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Part I: Introduction

Chapter List

Chapter 1: Tools for Inventing Organizations — Toward a Handbook of Organizational
Processes

Part Overview

If you are an organizational researcher or business educator, imagine that you had a
systematic and powerful way of organizing vast numbers of things we know about business:
basic principles, key scientific results, and useful case examples. Imagine that you could
easily create and share this knowledge electronically with researchers, educators, and
students all over the world. And imagine that all this knowledge was structured in a way that
helped you quickly find the things you needed and even helped you come up with new
organizational ideas that no one had ever thought of before.

If you are a computer scientist, information technologist, or software developer, imagine that
different versions of this same kind of knowledge base could help you systematically
organize and share many of the basic patterns and components that are used in a wide
variety of computer programs. And imagine that computational tools that use this knowledge
base could significantly reduce the effort required to develop new software programs from
existing components and tailor them for use in specific organizations.

Finally, if you are a manager or consultant, imagine that you could use all this general
knowledge about ''best practices,''case examples, and software from all over the world. And
imagine further that you could also create your own specific versions of these knowledge
bases to share detailed information about the key activities in your own company or your
clients'companies: what needs to be done, who is responsible for doing it, and what
resources are available to help.

That is the vision that has guided the MIT Process Handbook project since its beginning over
a decade ago, and that is the vision that continues to guide our work. There is still much to be
done to achieve the full promise of this vision, but we believe that the work we have done so
far demonstrates that the vision is both feasible and desirable. This book is the story of what
we have done, what we have learned, and what is left to do. It is also an invitation to others to
join in the quest to help make this vision a reality.

What Have We Actually Done?

Our goal in the Process Handbook project has been to lay the foundations for the vision we
have just described. To do this, we have developed an extensive, publicly available on-line
knowledge base,[1] including over 5,000 activities, and a set of software tools to maintain and
access this knowledge base.

More specifically, the Process Handbook today is a combination of four things:

A set of fundamental concepts that can help organize and analyze knowledge about
any kinds of activities and processes. The two key concepts we use involve the
notions of ''specialization''and ''coordination.''

1.

2.



1.

A specific classification framework for organizing very large amounts of knowledge
using these concepts. Even though parts of this framework can be used to classify
activities of any kind, we have put a special emphasis on developing categories for
business activities.

2.

A representative set of generic business templates and specific case examples to
illustrate how the concepts and framework can be used. This knowledge base
includes, for example, generic templates for activities like buying and selling, and case
examples of companies doing these things in innovative ways.

3.

A set of software tools to organize and manipulate large amounts of knowledge (e.g.,
these templates and examples) using the concepts and framework.

4.

In principle, one could use any subset of these things without the others. But the combination
of all four elements provides a uniquely powerful set of capabilities.

As the examples throughout this volume illustrate, this on-line Process Handbook can be
used to help people: (1) redesign existing business processes, (2) invent new processes,
especially those that take advantage of information technology, (3) organize and share
knowledge about organizational practices, and (4) automatically, or semiautomatically,
generate software to support or analyze business processes.

What Other Things Are Like the Process Handbook?

One of the best ways to convey an intuitive understanding of the Process Handbook is to
describe other, more familiar, things that are like it.

For example, one key element of the Process Handbook is a classification system for
business activities. Classification systems are ubiquitous in scientific fields. They provide a
way to divide up the world and name the pieces. In this way classifications provide a
language for scientific communication and a filing system to organize knowledge about the
world. The best go deeper, and provide a conceptual basis for generalization and new
discovery.

Periodic Table of the Elements

Perhaps the most widely known and unequivocally successful such system is the Periodic
Table of the Elements, whose design is usually credited to Mendeleev in 1869. Though
numerous other researchers made proposals to bring order to the elements, Mendeleev got
credit because he used his Periodic Table to predict the existence and even the basic
properties of as yet undiscovered elements and to rule out the existence of others.

Of course, the success of the Periodic Table is due, in part, to the nature of the elements
themselves. Elements are unarguably distinguishable from each other based on chemical
tests and have properties that do not change. The ordering of elements in the Table is based
on an essential property, atomic number, and the arrangement of elements into groupings is
based on other essential properties, such as the valence electron configuration (though
these properties were in fact only fully understood after the discovery of the Periodic Table).
In other words, the Periodic Table is a success because its order reflects a deeper order
within the elements.

While we doubt that it will ever be possible to describe business processes with the same
degree of precision as is possible for chemical elements, we do believe that a classification
system like ours can significantly help organizational researchers and others to represent the
deeper order within organizational activities.



Biological Classification

Another classification system with strong analogies to the Process Handbook is the system
biologists use to classify living organisms. In fact the search for a way to organize the
chemical elements was inspired by the hierarchical classification of living organisms first
proposed by Linnaeus in 1758. Biological classification serves many of the functions we
envision for the Process Handbook: it provides a standard nomenclature for describing
species (so scientists can be sure they are talking about the same animals); it organizes
information about different species; and it serves as a basis for generalization in comparative
studies (a fact about one species is more likely to apply to other closely related species).

However, classifying living organisms is more problematic than classifying chemical
elements for several reasons. First, scientists study individual specimens (a ''holo-type,''or
representative individual), but the basic unit of the classification system is a species, that is,
the population of similar individuals. Unfortunately, the definition of a species is not
unequivocal, and scientists may disagree about whether two individuals are members of the
same or different species. Second, the properties of species can and do change over time.
Both of these properties also hold for the processes in the Handbook.

Finally, species (and processes) are much more complex than elements. As a result it is not
obvious which properties should be used to organize a collection. A classification will ideally
group species that share more than a surface similarity so that the groups serve as a basis
for theoretically grounded comparisons. Linnaeus's original system formed families of
species on the basis of common characteristics. More recently some biologists have
proposed classifying species on the basis of their hypothesized common ancestors (e.g.,
Wiley et al. 1991).

Though the biological classification system is intended to be objective, it also has a strong
social component. The classification system is supported by a well-developed social
structure, including codified rules for naming, a bureaucracy for registering names, and
conferences for vetting and accepting changes to the hierarchy. Development of some kind
of similar support structure will be necessary for the full potential of our vision to be fulfilled.

Human Genome Project

Perhaps one of the closest analogies to the Process Handbook project is the Human
Genome Project (HGP). The first five goals of the HGP are to:

''identify all the approximately 30,000 genes in human DNA,1.

determine the sequences of the three billion chemical base pairs that make up
human DNA,

2.

store this information in databases,3.

improve tools for data analysis,4.

transfer related technologies to the private sector''

(http://www.ornl.gov/hgmis/project/about.html ).

5.

The goals of the Process Handbook are broadly similar, though more modest. In our version
of goals 1 and 2, we aim to identify a large number of processes and to develop a
comprehensive classification for organizing them. Because of the diversity and detail of
organizational processes, it would be impossible to completely describe all processes in all
organizations, but the HGP will probably not sequence every variation on every gene either.
Goals 3, 4, and 5 can be adopted with little change, the most significant difference being that
we will organize processes in a hierarchy, implying a different set of tools for storing and

http://www.ornl.gov/hgmis/project/about.html


analyzing them.

Engineering Handbooks

A final parallel can be drawn to engineering handbooks. Handbooks of various kinds are
common in engineering disciplines to present and organize information to support designers.
For example, the Multi-media Handbook for Engineering Design, created by the Design
Information Group of the University of Bristol offers:

. . . a concise source of . . . elementary engineering design principles, design details of
machine elements and specific component information. It provides:

design guides for a variety of design situations including the design, selection and
application of components and systems

catalogue information from component manufacturers to provide standard sizes and
dimensions, ratings and capacities

good practice guides to the proper design of components and systems in terms of
increased strength, reduced cost, more effcient manufacture and assembly

materials data for common engineering materials including properties, standard forms
of supply, special treatments and typical applications.

Similar handbooks exist for chemical engineering (Perry, Green, and Maloney 1997), civil
engineering (Merritt, Loftin, and Ricketts 1995), electrical engineering (Fink, Beaty, and Beaty
1999), industrial engineering (Maynard and Zandin 2001), mechanical engineering (Avallone
and Baumeister 1996), and so on. Most of these handbooks include sections on basic
science as well as specific applications. The Process Handbook is intended to provide at
least the application-type information to support the design of business processes. Such
information is represented as semi-structured information associated with various process
descriptions.

The Process Handbook is not quite like any one of these other examples from various
branches of science and engineering, but each of these other examples illustrates important
aspects of our vision for the Process Handbook.

History of the Project

Even though we had been working on its intellectual precursors for years, the first work
specifically on the Process Handbook project began in 1991. Since that time, over forty
university researchers, students, and industrial sponsors have worked on developing the
software and knowledge bases that today constitute the Process Handbook. For all that time
this project has been one of the primary projects in the MIT Center for Coordination Science.

Even though we have refined our ideas over the years, the key conceptual ideas of
specialization and coordination were present in the first full proposal we wrote for this project
in 1992. For the first few years of the project's life, our main focus was on developing
software tools to manipulate knowledge about processes using these theoretical concepts.
Over the course of the project there have been at least four complete re-implementations of
the software tools and uncounted variations and improvements along the way.

Starting in about 1995, we also began to devote significant efforts to developing business
content for this framework. At first we had very ad hoc classification structures and a few
more-or-less randomly chosen business examples. Over time we added many more
examples and developed much more comprehensive and systematic classification
structures.



In part because of our belief that the potential for this vision would never be realized without
commercial-scale efforts, several members of our project team helped start an MIT spin-off
company, called Phios Corporation (www.phios.com), in 1996. Under a license from MIT,
Phios developed commercial versions of the Process Handbook software tools and extended
the knowledge base. For example, one of the two main versions of the Process Handbook
we use at MIT today uses the commercial version of the software tools.

Over all these years, we have also used the basic knowledge base and software tools in
classes, presentations to business audiences, and other research projects. In the last few
years, our primary focus has shifted to demonstrating the utility of the tools and knowledge
base in different applications. Today, for example, we are working on projects that integrate
the Process Handbook with other tools for visualizing supply chain processes (Goncalves et
al. 2002) analyzing organizational change (Brynjolfsson, Renshaw, and van Alstyne 1997),
and classifying company's business models (Herman, Malone, and Weill 2003).

Structure of the Book

This book includes a number of articles previously published in a variety of different
publications, as well as several chapters published here for the first time. Together, this
collection of readings presents a comprehensive view of the work we have done in our first
decade of work on this project.

Introduction

This initial section of the book gives an overview of the whole project. It contains a chapter by
Malone and colleagues that gives a comprehensive summary of all the key concepts and
major results of the project as of 1999. This chapter is both a summary of, and a foundation
for, the rest of the book.

The main body of the book contains three more detailed subsections on theoretical
foundations, current contents, and uses of the Process Handbook.

Theoretical Foundations of the Process Handbook

The first main section (section II) focuses on the theoretical foundations of the Process
Handbook. Subsection IIA presents in three chapters the basic ideas of coordination theory,
the source of some of the key concepts embodied in the Process Handbook. The basic
premise behind coordination theory is that many activities in a process can be viewed as
coordination activities whose purpose is to manage the relationships among other activities. A
key insight of the theory is that many of these coordination activities are very similar across
many different kinds of processes. Furthermore, for any given coordination activity (e.g.,
assigning resources to a task), there are several plausible alternative approaches (e.g., first
come–first served, managerial decision, auction). This means that one coordination
mechanism can often be substituted for another to generate many different possibilities for
how the same basic process can be performed.

Subsection IIB is comprised of a single chapter that discusses the concept of specialization
of processes in detail. Processes in the Handbook are organized in an extensive hierarchical
network, somewhat similar to the organizing principle used in biological classification. In the
Process Handbook, however, we also take advantage of the concept of inheritance from
computer science. We apply that concept here in such a way that the specialized versions of
a process automatically ''inherit''characteristics from more general processes.

Subsection IIC presents two discussions of what is meant by a process in the first place. One
chapter uses concepts from linguistics to describe processes as grammars; the other shows



how process descriptions themselves can constitute an important kind of theory for
organizations.

Current Contents of the Process Handbook

Section III describes the current contents of the Handbook. Subsection IIIA begins with a
summary of all the knowledge currently represented in the Handbook. This chapter shows
how the basic concepts described in section II lead to a comprehensive, intuitive, and
theoretically based classification framework for a wide range of business knowledge, and
how this framework can be used to classify a number of specific business templates and
case examples.

Subsection IIIB provides in two chapters examples of two very different kinds of knowledge
included in the Handbook: organizational methodologies for business process redesign and
coordination methods used in computer programs.

Subsection IIIC shows how more content can be added to the Process Handbook. It
describes an approach to using the basic concepts of the Process Handbook to analyze
business processes from real organizations in order to include them in the online Handbook.

Uses of the Process Handbook

Section IV gives examples of how the Handbook has been used in research and in practice.
Subsection IVA includes three examples that demonstrate the Process Handbook's
usefulness in redesigning business processes. For some of these cases the Process
Handbook serves as a well-organized but essentially passive knowledge base; for others, it
is used to actively generate new organizational possibilities for people to consider.

Subsection IVB contains three chapters that show how the Process Handbook can be used
for knowledge management. The first discusses managing knowledge about operational
business processes, the second potential problems in product design, and the third
communication genres used in organizations.

Subsection IVC focuses, in three chapters, on using the Process Handbook concepts and
infrastructure to help generate and customize software systems. The first deals with the
fundamental problems in specifying the architecture of any software system; the second
more specifically with customizing software-based production processes, and the third with
systems to support cooperative work by people in dynamically changing situations.

Conclusion

Section V concludes by a brief survey of what has been accomplished so far in the Process
Handbook project. It then discusses the major challenges ahead in fulfilling the vision that
has guided the project since its beginning.

A Guide for Readers from Various Disciplines

We believe one of the strengths of this project is the way it draws upon and makes deep
connections among different academic disciplines. One consequence of this, however, is
that not all parts of the book will be of equal interest to all readers.

To help you find the parts of the book that are likely to be of most interest to you, we
therefore wish to offer a small bit of guidance about how to navigate through this book. First,
we recommend that all readers start with the overview paper in this introductory section. Most
readers might also want to look at chapter 8 which gives an overview of the contents of the



Process Handbook.

Most of the other chapters in the book were written with readers from one of two disciplinary
backgrounds as the intended audience (see table I). The two primary disciplines are
computer science (including related disciplines like information technology, artificial
intelligence, and software engineering), and organizational studies (including related
disciplines like sociology, political science, and many parts of management).

Table I.1: Primary disciplinary perspectives of different chapters in this volume

  Primary discipline

Computer
science

science theory

I Introduction    

1 Malone et al. * *

II How can we represent
processes?

   

IIA Coordination as
management of
dependencies

   

2 Malone and Crowston * *

3 Crowston * *

4 Dellarocas *  

IIB Specialization of processes    

5 Wyner and Lee *  

IIC Different views of
processes

   

6 Crowston   *

7 Pentland   *

III Contents of the process
repository

   

IIIA Overview of the contents    

8 Herman and Malone   *

IIIB Examples    

9 Wyner   *

10 Dellarocas *  

IIIC Creating process
descriptions

   

11 Crowston and Osborn   *

IV Process repository uses    

IVA Business process redesign    

12 Klein et al.   *



13 Bernstein, Klein, and Malone * *

14 Klein and Dellarocas   *

IVB Knowledge management    

15 Carr   *

16 Klein *  

17 Yoshioka et al.   *

IVC Software design and
generation

   

18 Dellarocas *  

19 Bernstein *  

20 Bernstein *  

V Conclusion    

  Appendix    

  Lee et al. *  

Here are some suggestions for readers with these (and other) backgrounds: Computer
scientists, software developers, and information technologists may find the theoretical
perspectives on coordination (section IIA) and specialization of processes (section IIB) of
special interest. They may also be interested in a number of the applications of our
framework from the perspective of software engineering (chapters 10, 18, and 19),
cooperative work (chapter 20), knowledge management (chapters 15 and 16), and process
redesign (chapters 12, 13, and 14). Readers with an interest in artificial intelligence may find
it interesting to compare our efforts to develop a comprehensive knowledge base about
business intended for use primarily by human readers with Lenat's (1995) even more
ambitious efforts to develop a comprehensive knowledge base about ''common
sense''intended for use by automated reasoning programs.

Researchers in organization studies, management science, and related disciplines may find
it interesting to contemplate the possibility of a comprehensive classification system in these
disciplines analogous to those in biology and chemistry. The concepts of coordination
(subsection IIA), and process as theory (chapter 6) may be of special help in this goal. In
addition these readers may be interested in a number of the applications of our approach to
research questions in process design (chapters 9 and 12), analytical methodologies (chapter
11), and communication genres (chapter 17). Business educators may find it interesting to
consider the possible uses of approaches like this (especially chapters 8 and 9) in organizing
and retrieving business school cases and other course material.

Researchers in cognitive science may find it interesting to think about the theoretical
approach to studying organizations described here (especially in section II) as being, in some
ways, analogous to the computational approach to studying intelligence in cognitive science.

Researchers in library science and related disciplines may be especially interested in the
activity-oriented approach to classification described in chapter 8.

Managers, consultants, and others in business should find the uses of our approach
described in section IV to be of special interest.

We hope also that readers from all these different backgrounds will find it interesting to look
at some of the chapters outside their immediate field of interest in order to understand better
how all these different disciplinary perspectives can contribute to the overall vision.



[1]See ccs.mit.edu/ph.

 



 

Chapter 1: Tools for Inventing Organizations
— Toward a Handbook of Organizational

Processes

Thomas W. Malone,
Kevin Crowston,
Jintae Lee,
Brian T. Pentland,
Chrysanthos Dellarocas,
George M. Wyner,
John Quimby,
Abraham Bernstein, George A. Herman,
Mark Klein
Charles S. Osborn,
Elisa O'Donnell

An earlier version of this chapter appeared as T. W. Malone, K. G. Crowston, J. Lee, B.
Pentland, C. Dellarocas, G. Wyner, J. Quimby, C. S. Osborn, A. Bernstein, G. Herman, M.
Klein, and E. O'Donnell (1999), Tools for inventing organizations: Toward a handbook of
organizational processes, Management Science 45 (March): 425-43.© 1999 The Institute for
Operations Research and the Management Sciences (INFORMS), 901 Elkridge Landing
Road, Suite 400, Linthicum, MD 21090-2909 USA. Reprinted by permission.

1.1 Introduction

In recent years we have seen striking examples of process innovations that have transformed
the way organizations work. Although initially uncommon and perceived as radical, ideas like
'just-in-time'inventory control and concurrent engineering have become accepted as so-
called best practice (Carter and Baker 1991). These innovative practices have clearly been
beneficial, but most organizations remain in need of improvement, as suggested by the on-
going popularity of 'total quality management', 'business process redesign', and 'the learning
organization'. These slogans summarize ideas with real value, but they provide too little
guidance about what the improved organization might look like in particular situations. They
hold out the promise of innovation but lack the details needed to accomplish it.

The gap between the need to innovate and the tools for doing so leaves us with a problem:
How can we move beyond the practices of today to invent the best practices of tomorrow?
And where will we keep getting new ideas for organizational processes to adapt to a
continually changing world? For instance, how can we understand and exploit the new
organizational possibilities enabled by the continuing, dramatic improvements in information
technology? In time managers and employees of companies will certainly develop new ways
of working that take advantage of these new opportunities. For quicker progress on these
problems, however, our best hope is to develop a more systematic theoretical and empirical
foundation for understanding organizational processes. If we are to understand successful
organizational practices, we must be able to recognize and represent the organizational
practices we see. And to improve organizational practice in a particular situation, we must
also be able to imagine alternative ways of accomplishing the same things. Finally, we need
some way of judging which alternatives are likely to be useful or desirable in which situations.

This chapter reports on the first five years of work in a project to address these problems by
(1) developing methodologies and software tools for representing and codifying
organizational processes at varying levels of abstraction and (2) collecting, organizing, and



analyzing numerous examples of how different groups and companies perform similar
functions. The result of this work is an on-line ''process handbook''that can be used to help
people: (1) redesign existing business processes, (2) invent new processes (especially those
that take advantage of information technology), and (3) organize and share knowledge about
organizational practices. We also expect this Process Handbook to be useful in automatically
(or semi-automatically) generating software to support or analyze business processes, but
that is not the focus of this chapter (see Dellarocas 1996, 1997a, b).

The goal of compiling a complete handbook of business processes is, of course, a never-
ending task. Our goal in this research project is more modest: to provide a ''proof of
concept''that limited versions of such a handbook are both technically feasible and
managerially useful. Even though this project is not yet complete, the initial goal of
demonstrating the basic technical feasibility of this approach has been achieved, and that is
the primary focus of this chapter. We have also conducted field tests that demonstrate the
potential managerial usefulness of such handbooks and we include a description of one
such test.

 



 

1.2 The Key Intellectual Challenge — How to Represent
Organizational Processes?

In order to develop a system that could be used in the ways listed above, the key theoretical
challenge is to develop techniques for representing processes. Fortunately, the last several
decades of research in computer science and other disciplines have resulted in a number of
well-developed approaches to representing processes, such as flowcharts and data-flow
diagrams (e.g., Yourdon 1989), state transition diagrams (e.g., Lewis and Papadimitriou
1981; Winograd and Flores 1986), Petri nets (e.g., Peterson 1977; Holt 1988; Singh and
Rein 1992), and goal-based models (e.g., Yu 1992). These approaches have been used by
many organizations to map their own specific processes, and some have used them to
represent widely used generic processes (e.g., Scheer 1994; Maull et al. 1995; Winograd
and Flores 1986; Carlson 1979). For example, a number of consulting firms and other
organizations have already developed best practice databases that include verbal
descriptions, key concepts, and sometimes detailed process maps for a variety of generic
processes such as logistics, marketing, and manufacturing (e.g., Peters 1992, pp. 387-90;
CIO Magazine, 1992). It is clear therefore that it is technically feasible to assemble a large
set of process descriptions collected from many different organizations. It is also clear that
such libraries of process descriptions can be useful to managers and consultants. The
research question, then, is not whether it is possible to have a useful repository of knowledge
about business processes. These databases already demonstrate that it is. Instead, the
question is, 'How can we do better than these early databases?'

To answer this question, we have developed a new approach to analyzing and representing
organizational processes that explicitly represents the similarities (and the differences)
among a collection of related processes. Our representation exploits two sources of
intellectual leverage: (1) notions of specialization of processes based on ideas about
inheritance from object-oriented programming, and (2) concepts about managing
dependencies from coordination theory.

1.2.1 Specialization of Processes

Most process mapping techniques analyze business processes using only one primary
dimension: breaking a process into its different parts. Our representation adds a second
dimension: differentiating a process into its different types. Figure 1.1 illustrates the
difference between these two dimensions. In this figure, the generic activity called 'Sell
product'is broken apart into parts (or subactivities) like 'Identify potential customers'and
'Inform potential customers'. The generic activity is also differentiated into types (or
specializations) like 'Sell by mail order'and 'Sell in retail store'.

Figure 1.1: Sample representations of three different sales processes. 'Sell by mail
order' and 'Sell by retail store', are specializations of the generic sales process 'Sell
something'. Subactivities that are changes are shadowed.

As in object-oriented programming (e.g., Stefik and Bobrow 1986; Wegner 1987; Brachman



and Levesque 1985), the specialized processes automatically inherit properties of their more
generic ''parents,''except where they explicitly add or change a property. For instance, in 'Sell
by mail order', the subactivities of 'Delivering a product'and 'Receiving payment'are inherited
without modification, but 'Identifying prospects'is replaced by the more specialized activity of
''Obtaining mailing lists.''

Using this approach, any number of activities can be arranged in a richly interconnected two-
dimensional network. Each of the subactivities shown in figure 1.1, for instance, can be
further broken down into more detailed subactivities (e.g., 'Type mailing list name into
computer') or more specialized types (e.g., 'Sell hamburgers at McDonald's retail restaurant
#493') to any level desired. In general, we use the term ''activity''for all business processes,
including all their subparts and subtypes at all levels.

We have found the ''process compass''shown in figure 1.2 to be a useful way of summarizing
the two dimensions. The vertical dimension represents the conventional way of analyzing
processes: according to their different parts. The horizontal dimension is the novel one:
analyzing processes according to their different types. From any activity in the Process
Handbook, you can go in four different directions: (1) down to the different parts of the activity
(its ''subactivities''), (2) up to the larger activities of which this one is a part (its ''uses''), (3)
right to the different types of this activity (its ''specializations''), and (4) left to the different
activities of which this one is a type (its ''generalizations'').

Figure 1.2: The 'Process compass'illustrates two dimensions for analyzing business
processes. The vertical dimension distinguishes different parts of a process; the
horizontal dimension distinguishes different types of a process.

Comparison with Object-Oriented Programming To readers familiar with conventional
object-oriented programming techniques, it is worth commenting on the difference between
our approach and conventional object-oriented programming. The difference is a subtle, but
important, shift of perspective from specializing objects to specializing processes (see Stefik
1981; Friedland 1979; Thomsen 1987; Madsen, Moller-Pedersen, and Nygard 1993; Wyner
and Lee 1995; and other references in the section below on related work in computer
science).

In a sense this approach is a kind of ''dual''of the traditional object-oriented approach.
Traditional object-oriented programming includes a hierarchy of increasingly specialized
objects, which may have associated with them actions (or ''methods''). Our approach, by
contrast, includes a hierarchy of increasingly specialized actions (or ''processes'') that may
have associated with them objects. Loosely speaking, then, traditional object-oriented
programming involves inheriting down a hierarchy of nouns; our approach involves inheriting
down a hierarchy of verbs.

In a sense, of course, these two approaches are formally equivalent: anything that can be
done in one could be done in the other. The two approaches can also, quite usefully, coexist
in the same system. The process-oriented approach we are describing, however, appears to
be particularly appropriate for the analysis and design of business processes.



Figure 1.3: Summary display showing specializations of the activity 'Sell something'.
Items in brackets (e.g., '[Sell how?]') are ''bundles''that group together sets of related
specializations. Items in bold have further specializations. (Note: The screen images
used in this and subsequent figures were created with the software tools described
below.)

Bundles and Trade-off Tables In developing tools to support specialization, we have found
it useful to combine specializations into what we call ''bundles''of related alternatives. These
bundles do not have a direct parallel in traditional object-oriented languages; however, they
are comparable to ''facets''in information science (Rowley 1992). For instance, figure 1.3
shows part of the specialization hierarchy for sales processes. In this example one bundle of
specializations for 'Sell something'is related to how the sale is made: direct mail, retail
storefront, or direct sales force. Another bundle of specializations has to do with what is
being sold: beer, automotive components, financial services, and so on.

Comparing alternative specializations is usually meaningful only within a bundle of related
alternatives. For example, comparing ''retail store front sales''to ''direct mail sales''is sensible,
but comparing ''retail store front sales''to ''selling automotive components''is not. Where there
are related alternative specializations in a bundle, our handbook can include comparisons of
the alternatives on multiple dimensions, thus making explicit the trade-off between these
dimensions. For example, figure 1.4 shows a ''trade-off matrix''that compares alternatives in
terms of their ratings on various criteria; different specializations are the rows and different
characteristics are the columns. As in the Sibyl system (Lee and Lai 1991), items in the cells
of this matrix can be associated with detailed justifications for the various ratings. For very
generic processes such as those shown here, the cells would usually contain rough
qualitative comparisons (e.g., ''high,''''medium,''and ''low''); for specific process examples,
they may contain detailed quantitative performance metrics for time, cost, job satisfaction, or
other factors. In some cases, these comparisons may be the result of systematic studies; in
others, they may be simply rough guesses by knowledgeable managers or consultants (with
appropriate indications of their preliminary nature), and, of course, in some cases, there may
not be enough information to include any comparisons at all.



Figure 1.4: A trade-off matrix showing typical advantages and disadvantages of different
specializations for the generic sales process. (Note that the values in this version of the
matrix are not intended to be definitive, merely suggestive.)

1.2.2 Dependencies and Coordination

The second key concept we are using is the notion from coordination theory (e.g., Malone
and Crowston 1994) that coordination can be defined as managing dependencies among
activities. From this perspective we can characterize different kinds of dependencies and the
alternative coordination processes that can manage them. Such coordination processes are
both ubiquitous (i.e., the same mechanisms are found in many different processes) and
variable (i.e., there are many different mechanisms that can be used to manage a particular
dependency). Therefore, identifying dependencies and coordination mechanisms offers
special leverage for redesigning processes. The power of analyzing processes in terms of
dependencies and coordination mechanisms is greatly increased by access to a rich library
of alternative coordination mechanisms for different kinds of dependencies. A critical
component of the Process Handbook is a library of generic coordination mechanisms.

Figure 1.5: Three basic types of dependencies among activities (adapted from Zlotkin
1995)

Figure 1.5 suggests the beginnings of such an analysis (see Crowston 1991; Zlotkin
1995).The figure shows three basic kinds of dependencies: flow, sharing, and fit. These three
types of dependencies arise from resources that are related to multiple activities. Flow
dependencies arise whenever one activity produces a resource that is used by another
activity. This kind of dependency occurs all the time in almost all processes and is the focus
of most existing process mapping techniques (e.g., flowcharts). Sharing dependencies occur
whenever multiple activities all use the same resource. For example, this kind of dependency
arises when two activities need to be done by the same person, when they need to use the
same machine on a factory floor, or when they both use money from the same budget. Even
though this kind of dependency between activities is usually omitted from flowcharts,
allocating shared resources is clearly a critical aspect of many management activities.



Finally, fit dependencies arise when multiple activities collectively produce a single resource.
For example, when several different engineers are designing different parts of a car (e.g., the
engine, the transmission, and the body) there is a dependency between their activities that
results from the fact that the pieces they are each designing need to fit together in the
completed car.

Table 1.1 extends this analysis by showing how the different kinds of dependencies can be
associated with a set of alternative coordination processes for managing them. For example,
the table shows that ''sharing''dependencies (shared resource constraints) can be managed
by a variety of coordination mechanisms such as 'firstcome–first-serve', priority order,
budgets, managerial decision, and marketlike bidding. If three job shop workers need to use
the same machine, for instance, they could use a simple 'first-come–first-serve'mechanism.
Alternatively, they could use a form of budgeting with each worker having pre-assigned time
slots, or a manager could explicitly decide what to do whenever two workers wanted to use
the machine at the same time. In some cases the owner might even want to sell time on the
machine and the person willing to pay the most would get it. In this way new processes can
be generated by considering alternative coordination mechanisms for a given dependency.

Table 1.1: Examples of elementary dependencies between activities and
alternative coordination mechanisms for managing them

Dependency Examples of coordination mechanisms for managing
dependency

Flow  

Prerequisite
('right time')

Make to order vs. make to inventory ('pull' vs. 'push').

Place orders using 'economic order quantity', 'just in time'
(kanban system), or detailed advanced planning.

Accessibility
('right
place')

Ship by various transportation modes or make at point of use

Usability
('right
thing')

Use standards or ask individual users (e.g., by having
customer agree to purchase and/or by using participatory
design)

Sharing 'First come–.rst serve', priority order, budgets, managerial
decision, marketlike bidding

Fit Boeing's total simulation vs. Microsoft's daily build

While the dependencies shown in table 1.1 are certainly not the only ones possible, our
current working hypothesis is that all other dependencies can be usefully analyzed as
specializations or combinations of those shown in the table. Similarly, even though there are
many other possible coordination processes, the table illustrates how a library of generic
coordination processes can be organized according to the dependencies they manage.

Specialization and Decomposition of Dependencies Some dependencies can be viewed
as specializations of others. For instance, task assignment can be seen as a special case of
sharing, where the ''resource''being shared is the time of people who can do the tasks. This
implies that the coordination mechanisms for sharing in general can be specialized to apply
to task assignment. In other cases some dependencies can be seen as being composed of



others. For instance, flow dependencies can be viewed as a combination of three other kinds
of dependencies: prerequisite constraints (an item must be produced before it can be used),
accessibility constraints (an item that is produced must be made available for use), and
usability constraints, (an item that is produced should be ''usable''by the activity that uses it).
Loosely speaking, managing these three dependencies amounts to having the right thing
(usability), in the right place (accessibility), at the right time (prerequisite). Each of these
different kinds of dependencies, in turn, may have different processes for managing it; for
example, the prerequisite dependency might be managed by keeping an inventory of the
resource or by making it to order when it is needed, while usability may be managed through
a product design process.

1.2.3 Related Work in Organization Theory and Design

In some respects this work represents another step on what Sanchez (1993, p. 73) calls ''the
long and thorny way to an organizational taxonomy.''Because our work draws heavily on the
concept of specialization (and therefore classification), it is related to other taxonomies of
organizations (e.g., Woodward 1965; Thompson 1967; Pugh, Hickson, and Hinings 1968;
Mintzberg 1979; Ulrich and McKelvey 1990; Salancik and Leblebici 1988). The main
difference is that except for Salancik and Leblebici (1988), most work in this area has
classified whole organizations (or parts of organizations). Instead, we classify processes.
McKelvey (1982) argues that the study of organizations is at a ''pre-Linnaean''stage, awaiting
a more systematic taxonomy to enable further scientific progress. By focusing on processes,
the perspective introduced here extends previous work and provides a significant new
alternative in this important problem area.

For example, our work not only provides a framework for classification but also a framework
for identifying possible alternatives and improvements. Previously Salancik and Leblebici
(1988) introduced a grammatical approach to analyzing specific organizational processes
that enabled the generation of new processes by the constrained rearrangement of
component activities. Our representation extends this approach, adding specialization and
inheritance of activities as well as explicit representation of various kinds of dependencies.
Specialization enables us to generate new processes by using alternative sets of more
primitive actions. Explicit representation of dependencies allows us to generate many
possible coordination processes for managing these dependencies. For example, Salancik
and Leblebici's alternative orderings can all be generated as alternative ways of coordinating
the basic flow and other dependencies among the activities.

Our framework also emphasizes the importance of coordination in organizational design.
Our concept of dependencies, for instance, elaborates on and refines the traditional concept
of interdependence from organization theory (Thompson 1967). As Thompson (1967)
makes clear, interdependence between organizational subunits is a result of the way work
flows are organized between them. Thompson identified three kinds of interdependence:
pooled, sequential, and reciprocal. For each of these, he identified typical coordination
strategies, such as standardization, planning, and mutual adjustment. As these concepts
have been applied over the years, however, the concept of interdependence has come to
describe relationships between organizational subunits. In a sense, therefore, our approach
reasserts Thompson's (1967) original insight by emphasizing that dependencies arise
between activities in a process, not between departments per se. We extend Thompson's
(1967) work by identifying a much finer grained set of dependencies and a much richer set of
coordination mechanisms for managing them.

We are able to explicitly relate dependencies and coordination mechanisms in this manner
because our typology of dependencies is based on the pattern of use of common resources
that creates the dependency, rather than on the topology of the relationship between the
actors, as in Thompson's three categories. This approach makes it clearer which
coordination mechanisms should be considered as alternatives, namely those that address



the same kinds and uses of resources.

In representing processes computationally, our work is also similar to other computational
organizational models (e.g., Cohen, March, and Olsen 1972; Carley et al. 1992; Levitt et al.
1994; Gasser and Majchrzak 1994; Baligh, Burton, and Obel 1990; Masuch and LaPotin
1989). One major difference from most of this work, however, is that we focus on organizing
knowledge, and not on simulating performance.We can, of course, include simulation
models and their results in the knowledge we organize, but our focus is on useful ways of
organizing this knowledge, and not on generating it.

For instance, Carley et al. (1992) developed Plural Soar, a simulation of a team of actors
retrieving items from a warehouse. They used this simulation to study the effect of
communications between actors and of individual memory on the performance of the group.
In our system the basic processes followed by the group could be stored and specialized to
include or omit communication and memory. We could also include the performance of
each variation as found from the simulation.

The Process Interchange Format (PIF), described below, is intended to simplify the task of
translating process descriptions between a wide variety of such systems.

1.2.4 Related Work in Computer Science

The idea of generic processes (or ''scripts''or ''plans'') has a long history in the field of
artificial intelligence (e.g., Schank and Abelson 1977; Schank 1982; Chandrasekaran 1983;
Clancey 1983; Tenenberg 1986; Bhandaru and Croft 1990; Lefkowitz and Croft 1990;
Chandrasekaran et al. 1992; Marques et al. 1992). Of particular relevance to our work is the
work on ''skeletal plans''(Stefik 1981; Friedland 1979; Friedland and Iwakasi 1985), where an
abstract plan is successively elaborated (and ''specialized'') for a given task. The Process
Handbook can also be viewed as a case-based reasoner (Kolodner 1993) since many of the
processes represented in the Handbook are case examples from specific organizations.

Unlike these AI systems, however, the Process Handbook uses both process specialization
and dependencies with coordination mechanisms to generate and organize a large number
of examples and generalizations about them. For example, unlike a conventional case-
based reasoner with only a library of previous cases, the Process Handbook can also contain
an extensive (human-generated) network of generic processes that summarize and organize
the existing cases and that also help generate and evaluate new possibilities.

Outside the area of artificial intelligence, the notion of specializing processes has also been
used occasionally in other parts of computer science. For example, a few programming
languages (e.g., Thomsen 1987; Madsen, Moller-Pedersen, and Nygard 1993) include
mechanisms for defining specialization hierarchies of processes and combining actions from
different levels in various ways at run-time. However, even in the parts of computer science
where this work has been done, the potential power of systematically inheriting patterns of
activities, dependencies, and other properties though networks of increasingly specialized
processes does not seem to be widely appreciated.

In recent years the idea of explicitly representing the processes associated with connections
between activities has begun to receive some attention (e.g., Stovsky and Weide 1988). For
example, several recent Architecture Description Languages (ADLs) are used to describe
software systems in terms of components and connectors, where both components and
connectors are first-class entities (Allen and Garlan 1994; Shaw et al. 1995; Shaw and
Garlan 1996). Components are analogous to our activities, while connectors correspond to
our coordination processes. However, in these ADLs connectors are implementation-level
abstractions (e.g., a pipe, or a client/ server protocol). In contrast, the process handbook
notion of dependencies also supports hierarchies of specification-level abstractions for
interconnection relationships.



A key difference between our work and most previous work in all these areas of computer
science comes from the difference in goals. The previous work in artificial intelligence and
programming languages was primarily focused on building computer systems that,
themselves, design or carry out processes. Our primary goal, on the other hand, is to build
computer systems that help people design or carry out processes.

Because we have focused on supporting human decision-makers—not replacing
them—there is no requirement that all our process descriptions be detailed or formalized
enough to be executable by automated systems. Instead, it is up to the users of the
Handbook to describe different processes at different levels of detail depending on their
needs and the costs and benefits of going to more detailed levels. Therefore, unlike some of
the well-known attempts to create comprehensive ontologies of actions (e.g., Lenat 1995;
Schank and Abelson 1977), users of the Process Handbook do not have to wait for the
resolution of diffcult knowledge representation issues nor invest a large amount of effort in
formalizing knowledge that is not immediately useful.

For domains in which the processes are formalized in enough detail, however, the Handbook
can greatly facilitate the re-use of previously defined models such as simulations, workflow
systems, transaction processing systems, or other software modules (e.g., Dellarocas 1996,
1997a, b).

 



 

1.3 Results

The combination of approaches described above should make it practical to store large numbers of
processes, and, more importantly, enable users to generate a rich set of possible alternative processes. To
test the feasibility of our approaches, we developed a series of prototype versions of a Process Handbook.
The primary results of this work have been a set of software tools for viewing and manipulating process
descriptions and a body of information content about business processes. In addition to these primary results,
this section also includes brief descriptions of our methodologies for analyzing and organizing process
descriptions and a field test of our approach.

1.3.1 Software Tools — The Process Handbook System

To date, the most visible product of our project is a set of software tools for storing and manipulating process
descriptions. The core system manages the database of process descriptions and displays and edits selected
entries. Our current system is implemented under the Microsoft Windows operating system using Microsoft's
Visual Basic programming language and numerous third-party modules for that environment (i.e., VBXs). The
process descriptions are stored in a relational database (currently Microsoft Access) with an interface layer
above the database that represents processes using the concepts described above (Ahmed 1995; Bernstein
et al. 1995). This interface allows users to retrieve, view, and edit process descriptions, including adding new
subactivities and specializations.

The user interface includes (1) templates for describing activities, including standard fields (like name,
description, and author) and custom fields for specialized information about particular kinds of activities, (2)
links between activities, including standard links (like generalizations, specializations, and subactivities), as
well as arbitrary ''navigational links''with which users can group activities in any way they want; and (3)
summary views of specializations and decompositions, which allow direct manipulation of the database,
including operations such as adding, changing, deleting, or moving entries.

The system also provides (4) automated support for inheritance, so that changes in an activity are
automatically made in all its specializations that have not over-ridden them, and (5) automated support for
dependencies, so that users can specify the kind of dependency that exists between two or more activities
and then search the space of possible coordination mechanisms for that dependency to identify a
coordination mechanism (Elly 1996).

With this last feature users can easily switch back and forth between viewing the dependency or the
coordination mechanism that manages the dependency (see figure 1.6). By successively replacing
dependencies with coordination mechanisms and activities with their specializations, users can easily see
many different views of the same process, from the most abstract to the most detailed.

Web Interface We have also developed a World Wide Web interface to the system that allows users to view
(but not to change) the contents of the Process Handbook from anywhere on the Internet. Using a standard
Web browser, users can see information structured with templates, links, and inheritance, and they can
contribute to on-line discussions about each of the activities.

Process Interchange Format While we believe the tool described above has several unique advantages,
there are many other process tools available for tasks such as flowcharting, simulation, work flow, and
Computer-Aided Software Engineering (CASE). To increase the potential sources and uses for process
descriptions in the Handbook, we wanted to be able to move processes back and forth between these
different tools. To help make this possibility more likely, we organized a working group, including people from
our project and from several other university research groups and companies sponsoring our research. This
group has developed a Process Interchange Format (PIF) for moving process descriptions between systems
that use diverse representations (Lee et al. 1994, 1996). Via PIF, a process in one system (e.g., a process
modeler) can be used by another (e.g., a simulator), whose result in turn can be used by yet another system.
Each system uses as much as possible of the process descriptions and passes on information it cannot
''understand''to other systems (Lee and Malone 1990; Chan 1995).



Figure 1.6: Alternative views of the same sample process. The first view (a) shows a ''flow''dependency
between two activities. The second view (b) shows the flow dependency replaced by the coordination
process that manages it. The third view (c) shows the subactivities of the coordination process and the
respective dependencies among them. Users can easily switch back and forth among these different
views of the same process.

1.3.2 Information Content — The Process Handbook Database

To test the feasibility of our approach it was critical to enter a significant number of process descriptions into
the system. As table 1.2 summarizes, the handbook currently contains over 3,400 activities, some from
specific organizations and some generic processes. This information content is the second major result of our
work to date.

Examples from Specific Organizations In addition to using secondary sources of data (such as published
descriptions of innovative business practices), we have focused our primary data collection on the domain of
''supply chain management''—the process by which an organization (or group of organizations) manages the
acquisition of inputs, the successive transformations of these inputs into products, and the distribution of these
products to customers. For example, the handbook includes results from several MIT master's thesis studies
of supply chain processes ranging from a Mexican beer factory to a university purchasing process (Geisler
1995; Leavitt 1995; Lyon 1995; Ruelas Gossi 1995). The entries also include a number of examples drawn
from the ''Interesting Organizations Database''collected from published sources and student projects as part
of an MIT research initiative on ''Inventing the Organizations of the 21st Century.''

Table 1.2: Summary of current contents of the Process Handbook database



Kind of
activity

Approximate
number of
specific
organizations
represented

Approximate
number of
activities

Maximum
number of
levels of
specialization

Maximum
number of
levels of
decomposition

Sample
activity
names

Examples
from specific
organizations

Manufacturing

3 325 2 6 Brew beer

Other 'supply
chain'
processes

4 235 4 5 Build walls

Others 143 240 4 2 Select
human
resources

Generic
processes

Generic
processes
Generic
business
processes

NA 200 3 4 Sell
something

Generic
coordination
processes

NA 200 7 2 Manage
accessibility
by
collocation

Other generic
activities

NA 2,200 20 10 Acquire
human
resources

Total 150 3,400 20 10  

Generic Business Processes To take advantage of inheritance and to help find useful process analogies,
we need to integrate specific process examples into a more general framework. To develop such a
framework of generic processes, we first reviewed generic business process models from a variety of
published sources (e.g., Davenport 1993). Based on this work, we defined the broadest organizational
process in the Process Handbook as ''Produce something.''This term is intended to include both
manufacturing organizations (which produce products) and service organizations (which produce services).
We intend that every activity that occurs in an organization should fit somewhere in one of the five
subactivities of this all-encompassing process: (1) design, (2) purchasing and inbound logistics, (3)
production, (4) sales and outbound logistics, and (5) general management and administrative functions.
Drawing on our general knowledge of business and a variety of published sources, including textbooks in
marketing (Kotler 1997) and product design (Ulrich and Eppinger 1995), we have developed several levels of
more detailed subactivities for these generic business activities.

However, the Process Handbook does not force a single perspective on these activities. For example, several
of the generic business process models we reviewed are now included in the handbook as alternative
specializations of 'Produce something'. These different models provide different views of how a business can
be decomposed into subactivities. When several different specializations of an activity all include the same
lower level subactivities, but group them in different ways we define the different specializations as alternative
''views.''Many such views are possible, and they are all functionally equivalent, so it would not make sense to



claim that any particular set of generic business processes is definitive or intrinsically superior. Instead, users
can pick the views they find most useful or appealing.

Other Generic Activities In addition to the high-level generic business processes and generic coordination
mechanisms described above, many other kinds of activities occur as basic building blocks of business
processes. For example, activities like making a decision or approving an application are parts of many
organizational processes. In order to take advantage of process inheritance and maximize the generativity of
our framework, all activities need to be placed somewhere in the specialization hierarchy.

We have explored several alternatives for how to organize the specialization hierarchy that makes this
possible. The most promising approach we have found so far (which we currently use in the handbook) is
illustrated in figure 1.7. The basic idea is to create a high-level framework of a small number of very generic
activities, and then to classify all other activities as specializations of these high-level activities.

In the current version of this taxonomy, the top level consists of very general activities like Create, Destroy,
Modify, and Preserve. These most general processes can occur for any kind of object. As the table illustrates,
these generic processes are further specialized down to the lowest level of activity in the handbook. We have
found it useful in many cases to group specializations into bundles based on questions about who, what,
where, why, when, and how. For example, the bundles under the generic 'Get'activity, include 'Get what?'and
'Get how?'As with the other areas of the Process Handbook, the further development of this part of the
process taxonomy is an active part of our ongoing research. The taxonomy we have developed so far
demonstrates the basic feasibility of organizing large numbers of activities in a unified specialization hierarchy.

Figure 1.7: An outline view of the first two levels of the specialization hierarchy and selected further
specializations of the generic activity 'Move'

1.3.3 Methodologies

For this approach to be feasible for large-scale use, we need to be able to systematically analyze processes
and integrate them into the Process Handbook. In addition to developing methods for analyzing processes
(with or without the Process Handbook repository), we are also refining methods for editing and integrating



information about processes into the handbook database. For instance, a top-down approach to analyzing a
new process for the handbook is to start with similar examples already in the handbook, create a new
specialization, and then modify the specialization as needed to describe the new process. An alternative
bottom-up approach is to start by entering a description of the new process and then connecting it to existing
processes in the handbook that are generalizations of the whole process or its subactivities. In the course of
adding these new specializations to existing processes, the existing processes may be modified to include
generalizations of elements in the new processes.

In many cases we believe the best approach is a combination of both these approaches: working both top-
down and bottom-up to successively refine both old and new process descriptions and maximizing the
insights along the way. Our experiences with these methodologies are now being formalized (e.g., Crowston
and Osborn 1996; Pentland et al. 1994) and integrated into teaching materials.

1.3.4 Field-Testing the Process Handbook — A Case Study

In a sense each new process description entered into the handbook is a field test of the framework because it
raises the question: Can this process be adequately represented? But the more important question is: What
can we get back from the handbook? What kinds of activities can this representation support? To answer this
question, we have begun to field test the handbook in real organizations that are engaged in process
improvement efforts. While not in any sense controlled experiments, these field studies provide concrete
illustrations of the potential managerial usefulness of the Process Handbook concepts. One such study is
summarized here (for additional details, see chapter 12, Roth 1997). This study was done in collaboration
with one of our corporate research sponsors, the AT Kearney consulting firm, and one of their clients which
we call Firm A to preserve the client's anonymity.

Firm A was experiencing increasing problems with their hiring process. They were growing rapidly in a
tightening labor market, and they had a culture of independent, competitive business units. Together, these
factors led to increases in the time and cost to hire people and to increasingly frequent instances of business
units ''hoarding''candidates or bidding against each other for the same candidate.

In an effort to improve their hiring process, the organization had invested a great deal of time and energy into
''as is''process analysis using conventional techniques such as flowcharting. But they also wanted some way
to come up with highly innovative ideas about how to improve their process. In this spirit they agreed to
participate in a field test of the Process Handbook system and concepts. A study team of about eight people
was formed consisting of members from MIT, AT Kearney, and Firm A.

The team's first step was simply to see how the hiring process was represented in the Process Handbook.
Several of the steps in the Handbook activity called ''Hire human resources''were similar to those already
identified by the ''as is''analysis (e.g., identify need, determine source, select, and make offer). One
immediate insight, however, resulted from the fact that the Process Handbook representation of hiring
included a step of ''pay employee''which had not been included in the ''as is''analysis. Even though they hadn't
previously thought of it in this way, the team members from Firm A found it surprising and useful to realize
that the employee receiving a first paycheck is, in a sense, the logical culmination of the hiring process.
Receiving a (correct) paycheck, for instance, confirms that the hiring information has been entered correctly
in the relevant administrative systems.

Using the Concepts of Specialization To generate further insights and alternatives, the team looked in the
Process Handbook at specializations of the overall hiring process and then at the specializations of each of its
subactivities. In terms of the process compass mentioned above, the team looked first to the right, and then
down and to the right. In doing so, they came across examples such as Marriott Hotels, where an automated
telephone system asks job candidates a series of questions about their qualifications and salary
requirements. At the end of the call, callers are immediately told if they're qualified for the position and invited
to schedule an interview through the system's automated scheduling feature. Although most appropriate for
lower-level personnel, this example was very thought provoking for the project team.

The team found numerous other similarly intriguing examples in the Handbook. For example, they found
descriptions of (1) BMW using a simulated assembly line to help select assembly line workers, (2) Whirlpool



having a corporatewide ''human capital war room''with databases of projected skill needs and capacities, and
(3) Doubletree which seeks to systematically identify dimensions of employee success in their organization
and then hire candidates with similar traits.

This use of the Process Handbook is similar to the traditional ''benchmarking''or best-practice approach of
learning from other examples of the same process. Even here, however, the use of specialization in the
Handbook allows much richer ways of indexing large numbers of examples than any other best-practices
database of which we are aware.

In an effort to expand their horizons even further, the team's next step was to look in the handbook for more
distant analogies (or ''cousins'') of the hiring process. That is, they looked first at generalizations (''ancestors'')
of the hiring process and then at other specializations (''descendants'') of these generalizations. (In terms of
the process compass, they moved left and then right again.)

For example, 'hiring'is classified in the handbook as a specialization of 'buying', so a handbook user who
looks at the generalizations of 'hiring'will encounter 'buying'. In retrospect, this connection may seem obvious
(hiring is a form of buying someone's time), but this analogy had not been obvious to the project team, and it
proved to be a very stimulating source of insights. In exploring other specializations of buying, for instance, the
team encountered examples like (1) Motorola's extensive quality audits and rating systems for their suppliers,
(2) Acer's different sourcing strategies for different kinds of materials, and (3) General Electric's Internet-
based system through which purchasing agents can find and compare suppliers. Each of these examples
stimulated specific ideas about possible improvements in the hiring process for Firm A: (1) quality ratings for
recruiters, (2) creating different hiring processes for different kinds of positions, and (3) identifying candidates
using the Internet, respectively.

Using the Concepts of Coordination After exploring a number of such distant analogies, the team then
began to systematically explore and compare many different possible combinations of specializations and
coordination processes for hiring. One of the most interesting insights from this part of the process came from
focusing on the shared resource dependency for recruiter time. Firm A used a variety of internal and external
recruiters, and the time of these recruiters had to be somehow shared across all the positions being filled at
any given time. The coordination process Firm A currently used for managing this dependency was to have
recruiting managers for each business unit assign each new search to a specific recruiter.

When analyzing this process from a coordination point of view, the team quickly identified a variety of other
possible ways to manage this dependency, including all the coordination processes listed for sharing
dependencies in table 1.1. The team was particularly intrigued by the idea of using marketlike bidding
systems for this purpose. In one scenario the team developed, for instance, recruiters would ''bid''on the
opportunity to fill a new position by specifying how long they estimated it would take them to fill the position.
Later, when the position had actually been filled, the recruiter's fee would be adjusted for significant over-or
underperformance relative to the original bid.

One compelling advantage of this scheme is that it could more easily exploit information that is often ignored
completely in the current system. For instance, a recruiter who had just filled one position for a C++
programmer, but who knew that three other highly qualified candidates identified in the same search were still
available, could take this information into account in making a low bid on a new search for a C++
programmer in another business unit.

Our project ended before Firm A had implemented any of the ideas generated in this phase of the project,
and no quantitative evaluation of the idea-generating phase of the project was done. However, in the meeting
where the final project results were presented, the executive vice president of human resources in Firm A
eloquently articulated our aspirations in the project by saying that he felt he had ''passed through a doorway
where all sorts of things he had never imagined before now seemed possible.''

 



 

1.4 Discussion

This case illustrates a number of advantages of using a specialization hierarchy in
combination with the explicit representation of coordination and dependencies. First, this field
test showed that specialization can substantially reduce the amount of work necessary to
analyze a new process. By simply identifying a process as a ''hiring process,''for example, a
great deal of information can be automatically inherited. Then, only the changes that matter
for the purpose at hand need to be explicitly entered. This helps support a rapid assessment
of the basic features of a process, rather than laborious detailing (what Hammer and
Champy 1993 refer to as ''analysis paralysis''). For example in the field test, the team chose
to ignore nearly all of the ''as is''analysis that had previously been done by Firm A and focus
on a very simple, abstract view of the hiring process and its first-level subactivities. This level
of detail, alone, was suffcient to generate all the insights described above.

Second, the specialization hierarchy provided a powerful framework for generating new
process ideas. For example, some of today's ''best practice''databases support cross-
fertilization across industries within the same business function, but we do not know of any
others that would support the kind of cross-fertilization across business functions (from
purchasing to human resources) described above.

Since coordination processes are often those most susceptible to being changed by
information technology, a particularly important use of this approach is to use generic
knowledge about alternative coordination mechanisms to generate new process ideas. For
instance, the ideas about using bidding to allocate recruiter time were stimulated by very
generic knowledge about coordination, and would presumably be more feasible because of
the cheaper communication made possible by information technologies (see Crowston 1997
for other similar examples).

Another feature of our approach that makes it particularly useful for generating new process
ideas is that we focus attention on processes as distinct entities that can be described
independently of organizational structures or the roles of particular people or groups. This
process-oriented approach to business seems particularly useful, in (1) identifying new ways
of doing old tasks, even if the new ways involve very different actors, and (2) managing
connected processes that span organizational boundaries: either across groups in a single
firm or across firms in ''networked''and ''virtual''organizations.

In addition to these advantages, our process-oriented approach has limitations too. For
instance, any static process representation can give the impression that the process is more
stable and routine than most business processes actually are. In contrast to most other
process representations, however, our approach helps us explicitly deal with this issue by
representing the stable—or typical—aspects of a process at the generic level and then also
representing as many specialized variations as is useful.

Another risk of having libraries of explicit process representations like ours is that people will
interpret them too rigidly. While it is sometimes appropriate to collect prescriptive rules or
procedures in a Handbook like ours, we think that in most situations a process handbook will
be most useful as a resource to help people figure out what to do, rather than as a
prescription of what they should do.

The Editorial Challenge One of the most important ways in which our approach differs from
many other computational approaches to similar problems is that we do not rely primarily on
intelligent computer systems to analyze, reason about, or simulate business processes.
Instead, we place substantial importance on the role of intelligent human ''editors''to select,
refine, and structure the knowledge represented in the Handbook. This approach has both
strengths and weaknesses.



On the one hand, it allows us to take advantage of human abilities to analyze, organize, and
communicate knowledge in ways that go far beyond the capabilities of today's computers.
For example, the task of developing good generic models for the marketing and sales
process is similar, in many ways, to writing a good textbook or developing comprehensive
theories about marketing and sales. Human abilities to do tasks like these will almost
certainly exceed those of computers for the foreseeable future.

On the other hand, relying on human effort in this way means that the success of our
approach depends significantly on the quality and amount of human intelligence applied to
the problem of generating and organizing knowledge in the system. For example, a complex
and confusing network of poorly organized process categories may be even worse than no
categories at all.

In general, as process descriptions are added to the handbook, we will face a problem that is
analogous to that faced by researchers in many fields: how to ensure that results cumulate in
a meaningful way. Since we foresee a wide variety of potential users and contributors, it
would be unrealistic to expect equal rigor from all of them. Rather than attempting to enforce
uniform standards, we plan to allow a wide variety of data from diverse sources, but to
require that the specific sources, methods, and significance of that data be described in
enough detail to allow users of the Handbook to judge whether it is valid and reliable enough
for their own purposes. In this respect the Handbook has an advantage over more formal
approaches because it allows many alternatives to co-exist in the system. At the same time
this openness contributes to the editorial problem of insuring that the entries are consistently
and usefully classified. We believe that adopting solutions analogous to those that have
already been found successful in other domains is a promising approach. For example, we
have found it useful to think about roles like authors, editors, and reviewers for groups of
entries in the Process Handbook.

It is also encouraging to note that the specialization structure of the Handbook provides a
potentially powerful advantage that has not been widely available to any knowledge
generating communities before: Well-organized and accurate process knowledge at the
''left''of the specialization network is automatically inherited throughout the other parts of the
network where it applies. In this sense, then, the system amplifies the effort of intelligent
humans by automatically linking their work to a variety of contexts where it may be useful.

 



 

1.5 Conclusion

There is, of course, much more work to be done to develop and test the ideas described
here. For example, better tools for process analysis and editing need to be created, more
information content needs to be added to the Process Handbook, and systematic tests of
how the ideas can be applied in different kinds of situations need to be performed. However,
we believe that our work so far has demonstrated the basic feasibility and contribution of the
approach and its potential for significant further progress. We hope, for example, that this
research will provide a set of intellectual tools and an extensive database to help people
learn about organizations, invent new kinds of organizations, and improve existing processes.
Perhaps most importantly, we hope this research will help us understand the possibilities for
creating new kinds of organizations that are not only more effective but also more fulfilling for
their members.
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Part Overview

In this section we include papers on the three main theoretical foundations for the Process
Handbook: coordination theory, specialization, and processes.

Coordination

The first set of papers introduces and elaborates on coordination theory. Coordination theory
suggests that dependencies among activities and resources create coordination problems
that constrain how the activities can be performed. To avoid or overcome these constraints,
additional work must be performed in the form of coordination mechanisms that manage the
dependencies.

Coordination theory has two important benefits for the Process Handbook. First, as with any
common pattern, it can help represent a large collection of business activities more
''economically''because the common elements don't need to be repeated in each case.
Second, and more important in the work we have done, identifying the type of dependency
involved in a process makes it easier to think of alternative ways of doing the process using
alternative coordination mechanisms. For example, we can often find alternative ways of
coordinating a process that are enabled or improved by information technologies without
changing the fundamental goals of the process. On the other hand, replacing
noncoordination activities may fundamentally change the outcome of the process.

Chapter 2, by Malone and Crowston, is the basic reference for coordination theory. The
chapter presents examples of similar coordination problems encountered in a variety of
disciplines and shows how they can all be analyzed as arising from dependencies among
activities. For example, approaches to sharing resources have been analyzed in economics,
organization theory and computer science, among others. In addition to sharing resources,



the coordination problems analyzed in this chapter include producer–consumer
dependencies, simultaneity constraints and task –subtask relations.

Central to the application of coordination theory is a typology of different types of
dependencies and their associated coordination mechanisms. The list of coordination
problems in the first chapter of this section was an early version of our thinking about what
such a typology might include. Chapter 3 by Crowston, presents a much more extensive
theoretical derivation of a typology of dependencies based on an analysis of the possible
configurations of activities that use and create resources.

The current version of the Handbook uses a simplified version of this typology (summarized
in chapter 1) that focuses attention on the common case of two activities and one resource.
This typology includes the three elementary dependency types shown in the first row of figure
1.2. The first possibility, which we call flow, occurs when one activity creates a resource that
is used by another. The second possibility, which we call sharing, occurs when one resource
is used by two activities. And the third possibility, which we call fit, occurs when a single
resource is jointly created by two activities. The flow dependency is further analyzed into
three subdependencies, namely the dependencies that make sure the right thing (resource)
is available at the right time,inthe right place.

Chapter 4 on coordination theory, by Dellarocas, shows how the perspective of coordination
can be applied to designing computer software. In particular, it shows that the management
of dependencies among software components can be viewed as a distinct design problem
itself, orthogonal to the problem of implementing the core functional pieces of an application.
This chapter gives an overview of how the different dependency types we have already
identified arise in computer programs. For instance, many different kinds of programming
techniques (e.g., pipes, procedure calls, and semaphores) can be viewed as alternative ways
of managing different kinds of flow dependencies. A much more detailed view of this
typology of software dependencies is included below in chapter 10.

Specialization

The second, and in many ways even more important, conceptual tool in the Process
Handbook is specialization of processes. This concept allows us to represent both the
commonalities and differences in large ''families''of related processes in a very precise way.
It also lets us take advantage of these relationships to let our software tools simplify the task
of maintaining these large databases. For instance, when you make a change in one activity,
the system can automatically make the same change in all the other related activities where
it should apply.

Most readers with a background in computer science will already be familiar with the
concepts of specialization and inheritance as used, for instance, in object-oriented
programming systems. Our use of specialization and inheritance is very similar to this
traditional use, but with one very important difference. Traditional object-oriented
programming systems apply these concepts to objects (''nouns''); we apply them to activities
(''verbs''). Furthermore processes are composed of activities, so specialization of a process
may change the decomposition as well as properties of the processes. Chapter 5, by Wyner
and Lee, analyzes what this means in more precise terms.

Process

Chapters 6 and 7 examine processes from a research perspective. Chapter 6, by Crowston,
was originally presented at a conference on information systems research, but its key
message—that process descriptions themselves can constitute an important kind of theory
about organizations—applies to organization theory in general. The chapter analyzes
alternative perspectives on processes, building up to a view of processes as assemblies of



activities. This analysis includes the coordination theory view that dependencies between
activities impose constraints on the ways the activities can be assembled. The theoretical
perspectives in this chapter are illustrated with brief case examples of different variations in
restaurant service processes.

Chapter 7, by Pentland, presents an alternative theoretical perspective for analyzing
organizational processes—the perspective of formal grammars from linguistics. A grammar
provides a way to represent a potentially infinite set of patterns (in this case, the set of
possible processes) in a concise way. Using a lexicon of elementary actions and rules for
how the actions can be combined, grammatical models provide a natural way of describing
the kinds of layering and nesting of actions that typify organizational processes.
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Chapter 2: The Interdisciplinary Study of
Coordination

Thomas W. Malone,
Kevin Crowston

An earlier version of this chapter appeared as T. W. Malone and K. Crowston (1994), The
interdisciplinary study of coordination, ACM Computing Surveys 26 (March): 87-119. © 1994
ACM. Reprinted by permission.

2.1 Introduction

In recent years there has been a growing interest in questions about how the activities of
complex systems can be coordinated (e.g., Huberman 1988b; Johansen 1988; Rumelhart et
al. 1986; Winograd and Flores 1986; NSF-IRIS 1989; NSF 1991; Bond and Gasser 1988;
Huhns and Gasser 1989). In some cases this work has focused on coordination in parallel
and distributed computer systems; in others, on coordination in human systems; and in many
cases, on complex systems that include both people and computers.

Our goal in this chapter is to summarize and stimulate development of theories that can help
with this work. This new research area—the interdisciplinary study of coordination—draws
upon a variety of different disciplines including computer science, organization theory,
management science, economics, linguistics, and psychology. Many of the researchers
whose efforts can contribute to and benefit from this new area are not yet aware of each
other's work. Therefore, by summarizing this diverse body of work in a way that emphasizes
its common themes, we hope to help define a community of interest and to suggest useful
directions for future progress.

There is still no widely accepted name for this area, so we will use the term coordination
theory to refer to theories about how coordination can occur in diverse kinds of systems. We
use the term ''theory''with some hesitation because it connotes to some people a degree of
rigor and coherence that is not yet present in this field. Instead, the field today is a collection
of intriguing analogies, scattered results, and partial frameworks. We use the term
''theory,''however, in part to signify a provocative goal for this interdisciplinary enterprise, and
we hope that the various studies reviewed in this chapter will serve as steps along the path
toward an emerging theory of coordination.

2.1.1 A Motivating Question

We begin with one of the questions that coordination theory may help answer: How will the
widespread use of information technology change the ways people work together? This is
not the only possible focus of coordination theory, but it is a particularly timely question today
for two reasons:

In recent years large numbers of people have acquired direct access to computers,
primarily for individual tasks like spreadsheet analysis and word processing. These
computers are now beginning to be connected to each other. Therefore we now have,
for the first time, an opportunity for vastly larger numbers of people to use computing
and communications capabilities to help coordinate their work. For example,
specialized new software has been developed to (a) support multiple authors working
together on the same document, (b) help people display and manipulate information
more effectively in face-to-face meetings, and (c) help people intelligently route and
process electronic messages (see detailed references in section 2.3.3).

1.



It now appears likely that there will be a number of commercially successful products
of this new type (often called 'computer-supported cooperative work'or 'groupware'),
and to some observers these applications herald a paradigm shift in computer usage
as significant as the earlier shifts to time-sharing and personal computing. It is less
clear whether the continuing development of new computer applications in this area
will depend solely on trial and error and intuition, or whether it will also be guided by a
coherent underlying theory of how people coordinate their activities now and how they
might do so differently with computer support.

In the long run the dramatic improvements in the costs and capabilities of information
technologies are changing—by orders of magnitude—the constraints on how certain
kinds of communication and coordination can occur. At the same time there is a
pervasive feeling in businesses today that global interdependencies are becoming
more critical, that the pace of change is accelerating, and that we need to create
more flexible and adaptive organizations. Together, these changes may soon lead us
across a threshold where entirely new ways of organizing human activities become
desirable.

For example, new capabilities for communicating information faster, less expensively,
and more selectively may help create what some observers (e.g., Toffler 1970) have
called ''adhocracies''—rapidly changing organizations with highly decentralized
networks of shifting project teams. As another example, lowering the costs of
coordination between firms may encourage more market transactions (i.e., more
'buying'rather than 'making') and, at the same time, closer coordination across firm
boundaries (e.g., 'just-in-time'inventory management).

2.

2.1.2 How Can We Proceed?

If we believe that new forms of organizing are likely to become more common, how can we
understand the possibilities better? What other new kinds of coordination structures will
emerge in the electronically connected world of the near future? When are these new
structures desirable? What is necessary for them to work well?

To some extent, we can answer these questions by observing innovative organizations as
they experiment with new technologies. But to understand the experiences of these
organizations, we may need to look more deeply into the fundamental constraints on how
coordination can occur. And to imagine new kinds of organizational processes that no
organizations have tried yet, we may need to look even further afield for ideas.

One way to do both these things—to understand fundamental constraints and to imagine
new possibilities—is to look for analogies in how coordination occurs in very different kinds of
systems. For example, could we learn something about trade-offs between computing and
communicating in distributed computer systems that would illuminate possibilities for
coordination in human organizations? Might coordination structures analogous to those used
in bee hives or ant colonies be useful for certain aspects of human organizations? And could
lessons learned about coordination in human systems help understand computational or
biological systems, as well?

For these possibilities to be realized, a great deal of crossdisciplinary interaction is needed. It
is not enough just to believe that different systems are similar; we also need an intellectual
framework for ''transporting''concepts and results back and forth between the different kinds
of systems.

In the remainder of this chapter, we attempt to provide the beginnings of such a framework.
We first define coordination in a way that emphasizes its interdisciplinary nature and then
suggest an approach for studying it further. Next, we describe examples of how a
coordination perspective can be applied in three domains: (1) understanding the effects of



information technology on human organizations and markets, (2) designing cooperative work
tools, and (3) designing distributed and parallel processing computer systems. Finally, we
briefly suggest elements of a research agenda for this new area.

 



 

2.2 A Framework for Studying Coordination

2.2.1 What Is Coordination?

We all have an intuitive sense of what the word ''coordination''means. When we attend a
well-run conference, when we watch a winning basketball team, or when we see a smoothly
functioning assembly line we may notice how well coordinated the actions of a group of
people seem to be. Often, however, good coordination is nearly invisible, and we sometimes
notice coordination most clearly when it is lacking. When we spend hours waiting on an
airport runway because the airline can't find a gate for our plane, when the hotel where we
thought we had a reservation is fully booked, or when our favorite word processing program
stops working in a new version of the operating system, we may become very aware of the
effects of poor coordination.

For many purposes, this intuitive meaning is suffcient. However, in trying to characterize a
new interdisciplinary area, it is also helpful to have a more precise idea of what we mean by
''coordination.'' Appendix A lists a number of definitions that have been suggested for this
term. The diversity of these definitions illustrates the diffculty of defining coordination, and
also the variety of possible starting points for studying the concept. For our purposes here,
however, it is useful to begin with the following simple definition:

Coordination is managing dependencies among activities.[1]

This definition is consistent with the simple intuition that, if there is no interdependence, there
is nothing to coordinate. It is also consistent with a long history in organization theory of
emphasizing the importance of interdependence (e.g., Thompson 1967; Galbraith 1973;
Lawrence and Lorsch 1967; Pfeffer 1978; Rockart and Short 1989; Hart and Estrin 1990;
Roberts and Gargano 1989).

As the definition suggests, we believe it is helpful to use the word ''coordination''in a fairly
inclusive sense. For instance, it is clear that actors performing interdependent activities may
have conflicting interests and that what might be called ''political processes''are ways of
managing them (e.g., Ciborra 1987; Williamson 1985; Schelling 1960; Kling 1980). Similarly,
even though words like ''cooperation,''''collaboration,''and ''competition''each have their own
connotations, an important part of each of them involves managing dependencies between
activities.[2]

It should also be clear that coordination, as we have defined it, can occur in many kinds of
systems: human, computational, biological, and others. For instance, questions about how
people manage dependencies among their activities are central to parts of organization
theory, economics, management science, sociology, social psychology, anthropology,
linguistics, law, and political science. In computer systems, dependencies between different
computational processes must certainly be managed, and, as numerous observers have
pointed out, certain kinds of interactions among computational processes resemble
interactions among people (e.g., Fox 1981; Hewitt 1986; Huberman 1988a, b; Miller and
Drexler 1988; Smith and Davis 1981). To give a sense of the approaches different fields
have taken to studying coordination, we summarize in appendix B examples of results about
coordination from computer science, organization theory, economics, and biology.

Even though we believe there are more similarities among these different kinds of systems
than most people appreciate, there are obviously many differences as well. One of the most
important differences is that issues of incentives, motivations, and emotions are usually of
much more concern in human systems than in other kinds of systems. In computer
programs, for example, the ''incentives''of a program module are usually easy to describe
and completely controlled by a programmer. In human systems, on the other hand, the



motivations, incentives, and emotions of people are often extremely complex, and
understanding them is usually an important part of coordination. Even in human systems,
however, analogies with other kinds of systems may help us understand fundamental
constraints on coordination and imagine new kinds of organizations that might be especially
motivational for people.

2.2.2 Basic Coordination Processes

A primary vehicle for facilitating transfer among these different disciplines is identifying and
studying the basic processes involved in coordination: Are there fundamental coordination
processes that occur in all coordinated systems? If so, how can we represent and analyze
these processes? Is it possible to characterize situations in a way that helps generate and
choose appropriate coordination mechanisms for them?

One of the advantages of the definition we have used for coordination is that it suggests a
direction for addressing these questions. If coordination is defined as managing
dependencies, then further progress should be possible by characterizing different kinds of
dependencies and identifying the coordination processes that can be used to manage them.

Table 2.1 suggests the beginnings of such an analysis (for more details, see Malone et al.
1993). For example, one possible kind of dependency between different activities is that they
require the same (limited) resources. The table shows that shared resource constraints can
be managed by a variety of coordination processes such as 'first-come–first-serve', priority
order, budgets, managerial decision, and marketlike bidding. If three job shop workers need
to use the same machine, for instance, they could use a simple 'first-come–first-
serve'mechanism. Alternatively, they could use a form of budgeting with each worker having
pre-assigned time slots, or a manager could explicitly decide what to do whenever two
workers wanted to use the machine at the same time. In some cases they might even want
to ''bid''for use of the machine and the person willing to pay the most would get it.

Table 2.1: Examples of common dependencies between activities and alternative
coordination processes for managing them

Dependency Examples of coordination processes for
managing dependency

Shared resources 'First come–first serve', priority order, budgets,
managerial decision, marketlike bidding

Task assignments (same as for 'shared resources')

Producer/consumer
relationships

 

Prerequisite constraints Notification, sequencing, tracking

Transfer Inventory management (e.g., 'just in time',
'economic order quantity')

Usability Standardization, ask users, participatory design

Design for
manufacturability

Concurrent engineering

Simultaneity constraints Scheduling, synchronization

Task/subtask Goal Selection, task decomposition

The lists of dependencies and coordination processes in table 2.1 are by no means intended
to be exhaustive. It is important to note, however, that many specific processes that arise in
particular kinds of systems (e.g., design for manufacturability) can be seen as instances of
more generic processes (e.g., managing ''usability''constraints between adjacent steps in a
process).



Note: Indentations in the left column indicate more specialized versions of general
dependency types.

The lists of dependencies and coordination processes in table 2.1 are by no means intended
to be exhaustive. It is important to note, however, that many specific processes that arise in
particular kinds of systems (e.g., design for manufacturability) can be seen as instances of
more generic processes (e.g., managing ''usability''constraints between adjacent steps in a
process).

In fact we believe that one of the most intriguing possibilities for coordination theory is to
identify and systematically analyze a wide variety of dependencies and their associated
coordination processes. Such a Handbook of coordination processes could not only facilitate
interdisciplinary transfer of knowledge about coordination, it could also provide a guide for
analyzing the coordination needs in particular situations and generating alternative ways of
fulfilling them (see Malone et al. 1993).

One question that arises immediately is how to categorize these dependencies and
coordination processes. Table 2.1 provides a start in this direction. Crowston (1991) suggests
a more structured taxonomy based on all the possible relationships between ''tasks''and
''resources.''

To illustrate the possibilities for analyzing coordination processes, we will discuss in the
remainder of this section the coordination processes listed in table 2.1 and how they have
been analyzed in different disciplines.

Managing Shared Resources  Whenever multiple activities share some limited resource
(e.g., money, storage space, or an actor's time), a resource allocation process is needed to
manage the interdependencies among these activities. Resource allocation is perhaps the
most widely studied of all coordination processes. For example, it has received significant
attention in economics, organization theory, and computer science.

ECONOMICS Much of economics is devoted to studying resource allocation processes,
especially those involving marketlike pricing and bidding mechanisms. As economists have
observed, for instance, markets have a number of interesting properties as resource
allocation mechanisms (Simon 1981). For one thing, they can be very decentralized: many
independent decision makers interacting with each other locally can produce a globally
coherent allocation of resources without any centralized controller (e.g., Smith 1776). For
another thing, markets have a built-in set of incentives: when all participants in a perfect
market try to maximize their own individual benefits, the overall allocation of resources is (in
a certain sense) globally ''optimal''(e.g., Debreu 1959).

ORGANIZATION THEORY Organization theory has also paid great attention to resource
allocation issues. For instance, control of resources is intimately connected with personal
and organizational power: those who control resources have power, and vice versa (e.g.,
Pfeffer and Salancik 1978). In general, organization theorists emphasize hierarchical
resource allocation methods where managers at each level decide how the resources they
control will be allocated among the people who report to them (e.g., Burton and Obel 1980a,
b). In practice, however, resource allocation in organizations is much more complex than a
simple hierarchical model suggests. For instance, managers may try to increase their own
power by attracting resources (e.g., employees and money) away from other possible
activities (Barnard 1964) or by using their resources in a way that is very suboptimal from the
point of view of the whole organization.

How can we choose between different resource allocation methods? Recent work in
transaction cost theory addresses part of this question by analyzing the conditions under
which a hierarchy is a better way of coordinating multiple actors than a market (e.g.,
Williamson 1975, 1985). For example, if there are extra costs associated with a market



transaction (e.g., extensive legal and accounting work), then the costs of internal transactions
within a hierarchical firm may be lower and therefore preferable. A related question involves
the conditions under which it is desirable to use marketlike resource allocation mechanisms
(such as transfer pricing) within a hierarchical organization (Eccles 1985).

COMPUTER SCIENCE Resource allocation issues also arise in computer systems and
much work has been done on these topics (e.g., Cytron 1987; Halstead 1985). For instance,
operating systems require algorithms for allocating resources—such as processors and
memory—to different processes and for scheduling accesses to input/ output devices, such
as disks (e.g., Deitel 1983). As we will see below, there have also already been examples of
cross-fertilization of ideas about resource allocation between computer science and other
fields. For example, in section 2.2.3, we will see how ideas about distributed computer
systems helped understand the evolution of human organizations, and in section 2.3.4, we
will see how analogies with human markets have generated novel resource allocation
schemes for computer systems.

TASK ASSIGNMENT One very important special case of resource allocation is task
assignment, that is, allocating the scarce time of actors to the tasks they will perform. An
insight of the approach we are taking here, therefore, is that all the resource allocation
methods listed in table 2.1 are potentially applicable for task assignment too.

For instance, in trying to imagine new coordination processes in a human organization, one
might consider whether any given situation requiring task assignment could be better
managed by managerial decision, by prior assignment according to task type, or by a pricing
mechanism. To illustrate the surprising ideas this might lead to, consider Turoff's (1983)
suggestion that employees within a large organization should be able to ''bid''for the internal
projects on which they wish to work, and that teams could be selected using these bids.
There are obviously many factors to consider in determining whether such an arrangement
would be desirable in a particular situation, but it is interesting to note that one potential
disadvantage—the significantly greater communication required—would be much less
important in a world with extensive computer networks.

Managing Producer–Consumer Relationships  Another extremely common kind of
relationship between activities is a ''producer–consumer''relationship, that is, a situation
where one activity produces something that is used by another activity. This relationship
clearly occurs in all physical manufacturing processes, for instance, where the output of one
step on an assembly line is the input to the next. It also occurs with information whenever one
person in an organization uses information from another or when one part of a computer
program uses information produced by another.

Producer–consumer relationships often lead to several kinds of dependencies:

Prerequisite constraints. A very common dependency between a ''producer''activity
and a ''consumer''activity is that the producer activity must be completed before the
consumer activity can begin. When this dependency exists, there must at least be
some notification process to indicate to the consumer activity that it can begin. For
instance, when an automobile designer delivers a completed drawing of a part to the
engineer who will design the manufacturing process for that part, the arrival of the
drawing in the engineer's in-box ''notifies''the engineer that her activity can begin.

Managing prerequisite dependencies also often involves explicit sequencing and
tracking processes to be sure that producer activities have been completed before
their results are needed. For instance, techniques from operations research, such as
PERT charts and critical path methods, are often used in human organizations to help
schedule large projects with multiple activities and complex prerequisite structures.
These and other project tracking systems are also often used by managers to identify
activities that are late and then use their authority to ''motivate''the people responsible
for the late tasks.

1.



What alternatives can we imagine for managing this dependency? One possibility
would be computer-based tracking systems that make it easy for everyone in the
project to see status information about all other activities and their dependencies. In
this case late tasks would be visible to everyone throughout the project, and
''authoritarian''motivation by managers would become less important.

Sequencing problems arise frequently in computer systems, as well. For instance,
one of the key issues in taking advantage of parallel processing computers is
determining which activities can be done in parallel and which ones must wait for the
completion of others (Arvind and Culler 1986; Holt 1988; Peterson 1977, 1981).
Some of these ideas from computer science have also been used to help streamline
processes in human organizations by taking advantage of their latent parallelism (e.g.,
Ellis et al. 1979).

Transfer. When one activity produces something that is used by another activity, the
thing produced must be transferred from the ''producer''activity to the
''consumer''activity. Managing this dependency usually involves physical
transportation. In this sense physical transportation can be considered a coordination
activity, since it involves managing a dependency between a ''producer''activity and a
''consumer''activity. When the thing transferred is information, we usually call the
transfer ''communication,''rather than transportation.

In addition to simply transporting things, managing the transfer dependency also often
involves storing things being transferred from one activity to another. For instance, one
way of managing this aspect of the transfer dependency is to carefully control the
timing of both activities so that items are delivered 'just in time'to be used, and no
storage is needed. This technique, for example, is becoming increasingly common in
manufacturing environments (Schonberger 1982, 1986). A more common approach
is maintain an inventory of finished items, ready for the second activity to use, as a
buffer between the two activities. Operations researchers, for instance, have
developed techniques for determining at what stock levels and by how much to
replenish an inventory in order to minimize costs (e.g., the ''economic order quantity'';
McClain et al. 1992).

Managing this dependency is also important in certain parts of computer science. For
example in parallel processing systems, the rate of execution of processes must
sometimes be regulated to ensure that the producer does not overwhelm the
consumer, and vice versa (e.g., Arvind et al. 1986). As our framework would suggest,
a common approach to this problem is to place a buffer between the two processes
and allocate space in the buffer to one process or the other. Network protocols
manage similar problems between communicating processes that do not share any
memory (Tannenbaum 1981).

2.

Usability. Another, somewhat less obvious, dependency that must often be managed
in a producer–consumer relationship is that whatever is produced should be usable by
the activity that receives it. One common way of managing this dependency is by
standardization, creating uniformly interchangeable outputs in a form that users
already expect. This is the approach on assembly lines, for example. Another
approach is to ask users what characteristics they want. For instance, in human
organizations this might be done by market research techniques such as surveys and
focus groups (Kinnear and Taylor 1991).

A third, related, alternative is participatory design, that is, having the users of a product
actively participate in its design (Schuler and Namioka 1993). This is a widely
advocated approach to designing computer systems, for example, and it is interesting
to note that the increasingly common practice of ''concurrent engineering''(Carter and
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Baker 1991) can also be viewed as a kind of ''participatory design.''In concurrent
engineering, people who design a product do not simply hand the design ''over the
transom''to those who design its manufacturing process. Instead, they work together
concurrently to create designs that can be manufactured more easily.

In computer systems the usability dependency occurs whenever one part of a system
must use information produced by another. In general, this dependency is managed
by designing various kinds of interchange languages and other standards.

Managing Simultaneity Constraints  Another common kind of dependency between
activities is that they need to occur at the same time (or cannot occur at the same time).
Whenever people schedule meetings, for instance, they must satisfy this constraint.

Another example of this constraint occurs in the design of computer systems in which
multiple processes (i.e., instruction streams) can be executed simultaneously. (These
systems may have multiple processors or a single processor which is shared between the
processes.) In general, the instructions of the different processes can be executed in any
order. Permitting this indeterminacy improves the performance of the system (e.g., one
process can be executed while another waits for data to be input) but can cause problems
when the processes must share data or resources. System designers must therefore provide
mechanisms that restrict the possible orderings of the instructions by synchronizing the
processes (i.e., ensuring that particular instructions from different streams are executed at
the same time; Dubois et al. 1988).

Synchronization primitives can be used to control sharing of data between a producer and
consumer process to ensure that all data is used exactly once (the producer–consumer
problem) or to prevent simultaneous writes to a shared data item (the mutual exclusion
problem). For example, if two processes simultaneously read and then update the same
data (e.g., adding a deposit to an account balance), one process might overwrite the value
stored by the other.

One example of interdisciplinary transfer involving this concept is the work of Singh and
colleagues in using computer science concepts about synchronized interactions to model
process in human organizations (Singh and Rein 1992).

