subsystem 3 consisted of 3 simple, 4 medium, and 6 complex use cases.
The 5 actors were all of medium complexity since they were systems acting
through protocols.

The UUCP were obtained from the formula

UUCP = UAW + UUCW
UUCP = 0*1+ 5*2+ 0*3 + 3*5 + 6*10 + 4*15 = 145

The estimate with TCF and effort per use case point 28 staff hours is
3659 hours, and without TCF 3553 hours. Actual effort was 3835 staff
hours, and the expert estimate was 3235 hours. This subsystem was un-
derestimated both by the expert estimate and the use case points method.
The estimate with the TCF was the closest to the actual effort. See Table
5.12.

5.3.11 Subsystem 4

Team four consisted of 2-3 developers. Subsystem 4 was the most diffi-
cult to size, and there may be some insecurities regarding the results. In
module 1, there were 6 use cases with some detailed descriptions :

Use Case example, team 4, module 1

Use case GetValue
Receives values, and publishes values

Scenario:
-Ask for values
-Publish according to publication rules.
(Only one publication rule is currently
supported: Continuous publishing.)

Exceptions:
-If XXXX is unable to receive messages, the message
must be buffered

--

5.3. CASE STUDY B 63

Subsystem Simple actors Medium actors Complex actors
1 1 3 2
2-RT 0 4 1
3-RT 0 5 0
4-RT 0 4 2

Table 5.13: Actors and their complexity in Project B

This was a real-time application, and I could see this use case had too
little detail in the main success scenario. There were only three transac-
tions, defining a simple use case. This did not seem convincing. I therefore
counted transactions from the sequence diagrams in the way I had done
for subsystem 3, omitting all the logging on and security issues, since they
were the same for all the use cases. The use case ’GetValue’ shown above
had 6 transactions in the sequence diagram. Recounting in this manner
yielded higher complexity than the first counts, when all the use cases were
counted as simple. The module had 4 medium and 2 complex use cases.

Module 2 had very little textual description:

Use Case example, team 4, module 2

Use Case Detect Capacity
Detects if system is experiencing capacity problems

For this module, there were no sequence diagrams. There were four use
cases, and I counted the classes that implemented them, using the class
diagram. Ideally, analysis classes should be counted according to Schneider
and Winters [SW98], but as there were none, I used the class diagram from
the design.

There were 4 medium use cases.
The two modules had the same 6 actors, 1 simple, 3 medium and 2

complex.
The UUCP for the whole of subsystem 4 are:

UUCP = 1*1+ 3*2+ 2*3 + 0*5 + 8*10 + 2*15 = 123

The estimate with TCF was 3129 hours, and 3038 without the TCF. The
estimate without the TCF was the closest to the actual effort.

5.3.12 Estimation Results

Two estimates were computed for each subsystem, one with the technical
complexity factor, and one without. The estimates without TCF were a little
lower than with TCF, as seen in Table 5.12. The estimates were added up
to obtain the total estimate of effort.

64 CHAPTER 5. INDUSTRIAL CASE STUDIES

Subsystem Simple use cases Medium use cases Complex use cases
1 10 7 2
2-RT 12 9 0
3-RT 3 6 4
4-RT 0 8 2

Table 5.14: Use cases and their complexity in Project B

Subsystem Use cases Classes Estimate Expert Estimate Actual effort
1 19 26 3092 3450 3723
2 21 57 5095 2615 3665
3 13 35 3245 3235 3835
4 10 43 3529 3300 2710
Total 63 161 14961 12600 13933

Table 5.15: Estimates produced by ’Optimize’

The expert estimate was 12600 hours. The use case estimate was 14965
staff hours with the TCF, and 14528 staff hours without the TCF. Actual
effort was 13933 hours. The expert estimate was lower than the use case
estimates, and the actual effort. The results show that omitting the TCF
brings the estimates closer to the actual effort, and that the TCF has just a
little influence on the estimates.

5.3.13 Estimate produced by ’Optimize:

Input to the tool were the number of use cases and their complexity defined
by counting transactions, as in the use case points method, and the classes
from the class diagrams for all the subsystems. Estimates were calculated
for each of the subsystems, see Table 5.15. Use case complexity for each
subsystem is as shown in Table 5.14. There were 25 simple, 30 medium
and 8 complex use cases for the whole system.

The total number of use cases and classes and estimates are shown in
Table 5.15. The total estimate was 14961 staff hours.

5.3.14 Estimate produced by ’Enterprise Architect’

The estimate produced by ’Enterprise Architect’ using 20 staff hours per
use case point was 10058 staff hours. This is much lower than all the other
estimates. The reason for this is that that staff hours per use case point
was set to 20. In the use case points method it was 28 staff hours per use
case point. Using this value yields the same estimate as the use case points
method: 149615 staff hours.

5.4. THREATS TO VALIDITY 65

Effort Expert est. UC estimate UC without TCF Optimize EA
13933 12600 14965 14528 14961 14965

Table 5.16: Estimates computed for Project B

5.3.15 Comparing the Estimates

All the estimates are shown in Table 5.16. ’Effort’ means actual effort,
’Expert est.’ is expert estimate, ’UC estimate’ is the use case points method
with TCF, ’UC without TCF ’is the use case points method without TCF,
and ’EA’ means ’Enterprise Architect’. The value obtained in ’Enterprise
Architect’ is the same as for the use case points method with the TCF when
effort per use case point is the same.

The use case points estimate without the TCF, 14528 staff hours, is
the closest to the actual effort of 13933 hours. The estimate produced by
’Optimize’ is practically the same as the estimate produced with the use
case points method with the TCF. the results are 14961 and 14965 staff
hours.

The main difficulty with the tool ’Enterprise Architect’ is deciding how
to assign staff hours per use case point. It is necessary to compare with
earlier projects. But often, no such projects exist, and assigning effort per
use case point is therefore based on guesswork.

’Optimize’ needs classes as input as well as the use cases, and is there-
fore more suited to making estimates later in the project when more data
are available.

5.4 Threats to Validity

The use case points method accounts for all project activities like planning,
analysis, design, project management, testing etc. in the total estimates. In
the projects of both case studies, project management was not included
in the actual effort. In Case Study A, this activity was simply not included
when registering effort. In Case Study B, development of the four sub-
systems was part of a larger project. Project management was therefore
registered for the project as a whole, and was not included in the actual
development effort for the four subsystems.

The resulting estimates were very accurate in both case studies. But
since project management was not counted, these results are somewhat
uncertain. If project management had been part of the actual effort, both
method and tools would have undersized the systems. However, as there
was no information about the effort for project management, it is not pos-
sible to say how much the the systems would have been underestimated.
The results shown in Table 5.12 were therefore used in the further studies.

The values for the technical and environmental factors were not as-
signed at the beginning of either project. Setting these scores when a pro-
ject is finished or well on its way, means having knowledge that is not
available at the beginning of a project. It makes the process easier, but
ideally, these factors should be evaluated early in the process.

66 CHAPTER 5. INDUSTRIAL CASE STUDIES

One of the main problems when sizing these systems was defining use
case complexity from the use case descriptions. In both case studies, many
use cases totally lacked text, others were incomplete. This is most likely
a normal situation in industry, where there are no guidelines for use case
writing. I have tried to amend these failings in various ways, like counting
transactions from sequence diagrams, and number of classes that imple-
ment a specific use case. By doing so, I may have made mistakes.

In Case Study A, complexity was assigned by the technical supervisor,
who defined degree of reuse as a measure of complexity. This approach is
different from the approach described by Karner, so in effect it is a vari-
ation or extension of the use case points method. Although the resulting
estimate is very close to actual effort, especially when omitting the tech-
nical complexity factor, it is a different way of sizing than that which is
described in the original method.

Module 2 in subsystem 4 in Case Study B also lacked use case descrip-
tions. Use case complexity was defined by counting the classes that imple-
mented the use cases. Schneider and Winters recommend counting analysis
classes [SW98]. However, the only available classes were in the class dia-
gram in the design, and this may mean that too many classes were counted.

The conclusion is that when use cases are not written fully dressed and
at a suitable level of detail, sizing is possible, but may be difficult and
include uncertain factors.

5.5 Summary

In Case Study A, the results show that the use case points method com-
puted an accurate estimate of effort, and that the estimate was improved
when the technical complexity factor was omitted.

In Case Study B, the method and tools estimated the application quite
accurately. As in Case Study A, the estimate without the TCF was the
most accurate. Counting transactions and defining use case complexity
was straightforward for two of the subsystem, whereas sequence diagrams
and class diagrams had to be used to count transactions for the other two
subsystems.

The results obtained from the two Case Studies A and B underline the
importance of writing use case descriptions at an appropriate level of de-
tail if use cases are to be used for estimation purposes. The trouble with
sizing use cases that are lacking in textual detail became evident. Sizing
becomes time-consuming, and there is a danger that the functionality in
not expressed well enough, and that the system will be underestimated.

The estimate produced by the tool ’Optimize’ was accurate when all the
classes of the class diagrams were used as input. But this is contrary to
the guidelines for input to the tool, where only the analysis classes should
be used in addition to the use cases. In Case Study A, there were no ana-
lysis classes, and the session beans were first counted and used as input.
This resulted in a very low estimate. In Case Study B, there was no analysis
classes either, and all the design classes were used as input to compute a
fairly accurate. This approach is not in accordance with the recommenda-
tions of the tool vendor, but was necessary in order to obtain fairly accurate

5.5. SUMMARY 67

estimates.
The tool ’Enterprise Architect’ computes the same estimate as the use

case points method, because input is the same. With the use cases points
method, effort per use case point is 20 person hours for project A, due to
team experience and stability expressed in the environmental factors of the
use cases points method. However, if the measured values for experience
and stability are reduced, effort per use case point is increased to 28 hours
in the use case points method, according to the suggestion of Schneider
and Winters [SW98]. It is difficult to know how to adjust this value in ’En-
terprise Architect’. Other projects need to be used as a baseline to be able
to define effort per use case point, but such information is often lacking,
either because there are no recorded historical project data, or because no
similar projects exist. Converting use case points to staff hours in this tool
may therefore often be based on guess-work.

68 CHAPTER 5. INDUSTRIAL CASE STUDIES

Chapter 6

A Study of Students’ Projects

This chapter describes the use case points method applied to students’
projects. Estimates were computed of ten small projects with the use case
points method, and compared to estimates made with ’Optimize’. The
tool ’Enterprise Architect’ was not used for these studies, as the estimates
would be identical to estimates produced with the use case points method.
The main goal of the investigations was to determine the appropriate level
of detail in use case descriptions written for estimation purposes. Section
6.1 describes the projects and the data collection. Two sets of estimates
were made. Section 6.2 shows the first estimates based on use case de-
scriptions that had not been edited. Section 6.3 describes the process of
editing the use cases and shows the new estimates. Section 6.4 describes
the estimation process with the tool ’Optimize’.

6.1 Background

In order to add to existing experience with use case points method, I have
applied the method to several students’ projects. The data from these pro-
jects are not overly reliable, and the results are therefore not as distinct
as the results from the industrial projects, which showed that the use case
points method produced fairly accurate estimates. But the students were
not experienced in use case modeling and writing, nor had any of them es-
timated a project before. They also recorded actual effort spent somewhat
inaccurately. Still, the results are useful for establishing certain criteria that
must be fulfilled in order to be able to use the use case points method suc-
cessfully, like the suitable level of detail in the use case descriptions, and
the influence of use case structure and actor generalisation on estimates.

I have chosen to study a selection of students’ projects from the course
’Software Engineering’ (in219) at the University of Oslo, Department of In-
formatics, in the Autumn term of 2000. The results of my investigations
accentuate the importance of writing use cases at an appropriate level of
detail if the use cases are to be used effectively for estimation purposes.
The students wrote use cases very carefully according to guidelines, how-
ever, many of the use cases contained far too much detail, and this caused
overestimation. On the other hand, some of the use cases were not detailed

69

70 CHAPTER 6. A STUDY OF STUDENTS’ PROJECTS

enough, and the projects were underestimated.
These projects were in many ways much less complex than real-life pro-

jects. The values for the technical factors were therefore quite low, as there
were no requirements demanding ease of use, ease of installation and so
on. The main focus was on analysis, design and the implementation of
some of the most important functionality.

6.1.1 Context

The students worked in project groups consisting of three to five mem-
bers developing small software systems, using an incremental development
process. The systems were of two different categories. One task was to
build a questionaire for the Internet, the other a system for swapping shifts
between nurses in a hospital ward. Part of the project task was to compute
an early estimate of the time needed to build the system. This was done by
estimating the necessary time needed for the different activities. The pro-
jects groups were also asked to record actual time spent on each activity,
and to compare the estimates to the actual effort spent on the project.

Estimates were made using the PERT method, recording values for ’Most
Optimistic’, ’Most Pessimistic’ and ’Most Probable’ staff hours, choosing
the ’Most Probable’ value as the project estimate. The project work was to
result in a set of increments and deliverables using object-oriented analysis
and design. The documentation consisted of project plans, functional and
non-functional requirements, use case models with textual descriptions,
domain model, class diagrams, sequence diagrams and final reports. The
source code was also available.

Out of the 31 projects on the course, I selected 10 projects to study, 5 of
each category. These projects were the most complete, as the groups had
registered total effort spent on the projects. Many of the other projects
groups had not registered actual effort, so they could not be used in the
study.

In the selected projects, the use case models and use cases descriptions
were used to assign complexity to the actors and use cases, and to compute
estimates using Karner’s method in a spreadsheet. The results were com-
pared to estimates produced by the tool ’Optimize’. Input to the tool was
the use case model, where complexity was defined by counting use cases
transactions, and the number of analysis classes in the domain model.

Two of the project groups, number 1 and 3, succeeded in delivering the
1st increment only, which accounts for the rather low number of hours
spent on these projects. The work consisted mainly of planning, analysis,
design and coding. There was little testing, project management and other
tasks that are present in real projects, so effort per use case point is lower
than in an industry project. Karner’s suggested effort per use case of 20
hours is therefore far too much in this case.

