
4 2 I E E E  S O F T W A R E P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0  ©  2 0 0 4  I E E E

This article describes the lessons learned from
the development of SAP and discusses how
open source software can play an integral role
in mission-critical software development both
inside and outside NASA.

Science Activity Planner
SAP is the primary science downlink analy-

sis and uplink planning tool for NASA’s 
Mars Exploration Rover (MER) Mission
(http://mars.jpl.nasa.gov/mer). During each
sol (Martian day) of mission operations, sci-
entists and engineers use SAP to visualize the
data acquired by the rover on previous sols

and develop a plan of activities for the rover to
accomplish on the next sol. Other operations
tools then refine the plan and transmit it to the
spacecraft. NASA classifies SAP as a mission-
critical application because a failure in SAP
could jeopardize an entire sol of operations.

Engineers also use SAP to operate research
rovers in the Jet Propulsion Laboratory’s Mars
Technology Program and are developing a ver-
sion of SAP for use in NASA’s 2009 Mars Science
Laboratory mission. Finally, SAP has played a
major role in NASA’s public outreach efforts:
versions of the SAP software have been freely
available for download by the general public
since the 1997 Mars Pathfinder Mission. The
public version of the MER version of SAP can
be downloaded at http://wits.sdsu.edu.

SAP provides a broad range of capabilities,
including 2D and 3D data visualization, image

focus
Mission-Critical
Development with 
Open Source Software:
Lessons Learned

B
y the time this article is published, NASA’s Mars Exploration
Rovers will be nearing the end of their seven-month journey to
the red planet. Once Spirit and Opportunity are safely on the
ground, mission operators at the NASA Jet Propulsion Labora-

tory will use a suite of software tools to analyze data acquired by the rovers
and direct their activities. The development of one of these tools, the Science
Activity Planner,1 relied extensively on open source software components. 

developing with open source software

Using open source software components in mission-critical projects
can not only keep the projects within budget but can also result in
more robust and flexible tools. 

Jeffrey S. Norris, Jet Propulsion Laboratory



processing, resource analysis, distributed op-
erations, and rover simulation. Figure 1 shows
some of the features of the main SAP interface.

Spirit and Opportunity carry the most so-
phisticated set of scientific instruments ever sent
to the surface of Mars, and these instruments
demanded major advances in nearly every part
of SAP’s downlink visualization and uplink
planning architecture.  SAP needed to be able to
visualize data sets an order of magnitude larger
than it had encountered in previous missions
while letting users analyze the data in funda-
mentally new ways.  The complexity of model-
ing these instruments’ performance required the
development of a new simulation system with-
in the tool as well.  These challenges called for
a complete redesign and redevelopment of SAP
for the MER mission.  

The project’s ambitious goals, coupled with
a modest development budget, required a de-
parture from the traditional in-house develop-
ment model used for most mission-critical
software (and for previous versions of SAP).
Early on, the SAP development team adopted
a design philosophy that sought to satisfy as
many of the requirements on our tool as pos-
sible with open source components developed

and maintained outside JPL. This decision af-
fected nearly every part of SAP’s redevelop-
ment, from design to delivery. 

Developing SAP with open source
software

We began development of SAP with an in-
tensive period of requirements definition in
cooperation with the scientists and engineers
who would be the tool’s primary users. Re-
quirements definition included many Web
“shopping trips” to search for open source
components that fit customer requests. Identi-
fying such components let us more confidently
assess a requirement’s cost than if we had to
consider developing it ourselves. In a few in-
stances, we even recommended changes to a
requirement when we felt that by doing so we
could satisfy it with an open source compo-
nent. Our customers responded positively to
these suggestions, especially when they real-
ized that we could use the resources saved to
develop more features.

During the early stages of SAP’s design, we
avoided asking “How can we develop this ca-
pability?” and instead asked “How can we
avoid developing this capability?” By focusing

J a n u a r y / F e b r u a r y  2 0 0 4 I E E E  S O F T W A R E 4 3

Figure 1. The main 
Science Activity Planner
interface. With the
downlink browser 
(foreground), users
view and analyze 
images and other data
in various ways. With
the uplink browser
(background), users
build, simulate, and 
validate plans for 
execution by the rover.



on developing as little as possible in-house, we
could save our precious development re-
sources for the most deserving tasks.