Managing Task–Subtask Dependencies

TOP-DOWN GOAL DECOMPOSITION A common kind of dependency among activities is
that a group of activities are all ''subtasks''for achieving some overall goal. As we discuss in
more detail below, there is a sense in which some overall evaluation criteria or ''goals''are
necessarily implied by the definition of coordination. The most commonly analyzed case of
managing this dependency occurs when an individual or group decides to pursue a goal, and
then decomposes this goal into activities (or subgoals) that together will achieve the original
goal. In this case we call the process of choosing the goal selection, and the process of
choosing the activities goal decomposition.

For example, the strategic planning process in human organizations is often viewed as
involving this kind of goal selection and goal decomposition process. Furthermore an
important role for all managers in a traditionally conceived hierarchy is to decompose the
goals they are given into tasks that they can, in turn, delegate to people who work for them.
There are, in general, many ways a given goal can be broken into pieces, and a long-
standing topic in organization theory involves analyzing different possible decompositions
such as by function, by product, by customer, and by geographical region (Mintzberg 1979).
Some of these different goal decompositions for human organizations are analogous to ways
computer systems can be structured (e.g., Malone and Smith 1988).

In computer systems we usually think of the goals as being predetermined, but an important
problem involves how to break these goals into activities that can be performed separately. In



a sense, for example, the essence of all computer programming is decomposing goals into
elementary activities. For instance, programming techniques such as subroutine calls,
modular programming, object-oriented programming, and so forth can all be thought of as
techniques for structuring the process of goal decomposition (Liskov and Guttag 1986). In
these cases the goal decomposition is performed by a human programmer. Another
example of goal decomposition in computer systems is provided by work on planning in
artificial intelligence (e.g., Chapman 1987; Fikes and Nilsson 1971; Allen et al. 1990). In this
case goals are decomposed by a planning program into a sequence of elementary activities,
based on knowledge of the elementary activities available, their prerequisites, and their
effects.

In some cases techniques for goal decomposition used in computer systems may suggest
new ways of structuring human organizations. For example, Moses (1990) suggests that
human organizations might sometimes be better off not as strict hierarchies but as
multilayered structures in which any actor at one level could direct the activities of any actor
at the next level down. This multilayered structure is analogous to successive layers of
languages or ''virtual machines''in a computer system (see Malone 1990).

Bottom-up Goal Identification  Even though the most commonly analyzed cases of
coordination involve a sequential process of goal selection and then goal decomposition, the
steps do not necessarily happen in this order. Another possibility, for instance, is that several
actors realize that the things they are already doing (with small additions) could work
together to achieve a new goal. For example, the creation of a new interdisciplinary research
group may have this character. In human systems this bottom-up process of goal selection
can often engender more commitment from the actors involved than a top-down assignment
of responsibility.

Managing Other Dependencies  As noted above, the dependencies discussed so far are
only a suggestive list of common dependencies. We believe there are many more
dependencies to be identified and analyzed. For instance, when two divisions of a company
both deal with the same customer, there is a shared reputation dependency between their
activities: what one division does affects the customer's perception of the company as a
whole, including the other division. As another example, when several people in the same
offce want to buy a new rug, a key problem is not how to allocate the rug, but what color or
other characteristics it should have. We might call this, therefore, a shared characteristics
dependency.

More generally, there are many types of dependencies between objects in the world that are
managed by coordination processes. For instance, an important part of managing the design
of complex manufactured products involves managing the dependencies between different
subcomponents. At first glance our definition of coordination (as managing dependencies
between activities) might appear to omit dependencies between objects that are not activities.
We believe, however, that this focus has the advantage of greatly simplifying the analysis of a
coordinated situation. In fact it appears that all dependencies that require coordination can
be treated this way. For example, dependencies between components matter because they,
explicitly or implicitly, affect the performance of some activities (e.g., designing or redesigning
the components), and they can therefore be viewed as a source of dependencies between
those activities.

In general, as these examples illustrate, there may be many ways of describing different
dependencies, coordination processes, and their relationships to each other (e.g., Crowston
1991). We believe that there are many opportunities for further work along these lines.

Summary of Basic Coordination Processes  Table 2.2 loosely summarizes our discussion
so far by listing examples of how common coordination processes have been analyzed in
different disciplines. The key point of this table, and indeed of much of our discussion, is that
the concepts of coordination theory can help identify similarities among concepts and results



in different disciplines. These similarities, in turn, suggest how ideas can be transported back
and forth across disciplinary boundaries and where opportunities exist to develop even
deeper analyses.

2.2.3 Example: Analyzing the Task Assignment Process

So far, the examples we have described have mostly involved a single field or analogies that
have been transported from one discipline to another. To illustrate the possibilities for
developing abstract theories of coordination that can apply simultaneously to many different
kinds of systems, let us consider the task assignment process as analyzed by Malone and
Smith (Malone 1987; Malone and Smith 1988; see also related work by Baligh and Richartz
1967; Burton and Obel 1980a). As we have described in more detail elsewhere (Malone
1992), these analyses illustrate the kind of interdisciplinary interaction that our search for
coordination theory encourages: the models grew originally out of designing distributed
computer systems, they drew upon results from operations research, and they led eventually
to new insights about the evolution of human organizations.

Table 2.2: Examples of how different disciplines have analyzed coordination
processes

Coordination process Computer
science

Economics
and
operations
research

Organization
theory

Managing shared
resources (including task
assignments)

Techniques for
processor
memory
allocation

Analyses of
markets and
other resource
allocation
mechanisms;
scheduling
algorithms and
other
optimization
techniques

Analyses of
di¤erent
organizational
structures;
budgeting
processes,
organizational
power, and
resource
dependence

Managing
producer/consumer
relationships including
prerequisites and
usability constraints)

Data flow and
Petri net
analyses

PERT charts,
critical path
methods;
scheduling
techniques

Participatory
design; market
research

Managing simultaneity
constraints

Synchronization
techniques,
mutual
exclusion

Scheduling
techniques

Meeting
scheduling;
certain kinds of
process
modeling

Managing task/subtask
relationship

Modularization
techniques in
programming;
planning in
artificial
intelligence

Economies of
scale and scope

Strategic
planning;
management by
objectives;
methods of
grouping people
into units

A Generic Task Assignment Problem  Consider the following task assignment problem: A



system is producing a set of ''products,''each of which requires a set of ''tasks''to be
performed. The tasks are of various types, and each type of task can only be performed by
''server''actors specialized for that kind of task. Furthermore the specific tasks to be
performed cannot be predicted in advance; they only become known during the course of
the process and then only to actors we will call ''clients.''This description of the task
assignment problem is certainly not universally applicable, but it is an abstract description
that can be applied to many common task assignment situations. For instance, the tasks
might be (1) designing, manufacturing, and marketing different kinds of automobiles, or (2)
processing steps in different jobs on a computer network.

Possible Coordination Mechanisms  One (highly centralized) possibility for solving this
task assignment problem is for all the clients and servers to send all their information to a
central decision maker who decides which servers will perform which tasks and then notifies
them accordingly. Another (highly decentralized) possibility is suggested by the competitive
bidding scheme for computer networks formalized by Smith and Davis (1981). In this
scheme a client first broadcasts an announcement message to all potential servers. This
message includes a description of the activity to be performed and the qualifications
required. The potential servers then use this information to decide whether to submit a bid on
the action. If they decide to bid, their bid message includes a description of their qualifications
and their availability for performing the action. The client uses these bid messages to decide
which server should perform the activity and then sends an award message to notify the
server that is selected.

Malone and Smith (Malone 1987; Malone and Smith 1988) analyzed several alternative
coordination mechanisms like these, each of which is analogous to a mechanism used in
human organizations. In particular, they developed formal models to represent various forms
of markets (centralized and decentralized) and various forms of hierarchies (based on
products or functions). Then they used techniques from queueing theory and probability
theory to analyze trade-offs among these structures in terms of production costs,
coordination costs, and vulnerability costs. For instance, they showed that the centralized
schemes had lower coordination costs but were more vulnerable to processor failures.
Decentralized markets, on the other hand, were much less vulnerable to processor failures
but had high coordination costs. And decentralized hierarchies (''product hierarchies'') had
low coordination costs, but they had unused processor capacity that led to high production
costs.

Applying These Models to Various Kinds of Systems  Even though these models omit
many important aspects of human organizations and computer systems, they help illuminate
a surprisingly wide range of phenomena. For instance, as Malone and Smith (1988) show,
the models are consistent with a number of previous theories about human organizational
design (e.g., March and Simon 1958; Galbraith 1973; Williamson 1985) and with major
historical changes in the organizational forms of both human organizations (Chandler 1962,
1977) and computer systems. These models also help analyze design alternatives for
distributed scheduling mechanisms in computer systems, and they suggest ways of
analyzing the structural changes associated with introducing new information technology into
organizations (section 2.3.2; Crowston et al. 1987; Malone and Smith 1988).

2.2.4 Other Processes Needed for Coordination

In addition to the processes described above for managing specific dependencies, two other
processes deserve specific attention: group decision-making and communication. It is
sometimes possible to analyze these processes as ways of managing specific
dependencies. For instance, communication can be viewed as a way of managing
producer–consumer relationships for information. However, because of the importance of
these two processes in almost all instances of coordination, we describe them separately
here.



Group Decision-Making  Many coordination processes require making decisions that affect
the activities of a group. For instance, in sharing resources, a group must somehow
''decide''how to allocate the resources; in managing task–subtask dependencies, a group
must ''decide''how to segment tasks. In all these cases the alternative ways of making group
decisions give rise to alternative coordination processes. For example, any group decision
can, in principle, be made by authority (e.g., a ''manager''decides), by voting, or by
consensus (resulting from negotiation).

Because of the importance of group decision-making in coordination, answers to questions
about group decision making (e.g., Simon 1976; Arrow 1951) will be important for developing
coordination theory. For instance, what are the decision-making biases in groups (e.g., Janis
and Mann 1977) as opposed to individuals (Kahneman and Tversky 1973)? How do
computer-based group decision-making tools affect these processes (e.g., Kraemer and
King 1988; Dennis et al. 1988; Kiesler et al. 1984)? Can we determine optimal ways of
allocating tasks and sharing information for making group decisions (Miao et al. 1992)? How
do (or should) decision-making processes change in situations where both rapid response
and high reliability are required (Roberts et al. 1994).

Communication  As with decision-making, there is a already a great deal of theory about
communication, both from a technical point of view (e.g., Shannon and Weaver 1949) and
from an organizational point of view (e.g., Allen 1977; Rogers and Agarwala-Rogers 1976;
Weick 1969). One obvious way of generating new coordination processes, for example, is by
considering alternative forms of communication (synchronous vs. asynchronous, paper vs.
electronic) for all the places in a process where information needs to be transferred.

A coordination framework also highlights new aspects of these problems. For example,
when we view communication as a way of managing producer–consumer relationships for
information, we may be concerned about how to make the information ''usable.''How, for
instance, can actors establish common languages that allow them to communicate in the
first place? This question of developing standards for communication is of crucial concern in
designing computer networks in general (Dertouzos 1991) and cooperative work tools in
particular (e.g., Lee and Malone 1990). The process by which standards are developed is
also of concern to economists, philosophers, and others (e.g., Farrell and Saloner 1985;
Hirsch 1987).

A related set of questions arises when we are concerned about how a group of actors can
come to have ''common knowledge,''that is, they all know something, and they also all know
that they all know it. There is a growing literature about this and related questions in fields as
diverse as computer science, economics, and linguistics (Halpern 1987; Aumann 1976;
Milgrom 1981; Gray 1978; Cohen and Levesque 1991; Shoham 1993).
[1]This definition was particularly influenced by Rockart and Short (1989) and Curtis (1989).
The importance of coordination in this very general sense was perhaps first recognized by
Holt (1980, 1983).

[2]These terms also, of course, have broader meanings. For instance, cooperation usually
implies shared goals among different actors, competition usually implies that one actor's
gains are another's losses, and collaboration often connotes peers working together on an
intellectual endeavor. However, it is sometimes useful to consider all these terms as
describing different approaches to managing dependencies among activities, that is, as
different forms of coordination.

 



 

2.3 Applying a Coordination Perspective

2.3.1 Approaches to Analyzing Coordination in Different
Kinds of Systems

Any scientific theory (indeed, any statement about the world) must neglect some things, in
order to focus on others. For example, Kling (1980) describes how different perspectives
(e.g., rational, structural, and political) on the use of information systems in organizations
each illuminate aspects of reality neglected by the others. In some situations, one or another
of these perspectives may be most important, and all of them are involved to some degree in
any real situation. In applying coordination theory to any particular system, it may therefore
be necessary to consider many other factors as well.

For instance, in designing a new computer system to help people coordinate their work,
''details''about screen layout and response time may sometimes be as important as the basic
functionality of the system, and the reputation of the manager who introduces the system in a
particular organization may have more effect on the motivation of people to use it in that
organization than any incentive structures designed into the system. Similarly, in designing a
distributed processing computer system, the failure rates for different kinds of
communications media and processors may be the primary design consideration,
overwhelming any other considerations about how tasks are allocated among processors.

Parametric Analysis versus Baseline Analysis  There are at least two ways an
interdisciplinary theory can help deal with differences like these among systems: (1)
parametric analysis and (2) baseline analysis.

PARAMETRIC ANALYSIS In parametric analysis the abstract theories include parameters
which may be different for different kinds of systems. For instance, the principles of
aerodynamics apply to both birds and airplanes, even though parameters such as size,
weight, and energy expenditure are very different in the two kinds of systems. Similarly
abstract models of coordination may include parameters for things like incentives, cognitive
capacities, and communication costs which are very different in human, computational, and
biological systems. Examples of models that have been applied to more than one kind of
system in this way are summarized later in this section.

BASELINE ANALYSIS In baseline analysis one theory is used as a baseline for comparison
to the actual behavior of a system, and deviations from the baseline are then explained with
other theories. For example, in behavioral decision theory (e.g., Kahneman and Tversky
1973), mathematical decision theory is used to analyze the ways people actually make
decisions. In the cases where people depart from the prescriptions of the normative
mathematical theory, new theories are developed to explain the differences. Even though the
original mathematical theory does not completely explain people's actual behavior, the
anomalies explained by the new theories could not even have been recognized without a
baseline theory for comparison. This suggests that an important part of coordination theory
will be behavioral coordination theory in which careful observations of actual coordination in
human systems are used to develop, test, and augment abstract models of coordination.

Identifying the Components of Coordination in a Situation  In order to analyze a
situation in terms of coordination, it is sometimes important to explicitly identify the
components of coordination in that situation. According to our definition of coordination
above, coordination means ''managing dependencies between activities.''Therefore, since
activities must, in some sense, be performed by actors,''the definition implies that all
instances of coordination include actors performing activities that are interdependent.[3] It is
also often useful to identify evaluation criteria for judging how well the dependencies are



being ''managed.''For example, we can often identify some overall ''goals''of the activity (e.g.,
producing automobiles or printing a report) and other dimensions for evaluating how well
those goals are being met (e.g., minimizing time or costs). Some coordination processes
may be faster or more accurate than others, for instance, and the costs of more coordination
are by no means always worthwhile.

It is important to realize that there is no single right way to identify these components of
coordination in a situation. For instance, we may sometimes analyze everything that happens
in a manufacturing division as one activity, while at other times, we may want to analyze each
station on an assembly line as a separate activity. As another example, when we talk about
muscular coordination, we implicitly regard different parts of the same person's body as
separate actors performing separate activities.

CONFLICTING GOALS One important case of identifying evaluation criteria occurs when
there are conflicting goals in a situation. In analyzing coordination in human organizations, it
is often useful to simply ask people what their goals are and evaluate their behavior in terms
of these criteria. However, some amount of goal conflict is nearly always present (e.g.,
Ciborra 1987; Williamson 1985; Schelling 1960), and people may be unable or unwilling to
accurately report their goals, anyway. To understand these situations, it is often useful to
both try to identify the conflicting goals and also to analyze the behavior of the system in
terms of some overall evaluation criteria. For instance, different groups in a company may
compete for resources and people, but this very competition may contribute to the
company's overall ability to produce useful products (e.g., Kidder 1981).

Another important example of conflicting goals occurs in market transactions: as we saw
above, all participants in a market might have the goal of maximizing their own individual
benefits, but we, as observers, can evaluate the market as a coordination mechanism in
terms of how well it satisfies overall criteria such as maximizing consumer utilities (e.g.,
Debreu 1959) or ''fairly''distributing economic resources.

Preview of Examples  In the remainder of this section we describe examples of how
concepts about coordination have been applied in three different areas: (1) understanding
the new possibilities for human organizations and markets provided by information
technology, (2) designing cooperative work tools, and (3) designing distributed and parallel
computer systems. The early examples use very general notions of coordination; the later
ones are more explicit in their identification of specific components of coordination.

This list is not intended to be a comprehensive list of all ways that theories of coordination
could be applied. In fact most of the work we describe here did not explicitly use the term
''coordination theory.''We have chosen examples, however, to illustrate the wide range of
applications for interdisciplinary theories about coordination.

2.3.2 Understanding the Effects of Information Technology
on Organizations and Markets

Managers, organization theorists, and others have long been interested in how the
widespread use of information technology (IT) may change the ways human organizations
and markets will be structured (e.g., Leavitt and Whisler 1958; Simon 1976). One of the most
important contributions of coordination theory may be to help understand these possibilities
better.

To illustrate how the explicit study of coordination might help with this endeavor, we begin
with a very general argument that does not depend on any of the detailed analyses of
coordination we have seen so far in this chapter.[4] Instead, this argument starts with the
simple observation that coordination is itself an activity that has costs. Even though there are
many other forces that may affect the way coordination is performed in organizations and



markets (e.g., global competition, national culture, government regulation, and interest
rates), one important factor is clearly its cost, and that is the focus of this argument. In
particular, it seems quite plausible to assume that information technology is likely to
significantly reduce the costs of certain kinds of coordination (e.g., Crawford 1982).

Now, using some elementary ideas from microeconomics about substitution and elasticity of
demand, we can make some simple predictions about the possible effects of reducing
coordination costs. It is useful to illustrate these effects by analogy with similar changes in the
costs of transportation induced by the introduction of trains and automobiles:

A first-order effect of reducing transportation costs with trains and automobiles was
simply some substitution of the new transportation technologies for the old: people
began to ride on trains more and in horse-drawn carriages less.

1.

A second-order effect of reducing transportation costs was to increase the amount of
transportation used: people began to travel more when this could be done more
cheaply and conveniently in trains than on foot.

2.

Finally, a third-order effect was to allow the creation of more ''transportation-
intensive''structures: people eventually began to live in distant suburbs and use
shopping malls—both examples of new structures that depended on the widespread
availability of cheap and convenient transportation.

3.

Similarly we can expect several effects from using new information technologies to reduce
the costs of coordination:

A first-order effect of reducing coordination costs with information technology may be
to substitute information technology for some human coordination. For instance, many
banks and insurance companies have substituted automated systems for large
numbers of human clerks in their back offces. It has also long been commonplace to
predict that computers will lead to the demise of middle management because the
communication tasks performed by middle managers could be performed less
expensively by computers (e.g., Leavitt and Whisler 1958). This prediction was not
fulfilled for several decades after it was made, but many people believe that it finally
began to happen with large numbers of middle management layoffs in the 1980s and
1990s.

1.

A second-order effect of reducing coordination costs may be to increase the overall
amount of coordination used. In some cases this may overwhelm the first order effect.
For instance, in one case we studied, a computer conferencing system was used to
help remove a layer of middle managers (see Crowston, Malone, and Lin 1987).
Several years later, however, almost the same number of new positions (for different
people at the same grade level) had been created for staff specialists in the corporate
staff group, many of whom were helping to develop new computer systems. One
interpretation of this outcome is that the managerial resources no longer needed for
simple communication tasks could now be applied to more complex analysis tasks
that would not previously have been undertaken.

2.

A third-order effect of reducing coordination costs may be to encourage a shift toward
the use of more ''coordination-intensive''structures. In other words, coordination
structures that were previously too ''expensive''will now become more feasible and
desirable. For example, as noted above, information technology can facilitate what
some observers (e.g., Mintzberg 1979; Toffler 1970) have called adhocracies.
Adhocracies are very flexible organizations, including many shifting project teams and
highly decentralized networks of communication among relatively autonomous
entrepreneurial groups. One of the disadvantages of adhocracies is that they require
large amounts of unplanned communication and coordination throughout an
organization. However, technologies such as electronic mail and computer

3.



conferencing can help reduce the costs of this communication, and advanced
information sharing tools (e.g., Malone et al. 1987; Lotus 1989) may help make this
communication more effective at much larger scales.

What might these new coordination-intensive structure be like? Let us consider recent work
on two specific questions about the effects of information technology on organizations and
markets: (1) How will IT affect the size of organizations? and (2) How will IT affect the
degree of centralization of decision-making in organizations? This work does not focus
explicitly on any specific dependencies. Instead, it compares two pairs of general
coordination mechanisms that can manage many such dependencies: (1) market
transactions versus internal decision-making with firms and (2) centralized versus
decentralized managerial decisions.

Firm Size  Malone, Yates, and Benjamin (1987) have used ideas from transaction cost
theory to systematically analyze how information technology will affect firm size and, more
generally, the use of markets as a coordination structure. They conclude that by reducing the
costs of coordination, information technology may lead to an overall shift toward smaller
firms and proportionately more use of markets—rather than internal decisions within
firms—to coordinate economic activity.

This argument has two parts. First, since market transactions often have higher coordination
costs than internal coordination (Williamson 1985; Malone, Yates, and Benjamin 1987), an
overall reduction in the ''unit costs''of coordination should lead to markets becoming more
desirable in situations where internal transactions were previously favored. This, in turn,
should lead to less vertical integration and smaller firms.

For example, after the introduction of computerized airline reservation systems, the
proportion of reservations made through travel agents (rather than by calling the airline
directly) went from 35 to 70 percent. Thus the function of selling reservations was
''disintegrated''from the airlines and moved to a separate firm—the travel agents.
Econometric analyses of the overall US economy in the period 1975 to 1985 are also
consistent with these predictions: the use of information technology appears to be correlated
with decreases in both firm size and vertical integration (Brynjolfsson et al. 1994).

If we extrapolate this trend to a possible long-run extreme, it leads us to speculate that we
might see increasing use of ''firms''containing only one person. For instance, Malone and
Rockart (1991) suggest that there may someday be electronic marketplaces of ''intellectual
mercenaries''in which it is possible to electronically assemble ''overnight armies''of thousands
of people who work for a few hours or days to solve a particular problem and then disband.
Flexible arrangements like this might appeal especially to people who had a strong desire for
autonomy—the freedom to choose their own hours and working situations.

Centralization of Decision-Making  Gurbaxani and Whang (1991) have used ideas from
agency theory to systematically analyze the effects on centralization of the reductions in
coordination costs enabled by IT. They conclude that IT can lead to either centralization or
decentralization, depending on how it is used. While this conclusion may not be surprising,
the structure of their analysis helps us understand the factors involved more clearly: (1)
When IT primarily reduces decision information costs, it leads to more centralization. For
instance, the Otis elevator company used IT to centralize the reporting and dispatching
functions of their customer service system, instead of having these functions distributed to
numerous remote field offces (Stoddard 1986). (2) On the other hand, when IT primarily
reduces agency costs, it leads to more decentralization. As used here, agency costs are the
costs of employees not acting in the interests of the firm. For instance, when one insurance
company developed a system that more effectively monitored their salespeople's overall
performance, they were able to decentralize to the salespeople many of the decisions that
had previously been made centrally (Bruns and McFarlan 1987). Overall, this bidirectional
trend for IT and centralization is consistent with empirical studies of this question (Attewell



and Rule 1984).

An alternative approach to this question is provided by (Danziger et al. 1982). In a sense this
work can be considered a kind of ''behavioral coordination theory.''In studies of
computerization decisions in forty-two local governments in the United States, they found that
changes in centralization of power were not best explained any of the formal factors one
might have expected. Instead, they found that since people who already have power
influence computerization decisions, the new uses of computers tend to reinforce the existing
power structure, increasing the power of those who already have it.

2.3.3 Designing Cooperative Work Tools

There has recently been a great deal of interest in designing computer tools to help people
work together more effectively (e.g., Greif 1988; Johansen 1988; Ellis et al. 1991; Peterson
1986; Tatar 1988, 1990; additional references in table 2.3). Using terms such as ''computer-
supported cooperative work''and ''groupware''these systems perform functions such as
helping people collaborate on writing the same document, managing projects, keeping track
of tasks, and finding, sorting, and prioritizing electronic messages. Other systems in this
category help people display and manipulate information more effectively in face-to-face
meetings and represent and share the rationales for group decisions.

In this section we will describe how ideas about coordination have been helpful in suggesting
new systems, classifying systems, and analyzing how these systems are used.

Using Coordination Concepts from Other Disciplines to Suggest Design Ideas  One
way of generating new design ideas for cooperative work tools is to look to other disciplines
that deal with coordination. For instance, even though the following authors did not explicitly
use the term ''coordination theory,''they each used ideas about coordination from other
disciplines to help develop cooperative work tools.

Using ideas from linguistics and philosophy about speech acts. Winograd and Flores (Flores
et al. 1988; Winograd 1987; Winograd and Flores 1986) have developed a theoretical
perspective for analyzing group action based heavily on ideas from linguistics (e.g., Searle
1975). This perspective emphasizes different kinds of speech acts, such as requests and
commitments. For example, Winograd and Flores analyzed a generic ''conversation for
action''in terms of the possible states and transitions involved when one actor performs a
task at the request of another. An actor may respond to a request, for instance, by (1)
promising to fulfill the request, (2) declining the request, (3) reporting that the request has
already been completed, or (4) simply acknowledging that the request has been received.
The analysis of this conversation type (and several others) provided a primary basis for
designing the Coordinator, a computer-based cooperative work tool. For example, the
Coordinator helps people make and keep track of requests and commitments to each other.
It thus supports what we might call the ''mutual agreeing''part of the task assignment
process.

Using ideas from artificial intelligence and organization theory about blackboards and
adhocracies. Malone (1990) describes how ideas from artificial intelligence and organization
theory combined to suggest a new tool for routing information within organizations. In the
''blackboard architecture,''program modules interact by searching a global blackboard for
their inputs and posting their outputs on the same blackboard (Nii 1986; Erman et al. 1980).
This provides very flexible patterns of communication between different program modules:
any module can communicate with any other module, even when this interaction is not
explicitly anticipated by the program designer. In adhocracies, as we saw above, just this kind
of unplanned, highly decentralized communication is essential for rapidly responding to new
situations (Mintzberg 1979; Toffler 1970). Stimulated, in part, by this need for an
''organizational blackboard,''Malone and colleagues designed the Information Lens system
(Malone et al. 1987). A central component of this system is an ''anyone server''that lets



people specify rules about what kinds of electronic messages they are interested in seeing.
The system then uses these rules to route all nonprivate electronic messages to everyone in
the organization who might want to see them. (To help people deal with large numbers of
messages, another part of the system uses a different set of rules to sort and prioritize the
messages people receive.)

Using ideas from philosophy and rhetoric about decision-making. Two cooperative work
tools, gIBIS (Conklin and Begeman 1988) and Sibyl (Lee 1990), are designed to help groups
of people make decisions more effectively. To do this, they explicitly represent the arguments
(and counterarguments) for different alternatives a group might choose. Both these systems
are based on ideas from philosophy and rhetoric about the logical structure of decision-
making. For example, the basic elements in the gIBIS system (issues, positions, and
arguments) are taken from a philosophical analysis of argumentation by Rittel (1970). The
constructs for representing arguments in Sibyl are based on the work of philosophers like
Toulmin (1958) and Rescher (1977).

Using ideas from computer science about parallel processes. Holt (1988) describes a
theoretical language used for designing coordination tools that is based, in part, on ideas
about Petri nets, a formalism used in computer science to represent process flows in
distributed or parallel systems (Peterson 1981, 1977). This language is part of a larger
theoretical framework called ''coordination mechanics''and has been used to design a
''coordination environment''to help people work together on computer networks.

SUMMARY OF EXAMPLES Clearly, ideas about coordination from other disciplines do not
guarantee our developing useful cooperative work tools. However, we feel that considering
these examples within the common framework of coordination theory provides two benefits:
(1) it suggests that no one of these perspectives is the complete story, and (2) it suggests
that we should look to previous work in various disciplines for more insights about
coordination that could lead to new cooperative work tools.

A Taxonomy of Cooperative Work Tools  As shown in table 2.3, the framework we have
suggested for coordination provides a natural way of classifying existing cooperative work
systems according to the coordination processes they support. Some of these systems
primarily emphasize a single coordination-related process. For instance, electronic mail
systems primarily support the message transport part of communication, and meeting
scheduling tools primarily support the synchronization process (i.e., arranging for several
people to attend a meeting at the same time). There is a sense, of course, in which each of
these systems also support other processes (e.g., a simple electronic mail system can be
used to assign tasks), but we have categorized the systems here according to the processes
they explicitly emphasize.

Some of the systems also explicitly support several processes. For example, the Information
Lens system supports both the communication routing process (by rules that distribute
messages to interested people) and a form of resource allocation process (by helping
people prioritize their own activities using rules that sort messages they receive). And the
Polymer system helps people decompose goals into tasks and sequence the tasks (e.g., to
prepare a monthly report, first gather the project reports and then write a summary
paragraph).

One possibility raised by this framework is that it might help identify new opportunities for
cooperative work tools. For instance, the Coordinator focuses on supporting one part of the
task assignment process (mutual agreement on commitments). However, it does not provide
much help for the earlier part of the process involving selecting an actor to perform the task
in the first place (see section 2.3). New tools, such as an ''electronic yellow pages''or bidding
schemes like those suggested by Turoff (1983) and Malone (1987) might be useful for this
purpose.



Table 2.3: Taxonomy of cooperative work tools based on the processes they
support

Process Example systems

Managing shared resources (task
assignment and prioritization)

Coordinator (Winograd and Flores 1986)
Information lens (Malone et al. 1987)

Managing producer/consumer
relationships(sequencing
prerequisites)

Polymer (Croft and Lefkowitz 1988)

Managing simultaneity
constraints(synchronizing)

Meeting scheduling tools (e.g., Beard et
al. 1990)

Managing task/subtask relationship
(goal decomposition)

Polymer (Croft and Lefkowitz 1988)

Group decision-making gIBIS (Conklin and Begeman 1988) Sibyl
(Lee 1990) electronic meeting rooms
(e.g., Stefik et al. 1987; Dennis et al.
1988; DeSanctis and Gallupe 1987)

Another intriguing possibility suggested by this framework is that it might be possible to
implement ''primitives''for a number of different coordination-related processes in the same
environment, and then let people combine these primitives in various ways to help solve
particular coordination problems. This is one of the goals of the Oval system (Malone et al.
1992; Lai et al. 1988).

Analyzing Incentives for Using Cooperative Work Tools  Another use for coordination
theory in designing cooperative work tools can be to help systematically evaluate proposed
or actual systems. For example, Markus and Connolly (1990) systematically analyze how the
payoffs to individual users of a cooperative work system depend on how many other people
are using the system. They do this by using an economic model from Schelling (1978) to
extend Grudin's (1988) insights about the incentives to use cooperative work systems. For
instance, on-line calendars and many other cooperative work applications involve
''discretionary databases''which users can view or update as they see fit. For each individual
user, however, the benefits of viewing the database can be obtained without contributing
anything. Thus it is often in the interests of each individual user to use the database without
making the effort required to contribute to it. Unfortunately, the equilibrium state of a system
like this is for no one to ever contribute anything!

An interesting empirical illustration of this phenomenon occurred in a study of how one large
consulting firm used the Lotus Notes group conferencing system. In this study Orlikowski
(1992) found that there were surprising inconsistencies between the intended uses of the
system and the actual incentives in the organization. For instance, Orlikowski observed that
this organization (like many others) was one in which people were rewarded for being the
''expert''on something—for knowing things that others did not. Should we be surprised,
therefore, that many people were reluctant to spend much effort putting the things they knew
into a database where everyone else could easily see them?

These observations do not, of course, mean that conferencing systems like this one cannot
be useful in organizations. What they do mean, however, is that we must sometimes be
sensitive to very subtle issues about things like incentives and organizational culture in order
to obtain the full benefits of such systems. For instance, it might be desirable in this
organization to include, as part of an employee's performance appraisal, a record of how
often their contributions to the Notes database were used by other people in the organization.



2.3.4 Designing Distributed and Parallel Processing
Computer Systems

Much recent activity in computer science has involved exploring a variety of distributed and
parallel processing computer architectures. In many ways physically connecting the
processors to each other is easy compared to the diffculty of coordinating the activities of
many different processors working on different aspects of the same problem.

In this section we describe examples of work that has addressed these issues in an explicitly
interdisciplinary way, drawing on insights from other disciplines or kinds of systems to design
or analyze distributed or parallel computer systems. In particular, we consider examples of
(1) analogies with social and biological systems as a source of design ideas and (2)
quantitative tools for analyzing alternative designs.

Analogies with Social and Biological Systems as a Source of Design Ideas
 Competitive bidding markets for resource allocation. One of the basic problems in designing
distributed or parallel computer systems is how to assign tasks to processors, and several
distributed computer systems have addressed this problem with competitive bidding
mechanisms based on analogies with human markets. For example, the Contract Nets
protocol (Smith and Davis 1981; Davis and Smith 1983) formalizes a sequence of messages
to be exchanged by computer processors sharing tasks in a network. The ''contracts''are
arbitrary computational tasks that can potentially be performed by any of a number of
processors on the network, the ''clients''are machines at which these tasks originate, and the
''contractors''are machines that might process the tasks (i.e., the servers). The sequence of
announcement, bid, and award messages used by this protocol was described above in our
analysis of the task assignment process (section 2.3). One of the desirable features of this
system is its great degree of decentralization and the flexibility it provides for how both clients
and contractors can make their decisions. For instance, clients may select contractors on the
basis of estimated completion time or the presence of specialized data; contractors may
select tasks to bid on based on the size of the task or how long the task has been waiting.

Using these or similar ideas, a number of other bidding systems have been developed (e.g.,
Stankovic 1985; Kurose and Simha 1989). For instance, several bidding systems have been
developed to allow personal workstations connected by a local area network to share tasks
(Malone et al. 1988; Waldspurger et al. 1988). In this way users can take advantage of the
unused processing capacity at idle workstations elsewhere on the network. Furthermore the
local bidding ''negotiations''can result in globally coherent processor scheduling according to
various priorities (e.g., Malone et al. 1988). (For a review of several related systems and an
analysis of a variety of bidding algorithms, see Drexler and Miller 1988; Miller and Drexler
1988.)

The notion of competitive bidding markets has also been suggested as a technique for
storage management by Miller and Drexler (Miller and Drexler 1988; Drexler and Miller
1988). In their proposal, when object A wishes to maintain a pointer to object B, object A
pays ''rent''to the ''landlord''of the space in which object B is stored. These rents are
determined by competitive bidding, and when an object fails to pay rent, it is ''evicted''(i.e.,
garbage collected). Their proposal includes various schemes for how to determine rents,
how to pass rents along a chain of references, and how to keep track of the various costs
and payments without excessive overhead. They conclude that this proposal is not likely to
be practical for small-scale storage management (e.g., garbage collection of individual Lisp
cells), but that it may well be useful for sharing large objects in complex networks that cross
''trust boundaries'' (e.g., interorganizational networks). The scheme also appears useful for
managing local caching and the migration of objects between different forms of short-term
and long-term storage.

''Scientific Communities''for Information Routing and Resource Allocation  Another



central problem that arises in distributed and parallel processing systems is how and when to
route information between processors. For instance, one interesting example of this problem
arises in artificial intelligence programs that search a large space of possibilities, whose
nature is not well known in advance. It is particularly useful, in this case, for processors to
exchange information about intermediate results in such a way that each processor can
avoid performing work that is rendered unnecessary by work already done elsewhere.

One solution to this problem is suggested by the Scientific Community Metaphor embodied in
the Ether system (Kornfeld and Hewitt 1981; Kornfeld 1982). In this system, there are a
number of ''sprites,''each analogous to an individual scientist, that operate in parallel and
interact through a global database. Each sprite requires certain conditions to be true in the
global database before it is ''triggered.''When a sprite is triggered, it may (1) compute new
results that are added to the global database, (2) create new sprites that await conditions that
will trigger them, or (3) stifle a collection of sprites whose work is now known to be
unnecessary. In one example use of this system, Kornfeld (1982) shows how sharing
intermediate results in this way can dramatically improve the time performance of an
algorithm (even if it is executed by time-sharing a single processor). He calls this effect
''combinatorial implosion.''

This system also uses the scientific community metaphor to suggest a solution to the
resource allocation problem for processors. Each sprite is ''supported''by a ''sponsor,''and
without a sponsor, a sprite will not receive any processing time to do its work. For instance, a
sponsor may sometimes support both work directed toward proving some proposition and
also work directed toward proving the negation of the proposition. Whenever one of these
lines of work is successful, support is withdrawn from the other.

Analyzing Stability Properties of Resource Allocation Algorithms  Another way of
applying coordination concepts is to help evaluate alternative designs of distributed and
parallel processing computer systems. For instance, Huberman and his colleagues
(Huberman and Hogg 1988; Lumer and Huberman 1990) have applied mathematical
techniques like those used in chaos theory to analyze the dynamic behavior of distributed
computer networks. In one case they analyze, for example, heavily loaded processors in a
network transfer tasks to more lightly loaded processors according to a probabilistic process.
When any processor in such a system can exchange tasks with any other processor, the
behavior of the system is unstable for large numbers of processors (e.g., more than twenty-
one processors in a typical example). However, when the processors are grouped
hierarchically into clusters that exchange tasks frequently among themselves and only
occasionally with other clusters, the system remains stable for arbitrarily large numbers of
processors. This hierarchical arrangement has the disadvantage that it takes a long time to
reach stability. In an intriguing analogy with human organizations, however, Huberman and
his colleagues find that this disadvantage can be eliminated by having a few ''lateral
links''between different clusters in the hierarchy (Lumer and Huberman 1990).

Table 2.4: Sample applications of a coordination perspective



Application area Examples of
analyzing
alternative designs

Examples of generating new
design ideas

Organizational
structures and
information
technology

Analyzing the effects
of internal structure

Creating temporary 'intellectual
marketplaces' to solve speci.c
problems.

Cooperative work
tools

Analyzing how the
payoffs to individual
users of a system
depend on the
number of other
users

Designing new tools for task
assignment,

Distributed and
parallel computer
systems

Analyzing stability
properties of load
sharing algorithms in
computer networks

Using competitive bidding
mechanisms to allocate processors
and memory in computer systems.

Using a scientific community
metaphor to organize parallel
problem-solving.

2.3.5 Summary of Applications

As summarized in table 2.4, the examples we have described show how a coordination
perspective can help (1) analyze alternative designs and (2) suggest new design ideas. In
each case these applications depended upon interdisciplinary use of theories or concepts
about coordination.
[3]See Baligh and Burton (1981), Baligh (1986), Barnard (1964), Malone (1987), Malone and
Smith (1988), McGrath (1984), and Mintzberg (1979) for related decompositions of
coordination.

[4]See Malone (1992) and Malone and Rockart (1991) for more detailed versions of the
argument in this section.

 



 

2.4 Research Agenda

We have seen how a number of different disciplines can contribute to answering the
questions about coordination, and how theories of coordination can, in turn, be applied to the
concerns of several different disciplines. What is needed to further develop this
interdisciplinary study of coordination?

As we suggested above, a central concern of coordination theory should be identifying and
analyzing specific coordination processes and structures. Therefore a critical item on the
agenda for coordination research should be developing these analyses. A number of
questions arise, as will be explored next.

2.4.1 Representing and Classifying Coordination Processes

How can we represent coordination processes? When should we use flowcharts, Petri nets,
or state transition diagrams? Are there other notations that are even more perspicuous for
analyzing coordination? How can we classify different coordination processes? For instance,
can we usefully regard some coordination processes as ''special cases''of others? How are
different coordination processes combined when activities are actually performed?

Characterizing Dependencies  What kinds of dependencies are there? Are there ways to
organize them that highlight common possibilities for managing them? Are some special
cases of others? What causes dependencies? As we modify or alter a process, what
techniques will be useful for keeping track of existing dependencies or identifying new ones?
What techniques are useful for identifying dependencies in a field study of a particular
process?

How General Are Coordination Processes?  Another set of questions has to do with how
generic coordination processes really are: How far can we get by analyzing very general
coordination processes, and when will we find that most of the important factors are specific
to coordinating a particular kind of task? For example, are there general heuristics for
coordination that are analogous to the general problem-solving heuristics studied in cognitive
science and artificial intelligence?

2.4.2 Analyzing Specific Processes

At least as important as these general questions are analyses of specific processes. For
example, how far can we go in analyzing alternative coordination processes for problems
such as resource allocation? Can we characterize an entire ''design space''for solutions to
this problem and analyze the major factors that would favor one solution over another in
specific situations? Could we do the same thing for other processes such as goal selection
or managing timing dependencies? Are there other processes (e.g., managing other kinds of
dependencies) that could be analyzed systematically in ways that have not yet been done?

In analyzing alternatives processes for specific problems, we might consider various kinds of
properties: Which processes are least ''expensive''in terms of production costs and
coordination costs? Which processes are fastest? Which processes are most stable in the
face of failures of actors or delays of information? Which processes are most susceptible to
incentive problems? For instance, how does the presence of significant conflicts of interest
among actors affect the desirability of different resource allocation methods? How do
information processing limitations of actors affect the desirability of different methods? For
example, are some methods appropriate for coordinating people that would not be
appropriate for coordinating computer processors, and vice versa? What new methods for
coordinating people become desirable when human information processing capacities are



augmented by computers?

2.4.3 Applications and Methodologies

A critical part of the research agenda for this area is developing coordination theory in the
context of various different kinds of systems. For instance, in the preceding section, we
suggested numerous examples of these possibilities for human organizations and computer
systems.

In some cases this work may involve applying previously developed theories to these
application areas. In many cases, however, we expect that new systems or new observations
of these systems will stimulate the development of new theories. For example, all of the
following methodologies appear likely to be useful in developing coordination theory: (1)
empirically studying coordination in human or other biological systems (e.g., field studies,
laboratory studies, or econometric studies), (2) designing new technologies for supporting
human coordination, (3) designing and experimenting with new methods for coordinating
distributed and parallel processing computer systems, and (4) formal modeling of
coordination processes (e.g., mathematical modeling or computer simulation).

 



 

2.5 Conclusions

Clearly, the questions we have just listed are only the beginning of a set of research issues in
the interdisciplinary study of coordination. However, we believe they illustrate how the notion
of ''coordination''provides a set of abstractions that help unify questions previously considered
separately in a variety of different disciplines and suggests avenues for further exploration.

While much work remains to be done, it appears that this approach can build upon much
previous work in these different disciplines to help solve a variety of immediate practical
needs, including (1) designing computer and communication tools that enable people to
work together more effectively, (2) harnessing the power of multiple computer processors
working simultaneously on related problems, and (3) creating more flexible and more
satisfying ways of organizing collective human activity.

Appendix A: Previous Definitions of Coordination

''The operation of complex systems made up of components.''(NSF-IRIS 1989)

''The emergent behavior of collections of individuals whose actions are based on complex
decision processes.''(NSF-IRIS 1989)

''Information processing within a system of communicating entities with distinct information
states.''(NSF-IRIS 1989)

''The joint efforts of independent communicating actors towards mutually defined
goals.''(NSF-IRIS 1989)

''Networks of human action and commitments that are enabled by computer and
communications technologies.''(NSF-IRIS 1989)

''Composing purposeful actions into larger purposeful wholes.''(A. Holt, personal
communication, 1989)

''Activities required to maintain consistency within a work product or to manage dependencies
within the workflow.''(Curtis 1989)

''The integration and harmonious adjustment of individual work efforts towards the
accomplishment of a larger goal.''(Singh 1992)

''The additional information processing performed when multiple, connected actors pursue
goals that a single actor pursuing the same goals would not perform.''(Malone 1988)

''The act of working together.''(Malone and Crowston 1991)

Appendix B: Results about Coordination from Selected
Fields

Even though use of the term ''coordination theory''is quite recent, a great deal of previous
work in various fields can contribute to the interdisciplinary understanding of coordination. In
this appendix we briefly describe examples of such work from several different disciplines.
These examples focus on cases where coordination has been analyzed in ways that appear
to be generalizable beyond a single discipline or type of actor. We have not, of course,
attempted to list all such cases; we have merely tried to pick illustrative examples from
several disciplines.



Computer Science

Sharing Resources Much research in computer science focuses on how to manage
activities that share resources, such as processors, memory, and access to input–output
devices (e.g., Deitel 1983). Other mechanisms have been developed to enforce resource
allocations. For example, semaphores, monitors, and critical regions for mutual exclusion
are programming constructs that can be used to grant a process exclusive access to a
resource (e.g., Hoare 1975; Dijkstra 1968). Researchers in database systems have
developed numerous other mechanisms, such as locking or timestamping, to allow multiple
processes to concurrently access shared data without interference (e.g., Bernstein and
Goodman 1981).

Managing Unreliable Actors  In addition protocols have been developed to ensure the
reliability of transactions comprising multiple reads or writes on different processors (e.g.,
Kohler 1981). In particular, these protocols ensure that either all a transaction's operations
are performed or none are, even if some of the processors fail.

Segmenting and Assigning Tasks  One of the important problems in allocating work to
processors is how to divide up the tasks. For example, Gelernter and Carrerio (1989) discuss
three alternative ways of dividing parallel programs into units: according to the type of work to
be done, according to the subparts of the final output, or simply according to which processor
is available.

Managing Information Flows  Another important set of issues involves managing the flow
of information. For instance, researchers in artificial intelligence and particularly in distributed
artificial intelligence (DAI; e.g., Bond and Gasser 1988; Huhns and Gasser 1989) have used
''blackboard architectures''to allow processes to share information without having to know
precisely which other processes need it (Nii 1986; Erman et al. 1980), and ''partial global
plans''to allow actors to recognize when they need to exchange more information (Durfee
and Lesser 1987).

Economics and Operations Research

 In a sense, almost all of economics involves the study of coordination, with a special focus
on how incentives and information flows affect the allocation of resources among actors. For
example, classical microeconomics analyzes how different sources of supply and demand
can interact locally in a market in ways that result in a globally coherent allocation of
resources. Among the major results of this theory are formal proofs that (under appropriate
mathematical conditions) if consumers each maximize their individual ''utilities''and firms
each maximize their individual profits, then the resulting allocation of resources will be
globally ''optimal''in the sense that no one's utilities can be increased without decreasing
someone else's (e.g., Debreu 1959).

Some more recent work in economics has focused on the limitations of markets and
contracts for allocating resources. For instance, transaction cost theory analyzes the
conditions under which a hierarchy is a better way of coordinating multiple actors than a
market (e.g., Williamson 1975). Agency theory focuses on how to create incentives for some
actors (''agents'') to act in a way that advances the interests of other actors (''principals'')
even when the principals cannot observe everything their agents are doing (Ross 1973). One
result of this theory is that there are some situations where no incentives can motivate an
agent to perform optimally from the principal's point of view (Jensen and Meckling 1976).

Finally, some parts of economics focus explicitly on information flows. For example, team
theory and its descendants analyze how information should be exchanged when multiple
actors need to make interdependent decisions but when all agents have the same ultimate
goals (e.g., Marschak and Radner 1972; Hurwicz 1973; Reiter 1986). Mechanism design



theory also analyzes how to provide incentives for actors to reveal information they possess,
even when they have conflicting goals. For example, this theory has been applied to
designing and analyzing various forms of auctions. In a ''second price auction,''for instance,
each participant submits a sealed bid, and the highest bidder is only required to pay the
amount of the second highest bid. It can be shown that this mechanism motivates the bidders
to each reveal the true value they place on the item being sold, rather than trying to ''game
the system''by bidding only enough to surpass what they expect to be the next highest bid
(Myerson 1981).

Operations research analyzes the properties of various coordination mechanisms, but
operations research also includes a special focus on developing optimal techniques for
coordination decisions. For instance, operations research includes analyses of various
scheduling and queueing policies and techniques such as linear programming and dynamic
programming for making resource allocation decisions optimally (e.g., Dantzig 1963).

Organization Theory

 Research in organization theory, drawing on disciplines such as sociology and psychology,
focuses on how people coordinate their activities in formal organizations. A central theme in
this work has involved analyzing general issues about coordination (e.g., Simon 1976; March
and Simon 1958; Thompson 1967; Galbraith 1977; Lawrence and Lorsch 1967; summarized
by Mintzberg 1979; and Malone 1990). We can loosely paraphrase the key ideas of this work
as follows:

All activities that involve more than one actor require (1) some way of dividing activities
among the different actors and (2) some way of managing the interdependencies between
the different activities (March and Simon 1958; Lawrence and Lorsch 1967).
Interdependencies between activities can be of (at least) three kinds: (a) pooled, where the
activities share or produce common resources but are otherwise independent, (b) sequential,
where some activities depend on the completion of others before beginning, and (c)
reciprocal, where each activity requires inputs from the other (Thompson 1967). These
different kinds of interdependencies can be managed by a variety of coordination
mechanisms, such as standardization, where predetermined rules govern the performance
of each activity; direct supervision, where one actor manages interdependencies on a case-
by-case basis, and mutual adjustment, where each actor makes ongoing adjustments to
manage the interdependencies (March and Simon 1958; Galbraith 1973; Mintzberg 1979).

These coordination mechanisms can be used to manage interdependencies, not only
between individual activities, but also between groups of activities. One criterion for grouping
activities into units is to minimize the diffculties of managing these intergroup
interdependencies. For example, activities with the strongest interdependencies are often
grouped into the smallest units, then these units are grouped into larger units with other units
with which they have weaker interdependencies. Various combinations of the coordination
mechanisms, together with different kinds of grouping, give rise to the different organizational
structures common in human organizations, including functional hierarchies, product
hierarchies, and matrix organizations. For instance, sometimes all activities of the same type
(e.g., manufacturing) might be grouped together in order to take advantage of economies of
scale; at other times, all activities for the same product (e.g., marketing, manufacturing, and
engineering) might be grouped together to simplify managing the interdependencies
between the activities.

Biology

 Many parts of biology involve studying how different parts of living entities interact. For
instance, human physiology can be viewed as a study of how the activities of different parts
of a human body are coordinated in order to keep a person alive and healthy. Other parts of



biology involve studying how different living things interact with each other. For instance,
ecology can be viewed as the study of how the activities of different plants and animals are
coordinated to maintain a ''healthy''environment.

Some of the most intriguing studies of biological coordination involve coordination between
different animals in a group. For example, Mangel (1988) discusses the optimal hunting pack
size for lions, who trade the benefit of an increased chance of catching something against
the cost of having to share what they catch. Deneubourg (1989) point out that the interaction
between simple rules—such as ''do what my neighbor is doing''—and the environment may
lead to a variety of collective behaviors.

The most striking examples of such group behaviors are in social insects, such as honey
bees or army ants, where the group displays often quite complex behavior, despite the
simplicity of the individuals (e.g., Franks 1989; Seeley 1989). Using a variety of simple rules,
these insects ''allocate''individual workers at economically effcient levels to a variety of tasks-
including searching for new food sources, gathering nectar or pollen from particular sources
(bees), carrying individual food items back to the bivouac (ants), guarding the hive (bees) and
regulating the group temperature. For example, in honey bees, the interaction of two simple
local rules controls the global allocation of food collectors to particular food sources. First,
nectar storing bees unload nectar from foraging bees returning to the hive at a rate that
depends on the richness of the nectar. Second, if bees are unloaded rapidly, they recruit
other bees to their food source. The result of these two rules is that more bees collect food
from better sources. Seeley (1989) speculates that this decentralized control may occur
because it provides faster responses to local stresses (Miller 1978), or it may be simply
because bees have not evolved any more global means of communication.
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Chapter 3: A Taxonomy of Organizational
Dependencies and Coordination Mechanisms

Kevin Crowston

Although you will perform with different ingredients for different dishes, the same general
processes are repeated over and over again. As you enlarge your repertoire, you will find
that the seemingly endless babble of recipes begins to fall rather neatly into groups of theme
and variations . . .
                                          —Child, Bertholle, and Beck (1981)

3.1 Introduction

Interdependency and coordination have been perennial topics in organization studies. The
two are related because coordination is seen as a response to problems caused by
dependencies. For example, Thompson (1967) hypothesized three coordination
mechanisms—standardization, plan, and mutual adjustment—used in response to three
different patterns of dependencies—pooled, sequential, or reciprocal (pp. 54-55). Most
studies, however, describe dependencies and coordination mechanisms only in general
terms, without characterizing in detail differences between dependencies, the problems
dependencies create or how the proposed coordination mechanisms address those
problems (Grant 1996; Medema 1996). This vagueness makes it diffcult or impossible to
determine what alternative coordination mechanisms might be useful in a given
circumstance. Similarly it is hard to translate from dependencies to specifications of
individual activities or to uses of information and communication technologies (ICT) to
support a process (e.g., as part of a business process redesign effort; Davenport and Short
1990; Hammer 1990; Harrington 1991; Harrison and Pratt 1993).

For example, consider the process of fixing bugs in a software product, a process that
Crowston (1997) analyzed in a search for alternative coordination mechanisms. Using
Thompson's theory, we might note that programmers all contribute code to a final product,
and thus share a pooled dependency, and that they occasionally rely on each other's work,
thus creating a sequential or sometimes reciprocal dependency. Furthermore, we might find,
as predicted, that standardization, plans and mutual adjustment are all used. This analysis
leaves many questions unanswered however. For example, how else might we organize this
process? What dependencies would be left (or created) if instead of dividing the work among
specialists, it were performed by generalists? Can we design a process that would reduce or
eliminate the sequential dependencies between programmers? If not, what information do
sequentially dependent programmers need to exchange and when? Would electronic mail or
computer conferencing be useful to support this information exchange?

Although past conceptions of dependency do not directly address these questions, newer
perspectives in artificial intelligence offer a more precise notion of dependency that do. In this
chapter I draw on both literatures to develop a taxonomy of organizational dependencies and
associated coordination mechanisms. The taxonomy suggests that there are four basic
dependencies—task-resource, sharing, flow, and common output—each managed by a set
of coordination mechanisms. The typology also suggests possible coordination problems
caused by the fact that activities and objects in the world can be divided into subcomponents.
The central section of this chapter is devoted to explaining these dependencies, their
derivation, and the details of each.

 



 

3.2 Dependencies and Coordination

In this section I briefly review work on dependencies and coordination from the organizational
and artificial intelligence literatures as a basis for formulating a new framework relating the
two.

3.2.1 Organizational Research

Organizational researchers have long studied dependencies and coordination. Indeed,
concern for this topic can be found among the earliest works. For example, Gulick and
Urwick (1937) started with the need to divide work among multiple individuals, either because
of the scope and scale of the work to be done or because of differences in individual
capabilities. Division of labor in turn lead to the problem of coordinating interdependent work
that is to be performed separately. Gulick and Urwick (1937) noted that without coordination,
''a great deal of time may be lost, workers may get in each other's way, material may not be
on hand when needed, things may be done in the wrong order, and there may even be a
difference of opinion as to where the various doors and windows are to go''(p. 90).

Most organizational researchers have conceptualized dependencies as arising between
actors (individuals, groups or organizations). For example, Litwak and Hylton (1962) defined
interdependency as when two or more organizations must take each other into account if
they are to accomplish their goals. Victor and Blackburn (1987) made this view of
interdependency more precise by casting it in a game-theoretic framework. Dependency is
defined by ''extent to which a unit's outcomes are controlled directly by or are contingent
upon the actions of another unit'' (p. 490). McCann and Ferry (1979) similarly defined
interdependency as, ''when actions taken by one referent system affect the actions or
outcomes of another referent system''(p. 113). They operationalized the degree of
dependency in terms of the amount of resources exchanged, the frequency of transactions
and the value of the resources to the recipient. Salancik (1986) proposed a technique for
measuring dependency that accounts for transitive dependencies and allows for
dependencies of different importance.

While dependencies are usually assumed to cause problems for the actors, these problems
are rarely spelled out in detail. Instead, most authors suggest that as dependency increases,
increasingly powerful coordination mechanisms be used, without specifying precisely what
problems these mechanisms address. Alternately, actors might engage in actions to reduce
the degree of dependency (McCann and Ferry 1979).

Rather than explicating the effects of a dependency on what actors can or should do, many
researchers have focused on describing patterns of dependencies. Thompson (1967)
hypothesized three patterns of dependency—pooled, sequential, and reciprocal—with
corresponding coordination mechanisms, which he arranged in order of increasing strength.
He further suggested that organizational hierarchies will tend to cluster groups with
reciprocal interdependencies most closely, then those with sequential interdependencies,
and finally those with pooled interdependencies. Van de Ven, Delbecq, and Koenig (1976)
identified three modes of coordinating work activities—impersonal (plans and rules),
personal (vertical supervision), and group (formal and informal meetings)—and discuss
situational factors, including interdependency, that might determine which are used. They
built upon Thompson's (1967) view of dependency, adding a fourth, team arrangements, in
which tasks are worked on jointly and simultaneous (rather than being passed back and
forth). They hypothesized that ''increases in work flow interdependency from independent to
sequential to reciprocal to team will be associated with . . . large increases in the use of
group coordination mechanisms''(p. 325), which they supported with data from sixteen offces
and the headquarters of a state agency. Mintzberg (1979) described a similar set of



coordination mechanisms: mutual adjustment, direct supervision and four kinds of
standardization: of work processes, outputs, norms and skills.

Finally, much of this work hypothesized a one-to-one relationship between levels of patterns
of dependencies and coordination mechanisms. One exception is McCann and Galbraith
(1981), who discussed the possibility of alternative mechanisms. They suggested that
coordination strategies vary along three dimensions—formality, cooperativeness, and
localization—and that as dependency increases, the amount of coordination necessary
increases and as conflict increases, coordination strategies chosen become increasingly
formal, controlling and centralized. They therefore proposed a two-by-two matrix showing
conditions under which organizations will choose to coordinate by rules, mutual adjustment,
hierarchy or a matrix structure.

To summarize, most organizational conceptions of dependencies view them as arising
between actors and describe patterns of actor-to-actor dependencies. Furthermore most
researchers have viewed the dependency as given and sought to identify the mechanisms
used to manage dependencies, although some have suggested assigning tasks in order to
create desired dependencies or minimize undesired ones (e.g., as in ''administrative
management theory''; Simon 1976).

3.2.2 Research in Artificial Intelligence and Other Fields

I will attempt to develop a richer conception of organizational dependencies by using
concepts drawn from work in artificial intelligence (AI). These researchers, particularly those
in the field of distributed AI, have also considered dependencies and coordination in an effort
to develop systems. Because of the need to program system behaviors, these researchers
have considered the nature of tasks in considerable detail. In contrast to most organizational
researchers, researchers in the field of artificial intelligence have analyzed dependency as
arising between tasks. This approach has the advantage that it permits consideration of the
implications of different patterns of task assignment. Once an assignment is determined,
however, we can still determine implications of a dependency for a particular actor.

Researchers in artificial intelligence have categorized the various types of dependencies that
can arise between pairs of goals or activities (e.g., Decker and Lesser 1989; Stuart 1985; von
Martial 1989; Wilensky 1983). Von Martial (1989) developed a taxonomy of relationships,
both positive, such as synergies or equality, and negative, such as conflicting use of
resources or logical incompatibility. He suggested several dimensions for this taxonomy,
including explicit versus implicit and resource versus non–resource-based interactions.
Alexander (1964) suggested expressing the dependency between design variables
(essentially goals of a design task) as a correlation coeffcient. This view allows for both
conflicting (negative) and facilitative (positive) dependencies. He noted further that some
dependencies may be logically necessary or a product of physical laws, while others may
simply be true in all designs in the sample considered. He therefore recommended that two
variables be considered as interacting only if, ''the designer can find some reason (or
conceptual model) which makes sense to him and tells him why they should do so''(p. 109).
A fully specified design space forms a network of linked goals; this space can then be
partitioned into weakly interacting subcomponents to be worked on independently.

However, while these researchers have catalogued dependencies, few have discussed in
detail what coordination methods might be used in response to these problems. Yu and
Mylopoulos (1993) did suggest specific actions that can be taken to manage different kinds
of dependencies. For example, they suggested mechanisms that might be appropriate if one
actor depends on another to achieve a goal, perform a task or provide a resource (p. 35).

3.2.3 A Framework for Studying Dependencies and



Coordination Mechanisms

To clarify the relationship between dependencies and coordination, I use the framework
presented by Malone and Crowston (1994), who define coordination as ''managing
dependencies.''They analyzed group action in terms of actors performing interdependent
activities to achieve goals. These activities might also require or create resources of various
types. For example, in the case of software bug fixing mentioned above, the actors are the
customers and various employees of the software company. In some cases a group of
individuals may be represented as a single collective actor (Abell 1987). For example, to
simplify the analysis of a particular subunit, the other subunits with which it interacts might all
be represented as collective actors. Activities in the software example include reporting a
problem, diagnosing the problem, developing a fix, and delivering the fix to the customer.
The goal of the process in this case appears to be eliminating problems in the system, but
alternative goals—such as appearing responsive to customer requests—could also be
analyzed. Finally, resources include the bug reports, information about known bugs,
computer time, bug fixes, and so on.

Coordination Problems and Mechanisms In Malone and Crowston's (1994) view, actors in
organizations face coordination problems arising from dependencies, which constrain how
the tasks can be performed. For example, a software engineer planning to change one
module in a computer system must check that the changes will not affect other modules or
arrange for any necessary changes to modules that will be affected. Two engineers working
on the same module must each be careful not to overwrite the other's changes. Alternately,
the problem might be that we want to be sure that a particular dependency exists; for
example, we want actors to choose tasks to perform that will accomplish particular goals. In
other cases, the dependency provides an opportunity; for example, if two different customers
have reported the same bug, then the company can save time by diagnosing and fixing the
bug once and sharing the solution. The first goal of this chapter is to present a taxonomy to
organize dependencies and thus coordination problems.

Having identified a coordination problem, it is necessary to address it through some
coordination mechanism. Coordination mechanisms may be quite specific, such as different
kinds of code management systems to control changes to software, or quite general, such
as hierarchies or markets to manage assignment of activities to actors. Malone and
Crowston (1994), for example, identified several common dependencies and analyze
coordination mechanisms to manage them including goal decomposition, resource
allocation, and synchronization. In general, there may be many different coordination
mechanisms that could be used to address the same coordination problem. Therefore a
taxonomy of dependencies—the product of this discussion—would also serve as a way to
organize coordination mechanisms. As I present the taxonomy, I will explain the possible
coordination mechanisms along with the different kinds of dependency they address.

To distinguish different kinds of dependencies, I consider what the dependencies might exist
between. For simplicity, I group the elements of Malone and Crowston's (1994)
framework—goals, activities, actors, and resources—into two categories:

Tasks that include goals to be achieved or activities to be performed.

Objects that make up the world, in particular, those resources needed to perform
activities and the actors themselves.

In any situation there may be multiple instances of each of these elements, possibly
interdependent. These two elements will be discussed in more detail below.

Tasks By tasks I mean both achieving goals and performing activities. Goals (desired states
of the world) and activities (actions performed to achieve a particular state) are clearly
different. However, analyzing activities and goals together makes clear the parallel between



decomposing a goal into subgoals to be achieved and decomposing it into primitive activities
to be performed. In this way both goals and activities are descriptions of the task to be
undertaken. A second advantage of this unification is that it eliminates the need to analyze all
situations to the level of primitive activities performed by individuals. Treating higher-level
goals as activities to be performed by a subunit allows us to analyze assignment of goals to a
subunit in the same way that we consider assigning activities to individuals. For example, an
outsider (or an analyst interested in other parts of a company) might think of the purchasing
department as performing a ''purchase materials''activity. To the members of the purchasing
department, however, this is a high-level goal to be achieved by performing numerous
activities, such as qualifying suppliers, soliciting bids, and awarding contracts.

More powerful conceptualizations of tasks may help suggest the different ways tasks may be
interdependent. A frequently used model of action from AI includes preconditions (states of
the world that must hold before the activity can be performed) and effects (states of the world
that become true or false as a result of the activity); see Fikes and Nilsson (1971). For
example, before engineers can diagnose problems, they must know the symptoms of the
problems; afterward they also know the diagnosis. (Of course, it is possible that they will be
unable to diagnose the problem or that their diagnoses will be incorrect. Additional
refinements could be made to this model to handle such events. Since such refinements do
not change the basic analysis presented here, I will omit them for the purposes of this
discussion.) From such a model it is clear that tasks may be dependent on each other in
several different ways, with different implications. These dependencies will be discussed in
detail later in this chapter.

Resources I include everything used or affected by activities together in the category of
resources. Resources in this broad conception include both material goods and the effort of
actors. For example, in the case of the software company, resources include computers,
source code, bug reports, and bug fixes, as well as the effort of the employees of the
company. Note that actors are viewed simply as a particularly important kind of resource. I
group actors and other kinds of resources together in this way despite their significant
differences because many of the steps necessary in assigning tasks to actors parallel those
involved in assigning other kinds of resources to tasks, as will be made clear below. Clearly,
there are important differences among all these various resources. The implications of some
of these distinctions for the choice of coordination mechanisms are discussed in the following
sections.

 



 

3.3 Managing Task-Resource Dependencies

The implications of the possible dependencies between a task and one or multiple resources
can be represented graphically as in figure 3.1. In the two-component framework discussed
in the previous section, a task can depend on a resource either as a precondition or as an
effect. For example, the preconditions for fixing a bug include knowing what the bug is,
having access to the source code, and having the capability of fixing bugs. The effect of
patching a bug is having a patch that fixes the code. Of these two dependencies involving
one task and one resource, only the first, a task using a resource, seems to create a
coordination problem, in that it requires additional work to manage.

Figure 3.1: Tasks use or produce resources

3.3.1 Task Uses One Resource

Consider a task that requires or consumes some resource. The coordination problem
implied by this dependency is acquiring the necessary resource. If there is just one
appropriate resource available, then that resource must be the one to be used. This simple
case includes an actor deciding that it should perform a task itself or knowing only one other
actor that could perform it. For example, when customers have problems with a piece of
software, typically their only choice is to report the problem to the manufacturer's help desk
and ask them to fix the bug. More commonly, however, there are many possibly appropriate
resources, requiring a more elaborate coordination mechanism. The mechanism can be
decomposed into the following steps:

Identifying what resources are required by the task.1.

Identifying what resources are available.2.

Gathering information about the resources.3.

Choosing a particular resource.4.

Assigning the resource (e.g., getting an actor to work on the task).5.

The steps in this mechanism are derived from the steps in a decision process—intelligence,
design, and choice—where the first step is divided into intelligence about the needs of the
task and about the available resources and a final step is added to execute the decision.

In principle, these steps can be performed in any order. For example, tasks can be chosen
that can be performed with resources available (and that achieve higher level goals). For
example, in software development, a manager might divide a system into modules based on



the abilities of the programmers who will work on them, rather than on some a priori division
of the problem. A garbage can model might suggest that all steps go on simultaneously and
occasionally connect more or less by chance (Cohen, March, and Olsen 1972). For
convenience, however, I will discuss the steps in the order listed.

Identifying Necessary Resources First the resources needed by a task must be identified.
For example, determining the module of the system in which a bug appears identifies the
resources needed by that task (i.e., an engineer with expertise in that module). In some
cases the assigner may need to know what kind of resources are available to be able to
characterize the task requirements along the same dimension. For example, if actors are
specialists and only one actor can perform any given task, then the needs of the task must
be identified in terms of these actors'specializations. If actors are generalists, then any actor
can perform the task, so the assignment can be based on other factors.

Identifying Available Resources Second, a set of appropriate resources must be identified.
In the simplest case there is only one potential resource, for example, only one actor, who
can perform the task. In the general case there may be several resources that could be used
for the task, making it necessary to choose one. The available resources may be known a
priori to the assigner; the assigner may know a larger set of resources, some of which may
be appropriate; or the assigner may have to spend some effort identifying what resources
might be appropriate (e.g., by investigating the background of each possible actor or by
asking someone else for a recommendation).

Gathering Information about the Resources Third, information about the resources must
be gathered to evaluate how good a fit a particular resource will be for the task. Obviously
there are many possible bases for such a decision, such as speed, quality, availability, and
motivation. The necessary information might be gathered by asking potential resources to
identify themselves, for example, by submitting bids, in which case this step and the previous
one are essentially merged.

Choosing a Resource Fourth, the most appropriate resource must be chosen based on the
information collected and whatever criteria are important for the task.

Assigning Resources Finally, the assignment of the resource must be communicated to
the actor performing the task. As well, for nonshareable resources, the resource must be
marked as ''in use''or other assigners warned to avoid conflicting assignments, as discussed
below. When the resource is the effort of an actor, the actor must be asked or convinced to
perform the task. Where the personal goals of the individual actors differ significantly (e.g.,
when the interaction is nonroutine or when the actors are whole firms rather than individuals),
the assigner may have to convince the performer to do the task by designing appropriate
incentives schemes or monitoring performance. Kraus (1993) discusses techniques for
obtaining cooperation in non-cooperative distributed problem solving systems. In other cases,
effort to influence the performer will be unnecessary. For example, if employees are asked
by a legitimate requester to do a task that fits their definition of their job, they are likely to
agree to do it.

Once the resources have been acquired, additional work may be necessary to manage the
flow dependency between acquiring and using the resources, as will be discussed below. For
example, it may be necessary move the resources to the task that will use them and to
ensure that they are available at the appropriate time.

Example Resource Allocation Mechanisms Different coordination mechanisms for
resource assignment can be analyzed as particular choices for these five steps. For
example, to assign a task to an employee, a manager must:

Determine what skills are necessary to perform the task.1.

Identify which employees are available (which might be done from memory).2.

3.



1.

2.

Collect information about which employees have the necessary skills (again, possibly
from memory).

3.

Decide which employee is the most appropriate, based on skills, workload, and so on.4.

Ask the employee to work on the task.5.

Buying a product has equivalent steps:

Determining needs.1.

Identifying possibly appropriate products.2.

Collecting brochures, reviews, and other sources of information about the products.3.

Picking the most appropriate products.4.

Arranging payment for and delivery of the product.5.

More generally, these steps can be used to distinguish broad classes of organizational form.
Take, for example, the market-hierarchy dichotomy. In a hierarchy the available resources
are those owned by the organization. If the resources are specialized, there may be only one
appropriate for a given task. If the resources are generalized, the choice between them may
be made based on factors known to the assigner, such as workload, or be delegated to the
group. In a market the available resources are those competing in the market place.
Appropriate resources are identified through advertising or requesting bids and the choice
between them made based on the bids submitted by the interested resources. In a network
organization (Ching, Holsapple, and Whinston 1992; Nohria and Eccles 1992) the resources
are those that belong to the network; typically each member has a particular specialization it
brings to the network. The basis for assignment is reciprocal relations, rather than contracts
or hierarchy. These alternatives are summarized table 3.1.

Table 3.1: Decompositions of different mechanisms for resource allocation

Step Market Hierarchy Network

Identify needs Based on
specializations in
market

Based on
specializations in
firm

Based on
specializations
in network

Identify
resources

Broadcast a RFB
and wait for replies;
check advertising

Use known set of
resources in firm

Use known set
of resources
belonging to
network

Choose
resource

Evaluate bids Specialization;
workload

Specialization

Assign resource Contract Employment relation Network
membership

3.3.2 Task Uses Multiple Resources

I will next consider cases where a single task uses multiple resources. There are three cases
where a task is dependent on multiple resources—using multiple resources, producing
multiple resources, or using one resource and producing another, as shown in figure 3.2. Of
the three, only the first, a task using multiple resources, seems to pose unique coordination
problems, namely constraints on the performance of the task and thus the need for a
coordination mechanism. In this case there is a need to synchronize the availability of



multiple resources.

One way to manage this dependency is to simplify it by permanently assigning all resources,
or all resources but one, to the task. For example, a particular production task might always
be performed on a particular machine, which is always operated by a particular operator.
Such pre-assignments reduce this dependency to a task using a single resource, as
discussed above.

More generally, the dependency can be managed by scheduling the use of all of the needed
resources. However, the need to use multiple resources creates additional potential
problems, such as deadlock (where one task waits for a resource held by the another, which
in turn is waiting for a resource held by the first) and starvation (where a task waits forever for
all the resources it needs to become available). For instance, a meeting convener may not
be able to find a time at which everyone is available, resulting in the meeting being
repeatedly postponed. For computer systems a variety of algorithms have been developed
for assigning resources to avoid these problems. For example, deadlocks can be avoided by
requiring that all needed resources be assigned at once (preventing a task holding a
resource while waiting for another) or by always assigning resources in a specified order
(preventing a loop). Alternately, deadlocks can be periodically searched for and one task
canceled if a deadlock is detected. Some of these approaches have analogues in human
systems (e.g., if nothing has happened with your resource request for a while, call again to
check on the status).

Figure 3.2: Dependencies between multiple tasks and resources.

 



 

3.4 Managing Dependencies among Multiple Tasks and
Resources

In the previous section we considered the dependency between a single task and one or
more resources. In general, however, there are multiple tasks and resources to be
considered. In our analysis, the primary way two tasks can be dependent is via some kind of
common resource. Figure 3.2 shows the set of possible dependencies between two tasks
(the circles) and one resource (the boxes); the arrows indicate flows of a resource that are
either produced or used. In this framework there are three ways two tasks might have a
resource in common and therefore three major kinds of dependencies: two tasks use the
same resource as input (a ''sharing''dependency), two tasks create the same resource as
output (a ''common output''dependency), and one task creates a resource used by another
(a ''flow''dependency). Similarly a single task might use several resources, use one resource
and create another or create multiple resources. Each of these cases will be considered in
turn below.

Table 3.2: Examples of resources classified by shareability and reusability

  Shareable Nonshareable

Reusable Information: designs, problem
reports, fixes

Tools: test systems, meeting
rooms

Consumable   Raw materials: components,
assemblies

3.4.1 Sharing

The first case I will consider is when two tasks are interdependent because both have the
same resource as a precondition (a ''sharing''dependency). One approach to this situation is
to eliminate the dependency, such as by giving each task a dedicated resource or by
redesigning one of the tasks to not need the resource. These approaches correspond to
Galbraith's (1974) suggestion to create slack resources or self-contained tasks (pp. 30-31).
For example, offce workers are usually given their own staplers, desks, and even computers
to eliminate the need to coordinate stapling, writing, or computing.

In general, though, additional work is required to share the resource. Clearly, the nature of
the resource will determine what additional work is necessary. I consider in particular two
dimensions along which resources differ: shareablity and reusability,as shown in table 3.2.

Shareablity describes how many tasks can use the resource simultaneously. Most
resources—raw material, tools, or effort—are nonshareable. Note that an actor may be
assigned to multiple tasks but works on only one at any instant. Information and other
states of the world are important exceptions, since multiple tasks can use the same
resource if it is not changed by the tasks.

Reusability describes how many tasks can use the resource over time (von Martial
1989). Some resources, such as tools or information, can be used and reused, at least
until they wear out; others, such as raw materials, can only be used once.

We will now consider the implications of these resource types for the nature of the resulting
coordination problem and mechanisms.

Shareable Resources If the common resource is shareable, then it is not a conflict for two



tasks to use it at the same time. For example, two engineers can use the same piece of
information without any problem (although there may be conflicts for the physical media on
which the information is stored, a nonshareable resource). Instead, shareable resources
create the problem of ensuring that tasks use the same version of the resource. For
example, two designers working on detailed component design should work from the same
version of the overall design. Solutions include destroying obsolete copies to ensure that
there is only one resource, making a new copy of the resource from or checking the versions
against a master prior to each use, or even tolerating a certain level of disagreement and
repairing problems after the fact. Likewise, when the resource is changed, it must be treated
as nonshareable to ensure that other tasks do not use the resource in an inconsistent state.

Nonshareable Resources If the resource is not shareable, then the two tasks cannot be
performed simultaneously with the available resources. Note, in particular, that this applies to
an actor performing multiple tasks: the actor needs to pick an order in which to do the tasks
(e.g., by prioritizing them and doing the most important or urgent ones first).

One solution is to plan the use of the resource ahead of time and perform both tasks
accordingly, corresponding to Van de Ven, Delbecq, and Koenig's (1976) impersonal mode
of coordination. If the resource is reusable, then the conflict can be resolved simply by
performing the tasks at different times. Numerous techniques have been developed to
schedule resources. For example, conference rooms and other facilities are frequently
allocated with a sign-up list. Ripps (1991) presents a taxonomy of mechanisms for task
synchronization in a real-time programming system that includes numerous mechanisms for
transferring information between tasks or avoiding conflicts over resources. Sen (1993)
discusses coordination mechanisms that might be applied to distributed resource scheduling,
including contract-nets (Smith and Davis 1981), distributed search and multi-agent planning.
On the other hand, if the resource is consumable, then rescheduling will not suffce; instead,
the resource must be divided among tasks, additional resources acquired, or only one of the
tasks selected to be performed.

A second solution to resource sharing is to resolve the conflicts as the tasks are performed
(rather than ahead of time). For consumable resources, this approach reduces to 'first-
come–first-served'allocation of the resource. For shareable resources, this approach is
similar to the ''mutual exclusion''problem in computer science, so many of the solutions
developed for that problem may be applicable. There are two steps to the solution. First,
conflicts must be made visible, typically by marking the resource as being in use. For many
physical resources, the act of using it may be suffcient (e.g., sitting in front of a computer
terminal or in a conference room will signal to anyone else that it is in use). For less tangible
resources, such as information, more elaborate schemes are necessary. For example, a
code checkout system prevents two engineers from modifying the same source code
module at the same time; most databases provide some kind of locking mechanism to
prevent concurrent updates to a piece of information. Second, if the resource is not marked
as being used, the performer of the task can so mark it and then use it. If it is marked as
being used, then a flow dependency exists between the current and potential user of the
resource, which must be managed as discussed below.

3.4.2 Flow

The second case I will consider is when a resource is the effect of one task and a
precondition of another. This situation creates what is known in computer science as a
producer–consumer dependency, or more simply a ''flow''dependency. Such a dependency
requires that the tasks be performed in the correct order and the flow of the resource
between the two be managed. This relationship frequently holds between steps in a process,
as well as between sequential uses of a resource. For example, in software changes, fixing
the bug has the effect of creating a patch that is a precondition for integrating the complete
system. Malone and Crowston (1994) and Dellarocas (1996) point out that flow



dependencies imply additional constraints on how tasks are performed; three such
constraints—usability, precedence, and accessibility—will be discussed in turn.

USABILITY Additional work may be necessary to ensure that the resource in question must
be usable by the second task (data in the correct format, parts of the proper shape and
material, etc.). Usability constraints can be managed by a designer who creates standards
for the resource, by giving the creator additional information about the needs of the user or
by negotiation between the user and creator. For example, in an engineering context, design
and manufacturing engineers might work together to develop products that are easy to
manufacture or designers might be trained in the requirements of manufacturing processes
(''design for manufacturability''). Quality control tasks can be seen as a way of ensuring that
an output of one task is in fact the correct input for the next. Many other kinds of approval
processes also appear to serve this function, explicitly or implicitly.

PREREQUISITE The second aspect of a flow dependency is prerequisite, meaning that the
production of the resource must occur before its consumption. There are two aspects to this
constraint: (1) the producer knows that the production is required and (2) the consumer
knows that the production is done. On the producer's side, the producer might produce
continually, according to a pre-arranged plan or triggered by the consumer, either by
monitoring the consumer's use of the resource to determine when to produce or waiting for
notification of need from the consumer. Likewise, the rate of production may have to be
matched to the rate of consumption. Dellarocas (1996, p. 93) lists several types of
prerequisites for different types of resources, such as persistent prerequisites (the producing
task has to be performed only once before any number of consuming tasks) to lockstep
prerequisites (the producing task has to be performed exactly once before each
performance of the consuming task). The matching can be managed also by adding buffers
between the two processes to smooth the flow of material or tying the rate of production to
the rate of use, as with the ''producer–consumer''problem in computer science.

On the consumer's side, additional work may be necessary to ensure that the producing task
is performed before the consuming task. For physical resources, such a step may be
unnecessary, as it will probably be physically impossible to perform the consuming task
without the results of the producing task. Even here, however, effort may be wasted before
the lack is noticed. For information resources, or states of the world more generally, ensuring
that things are ready is necessary. Precedence can be managed either by monitoring the
state of the previous task to determine when it completes and the resource is available or by
having the performer of the prior task notify the next when the resource is ready. Crowston
(chapter 6 in this volume) discusses the implications of this difference for the operations of a
restaurant.

ACCESSIBILITY Finally, accessibility (i.e., right place) means that additional work may have
to be performed to ensure that the consuming task can access the resource, for example, to
move the resource from where it is created to where it is used. Physical goods might be
moved in a truck, on an assembly line, and so on; information can be moved on paper,
verbally, by computer, and so on.

EXAMPLE FLOW MANAGEMENT MECHANISMS Flow management mechanisms have
been extensively studied in operations management. Different inventory management
techniques can be seen as variations along the dimensions explored above. These
techniques differ primarily in management of the prerequisite dependency, as these
techniques do not manage usability or accessibility. In almost all cases the consumer notifies
the producer of its need.

In a traditional inventory system, the consumer keeps an inventory of the resource on hand to
meet its needs. When the level of the inventory drops below a reorder point (calculated from
the delay in filling an order and the expected rate of use), an order is placed for a new supply
(the order quantity being calculated to balance the cost of ordering and the cost of holding



inventory). In other words, the producer is informed by the consumer when resources are
needed, while the consumer draws from inventory, only waiting if the reserve inventory is
depleted. By contrast, in a 'just-in-time'system, no inventory is kept; resources arrive 'just-in-
time'to be consumed. Making such a system work requires careful planning and
communication of needs (and in practice, a small level of inventory at the consumer and
perhaps a larger level at the producer). Finally, in many grocery stores, suppliers take
responsibility for periodically checking the level of inventory on the shelves and restocking as
necessary. The stores thus outsource both communicating the need for and monitoring the
arrival of new resources.

Analogous processes are used in computer systems to manage flow dependencies. For
example, network protocols must coordinate receivers (consumers) and senders (producers)
to ensure that the sender does not send faster than the receiver can receive. One approach
is for the receiver to periodically inform the sender of how much data it can handle; the
sender can then send up to that amount before waiting for further permission. In other words,
as above, the consumer periodically notifies the producer of its needs, and takes resources
(in this case data) from a buffer or waits for more to arrive.

3.4.3 Common Output

The third and final case I will consider is when the effects of two tasks are the same
resource, resulting in a ''common output''dependency (note that this type of dependency is
called ''fit''by Malone et al., chapter 1 in this volume). This dependency can have either
positive or negative effects, which requires additional effort to exploit or avoid. There are
three cases.

First, if both tasks do the same thing, meaning create the same resource, then it may be
desirable to merge the two tasks, reusing a resource or taking advantage of economies of
scale in production. To exploit these possible synergies requires additional coordination
mechanisms, such as checking for duplication before one or both of the tasks have been
performed and distributing the output. For example, the same problem may be reported to a
software company multiple times. Rather than fixing and refixing the same problem, the
customer service centre and marketing engineers check if a reported problem is in a
database of known problems. If it is, then the already known solution to the problem can
simply be reused, thus eliminating a task that would create a duplicate resource (the bug fix).

Second, if two tasks specify different aspects of a common resource, then each may be
constrained to ensure that their results fit together. For example, engineers developing
interacting software modules negotiate the modules'interface—a common object created
jointly by the design of the modules. This dependency can also be viewed as usability
dependencies between the two (or more) resource-creating tasks and some using task (e.g.,
integration), allowing us to apply the coordination mechanisms discussed above. For
example, the fit can be assured by performing each task according to a common plan or
design (as when a composer creates the score that guides the musicians in a group),
through negotiation between the performers and users, or on the fly, as in a jazz ensemble.
Explicitly noting the using task and considering the dependencies as between it and the
producing tasks also brings into question the other components of the flow dependencies.

Finally, if the effects conflict, for example, both doing a task and not doing it, then it may be
impossible to perform both tasks. Possible resolutions of this dependency are similar to the
case where two tasks both require the same nonshareable resource, discussed in more
detail above: either abandoning one task or scheduling them so the effects do not have to be
achieved at the same time.

