
18 IT Pro September ❘ October 2002 1520-9202/02/$17.00 © 2002 IEEE

Managing Software
Projects with Business-
Based Requirements

Fergal McGovern

If you’re a project manager who wants to
drive business benefit from existing or new
systems, it’s important to understand what
business processes your system must address.

You need to know exactly where to change a sys-
tem and, as you implement change, how to meas-
ure its completeness.To successfully address these
challenges, project managers must trade tradi-
tional subsystem project planning for objective-
based, requirements-driven project management.
This approach differs from traditional develop-
ment processes.

For many organizations that are neither software
product companies nor system integrators, the
expense and cultural change required for full-
process rollout can be prohibitive. Proponents of
agile processes/methods (such as Extreme
Programming) suggest that these “lightweight”
approaches are extremely effective. I would agree
that there are many powerful aspects within these

approaches. I suggest, how-
ever, that by taking an objec-
tive-based business require-
ments approach to project
management, software proj-
ects have a high probability of
running on time, and remain-
ing in scope and within
budget. Addressing require-
ment challenges, independent
of adopting a full process, can
offer many of the benefits of
full process adoption while

avoiding most of the expense and human issues
involved with full-process rollout.A business-based
requirements approach is an easy-to-adopt, risk-
free entry point that offers tangible quality
improvements.

This approach suits any project scope.Whether
building a complex system for enterprise resource
planning or customer relationship management,
or developing small, single-user software pro-
grams, defining business requirements improves
any system delivery.

SUBSYSTEM PROJECT PLANNING
According to a Standish Group study,nearly half

of all application development projects cost 70 per-
cent more than originally budgeted (John Berry,
“Bringing Some Clear Thinking to IT Projects,”
InternetWeek,6 Sept.1999).The managers who par-
ticipated in the study cited a lack of user input as
the main reason for project failure. So, if project
managers say they need requirements, and most
reasonable project managers understand these
needs, why do so many projects fail?

These failures boil down to a very basic prem-
ise: The way many managers structure project
plans is not around business requirements or
measurable goals,but around passive and unmea-
surable module definitions.

Consider a typical project plan as encountered
in many software environments.For example, let’s
say you’re developing software to manage a hotel
reservation system. You might begin by defining
deliverables that are essentially subsystems, such

To prevent specifications or
stakeholder expectations from
spinning out of control, consider
this simple, business-based
view of requirements.

Problems with
Subsystem-Based

Planning
10 Pitfalls of

Developing Software
without Requirements

Inside

September ❘ October 2002 IT Pro 19

as staff management, customer management, business
logic, and user interface screens.

The one main problem with this type of subsystem proj-
ect planning is the emphasis on system components as
deliverables rather than viewing deliverables from an
objective-based perspective. The “Problems with
Subsystem-Based Planning” sidebar lists other pitfalls.

An objective-based perspective might include “track the
number of guests visiting the hotel” or “register new loy-
alty members.” In the subsystem scenario, project man-
agers have no real way of measuring completion or
progress. How can they measure the completion of busi-
ness logic? Or how can they effectively judge whether a
subsystem meets customer expectations?

OBJECTIVE-BASED PERSPECTIVE
Taking an objective-based perspective still requires proj-

ect managers to manage the types of requirements that

apply across subsystems. These requirements are called
nonfunctional and break down into qualities and con-
straints. Qualities are characteristics that a system must
have,but they are not objective based.Such qualities relate
to branding, security, scalability, performance, and so on.
Constraints are environmental considerations that pertain
to the system’s development or deployment. For example,
a system might have to exchange formats with other sys-
tems (possibly across different enterprises). A corporate
entity might insist on a certain development language or
environment, or mandate a specific platform.