Selecting the final set of open source com-
ponents was a complex process, as I discuss
later in the article. The “Open Ops” sidebar
describes the suite of open source software
SAP uses today. Most of these components
serve critical roles in the SAP application, and
none are peripheral to SAP’s mission.

We not only incorporated open source in
the SAP application, but also relied heavily on
open source development tools. In addition to
the familiar GNU Emacs editor and the Con-
current Versions System (CVS), our team used
JUnit for unit testing, Xalan-J for XSL trans-
lation, and JavaCC to generate a parser for
image arithmetic expressions.

SAP’s development saw more than its share
of setbacks. Budget overruns elsewhere in the
mission required two deep budget cuts a-
mounting to nearly 50 percent of the total SAP
development budget. An evolving operations
process and unstable requirements required
several late-stage redesigns. 

SAP’s reliance on open source let it readily
adapt to many of these challenges. For instance,

one redesign demanded eliminating a SAP ca-
pability that an open source component was to
satisfy. Because we hadn’t invested any SAP de-
velopment resources or procurement funds in
that capability, its elimination had little overall
impact. It might seem counterintuitive, but our
experience indicates that using open source can
often make a project more nimble because its
resources are concentrated on the system’s core
architecture instead of specific features.

Although SAP has been cleared for release
to the general public in binary form, obtaining
clearance to release its source code is a far more
daunting prospect given its mission-critical
status. This posed a problem for the use of
two components that were released under the
restrictive GNU General Public License, which
requires all applications linked to the code to
also be open source. Fortunately, in both cases
the open source suppliers let us purchase a less
restrictive license for a small fee, and tossed in
priority technical support as part of the deal.

Development results
Without exception, we consider the use of

open source components during SAP’s devel-
opment a success. The quality of the open
source components we used was excellent. In
fact, overall they were of better quality than
two commercial components we purchased
for thousands of dollars.

We also encountered fewer bugs in the
open source components. Hoping it would let
us diagnose problems in the commercial com-
ponents more effectively, we paid additional
fees for access to their source code. With one
exception, the source code for the open source
components was better documented and easier
to understand than the source code for the
commercial components. Admittedly, this
sample size is quite small, but perhaps the
greater exposure of open source code encour-
ages developers to write better code.

The most striking difference between our ex-
periences developing with commercial and open
source components was the open source devel-
opers’ responsiveness. When we contacted open
source developers about a problem in their com-
ponent, they responded immediately with
workaround suggestions and kept us informed
as they worked to correct the issue. In one case,
they diagnosed the problem, fixed it, and re-
leased a corrected version in less than a day. 

When we encountered a problem in a com-

4 4 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The Science Activity Planner uses the following eight open source compo-
nents for critical mission operations tasks, ranging from writing rover activity
plans to calculating resource usage:

� Castor (http://castor.exolab.org), a data-binding framework that lets
SAP move data between XML files, Java objects, and SQL databases.
Castor is the core of SAP’s input and output functions.

� Java Expression Parser (JEP, www.singularsys.com/jep), a system for
parsing and evaluating mathematical expressions that SAP uses to process
resource formulas from the mission activity dictionary.

� Xerces-J (http://xml.apache.org/xerces-j/index.html), a validating XML
parser that SAP uses with Castor to read and write all official mission
formats.

� MySQL (www.mysql.com), a database application SAP uses to synchro-
nize data between multiple program instances.

� MySQL Connector/J (www.mysql.com/products/connector-j/index.html),
a middleware component that converts Java Database Connectivity calls
in SAP to the SQL network protocol. 

� HSQL Database Engine (http://hsqldb.sourceforge.net), a Java SQL
database embedded in SAP to give the application a local database
when a shared MySQL database isn’t available. 

� Virtual Reality Modeling Language, or VRML97 (www.web3d.org/
technicalinfo/specifications/vrml97), a geometry loader SAP uses for
3D spacecraft models.

� Skaringa (http://skaringa.sourceforge.net), a data-binding framework
similar to Castor. SAP uses its time-formatting functions. 

Open Ops



mercial component, we often had difficulty
even getting in contact with the developers. It
became clear that the most we could hope for
was for the problem to be fixed in the com-
mercial product’s next release, which was of-
ten months away. 