3.4.4 Multiple Modes of Use



A resource may appear as both a precondition and effect of some task. For example,
modification or consumption of a resource can be modeled this way. The resulting
dependencies are the combination of the dependencies from the individual operations. For
example, if two engineers both want to modify a single software module (a
shareable/reusable resource), they must manage both shared resource and common output
dependencies. From the previous discussion we can see that the shared resource
dependency causes no conflict (they both can read the module freely), but the common
output dependency might. If they are both making the identical change, then one of the tasks
can be eliminated; otherwise, they will have to negotiate to ensure the resulting module is
acceptable to both (i.e., that both bugs are fixed). Alternately, the module could be viewed as
a nonshareable/reusable resource. In this case, the shared resource dependency must also
be managed, such as by scheduling the engineers'use of the module so one makes
changes and then the other.

 



 

3.5 Dependencies among Tasks or among Resources

So far I have considered only dependencies between tasks and resources. Of course, it is
possible to consider dependencies that arise among tasks or among resources.

3.5.1 Simultaneity

One dependency that might be considered among tasks is simultaneity: one task might
require the concurrent execution of another task, or several tasks might have to be
performed all at the same time. For example, all attendees of a meeting must attend at the
same time, which might be modeled as several ''attend meeting''tasks joined with a
simultaneity constraint. However, this situation might instead be modeled as a ''hold
meeting''task that requires multiple resources simultaneously, as discussed earlier. Similarly
two people lifting a piano must lift their ends simultaneously, but again this task is probably
best modeled as a lifting task that requires multiple people to perform. Uniform application of
this approach eliminates the need for simultaneity dependencies, but for some cases might
require the conceptual creation of an unnatural aggregate task.

Other analyses of task dependencies (e.g., von Martial 1989) include additional relationships,
such as a requirement that the two tasks not be performed at the same time. In our typology
such relationships would be analyzed by looking for shared resources that create the
restriction. For example, it might be that two tasks cannot be performed at the same time
because they require the same tool. Again, this strategy eliminates the need for additional
dependencies but, for some, might require the conceptual creation of a new shared
resource.

3.5.2 Composition

A second possible dependency is a composition dependency: both tasks and resources can
be thought of as forming decomposition hierarchies: higher-level tasks can be decomposed
into subtasks, and an object into components.

Given such a model of a task, planning might be viewed as a way to manage the relationship
between tasks and subtasks, that is, a way to choose a set of tasks that accomplish a
desired task. In the AI literature, many methods have been investigated for planning (e.g.,
see Allen, Hendler, and Tate 1990). For example, an engineer with a large change to
implement might decompose the work into smaller changes made to several different parts,
such as to different modules of the system, and then work on each of those changes
independently. Similarly process engineers decompose a design into specific operations that
the assembly workers can perform to assemble the cars. Alternately, an actor might proceed
one step at a time, choosing a task that appears to move closer to the desired goal,
performing it and then reassessing the situation.

Similarly resources might be interdependent by being connected together in some kind of
assembly, such as the parts of a car or of a computer system. These interdependencies are
clearly important: an essential part of change management, for example, is managing the
interfaces between parts to ensure that changes to one part do not interfere with the function
of another. If two tasks use different resources that are interdependent in this way, then the
two tasks can be analyzed as both depending on a larger common resource. Conversely,
two tasks may appear to be using a common resource because they are each dependent on
components of a more complex resource. To manage these dependencies though, actors
must first identify that they exist, which requires a coordination mechanism. For example, for
engineering change management, engineers must spend some effort to identify which other
engineers need to be informed of a proposed change to a part.



3.5.3 Integration

Finally, if multiple subtasks are performed to accomplish some effect, it may be necessary to
integrate their results. This integration step is frequently viewed as a kind of coordination
task. Another view is that integration is simply another part of performing the task, that is, a
task is decomposed into multiple subtasks, one of which is to integrate the results. For
example, an engineer who decomposes a task and requests changes from other engineers
may be responsible for compiling the changes together to be submitted. In any case it is
necessary to manage the producer–consumer dependencies between each of the subtasks
and the integration task.

 



 

3.6 Conclusion

In this chapter I presented a taxonomy of dependencies and associated coordination
mechanisms. This taxonomy is based on a simple ontology that includes resources (actors
or other objects) and tasks (activities or goals to be accomplished). For simple task-resource
dependencies, I present the steps in a resource assignment mechanism. Other
dependencies are analyzed by considering how a common resource is used by the two tasks
(in contrast to prior organizational conceptions of dependencies that view them as arising
between actors) or how one task can use multiple resources. Finally, the typology includes
possible dependencies between tasks and between resources, although some of these
situations can be analyzed more simply in terms of other dependencies. Only composition of
tasks and of resources seems to pose particular coordination problems. The resulting
dependencies and coordination mechanisms are summarized in table 3.3.

The framework presented here makes a theoretical claim about the design of organizations:
given a coordination problem caused by a dependency, some coordination mechanism is
necessary to manage it. This claim has implications for the analysis and design of
organizations.

To analyze an organizational process, it is important to identify the dependencies that arise
and the coordination mechanisms that are used to manage those dependencies.
Fortunately, as Simon (1981) points out, in practice ''most things are only weakly connected
with most other things; for a tolerable description of reality only a tiny fraction of all possible
interactions needs to be taken into account''(p. 221), what he calls the ''empty world
hypothesis.''Applied to organizational analysis, the implication is that any given task likely
uses only a small set of resources and will thus likely be interdependent with only a few other
tasks.

Table 3.3: Summary of dependencies and coordination mechanisms

Task uses resource

Determine needs1.

Identify resources

ads

prepared list

only one resource

2.

Collect information on resources

by bidding

manager knows

3.

Pick best4.

Do assignment

mark resource in use

5.

6.

1.



Manage flow dependencies from acquiring resource to using resource6.

Task requires multiple resources simultaneously

Pre-assign resources to simplify coordination problem1.

Manage dependency on the fly

avoid or detect and resolve deadlock

detect and resolve starvation

2.

Sharing: Multiple tasks use the same resource

Ensure same version of sharable resources

destroy obsolete versions

copy master prior to use

check versions prior to use

detect and fix problems after the fact

Schedule use of nonshareable but reusable resources

check for conflict before using and then mark the resource as in-use1.

manage flow of resource from one task to another2.

Allocate nonreusable resources

divide the resource among the tasks

abandon one task

get more resources

Flow: One task uses a resource created by another

Usability (i.e., the right thing)

user adapts to resource as created

creator gets information from user to tailor resource

third party sets standard, followed by both producer and consumer

1.

Prerequisite (i.e., at the right time)

producer produces first

follow plan

monitor usage

wait to be asked

2.



standard reorder points

when out

just-in-time

consumer waits until produced

monitor

be notified

Accessibility (i.e., in the right place)

physical goods

truck

information

on paper

verbally

by computer

3.

Common output: Multiple tasks create the same output

Detect common output

database of known problems

1.

Manage common outputs

effects overlap or are the same

eliminate one task (manage shared resource)

merge tasks take advantage of synergy

effects are incompatible

abandon one

don't try to achieve them at the same time

2.

Composition of tasks

choose tasks to achieve a given goal (a planning problem)

Composition of resources

trace dependencies of between resources to determine if a coordination
problem exists

To design a new process, it will be useful to consider alternative coordination mechanisms
that could be used to manage those dependencies (see Crowston and Osborn, chapter 11 in
this volume). One question I posed at the beginning of this chapter was, in what ways can a
given organization be arranged differently while achieving the same goals? Understanding
the coordination problems addressed by an organization suggests alternative coordination
mechanisms that could be used, thus creating a space of possible forms.



Note: Dependencies are shown in bold. Numbered items are components of the
coordination mechanism for managing the given dependency. Bulletted items are
alternative mechanisms or components of the mechanism for the given dependency.

To design a new process, it will be useful to consider alternative coordination mechanisms
that could be used to manage those dependencies (see Crowston and Osborn, chapter 11 in
this volume). One question I posed at the beginning of this chapter was, in what ways can a
given organization be arranged differently while achieving the same goals? Understanding
the coordination problems addressed by an organization suggests alternative coordination
mechanisms that could be used, thus creating a space of possible forms.

3.6.1 Assessment of the Typology

The primary focus of this work has been the theoretical constructs included in this taxonomy,
namely dependencies, the coordination problems created by dependencies and the
coordination mechanisms actors use to manage these problems. Since a taxonomy per se is
not a theory (Bacharach 1989), the primary evaluation of this work should be on the quality of
these constructs: their comprehensiveness and parsimony (Whetten 1989) and their validity
(Bacharach 1989). Likewise we ask if the typology is useful.

The taxonomy attempts to be comprehensive, in the sense that all dependencies fit into
one of the four categories. On the other hand, I do not claim that the typology is
comprehensive in the sense that I have described all possible dependencies and
coordination mechanisms. The description of specific dependencies could be further
refined and additional coordination mechanisms added. Further refinement of the
dependencies and mechanisms is an important topic for future research.

The taxonomy probably errs on the side of parsimony since it characterizes coordination
methods on the basis of a small number of factors, while obviously there are many
reasons to choose a mechanism.

The constructs are valid, in the sense of being distinct from one another and actually
found in practice, as indicated by the examples.

Finally, another way to assess the value of the taxonomy is to ask if it has been useful in
any research projects. The answer to this question appears to be yes: earlier versions of
the typology (e.g., Malone and Crowston 1994) have been used in several papers (e.g.,
Bailetti, Callahan, and DiPietro 1994; Bailetti, Callahan, and McCluskey 1998; Sikora
1998 #2013; Cohen and Regan 1996; Crowston 1997; Crowston and Kammerer 1998).

3.6.2 Future Research

Much remains to be done. The focus on processes suggests that it is important to collect
many examples of processes to compare the coordination problems that arise (e.g., Malone
et al., chapter 1 in this volume) and identify the coordination mechanisms used. Other kinds
of organizations may have somewhat different kinds of problems, although there is likely to
be substantial overlap. For example, do Web design companies or open source software
development teams use a different set of mechanisms to manage software changes than
traditional software companies? Do Japanese companies use a different set to manage
engineering, more generally?

It is important to identify limitations of this work. The overall framework is focused on
managing dependencies between tasks. While this focus is generally useful, it is by no
means universal. Some tasks (e.g., software requirements analysis for complex computer
systems) seem to be more about developing a shared understanding of the tasks and
dependencies as opposed to performing specific tasks (Crowston and Kammerer 1998). In



other words, an analysis of dependencies provides a useful but partial view of organizations.

Even with these limitations the initial results show this work to be useful in several ways. A
better understanding of what is necessary for coordination may provide a more principled
approach for designing new computer applications, for analyzing the way organizations are
currently coordinated, and for explaining perceived problems with existing approaches to
coordination. By systematically exploring the space of possible coordination strategies, we
may even be able to discover entirely new organizational forms, forms that are more effcient,
flexible, or satisfying to their members.
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4.1 Motivation

As the size and complexity of software systems grows, the identification and proper
management of interconnection dependencies among various pieces of a system has
become responsible for an increasingly important part of the development effort. In today's
large systems, the variety of encountered interconnection dependencies (e.g.,
communication, data translation, resource sharing, and synchronization dependencies) is
very large, while the complexity of protocols for managing them can be very high.

Dependencies among software components are especially important in component-based
software development. In this case, the core functional elements of an application are
implemented using off-the-shelf components. The focus of the design effort then lies in
integrating these components by identifying and properly managing their interdependencies
and mismatches. The practical diffculty of achieving widespread software reuse is a
manifestation of the fact that component integration is not a trivial problem. Nevertheless,
most current programming languages and tools have so far failed to recognize component
interconnection as a distinct design problem that should be separated from the specification
and implementation of the underlying components.

The distinct nature and equal importance of components and dependencies is captured
relatively well in high-level, architectural descriptions of systems. In such descriptions
components are typically depicted using boxes and dependencies using arrows. However, at
that level of description dependencies are usually informal artifacts and their exact
translation into implementation-level concepts is not obvious.

As design moves closer to implementation, current design and programming tools
increasingly focus on components, leaving the description of interdependencies among
components implicit, and the implementation of protocols for managing them fragmented
and distributed in various parts of the system. At the implementation level, software systems
are sets of modules in one or more programming languages. Although modules come under
a variety of names (procedures, packages, objects, clusters, etc.), they are all essentially
abstractions for components.

Most programming languages directly support a small set of primitive interconnection
mechanisms, such as procedure calls, method invocations, and shared variables. Such
mechanisms are not suffcient for managing more complex dependencies that are
commonplace in today's software systems. Complex dependencies require the introduction
of more complex managing protocols, typically comprising several lines of code. By failing to
support separate abstractions for representing such complex protocols, current
programming languages force programmers to distribute and embed them inside the
interacting components (Shaw et al. 1995). Furthermore the lack of means for representing
dependencies and protocols for managing them has resulted in a corresponding lack of
theories and systematic taxonomies of interconnection relationships and ways of managing



them.

This expressive shortcoming of current languages and tools is directly connected to a
number of practical problems in software design:

Discontinuity between architectural and implementation models. There is currently a gap
between architectural representations of software systems (sets of activities explicitly
connected through rich vocabularies of informal relationships) and implementation-level
descriptions of the same systems (sets of modules implicitly connected through
defines/uses relationships).

Diffculties in application maintenance. By not providing abstractions for localizing
information about dependencies, current languages force programmers to distribute
managing protocols in a number of different places inside a program. Therefore, in
order to understand a protocol, programmers have to look at many places in the
program. Likewise, in order to replace a protocol, modifications must be made in many
different modules.

Diffculties in component reuse. Components written in today's programming languages
inevitably contain some fragments of coordination protocols from their original
development environments. Such fragments act as (often undocumented) assumptions
about the structure of the application where such components will be used. When
attempting to reuse such a component in a new environment, such assumptions might
not match the interdependency patterns of the target application. In order to ensure
interoperability, the original assumptions then have to be identified, and subsequently
replaced or bridged with the valid assumptions for the target application (Garlan et al.
1994). In many cases this requires extensive code modifications or the introduction of
additional code around the component. In most cases such modifications are designed
and implemented in an ad hoc manner.

Based on the previous observations this chapter claims that if we are to achieve large-scale
component-based software development, we need new methodologies and tools that treat
the interconnection of software components into new applications as a distinct design
problem, entitled to its own representations and design frameworks. Such methodologies will
be based on theories of component interconnection that organize and systematize the
existing knowledge in the field of component integration, as well as facilitate the creation of
new knowledge in the field.

To this end, section 4.2 proposes a framework for studying software component
interconnection. The framework is based on software system representations that provide
distinct abstractions for components and their interdependencies. Such representations allow
the systematic classification of different kinds of dependencies and associated coordination
protocols into design handbooks of component integration, similar to the well-established
handbooks that assist design in more mature engineering disciplines. Section 4.3 briefly
reports on SYNTHESIS, a component-based software development environment based on
our framework. Section 4.4 discusses related work. Finally, section 4.5 sums up the
conclusions and presents some directions for future research.

 



 

4.2 A Framework for Studying Software Component
Interconnection

4.2.1 A Coordination Perspective for Representing Software
Systems

One of the reasons behind the failure of today's programming languages and methodologies
to recognize component interconnection as a distinct design problem is the lack of
expressive means for representing interdependencies and their associated coordination
protocols as distinct and separate entities from the interacting components. Therefore the
first ingredient of our framework is a representation that achieves this distinction. The
representation is based on the principles of coordination theory.

Coordination theory (Malone and Crowston 1994) is an emerging research area that focuses
on the interdisciplinary study of coordination. One of the intended applications of coordination
theory is the design and modeling of complex systems, ranging from computer systems to
real-life organizations. Coordination theory views such systems as collections of
interdependent processes performed by machine and/or human actors. Processes are sets
of activities. Coordination theory defines coordination as the management of dependencies
among activities. It makes a distinction between two orthogonal kinds of activities:

Production (or core) activities. Activities directly related to the stated goals of a system.
For example, the SQL engine of a database system would qualify as a production
activity in that system.

Coordination activities. Activities which do not directly relate to the stated goals of a
process, but are necessary in order to manage interdependencies among production
activities. Algorithms that control concurrent access in multi-user databases would be
considered coordination activities under this framework.

The definitions above suggest representations in which software systems are depicted as
sets of interdependent software activities. At the specification level, activities represent the
core functional elements of the system while dependencies represent their interconnection
relationships and constraints. At the implementation level, activities are mapped to software
components that provide the intended functionality, while dependencies are mapped to
coordination protocols that manage them. Figure 4.1 depicts an example of a software
system specification and implementation using such a representation.



Figure 4.1: Representing a software application as a set of activities interconnected
through dependencies

4.2.2 A Design Handbook for Integrating Software
Components

The existence of representations that treat dependencies and coordination processes as
distinct entities enable the construction of taxonomies of software interconnection problems
and solutions. This section presents the beginnings of such a taxonomy. The taxonomy
contains the following elements:

A catalog of the most common kinds of interconnection dependencies encountered in
software systems

For each kind of dependency, a catalog of sets of alternative coordination protocols for
managing it

Our taxonomy uses multidimensional design spaces to classify both dependencies and
coordination protocols. It begins by identifying a small number of generic dependencies. For
each generic dependency, it defines a number of design dimensions that can be used to
further specialize the relationship. These dimensions form a design space that contains
different specializations of the given dependency. Each point in the design space defines a
different specialized dependency type.

Furthermore, for each dependency, our taxonomy identifies a few generic coordination
processes that manage it. It also defines a design space that contains several related
specialized versions of these coordination protocols. The dimensions of the design space are
the questions the designer will have to answer in order to select one of the available
coordination processes for managing a given dependency.

Overview of the Dependencies Space An important decision in making a taxonomy of
software interconnection problems is the choice of the generic dependency types. If we are
to treat software interconnection as an orthogonal problem to that of designing the core
functional components of an application, dependencies among components should



represent relationships which are also orthogonal to the functional domain of an application.
Fortunately this requirement is consistent with the nature of most interconnection problems:
whether our application is controlling inventory or driving a nuclear submarine, most
problems related to connecting its components together are related to a relatively narrow set
of concepts, such as resource flows, resource sharing, and timing dependencies. The design
of associated coordination protocols involves a similarly narrow set of mechanisms such as
shared events, invocation mechanisms, and communication protocols.

After making a survey of existing systems, and building on earlier results of coordination
theory (Malone and Crowston 1993, 1994), we can base our taxonomy of dependencies on
the assumption that component interdependencies are explicitly or implicitly related to
patterns of resource production and usage. In other words, activities need to interconnect
with other activities, either because they use resources produced by other activities, or
because they share resources with other activities.

Based on this assumption, we include the most generic dependency families in our
taxonomy:

Flow dependencies. Flow dependencies represent relationships between producers and
consumers of resources. They are specialized according to the kind of resource, the
number of producers, the number of consumers, and so on. Coordination protocols for
managing flows decompose into protocols which ensure accessibility of the resource by
the consumers, usability of the resource, as well as synchronization between producers
and consumers.

Sharing dependencies. Sharing dependencies encode relationships among consumers
who use the same resource or producers who produce for the same consumers. These
are specialized according to the sharing properties of the resource in use (divisibility,
consumability, concurrency). Coordination protocols for sharing dependencies ensure
proper enforcement of the sharing properties, usually by dividing a resource among
competing users, or by enforcing mutual exclusion protocols.

Timing dependencies. Timing dependencies express constraints on the relative flow of
control among a set of activities. Examples include prerequisite dependencies and
mutual exclusion dependencies. Timing dependencies are used to specify application-
specific cooperation patterns among activities which share the same resources. They
are also used in the decomposition of coordination protocols for flow and sharing
dependencies.

It is not possible to complete describe the taxonomy in the limited space of this chapter.
Instead, the following sections will present a small subset of the taxonomy of flow
dependencies, as well as an example of how it can be used to guide the design of software
interconnection protocols. A full description of the taxonomy is contained in (Dellarocas
1996).

A Taxonomy of Flow Dependencies Flow dependencies encode relationships among
producers and consumers of resources. This section presents a generic model for
classifying flow dependencies and a framework for designing coordination protocols for such
dependencies. The framework is based on some results of coordination theory, extended
and adapted for the field of software components.

Malone and Crowston (1994) have observed that whenever flows occur, one or more of the
following subdependencies are present:

Usability. Users of a resource must be able to effectively use the resource.

Accessibility. In order for a resource to be used by an activity, it must be accessible to
that activity.



Prerequisite. A resource can only be used after it has been produced.

The following paragraphs will introduce dependency and coordination process design
spaces for each of the lower-level dependencies. The design space for generalized flow
dependencies is defined by the product of the design spaces of the component
dependencies.

USABILITY DEPENDENCIES Usability dependencies state the fact that resource users
should be able to properly use produced resources. This is a very general requirement that
encompasses some compatibility issues:

Data type compatibility

Format compatibility

Database schema compatibility

Device driver compatibility

The exact meaning and range of usability considerations varies with each kind of resource.
One interesting observation resulting from this work is that regardless of the particular
usability issue being managed, coordination alternatives for managing usability
dependencies can be classified using the design dimensions listed in table 4.1.

ACCESSIBILITY DEPENDENCIES Accessibility dependencies specify that a resource must
be accessible to a user before it can be used. Since users are software activities, accessibility
specifies more accurately that a resource must be accessible to the pro cess that executes a
user activity before it can be used. Important parameters in specifying accessibility
dependencies are the number of producers, the number of users, and the resource kind.

Table 4.1: Design dimensions of usability coordination protocols

Design dimension Design alternatives

Who is responsible for ensuring
usability?

Designer (standardization)

Producers

Consumers

Both producers and consumers (use
intermediate format)

Third party

When are usability requirements
fixed?

At design-time

At run-time (format negotiation might take
place)

Table 4.2: Design dimensions of accessibility coordination protocols



Principal design
alternatives

First level of
specialization

Second level of
specialization

Place producers and
consumers ''close
together''

Place at design-time Package in same
sequential module

Package in same
executable

Assign to same
processor

Assign to nearby
processors

Transport resource Place at run-time Code is accessible to all
processors

Physical code
transportation required

  Actual protocols depend on resource kind (see table
4.3)

Table 4.3: Examples of transport protocols for data resources

Producers-consumers Generic
mechanism

Examples

One–one Point-to-point
channels

OCCAM channels (Inmos
1984)

UNIX sockets

  Pipes UNIX pipes

One–many Broadcast calls ISIS Multicast (Birman et al.
1991)

Many–one Asynchronous calls Asynchronous message
passing

  Synchronous calls Procedure calls

RPC

MS Windows DDE

Many–many Broadcast calls ISIS Multicast (Birman et al.
1991)

There are two broad alternatives for making resources accessible to their users (tables 4.2
and 4.3):

Place producers and users ''close together.' '

Transport resources from producers to users.

Depending on the type of resource being transferred, either or both alternatives might be
needed. Placing producer and user activities ''close''to one another generally decreases the
cost of transporting the resource. Combinations of placing activities and transporting
resources should be considered in situations where the cost of placing the activities is lower
than the corresponding gain in the cost of transporting the resource.



Table 4.4: Generic processes for managing prerequisite dependencies

PREREQUISITE DEPENDENCIES A fundamental requirement in every resource flow is that
a resource must be produced before it can be used. This is captured by including a
prerequisite dependency in the decomposition of every flow dependency.

Prerequisite dependencies can be further classified according to:

Number of precedent activities

Number of consequent activities

Relationship (and/or) among the precedent activities

In And-prerequisites, all activities in the precedent set must occur before activities in the
consequent set can begin execution. By contrast, in Or-prerequisites, occurrence of at least
one activity in the precedent set satisfies the prerequisite requirement.

Table 4.4 shows four generic processes for managing prerequisite dependencies. Each
generic process can be further specialized according to a number of design dimensions
specific to the process. For example, peer synchronization can be specialized according to
the type of event used for synchronization. Table 4.5 contains a partial list of events. For
each event, different execution environments provide different sets of corresponding system
calls, providing yet another level of protocol specialization.

Table 4.5: Examples of synchronizing events



Event type Generate Detect Reset

Semaphore Signal
semaphore (V)

Wait on semaphore
(P)

Reset semaphore

File creation Create file Test file existence Delete file

File modification Write file Compare file
modification time
with stored
modification time

Set stored
modification time to
file modification
time

Process
creation

Create process Test process
existence

Kill process

Figure 4.2: A simple software system

Designing Interconnection Protocols This section will provide an example of how the
framework can be used to guide the design of interconnection protocols among software
components. Because only a small subset of the taxonomy is presented in this chapter, the
example will also, by necessity, be very simple.

Suppose that we need to connect two existing pieces of code: a C program providing a
graphical interface that repeatedly asks the user for part numbers, and a Visual Basic
program that queries a database and displays descriptions of the corresponding parts. The C
program returns integer part numbers while the Visual Basic program expects strings. Figure
4.2 shows the components and their interconnection relationship, in this case a simple data
flow.

According to our framework, in order to interconnect the two components, we need to design
a coordination protocol for the data flow dependency. Following our generic model for flows,
this means that we have to design protocols for managing usability, accessibility, and
prerequisite dependencies.

To manage usability, we elect that the producer will be responsible for making the data
usable to the consumer (see table 4.1). In this example this will require the addition of code
at the C component for converting data from integers to strings.

To manage accessibility, we first preclude the possibility of integrating the two components in
the same executable, because they are written in different languages.

We therefore have to transport the data from producer to consumer. Our framework
provides a set of possibilities for doing this.

One possibility would be to use an RPC protocol to transmit the data from producer to
consumer. DDE (dynamic data exchange) is one such protocol supported by Microsoft
Windows. The advantage of such a protocol is that it explicitly passes control from producer
to consumer, thus managing the prerequisite dependency as well. The resulting protocol is
depicted in figure 4.3. In this protocol, the C component acts as a client, while the Visual
Basic component is wrapped inside a handler for a DDE call and acts as a server.

Another possibility would be to use a shared memory location or a shared file, whose
filename is fixed in advance and known to both parties. This solution would require us to
address the prerequisite relationship separately: Make sure that the Visual Basic program



only reads the next part number after it has been written by the C program. We select a peer
synchronization mechanism specialized to use semaphores as the synchronization event.
Finally, as shared memory locations are best for storing numbers, conversion from integers
to strings is done at the consumer side. Our choices result in the protocol depicted in figure
4.4. Notice that, in this protocol, the two components are eventually wrapped in two
executables that run independently and synchronize implicitly.[1]

In conclusion, our framework not only can guide the design of interconnection protocols in a
systematic way but also point out the range of alternatives available to the designer at each
step.
[1]The protocol for managing prerequisite dependencies shown in figure 4.3 allows more
than one part numbers to be generated before one of them is displayed. In this application
such behavior would most likely not be acceptable. Dellarocas (1996) contains a taxonomy
of different variations of prerequisite dependencies and corresponding coordination protocols
that would give a fully satisfactory solution to this problem.

 



 

4.3 The SYNTHESIS Application Development Environment

4.3.1 Overview

The coordination perspective on software design introduced in the previous section has been
reduced to practice by building SYNTHESIS, an application development environment based
on its principles. SYNTHESIS is particularly well suited for component-based software
development. This section is devoted to a very brief description of the SYNTHESIS system. A
detailed description can be found in (Dellarocas 1996).

Figure 4.3: One protocol for managing the data .ow dependency of figure 4.2.

Figure 4.4: An alternative protocol for managing the dataflow dependency of figure 4.2.

SYNTHESIS consists of three elements:

SYNOPSIS, a software architecture description language.

An on-line design handbook of dependencies and associated coordination protocols.

A design assistant that generates executable applications by successive specializations
of their SYNOPSIS description.

SYNTHESIS: An Architecture Description Language SYNOPSIS supports graphical
descriptions of software application architectures at both the specification and the
implementation level. The language provides separate language entities for representing
software activities and dependencies. It also supports the mechanism of entity
specialization. Specialization allows new entities (activities and dependencies) to be defined
as variations of other existing entities. Specialized entities inherit the decomposition and
attributes of their parents and can differentiate themselves by modifying any of those
elements. Specialization enables the incremental generation of new designs from existing
ones, as well as the organization of related designs in concise hierarchies. Finally, it enables



the representation of reusable software architectures at various levels of abstraction (from
very generic to very specific).

A Design Handbook of Software Interconnection A prototype version of a handbook of
common software interdependencies and coordination protocols has been developed. The
handbook is an on-line version of our taxonomy of dependencies and coordination
processes. The design spaces of our framework have been implemented by hierarchies of
increasingly specialized SYNOPSIS entities. For example, shows a partial hierarchy of
increasingly specialized processes for managing prerequisite dependencies. Each process
contained in the handbook contains attributes that enable the system to automatically
determine whether it is a compatible candidate for managing a dependency between a given
set of components.

Figure 4.5: A hierarchy of increasing specialized coordination protocols for managing
prerequisite dependencies

A Design Process for Generating Executable Applications SYNTHESIS supports a
process for generating executable systems by successive specialization of their SYNOPSIS
descriptions. The process automates the reasoning we used in section 4.2.2 to design a
coordination protocol for the flow dependency and integrate our two components into a
complete system. It can be summarized as follows:

Users describe their application using SYNOPSIS, as a pattern of activities connected
through dependencies.

The design assistant of SYNTHESIS scans the application description and iteratively
does the following for each application element which is still not specific enough for
code generation to take place (e.g., a dependency for which no coordination protocol
has been specified):

It searches the on-line design handbook for compatible specializations.1.

It selects one of the compatible specializations found, either automatically, or by
asking the user. If no compatible specialization can be found, it asks the user to
provide one.

2.

It replaces the generic application element with the selected specialization (e.g., it
replaces the above dependency with a compatible coordination protocol for
managing it) and recursively applies the same process to all elements in the
decomposition of this element.

3.

After all application elements have been replaced by implementable specializations, the
design assistant integrates them into a set of modules in one or more languages and
generates an executable application out of the collection.

The design process above minimizes the manual effort required to integrate software



components into new systems. Users only need to participate in the specialization process by
making the final selection when more than one compatible specializations have been found.
In the rare cases when no compatible specialization can be found, users need to provide the
code for such a specialization. Specializations thus provided become a permanent part of
the repository.

4.3.2 Using SYNTHESIS to Facilitate Component-Based
Software Development

We tested the capabilities of SYNTHESIS by using it to build a set of applications by
integrating independently written pieces of software. Each experiment consisted of four
phases:

Describing a test application as a SYNOPSIS diagram of activities and dependencies.

Selecting a set of preexisting components exhibiting various mismatches to implement
activities.

Using the design process outlined above to semi-automatically manage dependencies
and integrate the selected components into an executable system.

Exploring alternative executable implementations based on the same set of
components.

The results of our experiments were very encouraging. Overall, I used SYNTHESIS to build 4
test applications. Each application was integrated in at least two different ways. For example,
for one application I built one implementation where components were organized around
client/server interactions, and a second where the same components were organized around
peer-to-peer interactions. This resulted in a total of 14 different implementations.
SYNTHESIS was able to build all 14 implementations, typically generating between 30 and
200 lines of additional glue code in each case in order to manage interdependencies and
integrate the components. In only 2 cases, users had to manually write 16 lines of code
(each time), to implement two data conversion routines that were missing from the design
handbook. Dellarocas (1996) contains a detailed description of these experiments.

 



 

4.4 Related Work

4.4.1 The Process Handbook Project

The work reported in this chapter grew out of the Process Handbook project at MIT's Center
for Coordination Science (Dellarocas et al. 1994; Malone et al. 1993). The Process
Handbook project applies the ideas of coordination theory to the representation and design
of business processes. The goal of the Process Handbook project is to provide a firmer
theoretical and empirical foundation for such tasks as enterprise modeling, enterprise
integration, and process re-engineering. The project includes (1) collecting examples of how
different organizations perform similar processes and (2) representing these examples in an
on-line Process Handbook that includes the relative advantages of the alternatives.
SYNOPSIS has borrowed the ideas of separating activities from dependencies and the
notion of entity specialization from the Process Handbook. It is especially concerned with (1)
refining the process representation so that it can describe software applications at a level
precise enough for code generation to take place and (2) populating repositories of
dependencies and coordination protocols for the specialized domain of software systems.

4.4.2 Architecture Description Languages

Architecture Description Languages (ADLs) provide support for representing the high-level
structure of software systems in terms of their components and their interconnections (Kogut
and Clements 1994; Shaw and Garlan 1994). They are an evolution of Module
Interconnection Languages (MIL), first proposed in the 1970s (DeRemer and Kron 1976).
Most ADLs provide separate abstractions for representing components and their
interconnections. SYNOPSIS shares many of the goals and principles of ADLs. However,
whereas previously proposed architectural languages only provide support for
implementation-level connector abstractions (e.g., a pipe, or a client/server protocol),
SYNOPSIS is the first language that also supports specification-level abstractions for
encoding interconnection relationships (dependencies). Furthermore, apart from introducing
a new architectural language, this work proposes a more general perspective on designing
systems which also includes the development of design handbooks for activities and
dependencies as well as a design process for generating executable systems by successive
specializations of their architectural descriptions. The project that comes closest to our work
is UniCon (Shaw et al. 1995).

4.4.3 CASE Tools and Software Design Assistants

A number of research tools attempt to facilitate the design and development of software
systems by providing graphical, architectural views of systems and automated assistants
which guide users through the design process. STILE (Stovsky and Weide 1998) provides
good support for graphical component-based design but does not provide particular support
for distribution or for managing component mismatches. The Software Architect's Assistant
(Kramer et al. 1993) is a visual environment for constructing distributed applications. Aesop
(Garlan et al. 1994) exploits the notion of architectural style to assist users in constraining
their design alternatives and verifying the correctness of their designs.

Broadly speaking, SYNTHESIS also provides a graphical architecture description language
and a design assistant for generating executable applications. However, the specific models
(activities, dependencies, and coordination processes), relationships (decomposition,
specialization), and design operations (replace dependencies with compatible coordination
processes) supported by SYNTHESIS are different from the systems above and specifically
geared to facilitate the integration of heterogeneous, multilanguage, and possibly



incompatible software components. It will be interesting to see how good ideas from various
software design assistants can be constructively combined.

4.4.4 Component Frameworks

Component frameworks such as OLE, CORBA, and OpenDoc (Adler 1995) and our
coordination perspective were both motivated by the complexity of managing component
interdependencies. However, the two approaches represent very different philosophies.
Component frameworks enable the interoperation of independently developed components
by limiting the kinds of allowed relationships and by providing a standardized infrastructure
for managing them. Only components explicitly written for a framework can interoperate with
one another.

Our coordination perspective, in contrast, is based on the belief that the identification and
management of software dependencies should be elevated to a design problem in its own
right. Therefore dependencies should not only be explicitly represented as distinct entities,
but furthermore, when deciding on a managing protocol, the full range of possibilities should
be considered with the help of design handbooks. Components in SYNOPSIS architectures
need not adhere to any standard and can have arbitrary interfaces. Provided that the right
coordination protocol exists in its repository, SYNTHESIS will be able to interconnect them.
Furthermore SYNTHESIS is able to suggest several alternative ways of managing an
interconnection relationship and thus possibly generate more effcient implementations.
Finally, open interconnection protocols defined in specific component frameworks can be
incorporated into SYNTHESIS repositories as one, out of many, alternative ways of
managing the underlying dependency relationships.

 



 

4.5 Conclusions and Future Directions

This work was motivated by the increasing variety and complexity of interdependencies
among components of large software systems. It has observed that most current
programming languages and tools do not provide adequate support for identifying and
representing such dependencies, while the knowledge of managing them has not yet been
systematically codified.

The initial results of this research provide positive evidence for supporting the claim that
software interconnection can usefully be treated as a design problem in its own right,
orthogonal to the specification and implementation of the core functional pieces of an
application. More specifically, software interconnection relationships and coordination
protocols for managing them can be usefully represented as independent entities, separate
from the interdependent components. Furthermore they can be systematically organized in a
design handbook. Such a handbook can assist, or even automate, the process of integrating
a set of independently developed components into a new application.

Our experience with SYNTHESIS, a prototype application development environment based
on these principles has demonstrated both the feasibility and the practical usefulness of this
approach. Nevertheless, we view the work reported in this chapter as only the beginning of
an ongoing effort to develop better methodologies and tools for supporting component-
based software development. Some tasks remain that we plan to address in the immediate
future:

Classify composite dependency patterns. Our current taxonomy includes relatively low-
level dependency types, such as flows and prerequisites. In a sense, our taxonomy
defines a vocabulary of software interconnection relationships. A particularly promising
path of research seems to be the classification of more complex dependency types as
patterns of more elementary dependencies.

Develop coordination process design rules. It will be interesting to develop design rules
that help automate the selection step by ranking candidate processes according to
various evaluation criteria such as their response time, their reliability, and their overall fit
with the rest of the application. For example, when managing a data flow dependency,
one possible design heuristic would be to use direct transfer of control (e.g., remote
procedure calls) when the size of the data that flows is small, and to use a separate
carrier resource, such as a file, when the size of the data is large.

Develop guidelines for better reusable components. The idea of separating the design
of component functionality from the design of interconnection protocols has interesting
implications about the way reusable components should be designed in the future. At
best, components should contain minimal assumptions about their interconnection
patterns with other components embedded in them. More research is needed to
translate this abstract requirement to concrete design guidelines.
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Chapter 5: Defining Specialization for Process
Models

George M. Wyner,
Jintae Lee

5.1 Introduction

As the literature on object-oriented analysis and design attests, specialization of objects is a
powerful source of advantage for the design as well as the implementation of information
systems (Booch 1991; Coad and Yourdon 1990; De Champeaux 1991; De Champeaux et al.
1990; Maksay and Pigneur 1991; Rogers 1991; Rumbaugh et al. 1991; Taivalsaari 1996;
Takagaki and Wand 1991). For example, the specialization hierarchy, in which each object
inherits the features of its parent and modifies them incrementally, promotes
comprehensibility, maintainability, and reusability.

When modeling system behavior, however, systems analysts continue to rely on traditional
tools such as state diagrams and dataflow diagrams. While such diagrams capture important
aspects of the processes they model, they offer limited guidance as to the ways in which a
process can be improved.

Malone et al. (1999) have argued that this limitation of the current approach to information
systems design can be addressed by employing a specialization hierarchy of processes. In
addition to the benefits of comprehensibility and reusability, a process specialization
hierarchy offers two major advantages from the organizational design perspective. First, it
supports systematic generation of design alternatives. Variants of an existing process can be
generated systematically and then evaluated along the dimensions of specialization. This
generativity[1] is especially important in the absence of tools that support the design
generation stage (Alexander 1979). Second, it offers an organizational framework in which to
index and search for relevant processes (Malone et al. 1999). This support for locating
relevant processes is especially important in the context of a large database of reusable
process models, such as the Process Handbook, designed to support component-based
process modeling and design.

The potential value of such an approach is especially promising in light of dramatic changes
introduced into organizations by the rise of new information technologies, most recently Web
computing and the resulting development of electronic commerce. In this chapter we focus
on the specialization of processes. We argue that a clear understanding of when one
process is a special case of another and a mastery of the means by which specialized
processes can be generated systematically will offer significant support for a more effective
exploration of the new design territory opened up by these technologies, since it is arguably
processes which must be transformed if business is to tap the potential of these
technologies. Once generated by specialization, process variants can be explored and tested
for their fit to the new environment (Malone et al. 1999).

Implementing such a process hierarchy, however, will require a clear definition of what it
means for one process to be a specialization of another, and some guidelines as to how to
go about specializing a process in practice.

One obvious approach to this problem is to treat the process as a class with a set of
attributes and then to specialize processes in the same way that objects are specialized: by
subtyping attributes and adding new attributes. It is not obvious, however, how this approach
applies to process descriptions, which are typically complex aggregates of nodes and arcs.



Consider, for example, the two state diagrams in figure 5.1. Diagram A contains two states R
and S. Diagram B is identical except that a third state T has been added. Following the usual
approach to specialization, we might argue that the diagram with the additional feature,
diagram B, is a specialization of diagram A. However, one might also maintain that diagram
A is the specialization, since diagram B includes all the behaviors of diagram A, but not vice
versa, and thus diagram A is a special case of diagram B. Any approach to specializing
process representations must yield an operationalization that can explain such a puzzle.

Figure 5.1: Which diagram is the specialization?

In this chapter we propose a definition of process specialization that resolves this puzzle and
supports organizational design by enabling the systematic generation and location of design
alternatives. We do not claim at this point that our results generalize beyond the two
representations discussed (state diagrams and dataflow diagrams), although we believe that
such general results will be possible. Nor do we claim to be defining a new paradigm in the
sense that object-oriented analysis and design is one. Rather, the major goal of this chapter
is to define process specialization so that process representations as well as object
representations can be subjected to existing object-oriented methods especially in the
context of organizational design.

The rest of the chapter proceeds as follows: Section 5.2 develops a general framework for
process specialization. Section 5.3 applies this approach to state diagrams, deriving a set of
transformations which, when applied to any state machine, result in a specialization. Section
5.4 illustrates the potential benefits of this approach by means of a restaurant information
system example. Section 5.5 extends the analysis to dataflow diagrams, and section 5.6
provides an example of how a simple dataflow diagram can be specialized. Section 5.7
compares this approach to related work. Section 5.8 identifies and resolves a number of
apparent inconsistencies between this approach to process specialization and the approach
taken in the object-oriented paradigm. Finally, section 5.9 summarizes the results and
suggests directions for future research.
[1]There is recent precedent for employing the term ''generativity''to refer to the capacity of a
system to generate novel expressions, combinations, ideas, or productions. See, for
example, Alexander (1979) and Malone et al. (1999).



 



 

5.2 Process Specialization

Consider a system consisting of one or more objects of interest. This may be an existing
system that is to be modeled or a new system which is to be designed. Such a system has
characteristics that may evolve over time. These changes in the system constitute its
behavior. We define the execution set of a system as the set of all possible behaviors
associated with that system. A process class describes a set of such systems in terms of
their execution sets. A system whose execution set is consistent with a process class is an
instance of that process class and may be said to realize that process. The set of all
instances of a process class is referred to as the extension of that process class.

Then a process class P' is said to be a specialization of a class P if every instance of P' is
also an instance of P, but not necessarily vice versa.

5.2.1 Extension Semantics

There are many methods by which a process class can describe the execution sets of its
instances. For example, a class might be defined as including all systems whose execution
sets are supersets of some ''minimal execution set''—that is, whose execution sets must
include at least all the behaviors specified by the minimal execution set. In contrast, one
might define a process class as including all systems whose execution sets are subsets of
some ''maximal execution set''—that is, whose execution sets can include at most the
behaviors specified by the maximal execution set.

For example, in figure 5.1 the process class represented by diagram B is a specialization of
the class represented by diagram A under minimal execution set semantics, because B
refers to all systems whose execution sets include at least all the behaviors specified in the
diagram, and this is clearly a subset of the collection of all systems whose execution sets
need include only the behaviors specified in diagram A. In other words, under minimal
execution set semantics, each transition represents a constraint, and the more constraints,
the smaller the extension.

Conversely, under maximal execution set semantics, the process class represented by
diagram A is a specialization of that represented by B because A refers to all systems that
exhibit a subset of the behaviors in the diagram while B refers to the larger collection of
systems that may include any of the additional executions described in diagram B. In other
words, in the maximal interpretation, each transition represents an option, and the more
options, the larger the extension.[2]

We will refer to this relationship between a process class and its extension as the extension
semantics of the particular process representation. The key point here is that what counts as
a specialization of a given process model depends critically on what extension semantics
have been assigned to that model. From this perspective we can see that this matter is not
dealt with explicitly in the semantics of most process representations.[3]

This lack of extension semantics introduces an ambiguity into attempts to specialize and
classify processes, an ambiguity with important consequences for attempts to redesign and
reuse process models, as discussed in section 5.5.

It follows then, that in carrying out our analysis of state diagrams and dataflow diagrams, we
will need to adopt some kind of extension semantics. In the interest of simplicity, we will use
the ''maximal execution set''approach described above. While this choice may not be optimal
for many practical situations, it is ideal for our purposes, in that it highlights the potential
diffculties that must be addressed in a consistent approach to process specialization.



5.2.2 Maximal Execution Set Semantics

Under maximal execution set semantics, each process model is understood as defining the
universe of behaviors from which any process instance is to be constructed. This semantics
seems especially well suited to circumstances in which it is more important to prevent
undesirable consequences than to allow for creative elaboration because the system is not
allowed to have any behavior outside the specified set (e.g., consider the case of modeling
the operations of a nuclear reactor or intensive care unit). This movement from an all
inclusive general case to more restricted special cases may also provide valuable support to
the system designer by offering an explicit set of variations to choose from rather than an
open-ended space of unspecified possible extensions (as would be the case with minimal
execution set semantics).

Given this choice of extension semantics, we can describe specialization in terms of the
maximal execution sets themselves:

PROPOSITION Given processes P and P' defined under maximal execution set semantics,
with SP the maximal execution set for P and SP ' the maximal execution set for P', then P' is a
specialization of P if and only if SP ' is a subset of SP.

Proof  See appendix A.[4]

Having specified an execution set semantics and derived its implications for specialization,
we now address the frame of reference used to describe a process and develop criteria for
comparing processes with different frames of reference. This is critical to our treatment of
activity decomposition which is an important feature of many process representations. Having
completed this analysis, we then introduce the notion of specializing transformation.

5.2.3 Frame of Reference

A process is among other things a set of possible behaviors, which we have been referring to
as the execution set of a process. Note that any description of an execution set is made with
respect to some frame of reference for the system: the frame of reference corresponding to
the collection of attributes used to describe the set of possible behaviors that constitute that
process. As we will see, it is possible to develop equivalent descriptions of a process (and its
execution set) in a number of different frames of reference. In particular, we will introduce the
notion of refinement, which denotes a change to a finer-grained frame of reference.[5]

For example, if the system of interest is an object moving in space, one might begin with a
frame of reference with attributes for the position, mass, and velocity of the object, and then
refine the frame of reference either by adding a new attribute such as the temperature of the
object, or refining an existing attribute such as measuring position to the nearest meter as
opposed to the nearest kilometer.[6] To fully develop our approach to specializing
transformations, we will need to integrate this notion of refinement into our view of
specialization:

We have shown that specialization can be viewed as a restriction on the maximal execution
set of a process: a process p1 is a specialization of a process p0 if its maximal execution set is
a subset of the maximal execution set of p0. This result must now be restated to take into
account frame of reference. There are two cases to consider:

Both processes are described using the same frame of reference. In this case the
maximal execution sets of the processes are described in the same terms and can be
compared directly. Thus p1 is a specialization of p0 if and only if the maximal execution
set of p1 as described using the given frame of reference is a subset of the maximal
execution set of p0 as similarly described.

1.

The processes are described using different frames of reference, but there exists a2.



''common''frame of reference (which is a refinement of both of these).[7] In this case p1

is a specialization of p0 if and only if the refinement of p1 is a specialization of the
refinement of p0 under the common frame of reference. Thus this second case is
reduced to the first by means of refinement.

2.

5.2.4 Specializing Transformations

We propose one useful way to operationalize this notion of specialization. This is in terms of
a set of transformations for any particular process representation, which, when applied to a
process description, produces a description of a specialization of that process. The two-part
definition of specialization given above suggests that two sorts of transformations will be
needed:

A specializing transformation is an operation that, when applied to a process
described using a given representation and a given frame of reference, results in a
new process description under that representation and frame of reference
corresponding to a specialization of the original process. Specializing transformations
change the extension of a process while preserving the frame of reference.

1.

A refining transformation, in contrast, is an operation that changes the frame of
reference of a process while preserving its extension, producing a process description
of the same process under a different frame of reference.

2.

For each type of transformation there is a related inverse type: a generalizing transformation
acts on a process description to produce a generalization of the original process and is thus
the inverse of a specializing transformation. Similarly an abstracting transformation is the
inverse of the refining transformation, producing a new description of the same process
under a frame of reference for which the original frame is a refinement.

Given that the refining/abstracting transformations preserve the extension of a process, it
follows from our definition of process specialization that a specializing transformation
composed with refining/abstracting transformations in any sequence produces a
specialization. The analogous statement holds for generalizing transformations.

A set of refining/abstracting transformations is said to be complete if for any process p
described under a frame of reference, the description of that process under any other frame
of reference can be obtained by applying to p a finite number of transformations drawn from
the set.

A set of specializing transformations is said to be locally complete if for any frame of
reference and any process p described using that frame of reference, any specialization of p
described under that frame of reference can be obtained by applying to p a finite number of
transformations drawn from the set. Local completeness corresponds to the first part of the
definition of process specialization given above.

There is also a notion of completeness corresponding to the second part of the definition. A
set of specializing transformations and refining/abstracting transformations is said to be
globally complete if for any process p, any specialization of p for which a common frame of
reference exists can be obtained by applying to p a finite number of transformations drawn
from the set.

PROPOSITION Let A be a complete set of refining/abstracting transformations and S be a
locally complete set of specializing transformations. Then A È S is globally complete.

Proof  See appendix C.
[2]One can also imagine approaches that are more elaborate than either of these methods,
but these suffce for the current analysis.



[3]As will become apparent when we contrast our approach with that of Nierstrasz (1993),
there is room for interpretation in this regard even in the apparently straightforward case of
state diagrams.

[4]For briefer exposition, all the proofs are presented in the appendices.

[5]The discussion that follows is in the spirit of the treatment of re?nement and abstraction
given by Horning and Randell (1973), who provide a lucid and wide-ranging exploration of
this topic.

[6]A more formal de?nition of re?nement is given in appendix B and is employed in deriving
further results below.

[7]Note that the common frame of reference may be identical to one of the given frames.

 



 

5.3 State Diagrams

The first example of process representation that we will consider is the finite state machine or
state diagram. State diagrams are often used to represent the dynamic behavior of systems.
The circles in a state diagram correspond to states of the system being modeled, and the
arcs connecting those circles correspond to the events that result in transitions between
those states. The state diagram thus defines a set of possible sequences of events and
states. Each state diagram must include at least one initial state (identified by a wedge,
known as an ''initial state marker'') and one final state (identified by a double circle, known as
a ''final state marker''). All sequences must begin with an initial state and continue until they
terminate with a final state. The set of states included in a state diagram can be thought of as
a one-dimensional attribute space where the single attribute has values that correspond to
the possible states. A system behavior corresponds to a sequence of these states, and each
state diagram defines a set of such behaviors, which we interpret here as a maximal
execution set. Under maximal execution set semantics, the process class described by this
state diagram is taken to include all systems whose execution set is some subset of this
maximal execution set. For example, the state diagram in figure 5.2 permits the event
sequences ac, abac, ababac, abababac, and so on. This entire set of sequences can be
described by the regular expression a(ba) * c.

Figure 5.2: State diagram as a class of possible event sequences

Using the approach developed in section 5.2, we can then define a state diagram D' to be a
specialization of state diagram D if and only if either:

The set of sequences permitted by D' is a subset of the set of sequences permitted by
D.

1.

Either D or D' can be refined such that condition 1 holds. (This essentially amounts to
resolving differences in the granularity of the two process descriptions by
decomposing states into substates.)

2.

We will first identify a complete set of refining/abstracting transformations. Then we will
identify a set of specializing transformations which is locally complete. Global completeness
of the union of these transformation sets then follows from the proposition given at the end of
section 5.2.

5.3.1 Refining/Abstracting Transformations for State
Diagrams

PROPOSITION The following constitutes a complete set of refining/abstracting
transformations for state diagrams:

Refinement by exhaustive decomposition. Replace a state by a mutually exclusive
collectively exhaustive set of substates. Add events corresponding to all possible transitions
between substates. For each event associated with the original state, add a corresponding
event for each of the substates.

Abstraction by total aggregation. If a set of states is completely interconnected by events and
an identical set of ''external''events is associated with each state in the set (i.e., if this set of
states has the properties of an exhaustive decomposition as described above), replace that
set of states by a single state that represents their aggregation. Associate with this state the



same set of events that was associated with each of the substates.

Proof  The proof is found in appendix D.

5.3.2 Specializing Transformations for State Diagrams

PROPOSITION The following constitutes a locally complete set of specializing
transformations for state diagrams:

Delete an individual event. This removes a possible transition between events, and thus the
new diagram is specialized to exclude all behaviors that involve such a transition.

Delete a state and its associated events. The new diagram is specialized to exclude all
behaviors that involve the deleted state.

Delete an initial state marker. This transformation is subject to the condition that at least one
initial state marker remains. The new diagram is specialized to exclude all behaviors that
begin with the affected state.

Delete a final state marker. This transformation is subject to the condition that at least one
final state marker remains. The new diagram is specialized to exclude all behaviors that end
with the affected state.

Proof  The proof is found in appendix E.

It follows directly from the propositions proved so far that the union of the sets of
transformations given above is globally complete.

Finally, while the preceding set of transformations is thus complete it may sometimes be
convenient to employ other specializing transformations. In particular we will make use of the
following transformation:

Specialize a state. Replace a state in the original state diagram by one of its substates. This
transformation can be expressed in terms of the set above by first exhaustively decomposing
a state into substates and then deleting all but one of them.

 



 

5.4 Example — Restaurant Information System

To better understand how the approach we have developed might be of practical value, we
present the following stylized example involving a restaurant information system based
loosely on the work of Salancik and Leblebici (1988). This example is chosen because of its
relative simplicity, and because of the familiarity of the restaurant domain.

Imagine that you are a systems analyst charged with developing an information system to
support the operational side of a large restaurant or chain of restaurants. You might include
as part of your analysis a state diagram representing the flow of events involved in a ''meal
transaction''in a restaurant. This would be the flow of events involved in the delivery of meals
to customers and the collection of payment.

We will assume that based on interviews and observations, you have determined that any
meal transaction will be composed of the following set of five activities: ordering a meal,
cooking, serving, eating, and paying. Furthermore your interviews suggest that in the
restaurants in question these steps always occur in a single sequence, leading to the simple
state machine depicted in figure 5.3.[8]

Figure 5.3: State diagram for full service restaurant

5.4.1 Building a Specialization Hierarchy

Having successfully developed software to support the operations of this first group of
restaurants, you are called upon to modify the software to work in three other food service
environments: a fast food restaurant, a buffet, and a church supper. Based on further
interviews and analysis you develop the state diagrams shown in figure 5.4 to describe each
of these processes.



Figure 5.4: Additional restaurant state diagrams

Having observed that none of the four state diagrams developed so far is a specialization of
any other, you apply the generalizing transformations to generate a generic restaurant
process for which each of the above state diagrams is a specialization. As the diagrams
differ only in the events they include, generalizing is simply a matter of adding each of the
events from the other diagrams to the original diagram. The resulting diagram is shown in
figure 5.5

Figure 5.5: Generalized restaurant transaction

You have thus generated the specialization hierarchy depicted in figure 5.6. Such hierarchies
can contribute to software (and design) reuse by providing a taxonomy of previous designs
that can be searched easily.

Figure 5.6: Initial specialization hierarchy for restaurant information system



5.4.2 Generating New Processes

Of special interest is the fact that design knowledge propagates up this hierarchy to the most
generic diagram, which contains accumulated knowledge about all variants of the restaurant
process. This generic diagram can then be used to generate additional diagrams.

For example, imagine that you are now called upon to develop a specification to support a
restaurant with both table service and a buffet. You can obtain a state diagram for such a
hybrid by applying a series of specializing transformations to the generic diagram (see figure
5.7).

Figure 5.7: Full service restaurant with buffet

To the extent that one is choosing among a set of preexisting functions resident in the most
generic diagram, a story about the great artist Michaelangelo would seem to be relevant.
Michaelangelo was asked how it was that he was able to produce the extraordinary sculpture
of David for which he is famous. He replied that he began with a block of marble and simply
removed all the pieces that were not David, until only David remained. So with the most
generic state diagram in a hierarchy, many diagrams can be generated simply by removing
states and events that do not apply.[9]

[8]While we have labeled the events in ?gure 5.3, in general, we will leave them unlabeled
because the speci?c nature of the events is usually obvious, and in any case of limited
relevance to the present analysis.

[9]One hesitates to draw such a presumptuous comparison, but we can all aspire to produce
systems with the grace, beauty, and intrinsic value exempli?ed by Michaelangelo's work!

 



 

5.5 Dataflow Diagrams

Having explored specialization of state diagrams in some detail, we now turn to dataflow
diagrams. Dataflow diagrams are intended to show the functionality of a system: the various
processes, and the flows of information and material that link them to each other, to
inventories (data stores), and to various agents external to the system. A dataflow diagram
(DFD) consists of a collection of processes, stores, and terminators linked by flows. A simple
example taken from Yourdon (1989, p. 141) is given in figure 5.8. This discussion follows the
approach taken by Yourdon (1989, ch. 9), to which the interested reader is directed for a
more detailed exposition.

Figure 5.8: Example of a dataflow diagram: Order processing

Processes, shown as circles in the DFD, are the component actions or subprocesses which
together constitute the overall process or system being represented in the diagram. Stores,
represented by pairs of parallel lines in the DFD, are repositories of the data or material
carried in the flows. Terminators, shown as rectangles in the DFD, represent the actors,
external to the system being modeled, that interact with the various system processes.
Flows, shown as arrows in the DFD, represent the movement of information or material
between processes, terminators, and stores.

5.5.1 Specialization of Dataflow Diagrams

Before discussing specialization of dataflow diagrams, we must be more precise about the
set of behaviors described by a dataflow diagram. While the DFD approach as usually
presented does not specify what such a ''DFD behavior''would look like, it seems reasonable
to describe it as a sequence of processes and flows.[10]An immediate consequence of this
approach under maximal execution set semantics is that executions of a particular DFD may
only include processes and flows contained in that DFD. Note that terminators and stores are
implicitly included in executions as the endpoints of flows.

A dataflow diagram does more, however, than simply list what processes and flows may
occur in an instance. It also says something about the relationship between those flows and
processes. For example, for each segment of a process that occurs in a DFD instance, one
would expect some and possibly all of the flows into and out of that process to also occur.



In attempting to state these constraints precisely, one must take a position on certain
questions about how a DFD is to be interpreted. For example, in the present discussion we
will assume that in general, all flows into or out of a store or terminator may occur
independently of each other.[11] We will also assume that each process instance must be
accompanied by at least one inflow and one outflow, but that (without extending the dataflow
representation) one cannot, in general, say more about which flows accompany a process
execution without appealing to the semantics of the domain being modeled. For example, in
figure 5.8, any instance of Ship books must involve all three flows: an incoming shipping
memo and books, which are transformed into an outgoing shipment to the customer.
However, in the same diagram the flow of an order into Receive order may result in a flow of
order details into the Orders store or the flow of an invalid order back to the customer, but
(presumably) not both. This latter issue appears to represent a fundamental ambiguity in the
dataflow representation: it would seem that there is no domain independent interpretation of
a DFD that permits a consistent definition of its class membership.

Since we have no domain independent interpretation of a DFD as defining a class,
specialization cannot be extended to DFDs in a domain independent fashion. That is, in
general, one cannot determine whether one DFD is a valid specialization of another without
explicating which flows are mandatory and which are optional, and under what
circumstances, information that is not captured in the DFD itself.

These ambiguities in the dataflow diagramming technique are well known and resolutions
have been proposed (France 1992). We can proceed without such extensions, however, by
limiting ourselves to transformations that neither add flows to nor delete flows from a process
component. These transformations will then be specializing under any interpretation of
process flows, because such flows are left intact under the transformation. Interestingly,
even under this constraint we obtain a set of transformations that is rich enough to be useful,
as will be illustrated in section 5.6.

We are now in a position to specify what executions are in the maximal execution set of a
dataflow diagram. We can then identify transformations which result in a restriction on the
maximal execution set and thus (as argued in section 5.2) result in a specialization. The
maximal execution set of a dataflow diagram includes all sequences of processes and flows
that satisfy the following constraints:

All processes and flows in the sequence appear as components of the dataflow diagram.

Each input flow or output flow to a process that appears in the sequence must be associated
with at least one instance of that process in the sequence.

Each process that appears in the sequence must have at least one associated input flow and
one associated output flow.

We can now give a definition of specialization for dataflow diagrams that follows directly from
section 5.2. We can define a dataflow diagram D' to be a specialization of dataflow diagram
D if and only if either:

The set of sequences permitted by D' is a subset of the set of sequences permitted by
D.

1.

Either D or D' can be refined such that condition 1 holds. (This essentially amounts to
resolving differences in the granularity of the two process descriptions by
decomposing process components.)

2.

Having defined the relationship between a dataflow diagram and its execution set in terms of
the constraints above, we are now in a position to identify a set of specializing
transformations which operationalize the above definition. For this it will be useful to first
introduce a set of refining/abstracting transformations, and this in turn requires a formal



definition of the dataflow diagram and its attribute space. The formal definitions and analysis
are given in appendixes F and G. In the discussion that follows we will summarize and briefly
motivate the results.

5.5.2 Specializing and Refining Transformations for
Dataflow Diagrams

For purposes of the current analysis of dataflow diagrams, we need only consider a single
refinement—exhaustive process decomposition—and its corresponding abstraction—total
process aggregation. Intuitively we achieve exhaustive process decomposition by replacing a
component process with a set of subprocesses (including a generic process so that the
decomposition is exhaustive) interconnected by all possible generic flows and with a copy of
each ''external''input and output flow linked in turn to each of the subprocesses. The
presence of all possible flows and the generic process insures that the decomposed process
represents a true refinement (i.e., does not restrict the extension of the original dataflow
diagram in any way). In practice, of course, decomposition of processes in dataflow diagrams
does not include all possible flows and subprocesses, for such decomposition involves both
a refinement and a specialization (restriction of extension) of the original dataflow diagram
(which is also consistent with other decompositions). The exhaustive process decomposition
is thus of primarily theoretical interest: a kind of refinement benchmark against which
specializations that involve decomposition can be analyzed.

As noted above, in developing a set of specializing transformations we will limit ourselves to
transformations which preserve flows in and out of processes. Note that any such
transformation must be specializing, because any executions in the maximal execution set of
the resulting dataflow diagram must satisfy the MES conditions for the original dataflow
diagram as well, since these only involve the relationship between flows and their associated
processes, and these are not affected if we preserve flows in and out of processes. We can
identify several useful specializing transformations which are consistent with this constraint:

Deletion[12] of a connected collection of components whose bordering components in the
original diagram are all either terminators or stores. To get the sense of this transformation,
imagine the original DFD as a physical structure constructed by bonding the various
components together, and further imagine that these bonds are unbreakable with the
exception of any bond between a flow and either a terminator or store. By breaking these
latter bonds, one may in some cases be able to separate the diagram into several pieces.
This transformation consists of removing a single one of these pieces while leaving the rest
of the diagram and all its bonds intact (e.g., figures 5.11, 5.12, and 5.13 in section 5.6). Note
that this transformation preserves the constraint on flows since all remaining processes have
all their flows intact (the only components with deleted flows are terminators and stores). The
intuitive justification for this transformation is that we take stores and terminators to be
asynchronous and thus an execution may be restricted to one side or the other of a boundary
defined by these components.

Decomposition of a Process Any process in a DFD can be decomposed into a lower-level
DFD as long as the flows into and out of the decomposition are consistent with the flows in
the top-level diagram. Note that this kind of decomposition is not exhaustive in the sense of
exhaustive process decomposition (which we argued above is a refinement). This
''nonexhaustive''decomposition can be thought of as a refinement (exhaustive process
decomposition) composed with a specialization (deleting some subprocesses and
decomposed flows). Note that our constraint that flows associated with a process are
preserved is satisfied by the ''flow consistency''aspect of this form of decomposition. That is,
we require that for each flow into or out of the decomposed process, there be at least one
identical flow into or out of one of the resulting subprocesses.

Specialization of a Component If one specializes any component (terminator, store,



process, or flow) of a dataflow diagram, the resulting diagram will be a specialization of the
original diagram. Note that here again we preserve flows associated with each process. In
particular, a specialized process can be thought of as a kind of subset of the original
process, which is to say, we replace the original process with a subprocess, and this means
that specialization of a process is nothing more than a kind of process decomposition. A
similar argument might be made for the specialization of flows. Finally, under the semantics
we are employing for dataflow diagrams, terminators and stores figure into the maximal
execution set of a dataflow diagram only as endpoints of a flow, which is to say, they are
essentially attributes of some flow, and this means that specialization of terminators and
stores is a kind of flow specialization. As we have just noted, this flow specialization can be
understood as a kind of flow decomposition.
[10]This discussion omits many aspects of DFDs that are worthy of attention, such as duration
and sequencing of processes and flows.

[11]For example, one might have a store of customer information that is updated by one
process and queried by another, with the two processes and their ?ows occurring
asynchronously. One can, of course, easily imagine data?ow diagrams in which the
semantics require synchronization of ?ows into and out of a data store, and in these
situations the approach we are taking is somewhat lax, permitting sequences that should be
prohibited. While addressing this issue is beyond the scope of the present chapter, it is worth
noting that this problem might be resolved by introducing additional constructs to indicate the
presence of such synchronous ?ows.

[12]The notion that a diagram can be specialized by deleting (rather than adding) a
component may seem at odds with our common understanding that an object is specialized
by adding (or subtyping) an attribute. This apparent contradiction can, however, be resolved.
The short version of the argument is that deletion of a process component is in this case
analogous to the subtyping of an attribute rather than the deletion of an attribute. (See
section 5.8 for fuller discussion of this issue.)

 



 

5.6 Example — Generating Order Processing Alternatives
for E-Business

Having established a method for systematically generating process specializations, how
might we use this method to support process redesign? We illustrate the possibility here with
an e-business design scenario.

Consider a manager exploring possible changes to an order fulfillment process occasioned
by a shift from a traditional brick and mortar enterprise to an e-business. For such a manager
a generic account of this process (e.g., that taken from Yourdon (1989) and depicted in
figure 5.10) is of potential value in that it identifies the key activities and flows to be
addressed. However, the role played by these elements may change, up to and including the
possibility that some of them may simply go away when order fulfillment moves onto the
internet.

What we propose here is a procedure, based on the notion of process specialization, that
this manager might employ to generate a set of process variants that call into question
assumptions implicit in the generic order fulfillment process and that therefore support a
systematic exploration of design possibilities for the new process. This procedure is
illustrated in figure 5.9 which can be read from top to bottom as a sequence of steps.

Figure 5.9: Taxonomy of order processes

Figure 5.10: Order processing abstracted from books to products

First, a suitably generic representation of order processing must be obtained. For
purposes of our example, we begin with the Yourdon diagram and generalize it in a

1.



manner consistent with how we have defined specialization for dataflow diagrams: the
process 'Ship books'is generalized to 'Ship product', and the flows labeled ''books''are
generalized to product flows. The resulting generalization is depicted in figure 5.10.

1.

Having established a starting point for her analysis, the manager then systematically
applies one or more specializing transformations to the generalization in order to
generate a set of alternatives. In this example we focus on the set of dataflow
diagrams which are generated by deleting connected portions of the DFD that border
on stores and terminators.[13]

2.

Once these specializations are obtained, the next step is to find a meaningful
interpretation for the resulting diagrams: How do assumptions need to change so that
one can make sense of each specialization as some kind of order fulfillment process?
Note that it is possible that several interpretations will arise (in which case they should
all be included), or that no plausible specialization arises. In this latter case one might
then consider whether the proposed specialization violates some implicit constraint (a
realization that is, no doubt, useful in itself ). In the absence of such an ''impossibility
argument,''one might want to retain the specialization against the future possibility of a
plausible interpretation. For example, this may provide a framework for identifying new
organizational forms as they emerge in the future (by understanding them as
instances of a previously hypothetical specialization).

3.

Finally one must consider the relevance of each specialization to the problem at
hand, in this case the transition to electronic commerce.

4.

What follows is a brief discussion of the specializations that result from this procedure.

5.6.1 Order Processing with Prepayment

Figure 5.11 depicts a specialization of the original DFD in which the 'Collect
payments'process and its associated flows have been deleted. Note that the flow of orders
has been specialized as well to indicate that cash must accompany each order. In this
specialization any order without accompanying payment is returned to the customer as
invalid, otherwise the order is forwarded to the 'Ship product'process and the invoice
information is stored in the Paid invoices store (a specialization of the original Invoices store
that reflects the lack of unpaid invoices in this system). One example of this alternative is the
common form of order processing for e-business companies whereby payment with credit
card accompanies the order. Other examples include the uses of e-cash or gift certificates,
which may require simple accounting adjustments for the payment. These examples
constitute further specializations of this alternative.

Figure 5.11: Order processing with pre-payment



5.6.2 Order Processing without Shipment

Figure 5.12 depicts a diagram that was derived from the original DFD by deleting the 'Ship
product'process and specializing its associated flows and the various stores and flows
appropriately. This specialization would be possible to implement when there is a way for
customers to obtain products without the company shipping them. For example, software
products can be made available over the net for the customers to download, as with the
company software.net, while the payment can follow later.

Figure 5.12: Order processing without shipment

5.6.3 Order Processing without Order

Figure 5.13 depicts a specialization of the original DFD in which the 'Receive order'process
and its associated flows have been deleted. This diagram might be interpreted as depicting a
process in which products are shipped, unasked for, to prospects who are then billed for the
products. Although this practice sounds unscrupulous, there do appear to be acceptable
instances of this process as, for example, when ''shareware''is shipped with a computer
system or book, along with an electronic invoice that the recipient has no obligation to pay
but can pay if he or she likes the product. Another example is when a company can detect
your need and automatically ships the products to fulfill the need. Although it sounds
somewhat futuristic, some companies come close to implementing this alternative. For
example, the e-company, streamline.com, manages your household food inventory for you
and delivers what you need without you having to ask for it.



Figure 5.13: Order processing without order

This analysis of specialization in dataflow diagrams can be summarized by the
specialization/generalization hierarchy given at the outset of this section (figure 5.9). Such a
hierarchy provides both a process taxonomy and a structure that facilitates the systematic
consideration and reuse of alternative designs. Thus one can enter the hierarchy with a
particular process, ''move up''to a more abstract process, and then consider not only
plausible alternative process designs, but also identify other processes which might serve as
sources of inspiration (Malone et al. 1999). The analysis above demonstrates that the use of
specializing transformations, even when they are applied to a commonly understood
business process such as order processing, can help us explore organizational alternatives.
[13]Note that the original DFD consists of three connected groups of components joined by
the two stores'Orders and Invoices, and the terminator Customers. There are thus six
possible specializations that result from deleting one or more of these groups from the
diagram: three specializations in which two of the groups are deleted, and three
specializations in which one of the groups is deleted. In this example we will restrict ourselves
to the ''less radical''transformations in which only one of the groups is deleted.

 



 

5.7 Related Work

The notion that processes can be specialized is not new. An informal notion of process
specialization can be found in a number of organizational design approaches. Checkland
(1981) builds the design process on an idealized abstract model (referred to as a ''root
definition'') that is then adapted and interpreted to the situation at hand. Senge (1990)
introduces the notion of systems archetypes, which provide a generalized vocabulary that
can be adapted to particular organizational situations. The practice of benchmarking can
also be viewed as constructing idealized models of best practice, which are to be adapted to
specific organizations. Our approach can be viewed as formalizing the intuitions behind these
studies.

More formal notions of process specialization can be found in the studies of AI planning
(Friedland and Iwasaki 1985; Stefik 1981), conceptual modeling (Borgida et al. 1993),
object-oriented design (Nierstraz 1993)[14], and work flow (van der Aalst and Basten 1999).
In all of these studies, however, process specialization is defined for the specific
representation being proposed and none of these studies are concerned with process
design.

Keller and Teufel (1998), in their approach to SAP customization, propose a series of
transformations (e.g., selection of relevant modules, deletion of extraneous functionality, and
setting of parameters) to be applied to the SAP code base. These transformations, when
formalized, can be viewed as a precursor to our notion of specializing transformation.
However, this work makes no attempt to extend the notion of process specialization beyond
the SAP context.

There are other studies of process representation that take approaches similar to the one we
propose. For example, the process formalism in this chapter and the definition of refinement,
in particular, are somewhat similar to the approach taken by Horning and Randell (1973).
Horning and Randell also develop a notion of one process containing another, which is
equivalent to our definition of process specialization. This concept, however, plays a
secondary role in their analysis. The F-ORM method, a method for specifying applications,
discusses ''transformation operations''among process representations (De Antonellis et al.
1991). In this method, however, these transformations pertain to the decomposition relation,
and not specialization.

What is unique in our approach, then, is the notion that process specialization can be defined
in a way that permits it to be incorporated into existing process representations by means of a
set of specializing transformations. These transformations, when applied to a process in a
given representation, result in a specialization of the original process. It is this
transformational aspect of our approach that we claim provides a kind of generativity, and
this will prove invaluable to process redesign. By supporting specialization for existing
process representations, we hope to make this approach available as an extension to
existing systems analysis and design methods.

As mentioned at the outset, the suggestion by Malone et al. (1999) that specialization can be
applied to processes has been the foundation for this research effort. In their Process
Handbook, Malone et al. arrange business processes in a specialization hierarchy. Entries in
this Handbook can be viewed at various levels of decomposition. One can also traverse the
specialization hierarchy to identify interesting variants of a given process, including
specializations, generalizations, and ''siblings''(alternative specializations of the process's
parent in the hierarchy).

Some modeling languages such as TAXIS (Borgida et al. 1993) define a kind of
specialization specific to their process representation. Our goal, on the other hand, is to



define a general method for specializing processes under any process representation (even
one that does not build the notion of specialization into its semantics, e.g., the state diagram
or dataflow diagram).

As we have emphasized throughout this chapter, the most obvious point of comparison for
our work is the specialization of objects. Indeed, the research most closely related to our own
would appear to be Nierstrasz's work on defining a sub-typing relationship for active objects
(Nierstrasz 1993). Nierstrasz treats an object as a finite state machine that defines the
communications protocol supported by that object: the messages it accepts and the services
it provides. He then defines a sub-typing relationship on these state machines. This would
appear to be quite similar to our own efforts to define a specialization relationship for state
machines. In comparing our work with Nierstrasz, four differences are evident:

Nierstrasz is concerned with state machines as defining the interactions between
individual objects, whereas we are concerned with state machines as describing the
internal behavior of entire systems.

1.

Nierstrasz provides an algorithm for determining whether the subtype relationship
holds between any two state machines. We provide a set of transformations for
generating specializations and generalizations from a state machine. These two
operationalizations would appear to be complementary; one could imagine situations
in which it would be desirable to have the capability both to analyze and generate
specializations.

2.

Nierstrasz is concerned exclusively with state machines, whereas we are interested in
applying our approach to a number of process representations.

3.

Probably most intriguing is that our definition of specialization is almost exactly the
opposite of Nierstrasz's definition of subtyping. For Nierstrasz, a state machine that is
a subtype must accept a superset of the sequences accepted by the supertype;
otherwise, it cannot be substituted safely for that supertype (Nierstrasz 1993). For us,
a state machine that is a specialization must accept a subset of the sequences
accepted by its generalization; otherwise, it will not represent a restriction in extension.

4.

This apparent contradiction is easily resolved by observing that Nierstrasz implicitly employs
a minimal execution set semantics instead of the maximal execution set approach taken
here. Given the minimal execution set semantics, clearly a specialization must support a
superset of the original minimal execution set, and thus a state diagram is specialized by
adding states and events. As shown above, our choice of semantics leads to exactly the
opposite result.

While this dramatic divergence can thus be explained by a difference in semantics, the
question remains whether an approach that involves specialization by deletion can be
reconciled with the standard object-oriented framework. In section 5.8 we argue that despite
surface differences our approach is entirely consistent with the object-oriented approach to
specialization: what appear to be significant inconsistencies between the two types of
specialization disappear when one looks more fully into the matter.
[14]Interestingly Nierstrasz operationalizes specialization for state machines in a manner
almost diametrically opposed to our own. As we discuss in section 5.8, however, this
apparent inconsistency can be resolved as a difference in how the state machines are
interpreted as objects-what we refer to in section 5.2.1 as the distinction between maximal
and minimal execution semantics.

 



 

5.8 Are There Two Kinds of Specialization?

In reconciling our approach with object specialization, there are two salient issues to be
addressed. The first, raised in the Nierstrasz comparison above, is whether it is proper to
specialize a process by deleting components, given that objects are specialized by doing
what appears to be exactly the opposite: adding attributes.

The second issue follows as an implication of the first: if we specialize by deletion, then
adding an attribute to a process requires adding the same attribute to its parents in the
specialization hierarchy. Thus process modifications may propagate upwards, again in
apparent contradiction of the object-oriented approach, where changes propagate
downwards in the specialization hierarchy.

We deal with these two issues in turn.

5.8.1 Issue — Specialization by Deletion

Deleting attributes when specializing is generally not permitted because, among other things,
it violates the principle of substitution, in that the specialized object cannot be universally
substituted for the original because references to the missing attribute may result in error.
Under maximal execution set semantics, however, process specialization appears to make
extensive use of this forbidden ''specialization by deletion.''For example, many of the
specializing transformations for state diagrams described above involve deleting parts of the
diagram. A closer examination reveals that this is not a case of deleting attributes: when
deleting parts of a state diagram one is altering a representation of the process, but the
things deleted are not themselves attributes of the process. In other words, one should not
confuse the maximal execution set of a process description with the execution set of a
process instance.

One way to see this is to note that object specialization involves subtyping one or more
attributes, and subtyping is in a sense a kind of deletion: one makes the type of the attribute
more restrictive and thus makes the set of permissible values smaller (which is kind of like
deleting from a list of permissible values). If one represents the type of an attribute
graphically, this subtyping may be manifested as deleting elements from the graphical
representation.

To take a simple example, consider a numeric attribute with type: INTEGER IN 1-10. One
might choose to represent this type as a list of allowable numbers. Thus the type would be
represented as

1 2 3 4 5 6 7 8 9 1 0

If one specializes by subtyping to INTEGER IN 4-7, one must delete elements from the
representation to obtain

4 5 6 7

This may appear to be ''specialization by deletion''if one focuses on the representation, but
clearly it is simply specialization by subtyping.

While this example may appear to be contrived, it is exactly analogous to the state diagram
example. Deleting transitions in a state diagram corresponds to subtyping an attribute of the
corresponding process. More specifically, the execution set of a process instance can be
viewed as the value of an ''executions''attribute. The maximal execution set of the process
class is then the type of this attribute. As it turns out, one can represent this type as a
collection of ordered pairs of states that are equivalent to the state machine depicted in the



state diagram. One can then show that sub-typing this attribute corresponds to deleting
events or states from the state diagram as follows:

Observe that under maximal execution set semantics, an instance of the process described
by a state diagram is a system that realizes some subset of that diagram's maximal
execution set. Then the actual execution set of this instance is an attribute of the process.
The value of this ExecutionSet attribute is then a set whose elements are of type execution.
An element e of type execution is in turn defined as an ordered tuple of length n > 1, such
that for any i,1 = i = n,if a and b are the ith and (i + 1)th components of e respectively, then áa;
bñÎ E, where E is the set of all events in the state diagram, represented as ordered pairs of
states. Note, then that we can subtype execution by restricting the scope of E to some proper
subset. Note that this restriction involves removing ordered pairs from E which is equivalent
to deleting these events from the state diagram. Thus the state diagram is a graphical
representation of the execution type of the ExecutionSet attribute of a process, and deleting
events is a form of subtyping.

Thus ''specialization by deletion''can be seen to actually be specialization by subtyping.

5.8.2 Issue — Upward Propagation or Downward
Propagation

In object specialization hierarchies, the inheritance of attributes flows downward but changes
at the leaves of a process hierarchy seem to propagate upward. In fact we will argue that this
upward propagation can occur in any specialization hierarchy, and that this phenomenon is
of potential interest to the systems designer.

Consider what happens to an object in a specialization hierarchy when one changes the
attributes of one of its specializations (i.e., one of its children). Clearly, adding attributes or
further subtyping of attributes simply further specializes the child object and has no effect on
the parent object. However, say for some reason one needs to ''supertype''an attribute of the
specialization (e.g., one is validating the object model and discovers that the type of an
attribute of some object is overly restrictive). Then a conflict may be introduced into the
specialization hierarchy if the new type of this attribute is no longer a subtype of the
corresponding attribute in the parent process, and the child process is no longer a
specialization.

If one is to be strict about specialization and it turns out that the new change in type is
unavoidable, then one would have to resolve the situation by modifying the type of the parent
object in a similar fashion. This would follow logically given that the child is a specialization of
the parent and the type of the child is now correct. Thus, by definition of specialization, the
type of the parent must be at least as inclusive. Now one has modified an attribute in the
parent by supertyping, and the same issue may arise with its parent with the result that a
change in a leaf may necessitate changes in one or more ancestors, possibly all the way to
the root of the tree.

Thus we can see that upward propagation is at least a theoretical possibility in any
specialization hierarchy. It is important to note that such upward propagation is not normally
supported in implementations of object oriented languages and would have to be carried out
manually by a series of edits to the class definitions.

It is also important to note that upward propagation occurs only when one takes a strict
approach to specialization, that is, requiring that the attributes of a specialization always be
identical to or subtypes of the original attributes. If this strict approach is not enforced, then in
the scenario above one would be free to add an inconsistent specialization without changing
the attributes of the parent, and upward propagation would not occur. One would, of course,
still be free to choose to modify the parent to reflect insights gained from developing the



specialization, but there would be no requirement that such modifications be made.

The benefits of downward propagation (inheritance) are well known, and include the ability to
define a new object incrementally by specifying only those aspects of the object that have
changed, thus inheriting all the design knowledge associated with the parent node in the
specialization hierarchy.

The benefits of upward propagation are those advanced by Malone et al. (1999) when they
suggest that a specialization hierarchy of processes will allow one to systematically identify a
wide range of design alternatives. Upward propagation makes this possible by forcing all
design knowledge upward from the leaves to the highest level of abstraction at which it is
relevant. Thus each process or object in the hierarchy reflects all the possibilities inherent in
its descendants as illustrated with the restaurant and the order processing examples. This
gathering of all possibilities can in turn lead to the other benefit mentioned by Malone et al.:
generativity. For example, upward propagation may bring together a set of features originally
present in distinct processes, which can then be recombined in unique ways by
specialization, as for example, the different ways of providing a meal service or processing
orders were generated from the respective generalized diagrams in the examples above.

 



 

5.9 Conclusions

We have explored how specialization can be applied to processes to take full advantage of the generative power of a
specialization hierarchy. We have shown how specialization can be defined for state diagrams and dataflow diagrams in the
form of a set of transformations that results in process specialization when applied to a particular diagram. Furthermore this
method can be used to generate a taxonomy of processes to facilitate the exploration of design alternatives and the reuse of
existing designs.

We have demonstrated that the rules by which a process diagram can be manipulated in order to produce a specialization
(or a generalization) depend heavily on the semantics of the particular process representation. Thus the rules for specializing
the state diagram differ in significant ways from those consistent with specialization of dataflow diagrams. Choose a different
diagramming technique, and you create a new hierarchy of diagrams that may offer additional insights.

The work presented is only a preliminary exploration of how the generative power of specialization hierarchies can be
harnessed in support of organizational design. One natural extension of this work is to explore additional process
representations such as Petrie Nets and UML. One might also explore how the notion of specializing and generalizing
transformations can be useful in other contexts, for example, the specializing of composite objects.

In summary, this chapter has suggested that specialization, currently applied to great advantage in the modeling of objects,
the nouns of the world, can be fruitfully applied to processes, the verbs of the world, as well. Together, specialization and
abstraction give rise to a method of process analysis that shows promise as a means both for identifying new and interesting
process possibilities and for gathering the multitude of alternatives so generated into process taxonomies, which can then
serve as reservoirs of process knowledge (Malone et al. 1999).

Appendix A Maximal Execution Set Semantics

PROPOSITION Given processes P and P' defined under maximal execution set semantics, with SP the maximal execution set
for P and SP ' the maximal execution set for P', then P' is a specialization of P if and only if SP ' is a subset of SP.

Proof If P' is a specialization of process class P, then for each behavior b Î SP',by definition of maximal execution set
semantics, there is a process instance whose execution set contains b. This instance must also be in the extension of the
more general class P and hence b Î SP. It follows that SP ' Í SP. Conversely, let SP ' Í SP. Then consider any instance of P'
with execution set e. By definition of maximal execution set semantics, e Í SP '; hence e Í SP and therefore p is an instance
of P as well. It follows that all instances of P' are instances of P, and thus P' is a specialization of P.  

Appendix B Refinement

The state of the system at any time is characterized in terms of some set of attributes that are ascribed to the system by an
observer. The exact set of attributes may vary considerably from observer to observer and will reflect the abilities and
interests of the observer, available technology, environmental conditions, and so forth. The set of attributes employed in
observing a system may be thought of as a frame of reference for that system, one of many possible such frames.