The default value in the tool ’Enterprise Architect’ is 10 staff hours per
use case point. I sent an e-mail to the creator of the tool, Geoffrey Sparks,
and asked him why this value was chosen. His answer was that this value
reflects actual development effort only, not ’project management, extens-
ive system testing, quality assurance, interfacing with the final customer or

6.1. BACKGROUND 71

other housekeeping tasks.’ This is indeed the case for the students’ pro-
jects, so I decided to follow the recommendation of Geoffrey Sparks and
set effort per use case point to 10 hours.

6.1.2 Data collection

I collected data from project plans, reports, analysis and design documents.
I studied the use case models, use case descriptions, class diagrams, se-
quence diagrams, time sheets, estimates, and source code and defined in-
put to the use case points method and ’Optimize’. The technical and envir-
onmental factors were assigned by students who had participated on the
projects during the interviews.

Informal interviews were conducted with 10 students, one from each
project. Each interview lasted about 20 minutes. The technical and envir-
onmental factors were set by one member in each team, through discus-
sions with the author about the meaning of the specific factors and their
values. The technical factors were more or less the same for all the pro-
jects. The environmental factors varied slightly for team members. But the
differences were insignificant, because the project groups were composed
of people with different skills. The environmental factors observe the team
as a whole, so the differences were evened out.

The students were also asked how they had estimated, and how they
had registered actual effort spent on the projects. None of the students
had ever estimated a project before, and they were very uncertain of how
to do it. As one student admitted:

’We just set some not improbable number as the Most Pessimistic value,
and some other number as the Most Optimistic value, and figured out that
the Most Probable value would be somewhere in between.’

When asked how they recorded actual effort, some of the students ad-
mitted to having based their figures on guess-work. The reason was that
they were not used to writing time lists.

The two system types differed in several ways, for instance, the ’Ques-
tionaire’ (Q) was a distributed system, the ’Shift’ (S) system was not. The
technical factors and hence the TCF were therefore different for the two
types of systems. The technical factors were practically the same for all the
projects belonging to one project category, and for the sake of simplicity, I
have used the same values for all the estimates for one type of system. The
technical factors for the ’Questionaire’ (Q) projects are shown in Table 6.1
on the following page, and the factors for the ’Shift’ (S) projects are shown
in Table 6.2 on page 73. There were several uncertainties connected with
understanding what the factors meant and setting the scores, so I decided
that using the same values would not make much difference from trying to
distinguish between the projects.

The environmental factors were much the same for all the teams, as the
level of experience of the teams seen as a whole were more or less the same.
On each team, there were at least one or two people who had experience
with object-oriented analysis and design, UML, or programming. The same
values for the environmental factors are therefore used for all the projects.

The reason for this choice was, apart from the fact that the project

72 CHAPTER 6. A STUDY OF STUDENTS’ PROJECTS

Factor Description Weight Value Weighted value
T1 Distributed System 2 4 8
T2 Response adjectives 1 2 2
T3 End-user efficiency 1 2 2
T4 Complex processing 1 1 1
T5 Reusable code 1 1 1
T6 Easy to install 0.5 2 1
T7 Easy to use 0.5 4 2
T8 Portable 2 2 4
T9 Easy to change 1 0 0
T10 Concurrent 1 1 1
T11 Security features 1 3 3
T12 Access for third parties 1 0 0
T13 Special training required 1 0 0
SUM 25

Table 6.1: Technical Complexity Factors assigned project ’Questionaire’-
’Q’.

teams had more or less the same average level of experience, that there
were several uncertainties connected with these factors. It was not clear
what all the factors meant and what the scores meant. I therefore decided
it was better to use the same values for all the teams, and not introduce
more uncertainty into the measured values.

The values for the environmental factors are shown in Table 6.3 on the
facing page.

The first estimates were made without making any changes to the use
cases. The results were very inaccurate. The use cases were therefore in-
spected closely and edited before estimates were computed a second time,
with different values for use case complexity.

6.2 The Use Case Points Method - First Attempt

The estimates were computed without editing the use cases. Input to the
use case points method were the number of actors and use cases and their
complexity, and the technical and environmental factors. Person hours per
use case point was set to 10.

The use cases were classified in complexity by counting the transactions
in the use cases, or use case steps. I first counted these steps without
inspecting the level of detail, and without making any changes to the use
case descriptions.

Estimates of all the projects were made with and without the TCF, and
compared with the actual effort. The results are shown in 6.6. ’UC estimate’
means estimate computed with the TCF, ’UC est. without TCF’ is the estim-
ate without the TCF, ’Student est.’ is the students’ estimate, and ’Actual
effort’ is total effort spent on the project.

The number of actors, their complexity and the computed Unadjusted

6.2. THE USE CASE POINTS METHOD - FIRST ATTEMPT 73

Factor Description Weight Value Weighted value
T1 Distributed System 2 0 0
T2 Response adjectives 1 0 0
T3 End-user efficiency 1 4 4
T4 Complex processing 1 4 4
T5 Reusable code 1 3 3
T6 Easy to install 0.5 3 1.5
T7 Easy to use 0.5 3 1.5
T8 Portable 2 1 2
T9 Easy to change 1 2 2
T10 Concurrent 1 1 1
T11 Security features 1 1 1
T12 Access for third parties 1 0 0
T13 Special training required 1 0 0
SUM 19

Table 6.2: Technical Complexity Factors assigned project ’Shift’- ’S’

Factor Description Weight Value Extended value
F1 Familiar with RUP 1.5 2 3
F2 Application experience 0.5 2 1
F3 Object-oriented experience 1 2 2
F4 Lead analyst capability 0.5 2 1
F5 Motivation 1 4 4
F6 Stable requirements 2 5 10
F7 Part-time workers -1 0 0
F8 Difficult programming language -1 2 -2
SUM 19

Table 6.3: Environmental Factors assigned to students’ projects

74 CHAPTER 6. A STUDY OF STUDENTS’ PROJECTS

Project No. Simple actors Average actors Complex actors UAW
1-Q 0 1 2 8
2-S 0 0 3 9
3-S 0 0 3 9
4-Q 1 0 2 7
5-Q 1 0 2 7
6-S 1 0 2 7
7-Q 1 1 2 9
8-S 0 1 3 11
9-S 1 0 2 7
10-Q 1 1 2 9

Table 6.4: Number of actors and their complexity, first attempt

Project No. Simple UCs Average UCs Complex UCs UUCW
1-Q 0 6 0 60
2-S 1 7 0 75
3-S 1 6 0 65
4-Q 2 3 1 55
5-Q 1 0 3 50
6-S 0 5 5 125
7-Q 2 3 0 40
8-S 2 3 1 55
9-S 0 4 0 40
10-Q 4 4 0 60

Table 6.5: Number of use cases and their complexity, first attempt

Actor Weights, UAW are shown in Table 6.4. The number of use cases, their
complexity and computed Unadjusted Use Case Weights, UUCW are shown
in Table 6.5. The unadjusted actor weights, UAW, plus the unadjusted use
case weights, UUCW, is an indication of the size of the application. The
Unadjusted Use Case Points, UUCP, are computed by adding up the UAW
and UUCP.

Studying the unadjusted use case weights shown in Table 6.5, one can
see that project number 6 was more than three times as large as projects
7 and 9, and more than twice as large as project number 10. Although
the systems are of different sizes owing to the amount of functionality
they contain, these differences may be due to overestimation caused by too
detailed use case descriptions.

Total effort spent on the projects was dependent on the the amount of
functionality that was implemented. Not all the project groups succeeded
in delivering all the modeled functionality.

The estimates shown in Table 6.6 on the facing page are much higher
than the students’ estimates, and also much higher than the actual effort.
Although not all the functionality was implemented in projects number
1 and 3, it is evident that something is wrong with these figures. The

6.2. THE USE CASE POINTS METHOD - FIRST ATTEMPT 75

Project No. UC estimate UC est. without TCF Student est. Actual effort
1-Q 455 536 418 294
2-S 551 672 182 298
3-S 485 614 177 232
4-Q 421 496 335 371
5-Q 490 576 364 420
6-S 866 1096 519 580
7-Q 401 251 132 243
8-S 433 410 635 595
9-S 308 390 630 578
10-Q 469 552 520 490

Table 6.6: Estimates made with the use case points method, first attempt
.

students’ data may be somewhat unreliable, but the number of use cases
should give an indication of the size of the system. Some of the systems
seemed to be sized incorrectly, especially projects 2, 6 and 7. I suspec-
ted that the trouble was the assigned use case complexity, because the use
case descriptions had been written at a too low level of detail. For instance,
project number 6 was overestimated by nearly 50 percent by the use case
points method. Practically all the functionality was implemented. Since the
use case estimate is computed from the functionality expressed in the use
case descriptions, it was quite possible that use case complexity was set
too high.

Examining the use case descriptions does indeed show that this is the
case. First of all, one of the use cases in this project did not really describe
functionality, but course of action the technical manager must take when
the system sends an error message. This reduced the number of use cases
to 9. Most of the use case descriptions contained steps describing func-
tionality at too low a level, like ’Actor presses button, ’ or ’user wishes to
terminate.’ This lead to counting too many use case steps, and thus too
high complexity.

6.2.1 Editing the Use Cases

I went through all the use case descriptions thoroughly, removing use case
steps like ’Actor presses button’ or whole sequences like

1. System presents ID and password screen

2. User enters ID and password and clicks ’OK’

3. System validates user ID and password

4. System displays Personal Information screen

5. User types in first and last name and clicks ’OK’

6. System validates that the user is a known user

76 CHAPTER 6. A STUDY OF STUDENTS’ PROJECTS

7. [...]

This is a common mistake. The writer has described too much about
the user interface, making the use case a into a user manual instead of a
requirements document [Coc00].

The same logging on procedure was described in several of the use
cases. I decided it would be better to model a high level ’Log on’ use case,
and set as precondition in the other use cases that the user is logged onto
the system. Another way to correct the use case is to describe the inten-
tions of the use without proposing a specific solution [Coc00]. For instance:

1. User accesses system with ID and password

2. System validates user

3. User provides name

4. System validates that the user is a known user

5. [...]

In this way, the six steps were reduced to four.

6.2.2 A Use Case Example

The following example illustrates how a use case that looks OK, is too de-
tailed.

--

Use Case example

--

Use Case Name: Answer Questionaire

Primary Actor: Internet user

Secondary Actors: none

Pre-Conditions: The Internet user has received a password
The web pages are up and running

Main success
scenario: 1. The Internet user logs onto the web page

using password
2. The user answers the questions
3. The user presses the ’Submit’ button
4. The information is saved

Post Conditions: The information is saved to disk or
The user is informed that information is

6.3. THE USE CASE POINTS METHOD - SECOND ATTEMPT 77

not saved

Alternate Flow: 2a. The password is wrong
The user is not logged on

3a. The user leaves questions unanswered
The answeres are saved

4a. The information cannot be saved
The user is informed

Used By: none

Includes UC: none

Here, step number 3 ’ The user presses the ’Submit’ button is superfluous.
Instead, there should have been a step 2: ’System validates user’, as a use
case describes how the user interacts with the system.

Project number 1 seemed to be quite accurately estimated, since not all
the functionality was implemented. Projects number 2, 3, 4, 5, 6 and 7
were overestimated because the use cases were written at too low a level of
detail. I stripped the use cases of unnecessary detail, and defined use case
complexity a second time. In this way, use case complexity for several of
the use cases was reduced from ’complex’ to ’medium’, or from ’medium’
to ’simple’, some even from ’complex’ to ’simple’.

Projects number 8 and 9 were somewhat underestimated due to use
cases with too little detail. This represents a different problem than too
detailed use cases: One cannot simply add functionality when editing the
use cases. Complexity must then be defined from counting analysis classes
that implement the use case, or transactions in the sequence diagrams. I
used the sequence diagrams as described in Section 5.3.10 on page 59 to
define use case complexity for these projects.

Some of the actors were specialisations of others, and I therefore used
generalisation to reduce the number of actors.

6.3 The Use Case Points Method - Second Attempt

Having gone through all the projects and corrected the number of actors
and use cases as well as use case complexity, I made new estimates of
all the projects. Estimates were produced with and without the technical
complexity factor. The new estimates are shown in Table 6.9 on page 79.
’UCP’ is estimate with the TCF, ’UCP minus TCF’ means estimate without
the TCF, ’Student est’ means Students’ estimate, and Functionality means
how much functionality was implemented.

For projects 2, 3, 4, 5, 6 and 7 and 9, editing the use cases caused
use case complexity to be reduced. In projects 2, 3, and 6 the number of
use cases were reduced by one, and in project no. 7, the number of use
cases were reduced by two. Project number 7 also had actors that were

78 CHAPTER 6. A STUDY OF STUDENTS’ PROJECTS

Project No. Simple actors Average actors Complex actors UAW
1 0 1 2 8
2 0 0 3 9
3 0 0 3 9
4 1 0 2 7
5 1 0 2 7
6 1 0 2 7
7 1 0 2 7
8 0 1 3 11
9 1 0 2 7
10 1 1 2 9

Table 6.7: Revised number of actors and their complexity, second attempt

Project No. Simple UCs Average UCs Complex UCs UUCW
1 0 6 0 60
2 6 1 0 40
3 4 2 0 40
4 2 3 1 55
5 0 4 0 40
6 2 7 0 80
7 1 2 0 25
8 2 3 1 55
9 1 2 1 40
10 4 4 0 60

Table 6.8: Revised number of use cases and their complexity, second at-
tempt

specialisations of another actor. After generalisation, the number of actors
were reduced from 4 to 3.

The new number of actors, their complexity and the computed Unadjus-
ted Actor Weights, UAW, are shown in Table 6.7.

The results of editing the use cases and defining complexity are shown
in Table 6.8. All the estimates were closer to actual effort after the correc-
tions were made, as shown in Table 6.9. For the projects 2, 4, 6, 7 and 10,
editing the use cases brought the estimates very close to the actual effort
spent.