Because the commercial components’ life
cycle was so long, we were less motivated to
take the extra time to submit bug reports—we
often fixed the problem in our copy of the
source code and continued developing. When
we discovered and fixed a problem in an open
source component, however, we submitted the
fix to the developers because we could down-
load an updated version in just a few days. The
reward for contributing fixes to open source
projects might explain the consistently higher
quality we encountered in these projects.

It might seem that open source would de-
crease the system’s overall reliability, but our
experience indicates that this is incorrect. Con-
sider first the current test strategy for the SAP
components developed in-house. We test these
components to varying degrees depending on
several factors. The most tested portions have
custom-built automated unit test suites and
simple interactive applications with which de-
velopers can test interactions between compo-
nents. Finally, system-level and user-acceptance
testing evaluate each component’s performance
in the complete system.

Many of the open source components we
selected included detailed unit- and compo-
nent-level tests that met or exceeded the testing
level in most other portions of SAP. In addi-
tion, all the components we selected have
large, active user groups that constantly use the
open source, report bugs, and submit fixes. In
a way, each of these users acts as a component-
level tester for SAP and for every other user of
the open source project. Obviously, none of the
in-house portions of SAP has thousands of
users, and no one outside the SAP development
team has reviewed the source code for these in-
house components. We therefore believe that
introducing open source into SAP has im-
proved the application’s overall stability.

The development of the SAP data synchro-
nization system illustrates many of the positive
features of open source development. The ini-
tial SAP design included a powerful data syn-
chronization application that the SAP devel-
opers working on the MER mission and a
researcher in JPL’s technology program were

to develop. Unfortunately, after development
had already begun, simultaneous budget cuts
in the mission and the technology program
decimated the resources available on both
sides of the cooperation. We diverted addi-
tional resources from the mission budget in an
attempt to compensate for the loss in technol-
ogy funding, but the resources available
proved insufficient to develop a usable system. 

Over a year into development, we had to
decide whether to spend our quickly diminish-
ing resources in an attempt to complete our
current system or change to a less complicated
design in the hopes of recovering some of our
losses. After careful study, we discarded our in-
house system for a new implementation based
on four open source components (Castor-JDO,
MySQL, MySQL Connector/J, and HSQLDB).
Whereas our in-house effort had required sev-
eral person-months to partly complete, the
new implementation was both more stable and
more functional in less than one month. In the
end, we delivered the synchronization capabil-
ity to our customers ahead of schedule despite
the time lost on the first implementation.

This example also calls into question the
seemingly logical concern regarding open
source’s quality and stability. Whereas team
members can tailor an in-house component
precisely to their own requirements, an in-
house system developed hastily will rarely ap-
proach the quality of a mature, widely used
open source project. Suggesting that we could
develop a synchronization server in a few
months that would rival the performance and
reliability of MySQL, which has been in devel-
opment for nearly 20 years and is used by thou-
sands of companies around the world, would
have been ridiculous. Furthermore, none of our
developers had experience developing high-per-
formance, robust server software. We were
more than happy to trust this portion of our
software to open source developers.

Suggestions for future 
mission-critical projects

We compiled our experiences developing
SAP into a developer’s guide for those consid-
ering using open source in their mission-criti-
cal application. In addition to discussing how
to evaluate an open source component’s suit-
ability for inclusion in a mission-critical appli-
cation, the guide suggests strategies for work-
ing with open source development teams.

J a n u a r y / F e b r u a r y  2 0 0 4 I E E E  S O F T W A R E 4 5

An in-house
system

developed
hastily 

will rarely
approach 

the quality of 
a mature,

widely used
open source

project.



Evaluating open source software
Evaluating open source components for a

mission-critical application is a delicate task.
As we’ve discussed, open source components
can accelerate development and cut costs, but
the consequences of selecting the wrong com-
ponent can erase these benefits. It’s important
to consider several characteristics when evalu-
ating open source components.

Maturity. How well established is the open
source project? Clearly, a mission-critical appli-
cation is no place for someone’s untried, un-
tested code. In addition, a new project is more
likely to unexpectedly shift focus or disband al-
together than an older, established project. De-
velopers of mature open source projects have
also demonstrated their ability to make re-
leases, handle bug reports, and support users. 