We assume that the set of attributes employed is fixed and finite and that each attribute can take on some set of possible
values. We refer to this set of possible values as the range of that attribute.

We define an attribute space as the cartesian product of the attribute ranges of all the attributes in a frame of reference. It
follows that whenever the system is observed under that frame of reference, its state will correspond to some point in the
corresponding attribute space. Furthermore each point in the attribute space corresponds to what ,may be a possible state of
the system, although some of these points may refer to states that are not realizable.

By behavior of a system we mean the evolution of that system's state over time, which is to say the path the system traces out
in some attribute space. Thus any description of a system's behavior is made with respect to some frame of reference for that
system.

Definition An attribute space A' is a refinement of attribute space A if there is a surjective mapping M from A' onto A (i.e., the



range of M includes every point in A; note that M maps the refinement into the original space rather than vice versa), with the
property that a point a' in A' describes the state of the system if and only if M(a') also applies. The intuition here is that if you
refine your description of the system, there are more possible state points. So for each point in the original attribute space
there is at least one point in the refined attribute space that is a description of the same state.

An attribute space A' is said to be a strict refinement if M is as above and is not also injective. That is, the inverse of M is not a
function, or in other words, A is not also a refinement of A'. (This eliminates the trivial sense of refinement in which A and A'
are essentially isomorphic.)

Given A', a refinement of A, then a behavior b' in A' is said to be a refinement of a behavior b in A if the following conditions
hold: (1) for every x' in b', M(x') is in b; (2) for every pair of points x1 ' , x2 ' in b',if x1 ' precedes x2 ' in the path, then M(x1')
precedes M(x2') or is identical to it. This last condition has to do with the fact that a path is a directed curve in attribute space,
and we need to make sure that the points are traced out in the same order in both curves. The idea here is that the refined
version of the behavior maps point by point onto the original behavior. Note that given the finer grained view of a process
which results from refinement, we must allow for the possibility that M(x1') and M(x2') are identical, and hence that several
points in one curve may correspond to a single point in the other. Note too that it follows from this definition that every
behavior in A will have at least one (and possibly more) refinements in A'.

Similarly a process class p' in A' is said to be a refinement of a process class p in A, if for every behavior in the maximal
execution set of p, all A' refinements of that behavior are included in the maximal execution set of p', and conversely, all
behaviors in the maximal execution set of p' are A' refinements of some behavior in the maximal execution set of p. Then it
follows that every process represented as a maximal execution set in A will have exactly one refinement in A', and that this
refinement is equivalent to the original process description in that both process descriptions lead to the same classification of
behaviors.

Appendix C Completeness of Specializing Transformations

PROPOSITION Let A be a complete set of refining/abstracting transformations and S be a locally complete set of
specializing transformations. Then A È S is globally complete.

Proof  Consider a process p0 and a specialization p1 for which a common frame of reference exists. Since A is complete,
one can apply a finite sequence of transformations from A to p0 to produce its refinement in the common frame of
reference. By local completeness, one can then apply specializing transformations to produce the refinement of
p1 (since it is a specialization of the refinement of p0 by assumption). Finally, by the completeness of A, one can
transform the refinement of p1 into p1. Thus there is a finite set of transformations from A È S which produces p1

from p0.  

Appendix D State Diagrams: Refining Transformations

PROPOSITION The following constitutes a complete set of refining/abstracting transformations for state diagrams:

Refinement by exhaustive decomposition. Replace a state by a mutually exclusive collectively exhaustive set of substates.
Add events corresponding to all possible transitions between substates. For each event associated with the original state, add
a corresponding event for each of the substates.

Abstraction by total aggregation. If a set of states is completely interconnected by events and an identical set of
''external''events is associated with each state in the set (i.e., if this set of states has the properties of an exhaustive
decomposition as described above), replace that set of states by a single state that represents their aggregation. Associate
with this state the same set of events that was associated with each of the substates.

Proof  As noted above, the attribute space of any state diagram consists of a single attribute corresponding to the current
state of the system. It follows that the only permissible refinement of this attribute space (consistent with the
definition of state diagram) is a finer grained representation of states. That is, refinement must consist of
decomposing one or more states into substates.

Consider first the case of refinements where a single state is so decomposed. It follows immediately that such a refinement
must consist precisely of the ''exhaustive decomposition''transformation described above: if one omits any of the possible



transitions involving the newly introduced substates, one excludes behaviors that constitute refinements of the original
behaviors under this decomposition, and by definition of refinement the refined state diagram must include all such behaviors.

In the most general case, a refinement may involve decomposition of several states. Clearly such a refinement can always
be obtained by exhaustive decomposition of the individual states, that is, by a sequence of exhaustive decompositions.
Therefore the exhaustive decomposition transformation is suffcient to generate all possible refinements of a state diagram.

Now observe that the total aggregation transformation is the inverse of exhaustive decomposition. It then follows, by
arguments analogous to those just given, that total aggregation is suffcient to generate all possible abstractions of a state
diagram.

So far we have demonstrated that exhaustive decomposition suffces to generate all refinements of a given state diagram and
total aggregation suffces to generate all abstractions. It remains to show that these transformations suffce to relate state
diagrams represented under any two frames of reference (even those not related directly by a direct chain of refinements or
a direct chain of abstractions).

Consider a state diagram described under two frames of reference. As observed above, these frames of reference are
defined entirely by the set of states involved in each. Let the states for the first frame of reference be SA ={A1; A2; ... ; Am} and
the corresponding state diagram be denoted by SDA. Let the states for the second frame of reference be SB ={B1; B2; ... ; Bn}
and the state diagram be denoted by SDB.

We can assume without loss of generality that there is some S such that S =  Ai =  Bi so that the Ai and Bi are
alternative partitions of S.[15] Then define Cij = Ai Ç Bj.

CLAIM SC ={Cij ¦ i = 1; ... ; m; j = 1; ... ; n} is a refinement of SA and SB.

Proof of Claim For all Ai Î SA, Ai Í S =  Bj; hence Ai = Ai Ç S = Ai Ç  Bj = j=n
j=1 (Ai Ç Bj)= j=n

j=1Cij. Then Cij Í Ai

for j = 1to n. As a result the mapping M(Cij)= Ai preserves the state and is surjective and not bijective (assuming n > 1). Thus,
by definition, SC is a refinement of SA, and by analogous reasoning, SC is a refinement of SB.

Then we can apply a set of exhaustive decompositions to SDA to obtain the refinement SDC (the state diagram refined under
the frame of reference SC). Then since SC is a refinement of SB, SDB is an abstraction of SDC, and there is a sequence of
total aggregations that when applied to SDC results in SDB. Then combining these results, we have a sequence of exhaustive
decompositions and total aggregations that when applied to SDA results in SDB. Since the choice of SA and SB was arbitrary,
we conclude that the set of exhaustive decompositions and total aggregations together form a complete set of
refining/abstracting transformations for state diagrams.  

Appendix E State Diagrams: Specializing Transformations

PROPOSITION The following constitutes a locally complete set of specializing transformations for state diagrams:

Delete an individual event. This removes a possible transition between events, and thus the new diagram is specialized to
exclude all behaviors that involve such a transition.

Delete a state and its associated events. The new diagram is specialized to exclude all behaviors that involve the deleted
state.

Delete an initial state marker. This transformation is subject to the condition that at least one initial state marker remains. The
new diagram is specialized to exclude all behaviors that begin with the affected state.

Delete a final state marker. This transformation is subject to the condition that at least one final state marker remains. The
new diagram is specialized to exclude all behaviors that end with the affected state.



Proof For any frame of reference and any processes p0 and p1 described under that frame of reference, if p1 is a
specialization of p0, then every sequence permitted in the maximal execution set of p1 must be permitted in the
maximal execution set of p0 as well. Then all initial states of p1 must also be initial states of p0, and similarly for
final states. Furthermore any state or event in p1 must be a state or event in p0 as well; otherwise, p1 will permit a
sequence involving a state or transition that cannot appear in a sequence of p0. Thus p0 includes all elements of
p1, and one can obtain p1 by deleting some set of events, states, initial state markers, and final state markers.
Since p0 is itself finite, there can be only a finite number of such deletions. Thus p1 can be obtained from p0 by
applying a finite number of transformations from the given set.  

Appendix F Formal Definition of Dataflow Diagram and Its Attribute Space

Unlike state diagrams, where a single state in an execution sequence captures the entire state of the system at that point in
the sequence, a single flow or process in a dataflow diagram does not capture the state of the dataflow, which depends on
the state of multiple flows and processes. In a sense the issue here is the parallelism supported by the dataflow diagram
representation, where several component processes may execute simultaneously.

As it turns out, this parallelism can be captured by a single state attribute, but that attribute must take into account whether
each process or flow in a dataflow diagram is currently active or inactive. A process is said to be active when it is executing
(i.e., transforming inputs into outputs) and inactive otherwise. A flow is said to be active when it is available to the downstream
process as an input. When a process is active it has access to those flows which are simultaneously active, and only those
flows.

More formally, we define a dataflow diagram as the tuple áP; F ; T; R; I; Oñ, where:

P is a finite set of component processes.

F is a finite set of component flows.

T is a finite set of component terminators.

R is a finite set of component stores.

P, F, T, and R must be disjoint.

I : F  (P È T È R) is a function defined so that I( f ) is the component that consumes flow f .

O : F  (P È T È R) is a function defined so that O( f ) is the component that produces flow f .

We require that all flows be either inputs to or outputs from a process. That is, for all flows f , I( f ) Î (T È R)   O( f ) Î P and
O( f ) Î (T È R)   I( f ) Î P.

To define a suitable attribute space, let S denote the power set 2PÈF , that is, the set of all subsets of P È F . Then each s Î
S corresponds to a possible state of the dataflow diagram in which the flows and processes in s (which, recall, is a subset of
P È F ) are active and all other flows and processes are not active. This list of active processes and flows is clearly an
attribute of the dataflow diagram, and hence S is an attribute space.

Having formalized the dataflow diagram and its attribute space, we are now in a position to formally define the maximal
execution set of a dataflow diagram. First, however, we must introduce additional notation concerning dataflow diagram
behavior:

Recall that a dataflow diagram behavior b is a sequence of states in S. Such a sequence can be denoted by the n-tuple ás1;
s2; ... ; snñ. Then we define j(b; i) as the ith item in the n-tuple associated with b.

Then for any dataflow diagram D = áP; F ; T; R; I; Oñ, the maximal execution set of D, henceforth denoted MES(D) is defined
(consistent with our informal discussion above) as {b ¦ b is a sequence of states and the two conditions defined below hold
for b}, where the two conditions are:

We have informally asserted above that each input flow or output flow to a process which appears in b must be
associated with at least one instance of that process in b. In order to formalize this condition, we must elaborate it

1.



further: any flow f active in b must be active in a consecutive subsequence Sf of b such that if f is produced by a
process p1,then p1 is active in the first state of Sf , and if f is consumed by a process p2, then p2 is active in the last
state of Sf .[16] Formally this condition becomes: for all s in b and for all flows f Î F , f Î s  ($ m; n; p integers 0 < m =
n = p) such that j(b; n)= s and f Î j(b; i) for m = I = p and O( f ) Î P   O( f ) Î j(b; m) and I( f ) Î P   I( f ) Î j(b; p).

1.

We asserted informally above that each process in the sequence must have at least one associated input flow and
one associated output flow. In formalizing this statement, we restate it in slightly different form: whenever a process is
active in a state s in b, then at least one input flow and output flow must also be active. Stated formally this becomes:
for all p Î P and for all s Î b, p Î s  ($ f1; f2 Î F ) f1 Î s ) f2 Î s ) I( f1)= O( f2)= p.

2.

Henceforth we will refer to these two conditions as the MES conditions.

Appendix G Refining/Abstracting Transformations for Dataflow Diagrams

We proceed by first formally defining exhaustive process decomposition and then proving that it is a refinement. Let D = áP; F
; T; R; I; Oñ and D' = áP'; F '; T '; R'; I '; O'ñ be two dataflow diagrams. Then we define exhaustive process decomposition as a
binary relation RP on dataflow diagrams, with RP(D; D') if and only if:

P' replaces the process to be decomposed with its subprocesses:

P' =(P P ) È P+ where P is the set containing the single process component to be decomposed and

P+ is the set containing the subprocesses in the decomposition. Since P+ must contain a generic process and at least
one specific subprocess, we have

¦ P-¦= 1 and ¦P+¦ > 1.

1.

F ' removes all flows involving the decomposed process and add all possible flows to, from, and among the
subprocesses:

F' F - (F-
I È F- ) È F+

+

where F, F+
1, F+

O, and F+
+ are all disjoint

F-
I = I-1[F-]

F-
O =O-1[P-]

F-
O =O-1[P-]

¦ F+1= ¦F-1¦ ¦P+¦ (one new input flow per subprocess and original input)

¦ F+0= ¦F-
O¦ ¦P+¦ (one new output flow per subprocess and original output)

¦ F+
+¦ = ¦P+¦ ( ¦P+¦ - 1) (all possible flows among subprocesses)

and we require that none of the new flows share both input and output (i.e., no duplicate flows): f1; f2 Î (F ' - F ) ) Ù I '(
f1)= I '( f2) ) Ù O'( f1)= O'( f2)   f1 = f2.

2.

I ' : F '   P' is a function with the following properties:

f Î F – F-
I F-

O   I '( f )= I( f )(remaining original flows have same consumer)

I'[F+
+] = P+ (internal flows have subprocesses as consumers)

I'[F+
1] = P+ (new input flows have subprocesses as consumers)

I'[F+
O] = I[F-

O] (new output flows have same consumers as originals)

3.

O' : F'   P' is a function with the following properties:4.



f Î F – F-
I - F-

O   O'(f)= O( f )(remaining original flows have same producer)

O'[F+
+ = P+ (internal flows have subprocesses as producers)

O'[F+
O = O[FI

1] (new input flows have same producers as originals)

4.

S ' is defined as the powerset 2F'ÈP' , corresponding to an attribute space for D' as described above.5.

Having defined exhaustive process decomposition, it remains to be proved that it is a refinement:

CLAIM RP(D; D' )   D' is a refinement of D.

Proof  Recall that to prove that one process representation is a refinement of another, we must prove the following
three assertions:

Assertion 1. S ' is a refinement of S (one attribute space is a refinement of the other).

Assertion 2. For every behavior b' Î MES(D') there is a behavior b Î MES(D) such that b' is a refinement of b.

Assertion 3. For every behavior b Î MES(D) and every behavior b' in S ',if b' is a refinement of b, then b' Î
MES(D').

Note: Proof of Assertion 1
By definition of refinement, it suffces to show that there is a map M : S '   S such that M is surjective, noninjective
and M(s') and s describe the same state of the world. Intuitively such an M must map the subprocesses and flows in
D' to the original process and flows from which they were decomposed. More formally, we first define maps F and q
that take the flows in F+

1 and F+
O to the original flows from which they were derived:

F : F+
1   F-

I and F(f)= O-1[O'(f)] Ù I -1 [P+]

F : F+
O   F-

O and F(f)= O-1[O'(f)] Ù I -1 [P+]

F and q yields the set of all original flows with the same producer and consumer as a given f . Typically this would be a single
flow (assuming no ''duplicate''flows in the original dataflow diagram):

Define G : (P+ È F+
+ ÈÆ)   P ÈÆ with 

We will use F, q, and G to map active flows and processes in the decomposition to active flows and processes in the original
dataflow diagram and this will be the underlying basis for the map M. Recall that a state in the attribute space of a dataflow
diagram is a set of flows and processes that is active. Then what M needs to do is to take such a set for D' and by adding and
deleting flows and processes, convert it to the corresponding set in D. We define M as follows:

Note that the domain of M is contained in S, since we create M(s') by removing all elements of S S' (subtracting out the
elements of F+

1, F+
O, and P+). Further all elements added to s' are from S (since the domains of F, q, and G are all subsets

of S). It remains to show that M is surjective and not injective.

To show that M is surjective, for any s0 Î S, let

Since we have subtracted out all elements of S S ' and added only elements from S ', s1 Î S '. Thus we can apply M to s1.
We have carefully constructed s1 so that M(s1*= s0, which we now prove. Note that once we have established this fact we
have shown that M is surjective, since the choice of s0 was arbitrary.

By definition of M above, we have



We now evaluate several terms of M(s1* as follows:

              (since all other terms in s1 are disjoint with respect to  )

By similar arguments, we have

Substituting these results and expanding the remaining s1 term, we have

Noting that disjoint terms in this expression can be freely rearranged, we can reorder the terms as follows:

Now since s0 P È (P Ç s0*= s0, we have

Simplifying further, we have  , yielding

Substituting  , we obtain

Since s0 is disjoint with respect to all the other terms, we can regroup the terms so that

Given disjoint terms, we can further rearrange to obtain

Now given the domain of G, F, and q, we have



Hence

Substituting into M(s1), we obtain M(s1) = s0. Thus M is surjective. M cannot be bijective since M maps a finite domain S '
onto a finite range S and ¦S '¦ > ¦S¦. To see this, note that ¦S¦= 2¦ P ÈF¦  = 2(¦ P ¦ + ¦ F ¦) and ¦S'¦= 2¦P ' F '¦ = 2(¦ P ' ¦ + ¦ ' ¦).

Now from the definition of RP above, we have ¦P' ¦ = ¦ (P – P- ) È P+¦, but since P- and P+ are disjoint and P- Í P, this
simplifies to ¦P' ¦ = ¦P¦ - ¦P-¦ + ¦P+¦. Recall that ¦P-¦= 1 and ¦P+¦ > 1. Hence ¦P-¦ < ¦P+¦ from which it follows that ¦P' ¦
> ¦P¦ .

Furthermore, again from the definition of RP, we have

 . Since , ¦P+¦ > 1 and

 , we have  , and similarly we have  .Hence it follows that ¦F'¦ >
¦ F¦ .

Now since ¦P'¦ > ¦P¦ and ¦F'¦ > ¦F ¦, we have ¦S'¦= 2( ¦P ' ¦+ ¦F ' ¦ ) > 2( ¦ P ¦ + ¦ F ¦ ) =¦S¦, and thus M is not injective.

Finally, it follows directly from the definition of M that for any s' Î S ', M(s') differs from s' only in that any active subprocesses
and their associated flows are removed from s' and replaced with the corresponding process and flows in S and thus M(s')
and s' describe the same state of the world.

Thus S ' is a refinement of S.  

Note: Proof of Assertion 2
Recall that we must show that b' Î MES(D')  $ b Î MES(D* such that b' is a refinement of b. Let M[b' denote the
sequence obtained by applying M to each element of b' and consolidating any repeated elements in the resulting
sequence. It clearly follows that b' is a refinement of M[b' , and it only remains to show that for each b' Î MES(D'),
M[b' Î MES(D*. By definition of maximal execution set above, it suffces to show that M[b' satisfies the two MES
conditions which together define the relationship between active flows and active processes in the maximal execution
set. That M[b' satisfies both these conditions follows immediately from the property of refinement, which ensures that
M(s* and s describe the same state of the world in different frames of reference. Since each process or flow in D'
has a corresponding process or flow in D (albeit the mapping is many to one), and the input and output relations are
preserved under the refinement associated with M, then both MES conditions must be preserved by M as well.  

Note: Proof of Assertion 3
Recall that we must show that for every behavior b Î MES(D* and every behavior b' in S ',if b' is a refinement of
b,then b' Î MES(D'). It suffces to show that b Î MES(D* ) M[b' = b   b' satisfies the MES conditions. Since, as we
noted in the proof of assertion 2, the MES conditions are preserved by M, this must be so, for if one of the MES
conditions failed to hold for b', it would also fail to hold for M[b' , which would contradict the assumption that b Î
MES(D*. Hence b' must satisfy both MES conditions.  

Having proved all three assertions, the overall claim is proved: exhaustive process decomposition is a refinement.  
[15]To see that this assumption is warranted, let S = È Ai E È Bi so Ai I S and È Bi I S.If È{Ai} ¡Ú S, then de?ne an additional
state Am+1 = È(S È Ai) and similarly for B.

[16]Note that in the event f is produced (or consumed) by a terminator or store, the corresponding condition does not apply
since terminators and stores are not directly included in the attribute space.
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6.1 Introduction

Many researchers have searched for evidence of organizational productivity improvements
from investments in information and communication technologies (ICT). Unfortunately,
evidence for such payback is spotty at best (e.g., Meyer and Gupta 1994; Brynjolfsson and
Hitt 1998). On the other hand, at the individual level, ICT are increasingly merging into work
in ways that make it impossible to separate the two (e.g., Gasser 1986; Zuboff 1988; Bridges
1995). The contrast between the apparently substantial impact of ICT use at the individual
level and the apparently diffuse impact at the organizational level is but one example of the
problem of linking phenomena and theories from different levels of analysis.

The intent of this chapter is to show how individual-level research on ICT use might be linked
to organization-level research by detailed consideration of the organizational process in
which the use is situated. The term ''process''is considered here as an interrelated sequence
of events that occur over time leading to an organizational outcome of interest (Boudreau
and Robey 1999). Understanding this linkage is useful for those who study ICT, and
especially useful for those who design them (Kaplan 1991).

In section 6.2, I briefly present the problem of cross-level analysis. In section 6.3, I discuss
the concept of a process to explain how processes link to individual work and ICT use, on the
one hand, and to organizational and industrial structures and outcomes, on the other. As
well, I briefly discuss the potential use of process theories as a milieu for interplay between
research paradigms. In sections 6.4 and 6.5, I illustrate the application of this framework in a
study of the use of an information system in a restaurant. In section 6.6, I conclude by
sketching implications of my process perspective for future research.

 



 

6.2 The Problem of Multi-level Research

Information systems research (I/S) has in recent years shifted its attention to organizational
issues (Benbasat et al. 1987). Organizational research in turn has historically been divided
between micro-and macro-level perspectives. Unfortunately, many organizational issues are
multi-level and thus incompletely captured by single-level theories. ICT impact is clearly
multi-level, as the same ICT has discernable impacts on individuals, groups and
organizations. For such topics, multi-level theories are preferable because they provide a
''deeper, richer portrait of organizational life—one that acknowledges the influence of the
organizational context on individuals'actions and perceptions and the influence of
individuals'actions and perceptions on the organizational context''(Klein et al. 1999, p. 243).
However, multi-level research is diffcult, so theorizing at different levels is often
disconnected, leading to misleading theoretical conclusions.

Klein et al. (1994, p. 196) stress the primacy of theory in dealing with levels issues. However,
multi-level work to date has been restricted to a few domains, such as climate or leadership
(Klein et al. 1994, p. 197). The lack of focus on information issues suggests that there is an
opportunity and a need for multi-level research and theorizing on ICT use.

 



 

6.3 Processes as Theory

Most theories in organizational and I/S research are variance theories. Variance theories
comprise constructs or variables, and propositions or hypotheses linking them. Such theories
predict the levels of dependent or outcome variables from the levels of independent or
predictor variables, where the predictors are seen as necessary and suffcient for the
outcomes. A multi-level variance theory is one that includes constructs and variables from
different levels of analysis. The link between levels takes the form of a series of bridging or
linking propositions involving constructs or variables defined at different levels of analysis.

An alternative to a variance theory is a process theory (Markus and Robey 1988). Rather
than relating levels of variables, process theories explain how outcomes of interest develop
through a sequence of events (Mohr 1982). Typically process theories are of some transient
process leading to exceptional outcomes, such as events leading up to an organizational
change or to acceptance of a system. However, I will focus instead on what might be called
''everyday''processes: those performed regularly to create an organization's products or
services.

A description of a process has a very different form from the boxes and arrows of a variance
theory, but it is still a theory, in that it summarize a set of observations and predictions about
the world. In a process theory the observations and predictions are about the performance of
events leading up to organizational outcomes of interest. Such a theory might be very
specific, that is, descriptive of only a single performance in a specific organization. More
desirably the theory might describe a general class of performances or even performances
in multiple organizations. As Orlikowski (1993) puts it, ''Yin (1984) refers to this technique as
'analytic generalization'to distinguish it from the more typical statistical generalization that
generalizes from a sample to a population. Here the generalization is of theoretical concepts
and patterns.''

Kaplan (1991, p. 593) states that process theories can be ''valuable aids in understanding
issues pertaining to designing and implementing information systems, assessing their
impacts, and anticipating and managing the processes of change associated with them.''The
main advantage of process theories is that they can deal with more complex causal
relationships than variance theories, and provide an explanation of how the inputs and
outputs are related, rather than simply noting the relationship. Likewise I argue that process
theories provide a link between individual and organizational phenomena and a milieu for
interplay between research paradigms. However, to make this point, I will first describe the
components of a process theory, in contrast to the variables and hypotheses of a variance
theory.

6.3.1 Components of a Process

In this section, I develop a series of increasingly elaborate process conceptualizations. I
begin by discussing processes as wholes, and then as compositions of activities with
constraints on assembly. The goal of this discussion is to understand the connection
between processes and individual work, on the one hand, and processes and organizational
outcomes on the other.

Processes as Wholes A simple view is that processes are ways organizations accomplish
desired goals. In fact, as Malone et al. (1999) point out, processes are often named by the
goals they accomplish (e.g., product development or order ful-fillment). The goal identifies
the desired result or output of the process, or the set of constraints the process satisfies
(Cyert and March 1963; Simon 1964), that is necessary to link to organizational outcomes
(i.e., how quickly or effciently different process options meet the constraints and produce the



output). By focusing at the level of a process, I seek to avoid the problems outlined by March
and Sutton (1997) who noted the instability of organizational performance.

A related view is that a process is a transformation of an input to an output. This view focuses
on the resources that flow through the process. The business process concept has strong
roots in industrial engineering (IE) and its subfield of process engineering (Sakamoto 1989).
Other process concepts borrow heavily from operations research (OR) and operations
management (OM), in particular, the design and control of manufacturing and product-
producing processes of the firm. This view of a process is also similar to the root definition
(RD) from soft systems methodology (SSM) (Checkland and Scholes 1990).

A key point in SSM, to which I also adhere, is that there is not a single correct RD for a
process. Instead, there can be many RDs reflecting different view of the process. For
example, one RD might focus on the offcial rationale for the process and the concrete items
created. Another might focus on the way the organization allocates resources to different
processes. Instead of arguing that whichever model chosen is a true representation of the
work, I view the description as a discursive product, that is, as an artifact, with an author,
intended to accomplish some goal. Checkland (1981) similarly describes models as
''opening up debate about change''rather than ''what ought now to be done''(p. 178).

Describing a process as a way to accomplish a goal or as a transformation of an input to an
output establishes the link between processes and organizational outcomes. For example, at
this level of detail the effciency of a process can be stated as the process outputs divided by
the inputs. However, at this level of detail, the link to individual work or ICT use is not yet
apparent.

6.3.2 Processes as Activities and Interdependencies

To progress further, we need a more detailed view of processes that will allow us to say
more about differences in how individuals contribute to processes and especially how the
use of ICT might make a difference to these contributions. To do so, I start with the definition
of a process as a sequence of events, focusing specifically on events as activities performed
by individual or groups. Such a description will be a theory of the process in the sense that it
summarizes a set of observations about what activities happened when the process was
performed in the past and a set of predictions about what will happen when the process is
performed in the future.

Representing a process as a sequence of activities provides insight into the linkage between
individual work and processes, since individuals perform the various activities that comprise
the process. As individuals change what they do, they change how they perform these
activities and thus their participation in the process. Conversely, process changes demand
different performances from individuals. ICT use might simply make individuals more effcient
or effective at the activities they have always performed. However, an interesting class of
impacts involves changing which individuals perform which activities. Buyers might search
real estate listings themselves, performing activities that the agent used to perform. ICT
might be used to automate the performance of certain activities, thus changing the activities
that comprise the process. Analysis of these possibilities requires an even more detailed view
of the process, which I present next.

To understand how changes in individual work might affect the process, it is necessary to
examine the constraints on assembling activities that limit the possible arrangements and
rearrangements of activities into processes. To identify these constraints, I focus in particular
on the implications of dependencies for process assembly. In focusing on dependencies, I
both follow and diverge from a long tradition in organization theory. Thompson (1967) viewed
subunit interdependency as the basic building block of organizational structure and behavior.
Following Thompson, two basic conceptualizations of organizational interdependency have
evolved: resource interdependency, generated through exchanges between organizational



members (e.g., people); and work flow interdependency, generated between organizational
units located in the division of labor (Victor and Blackburn 1987).

In both cases dependencies were seen as arising between individuals or groups. In contrast
to these earlier views, I believe that conceptualizing dependencies as arising between
activities provides more insight into processes. This view makes it easier to consider the
implications of reassigning work to different actors. In my view, the limits on the orders of
activities arise from the flow of resources between them, that is, on resource
interdependencies.

Malone and Crowston (1994) proposed two major classes of dependencies: flow or
producer/consumer dependencies and shared resource dependencies. Producer/ consumer
dependencies arise when one activity creates a resource that is then used by another activity.
Shared resource dependencies arise when two or more activities require the same resources
(because of space limitations, this class of dependency will not be discussed further in this
chapter).

Both kinds of dependencies have implications for changes to processes. Since the activities
can not be performed without the necessary resources, the existence of the dependencies
constrains how the process can be assembled. In particular, producer/ consumer
dependencies restrict the order in which activities can be performed. On the other hand,
activities that are not involved in a dependency can be freely rearranged. Therefore we can
limit possible arrangements of the activities in analyzing existing processes or in designing
new ones.

As well as constraining the order of activities, interdependencies often require additional
activities to manage them. According to Malone and Crowston (1994), the
producer/consumer interdependency described above not only constrains the order of the
activities (a precedence dependency) but may also require additional activities to manage the
transfer of the resource between or to ensure the usability of the resource. Precedence
requires that the producer activity be performed before the consumer activity. This
dependency can be managed in one of two ways: either the person performing the first
activity can notify the person performing the second that a resource is ready, or the second
can monitor the performance of the first. ICT may have an effect by providing a mechanism
for cheap monitoring. Transfer dependencies are managed by a range of mechanisms for
physically moving resources to the actors performing the consuming activities, and vice
versa. For example, inventory management systems can be classified here. Usability can be
managed by having the consumer specify the nature of the resources required or by having
the producer create standardized resources expected by the user, among other
mechanisms.

In general, there may be numerous different coordination mechanisms that could be used to
address a given dependency. Different organizations may use different mechanisms to
address similar problems, resulting in a different organizational form. Because these
coordination mechanisms are primarily information processing, they may be particular
affected by the use of ICT.

Processes as a Milieu for the Interplay of Research Paradigms As should be clear from
the preceding discussion, developing a model of a process raises numerous problems, such
as how activities are identified and determined to be relevant to the process or choosing an
appropriate level of decomposition for the process description. These choices can be
problematic because processes involve numerous individuals with possibly different
interpretations of the process. Resolution of these choices raises questions about the
theoretical assumptions underlying the theory.

As a framework for discussing these underlying assumptions, Burrell and Morgan (1979)
suggest a 2 by 2 categorization of social theories: order-conflict and subjective-objective



(assumptions about ontology, epistemology, human nature, and methodology). The
combination of these two dimensions results in four distinct paradigms for research. Burrell
and Morgan (1979) present their four paradigms as incommensurable approaches to
research. However, Schultz and Hatch (1996) suggest a research project can draw on and
contrast multiple paradigms. They identify several ways research might cross paradigms,
including sequential (e.g., Lee 1991), parallel, bridging, and interplay. Schultz and Hatch
argue that interplay ''allows the findings of one paradigm to be recontextualized and
reinterpreted in such a way that they inform the research conducted within a different
paradigm.''

In Burrell and Morgan's (1979) framework, theories of processes clearly focus on the
ordering of society—stability, integration, functional co-ordination, and consensus—rather
than on conflict. However, they could provide a milieu for interplay between subjective and
objective perspectives. A process study might contrast realist and nominalist ontologies to
achieve a richer description. Activities performed might be viewed as real (e.g., stamping
metal) or nominal (e.g., many information processes). Flows of physical goods have a
physical reality, though many interesting processes are largely information processing for
which a nominalist position is more appropriate.

A study might contrast positivist and antipositivist epistemologies. On the one hand, viewing a
process as a way to accomplish organizational goals implies a positivist conception of the
process. On the other, focusing on individuals and their conceptions of their work implies an
antipositivist view of activities. A possible result of this contrast is to explicitly problematize the
question of how individuals come to contribute to the higher-order goals. For example,
although individuals make sense of the world themselves, there must still be some degree of
agreement among members of a group, such as about the meaning and nature of a shared
process, meaning that individual perceptions are subjective but not completely arbitrary.
Numerous researchers have investigated the nature of such shared cognitions and the social
processes by which they are built (Walsh 1995). For example, Weick and Roberts (1993)
show how aircraft carrier flight deck operations are made reliable by the ''heedful
interrelating''of flight deck personnel.

A study might contrast deterministic and voluntaristic assumptions about human nature.
Individuals working in a group do not have total freedom in what they do if they are to
contribute to the group, but are not totally constrained either. Again, consideration of interplay
between these positions is possible. For example, Simon (1991) raises the question of why
individuals adopt organizational goals in the first place.

To summarize, the objective-subjective debate is often presented as a dichotomy and a
matter of prior assumption. However, as Schultz and Hatch (1996) say, ''the assumption of
impermeable paradigm boundaries reinforces and is reinforced by 'either–or'thinking. We
believe that paradigm boundaries are permeable and claim that when paradigm contrasts
are combined with paradigm connections, interplay becomes possible.''Process theories
provide a milieu for such interplay.

6.3.3 A Process-Centered Research Framework

Crowston and Treacy (1986) noted that linking the use of ICT to any kind of organizational-
level impact requires some theory about the inner workings of organizations. Processes
provide a possible bridge between individual, organizational (and even industrial) level
outcomes of the use of ICT. This framework is shown pictorially in figure 6.1. The framework
acknowledges that ICT, by themselves, do not change organizations, nor are they merely
tools of managerial intent. Rather, ICT use opens up new possibilities for individual work, and
these changes in work in turn have implications for the processes and thus the organizations
in which these individuals participate.



Figure 6.1: Relationship between ICT-induced changes in individual work and changes
in organizational and industrial structures and outcomes

These work and process changes, in turn, may involve changes in organizational structures
and outcomes, and vice versa. In other words, as individual workers incorporate various
forms of ICT in their work, they alter both how they conduct their work and how they
participate in the organization's structure, and thus indirectly how their organizations
participate in the industrywide value chain. Conversely, there are organizational and
industrywide forces shaping how work is done. These forces also affect how individuals do
their work. The interaction of these forces is what shapes the uses of ICT, new forms of work
and new ways of organizing.

In the next section, I use this framework in the study of the use of an information system in a
restaurant to show how processes can provide a link between individual and organizational-
level phenomena.

 



 

6.4 Illustrative Example — Service Processes in Two
Restaurants

To illustrate the use of a process-centered framework, I will compare the service processes
in two restaurants, one with and one without a seating information system (Crowston 1994).
This example demonstrates how consideration of the process helps to link phenomena
observed at the individual and organizational levels. Restaurants have long been studied as
important forums for coordination. The essential characteristics of restaurants—many
customers, many orders, frequent deliveries, continuous monitoring of customers and of
personnel in accomplishing work, and perishable products—makes them particularly
illuminating for studies of logistical flows, information flows, and resultant needs for
coordination.

6.4.1 The Research Setting

The two restaurants I compare—one in Lake Buena Vista, Florida and the other in
Southfield, Michigan—belong to the same national chain. They differ significantly, however,
in their use of information technology. My analysis is based on observations of lunch and
dinner service at the two restaurants, discussions with staff, and analysis of documentation
describing the IT system provided by the software services company that developed and sold
the system to the restaurant chain (Karp 1994; Rock Systems 1994).

The Southfield restaurant is a conventional sit-down restaurant, organized for high-volume
operations. Seats are allocated by assigning tables on a conventional grease pencil-and-
acetate record used by the hostess. Communications were face to face. By contrast, the
Lake Buena Vista restaurant uses an information system to track table status and to
automate some communications with restaurant staff.

When I arrived at the Lake Buena Vista restaurant, the hostess consulted a computerized
display of tables in the restaurant to select a table for me and my guests. The system can
balance customers across wait staff or maintain a waiting list if the restaurant is full. As we
were seated, my hostess pointed out a button under the table. Pressing the button updated
the status of the table in the information system, such as from free, to occupied, to waiting-to-
be-bused, and finally back to free. The system also included pagers carried by the wait staff.
When the table button was pressed indicating that we had been seated, the system paged
the waitress responsible for the table, indicating there were new customers. When our meals
were ready, the kitchen used the pagers to inform the waitress that our order was ready to be
picked up and served. When the waitress collected the bill after we had left, she could page
a buser to clean that table. Similarly, when the buser had finished, he or she could inform the
hostess (and the system) that the table is available and the next customer could be seated.

This system apparently had a significant practical impact: it is reported, for example, that
''diners spend 15 to 30 minutes less time in the restaurant [after the installation of the system]
because of swifter service''(Karp 1994). The question I wish to answer is, Why does the
system have such a profound impact on organizational performance? This question cannot
be answered by a single-level theory. On the one hand, focusing only on individual use of the
system cannot explain how the system has an effect on the overall performance of the
organization, especially considering that the system does not seem to dramatically affect
how any individual works. On the other hand, considering only the organization as a whole
(e.g., by comparing a number of organizations with and without systems), quantifies but does
not illuminate how the system provides benefit.

6.4.2 Analysis



In this section, I show how the process of seating and serving customers in the two
restaurants changes individual work and thus the organizational outcomes. The changes in
individual work as described above involved the use of an information system to track table
status and to communicate with individual employees. The organizational outcomes were
also described: reduced waiting time and increased table turns and profitability. I am
interested here in how consideration of the process can clarify the links among these
phenomena.

The first step in this analysis is to describe the activities involved in the process. A simple
description is provided in figure 6.2. In the figure the actors are on the left and activities they
each perform are shown across the page in time order. Activities performed jointly are
connected by dotted lines. While there may be some disagreements about details, I believe
that most people will recognize the sequence of activities as representative of a restaurant. I
argued above that process descriptions should be viewed as resources for action rather than
as necessarily valid descriptions of reality. In that spirit and in deference to a limited page
count, I will bracket discussion of the validity of this model and instead focus on the insights
possible from the analysis.

Figure 6.2: Restaurant service process. Actors are shown down the left side, activities
performed by each are shown in order across the page. Activities performed jointly are
connected with dotted lines.

In these restaurants a particularly important type of dependency is the producer/ consumer
dependency among activities. These dependencies can be easily identified by noting where
one activity produces something that is required by another. These resource flows and the
dependencies of activities are shown in figure 6.3. For example, the activity of cooking
creates food that can then be served and eaten, customers'departure produces a table
ready for busing, and busing and resetting a table produces a table ready for another
customer.

Figure 6.3: Flow of resources between activities and resulting dependencies in the
restaurant service process

This distinction clarifies the role of the information system used. Recall that in Crowston's
analysis (chapter 3 in this volume), such a dependency can be managed in one of two ways:
either the person performing the first activity can notify the person performing the second that
a resource is ready, or the second can monitor the performance of the first. Employees in
Southfield can not be easily notified that they can now perform an activity. They must instead
spend time monitoring the status of the previous activity. For example, a bused table, ready
for a customer, waits until the host or hostess notices it. In Lake Buena Vista, by contrast, the



buser can use the system to notify the host or hostess that a table has been bused and is
ready. Similarly the wait staff can monitor the kitchen to notice when an order is ready or,
using the system, the kitchen can page the wait staff to notify them that it is. Such changes
can be made throughout the process. The appropriate waiters or waitresses can be paged
when customers arrive at their tables; a buser can be paged when the table has been
vacated and is waiting to be bused.

The effect of this change in coordination mechanism is to slightly reduce the interval between
successive activities. The change likely comes from increasing the pace at which the
restaurant employees work. Since there are many such intervals, the result of the system
can be a noticeable decrease in the interval between successive customers or, alternately, a
higher number of table turns and increased utilization of the restaurant's tables. (Of course,
this analysis assumes that there are a large number of customers waiting to be seated and
that these customers are not seeking a leisurely dining experience, both factors that were
true of the restaurants I studied.)

6.4.3 Summary

This example demonstrates how examination of the process helps to link phenomena
observed at the individual and organizational levels. The changes in individual work include
use of an information system to track table status and to communicate between individual
employees. The organizational outcomes include reduced waiting time and increased table
turns and profitability. My analysis of the process suggests that the system allows individuals
to change how they manage precedence dependencies, from noticing to notifying, thus
decreasing the interval between activities, and overall, increasing table turns and profitability
for a certain class of restaurant.

 



 

6.5 Recommendations for Process Research and Practice

As I have argued above, in the study of ICT use and organizations, it seems reasonable to
adopt a process perspective. When investigating the many organizational problems that have
an ICT component, I have five recommendations to offer as are outlined below for
incorporating processes in ICT research and practice.

6.5.1 Develop Richer Process Analysis and Design
Techniques

Researchers need to develop richer process analysis and design techniques. Analyses of
processes must include the flow of resources, the dependencies created by these flows, and
how these dependencies are managed (Crowston and Osborn 1998), and not just focus on
the sequence of activities. Researchers in these areas might consider how their instruments
can be adapted for broader use.

A diffcult challenge is developing a meta-theory for processes comparable to the well-
defined and well-understood set of terms and concepts for variance theories (e.g.,
'construct', 'variable', 'proposition', 'hypothesis', 'variance', and 'error') and statistical tools for
expressing and testing hypotheses. The framework developed in this chapter is but a small
first step toward such a meta-theory.

6.5.2 Use Processes as a Unit of Analysis

Organizational theorists have found it problematic to develop generalizations that hold for
entire organizations, reflecting the diversity of activities and micro-climates found in most
modern organizations. Mohr (1982) describes organizational structure as ''multi-
dimensional—too inclusive to have constant meaning and therefore to serve as a good
theoretical construct.''Processes provide a useful level of analyses to narrow the study of
organizational form (Mohr 1982; Abbott 1992). As Crowston (1997) states, ''to understand
how General Motors and Ford are alike or different, researchers might compare their
automobile design processes or even more specific subprocesses''(p. 158). Within this finer
focus, it may be possible to reach more meaningful conclusions about a range of theoretical
concerns (Price and Mueller 1986).

For example, March and Sutton (1997) note the diffculties in studying antecedents of
organizational performance due to the instability of this construct. However, it may be
meaningful to consider performance at the level of a process. Similarly it is probably not
meaningful to measure the level of centralization or decentralization of an entire organization
(Price and Mueller 1986), but such measures may be appropriate and meaningful within the
context of a single process.

6.5.3 Develop the Theory of Organizational Processes

More research is necessary to properly establish processes and the various constraints on
process assembly as valid theoretical constructs. For example, research methods need to be
developed or adapted to operationalize activities, resource flows, and dependencies and to
validate models built around these constructs. Likewise research is needed to characterize
the range of possible dependencies and the variety of coordination mechanisms possible
and, in general, to document the assembly rules used in organizations. Work already done
on work design and agency needs to be adapted to the general process perspective. Most
important, research is needed to characterize the trade-offs between different mechanisms.
Ultimately such work may allow some degree of prediction of the performance of a selected



configuration of activities.

6.5.4 Expand to Richer Contexts

Consideration of organizational processes has been used primarily in an applied fashion,
and as a result its use has mostly been restricted to processes in companies, often with the
intent of designing a more effcient process, employing fewer workers. Certainly this is not the
only or even most interesting application of these ideas. The use of organizational process
analysis should be expanded to more complex contexts.

6.5.5 Use Multiple Theories

Cannella and Paetzold (1994) argued that use of multiple theories is a strength of
organizational science. Following their argument, I recommend the use of a process
perspective with complementary theories, resulting in a multi-level and multi-paradigm
understanding of the organization. One example of this approach is an ongoing study of the
use of ICT in the real estate industry (Crowston et al. 1999; Crowston and Wigand 1999;
Sawyer et al. 1999). To accomplish the objectives of this research, researchers have
synthesized several theoretic perspectives to integrate findings from multiple levels of data
collection. Specifically, at the individual level, they have drawn on theories of work redesign
and social capital. At the organizational and industrial levels, they have applied transaction
cost and coordination theory.

 



 

6.6 Conclusion

In this chapter, I argued that individual-level research on ICT use can be linked to
organization-level research by detailed consideration of the organizational process in which
the use is situated. Viewing a process as the way organizations accomplish desired goals
and transform inputs into outputs makes the link to organizational outcomes. Viewing
processes as ordered collections of activities makes the link to individual work, since
individual actors perform these activities. Likewise process theories can be a useful milieu for
theoretical interplay between interpretive and positivist research paradigms (Schultz and
Hatch 1996). An analysis of the process of seating and serving customers in the two
restaurants illustrates how changes in individual work affect the process and thus the
organizational outcomes.
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7.1 Introduction

Process thinking has been attracting more interest lately from both theorists and
practitioners. Some sociologists are beginning to adopt the view that ''social reality happens
in sequences of actions located within constraining and enabling structures''(Abbott 1992, p.
428). Organization theorists argue that process models provide a unique perspective on
innovation (Van de Ven and Poole 1990), strategic change (Van de Ven 1992), and
organizational behavior in general (Mohr 1982). Practitioners believe that a process-centered
view of organizational design can yield dramatic improvements in organizational
performance (Hammer 1990; Davenport 1993). Whether one regards this wave of interest in
processes as a case of theory leading practice, or practice leading theory (Barley, Meyer,
and Gash 1988), it seems clear that there is a need for more understanding of this domain.

Recent studies of innovation (Pelz 1985; Van de Ven, Angle, and Poole 1989), group
processes (Gersick 1989; Poole and Roth 1989; Olson, Herbsleb, and Rueter 1994),
software development (Sabherwal and Robey 1993), and careers (Abbott and Hrycak 1990)
have begun to introduce sequential concepts and methods to a wider audience of
organizational scholars. But more than ten years after Mohr's (1982) rallying cry for research
that takes process seriously, organizational theorists are still generally content to study the
variable properties of static objects using traditional variance models (Van de Ven 1992).
Processes, if mentioned at all, are often used as ''just-so stories''that describe the causal
chain that relates independent and dependent variables (Abbott 1992, p. 429). Empirical
studies of actual sequences of events (e.g., Van de Ven, Angle, and Poole 1989; Sabherwal
and Robey 1993) are still quite rare. We are accumulating an increasingly powerful set of
tools for describing and comparing sequences of events (Hewes 1980; Holmes and Poole
1991; Abbott 1990), but these methods lack the capability to express the nested, layered
quality that characterizes many kinds of organizational processes. As interest in process
research grows, we will need increasingly sophisticated ways of representing and reasoning
about complex sequences of events.

In this chapter, I argue that a special class of process models based on the metaphor of
grammar can provide unique insights into the sequential structure of organizational
processes. In recent years, the metaphor of grammar has been used more frequently in
connection with organizational processes. One of the first instances was Weick (1979, p. 3)
who defined ''organizing''as a ''consensually validated grammar for reducing equivocality by
means of sensible interlocked behaviors,''and went on to argue that ''organizing resembles a
grammar, a code, or a set of recipes.''More recently Drazin and Sandelands (1992, p. 230)
argue that the ''deep structure''of organizing consists of a ''generative grammar.''By
describing organizations and interactions in grammatical terms, these scholars and a host of
others (Skvoretz and Farraro 1980; Barley 1986; Abell 1987; Sandelands 1987; Salancik
and Leblebici 1988; Coulter 1989; White 1992) are implicitly suggesting that, like human
language, human organization has syntax. A syntax of organizational processes is an exciting
possibility because it provides a new paradigm for organizational science. In the same way



that ecological concepts (e.g., population, niche, and density) provide new ways to theorize
about organizational forms, grammatical concepts (e.g., lexicon and syntactic structure)
provide new ways to theorize about organizational processes. The most convenient starting
point in this effort would be simple ''business processes''(Davenport 1993): goal-oriented
sequences of actions that repeat over time, such as customer service (Ventola 1987).
Eventually it may be possible to create grammatical models for other kinds of processes that
embody change over time, such as organizational life cycles, innovation (Van de Ven and
Poole 1990), and strategy formation (Van de Ven 1992).

In this chapter, I define the basic terms of grammatical models of organizational processes,
and attempt to clarify the limits and possibilities of a research agenda based on such models.
The question is, What might we learn if we took Weick's (1979) metaphor seriously and
applied it in empirical research? To answer this question, we need a method for rigorously
mapping concepts from the domain of grammar to the domain of organizing. Organization
theory is filled with metaphors (Morgan 1986), but with the notable exception of the
ecological metaphor, very few of them have been systematically developed. Tsoukas (1991)
describes a way to develop metaphorical language into rigorous theoretical language by
progressively mapping ideas from one domain to another until one arrives at a language that
is isomorphic between domains. Another way of framing this line of inquiry would be to ask:
What can we learn about organizational processes by thinking of them as products of a
language? The argument here is that the grammatical metaphor opens up new ways of
modeling and analyzing process. These models are not substitutes for variance models, or
other kinds of sequential models. Rather, they add to the stock of analytical tools that
organization theorists can bring to bear on this important class of phenomena.

In typical metaphors the source domain is quite familiar to the audience, so it helps them
form interpretations or insights about the less familiar target domain (Tsoukas 1991). For this
Process Handbook audience, the source domain (grammar) is less familiar than the target
(organizations). Therefore I begin by defining the concept of grammar and explaining some
of its key features. Given this introduction, I will examine some ways that these concepts can
be exploited to construct grammatical models of organizational processes. The analysis
indicates that basic grammatical concepts can be used to create rigorous, disconfirmable
models of organizational processes. In the final sections of the chapter, I discuss some
methodological aspects of developing and testing such models, and suggest what we might
learn from a grammatical research agenda.

 



 

7.2 What Is a Grammar?

Before we can begin mapping concepts of grammar and organization, we need to familiarize
ourselves with the critical features of the source domain. I will start with a basic definition of
grammar:[1]

A grammar describes a (potentially infinite) set of patterns in terms of a finite lexicon and a
finite set of rules or constraints that specify allowable combinations of the elements in the
lexicon.

In English, for example, the ''patterns''are sentences, the ''lexicon''consists of words, and the
''constraints''are the rules of English syntax. By specifying how words can be combined to
create sentences, a grammar provides a concise way of describing a language (i.e., the set
of all correct sentences and only these). A grammar embodies hypotheses about what
patterns are possible, but it is not intended to predict individual patterns. English grammar
offers no insight at all into what my next sentence will be, yet it describes the form of every
correct English sentence. Likewise Salancik and Leblebici's (1988) grammar of food service
transactions describes the set of all possible restaurants but cannot predict whether a
particular restaurant will offer cafeteria style or sit-down service. Like discrete, stochastic
process models (Hewes 1980), grammars describe a set of possible outcomes, and not an
individual outcome. Given that grammar is perhaps the purest form of structuralism, it should
not be surprising to find that, like any structuralist perspective, grammar emphasizes patterns
over individual cases (Mayhew 1980).

In addition to describing a set of patterns, grammars can also embody a set of testable
hypotheses that provide the basis for a theoretical explanation of the observed patterns. The
explanatory power of grammatical models lies in the way in which they embody structural
constraints on the set of possible patterns. As Simon (1992, p. 154) notes, a description
becomes an explanation when it refers to ''structural characteristics of the system.''For
example, when linguists observe a sentence construction that seems valid, yet violates some
hypothesized grammatical constraint, it forces them to revise the hypothesis to account for
the new observation. Similarly, in other domains where grammars have been used, the
process of fitting the grammar to the data progressively improves one's understanding of the
structure of the data (Olson, Herbsleb, and Rueter 1994). In this way grammar provides a
logical framework for testable theories about the constraints that account for any given set of
observations.

Grammars also provide a framework for generating new instances of a set. In linguistics,
grammars are called ''generative''because they possess the mathematical capability of
generating an infinite set of sentences from a finite lexicon and a finite set of rules.
Generativity is an interesting property for organization theorists as well, because it suggests
the possibility of predicting new organizational processes and forms based on a given set of
constraints, or changes in a set of constraints (Salancik and Leblebici 1988). From a
practical point of view, the generative properties of grammatical models may provide new
ways to design processes (Malone et al. 1993).

Grammars are similar to scripts, but there are two important differences. First, as used in the
organizational literature, the concept of a script (or event schema) is general treated as an
individual level cognitive structure (Abelson 1981; Gioia and Poole 1984). By contrast, the
grammatical concepts I will describe below are tied to a more general set of structures that
enable and constrain the flow of events, including physical and organizational structures.
Second, grammars are a more powerful representational device than scripts. Schank and
Abelson's (1977, pp. 11-17) original formulation of plans and scripts was built upon a lexicon
of eleven primitive actions or ''meaning units.''These units could then be combined or
recombined to form any particular plan or script, such as the restaurant script. To the extent



that the restaurant script is a combination of this lexicon of meaning units, it is the product of
an implicit ''restaurant grammar''of the kind proposed by Salancik and Leblebici (1988).
From the perspective of formal representation, generative grammars form a complete
superset of scripts; there is no script that cannot also be expressed by a grammar. This is an
important observation because it suggests that a grammatical approach to representing
routines is not an alternative to a script based approach. Rather, it is a more powerful
generalization of the same basic idea.

Since we are attempting to apply grammatical concepts to a domain other than language, it
is important to realize that linguists do not hold a monopoly on the concept of grammar.
Grammars can be constructed for any phenomenon that can be given a sequential
representation. There are grammars for DNA, polygons, curves, Korean characters,
computer programs, electrical circuits, and more (see Gonzalez and Thomason 1978; Miclet
1986). Grammatical models have also been applied extensively to the study of stories and
narratives (Prince 1973; Ryan 1979; Lenhert 1981; Colby, Kennedy, and Milanesi 1991). In
many respects story grammars provide the most readily applicable set of grammatical tools
for the analysis of organizational processes because they have been applied to the kinds of
events that comprise organizational life (e.g., situated actions by individuals). To the extent
that we conceive of organizational life as a kind of living narrative, story grammars are an
obvious analytical tool. The utility of grammatical techniques to domains other than linguistics
also helps to underscore the distinction between the general concept of grammar and the
highly specific (and controversial) hypotheses of Chomskian generative grammar which are
discussed in more detail below. This distinction helps define the limits and possibilities of
grammatical models of organizational processes.
[1]There are a large number of different kinds of formalisms that can be used to represent a
grammar. A more general definition is offered by Chomsky (1956, p.114): ''By a grammar of
the language L we mean a device of some sort that produces all of the strings that are
sentences of L and only these.''

 



 

7.3 Grammar and Organizational Process

For some, the idea of a ''social grammar''of any kind is troublesome because the word
''grammar''carries some very powerful philosophical connotations: essentialism, deep
structure, and universality. Because of these connotations, the notion that social life of any
kind can be represented by grammatical formalisms has been disputed by social theorists
such as Bourdieu (1977, 1990), Brint (1992), de Certeau (1984), Fabian (1979, 1990), and
Heritage (1984), among others. As typically conceived, grammars depend on rules of syntax
that determine what is grammatical and what is not. But as Heritage (1984, p. 126) argues,
''social action cannot be analyzed as 'governed'or 'determined'by rules in any straightforward
sense.''Heritage (1984, p. 216) points out that flaunting a well-known rule (e.g., ''greet only
acquaintances'') can be actively used to reconstitute the meaning of a situation. In this way
participants may strategically use a rule without following it at all. Fabian (1979, pp. 11¡V2)
notes that a complete grammar would need to contain ''rules for the proper violation of its
rules, or rules for the change of rules,''which would lead logically to a regress ad infinitum.
The objectification of rules and rule-following is only one problem. The grammatical
metaphor has also been criticized for being ahistorical (Fabian 1990, p. 14) and for relying
on objectivist assumptions that have been long discredited by philosophers and empirical
psychologists alike (Lakoff 1987, pp. 8-10). These objections raise serious questions about
the extent to which the grammatical metaphor can be applied to organizations.

Table 7.1: Mapping between grammar and organizational processes

Grammar Organizational processes

Core concepts  

Lexicon Moves (Goffman 1981; Pentland 1992)

Syntactic constituents Performance programs (March and Simon
1958)

Routines (Ashforth and Fried 1988)

Molecular actions (Abell 1987)

Constraints (rules) Institutional structures (Jepperson 1991)

Culture (Schein 1985)

Technology (Barley 1986)

Coordination (Malone et al. 1993)

Sentences Processes (Weick 1979)

  Transactions (Salancik and Leblebici 1988)

Chomskian concepts  

Universality No analogy

Competence versus
performance

Limited analogy

Deep structure No analogy

To address these concerns, it is critical that we not import grammatical concepts without
careful consideration of their connotations and implications. We must restrict ourselves to
clear mappings between the source domain and the target domain and discard those
features of the source domain that do not fit (Tsoukas 1991). The proposed mapping
between grammar and organizational processes is summarized in table 7.1, and each of the



rows is explained in the text that follows. To help make the mapping concrete, I will use a
simple example to illustrate each part of the overall metaphor: a trip to a supermarket in the
United States. We will examine this process from the shopper's perspective, since this is the
perspective that will be most familiar. One could just as easily consider the processes of
stocking the shelves, taking inventory, or other aspects of supermarket operations. The
purpose, of course, is not to make a contribution to a substantive theory of shopping but
simply to illustrate the use of the terminology.

7.3.1 Moves Are Like Words

The basic elements of a language are usually called an ''alphabet''or a ''lexicon''(Miclet
1986). Like atoms in chemistry these are the basic building blocks that can be combined to
create more complex structures. The definition of these basic elements depends on the kind
of sequences being studied. In story grammars the basic units are sometimes called ''plot
units''(Lenhert 1981) or ''meaning units''(Colby, Kennedy, and Milanesi 1991). In studies of
human interaction, the term ''lexicon''is more common (Hymes 1972; Fabian 1979), so this
term is used here. Note that the definition of these units is always somewhat arbitrary;
lexemes can be decomposed into phonemes, plot units into actions, atoms into particles, and
so on. The point is that they are treated analytically as the most detailed level of description
necessary for the problem at hand.

In organization theory, moves can be used to define a lexicon of organizational action
(Pentland 1992). Goffman (1981, p. 24) defined moves as ''any full stretch of talk or of its
substitutes which has a distinctive unitary bearing on some set or other of the circumstances
in which participants find themselves.''Using this definition, Pentland (1992) identified a set of
basic moves in the lexicon of a software support organization (e.g., assign, transfer, refer,
escalate, and so on). Moves have some conceptual and practical advantages over other
possible lexical elements, such as speech acts (Searle 1969; Winograd and Flores 1986).
First, unlike speech acts and other purely linguistic concepts, the concept of a move
encompasses nonlinguistic behavior (Goffman 1981). As an interaction unit, a move might
consist of a combination of several different utterances and actions, the combined effect of
''has a distinctive, unitary bearing''on the situation. Furthermore moves are connected to
structural features of the situation; they are constrained and enabled by the physical, ritual,
and competence structure of the situation (Pentland 1992). Given Abbott's (1992, p. 428)
definition of processes as ''sequences of actions located within constraining or enabling
structures,''moves are an obvious choice for the elements of a lexicon.

Example Consider a trip to a typical suburban supermarket in the United States. Because of
the organization of the physical space and the general expectations of the shoppers and the
store management, there are certain kinds of moves that are likely to be observed: a
shopper might park a car, get a shopping cart, select items, and so on. In some stores,
shoppers may also request special assistance (e.g., in a meat department or at a deli
counter). The shopper usually empties his or her cart onto a checkout counter of some sort
(often a conveyer belt), where a cashier ''rings up''the items and the shopper pays. In some
supermarkets, there may be a ''bagger''who places the purchased items in bags; in other
supermarkets, shoppers do this for themselves. Finally, the shopper removes the items from
the store, loads them into his or her car, and drives away. Note that this level of description is
quite abstract; it does not specify the number or kind of items selected, or how payment was
made. Without further specifying some constraints on the sequence, these moves could be
used to construct descriptions of impossible or nonsensical processes (e.g., ringing up items
that have not been selected). All we have at this point is a lexicon.

7.3.2 Performance Programs Are Like Syntactic
Constituents



In addition to a lexicon, grammars often include a more abstract notion of ''syntactic
constituents''(Newmeyer 1983; Cook 1988). Linguists identify categories of words or phrases
that serve a particular function in the syntax of a sentence, such as noun phrases (e.g., ''the
offcial,''''the document'') or verb phrases (e.g., ''is shredding''). These constituents can be
combined according to grammatical rules to create sentences (e.g., ''The offcial is shredding
the document''). Syntactic constituents provide a way of describing the structural features of
a pattern without elaborating it all the way down to the specifics of the lexicon. Syntactic
constituents also provide a way of categorizing interchangeable chunks of a sequence that
are functionally similar. In the example just given, one can substitute a wide variety of
different noun phrases as the subject of the sentence: ''the copier,''''the dog,''and so on. The
meaning of the sentence changes, of course, but these forms are structurally equivalent.
Another powerful feature of syntactic constituents is the way they can be nested together. To
return to the example of the offcial, we can substitute a different, compound noun phrase at
the end of the sentence: ''The offcial is shredding the document that contains the
incriminating evidence.''The ability to substitute equivalent constituents and nest them
together is an important part of grammar.

In organization theory, ''performance programs''(March and Simon 1958) provide an analogy
to syntactic constituents. In their discussion of performance programs, March and Simon
(1958, pp. 140-44) describe the way in which programs can be nested together and
recombined to create larger programs. These ''programs''embody chunks of behavior that
have been routinized and possibly even automated in some way. More recently Ashforth and
Fried (1988) build on the concept of scripts (Schank and Abelson 1977) to describe
''mindless''routines that can be initiated by a very limited stimulus and run through until
completion, unless interrupted. Abell (1987) uses the term ''molecular actions''to describe a
similar concept: actions that are so tightly bound together that we usually think of them as a
unified whole. These routinized chunks of behavior would seem to make excellent
candidates for the syntactic constituents of organizational processes.

Example In our description of the supermarket, there are several candidates for syntactic
constituents. For example, ''ringing up''a set of items involves a highly routinized set of
discrete steps. Once started, it tends to go through to completion. Further, ringing up can be
accomplished in several ways (e.g., manually or with a universal product code scanner).
''Making payment''also involves a set of routinized actions that can be accomplished in
several different, interchangeable ways (Ventola 1987). While particular ways of ringing up or
making payment may only be possible in a supermarket (e.g., coupons and food stamps are
usually not accepted at restaurants), these generic activities are syntactic constituents of
every kind of retail transaction.

7.3.3 Processes Are Like Sentences

Sentences are the basic unit of analysis in grammatical theories of language. In other
domains, it would be individual children's stories, electric circuits, polygons, or whatever. This
is perhaps the most critical aspect of the mapping because it fixes the unit of
analysis—thereby determining the kinds of methodological tools that are required and the
kinds of theoretical statements that are possible. In linguistics, grammar defines the set of
valid sentences in a language, thereby defining the language itself.

In organization theory, the appropriate unit for grammatical analysis is a process. This seems
to be the intuition that Weick (1979) was building on when he suggested that organizations
construct processes from a set of ''cycles''or ''double interacts''using a set of ''assembly
rules.''The grammatical metaphor applies most readily to ''stationary''processes (Hewes
1980). These are processes that involve sequences of discrete events (or states) that may
repeat over time but do not change over time. Grammars, by their very nature, are
synchronic, not diachronic (de Saussure 1959; Barley 1990). Grammars describe sequences
of actions that are situated in time, but the time scale for any given occurrence of a sequence



could be relatively short. For example, in Salancik and Leblebici (1988), the unit of analysis
was a food service transaction; depending on the kind of restaurant, the entire sequence
might be completed in a few minutes or a few hours, at most. For any given food service
establishment, the basic sequence identified in their grammar would stay relatively constant
over time. These sequences are what Van de Ven (1992) calls a ''unitary''progression of
events, where only one event occurs at a time. This is the most intuitive mapping, because it
compares directly to words in a sentence, or plot units in a story. However, other kinds of
progressions identified by Van de Ven (1992) (parallel, divergent, and convergent) are well
within the representational capacity of more advanced grammatical models (e.g., Miclet
1986 describes grammars for tree structures of various kinds).

Example In our supermarket example one can imagine recording the sequence of events in
one shopper's trip to a particular store. This sequence is like a ''sentence''that could be
represented and analyzed grammatically. Note that even in a single supermarket there are
an enormous number of possible sequences (think of all the available items, and every
possible sequence in which you could select them and pay for them). One could also collect
data from multiple markets, or other kinds of retail sales interactions. If one were using a
typical variance-based approach, one would summarize these sequences using a set of
variables (total time, total cost, number of items, item placement, item price, etc.) that could
be used to answer a variety of questions concerning consumer behavior and marketing.
There is, of course, a great deal more information in the data if we retain its sequential
structure. Like other sequential analysis techniques, grammatical models allow us to make
use of this information by analyzing the sequences themselves, as sequences. Grammatical
models allow us to ask a very different set of questions: What sequences are possible? Why
do we observe these sequences and not others? What would happen if some aspect of the
context were changed? These questions depend on the hypothesized nature of the
structures that constrain and enable the observed processes, so let us turn our attention to
this topic.

7.3.4 Organizational and Institutional Structures Provide
Constraints and Affordances

Grammatical constraints are often expressed as rules for combining the elements of a
lexicon. Without constraints, words in any order could be a sentence, any set of line
segments could be a polygon, and any sequence of nucleic acids could be DNA. In each
field where grammatical models have been applied, there is a clear set of constraints on
what is and is not a proper instance of the set. Furthermore the hypothesized origin and
nature of these constraints forms the basis of explanations of why certain patterns exist and
others do not. Constraints form the basis for disconfirmable theory: if one observes patterns
that violate a hypothesized constraint, that hypothesis can be disconfirmed. These
hypotheses are often expressed as phrase structure rules (Black and Wilensky 1979;
Gazdar et al. 1985) that specify the allowable combinations of syntactic constituents and
other lexical items.

In organization theory, constraints on action are often thought of as rules (e.g., Drazin and
Sandelands 1992). While the arguments against rule-following mentioned above would
seem to preclude any rule-based grammar of organizing, that would be a hasty and incorrect
conclusion. This is because grammars do not predict particular patterns or actions; the rules
in a grammar do not ''determine''anything. Rather, they generate the set of possibilities for
the agents in the situation. As a result it is helpful to think in terms of constraints and
affordances (Gibson 1982; Norman 1988; Pentland 1992), rather than thinking of rules. This
implies a shift away from deterministic, rule-like statements, toward an articulation of what is
feasible in a given situation. This shift is logically equivalent to that suggested by Mohr (1982)
in his distinction between variance models and process models. In Mohr's terms, a variance
model implies a necessary and suffcient relationship between an antecedent and a



consequent condition. In a process model, the antecedent condition is necessary but is
generally not suffcient; in other words, it creates the possibility of the consequent but does
not guarantee it. For this reason grammatical models are an example of the kind of process
models described by Mohr (1982). As long as one keeps this distinction in mind, one can still
express constraints and affordances in terms of rules, as in Salancik and Leblebici (1988).
One of their rules for food service transactions states that a meal must be cooked before it is
eaten. Note that this rule does not obligate anyone to eat a meal just because it has been
cooked; it merely points out that reversing the sequence is impossible.

Because of the importance of structure in organization theory, we have an extensive
vocabulary about constraints and affordances, as suggested in the following examples. Like
any set of idealized analytical categories, they may combine in practice.

Institutional Structures The general idea of identifying constraints and affordances on
action is a familiar aspect of institutional theory (Commons 1950; Jepperson 1991). It is also
a central part of Giddens's (1984) concept of structure, where rules are conceptualized as
resources for action. One can explore the implications of various institutional arrangements
for the configuration of various kinds of transactions (Leblebici et al. 1991). Under different
institutional regimes, one should observe different sequences. In some sense the whole idea
of ''a trip to the supermarket''is a reflection of the institutional structures surrounding
agriculture, food distribution, and the social division of labor in an industrialized economy. On
a more concrete level, the range of acceptable means of payment (credit cards, food
stamps, etc.) reflects specific institutional arrangements that may vary from setting to setting.

Technological Structures Norman (1988) offers an analysis of how the physical properties
of technical artifacts affect the actions of users. In organization theory, technology is an
important source of structure (Orlikowski 1992). Of course, technological constraint does not
imply technological determinism. As Barley (1986) showed, the same technical system can
result in different patterns of social interaction. Technology accounts for one of the most
visible changes in American supermarkets in recent years: the introduction of universal
product code scanners. This new technology eliminates the need for cashiers to type in the
prices of most items. Note that if we were studying the inventory process, or the marketing
process, the implications of this technological innovation would be even more significant.

Coordination Structures There are also a wide variety of constraints that emerge because
of different kinds of interdependencies between actions (Malone et al. 1993). In addition to
sequential constraints (e.g., step A must be completed before step B), there may be usability
or simultaneity constraints on the steps of a process. Interdependencies are often introduced
by the particular technology being applied in a situation; as technology changes, the degree
of interdependence and the ability to manage it may change, as well. Because they explicitly
affect the timing and sequence of steps in a process, coordination constraints may be a
particularly interesting source of grammatical hypotheses. In a supermarket one finds a
variety of sequential dependencies, such as needing to select items before you bring them to
the checkout line.

Cultural Structures Cultural structures operate at many levels in an organization, including
the level of appropriate behavior (Schein 1985). Culturally based norms and expectations
place a great many constraints on what moves are possible, and on the appropriate
sequence of moves in a given situation. While these constraints are pervasive in social
interactions, they are also the most subject to strategic flaunting. As Heritage (1984)
suggests, one can reconstitute the meaning of a situation by explicitly violating a rule like,
''greet only acquaintances.''In the supermarket, cultural norms govern interactions with the
cashier and other customers.

Constraints and their sources should be especially interesting to organization theorists
because of our interest in problems of stability and change (Gersick 1991; Leblebici et al.
1991). Depending on how the rules of organization are grounded, one would expect very



different properties in terms of persistence, volatility, and so on. For example, a rule or a
lexical item that is grounded primarily in a technological feature of a process subject to very
abrupt revision if that technology undergoes a major change. The disruption of organizational
forms resulting from technological innovation (Tushman and Anderson 1986) could be
potentially be analyzed in these terms. However, a rule that has a cultural basis may persist
regardless of technological changes, or it may change only slowly.

Example We are now ready to continue our supermarket example with a set of grammatical
rules that embody the constraints and affordances on the process. Table 7.2 shows a
generic phrase structure grammar for a trip to a suburban supermarket.

Table 7.2: Generic phrase structure grammar for a trip to a suburban supermarket

Trip   arrive, select items, check out, leave.

Arrive   park car, get cart.

Select items   [(pick item, put in cart), . . .].

Check out   unload cart, ring up items, pay, bag items.

Leave   wheel cart to car, unload cart, (return cart), start car, drive away.

This example has been deliberately simplified so that the general ideas will be as clear as
possible. At this level of generality the rules embody combinations of technological,
institutional, cultural, and coordination constraints; it is diffcult to isolate pure examples of
each category. A more detailed description of the process of payment (e.g., credit card
validation or check approval) would start to reveal clear technological structures, for
example.

In figure 7.2, the arrow symbol is read as ''consists of.''The arrows are not
''condition–action''or ''if–then''rules; they imply sequence but not causality. Thus the first rule
states that a trip to the supermarket consists of 'arrive', 'select items', 'check out', and 'leave'.
Each of these can be considered a syntactic constituent for the shopping trip, and is further
decomposed in the subsequent rules. The process of selecting items, for example, consists
of an indefinite number of repetitions of 'pick item'and 'put in cart'. One could further
elaborate the process of picking an item to include comparison shopping, and so on.
Similarly the check out process has a set of constituents that could be further elaborated to
describe various forms of payment. Finally, one can indicate optional steps, such as ''return
cart''in the rule for leaving. By using these simple rules, one can describe a limited variety of
different ''trips to the supermarket''that differ mainly in the number of items selected. By
adding more rules to describe alternative forms of payment, special requests at the meat
counter (an alternative way to 'pick item'), one can describe a more complex set of
transactions.

The grammar in figure 7.2 represents a set of hypotheses about the sequential structure of
trips to the supermarket. One could test these hypotheses against actual observations of
trips to various supermarkets. By coding observations in terms of the relevant lexicon, one
could quite easily determine whether these rules capture the observations. In doing so, one
might discover that suburban supermarkets systematically violate certain parts of the pattern.
These violations would suggest revisions to the grammar, which could then be tested again.
If one restricted one's attention to supermarkets, the results of this line of inquiry would be a
detailed but rather boring ''theory of supermarkets.''

If one looked at other kinds of retail sales transactions, however, the questions one might ask
start to get more interesting. For example, how can one describe and explain the differences
between a traditional country store, where the clerk picks items for the customer, and the
modern supermarket? What about differences between clothing stores (where items are
routinely ''tried on''to test their usability), and food stores, where ''trying''items might be



considered petty theft? One might also be interested in exploring the differences between a
regular retail store and mail order. In short, there are many ways to organize the process of
retail sales that depart systematically from the basic supermarket model. Grammatical
models provide a way to state explicit hypotheses about these sequential processes and test
them against empirical data.

So far, the concepts we have explored have been generic to any kind of grammar, whether
linguistic or otherwise, and they seem to map quite well as process descriptions. In addition,
there are a number more specific concepts and hypotheses that derive from Chomskian
generative grammar (Newmeyer 1983; Cook 1988). They are not part of the definition of
grammar per se, but given the dominance of the Chomskian perspective, concepts like deep
structure have become a part of the grammatical metaphor in general and have started to
emerge in the organizational literature (Gersick 1991; Drazin and Sandelands 1992). To a
large extent, these additional concepts revolve around the hypothesized nature of constraints
on human language: the so-called language faculty (Chomsky 1986). It is worth noting that
Chomsky himself would be the last person to advocate extending these specifically linguistic
ideas beyond their source domain. Despite this, these linguistic hypotheses seem to have
drawn the most heated objections in the debates over the applicability of grammar to social
action. Thus, for the sake of clarity and completeness, it is important to consider these
additional connotations of the grammatical metaphor quite closely.

7.3.5 Organizations Have No ''Language Faculty''

In Chomskian linguistics a central hypothesis is that there exists a universal grammar for all
human languages that depends on a feature of the human brain called the ''language
faculty''(Chomsky 1986; Cook 1988). Universal grammar is essentially an hypothesis about
the source of rules and constraints in human language. Chomskians argue that grammar is
a feature of the human brain that enables people to learn languages the way that birds learn
to fly. Given even a modest opportunity (e.g., a typical upbringing), humans cannot help
learning a language. Which particular language we learn is determined by context, but our
ability to learn it is innate, because the language faculty is a physical structure in the human
brain.

In organization theory it is very hard to imagine anything that could sustain a rigorous,
isomorphic analogy to this hypothesized structure of the human brain. This can be seen by
recalling the list of structural constraints and affordances reviewed in the previous section.
Each of these is historically situated, culturally embedded, and generally stands in a
recursive relation to action (Giddens 1984). It is diffcult to imagine an institutional,
technological, cultural, or coordination constraint that does not vary with context and is not
subject to revision with the passage of time. Universality is simply not a characteristic that
applies to the social world. The lack of an organizational ''language faculty''eliminates the
possibility of a universal grammar for organizational processes: a single set of universal rules
or principles that govern the syntactic structure of all organizing processes. Unless
organizational theorists can identify a similar structure that is ahistorical and acultural (which
we cannot), we will have to be content to apply grammatical methods to historically and
culturally bounded domains.

7.3.6 Limited Distinction between Competence and
Performance

Once we rule out the possibility of a structure analogous to the language faculty, a number of
closely related concepts must also be questioned. For example, Chomskians traditionally
distinguish between ''competence''and ''performance''(New-meyer 1983). Competence
refers to the core grammatical knowledge of an idealized speaker-hearer, while
performance refers to actual utterances produced in social interaction. In Chomskian



linguistics a grammar is a model of the idealized language embodied in the language faculty,
not of the performances produced by speakers as they go about their daily lives. Grammar
embodies the normative rules for producing correct sentences, although these rules are
regularly violated in actual speech.

In organizational research we could develop this analogy by treating the idealized, normative
account of how a process should work as competence, and observations about how it
actually does work as performance. To the extent that normative expectations have a great
deal of influence on satisfaction and a host of other outcomes, this may be a valuable
analogy. One might also point to formal rules or procedures as an analogy to linguistic
competence because they also express an important kind of normative expectation. We
could model these kinds of expectations in the form of scripts or prototypical sequences
(Schank and Abelson 1977) that provide a yardstick against which actual performance could
be assessed. In the supermarket, for example, if a shopper selects items and then leaves
without the intervening checkout process, it is a serious violation of the normative constraint
against stealing. However, these kinds of cultural or institutional constraints are, at best, only
a partial description of what generates the observed patterns in a situation (Bourdieu 1977).
For this reason it seems unreasonable to give them the special status implied by the analogy
to Chomskian linguistics, where competence refers to the complete set of formal structures
that specify the syntax of a language.

7.3.7 Organizations Have No Deep Structure

This lack of isomorphism has some additional consequences. First, it implies that the
appealing notion of deep structure is inapplicable to organization theory. When
organizational scholars use the term ''deep structure''(e.g., Gersick 1991; Drazin and
Sandelands 1992), they are referring to the accumulation of institutional, technological, and
other kinds of structures that tend to make organizations relatively stable over time. These
familiar kinds of structures have little in common with the formal, decontextualized,
ahistorical ''deep structure''of syntax as conceived in linguistics. Although organizational and
institutional structures are obviously important, there is little to be gained by calling them
''deep.''Perhaps more important, the lack of deep structure implies that organization theorists
will never achieve the strong, intuitive sense of a pattern being ''ungrammatical''that linguists
have relied on so heavily in their research. We will still be able to formulate disconfirmable
hypotheses about what kinds of patterns and processes are possible, but these must be
tested empirically against observations of surface structure. In the following section, I discuss
a number of considerations involved in doing so.

 



 

7.4 Methodological Considerations of Grammatical Models

To apply the kind of grammatical model outlined here in empirical research on
organizational processes, there are a number of methodological considerations that need to
be addressed. It is worth noting that an emphasis on processes as a unit of analysis implies a
significant departure from conventional methodologies. We are much more accustomed to
using individuals, organizations, or networks as the unit of analysis, treating them as
hypostatized objects, and formulating theories based on their variable properties (Mohr 1982;
Abbott 1992). Nonetheless, the growing interest in process analysis has given rise to a variety
of methodologies for analyzing sequences of events (Hewes 1979; Procter and Abell 1985;
Bakeman and Gottman 1986; Gottman and Roy 1990; Abbott 1990; Abbott and Hrycak
1990; Van de Ven and Poole 1990). These methodologies are too numerous to review in
detail, but they are generally designed to discover meaningful regularities in sequences of
events that can be observed, coded, and compared. Grammatical models add to this
growing family of tools for analyzing process data by providing a way to link what Poole,
Folger, and Hewes (1987) call the ''syntagmatic''structure of a process to its global
sequential structure. To the extent that grammatical models rely on sequential data, they
share many of the same methodological considerations as sequential techniques in general,
such as reliability of coding. Grammatical models, however, provide a rather different
approach to understanding the connections between sequences of events and the structural
features that enable and constrain them. As a result there are several issues that deserve
attention here.

7.4.1 Identifying a Lexicon and Syntactic Constituents

To perform a grammatical analysis of a class of organizational processes, the first step
would be to identify the lexicon of moves and the appropriate syntactic constituents. The
questions here are, What is the vocabulary of action in this process? What are the steps in
the process? What are the different ways in which the steps can be accomplished? These
questions bear a striking resemblance the ''structural questions''described by Spradley
(1979, pp. 116-17) in his primer on ethnographic interviewing. The objective of Spradley's
(1979) technique is to map out the semantic domain used by the members of a particular
cultural group to describe some aspect of their work or lives. In process research, the two
most relevant semantic domains would be sequence (''X is a step (stage) in Y '') and means-
ends (''X is a way to Y '') (Spradley, p. 111). In these relationships, Y is called a ''cover
term''and X is called an ''included term.''For each cover term, there is generally more than
one included term, and there may be many. In terms of the grammatical metaphor outlined
above, the included terms will tend to correspond to moves and the cover terms are likely to
correspond to syntactic constituents. This nesting of lexical items is a distinctive feature of
organizational processes that the grammatical metaphor encourages us to explore explicitly.
Other process models treat data as flat, with each element having roughly equivalent status
(e.g., Holmes and Poole 1991).

In practice, one may need to abstract somewhat from an informant's talk to arrive at a set of
syntactic constituents that can be generalized across settings. The necessity of creating
more abstract categories of action to facilitate analysis raises a familiar question: Do we
impose our own, etic terminology for the actions we observe, or do we use the emic
terminology of our informants (Spradley 1979)? This is essentially the same problem that we
confront when we collect survey data that are presumed to mean the same thing to different
respondents, so that their responses can be subjected to mathematical transformation and
analysis (Cicourel 1964). The important issue here is not so much the use of member's own
terminology but the semantic relationship between covering terms and included terms. The
included terms must be ''steps in''or ''ways to''complete the action described in the covering
term (e.g., paying is a step in checking out).



7.4.2 Identifying and Formulating Constraints

To formulate meaningful explanations, the critical problem is to identify the relevant sources
of constraint on the lexicon and the ways in which its elements can be recombined. The most
convenient way of formulating a constraint is as a rule, as in this kind of sequential
coordination constraint: ''A product must be designed before it can be manufactured.''It is
interesting to note that there may be a large number of different steps in the process that
intervene between design and manufacturing (dealing with strategy, marketing, finance, etc.).
A simple sequential constraint does not require adjacency (although one could formulate a
more stringent constraint that would). This simple example points to one of the major
advantages of this approach: syntactic models provide explicit ways of stating hypotheses
about constraints on events in a process that are widely separated in the observed
sequence. This is a special property of syntactic models that is not shared by statistical
techniques such as Markov models (Chomsky 1956). In a supermarket, for example, you
may have any number of iterations of 'select item'before you 'check out'. For this reason a
Markov model would do poor job of capturing the sequential dependence between arriving at
the store and checking out, though these events are structurally constrained to occur in this
order in every complete transaction.

7.4.3 Comparison to Phasic Analysis and Other Sequential
Techniques

Although a detailed review of sequential methods is beyond the scope of this chapter, there
are some points of reference in the literature that might be helpful for some readers. For
example, Holmes and Poole (1991) describe a method called phasic analysis that has some
interesting similarities but also some important differences. The basic idea of phasic analysis
is to code sequential data in terms of a set of events that mark a particular phase of activity.
For example, in a stage model of organizational development (e.g., Greiner 1972), there
might be an early stage of creativity and leadership marked by certain kinds of behavior,
followed by a stage of direction and autonomy, delegation and control, and so on. Using
phase analysis, one can test the observed sequence of stages against a predicted model or
analyze typical sequences of stages (Pelz 1985; Holmes and Poole 1991). Poole and Roth
(1989), for example, used phasic analysis to develop a typology of group decision-making
processes.

There are a number of terminological similarities between phasic analysis and the
grammatical models suggested here. Holmes and Poole (1991, p. 295) write about testing
phase models by ''parsing of a sequence of phase markers into discrete
phases.''Grammatical models are also tested by parsing sequences of events into syntactic
constituents, but these constituents can have a much more elaborate internal structure.
Furthermore a grammatical constituent is typically marked by a single event rather than a
sequence of similar events. Holmes and Poole (1991, p. 293) also discuss the use of coding
systems that include 'major categories'and 'subcategories,'which in some ways are like
Spradley's (1979) covering terms and included terms. However, the semantic characteristics
of the respective coding scheme are very different. In the coding schemes described by
Holmes and Poole (1991), the sub-categories are indicators of the major categories, not
steps used to accomplish it, and the categories are basically etic (which include things like
'denial and equivocation', 'noncommittal remarks', 'topic management'). In the grammatical
approach, the included terms should be steps needed to accomplish the covering term (e.g.,
paying is a necessary part of checking out). In further contrast to the phasic approach, it is
helpful if the coding scheme at the lowest level (moves) is basically emic. The use of emic
categories is not essential, but it facilitates the collection of data by asking people to describe
what they are doing. Furthermore, grounding the lexicon in ethnographically derived
categories helps keep the analysis more closely connected to the phenomenon.