6.4 Estimates Produced by ’Optimize’

Input to ’Optimize’ was the number of use cases and their complexity, as
well as the classes that implemented them, and class size and complexity.
I counted all the classes in the class diagrams, because studying the es-
timates made of the projects in the the case studies indicated that all the
classes must be used as input. I used the tool default value ’medium’ for

6.4. ESTIMATES PRODUCED BY ’OPTIMIZE’ 79

No. UCP UCP minus TCF Student est. Effort Functionality
1 455 536 418 294 not all
2 321 407 182 298 all
3 321 407 177 232 not all
4 421 496 335 371 all
5 320 376 364 420 all
6 570 722 519 580 all
7 231 256 132 243 all
8 498 631 635 595 all
9 340 431 630 578 all
10 469 552 520 490 all

Table 6.9: Revised estimates made with the use casepoints method, second
attempt

No. Use cases Classes Optimize UC estimate
1 6 5 929 455
2 8 4 1013 321
3 6 6 989 321
4 6 5 1099 421
5 4 6 982 320
6 10 6 982 570
7 5 7 957 231
8 6 7 894 498
9 4 6 747 340
10 8 6 897 469

Table 6.10: First estimates obtained in the tool ’Optimize’

class complexity, as little is known about the classes at the beginning of a
project. The estimates are shown in Table 6.10. They were compared to
the estimates made with the use case points method with the TCF, as these
were the closest to the actual effort.

The results obtained from the same project data used with Karner’s
method and the tool ’Optimize’ do not correspond at all. The main reason
is that estimates produced with the use case points method used a value
of 10 person hours per use case point, which is half of what was proposed
by Karner. This means that the default value of 90 hour per medium use
case in ’Optimize’ must be calibrated to fit these projects. But counting use
cases and their complexity is not enough. In ’Optimize’, analysis classes
must also be used as input. Since effort per use case was halved in Karner’s
method to fit the students’ projects, I suggest halving the metric values in
’Optimize’ as well. Effort per medium use case was therefore 45 hours, per
medium class 30 hours, and per medium subsystem 90 hours.

Using these values as input, with the same use case complexity as in the
use case points method, quite different results were obtained. See Table
6.11. These values were compared to estimates computed by the use case

80 CHAPTER 6. A STUDY OF STUDENTS’ PROJECTS

No. Use cases Classes Optimize UC estimate Actual effort
1 6 5 464 455 242
2 7 4 541 321 298
3 6 6 452 321 232
4 6 5 549 421 371
5 4 6 390 321 420
6 9 6 496 570 580
7 3 5 332 231 243
8 6 7 521 498 595
9 4 6 392 340 578
10 8 6 527 469 490

Table 6.11: New estimates computed by ’Optimize’

points method with the TCF, and to actual effort. This time, the estimates
were comparable. For project number 1 the estimates were practically the
same, and for project number 8, the difference was only 23 hours. But all
the other projects have differences ranging from around 40 to 130 hours,
where ’Optimize’ computed the higher estimate. The differences may have
to do with assignment of complexity to the use cases. It is not quite clear
how ’Optimize’ works out total effort in accordance with the define use
case size and complexity. But reducing complexity for one use case by one
degree in project number 10, from small to trivial, reduces the estimate
from 527 hours to 523 hours, a difference of only 4 hours. Reducing one of
the use cases from medium to small in the use case points method reduces
the estimate (with TCF) from 487 to 451 hours, a difference of 36 hours.
Use case complexity alone does not play the same part in ’Optimize’ as in
the use case points method.

For projects number 5, 8 and 9, estimates made with ’Optimize’ were
closer to actual effort. These projects were underestimated in the use case
points method, maybe due to too little detail in the use case descriptions.

6.5 Threats to Validity

As already pointed out, the data collected from these projects are in many
ways less reliable than the data collected from the industrial cases stud-
ies described in Chapter 5, because many of the preliminary estimates
were made ad hoc and actual effort was often recorded inaccurately. It is
also possible that some of the results are unreliable because of the adjust-
ments I made to the use cases, knowing what the actual effort was. I have
also participated in assigning values to the technical and environmental
factors, and may therefore have influenced the students I interviewed and
discussed these issues with.

The students were quite good at estimating their own effort, but it may
be argued that since many of the project groups admitted that they had
not registered hours spent very accurately, the value of the preliminary
estimate may have influenced the value of the actual effort. This is known

6.6. SUMMARY 81

as ’anchoring and adjustment’, where a given or expected value influences
human judgment and decision making unconsciously [Plo93].

The students’ projects did not include project management, testing and
so on, therefore effort was set to 10 staff hours per use case point. This
figure may be unreliable, because the students registered time for activities
such as studying and group meetings.

6.6 Summary

6.6.1 Establishing the Appropriate Level of Use Case Detail

Writing use cases at a correct level of detail is essential if the use case
points method is to be effective. Inspecting and editing the use cases is
tedious work and may introduce errors.

The students’ use case examples demonstrated the dangers of writing
too much detail. For example, modeling twelve simple use cases gives an
unadjusted use case weight (UUCW) of 60. 4 complex use cases give the
same result. It is a choice of design whether one wishes to put a lot of
functionality into one complex use case, or split functionality up into sev-
eral simple use cases. For estimation purposes it makes no difference, as
long as the level of detail is correct. But if the twelve use cases are writ-
ten with too much detail, they will be defined as more complex than they
really are. For instance, if they are assigned medium complexity instead of
simple, the system will have an UUCW of 120. Even worse, if the use cases
are defined as complex, the UUCW will be 180.

The dangers of detailing too much are obvious: it leads to overestim-
ation. Likewise, too little detail leads to underestimation. Many of the
students were not very familiar with UML. Although on the whole the use
cases were well written, the overall tendency was to write too much detail.
This became apparent after estimates had been computed the first time. I
therefore had to edit the use cases to remove unnecessary use case steps,
and compute new estimates using the new values. These estimates were
closer to the actual effort spent.

Only a few of the project groups used extending and included use cases.
Total functionality was therefore sized by counting all the use cases for
most of the projects. Only in project number 3 did I remove an included
use case. In this project, actual effort was very low, and not counting the
included use case reduced the estimate computed both with the use case
points method and the tool ’Optimize’, and brought the estimates closer to
actual effort. This again demonstrates my conclusion presented in Section
3.4.2, that there may be no precise rule for when to count included or
extending use cases.

6.6.2 Estimates versus Actual Effort

Some of the use case estimates were fairly accurate when compared to
actual effort spent on the project, although most of them differed quite
a bit. The relative difference between the preliminary estimates made by
the students and actual effort spent on the projects varied a great deal

82 CHAPTER 6. A STUDY OF STUDENTS’ PROJECTS

between the different project groups. However, the students were unsure
of the estimation process, not having estimated any projects earlier, and so
it is uncertain how reliable these figures really are.

The students took other courses as well as the course in ’Software En-
gineering’, so some of the project groups reported that the preliminary
estimated effort was about as much time as they had to spend on project
work on this course. The projects with the lowest students’ estimates, num-
ber 2, 3 and 7, all ended up ended up spending somewhat more time than
estimated. Project group number 7 stated in their final report that they had
not really understood the task at the beginning, and had underestimated
the amount of work to be done.

6.6.3 Omitting the Technical Factors

The results show that there is quite a big difference between estimates with
and estimates without TCF. The reason is that the TCF < 1. (0.85 for the
’Q’-projects and 0.79 for the ’S’-projects). The estimates without the TCF
are higher than the estimates with the TCF. As already pointed out, these
projects are not very complex, and therefore, the TCF is low. However,
that is also why they are not very realistic. In real projects, complexity
is accounted for when implementing the system. This may lead to count-
ing complexity twice: once in the TCF, and once when implementing the
system [Sym91]. In the students’ projects, this was not the case, as the
systems were not very complex. I therefore assume that for projects low in
complexity, including the TCF may bring the estimate closer to the actual
effort. But modern software systems are for the most part highly complex,
so the problem is not very realistic. I believe that for software projects
of today, the TCF does not improve estimate precision, as discussed in
Chapter 5.

6.6.4 Comparing Estimates produced by ’Optimize’ and the
Use Case Points Method

The tool ’Optimize’ computed estimates that were higher than those ob-
tained with the use case points method. This may be due to the assigned
values for class complexity. The default class value ’medium’ was used as
input, since little was known about class complexity. This may be a source
of error. If the classes were defined as ’small’, the estimate for project
number 10 would be 505 hours instead of 527. This would be much closer
to the use case estimate of 487 hours, and the actual effort of 490 hours.
A general problem with the tool ’Optimize’ is deciding how to calibrate the
metrics. I tried reducing the values for staff hours per use case, class and
subsystem by half, because in the use case points method, staff hours per
use case point was 10, half of the value proposed by Karner.

As I have already pointed out, these project data are unreliable, and the
results may only indicate certain possibilities.

Chapter 7

Evaluating the Results of the
Investigations

In this chapter, I analyze the results of the industrial Case Studies A and B
and the students’ projects.

In Section 7.1, the goals of the case studies are described. Section 7.2
shows estimation accuracy for the estimates of the industrial projects and
the students’ projects using the Symmetrical Relative Error as a measure of
accuracy. In Section 7.3, the the effect of discarding the technical factors as
a contributor to size is discussed. In Section 7.4 guidelines for setting the
environmental factors are defined, and in section 7.5, I discuss the suitable
level of detail in use case descriptions written for estimation purposes.

7.1 The Goals of the Investigations

The goals of the case studies and the studies of the students’ projects were
to the following:

• To investigate the general usefulness of the use case points method,

• to simplify the method by discarding the technical complexity factor,

• to provide guidelines for assigning the values to the environmental
factors,

• to define the appropriate level of detail in use case descriptions writ-
ten for estimation purposes, and to describe alternative ways of sizing
the use cases,

• to select a cost estimation method or tool appropriate for the software
company where the case studies were conducted, and

• to propose an extension of the use case points method.

83

84 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

Effort Expert estimate With TFC Without TCF Optimize EA
10043 7770 10831 10414 10856 10831

Table 7.1: Estimates computed for Project A

Subsyst. UC Estimate Without TCF Optimize Actual effort
1 4113 3994 3092 3723
2 4062 3920 5095 3665
3 3659 3553 3245 3835
4 3129 3038 3529 2710
Total 14965 14528 14961 13933

Table 7.2: Estimates of the subsystems in Project B

7.2 Estimation Accuracy

In order to determine how accurate the estimates are, traditional software
effort accuracy measures the MRE, Magnitude of Relative Error. The for-
mula is: MRE =(Ace-Est)/Act, where Act is actual effort spent on the project,
and Est is the estimate. The problem with MRE is that it does not lead to
symmetric distribution, because no matter how much the project is under-
estimated, MRE can never be higher than 1. When overestimating, there is
no limit to to the MRE value.

M. Jørgensen and D. Sjøbeg show that the Symmetric Relative Error (SRE)
is preferable to the MRE when dealing with large estimation errors [MJ01].
The formulas are

a) SRE = (Act-Est)/ Act, Act =< Est
b) SRE = (Act-Est)/ Est, Act => Est

For Project A in Case Study A, the estimates made with the use case
points method, with and without the TCF, and the estimate produced with
’Optimize’ were used in the formulas above to compute estimation accur-
acy.

’Optimize’ produced two estimates, one with all the implementing classes,
and one with session beans. The estimate obtained with ’Enterprise Archi-
tect’ was the same as for the use case points method with the TCF. The es-
timates were all above actual effort, apart from the ’Optimize’ estimate with
session beans. The results are shown in Table 7.3. ’With TCF’ and ’Without
TCF’ means the use case points method with and without TCF, ’Optimize 1’
is the estimate produced by ’Optimize’ including all the classes. ’Optimize
2 ’is the estimate where only the analysis classes were included. For project
A, this meant the session beans. Project B in Case Study B had no analysis
classes, so all the design classes were used as input.

For project A, the estimates and actual effort was used in the formulas,
and the following SRE obtained:

• The use case points method with TCF: SRE = (10043-10831)/10043 =
-0.078

7.2. ESTIMATION ACCURACY 85

Case Study With TCF Without TCF Optimize1 Optimize2
A -0.078 -0.037 -0.081 0.814
B -0.074 -0.043 -0.074

Table 7.3: Symmetric Relative Error for Projects A and B

• The use case points method without TCF: SRE = (10043-10414)/10043
= -0.037

• Optimize with all classes: SRE = (10043-10856)/10043 = -0.081

• Optimize with session beans: SRE = (10043-5536)/5536 = 0.821

For project B, the same was done. The estimates were above actual effort
when Project B was seen as a whole, and not split up into subsystems:

• The use case points method with TCF: SRE = (13933-14965)/13933 =
-0.074

• The use case points method without TCF: SRE = (13933-14528)/13933
= -0.043

• Optimize with all classes: SRE = (13933 -14961)/13933 = -0.074

The estimates for the project in Case Study A are shown in Table 7.1.
The estimate for ’Enterprise Architect’ was the same as for the use case
points method. The estimates for Case Study B are shown in Table 7.2.
The subsystems were sized and estimated separately. The estimates were
above actual effort, except for the estimate produced with ’Optimize’ using
session beans as input classes, which was below actual effort.

The SRE for both case studies is shown in Table 7.3. The accuracy is
approximately the same for both estimates produced with the use cases
points method without the TCF. The most accurate estimate was the one
produced with ’Optimize’ in Case Study B, but this was due to the fact that
all the implementing classes were used as input. This is contrary to the
tool instructions. The same is true for Case Study A. All the classes had to
be used as input, otherwise, the project was grossly underestimated. This
again indicates that using analysis classes only is not enough, and that all
the design classes should be used as input.

The four subsystems of project B were also studied separately.

• For Subsystem 1, Act>Est for the estimate without the TCF, and Act<Est
for the estimate with the TCF.

• For Subsystem 2, Act=>Est for the estimate without the TCF, and
Act<Est for the estimate with the TCF.

• For Subsystem 3, Act<Est for estimates with and without the TCF.

• For Subsystem 4, Act<Est for both estimates.

• In the tool ’Optimize’, Act<Est for Subsystems 2 and 4, and Act>Est
for Subsystems 1 and 3.