To evaluate a project’s maturity, consider
both the amount of time the development team
has invested and the number of releases the
team has made. Projects in alpha or beta stages
of development are usually poor choices for
mission-critical applications. For projects that
don’t clearly state their stage of development,
consider the state of the project relative to the
development team’s stated goals. If many fea-
tures still await development, the project is
probably not mature enough for your project.

Software reliability is vital in mission-critical
development. Every piece of open source you
adopt must become part of your software’s
overall test plan. Open source components
that include automated unit and component-
level tests make this task much easier. With-
out these features you might need to write
automated acceptance tests to determine

4 6 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Poul-Henning Kamp

In 1994, I wrote a one-way pass-
word scrambler, based on the MD5 al-
gorithm, to avoid entangling FreeBSD in
the International Traffic in Arms Regula-
tions (ITAR) crypto dual-use export rules
(see www.freebsd.org/cgi/cvsweb.cgi/
src/lib/libcrypt/crypt.c#rev1.2). I re-
leased the source code under the “beer-
ware” license, which lets people use the
code however they want as long as they
don’t remove the license clause or claim
they wrote the software; the beer “fee” is
entirely discretional.

This relatively small piece of software
has since had a solid open source career:

� It’s been FreeBSD’s default password
protection algorithm since release
2.0 in 1994.

� NetBSD (http://www.netbsd.org)
and OpenBSD (www.openbsd.org)
adopted it, and OpenBSD extended
the basic concept using stronger al-
gorithms. Both projects imported the
version from FreeBSD and have the
algorithm’s history in their version
control systems.

� The GNU C Library (www.gnu.org/
software/libc/libc.html) adopted the
algorithm, but rather than ask my
permission to relicense the implemen-

tation, they rewrote it to get it under
the GNU license. The unfortunate
side effect is that their implementation
has no back reference to me or to the
original FreeBSD implementation.

� Cisco Systems uses the algorithm to
protect the highest-privilege pass-
word in their IOS router software:
“enable.” A Cisco employee con-
firmed that they imported the imple-
mentation verbatim from FreeBSD. 

� The RIPE (Réseaux IP Européens; www.
ripe.net/ripe) regional Internet reg-
istry uses the algorithm to authenti-
cate database update requests. I be-
lieve they also use my source code
unchanged.

Vulnerabilities
So what does this algorithm protect

today?
The Cisco routers alone probably num-

ber in the low tens of millions, ranging
from telco optical monsters to consumer
broadband terminals. These routers carry
the passwords to the accounts that control
the Internet’s configuration. 

Interestingly, the “security by diversity”
argument doesn’t help us much here. Ju-
niper is Cisco’s only competition in the
backbone router market. Its high-level
processor runs JunOS, which is derived di-
rectly from the FreeBSD operating system

and thus is likely to use the same algorithm.
NetCraft reported in July 2003 that

FreeBSD powers almost 2 million sites
with almost 4 million hostnames.1 This
number includes only the publicly acces-
sible Web servers its automated survey
found, however. No one has even tried
to estimate how many FreeBSD ma-
chines run in other applications, from
firewalls to turn-key components. For ex-
ample, I was recently told that document-
processing systems running FreeBSD
handle approximately 10 percent of all
business-to-business financial transactions
(by both number and value) in the US.

Practically all Linux systems include
GNU Libc, and I’d estimate that some
millions of these systems worldwide—
from home computers to IBM main-
frames—default to the MD5 algorithm.

Password-protected Web pages often
rely on the underlying operating system’s
password scrambler, and contain all sorts
of nonpublic information. Most is proba-
bly porn, but anything from credit card
numbers to health information to military
secrets makes up the remaining fraction.

One-line summary: If I goofed in the
algorithm or its implementation, all hell
can break loose.

Before I started writing this piece, I
hadn’t fully realized what had happened
to the piece of code I churned out, sitting

Keep in Touch!



whether it’s safe to integrate a new version of
the component. The presence of a cohesive,
well-thought-out test plan is an excellent indi-
cation of the open source project’s maturity.

Longevity. How long will the open source
project survive? Ideally, all the open source
components you select will be consistently im-
proved and supported throughout the life of
your application. If the open source project
shuts down, your team will have to support the
component in-house—clearly a situation that a
mission-critical project should try to avoid.

How, then, do you evaluate an open source
project’s longevity? 