7.4.4 Logic of Analysis

Testing grammatical models raises some interesting problems concerning what, exactly,
should count as evidence of disconfirmation. Linguists can often disconfirm a grammatical
rule by pointing to a single sentence construction that intuitively seems grammatical but
violates a hypothesized constraint. As mentioned above, organization theorists are not so
lucky, because we do not have introspective access to a hypothesized universal structure
that guides our theorizing. Rather, we must collect data in the field, a procedure that is
fraught with all kinds of possibilities for error in coding, sampling, and so on. While we might
want to follow a strict rule of single case disconfirmation, it would tend to lead to spurious
rejections of the hypothesized model.

Alternatively, we might also follow a statistical approach, similar to that used for testing
traditional variance models. Unfortunately, no rigorous statistical tests have yet been
developed to test the goodness of fit of grammatical models or other rule-based models
(Olson, Herbsleb, and Rueter 1994; Simon 1992). Simon (1992) notes that in cognitive
science, the general heuristic for the adequacy of rule-based models of human performance
is that the model must explain many more cases than the number of rules it uses. In this
context Simon's (1992) usage of the term ''explain''simply means that the behavior described
by the model matches the observed behavior, either in functional form or in exact detail. In
the case of our simple grammar of suburban shopping trips, this criterion is easily met; at the
level of detail expressed in the grammar, I would expect it to fit nearly every supermarket in
the United States. This seems like a reasonable basis for proceeding until the statistical
properties of these models can be worked out.

7.4.5 Limits of Applicability

There are limits on the kind of processes and level of detail for which a grammatical
approach may be appropriate. Levinson (1983) notes that conversation analysts have had
limited success in formulating interaction grammars of the kind Hymes (1972) proposed. In
essence, there are just too many possibilities and contingencies available in interaction, and
too strong a tendency toward the strategic use of cultural constraints (e.g., Grice's 1975
maxims for conversational cooperation) to create irony and implicature. There is no point, as
Abell (1987) points out, in attempting to unpack every little motion or inflection as a separate
piece of data. The kinds of processes that seem more natural and appropriate for
grammatical analysis are more deeply embedded in organizational structures, less fine
grained, and hence less subject to capricious variation. This suggests that it is important to
limit the level of granularity with which one describes a process to those moves that can be
easily observed and reliably coded (Folger, Hewes, and Poole 1984; Van de Ven and Poole
1990). The diffculty involved here should not be underestimated. We have a natural ability to
parse sentences into recognizable words and constituents, but our ability to parse
organizational processes depends on artificial methods. The development of reliable coding
schemes for moves and syntactic constituents that can be generalized across organizational
settings will be an important research question in and of itself.

Furthermore the culturally and historically embedded quality of organizational processes
implies that it is important to bound the scope of the data one is drawing upon in constructing
a grammar so that it is relatively homogeneous. In their discussion of grammatical
techniques in cognitive anthropology, Colby, Kennedy, and Milanesi (1991, p. 383) note that
grammars of folktales can only be developed for a culturally bounded group of people.

To reiterate the condition for analyzing plot grammars, it is necessary that the sample of texts
be geographically bound to a particular language using group of people and that it consist of
the same genre and same general time period. With these restrictions, and if the sample is
sufficiently large (numbering at least over fifty and preferably twice as much) it should be



possible to eventually work out a plot grammar.

The same basic recommendations seem quite appropriate for the analysis of organizational
processes. The critical issue here is one of sampling, and the scope of data that one can
hope to meaningfully incorporate into a single grammar. One cannot expect processes
operating within different institutional, cultural, and technological structures to fit the same
grammar, unless that grammar is very abstract. While these limitations need to be taken
seriously, they are not especially different in kind or severity than the limitations on traditional
variance models. What is different, of course, are the kinds of phenomena that grammatical
models can express, and the kinds of research questions they allow us to pursue.

 



 

7.5 A Grammatical Research Agenda

As suggested in the introduction, grammatical models create a variety of opportunities in
organizational research by providing a novel way to describe the sequences of actions that
make up organizational processes. More important, the grammatical metaphor has
explanatory power because of the way it connects structures and possible actions. This
connection suggests the possibility of several interesting kinds of research questions.
Because the grammatical metaphor applies most clearly to processes that occur repetitively
with relatively little change over time (i.e., synchronic rather than diachronic processes), I
have chosen to emphasize those examples here.

7.5.1 Classification of Processes

Organization theorists have been concerned with the classification of organizational
structures and forms (McKelvey 1982; Rich 1992). Grammars provide a conceptual
framework for classification that is quite different from the typologies and taxonomies that are
prevalent in organization theory. Instead of classifying organizations based on their structural
features (M-form, U-form, etc.), their industry (e.g., by SIC code), their strategy (prospector,
defender, etc.), or some other variable property, the grammatical metaphor suggests the
possibility of classifying organizational units according to their internal processes. There are
two main ways in which processes can be differentiated within the grammatical framework:
differences in the lexicon and differences in the constraints.

Differences in the lexicon of a process are easy to identify, because they would show up
immediately in the domain analysis as described above. For example, some customer
service processes can dispatch a technician to your location (e.g., to fix your computer),
while others cannot. Processes that have the ''dispatch''move in their lexicon could be called
''field service,''whereas processes without this move might be ''walk-in''or perhaps just ''hot
lines.''Similarly, in a retail sales operation, there may be a variety of lexical differences that
create whole new possibilities for interaction and service, as in the case of catalog stores that
allow customers to enter their orders directly using a computer terminal. Sequential
differences are also important, as Salancik and Leblebici (1988) illustrated in their restaurant
grammar. In a sit-down restaurant, the sequence is order, cook, serve, eat, pay, but in a
fastfood restaurant, it is usually cook, order, pay, serve, eat. The grammatical metaphor
makes classification relatively easy because it isolates differences within syntactic
constituents. For example, most retail stores have an overall pattern similar to a
supermarket. But in a clothing store the ''select item''constituent often involves a specialized
sequence required to try on the clothing. This syntactic specialization provides a formal way
to identify clothing stores as a kind of retail store, and to further differentiate kinds of clothing
stores, and so on.

7.5.2 Explaining the Variation and Distribution of Processes

As one starts to develop a taxonomy of processes, it becomes possible to start asking
questions about what explains the observed distribution of instances, a problem that parallels
the classic problem of explaining the distribution of organizational forms (Singh and
Lumsden 1990). Furthermore grammatical models make it is possible to predict
organizational forms that have not yet been observed (Salancik and Leblebici 1988). This is
a unique and potentially very interesting contribution that is not possible with existing ways of
modeling organizations. Given a set of unobserved forms, one might attempt to explain their
absence.

To explain the observed distribution of processes, there are several strategies that one can
adopt that roughly mirror the kinds of explanations used for organizational forms. For



example, economic effciency, institutional legitimacy, or resource availability might all be
used as explanatory constructs. To the extent that the processes under consideration here
are core business processes that transform inputs to outputs, economic effciency is clearly a
critical consideration. One interesting feature of the grammatical metaphor is that it suggests
the possibility of separating this consideration from the internal structure of the process itself.
To see why this is so, recall that the theory of the firm treats organizations as black boxes,
without much if any consideration for internal structure. Economic theories are largely
indifferent to the possible ways of organizing, except insofar as organizing effects effciency.
Likewise pragmatics is largely indifferent to syntax, except insofar as syntax effects the force
of an utterance. Excluding economic considerations from grammar does not exclude them
from organization theory, but it does simplify the theoretical work to be done by each. We
can begin to imagine piecing together a set of modular, interacting components that would
explain the existence of observed organizational forms. Consider, again, Salancik and
Leblebici's (1988) restaurant grammar. Their grammar explains the variety of possible
restaurants without any reference to whether one form is more economically viable. This
makes sense because these are logically separate questions. Implicitly Salancik and
Leblebici (1988) are relying on the modularity of their grammar. If we were to ask questions
concerning the competitiveness of the restaurants that their grammar generates, or whether
the food is tasty, we would need to look elsewhere because these questions are outside the
scope of the grammar.

7.5.3 Comparative Statics — Why Do Processes Differ?

The grammatical framework outlined here contains no endogenous explanation for change.
Following the traditions of structural linguistics, grammars are generally treated as
synchronic; they can be used as indicators of diachronic change but cannot be used to
explain such changes. Within the grammatical framework one can formulate a variety of
testable hypotheses concerning the effects of changing constraints on organizational
processes. For example, ''as constraint X changes, what new patterns or classes of action
are predicted?''This is the logic underlying Malone and Rockhart's (1991) analysis of the
effects of information technology on organizational processes. As the cost of this technology
goes down, it reduces certain kinds of coordination constraints. As a result new
organizational forms are possible.

The grammatical method suggested here is particularly well suited to the empirical
comparison of ''discrete structural alternatives''(Williamson 1991) as they are actually
practiced. Williamson (1991) maps out the structural alternatives that economize on
transaction costs under various institutional regimes. While one can gain considerable insight
through the study of hypothetical or idealized contracts, Leblebici (1992) suggests that
differences in transactions under various institutional regimes can be conveniently expressed
by using grammatical models similar to the kind proposed here. In using these models, it
may be interesting to observe the sequential structure of various kinds of transactions within
markets, hierarchies, and hybrid forms, to see how they differ empirically. Does the lexicon or
sequence of moves in a market transaction differ from the sequence of moves in a hierarchy
or a hybrid form? What accounts for the differences or lack or differences? It would be quite
interesting, for example, if we learned that institutional structures have relatively little effect
on the configuration of transactions compared to technological or cultural considerations.

7.5.4 Design of Organizational Processes

On a more practical level, grammatical methods may offer insights into the design and
redesign of organizational processes (Malone et al. 1993). To the extent that syntactic
constituents can be identified that generalize across organizational settings, a grammar
provides a framework for generating and comparing alternatives. For a given syntactic
constituent (or covering term), it may be possible to substitute a functionally equivalent



alternative. By studying the syntax of a wide variety of processes, it may be possible to start
predicting which specific kinds of routines are more effective in various situations. Malone et
al. (1993) have initiated an effort to accumulate just such a Handbook of organizational
processes that would not only classify existing processes but help design new ones. A
closely related practical question confronting managers is how to measure the relative
performance of existing processes. While so-called benchmarking studies are widely used,
there is often little systematic basis for assessing the validity of the comparison. By using the
idea of syntactic constituents, persons interested in comparing parts of larger processes
should be able to gain a firmer point of reference on which to base comparisons.

 



 

7.6 Conclusion

The analysis presented here suggests that it is possible to construct rigorous, disconfirmable
process models using the grammatical metaphor. The particular advantage of such models
is that they suggest an explicit connection between structural features of the context and the
set of possible processes. In addition grammatical models make the layered quality of many
organizational processes explicit through the use of syntactic constituents. As a result
grammatical models provide a unique window into the relationship between institutional,
technological, coordination, and cultural structures and the details of organizational actions,
routines, and processes. The generative quality of grammatical models suggests the
possibility of predicting or designing new processes, as well. In short, the grammatical
metaphor seems to offer a great deal to organization theory.
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Part Overview

Now that we have seen the core theoretical concepts upon which the Process Handbook is
based, this section gives an overview of the various types of content that presently exist in the
Handbook.

Chapter 8, by Herman and Malone, provides an overview of the Process Hand-book's
contents. In a sense, this chapter is a ''guided tour''of what is present in the Handbook as of
this writing (July 2002). The chapter describes and gives examples of the three primary
elements that the Handbook contains today: (1) generic models of typical business activities,
(2) specific case examples of particular companies, and (3) classification frameworks.

The chapter also describes our rationales for the selection and structure of the content we
have included. For example, this chapter shows how we derived the basic MIT Business
Activity Model, in part, using a fundamental analysis of the basic coordination problems that
must be solved by most businesses.

The next part of this section includes chapters 9 and 10 with more detailed examples of
content in specific domains. Chapter 9 is excerpted from Wyner's Ph.D. thesis. It presents
several well-known approaches to business process redesign (e.g., Davenport 1993;
Hammer and Champy 1993). One interesting aspect of this chapter is the way it represents
and compares the previous approaches based on a careful textual analysis of the
documents that describe them.

Chapter 10 is an excerpt from Dellarocas'Ph.D. thesis, and it describes part of a detailed
taxonomy of the different types of dependencies that arise in software programs and the
different kinds of coordination mechanisms that can be used to manage them. In particular,
this chapter focuses on different types of resources and different mechanisms for managing
flow dependencies in software systems.

The last part of this section addresses the problem of how to create new content for the
Process Handbook. One promising approach to this problem is described in chapter 11, by



Crowston and Osborn. This chapter focuses on how to go into an organization and gather
the kind of information that is useful in creating descriptions for the Process Handbook.
These techniques are illustrated by a case example of a specific company. The example
shows that the same approaches to analyzing activities for description in the Process
Handbook can also give important insights about the organization that are of value in their
own right.
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Chapter 8: What Is in the Process Handbook?

George A. Herman,
Thomas W. Malone

8.1 Introduction

What kinds of things are included in the Process Handbook? How are they organized? And
why did we choose to organize them in this way? This chapter gives our answers to these
questions.

In developing content for the Process Handbook so far, our primary goal has been to
demonstrate that the long-term vision for the project is feasible. That is, we have tried to
demonstrate that our basic approach can be used to develop a comprehensive framework
for organizing large amounts of useful knowledge about business.

In order to achieve these goals, we have focused on creating three primary kinds of entries in
the Handbook: (1) generic models of typical business activities (e.g., buying, making, and
selling) that occur in many different businesses, (2) specific case examples of interesting
things particular companies have done, and (3) frameworks for classifying all this
knowledge.

The chapter begins with an overview of the kinds of things that are included, the number of
entries of each type, and a description of a sample entry. Then it describes each of the major
types of content in more detail: generic models of business activities, specific case examples,
and frameworks for classifying activities. Finally, it briefly describes several other kinds of
things (e.g., resources and exceptions) that are not themselves activities, but that are
represented in the Process Handbook.

 



 

8.2 Overview of the Process Handbook Contents

Table 8.1 summarizes the number of entries of different types that were included in the
Process Handbook at MIT as of July 2002. Of course, there is an infinite amount of
knowledge about business that could, in principle, be included in a repository like ours. In a
sense, we have just begun to scratch the surface of what is possible in terms of organizing
business content in this way. But we believe that the work we have done so far has achieved
our initial goals. That is, so far we have demonstrated the potential of this approach to
comprehensively organize large amounts of useful knowledge about business in a richly
interconnected, consistent, and powerful way.

Different Versions of the Process Handbook There is no reason why there cannot be
multiple versions of repositories like the Process Handbook. For example, as of this writing
(July 2002), we have two such versions at MIT: the ''research''version of the

Table 8.1: Summary of contents of the MIT Process Handbook (July 2002)

Type of entry Number
of entries

Example entries

Activities    

Generic business activity models    

MIT Business Activity Model 381 Buy, Make, Sell

MIT Business Models Archetypes 30 Produce as a Creator, Produce
as a Broker

Comprehensive business
process models developed
elsewhere

689 International Benchmarking
Clearinghouse's Process
Classification Framework

Coordination processes 300 Manage by market with bidding

Subtotal 1400  

Case examples    

Supply chain 100 Balance supply chain resources
with requirements {Honda}

Hiring 50 Select human resources using
agent software {Humana}

e-Business examples 420 Distribute books via electronic
store {Amazon}

Subtotal 570  

Classification structure    

Generic verbs and other activity
categories

3252 Create, Modify, Preserve,
Destroy, . . . , Develop, Make
product, Provide service

Total activities 5232  

Other kinds of entries    

Dependencies 73 Flow of information



Resources 163 Human agent, software agent,
location

Conceptual frameworks for
specific research projects

   

Exceptions 260 Agent unavailable, resource
shortfall

Systems dynamics elements 200 Goal-gap molecule, backlog
molecule

Total nonactivity entries 696  

Total entries 5928  

Process Handbook, and the ''eBusiness Process Handbook''(ePH). The numbers
summarized in table 8.1 are for the research version of the Handbook. This version is where
we first introduce experimental new content, and it includes some content that we expect to
be of interest primarily to other researchers. This version also uses the original user interface
developed in our research project at MIT.

The eBusiness Process Handbook includes a subset of the content in the research version
that we expect to be of interest to a broader audience including business school students and
managers. This version uses the simpler-to-understand user interface from the commercial
software product developed by Phios Corporation under license from MIT. The screen
images included in this chapter come from this version of the Process Handbook (except
those from the research version where noted). Both of these versions are currently available
to the public over the Web at http://ccs.mit.edu/ph.
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8.3 A Sample Entry in the Process Handbook

Before describing the different types of entries in more detail, it is useful to see a specific
example of what a Process Handbook entry looks like. Figure 8.1 shows an example of one
such entry: the generic activity called 'Sell'.

Figure 8.1: Screen image of a sample entry in the Process Handbook

Description In addition to its name ('Sell') the first important part of this entry to notice is the
description (labeled ''Description of Sell''). In this case the description is very short: only a few
sentences giving a very general definition of selling and some observations about how it
relates to buying.

In other cases, especially in the case examples, descriptions may be many paragraphs long.
In general, descriptions can include any kind of information the author of an entry thinks will
be useful or interesting to readers: definitions, comments, figures, sources for further
information, links to other entries, or links to other Web pages.

Parts The second important element of the sample entry is the list of its parts (''Parts of
'Sell'''). In this case the entry shows seven parts (or subactivities) of 'Sell': 'Identify potential
customers', 'Identify potential customers'needs', 'Inform potential customers', 'Obtain order',
'Deliver product or service', 'Receive payment', and 'Manage customer relationships'.

The point of view embodied in this entry is that these activities constitute one possible
representation of the ''deep structure''of selling. That is, almost all ways (specializations) of
selling must somehow perform these basic activities. As we will see later, each of these parts
can in turn include subparts that include subparts. In principle, there is no limit to the number
of levels of subparts that can be included. In practice, the maximum number of levels
included anywhere in the Handbook today is ten.

Properties The third element of the 'Sell'activity shown in the figure is a list of its properties
(labeled ''Properties of Sell''). In this case the only property shown is the date this entry was
last modified. However, the authors of entries can define properties to systematically store
any other kind of information they want: time required to do the activity, cost of doing the
activity, location of the activity, and so on.

Related Processes One unique aspect of the Process Handbook is the way it automatically
maintains an extensive network of relationships among different entries. For instance, if you



were to select the link called ''Related processes''near the top left of figure 8.1, you would
see a list of processes that are related to 'Sell'. This list includes three parts, excerpts of
which are shown in figures 8.2a, 8.2b, and 8.2c.

Specializations Figure 8.2 shows some of the different ways 'Sell'can be done, that is, its
specializations. For example, this list includes possibilities like 'Sell via store', 'Sell via face-to-
face sales', and 'Sell via other direct marketing'. Many of these entries, in turn, have further
specializations of their own representing even more specialized ways of doing things. For
example, 'Sell via store'has further specializations like 'Sell via physical store'and 'Sell via
electronic store'. These further specializations are not shown in this figure. To see them, you
could click on 'Sell via store'and then look at its ''Related processes.''There is no limit, in
principle, to the number of levels of specialization that can be represented in the Handbook.
In some cases today, the Handbook includes up to 18 levels of increasingly specialized
activities.

Bundles Notice that there are many different ''kinds''of specializations shown in the list in
figure 8.2a. Some of the specializations, for instance, focus on how something is sold; others
focus on what is sold. Rather than just lumping all these different kinds of specializations into
a single undifferentiated list, we separate them into categories (like 'Sell how?'and 'Sell
what?'). We call these categories bundles.

A ''bundle''in the Process Handbook is simply a group of related specializations.[1] In general,
we have found that it is often very useful to create bundles based on the basic questions you
can ask about any activity: how? what? who? when? where? and why? For most activities in
the Handbook, some subset of these questions provides a systematic and logical way of
grouping the different specializations that appear.

In addition we have adopted the convention of using two other kinds of bundles to group
particular kinds of entries: example bundles and view bundles. Example bundles are simply
groups of specific case examples. It is often useful to have a variety of different specific
cases grouped together.

We use view bundles to group specializations that do not represent different physical
activities in the real world, but simply a different way of viewing the same activities. Usually
these different views come from different sources. For instance, there is a bundle under
'Sell'called 'Sell-views'. This bundle includes several different models of the general selling
process. It includes, for example, parts of a model developed by the International
Benchmarking Clearinghouse, a model developed by the Supply Chain Council, and a
model from a well-known marketing textbook.

Uses  Figure 8.2b shows another set of activities related to Sell. This list shows all the other
activities in the Handbook where the 'Sell'activity is used as a part of another activity. For
activities like 'Sell', which are used in many different places, this list can be very long.

Generalizations Figure 8.2c shows the last set of ''Related processes''for 'Sell'. In this case
the activities are other processes that are ''like'''Sell'because they are generalizations of
'Sell', or they are other specializations of these generalizations. If we say that a specialization
of an activity is like its ''child,''then this list shows part of the ''family tree''of Sell: its
''siblings,''''ancestors,''''aunts,''''uncles,''and ''cousins.''

(a)



 

(b)

 

(c)

Figure 8.2: Excerpt of the ''related processes''shown for 'Sell': Other ways 'Sell'can be
done

For instance, the figure shows that 'Sell'has two generalizations. The first one is 'Exchange',



and 'Sell'is included in the 'Exchange how?'bundle. This part of the figure represents the fact
that selling is one way of exchanging things. Other kinds of exchange shown in the figure
include bartering and buying.

The other generalization of 'Sell'is 'Provide', and 'Sell'is included in the 'Providewhy?'bundle.
This part of the figure represents the fact that selling is one way of providing things. Another
way, shown in the figure, is donating them, that is, giving them away for free.

Figure 8.3: Sample trade-off matrix for the 'Advertise how?'bundle

Of course, each of th,e generalizations of 'Sell'shown in this figure has generalizations of its
own. For instance, to see the generalizations of Exchange you could click on 'Exchange'and
then look at its ''Related processes.''

Trade-off Tables In some cases it is useful to compare the different specializations in a
bundle using what we call a trade-off table. For example, one of the parts of ''Sell''shown in
figure 8.1 is 'Inform potential customers', and one of the specializations of 'Inform potential
customers'(not shown in the figure) is 'Advertise'. 'Advertise'includes a bundle called
'Advertise how?'The trade-off table associated with this bundle is shown in figure 8.3.

The rows in a trade-off table are simply the different specializations in the bundle. For
example, here they are different ways of advertising, such as 'Advertise via internet',
'Advertise in newspaper', and 'Advertise on radio'. The columns of the trade-off table are
selected properties of the entries being compared. For example, here they include general
dimensions like costs, advantages, and disadvantages that can apply to almost any activity.
They can also include more specialized dimensions (e.g., percent of volume) that apply only
in specific situations. The values shown in the cells are simply the values of the selected
properties for each of the specializations. In some cases, the values shown in a trade-off
table represent very general comparisons (e.g., high, medium, and low). In other cases, they
may be specific values like the costs for advertising in different media shown in this figure.
The sources of values represented in a trade-off table can range from informal judgments by
experts to detailed systematic empirical studies. In the example shown here the data come
from an article in Advertising Age.

Other Information for an Entry In addition to the kinds of information already described,
there are several additional kinds of information available through the Process Handbook.
For example, as shown at the top of figure 8.1, any entry can be linked to an on-line
''threaded''discussion, and users can be automatically notified of changes made to
discussions in which they are interested. Users who click on ''Generate new ideas''see an
automatically generated list of potential new activities whose names are constructed by



combining words from the current activity name with words from the names of other activities
in the Handbook that are structurally similar to the current activity. (See chapter 13 for further
information about this capability.)

Users who click on the ''Find more information''link can perform automatic Web searches
using the name of the activity they are currently viewing. And users who click on ''View with
Compass Explorer (advanced)''can explore the information in the Process Handbook with a
user interface based on the compass metaphor introduced in chapter 1. For example, the
different specializations shown in figure 8.2a can also be viewed with this compass-based
interface as shown in figure 8.4. This user interface lets advanced users navigate more easily
over long ''distances''in the Process Handbook. For instance, this user interface lets you
expand and contract lists in outline format. If you want to see the further specializations of a
specialization, for example, you can just click on the boxes containing plus signs to expand
the next level of specializations.
[1]Even though, strictly speaking, bundles are not themselves activities, they are groups of
activities, and we have included them in the counts of activities in table 8.1.

 



 

8.4 Generic Models of Business Activities

The 'Sell'activity shown in the previous section is an example of the first major kind of content
in the Process Handbook: generic models of business activities. These generic models
represent important activities that occur—in some form—in lots of businesses.

Figure 8.4: Specializations of 'Sell'shown with the compass explorer user interface

The generic models can be used in a number of important ways. First, they can be used as a
framework for organizing and grouping many other kinds of business knowledge: case
examples, best practices, software tools, contact information for knowledgeable experts, or
on-line discussions for communities of practice (e.g., see chapters 15, 16, and 17). Second,
they can provide a useful starting point for modeling the specific details of a particular
company, process, or software module (e.g., see the chapters in section IV). Third, as a
systematic list of process possibilities, they can be used to stimulate new ideas about what is
possible that might not have occurred to you otherwise (e.g., see chapters 12 to 14).

The current version of the Process Handbook includes four primary kinds of generic models
of business activities: (1) the MIT Business Activity Model, (2) the MIT Business Model
Archetypes, (3) a collection of comprehensive business process models developed
elsewhere, and (4) models of basic coordination processes.

Figure 8.5: The top level of produce as a business in the MIT business activity model

 



 

8.5 The MIT Business Activity Model

One of the most important kinds of generic business knowledge included in the Process
Handbook is a high-level model of everything that goes on in a business. We call this model
the MIT Business Activity Model (BAM). The top level of the model is shown in figure 8.5. The
overall activity is called 'Produce as a business', and it includes as parts five basic activities
that occur—in some form—in most businesses: 'Buy', 'Make', 'Sell', 'Design', and 'Manage'.

As shown in table 8.2, each of these top-level activities, in turn, has subparts. For example,
'Buy'includes parts like 'Identify own needs', 'Identify potential sources', and 'Select supplier'.
Notice that 'Make'does not include any subparts because the core ''making''activity of a
business can vary so widely in different companies and industries. For example, we were
unable to find useful subparts of 'Make'that would apply in industries as diverse as
manufacturing, consulting, leasing, and brokering. However, all the other activities and their
subparts appear to be quite general across almost all businesses—large and small, profit
and nonprofit—in all industries. To achieve this goal, we have tried to use terms and
breakdowns that are generic, enduring, and fundamental, rather than purely arbitrary,
current, or industry specific. In other words, we have tried to represent a view of the ''deep
structure''of business.

In addition to this very generic model, the MIT Business Activity Model also includes a
specialization of 'Produce as a business'that is called 'Produce as a typical business'. This
model is intended to represent a more detailed view of the things that go on in most large
companies, but that might not occur, for instance, in a small grocery store. Our intention here
is to still be quite generic, but to focus on activities that are common in, for example, typical
large manufacturing companies.

Table 8.2: Lower levels of 'Produce as a business'in the MIT Business Activity
Model

Buy

Identify own needsa.

Identify potential sourcesb.

Select supplierc.

Place orderd.

Receivee.

Payf.

Manage suppliers

Evaluate suppliersi.

Manage supplier policiesii.

Manage supplier relationshipsiii.

g.

1.

Make2.

Sell

a.

b.

3.



2.

Identify potential customersa.

Identify potential customers'needsb.

Inform potential customersc.

Obtain orderd.

Deliver product or servicee.

Receive paymentf.

Manage customer relationshipsg.

3.

Design

Identify needs or requirementsa.

Identify product capabilitiesb.

Develop product and process design

Develop the characteristics of a product/servicei.

Develop the process of producing a product/serviceii.

c.

4.

Manage

Develop strategya.

Manage resources by type of resource

Manage human resourcesi.

Manage physical resourcesii.

Manage financial resourcesiii.

Manage information resourcesiv.

b.

Manage learning and changec.

Manage other external relationships

Manage regulatory relationships

Manage tax and duty compliance1.

Manage legal compliance2.

i.

Manage competitor relationshipsii.

Manage societal relationshipsiii.

Manage environmental relationshipsiv.

Manage stakeholder relationshipsv.

d.

5.



Table 8.3: Second level of 'Produce as a typical business'in the MIT Business
Activity Model

Buy

(subparts same as in table 8.2)a.

1.

Make2.

Sell

(subparts same as in table 8.2)a.

3.

Design as a typical business

Determine customer needs and wantsa.

Develop offering concept {Typical product design process}b.

Develop design with subcomponentsc.

Modify designd.

4.

Manage a typical business

Develop business strategy and organizationa.

Manage physical resources in a businessb.

Manage human resources in a businessc.

Manage information in a businessd.

Manage financial resources in a businesse.

Manage learning and change in a businessf.

Manage other external relationshipsg.

5.

The models of 'Buy', 'Make', and 'Sell'are identical here to those in 'Produce as a business'.
But 'Design'and 'Manage'are represented by more specialized activities and a more detailed
breakdown of subparts. The first level of these breakdowns is shown in table 8.3, but each of
the subparts of 'Design'and 'Manage'shown in table 8.3 also has an even more detailed
breakdown. In most cases, the more detailed breakdown includes one or two additional
levels; in a few, it includes three.

8.5.1 Desirable Characteristics of the MIT Business Activity
Model

Of course, there are many ways to categorize and organize business activities. We certainly
don't believe that our approach is the only way, or even the only good way, of doing so. But
our approach does have at least three desirable and important characteristics: it is
comprehensive,itis intuitively appealing, and it is theoretically based.

Comprehensive In developing the MIT Business Activity Model, we drew upon the informal
knowledge of dozens of MIT students, faculty, researchers, and corporate sponsors. We
have also repeatedly tested the model by using it to classify new case examples, student



projects, and other process models. Many of these examples are no longer included in the
general versions of the Process Handbook because we did not feel they were of general
interest, but they contributed to our experience in refining the model.

In addition, as described later in section 8.7, we sought out, analyzed, and explicitly cross-
referenced a number of other comprehensive models of business processes. Based on all
this experience, we believe that all the important things that go on in business can be
''naturally''classified into one of the subparts of the MIT BAM. While such judgments are
necessarily somewhat subjective, we feel that all our experience taken together provides
substantial evidence for the claim that the MIT BAM is a comprehensive model of business
activities.

Intuitively Appealing A judgment that something is ''intuitively appealing''is also subjective,
and we have not systematically tested people's reactions to the categories used in the MIT
BAM. However, our impression after working with dozens of students, researchers, and
others is that many people find the terminology and breakdown of activities in the model to
be logical and understandable.

In addition to being understandable, the structure of the model has other intuitively appealing
features. For instance, as shown in figure 8.6, there is a ''pleasing''symmetry between the
breakdown of activities in the 'Buy'activity and those in the 'Sell'activity. Each of the
subactivities in buying and selling has a natural mapping to a corresponding subactivity in the
opposite activity. There is a close relationship, for example, between the buyers'activity of
placing an order and the sellers'activity of obtaining an order.

Figure 8.6: The subparts of 'Buy'and 'Sell'in the MIT business activity model have an
intuitive correspondence with each other

Many business process models are based primarily on descriptions of current processes in
typical companies, and they therefore give more emphasis to activities that currently require
more resources or attention. In the same spirit we have tried to create breakdowns of
activities that emphasize important activities. But, unlike many process models, we have also
tried to create activity breakdowns that are compelling from a purely logical point of view. For
instance, we believe that from a purely logical point of view, it is hard to imagine how anyone
could buy or sell anything without somehow doing the activities shown in figure 8.6. This
therefore gives us more confidence that we have truly captured a view of the ''deep
structure''of these activities.

Theoretically Based Another appealing property of the MIT Business Activity Model is that it
is based on a theoretical analysis of business from the perspective of coordination theory. In
the next section we show how the top-level model (shown in figure 8.5) can be ''derived''step
by step from a consideration of the basic dependencies that need to be managed in a
business.



8.5.2 Deriving the MIT Business Activity Model Using
Coordination Theory

To ''derive''the MIT Business Activity Model, we begin with one of the simplest possible views
of the activities in a business (shown in figure 8.7). We start by assuming that the business
consists of only one activity (called 'Make'), and that this activity involves producing whatever
product or service the business sells to a Customer. We also assume that the 'Make'activity
uses some inputs from another activity (which we call a Supplier). Using the terminology of
coordination theory, we can say that this figure includes two dependencies: a
''flow''dependency from the Supplier to the 'Make'activity, and a ''flow''dependency from the
'Make'activity to the Customer.

Coordinating the Flow Dependencies: Buy and Sell From the perspective of coordination
theory, whenever there is a dependency between two activities there is an opportunity (often
a need) to manage it. In this case, the two flow dependencies shown in figure 8.7 need to be
managed. In the case of a business, we can call the coordination activities that manage
these two dependencies 'Buy'and 'Sell', respectively. That is, we can view the buying activity
as a way of managing the flow of inputs needed to make whatever the business makes, and
we can view the selling activity as a way of managing the flow to the customer of whatever
the business makes. Adding these two coordination activities results in the diagram shown in
figure 8.8.

Figure 8.7: One of the simplest possible views of the activities in a business

Figure 8.8: 'Buy'and 'Sell'activities are needed to manage the input flows and the output
flows, respectively

It is important to realize, by the way, that the arrows shown in these figures should not
necessarily be interpreted as simple one-way flows. In managing the flow dependencies
from 'Make'to the Customer, for example, the 'Sell'activity may involve a very complex
pattern of two-way communication and flows of products and money. All these lower-level
flows, however, are summarized in the diagram by the one-directional arrows that represent
the overall flow of the product from the 'Make'activity to the Customer.

Coordinating the Fit Dependency: Design Many typical process diagrams are flowcharts
that show only the flow dependencies in a process. Coordination theory identifies two other
types of dependency: fit and sharing.A fit dependency occurs when more than one supplier
produces a single resource. In this case there is a fit dependency among all the different
activities involved in producing the product or service that is sold to the customer: the results
of the different subparts of the 'Make'activity need to fit together, the 'Buy'activity needs to buy
inputs that will work together, and the 'Sell'activity needs to be selling what is actually being
made using these inputs.

A business needs to somehow manage this complex fit dependency, and we call the activity
that does so 'Design'. Figure 8.9 shows the results of adding this activity to the diagram.



Figure 8.9: 'Design'activity is needed to manage the fit dependency between the
different activities that collectively produce the product a customer buys.

Coordinating the Sharing Dependencies: Manage From a coordination perspective there
is one more type of critical dependency between the activities shown in figure 8.9. That is the
sharing dependencies among all the activities. The activities shown in figure 8.9 have to
share resources like money, people, information, and physical facilities. Any business needs
to somehow manage all these sharing dependencies, and we call the coordination activity
that does so 'Manage'. Figure 8.10 shows the results of adding this final key activity to our
basic business activity model.

Figure 8.10: 'Manage'activity is needed to manage the sharing dependencies among all
the other activities.

Deriving the MIT Business Activity Model: Summary This, then, is the derivation of the
MIT Business Activity Model from a coordination perspective: the 'Buy', 'Make', and
'Sell'activities manage the flow dependencies in the company's supply chain. The
'Design'activity manages the fit dependencies among the activities that create different parts
of the company's product. And the 'Manage'activity manages the dependencies for sharing
key resources among all the other activities in the company.

Of course, the MIT Business Activity Model is not the only way to categorize the activities in a
business, but the fact that the MIT model can be theoretically derived from the principles of
coordination theory provides one additional piece of evidence for its desirability.

 



 

8.6 MIT Business Model Archetypes

In addition to the MIT Business Activity Model, the Process Handbook also includes a set of
six different business model archetypes that companies can use. Our hypothesis is that all
the different business models companies use can be naturally classified into one of these six
types or some combination of them. We call these six models the MIT Business Model
Archetypes (for a more detailed description of these models and how they were derived, see
Herman, Malone, and Weill 2003).

We define a business model as consisting of two parts: (1) what a business does and (2) how
the business makes money from its activities. For example, the traditional part of General
Motors'business model is to make and sell automobiles and to make money from the
difference between the costs of making the cars and their sales prices. We call this business
model a Creator. Walmart, by contrast, distributes products they don't make, and makes
money from the difference between what they pay for the products and what they sell them
for. We call this business model a Distributor.

Figure 8.11 shows the six different models classified according to the two dimensions that
distinguish them: what is sold and how much the inputs are transformed. The definitions of
the different models are as follows:

What is
sold?

How much transformation of input?

Lot Little None

Ownership
of asset

Creator Distributor Broker

Use of
asset

"Landlord"

Human
effort

Contractor

Human
attention

"Attractor"

Figure 8.11: MIT Business Models Archetypes (from Herman, Malone, and Weill 2003).
''Asset''can be physical, informational, or financial. ''None''means broker never takes
ownership of what is sold.

A Creator buys raw materials or components from suppliers and transforms or
assembles them to create a product (or service) sold to buyers. The product or
service may be physical, informational or financial (e.g., an insurance policy). This
business model is common in industries like manufacturing and construction.

1.

A Distributor buys a product and resells the product to someone else. The Distributor
may provide additional value by, for example, transporting or repackaging the product,
or providing customer service. This business model is common in wholesale and retail
trade.

2.

A Broker facilitates sales by matching buyers and sellers. A Broker may also provide
advice to either or both parties. Unlike a Distributor, a Broker does not take
possession of the product being sold. The Broker receives a fee from the buyer, the
seller, or both. Often this fee is in the form of a commission based on a percentage of
the sale price or on volume. This business model is common in a number of

3.

4.



industries, such as real estate brokers, stockbrokers, and insurance brokers.

A Landlord sells the right to use, but not own, an asset. The asset may be a location
(e.g., a hotel room, apartment, or amusement park), an event (e.g., a concert), or
equipment (e.g., a rental car or recording studio). Depending on the kind of asset, the
payments by customers may be called ''rent,''''lease,''''admission,''or other similar
terms. This business model is common in industries like real estate rental and
leasing, accommodation, arts, entertainment, and recreation.

4.

A Contractor sells a service provided primarily by people, such as consulting,
construction, education, personal care, and healthcare. Payment is in the form of a
fee for service, often (but not always) based on the amount of time the service
requires. Most services involve a combination of both people and nonhuman assets,
but if the service being sold involves more nonhuman assets than people, the
business model is classified as a Landlord rather than a Contractor.

5.

An Attractor attracts people's attention by providing things like television programs or
web content and then ''sells''that attention to advertisers. The attractor may devote
significant effort to creating or distributing the things that attract attention, but their
source of revenue is from the advertisers who pay to deliver a message to the
audience that is attracted. This business model is common in radio and television
broadcasting, some forms of publishing, and some Internet-based businesses.

Of course, many real businesses include some combination of these six business
model archetypes, but our experience so far suggests that these models can be used
to classify all the different combinations that exist in reality. In a related project (see
Herman, Malone, and Weill 2003), we have so far classified over 500 companies
(including over 450 of the Fortune 500) according to the combinations they use of
these six business model archetypes. In addition the Process Handbook includes over
200 innovative ebusiness case examples classified according to these categories.

6.

These different business models are included in the Process Handbook as specializations of
'Produce as a business'in a bundle called 'Produce with what business model?'

 



 

8.7 Comprehensive Models of Business Processes
Developed Elsewhere

In addition to the MIT Business Activity Model and Business Model Archetypes, the Process
Handbook also includes a number of other models of business processes developed by
other organizations. We have certainly not included all such models, but we believe we have
included a representative sample of some of the most comprehensive and well-known
alternative models of business processes.

Each of these other models represents a different way of grouping some (or all) of the same
physical activities as those included in 'Produce as a business'. Therefore most of these
other models are classified as specializations of 'Produce as a business'in a ''view''bundle
(called 'Produce as a business-views').

In addition we have systematically and explicitly cross-referenced several of these other
models to the MIT Business Activity Model (BAM) by categorizing all their subparts as
specializations of some subpart of the MIT BAM. For example, the International
Benchmarking Clearinghouse's Process Classification Framework includes an activity called
'Understand markets and customers'. We have classified this activity in the Process
Handbook as a specialization of 'Identify potential customers'needs', one of the subparts of
'Sell'in the MIT BAM.

By this approach our framework is able to accommodate many different, even contradictory,
views of the same basic activities. In contrast to our approach, most previous approaches to
classifying business processes are much more rigid, requiring people to use only a single
view of the activities. We believe this flexibility of our approach is another one of its
advantages.

8.7.1 International Benchmarking Clearinghouse Process
Classification Framework

The first, and most comprehensive, alternative model included in the Process Handbook is
the Process Classification Framework (PCF) developed by the International Benchmarking
Clearinghouse (IBC, part of the American Productivity and Quality Center). The IBC worked
with Arthur Andersen and over 80 other organizations to develop this framework in the early
1990s.

The top level of the PCF framework includes 13 activities, such as 'Understand markets and
customers', 'Develop vision and strategy', and 'Design products and services'. Most of these
activities are broken down into two levels of subparts, and a few go down three levels. For
instance, the lowest level under 'Understand markets and customers'includes activities like
'Conduct customer interviews', and 'Conduct focus groups'. The PCF includes a total of 271
activities in all.

8.7.2 Supply Chain Operations Reference (SCOR) Model

The Supply Chain Council, a trade association of over 400 companies interested in supply
chain management (see www.supply-chain.org) developed a model called the Supply Chain
Operations Reference (SCOR) model. The top level of this model includes four key activities
to represent a company's supply chain: 'Plan', 'Source', 'Make', and 'Deliver'.[2] These
activities are broken down into subparts, in most cases down to two additional levels. For
instance, the 'Source'activity, includes a subpart called 'Source stocked materials', which, in
turn, includes subparts called 'Schedule material deliveries', and 'Receive and verify



material'. The SCOR model also includes standard process definitions, standard
terminology, standard metrics, supply chain best practices, and references to enabling
information technology. This model includes a total of 215 activities.

8.7.3 Lean Enterprise Manufacturing Model

The Lean Enterprise Manufacturing model was developed by the Lean Aircraft Initiative
consortium led by MIT. The portion of the model included in the Process Handbook focuses
on the ''enabling practices''and metrics that help to promote a ''lean''approach to product and
process design and manufacture. For instance, it includes high-level activities like 'Identify
and optimize enterprise flow'and 'Nurture a learning environment'. The Process Handbook
includes a total of 72 activities from this model.

8.7.4 European Foundation for Quality Management (EFQM)
Model

This model was developed by the European Federation for Quality Management to help
organizations assess their progress along a path to excellence. The portion of the model
included in the Process Handbook includes activities in five categories: leadership, people
management, policy and strategy, resources, and processes. For instance, People
management includes activities like 'Plan resources', 'Develop resources', and 'Review
performance'. This model includes 30 activities in the Process Handbook.

8.7.5 Xerox Management Model

As part of their extensive quality improvement program Xerox Corporation developed a
comprehensive model of their operational process, and this model is included in the Process
Handbook. For instance, it includes a high-level activity called 'Time to market'representing
the design process and another one called 'Integrated Supply Chain'representing the
manufacturing and related supply chain activities. Each of these high-level activities is broken
down to one more level. For example, 'Integrated Supply Chain'includes subparts like
'Acquire materials'and 'Manage inventories'. This model includes 51 activities in the Process
Handbook.

8.7.6 Textbook Models

In addition to models developed by other organizations, we have also included representative
models from two well-known business school textbooks in marketing and product design.

The marketing textbook we used is Marketing Management by Philip Kotler. We included
Kotler's view of marketing as an alternative ''view''(or specialization) of 'Sell'. It includes top-
level activities like 'Analyze markets'and 'Implement market strategy'. 'Analyze markets', in
turn, includes subparts like 'Analyze market environment'and 'Analyze industry/competitors'.
A total of 17 activities are included in the Process Handbook for this activity.

The product design textbook we used was New Product Design by Steven Eppinger and Karl
Ulrich. We used this textbook to create a new specialization of the 'Design'activity from the
MIT Business Activity Model. This new specialization is called 'Design product
{Ulrich/Eppinger by phase}'and is classified in a bundle called 'Design-views'. This view
focuses on the design of engineered, discrete manufactured products. The five top-level
activities in this model are 'Concept development', 'System level design', 'Detail design',
'Testing and refinement', and 'Production ramp-up'. Most of these activities have one to three
further levels of subparts. For instance, 'Concept development'includes subparts like 'Identify
customer needs'and 'Establish target product specifications'. This model includes a total of
74 activities in the Process Handbook.



Of course, there are vast numbers of other business textbooks that could, in principle, be
included in a repository like this one. We selected these two examples to illustrate the
possibilities, in part because they both included explicit frameworks that could be easily
interpreted as activity models.
[2]The MIT Process Handbook includes version 3.0 of the SCOR model. As of this writing, a
later version (5.0) is now available from the Supply Chain Council and has been included in
the Phios version of the Process Handbook. This later version adds another activity, 'Return',
at the top level of the model.

 



 

8.8 Models of Coordination Processes

The final type of generic business activity model in the Process Handbook includes models
of different kinds of coordination processes. Since we define coordination as the
''management of dependencies among activities''(see chapter 1) the ''root''of all this
knowledge is an activity called 'Manage dependency'.

The three basic types of dependencies (described in chapter 1) give rise to the first three
specializations of the 'Manage dependency'activity: 'Manage flow', 'Manage sharing', and
'Manage fit'. In addition the three subparts of managing flow dependencies give rise to three
more specializations of 'Manage dependency'. They are called 'Manage prerequisite',
'Manage accessibility', and 'Manage usability'.

Each of these six types of coordination, in turn, has a number of ''bundles''which contain
further specializations of these generic coordination processes. For instance, 'Manage
sharing'includes bundles like 'How is sharing managed?''What kind of resource is being
shared?'and 'When is sharing managed?'Within these bundles are various kinds of sharing
mechanisms such as 'Manage by manager decision', 'Manage by market', and 'Manage by
chance {lottery}'.

In some cases these generic coordination mechanisms even include further specializations
that describe specific examples. For example, 'Manage by market'includes a specialization
called 'Manage recruiter time by market bidding'that was added as part of our project about
new ways to do hiring (described in chapters 1 and 12).

Much more information about coordination theory is included in section II and detailed
descriptions of some of the specific kinds of coordination knowledge included in the
handbook are provided in chapter 3.

 



 

8.9 Case Examples

One of the most important uses of repositories like the Process Handbook is to help people
organize and share examples of innovative or otherwise interesting business case examples.
For instance, these repositories can include ''best practices,''''typical practices,''and even
instructive examples of ''bad practices.''They can include cases for benchmarking, for
business school classes, and for consulting firm practice development. Organizing case
examples in this way can help you find relevant examples more easily than with, for example,
keyword searches, and it can help you easily find and compare examples that have deep
similarities, even if the words used to describe the cases are very different.

To illustrate these possibilities, the Process Handbook already includes hundreds of case
examples of business activities in specific companies. These case examples were developed
by students, faculty, and staff at the MIT Sloan School of Management; students at the
London Business School; and staff at Phios Corporation. In most cases these examples
were based on previously published descriptions from business journals, magazines, and
newspapers. In a few cases the examples were based on original field research in the
companies described.

Most of the case examples currently included in the Process Handbook fall into one of three
main categories:

Supply chain examples. The Process Handbook currently includes over 100 case
examples of interesting or innovative supply chain practices. For instance, it includes
examples like Cisco's use of their corporate intranet for electronic purchasing and
Toyota's use of narrowing sets of design possibilities to enhance concurrent
engineering.

1.

Hiring examples. As part of our project to develop innovative ideas for hiring
(described in chapters 1, 12, and 13), we added a number of case examples of hiring
practices used in different companies. For example, the Process Handbook includes
descriptions of Cisco's use of focus groups of current employees to help target on-line
recruiting ads, and Marriott's use of automated telephone screening of job candidates.
There are approximately 50 of these case examples.

2.

Innovative eBusiness examples. During the peak of the eBusiness boom, we entered
over 400 case examples of innovative uses of eBusiness concepts. These examples
include all 70 finalists in the MIT eBusiness Awards program for two years, as well as
a number of other examples from other sources. For instance, the Process Handbook
includes descriptions of Amazon.com's electronic book distribution and eBay's
electronic auctions. To illustrate what these examples look like, an excerpt of the
Amazon.com example is shown in figure 8.12.

3.



Figure 8.12: Sample case example describing the way Amazon.com distributes
books via the Internet

These eBusiness examples are all organized into the business model categories
above (Creator, Distributor, etc.) and thus provide some interesting comparisons
across industries. For example, this organization puts Mattel and Dell close together
as Creators that allow their end customers to configure their products, even though
Barbie dolls and computers are in very different industries.

8.9.1 Updating the Database of Case Examples

We believe that most of the current content of the Process Handbook (e.g., the generic
business activity models and the classification structure) has enduring value over long
periods of time. It is unlikely, for example, that significant new forms of business will be
invented that do not involve some form of buying and selling.

But other parts of the Process Handbook, especially the case examples, have much shorter
''half-lives''of usefulness. A number of the companies whose eBusiness case examples we
entered a few years ago, for instance, have already gone out of business. In some of these
companies there is still value in seeing the basic ideas and, perhaps, the lessons to be
learned from their failures. But the value of a topical database of case examples depends
critically on it being continually updated.

 



 

8.10 Classification Structure for Activities

It would be possible to use the generic kinds of business knowledge and the case examples
we have already discussed without any further categorization. If one wants to find knowledge
about a particular business function, for example, one could just find that business function in
the MIT Business Activity Model and then look at its specializations. Or one could do
conventional searches of the knowledge base using names, keywords, or other dimensions
like date, company, industry, and so forth.

It is also useful for human editors to be able to manually group Process Handbook entries in
various ways to help readers find the things they want. We call such linkages navigation
links, and the Handbook includes a number of them. For instance, there is a group of links to
''eBusiness Case Examples''that occur in various parts of the Handbook, and there are other
manually created links to examples of various business functions (e.g., Procurement, Supply
Chain Management, and Marketing). All these conventional ways of organizing and
searching the Process Handbook are certainly useful.

But some of the most powerful and interesting capabilities of the Process Handbook require
more extensive use of the specialization hierarchy. For example, finding other entries that are
''like''a given entry (as shown in figure 8.2c) or finding ''distant analogies''(as described in
chapter 12) depends on having the entries classified in a ''family tree''of increasingly general
types of activities. These capabilities of the Process Handbook work only on activities that are
classified in useful ways in the specialization hierarchy. Therefore, to take full advantage of
these capabilities, it is desirable to have as many entries as possible classified in the
specialization hierarchy.

To make this as easy as possible, the Process Handbook includes an extensive classification
structure for the specialization hierarchy. This classification structure (including over 3,000
activities) provides ''logical''places for you to classify any business activity whatsoever. In fact,
at its most general levels, this structure can even be used to classify any activities, whether or
not they involve business.

To see how this structure works, let us start with an example of the 'Sell'activity we saw in
section 8.3. Figure 8.13 shows all the direct and indirect generalizations of this activity (all its
''ancestors''in the specialization hierarchy). This figure uses the Compass Explorer view,
which shows more information than the standard view in figure 8.2c, and shows the
information in a different format.



Figure 8.13: Generalizations of 'Sell'(shown in the compass explorer view). The
''Ancestors''part of the figure shows the direct and indirect generalizations of 'Sell'. The
''Family tree''part of the figure also shows some of the other relatives of 'Sell'in the
specialization hierarchy.

Since 'Sell'has two generalizations ('Exchange'and 'Provide'), two complete generalization
paths for 'Sell'are shown in the ''Ancestors''part of the figure. The first path, for example,
shows that 'Sell'is a specialization of 'Exchange'(with 'Sell'being in the bundle called
'Exchange how?'). 'Exchange', in turn, is a specialization of 'Move', and 'Move'is a
specialization of 'Modify'(in the 'Modify how?'bundle). And, finally, 'Modify'is a specialization of
'Act'. 'Act'is the most general activity of all. All the activities in the entire Process Handbook
are either direct or indirect specializations of 'Act'.

But if 'Act'is the ''root''of all activities, what is the next level of specialization below 'Act'? Are
there hundreds of different kinds of activities at the next level? We have actually organized
the entire Process Handbook with only nine entries at the next level. We call all but one of
these entries ''generic verbs.''

8.10.1 The Generic Verbs

Figure 8.14 shows the next level of specializations of 'Act'. The first eight of these entries are
generic verbs: 'Create', 'Modify', 'Preserve', 'Destroy', 'Combine', 'Separate', 'Decide', and
'Manage'. The first four ('Create', 'Modify', 'Preserve', and 'Destroy') are actions that can
occur for any object. The next two ('Combine'and 'Separate') are actions that can occur
when multiple objects are involved. And the final two verbs ('Decide'and 'Manage') are
informational actions that could have been included under the earlier verbs but that are given
special emphasis here because of their importance in business. The last entry
'Unclassified'is simply a place to put entries that the author doesn't want to classify further (or
which will be further classified at a later time). All these entries have many more levels of
specialization. To illustrate what these further levels of specialization look like, the next two
levels of specialization under the first entry, 'Create', are shown expanded in the figure.

Figure 8.14: First-level specializations of 'Act'(shown in the compass explorer view). The
next two levels of specialization under 'Create'are also shown here.

8.10.2 Desirable Characteristics of the Generic Verbs

Where did these eight generic verbs come from? Is this the only way to organize a repository



like ours? Why should things be organized this way? We don't think that this is the only
possible way to organize a repository like ours, but we believe this organizational structure
has the same desirable characteristics we discussed earlier in section 8.5.1: it is
comprehensive,itis intuitively appealing, and it is theoretically based.

Perhaps the best way to see how the framework has these characteristics is to consider the
process by which we developed the framework. We began by searching widely in the
literature of linguistics, philosophy, library science, computer science, and elsewhere for an
existing taxonomy of actions that we could use. We were unable to locate any existing
taxonomy that seemed suitable for our purposes: comprehensive, parsimonious, broadly
understandable, intuitively appealing, and potentially relevant to business.

We therefore embarked on the task of developing our own such taxonomy. Our first step was
to find a comprehensive list of actions that would need to be encompassed by our taxonomy.
To do that, Jintae Lee (a member of our project team) located and searched an extensive
on-line dictionary (more precisely, a ''lexical database'') called Wordnet that was developed
by cognitive scientist George Miller and others at Princeton University (see
http://www.cogsci.princeton.edu/~wn/). Lee analyzed the dictionary to find all the verbs that
did not have any generalizations (''hypernyms'') shown. This resulted in a list of about 100 to
200 verbs.

All the other verbs in the dictionary had generalizations, so they were all—directly or
indirectly—specializations of the verbs in this list. In a sense, then, this list of 100 to 200 verbs
subsumed all the verbs in the English language represented in this on-line dictionary.

We next took this list and reduced it further by removing all the verbs that seemed to us to be
direct specializations of other verbs already there. In other words, we removed words for
which we felt a generalization had incorrectly been omitted in the on-line dictionary.

Then we continued refining the list of verbs by grouping the remaining verbs into hierarchies
with more general verbs subsuming more specific ones. We did not insist, in these cases,
that the general verbs be strict generalizations for all the verbs grouped under them, but we
tried to make groupings for which there was at least a plausible, intuitive connection. For
example, we grouped all the following verbs under 'Create': 'Build', 'Develop', 'Perform',
'Calculate', 'Duplicate', 'Forecast'. All these verbs are, in some sense, ways of creating
things.

We continued in this way until we finally arrived at a hierarchical structure with the eight
generic verbs shown above as the top level of our hierarchy and the more specialized verbs
grouped hierarchically under them. As shown in figure 8.14, for example, the lower-level
verbs ('Build', 'Develop', 'Perform', etc.) are now included in the Process Handbook at
various levels of specialization below the highest-level generic verbs.

Of course, there was a substantial amount of subjective judgment in this grouping process.
Other reasonable people might certainly have made different choices about the details of
how to group specific verbs. Even in cases where a given action might be sensibly classified
in multiple ways, however, the value of the Process Handbook is not eliminated. You just get
the benefits of all the connections that are represented, and not of the ones that are not.

Overall, we feel that this structure provides an intuitive and logical way of grouping all
possible actions that can be described in the English language. It thus, of course, includes all
actions that can occur in business. We have now used this structure to classify thousands of
entries developed by dozens of people, and we believe that all this experience provides
substantial evidence that our theoretically based structure is comprehensive and intuitive.

8.10.3 Classifying All the Other Entries in the Process
Handbook

http://www.cogsci.princeton.edu/~wn/


To see how the generic verbs can be used to classify even the most detailed actions in
business, consider the specializations of 'Create'shown in figure 8.15a. The figure shows how
various views and case examples of negotiating contracts are all classified as ways of
''discussing''—which is in turn classified as a way of ''developing''which is itself classified as a
way of ''creating.''Figure 8.15b shows how Produce as a business is also a specialization of
'Create'through the bundle called 'Create-views'.

As figure 8.15 illustrates, we have, in general, tried to maintain a branching factor of about ' 
plus or minus 2''in the specialization hierarchy. This number comes from the psychological
study of the limits of human short-term memory[3], but we use it primarily as a rough
guideline for editing the Process Handbook. In general, also, we have tried to create logical
groupings at each level. We have tried, for example, to create groupings at each level that
include alternatives that seem ''comparable''to each other and that have roughly equal
importance. Wherever possible, we have tried to create groupings that constitute a mutually
exclusive and exhaustive partitioning of the possible specializations of that activity.

To visualize how all the elements of the Process Handbook are connected, recall the
metaphor of the Process Compass (as described in chapter 1). From any activity in the
repository, you can think about going in any of the four directions shown on the compass:
down to the parts of the activity, up to the activities of which this one is a part, right to the
specializations of this activity, and left to the generalizations of this activity.

Using this metaphor, you can think of all the actions in the Process Handbook as a vast,
interconnected web (see figure 8.16). The most general activity of all, 'Act', is at the far left
and the next level of generic verbs is just to the right of it. Then the links spread out into a
very complicated, tangled web of more and more specialized activities. This web includes,
not just the classification structure, but all the business activities represented in the Process
Handbook, all the way down, in principle, to even the most detailed things that go on in
business.

Along the top fringe of the web are the various specializations of 'Produce as a business'.
These entries are at the top because many other things are part of them, but they are not
part of anything else.

8.10.4 Naming Conventions for Activities

As you may have noticed in the figures so far, almost all of the activities in the Process
Handbook have names that begin with a verb. Most of the activities also include other
modifiers or objects as part of their names. Usually these additional parts of the name give
information about some dimension of the activity, such as how, who, when, and where.

Some of the activities also include a further description in {curly brackets} after the name.
We use these bracketed suffxes for several purposes: (1) to represent the names of specific
companies in case examples, (2) to give the source of models developed by other
organizations (e.g., the Supply Chain Council's SCOR model), and (3) to distinguish between
any other easily confused activities that would otherwise have the same name.

While we have not followed these naming conventions in every single case, we have used
them in all cases where we did not see some compelling reason to do otherwise. In general,
we have found that these naming conventions are useful for several reasons: First, they
result in lists of activities that seem consistent and comparable. Second, they emphasize the
action-oriented perspective that is embodied in a structure based on activities. Third, they
usually provide enough information in the names of activities shown in a list to allow one to
determine which activity to examine in detail.
[3]George A. Miller, The magical number seven, plus or minus two: Some limits on our
capacity for processing information, Psychological Review 63(1956): 81-97.



 



 

8.11 Other Kinds of Entries

While we have focused most of our effort on representing various business processes and
activities in the Process Handbook, the basic structure of the repository is general enough to
include any other kinds of entities authors and editors want to define. In this section we will
briefly review several other types of entries included in the Handbook.

8.11.1 Dependencies

As described in chapter 2, dependencies play a central role in coordination theory, and they
can be represented in the Process Handbook as shown in figure 8.17. The dependencies are
classified as specializations of the three basic dependency types: flow, fit, and sharing.

8.11.2 Resources

Resources are the inputs and outputs of a process. Resources define a dependency, in that
a dependency exists when a resource produced by one activity is consumed by another
activity.

The Process Handbook currently distinguishes two specific types of resources:

Actors—resources that perform activities. Actors can be people, organizations,
software agents, and so forth. The Process Handbook currently includes a limited
taxonomy of actors, including people, organizations, and software agents.

1.

Locations—places at which activities occurs. The current taxonomy of locations
includes physical locations and virtual (cyberspace) locations.

2.

8.11.3 Exceptions

Process models typically describe the ''normal''or expected flow of events. In reality,
however, there are often complications. During the enactment of a process, deviations from
the ideal sequence of events often occur. We call these deviations exceptions (Dellarocas,
Klein). As described in much more detail in chapters 14 and 16 of this volume, Dellarocas
and Klein have developed a taxonomy of exception types and the ways in which these
exceptions can be detected, anticipated, avoided, and/or resolved.

(a)Part of the specialization hierarchy below 
'Create'going all the way down to specific views and case 
examples of negotiating contracts



 

(b)Part of the specialization hierarchy below 'Create'showing '
Produce as a business'and some of its specializations

Figure 8.15:  

Figure 8.16: Simplified map of the entire network of activities in the Process Handbook



Figure 8.17: Sample dependency diagram showing two .ow dependencies connecting
three activities in an example of a process to manufacture a product. (This .gure is from
the ''research'' version of the Process Handbook.)

This taxonomy and a variety of tools for using it are included in the research version of the
Process Handbook. For example, the Process Handbook can represent a relationship or link
between activities and the types of exceptions that are associated with it (''has exception''). In
addition exceptions can be linked to the ways in which they can be addressed (''handled by'').
This allows for a powerful connection between the ideal process flow, its exceptions and
ways to handle those exceptions without ''cluttering''up the ideal process flow
representations. (See chapter 14 for a more detailed explanation of the kinds of exceptions
represented and how they can be used.)

8.11.4 Systems Dynamics Elements

Many process representations tend to be developed to support a ''discrete''view of the
world—a sequence of activities to perform an iteration of some task. The feedback inherent
in a system is not captured in this discrete view. As part of a current project on ''supply chain
visualization,''we are expanding the Handbook to be able to support a systems dynamics
view of processes too (see Hines et al. 2003).

To do this, we are creating a taxonomy of reusable systems dynamics components or
''molecules.''While the systems dynamics discipline had considered these, by creating a
taxonomy, we have been able to highlight ''missing''molecules. In this ongoing work we are
exploring how this taxonomy allows for easy building of systems dynamics models using the
same techniques incorporated in the handbook for building discrete models (see figure
8.18).

 



 

8.12 Conclusions

We believe that the work we have done so far on the Process Handbook has achieved our
initial goal of demonstrating the potential of this framework for comprehensively organizing
large amounts of useful knowledge about business in a richly interconnected, logical, and
consistent way. We also believe that our conceptual framework for doing this was both
intuitive and theoretically based. Finally, as we have shown in the other parts of this book,
when business knowledge is organized in this way, powerful software tools to access and
manipulate it can significantly increase its value.

We do not believe that our approach is the only useful way of organizing business
knowledge. There are certainly other useful ways of organizing business knowledge for
various purposes. But we do not know of any other approach to organizing business
knowledge that is as comprehensive and powerful as ours, nor any that has been as
extensively developed.

Figure 8.18: Systems dynamics diagram. (This .gure is from the ''research'' version of
the Process Handbook.)

As researchers and educators, we have already devoted substantial resources to developing
and updating the Process Handbook knowledge base. But we believe that the long-term
potential of such a knowledge base can never be realized by the work of a single academic
institution. Instead, we believe that there are many opportunities for other researchers,
educators, and commercial enterprises to cooperate in the long-term, large-scale,
development of a knowledge base like the Process Handbook. We hope that the publication
of this volume will help stimulate such an endeavor.
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Chapter 9: Let a Thousand Gardeners Prune —
Cultivating Distributed Design in Complex

Organizations

George M. Wyner

This chapter is adapted from chapter 3 of G. M. Wyner (2000), Let a thousand gardeners
prune: Cultivating distributed design in complex organizations, Ph.D. dissertation, Sloan
School of Management, MIT.

9.1 Process Models

In this chapter, I illustrate my approach to modeling design methods by providing a detailed
account of three such modeling exercises: process innovation as treated by Davenport
(1993), business process reengineering as described by Hammer and Champy (1993), and
the design of high risk systems according to Perrow (1984). These three examples illustrate
how the method can be applied both to texts in which the design method is an explicit focus,
and those in which the design method is implicit and must be uncovered by the reader. The
examples form a progression along this continuum:

Davenport provides a decomposition of the activities that comprise his process
innovation method.

Hammer and Champy do not map the reengineering process but do discuss its
characteristics.

Perrow has as his primary concern the understanding and classification of complex
engineered systems. He does ultimately give an account of such systems that can be
construed as a design method, but this involves more detective work on the part of the
reader.

By setting forth these examples in some detail, we have the opportunity to explore the
strengths and limitations of my modeling method and its potential applicability to the analysis
of distributed process design.

 



 

9.2 Example — Process Innovation (Davenport 1993)

The following analysis is based on the account of process innovation given in Davenport's
Process Innovation: Reengineering Work through Information Technology (1993).[1] Early in
his book, Davenport proposes an innovation process consisting of the steps diagrammed in
figure 9.1. Most of Davenport's book can be understood as a working through of the details
involved in each of these substeps.[2]

Figure 9.1: Steps in process innovation as described in Davenport (1993)

9.2.1 Subactivities

Here then are the subactivities that have been identified:

Identify processes for innovation. It can be argued that this is outside the scope of a design
taxonomy, in that process design takes as a starting point a given process to be designed.
However, it can also be argued that choosing a design problem can be a key element of
design. I adopt the latter approach. (Source: Davenport, p. 27)

Identify change levers. Davenport considers three potential sources for process innovation:
new information technologies, better use of information as process resource, and innovations
in organizational structure. (Source: Davenport, p. 48)

Develop process visions. The process vision is the link between potential process innovation
and the broader sense of business vision and strategy. (Source: Daven-port, p. 121, figure
6.1)

Understand existing processes. This refers to describing and analyzing the process as it
exists. (Source: Davenport, p. 139, fig. 7.1). This step does not appear to be a focus for
Davenport. He seems to mostly ''outsource''this step by appealing to existing methods. ''We
look to [traditional process-oriented approaches] for tools and techniques . . . They are most
appropriately used to complement the components of the innovation approach described in
this book''(Davenport 1993, pp. 150-51).

Design and prototype new process. ''Ironically, there is less to say about the design phase of
process innovation than about the activities that lead up to it. The design activity is largely a
matter of having a group of intelligent, creative people review the information collected in
earlier phases of the initiative and synthesize it into a new process. There are techniques for
facilitating the review process, but the success or failure of the effort will turn on the particular
people who are gathered together''(Davenport, p. 153). Note that this approach implicitly
assumes a relatively centralized process, where the key is to ''gather together''the right group
of people.

Improve process. Process improvement does not play a central role in Davenport's account
of process innovation. In reviewing my original analysis of this text, I can see that I have given
process improvement a different role than that intended by Davenport. Where Davenport



views process improvement as a short-term complement to process innovation, I have
conceived of it in the maps which follow as a potential follow on to process innovation. That
is, while it is the design team that is charged with achieving dramatic breakthroughs in the
process, such innovation can be viewed as setting the stage for ongoing process
improvement. In retrospect, it would have been more in keeping with my intent to capture
Davenport's view of things to drop my interpretation in favor of the one he so clearly sets forth
(e.g., on pp. 140-41). However, I will allow my (questionable) view of process improvement to
stand as a record of my original reading of the text. As it turns out, this does not prove a
critical pitfall for my analysis in the end, because I ultimately restrict the scope of my map of
process innovation such that the process improvement activity is eliminated from this
analysis.

9.2.2 Resource Flow Graph

Our goal at this point is to move from the simple activity decomposition in figure 9.1 to an
enumeration of the key dependencies in PROCESS INNOVATION. Given our stance that
dependencies can be viewed as resource-based, a first step in this direction is to construct a
resource flow graph that captures the flow of resources among the activities, as described in
section 9.1.2.2, and thereby facilitates identifying dependencies among those activities. The
approach I take here is to identify inputs and outputs associated with each activity in figure
9.1. This done, I am able to construct the resource flow graph shown in figure 9.2, including
both activities (indicated by rectangles in figure 9.2) and resources[3] (indicated by circles).
This is done by adding flows from an activity to all resources that are outputs of that activity,
and a flow from each resource to the activities where it is an input.

Figure 9.2: Resource flow diagram for process innovation

A first step toward a dependency diagram is to simplify the resource flow graph by
generalizing and aggregating its components, as shown in figure 9.3:

One test for a good aggregation is that one can imagine alternative decompositions for the
aggregate activity or resource:

1.



The current decomposition of DEFINE PROBLEM is an example of identifying a
problem by reviewing a preexisting list of potential problems (in this case in the form of
list of existing processes). This is just one particular example of the more general
notion of DEFINE PROBLEM. Indeed, this is one possible specialization of DEFINE
PROBLEM.

1.

Similarly the current decomposition of ESTABLISH REQUIREMENTS is but one
possible implementation of this process (i.e., develop requirements from analysis of
strategic doctrine).

One technique for identifying potential resource aggregations is to look at resources
that can be viewed as parts or kinds of a more general resource. Thus in figure 9.3 we
have identified the list of impact categories and the list of generic applications as two
strategies available in the design process and have aggregated them accordingly into
existing strategies.

Figure 9.3: Simplification of process innovation

2.

Figure 9.4 results from abstracting away the decomposition of the aggregates we introduced
in figure 9.3. While this diagram highlights important features of Davenport's approach to
process innovation and does so in a somewhat more general (and hence reusable) form, the
diagram is still so complex that some of the key features and trade-offs of this approach are
not easily seen.



Figure 9.4: Design using solution strategies

9.2.3 Dependency Diagram

To address this issue, we move from a resource flow graph to a dependency diagram in
which the focus shifts to just those flows that seem to be the critical dependencies. As
mentioned earlier, we categorize dependencies into three types: flow, sharing, and fit. Notice
that there is an isomorphism between a resource flow and a flow dependency. This suggests
that one could produce a dependency diagram simply by replacing each resource flow with a
flow dependency. There are, however, a few issues to deal with here:

Flows into a common resource may indicate a fit dependency.1.

Flows out of a common resource may indicate a sharing dependency.2.

It is not obvious what to do with flows into or out of an external resource. One might
replace such a flow with a dependency involving an ''external''or ''boundary''activity. I
would argue that one could also suppress external resources in certain cases as
discussed below.

3.

Unlike a resource flow graph that typically represents all the flows involving resources
important to the activities shown, the dependency diagram represents only those
dependencies that are important to the process; these critical dependencies
correspond to a subset of the flows in the corresponding resource flow graph.

Note that in this sense a dependency diagram represents a further abstraction and
hence simplification of a resource flow graph, one must bear in mind that the
''importance''of a dependency is relative to the point of view and judgment of the
process observer. One might imagine starting with all the flow, sharing, and fit

4.



dependencies which are implicit in the resource flow graph (see items one and two
above), and then removing those dependencies that are unimportant to the observer.
A dependency might be unimportant for several reasons:

Its effect on the process outcomes of interest is insignificant.

It has a significant effect but is easily managed.

It has a significant effect and raises nontrivial issues, but the problem has been
solved (at least to the satisfaction of the process observer) and has been
excluded from analysis.

As suggested in item 3 above, a special case of suppressing dependencies exists
when there are external resource flows. It is easy to see that when an external
resource flows to just a single activity in the process, it may be due to a local
coordination issue that can be considered nonproblematic at the level of the process
as a whole.

Figure 9.5 is an annotated version of figure 9.4, which shows how these issues are
dealt with in the current analysis to produce the dependency diagram shown in figure
9.6.

Figure 9.5: Transforming a resource flow graph into a dependency diagram

5.

The numbered annotations in figure 9.5 identify elements of the resource flow diagram that
are to be suppressed in the dependency diagram. The remaining resource flows are
converted to flow dependencies, resulting in figure 9.6. Here is a brief discussion of the
reasoning behind each annotation in figure 9.5:



Figure 9.6: First attempt at a dependency diagram

Two flows in this diagram can be viewed as part of the coordination mechanisms used
to manage the dependencies associated with other flows in the diagram: (a) the flow
of problem definition to UNDERSTAND PROBLEM CONTEXT is employed to
manage the usability (in this case, primarily relevance) of the flow of design context
from UNDERSTAND PROBLEM CONTEXT to DESIGN. (b) the flow of design
requirements to IDENTIFY SOLUTION STRATEGIES is similarly used to manage the
usability (relevance) of the flow of selected strategies to DESIGN. Thus, when we
move to a dependency diagram, these two flows are encompassed by the
dependencies of which they are a part.

1.

The two inputs to IDENTIFY SOLUTION STRATEGIES are tagged as local resources
because they are used only by that activity in this process and the coordination of
these flows is not the focus of our analysis, which centers on the design step. Thus we
do not include dependencies for these resources in the dependency diagram, and
they are therefore omitted in figure 9.6.

2.

Note that while Davenport acknowledges the importance of process improvement,
this is more or less outside the scope of his analysis. This is clear for several reasons:

He does not include a process improvement step in his representation of
process innovation. (Davenport, p. 25, fig. I.2)

He identifies process improvement as an essential adjunct to process innovation
(the focus of his book) and as clearly distinct from it. (Davenport, pp. 140-41)

His discussion of process improvement mainly directs the reader to existing
methods rather than presenting novel techniques in the book. (Davenport, p.
139) In contrast, Davenport's discussion of process innovation is clearly an
original contribution rather than a recapitulation of existing work.

Once the elements noted above are suppressed and the remaining flows mapped as
dependencies, one obtains the diagram in figure 9.6.

3.

In reviewing figure 9.6, I make the following observations:

The three intersecting flow dependencies could be represented as a single fit
dependency. Not only is this a simpler representation, but it is consistent with the two
flows we abstracted away in figure 9.5. In retrospect, these flows can be understood
as coordinating the interaction among the flow dependencies in figure 9.6, as they
flow between DEFINE PROBLEM and ESTABLISH REQUIREMENTS and the other
two flows. Indeed, one implication of the fit dependency is that more such coordination
may exist (although I did not surface such flows in the preliminary analysis above).

1.



Stating this as a modeling heuristic, we might say that if one has a number of flow
dependencies involving the same consumer and with lots of cross-connections of a
secondary nature (especially coordination flows), there is a strong implication that it
will be useful to model this as a fit dependency.

If, for the moment, we assume that it is useful to explore the possibility of symmetry as
a modeling heuristic, we can identify at least four ways to make the diagram
symmetric:

Declare DEFINE PROBLEM to be outside the scope of our analysis.

Aggregate Define problem and Establish requirements.

Make the case that DEFINE PROBLEM is a fourth parallel flow in the fit
dependency.

Add two additional flows: from Define problem to both Understand problem
context and Identify solution strategies.

2.

I adopt the second of these strategies, and argue that ESTABLISH REQUIREMENTS can be
thought of as a part of a larger notion of problem definition. That is, requirements can be
thought of as an extension of a problem definition and hence part of that definition. Thus we
can aggregate DEFINE PROBLEM (in the narrower sense in which we have used it here)
with ESTABLISH REQUIREMENTS. The resulting aggregation can be thought of as DEFINE
PROBLEM USING REQUIREMENTS, which can be further generalized to DEFINE
PROBLEM (in a larger sense of that term).

This aggregation illustrates an issue that frequently arises in this kind of process modeling:
the same term (here ''Define problem'') takes on multiple meanings during our analysis. I
argue that this ''overloading''of terminology is inevitable and points to the confusion that can
occur when a process is described using ordinary language. By keeping track of both the
evolution of the process model and the context the model provides for each term, we can
untangle the multiple meanings and keep them straight. Thus this model as it appears in
figure 9.7 links back to the context that distinguishes this larger sense of DEFINE PROBLEM
from the narrower sense employed in earlier diagrams.

Note that we could as easily have explored the other options for introducing symmetry. The
issue here is not which option is correct but which options are plausible, and of these, which
are most useful. Having chosen an approach, the resulting simplified dependency diagram
can be seen in figure 9.7.

Figure 9.7: Symmetric dependency diagram



This diagram seems to argue for the virtues of the symmetry heuristic.[4] One could argue
that given two diagrams that take the same point of view and express the same process, the
one that is simpler (in this case more symmetric) is often likely to be the more useful diagram
because it is easier to understand and easier to analyze.

9.2.4 Analysis

This dependency diagram emphasizes the inputs to the design process and the fit among
them. This seems to be a key insight at the core of Davenport's account of process
innovation: To manage and cultivate the innovation process, attend to the critical inputs to
the design activity. As Davenport says in his opening paragraph in the design chapter:
''Ironically, there is less to say about the design phase of process innovation than about the
activities that lead up to it''(Davenport 1993, p. 153). Thus the focus here is on identifying the
critical inputs to the design step and figuring out how to manage their usability and fit.

One implication of the presence of this fit dependency in the innovation process is the
potential importance of managing the interconnections among the inputs. For example,
consider the activity UNDERSTAND PROBLEM CONTEXT. This is the activity that
represents mapping the current state of the organization, including the existing process. In
practice, this activity can very easily get disconnected from the design process it is embedded
in and become an independent exercise that generates so much data as to become
practically useless as a resource to support design. The value of context is in danger of being
outweighed by the burden of sorting through the massively complex process maps.

In coordination terms, the issue here is the usability of the flow of context information. One
approach that is often used to manage this kind of flow is for the receiver to filter out what is
not useful. Note that this approach is doubly expensive, as we have the cost of compiling the
information and then the cost of throwing extraneous or low-value information away. One
solution proposed to this costly information flow is to avoid mapping the as-is process.
However, as Davenport points out, this has the disadvantage of losing lots of important
context.
[1]The process names are mostly directly quoted from Davenport. I have in some places
modified the names to conform with the Process Handbook's verb-noun format. Where I
depart from Davenport's terminology I will note this explicitly. Unless otherwise indicated, all
references to ''Davenport''refer to (Davenport 1993).

[2]Davenport mentions IMPROVE PROCESS in the context of his discussion of understanding
existing processes, but he does not include it in his original diagram. I include it at the outset
as a potential additional activity, but as it turns out I ultimately consider it to be outside the
scope of this analysis.

[3]Resources are not an explicit component of Davenport's process diagrams and are thus
the result of my own analysis.

[4]My thanks to Tom Malone for pointing out to me the usefulness of symmetry in this context.

 



 

9.3 Example — Reengineering (Hammer and Champy 1993)

Reengineering the Corporation (Hammer and Champy 1993) popularized the notion of
business process reengineering, an approach to process redesign which underwent the
boom and bust associated with many business fads.[5] This book stands as the manifesto of
the reengineering ''movement.''The analysis that follows offers an opportunity to assess what
distinguishes reengineering from other approaches and to place it more accurately between
the extremes of opinion which have marked its meteoric trajectory across the business stage.

Unlike Davenport (1993), described in section 9.2, this book does not provide an explicit
process description of reengineering. As a consequence the analysis involves additional
steps at the outset to identify the activities and resources that comprise the reengineering
design process.

9.3.1 Review of the Text

I begin by reviewing the text and flagging material that seems to indicate components of the
process or otherwise seems especially important to my understanding of the process. Having
extracted these relevant chunks of text from the book, the next step is to begin to make
sense of this material as a process. What follows is an analysis very similar to that employed
for Davenport (1993): I will identify the resource flows involved and then create a resource
flow graph and a dependency map.

9.3.2 Resource Flow Graph

Having identified both the activities and the resources from a preliminary analysis of the text,
the next step is to represent all these components on a single diagram (figure 9.8). We start
by just listing the resources and activities so that later we can associate them with each
other.



Figure 9.8: Identify activities and resources

In associating resources with particular activities, I found it useful to make certain changes in
both the list of activities and the list of resources depicted in figure 9.8:

Combine SELECT PROCESSES and PRIORITIZE PROCESSES into a single
compound step. Selection is a kind of prioritization, and given finite resources at hand,
prioritization is a form of selection. At this level of analysis it is useful to consider the two
activities as one.

Create a new activity IMPLEMENT REDESIGNED PROCESS.MAKE CASE FOR
CHANGE would appear to be about generating support for the redesigned process and
is thus a part of implementation, rather than the initial design process. The presence of
MAKE CASE FOR CHANGE thus only makes sense if this implementation activity also
appears in the process map.

Add activity UNDERSTAND REENGINEERING. This is done to clarify that the resource
heuristics arises in part from ongoing efforts to understand reengineering, for example,
as described in the Hammer and Champy text. Hammer and Champy seem to expect
these generic reengineering heuristics arise from efforts such as theirs and to be
primarily provided as external resources to a given reengineering effort. We include this
activity in our flow graph, however, in order to tell a coherent story.

Replace the resource process name with the more generic resource identified
processes. Naming a process can be thought of as one part of this identification activity.
I have introduced some additional resources suggested by the function of activities (e.g.,
the output of SELECT PROCESSES is, naturally, selected processes).

Note that the resource context is implied by activities that employ the verbs IDENTIFY
(context is the background from which the things to be identified are distinguished),
UNDERSTAND (implies a rich set of inputs, i.e., context), and RETHINK (similar to
UNDERSTAND ).

Figure 9.9 is the resource flow graph I developed based on the analysis above. Note that I
did not bother neatening up the layout, since I will be refining this diagram further
momentarily.



Figure 9.9: Preliminary resource flow graph

As with Davenport above, I now create an abstraction of this process based on the following
observations:

Process map, which is not yet connected in figure 9.9, turns out (upon further review of
the text) to be an output from IDENTIFY BUSINESS PROCESSES and an input to
SELECT & PRIORITIZE. It seems reasonable to view process map as subsuming the
identified processes resource, so I simply replace the latter with the former.

As in my Davenport analysis, for purposes of coordination analysis one can absorb
external resources that have only one internal consumer into the description of that
subactivity. Thus I can remove the explicit representation of technological capabilities
and process inputs and outputs. Note the potential loss of information concerning
possible additional activities that might use these resources. In the current analysis,
however, the gain in simplicity seems to outweigh this loss. Similarly I can remove the
two inputs to SELECT & PRIORITIZE.

I also propose to combine UNDERSTAND REENGINEERING with UNDERSTAND IT
CAPABILITIES since both are about identifying relevant heuristics. Note that this
diminishes the emphasis that Hammer and Champy place on IT and also the distinction
between the heuristics that Hammer and Champy propose as a kind of universal set for
reengineering and the IT heuristics that they expect a business to identify as part of its
own analysis. This seems like a useful abstraction in that it emphasizes the core issue
here that is obtaining a relevant set of heuristics to push the design process in the
direction of radical and effective change. The abstraction also introduces the possibility
of other approaches to obtaining these heuristics.

I was concerned at one point in this analysis that the relationship between
UNDERSTAND EXISTING PROCESSES and SELECT & PRIORITIZE PROCESSES
TO BE REENGINEERED seems to restrict the understanding effort to the processes
that are selected, which makes the diagram more complex. However, one can view this
as an issue of coordination for effciency, and apply resources to those processes that



are most critical to the reengineering effort. This issue can be addressed in the
dependency diagram, where it surfaces in the form of a fit dependency, thus allowing us
to abstract the complexity away from the current diagram.

I have simplified the title SELECT & PRIORITIZE PROCESSES TO BE
REENGINEERED to PRIORITIZE PROCESSES TO BE REENGINEERED. As I argued
above, ''prioritize''can stand in here for ''select''as well.

Figure 9.10 represents the implications of these changes for the resource flow graph,
while figure 9.11 shows the abstracted resource flow graph that results. Note that when
one abstracts away individual heuristics, what remains seems almost a generic example
of heuristic design rather than something particular to reengineering. As I suggest below,
this has important implications for understanding the place of reengineering in the
history of organizational design.

Figure 9.10: Simplifying the resource flow graph

9.3.3 Dependency Diagram

In examining this resource flow graph, we can identify the following key dependencies
(among others) and some of their implications for process design:

Shared context. Are all reengineering participants invoking the same context for their
deliberations? How do they resolve differences in framework and perspective? Clearly,
the reengineering team meetings serve as one key coordination mechanism for
managing this dependency.

Process selection flow. Early decisions about the process map have a huge influence
on the eventual focus of reengineering. This suggests the value of thinking ''out of the
box''early in the reengineering effort. The process map enables but it also confines
thinking. This flow dependency suggests we should look at the role that process maps



might play in reengineering success and failure. It would be interesting to consider the
extent to which additional reengineering opportunities can be enabled by more creative
map making.

Fit between prioritized processes, insights, and heuristics. This dependency suggests
that problems may result when too broad or too narrow a ''relevance filter''is placed on
the heuristic and insight streams. It might be useful to consider the role that heuristics
and insights might play in the selection of reengineering projects, as well as the role that
they might play in process mapping.