86 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

Subsystem With TCF Without TCF Optimize
1 -0.026 0.004 0.204
2 -0.029 0.000 0.393
3 0.048 0.079 0.181
4 -0.159 -0.121 -0.221

Table 7.4: Symmetric Relative Error for the subsystems in Project B

Project No. UCP with TCF UCP without TCF Optimize Effort
2 321 407 541 298
4 421 496 549 371
5 320 376 390 420
6 570 722 519 580
7 231 256 332 243
8 498 631 521 595
9 340 431 392 578
10 469 552 527 490

Table 7.5: Estimates made with Karner’s method of students’ projects

The SRE is shown in Table 7.4.
For the students’ projects, the estimates with the TCF were used, as

explained in Section 6.6.3. Only the 8 projects that had implemented all
the functionality were used in the analysis. The estimates and actual effort
for these projects are shown in 7.5.

For the use case points method with the TCF, the projects with estim-
ates above actual effort are projects number 2 and 4. The projects with
estimates below actual effort are 5, 6, 7, 8, 9 and 10.

For the use case points method without the TCF, the projects with es-
timates above actual effort are projects number 2, 4, 6, 7, 8, and 10. The
projects with estimates below actual effort are 5 and 9.

For ’Optimize’, the projects with estimates above actual effort are pro-
jects number 2, 4, 7 and 10. The projects with estimates below actual effort
are projects 5, 6, 8 and 9.

The SRE for the students’ projects is shown in Table 7.6. The distri-
bution of the symmetrical relative error for the two projects in the case
studies and the eight students’ projects are shown in Figures 7.2 and 7.1.
For the projects in the case studies, the values of estimates without the
TCF were used. For ’Optimize’, the estimates with all the design classes as
input were used. ’Enterprise Architect’ computes the same estimates as the
use case points method when staff hours per use case point is the same, so
the accuracy for this tool is the same as for the use case points method. In
Case Study B, the SRE for each of the subsystems is used.

For both method and tools, the estimates are on the whole very accurate.
The use case points method is the most accurate, with 5 estimates out of 13
with an SRE around + - 0.0. The tool ’Optimize’ produces accurate estimates
when all the classes are used as input, not just the analysis classes. These

7.2. ESTIMATION ACCURACY 87

Project No. UCP with TCF Optimize
2 -0.077 -0.815
4 -0.013 -0.480
5 0.308 -0.366
6 0.018 -0.076
7 0.052 0.077
8 0.194 0.169
9 0.676 0.142
10 0.064 0.474

Table 7.6: Symmetric Relative Error (SRE) for the students’ projects

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

	
	
	
	
	
	

�
�
�
�
�
�

�
�
�
�
�
�

|
-1

|

1

2

3

4

5

-

-

-

-

-

Fr
eq

ue
nc

y

SRE

|
10

Figure 7.1: SRE distributions for the use case points method

results were used in the feature analysis described in Chapter 9.

7.2.1 Threats to Validity

As discussed in Section 5.4, the estimates produced with method and tools
were very accurate when compared to actual effort, but since project man-
agement was not included in the actual effort for any of the projects, these
results may be somewhat unreliable. However, the resulting estimates were
used for computing the SRE since it was impossible to speculate about the
total effort for project management. The students’ projects did not include
project management, testing and so on, therefore the value 10 staff hours
per use case point was used for computing total effort. This figure may also
be unreliable, because other activities such as studying and group meetings
were included in the actual effort.

88 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���

	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�−

−

−

−

1

2

3

4

5 −

Fr
eq

ue
nc

y

SRE

|
0

|
1

|
−1

Figure 7.2: SRE distributions for Optimize

7.3 Discarding the Technical Complexity Factor

The main reason for discarding the technical complexity factor in the use
case points method as a contributor to software size, is that the technical
complexity factor of the MkII Function Point Analysis was dropped a couple
of years ago, because it became clear that it was meaningless in modern
software development [Sym01]. Use cases correspond to the logical trans-
actions of Mk II FPA. See Section 2.2.2. The use case points method is based
on the MKII function points method, and uses several of the of the same
technical factors as MkII FPA.

One of the reasons that the technical complexity factor has been dis-
carded in the MK II method, is that early in a project’s life-cycle, require-
ments are often stated in a general form such as ’Ease of use’. At this stage
it may seem that such a requirement should be handled by the technical
complexity factor. However, by the time the requirements are agreed in
detail, much of this ’ease of use’ requirement will have influenced the in-
formation processing content of the various logical transactions, and so
this requirement will be taken into account in the MkII Functional Size.
The logical transactions to be counted therefore correspond to the finally
agreed set of logical requirements allocated to the software being sized. So
including the technical factors in the counts at an early stage may lead to
double counting [MkI].

Besides, research has shown that omitting the technical adjustment
factors in the estimates obtained with the tradition function points method
produces practically the same results as when including them [KK97]. As
the adjusted counts do not improve estimates, simple counts may be as ef-

7.3. DISCARDING THE TECHNICAL COMPLEXITY FACTOR 89

fective as more complex size models when predicting effort. This is useful
because the basic counts are known reasonably accurately earlier than the
weighted counts. Many function point users restrict themselves to simple
counts. Using simple counts improves counting consistency. Research has
shown that the difference in counting function points of the same system
differed by an average of 12.2 percent. Simple counts reduce this error
[KK97].

I therefore assumed that it is possible to drop the technical complexity
factors in the use case points method, and I will show in several examples
using project data from different companies that this is indeed a possibil-
ity.

7.3.1 Estimation Results Obtained without the Technical Com-
plexity Factors

The results from the Case Studies A and B show that the technical com-
plexity factor does not improve estimate precision. Omitting the TCF for
the students’ projects did not give the same results; the difference between
the estimates with and without the technical complexity factor was much
larger. However, these projects were not complex, and therefore not very
realistic.

To verify that omitting the TCF makes little difference to estimates in
real software projects, I have made estimates with and without the TCF
using project data from the two projects in Case Studies A and B described
in Chapter 5, and three projects described by Bente Anda et al. [ADJS01].
These projects are here termed C, D and E.

The research described in [ADJS01] was conducted in a software de-
velopment company that is situated in Norway, Sweden and Finland. The
company has 350 employees, and of these, 180 are located in Norway.
The primary business development tasks are solutions for e-commerce and
call-centers, in particular within banking and finance. The company uses
UML and RUP in most of their development projects, but currently there
is neither tool nor methodological support in place to help the estimation
process.

The research was conducted in parallel with project C during a period of
seven months, while projects D and E were finished before the start of the
research. Information was collected about the requirements engineering
process and how the expert estimates were produced, and about the use
case models and actual development effort.

The data collection for projects A and B is shown in Table 7.7 on the
next page, and for projects C, D and E in Table 7.8. Estimates based on use
case points had been made for the three development projects described
by Bente Anda et al.[ADJS01]. These estimates were compared to expert
estimates and actual effort, and to the estimates and actual effort from
projects A and B.

All the estimates are shown in table 7.9. As seen from these results,
there is not much difference between the estimates with and without the
TCF, indeed, for projects A and B estimates without the TCF were closer
to actual effort. For project D, the use cases estimates with and without

90 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

Data Collection
Data element Project A Project B
Requirements Effort 10043 hours Effort 13933 hours.
engineering Very unstable Stable requirements.

requirements in Phase 1.

Expert Produced by project Produced by 4 project
estimate manager with 0 teams separately using

years experience successive calculation.
using successive Team experience from 1
calculation to 7 years.

The use No included or Many small use cases.
case model extending use cases. Many included and

Many small use cases. extending use cases.
The use case The technical super- The mentor assigned
estimation visor counted actors values to the technical
process and use cases and assigned and environmental factors.

values to the technical and expert estimate
environmental factors. counted use cases

Table 7.7: Data Collection in projects A and B

the TCF are closer to the actual effort than the expert estimate is. This
indicates that leaving out the technical complexity factors has little or no
influence on the estimates.

7.3.2 Omitting the Environmental Factors

The environmental factors were omitted to see what happened to the es-
timates. There is a possibility that the unadjusted use case points, UUCP,
may be used for early estimating, since they are an indicator of size. To
calculate effort, the UUCP are multiplied by 20 staff hours for projects A, C,
D and E. One may of course use a different value calibrated to the specific
organisation, but for the sake of simplicity, have used the value proposed
by Karner. For Project B, 28 staff hours were used, as this was the value
in the estimate. The results are shown in table7.10. The estimates pro-
duced without the environmental factors are higher than estimates with
environmental factors, whether the TCF are included or not. They are not
very accurate. Leaving out the environmental factors therefore does not
seem to make much sense. These factors must be included in the estim-
ates. But the factors must be specified to avoid the insecurities that often
are encountered when people are asked to assign values to them.

7.4 Assigning Values to the Environmental Factors

In order to discuss the usefulness of the environmental factors, it is ne-
cessary to look more closely at the content of the specific factors, their

7.4. ASSIGNING VALUES TO THE ENVIRONMENTAL FACTORS 91

Data Collection
Data element Project C Project D Project E
Requirements 600 hours spent on Effort not Effort not
engineering requirements speci- available. available

fication. Relatively Changes in Stable
stable requirements. requirements requirements.

Expert Produced by senior Produced by Produced by
estimate developer with 17 senior develo- three developers

years experience. per with 7 years with between
experience 6 months and

9 years experience
The use No included or Many small Many included
case model extending use cases. and extending

use cases Many included use cases.
and extending
use cases.
Many included
use cases.

The use case Senior member The senior The project
estimation of the project developer who manager assigned
process counted actors had produced the values to the

and use cases expert estimate technical and
and assigned counted use cases environmental
values to the and actors and factors and
technical and assigned values assigned
environmental to the technical complexity
factors. and environmental to actors.

factors.

Table 7.8: Data Collection in projects C, D and E

Project With TCF Without TCF Expert Estimate Actual Effort
A 10831 10414 7000 10043
B 14965 14528 12600 12000
C 2550 2447 2730 3670
D 2730 3038 2340 2860
E 2080 1963 2100 2740

Table 7.9: Impact of TCF on Estimates

Project With TCF and EF Without TCF and EF Actual Effort
A 10831 11120 10043
B 14965 16576 13933
C 2545 2660 3670
D 2730 3100 2860
E 2080 2600 2740

Table 7.10: Impact of ECF on Estimates

92 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

weights, and how to set the scores. Assigning values to the environmental
factors may be difficult, because there is often no basis for comparison.
Setting the scores requires some experience, so the usefulness of the tech-
nique is based on having one or two similar projects as a baseline. The en-
vironmental factor requires an evaluation of the project team, and people
often have difficulties being neutral when asked to evaluate their own work.

Psychological research done by Amos Tversky and Daniel Kahneman
has established that people use heuristics or general rules of thumb when
making judgments. The advantage is that heuristics reduce time to make
reasonably good judgments, and often, heuristics produce fairly good es-
timates. But in some situations, they lead to systematic biases. Also, ex-
pectations can strongly influence perception. When people have experience
with a particular situation, they often sees what they expect to see [Plo93].

B.Anda et al. describe how two project manager assessed different val-
ues to the environment factors regarding experience and capabilities of
their teams, although the two projects had similar teams regarding size
and experience with software development. They concluded that if project
members themselves perform the use case estimation and assign values
to the environmental factors, there may be problems with the estimates
[ADJS01]. I therefore conclude that there is a need for distinct guidelines
for setting these scores.

I believe that if the use of environmental factors are to have any value, it
must be made clear what exactly is meant by each of the factors in order to
make them measurable. If this is not the case, different analysts will pro-
duce different sizes from the same requirements specifications, as pointed
out by Bente Anda et al. [ADJS01].

The scoring rules for the environmental factors consist of a set of gen-
eral rules as well as a set of specific rules. To make sure that the values
obtained from the environmental factors are valid, it is necessary to be
specific about the scoring rules. There was some insecurity when trying to
define the values in both Case Studies and students’ projects. I therefore
propose a specific set of rules for determining the environmental factors.
This will simplify the task of setting scores, and make them more concise.

The definitions of the environmental factors and how to set the scores
are the result of the discussions with the project manager of the project in
Case Study A, the mentor of the project inCase Study B and the students.
I noted their observations as described in Sections 5.1.4, 5.2.4 and 6.1.2,
and gathered what I decided to be enough information to be able to define
special rules for how to set the scores. These scores should be refined for
use in specific companies.

7.4.1 General Rules for The Adjustment Factors

The following general rules are described by Symons [Sym91].

• Not present, or no influence if present = 0

• Insignificant influence = 1

• Moderate influence = 2

7.4. ASSIGNING VALUES TO THE ENVIRONMENTAL FACTORS 93

• Average influence = 3

• Significant influence = 4

• Strong influence, throughout = 5

The scale from 0 to 5 is an ordinal scale, therefore, it is necessary to
define the meaning of the different values. From a psychological point
of view, it is natural to assume that ’average’ means ’middle’ or ’median’.
However, the intervals on an ordinal scale are not even, but most people do
not consider measurement theory when presented with the task of setting
scores. It is therefore highly probable that without guidelines, different
people will set different scores for the same factor under the same circum-
stances.

7.4.2 Special Rules for The Environmental Factors

The environmental factors measure team productivity, which means in the
current project, not in the last assignment. The problem with this measure
is that one has to assess individual experience, and from this determine
experience level of the whole team. A project manager may compensate
for less skilled team members by assigning mentors with higher skills, as
in Case Study B.

Design teams with more than 1 year of experience are, on average, 25
percent more productive than less experienced teams. Productivity does
not improve much after approximately 2 years of experience, so the defini-
tion of ’experienced’ is more than two years of experience with the specific
programming language [KLD97].

The meaning of the environmental factors and their scores are the fol-
lowing:

1. F1: ’Familiar with development method used’.

In the original list of factors proposed by Karner, this factor is termed
as ’Familiar with RUP’ (Rational Unified Process). However, experience
from industry shows that although ideally, the projects were sup-
posed to use RUP, in practice this is often not the case. One or more
team members may use elements from RUP, the rest may be totally
unfamiliar with RUP. On the other hand, the team may use other de-
velopment processes with which they are already familiar. Therefore,
it is better to measure team experience with the method that is ac-
tually being used on the project, or scores may be set too low, and
estimates will be too high.