The question remains, where best should managers
record these types of system (nonfunctional) require-
ments? In keeping with an objective-based view of require-
ments, it is appropriate to associate these qualities and
constraints with either a specific business objective (or set
of business objectives) or with the entire system.For exam-
ple, you can combine a requirement concerning a system’s

➤ It becomes difficult to coordinate the dependencies
between each subsystem because the integration
happens toward the end of the project life cycle.
This model exposes logical or architec-
tural flaws and inconsistencies late
in the process. A classic example
of this situation is inconsistent
formatting in the messaging inter-
change among disparate subsys-
tems. I’ve even encountered a
system where the user interface was
unable to communicate with the back-end
subsystem because developers did not coordinate
subsystem dependencies.

➤ Customers won’t receive deliverables (aside from pro-
totypes) until developers fully complete the system,
running the risk that the system they’re building is not
what the customer wants.An example of this is inter-
active “cardboard” Web interfaces, which often bear
no resemblance to what is technically feasible.

➤ Because customers want prototypes to demonstrate
progress, the project can descend into a prototyping
spiral where the real system never gets built.This can
happen when a customer believes that a smoke-and-
mirrors prototype represents real progress on the
actual system. In reality, little effort has gone into
building the system.This situation can also arise when
the project manager can’t say “no” and keeps alter-
ing the prototype.

➤ Customers can’t review the business functionality in

a meaningful way. Because developers integrate sub-
systems late in the cycle, customers don’t have the

opportunity to review the system’s functional-
ity until after integration.At this point, engi-
neers have already “poured the concrete” of
the system—if it needs to be torn up and

rebuilt, costs escalate, and the project misses
deadlines.

➤ Early verification of the overall architec-
ture is difficult because testing for subsystem

interactions occurs late in the planned life
cycle. This delay increases the likelihood that

developers will encounter oversights requiring sig-
nificant redesign late in the life cycle, resulting in
slipped schedules and increased cost.

➤ Complex integration issues arise toward the project’s
end, extending its completion time and increasing
costs. Developers loose a substantial amount of work
if the system doesn’t perform the way a customer
expects.

➤ It becomes difficult to plan for incremental develop-
ment. A subsystems-based project is essentially one
large increment, first building the discrete subsystems
and then putting them together. Although well-
crafted project plans (implying incremental devel-
opment) can conceal the shortcomings of this view,
it can burn stakeholders during the final delivery
cycles. Looking at a system as just one large incre-
ment is identical to the waterfall approach and suf-
fers from some of the same pitfalls.

Problems with Subsystem-Based Planning

20 IT Pro September ❘ October 2002

S O F T W A R E D E V E L O P M E N T

user interface with a business objective such as “register
new loyalty members.” This means that objective-based
requirements still provide a testable and measurable
framework from the project management side. Project
managers can analyze nonfunctional requirements that
are testable, and verify those that are not while delivering
increments of the system.

In Figure 1, the orange blocks indicate the (functional)
objective-based business requirements.The brown blocks
represent (nonfunctional) subsystems, some of which are
involved in more than one business objective.
Nonfunctional requirements, such as security, apply
directly to the subsystems on the left, and these are meas-
urable.However, certain nonfunctional requirements, such
as branding, cannot be tested; project managers must asso-
ciate them with relevant business objective(s).

WHY REQUIREMENTS?
Software is difficult.Unlike the situation in many human

systems, software project managers can’t actually see the
software they produce. Consequently, it’s hard to measure
and manage its production.As a project manager,you need
to see what your team is producing to coordinate and
orchestrate the different elements that go toward a sys-
tem’s production or modification.

Many project managers would agree that orchestration

is their primary job. This task
amounts to managing resources
effectively to meet the require-
ments of specific tasks or objectives.
Without documented and clearly
articulated business requirements,
effective orchestration is difficult—
if not impossible—to achieve, even
for the best project managers,as the
“10 Pitfalls of Developing Software
without Requirements” sidebar
explains. Although many project
managers would argue that time
and cost constraints are the most
critical obstacles to effective proj-
ect management, the key problem
lies in not having a clear under-
standing of the project’s business
objectives, followed by not manag-
ing project delivery by business
objectives, or some combination of
these problems.