The full set of dependencies implied by figure 9.11 is shown in figure 9.12.

Figure 9.11: Simplification of reengineered business processes



Figure 9.12: First pass at a dependency diagram

Having thus arrived at a preliminary dependency diagram, there are several simplifications
that we can make:

Aggregate the two processes IDENTIFY BUSINESS PROCESSES and PRIORITIZE
PROCESSES TO BE REENGINEERED to form the process IDENTIFY PROCESSES
TO BE REENGINEERED. This latter name implies both identification and prioritization of
processes. Note that the flow dependency between the two original activities is also
absorbed into the aggregation.

Restrict scope of the diagram to exclude the context sharing dependency. This
restriction can be thought of as a narrowing of attention to a subset of the dependency
issues (we could always consider including this context dependency in a separate
analysis). Note that this restriction in scope works here because UNDERSTAND
CONTEXT is on the periphery of the dependency diagram.

Absorb the activity MAKE CASE FOR CHANGE into IMPLEMENT REDESIGNED
PROCESS. Justification: MAKE CASE FOR CHANGE, as described by Hammer and
Champy, is not a part of the design process but rather the process by which such a
design is to be implemented in the organization.

These changes result in the simplified diagram of figure 9.13.[6]

Figure 9.13: Simplified dependency diagram



9.3.4 Discussion

While the primary purpose of these examples is to illustrate the modeling process, I will
briefly explore some implications of this dependency diagram. Note that far more becomes
possible when we consider a dependency diagram in the broader context of the design
taxonomy, but some insight can also be gained by considering it on its own terms.

The Power of Abstraction This dependency diagram, and the process that produced it,
make a particularly nice illustration of the power of abstraction in this approach. In a sense
the entire text has been reduced through a series of abstractions to two major dependencies.
Note, however, that much of the value of this abstraction lies in its links back to the context
established by the original text and the series of more complex maps developed during this
analysis. In a sense the dependency diagram becomes not only a map of business process
reengineering but a kind of index to the modeling process which produced this map.

How Are These Dependencies Coordinated? While the authors do address various
aspects of the two dependencies we have identified, they are not a central concern of the
text. It is, however, possible to construct an account of how the authors address (at least
implicitly) these coordination issues.

COORDINATING THE FIT DEPENDENCY By insisting that UNDERSTAND EXISTING
DESIGN should produce insights rather than details, Hammer and Champy (1993, p. 129)
have provided a mechanism for managing the fit between choice of process, choice of
design heuristics, and understanding of existing design. This approach partially manages the
fit dependency by producing a much more manageable and reusable set of outputs from
UNDERSTAND EXISTING DESIGN. While this approach is arguably inadequate by itself,
the authors effectively augment this mechanism by insisting that this be a centralized design
effort. That is, the work is to be carried out by a reengineering team that, in the scenario
provided in the book, sits down in a room together and works through all the issues. This kind
of centralization provides a plausible strategy for managing the fit dependency at the center
of figure 9.13, by assignment of all four activities[7] involved in that dependency to a single
actor or team of actors. Given this approach, the reengineering meeting becomes the single
crucial coordination mechanism for managing this fit dependency. This implies that effective
coordination of this dependency comes to depend heavily on the quality of the team and the
effectiveness of its meetings. This introduces a potential weak link in the reengineering
process, and a source of variability in outcomes that may be hard to manage.

COORDINATING THE FLOW DEPENDENCY For a method whose authors themselves
estimate a failure rate of 50 to 70 percent (Hammer and Champy, p. 200), one would expect
the flow dependency between design and implementation to be a critical one. Coordination
of this flow is further complicated by the large number of actors necessarily involved in the
actual implementation of reengineering in a large organization. Interestingly the authors do
not elaborate much on this issue. The aspect of this flow that is most directly addressed is
the need to make the case for change. While this may be important, it does not seem to be
suffcient for managing the design-implementation flow.

In defense of the approach taken in the text, however, MAKING THE CASE FOR CHANGE
does provide some support for coordinating this flow dependency. The more the entire
organization shares the vision of the reengineering team, the more likely coordination of the
design-implementation flow is going to work. The entire organization becomes in effect an
extension of the team and is placed in a position to coordinate and effect the changes from
within.

This implicit coordination of the design-implementation flow would presumably be more likely
to succeed where a new process is closely aligned with the existing process, in that intuitions
about how the existing process is implemented are more likely to be relevant to the



implementation of the new process. In the case of reengineering, however, we have radical
changes which may be entirely confusing, mysterious, and at odds with how things are done
now, and thus in the absence of an explicit coordination mechanism one would expect
implementation failure to be far more likely.

POSSIBLE COORDINATION MECHANISM: USE TOTAL QUALITY MANAGEMENT TO
COORDINATE THE DESIGN-IMPLEMENTATION FLOW Hammer and Champy identified
the complementarity between total quality management (TQM) and reengineering, where
TQM refers to the technique for systematic process improvement pioneered by W. Edwards
Deming and brought to fruition by Japanese manufacturers (Shiba et al. 1993). Where
reengineering is about radical change, TQM is about incremental improvement. The
complementarity that Hammer and Champy proposed is a kind of punctuated equilibrium
model (Gersick 1991) in which reengineering is followed by an extended period of
continuous improvement (Hammer and Champy 1993, p. 219). Can we imagine an
approach in which TQM is used to manage the flow dependency between reengineering
design and reengineering implementation? In this scenario TQM would become a way to
iteratively correct any problems during the implementation phase. Presumably this might
happen naturally in an organization in which TQM is in place for process implementation,
provided that the obvious connection is made.
[5]Unless otherwise noted, all references to ''Hammer and Champy''refer to (Hammer and
Champy 1993).

[6]Note that I also revise dependency descriptions to incorporate more information about the
nature of the dependencies (something that would otherwise be lost when moving from the
resource ?ow graph to the dependency diagram).

[7]Identify processes to be reengineered, Identify design heuristics, Understand existing
design, and Rethink fundamentally and redesign radically.

 



 

9.4 Example — Normal Accidents (Perrow 1984)

Perrow's monograph on high-risk technologies (1984)[8] includes specific recommendations
about taking action to address the risks of certain complex systems.

These recommendations for action can be construed as a kind of design text for high-risk
systems.

My analysis of Perrow illustrates an interesting variant on the modeling process I have
described so far: I first discovered a generalization of Perrow's design method and then
moved to a more specific model via process specialization. This analysis also illustrates how
one must sometimes read between the lines to construct an account of design from a text
whose primary concerns are elsewhere.

Perrow's principal focus in the book is on understanding the nature and cause of the risks
associated with certain complex technologies. It is in the concluding chapter, ''Living with
High-Risk Systems,''that Perrow addresses the question of what can be done to mitigate
these risks, and thus it is here that I will focus the analysis.

9.4.1 The Text

Perrow's main concern is with understanding the nature of the risks associated with complex
tightly coupled systems. He offers a theoretical framework in which risks are associated with
the underlying structure of the system. Much of the book is a case-by-case presentation of
various systems and their risks. Along the way Perrow develops a framework in which he
classifies systems according to the degree of coupling (tightly coupled systems vs. loosely
coupled systems) and the nature of the interactions (linear systems vs. complex systems).
The degree of coupling is largely a matter of the amount of buffering between components in
a system. In a tightly coupled system a local event produces rapid effects on other
components in the system and therefore requires a rapid response. The distinction between
linear and complex systems seems to be mainly a question of whether the interactions are
unexpected. However, Perrow also talks about feedback loops and one-to-many causal
links.

In addressing the design of systems in his concluding chapter on living with high-risk
systems, (pp. 304-52), Perrow's main proposal is that systems should be evaluated along
two dimensions:

For their ''catastrophic potential''(which depends both on the nature of the system and
the current level of organizational effectiveness associated with such systems).

1.

For the cost of alternative systems.2.

Perrow then groups systems into three categories, each of which requires a different
intervention:

Systems where catastrophic potential is high relative to the cost of alternatives. These
should be abandoned in favor of one of the alternatives.

1.

At the other extreme, systems where the cost of alternatives is high relative to the
catastrophic potential. In this case the existing system should be improved.

2.

In between, systems that cannot be easily replaced but pose significant threats.
Perrow proposes that these systems be restricted to situations where the risks are
lowest and/or the benefits are greatest.

3.



9.4.2 A Generalization

My first step in analyzing this process was to adopt a point of view. Point of view is especially
critical in a case like this where the text is not explicitly an account of a design process.

Where Davenport provided an explicit map of the innovation process, and Hammer and
Champy provided an informal description of the reengineering process, Perrow is primarily
concerned with establishing a framework for classifying high-risk systems. Here we want to
look more closely to identify where and how he speaks to the process of designing such
systems. The outcome of this close reading must initially be a point of view which then guides
the further development of the process map.

The point of view I developed follows from Perrow's proposal for living with high-risk systems
(Perrow, ch. 9). At the core of this proposal is the classification of such systems into three
categories each of which warrants a different intervention (Perrow, p. 349). I chose to
construe this as a kind of ''design using classification.''This point of view then immediately
suggested to me a very simple process map which I represent in figure 9.14.[9]

Figure 9.14: Design using classification

9.4.3 Dependency Diagram

Having developed this general scheme for framing Perrow's texts as a design story, I then
developed a specialization by decomposing APPLY APPROPRIATE INTERVENTION into
the three specific interventions that Perrow proposes. As a consequence the single flow from
CLASSIFY to APPLY APPROPRIATE INTERVENTION must be decomposed into three
flows corresponding to the three types of system that Perrow matches to the three
interventions. The resulting dependency diagram is given in figure 9.15.

Figure 9.15: Design of high-risk systems

[8]Unless otherwise noted, all references to ''Perrow''refer to (Perrow 1984).

[9]This process characterization is my own as are the activity names (unless otherwise



noted). Note that in this analysis I show the dependency diagrams without going through the
intermediate phase of resource ?ow graphs. This was possible because of the relative
simplicity of the generalization that anchors this analysis.

 



 

9.5 Summary

My purpose in presenting these three examples has been to give a sense of how my
approach to process modeling actually unfolds in practice. However, even without the use of
the taxonomy, it is still possible to get some insights about these processes. For example, I
identified some critical coordination issues for business process reengineering:

The need to manage the hand off (flow dependency) between the design task and the
implementation task.

1.

The critical coordination role played by the centralized design team in managing the fit
dependency among the various inputs to the reengineering design activity.

Even in this limited analysis, I was able to arrive at an interesting possible response to
some of these issues: the use of TQM as a way to coordinate these dependencies.
This gives a rather different view of the relationship between TQM and business
process reengineering than the one put forward in the Hammer and Champy text
itself.

2.

I would argue that this analysis follows from two key features: a representation that focuses
on the main coordination issues, and a chain of abstraction that leads from the text to a
concise graphical representation of the design method it depicts. These aspects of my
modeling approach work in concert to make salient aspects of a design method that might
otherwise remain obscured.

 



 

Chapter 10: A Coordination Perspective on
Software Architecture — Toward a Design

Handbook for Integrating Software
Components

Chrysanthos Dellarocas

This chapter is adapted from chapter 4 of C. Dellarocas (1996), A coordination perspective
on software architecture: Towards a Design Handbook for Integrating Software Components,
Ph.D. dissertation, Sloan School of Management, MIT. Section 4.6 containing control flows,
data flows, and other flows and section 4.8 on composite dependencies are omitted.

10.1 Introduction

Previously I argued for separating the core functional pieces of a software application from
their interconnection relationships. Then I introduced an architectural language that enables
this separation by providing separate abstractions for activities and dependencies. This
chapter goes one step further: It observes that when taken out of context, many
interconnection problems in software applications are related to a relatively narrow set of
concepts, such as resource flows, resource sharing, and timing dependencies. These
concepts are orthogonal to the problem domain of most applications, and can therefore be
captured in an application-independent vocabulary of dependency types. Likewise the design
of associated coordination processes involves a relatively narrow set of coordination
concepts, such as shared events, invocation mechanisms, and communication protocols.
Therefore it can also be captured in a design space that assists designers in designing a
coordination process that manages a given dependency type, simply by selecting the value
of a relatively small number of design dimensions. The proposed vocabulary of
dependencies and design space of coordination processes, taken together, can form the
basis for a design handbook for integrating software components. The development of such
a handbook aims to reduce the specification and implementation of software component
interdependencies to a routine design problem, capable of being assisted, or even
automated, by computer tools.

 



 

10.2 Motivation

The purpose of this chapter is to give an answer to the following two questions:

Why do software components interconnect with one another?

How do software components interconnect with one another?

We would like to organize the answers to the first question in a vocabulary of dependency
types, and the answers to the second question in a design space of coordination processes.
Finally, we would like to connect each of the whys, with a set of hows, that is, associate each
dependency type with a set of coordination processes for managing it.

A vocabulary of interdependency patterns would greatly aid designers in constructing
application architectural diagrams. Instead of always inventing a new dependency to express
a given component relationship, designers would often simply choose one from the
dependency vocabulary.

Furthermore the existence of a coordination process design space would reduce the step of
managing dependencies with coordination processes to a routine, or even automatic,
selection of an element from a coordination process repository.

Finally a vocabulary of dependency types and coordination processes would contribute to an
increased understanding of the problems of software interconnection. Over time researchers
have developed a vast arsenal of algorithms and techniques for process synchronization,
communication, and resource allocation. What has been missing so far is a unified
framework for relating those algorithms to the problems they are attempting to solve. Such a
framework should encompass (and relate) synchronization, communication, and resource
allocation considerations. It should relate techniques and algorithms that are currently being
studied by a number of different research areas (programming languages, operating
systems, concurrent and distributed systems). Therefore it could form the basis for
developing a design handbook of software component interconnection. Such a handbook
could help reduce the integration of existing software components into new applications to a
routine design problem.

The approach taken in this chapter is based on coordination theory (Malone and Crowston
1994), an emerging research area that focuses on the interdisciplinary study of coordination.
Coordination theory defines coordination as the process of managing dependencies among
activities. One of its objectives is to characterize different kinds of dependencies and identify
the coordination processes that can be used to manage them. This work extends the
frameworks presented in Malone and Crowston (1994) and is the first detailed application of
the theory to the understanding of software component relationships. Coordination theory is
discussed in more detail in section 10.3.

It is important to emphasize that the results described in this chapter do not claim rigorous
generality and completeness. Our goal was to develop a dependency vocabulary and
coordination process design space that covers a useful subset of the component
relationships and constraints encountered in practice. The SYNOPSIS machinery enables
designers to incrementally enrich this vocabulary with new abstractions and processes. It is
our hope that this work will provide a useful starting point that will lead in interesting
extensions by future research.

 



 

10.3 Overview of the Dependencies Space

The vocabulary of dependencies presented in this chapter is based on the simple
assumption that component interdependencies are explicitly or implicitly related to patterns
of resource production and usage. In other words, these activities are those that need to
interact with other activities, either because they use resources produced by other activities
or because they share resources with other activities.

The definition of resources can be made broad enough to make this assumption cover most
(if not all) cases of component interaction encountered in software systems. Our current
definition of resources encompasses four components:

Processor time (control)

Data of various types

Operating system resources (memory pools, pipes, sockets, etc.)

Hardware resources (printers, disks, multimedia adapters, etc.)

In every resource relationship, participating activities can be distinguished by one of two roles:

Resource producers

Resource consumers

The existence of two different roles in resource relationships implies the existence of three
different classes of dependencies:

Dependencies between producers and consumers

Dependencies among consumers who use the same resources

Dependencies among producers who produce for the same consumers

Dependencies between producers and consumers are modeled using a family of
dependencies called flow dependencies. Malone and Crowston (1994) have observed that in
general, whenever flows occur, one or more other subdependencies are present. In
particular, flow dependencies can be decomposed to the following set of lower-level
dependencies:

Usability. Users of a resource must be able to effectively use the resource. For data
resources, this dependency encompasses issues relating to format conversion,
semantic equivalence, etc.

Accessibility. In order for a resource to be used by an activity, it must be accessible by
that activity (more precisely, it must be accessible by the processor that executes the
activity). This requirement might require physical transportation of a resource, or
conversely, relocation of an activity.

Prerequisite. A resource can only be used after the producer activity has been
completed. Producers must notify users, or conversely, users must be able to detect
when production is complete.

Resource sharing. When more than one activity requires usage of a resource, some
protocol must manage how the resource will be shared among them. For example, if
concurrent access of a resource is not permitted, some kind of mutual exclusion
protocol must be put in place.



User sharing. When more than one producers are producing for the same users, a
dependency analogous to resource sharing exists among them. Users become a
shared ''resource''for producers and some protocol must manage how they are
''shared''among multiple producers. For example, users might not be able to use more
than one, out of many, resources directed to them. In such cases selection among
producers might have to take place.

Sections 10.6 and 10.7 are devoted to a detailed discussion of flow dependencies.

Dependencies contained inside flows are shared on the assumption that multiple users of a
resource are independent, and therefore competing with one another for resource access. In
many applications, however, users (or producers) of a resource are cooperating in
application-specific ways. In those cases designers must explicitly specify additional
dependencies that describe the patterns of cooperation among users (or producers).
Imagine, for example, a database resource that is generated by some activity and
subsequently used by three other activities. In a particular application, one of the users of the
database is using it to write values that will be read by the other users. This application-
specific pattern of cooperation among users of the database requires the specification of an
additional prerequisite relationship between the writer and the reader activities (figure 10.1).

Application-specific patterns of cooperation among activities that share resources are
expressed using additional flows and another family of dependencies called timing
dependencies. Timing dependencies express constraints on the relative flow of control
among a set of activities. The most widely used are prerequisite dependencies (A must
complete before control flows into B) and mutual exclusion dependencies (A and B cannot
execute at the same time).

In addition to specifying application-specific cooperation patterns, timing dependencies are
often used to specify implicit resource relationships. For example, mutual exclusion
dependencies are often used to specify implicit resource-sharing relationships, in which
support for resource accesses is embedded inside the code of each activity. Also
prerequisite dependencies often specify implicit flow relationships in which resource
production and consumption are embedded inside the code. Section 10.8 describes a family
of timing dependencies. For each dependency, its relationship with a resource dependency is
illustrated.

Figure 10.1: Example of cooperative resource use

Throughout the chapter it becomes apparent that apart from classifying and enumerating
elementary dependency types, it is also useful to begin to collect and classify sets of
frequently occurring composite dependency patterns. In many cases designers have
developed specialized, more effcient joint coordination processes for such patterns. Section
10.9 will present a few useful composite patterns of flows and joint coordination processes
for managing them.

 



 

10.4 The Concept of a Design Space

As with any complex taxonomy, it is useful to classify both dependencies and coordination
processes using multidimensional design spaces (Bell 1972; Lane 1990). Each dimension of
the design space describes variation in some design choice. Values along a dimension are
called design alternatives. They correspond to alternative requirements or implementation
choices. For example, when selecting a data transportation mechanism, the number of data
readers could be one design dimension; the location of readers relative to the writer could be
another. Figure 10.2 illustrates a tiny design space for selecting a data transportation
mechanism. Specific designs are described by points in the design space, identified by the
dimensional values that correspond to their design choices.

Figure 10.2: Simple design space for selecting a data transportation mechanism

Successful design spaces reduce the problem of design to that of answering a simple set of
questions. They also organize related design alternatives ''close''to each other and expose
correlations between various aspects of design. Finally they can be easily translated into
computerized knowledge bases that can help semi-automate the design task.

Our problem requires the construction of two, related, design spaces:

A dependency design space. Dependency design dimensions represent interaction
requirements that are significant for choosing a coordination processes. For example,
the number of users of a resource and the degree of concurrency allowed by a resource
are two dependency design dimensions.

Each point in the dependency design space defines a different dependency type.

A coordination design space. Coordination design dimensions represent design
alternatives available to satisfy interaction requirements. For example, the protocol used
to share a nonconcurrent resource is an implementation design dimension.

Each point in the coordination design space defines a different coordination process.

In addition, each point in the dependency design space (dependency type) must be
associated to a coordination design space for managing it. Our objective in the following
sections is to define related dependency and coordination design spaces for each family of
dependencies.



Figure 10.3: Taxonomy of resources

The success of a design-space description of design alternatives clearly lies in the choice of
dimensions and specific dimensional values (design alternatives). There is no obvious
rigorous way of defending a particular set of choices. Neither Bell and Newell (1972) nor
Lane (1990) have offered any justification for their dimensions and alternatives, except for
their own intuition and the usefulness of the resulting description. I will follow the same path,
simply proposing a set of dimensions and trying to show empirically that they form a useful
description of design alternatives.

 



 

10.5 A Taxonomy of Resources

Before we begin the description of resource flow dependencies, we present a taxonomy of
resources occurring in software systems. This taxonomy will be useful both for distinguishing
between different special cases of flow relationships and for determining the range of
alternative ways of managing them. The taxonomy is summarized in figure 10.3. The next
section provides a discussion of its principal dimensions.

10.5.1 Resource Kind

Control. The resource usually referred to in computer science as control is more
accurately described as a thread of processor attention. In order for any software activity
to begin execution, it needs to receive control from somewhere; that is, it needs to
receive the attention of some processor. Control flow dependencies thus describe the
flow of processor attention from one activity to another.

Data. Data resources include data values such as integers, strings, and arrays. They are
further distinguished by their data type.

System. System resources represent various services offered by operating systems.
They include passive resources such as shared memory pools, pipes, communication
sockets, and active resources, such as name servers, and remote file transfer servers.

Hardware. Hardware resources correspond to hardware devices, such as printers, disk
and tape drives, and multimedia adapters.

10.5.2 Resource Access

Resource access determines how producers and users access their corresponding
resources.

Direct access resources. Control and simple data resources are communicated directly
from producer to users. In a sense they are their own identifiers.

Indirect (named) access resources. Indirect access resources are accessed using a
secondary data resource called the resource name or identifier. Flows of indirect access
resources involve the communication of identifiers, rather than the resources
themselves.

The use of identifiers is extremely widespread in software systems. Identifiers provide
mappings that allow a wide variety of resources (system, hardware, complex data structures)
to be accessed by software components that can only interface with their environment
through relatively simple data resource ports.

System and hardware resources are always accessed indirectly. Complex data resources,
such as files and databases, are also typically accessed using identifiers.

10.5.3 Resource Transportability

Transportability determines whether resources can be moved around in the system.

Fixed resources cannot be moved. They have a fixed location in the system, and in
order to be used, software activities have to be located ''close''to them. Hardware
resources, such as printers, are examples of fixed resources.



Movable resources can be made accessible to other activities by transporting them to
other locations in the system. Transportation of a movable resource usually involves an
additional auxiliary resource called the carrier resource. Data resources are usually
movable. For example, a data structure can be moved from one process to another by
converting it into a byte stream and transmitting it through a pipe. The pipe (classified as
a system resource) acts as the carrier resource in this case.

Table 10.1: Divisibility of resources

Resource Usage Description

Divisible

Memory heap Read/write Heaps can be divided into independent smaller
blocks

Network channel Connect Physical network channels can support multiple
independent connections

Indivisible

Scalar variable Read/write Scalar variables can only store one value

pgp Encrypted file Decrypt Encrypted files can only be decrypted in their
entirety

10.5.4 Resource Sharing

This section describes a framework for reasoning about shared resources that was
developed by George Wyner and Gilad Zlotkin (1995a) at the MIT Center for Coordination
Science.

Wyner and Zlotkin proposed a small number of important resource attributes that can help
designers classify coordination requirements for shared resource dependencies. They
observed that these important attributes are not merely a function of the resource type but of
the intended mode of usage as well. That is, the same resource type used in different modes
(e.g., read vs. written) might display different sharing behavior along those attributes. For that
reason they refer to them as attributes of resources-in-use. These attributes are divisibility,
consumability, and concurrency.

Divisibility Divisibility specifies whether a resource-in-use can be divided into independent
subresources. Some examples of divisible and indivisible resources are shown in table 10.1.

Consumability Consumability specifies whether a resource-in-use is being destructively
consumed. Consumable resources can be used a finite amount of times. Nonconsumable
resources can be used an arbitrarily large amount of times. Some examples of consumable
and nonconsumable resources in use are shown in table 10.2.

Concurrency Concurrency specifies whether a resource-in-use can be used by more than
one users at the same time. Concurrency can be finite, setting a finite limit on the number of
concurrent users, or infinite (arbitrarily large). Shown in table 10.3 are examples of finitely
and infinitely concurrent resources.

Table 10.2: Consumability of resources



Resource Usage Description

Consumable

Pipe channel Read Values ''disappear''from the channel as they are
being read

PROM Write PROMs (programmable read only memories)
can only be written once

Nonconsumable

File Read Files can be read an arbitrarily large amount of
times

Processor Start
task

Processors can be used to start an arbitrarily
large number of tasks

Table 10.3: Concurrency of resources

Resource Usage Description

Infinitely concurrent

File Read In most systems multiple users are allowed to
read files concurrently

Multitasking
processor

Start
task

Multitasking systems appear to execute multiple
tasks concurrently

Finitely concurrent

Ftp server Connect Ftp servers often limit the number of concurrent
connections for performance reasons

Printer Print file Printers cannot interleave the printing of
different files

 



 

10.6 A Generic Model of Resource Flows

This section presents a generic model for classifying flow dependencies and a generic
process for managing them. Section 10.7 describes how this generic model can be
specialized to manage different special cases of flow dependencies.

In the most general case, flow dependencies exist between a number of resource producers
and a number of consumers (figure 10.4). Dependencies are connected to activities through
resource producer and consumer ports. Producer and consumer ports are abstract ports
(see section 10.6.3). That is, they are composite ports that contain implementation-specific
groupings of low-level interface ports that logically participate in the production and
consumption of a given resource.

Figure 10.4: Generic model of resource .ow dependencies

We assume that by default, a flow dependency between a set of activities implies a stream of
resource flows over the lifetime of an application execution. Coordination processes for
managing flow dependencies are designed with this assumption in mind. Situations where
resources are produced or consumed only once during the lifetime of an application
execution are represented by special types of dependencies.

Our objectives in this section are the following:

Introduce a set of dependency design dimensions that define a flow dependency design
space. These dimensions represent the interaction requirements that are significant in
choosing a coordination process. Every point in this design space defines a different
special case of a flow dependency.

Introduce a set of coordination design dimensions that define a coordination process
design space. Every point in this design space will be an alternative implementation of a
flow dependency managing process.

Specify how each dependency type restricts the range of possible coordination
processes for managing it.

Both design spaces are based on a generic model for decomposing flow dependencies into
lower-level dependencies, shown in figure 10.4. Managing a flow dependency implies
managing all lower-level dependencies. This model extends the ideas introduced in (Malone
1994) and attempts to capture the different considerations that must be addressed whenever
resources are exchanged or shared among different activities.



The generic model for managing flow dependencies focuses on the relationships between
producers and users of resources. It assumes that different consumers (producers) are
independent from one another and compete for access to resources (consumers).

In the following sections we will first introduce dependency and coordination processes
design spaces for each of the lower-level dependencies. The design space for generalized
flow dependencies will then be defined by the product of the component dependencies
design spaces.

10.6.1 Usability Dependencies

Types of Usability Dependencies Usability dependencies state the simple fact that
resource users should be able to properly use produced resources. This is a very general
requirement that encompasses compatibility issues such as:

Data type compatibility

Format compatibility

Database schema compatibility

Device driver compatibility

The exact meaning and range of usability considerations varies with each kind of resource.
Section 10.7, which describes specializations of flow dependencies for a variety of different
resources, also discusses in more detail the meaning of usability dependencies for each of
them.

Design Dimension Design Alternatives

Who is responsible for ensuring
usability? Designer (Standardization)

Producers

Consumers

Both producers and consumers

Third party

When are usability requirements
fixed? At design-time

At run-time

Figure 10.5: Framework for managing usability dependencies

Managing Usability Dependencies One interesting observation resulting from this work is
that regardless of the particular usability issue being managed, coordination alternatives for
managing usability dependencies can be classified by the following two design dimensions
(figure 10.5): (1) who is responsible for ensuring usability and (2) are the usability
requirements fixed?

who is responsible for ensuring usability? The following alternatives are possible:

Designer is responsible (no run-time coordination is necessary). Components are



specially selected at design time so as to be compatible with one another. This is often
achieved by developing applications using standardized components. Examples of
standardized component families include OLE objects, OpenDoc components, Visual
Basic VBXs, and so on (Adler 1995). The advantages of this approach include run-time
effciency and reliability. On the other hand, it limits the choice of components for a
particular functional requirement to those explicitly designed for the particular
standardized environment.

Producers are responsible for ensuring usability. This implies that the producer knows
the format expected by the users, and is able to generate or convert its resources to the
user format.

Consumers are responsible for ensuring usability. This requires the consumer to
recognize the format of resources it receives, and to be able to convert the format to its
own format, if necessary.

Third party ensures usability between producers and consumers. The third party must
know and be able to handle both formats.

Both producers and consumers convert to and from an interchange format. The
advantage of this approach is that it does not require prior knowledge of the formats
produced and expected by producers and users. This is particularly desirable if
producers and users are dynamically changing, and each of them is using a different
native format. The disadvantage is that two conversions take place, which might be
ineffcient if conversions are computationally costly. Producers and users must agree on
the interchange format.

ARE USABILITY REQUIREMENTS FIXED? Coordination processes can be further classified
depending on whether the producer and consumer formats are fixed and known at design-
time, or whether they are negotiated at run-time. In the latter case, the management of
usability dependencies might introduce additional flow dependencies to the system that have
to be managed in turn.

10.6.2 Accessibility Dependencies

Types of Accessibility Dependencies Accessibility dependencies specify that a resource
must be accessible to a user before it can be used. Since users are software activities,
accessibility specifies more accurately that a resource must be accessible to the process that
executes a user activity before it can be used. Important parameters in specifying
accessibility dependencies are the number of producers, the number of users, and the
resource kind.

Managing Accessibility Dependencies There are two broad alternatives for making
resources accessible to their users (figure 10.6):

Place producers and users ''close together.''

Transport resources from producers to users.



Principal design
alternatives

First level of specialization Secondof specialization

Place producers
and consumers
"close together"

Place at design-
time

Place at run-time

Package in same
sequential module

Package in same
executable

Assign to same
processor

Assign to nearby
processors

Code is accessible to all
processors

Physical code
trasportation required

Transport
resource

Actual processes depend on resource kind

Figure 10.6: Framework for managing accessibility dependencies

Depending on the type of resource being transferred, either or both alternatives might be
needed. Placing producer and user activities ''close''to one another generally decreases the
cost of transporting the resource. Combinations of placing activities and transporting
resources should be considered in situations where the cost of placing the activities is lower
than the corresponding gain in the cost of transporting the resource. A discussion of the two
alternatives follows.

PLACE PRODUCERS AND USERS ''CLOSE TOGETHER'' This can be done either at
design-time, or at run-time:

Place activities at design-time. The ways to manage this step is in decreasing order of
effciency:

Package activities together in the same sequential code block. In this case
transport of data resources becomes trivial through the use of local variables.
However, such a packaging is subject to a large number of restrictions (all
activities must be in source code form; they must be written in the same language
and must be assigned to the same processor and executable; data resource
must be transportable through local variables) and is not always possible.

1.

Package activities in the same executable. Transport of data resources can be
done cheaply through global variables.

2.

Assign activities to the same processor. Transport of data resources can be
done through shared memory.

3.

Assign activities to neighboring processors. Transport of data resources will
require network communication, but this is still potentially cheaper than if
producer and users were randomly assigned.

4.

Move activities at run-time. Producers can be moved close to users, and vice versa. In



the simplest case, this would imply assigning the producer to the processor where user
activities are assigned. In more complicated cases, this step might require physically
transferring an activity's code to the target machine.

TRANSPORT RESOURCE FROM PRODUCERS TO USERS This step depends on the kind
of resource that is flowing. It is discussed in more detail in section 10.7.

Figure 10.7: Prerequisite dependency

10.6.3 Prerequisite Dependencies

Types of Prerequisite Dependencies A fundamental requirement in every resource flow is
that a resource must be produced before it can be used. This is captured by including a
prerequisite dependency in the decomposition of every flow dependency.

Prerequisites are relationships between two sets of activities (figure 10.7). In the following
discussion we will refer to set A as the precedent set and to set B as the consequent set. As
is the case with flow dependencies, prerequisite dependencies in our vocabulary have
stream semantics: they assume that precedent and consequent activities might execute
multiple times over the lifetime of an application execution. Prerequisite dependencies thus
specify constraints on the allowed execution interleavings of precedent and consequent
activities.

Prerequisite dependencies occur very frequently in software architectures. They are the most
frequently used member of the dependency family we call timing dependencies. Timing
dependencies express constraints in the timing of control flow into a set of activities. They are
discussed in section 10.8.

Prerequisite dependencies form a family of related sequencing constraints. The most useful
members of the prerequisite family are the following:

Persistent prerequisites specify that a single occurrence of activity A is an adequate
prerequisite for an infinite number of occurrences of activity B. This requirement arises
often in system initialization processes: an initialization activity must be executed once
before any number of system use activities can take place.

Perishable prerequisites are a special case of permanent prerequisites. They specify
that a single occurrence of activity A is an adequate prerequisite for an indefinite number
of occurrences of activity B. However, occurrence of a third activity C invalidates the
effect of activity A, which must then be repeated (figure 10.8). Examples of this
dependency arise in situations where resources (communication channels, files) are
opened and periodically closed. If no activity C is connected to their invalidation port,
perishable prerequisite dependencies become identical to persistent prerequisites.

Cumulative prerequisites permit occurrences of activity A and activity B to be interleaved



as long as the number of occurrences of activity B is always smaller than or equal to the
number of completed occurrences of activity A. This prerequisite arises in asynchronous
resource flows with buffering.

Transient prerequisites specify that at least one new occurrence of activity A must
precede each new occurrence of activity B. Transient prerequisites satisfy the definition
of cumulative prerequisites and can be thought of as a special case of that dependency
type. Perishable prerequisites reduce to transient prerequisites (figure 10.8), when B
and C are the same activity.

Figure 10.8: Perishable prerequisites

Lockstep prerequisites specify that exactly one occurrence of activity A must precede
each occurrence of activity B. They occur in resource flows without buffering, where it
must be ensured that every produced element is used before the next one can be
produced. Lockstep prerequisites are a special case of transient prerequisites.

The preceding variations of prerequisite relationships can be organized in a specialization
hierarchy, as shown in figure 10.9. The implication of prerequisite specialization relationships
is that coordination processes for managing a prerequisite relationship can also be used to
manage any of its parent relationships in the specialization structure. For example, in order to
manage a cumulative prerequisite, in addition to using processes specifically designed for
this type of prerequisite, designers can also consider using coordination processes for
transient or lockstep prerequisites.

Figure 10.9: Specialization relationships among different prerequisite dependency types

Prerequisite dependencies can be further classified according to:

Number of precedent activities

Number of consequent activities

Relationship (and/or) among the precedent activities

In And-prerequisites, all activities in the precedent set must occur before activities in the
consequent set can begin execution. By contrast, in Or-prerequisites, occurrence of at least
one activity in the precedent set satisfies the prerequisite requirement.

Managing Prerequisite Dependencies There are four generic processes for managing
prerequisite dependencies (figure 10.10): producer push, consumer pull, peer
synchronization, and controlled hierarchy.



Figure 10.10: Generic processes for managing prerequisite dependencies

PRODUCER PUSH This process decomposes into a control flow dependency (section
10.7.1). The alternatives for managing it are the same as those of managing the
corresponding control flow dependency.

Producer push processes manage lockstep prerequisites. Consequents are invoked once
each time the precedents complete execution.

CONSUMER PULL This process family decomposes into a synchronous call pattern of
control flow dependencies. The alternatives for managing it are the same as those of
managing the corresponding pattern of control flows.

Consumer pull processes manage lockstep prerequisites. Precedents are invoked once
before each consequent. Consumer pull organizations can also be used to manage
persistent and perishable dependencies: before starting itself, each consequent checks
whether the prerequisite condition is valid, and invokes the precedent activities if it is not.

PEER SYNCHRONIZATION Peer synchronization processes can be used to manage all
kinds of prerequisites. Figure 10.11 shows their generic form for each kind of one-to-one
prerequisite. All processes can be generalized to handle many-to-many prerequisites.



Figure 10.11: Generic processes for managing prerequisite dependencies using peer
event synchronization

Peer synchronization processes rely on the generation and detection of shared events in the
system. Events can be classified as follows (figure 10.12):

Figure 10.12: Taxonomy and examples of event types

Memoryless events. Such events are only capable of recording binary states
(occurred/did not occur). They can be used for managing permanent, perishable,
transient, and lockstep prerequisites. Memoryless events can be further distinguished
into persistent and transient.

Persistent event protocols keep a record of whether the event has occurred or not.
Therefore the detection of the event need not take place at the time of event generation.
Transient event protocols do not keep a record of whether an event has occurred.
Events are either detected at the time they are generated, or go unnoticed. This requires
some extra coordination to make sure that event detection activities have been started
before event generation takes place.

Cumulative events. Cumulative events are capable of remembering how many times
they have occurred. They are used in the management of cumulative prerequisites.
Apart from being resetted, cumulative events can be incremented and decremented.

CONTROLLED HIERARCHY There are three variations on this process:



Third party synchronously calls precedent, then calls consequent.

Third party asynchronously calls precedent, then schedules consequent after suffcient
delay.

Third party schedules both precedent and consequent with suffcient relative delay.

Controlled hierarchy processes can be used to manage lockstep prerequisites.
Permanent prerequisites can also be managed by this approach by placing the
prerequisite code before any other code in the system (e.g., in an initialization module or
at the top of the main program). Figure 10.13 summarizes the design dimensions of
prerequisite dependencies and coordination processes.

Principal Design
Dimensions

Design Alternatives Other Design Dimensions

Type of
prerequisite Persistent

Perishable

Cumulative

Transient

Lockstep

 

Organization of
coordination
mechanism

Producer Push

Consumer Pull

Peer
Synchronization

Controlled
Hierarchy

Synchronous vs.
Asynchronous control
flow

Type of shared event
used

Wait for precedent
completion vs. pre-
scheduling

Figure 10.13: Framework for managing prerequisite dependencies

10.6.4 Sharing Dependencies

Types of Sharing Dependencies Sharing arises when more than one activity requires
access to the same resource. Sharing dependencies can be specialized using the three
dimensions of the resource-in-use framework of section 10.5.4. For each different
combination of resource-in-use parameters (e.g., indivisible, consumable, concurrent), a
different specialization of sharing dependency can be defined.

Sharing dependencies arise in one-to-many, many-to-one, and many-to-many flow
dependencies in two distinct situations:

Resource sharing

User sharing



RESOURCE SHARING Resource sharing considerations arise in one-to-many flow
dependencies because more than one activity uses the same resource. Resource users are
assumed to be independent. Therefore the sharing coordination requirements depend solely
on the sharing properties of the resource. The different possibilities are as follows:

Divisible resources. Resources can be divided among the users.

Consumable resources. The total number of users must be restricted.

Nonconcurrent resources. The number of concurrent users must be restricted.

CONSUMER SHARING Consumer sharing dependencies arise in many-to-one flow
dependencies because more than one producers produce for the same consumer activity,
viewed as a ''resource.''Consumer ''resources''can be characterized using the resource-in-
use framework. The different dimensions are as follows:

Divisibility. Consumer activities either occur or do not occur. Therefore they are
considered indivisible resources.

Consumability. Consumability of a consumer activity means that it can occur a limited
number of times or, equivalently, that it can accept a limited number of produced
resources. This implies the need for coordination in order to select which resources will
be accepted. Modeling consumer activities as consumable resources enables many-to-
one flow dependencies to be used for modeling race conditions.

Concurrency. Concurrency determines whether multiple instances of a consumer
activity can be active at the same time. Some consumer activities are nonconcurrent
(e.g., non-reentrant procedures). In that case coordination should be installed to restrict
simultaneous execution of more than one activity instances.

Many-to-many flow dependencies contain a combination of both resource-and consumer-
sharing dependencies.

Managing Sharing Dependencies The problem of resource sharing has been studied
extensively by researchers in various areas and there exists a huge literature of related
algorithms and techniques. Our purpose in this section is to take an architectural look at
resource sharing techniques, showing how their interfaces can be abstracted to a small
number of generic processes, and how they relate to the other components of a resource
flow management process in a small, well-defined number of ways.

There are three general techniques for coordinating resource sharing requirements (figure
10.14):

Divide resource

Restrict access to resource

Replicate resource



Resource Type Sharing Coordination
Required

Specializations

Divisible
Resources

Divide Resources
Divide before
transportation

Divide after
transportation

Indivisible
Resources

   

Consumable
and /or Finitely
Concurrent

Restrict access to
resource

Replicate resource

Restrict consumer
activity execution

Restrict resource
transportation

Restrict resource
production

Nonconsumable
and Infinitely
Concurrent

No sharing coordination is
required

 

Figure 10.14: Framework for managing sharing dependencies

DIVIDE RESOURCE This technique applies to divisible resources. It can be represented by a
process that uses the entire resource and produces a set of new subresources (figure
10.15). Subresources are considered independent resources and can then flow to each user
with no further coordination.

Figure 10.15: Sharing of divisible resources in a .ow dependency

There are two different ways a resource divide can be combined with the rest of a flow
coordination process:

Divide resource before transportation (figure 10.15a). This is the most common case.
The entire resource is divided at the site of production, and the generated sub-resources
are independently transported to their users.

Divide resource after transportation (figure 10.15b). The resource is first transported at
each site and a new subresource is extracted locally. Examples of such resources are
circulating tokens in which successive users write or reserve data areas.

RESTRICT ACCESS TO RESOURCE This very general technique applies to both
consumable and nonconcurrent resources. In both cases the function of the coordination
process is to restrict the flow of control into activities accessing the resource (figure 10.16).
More specifically:

For consumable resources, the process restricts the total number of resource accesses.



For nonconcurrent resources, the process limits the total number of concurrent
resource accesses. The most common case is when only one concurrent access can
be allowed. Then resource sharing becomes equal to a mutual exclusion dependency
(Raynal 1986).

Figure 10.16: Sharing by restricting access to resource

From an architectural perspective, there are three different ways an access restriction
process can be integrated with the rest of a flow coordination process:

Restrict consumer activity execution (figure 10.16a). This method is used when a
resource is accessible to all consumers (e.g., a fixed hardware resource), or when each
consumer is using a local protocol to restrict access.

Restrict resource accessibility (figure 10.16b). This method prevents the resource from
being transported to consumers until they are allowed to use it. It has effciency
advantages in situations where resource transportation is costly (e.g., for large files), and
only a subset of the candidate consumers is allowed to use the resource.

Restrict resource production (figure 10.16c). This alternative should be considered when
managing user-sharing dependencies. In situations where only a subset of the produced
resources is ever used, it might be more effcient to not produce unless usage has been
guaranteed.

REPLICATE RESOURCE Resource replication is a technique that jointly manages
accessibility and resource sharing dependencies. Its more general architectural form is
similar to that of a resource division process. However, it applies to indivisible resources.

COMBINATIONS OF DIVISION AND RESTRICTION The previous techniques can be
combined to handle more complex resource sharing requirements. For example, in order to
share a resource that is nonconcurrent and finitely divisible among a potentially infinite
number of users a combination of division and access restriction can be used. Whenever an
access is desired, extraction of a new subresource is first attempted. If that fails, time sharing
is used. This algorithm, for example, manages the sharing of finite capacity buffered
input/output channels among a potentially infinite number of user processes.

10.6.5 Putting It All Together — Flow Dependencies

The design dimensions of generalized resource dependencies are the sum of the design
dimensions of their component dependencies (figure 10.17). For each combination of



dimension values, a different special case of resource flow can be defined. The following is a
discussion of the different dimensions and the alternative flow dependencies they can be
used to define.

Figure 10.17: First two levels of design dimensions for flow dependencies

Resource Kind The most important design dimension is the kind of resource. Section 10.7
will describe how resource dependencies are specialized according to this dimension.

Prerequisite Relationship Another important dimension is the kind of prerequisite
requirement. According to this dimension, resource relationships are classified as follows:

Persistent flows. In these situations one or more resources are produced once, and can
then be used an infinite amount of times. In software systems, they arise often to
describe the use of calculated constants, and system resources (printers, network
channels, etc.) that are set up once and then used an indefinite amount of times.

Perishable flows. This more refined special case of permanent dependencies describes
situations where produced resources can be used an indefinite amount of times until
they become invalidated. File caching provides an example application where this type
of flow describes the underlying interdependency. Cached file blocks are transferred
(produced) once from disk and can then be read an arbitrary number of times until
some other process modifies their corresponding disk block. Then the cached file
blocks become invalidated and have to be refreshed from disk before they can be read
again.

Cumulative flows. In these situations every resource produced can only be used once.
Producers and users can proceed asynchronously, but at no time can the number of
user accesses exceed the number of produced resources. Reading and writing a pipe
channel by two separate processes is an example of this type of flow.

Transient flows. In these situations a stream of resources is produced, but the use of
each resource is optional. Thus new resources in the stream can overwrite previous
ones, possibly before they have been used. One example application where transient
flows describe the underlying interdependency is a log file that is periodically being
updated and can be printed by a user at will. Not all versions of the file need to be
printed. Therefore new updates can overwrite the previous contents of the file without
the need for additional coordination.

Lockstep flows. These situations occur where there must exist tight synchronization
between producers and users of resources. All resources produced must be used and
no resource can be produced until all previous resources have been used by all
designated users. Stream data flows using nonbuffered (indivisible) carriers are
examples of lockstep flows.



MANAGING PREREQUISITE COORDINATION PROCESSES The coordination
process selected to manage a prerequisite dependency at the heart of a resource flow
has a profound influence on the overall organization of the interacting activities.
Corresponding to the four generic classes of prerequisite coordination processes, we
have an equivalent taxonomy of flow organizations:

Producer push. In push organizations, also called eager flows, resource users explicitly
receive control from producers every time a new resource has been produced. Only
lockstep flows can be implemented in this manner.

If control is transferred to users using synchronous calls, this organization reduces to
what is commonly called client/server architecture. The resource producers act as
clients and resource users act as servers.

Consumer pull. In pull organizations, also called lazy flows, resource producers are
invoked by users whenever the latter require a new resource. Only lockstep and
permanent flows can be implemented in this manner.

Pull organizations of flow dependencies also reduce to client/server architectures.
Resource users act as the clients and resource producers act as the servers. Note,
however, that the direction of the client/server relationship is the inverse of the direction
of the flow relationship.

Peer synchronization. In peer organizations producers and users are executed by
separate threads of control and synchronize themselves through events. This is a more
loose organization, appropriate for managing all kinds of flows. It is particularly suitable
for organizing cumulative and transient flows. It might not be as effcient for managing
lockstep flows, where tight synchronization is required. Examples of flow processes that
are organized in this manner include pipe channel flows, shared memory flows with
separate semaphore synchronization, tuple space flows, and so on. Ada's rendezvous
interprocess communication paradigm (DoD 1983) is one well-known specialization of
peer organizations. Other researchers have used the term implicit invocation
architectures to characterize such organizations (Garlan 1988).

Controlled hierarchy. Such organizations typically result in systems with centralized
control, where a main program explicitly controls the sequence of flow participants.

Number of Producers and Users—Sharing Dimensions

One-to-one dependencies. These are the simplest kinds of dependencies. The defining
dimensions are the kind of resource and the kind of prerequisite relationship. There are
no sharing considerations.

One-to-many dependencies. In one-to-many dependencies, resource sharing becomes
an issue. Different dependency types can be defined for each combination of resource
sharing dimensions of each of the users. Some interesting special cases are:

One-to-all dependencies. Each resource flows to all users

One-to-one-of-many dependencies. Each resource flows to one of the users. This can
be managed in an application-independent way (e.g., first come–first served), or in an
application-specific way. In the latter case, user consumer ports usually provide
additional pieces of information, such as user priorities.

Many-to-one dependencies. In many-to-one dependencies, user sharing issues have to
be addressed. Users might not be willing to receive all resources produced, or they
might not be able to receive them concurrently.

Situations where users are not willing to receive all resources produced are often



referred to as race conditions. In our framework, race conditions are modeled as many-
to-one dependencies where the user activity acts as a consumable ''resource.''General
ways of managing consumable resources can be used to manage the dependency.

Many-to-many dependencies. These dependencies are the most complex family
because they can specialized according to both resource-and user-sharing dimensions.
Some interesting special cases include:

Each-to-all. Every resource produced flows to all users

Each-to-one. Every resource produced flows to one user only

Each-from-one. Each user receives one resource only

All-from-one. Only one of the resources produced flows to (all) users

The design alternatives for managing resource dependencies are the product of the different
alternatives for managing each component dependency. In principle, each of the component
dependencies can be managed by independent coordination processes. In practice,
however, there often exist opportunities to increase effciency by managing patterns of
dependencies using joint coordination processes. This gives rise to additional design
alternatives that designers should be aware of. We have already encountered the opportunity
to use joint coordination processes for managing accessibility and sharing (restrict resource
transportation, replicate resource). In the following sections we will encounter more
opportunities for joint dependency management.

 



 

10.7 Timing Dependencies

Timing dependencies specify constraints on the relative timing of two or more activities. The
most widely used members of this dependency family are prerequisite dependencies (A
must complete before B starts) and mutual exclusion dependencies (A and B cannot
overlap).

Timing dependencies are used in software systems for two purposes:

To specify implicit resource relationships

To specify cooperation relationships among activities that share some resources

Specify Implicit Resource Relationships Implicit resource relationships arise in situations
where parts of a resource flow coordination protocol have been hard-coded inside a set of
components. Other parts of the protocol might be missing, and explicit coordination might be
needed to manage the missing parts only. One example is a set of components for
accessing a database. Each of the components contains all the functionality needed in order
to access the database built into its code. The name of the database is also embedded in the
components and does not appear in their interface. However, none of the components
contains any support for sharing the database with other activities. In applications that require
concurrent access of the database by all components, designers need to specify and
manage an external mutual exclusion dependency among the components.

Table 10.4: Allen's taxonomy of relationships between time intervals

Relation Symmetric
relation

Pictorial example

X before Y   XXX YYY

X equal Y   XXX

YYY

X meets Y   XXXYYY

X overlaps Y   XXX YYY

X during Y X equal Y YYYYYY

XXX

X starts Y X, Y simstart XXX

YYYYY

X finishes Y X, Y simend XXX

YYYY

Specify Cooperation Relationships Flow dependencies assume that different users of a
resource are independent from one another. In many applications, however, users of a
resource are cooperating in application-specific ways. Section 10.3 describes an example of
such patterns of cooperation. In those cases designers must specify additional dependencies
that describe the cooperation among the users. Some of those dependencies could be other
resource dependencies. Other could be timing dependencies.

To derive a useful family of timing dependencies we have used the following approach,
based on Allen's (1984) taxonomy of time interval relationships. Allen has enumerated all
possible relationships between two time intervals (table 10.4). An occurrence of a software



activity can be represented by a time interval: [Begin_time, End_time]. Timing dependencies
express constraints among activity occurrences. These constraints can be expressed by
equivalent constraints between time intervals. Constraints can either require or forbid that a
given time interval relationship hold. By enumerating ''required''and ''forbidden''constraints for
each of Allen's time interval relationships, we get a list of potentially interesting elementary
timing dependencies (table 10.5). These dependencies can be combined to define
additional, composite timing relationships. Finally, the resulting set of dependencies can be
organized in a specialization hierarchy, as shown in figure 10.18.

Table 10.5: Deriving timing dependency types from Allen's time interval
relationships

Allen's
relation

''Relation
required''
dependency

''Relation
forbidden''
dependency

Comments

X before Y X prerequisite Y X prevents Y  

X equal Y     Can be expressed as
a composite pattern:

X, Y simstart AND X, Y
simend

X meets Y X meets Y   Special case of
prerequisite

X overlaps Y X overlaps Y X, Y mutex  

X during Y X during Y X, Y mutex During can be
expressed as a
composite pattern:

X overlaps Y AND Y
finishes X

X starts Y X starts Y    

X, Y simstart X, Y simstart    

X finishes Y X finishes Y    

X, Y simend X, Y simend    

Figure 10.18: Specialization relationships among timing dependencies

The following paragraphs describe each of the dependencies shown in figure 10.18. For
each dependency type, we describe:

The timing constraint it specifies

The dependency design dimensions

The principal ways to manage it

Some situations where it might be useful



10.7.1 Mutual Exclusion Dependencies (X, Y Mutex)

Description Mutual exclusion dependencies among a set of activities limit
the total number of activities of the set that can be executing
at any one time

Design dimensions Degree of concurrency (maximum number of concurrently
executing activities)

Coordination processes See Raynal (1986)

Typical use Mutual exclusion dependencies typically arise among
competing users who share resources with limited
concurrency

10.7.2 Prerequisite Dependencies (X Prereq Y )

Description Prerequisite dependencies specify that an activity X must
complete execution before another activity Y begins
execution

Design dimensions See section 10.6.3

Coordination processes See section 10.6.3

Typical use Prerequisites arise in two general situations:

Between producers and consumers of some
resource. A resource must be produced before it
can be consumed.

As a special way of managing mutual exclusion
dependencies. Mutual exclusion relationships can
be managed by ensuring that the activities
involved occur in a statically defined sequential
order. The ordering can be specified by defining
appropriate prerequisite relationships.

10.7.3 Prevention Dependencies (X Prevents Y )



Description Prevention dependencies specify that the occurrence of an
activity X prevents further occurrences of another activity Y

Design
dimensions In permanent prevention dependencies, an occurrence

of X prevents all further occurrences of Y

In temporary prevention dependencies, occurrence of a
third activity Z re-enables occurrences of Y

Coordination processes Prevention relationships are closely related to
perishable prerequisites (see section 10.6.3). As shown in figure
10.19, every prevention dependency can be mapped to an
equivalent perishable prerequisite.

Typical use Prevention relationships often arise among competing activities
that share some resource, where one of the competing activities
X has higher priority, and thus the power to restrict access to
(prevent) other competing activities Y

Figure 10.19: Relationships between prevention and perishable prerequisite
dependencies

10.7.4 Meets Dependencies (X Meets Y )

Description Meets dependencies specify that an activity Y should begin
execution after completion of another activity X

Design dimensions Minimum or maximum delay between the completion of X
and the initiation of Y

Coordination
processes

Most of the coordination processes for managing lockstep
prerequisites can be used to manage this dependency.
Delay parameters between X and Y can determine which
alternatives are appropriate for each special case (e.g., if Y
must start immediately after X completes, direct transfer of
control is usually preferable to loose event synchronization).

Typical use Meets dependencies are a special case of prerequisite and
can also be used to describe relationships between
producers and users of resources. The explicit specification
of maximum delay between the two activities is useful in
situations where resources produced have finite lifetimes
and must be used within a specified time interval.

10.7.5 Overlap Dependencies (X Overlaps Y )



Description Overlap dependencies specify that an activity Y can only
begin execution if another activity X is already executing

Design dimensions None

Coordination
processes

This dependency can be managed in two different ways:

Proactively scheduling Y when X starts execution.
This is equivalent to decomposing X overlaps Y to Y
starts X with specified delay.

Waiting for X to begin execution before allowing Y to
start. This is equivalent to defining a perishable
prerequisite (enabled by initiation of X, invalidated by
completion of X ) between Y and X.

Typical use Overlap relationships typically imply resource relationships
between Y and X. In most cases, during its execution Y
produces some resource or state required by X. Overlap
dependencies occur most frequently as components of
During dependencies.

10.7.6 During Dependencies (X during Y )

Description During dependencies specify that an activity X can only
execute during the execution of another activity Y

Design dimensions None

Coordination
processes

This dependency is a composite pattern of the following two
dependencies:

X overlaps Y,so X can begin execution only if Y is
already executing.

Y finishes X. Termination of Y also terminates X.

It can be managed by composing processes for managing
its two component dependencies.

Typical use During dependencies imply that X uses some resource or
state generated during Y 's execution. For example, a
network client can only execute successfully during
execution of the system's network driver.

10.7.7 Starts Dependency (X Starts Y )



Description Starts dependencies specify that an activity Y must start
execution whenever X starts execution

Design dimensions Minimum or maximum delay between initiation of the two
activities

Coordination
processes

Combinations of direct control flow and scheduling can be
used to manage this dependency

Typical use This dependency is often used to describe application-
specific patterns of cooperative resource usage or implicit
resource dependencies. For example, when starting a word
processor program, the printer driver is often initialized as
well, in anticipation to the word processor's need for its
services.

10.7.8 Simultaneity Dependency (X, Y Simstart)

Description Simultaneity dependencies specify that all activities in a set
must start execution at the same time

Design dimensions Minimum and maximum tolerances between the actual time
each activity in the specified set begins execution

Coordination
processes

Simultaneity dependencies can be transformed into many-
to-many prerequisite dependencies and managed as such
(see figure 10.20)

Typical use Simultaneity dependencies are most often used to describe
patterns of cooperative resource or mutual resource
dependencies

Figure 10.20: A simultaneity dependency can be transformed and managed as a
composite prerequisite. Before activities X and Y can begin execution, all four
prerequisite activites must occur. Then both X and Y can occur together.

Figure 10.21: Termination of the user-interface also requires termination of the
database and graphics servers



10.7.9 Finishes Dependency (X Finishes Y )

Description Finishes dependencies specify that completion of an activity
X also causes activity Y to terminate execution

Design dimensions Minimum or maximum delay between completion of X and
termination of Y

Coordination
processes

Termination of the process that executes Y using machine-
specific system primitives

Typical use This dependency is most often used to specify application
termination relationships (figure 10.21)

10.7.10 Simultaneous End Dependency (X, Y Simend)

Description Simultaneous end dependencies specify that all
activities in a set must terminate if any of them
completes execution

Design dimensions Minimum or maximum tolerances between the
actual time each member of the specified set
terminates

Coordination processes
Centralized. Each activity in the set sends
a signal to a monitor process upon
termination. The monitor process
terminates all other activities in the set.

Decentralized. Terminating activities
generate an event. All participant activities
periodically check for that event and
terminate themselves if they detect it.

Typical use Speculative
concurrency.

Multiple worker activities are jointly or
independently working on a problem. All of them
terminate if at least one of them arrives at a
solution.
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Chapter 11: A Coordination Theory Approach
to Process Description and Redesign

Kevin Crowston,
Charles S. Osborn

11.1 Introduction

Most managers develop usable understandings of the work they and their colleagues do, but
the scope and complexity of their work practices often makes it diffcult to comprehend them
fully. Understanding is particularly diffcult for semistructured, knowledge-oriented work,
where the flow of work is not reflected in physical production lines. Diffculties in
understanding become most apparent when the way the work is done must be changed, for
example, as information technologies are deployed to support or partially automate the work.
Our goal is to help people understand their work as a prelude to changing and improving the
way they do it or to document their process for use with the Process Handbook (chapter 21 in
this volume). In this chapter we propose and demonstrate a technique to analyze and
represent work based on coordination theory (chapter 2 in this volume).

We identified several potentially conflicting requirements that led to our developing a new
technique, rather than applying one of many existing techniques.

First, and most important, we wanted a technique that is generative, that is, capable of not
only documenting what people do now but also suggesting feasible alternatives. We are not
aware of any other technique that was designed to meet this requirement.

Second, it was important that documenting a process not become an end in itself. While
understanding the current process is important, documentation is not the only aspect of
organizational change that managers must consider, and probably not even the most critical
one. Therefore, as a general principle, we add complexity to a description only if it helps
answer some question important for a redesign.

Third, we want the technique to be valid. By this we mean that the suggestions of the
technique must make sense to the individuals involved in the work.

To achieve these goals, we were willing to sacrifice a degree of reliability in that two analysts
studying the same process will develop exactly the same description. So we applied a looser
but perhaps more practical criterion: one analyst studying a process in some context should
derive descriptions that can be readily understood and debated by another. The analysts
then should be able to combine their individual descriptions into a jointly acceptable
representation that incorporates the characteristics identified by each. Such a representation
might serve as the foundation of an explicit consensus between different analysts that
recognizes a shared interpretation of the configuration and priorities of process details.

Our resulting technique draws on three conceptual tools. First, as with most process
mapping techniques, we decompose processes into sequences of activities. Second, drawing
on coordination theory (Malone 1994), we explicitly search for and represent dependencies
within the process and coordination mechanisms used to manage those dependencies.
Coordination theory has been used as the basis for a number of analyses (e.g., Crowston
1997), but until now, there has been no description of how to apply the techniques. Finally,
we analyze the process and the activities in the process as specializations of more generic
processes and activities, thus linking activities together into an organized inheritance
hierarchy.



In the next section we review the theoretical bases for our technique, with particular attention
to dependencies and coordination theory. In section 11.3 we walk through the stages in our
proposed technique and present an extended example. Our overall approach draws heavily
on Checkland's Soft Systems Methodology (1981, 1989, 1990). In section 11.4 we discuss
how the representations developed can be used to suggest alternative processes, satisfying
our first requirement of generativity. We conclude by presenting an evaluation of our
technique and its implications for action.

 



 

11.2 Theoretical Basis — Processes, Dependencies, and
Coordination

In this section we review the theoretical bases for our technique, briefly discussing processes,
coordination theory and dependencies, and specialization.

11.2.1 Processes

In the past few years ''business process''has become a potent buzzword for those interested
in organizational change. Practitioners usually define ''business processes''as sequences of
goal-oriented actions undertaken by work units or business firms that repeat over time and
are measured in performance terms, such as time, resources expended or costs (e.g.,
Harrington 1991; Davenport 1993). For example, Davenport and Short (1990, p. 12) define
business processes as ''logically related tasks performed to achieve a defined business
outcome.''Harrington (1991, p. 9) defines processes as ''any activity or group of activities that
takes an input, adds value to it, and provides an output to an internal or external customer.''In
both definitions, key elements are activities, actors, and resources.

In our work we build on these definitions of process. However, we acknowledge that the
relationship between work and its description can be problematic. Except in the most routine
processes, people do not do exactly the same things, and yet we as analysts want somehow
to identify a set of ''repeated activities''in the process they perform. Even identifying a
particular set of things someone does as an ''activity''can be diffcult. It may be easy to label
the one-minute cycle of an assembly line worker, for example, but finding the boundaries
between coming up with an idea and writing it down, for example, is much more diffcult. In
general, though, we adopt a pragmatic attitude toward these issues. It is true that there are
problems in representing processes, but in most cases it is possible to develop a meaningful
and recognizable model. Therefore our criteria in assessing a model is not some Platonic
ideal, but rather that it makes sense to the users of the models, or at least, that users are
able to come to some agreement about them.

Furthermore, instead of arguing that our models are somehow true representations of work,
we view descriptions as discursive products, that is, as artifacts, with authors, intended to
accomplish some goal. Checkland (1981) similarly describes models as ''opening up debate
about change''rather than ''what ought now to be done''(p. 178). In this view, process
descriptions are resources for action. Someone doing the work may find them useful as a
reference or justification for particular actions.[1] Particularly important for this chapter,
someone may find a description useful as a basis for suggesting changes in the processes.
Our goal in this chapter is to describe how we build such potentially useful process models.

11.2.2 Coordination Theory

The second conceptual basis for our method is coordination theory. A major drawback to
many process representations is that they are, ironically, static: they describe the current
state of a process but do little to illuminate possible changes or improvements. We use
coordination theory suggest alternative ways a process could work. According to coordination
theory, actors performing activities face coordination problems arising from dependencies
that constrain how the activities can be performed. These coordination problems are
managed by activities that implement coordination methods.

The first key claim of coordination theory is that dependencies and the mechanisms for
managing them are general, that is, a given dependency and a mechanism to manage it will
be found in a variety of organizational settings. For example, a common coordination



problem is that certain activities require specialized skills, thus constraining which actors can
work on them. This dependency between an activity and an actor arises in some form in
nearly every organization. Coordination theory suggests identifying and studying common
dependencies and their related coordination mechanisms across a wide variety of
organizational settings.

The second claim is that there are often several coordination mechanisms that can be used
to manage a dependency. For example, mechanisms to manage the dependency between
an activity and an actor include, among others, (1) having a manager pick a subordinate to
perform the task, (2) first-come–first-served, and (3) a labor market. Again, the claim of
coordination theory is that these mechanisms may be useful in a wide variety of
organizational settings. Organizations with similar goals achieved using more or less the
same set of activities will have to manage the same dependencies, but they may choose
different coordination mechanisms, resulting in different processes. Taken together, these
two claims suggests that alternative processes can be created by identifying the
dependencies in the process and considering what alternative coordination methods could
be used. Therefore, looking for dependencies and coordination methods is a useful start to
process analysis and redesign.

Many organizational researchers have studied dependencies and coordination. In this
chapter, we draw on the typology presented by Crowston (chapter 3 in this volume), who
categorized dependencies between activities by examining how the activities use common
resources. Not surprisingly, knowledge-intensive work is often coordination intensive.
Knowledge workers within an organizational hierarchy are often asked to adjudicate
conflicting claims on resources in order to maintain acceptable levels of process
performance. Consider a company where an account executive (AE) develops job quotations
for customers and is also responsible for supervising the quality of internal work required to
complete that job. In this role the AE coordinates a process that crosses the boundary
between the company and its customers—managing a flow dependency that critically affects
the usability of the company's output to its customer as well as the usability of the customer's
input (e.g., the quote) to the company. It is not diffcult to see how the success of the AE's
organization depends greatly on the success with which the AE manages this dependency. In
this chapter we will consider an example of such as cross-boundary dependency in some
depth to illustrate our process-analysis technique.

11.2.3 Specialization

The final conceptual tool is specialization. A specialization hierarchy organizes objects from
most general to most specific, with a parent object having more specific objects as children.
In our technique, processes (and activities) are arranged in a specialization hierarchy. When
applied to the domain of actions, the familiar ''kind of''relation becomes ''ways to.''For any
given activity there may be several more specific ways to accomplish it. For example, in the
process of making coffee, there are many ways to perform the activity of infusing the coffee
and the water (drip, perk, espresso machine, etc.). Similarly there are several different ways
to grind beans or boil water. Likewise the specialization hierarchy includes entire processes,
where each process is a complex entity that can inherit a decomposition from its parents. For
example, the whole process of making coffee can be seen as a specialization of a more
generic process of preparing hot beverages. The process of making coffee then inherits
steps such as heating water, infusing the water and the flavoring, and serving.
[1]Lucy Suchman suggested this formulation in a presentation at a University of Michigan
CREW workshop on process modeling.

 



 

11.3 A Coordination Theory Approach to Processes
Description

In this section we describe our process-description technique in six stages. Our overall approach
draws on Checkland's (1989) Soft Systems Methodology. For data collection, we draw on four
field-based research traditions: grounded theory (Glaser 1967), ethnographic research (Spradley
1979), case study research (Yin 1984), and the clinical perspective in fieldwork (Schein 1987). We
have found these perspectives useful because they focus on the categories and terms that
process participants themselves use to describe the process while imposing a minimum level of
external preconceptions on process representation.

The technique starts by setting the boundaries of the process to analyze. Second, sources of data
on the process are identified and data collected. The heart of the analysis is the identification of
activities, actors, and resources and dependencies between them (steps 3, 4, and 5). Finally the
process model must be verified. Although we present the steps in this order, in practice, analysis
and data collection are likely to be interleaved, as analysis reveals gaps in understanding, which
motivate further data collection. For example, some data are necessary to set the process
boundaries, while the process boundaries are necessary to bound the data collection. Similarly
the steps in an analysis will be performed iteratively, as a greater understanding of one aspect of
the process will suggest additional alternatives to consider in the others.

11.3.1 Source of Examples

We will illustrate our technique using examples drawn from a case study of a small marketing
services company. We offer this case as a demonstration that our method has helped at least one
organization. We chose this company because its core processes are simple enough to present in
a chapter, yet suffciently complex to permit a discussion of generative process design. To motivate
our discussion, we will first briefly describe the company, which we will refer to by the pseudonym
''MAG Services''or simply ''MAG.''

MAG Services is a wholly owned subsidiary of a direct mail company that provides mailing and
inquiry fulfillment services for corporate marketing departments of Fortune 500 corporations. MAG
receives requests for information about a client's product(s) from individuals and fulfills the
requests by mailing out appropriate marketing materials. MAG provides two kinds of service:
custom and noncustom. Figure 11.1 shows the basic workflow through MAG's facility for both
kinds of job.



Figure 11.1: Basic work flow at MAG Services

In the noncustom business, fulfillment is similar for all clients. A typical job would work as
follows. A company runs an ad in Business Week. The ad includes a tear-off postcard bound
into it saying, ''Send me more information about . . .''and offering choices of products (e.g., ''I
want to know about blue widgets, or large widgets, or oil-resistant widgets''). On the front of
the card is MAG's mailing address. A filledout card with a return address, demographic
information, and product interest arrives by mail at MAG's data-entry room. MAG mails back
product brochures according to the selections made by the person who sent in the card, and
collects the data from the cards to feed back to MAG's client as marketing leads. In
noncustom work, jobs typically run for an extended period (usually longer than a year),
mailing materials are relatively standard and supplied in bulk by the client, mailing and
production tasks do not vary significantly over time, and MAG performance reporting is largely
limited to tracking the number of qualified sales leads.

Custom business is performed for clients on a one-time basis. An example of this
nontraditional work might be a contract in which MAG provides inquiry fulfillment services
following a trade show. At the show anyone passing by the booth can tear off a postcard with
''Send me more information . . .''on the back of it. Fulfillment of these requests is similar to the
noncustom case. Based on these inquiries and other data, MAG creates a database of leads,
including the addresses of people who have inquired, the inquirers'demographics, lists of
prequalified leads, structured customer feedback, and the like. In contrast to noncustom jobs,
these jobs run for only a limited time with a concentrated volume of work, materials may be
specific to the particular job and include materials customized to the requester, and
performance reporting includes both volume of contacts and measures of the quality of leads
generated.

During a ten-year period in which MAG became a leader in the traditional mailing services
business, the company developed a sophisticated database system that produced most of the
mailings required by high-volume, standardized inquiry fulfillment and the reports required by
long-time clients. By 1994 the company was actively engaged in applying the same database to
customized services. By that year customized services accounted for more than 40 percent of
revenue. However, at the same time MAG's management recognized severe operational and
profitability problems with the custom business. These issues captured management's attention
because custom contracts were straining the capacity of the organization and customers
dissatisfied with MAG's performance on custom work were beginning to direct follow-on business
to competitors. MAG managers gave high priority to custom work because they believed that it
represented the area into which the company would have to grow in order to maintain its market



share within the mailing services industry.

In the remainder of this section we will describe how we analyze the work done in MAG to suggest
alternative processes that might be more effcient or effective, working through our technique step
by step.

Step 1: Setting Process Boundaries The first step in our analysis is setting the process
boundaries. Boundary-setting involves decisions about which actors, resources, and activities are
central to the analysis and which are included only as tangential links to other processes or not at
all. We focus our analyses around the stated goal of the process. Activities, actors, and resources
that contribute to this goal are included in the analysis; activities that are peripheral are included
only abstractly or not at all. In many cases there may be multiple possibilities for the overall goal
of the process. In these cases the process boundaries are particularly important because they
define the ''problem''and thus the scope of the solutions considered (Smith 1988).

IDENTIFYING GOALS An obvious way to identify goals is to ask process actors why they perform
process activities. However, Spradley (1979) is quite emphatic about not asking people
''why''questions. He points out that intentions and motivations are subject to a great deal of
rationalization as well as interviewer ''demand characteristics,''so much so that their reported
intentions must often be handled with suspicion. Instead of asking ''why,''Spradley suggests
asking, ''Under what circumstances would you do X ?''or ''Describe a situation where X would be
appropriate.''For the top-level goals, we ask more general questions about the business purpose
and overall objectives (e.g., How does this process fit into the business?). For the lower-level
activities/goals, we suggest more specific questions:

What purpose does this activity serve? If you stopped doing it, what would happen?1.

How is (or how could) performance of this activity measured? What counts as a ''good''or
''bad''performance?

2.

Who uses the results of this activity? What kinds of results to they find most important or
helpful?

3.

For MAG Service's custom business, these questions produced the following answers:

At the highest level of abstraction, MAG Services and its customers had divergent purposes
in entering into custom business arrangements. MAG's customers wanted to find new
customers through trade shows and targeted mailings, rather than waiting for customers to
come to them as before. MAG wanted sales and profits to grow by generating new jobs
that deliver such contacts with the promise of follow-on business. Custom-designed mailing
programs were intended to satisfy both of these goals.

1.

Performance measurements reflected the potential divergence of these goals. MAG's
customers were interested in new sales based on leads generated by customized mailing
services. MAG was interested in the profits from custom work and follow-on business.

2.

The definition of helpful results differed in the same manner. Customers wanted to learn
more about their markets, so as to build sales. MAG wanted to learn more about what
services customers needed, but in a way that enabled the company to deliver those
services at reasonable cost.

3.

In other words, our initial study of the process suggests that at a general level this process has two
divergent goals, first concerning customers'needs for specific attention to generate an explicit sets
of sales leads and second concerning MAG's objectives of assembling and delivering mailings as
effciently and profitably as possible. Each of these views—customer and company—may be
appropriate depending on the purpose of the analysis. The point is not whether there is a single,
universal process perspective that fits all conditions, which seems unlikely; instead, the more
appropriate question to ask is whether the boundary of the process chosen is appropriate for the
problem the analysis is intended to address.



Furthermore, as an analysis proceeds, it may be useful to change the definition of the process
boundaries under consideration. It is not a question of the definition being right or wrong as much
as useful or not useful. As Checkland (1981) puts it, ''the systems thinker must be able cheerfully
to abandon his earlier choice of relevant systems and start again''(p. 223), perhaps shifting focus
from a stated primary task to some latent issue that must continually be addressed (p. 222) or
moving higher in a process decomposition hierarchy. For example, analysts considering supply
chains might start with a process representation that describes one participant in the chain but
might expand the analysis to include multiple flows coordinated by multiple corporate actors. For
example, MAG might develop different strategic goals if it saw itself as an integral part of its
customer's marketing processes rather than as a provider of standardized marketing services.

In our example, the focus of the analysis will be on the company that provides mailing services
because the management problem under consideration is how to position the company for
profitable growth. Other questions might lead to different boundaries (i.e., the definition of the
system under study depends on the purpose of the study rather than being an inherent property of
the system). For example, a study of companies that used account executives as sales
coordinators might contrast MAG with several of its competitors using higher-level process maps.

Step 2: Collecting Data Building a process representation requires collecting considerable detail
about many activities, goals, actors, and available resources, as described in the following
sections. In this section, we describe our approach to data collection. Many data collection
techniques have been proposed, which make different trade-offs among rigor, speed, cost, and
accuracy. Many of the techniques focus on the question of reliability, in the sense that a second
observer using these techniques should come to the same exact conclusions about the
organization. Such rigor is clearly necessary for doing scientific studies where the goal is to make
some generalizable assertion about how some phenomenon works in multiple settings. However,
our goal here is different, as we simply want to say something about a particular site that others
will find interesting or useful.

The methods we use include three central components:

Semistructured interviews based on understanding process decompositions,
specializations, and dependencies.

1.

Observation and participant observation where such approaches appear appropriate (this
may include a range of participation from ''stapling oneself to an order''to sitting in on
meetings).

2.

Iteration that encourages revisiting collected data repeatedly as process understanding
grows during subsequent phases of analysis.

3.

Likewise we examine existing data about the process, such as flowcharts of processes and
process fragments, examples of documents created in the process, training manual, and even
interviews with managers or narratives collected from line workers. Even if this evidence was
originally collected for purposes other than process analysis, it can be used to increase
understanding.

At MAG Services, we used a combination of these steps. One of the authors interviewed more
than 15 members of an organization of 70 people, including all of the company's account
managers, the managers comprising the top three levels of the company, and selected part-time
employees (e.g., in data entry and operations). Participant observation accumulated during
approximately 20 weeks over eighteen months, and was largely accomplished by a MAG Services
manager whom we trained in process analysis techniques.

Step 3: Identifying Actors and Resources As data are collected, we begin to create and fill the
various categories of our description. Although we have presented this as a distinct step, in
practice, data collection and analysis are likely to be interleaved (i.e., steps 2-5overlap). In step 3,
we identify the actors who execute the process and the resources used and created in the



process. This step is also useful in refining the process boundaries because only activities
performed by the selected actors around the selected resources will be included.

Identifying process actors who are direct human participants is relatively straightforward.
Nonhuman actors are more diffcult to identify. In some cases machines might be viewed as actors
(e.g., ''the database sorted the leads by zip code''); in others larger aggregations, such as
departments, might be considered (''Sales qualified the customer''). Again, our general rule of
thumb is to add detail only where necessary for the purposes of the study. For activities on or near
the boundaries of the process description, aggregations may be appropriate for defining actors
(''Federal Express takes the package from the loading dock . . .''), while for activities central to the
process description, human and system-related actors may need to be described more
specifically (''Martha reads the output from the quality testing equipment on the assembly line.
She's the only one of us who knows how to interpret it, and she's almost always right''). Similarly
we would tend to treat a computer system as an actor unless there was some reason to concern
ourselves with the source of data or the programs embedded in the system.

To check that the set of actors is complete, we follow the work flow up and downstream, using
questions like, ''After you get done, to whom does this paperwork go?''or ''From whom do you get
your work?''The tracing can diminish (and the actors become increasingly aggregate) at the edges
of a selected process boundary.

Once the set of actors is identified, we group them into classes of actors who perform similar
activities in a similar fashion (i.e., who fill similar roles in the process). For example, we might
chose to treat all accounting clerks or FedEx drivers as examples of a class and document how
these actors work in general as opposed to in particular. A possible rule of thumb for this grouping
is that any member of the group could perform a given task. At MAG Services we developed the
list of actors shown in table 11.1.

Table 11.1: Actors in the MAG case

Class Actor Description

Customer Customer
representative

Contacts at the client company who
represent client; usually staff members
in a marketing department

Sales MAG salesperson Salesperson who initiates contact with
new customers; works in a different
department than the AEs

Operations MAG account executive
(AE)

Account executive who quotes,
schedules, and manages traditional
and customized mailing jobs; also
initiates new jobs from existing
customers

Data entry Data entry supervisor
Data entry staffff

Schedules daily data entry work

Technical services Database production
manager

Executes data transformations to be
completed on job-specific data using
MAG-proprietary database

  Programmer Provides job-specific programming for
custom jobs

Mailing services Batch dispatcher Packer Transfers jobs to packing/sorting tables

As the actors are being identified, we also begin to list the resources that are created by or pass
between activities. Some of these may be physical objects, which are relatively easy to identify.



Often, however, the key resource is information. To identify information resources, we ask what
messages the actors send one another. For example, at MAG the account executives (AEs) write
instructions for all the different production participants, such as data entry instructions, technical
work orders (for programmers and Technical Services workers), and mailing services work orders
(e.g., operations/production people in the warehouse). Resources identified in the case are shown
in table 11.2.

Step 4: Identifying Activities The next stage in our analysis is to identify the activities that
compose the process (i.e., what gets done in the process). Several problems must be addressed
in this analysis. First, the same activities may be labeled and interpreted differently by different
actors, and vice versa. Second, activities can be described at varying levels of detail. Third, the
actual activities observed may vary between performances of the process, making identification of
''the''process problematic. The solutions chosen for these problems have implications for
understanding activities themselves and for identifying the resources that activities use.

Table 11.2: Resources used in the MAG case

Resource Linking Actor(s) Description

Job quote Customer, AE Defines scope of work
approved by customer

Data entry instructions AE, data entry Instructs staff on data entry
details

Batch(es) Data entry, technical
services, mailing
services

Organizes the inquiry stream
into batches

Technical services Work
order

AE, technical services Instructs database production
managers on

Mailing services Work order AE, mailing services Instructs mailing services staff
how to pick,

Mailing shipment Technical services,
mailing services

Physical components of mailing
shipment as packed, and
shipped

HOW TO IDENTIFY ACTIVITIES Spradley describes an interviewing technique used by cognitive
anthropologists in collecting complex information from informants (1979, esp. chs. 4-6). The basic
technique comes in three parts.

One could ask ''grand tour''or ''mini-tour''questions. These are general, open-ended
questions like, ''Tell me about a typical day. What do you do?''A grand tour potentially
covers all of the different work activities that go on in a particular task unit.

1.

One could focus on more specific topics, like a particular part of the job or a particular
process: ''Tell me what happens when a customer comes in,''and so on. One could follow
up, probe, ask for elaboration, clarifications, and so on, but the basic idea is to elicit a
general description of the work in the respondent's own words.

2.

Having obtained a basic outline for groups of activities, it is possible to focus the contents of
various ''semantic domains''(Spradley 1979, p. 107). A semantic domain is like a category,
which can be very high level or very low level. In understanding process decomposition,
''activities''that can be decomposed into ''steps in''or ''parts of''the activity are important. To
get at this information, one could ask a structural question: ''What are all the steps in this
process?''This would be followed up with various probes to check for completeness: ''So
far, you've mentioned the following steps: a, b, c, d, e, ..., Are there others?''At the most
detailed level, all activities should be ''direct,''meaning something an actor can actually do

3.



(e.g., collect information or make plans), as opposed to the hoped-for outcomes of an
action (e.g., lower costs) (Checkland 1981, p. 235).

The result of these investigations is a preliminary list of activities. This list will likely omit some of
what the actors do. For example, two people may start each interaction by spending a few minutes
discussing a previous night's game, yet not include that activity when describing the process. In
general, we would follow the informants'lead in choosing whether to include such activities in the
process description. It may be that these interactions are viewed by some of the individuals as
necessary to the smooth running of the process, in which case they need to be included, or it may
be that they are considered as secondary, in which case we would probably also leave them out.

DECOMPOSITION OF A PROCESS INTO ACTIVITIES Given a description of an activity, a
second problem is to choose the appropriate level of decomposition at which to represent it. For
example, a flowchart might include one box for a particular actor's task or hundreds of boxes for
the fine details of that task. Each level of detail might be appropriate for different purposes. We
avoid this problem by developing process decomposition trees that show how a high-level task is
decomposed into lower-level tasks, thus simultaneously representing varying levels of detail.
Following our general rule of thumb, we keep decompositions at the most general possible level
unless the problem to be analyzed provides a reason to decompose a process in more detail. For
MAG Services, we represent 'Send mailing'as an atomic activity, but 'Run job'is broken down into
at least four subactivities, including preparing quotes, setting up jobs, producing jobs, and
providing status reports.

VARIATIONS ON A PROCESS A third problem is representing variations on the process. In many
processes the exact activities observed in a single instance of a process may never be repeated in
all particulars. Even so, most organizational participants have little diffculty in recognizing the
process as an abstract description that represents multiple instances of specific steps, both those
that have happened and those that might happen in the future. This feature of organizational life
can be described as inducing a generalized process from a relatively small set of observed
activities by fitting observed actions into mental templates that define more abstract process steps.
This translation usually forms an important part of ''learning the ropes,''the acculturation that
orients newcomers to existing organizational characteristics and habits.

Our approach to this issue is to build a prototype sequence and then asking for variations. For
example, ask the informant to describe a typical sequence of steps. Then ask: ''Can you think of
an example where the steps were done in a different order?''or ''Under what circumstances would
you do things differently?''These alternative ways of accomplishing the same activity may be
''alternative specializations.''A general activity (e.g., order entry) may be accomplished in several
different ways, each of which is specialized for a particular purpose. One can elicit alternative
specializations during an interview by asking: ''Are there different ways that you accomplish this
activity?''Alternatives might also be generated by identifying in the Process Handbook (Malone
1999) a more generic activity of which an identified activity is a specialization.

EXAMPLE A decomposition of the activities in the MAG Services example is shown in figure 11.2.
This figure shows a hierarchical decomposition of the process of providing MAG services, shown
at the top of the page, into activities and subactivities, drawn down the page. This description
shows that MAG engages in three phases of activity when handling a typical job. These phases
include qualifying prospective customers, providing custom and noncustom mailing services, and
billing clients.

The activity of providing mailing services is itself further decomposed in figure 11.2. The
operational details of providing mailing services are normally handled by MAG account executives
(AEs). The AE writes and distributes several sets of instructions inside the company so that the
mailing that is produced ultimately matches the client's specifications (as approved in the quote).
The AE also stays in touch with the client to ensure that MAG's services continue to be satisfactory
as the job progresses. Most of the examples discussed below concern coordination managed by
AEs in initiating new work on behalf of the company.