• Score 0: The team is unfamiliar with the development process.

• Score 1: The team has theoretical knowledge of the development
process.

• Score 2-3: One or more team members have used the method
once or a few times.

• Score 3-4: At least half the team members have experience using
the method on different projects.

94 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

• Score 5: The whole team has experience using the method on
several different projects.

2. F2 Application experience.

This factor indicates experience with the type of application being
built, or experience with different types of applications.

• Score 0: All the team members are novices

• Score 1-2 : A few of the team have some experience, for instance
1 to 1 1/2 years, the rest are novices.

• Score 3: All team members have more than 1 1/2 year of experi-
ence.

• Score 4: Most of the team have 2 years experience

• Score 5: All the team members are experienced

3. F3 Object-Oriented experience.

This factor measures team experience with object-oriented analysis
and design (OOAD). Although it contains some of the aspects of the
first two factors, it is still significantly different in that it also meas-
ures modeling experience, for instance use case modeling in the ana-
lysis phase, and class and component modeling in the design phase.

• Score 0: The team is totally unfamiliar with OOAD

• Score 1: All the team members have less than one year of exper-
ience

• Score 2-3: All the team members have 1 to 1 1/2 years of experi-
ence

• Score 4: Most of the team members have more than 2 years of
experience

• Score 5: All developers are experienced (more than 2 years).

4. F4 Lead analyst capability.

The factor measures experience with requirements analysis and mod-
eling.

• Score 0: The lead analyst is a novice

• Score 1-2: Experience from a few projects

• Score 3-4: At least 2 years of experience from several projects

• Score 5: At least 3 years of experience with a variety of projects

5. T5 Motivation.

This factor describes total team motivation.

• Score 0: Not motivated.

• Score 1-2 : Little motivation

• Score 3-4: The team is motivated to do a good job.

7.5. WRITING USE CASES FOR ESTIMATION PURPOSES 95

• Score 5: The team is very motivated and inspired

6. T6 Stable requirements.

The factor measures the degree of changing requirements and insec-
urities about the meaning of the requirements.

• Score 0: Very unstable requirements, constant changes.

• Score 1-2: Unstable requirements. Customer demands some changes
made at various intervals.

• Score 3-4: Overall stability. Minor changes needed.

• Score 5 : Stable requirements throughout.

7. T7 Part-time workers.

Having to train new people or not having a stable team influences
productivity negatively.

• Score 0: No part-time workers

• Score 1-2: A few (20 percent) part-time workers

• Score 3-4: Half the team are part-time workers

• Score 5: All the team are part-time workers

8. T8 Difficult programming language.

This factor may indicates experience with the primary development
tools as well as the chosen programming language.

• Score 0: All the team members are experienced programmers

• Score 1: Most of the team have more than 2 years experience

• Score 2: All team members have more than 1 1/2 year of experi-
ence.

• Score 3: Most of the team members have more than 1 year of
experience

• Score 4: A few of the team have some experience, for instance 1
year, the rest are novices

• Score 5: All the team members are novices

7.5 Writing Use Cases for Estimation Purposes

In practice there seems to be much disparity in how different people un-
derstand and write use cases. Alistair Cockburn found over 18 different
definitions of a use case [Coc97]. Other practitioners have reported finding
up to 32 different interpretations [Rul01]. As different individuals apply
different rules even within one project, as was the case in Case Study B, the
results of applying use cases for sizing software can be ambiguous.

A use case that does not describe the transaction steps properly is not
suited for sizing in the way described in the use case points method. Detail

96 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

must be added or subtracts in order to obtain an unambiguous description,
or use cases must be assigned complexity in some other manner.

In order to write effective use cases for estimation purposes, it is im-
portant to describe all the functionality without describing too much or
too little detail. Describing the user’s movements in operating the sys-
tem’s user interface is a common mistake. If there is a step ’User presses
button’, the writer has chosen an action that is too small. This leads to
counting transactions that do not describe functionality, but the user inter-
face. The description of movements in the user interface belongs to design
of the user interface, not to the requirements document [Coc00]. See the
students’ example in Section 6.2.1.

Sometimes use cases are written as seen by the system looking out at
the world and talking to itself. The sentences have the appearance “ Get
ATM card and PIN number. Deduct amount from account balance.” This
kind of use case writing was seen in Case Study B, subsystem 4: “Ask for
values. Publish according to publication rules.“ Instead, the use case should
be written as seen from the user’s view:

• The customer puts in the ATM card and PIN

• The system deducts the amount from the account balance

The use case in subsystem 4 of Case Study B should therefore be written
like this:

• The user asks for values

• The system determines the publication rules for the values

• The system publishes the values according to the publication rules

A use case step will describe a goal achieving action, for instance:

• An interaction between two actors (’Customer enters address’)

• A validation (’System validates PIN code’

• An internal change (’System deducts amount from balance’)

Well-written use cases should have from 3 to 8 steps in the main success
scenario. See Section 3.4.2. Alistair Cockburn concludes that if the use case
is longer than 10 steps, one has probably included user interface details or
written the action steps at too low a level [Coc00]. I therefore propose
the general rule of thumb that a use case that has more than ten steps in
the main success scenario should be shortened, either by merging steps,
or by separating out functionality. One important reason why use cases
should not be too long is that the complexity scale in the use case points
method has only three levels: simple, medium and complex. This does not
account for use cases with a great many transactions. This problem was
encountered by Bente Anda et al. who felt the need for a complexity scale
with more levels in a project that had modeled functionality with many
very complex use cases [ADJS01]

See Appendix A for use cases examples.

7.6. VERIFYING THE APPROPRIATE LEVEL OF USE CASE DETAIL 97

7.6 Verifying the Appropriate Level of Use Case
Detail

In Case Study A, there were no use case descriptions at all, and in Case
Study B, one of the subsystems lacked use case descriptions. Use case
complexity therefore had to be counted from sequence diagrams for two of
the subsystems in case study B. But counting transactions from sequence
diagrams may lead to errors. There is an alternative solution to this prob-
lem. P. Grant Rule and Charles. A Symons suggests that the faults in the
use case descriptions can be counter-balanced by incorporating the MkII
Function Point Analysis (FPA) concept of the ‘logical transaction’ into the
use case description [Sym01] [Rul01].

The following use case description is adapted from a real project.

Use Case example

Use Case Name: UC1.1.1 Display Previous Order List

Primary Actor: Order System

Secondary Actors: none

Pre-Conditions: Customer has requested a list of previous
Orders

Main success
scenario: Order System requests an Order collection

using enter

Customer criteria from Order Information

Order Information System returns a
collection of Orders

Order System displays list of Orders with
information to enable a choice to be made

Post Conditions: List of Orders satisfying selection is
displayed on Web Page

Alternate Flow: none

Activity Diagram:

Used By: none

Uses: The Use Case uses Request Previous Order
from Order database (UC1.3.1) and Send

98 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

Previous Order from Order database
(UC1.3.2)

Issues: none

Version Number: 1.0000.

[Rul01].

This use case is not written as a list of transactions, and in order to
count the use case steps, it must be re-written in some way.

To make sure that the use case is described at a suitable level of detail,
one may replace or supplement the main success scenario and alternative
flow parts of the use case template by the logical transactions of the MkII
method. This approach may be useful if part of the system is described
with use cases that are not written with the necessary level of detail, and
therefore cannot be used for estimation purposes without some transform-
ation. This may be a safer way than to use sequence diagrams for transac-
tion counting.

For instance, the use case description above can be converted into lo-
gical transactions and MkII function points in the following manner:

--
Example use case expressed as measurable logical transactions:
--
Id : 1
Stimulus: Select function from menu
Input fields: None = 0
Object Class Referenced: none = 0
Response: Display empty screen

<Select Customer>
Response fields: None = 0
--

Id : 2
Stimulus: Query Customer Details
Input fields: Customer_Id = 1
Object Class Referenced: Customer = 1
Response: Primary route:

Display screen
<Customer Details>
Alternate route:
Display screen
<Select customer>

Response fields: Primary route:
First_Name
Last_Name
Organisation
Address

7.6. VERIFYING THE APPROPRIATE LEVEL OF USE CASE DETAIL 99

Phone
Fax = 7

Alternate route:
Error message

--

Id : 3
Stimulus: Select list orders
Input fields: Customer_Id = 1
Object Class Referenced: Customer Order = 2
Response: Display screen

<Orders List>

Response fields: Primary route:
Order_id
Order_date
Product
Quantity
Order_Status

= 6
Alternate route:
Error message

Id : 4
Stimulus: Select specified order
Input fields: Order_id = 1
Object Class Referenced: Order product = 2
Response: Display screen

<Order Details>
Response fields: Order_id

Order_date
Product
Quantity
Order_Status
Product_Description
Product_Price
Order_Value = 8

--

The results are converted into MkII function points:

Sub-Totals: 3 5 21

MkII Weights: 0.58 1.66 0.26

Contributions: 1.74 8.3 5.46

100 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

Functional Size = 1.74 + 8.3 + 5.46 = 15.5 MkII fp
--

In the use case example above, the main success scenario consists of a
list of activities that are not written as use case steps. Transforming the
use case into logical transactions as shown above results in 4 transactions,
when counting primary and alternative routes. The use case is therefore
of medium complexity, when applying the complexity measures of the use
case points method.

Grant Rule and Symons propose using the MkII function point count for
estimating the effort needed to be done on this use case. If this approach
is chosen, computing a total estimate of effort means using a mixture of
two methods, the MkII FPA and the use case points method, which may be
inconvenient. However, some experts recommend transforming use case
points into function points for computing staff effort, because there is ex-
tensive experience with converting function points to estimates of effort
[Lon01]. As discussed earlier, the approach of Schneider and Winters can
result in very inaccurate estimates under certain conditions. See Section
3.3.

7.7 A Word about Quick Sizing with Use Cases

As described in Section 3.4.2 on page 25, most well-written use cases have
3 to 8 steps [Coc00]. This may be due to limitations in the human brain
[Mil56]. I have therefore made the following observations:

If most use cases have 3 to 8 steps, this means that use cases are usually
of simple or medium size and complexity. The projects in the case studies
both had 63 use cases. Project A had 18 simple, 41 medium and 4 complex
use cases. Project B had 25 simple, 30 medium and 8 complex use cases. If
people generally limit the length of the use cases to approximately 8 steps,
this means that more or less every system is modeled with mostly medium
sized use cases, some simple use cases and a few complex use cases. One
could therefore get a very rough idea of the size of the system by just
counting the use cases. Studying the use cases in the projects described in
this thesis shows that there were, roughly speaking, one and a half or twice
as many medium sized use cases as simple use cases, and very few complex
use cases. The exception was in Case Study B, where there were some more
variations. In Subsystems 1 and 2, there were roughly the same number of
simple and medium use cases, in Subsystem 3 there were twice as many
medium as simple use cases. In addition, there were the same number of
complex as simple use cases. In Subsystem 4 there were no simple use
cases, but mostly medium. This means that the division between simple
and medium use cases in a typical software system could be somewhere in
the range of 50/50 to 30/70. Since there are usually few complex use cases,
these do not have to be taken into account.

In this way, it is possible to get an idea of the size of the system very
early. A system with 60 use cases would for instance have roughly from 30

7.8. SUMMARY 101

simple and 30 medium use cases, to 18 simple and 42 medium use cases.
This means that the estimate is in the range between

30*5 + 30*10 UUCW = 150 + 300 = 450 UUCW and
18*5 + 42*10 UUCW = 90 + 420 = 510 UUCW.

The unadjusted actor weights, UAW, are added to get the unadjusted use
case points, UCP.

This approach is too inaccurate to compute a reliable estimate of effort,
but the main idea is to get a rough idea of the size of the future system at
a very early stage, especially if the use cases are lacking in textual detail,
and it may not yet be clear how they should be sized.

7.8 Summary

As seen from the results presented in Table 7.9, omitting the technical
factors does not make much difference to the estimates, it may even im-
prove estimates. It may therefore be possible to discard the TCF as a meas-
ure of size. The use case points method could then be simplified by re-
stricting the use of adjustment factors to the environmental factors. These
factors play a significant part in the method, and can be used effectively
with the proposed guidelines for scoring rules proposed in Section 7.4.

As with MkII function points, some of the technical factors describe
requirements that may be accounted for in the use case descriptions. It
is therefore a danger that complexity may be counted twice; once when
defining use case complexity, and again in the TCF. Adding these figures
may produce a too high count for the adjusted use case counts, and this
leads to overestimation. Omitting the TCF may eliminate this insecurity.

Omitting the EF made a big difference in Project A, where the estimate
without the adjustment factors was less close to actual effort. In Project
D, the difference between the estimates and actual effort was not signific-
ant. The estimate without the TCF and EF was 140 hours higher, and the
estimate with the TCF and EF 130 hours lower than actual effort. In Project
E, the project manager had assigned too high values to the environmental
factors, which accounts for the difference in estimates [ADJS01]. Omitting
the environmental factors in this project brought the estimate much closer
to the actual effort, which proves that these factors really were set too high,
something which lead to underestimation.

The results show that as opposed to the technical complexity factors,
the environmental factors play a significant part in the estimates. Setting
the scores too high leads to underestimation.

Use cases must be written at a suitable level of detail if they are to
be used effectively for estimation purposes. If descriptions are lacking in
detail, and there is doubt as to if all the functionality has been correctly
described, the scenarios may be replaced or supplemented with the lo-
gical transactions of the MkII function points method. One may then count
transactions and use them for defining use case complexity.

In order to get an overall idea of the size of the future system, a ’Quick
estimation’ approach may be used. This approach is too inaccurate for

102 CHAPTER 7. EVALUATING THE RESULTS OF THE INVESTIGATIONS

producing estimates of effort, but gives a rough idea of the amount of work
that must be done.