For example, a project manager
coordinating the development of a
hotel reservation system has a bet-
ter understanding of the project and
a better chance of making accurate
timing and resourcing estimates if
she tracks these against objective-

based requirements. Fulfilling requirements—such as
“check-in guest” or “issue loyalty discount”—requires
resources and costs money.By accessing the resources nec-
essary against the business requirement, project managers
can more realistically calculate the resources and time
needed to complete a project. In this case, you might start
by allocating six weeks to a reasonably sized business objec-
tive such as “issue loyalty discount.”This estimate,of course,
would subsequently undergo refinement based on a first
iteration of development, which helps refine and validate
initial estimates.

In contrast,making concrete time and resource estimates
based on subsystems is much harder because subsystems
are more variable; their functionality tends to be less con-
cise (in terms of communicable definition) early in the
project life cycle.This means subsystems tend to have clear
design and code that evolved later in the project; they
rarely have external-facing (English-based) boundaries
specified early in the life cycle. Thus, considering subsys-
tems as the primary vehicle for estimation is prone to vari-
ability and so increases project risk.

REQUIREMENTS-DRIVEN PROJECT PLANNING
Rather than focusing on subsystem deliverables, require-

ments-based project planning focuses on real, measurable
business requirements. Several key principles drive suc-

6: User
interfaces � � � � �

5: Credit
card

communications
� � �

4: Security � �

3: Order
batch

processing
� �

2: XML
parser and
processing

� � �

Tr
ac

k
n

u
m

b
er

o
f

g
u

es
ts

Iteration 1 Iteration 2 Iteration 3

R
eg

is
te

r
lo

ya
lt

y
m

em
b

er
s

…

Sc
h

ed
u

le
st

af
f

R
ec

o
rd

a
co

m
p

la
in

t

A
cc

ep
t

cr
ed

it
 c

ar
d

p
ay

m
en

ts

R
eg

is
te

r
o

n
lin

e
b

o
o

ki
n

g

Se
n

d
 e

-m
ai

l
co

n
fi

rm
at

io
n

Su
b

sy
st

em
s

Figure 1. Objective-based business requirements
interact with subsystem requirements.

September ❘ October 2002 IT Pro 21

cessful project planning based on business
requirements.

Specify objectives clearly
First, you must structure requirements in

terms of objectives. The requirements must
be measurable and understandable, and
express a goal or objective.

For example, a typical project objective is
“build user interface,” but this objective does
not describe what the user interface will
accomplish or the entities shown in the user
interface at a given point in the flow. A
better objective would be “register
guests” which has a specific step called
“display room data,” which includes
the following:

• total number of rooms,
• number of rooms available for VIP guests,
• number of over-allocated rooms, and
• room rates per room type (either corporate

suite, double, or single).

Also strive to express specifications in a
structured way that is accessible (under-
standable) to all stakeholders. Software spec-
ifications are best expressed in structured
English defined as specific steps, or groups of
steps within a process. For example, “build
XML parsing infrastructure”might be under-
standable to your developers, but not to your
customers, whereas “exchange purchase data
with suppliers” makes sense to customers.
This particular requirement is what the XML-
parsing subsystem fulfills.

Plan for incremental delivery
Project planning should center on incre-

mental delivery. Structure the project deliv-
erables in terms of iterations, each iteration
corresponding to a group of functional
requirements. These requirements should
consist of collections of use cases (a common way of rep-
resenting objective-based requirements) that let you accu-
rately identify issues early on and take appropriate action.

A sensible delivery increment per iteration is approxi-
mately four weeks,depending on the system’s overall com-
plexity. It should not extend beyond six weeks. Even in
very large system developments (with many developers
spanning durations greater than six months) it is always a
good idea to partition the overall project into subprojects,
each of which consists of several iterations. As a rule of
thumb, each project should contain three iterations. It is a
good idea to have micro-increments within an iteration.