A mature project is more likely to survive,
so start by considering the project’s maturity
using the metrics described earlier. Next,
check the dates of the last releases, news posts,

and messages in user forums and mailing lists
to assess developer and user activity on the
project. Some open source projects are like
ghost towns—they appear to be established,
quality projects when in reality the developers
and users have long since left the code to rot.
SourceForge.net makes it much easier to assess
the level of activity on a project by assigning
projects an activity percentile based on several
factors, such as commits to the source reposi-
tory, forum use, and bug tracker facility use. 

Finally, look for a large, diverse develop-
ment team. If an open source project is largely
the work of one developer, its life depends on
that developer’s willingness to continue the
project. Also be careful if all the developers
work for the same company or university. If
their organization suddenly changes priorities,
the project might not survive.

J a n u a r y / F e b r u a r y  2 0 0 4 I E E E  S O F T W A R E 4 7

on the floor while my son learned to
crawl. And honestly it scares me more
than a little. Fortunately, I have no reason
to believe that any problem exists with ei-
ther the algorithm or the implementation,
and given that MD5 is pretty strong, it’s
unlikely that any will ever be found.

What if … ?
But imagine I did goof, and I find a

serious flaw in the algorithm. I believe in
full disclosure of software security prob-
lems. I also believe in giving “the good
guys” a fair head start whenever possi-
ble. But could I provide this? 

Because I know they use the algo-
rithm, I could contact security people
at FreeBSD, Cisco, GNU, and RIPE be-
fore CERT (originally the Computer
Emergency Response Team) discloses
the problem to the public. Within
hours, or at most days, security advi-
sories and patches covering more than
90 percent of the deployed systems
would be distributed and installed. 

But what about the users I don’t know
about? How many organizations have
imported my algorithm into products,
turn-key solutions, or in-house applica-
tions? Not knowing who they are, I
couldn’t warn those customers before the
public disclosure. They would find out
via the official CERT advisory at the

same time as the bad guys. And that’s
assuming they realize that the advisory
is relevant to them.

The situation is not much better in re-
verse: Assume instead one of the algo-
rithm’s users found a problem and tried
to alert me. For reasons aptly described
by Alan Greenspan as “irrational exu-
berance,”2 the email address I used in
the original source code license no
longer exists, so the user’s first attempt to
contact me would almost certainly fail.

My name “Googles” well, so the user
should be able to find me; however, an
open source author named Bob Smith
would not be as lucky. Moreover, a user
starting from the GNU Libc reimplemented
version wouldn’t even have my name to
use in a search.

A new risk
Software development, or more

precisely software maintenance, must
find a way to mitigate this new risk,
brought on by the open source phe-
nomenon. (Given that the legal con-
nection between the software supplier
and the software consumer consists
mostly of text amounting to “You can’t
sue me, ever!” the legal department,
for once, can’t mitigate the risk.) 

I don’t think any general solution to
this problem exists; users in each case will

have to weigh the risks and the resources
to find an acceptable compromise. Conse-
quently, I won’t offer a solution.

I do have one idea, however. Send
the author an email saying, “Please treat
this as confidential information: FroBoz
Dam Construction used your software in
our flood control dam #3 project. Thank
you very much!” 

Open source authors are driven by
honor and recognition; thus, I predict
that more often than not, authors will ar-
chive such email in a vanity folder from
which they can and will cull return ad-
dresses should the need arise.

So keep in touch (just in case).

References
1. “Nearly Two Million Active Sites Running

FreeBSD,” Netcraft News, 12 July 2003, http://
news.netcraft.com/archives/2003/07/12/nearl
y_2_million_active_sites_running_freebsd.html.

2. S. Reier, “Five Years Later, Greenspan’s ‘Ir-
rational Exuberance’ Alert Rings True,” Int’l
Herald Tribune, 1 Dec. 2001, www.iht.com/
articles/40648.htm.

Poul-Henning Kamp owns a consulting company and
is a major contributor to the FreeBSD operating system and a
gaggle of other open source projects. His research interests
are infrastructure design in Unix kernels and precision com-
puter time-keeping. The computing business has effectively
distracted Kamp from his studies; at the current rate he might
finish a BSc in 2038, just in time for the Unix 231 time_t
rollover. Contact him at Herluf Trollesvej 3, DK-4200 Slagelse,
Denmark; phk@phk.freebsd.dk.