Chapter 8

Evaluation of Method and
Tools

This chapter presents a feature analysis of the use case points method
and the tools ’Optimize’ and ’Enterprise Architect’. The use case points
method is evaluated on the basis of the extension without the TCF, and the
guidelines described in Chapter 7. The goal of the feature analysis was to
identify which method or tool best fits the requirements of the software
company described in Chapter 5, and to select the most appropriate tool
or method.

8.1 Determining the Features

The software company needed a method or tool for computing accurate es-
timates at an early development stage. The requirements for such a method
or tool were gathered from interviews with the project manager of Project
A in Case Study A. The method or tool must be easy to learn, easy to use,
compute reliable estimates quickly, the results must be easy to interpret,
and there must be a help manual. The tool should also not be overly ex-
pensive.

The features to be evaluated are therefore:

1. Quality of documentation

2. Help manuals

3. Ease of use

4. Estimation accuracy

5. Ease of input

6. Ease of interpretation

7. Training Effort

103

104 CHAPTER 8. EVALUATION OF METHOD AND TOOLS

8. Learning curve

9. Purchasing Costs

If the relative importance of the features can be assessed, this import-
ance assessment can be used as a weighting factor. Kitchenham and Jones
suggest the following weights [KJ97]:

• Mandatory features (M):10

• Highly desirable (H): 6

• Desirable (D): 3

• Nice to have (N): 1

I have defined the following scores, using the general rules of Charles
Symons described in Section 7.4.1 as guidelines. The scores are on a or-
dinal scale from 0 to 5, where 0 means ’not present’, 1 means insignificant
presence, 2 means moderate presence, 3 means average presence, 4 means
significant presence and 5 means presence throughout. The scores are ad-
ded up and compared to the maximum score to see which method or tool
is most appropriate.

8.2 Evaluation Profiles

I spent much time experimenting with the tools, using the project data
from the Case Studies A and B, and from the students’ projects.

I noted the following when I used the method and tools for computing
the estimates:

• The use case points method can be used with a simple spreadsheet.
The method computes accurate estimates for different types of pro-
jects. It is quickly learned, there is no training effort. Estimates are
computed in a short time, depending on how much time must be
spent defining use case complexity. There is no tool other than a
spreadsheet, so there are no purchasing costs.

• The tool Optimize takes time to learn, as it is composed of five sub-
tools, all with many input parameters. The documentation states that
no formal training is necessary, but that is not my observation. Estim-
ates are computed quickly if all the input parameters are known. A
nice feature is the possibility to import models from CASE tools, for
instance from Rational Rose. Entering all the use cases and classes
manually is tedious. But one still has to define size and complexity
for each element, using the guidelines described in Chapter 2. Input
may therefore be tedious, and defining use case and class complex-
ity is not straightforward. On-line help is available, as well as several
white papers for down-loading on the Internet. A quick-tour of the
tool can be downloaded from the web pages. The tool is expensive.

8.2. EVALUATION PROFILES 105

• Enterprise Architect is primarily a UML modeling tool with an estim-
ation function. The modeling features have not been evaluated, only
the estimation function. The underlying estimation model is the use
case points method as developed by Karner. The tool therefore com-
putes the same software size as the original use case points method.
Staff hours per use case point can be adjusted to obtain an estim-
ate of effort. The advantage of the tool is that it may be used to
model and design the software, and compute an early estimate dir-
ectly from the use case model. However, use case complexity has to
be entered manually. But if a different modeling tool is used, all the
use cases and actors must be entered manually. This is tedious and
time-consuming. The technical and environmental factors must be
defined, and cannot be omitted. This presents a problem if one de-
cides to leave the technical factors out, as I recommend. However,
other adjustment factors than the default factors can be defined and
given weights. The tool is inexpensive.

I defined three sets of features to be examined:

1. The Learnability feature set,

2. The Usability feature set and

3. The Comparability feature set.

8.2.1 The Learnability Feature Sets

In the Learnability feature set, the following features are evaluated:

• Quality of documentation. This includes all the documentation for
the method or tool.

• The Learning Curve defines how long it takes to learn to use the tool
effectively.

• User manual. This feature describes how useful the user manual is, if
there is one.

• On-line help. A nice feature to have.

• Low training effort. This feature registers the need for formal training.

The tools have the following learning characteristics:

• The use case points method is explained in Schneider and Winters
[SW98]. Karner’s work is difficult to obtain. The documentation is
therefore somewhat lacking in detail. The main problem is assigning
values to the technical and environmental factors. The method is
learned quickly, and is mastered after having tried it out on a couple
of smaller projects.

• Optimize has very good documentation on the web-pages. White pa-
pers and an online quick tour can be downloaded. A user manual
comes with the tool. Learning the tool takes a lot of time. Formal
training may be necessary.

106 CHAPTER 8. EVALUATION OF METHOD AND TOOLS

Feature Importance Weight Score Total score
Quality of documentation H 6 4 24
Learning Curve H 6 4 24
User manual H 6 3 18
On-line help N 1 0 0
Low training effort D 3 4 12
Total 78

Table 8.1: Evaluation Profile for the Learnability set. The Use case points
method

Feature Importance Weight Score Total score
Quality of documentation H 6 4 24
Learning Curve H 6 2 12
User manual H 6 4 24
On-line help N 1 0 1
Low training effort D 3 2 6
Total 67

Table 8.2: Evaluation Profile for the tool ’Optimize’. Learnability features

• Enterprise Architect has a help function in the tool, describing all
the features. If one knows the use case points method, it is easy
to understand the estimation function of the tool, and which input
to use. The main problem is assigning values to the technical and
environmental factors. I have only evaluated the estimation function
of the tool. For this, no formal training is necessary.

The scores obtained for the Learnability feature set are shown in Tables
8.1, 8.2, and 8.3. The total weighted score is 110. The use case points
method obtained 78 out of 110 points, which is 71 percent. Optimize ob-
tained 67 out of 110 points, or 61 percent, and Enterprise Architect ob-
tained 70 out of 110 points, or 64 percent.

Feature Importance Weight Score Total score
Quality of documentation H 6 4 24
Learning Curve H 6 3 18
User manual H 6 3 18
On-line help N 1 0 1
Low training effort D 3 3 9
Total 70

Table 8.3: Evaluation Profile for the tool ’Enterprise Architect’

8.2. EVALUATION PROFILES 107

8.2.2 The Usability Feature Sets

In the Usability feature set, the following features are evaluated:

• Overall ease of use. This feature is scored by evaluating how easy
the tool is to use on the whole: finding the correct menus, defining
complexity for use cases and classes according to the tool guidelines,
and printing out reports or results.

• Ease of input. This feature defines how easy it is to enter actual input
to the tool, and how flexible the tool is, for instance if it is possible to
omit unnecessary input.

• Calibration ease. This feature describes how easy it is to modify the
underlying metrics, both manually as well as understanding how to
modify the metrics in a meaningful way.

Deciding the scores for the method and tools is based on the following
observations:

• The use case points method is used with a spreadsheet, with which
most people are familiar. Defining use case and actor complexity is
described by Schneider and Winters [SW98], and the weights for each
complexity category are set. Guidelines for the environmental factors
are described in Section 7.4.2. This makes for simpler counting rules.
Calibrating the value for staff effort per use case point to fit the or-
ganisation/project can be done according to the recommendations of
Schneider and Winters [SW98], or using the approach I describe in
Section 9.2.

• ’Optimize’ consists of 5 sub-tools and several menus. Both use cases
and classes are defined by size as well as complexity, and each of
these categories have scales of 5 steps, ranging from ’tiny’ to huge’,
and ’trivial’ to ’complex’. It can be difficult to distinguish between
’several extension points’ and ’many extension points’ when defining
complexity. It is not always clear how one should calibrate the met-
rics. It is necessary to have some projects as baseline for comparison.
It is also difficult to decide how many input classes that are necessary.
The tool documentation states that analysis classes should be used,
but estimates are often too low when this approach is used. The res-
ult of the estimation process can be printed as an Excel-report, or in
a text file. Graphs show effort compared to team size and experience.
The estimation tool shows the total effort in staff hours and months,
with breakdown into separate activities such as planning, analysis,
design, build, and testing. All these features are easy to understand
and interpret. The tool has an attractive user interface.

• The estimation tool in Enterprise Architect computes estimates by
importing the use case model from the modeling part of the tool. If
one has modeled in a different tool, it is not possible to import the
use cases, and they have to be entered manually. This is tedious. All
the technical and environmental factors must be entered manually for
each use case. If there are many use cases, like in the projects of Case

108 CHAPTER 8. EVALUATION OF METHOD AND TOOLS

Feature Importance Weight Score Total score
Overall ease of use M 10 4 40
Ease of input H 6 4 24
Calibration ease H 6 4 24
Ease of interpretation H 6 4 24
Total 112

Table 8.4: Evaluation Profile for the Usability feature set. The Use case
points method

Feature Importance Weight Score Total score
Overall ease of use H 6 3 18
Ease of input H 6 3 18
Calibration ease H 6 3 18
Ease of interpretation H 6 4 24
Total 78

Table 8.5: Evaluation Profile for the Usability feature set. Optimize

Studies A and B, this is also tedious work. The technical and envir-
onmental factors must be included in the estimates. There is no way
to omit them. The default value for staff hours per use case points
can easily be altered, but there are no guidelines for how to define
this value. The results show the total number of unadjusted use case
points, adjusted use case points and total effort in staff hours. Effort
per category of use case complexity is also shown. Reports can be
printed out in Excel files.

The scores for the Usability feature set is shown in Tables 8.4, 8.5, and
8.6. The total weighted score is 140. The use case points method obtained
112 out of 140 points, which is 80 percent. Optimize obtained 78 out of
140 points, or 56 percent, and Enterprise Architect obtained 90 out of 140
points, or 64 percent.

Feature Importance Weight Score Total score
Overall ease of use M 10 3 30
Ease of input H 6 3 18
Calibration ease H 6 2 24
Ease of interpretation H 6 4 24
Total 90

Table 8.6: Evaluation Profile for the Usability feature set. Enterprise Archi-
tect

8.2. EVALUATION PROFILES 109

8.2.3 The Comparability Feature Sets

In the Comparability feature set, the features are measurable and can be
translated into numbers. the following features are evaluated:

• Installation ease. This feature is scored by evaluating how quick it is
to install and upgrade the tool. This can be measured by the time it
takes to download the tool and install it.

• Estimation accuracy. This feature defines how accurate the estimates
are. Input is based on the Symmetric Relative Error (SRE) as shown in
section 7.2.

• Low cost. The cost is a number.

Deciding the scores for the method and tools is based on the following
observations:

• The use case points method is used with a spreadsheet, and installa-
tion and upgrading is therefore not a separate issue, and there are no
special costs. The method computes fairly accurate estimates, which
is given in total staff hours for the whole project.

• The tool ’Optimize’ is easy to install and upgrade, it is downloaded
from the Internet in a few minutes with a double ISDN line, but pur-
chasing costs are high. The price is available on the web pages of the
tool vendor. The tool computes inaccurate estimates for larger pro-
jects unless all the design classes are used as input. The SRE from
section 7.2 is based on input to the tool of all the design classes. Us-
ing only analysis classes as input computes very inaccurate estimates.
However, since this is what the documentation recommends, the tool
must receive a low score for ’estimation accuracy’.

• The tool ’Enterprise Architect’ is downloaded from the Internet in a
couple of minutes with a double ISDN line, and is easy to install and
upgrade. It is a relatively new tool, and there may be bugs. I found a
bug in an earlier version, and sent an e-mail to the creator of the tool.
The bug was fixed in the new version. Estimates are very accurate
if the same values for effort per use case point is applied as in the
use case points method. However, the problem is deciding this value.
There are no guidelines in the tool. The default value of 10 staff
hours per use case point accounts for analysis, design and build only.
However, the tool is inexpensive. The prices are available on the web
pages of the tool vendor.

The scores for the Comparability feature set in Tables 8.7, 8.8, and 8.9. The
total weighted score is 50. The use case points method obtained 44 out of
50 points, which is 88 percent. Optimize obtained 17 out of 50 points, or
34 percent, and Enterprise Architect obtained 34 out of 50 points, which is
68 percent.

110 CHAPTER 8. EVALUATION OF METHOD AND TOOLS

Feature Importance Weight Score Total score
Installation ease N 1 5 5
Estimation accuracy H 6 4 24
Low cost D 3 5 15
Total 44

Table 8.7: Evaluation Profile for the Comparability feature set. The Use case
points method

Feature Importance Weight Score Total score
Installation ease N 1 4 4
Estimation accuracy H 6 2 12
Low cost D 3 1 3
Total 17

Table 8.8: Evaluation Profile for the Comparability feature set. Optimize

Feature Importance Weight Score Total score
Installation ease N 1 4 4
Estimation accuracy H 6 3 18
Low cost D 3 4 12
Total 34

Table 8.9: Evaluation Profile for the Comparability Feature set. Enterprise
Architect

8.3. EVALUATION 111

Method/tool Learnability Usability Comparability Total
The UCP method 71 80 88 75
Enterprise Architect 64 64 68 65
Optimize 61 56 34 54

Table 8.10: Evaluation Profile in percentages

8.3 Evaluation

The use case points method received a total of 224 out of 300 points, which
is 75 percent. For ’Optimize’ the score was 162 out of 300, or 54 percent,
and for ’Enterprise Architect’ the score was 194 out of 300, or 65 percent.
The evaluation scores expressed in percentages of the total weighted scores
for all the features and total score are shown in Table 8.10. The results
show that the tool ’Optimize’ is inferior to the use case points method.

’Optimize’ is a pure cost estimation tool, and it requires calibration to
a specific organisation to compute fairly reliable estimates. This tool pro-
duces estimates that are more inaccurate than the use case points method
does with a spreadsheet. It needs the input of analysis classes to compute
a fairly acceptable estimate, but if the important issue is to compute an
estimate of effort at a very early development stage, for example from the
use case model, this tool is not appropriate. It is more suited for comput-
ing estimates later in the project, when more information about the design
phase is available. Also, the purchasing cost is high.

There is little point in investing in the tool ’Enterprise Architect’ if all
one needs is a cost estimation tool, as the same estimate can be made with
a spreadsheet. But if one is considering a modeling tool, the estimation
function is a nice feature. Another advantage is the low cost.