See Surviving Object-Oriented Projects, chapter 5,
“Increments and Iterations”(Alistair Cockburn,Addison-
Wesley, 1998) for more details on this approach.

Identify steel threads
Out of these iterations, you must next identify the steel

threads.A steel thread is a set of logically grouped objec-
tives that does not consider any alternate or exceptional
scenarios.The steel thread includes that portion of the sys-
tem that satisfies these scenarios. Identification of the busi-
ness objectives that comprise a steel thread considers two
factors: the technical risk associated with these scenarios

If you don’t document the requirements for your software sys-
tem, you risk several problems.

➤ Communicating what the system will do for the customer
becomes very difficult.

➤ The team has a tendency to exclusively rely on
prototypes to communicate requirements to
the customer. This situation can lead to pro-
totyping spirals in which you never really build
the actual system.

➤ Project estimation becomes difficult
because there is no concrete notion of what

the customer required and no effective way—
beyond a gut-feel approach—to measure the effort.

➤ Incremental delivery of the solution becomes impossible.

➤ Your company has an over-reliance on having the right techni-
cal people available for every project, a situation that is neither
repeatable nor scalable.

➤ Communication and coordination between midsize teams
become difficult, as does the production of reliable and accurate
project plans and design.

➤ Planning is ad-hoc at best, because the team doesn’t document
metrics such as how many requirements are outstanding, in
progress, or already built.

➤ Code reuse is impossible because the team lacks a clear way to
identify reusable artifacts, whether these are designs, project
plans, or sets of generic system requirements.

➤ Without documented requirements, software production is not
predictable or repeatable.This results in resourcing issues that
prevent you from reliably predicting the project’s duration or
complexity.

➤ Managing customer expectation is difficult without require-
ments. If business analysts and project managers fail to manage
expectations, they lose credibility with the customer.

10 Pitfalls of Developing
Software without Requirements

22 IT Pro September ❘ October 2002

and the areas of importance to the customer.
Identifying these threads reduces risk. Developers build

and verify steel threads of functionality early in the pro-
ject’s construction life cycle, permitting early modification
of the architecture or design, if necessary. This steel-
threading approach builds what is a main success scenario
for a significant objective-based requirement or set of
requirements.

Once developers complete a first steel thread, they can
wrap additional threads around the first, each thread rep-
resenting one or more alternate scenarios in the require-
ment. By choosing initial steel threads that prove the
technical architecture and design, you can discover any
technical issues early in the project life cycle and build in
additional contingencies into the project plan. In a sense,
steel threads are sub-increments within a given iteration
and typically last about two weeks.

Trace design work back to requirements
It’s also important to trace the design and build from the

requirements. Always ensure that
you can trace any piece of design
work to one or more requirements.
What’s important is to have busi-
ness analysts on the team lead the
definition of business-based
requirements. They should then
work with the technical staff to
map those requirements into
appropriate components or system
interfaces, identifying suitable busi-
ness objectives within a given iter-
ation as well as suitable steel
threads, such as those shown in
Figure 1.

If developers are building some-
thing that isn’t traceable, it indi-
cates one of two problems:

• you might have potential issues
with the accuracy of the require-
ments, or
• the team is building something
outside of the system’s scope.

Develop test specifications
based on requirements

A classic symptom of a project in
trouble is lack of coherent test spec-
ifications.Testing is not a glamorous
activity for many developers; they
often consider it outside the scope
of their work. As such, developers
often overlook testing. However,

lack of testing is one major factor in failed or troubled proj-
ects.Always ensure that every path through the system has
an associated test case. Because the objective-based
requirements form the basis for traceability into the design,
these requirements also form natural test cases. Each sce-
nario in an objective-based requirement equals one test
case.