Flexibility. How well will the open source
project respond to your project’s changing
needs? Even if an open source component
seems absolutely perfect when you pick it,
you’ll likely discover a bug or want a new fea-
ture eventually. Some open source teams are
receptive to user suggestions while others have
a more rigid conception of what their project
should become. If the team is inflexible, de-
pending on their project is much riskier.

When evaluating an open source project’s
flexibility, first make sure that you’re planning
to use the software the way it was intended to
be used and the way most other users are us-
ing it. If you stray too far from the beaten
path, the developers might not want to help
you when you run into problems.

Next, spend some time reading the users’ fo-
rum or mailing list. Does the development team
answer user questions in a timely fashion? Does
it seem open to suggestions? Don’t underesti-
mate the importance of an active, interested
user community. Users of an open source com-
ponent are often a valuable source of support. 

Finally, get a feeling for the development
team’s willingness to support your work by
sending an email to a couple of the developers
introducing yourself and describing how
you’d like to use their system.

Working with open source developers
Having chosen and integrated an open source

component into your program, you might con-
sider your interaction with the open source team
complete. However, in the most productive
arrangements with open source developers, this
is only the beginning. If the open source compo-
nent will be part of your application’s core, your
goal shouldn’t be a simple “code drop.” Inject-
ing thousands of lines of code that someone else
wrote into a mission-critical project is a risky
proposition. Instead, you should aim to establish
a long-term working relationship with the open
source team. Poul-Henning Kamp further ad-
dresses this issue in the “Keep in Touch” sidebar
accompanying this article (see p. 46).

The relationship between an open source
developer and the project’s users is compli-
cated. Clearly it differs from the relationship
between vendor and customer because the
open source user is not paying the developer.
It also differs from the relationship between
coworkers because the open source developer
might have very different goals for the compo-

nent than the user does. The relationship is
most similar to a casual partnership between
departments at a university. The open source
developer and user work toward their own
goals, and the partnership flourishes as long as
the relationship benefits both parties.

At first glance, the open source user might
seem to be receiving all the benefits in this re-
lationship. What, then, motivates an open
source developer to write thousands of lines of
code and give it all away? Several of the ones
we work with indicated that the desire to see
their creations used by lots of people in excit-
ing and interesting ways and to improve as de-
velopers through the increased exposure of
their work are primary motivations. Therefore,
one of the best payments you can give an open
source developer is simply to send them an
email periodically telling them how you are us-
ing their product. If you are doing something
exciting with their work, try to include them in
that excitement.

Looking ahead 
SAP is not the only mission-critical piece of

software at NASA that was developed using
open source. In fact, SAP is not the only piece
of software within the MER mission to use this
strategy. Open source development is building
momentum at the agency. This movement is a
natural outgrowth of one simple question: Why
should we spend taxpayer dollars developing
something that already exists?—a question that
led NASA to embrace commercial off-the-shelf
hardware as a viable alternative to in-house
hardware development many years ago. 

Development with COTS software compo-
nents is a natural step on the way to open source
development. NASA has formally examined
COTS-based software development,2 which is
becoming more prevalent each year. Develop-
ment with open source is a natural extension of
COTS-based software development; however, it
might take longer to catch on because there is
no analogue to open source in the hardware
world. Try to imagine a computer manufacturer
giving free laptops to anyone who asks for one
and you’ll begin to understand why some peo-
ple have a tough time comprehending how open
source works. The “Openly Skeptical” sidebar
addresses some common questions about incor-
porating open source into a project.

If open source development becomes com-
monplace at NASA, the agency might take a

4 8 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Why should 
we spend
taxpayer
dollars

developing
something 

that already
exists?



“giant leap” toward the idea of releasing much
of the software that NASA develops to the
open source community. As long as issues of
national security are properly addressed, it’s
hard to imagine how this wouldn’t ultimately
benefit NASA, the US, and the rest of the
world. A recent report from NASA Ames Re-
search Center indicates a growing interest in
this concept within NASA,3 but it will likely be
some time before any official steps are taken to
make open source the norm in our agency.