The use case points method received the highest scores in the Eval-
uation profiles. The method was therefore selected as a cost estimation
method to support expert estimation in the software company. It will be
used on future projects in order to further investigate estimation accur-
acy.

112 CHAPTER 8. EVALUATION OF METHOD AND TOOLS

Chapter 9

An Extension of the Use Case
Points Method

In many development projects, use cases are written in ways that are not
ideal for estimation purposes, as described in Chapter 7.

A single application may consist of several sub-systems developed by
different teams, all writing use cases in different ways. The effect of this
situation was demonstrated in Case Study B. This means that it may be
more difficult to size certain parts of a system than other parts. Using the
same approach to sizing for all the subsystems may produce inconsistent
counts and inaccurate estimates.

But as the use case points method seems to work well for different kinds
of applications, it is therefore important to be able to use the method even
if the use cases are not written in an ideal way. I therefore propose an
extension of the use case points method, with specific guidelines for as-
signing values to the environmental factors.

9.1 Alternative Counting Rules

9.1.1 Omitting the Technical Complexity Factor

In order to obtain more consistent counts, the counting rules can be sim-
plified by omitting the technical complexity factor. My studies have shown
that omitting the technical complexity factor does not make much differ-
ence to the estimates, in fact, it often improves estimates.

9.1.2 Alternative Approaches to Assigning Complexity

Counting transactions from well-written use cases is a simple task. Try-
ing to define use case complexity from use cases where the main success
scenario is the equivalent of ’do things’ is a challenge.

There are several alternative ways of defining complexity, and one may
have to combine some of the following approaches to arrive at a correct
measure:

113

114 CHAPTER 9. AN EXTENSION OF THE USE CASE POINTS METHOD

1. If there are no textual descriptions or activity diagrams, sequence
diagrams can be used to count transactions. This presents a cer-
tain danger, because these diagrams describe a lower level of func-
tional decomposition, and counting these transactions may lead to
overestimation. One may also count analysis classes as proposed by
Schneider and Winters [SW98]. The drawback is that counting classes
means that there is some design done, and ideally, estimates should
be computed from the requirements specification described by the
use cases in the analysis stage.

2. Another approach to defining use case complexity is a combination
of the one used in Case Study A, where degree of reuse was used to
define complexity, and the guidelines for defining use case complexity
described in the tool ’Enterprise Architect’:

• If there is extended design reuse, and the use case has a simple
user interface, it is classified as simple.

• If there is some reuse, and involves more interface design, the
use case is of medium complexity.

• If there is no reuse, and involves a complex user interface, the
use case is complex.

3. If there are textual descriptions, and there is any doubt about having
described the correct level of detail, this can be verified by transform-
ing the use case descriptions into the logical transactions of the MkII
method, as described in chapter 8. The use case transactions can be
counted from the primary and alternative flows in the logical trans-
actions. If the use cases are too detailed, they must be edited by
removing use case steps that do not describe functionality, but act
as a user manual. The drawback is that this is time consuming and
demands creative thinking. If the use cases have too little detail, one
of the other approaches must be used.

9.1.3 Converting Use Case Points to Staff Hours

The values for staff hours per use case point proposed by Schneider and
Winters [SW98] can cause drastic increases in estimates when a factor is
varied by one point or even half a point only. Although the figures pro-
posed by [SW98] may be based on experience, they may lead to unexpected
results. The project manager on the project in Case Study A observed that
small variations made meaningless increases to estimates.

Adding the environmental factors as described in Section 3.4 gives 20
staff hours per UCP if the value is less than 3, 28 if it is 3 or 4, and 36
if it is more than four, but in the last case, Schneider and Winters recom-
mend making changes to the project [SW98]. The leap from 20 to 28 staff
hours may be based on experience, but it may also give meaningless res-
ults. I therefore propose that this value should be calibrated to the specific
organisation.

9.2. GUIDELINES FOR COMPUTING ESTIMATES 115

9.2 Guidelines for Computing Estimates

The rules for sizing an application are therefore the following:

1. Count all the actors, and assign complexity to each according to Karner’s
method:

A simple actor represents another system with a defined Application
Programming Interface, API, an average actor is another system inter-
acting through a protocol such as TCP/IP, and a complex actor may be
a person interacting through a GUI or a Web page. A weighting factor
is assigned to each actor type.

• Actor type: Simple, weighting factor 1

• Actor type: Average, weighting factor 2

• Actor type: Complex, weighting factor 3

Add up the counts to get the Unadjusted Actor Weights, UAW.

2. Count all the use cases, and assign complexity to each using either
Karner’s method, or one or several of the methods described above,

• Simple: 3 or fewer transactions, weighting factor 5

• Average: 4 to 7 transactions, weighting factor 10

• Complex: More than 7 transactions, weighting factor 15

Add up the counts to get the unadjusted Use Case Weights, UUCW.

3. Add these together to obtain the Unadjusted Use Case Points

4. Set the Environmental factors by using the guidelines described in
Section 8.2.2, compute the EFactor

5. Use Karner’s formula

EF= 1.4+(-0.03*EFactor)

6. Calculate the adjusted use case points using the formula

UCP = UUCP*EF

7. Convert the total effort into staff hours by using the approach of
Schneider an Winters described in Section 9.1.3 to account for team
experience, or calibrate the value for staff effort per use case point by
using data from past projects in the specific organisation.

116 CHAPTER 9. AN EXTENSION OF THE USE CASE POINTS METHOD

Chapter 10

Conclusions and Future Work

In this Chapter, the conclusions of the investigations are presented in Sec-
tion 10.1, and ideas for future work on estimation with use cases in Section
10.2.

10.1 Conclusions

The analysis of the Case Studies shows that the use case points method
and the extension I propose can be used to size different kinds of software.

Estimating software projects with use cases is still in the early stages.
The nearly 10 year old use case points method proposed by Gustav Karner
has not become popular, and little research has been done to establish the
general usefulness of the method. The method has not been updated since
its creation, although it has been used in modified forms together with
function point counts [AP98].

Karner tested his method on a few small projects only, therefore, it is
necessary to try out the method on several larger projects in order to gather
more reliable data on estimation results. I have contributed to existing
experience with the method by trying it out on the two projects in Case
Studies A and B, and ten students’ projects.

Research conducted by Bente Anda et al. [ADJS01] showed how the use
case points method can compute accurate estimates of effort. However,
these projects were relatively small, with person effort of approximately
2500 staff hours. I have applied the method to two projects that were ap-
proximately four times as large in order to investigate whether the method
can be used to size larger projects with real-time functionality.

I have also studied 10 small students’ projects. The projects ranged
from approximately 300 to 600 staff hours of development effort. The
main purpose was to study the use case descriptions, and determine how
they can best be written for estimation purposes.

10.1.1 The General Usefulness of the Use Case Points Method

The two projects described in the Case Studies A and B in Chapter 5 differed
in several ways. The project in Case Study A was an Internet application.

117

118 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

The project in Case Study B was a real-time system with critical security
issues.

One could therefore expect somewhat different results as to the accur-
acy of the estimates produced with the use case points method, merely due
to the difference in project type. However, for both projects, the results
proved practically the same as for the studies conducted by Bente Anda et
al. [ADJS01]. The conclusion is that the use case points method can be
used to size different kinds of software of varying size.

The method may therefore be well suited to support expert estimation,
especially if the estimator is inexperienced or has little knowledge of the
application domain.

10.1.2 Omitting the Technical Complexity Factor

The traditional function points methods like FPA and MkII FPA on which
the use case points method is based, have discarded the technical adjust-
ment factor because it does not improve counts. Omitting this factor gives
more consistent counts because of simpler counting rules. There are fewer
sources of error.

It has also become clear that the technical complexity factor does not
measure size, and that there is a danger that complexity is accounted for
twice. I therefore assumed that the Technical Complexity Factor could be
dropped in the use case points method also. I computed estimates for all
the projects described in this thesis: the two projects in the Case Studies,
the three projects described by Bente Anda et al., and the 20 students’ pro-
jects described in Chapter 6. The results showed that there was little dif-
ference between estimates produced with the technical complexity factor,
and estimates produced without the technical factor. Estimates without
the technical factors were also on the whole more accurate. Considering
the uncertainties that people encounter when trying to set the values for
the different factors, and the fact that the technical complexity factor is
a concept created more than twenty years ago and has been discarded by
function point users, I conclude that the technical complexity factor may
be dropped. Doing so produced more concise counting rules and more
dependable counts in the estimates.

10.1.3 Writing Use Cases for Estimation Purposes

One of the main difficulties one encounters when applying the use case
points method, is that the writing of use cases is not standardized. Soft-
ware practitioners write use cases in very different ways and at different
levels of detail. Since defining use case complexity is dependent on textual
use case descriptions or state or activity diagrams, it is important to agree
on a company standard for structuring and writing use cases. Letting soft-
ware engineers write use cases in their own way increases the number of
errors, makes estimating with use cases more difficult, limits the possib-
ility of use case reuse, and decreases the overall efficiency of the project
[Ber97].

10.1. CONCLUSIONS 119

If there are no company standards for the writing of use cases, different
teams may write use cases of very different form and structure for dif-
ferent subsystems of a larger system, as was seen in Case Study B. Sizing
these sub-systems therefore introduces uncertainties as to the consistency
of the use case counts, and the accuracy of the estimates. When there is
not enough detail in the use case descriptions, or textual descriptions are
totally lacking, the use case points method may be used only if it is pos-
sible to define complexity some other way, for instance by counting ana-
lysis classes or sequence diagrams. Other approaches are considering the
amount of reuse, and/or the number of interfaces and database entries on
which the use case touches as a measurement of complexity.

Unfortunately, few software practitioners have an adequate sense of the
proper level of detail that should be associated with a given use case. A
survey of the use cases at a given site will most likely reveal that some use
cases have so little detail in them that they are unacceptably ambiguous,
while others are so detailed that the slightest change to the requirements
will cause them to be rewritten [Ber97]. In order to use the use case points
method effectively and compute estimates in a short time early in the de-
velopment phase, the use cases must be written at a suitable level of detail,
and be structured in a way that makes it easy to count use case trans-
actions. Otherwise, other sizing approaches must be used. This is time
consuming, and may also introduce errors into the counts. I have therefore
studied various writing styles, and have given examples of how use cases
should be written for use case estimation purposes. See Appendix A. I pro-
pose that these examples may be used as general guidelines for defining
company standards for use case writing.

Defining and verifying the correct level of textual detail is not straight-
forward. The minimum level of detail in the use case descriptions must
list all the functionality as use case steps, from which one can read num-
ber of transactions. If there is doubt as to the appropriate level of detail,
the use case may be translated into the logical transactions of the MK II
function points method to verify if all the functionality is covered by the
use case description. This may be a useful approach if there are difficulties
with sizing one of many subsystems in a large application, as in Case Study
B. On the other hand, this is time consuming, and should be unnecessary
once company guidelines for use case writing have been established, and
are followed.

10.1.4 Specification of Environmental Factors

The environmental factors that are used as cost drivers in the use case
points method are not always clearly understood. I have therefore spe-
cified the meaning of the specific factors, and defined guidelines for spe-
cific counting rules in order to obtain more consistent counts.

10.1.5 Evaluation of the Method and Tools

The use case points method is quickly learned and can be applied with
the aid of a spreadsheet. An estimate is computed in a short time, maybe

120 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

even less than one hour if one is familiar with the method. It has there-
fore been interesting to compare the accuracy of estimates produced with
this method to estimates produced by commercial cost estimation tools. I
have conducted a feature analysis in order to select the most appropriate
method or tool for the specific software company. The results showed that
the use case points method computes more accurate estimates than the
tools, and received the highest score in the feature analysis.

The tool ’Enterprise Architect’ uses the same input as the use case
points method if the TCF is included, and therefore produces the same
estimates when staff effort per hour is the same in both cases. However, it
can be difficult to determine staff hours per use case point if there are no
projects to compare with. If one does not need a UML modeling tool, there
are no advantages to this tool.

A difficulty with the tool’ Optimize’ is that classes must be used as input
in addition to use cases. In the tool guidelines, it is stated that analysis
classes should be used. My experience is that all the implementing classes
from the class diagrams must be used as input to produce an estimate that
is fairly close to actual effort. Otherwise, estimates are very inaccurate.
This means that some design must be done, and ideally, an estimate should
be computed at an even earlier stage, during the analysis phase. The time
and effort spent on learning to use the tool, as well as the cost of purchase,
makes it less attractive than a simple spreadsheet for computing estimates
with the use case points method.

But it is not easy to get software practitioners to adapt new methods
and tools [KLD97]. An advantage of the use case points method is that it is
based on Function Point Analysis and Mk II Function Point Analysis, which
have been in widespread use for years. The method therefore carries weight
and may be accepted by companies using the object-oriented approach.
The method is not dependent on an expensive tool or training, and the
results are easy to interpret.

The results of the feature analysis was presented to the software com-
pany in November 2001. The company will investigate the use of the ex-
tended use case points method presented in Chapter 9 by applying it to
several projects, in conjunction with expert estimates and other cost es-
timation methods.

10.2 Future Work

The work on this thesis shows that more experience with the use case
points method is needed in order to establish the general usefulness of
the method. The method should be applied to very large projects develop-
ing embedded software, real-time applications, and systems that are rich
in algorithmic complexity.

One of the difficulties of the method is converting use case points to
staff hours. The approach described by Schneider and Winters can create
unreliable estimates. More research is needed to find reliable solutions to
this problem.

Appendix A

Use Case Templates

The following use cases template is taken from Alistair Cockburn [Coc00].
This use case was written for requirements purposes, so it is a fully dressed,
black-box, system use case. It contains Primary actor, scope, stakeholders
and interests, Pre- and post conditions, guarantees , main success scenario
and extensions. All these points are not necessary, but a use case should
at least contain a primary actor, the goal to be achieved, pre- and post
conditions, a main success scenario and extensions.