Figure 11.2 shows that MAG undertakes mailing contracts by qualifying prospective customers,
providing services, and billing clients. Once prospects are qualified, the company sells its services.
The sales activity ends when an AE takes an order for a job expressed within the company as a
job quotation. Once the quote is approved, the AE prepares and distributes instructions that
describe the job to operational departments within the company, and shows a copy of sample
output from the job to the client. Finally, the operational departments execute the instructions and
complete the job, which results in the collection of market information and a completed mailing.
Sales and billing functions are performed in part by MAG's parent company.

Figure 11.2: High-level process decomposition view

Earlier we discussed an important variation in the processes that MAG Services used to deliver
mailings: the difference between custom and noncustom work. Figure 11.3 suggests how this
variation can be interpreted as representing variations in the Provide Services process. Figure 11.3
shows that the generic process of providing mailing services can be provided in to different ways,
indicated by the two different specialized forms of the process—providing custom services and
providing traditional services—drawn below on the page. Note that the specialized versions of the
process have specialized versions of the subactivities as well. This comparison enables us to
focus in useful ways upon the differences in producing mailings for custom and noncustom work.
Table 11.3 summarizes some of these dimensions from the point of view of MAG's management.

Figure 11.3: Specializations illustrate process variety

Table 11.3: Comparison of custom and noncustom work



Service Volume Duration Processing Task
order

Deadlines Contact

Custom Potential 3–4
months

Custom May vary Tight Daily

Noncustom Certain Year(s) Standard Standard Set by
MAG

Quarterly

This comparison surfaces some of the coordination challenges raised by custom jobs that a focus
on production effciency alone would not recognize. Noncustom work is long term, standardized,
brings guaranteed mailing volumes, and operates against a schedule largely set by MAG. Custom
work is short term, nonstandard (even with respect to the order in which specific production tasks
are done), operates against tight deadlines, and requires daily contact with the customer. Custom
work differs fundamentally from traditional jobs in process and coordination.

Step 5: Identifying Dependencies So far our technique resembles most other process mapping
techniques, identifying activities, actors, and the flow of resources.

Table 11.4: Summary of initial analysis

Question Answer

Process
boundaries

Provide MAG service and its decompositions

Process goal To generate revenue by selling company services that satisfy the
needs of mailing services customers. In this sense the goal can be
interpreted as providing services that convert a customer with a
marketing need into a client who with a successful mailing-based
marketing campaign

Process outputs Direct mailing services on behalf of client

Process inputs Client need for mailing services (as defined by client approval of a
specific set of mailing services)

Resources Salespeople, account executives, production staff, mailing
materials, warehouse space, computer equipment, printing
equipment, temporary staff, work orders, and instructions

These results for our example are summarized in table 11.4. The novel aspect of our approach is
the identification of dependencies between the activities and resources and the application of
coordination theory, which we discuss in this section.

Given a process description that includes goals, activities, actors, and resources, we propose two
general heuristics for identifying dependencies.

Dependency-focused analysis. Identify dependencies, and then search for coordination
mechanisms. In other words, look for dependencies, and then ask which activities manage
those dependencies. Failure to find such activities might suggest potentially problematic
unmanaged dependencies.

1.

Activity-focused analysis. Identify coordination mechanisms, and then search for
dependencies. In other words, identify activities in the process that appear to be
coordination activities, and then ask what dependencies those activities manage. This
approach asks directly whether all observed coordination activities are necessary.

2.

These approaches are described and illustrated in the remainder of this section.



DEPENDENCY-FOCUSED ANALYSIS In dependency-focused analysis we examine the activities
and the resources they use, determine possible dependencies by considering which resources are
used by more than one activity, and then look for other activities within the process that manage
these dependencies. More specifically, to identify dependencies and mechanisms, we ask
questions such as the following about each activity in turn:

What are the inputs to this activity (physical, informational and other necessary preconditions,
such as permissions)? Are there flow dependencies with the activities that create these
resources? Are these resources used by other activities, creating shared resource
dependencies?

What are the outputs? Is there a flow dependency with the activities that use these
resources? Do multiple activities create these resources, creating common output
dependencies?

What other resources are used, such as actors, equipment, overhead, time, and other items
of importance in the process? Are there shared resource dependencies with these
resources? How are these resources assigned to this activity?

What performance problems have been reported for this process (e.g., observed divergence
from stated goals)? Do these problems reflect unmanaged dependencies?

For each potential dependency identified this way, we then search for activities that manage it.
The typology in Crowston (chapter 3 in this volume) is helpful, as it suggests a range of possible
coordination mechanisms for each type of dependency. For example, if an activity needs a
resource, then from the typology we note that the resource may be permanently assigned, taken
first come–first served from a pool of resources, assigned by a manager, and so forth. A flow
dependency might be managed by a single activity or the coordination mechanism might be
decomposed into separate activities for managing the transfer, usability, and inventory
dependencies.

To summarize, in dependency-focused analysis, we examine the use of resources in order to
identify potential dependencies, and then look for activities that manage those dependencies.

Example of Dependency-Focused Analysis The analysis discussed above can be done at
every level of decomposition. We will illustrate by first considering dependencies in the MAG case
at a very abstract level, considering the company as a link in a value chain, as shown in figure
11.4. At this level there are several resources, such as mailings and market information, that are
used by multiple activities, thus creating dependencies. The dependencies between the activities
are indicated using curved lines to show the flow of resources from one activity to the next. More
specifically, examining inputs and outputs suggests that MAG produces resources for the 'Using
market data'activity (i.e., it provides inputs to this activity), including sales leads generated by MAG
mailings and market information collected from sales inquiry forms (demographics, channel
sensitivity, etc.). The 'Using market data'activity is part of some larger process, indicated
schematically by the vertical lines that connect this activity to other, unshown, activities.

Figure 11.4: MAG Services as a step in a value chain

Taken together, these resource uses suggest two kinds of dependencies: first, a task-resource



dependency between MAG's customers and MAG, shown by the fact that MAG performs certain
activities on behalf of their customers, and second, a flow dependency between the activities of
MAG and its customer, shown by the flow of sales that leads from MAG to the customer. We next
attempt to identify the activities that manage these potential dependencies.

MAG's business starts when a customer decides to hire them to provide mailing services that
leads to useful demographic data or qualified sales leads. We note that numerous activities, such
as mailing marketing information, are performed by MAG on behalf of a client. Such an
assignment of tasks suggests a possible task-actor dependency (a special case of a task-
resource dependency). In other words, a customer needs these services but does not or cannot
perform them and therefore decides to hire MAG to perform them.

The various activities needed to manage a task-actor dependency are shown in Crowston (2002).
These include determining needs, identifying possible actors, collecting information, picking the
best, and then assigning the task. Interestingly in this case we see the assignment from the
perspective of the assigned company, as it responds to requests for information ('Sell to
customer'and 'Prepare quote'), is assigned the job, and finally performs it. Likewise several other
activities, such as ''Qualify prospects''and ''Bill client''are likely involved in managing this
dependency, although, in this case, these activities were performed by MAG's parent organization.
The business completes a service cycle once customers receive data in a manner that disposes
them to seek more work from MAG (e.g., the 'Use market data and sales leads'process in figure
11.4). The service cycle is a process that manages a flow dependency existing between MAG's
activities and those of their customers.

Coordination theory suggests that a flow dependency includes usability, prerequisite, and transfer
constraints that influence process performance. Following this distinction, we can identify activities
or groups of activities within the 'Provide MAG Service'process that manage such constraints (see
figure 11.4). Figure 11.5 provides a full overview of the process representation created so far in
our analysis. It includes a hierarchical process decomposition, as in figure 11.2, overlain with
dependencies and coordinating activities, as in figure 11.4. In figure 11.5 we look within the
'Provide MAG Services'process to understand how subactivities manage the dependencies that
act as constraints on the flow of jobs. From the customer's point of view, key variables associated
with process performance appear to lie within the 'Run job'process. For example, the time
dimension of MAG's performance appears to be constrained by the speed with which MAG can
set up jobs and produce mailings. This implies that 'Set up job'is managing prerequisite
constraints associated with the higher-level flow of jobs. The geographic nature of its work (e.g.,
disseminating mailings to inquirers and market data to clients) emerges clearly from the 'Produce
mailing service'process. This implies that 'Produce mailing service'is managing transfer
constraints associated with the flow of jobs. Preparing a quote is a critical step in ensuring that the
job defined to the company is a job that will be satisfactory to the customer, which implies that
'Prepare quote'is managing usability constraints.

Figure 11.5: Coordinating subdependencies within the 'Run job' process



Figure 11.5 summarizes this analysis using a graphical notation that shows subactivities and
subdependencies. The upper levels of the process representation describe MAG Services as
managing a flow of resources between two of its client's processes, as discussed above. The
darker arrows in the figure suggest how dependency-focused analysis moves downward within the
activity hierarchy to identify coordination processes that manage subdependencies. In this case
specific coordination activities manage resources associated with a subdependency that
constrains the flow of jobs. 'Prepare quote'manages the usability of a job to a customer and to
MAG. 'Set up job'ensures that the company completes the right tasks in the right sequence,
thereby managing prerequisite constraints that affect the flow of jobs. 'Produce mailing
services'generates the physical mailings that fulfill inquiries and transfer information back to the
client. These coordination activities are summarized below in table 11.5.

Using figure 11.5 and table 11.5, we can ask how effective the chosen coordination strategies
have been in practice. Table 11.6 shows the results of a coordination analysis that explicitly
considers coordination strategies. It compares the effectiveness of the coordination strategies that
MAG developed for noncustom business with performance observed for custom jobs. Recall that
the company's existing coordination processes were designed for long-cycle, high-volume, low-
variation jobs. Using our approach, it becomes possible to identify specific ways in which MAG's
services are breaking down under the differing requirements of custom work. Specifically, custom
business varies across dimensions such as deadlines, job complexity, and accuracy requirements
in ways that MAG's existing coordination techniques are not particularly well prepared to handle.
To illustrate, we will discuss three examples from table 11.6 in more detail. The analysis enables
us to apply the notions of usability, prerequisites, and transfers to specific operations-level
activities within the company. These activities represent the coordinating mechanisms that the
company uses, implicitly or explicitly, to implement its services. By this means we were able to
pinpoint with some accuracy how coordination breaks down within the daily work practices of the
company.

Table 11.5: Dependency-focused analysis-coordination activities

Activity within''Run
job''

Description Purpose Constraint
managed

Prepare quote The AE ensures that MAG is
producing the exact tasks
that will deliver what the
customer wants

Produce the
right

Usability

Set up job The AE prepares and
distributes instructions that
describe, in detail, what each
functional unit with MAG
must accomplish to
complete the job

Produce the
right

Prerequisite

Produce mailing
service

Operations completes data
entry, required materials,
and distributes market data
back to the client

Move the Transfer

QUOTES: COORDINATING USABILITY MAG's traditional work was suffciently standardized that
AEs could successfully negotiate quotes over the telephone, taking handwritten notes that were
later revised into a quotation letter signed by the customer. This approach worked well for
relatively simple standard work. Custom work, however, often varies in the types of services that
the customers requested, and always requires much tighter deadlines. Under such circumstances
AEs did not always know how to quote jobs immediately, customers often didn't realize the cost
implications of what they were asking for, and quotation letters became both delayed and



increasingly controversial. In this sense, a quotation process developed for standard work proved
unsuitable for coordinating quotes for custom jobs.

JOB SET UP: COORDINATING PREREQUISITES Once a quote was complete, AEs prepared
and circulated instructions for entering data and producing a job. These instructions delivered on
internal forms that MAG designed for traditional work, and became increasingly dysfunctional for
custom jobs. The forms were long and complex; as the custom business evolved, their options
became irrelevant to the instructions that AEs needed to provide. MAG's organizational systems,
in effect, were asking for the wrong data. Some AEs reacted to this problem by taking more time
to type their own versions of instructions; others hand wrote long additions to standard company
forms. Others insisted on following up all written instructions with verbal instructions. The net effect
of these reactions was to slow the pace of custom work at the very time that custom jobs were
requiring faster turnaround times.

Table 11.6: Dependency-focused analysis-coordination strategies

Dependency Between Managed
by

Key
attributes

Coordination
strategy

Implications
for custom
jobs

Flow Use
mailing
service,
use
market
data and
sales
leads

Provide Goals:
Satisfied
Output:
Mailing
service
Resources:
AEs, staff,
database
system,
mailing
system

Run job Jobs
coordinated
deadlines,
below-target
profitability,
and lost
business

Usability   Prepare
quote,
provide
status
reports

Key
variables:
costs

Negotiate
quote

Custom jobs
are to ask for

Prerequisite   Set up job Key
variables:
Service
specification,
set up time,
accuracy

Prepare and
departments

Instructions
for feedback
about
mistakes
until it is too
late

Transfer   Produce
mailing
service

Key
variables:
quality,
sccuracy

Process
leads, pick,

Reporting
systems
cannot
unravel
mistakes
without long
delays

MAILING SERVICES: COORDINATING TRANSFERS MAG's internal operations were highly
developed for producing standardized bulk mailings. Problems developed, however, when custom
jobs required below-average batch sizes and MAG was unable to adjust. This problem surfaced
when customers required AEs to report back to them on misdeliveries immediately rather than
monthly or quarterly. Because MAG's reporting systems, developed for standard jobs, only traced



activity by batch number, AEs had to spend hours researching potential mistakes. The net effect,
again, was to slow down custom work and make MAG appear inflexible.

To summarize, in dependency-focused analysis we first identify dependencies by considering
resources used or created by multiple activities. We then search for coordination mechanisms that
manage those dependencies, searching through successively more detailed layers of the process
until insights are gained about how process goals are implemented in practice. In a full analysis
this dependency focus leads to a detailed understanding of activities that coordinate key resources
associated with dependency constraints.

Activity-Focused Analysis Our second approach to finding dependencies and related
coordination mechanisms starts from the activities. Activity-focused analysis surfaces candidate
coordination activities, and then looks for the dependencies that they manage. In this sense it
operates inductively rather than deductively, aggregating dependencies upward through the
process hierarchy to build an analysis that complements dependency-focused approaches.

In activity-focused analysis we suggest three complementary heuristics to triangu-late on
potentially important dependencies. These include identifying critical process tasks, identifying
coordination activities, and identifying coordinators.

Search for process-critical activities. Activity-focused analysis asks which activities play a
necessary role in the completion of a process; the remaining activities are likely to be
coordinating these. At MAG Services, producing a mailing is a process-critical activity
because it directly leads to the output desired by the customer.

1.

Search directly for coordination activities. Activity-focused analysis examines tasks
identified within a decomposition hierarchy and asks whether these activities represent
coordination, namely whether they match one of the activities in table 11.1 or otherwise
manage an important dependency within the process. For example, examining budget
preparation cycles can identify resource allocation mechanisms; tracking the flow of
chapter or other physical resources within an organization can often identify activities that
manage flow dependencies.

2.

Search for actors or resources that coordinate. Activity-focused analysis looks for actors
whose work frequently suggests coordination tasks. At MAG, account executives negotiate
a contract and write the instructions that define customized mailing services.

3.

To summarize, in the activity-focused analysis, we look for activities that may implement
coordination mechanisms. Candidate activities are those that are non-production, resemble
coordination mechanisms, or are performed by coordinators.

Example Figure 11.6 summarizes a search for coordinating activities at MAG Services. The
illustration represents the results of the steps described above.

Figure 11.6: Chapter flow and resources at MAG Services

SEARCH FOR CRITICAL ACTIVITIES This step asks the same question of each activity: Could



the end product of the process exist without it? Of all the activities shown in figure 11.6, the only
one that appears irreplaceable is 'Produce materials'. The company might use different sales
processes, it can change its quoting process, it can even ''send''mailings via the Internet, but jobs
cannot be delivered without some production of personalized materials, be they physical, chapter,
or electronic.

This focus is helpful because it offers a core from which to aggregate dependencies. If 'Produce
materials'represents a key production activity in this process, the analysis can step outward from
that foundation to ask what coordination other observed activities provide. From this perspective
the activities related to converting client interest into instructions for producing materials (9 of the
18 activities in figure 11.6) appear to be attempts to coordinate production of mailings according to
criteria that meet the performance expectations of both MAG and its customers (e.g., maximum
profit with minimum time, errors, and cost).

SEARCH FOR COORDINATION Within the 'Run job'process, the only obvious production step is
'Produce mailing service'; that is, only this step produces an output that is given to the customer.
'Prepare quote'and 'Set up job'appear to be processes that largely prepare information to ensure
either that jobs meet performance criteria (e.g., 'Prepare quote') or that work will proceed error-
free ('Set up job'). In other words, they appear to manage the usability of the production work
found in the 'Produce mailing service'step.

Where records represent information that crosses process boundaries (i.e., they are an output
that is used as input by another process), they identify potentially important flows. Thus records
can form a resource within flow dependencies. By this means information-intensive activities (i.e.,
those that handle information used extensively by other activities) can often be understood as
coordination mechanisms. Figure 11.6 shows records that cross the branches of the process tree
developed for the mailing company. It describes six steps in executing a job: prospective
customers produce an inquiry about mailing services, sales processes pass prospects and job
proposals to MAG account executives, AEs prepare quotes in response to those proposals,
quotes are converted into instructions, and instructions precede the mailings and leads generated
by a job. Each of these elements represents a resource that flows across process boundaries
within MAG's operations. In figure 11.6 the 'Run job'process is shown at a lower level of
decomposition because it represents internal activities over which MAG managers have greatest
control (as noted above, sales and billing are performed by MAG's parent organization).

SEARCH FOR COORDINATORS Actors perform activities that use resources. To the degree that
the same actors perform multiple coordinating activities or produce resources employed by
coordinating activities, they can be identified as important coordinators within a process. MAG
account executives produce both quotes and instructions (resources) while performing five of the
nine coordinating activities identified in the prior step. From this perspective they appear to play an
important organizational role in supporting coordination.

DEPENDENCY AGGREGATION The three steps of activity-focused analysis have so far
suggested that (1) preparing quotes and instructions are at least coordination-intensive activities,
(2) producing personalized mailing materials is probably a critical process step around which
coordination activities cluster, and (3) AEs perform much of the coordination required to define
and complete profitable jobs. These suggestions focus attention on the potential coordination
provided by processes related to preparing quotes and setting up jobs.

If these coordination activities manage dependencies, it is reasonable to move one level higher in
the process hierarchy and ask what coordination they perform. Doing so considers the relationship
between the company and its customers as the company runs a mailing job (e.g., 'Run job'). From
this perspective it appears that 'Prepare quote'manages the usability of a job to the customer and
the profitability of the job to MAG; in other words, it manages usability constraints. 'Set up
job'appears to manage the sequencing of activities within MAG operations (recall that three sets of
instructions are prepared and distributed, one to each functional area, that direct how the
functional areas are to interact during the job). In this sense 'Set up job'is managing prerequisites.



To summarize, in activity-focused analysis, we first search for activities that appear to be
examples of coordination mechanisms, and then check for dependencies that are managed by
these activities. This bottom-up approach offers an alternative view of the process that is
complementary to the results produced by a top-down, dependency-focused perspective. Where
the results overlap the two analyses offer the means for producing confirmatory evidence of
coordination choices made by the organization. Either approach can confirm or disconfirm
process characteristics suggested by the other. Dependency-focused analysis proceeds from the
perspective of high-level goal structure, while activity-focused analysis begins with chapter flows
and process artifacts that exist deep within the organization.

Step 6: Verifying a Model Process models may be as valuable for the insights that are
developed in the process of building them as for the final process diagram. To this end verification
plays a particularly important role in the techniques suggested here. We suggest two verification
techniques in particular as complementary mechanisms for improving process representation and
analytical accuracy.

The first of these is the negative case method (Kidder 1981). Candidate process representations
are developed and discussed to discover what is missing in the representation of the process.
Gaps and ambiguities identified guide further data collection. These omissions can be identified by
discussing the process model as it evolves with the actors who are involved in the
process—discussions that often trigger the need to go back and revisit various process
representation decisions made earlier.

Triangulation provides a second opportunity to verify the faithfulness of process representations.
We use the term to refer to the ways in which process models are discussed with process actors.
The emphasis here complements the negative case method by assessing what process elements
appear to generate broad representational agreement from groups of process participants.
Representational accuracy, in this sense, can be corroborated by broad agreement among
process participants.

Negative case analysis and triangulation are included here to highlight the importance of internally
consistent verification of process models, context descriptions, and analyses by the individuals
who participate in the process themselves. Since any organizational process is open to differing
interpretations by each of its participants (Hackman 1969), and since even the problems that
processes are designed to ''solve''are open to definition-by-interpretation (Weick 1969), subjective
verification may be the best consistency-control available to field teams.

From a research design point of view, the dangers of subjective verification, even by multiple
respondents, are well known (Yin 1984). It is important to recognize, however, that managers and
other professionals working within organizations face the same limitations in understanding
observed behavior: for them, low-level subjective consensus represents one key mechanism
whereby groups jointly interpret events. Iterative, multiple-source verification (e.g., of process
descriptions) in this view represents the same level of reliability that process designers themselves
must handle in actual practice. To the degree that an expanding understanding of process
characteristics can add structure and consistency to process representations, the reliability of
process descriptions can be improved. Absent this, however, the use of iterative, multiple-source
verification seems not only an achievable means for checking descriptive fidelity but also one that
very appropriately reflects real-world conditions.

11.3.2 Summary

The result of the six-step process outlined above is documentation of a process that includes
activities, actors, resources, and dependencies among them, as well as identification of how the
dependencies are currently managed. This process documentation can then be tested to ensure
that it is reasonable, that it makes sense to people or that it can be used to communicate the
process. In the next section we will see how such documentation might be useful as a basis for



process improvement.

11.3.3 Using Dependency Analyses as a Basis for Process
Improvement

Our main purpose in creating process representations is to support process improvements.
Documenting the dependencies and coordination mechanisms of a process provides an approach
to developing new processes. New activities can be proposed to manage poorly managed
dependencies or alternative coordination mechanism can be considered to manage each
dependency. Note that mechanisms are themselves activities, with their own set of dependencies.
Replacing one mechanism may therefore eliminate some problems while creating an entirely new
set to be managed.

When the custom mailing process began to break down, MAG managers responded in ways
suggested by their experience with traditional, high-volume, standardized mailings. They initially
fixed their attention on lowering costs by trying to make custom jobs run as smoothly as the
standardized noncustom work. They focused on rearranging the company's internal production
processes (e.g., the steps by which MAG sorted data and prepared mailings). Unfortunately, this
perspective meant that the cures initially suggested for the custom business proved worse than
the disease, as it missed the need for flexibility demanded by customized contracts.

Our analysis suggests ways in which to modify coordination strategies and the tools used to
implement those strategies. For example, dependency-oriented analysis might to suggest ways in
which AEs can redesign the quoting process to reduce project lead-times. Activity-based analysis,
however, can contribute useful detail describing how to redesign a quotation form to be used in
describing the cost of services to clients over the telephone. Taken together, the two approaches
can contribute guidance to information systems development designed to resolve the timing and
flexibility problems identified as threats to the custom business. Dependency-focused analysis can
contribute to clarity of process purpose, while activity-focused analysis can contribute insight about
implementation detail.

The process analysis performed for MAG services as part of this project led to prototypes of
process improvements. After completing the analyses described above, the organization
developed software based on a commercially available groupware package to experiment with
making three changes in the Run Job process.

First, the software provided AEs with cost estimates for any combination of mailing tasks, using an
interface that enabled them to build accurately costed job quotations during a telephone
conversation. The same software generated quotation letters semi-automatically. Second, the
system fed data electronically to instruction forms. These forms were extremely simple in design,
and accumulated operational detail only for the tasks specifically required in any one project. Last,
the system provided a series of checkpoints so that AEs could electronically monitor job progress,
enabling them to report back to customers on a daily basis if necessary. All three of these
innovations provided a better way to ensure that the work done is what the customer requested
and is correct, that is, to manage the usability portion of the high-level flow dependency discussed
above. AEs reported that these design changes had the potential for increasing their capacity for
custom work. At the end of our study the company was considering whether to develop a
commercial version of the system.

A coordination perspective also provides some insight for goal resolution. To the degree that
usability constraints threaten to be incompatible, the process coordinating them may include
explicit activities devoted to resolving potential conflicts. In many organizations, for example, order-
taking begins to resemble sales negotiation as activities are added to ensure that the order will be
usable for both producer and consumer. In engineering-intensive businesses, the RFP (request
for proposal) process can be understood in this fashion. In simpler businesses, as well, an
important coordination opportunity often arises as new business enters the work flow. At MAG



Services, for example, a quoting process controls how orders for customized services are placed.

More specifically, the perspective provides a mechanism for summarizing potentially divergent
goals surfaced by MAG's business relationships. For example, it suggests how a customer's
purpose might interact with the organization's internal goals. A customer is likely to seek to
generate the maximum number of useful sales leads in the shortest available time. MAG has a
need for profitable growth. In coordination terms, these goals represent usability constraints
affecting the flow that MAG coordinates. Each mailing service, this representation implies, must
remain usable to both the customer and to the supplier—that is, it must provide sales leads that
satisfy some range of customer criteria yet remain profitable to MAG.

11.3.4 Trade-off Matrices

Likewise the models can serve as a basis for articulating the trade-offs available between different
versions of a given process. Trade-off matrices contrast process characteristics across different
versions of a process. Consider the variations of the 'Run job'activity. One version of the process
refers to selling traditional business; the second refers to selling custom jobs. The dependencies
underlying the coordination analyses above apply to both but the strategies employed for
coordinating these dependencies differ. The trade-off matrix in table 11.4 suggests some of the
ways in which the two types of business compare. The comparison suggests ways in which
process performance can be improved by redesigning the ways in which process dependencies
are coordinated.

For example, the trade-off matrix suggests that coordinating custom projects is more time-
sensitive than initiating noncustom work. This comparison implies that if the company could
facilitate AEs'and clients'understanding of the cost implications of custom services, the logistics
and productivity of MAG's custom services might be enhanced. Analyzing usability, transfer, and
prerequisite dependencies suggests a range of alternatives for improving communication among
AEs, customers, and operations staff in all stages of job definition and execution, extending from
technology-intensive solutions such as an on-line job definition system that allows new customers
to design their own customized service to relationship-intensive solutions such as pairing operating
staff with AEs in custom-project teams.

 



 

11.4 Discussion

To put our contribution into perspective, we will conclude by briefly comparing our work to
other process analysis techniques and evaluating our technique.

11.4.1 Comparison to Other Process Analysis Techniques

Process design and coordination problems have been approached from diverse
perspectives, including economics, organization theory, computer science, ecology, and
general management theory. We will briefly review alternative approaches (some of this
material is adapted from Malone et al. 1993).

Perhaps the simplest form of a process description is a concise verbal account. Such
accounts are commonly used and have the advantage that little or no special training is
needed to produce or understand them. However, there are two key problems: first, it is
diffcult to check a verbal description for completeness or consistency; second, verbal
descriptions do not easily suggest the space of possible improvements. Therefore most
analysts use a more formal representation, as do we. It is interesting to note that soft
systems methodology uses ''all the verbs in the English language''(Checkland 1981, p. 164)
for building conceptual models, but the goal of these models is to ''generate radical
thought''(p. 170) and deliberately not to be descriptions of the actual system.

A PERT chart provides a detailed representation of a process, specifying the exact activities
taken, when they begin and end, sequence dependencies between activities, and even which
actors or resources are involved with which activities. PERT charts have one major drawback
for the purpose of process improvement: they usually are used to present or plan a single
execution of a process and do not represent the range of possible alternatives. However, our
representation captures many of these details, such as dependencies between activities and
the use of resources.

Managers and analysts interested in improving processes often use some version of a
flowchart to represent process characteristics. Flowcharts drop some information of a PERT
chart but still indicate the activities to be performed, the order in which they are performed,
and may include information on who does each activity or how long an activity takes to
perform. However, they are not especially good at suggesting alternative activities that
accomplish the same ends, at demonstrating feasible alternative activity sequencing, or at
projecting what changes might be required if different actors performed selected activities.

Our representation is most similar to a dataflow diagram, which represents the steps of a
process but focuses on the ordering relationships imposed by the fact that data produced by
some steps must be used by others (e.g., Yourdon 1989). Many dataflow techniques, such
as IDEF0 and SADT, include decomposition as a key aspect. These representations are
similar except they do not represent the full range of dependencies nor explicitly note the
coordination mechanisms.

To represent processes involving multiple actors, we may want to focus on the interactions
among the actors. One approach to modeling interacting processes is suggested by Petri
nets (Peterson 1977) and various representations derived from them (e.g., Holt 1988; Singh
1992). A Petri net is similar to a finite state machine but allows multiple states to be
''marked''simultaneously. Transitions between states may be synchronized, since multiple
states may have to be marked at the same time for a particular transition to occur. To the
extent that the activities we model have multiple inputs, then our representation can be seen
as equivalent to simple Petri nets, although we do not take advantage of that fact.

A second approach to representing multiple actors is to represent the process followed by



each individual separately, using any of the techniques described above and explicitly
modeling the exchange of information or objects between them. For example, the modeling
technique developed by Crowston (1991) represents individual actors as programs written in
logic. These actors can perform a variety of actions to achieve their goals, including speech
actions to change the states of other actors. We believe that such representations could be
used as a basis for simulating processes, thus providing a more detailed approach to
examining trade-offs.

11.4.2 Evaluation

While the technique proposed in this chapter embodies a theory, it does not provide a way to
test the theory. Indeed, Checkland (1981) argues that methodologies cannot be proved to
work (or not to work) in the scientific sense (p. 241). Instead, the evaluation of the technique
rests on how well it accomplishes the two goals we set out in the introduction: generativity
and ease of use. The technique is a success if analysts can use it and if they find it provides
insights into the process and how to change it. These two tests might partially trade off
against each other: for example, if the technique provides unique insights, then analysts
might be willing to undergo more of a learning process.

As a further test of our technique, one of the authors taught coordination theory and versions
of the methodology to four courses and two project teams over three years, totaling
approximately 70 master's level students. Learning and applying our methodology occupied
six to eight weeks of each course. Approximately half of the students were managers
employed in a variety of industries and enrolled in a part-time MBA program. Students were
required to redesign a process based on their analysis and to develop an information
systems prototype that would support that redesign. Over all, they completed more than 40
process design projects, based on observations and analyses at large and small companies.
The result was fairly consistent process innovation that exceeded the expectations of project
participants. Our teaching experiences underline the paradigm shift need to think about
organizational processes. It has been diffcult for participants to make the transition from
focusing on inputs (e.g., strategies and resources) and outputs (e.g., organizational results)
to focusing on the processes that derive those outputs. Likewise dependency analysis has
been the most confusing aspect of methodology, hence our focus on it in this chapter.

 



 

11.5 Conclusion

To conclude, we will briefly discuss the implications of our focus on dependencies for the
design of analysis tools and the practice of managers and other process analysts.

11.5.1 Suggestions for Design of Tools

The approach presented in this chapter has strong implications for the design of process
analysis tools. Many CASE (computer-assisted system engineering) tools can represent a
decomposition hierarchy of activities. Some could handle the dependencies linking activities
and resources. However, none that we know of explicitly represent the link between
coordination mechanisms and the dependencies they manage. For example, to assist
analysts building such representations, it would be handy to be able to drag an activity on to
a dependency to indicate that the dependency is managed by that activity or to click on a
dependency and pop up the list of alternative specializations.

Since dependencies arise from shared use of resources, the representation of an activity
could include an indication of the resources they need from which the system could
automatically figure out some dependencies. For example, if two activities need a resource
of which there is only one known instance, then the system might suggest resource-sharing
mechanisms; if there is no known resource, it can suggest resource procurement
mechanisms. If the resource is an actor, then a task assignment mechanism is needed. As
an example, we are currently using these techniques to compile a Handbook of
organizational processes at a variety of levels and in different domains (Malone 1994).
Managers or consultants interested in redesigning a process could consult the handbook to
identify likely alternatives and to investigate the advantages or disadvantages of each.
Coordination theory makes the Handbook feasible by providing a framework for describing
more precisely how processes are similar and where they differ.

11.5.2 Implications for Practitioners

Even though many people have documented and studied organizational processes, our
approach to this problem is novel in important ways. Most important, in analyzing a given
process, we identify the key activities that must be performed for the goal to be achieved, the
resources created and consumed by these activities, and the dependencies between them.
We define the managing of these dependencies as the coordination activities, and we
postulate that there will be a set of generic coordination processes (and their various
specializations) that will appear over and over in different processes.

By identifying the various types of dependencies and the generic processes for managing
them, we believe that we can create more concise process descriptions. A second benefit,
however, is that this approach can help us generate new possibilities for processes. If we
know that in general, there are several possible coordination processes for managing a given
dependency, then we can automatically generate all of them as possibilities for managing
that dependency in any new process we analyze. Some of these possibilities may be new or
not obvious, and their generation requires no specific knowledge of the process other than
the type of dependencies it involves.

The choice of coordination mechanisms to manage these dependencies results in a variety
of possible organizational forms, some already known and some novel. The relative
desirability of mechanisms is likely to be affected by the use of new information systems. For
example, the use of a computer system may make it easier to find existing solutions to a
problem, either in a database or from geographically distributed coworkers. Such a system
could reduce both duplicate effort and coordination costs.
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Chapter 14: Designing Robust Business Processes

Part IVB: Knowledge Management

Chapter 15: A New Way to Manage Process Knowledge

Chapter 16: Toward a Systematic Repository of Knowledge about Managing
Collaborative Design Conficts

Chapter 17: Genre Taxonomy — A Knowledge Repository of Communicative Actions

Part IVC: Software Design and Generation

Chapter 18: A Coordination Perspective on Software System Design

Chapter 19: The Product Workbench — An Environment for the Mass-Customization of
Production Processes

Chapter 20: How Can Cooperative Work Tools Support Dynamic Group Processes?
Bridging the Specifcity Frontier

Part Overview

So far we've seen the basic concepts upon which the Process Handbook is based and a
variety of kinds of content in the Handbook. But what good is all this? What can you do with
it? In this section we present a number of representative examples of how the concepts,
tools, and knowledge base we have developed in the Process Handbook can be used.

The section is divided into three parts, corresponding to the three kinds of uses we have
emphasized so far: business process redesign, knowledge management, and software
design and generation.

Business Process Redesign

The first part begins chapter 12, by Klein, Herman, Lee, O'Donnell, and Malone, which
describes a methodology for inventing new organizational ideas by first analyzing the ''deep
structure''of the process in question, and then generating many possible alternative ''surface
structures''for the same deep structure. The chapter shows how using the Process
Handbook significantly enhances the power of this methodology. The chapter illustrates
these concepts by showing how we used the Process Handbook and this methodology to
generate new ideas for how to do hiring in a financial services firm. See Krushwitz and Roth



1999 for a detailed ''learning history''of this organizational redesign research project.)

Chapter 13, by Bernstein, Klein, and Malone, describes an automated tool called the
''Process Recombinator''that automates part of the methodology described in the previous
chapter. The Process Recombinator uses the Process Handbook database to automatically
generate new process ideas (new ''surface structures'') by recombining elements already
present in the database. While we don't believe that such tools will completely replace
human creativity anytime soon, this chapter suggests intriguing possibilities for how they can
enhance it.

Chapter 14, by Klein and Dellarocas, describes a new methodology and an extensive body of
Process Handbook knowledge about the kinds of exceptions (or ''process failures'') that can
occur in business processes. The methodology provides a systematic way to analyze a
process for potential failures and to fix or prevent them from occurring. The chapter applies
the methodology in analyzing a real business process crisis involving the unauthorized
foreign currency trades that led to the bankruptcy of Barings Bank.

Knowledge Management

The second part of this section focuses on applications that, while they involve some aspect
of process redesign, place more emphasis on using the Process Handbook to manage
knowledge. This part begins with a brief article, by Carr, about the Process Handbook project
that appeared in Harvard Business Review. In it are summarized the goals of the project,
and a brief description is provided of an early commercial use of the Process Handbook at
Dow Corning Corporation.

Chapters 16 and 17 emphasize research—rather than commercial—applications of the
Process Handbook for knowledge management. Chapter 16, by Klein, describes how the
same concepts of exception management that were described in chapter 14 by Klein and
Dellarocas can be applied to problems in large multi-person design projects such as those
for airplanes and cars. The chapter shows how a growing repository of knowledge can be
developed about possible problems to anticipate in such multi-person design projects and
how to avoid these problems.

Chapter 17, by Yoshioka, Herman, Yates, and Orlikowski, describes how the researchers
have used the Process Handbook concepts to categorize various communication
''genres''within organizations, and also the Process Handbook software tools for
documenting and storing their results. This chapter thus illustrates, on a small scale, an
important aspect of the vision with which we began this book: how the creation of very
precise and explicit taxonomies of organizational actions can help advance organizational
theory.

Software Design and Generation

The third part focuses on using the Process Handbook concepts and tools to design and/or
customize complex software systems using libraries of preexisting software components.
Chapter 18, by Dellarocas, continues the theme of chapters 4 and 10 by Dellarocas, and
describes the tools Dellarocas has developed for generating software programs. The
chapter includes, for instance, a language for representing the ''deep structure''of a software
architecture and a ''design assistant''for automating parts of the process of generating actual
programs from such architectural descriptions.

Chapter 19, by Bernstein, proposes a prototype implementation of a flexible software
environment for service organizations (e.g., banks) that is analogous to a CAD/CAM tool for
manufacturing organizations. Such a system would allow users to easily reconfigure a
flexible set of software building blocks for each different customer or situation. In a sense,



then, such a system would allow for the ''mass customization''of previously rigid services.

This idea is extended in the next chapter. Chapter 20, also by Bernstein, describes a
prototype implementation of a system that allows a great deal of flexibility in using many
different kinds of software tools. Here, however, the emphasis is not on tools for providing
services to external clients but on tools for supporting cooperative work among groups of
people. Interestingly, this system allows users not only to change the way that different
software components fit together but also to easily change the amount of support the system
provides in the first place: from extensive automated support for highly formalized processes
(e.g., an ERP system) to much more limited (but also more flexible) support for completely
ad hoc processes (e.g., a simple e-mail system).
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Chapter 12: Inventing New Business
Processes Using a Process Repository

Mark Klein,
George A. Herman,
Jintae Lee,
Elisa O'Donnell,
Thomas Malone

12.1 The Challenge — Coping with Constant Change

It is by now a cliché to talk about how rapidly things are changing in business. Hardly a year
goes by without new threats, new opportunities, and new concepts clamoring for
managers'attention: globalization, restructuring, e-business, m-commerce, knowledge
management, and on and on (Abrahamson 1996; Abrahamson and Fairchild 2000). To
some extent, of course, these terms are just buzzwords that represent changes in
management fads more than changes in the underlying realities of business. But the
seemingly insatiable appetite for new management concepts is driven, in part, by what
seems to be an ever-accelerating rate of real change in many aspects of business. Large,
successful companies have to innovate continually to remain successful. Small innovative
start-ups can become market leaders in a matter of months or years, and they can become
bankrupt almost as quickly (Davenport and Perez-Guardado 1999; Davenport 1994, 1995;
Glasson 1994).

Of course, many kinds of management capabilities (not to mention a healthy dose of luck!)
are needed for success in this environment. But one critical need for innovative companies is
the ability to repeatedly generate new ideas about how to meet their business challenges.
Such new ideas can, of course, come from many different sources, and some people and
organizations seem to be ''naturally''better at generating them than others (Boden 1990;
Stefik and Smoliar 1995). Wouldn't it be nice, however, if we had a more systematic way of
generating such ideas?

In this chapter, we focus on one such systematic approach to generating new business
ideas. The key idea of our approach is that a richly structured on-line repository of knowledge
about business processes can significantly enhance the creativity of process designers by
helping them systematically explore many alternative combinations of process elements.
Such an approach could, of course, be used with purely random combinations of process
elements. However, by structuring the knowledge repository using a rich network of
empirically based process templates, we greatly increase the likelihood that useful
alternatives will be generated.

While this approach will certainly not transform all workers into creative business geniuses,
we believe it has the potential to increase the ability of almost anyone (or any organization) to
reliably generate new and promising possibilities for innovation. We focus here only on the
generation of these new ideas. The successful implementation of the ideas is also, of course,
a very important—and very diffcult—task, but it is not the focus of this chapter.

The approach we will describe in this chapter is based on two primary elements. First, it
relies upon a new theoretical perspective for understanding the deep structure of business
processes and systematically exploring alternative surface structures for realizing these
processes. Second, the approach uses a cumulative on-line knowledge repository (which we
call a ''process handbook'') that contains numerous business process patterns and case
examples organized according to this new theoretical perspective. Together, these two



elements can help people systematically generate novel combinations of existing process
components, and provocative analogies with structurally similar, but superficially different,
situations. They can also speed the rate of knowledge sharing about innovative ideas (and
''best practices'') even when no novel combinations are created.

We proceed as follows in the rest of the chapter. In section 12.2 we briefly describe previous
work on process generation and innovation. In section 12.3 we describe our approach in
detail, including summaries of the key ideas from the Process Handbook project (Malone et
al. 1999) and coordination theory (Malone and Crowston 1997) upon which our approach is
based. In section 12.4 we illustrate our approach with an extended case study involving the
redesign of a hiring process. We conclude in section 12.5 with an evaluation of the work to
date and a discussion of future research.

 



 

12.2 Background — Previous Approaches to Process
Innovation

The most systematic and explicit previous approaches to process innovation come from the
literature on business process redesign (Armistead and Rowland 1996; Chen 1999;
Davenport and Short 1990; Hammer and Short 1990; Grover et al. 1995; Hammer and
Champy 1993; Kettinger et al. 1997b; Kubeck 1995, 1997; Nissen 1998, 1999; Pandya and
Nelis 1998). For example, Kettinger et al. (1997b) provide an extensive survey of process
redesign practices. Their stage activity framework proposes six stages of business
reengineering: 'Envision', 'Initiate', 'Diagnose', 'Redesign', 'Reconstruct', and 'Evaluate'stages.
The most relevant for the topic of this chapter is the redesign stage where the new process is
defined and selected from among the alternatives.

Kettinger et al. (1997b) categorize the existing tools for this redesign stage as follows:

Creativity techniques (brainstorming, out-of-the-box thinking, nominal group, visioning,
etc.)

IDEF modeling technology

Process simulation—variation of process variables such as cycle time, queuing times,
inputs/outputs, resources.

Data modeling—data flow diagramming, flowcharting, case-based information
engineering tools.

Only a few of these tools, however, genuinely address the generation of new design. For
example, data modeling helps one analyze a given process, but it does not offer much help
in redesigning or creating a new process model. Indeed, as Hammer and Champy (1993)
point out, reliance on analytical techniques can have just the opposite effect, resulting in
''analysis paralysis.''Several of the techniques identified by Kettinger et al. (1997b) are
explicitly oriented toward search (e.g., brainstorming) while benchmarking (Camp 1995;
Committee 1992) helps with the generation of new alternatives by providing the designer with
a set of cases that can be used as a template. However, none of these techniques provides
any assurance that combinations of ideas are being systematically explored (Lee and
Pentland 2000).

Those tools that do support generation of new designs are the creativity techniques. These
techniques are useful in producing novel ideas, but since they rely only on what happens to
be on the minds of the participants, they are unlikely to support systematic exploration of the
alternatives (Lee and Pentland 2000; Pentland 1995).

Our approach, in contrast, provides a systematic means of designing new processes by
finding and customizing cases and patterns selected from a richly structured repository of
process knowledge. The advantages of this approach are that (1) it often takes less work to
define a process since we are just customizing an existing one rather than designing from
scratch, and (2) there is a better chance of producing an innovative high-quality process
because it is based on a review of a wide range of practices, including for example those that
leverage emerging phenomena such as the Internet. This approach thus offers the potential
of designing better processes with less effort.

 



 

12.3 Our Approach — Analyzing Deep Structure, Then
Generating Alternative Surface Structures

12.3.1 What Is the Deep Structure of a Business Process?

One way of understanding our approach is by an analogy with the concepts of ''deep
structure''and ''surface structure''from linguistics (Chomsky 1965; Winograd 1981). For a
linguist, a sentence has both a ''surface structure''and a ''deep structure.''The surface
structure of a sentence is the particular sequence of words it contains. The deep structure of
the sentence is the underlying meaning of the words. And the same deep structure, or
meaning, can often be expressed by a number of different surface structures. For example,
the two sentences ''John hit the ball''and ''The ball was hit by John''have different surface
structures but the same deep structure. In fact the rules of grammar can be viewed as rules
for generating alternative surface structures for a given deep structure.

By analogy, one could think of a business process (or any collection of activities) as having
both a surface structure and a deep structure. The surface structure is the specific sequence
of activities that occur in a particular situation. The deep structure is the underlying
''meaning''of the process, that is, its underlying goals and constraints.[1] And the deep
structure for a process can have many different possible surface structures. That is, there
may be many quite different sequences of actions that all achieve the same basic goals and
satisfy the same basic constraints. (See Lee and Pentland 2000 for a detailed formal
analysis of the ''grammars''that can be used to generate many alternative sequences of
actions from a single ''deep structure''representation of a business process.)

Figure 12.1 shows an example of the surface structure of two different—highly
simplified—processes for selling cars. Both processes have the same deep structure: tires
are made by one activity and then flow to another activity where the cars are sold. In one
surface structure, the cars are made only after an order is received, and then shipped
directly to the dealers where the cars are sold. In the other surface structure, the cars are
made and stored in inventory until ordered. Then, when the order is received, they are
removed from inventory and shipped to the car dealer. Thus, in these two cases, two
different coordination processes ('Make to order'and 'Make to inventory') are used to
manage part of the same underlying flow dependency.

Figure 12.1: Surface structures of two different business processes with the same deep
structure. (Activities shown in unshadowed boxes are part of the coordination processes
for managing the .ow dependency.)

12.3.2 Overview of the Methodology — Systematically
Generating New Process Alternatives

1.



The design methodology we propose consists of the following three steps:

Analyze the deep structure of the process you want to create.1.

Generate a set of potentially viable alternative surface structures for this deep
structure.

2.

Select from this set the processes that best match your particular needs.3.

In order to apply this methodology, we need a conceptual structure that helps us move back
and forth between deep structures and surface structures of business processes. It would be
possible to use this methodology ''manually''without any computer-based tools, but it is also
very useful to have tools to help us apply the methodology more effciently, comprehensively,
and systematically. The MIT Process Handbook project provides both a conceptual structure
and a set of tools for applying the methodology.

12.3.3 The Process Handbook

The goal of MIT Process Handbook project (Malone et al. 1999) is to produce a repository of
process knowledge represented and organized in such a way that users can quickly retrieve
and effectively exploit the process knowledge relevant to their current challenges. The
Process Handbook has been under development at the MIT Center for Coordination Science
for over nine years, including the contributions of a diverse and highly distributed group of
over forty university researchers, students and industrial sponsors (see Malone et al. 1999 for
more detailed descriptions of the project and the theoretical concepts in the remainder of
section 12.3). The current repository has over 5,000 process descriptions ranging from
specific examples (e.g., all finalists for the MIT eBusiness Awards for the past three years) to
more generic templates (e.g., for supply chain management, product design, and sales). A
number of software tools for editing, storing, and viewing this knowledge, in a stand-alone
mode and over the Web, have been developed (e.g., see Bernstein et al. 1995; Dellarocas
1996; Bernstein et al. 1999).[2]

The Process Handbook operationalizes the concepts of deep structure and surface structure
in terms of process specialization. We view the generalization of a process as its deep
structure and its alternative specializations as alternative surface structures. The next section
describes these concepts in more detail.

12.3.4 Process Specialization

Practically all process representation techniques (including ours) use the notion of
decomposition: that a process can be broken down (or ''decomposed'') into sub-activities.
Our representation includes, in addition to this, the concept of specialization. While a
subactivity represents a part of a process; a specialization represents a type of (or way of
doing) the process (Taivalsaari 1996; van der Alst and Basten 1999; Wyner and Lee 2000).

By this concept, processes can be arranged in a hierarchical network with very generic
processes at one extreme and increasingly specialized processes at the other. Figure 12.2
illustrates this approach. Here the generic activity called 'Sell product'is decomposed into
subactivities like 'Identify potential customers'and 'Inform potential customers'. The generic
activity is also specialized into more focused activities like ''Sell by mail order''and ''Sell in
retail store.''



Figure 12.2: Sample representations of three different sales processes. The deep
structure of selling is represented by 'Sell product', and two alternative surface structures
are represented by its specializations:  'Sell by mail order' and 'Sell in retails store'.
Subactivities that are changed in the specializations are shadowed.

These specialized activities automatically inherit the subactivities and other characteristics of
their ''parent.''In some cases, the specialized processes also add to or change the parts they
inherit. For instance, in 'Sell by mail order', the subactivities of 'Deliver a product'and 'Receive
payment'are inherited without modification, but 'Identify prospects'is replaced by the more
specialized activity of 'Obtain mailing lists'. Decomposition and specialization can, of course,
be applied to activities at any level.

We have found the ''process compass''shown in figure 12.3 to be a useful way of
summarizing the two dimensions. The vertical dimension represents the conventional way of
analyzing processes: according to their different parts. The horizontal dimension is the novel
one: analyzing processes according to their different types. From any activity in the Process
Handbook, you can go in four different directions: (1) down to the different parts of the activity
(its ''subactivities''), (2) up to the larger activities of which this one is a part (its ''uses''), (3)
right to the different types of this activity (its ''specializations''), and (4) left to the different
activities of which this one is a type (its ''generalizations'').

Figure 12.3: ''Process compass''illustrating two dimensions for analyzing business
processes. The vertical dimension distinguishes different parts of a process; the
horizontal dimension distinguishes different types of a process.

From this point of view, our methodology amounts to starting with a process, moving left to its
deep structure, and then moving right again to generate many alternative surface structures.
If you think of a generalization as a ''parent,''then the alternative surface structures we
generate are analogous to the siblings, aunts, uncles, and cousins of the process with which
we started.

Also, from this point of view, there are not just two levels (a ''deep structure''level and a
''surface structure''level). Instead, there can be many different levels of increasingly deep
structures. We can think of the processes at the far right of the specialization tree as the
most ''superficial''surface structures and those at the far left as the most ''deep''deep
structures.

Bundles and Trade-off Tables We have also found it useful to combine specializations into
what we call ''bundles''of related alternatives. Generally speaking, bundles represent
alternative answers to the question posed in the bundle. One can thus speak of
''who''bundles (which represent different alternatives for who performs an activity),



''what''bundles (which represent different alternatives for the resource being manipulated by
the activity), and so on. In this sense bundles are similar to the cases in linguistics (Fillmore
1968, 1975; Winograd 1986).

Bundles can have associated trade-off tables that capture the relative pros and cons of the
alternative specializations in terms of their ratings on various criteria. A specialization tree so
structured can be viewed as a decision tree. If one wants to find a process with given
attributes, one traverses down from the root, and at each bundle selects the one or more
branches that seem to match what one is looking for. This property will prove important when
we use the specialization tree to support process (re-)design.

12.3.5 Core Activities and Dependencies

One very important aspect of the deep structure of a process involves the core activities and
the relationships among them. To represent this aspect of process specialization, we draw
upon the notion from coordination theory that coordination can be viewed as the
management of task dependencies, and that different types of dependencies can be
managed by different coordination mechanism (see Malone and Crowston 1994).
Dependencies arise from resources (e.g., parts, documents, and signals) that are used by
multiple activities. We typically analyze dependencies using three elementary dependency
types: flow, sharing, and fit (Crowston 1991; Zlotkin 1995; see figure 12.4). Flow
dependencies arise whenever one activity produces a resource that is used by another
activity. Sharing dependencies occur whenever multiple activities all use the same scarce
resource (e.g., when two people need to use the same machine). Fit dependencies arise
when multiple activities collectively produce a single resource (e.g., when several designers
create subcomponents for a single system).

Figure 12.4: Basic types of dependencies among activities

Table 12.1: Examples of dependencies and associated coordination mechanisms

Dependency Examples of coordination mechanisms for managing
dependency

Flow  

Prerequisite ('right
time')

Make to order versus make to inventory ('pull' vs. 'push')
Place orders using 'economic order quantity', 'just in time'
(kanban system), or detailed advanced planning

Accessibility ('right
place') Usability
('right thing')

Ship by various transportation modes or make at point of
use Use standards or ask individual users (e.g., by having
customer agree to purchase and/or by using participatory
design)

Sharing 'First come–.rst serve', priority order, budgets, managerial
decision, marketlike bidding

Fit Boeing's

The relationships represented by dependencies are managed by processes called



coordination mechanisms. As table 12.1 illustrates, there are a number of alternative
coordination mechanisms potentially applicable for each kind of dependency (see Malone et
al. 1999 for more details).

12.3.6 Advantages of This Approach

The two key concepts of process specialization and dependencies have a number of
significant benefits including conciseness and generativity. The specialization hierarchy can
substantially reduce the amount of work necessary to represent a new process. By simply
identifying a more general process that the new process is intended to specialize, most of the
information about the new process can be automatically inherited and only the changes need
to be explicitly entered. In addition, instead of having to explicitly list all the coordination
activities separately in each different process, we will be able to simply indicate that ''the
dependency between activities A and B is managed by an instance of coordination
mechanism X.''These concepts provide a framework within which users can generate
process alternatives. Users can find more general instances of the same process (parents)
as well as closely related alternatives (siblings and cousins). We can also generate new
alternatives by considering alternative coordination mechanisms for managing key
dependencies.
[1]This sense of ''deep structure''is different from the sense in which it was recently used in
the organizational literature, namely as hidden part of systems behavior in organization
responsible for the regulation of social interactions (Gomez and Jones 2000; Giddens 1986;
Gersick 1991; Schein 1980)On the other hand, the work on task or domain ontologies (e.g.,
Mi and Scacchi 1996; Lee et al1998; Guarino 1998; Swartout and Tate) could be viewed as
attempts to identify the generic vocabulary needed for describing the deep structure.

[2]The technology has also been licensed by MIT to Phios Corporation (www.phios.com),
which has developed commercial products based on the MIT research described here.

 



 

12.4 Case Example — Generating Innovative Ideas for the
Hiring Process

To illustrate the use of our methodology, we will use examples based on a field study we
conducted in collaboration with one of our corporate research sponsors, the AT Kearney
consulting firm, and one of their clients, which we call Firm A to preserve the client's
anonymity (for more detailed descriptions of this study, see Malone et al. 1999; Kruschwitz
and Roth 1999).

Firm A was experiencing increasing problems with their hiring process. They were growing
rapidly in a tightening labor market, and they had a culture of independent, competitive
business units. Together, these factors led to increases in the time and cost to hire people and
to increasingly frequent instances of business units ''hoarding''candidates or bidding against
each other for the same candidate. In an effort to improve their hiring process, the
organization had invested a great deal of time and energy into ''as is''process analysis using
conventional techniques such as flow-charting. But they also wanted some way to come up
with highly innovative ideas about how to improve their process. We next investigate how each
of the stages of our methodology can be used in this situation.

12.4.1 Analyzing Deep Structure

The purpose of deep structure analysis is to identify the core activities and key dependencies
of the process one wants to (re-)design. In the absence of the Handbook database, one could
find a process deep structure by starting with a candidate process (e.g., the process that is
currently used, if one is re-designing an existing process) and repeatedly replacing its activities
and dependencies by more abstract versions that represent ''why''the surface activities are
there. Eventually one will end up with a set of core activities that appear essential to the
process, connected by a minimally suffcient set of dependencies.

The Handbook database can greatly simplify this procedure by allowing us to find the
process(es) in the database that are most similar to the initial target process. The processes
to the left of that point then represent increasingly deep structures for the original process, and
those to the right represent alternative surface structures.

In Firm A's case an ''as is''model of their hiring process had already been developed before
we began working with them. Their ''as is''model consisted of the four steps ''identify
need,''''source and select,''''enrollment,''and ''physical installation.''Since our Handbook
database already has a generic ''hire''process (see figure 12.5), it is straightforward for us to
treat Firm A's process as a specialization of this more generic one. One immediate insight
from looking at this representation of the deep structure of the hiring process was that the
initial ''as is''diagrams developed by Firm A had left out the step of 'Pay employee'. When the
employees of Firm A saw this representation in the Handbook, they agreed that they should
have included this in their initial ''as is''analysis.



Figure 12.5: Deep structure for 'Hire'. The arrows represent the flow dependency among
the components.

12.4.2 Generating Alternative Surface Structures

The 'Generate alternatives'step involves generating the set of surface structures that
represent potentially viable candidates for achieving a particular deep structure. This is done
by identifying the dimensions along which the surface structures can be varied, identifying all
the values for each dimension, and then considering some or possibly even all combinations
of these values. We thereby define a multidimensional design space in which every point
represents a potential surface structure.

Table 12.2: Siblings of the subactivities in the firm A's hire process

Company Interesting practice

Marriot Voice response system for candidates which screens and pre-
qualifies

AES Corp Let employees do the hiring

Doubletree Identifies employee success dimensions and seeks to hire
candidates with same traits

BMW Use of simulations to select new hires (assembly line)

Cessna Role playing and simulations for executive hires

Best Software On-line recruitment management software to post jobs and route
resumes

Monsanto Active policy of seeking candidates at conferences

Recall that a process consists of sequenced activities inter-related by dependencies, and that
dependencies are managed by coordination mechanisms. There are thus three main
dimensions along which alternative surfaces structures can be generated: (1) alternative
specializations for a given activity, (2) alternative coordination mechanisms for managing a
given dependency, and (3) alternative sequencings for the activities in a process:

Alternative Activity Specializations Specializations of an activity can be found by generating
answers to key questions about the activity such as who performs the activity (i.e., the actor),
how the activity is performed (i.e., the activity decomposition), where the activity is performed,
and when the activity is performed. Using the Handbook, one does not have to imagine all the
answers to these questions unaided. Instead, one could browse the specialization tree to the



right of the activity to uncover a potentially large number of alternative variations and examples
of the activity. One could also look at the alternative specializations for all the parts (and
subparts) of the activity that is of interest.

For example, table 12.2 shows a number of examples of ''interesting practices''represented in
the Handbook as specializations of the 'Select human resources'part of hiring. The employees
of Firm A found several of these examples to be quite intriguing stimuli for innovations they
might try.

Alternative Coordination Mechanisms The space of alternative coordination mechanisms
for a dependency can be found, as with activity specializations, by generating potential
answers to a set of key questions. In this case, however, the key questions include:

What type of dependency is involved (i.e., flow vs. sharing vs. fit) (Malone et al. 1999).

When are the activities performed? Options here include the source activity for the
dependency must end before the target activity starts, or the source and target activities
can overlap in time. These timing options can be formalized using a temporal logic such
as that proposed in (Allen 1981; Lee et al. 1998).

Where do the activities occur?

What type of resource gives rise to the dependency? The alternatives can be selected
from a resource type taxonomy (Fadel et al. 1994; Lenat 1995) and can include such
options as divisible or nondivisible, consumable or nonconsumable, and so on.

How much of the resource is involved?

As with activity specializations, a preexisting knowledge base of coordination mechanisms can
greatly simplify the identification of alternatives by providing a set of possibilities. In the Firm A
hiring process, for example, there is a dependency between identifying the staffng need
(typically done by a manager) and finding candidates that can satisfy that need (done by
recruiters). The coordination mechanism typically used is a requisition form sent by the
manager to the recruiters on an ad hoc basis, and thus is a kind of 'Make-to-order'process.

An alternative coordination mechanism, accessible as a sibling of 'Make to order'in the
Handbook database, is 'Make to forecast'. This process suggests that we create staffng
requisitions in response to an overall business plan instead of based on individual manager's
requests. Another possibility is suggested by looking at ''options markets,''which is a
specialization of 'Make to forecast'. The notion here is that we can requisition items (in this
case employees) when the item is inexpensive, in anticipation of needing the item later when it
may be more expensive due to greater general demand.

Alternative Orderings Another dimension for generating new processes is to reorder the
sequence in which the activities occur. The ordering of the activities must, of course, satisfy
the ''core''prerequisite dependencies inherited from the process deep structure, but aside from
this we have complete latitude to change the surface structure dependencies and, therefore,
the activity ordering. In the hiring process, for example, the only core dependency is that
selection occurs after sourcing. We can re-order the other activities to suggest novel
alternatives; we can, for example, place the 'Install employee'step before the 'Enroll'step,
which implies that we install the employee (i.e., for a trial period) before deciding to hire him or
her.

Keeping Track of the Alternatives Generated These methods for generating process
alternatives can be applied recursively, in the sense that the new activities and dependencies
generated can in turn have further subalternatives defined in the same way. We wind up, in
any case, with several dimensions of variation (one for each dependency and activity, plus one
representing alternative re-orderings of the activities) plus one or more values for each



dimension.

Table 12.3: Multicolumn table for hire process alternatives

Identify
staffing
needs

Identify
potential
sources

Select
human
resources

Make offer Install
employee

Pay
employee

Manager Internet Aptitude or
other success
dimensions

Packaging— Standards Salary

Computer-
agent

Search firm   RPQ Customize Stock
options

People-in-
need

Advertising   Electronic   Benefits

Standards Self-
identification

Interview requisition    

Committee   On-line

group

screen

individual

Trial

Internship

Probation

Qualification

Certification

Education

Reference
check

Electronic
catalog

Blanket
order

   

We have found that a multicolumn menu represents a convenient metaphor for deriving all
the surface structures that can be defined given the alternatives defined by the steps above.
An example is given in table 12.3. Each column represents a dimension of variability, and the
items in the columns represent choices along that dimension. Process alternatives are then
generated by selecting one (or sometimes more) choices from each column. If one does this
exhaustively, one can typically generate very many alternatives from all the possible
combinations involved.

While these tables can always be constructed manually using knowledge from the Handbook,
we have also developed a specialized software tool, called the Process Recombinator that
automatically generates such tables and then automatically creates specific combinations
based on the user's selections (Bernstein, Klein, and Malone 1999). Figure 12.6 shows a
screen shot from this tool showing the selection made for each of the dimensions.



Figure 12.6: Subactivity recombinator user interface

12.4.3 Looking Even ''Deeper''

So far we have seen how one can go to the most obvious deep structure representation of a
process (''hiring''in this case) and then generate alternative surface structures. Sometimes the
most interesting ideas, however, come from looking at deep structure representations that are
even ''deeper''than the most obvious ones. In the case of hiring, for example, if we look further
left in the specialization tree we see that ''hiring''is classified as a specialization of
''buying''(figure 12.7).

Figure 12.7: Specialization tree generalizations for hiring process

Based on this observation, we can then get even more potentially interesting ideas by
examining some alternative specializations (surface structures) of the generic ''buy''process.
For example, table 12.4 shows some alternative ''interesting practices''for buying represented
in the Handbook. These examples suggest, for instance, the possibilities of having different
hiring processes depending on the kind of employee (by analogy with Acer's strategy) or using
corporatewide hiring standards (à la Motorola).

One can go even farther, for example by looking at specializations of 'Sell', the sibling to 'buy',
and the great-uncle to 'Hire'in the specialization tree (table 12.5). These suggest such
interesting ideas as letting a company 'Test-drive'a potential employee (à la Cessna/BMW)
before making a full-fledged hiring commitment, or data-mining a database of comments
from people who applied to work at a company in order to develop a more effective process of
''selling''the company to potential employees (à la New Pig). This process can be carried all
the way left in the specialization tree to extremely generic activities: such as 'Create', 'Destroy',
'Modify', 'Preserve', 'Combine', and 'Separate'. If we consider these as means of hiring, we
come up with options like:

Hire by creation. Breed employees (as in family-owned businesses or monarchies).

Hire by destruction. Eliminate unusable employees. Hire everyone, and let go any who
don't pass muster (as in the Armed services).

We refer to examples like these as ''distant analogies''; such analogies represent a particularly
powerful property of specialization trees as applied to process design. Generally speaking, the
more distant an analogy we consider, the more creative the innovations we are likely to
uncover, but the greater the risk that the process idea may prove inapplicable to our problem.



In this case, when we originally did this analysis (several years ago), the idea of buying via the
Internet suggested the possibility of hiring via the Internet. Even though this now seems
obvious, at the time it was a very novel and interesting idea. Some time later, we generated
another—even wilder—idea based on this case example: What if, just as there were on-line
auctions to ''buy''things, there could be on-line auctions to ''hire''people? For several months,
we used this in presentations as an example of a wild idea, generated by our methodology,
that might someday be useful.

Table 12.4: Selected interesting specializations of the 'Buy'process

Company Interesting practice

Motorola Consolidation of suppliers for commodity purchases

Corporationwide agreements on quality audits, metrics and rating
system

Corporate summaries aggregate track record on all suppliers (on
quality, inventory turns, etc), used by line managers

Partners with selected suppliers to develop products

Continuous replenishment of inventory

Acer Group Different sourcing strategy by type of input (computer component)

Trade Wave Find source and price by logging into Internet and soliciting bids over
Web

GE Trading process network matches buyers in company with suppliers
worldwide

Womex Creates electronic catalog of worldwide manufacturers

Table 12.5: Selected interesting specializations of 'Sell'process

Company Interesting practice

Chase Manhattan Customer database—identifies opportunity for cross selling;
looks at customer transactions to identify most profitable

Home Depot Customer intimacy through a central buying database

New Pig Data mines customer feedback

Cessna/BMW Lets customer test drive products before buying them

Within less than a year, however, we began to hear about a whole new category of very well-
funded Internet startup companies to do exactly this: to provide on-line auctions for employees
and contractors! This example therefore provides at least an ''existence proof''that our
methodology can be used to generate new ideas that have significant practical potential.

12.4.4 Selecting Alternatives

Once a number of alternatives have been generated, one needs to select the ones that
appear best suited to one's particular challenges. There are many ways this can be done, but
we found that the following approach works well. First, we identify the requirements we are
attempting to satisfy by uncovering the key variables and their desired values. In the hiring
domain, for example, we found that the key variables included the type of person we want to
hire (one with widely available ''commodity''skills rather than a senior person with highly
unique skills), the quality of the employee hired, the cost and speed of the hiring process, and



so on. This analysis thus uncovers the different requirements sets (in this case there are two),
each of which can potentially be achieved using different hiring processes. We then use trade-
off tables and other tools to help assess the relative worth of the alternative surface structures
implied by the multicolumn tables.

Table 12.6: Trade-off table for 'Identify candidates'activity along the
'where'dimension

Identify candidates'where' Speed of
reaching
candidates

Breadth
of
access

Cost Quality of
candidates

Internet **** ***** **** ***

Search firm ***** **** ***** *****

Newspaper advertising ** ** *** ***

Self-identification ** ** *** *****

Note: Greater number of asterisks indicate greater desirability.

For example, let us consider the case of hiring senior employees. Since we do not want to
explore the many potential alternatives blindly, it makes sense to identify the top candidates
from each column and then consider at first just the different combinations of those options.
We can do this using trade-off tables. The trade-off table for the 'Identify potential
sources'activity, for example, is shown in table 12.6. This table suggests that relying on the
Search Firm maximizes candidate quality, but using the Internet has advantages in terms of
the speed of search and the breadth of access.

If we continue this analysis for all the columns in the table, we come up with two top
candidates for surface structures for the senior employee hiring process, one where the
applicant approaches the firm and the other where we are finding replacements for an existing
position (figure 12.8). We can then produce a trade-off table that compares our two candidate
hiring processes with respect to the requirements we identified earlier (figure 12.9).

Figure 12.8: Two alternative surface structures for the senior employee hire process

The entries in the trade-off tables can be generated by combining information from the trade-
off tables entered for the component alternatives in the multicolumn tables, by soliciting the
judgment of specialists in the process domain (Human Resources experts, in this case), and
potentially even by simulating the candidate surface structures using simulation tools. The
Handbook includes an evolving interchange format called PIF (the Process Interchange
Format) (see chapter 21 in this volume) whose intent is to allow Handbook process
descriptions to be exported easily into existing simulation and other process analysis tools.
Note, however, that this approach currently produces potentially applicable but not necessarily
viable combinations; there may be interactions between choices in the different columns that
make a given set of choices unworkable. The methodology does not automatically prune out
invalid combinations for you—this requires human judgment.



Figure 12.9: Trade-off table for 'Hire'process alternatives

 



 

12.5 Conclusion

12.5.1 Summary of the Methodology

We can summarize the process design methodology as follows: We (re-)design processes
by finding a reasonable starting point in the process specialization tree and then
generating/exploring the tree, using a set of key questions, to uncover siblings and more
distant analogies for each of the core activities and coordination mechanisms. We can also
generate alternative orderings of these activities. These alternatives are then organized as a
set of multicolumn tables to make the different potential surface structures explicit as
selections from each column. We next use trade-off tables to guide our selection of
individual column choices, as well as eventually our choice among the candidate surface
structures for re-designed processes.

Although the process design methodology has been described here as a linear sequence
where we abstract out the deep structure completely before generating and then selecting
alternatives, these different steps can be interleaved arbitrarily. One can, for example, create
a candidate process re-design by replacing an activity with a ''sibling''(child of a common
parent generalization) or even a ''cousin''(child of a common grandparent generalization).
This involves, in effect, applying the steps of deep structure analysis, alternatives generation,
and selection to a single activity. These steps can also been done to any level of detail; one
can generate ''high-level''processes or very detailed ones, depending on to what extent the
activities and dependencies are refined by adding decompositions and coordination
mechanisms.

12.5.2 Evaluation and Future Work

The methodology described above has been used to (re-)design several processes, of which
the hiring example described above is one. Our experience is that the methodology, when
used in conjunction with the Process Handbook knowledge base, has been very effective in
generating a wide range of novel and promising process design alternatives. The power of
this approach appears to come from several sources:

The methodology's recursive application of key questions (who, what, when, where, etc.)
fosters the systematic exploration of the space of alternative surface structures.

The use of ''distant analogies''helps uncover farther-flung and potentially powerful re-
formulations of the process.

The process knowledge base allows users to leverage the creativity and expertise of
process experts from many different domains. The methodology could be utilized,
however, even if we did not have such a knowledge base.

Our process design approach offers, we believe, significant advantages over other process
design methodologies. It adds, in effect, some science to what today is mainly an art. As
discussed earlier, few of the commonly used process re-design methods address the aspect
of generating new alternatives. Those that do suggest simple rules of thumb for streamlining
an existing process or recommend locking a design team in a room with a facilitator to
brainstorm a new ''blank-paper''process. Or they focus on incremental changes despite the
usual rhetoric typically associated with business process redesign or reengineering
(Jarvenpaa and Stoddard 1995). For example, Harkness, Kettinger, and Segars (1996)
found that many process redesign efforts are based on Total Quality Management
techniques, which adopt an inherently incremental approach (Mizuno 1988). Other
approaches also typically call for an exhaustive analysis of the as is situation (Nissen 1998),



which ours does not (although such analysis may well be needed for different purposes such
as cost justification).

The Process Handbook and its process design methodology is a work in progress. The
generative strength of the methodology is, in particular, a double-edged sword in the sense
that it is often easy to uncover an overwhelming number of process alternatives. The
procedures are not fully formalized, so human judgment is often needed, for example, to
identify core activities and key dependencies, to generate alternatives not represented in the
database, to prune out the nonviable surface structure candidates, and eventually select the
appropriate processes for one's needs. While we do not expect to obviate the need for
human judgment, we do plan to explore how the system can support human users by further
reducing the burden of generating and selecting from large design search spaces. For the
meantime the general sense of those of us who have used the Handbook is that potentially
''too many''options is preferable to ''too few.''

Other future efforts will include evaluating and refining the process design methodology in
other domains (including logistics and manufacturing). Further information on the Handbook
and links to several publicly available on-line versions of it are available at the following Web
site: http://ccs.mit.edu/ph.

 

http://ccs.mit.edu/ph
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13.1 The Challenge — Designing Innovative Processes

Most management observers today agree that the successful organizations of the twenty-first
century will need to be able to develop new business processes more rapidly than they have
in the past. In order to take advantage of rapidly changing markets and technologies,
companies will need to continually keep developing new processes and new ways of using
technology.

But where will the ideas for these new processes come from? Today's business process
design tools provide little or no support for generating innovative business process ideas. The
available tools are primarily limited to recording existing processes in some formal
representation (e.g., flowcharts) or to analyzing proposed processes (e.g., using quantitative
simulations). Today's business process designers therefore rely almost entirely on their own
intuition and experience to generate new process ideas. The typical result of this situation is
that relatively few alternatives are generated, and the ideas that do emerge often tend to be
quite similar to practices already familiar to the designers (Ulrich and Eppinger 1995, p. 79).

This chapter describes a new approach to this problem, based on the notion that new ideas
are most often novel combinations of old ideas. The key idea in our approach is that a richly
structured on-line repository of knowledge about business processes can enhance the
creativity of process designers by helping them systematically explore many alternative
combinations of process elements. The approach can also be used with purely random
combinations of process elements. By structuring the knowledge repository as a rich network
of empirically based process templates, however, we greatly increase the likelihood that
useful alternatives will be generated.

We have termed our tool for implementing this combinatorial innovation process the
''Process Recombinator.''We built the Process Recombinator as an add-on to the MIT
Process Handbook (Malone et al. 1999). The next section provides a brief overview of the
Process Handbook and the theoretical concepts upon which it is based. Section 13.3
describes the use of the Process Recombinator with examples from a field study. Section
13.4 evaluates the contributions this work has made and concludes with a discussion of
possible directions for future research.

 



 

13.2 The Process Handbook

The Process Handbook has been under development at the MIT Center for Coordination
Science for over ten years, including the contributions of a diverse and highly distributed
group of over forty university researchers, students and industrial sponsors (see chapter 1 for
more detailed descriptions). The goal of the Handbook is to develop a repository and
associated conceptual tools to help users effectively retrieve and exploit the process
knowledge relevant to their current challenges. Currently the project focuses on the
repository's application to business process re-design, sharing knowledge about business
processes, and automatic software generation. The current repository has over 5,000
process descriptions ranging from specific examples (e.g., a Mexican beer factory, an
automobile parts manufacturer, and a university purchasing department) to more generic
templates (e.g., for logistics, concurrent design, resource allocation and decision
techniques). A Windows-based tool for editing the Handbook repository, as well as a Web-
based tool for viewing it have been developed (Bernstein et al. 1995). We have applied the
Handbook to process re-design in collaboration with a management consulting firm and
others. The successful outcomes of these experiences led to the development of the
Process Recombinator.

The Process Handbook takes advantage of two simple but powerful theoretical concepts to
organize process knowledge: process specialization, and the notion of dependencies and
their coordination mechanisms.

13.2.1 Process Specialization

Practically all process representation techniques (including ours) use the notion of
decomposition: that a process can be broken down (or ''decomposed'') into sub-activities.
Our representation further includes the concept of specialization. While a subactivity
represents a part of a process; a specialization represents a type of (or way of doing) the
process.

Using this concept, processes can be arranged in a hierarchical structure with very generic
processes at one extreme and increasingly specialized processes at the other. As in object-
oriented programming, the specialized processes inherit properties of their more generic
''parents,''except where the specialized processes explicitly add, delete or change a property.
Unlike traditional object-oriented programming, however, our inheritance is organized around
a hierarchy of increasingly specialized processes (verbs) not objects (nouns).

Figure 13.1: Example of inheritance in specialization hierarchy (changed subactivities
are shadowed)

The generic activity called 'Sell product', for example, can be decomposed into subactivities
like 'Identify potential customers'and 'Inform potential customers'(illustrated in figure 13.1). It
can also be specialized into variations like 'Sell by mail order'and 'Sell in retail store'. These



specialized activities inherit many subactivities from their ''parent''process, but also typically
include changes as well. 'Sell in retail store', for instance, replaces 'Identify potential
customers'by the more specialized activity 'Attract customers to store'.

We have found it useful to group specializations into what we call ''bundles''of related
alternatives. Figure 13.2 gives two examples of such bundles in the specialization hierarchy
for the 'Sell product'process. One bundle ('Sell how?') collects alternatives for how the sale
is made (direct mail, retail storefront, or electronically), while the other ('Sell what?')
concerns what is being sold (beer, automotive components, etc.) Generally speaking,
bundles represent different dimensions along which processes can be classified.

Figure 13.2: Example of bundles in the specialization hierarchy

Bundles can also have associated trade-off tables that capture the relative pros and cons of
the alternative specializations in terms of their ratings on various criteria. Figure 13.3, for
example, shows such a trade-off table for the specializations in the 'Sell how?'bundle;
specializations are the rows, criteria are the columns, and the cell contents are the values for
each criterion and specialization.

Figure 13.3: Example of a trade-off table (note that these particular values are for
illustrative purposes only)

Entries in trade-off tables can be generated by academic research, empirical observation, or
soliciting the judgment of specialists in the process domain. A specialization tree so
structured can be viewed as a decision tree. If users want to find a process with given
attributes, they can traverse from the root, and at each bundle select the one or more
branches that seem to match what they are looking for. This property will prove important
below when we use the specialization tree to support process (re-)design.



Figure 13.4: Three basic types of dependencies among activities

13.2.2 Dependencies and Coordination Mechanisms

The second key concept we use is the notion from coordination theory that coordination can
be viewed as the management of task dependencies each managed by their own
coordination mechanism (see Malone and Crowston 1994). Dependencies arise from
resources (e.g., parts, documents, and signals) that are used by multiple activities. We
typically analyze dependencies using three elementary dependency types: flow, sharing, and
fit (Crowston 1991; Zlotkin 1995); see figure 13.4. Flow dependencies arise whenever one
activity produces a resource that is used by another activity. Sharing dependencies occur
whenever multiple activities all use the same scarce resource (e.g., when two people need to
use the same machine). Fit dependencies arise when multiple activities collectively produce
a single resource (e.g., when several designers create subcomponents for a single system).

The relationships represented by dependencies are managed by processes called
coordination mechanisms. There is a wide range of coordination mechanisms potentially
applicable for each kind of dependency. Managing a flow dependency, for example, usually
involves making sure that the right thing (usability) arrives at the right place (accessibility) at
the right time (timing). A tire supplier and a car manufacturer, for example, have a flow
dependency between them. This flow consists of three parts: First tires have to be
transported from the supplier to the manufacturer (i.e., tires have to be made accessible to
the car manufacturer. Second the tires have to be manufactured before they can be
attached to the car (i.e., the tires have to arrive at the right time). Finally the tires delivered
actually have to match the car(i.e., their usability has to be ensured). A flow is managed
when all of those parts are managed. As table 13.1 shows, two possible coordination
mechanisms can be used to manage the prerequisite part, for example, 'make-to-order'(a
variant of which is called 'just-in-time'production) and 'make-to-inventory'(where a stockpile
of the product is created in anticipation of future demand). These mechanisms can be
applied to almost any domain.

Table 13.1: Examples of dependencies and associated coordination mechanisms



Dependency Examples of coordination mechanisms for managing
dependency

Flow  

Prerequisite ('right
time')

Make to order versus make to inventory ('pull'vs. 'push')

Place orders using 'economic order quantity', 'just in
time'(kanban system), or detailed advanced planning

Accessibility ('right
place')

Ship by various transportation modes or make at point of
use

Usability ('right
thing')

Use standards or ask individual users (e.g., by having
customer agree to purchase and/or by using participatory
design)

Sharing 'First come–first serve', priority order, budgets, managerial
decision, marketlike bidding

Fit Boeing's total simulations, Microsoft's daily build

An example of a sharing dependency is the management of room usage. An often-used
mechanism for ensuring the management of this dependency is 'first come–first served'. As
soon as someone signs up for use of the room it is booked. However, most other processes
for managing scarce resources could be applied to managing the room's usage.

Microsoft's daily build (see Cusumano and Selby 1995) is an excellent illustration of
managing a fit dependency. Given the need of components of the operating system to fit
each other, Microsoft chooses to ensure their compatibility by forcing their co-functioning in a
daily build, which is then used as a baseline the next day.

 



 

13.3 The Process Recombinator

The Process Recombinator is a software tool that uses the Process Handbook to support a
process innovation methodology as described above. This methodology consists of three key
steps (Herman et al. 1998 contains a detailed explanation of the methodology):

Identify the core activities and the key dependencies (i.e., the deep structure)ofthe
process you want to redesign, using the process specialization hierarchy.

1.

Systematically generate a set of alternative refinements (i.e., surface structures)for
the tasks and dependencies in this deep structure model, by ''recombining''existing or
newly generated alternatives for these process components.

2.

Select from this set the process(es) that appear to best satisfy your requirements,
possibly using information stored in trade-off matrices.

3.

We will describe how these steps are accomplished in the s below. The capabilities
underlying steps 1 and 3 are part of the original set of Process Handbook tools, so we will
summarize them quickly and then focus on the Recombinator capabilities of step 2.

To illustrate the capabilities of the Recombinator tool, we will use examples based on a field
study we conducted in collaboration with one of our corporate research sponsors, the AT
Kearney consulting firm, and one of their clients which we call Firm A to preserve the client's
anonymity (for more detailed descriptions of this study, see Malone et al. 1999; Herman et al.
1998; Kruschwitz and Roth 1999).

Firm A was experiencing increasing problems with their hiring process. They were growing
rapidly in a tightening labor market, and they had a culture of independent, competitive
business units. Together, these factors led to increases in the time and cost to hire people
and to increasingly frequent instances of business units ''hoarding''candidates or bidding
against each other for the same candidate. In an effort to improve their hiring process, the
organization had invested a great deal of time and energy into ''as is''process analysis using
conventional techniques such as flow-charting. But they also wanted some way to come up
with highly innovative ideas about how to improve their process.

The Recombinator was completed after the field study. The examples shown here
demonstrate how the tool now supports the manual process that was followed in the field
study.

13.3.1 Identifying the Process Deep Structure

The first step in our methodology is to identify the deep structure, that is, a process model
that captures the essence (the core activities and key dependencies) of the process we wish
to redesign. This maximizes room for new ideas by abstracting away nonessential features.
The Handbook supports this via the specialization hierarchy. Users can either select an
existing generic process from the hierarchy or create a new one. Since Firm A wanted to
improve their hiring process, we use the ''Hire''process as the starting point for our example
scenario (see figure 13.5).

Figure 13.5: The deep structure for 'Hire'



13.3.2 Process Recombination

The next step is to find alternative ways (i.e., different surface structures) for implementing
the generic activities and coordination mechanisms identified in the deep structure model.
This is achieved by the Process Recombinator, which includes three parts. The three parts
can be used independently; each allows systematic exploration along a different set of
process design dimensions. First, we will look at the sub-activity recombinator, which
generates all possible combinations of the specializations of the subactivities in the process.
Next, we will consider the dependency recombinator, which generates different combinations
of coordination mechanisms for the process dependencies. Finally, we will look at the bundle
recombinator, which generates different combinations of the alternatives in the dimensions
represented as bundles.

This order of usage was chosen for illustrative purposes only, however. The three parts of
the Recombinator can be used in different sequences depending on one's needs.

The Subactivity Recombinator The subactivity recombinator lets users pick different
specializations for each of the subactivities in a process (see figure 13.6). For example, the
''Select human resources''subactivity of the hiring process has specializations such as (1)
'Select by role-playing'(e.g., a process used by Cessna to screen candidates for executive
positions), (2) 'Select based on education'(a screening process implicitly used by many
management consulting firms), and (3) 'Select by attrition'(a screening process used by
universities who admit all applicants and then fail many of them in the first year). Using the
Process Handbook capabilities, users can easily see more detailed descriptions (and other
information) about each of these activities.

Figure 13.6: Subactivity recombinator user interface

As the figure shows, each subactivity is placed in a separate column, and each column
contains the alternative specializations for that subactivity. Using this display, users select the
combination of specializations they want to use in creating a new process. The system then
automatically generates the new process specified. If users make multiple selections in
some of the columns, then all combinations are generated. Figure 13.7 gives an example of
the process created for the selections made in figure 13.16. (Users who want to know more
about how the alternatives in a given column compare can click on the ''trade-off''button for
the column and see a trade-off matrix for those alternatives.)

Figure 13.7: Results of using the subactivity recombinator



The power of this approach is that the specialization hierarchy allows the process designer to
draw on relevant ideas and insights from many different kinds of organizations, opening the
possibility of useful new combinations never before considered in a particular setting.

The Dependency Recombinator The dependency recombinator complements the
subactivity recombinator by allowing one to also consider alternative coordination
mechanisms for process dependencies. Instead of displaying only the subactivities of a
process, it displays both the subactivities and dependencies as a flowchart (figure 13.8).