Manage Web or GUI design from
requirements

Most systems have a visual interface that lets users inter-
act with the system. Ensuring that developers design the
user interface to serve requirements is critical to project
success.Too often,especially in recent Web-based projects,
a separation of teams causes a lack of visibility into the
requirements. This situation results in integration prob-
lems late in the project life cycle.

This very problem occurred on a project when a graphic
designer used a frame-based approach to build a user inter-
face that explicitly disregarded security requirements.This

S O F T W A R E D E V E L O P M E N T

Figure 2. Requirements-driven project template.

discovery was made very late in the delivery cycles, resulting in an extensive
Web redesign.

Manage customer deliveries by requirement set
Ensure that the customer expects delivery of portions of the system at a point

that coincides with a finished iteration. If the customer is anxious to review
progress, let her have real, working pieces of steel-threaded functionality. One
of the key dangers with customer review cycles is offering an initial prototype
that the customer perceives to be an actual system. The customer might want
to use the prototype now, although it is, in fact, still very much a throwaway.

Avoid this situation by delivering steel threads instead of prototypes. Doing
so ensures that the focus remains on ultimate system delivery rather than on
endless prototyping, in which you never build the real system.

ADVANTAGES OF REQUIREMENTS-BASED PROJECT PLANNING
Requirements-based project planning lets you control a project’s scope and

have visibility into your software system. Figure 2 shows a project template you
can use to enforce requirements-driven project management.

In the template, the project’s design-construction phase is oriented around
iteration deliveries. In this example,I refer to each iteration as a functional group.
The functional group consists of sets of use cases (business objectives), each of
which in turn has a steel thread and a full build, which wraps the alternate and
exceptional scenarios around the core steel thread.The key fact is that this tem-
plate expresses each iteration as a collection of business-based objectives.The
portion of the subsystem required to fulfill each use case represents a distinct task
in the project plan and a subtask of the associated use case.

In the hotel management software scenario, the project manager reduces
project risk by setting clear expectations as to what elements the system must
produce.For instance, let’s say the system must register new members and track
the number of member visits. If the software does not follow through on those
requirements, developers must make changes during that iteration of the build.

Because this method expresses technical requirements in business language
(“issue an invoice,”for example), it becomes easier to share knowledge with non-
technical stakeholders,reducing the possibility that mismatches will occur between
the requirements and the system.The key benefit is in knowing that the system you
build will be what your customer expects.The quality of the hotel reservation sys-
tem improves because the project manager knows the system must process appli-
cations and credit card transactions, invoice suppliers, and issue loyalty
membership cards.The system’s success does not depend on subsystems like staff
management that are difficult to test and to deliver satisfactorily.

W ith no requirements, projects invariably descend into chaos.The symp-
toms of this are stress, long hours, jarred morale, and general dissatis-
faction among project participants. Next stop: dissatisfied customers,

disgruntled employees updating their resumes, and business stakeholders who
doubt your company’s credibility. Given these risks, business-driven require-
ments seem like a simple yet effective way to avoid a lot of heartburn. �

Fergal McGovern is founder and chief technical officer of SteelTrace, a software
development firm based in Dublin, Ireland.SteelTrace develops business process
and requirement tools that increase the accuracy between customer requirements
and system delivery. Contact him at fergal.mcgovern@steeltrace.com.

S O F T W A R E D E V E L O P M E N T �
�� �

��

Expect Something
Better

Support new
business
initiatives
without
disruption or
excessive cost.

www.awprof.com

Robertson • Sribar
0-201-76736-8

Visit your favorite
bookstore today.

The IT Best Practices
Series from

Addison-Wesley and
Intel Press. These

authors learned the
hard way so you

don’t have to.
Take advantage of
their experience.

Allen • Kutnick
0-201-76737-6

Learn from
the Best

Organize your
IT people and

processes.
Improve the
end-to-end

management
of critical

resources.

Also Available
Securing Business Information

Byrnes • Kutnick
0-201-76735-X

Enriching the Value Chain
Robertson • Sribar

0-201-76730-9

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