USE CASE EXAMPLE
--
USE CASE 1: BUY STOCKS OVER THE WEB

Primary Actor: Purchaser

Scope: Personal Advisors / Finance package ("PAF")

Goal: Buy stocks

Stakeholders and Interests:
Purchaser - wants to buy stocks, get them added
to the PAF portfolio automatically.
Stock agency - wants full purchase information.

Precondition: User already has PAF open.

Minimal guarantee: Sufficient logging information
that PAF can detect that something went wrong
and can ask the user to provide details.

Success guarantee: Remote web site has
acknowledged the purchase, the logs and
the user’s portfolio are updated.

121

122 APPENDIX A. USE CASE TEMPLATES

MAIN SUCCESS SCENARIO:

1. User selects to buy stocks over the web.
2. PAF gets name of web site to use from user.
3. PAF opens web connection to the site, retaining

control.
4. User browses and buys stock from the web site.
5. PAF intercepts responses from the web site,

and updates the user’s portfolio.
6. PAF shows the user the new portfolio standing.

EXTENSIONS:

2a. User wants a web site PAF does not support:
2a1. System gets new suggestion from user,

with option to cancel use case.

3a. Web failure of any sort during setup:
3a1. System reports failure to user with advice,

backs up to previous step.
3a2. User either backs out of this use case,

or tries again.

4a. Web site does not acknowledge purchase,
but puts it on delay:

4a1. PAF logs the delay, sets a timer to ask
the user about the outcome.

4a2. (see use case Update questioned purchase)

5a. Web site does not return the needed
information from the purchase:

5a1. PAF logs the lack of information, has the user
Update questioned purchase.

In the main success scenario, there are 6 use case steps, with extension
points in steps 2,3,4 and 5.

123

The following use cases are adapted from the students’ projects and
modified slightly. They contain a primary actor, a goal, pre- and post con-
ditions, main success scenario and extensions. These are the minimum
requirements for a well-written use case.

USE CASE EXAMPLE 1- System ’Questionaire’
--

USE CASE 1: Publish Questionaire

Primary Actor: Administrator, System

Goal: To publish a project on the Internet.

Precondition: The questionaire has been saved

MAIN SUCCESS SCENARIO:

1. The adminstrator selects ’Publish Questionaire’
2. The system displays the projects
3. The user selects the project in question
4. The system verifies that the project has not

already been published
5. The system publishes the project and returns the URL

to the Web page.

EXTENSIONS:

2a. There are no projects ready for publishing
2a1. An error message is sent

4a. The project has already been published
4a1. An error message is returned

In the main success scenario, there are 5 use case steps, with extension
points in steps 2, and 4.

124 APPENDIX A. USE CASE TEMPLATES

USE CASE EXAMPLE 2 - System ’Swap Shifts’
--

Use Case Name: Verify New Shift

Primary Actor: Nurse2

Secondary Actors: System

Pre-Conditions: Nurse1 has requested to swap shifts
with Nurse2

Main success scenario:

1. Nurse2 selects ’Swap Shifts’
2. The system displays the request from Nurse1
3. Nurse2 either accepts or rejects the request
4. The system updates the information
5. The system sends a message to Nurse1, confirming

or rejecting the swap

Extensions:
2a. There are no registered shifts
3a. Nothing is chosen
3a1. the user is prompted to try again

Post Conditions: The shifts are updated

Appendix B

Regression-based Cost Models

A brief presentation of regression based cost models is given here to show
the forerunner of the function points methods and the use case points
method.

Early cost models used regression techniques. Data were collected from
past projects, and by examining relationships among the attribute meas-
ures captured, software engineers hypothesized that some factors could
be related by an equation. The basic equation was then adjusted by other,
secondary cost factors [FP97].

Transforming the linear equation

log E = log a + b log S

yields an exponential relationship of the form:

E = aSb

If size were a perfect predictor of effort, every point of the graph would
lie on the line of the equation, with a residual error of 0, but in reality,
there is a significant residual error.

The next step in regression based modeling is identifying the factors
that cause variations between predicted and actual effort. A factor analysis
helps identify these parameters. Weighting factors are assigned to these
parameters, and they are added to the model as cost drivers. The weights
are applied to the right hand side of the effort equation, yielding a model
of the form

E = aSbF

Barry Boehm’s original COCOMO model contained 15 cost drivers, for which
Boehm provided relevant multiplier weights.

Bailey and Basili suggest a cost model from your own data, which min-
imizes the standard error estimate in the data. The approach was tried out

125

126 APPENDIX B. REGRESSION-BASED COST MODELS

Methodology(METH) Complexity(CPLX) Experience(EXP)
Tree charts Customer interface cplx Programmer qualifications
Top-down design Application cplx Programmer machine exp
Formal documentation Program flow cplx programmer language exp
Chief programmer teams Complex processing Programmer language exp
Formal training Database cplx Team exp
Design Formalisms External communication cplx
Code reading Customer-initiated program -
Unit development folders - design changes

Table B.1: Technology adjustment factors

on 18 large, similar projects written in FORTRAN [FP97] . The basic effort
equation from this data is

E = 5.5+ 0.73S1.16

A technology factor is then used, based on attributes such as formal train-
ing, programmer qualifications programmer application experience etc. The
Table B.1 shows the technology adjustment factors for the Bailey-Basili
model. Each entry is given a score from 0 (not present) to 5 (very import-
ant), judged by the project manager.

Each column is summed, and the sums are used in a least-squares re-
gression to fit the equation

Adjusted effort = a METH + b CPLX + c EXP + d

It is the technique that is transferable, not the model itself [FP97].

Appendix C

Software Measurement

Software measurement has become essential in software engineering. Meas-
urements are made in order to establish whether requirements are consist-
ent and complete, if the design is of high quality, and to compute estimates
of effort. A brief presentation of the basics of measurements and measure-
ment theory is therfore included here.

C.1 Measurement and Measurement Theory

Measurement is the process whereby numbers or symbols are assigned
to dimensions of entities in such a manner as to describe the dimensions
in a meaningful way. An entity may be a thing, an event, a person, an
software application or a development process [NCW]. Measurement makes
concepts more visible and therefore more understandable and controllable.
Measurements are used to describe the attributes of entities. A measure is
therefore the number or value assigned to an entity by a mapping from an
observed system to a given mathematical system, in order to characterize
an attribute [FP97].

Values are also obtained by other means than direct measurement. An
estimate is a non-measured value. It is an assessment of an attribute value
obtained by an estimation method. The estimate may be based on guess-
work, for instance by looking at a code listing and guessing the number
of lines of code. Otherwise, it may be based on a predictive formula, for
instance by counting the number of transactions in the analysis model of
a future system, and using that information in a formula to predict effort
needed to construct the system [FP97].

Measurement theory consists of rules that define when and how to
measure, how to analyze and depict data, and how to tie the results to
questions to be investigated [FP97].

127

128 APPENDIX C. SOFTWARE MEASUREMENT

C.2 Software Metrics

Software metrics is a term that describes many activities, all involving soft-
ware measurement. Some of these activities are cost estimation, productiv-
ity measures and models, data collection, quality models and measures,
structural and complexity measures and evaluation of methods and tools.
Much software metric work has lacked the rigour associated with measure-
ment in other engineering diciplines [FP97].

C.3 Measurement Scales

When considering measurement units, one needs to understand the dif-
ferent measurement scale types implied by the particular unit. The most
common scale types are nominal, ordinal, interval and ratio:

• The nominal scale is a set of categories into which an item is classi-
fied. The categories are not ordered. Categories can not be used in
formulas.

• The ordinal scale is an ordered set of categories. Often used for
adjustment factors in cost models based on a fixed set of scale points
such as very high, high, average, low, very low. Scale points can not
be used in formulas.

• The interval scale consists of numerical values where the difference
between each consecutive pair of numbers is an equivalent amount,
but there is no real zero value. Addition and subtraction are accept-
able.

• The ratio scale is like the interval scale, but includes absolute zero
representing total lack of an attribute. All arithmetic can be meaning-
fully applied. [FP97] [Kit95].

Understanding scale types makes it possible to determine when state-
ments about measurements make sense. Measures often map attributes
to real numbers, and it is natural to want to manipulate these numbers
by adding, averaging, performing logarithms and statistical analysis. But
analysis is constrained by the scale type, and it is possible to perform only
those calculations allowed for the particular scale type [FP97].

Much of the measurement work on this thesis has been done by

• listing categories like use cases, classes, sequence diagrams etc. These
categories are on a nominal scale.

• Counting the number of use cases, actors, classes, and transactions
and assigning complexity to them. The counts that are computed are
on a ratio scale. For instance 4 use cases of medium complexity (score
10) gives the count

4 * 10 = 40 UUCW (Unadjusted Use Case Weights).

C.3. MEASUREMENT SCALES 129

• Assigning values to entities and scores to specific factors, for instance
simple, average and complex use cases and classes. These values or
scores are on an ordinal scale.

However, calculations that violate the principles of measurement theory
are frequently done when to do so proves useful. For instance, some of
the formulas used for calculating function points and use case points are
meaningless according to measurement theory [KK97]. The formula for
computing the adjusted Use Case Points:

UCP = UUCP * TCF * EF

shown in Section 3.2.2, is not consistent with measurement theory, because
the counts are on a ratio scale and the scores for the adjustment factors are
on an ordinal scale [KK97]. But such formulas are often used in practice.

130 APPENDIX C. SOFTWARE MEASUREMENT

Bibliography

[ADJS01] Bente Anda, Hege Dreiem, Magne Jørgensen, and Dag Sjøberg.
Estimating Software Development Effort based on Use Cases - Ex-
perience from Industry. In M. Gogolla, C. Kobryn (Eds.): UML 2001
- The Unified Modeling Language. Springer-Verlag. 4th Interna-
tional Conference, Toronto, Canada, October 1-5, 2001, LNCS
218, 2001.

[AP98] Martin Arnold and Peter Pedross. Software size measurement and
productivity rating in a large-scale software development depart-
ment. Forging New Links. IEEE Comput. Soc, Los Alamitos, CA,
USA, 1998.

[Ber97] Edward W. Berard. Be careful with ’use cases’. The Object Agency,
Inc, 1997.

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[CD00] John Cheesman and John Daniels. UML Components, A simple
Process for Specifying Component-based Software. Addison-
Wesley, 2000.

[Coc97] Alistair Cockburn. Structuring use cases with goals. Humans and
Technology, 1997.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley,
2000.

[Fac] The Object Factory. Estimating Software Projects Using Object-
Metrix.

[FAN97] Thomas Fetke, Alan Abran, and Tho-Hau Ngyen. Mapping the oo-
jacobsen approach into function point analysis. The Proceedings
of TOOLS, 23, 1997.

[Fow97] Martin Fowler. UML Distilled. Addison-Wesley, 1997.

[FP97] N.E. Fenton and S.L. Pfleeger. Software Metrics. A Rigorous and
Practical Approach. Cambridge University Press, 1997.

[JCO92] Jacobsen, Christerson, and Overgaard. Object-oriented Software
Engineering: A Use Case-driven Approach. Addison-Wesley, 1992.

131

132 BIBLIOGRAPHY

[JEJ95] I. Jacobsen, M. Ericsson, and A. Jacobsen. The Object Advantage:
Business Process Reengineering With Object Technology. Addison-
Wesley, 1995.

[Jon] Capers Jones. What are function points? www.spr.com.

[Kit95] Barbara Kitchenham. Measurement for software process im-
provement. C-FP-003 Issue 1 draft B, 1995.

[Kit98] Barbara Kitchenham. Evaluating software engineering methods
and tools part 9: Quantative case study methodology. Software
Engineering, 23, 1998.

[KJ97] Barbara Kitchenham and Lindsay Jones. Evaluating software en-
gineering methods and tools, part 7: Planning feature analysis
evaluation. Computing and Control Engineering Journal, 1997.

[KK97] Barbara Kitchenham and K. Känsälä. Inter-item correllation
among function points. National Computing Centre Ltd, UK and
VTT, Finland, 1997.

[KLD97] Barbara Kitchenham, L. Linkman, and D.Law. Desmet: A meth-
odology for evaluating software engineering methods and tools.
Computing and Control Engineering Journal, 1997.

[KP98] Barbara Kitchenham and Lesley M. Pickard. Evaluating software
engineering methods and tools, part 9: Quantitative case study
methodology. Computing and Control Engineering Journal, 1998.

[Lon01] David Longstreet. Use cases and function points. Copyright Long-
street Consulting Inc. www.softwaremetrics.com, 2001.

[Mil56] George A. Miller. The magical number seven, plus minus two:
Some limits on our capacity for processing information. The Psy-
chological Review, 63, 1956.

[MJ01] D. Sjoberg M. Jorgensen. A simple effort prediction interval ap-
proach. 2001.

[MkI] The MkII Counting Practices Manual, volume version 1.3.1.
www.gifpa.co.uk/library.

[NCW] Ralph D. Neal, Richard J. Coppins, and H. Roland Weistroffer. The
assignment of scale to object-oriented software measurement.

[Plo93] Scott Plous. The Psychology of Judgement and Decision Making.
McGraw-Hill, Inc, 1993.

[Ric01] Charles Richter. Designing Flexible Object-Oriented Systems with
UML. Macmillan Technical Publishing, 2001.

[Rul01] P.Grant Rule. Using measures to understand requirements. Soft-
ware Measurement Services Ltd, 2001.

[Ser01] Software Measurement Services. Cosmic ffp. www.gifpa.co.uk,
2001.

BIBLIOGRAPHY 133

[SK] Steve Sparks and Kara Kaspczynski. The art of sizing projects.
Sun World.

[Smi99] John Smith. The estimation of effort based on use cases. Rational
Software White Paper, 1999.

[Spe01] The UML Specification. Version 1.4. www.omg.org, 2001.

[SW98] Schneider and Winters. Applying use Cases. Addison-Wesley,
1998.

[Sym91] C.R Symons. Software Sizing and Estimating, MKII FPA. John
Wiley and Sons, 1991.

[Sym01] Charles Symons. Come back function point analysis (modernised)
- all is forgiven! Software Measurement Services Ltd, 2001.