T he SAP development team chose com-
ponents from among existing open
source projects. If we were unable to

find a component to suit a particular need, we
developed that component ourselves. Future
projects need not limit themselves in this way.
The open source community is home to some of
the most talented developers in the world, most
of whom get involved with projects merely be-
cause they enjoy writing software and like to
see their work used in interesting ways. Even if
the entire project wasn’t open source, a project
team could still pick mission-critical compo-
nents that were likely to be useful and interest-
ing to people outside their organization and
found open source projects to jumpstart their
development. A project could easily double or
triple the size of their development team this
way with little cost to their organization.

Open source is already revolutionizing soft-
ware development in many areas, and the
realm of mission-critical development is likely
to follow. Fundamentally, open source offers
an attractive third option to the build vs. buy
question. Where “build” offers flexibility and
“buy” offers accelerated development, incor-
porating an open source component might of-
fer the best of both worlds. Open source is
“buy” without having to spend anything and
“build” without having to develop anything—
it’s hard to imagine a better deal.

Acknowledgments
This research was carried out at the Jet Propulsion

Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space
Administration.  Reference herein to any specific com-
mercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not con-
stitute or imply its endorsement by the United States
Government or the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology.

References
1. P.G. Backes et al., “The Science Activity Planner for the

Mars Exploration Rover Mission: FIDO Field Test Re-
sults,” Proc. 2003 IEEE Aerospace Conf., IEEE Press,
vol. 8, 2003, pp. 3525–3540.

2. M. Morisio et al., “Investigating and Improving a COTS-
Based Software Development Process,” Proc. 22nd Int’l
Conf. Software Eng. (ICSE 2000), ACM Press, 2000.

3. P. Moran, Developing an Open Source Option for Nasa
Software, tech. report NAS-03-009, NASA, 21 Apr. 2003.

For more information on this or any other computing topic, please visit our
digital library at http://computer.org/publications/dlib.

J a n u a r y / F e b r u a r y  2 0 0 4 I E E E  S O F T W A R E 4 9

About the Author
Jeffrey S. Norris is a senior computer scientist in the Telerobotics Research and Applica-
tions Group of the Mobility Systems Concept Development Section at the Jet Propulsion Labora-
tory, California Institute of Technology, and development team lead for the 2003 Mars Explo-
ration Rover Mission Science Activity Planner. His research interests include collaborative,
immersive operations for Mars rovers and landers, science data visualization, and advanced hu-
man-computer interfaces. He received his bachelor’s and master’s degrees in electrical engineer-
ing and computer science from MIT and is working toward a PhD in computer science at the Uni-
versity of Southern California. Contact him at Mail Stop 264-422, Jet Propulsion Lab., Calif. Inst.
of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099; jeffrey.norris@jpl.nasa.gov.

If you choose to incorporate open source components in your mission-
critical application, be prepared for some hefty skepticism from your cus-
tomers, management, and even yourself. Here are some common questions
and answers.

� What if the open source developers quit the project? If the project is re-
ally dead and your application depends on it, you’ll have to maintain
the code in-house. Some people might think you’d avoid this risk by de-
veloping in-house to begin with, but what if the component’s chief de-
veloper leaves your company without finishing the work? You can’t
avoid this risk—you can only mitigate it by getting to know the devel-
opers you trust with critical parts of your system.

� If this component is so valuable, why is it free? Many people seem to
think that free means worthless. Some skeptics even prefer that you buy
a component than get it for free. Remind these people that open source
developers are deriving reward through means other than direct sales
of their product. 

� How do you know the product is of sufficient quality? For starters,
spend a few hours evaluating the open source product—from reading
user comments to experimenting with the component on your own. Also
consider your development team’s specialties relative to the open source
team’s. If your developers are simulation experts, can they write a bet-
ter encryption system in a few months than an open source team of
cryptography experts wrote in a year?

� What about licensing issues? Depending on what you’re planning to do
with your application, you might need to be careful here. A full discus-
sion of open source licensing issues is outside this article’s scope (see
Michel Ruffin and Christof Ebert’s article “Using Open Source Software
in Product Development: A Primer” elsewhere in this issue), but keep in
mind that many open source projects under restrictive licenses will grant
you a much more liberal license for a nominal fee. You can often begin
developing with the software immediately and pay the fee only when
you’re certain that the product matches your needs.

Openly Skeptical


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