Every subactivity and dependency can have an associated list of alternative choices below it.
The lists below dependencies allow users to select the coordination mechanisms used to
manage them. In figure 13.8, for example, we can see different alternatives for managing the
dependency between ''Use headhunter for sourcing''and ''Select human resources . . .''There
could be a traditional ''push-based''coordination, where the headhunter contacts the firm.
Alternatively there could be an ''open market''of 'sellers'(headhunters and internal HR
departments) and buyers (line-function departments). The ''market with bonus''coordination
mechanisms reimburses the seller (in our case the headhunter) with a fee depending on the
new employee's performance in the firm. This encourages headhunters to think about the
long-term performance of a candidate. Once the user has selected alternatives for each
subactivity and dependency, the system automatically generates new process designs in the
same way as the subactivity recombinator.

Figure 13.8: Dependency recombinator user interface

In bringing in coordination possibilities from far afield (e.g., as on-line bidding systems for
internal recruiting), this approach can generate very innovative process possibilities.

The Bundle Recombinator The bundle recombinator helps users generate new design
alternatives by exploring the multiple possibilities defined by bundles in the specialization
hierarchy. Consider, for example, the specialization subtree under 'Install Employee'(figure
13.9).[1]

Figure 13.9: Specialization sub-tree for 'Install employee'



Recall that the bundles under a given process in the specialization hierarchy group together
refinements of that process that differ along a particular dimension such as who does the
work and how it is done. Generally, each bundle captures an orthogonal design dimension.
The four bundles under 'Install employee'therefore define a four-dimensional space of
possible combinations (e.g., figure 13.10 shows the combinations defined by two of these
dimensions).

Figure 13.10: Part of the design space for the 'Install employee'process (the cell marked
is the example described in the text)

Each cell in this four-dimensional space represents a possible new process specialization
formed by making one selection from each bundle dimension. For instance, figure 13.11
shows the combination 'Install by oneself during work within the job environment'. One
example idea stimulated by this combination is training novice air traffc control offcers by
interleaving simulations of unusual situations in the middle of their real work environment
(perhaps without the trainees even knowing that these were simulations).

Figure 13.11: Bundle recombinator user interface

Another interesting combination (stimulated by the combination of two dimensions marked by
an asterisk in figure 13.10) is to let new employees ''install''themselves by having them
decide what they could do best for the firm. In this process new employees look around to
find something useful to do for the firm (Kaftan and Barnes 1991 report this type of behavior
in some of the hires at SUN Hydraulics).

When users have selected a combination of alternatives (e.g., as in figure 13.11), they press
the button shown in the upper left corner of the figure, and the system generates the new
process they have specified. The subactivities in the newly created process are derived by
''multiple inheritance''from the ''parent''processes (Wyner and Lee 1995). The algorithm used
for multiple inheritance is as follows: Sub-activities that appear in one or both specialization
parents are inherited as is. If one parent process has a more specialized form of a subactivity
than the other does, then the more specialized version of that subactivity is inherited. If one
parent process has deleted a subactivity that appears in another, or if a subactivity is
specialized in different ways in the different parent specializations, then the system asks the
user what to do. The power of this approach is that it can lead to novel combinations that
enable process designers to be more creative in their process designs.

The Roles of the Different Recombinators As we have seen, the subactivity and



dependency recombinators have similar functionality while the bundle recombinator takes an
orthogonal approach. All three approaches can be used in a fully integrated way. The
subactivity recombinator is useful when we wish to focus on alternatives for the core activities
in the process. The dependency recombinator is useful when we wish to also explore
different ways of managing the key dependencies in the process.

Figure 13.12: Trade-off matrix for new process re-designs. (All values are for illustration
purposes only.)

The bundle recombinator, finally, allows us to create new process specializations suggested
by using bundles as design dimensions. The new specializations created by any
Recombinator tool can then, of course, be used as alternatives within the other ones. The
decision of which Recombinator to use first is dependent on what aspect of a process seems
to be most promising for generating novel processes. Exploring the design space of process
ideas becomes an iterative process in which the three parts of the Recombinator are used in
turn, until a satisfactory set of interesting alternatives is generated.

13.3.3 Comparing the New Process Designs

Once users have used the different components of the Process Recombinator to produce a
number of candidate process re-designs, they can use a trade-off matrix to help assess each
re-design from the perspective of the criteria that are meaningful to them. The selections
made in figure 13.8, for example, would yield the rows shown in the trade-off matrix in figure
13.12.

The Handbook specialization hierarchy can include, for each process, attributes and
associated values that describe the process. Attributes that are potentially appropriate for
comparing the newly generated process alternatives are thus automatically inherited by the
new combinations just as subactivities are. Thus the columns of this trade-off matrix are also
automatically generated by the system. In some cases default values for the cells will be
inherited as well. It is up to the user, however, to determine whether the values of these
attributes are appropriate for each alternative and to change them if necessary. Once this is
done, the new processes and associated trade-off values are maintained in the Handbook
repository as a source of ideas for future users.
[1]The term ''install''may seem mechanistic when applied to employees. The term itself,
however, suggests potentially innovative analogies with situations where other kinds of things
are ''installed.''

 



 

13.4 Contributions of This Work

We view the primary contribution of this work to be the technical demonstration of how a
richly structured repository of process examples can be used to automatically generate a
wide range of ideas for innovative process designs. We have also, however, informally
evaluated the Process Recombinator, and the methodology underlying it, in several real-life
contexts.

13.4.1 Informal Evaluation Based on Field Studies

The most substantive example to date has been the field study to re-design the hiring
processes for Firm A used as the basis for the examples above (Herman et al. 1998).
Though this was not, by any means, a controlled experiment, the participants in this process
innovation effort found the methodology and Handbook repository to be very effective in
helping them generate a wide range of novel and promising process design alternatives. The
Process Recombinator was completed after this field study in order to provide computational
support for what we understood to be the key components of the methodology. We have re-
enacted portions of these re-design experiences using the Recombinator and have found
that it is effective in supporting them.

Since then the Recombinator has been used in another field study to support a large bank's
efforts to design new distribution/sales processes for physical financial products like
travelers'checks, foreign currency, and precious metals. Before the study, the bank had
close to a hundred different processes of this type. After analyzing their processes, they
realized that all the processes were captured well as a set of bundles representing such
dimensions as type of good, type of trading partner (bank, central bank, person), payment
method, payment currency, and internal booking type. Once they had the space so
systematized, they were able to use the recombination methodology to identify innovative
combinations along these dimensions.

These examples demonstrate well both sources of power of the Recombinator approach: (1)
it allows process designers to draw ideas from many different organizations and domains,
and (2) it spurs the creative process design through the systematic generation of novel
combinations of these ''best-practice''ideas. The examples clearly show that a rich repository
of appropriately organized process templates, supported by tools like the Recombinator, can
have practical use in enhancing the creativity and effciency of process innovation.

13.4.2 Comparison to Related Process Design Tools

In our view, the Process Recombinator fills an important gap in existing process design
technologies. As noted earlier, current techniques (Hammer and Champy 1993; Grover and
Kettinger 1995; Harrington 1991; Kettinger, Guha, and Teng 1995; Kettinger and Grover
1995; Davenport 1993) offer little support for identifying new processes (Kettinger, Teng, and
Guha 1997). They suggest how organizations can organize their process definition efforts
(e.g., through brainstorming, visioning, and meeting facilitators) as well as record the
resulting process designs (e.g., using IDEF or Petri nets) but do not help us actually generate
new process alternative ideas.

Others have explored the use of re-usable process templates (AT&T Quality Steering
Committee 1992; McNair and Leibfried 1992; Schank and Abelson 1977; CIO Magazine
1992; Mi and Scacchi 1993), abstract process models (Sacerdoti 1974; Nau 1987) and
systematic process alternative generation (Salancik and Leblebici 1988). Our work is unique,
however, in how it systematically uses a large repository of empirically based examples to
systematically generate many alternative combinations of process elements.



Also related to our work are systems that automatically generate organizational designs
based on descriptions of the organizational tasks and other factors (Baligh, Burton, and Opel
1990; Gasser 1992; Majchrzak and Gasser 1992). Baligh et al., for example, edited
''textbook''knowledge about organizational design into an ''expert system''that makes
recommendations based on rules like ''If the environment is stable, then a formal
organization is appropriate.''Our work differs from these approaches in at least two ways: (1)
We are interested not only in providing ''conventional''guidance for ''traditional''organizations
but also in providing tools to help ''invent''new organizations. (2) We are not attempting to
provide completely automated advice based on simple input parameters (the traditional
''expert systems''approach). Instead, we are attempting to provide conceptual frameworks
and partly automated tools to help enhance people's abilities to creatively define and
systematically explore a large process design space. That is, we want to provide a helpful
tool for use by human experts, not an ''automated expert''that tells humans what to do.

 



 

13.5 Future Work

One of the major limitations of the Recombinator is the availability of a suffcient underlying
knowledge base of processes. The size of the underlying knowledge base has a direct
influence on the usefulness of the Recombinator. Our experience with the Process
Handbook has shown that the current knowledge base of more then 5,000 processes is
adequate to generate interesting processes in a variety of domains. We believe that the
universality of some of the concepts used (like the notion of the coordination mechanisms or
the ubiquity of logistics processes) allow the tool to support some innovation with little prior
content in the knowledge base. However, future research about the applicability of the tool in
different domains is needed.

In the future we plan to evaluate and refine the Recombinator in other domains (including
logistics and manufacturing), and extend it to cover other aspects of our process innovation
methodology such as generating new processes by subactivity re-ordering. Another issue we
would like to address concerns managing the size of the process design space. The
generative strength of our approach is a double-edged sword in the sense that it is often easy
to create an overwhelming number of process alternatives. The procedures are not fully
formalized, so human judgment is often needed, for example, to select the process design
appropriate for one's needs from among the candidates generated by the Recombinator.
While we do not expect to obviate the need for human judgment, we do plan to explore how
the Recombinator can further reduce the burden of exploring/pruning a large process design
space. In the meantime we believe that it will often be preferable to have too many options
rather than too few.

 



 

Appendix — Implementation Overview

Software Implementation

The Process Handbook software provides a standard set of tools to browse, manipulate, and
store process descriptions. Our current system is implemented under the Microsoft Windows
operating system using Microsoft's Visual Basic programming language and numerous third-
party modules for that environment (i.e., COM/ ActiveX-objects). The process descriptions
are stored in a relational database (currently Microsoft Access) with an interface layer above
the database that represents processes using the concepts described earlier (Ahmed 1998;
Bernstein et al. 1995). This interface, implemented as a COM-object, allows programs to
retrieve, edit, and add process descriptions. A number of different viewers and editors,
including a Web-based browser (see http://process.mit.edu), have been implemented as part
of the Process Handbook Project (for more information see Malone et al. 1999).

The Process Recombinator is an extension to the Process Handbook software. Using the
same development environment we extended the existing tools to provide a user interface for
specifying recombinations. Once specified, the Recombinator accesses the Process
Handbook database through the same interface layer as the other viewers and editors and
generates the new process models directly into the database. Those new models are then
available for retrieval and manipulation using all of the tools provided by the Process
Handbook software.

Content

The Process Recombinator software accesses the process knowledge base provided by the
Process Handbook project. Numerous contributors developed content for the Process
Handbook knowledge base, and the content was added to the knowledge base using the
tools described above. The current repository has over 5,000 process descriptions ranging
from specific examples to more generic templates.

The contents of the Handbook come from both primary sources (e.g., student thesis
projects) and secondary sources (e.g., published descriptions of innovative business
practices). So far we have focused our data collection on the domain of ''supply chain
management''—the process by which an organization (or group of organizations) manages
the acquisition of inputs, the successive transformations of these inputs into products, and
the distribution of these products to customers. For example, the handbook includes results
from several MIT master's thesis studies of supply chain processes ranging from a Mexican
beer factory to a university purchasing process (Geisler 1995; Leavitt 1995; Lyon 1995;
Ruelas Gossi 1995). The entries also include a number of examples drawn from the
''Interesting Organizations Database''collected from published sources and student projects
as part of an MIT research initiative on ''Inventing the Organizations of the 21st
Century.''Furthermore we have included processes from field studies that the center or its
sponsors undertook.

Finally, we have developed a framework of generic process descriptions. To develop such a
framework, we reviewed generic business process models from a variety of published
sources (e.g., Davenport 1993; Kotler 1997; Ulrich and Eppinger 1995). However, the
Process Handbook does not force a single perspective on any of these processes. It can
store different views of a process as alternative specializations.

 

http://process.mit.edu
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Chapter 14: Designing Robust Business
Processes

Mark Klein,
Chrysanthos Dellarocas

14.1 Introduction

A critical challenge to creating effective business processes is making sure that they can
operate effectively in environments where exceptions (i.e., process failures) can occur. This
chapter describes a novel knowledge-based methodology that addresses this challenge,
building on an augmentation of the MIT Process Handbook that captures widely applicable
expertise about what kinds of exceptions can occur in business processes and how they can
be dealt with.

 



 

14.2 The Challenge

A critical challenge for organizations of all types is being able to design business processes
that can respond effectively when ''exceptions''(i.e., process failures) occur (Strong 1992;
Suchman 1983; Grudin 1994; Mi and Scacchi 1991; Karbe and Rams-berger 1990; Kreifelts
and Woetzel 1987; Chiu et al. 1997). Exceptions can be defined, in general, as any deviation
from a process that achieves its goals completely and with maximum effciency. They include
such problems as infrastructure failures (e.g., a manufacturing station breaks down),
commitment violations (e.g., a subcon-tractor is late with a delivery), and
''emergent''dysfunctions (e.g., the load on a web server handling orders exceeds its
capacity).

Traditionally managers have relied on their experience and understanding of a process in
order to handle such exceptions as they occur, but this approach is becoming increasingly
unsatisfactory. Modern business processes are becoming more complex, and the pace at
which they operate and change is accelerating. These processes are more apt to cross
organizational and geographic boundaries, driven by globalization and the ubiquity of
telecommunications technology. This effect, along with increasing process automation, is
making many details of their operation less accessible to the managers involved. It is thus
becoming more diffcult to anticipate and avoid, or detect and resolve, exceptions in business
processes.

Current business process design methodologies and tools (Davenport 1993; Grover and
Kettinger 1995; Hammer and Champy 1993), however, do not address this problem.
Process designers are welcome, of course, to include steps designed to handle exceptions
within their process models. But they are given no assistance in determining what kinds of
exceptions can occur, or what the best practices are for dealing with them. Some more
systematic approach is needed. The remainder of this chapter describes a novel approach
for designing robust business processes that utilizes a knowledge base of widely reusable
exception handling expertise to help designers quickly and systematically anticipate possible
exceptions and select the appropriate process modifications needed to deal with them.

 



 

14.3 Our Exception Analysis Methodology

The fundamental insight underlying our methodology is that exceptions represent the
violation of commitments. The smooth operation of a manufacturing plant, for example, relies
implicitly on the commitment that the machinery therein will work reliably. Supply chains rely
on commitments, often formalized as contracts, between subcontractors and contractors. A
given Web computing infrastructure relies on the commitment that the design was
appropriate to the demands that will be placed on it. One can therefore understand the
possible exceptions and responses for a business process by enumerating:

The commitments underlying the success of the business process.

The ways these commitments can be violated (i.e., the exceptions).

The processes by which these exceptions can be anticipated and avoided, and detected
and resolved (i.e., the exception handlers).

We call this process Role–Commitment–Violation analysis (Klein and Dellarocas 2000).

While this analysis can of course be done from scratch for each new business process, it
would be helpful if the results of analyses for other processes could be archived so that
designers can take advantage of them when performing new analyses on similar processes.
This can save a lot of time, and if the knowledge base is reasonably complete, designers are
much more likely to get a full picture of the exceptions and possible handlers for their
particular process. We describe, in this chapter, both an exception analysis methodology that
is suitable for from-scratch analysis, plus a scheme for capturing the results of previous
analyses in a way that facilitates their reuse.

It would be a huge task, however, to try to identify in one knowledge base all the important
commitments, exceptions, and handlers for the whole world of possible business processes.
The exceptions important in chemical manufacturing (e.g., chemical spills), for example, are
largely orthogonal to those that occur in the insurance industry (e.g., claim fraud). There is
one subset of exceptions, however, that is critical to business processes cutting across
multiple domains: those concerning coordination among the tasks in a business process. No
matter what kind of work one does, one is faced with the challenge of figuring out who
should do what when with what resources in order to achieve private and shared goals in a
context of mutual interdependence. We have found that there is a manageably small
number of ways that coordination can occur; the same basic ideas (e.g., market
mechanisms, just-in-time logistics) tend to get used again and again in a wide range of
contexts. Many of the most diffcult to detect and resolve exceptions, moreover, take the form
of coordination failures, especially failures cutting across organizational boundaries.
Coordination-related exceptions thus represent a constrained but important and widely
applicable subset of the world of possible business process exceptions. The examples in this
chapter will all be drawn from the realm of coordination exceptions.

Identifying Commitments To identify the commitments involved in a business process, one
needs to identify, starting from the penultimate outputs of the process, who (or what)
generates those outputs, and what is required in order to do so. Each of these requirements
represent commitments that must be honored. One repeats this analysis for the
requirements so identified, working backward through the business process, until all the
commitments have been identified. There are many different kinds of commitments, ranging
from commitments to preserve a given state (e.g., wherein a piece of machinery is operating
correctly) to commitments to make some change in state (e.g., pay someone in a timely way
for a service they have performed). Every resource flow in a process (which we model in the
Handbook as dependencies) represents the commitment to get the right amount of the right



resource to the right consumer at the right time.

Let us consider a simple example in order to make this concrete. One process commonly
used for allocating tasks is the sealed-bid auction. This works as follows: a contractor
identifies a task that it cannot or chooses not to do and attempts to find a subcontractor to
perform the task. It begins by creating a 'Request for bids'(RFB) that describes the desired
work, and then sending it to potential subcontractors. Interested subcontractors respond with
bids (specifying such issues as the price and time needed to perform the task) from which
the contractor selects a winner. The winning agent, once notified of the award, performs the
work (potentially subcontracting out its own subtasks as needed) and submits the results to
the contractor (figure 14.1).

This process involves several commitments. The contractor, for example, is responsible for
sending the correct RFB to the correct subcontractors in a timely way. The subcontractors, in
turn, are responsible for sending accurate bids to the contractor before the deadline. The
contractor should award the work fairly and notify the subcontractors in a timely way. The
winning subcontractors should produce the desired results with the promised delivery time,
cost, and quality. To achieve these commitments, the contractors and subcontractors will
make use of other subprocesses. They may use email, fax machines, or the US postal
service, for example, to handle the flow of messages between them. These mechanisms in
turn will rely on commitments of their own. If we carry this procedure far enough, we can
have a complete picture of the commitments involved in this business process.

Figure 14.1: The sealed-bid task allocation auction

Because the range of coordination processes is relatively constrained, it is possible to create
a knowledge base of such processes that is fairly complete, and use this to speed the
identification of coordination-related commitments in a given business process. The
Handbook project has been creating just such a knowledge base (figure 14.2).

The knowledge base consists of generic coordination mechanisms arranged into a
taxonomy. A business process designer inspects this taxonomy to find the generic
mechanism that most closely matches the part of their business process they are currently
analyzing. The commitments that appear in that generic mechanism represent a checklist of
commitments that almost certainly appear in the particular business process being analyzed.
Using this taxonomy a business process designer could quickly determine, for example, that
their current process for allocating claims to insurance adjusters is an instance of a 'first-
come–first-served'coordination mechanism. They can then look at the commitments in the
generic mechanism's description to get a pretty good idea of what coordination commitments
must be considered in their own business process.



Figure 14.2: Portion of the coordination mechanism taxonomy

Identifying Exceptions The next step is to identify the exceptions that can occur in a
process with a given set of commitments. Each kind of commitment has its own
characteristic set of ways in which it can be violated. The commitment to maintain a certain
response time in a Web server, for example, could be violated because the server broke
down, because demand exceeded the limits the server was designed for, and so on.

If one had a complete model of how all of the components in a business process could
possibly behave, then it imaginably would be possible to logically, even automatically,
deduce all the ways that commitment violations (i.e., exceptions) can occur. As a practical
matter, however, one generally derives an understanding of the possible exceptions by
experience. As with commitment identification, business process designers could go through
this exception identification from scratch for every new process, but this can be made more
effcient and complete by maintaining the results of this analysis in a knowledge base. The
Handbook includes just such a knowledge base, focused for the reasons noted above on
coordination-related exceptions.

The schema is simple. Since coordination can be defined as the management of resource
flows across dependencies (Malone and Crowston 1994), the different types of coordination
commitments is just another name for the different types of dependencies. There are three
main dependency types:

Flow. A resource flows from a producer to a consumer. Any process that involves
transporting messages or physical items can be viewed as a flow.

Sharing. A resource is produced by a single producer and shared among multiple
consumers. A lottery, for example, can be viewed as a way of sharing goods among
consumers.

Fit. Resources from multiple producers are consolidated by a single consumer. The
design of a complex artifact like an airplane, for example, includes as an important
component the process of 'fitting'together the design for different subsystems into a
functioning airplane.

Commitments, including these three main types of dependencies, can be arranged to form a
taxonomy like the one maintained in the Handbook knowledge base (figure 14.3). Every
commitment in that taxonomy is linked to the exception types to which it can be prone. There
are three main classes of exceptions:

Infrastructure commitment violations. This category includes such problems as
communications failures and machinery breakdowns.

Agent commitment violations. This category includes problems where participants in the
business process do not discharge their commitments to each other, such as when a
subcontractor is overdue with a task.



System commitment violations. The designer of a coordination mechanism has the
commitment of defining one that works well given the demands that will be placed on it.
There are cases, however, where an apparently reasonable coordination mechanism
can produce ''emergent''dysfunctional behavior even with perfectly reliable
infrastructures and participants. One example is ''resource poaching,''wherein a slew of
low-priority but long-duration tasks tie up the subcontractors, thereby freezing out
resources needed for the higher-priority tasks that arrive later (Chia et al. 1998). This
does not represent an error per se but rather an unexpected consequence of a simple
mechanism applied in a complex environment.

Figure 14.3: Portion of the commitment type taxonomy

Exceptions, like commitments, can be arranged into a taxonomy (figure 14.4). These
interlinked taxonomies can be used as follows: for every commitment one identifies in a
business process, one finds the closest match in the commitment taxonomy, and then
follows the links to the associated exceptions. Imagine, for example, that one's business
process includes an auction mechanism with the commitment that the auctioneer accurately
announce the winner of each round. This is an instance of a ''information
contract''dependency (itself a type of ''flow'') that has such characteristic exceptions as ''false
information.''The power of using the knowledge base in this way is that it may suggest
exceptions that one might not have otherwise considered, for example, that the auctioneer
may give false information about who won the last auction round.

Figure 14.4: Portion of the exception type taxonomy



Identifying Exception Handlers The final step of the exception analysis process is to
identify possible exception handlers for each of the important exceptions identified in the
business process being analyzed. There are four main classes of exception handling
processes, divided into two pairs. If a exception has not yet occurred, we can use:

Exception anticipation processes. These uncover situations where a given class of
exception is likely to occur. Resource poaching, for example, can be anticipated when
there is a flood of long duration tasks requiring scarce, nonpreempting sub-contractors
to perform them.

Exception avoidance processes. These reduce or eliminate the likelihood of a given
class of exception. Resource poaching can be avoided, for example, by allowing
subcontractors to preempt their current tasks in favor of higher-priority pending tasks.

If the exception has already occurred, we can use:

Exception detection processes. These detect when an exception has actually occurred.
Some exceptions, such as bidder collusion, are diffcult to anticipate but can be detected
post hoc by looking at bid price patterns.

Exception resolution processes. These resolve an exception once it has happened. One
resolution for bidder collusion, for example, is to penalize and/or kick out the colluding
bidders and re-start the auction for the good in question.

Like exception types, there appears to be no simple way to systematically identify all the
potentially useful exception handlers. Exception handling techniques have emerged
throughout human history, and appear to be limited in scope only by the bounds of human
creativity. One can argue that a very significant proportion of human institutional innovations,
including the police, law courts, disaster relief agencies, and so on, can all be viewed as
representing exception handling mechanisms.

The Handbook contains a growing collection of exception handling techniques linked to the
(coordination-related) exceptions to which they are relevant (figure 14.5). These handlers are
arranged into a taxonomy such that handlers with similar functions appear close to one
another. So, when a designer is looking for an exception handler suitable for a particular
exception type, he or she will find that a range of potentially suitable handlers will appear as
specializations or siblings of the handlers directly linked to the exception of interest. Note that
since handlers are themselves processes, they themselves can have exceptions that require
exception handlers.



Figure 14.5: Subset of the exception handler taxonomy

Summary Our exception analysis methodology can be summarized as follows (figure 14.6).
A given process is analyzed to determine the commitments contained therein. These
commitments are then mapped to the ways that they can be violated (i.e., to exceptions) and
from there to handlers potentially suitable for anticipating and avoiding, or detecting and
resolving them. The MIT Process Handbook contains a growing knowledge base of generic
processes, commitments, exceptions, and handlers relevant to the important realm of
coordination-related processes. This knowledge base can be used to increase the speed
and completeness of exception analysis in the coordination domain by archiving this
information in a way that makes it applicable to a wide range of business processes.

Figure 14.6: Summary of the exception analysis methodology

 



 

14.4 An Example — The Barings Bank Failure

We illustrate our exception analysis procedure in the context of a well-known case of a failed
business process: the Barings Bank failure.

In February 1994, 233-year old Barings Bank, one of the oldest and most respected
investment houses in the United Kingdom, went bankrupt (Fay 1997; Zhang 1995). The
entire bank collapsed because of losses of $1.4 billion incurred in a matter of days by a
single young trader, Nicholas Leeson. Nicholas Leeson was a futures trader in the Singapore
branch of the bank. For a number of reasons, which are still not entirely clear, Leeson began
to engage in unauthorized futures trading in the Singapore exchange. Because of inadequate
internal controls and other process failures, Leeson was able to maintain his unauthorized
and highly risky activity undetected by the bank headquarters in London until the very end. As
we will see, the exception analysis methodology outlined above can be used to
systematically point out the gaps in the Barings trading process controls that allowed disaster
to occur, as well as to suggest ways for closing those gaps.

Our first task is to identify the key commitments in the Barings futures trading process. Figure
14.7 depicts a simplified but accurate model of the process; boxes correspond to process
activities, and lines correspond to dependencies between these activities.

Figure 14.7: Barings futures trading process

When a customer requests a futures trade, the trader asks the bank headquarters for an
advance of funds in order to cover the customer's margin account. Once the funds have
arrived, the trader performs the trade, waits to receive the corresponding security certificate
and finally pays the exchange. In an ''ideal''world a trader only performs trades when
authorized to do so by customers, correct certificates are always received, and payment for
trades exactly match the funds forwarded to the trader by the bank headquarters. These
conditions are implied by the ''prerequisite''and ''exact flow''dependencies, which represent
the key commitments in this business process.

Our next step is to identify the possible exceptions that are associated with each key
commitment. By consulting the Handbook knowledge base, one can see that one possible
exception for any prerequisite dependency is a prerequisite violation (''B without A''), that is,
the possibility of activity B happening without a prior occur-rence of activity A. In the context of
the Barings trade process such violations would translate into unauthorized trading,
unwanted security receipts, and unnecessary payment (figure 14.8). Likewise one possible
exception for an ''exact flow''dependency is mismatch between the amount produced and the
amount consumed. In the context of the Barings process this would translate into a misuse of
headquarter funds.



Figure 14.8: Barings futures trading process with associated exceptions

After possible exceptions have been identified, the next step is to find handlers suitable for
managing the possible exceptions identified above. It turns out that because the trading
process at Barings involves several independent entities (customer, bank, exchange) and
requires some initiative from the part of the trader, there are were no practical mechanisms
for avoiding the exceptions. There were, however, several mechanisms for detecting them.

Logging is one (out of several) generic mechanism for detecting prerequisite relationship
violations (figure 14.9). Logging involves recording all occurrences of activities A and B in
some reliable storage medium and periodically conducting checks for prerequisite violations.
In order for logging to be successful, it is in turn required that (1) all occurrences of A and B
be reliably logged and (2) the log only be modified by the processes that do the logging.

Figure 14.9: Logging is a generic process for detecting prerequisite violations

If we insert a logging process for all dependencies listed in figure 14.10 we get a model of a
properly instrumented trading process. At this point we can compare the process derived
using our approach with the actual Barings process. It can immediately be seen that
although Barings did log some information about trades, it had two crucial gaps relative to
the properly instrumented process of figure 14.10 (see figure 14.11).



Figure 14.10: Barings process properly instrumented with logging processes

First, it failed to log and compare the amount of funds forwarded by headquarters to the
trader to the amounts actually paid by the trader for customer trades (in other words, the log
labeled ''Funds''in figures 14.10 was missing from the Barings process). Second, Nick
Leeson, in addition to being a trader, was also in charge of the backroom operations in the
Singapore branch. This gave him the authorization to modify the trades logs (and thus
violated requirement (2) above of the logging process).

Figure 14.11: Comparison between the ideal and the actual barings process

Nick Leeson was able to use these two gaps to his advantage as follows: whenever he
received a trade request from a customer, he requested an amount of funds far greater than
what was required for the customer trade. He then performed the customer trade, as well as
some additional unauthorized trades on his behalf. All of these trades were automatically
logged into logs ''Commits,''''Received,''and ''Paid''(see figure 14.10). Leeson then erased the
records of his unauthorized trades from logs ''Commits,''''Received,''and ''Paid.''Therefore, at
the end of each day, the log of ''Requests''matched perfectly the other three logs. By not
checking for discrepancies between the funds forwarded to Leeson and the total funds
recorded at the ''Paid''log, headquarters remained unaware of Leeson's activities until it was
too late.

It is probably too simplistic to claim that the Barings disaster would have been avoided if the
management of Barings had at their disposal knowledge-based exception handling
methodologies, such as the ones described in this chapter. Nevertheless, this exercise
demonstrates that these methodologies can be used in real-life cases to alert management
of potential weaknesses and suggest ways for making vital business processes more robust.
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Chapter 15: A New Way to Manage Process
Knowledge

Overview

Nicholas G. Carr

An earlier version of this chapter appeared as N. Carr (1999), A new way to manage process
knowledge, Harvard Business Review, September. © 1999 Harvard Business Review Press.
Reprinted by permission.

The products of an ambitious MIT study could help you reshape your business. For most of
the past decade, a team of researchers at the MIT Sloan School of Management has been
quietly laboring on a Herculean task: to document, in meticulous detail, every major business
process. The Process Handbook project, as the effort is called, has succeeded in creating
an electronic repository of information on more than 5,000 processes and activities, together
with a suite of sophisticated software programs for navigating and manipulating the data.

Now MIT is making the process repository and software available to companies everywhere
by licensing them to start-up firm Phios Corporation. Phios plans to commercialize the
research in two ways. First, it will help individual companies develop their own proprietary
versions of the repository, providing an easy way to store, organize, and share diverse
information such as process maps, procedure manuals, images, software programs, and
Web links. Second, it will put the general process repository on the World Wide Web, giving
managers access to a wealth of knowledge on process design.

Thomas W. Malone, professor at the Sloan School and cofounder and chairman of Phios,
believes that process management tools are becoming increasingly important. ''Electronic
commerce, outsourcing, and enterprise software systems are all forcing companies to
rethink the way they organize work,''he says. ''Companies need to be more creative and
flexible in managing their processes and that requires a much more systematic approach to
capturing and disseminating process knowledge.''

One company that's already using the software to manage its process knowledge is Dow
Corning. The company found, in the course of installing an SAP system, that it lacked a
consistent way to document all its process designs and share that information throughout its
organization. It is using the Phios software to create interlinked maps of its key processes,
which have proved invaluable in designing and rolling out the new system. The company is
also moving ahead with plans to store its process repository on its intranet. Anyone in the
company will be able to quickly learn the steps involved in any process, find links to detailed
process guidebooks and policy statements, check measures of process performance, and
share ideas for improving process designs. (See figure 15.3 for Dow Corning's process
repository.)

Much of the power of the Phios process repository lies in its unique two-dimensional
structure, which organizes information according to both process parts and process types. A
user exploring the general process of selling a product, for example, can move vertically
through the database to gain more detailed information about the process's component parts
or subactivities (see figure 15.1).



Figure 15.1: Process parts

Figure 15.2: Process types

Figure 15.3: Dow Corning's process repository. Dow Corning is putting its process
repository on its corporate Intranet. Here, in a sample window, we see a portion of Dow's
requisition procedure. Employees can click on any process step for more detailed
information on policies and practices. The ''process compass'' in the upper left corner
makes navigating the repository easy.

The user can also move horizontally to study more specialized types of the process, such as
selling over the Internet or selling financial services (figure 15.2). By making it easy for users
to move in both directions through the process repository, Phios's software can spur creative
thinking about new ways to do work. (To see how the repository works, visit
www.phios.com/hbr.)



One large services company, for example, used the repository to generate fresh ideas for
restructuring its hiring processes. The company was growing rapidly in a tightening labor
market, and it was having trouble bringing qualified new people on board. So it used the
repository to explore the hiring processes of other companies, both inside and outside its
industry. When it discovered that Marriott used an automated telephone system to screen job
applicants, it realized that it could use a similar process for certain entry-level positions. The
company also looked at analogues to the hiring process. In the repository's classification
scheme, ''hiring''is a specialized form of the more general process of ''buying.''(Hiring, after
all, is the purchase of a person's time.) When exploring different buying processes, the
company found a description of General Electric's Internet-based purchasing system, which
enables buyers to effciently find and compare different suppliers. The services company
realized that a similar electronic clearinghouse might be a productive way of locating and
evaluating potential employees. It also considered the possibility of setting up an on-line
bidding system for jobs, as electronic auction houses like Onsale have done for products.

The value of well-managed process information will only grow in the future, according to
Malone. ''As the boundaries between functions and companies crumble, the old
organizational chart loses its usefulness as a management tool,''he says. ''In tomorrow's
companies, executives will likely depend on richly detailed process maps to guide their
managerial and strategic decision making.''

 



 

Chapter 16: Toward a Systematic Repository of
Knowledge about Managing Collaborative

Design Conflicts

Mark Klein

An earlier version of this chapter appeared as M. Klein (2000), Towards a systematic
repository of knowledge about managing collaborative design conflicts, Proceedings of the
Sixth International Conference on Artificial Intelligence in Design, Worcester, MA, June 26-
29, 2000. © 2000 Kluwer Academic Publishers. Reprinted by permission.

16.1 The Challenge

Increasingly, complex artifacts such as cars, planes and even software are designed using
large-scale and often highly distributed collaborative processes. Conflict (i.e.,
incompatibilities between design decisions and/or goals) is common in such highly
interdependent activities. In one study, for example, half of all interactions between
collaborating architectural designers were found to involve detecting and resolving conflicts
(Klein and Lu 1991).

Better conflict management practices are needed. Current, mainly manual practices are
being overwhelmed by the sheer scale and complexity of modern design artifacts. Consider
the Boeing 767-F design project. This project involved the integrated contributions of
hundreds of individuals in tens of disciplines and hundreds of teams spread over several
continents and a span of years. The design includes millions of components and underwent
thousands of changes. Design conflicts were often not detected until long (days to months)
after they had occurred, resulting in wasted design time, design rework, and even scrapped
tools and parts. Design rework rates of 25 to 30 percent were typical. Since maintaining
scheduled commitments was a priority, design rework often had to be done on a short flow-
time basis that typically cost much more (estimates ranged as high as 50 times more) and
could reduce product quality. Conflict cascades that required as many as 15 iterations to
finally produce a consistent design were not uncommon. To give another example, roughly
half of the labor budget for the Boeing 777 program (which is measured in the hundreds of
millions of dollars) was estimated to be due to changes, errors, and rework, often due to
design conflicts. All of this occurred in the context of Boeing's industry-leading adoption of
concurrent engineering practices such as multidisciplinary design teams (Klein 1994).

A key barrier to the development and utilization of improved design conflict management
practices has been the lack of dissemination of this knowledge in a systematized form.
Conflict management is fundamentally a multidisciplinary topic, and information in this area
is scattered as a result across multiple disparate communities including computer science,
industrial engineering, and management science, to mention just a few. Previous efforts to
develop taxonomies of conflict knowledge (Matta 1996; Castelfranchi 1996; Ramesh and
Sengupta 1994; Feldman 1985) have been small in scope and have left out important
classes of information, particularly meta-process information, which will be described below.
The result is that good ideas developed within one discipline, or even within one industry, do
not readily propagate to researchers and practitioners in other settings, and opportunities are
lost to carry on a more systematic and cumulative exploration of the range of potentially
useful conflict management techniques.

The work described in this chapter addresses these challenges directly by developing a
semiformal Web-accessible repository of multidisciplinary collaborative design conflict



management expertise organized so as to facilitate key uses:

Pedagogy. Helping students, researchers and practitioners learn about the state of the
art in design conflict management

Business process redesign. Helping practitioners finding alternative ways of designing
their collaborative design processes

Research. Helping researchers identify gaps in conflict management technology,
identify common abstractions, facilitate discussion, and foster development of new ideas

The remainder of this chapter will describe the key ideas and tools making up the conflict
repository, evaluate its effcacy with respect to the goals listed above, and describe potential
directions for future work.

 



 

16.2 Our Approach

Our approach is to capture design conflict management knowledge using a substantively
extended version of the tools and techniques developed as part of the MIT Process
Handbook project. The Handbook is a process knowledge repository which has been under
development at the Center for Coordination Science (CCS) for the past six years (Malone
and Crowston 1994; Malone et al. 1998). The growing Handbook database currently
includes over 5,000 process descriptions ranging from specific (e.g., for a university
purchasing department) to generic (e.g., for resource allocation and multicriteria decision-
making). The CCS has developed a Windows-based tool for editing the Handbook repository
contents, as well as a Web-based tool for read-only access. The Handbook is under active
use and development by a highly distributed group of more than forty scientists, teachers,
students, and sponsors for such diverse purposes as adding new process descriptions,
teaching classes, and business process re-design.

In the following sections we will present the core concepts underlying the Handbook,
describe how these concepts and associated tools were extended to capture conflict
management expertise, and give examples of how this can be used to support a range of
useful capabilities.

16.2.1 Underlying Process Handbook Concepts

The Handbook takes advantage of four simple but powerful concepts to capture and
organize process knowledge: attributes, decomposition, dependencies, and specialization.

Process Attributes Like most process modeling techniques, the Handbook allows
processes to be annotated with attributes that capture such information as a textual
description, typical performance values (e.g., how long a process takes to execute), and
applicability conditions (i.e., constraints on the contexts where the process can be used).

Decomposition Also like most process modeling techniques, the Handbook uses the notion
of decomposition: a process is modeled as a collection of activities that can in turn be broken
down (''decomposed'') into subactivities. A common conflict detection process in industry, for
example, is the change memo, wherein a designer that makes a design change describes it
in a memo and distributes it to potentially affected designers for their review and comment.
The decomposition for this process is shown in figure 16.1.

Figure 16.1: Decomposition for the change memo process

Dependencies Another key concept we use is that coordination can be viewed as the
management of dependencies between activities (Malone and Crowston 1994). Every
dependency can include an associated coordination mechanism, which is simply the process



that manages the resource flow and thereby coordinates the activities connected by the
dependency. The dependency graph for the change memo process, for example, is shown
in figure 16.2.

Figure 16.2: Dependencies for the change memo process

Here the key dependency involves getting the change memo (i.e., the resource created by
the originating designer) to the interested parties. In typical industry practice, the memos are
handwritten and the coordination mechanism consists of distributing the memos via offce
mail to all the engineers the originating engineer thought were relevant, as the originating
engineer generates them.

The key advantage of representing processes using dependencies and coordination
mechanisms is that they allow us to abstract away details about how ''core''activities
coordinate with each other, and thereby making it easier to explore different ways of doing
so. We will see examples of this below.

Specialization The final key concept is that processes can be arranged into a taxonomy,
with very generic processes at one extreme and increasingly specialized processes at the
other. Processes are organized based on their function, so that processes with similar
purposes appear close to each other. This facilitates finding and comparing alternative ways
for performing functions of interest, thereby fostering easy transfer of ideas. Sibling
processes that vary along some interesting design dimension can be grouped into
''bundles''with trade-off tables that capture the relative pros and cons of these alternatives.
Consider, for example, the taxonomy fragment for conflict detection processes in figure 16.3.

Figure 16.3: Fragment of the process taxonomy for conflict detection

The taxonomy shows that there are at least three generic techniques for detecting conflicts
(design reviews, change memos, and mockups) and also that mockups can in turn be
distinguished into physical and digital versions thereof (a physical mockup involves building a
physical scale model of the artifact; a digital mockup utilizes a digital model of the artifact
instead). Two bundles distinguish between different kinds of mockup-based conflict detection
processes. The [mockup how?] bundle collects the different ways of doing mockups, and
includes a trade-off table capturing their relative pros and cons (table 16.1).



Table 16.1: Trade-off table for the [mockup how?] bundle

Alternative Detection
speed

Up-front
cost

Cost of changes

Physical Slow Medium High

Digital Fast High Low

Table 16.1 shows that physical mockups have lower up-front cost but detect conflicts
relatively slowly, and are expensive to modify as the design changes. Digital mockups have
greater up-front costs but are superior on the other counts.

16.2.2 Extending the Handbook to Capture Conflict
Knowledge

While the Handbook as described above is well suited for describing conflict management
processes by themselves, it does not capture crucial information concerning what types of
conflicts exist, in what contexts (i.e., design processes) they can appear, what impact they
have, or what conflict management processes are suitable for handling them. The novel
contribution of the work described herein involved extending the Handbook so that it can
capture this information. This required two additional elements: the conflict taxonomy, and
the conflict management meta-process. These are described below.

Figure 16.4: Fragment of the conflicts type taxonomy

Conflict Taxonomy The conflict taxonomy is a hierarchy of conflict types, ranging from
general conflict types like ''belief conflict''to more specific ones like ''resource budget
exceeded''(figure 16.4). There are many types of conflict. A major dividing point in the
taxonomy, for example, concerns whether the conflict involves the way the designers
represent the design (conceptualization conflict) or the content of the design itself (belief
conflict).

Different kinds of collaborative design processes have different characteristic conflict types.
This is captured by building on a taxonomy of collaborative design processes (figure 16.5).
Every collaborative design process is linked to the conflict types that characterize it. A
processes'characteristic conflicts are inherited by its specializations unless explicitly
overridden. Every conflict is annotated with its typical impact on the associated design
process. All collaborative design processes, for example, are subject to the generic ''design
conflict,''but the severity varies. Concurrent design, for example, generally experiences fewer
delays and other costs from design conflicts than does serial design.



Figure 16.5: Fragment of the collaborative design process hierarchy

Conflict types are linked, in turn, to the one or more processes suitable for handling them;
these processes are themselves arranged into a taxonomy, producing the overall structure in
figure 16.6. The conflict handling process taxonomy (see figure 16.7) is where the bulk of the
repository content resides.[1]

Figure 16.6: Linkages to/from the conflict taxonomy

Figure 16.7: Subset of the conflict handling process taxonomy

There are four main classes of conflict handling processes, divided into two pairs. If a conflict
has not yet occurred, we can use:

Conflict anticipation processes. These uncover situations where a given class of conflict
is likely to occur. An example of such a process is one that looks for design changes
that increase the use of a highly limited resource—one can anticipate that the design
change may cause a conflict even without calculating the actual resource usage impact.

Conflict avoidance processes. These reduce or eliminate the likelihood of a given class



of conflict. Terminological conflicts, for example, can be avoided by leading the
designers to standardize their terminology before starting the design.

If the conflict has already occurred, we instead can use:

Conflict detection processes. These detect when a conflict has actually occurred.
Change memos, design mockups, and multifunctional meetings are all, as we have
seen, examples of processes used to detect conflict.

Conflict resolution processes. These resolve a conflict once it has happened. Such
processes can include those that structure the conflict resolution interaction between
designers (e.g., facilitated negotiation) as well as those that compute a resolution to the
conflict outright (e.g., multicriteria optimization)

We have found that the applicability conditions for conflict handler processes fall into two
categories:

Table 16.2: Example of conflict handler applicability conditions

Process Design proceeds by creating new entities and manipulating the
parameters associated with these entities. There is a finite known set of
entities and parameters.

Agent Agents can describe their utilities as functions that take the design
parameter values as input and produce values expressed in terms of a
single mutually understood goodness metric

Constraints on the design process. These describe which class of collaborative design
process the conflict handler is suited for.

Constraints on the design agent. These describe capabilities design agents must have in
order for the conflict handler to be applicable.

Imagine a conflict resolution process like multicriteria optimization, for example, that involves
optimizing a single utility function formed by aggregating the functions of the contending
design agents. The applicability conditions for such a procedure would be as shown in table
16.2. This information is useful when trying to determine if a given conflict handler is
appropriate for the design context one is currently concerned with.

The Conflict Management Meta-process The conflict taxonomy and associated links
described above capture the range of possible conflicts and associated conflict handling
processes but do not specify which handlers should be used when for what exceptions. This
latter information is captured in the augmented Handbook as specializations of the generic
conflict management meta-process (figure 16.8).



Figure 16.8: Decomposition of the generic conflict management meta-process

The conflict management meta-process consists of the following subtasks:

Identify target conflicts. This decides which classes of conflicts the process is going to
handle, potentially in a time-varying context-sensitive way.

Determine conflict finding processes. This determines which conflict finding (i.e.,
anticipation or detection) handlers will be used to find the conflicts of these types.

Enact conflict finding processes. This enacts the conflict finding processes identified in
the previous step, producing one or more conflict instances.

Select conflict instances to fix. This sorts and prunes the list of conflict instances so
uncovered.

Determine conflict fixing processes. This determines which conflict fixing (avoidance or
resolution) processes will be used to handle these conflict instances.

Enact conflict fixing processes. This enacts the conflict fixing processes to actually
(hopefully) complete the handling of the conflict(s) detected by the system.

Collect learnings. This collects information produced by any of the other steps as input
to any learning capability that the conflict management system may have, presumably
changing the operation of the other meta-process steps in the future.

This is a meta-process because the inputs and outputs of some of the steps are other
(conflict handler) processes. The decomposition, patterned originally on that used in
diagnostic expert systems (Clancey 1984), has been found adequate to capture all the
important classes of meta-process information encountered in the conflict management
literature our team has reviewed so far.

To make this process more concrete, let us consider two specializations from the conflict
management meta-process taxonomy (figure 16.9). One major distinction in this taxonomy is
whether conflict management is done at system development time or at system execution
time. Development-time conflict management has been applied extensively in the creation of
expert systems whose rules are derived from human experts representing different, often
conflicting, areas of expertise. This approach involves finding and resolving all possible
conflicts among the knowledge base entries before the system is used, typically using some
kind of semantic analysis of the knowledge base contents (Bezem 1987; Trice and Davis
1989). Such a conflict management process would have the subtasks listed in table 16.3
when modeled as a specialization of the generic conflict management meta-process.

Figure 16.9: Subset of the conflict management meta-process taxonomy

Table 16.3: Conflict management meta-process for development-time conflict
management



Subtask How implemented

Identify target conflicts Target conflicts are inconsistencies among
the potential conclusions of any of the
rules in the knowledge base

Determine conflict finding processes Use hardwired rule consistency checking
code

Enact conflict finding processes Consistency checking code is enacted by
the knowledge base developers as desired
when the knowledge base is being
developed

Select conflict instances to fix All conflicts are fixed, typically in the order
in which they are found

Determine conflict fixing processes All conflict instances are fixed by the
process 'Consult human knowledge base
developers'

Enact conflict fixing processes Process 'Consult human knowledge base
developers'is enacted at development time
as desired

Collect learnings N/A

Execution-time conflict management, by contrast, involves detecting and resolving conflicts
during the actual design process. The conflict management meta-process for one example
of this approach (Klein 1997) is given in table 16.4.

16.2.3 Using the Conflict Repository

As noted above, we have identified three key uses for process repositories:

Pedagogy. Helping students, researchers, and practitioners learn about the state of the
art in design conflict management

Business process re-design. Helping practitioners (re-)design the conflict management
aspects of their collaborative design processes

Research. Helping researchers identify gaps in conflict management technology,
identify common abstractions, facilitate discussion, and develop new ideas

Table 16.4: Conflict management meta-process for execution-time conflict
management



Subtask How implemented

Identify target conflicts Human designer selects, at any point during the
design process, the conflicts he/she is interested
in by selecting from a predefined conflict
taxonomy

Determine conflict finding
processes

Every conflict type has a single predefined
(hardwired) conflict detection process

Enact conflict finding processes Detection processes for the selected conflicts
are enacted ondemand—when the human
designer requests it

Select conflict instances to fix Human designer selects which conflicts to fix
from the list presented by the system

Determine conflict fixing
processes

System uses a diagnostic procedure and a
knowledge base of generic conflict handling
strategies to generate a sorted list of proposed
specific conflict resolutions. The human
designer then selects which resolution to use, or
may choose to define his/her own resolution

Enact conflict fixing processes System enacts the selected resolution, if any, on
demand

Collect learnings Completed conflict resolution instances are
stored as cases in a database for later use as
data to help add to and refine the conflict
knowledge base contents

We will now consider how the conflict repository can be used for these purposes.

Pedagogy The original Process Handbook allows users to browse through the specialization
taxonomy for processes in the domain of interest, inspecting their attributes, decompositions,
and dependencies and comparing their relative merits using the trade-off tables in bundles.
The conflict repository built on the Handbook augments this by providing a richer set of links,
as described above. The Web version of the Handbook, designed for pedagogical use, is
shown in figure 16.10.



Figure 16.10: Screen snapshot of the Web-accessible version of the conflict repository

One can traverse the current taxonomy up or down by clicking on the 'generalization'or
'specialization'buttons, or follow crosslinks (in this example, links from the conflict to a
conflict handler) by clicking on hotlinked item.

The specialization taxonomies underlying the conflict repository facilitate cross-disciplinary
knowledge transfer by revealing commonalities in the goals and approaches of techniques
from different domains. They do so by (1) highlighting the extensive overlap in conflict types
across different domains and (2) colocating conflict handling processes with similar
purposes, regardless of their origin. Should an automobile designer follow the 'is detected
by'links from the 'geometric overlap'conflict, for example, he/she will immediately encounter
such ideas as 'digital preassembly'(used in the airplane industry) and 'daily mockups'(used in
the software industry). Similarly an airplane designer looking at the conflict avoidance
processes branch will find such ideas as 'set-based design'(used in the automobile industy).

Business Process Redesign The conflict repository supports a simple but powerful
methodology for (re-)designing the conflict management procedures used in one's design
processes. It involves applying the Handbook's process redesign methodology (Herman et
al. 1998) to the conflict management meta-process one is using/starting from. All of the
subtasks in this process, as we have seen, have multiple alternative specializations (i.e.,
ways of realizing that subtask). We can therefore explore many different variations of the
process by systematically varying the alternatives we select for each subtask. We can vary,
for example, whether 'Enact conflict detection processes'is done immediately after every
design change (''eager''conflict detection), on a scheduled basis (as in the 'daily
build'process used by Microsoft), or as desired by the designers or design managers
(''lazy''conflict detection). We can decide whether 'determine conflict fixing processes'is done
using computer tools to suggest resolutions, by providing designers access to the conflict
repository, by leaving them on their own, and so on. A tool known as the Process
Recombinator (Bernstein et al. 1999), available under the Windows version of the Process
Handbook, has been developed to support this systematic exploration of different subtask
combinations (figure 16.11).



Figure 16.11: Snapshot of the process recombinator

Facilitating Research A conflict repository can serve as a valuable resource for fostering
more effective, accumulative, and cross-disciplinary research on conflict management, in
several important ways. The taxonomic structure of the repository facilitates finding gaps in
the conflict management knowledge. One can, for example, look for conflict types with no
associated resolution strategies, or for sparsely populated regions of the conflict resolution
strategy space (e.g., where a trade-off table has no alternatives identified for common values
of a key design characteristic). The conflict repository structure can enable structured
discussions by organizing them around focus topics such as filling in a particular branch of a
taxonomy, adding to a trade-off table, or detailing a particular process description. It is our
experience that such foci can be more effective than unstructured discussions for capturing
process knowledge. The process re-design methodology described above can, finally, be
used to help invent new conflict management techniques.

Imagine, for example, that one wishes to explore variations to the ''change memo''conflict
detection process described above. One possibility is to consider different processes for
managing the dependency between the ''create change memo''and ''review memo''steps.
This quickly reveals such interesting alternatives as ''making''change memos to order (i.e.,
when the receiving engineers are ready for them), collocating engineers to minimize change
memo distribution time, and using content-based routing or filter agents to ensure that
engineers get only relevant memos. This can be taken one step further by looking at 'distant
analogies'(processes that address different but functionally similar challenges) as a way of
suggesting creative alternatives (chapter 12 in this volume).

Consider, for example, the development time conflict management technique mentioned
above, wherein rule bases are modified before being merged, based on the results of
automated semantic analysis, to prevent them from asserting conflicting conclusions.
Pursuing this distant analogy suggests the idea of using semantic conflict analysis to design
specialized training curricula for designers involved in large projects, helping them avoid
needless conflicts. Not all distant analogies will lead, of course, to useful ideas.
[1]The repository uses the term ''exception''because the Process Handbook is currently being
applied to capturing knowledge about coordination failures (''exceptions''), in general, of
which conflict is a sybtype See Klein and Dellarocas (2000) for more detail on this aspect of
our work.

 



 

16.3 Evaluation of the Contributions of This Work

The conflict repository described in this chapter makes substantive contributions to previous
work in this area. These include greater expressiveness and content coverage, which in turn
help make the repository potentially more effective in supporting prototypical uses.

Expressiveness Previous efforts to create conflict knowledge repositories (Matta 1996;
Castelfranchi 1996; Ramesh and Sengupta 1994; Feldman 1985) all include either a conflict
type taxonomy or a conflict handler taxonomy, and even both, with links between conflict
types and the potentially applicable conflict handlers. None of these efforts, however,
capture the linkage between collaborative design processes and their characteristic conflict
types, nor do they capture the important information encoded by the conflict management
meta-process described in this chapter. Finally, they don't take advantage of process
abstraction and bundle/trade-off concepts to enable quick discovery and comparison of
alternative processes for similar needs. It is our preliminary judgment that the schema
presented above captures all the significant aspects of the conflict management information
we have encountered in the literature we have reviewed to date.

Coverage Previous efforts in this area have produced repositories that are quite small in
scale. The taxonomy described in Matta et al. (1998), Feldman (1985), Ramesh and
Sengupta (1994), and Castelfranchi (1996) includes no more than about thirty conflict types
and handler processes. These efforts in addition focus on individual disciplines. Matta's work,
for example, focuses on the concurrent engineering literature, Feldman's on the sociological
literature, and Castelfranchi's on multi-agent systems. While one can argue that they provide
complete coverage at an abstract level, they necessarily leave out descriptions of a large
number of specific, potentially useful conflict management techniques.

The repository described in this chapter is significantly larger in scope. It includes roughly the
same number of conflict types as those described above but a significantly larger number of
conflict management processes (about 200 at the time of writing). The contents of the MIT
repository have been drawn from several disciplines including distributed artificial
intelligence, sociology, and industrial engineering, as represented by roughly fifty publications
from such venues as the Journal of Concurrent Engineering Research and Applications, the
Journal of Artificial Intelligence in Engineering Design Analysis and Manufacturing, the Sloan
Management Review, the International Conference on Artificial Intelligence in Design, and
the National Conference on Artificial Intelligence. Our repository continues to grow, with the
support of a continuing three-year grant from the National Science Foundation (Grant No.
IIS-9803251).

Better Support for Prototypical Uses The MIT conflict repository has been evaluated only
on a limited internal basis to date, so it is premature to draw definitive conclusions about its
utility for students, researchers, and practitioners. It is clear, however, that the Process
Handbook provides a level of enabling technology that has not been exploited in previous
conflict repository efforts. Previous work has resulted mainly in textual documents (with the
notable exception of Matta et al. who made the repository available over the Web), and does
not include the kind of search, navigation, business process redesign, and structured
discussion tools available as part of the Handbook. Previous experience with these tools
suggests that they can be powerful enablers. The Handbook has been successfully used, for
example, to teach classes at the Sloan School of Management as well as at Babson
College. The Handbook process redesign methodology has been applied in several
domains, most recently (in cooperation with the consulting firm AT Kearney) to redesign the
hiring processes in a major financial services firm. The participants in this study felt that the
approach was effective in generating a much wider range of novel and promising process
alternatives than would have been uncovered by traditional methods (chapter 12 in this
volume).



 



 

16.4 Future Work

The MIT conflict repository is a work in progress. We plan to continue to add to and better
structure the repository content, drawing from multiple disciplines. We will explore the use of
additional repository structuring schemes and tools, such as the notion of a ''guided tour''that
provides a suggested sequence for traversing the specialization taxonomies for specific
pedagogical purposes. The repository will be submitted to a series of evaluations by different
classes of users in order to assess and help improve its utility. The biggest challenge,
however, will be evolving the conflict repository into a living self-sustaining community
resource. This will require addressing technological issues (e.g., developing a Web-based
authoring tool) as well as sociological issues concerning incentives for adding content.

For additional information about this and related work, including access to the MIT conflict
repository itself, see http://ccs.mit.edu/klein/.

 

http://ccs.mit.edu/klein/
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17.1 Introduction

Human communication has always been central to organizational action. It is not too much to
say that whether a business is effective or not depends in large part on how well it
communicates with its customers. These days many businesses face new communication
challenges because they need to move their operations into a new sphere, such as making
inroads into foreign markets and creating e-commerce units. As the Internet has spread, it
has made communicating with various people easier, and it has facilitated the emergence
and use of many types of new communication media within a variety of different business
situations. For example, a virtual meeting space is used in daily communication within a
software research and development community (Churchill and Bly 1999). Electronic bulletin
boards are also used to share information on topics of common interest within communities
of practice (Wenger and Snyder 2000) or professional associations such as the American
Medical Association (Hagel and Armstrong 1997). Thus thinking strategically about the
effectiveness of communication becomes increasingly important for organizations to obtain
desired audience responses and achieve stated business goals.

There are many textbooks and guides on managerial communication (e.g., Munter 1997),
but they provide only typical knowledge, and do not give us adequate guidance for
communicating in a new medium or in a radically new situation. In order to apply knowledge
in new conditions, we need an environment where well-categorized, typical examples are
documented and available, where we can find similar cases to understand conditions for use
and get ideas to apply to new situations or media, and to which we can add emergent
examples.

Today knowledge creation, transfer, and transformation are seen as particularly important
arenas for communication. The success of an organization often depends on whether or not
members of the organization actively create knowledge and how effectively they share that
knowledge within the organization through communication. As Senge (1990) claims,
dialogue and skillful discussion are critical for developing ''learning organizations.''In addition
people are said to ''make knowledge their own''within a communicative situation, that is,
people often learn in the context of ordinary communication (Brown, Collins, and Duiguid
1989). Knowledge management is a buzzword now, and many firms have created their own
knowledge repositories to share and reuse knowledge in the organization. However, a typical
knowledge repository stores specific domain knowledge such as knowledge related to
design and manufacturing in a firm, and the purpose is usually only to share the content of
documents and document templates. Thus the knowledge repository provides ''know-
what''but not ''know-how''or ''know-why,''and typically lacks the shared context for
communication that helps with the mastery of new knowledge.

In this chapter we propose a new type of knowledge repository (a genre taxonomy) that



represents know-what (the constituent elements of genres of communication) along with
know-how and know-why (the typified social context of genre use). A genre, such as a report
or a meeting, may be defined as a type of communication recognized and enacted by
members of a community or organization (Yates and Orlikowski 1992). Genres may be
analyzed in terms of a number of dimensions, particularly those representing the why
(purpose), what (content), when (timing), where (location), who (participants), and how
(structure and medium) of communication (5W1H). For the last decade or two many new
electronic communication media such as electronic mail and the World Wide Web have
emerged and evolved, but few people understand what genres to enact within these new
media or how to use such media effectively within organizations. We believe that our genre
taxonomy prototype, which offers knowledge about genres, as well as their effective use, can
help people learn and communicate knowledge about genres, and to adapt or innovate their
communication within new electronic media.

In this chapter we will introduce our genre taxonomy and its prototype implementation in the
Process Handbook (Malone et al. 1999), a process repository developed by the Center for
Coordination Science at MIT. In the next section we introduce and describe the notion of
genres of organizational communication. In section 17.3 we describe the genre taxonomy in
terms of the 5W1H dimensions and the use and evolution of genres over time. In section
17.4 we use coordination theory (Malone and Crowston 1994) to demonstrate how genres
coordinate information in terms of usefulness, location, and timing. In section 17.5 we explain
the prototype implementation of the genre taxonomy. In section 17.6 we draw on the genres
used within the admissions process at MIT's Sloan School of Management (Orlikowski,
Yates, and Fonstad 2001) to describe the relationship between genres and work processes,
and illustrate the benefits that may be derived from using the genre taxonomy in practice. We
conclude the paper by discussing the implications of the genre taxonomy for researchers and
practitioners.

 



 

17.2 Genres of Organizational Communication

As a concept, genre has a long tradition in rhetorical and literary analysis (Bakhtin 1986).
Recently a number of researchers in cultural, rhetorical, and design studies have begun
using it to refer to typified social action (Brown 1994; Bazerman 1988; Berkenkotter and
Huckin 1995; Miller 1984). Orlikowski and Yates (1992) have applied the notion of genres to
organizational communications such as business letters, memos, face-to-face meetings,
reports, and announcements. They define genres as ''socially recognized types of
communicative action habitually enacted by members of a community to realize particular
communicative and collaborative purposes''(Yates and Orlikowski 1992, p. 299). Genres
may be identified by their socially recognized purpose and common characteristics of form.

The purpose of a genre is not an individual's private motive for communication, but the
purpose that senders and recipients of communication within a community socially recognize
and invoke in a typical situation, for example, proposing a project, informing and directing in
an offcial announcement, or brainstorming how to resolve a problem. The form of a genre
refers to the observable aspects of the communication: media, such as pen and paper, face-
to-face, and electronic mail; structural features, such as document style and format; and
linguistic features, such as informality, humor, and technical language.

Yates and Orlikowski (1992) argue that genres constitute social structures that manifest what
Giddens (1984) has called the ''duality of structure.''That is, structures are enacted by the
recurrent social practices that shape and are shaped by them. Understanding this duality of
structure helps us to comprehend how and why genres are established, used, and changed
over time.

Yates and Orlikowski also examined the genres enacted in such electronic communication
media as electronic mailing lists (Orlikowski and Yates 1994), Usenet newsgroups (Yates,
Orlikowski, and Okamura 1999), and the Team Rooms of Lotus Notes databases (Yates,
Orlikowski, and Rennecker 1997; Yates and Orlikowski 1997; Orlikowski and Yates 1998).
Drawing on Bazerman's (1994) notion of genre system—sequences of interrelated
communicative actions such as the reviewing process for a scientific journal—Yates and
Orlikowski examined the genre systems in use within a US high-technology company using
Team Room (Yates, Orlikowski, and Rennecker 1997). They found that a genre system
reveals expectations about purpose, participants, content, form, timing, and location of
communicative interactions. For the purposes of this chapter, the key difference between a
genre and genre system is that while each has attributes, a genre system additionally has
relational attributes that indicate relationships among constituent genres, such as sequence.

 



 

17.3 Genre Taxonomy

Our objective in proposing a genre taxonomy is to help people make sense of diverse types
of communicative actions. The genre taxonomy thus has to represent both widely recognized
genres, such as a report, and specific genres, such as a technical report used in a specific
company, so that the context of genre use is highlighted. For example, comparing the form
features evident in a technical report genre used by a company with those of the more
general report genre helps us identify the different institutions that shaped the specific genre.

The genre taxonomy also has to represent the elements of a genre as embedded in a social
context reflecting the "5W1H''questions (Why, What, Who, When, Where, and How).[1] In
other words, the genre taxonomy represents dimensions of genres in terms of purpose,
content, participants, timing, location, and form (including media and linguistic devices). We
do not intend these six dimensions to be exhaustive or definitive, but rather offer them as a
grounded starting point for classifying characteristics of genres and genre systems based on
empirical evidence in organizations. While other semantic categorization systems have been
proposed (e.g., Lehnert 1978; Pentland and Lee 2001), they are based on formal
approaches rather than empirical data. For our purposes here, we have preferred to base
our taxonomic categories on the dimensions derived from Yates and Orlikowski's empirical
work on the use of genres in organizational practice.[2] We describe each of the six
dimensions of genre below.

17.3.1 Why — Purpose of a Genre/Genre System

Berkenkotter and Huckin (1995) use speech act theory (Austin 1975; Searle 1969) as a
deductive analytic framework for describing the textual moves that actors make when they
intend to persuade in a peer review process. Although speech act theory is targeted at a
speaker's utterances, they conclude that analysis of the illocutionary acts evident in peer
review communication provides empirical evidence that illocutionary acts do get things
accomplished in the world, either through direct or indirect means.

We established initial purpose categories in our genre taxonomy based on speech act theory,
and modified and added some categories based on the coding schemes that Yates and
Orlikowski used in their empirical genre studies (Orlikowski and Yates 1994; Yates,
Orlikowski, and Okamura 1999; Yates, Orlikowski, and Rennecker 1997). In addition we
referred to Roget's thesaurus (Roget and Chapman 1992) and WordNet (Fellbaum 1998),
an on-line lexical database for English developed by the Cognitive Science Laboratory at
Princeton University, to clarify notions and write explanations of each category. The purpose
categories now consist of eight items: inform, request, express (emotion), decide, propose,
respond, record, and other (to allow expansion of a scheme that is inherently open ended).

Some genres, especially generally recognized genres, such as the memo, have multiple
purposes, and the genre taxonomy differentiates primary purposes and secondary purposes
to help prioritization of genre use in social contexts. For example, the memo genre is used
mainly to inform its readers and record information, and it may be used for directing an order
or for proposing some course of action.

It is worth noting that a genre system usually has a different purpose than its constituent
genres because a genre system itself provides expectations about its socially recognized
purposes to coordinate the collaborative activities by means of its constituent genres. We can
illustrate this using the ballot genre system (see figure 17.1), which Yates and Orlikowski
(1994) identified from studying a group of distributed professionals using electronic mail to
negotiate the Common Lisp specifications (hereafter we call this task the Common Lisp
project).



Figure 17.1: Example of correspondences in the ballot genre system in the common lisp
project (excerpt)

The ballot genre system has three interrelated genres: the ballot questionnaire genre issued
by the coordinator, the ballot response genre generated by group members, and the ballot
result genre, a summary of the replies issued by the coordinator. As the ballot genre system
was used to poll opinions and test consensus among the participants, it might belong to the
'decide'purpose. The ballot questionnaire genre might belong to both the 'inform'and
'request'purpose categories, because it was used to inform group members about issues
and to request their replies. The ballot response genre might belong to the 'respond'purpose
category, and the ballot result genre might belong to the 'inform'and 'record'purpose
categories because the coordinator used the genre to notify group members of the results of
a ballot and to record them electronically. Thus the ballot genre system as a whole has a
purpose different from the purpose of its constituent genres.

17.3.2 What — Content of a Genre/Genre System

Genres provide expectations about content of a communication. For example, the recipient
of a thank you note expects it to include some words representing the sender's appreciation.
Suppose that an organization has a convention of a daily morning meeting and the meeting
usually includes the manager's comments about his or her views of the present state of
things. The specific face-to-face genre enacted at this organization might include the
expectation of managerial comments. The genre taxonomy represents the typical content
expected of different types of genres.

As mentioned, sometimes genres are linked to each other so as to constitute a genre system
that coordinates communicative actions. For example, the face-to-face meeting genre
system may include the meeting announcement genre, the meeting agenda genre, the face-
to-face meeting genre, and the minutes genre. Certain genres could be omitted from the
genre system (e.g., meeting announcement), or combined (e.g., meeting announcement
and agenda), while others are required (e.g., the meeting cannot be excluded).

The genre taxonomy indexes genre systems and also the genre constituents of each genre
system. Thus it can be used to discover both what genres a genre system may have and
what genre systems are in the taxonomy. Both a genre system and its genre constituents are
classified in the genre taxonomy under relevant purpose categories; thus the coordination
process in a genre system may be understood through examining the purposes of the genre
system and its constituent genres. For example, in the ballot genre system described above,
the difference in purpose categories between the ballot genre system and the ballot
questionnaire genre suggests that a ballot questionnaire helps to coordinate the decision
process by informing recipients about issues and options and requesting responses by a due
date.



17.3.3 Who — Participants in a Genre/Genre System

A genre is enacted by participants who communicate within a community, whose size may
range from very small such as a department, an organization, and a class in a school to very
large such as a profession and the citizenry of one or more countries. In the genre taxonomy,
each genre is associated with a community to which its participants belong. For example, all
genres elicited from the Common Lisp project are associated with the category 'Genres of
the Common Lisp project'and all genres used in the on-line Process Handbook
(http://css.mit.edu/pif ) are associated with 'Genres of the on-line Process Handbook.'The
collection of genres used in the same community represents that community's genre
repertoire, or the set of genres enacted by community members (Orlikowski and Yates
1994).

Different genres within a genre system may also be associated with different senders and
receivers. In the ballot genre system, for example, the coordinator issues the ballot
questionnaire and the ballot result, while other group members receive these messages and
send ballot responses.

17.3.4 When — Timing of a Genre/Genre System

Because a genre is invoked in a recurrent situation, its use is associated with particular timing
or opportunity (Yates and Orlikowski 1998). Time can be quantitative or qualitative, clock or
event based, and so on (Hassard 1996). For example, the thank you note genre is used
when a person feels some appreciation for the gift or activity bestowed by another (i.e.,
event-based timing). Or, the daily morning meeting genre enacted within a specific
organization, includes expectations of when it begins and ends (e.g., begins at 8:30 AM and
ends at 9:00 AM) (i.e., clock-based timing). The genre taxonomy includes any timing
expectations associated with the use of a genre, for instance, that a genre should be used
within a certain time period of an event (e.g., thank you notes being sent within a few weeks)
or at set time intervals (e.g., the daily morning meeting).

A genre system typically has expectations about the sequence of its constituent elements.
Thus the constituent genres of a genre system are related by their relative timing within a
genre system. Altering the order of the constituent genres of a genre system creates a
different variant of a genre system. For example, if a meeting announcement is sent before
an agenda, the decision process used to decide which people will participate may be
different than if an agenda is sent out before or along with the meeting announcement.

17.3.5 Where — Location of a Genre/Genre System

In a sense a genre reflects the culture shared by participants in a community, since it
identifies the recurrent situation or socially defined need from the history and nature of
established practices, social relations, and communication media within the community. For
example, a kaizen proposal is used in Japanese corporations to facilitate bottom-up quality
improvement, a common activity in Japanese manufacturing departments. Thus the genre
taxonomy represents the location where a genre is typically enacted such as Japan, or
Massachusetts, or northeastern United States. For electronic communication over the
Internet, the physical locations of communicative actions are becoming less meaningful
because of the shifting borders characteristic of cyberspace. However, because virtual
spaces provide expectations of ''where''in an Internet community, the genre taxonomy may
also include expectations about virtual space in addition to those for physical space. For
example, a study of a Japanese R&D project group by Yates and Orlikowski found that
members of different subgroups enacted genres within different ''local''newsgroups in the
Usenet-based groupware system (Yates, Orlikowski, and Okamura 1999).

http://css.mit.edu/pif


A genre system also includes expectations about physical or virtual location. Using the ballot
genre system as an example, if the participants are located close to each other, or they have
an opportunity to gather at the same place such as an AAAI conference, then a physical or
face-to-face balloting system might be easy to implement. In the case of the Common Lisp
project, an email approach was used that allowed the coordinator and the various
respondents to conduct electronic ballots when participants were geographically dispersed.

17.3.6 How — Form of a Genre/Genre System

As we described in the previous section, a genre is typically characterized by a recognizable
form. Form refers to observable features that include structural elements, medium, and
linguistic features. The genre taxonomy represents these features along with purposes for
identifying a genre. For example, the genre taxonomy includes the 'Electronic traditional
memo in Japan'genre, identified in the communication of a Japanese R&D group by Yates,
Orlikowski, and Okamura, with 'Kanji signature'and 'no embedded message'as structural
features, 'Usenet news group adjusted to Japanese environment'as medium, and 'Kanji
subject line'and 'no dialect'as linguistic features.

A genre system also has expectations about form, including expectations about media, and
about the genres making up the system. For example, the face-to-face meeting genre
system typically includes an announcement and an agenda in writing (either paper base or
electronic), a face-to-face meeting, and minutes in writing. But form features may vary by
local conventions or even by instance. For example, the face-to-face meeting genre system
enacted in a certain group may not include the agenda genre and/or minutes genre due to
the group's conventions.

17.3.7 Evolution of a Genre/Genre System over Time

From the organizational point of view, a genre is used in a process cycle that consists of
enacting a genre and observing genre use.[3] At the same time genre use influences the
participants involved in the communication. In enacting a genre, participants identify (whether
reflectively or habitually) a recurrent situation and genre rules from their prior communication
experiences in order to select an appropriate genre. They usually reproduce the established
genre, but sometimes elaborate, replace, or under-cut it either inadvertently or deliberately in
order to adapt to changes in the situation. Recipients identify the genre or genre variant being
used based on their identification of a recurrent situation and their own prior experiences. A
specific genre such as an email memo typically used in a particular company is a variant
from the more general memo, and the genre taxonomy places specific genres in a category
named 'Examples of a widely recognized genre'which is a subcategory under this general
genre category.

Figure 17.2: Genre evolution example from business letter genre to electronic memo
genre

The 'genre use over time'process cycle is a dynamic state of production, reproduction, and



change. A genre can evolve from another genre because participants can elaborate or
replace genres during their enactment. For example, in the past, a memo was elaborated
from the informal business letter genre and the electronic memo genre was elaborated from
the memo genre (see figure 17.2). In each case the genre had been used in an ongoing
manner in one form before it was elaborated in another form over time.
[1]Yates and Orlikowski illustrate that genre systems are a means of structuring six (5W1H)
aspects of communicative actions. We extend their consideration to a genre that also has
these aspects. Due to the imprecision of language, we do not intend the six terms (why, what,
etc.) to be taken literally but as pointing to the underlying genre aspect ('purpose', 'Content',
etc.)

[2]Future work could include exploring the similarity and differences among the approaches.

[3]For analytic purposes we separate 'Enact genre'and 'Observe genre use', though in
practice they are intertwined.

 



 

17.4 Coordinating Information Using Genres

As described in section 17.2, when the members in a community enact genres and/or genre
systems, they draw on expectations of communicative purpose, content, form, participants,
timing, and location. In other words, use of genres attempts to facilitate the credible flow of
appropriate information to the appropriate place at the appropriate time. In this context,
appropriateness is that which is socially accepted and credibility is in accordance with socially
recognized purpose, participants, communication sequence, and form. As shown in figure
17.1, use of genre coordinates information exchanged in communicative action. In this
section we illustrate how genres can be used to coordinate information through coordination
theory (Malone and Crowston 1994) and extending the work of Osborn (Osborn 1996) to
emphasize genres. We also illustrate coordination mechanisms in which genres address
issues of appropriateness related to resource usability, location, and temporality, including
divisibility, reusability, accessibility, and timing.

Figure 17.3: Flow, fit, and sharing dependencies

17.4.1 Coordination Theory and the Process Handbook

In coordination theory, coordination is defined as managing dependencies among activities.
Malone and Crowston propose three types of elementary dependencies: flow, fit, and sharing
(figure 17.3).[4] A flow dependency arises whenever an activity produces a resource or
resources that are used by another activity. A fit dependency occurs whenever multiple
activities collectively produce the same resource, and a sharing dependency occurs
whenever the same resources are used by multiple activities.

Processes called coordination mechanisms manage the relationships represented by
dependencies. A flow dependency has coordination mechanisms that ensure the provision of
the right resource at the right place and right time. For example, a process to provide
resources just in time is a coordination mechanism that manages a flow dependency.
Another coordination mechanism would be to build a stock of inventory in advance.

The Process Handbook has been under development at the Center for Coordination Science
at MIT for over seven years. The goal of the Process Handbook project is to develop a
process repository which contains a generic framework for classifying business processes,
including selected examples of ''best practices,''case studies, and other process descriptions,
with integrated tools for viewing, retrieving, and authoring process knowledge.

Based on coordination theory, the Process Handbook incorporates two key concepts:
process specialization and dependencies.

There are two hierarchies that represent processes in the Process Handbook. One is typical
of most process representation tools: a decomposition hierarchy that represents a ''has
a''relationship network between activities (i.e., X has a Y ), in which an activity in Process
Handbook is broken down into its subactivities. The other is a specialization hierarchy, an ''is
a''relationship network between activities (i.e., X is a Y ), in which an activity inherits the



attributes from its parent activities. This specialization hierarchy is similar to that in object-
oriented programming, but it is specialized in terms not of objects (nouns) but processes
(verbs).

In figure 17.4 we show the decomposition of 'Sell product'into its component parts or
subactivities. The two specializations of 'Sell product'shown are 'Mail order sales'and 'Retail
Store sales'. These two specializations inherit the subactivities such as 'Identify
prospects'(among other attributes) from the parent activity and then may 'specialize'the
subactivity. For example, the way that one identifies prospects in mail order sales is by
obtaining mailing lists.

Figure 17.4: Process inheritance and specializations of the activity 'Sell product'

We have a taxonomy of over 5,000 activities in the Process Handbook. Specializations of an
activity are often grouped into 'bundles'that are represented by [brackets].

17.4.2 Coordinating Information Flow, Fit, and Sharing with
Genres

Genres convey socially recognized information that is associated with the typical
communicative interactions occurring within a community. Genres coordinate the flow of
information from senders to recipients, and legitimate the manner and form in which it is
conveyed. For example, in the ballot genre system (figure 17.1), a coordinator uses the ballot
questionnaire genre to send information about issues, and to poll opinions and test
consensus.

Genres may be used to fit information from senders together and coordinate other activities.
In the ballot response genre, for example, the responses from participants were sent to the
coordinator, who aggregated the data (fit) and posted a ballot result.

Information carried by certain genres can be shared by multiple activities. For example,
information in a ballot result could be shared by two or more activities. In the Common LISP
project, the coordinator used it to write the manuscript of the Common Lisp manual, and
members used it to ask questions about the results or to propose additional solutions using
the dialogue genre.

17.4.3 Coordination Aspects Related to Resource Usability

As stated above, a flow dependency occurs when a resource produced by one activity is
used by another. Coordination of this dependency depends on certain attributes of the
resource: divisibility, concurrency, and reusability. Divisibility means that a resource can be



divided without losing its utility. For example, water, money, or chocolate can be divided into
smaller units. Concurrency means that multiple users can use the same resource at the
same time (e.g., a Web page). Reusability means the same resource can be used multiple
times without being consumed. In this section we describe how genres coordinate
information as a resource.

The intangible nature of information allows for a wider spectrum of choices for coordination
mechanisms. Information is easy to use concurrently or to reuse. Dividing information
addresses the level of granularity. In the ballot questionnaire genre, the coordinator could
divide a questionnaire into several short questionnaires, or he might bundle all the issues
together in a single long questionnaire to ask the participants to contribute solutions to each
issue all at once.

In addition information is easy to replicate, especially in electronic form. The coordinator
electronically copied ballot responses into the ballot results.

17.4.4 Coordination Aspects Related to Time

We can consider two temporal aspects of coordination mechanisms: timing and the
sequencing of activities.

Participants in a genre or genre system have expectations about timing such as a deadline or
due date. For example, the ballot questionnaire genre contains information about reply date,
so use of the genre coordinates responses from participants, supporting the coordination of
the overall ballot genre system. This timing is explicit, but participants may also have implicit
timing expectations about genre use. For example, the participants might have expected and
accepted the ballot genre system to be invoked when they recognized that there were urgent
issues around which they needed to reach consensus.

As constituent genres of a genre system interlock, participants in a community also have
common expectations about the sequencing of activities among the constituent genres. The
genre system helps the participants act coherently in a socially recognized sequence. For
example, the sequence of ballot processes constituting the ballot genre system provided
expectations to the Common LISP participants about the sequence of activities involved in a
ballot. Even at the first ballot, use of the genre system coordinated participants'activity
because they recognized the electronic ballot processes by identifying similarities and
differences with their past paper voting activities. All elements of the genre system may not
have an exact sequence (e.g., the sequence of responses may vary from ballot to ballot), but
certain elements must be in sequence for the whole to be recognizable as a genre system
and to successfully coordinate an activity over time.

17.4.5 Coordination Aspects Related to Location

As described in section 17.3.5, genres provide expectations about the location of
communicative actions. There are two aspects of coordination mechanisms: space and
accessibility.

Using a location coordination mechanism, we can move or collocate produced or consumed
resources of activities. Information is easy to move. In the Common Lisp project the
coordinator could issue the ballot questionnaire electronically. Information can also be
concurrently accessed. The Common Lisp ballot genre system provides a common virtual
space to help the participants reach consensus on contentious issues. The ballot response
genre also specifies where the responses from the participants should be sent
(moved)—that is, to the coordinator's electronic mailbox.

Using an accessibility coordination mechanism, we can control access at the location where
resources are assigned. When we use genres in an electronic medium, such as Web pages



and e-mail, it is important to consider coordination mechanisms relevant to both openness
and trust of information. As genres provide socially recognized expectations about access,
the characteristics of the medium may shape the condition of access. For example, in the
case of the ballot response genre, which uses a mailing list including all the participants, a
participant could expect that the entire content of his or her reply would be accessible to
other participants.
[4]Figure 17.3 is borrowed from Malone et al. (1999).

 



 

17.5 Prototype of the Genre Taxonomy

We implemented a prototype of the genre taxonomy using the Process Handbook developed
at MIT (Malone et al. 1999). The prototype of the genre taxonomy currently contains both
widely recognized genres and specific genres. Currently the open set of widely recognized
genres includes fourteen genres: business letter, memo, expense form, report, face-to-face
meeting genre system, personal homepage, and so on. Specific genres include the results of
genre analysis from three prior studies undertaken by Yates and Orlikowski: Common Lisp
project genres (Orlikowski and Yates 1994), Acorn project genres (Yates, Orlikowski, and
Okamura 1999), and Team Room genre systems (Yates, Orlikowski, and Rennecker 1997).
Specific genres also include those found in two other cases we analyzed: the on-line
Process Handbook genre system, and genres related to the on-line admissions process at
the MIT Sloan School of Management (which we refer to as Sloan Admissions). Because the
Process Handbook syntax is based on activities that must be named with a verb, a genre in
the genre taxonomy is not simply named (as in 'memo') but is named with a verb prefix (as in
'Communicate using memo'). Below we will describe how we implemented the genre
taxonomy in the Process Handbook. The genre taxonomy is implemented using the Process
Handbook elements of the specialization hierarchy, the decomposition hierarchy, flow, fit,
and sharing dependencies and the description field of activities.

17.5.1 Implementation of Information about Why — The

Purpose of a Genre/Genre System

The genre taxonomy uses a specialization hierarchy and bundles to represent the purpose
categories described in section 17.3. Figure 17.5 shows in an outline form the purpose
categories currently represented in the genre taxonomy. Each purpose category, such as
'Inform', is under the '[Communicate why?]'bundle.

Figure 17.5: Excerpt of process categories in the genre taxonomy

If a genre has only one primary purpose, then we use the purpose in its title, such as
'Propose using a proposal'. If it has multiple primary purposes, we use 'communicate'in its
title, such as 'Communicate using discussion'.

The description of the genre contains information about its primary and secondary purposes.
For example, a memo might primarily be used to inform or record, and secondarily to
request, express, and so on.

17.5.2 Implementation of Information about What — Content

of a Genre/Genre System

The genre taxonomy uses the description field of the activity for representing the content of a



genre.

The genre taxonomy uses a decomposition hierarchy to represent a genre system. Figure
17.6: illustrates what genres compose a typical face-to-face meeting genre system. While
not all meetings will have all of these components, in this example we can see that the face-
to-face meeting genre system typically consists of the meeting announcement genre, the
agenda genre, the meeting genre, and the minutes genre.

Figure 17.6: Description of the activity 'Communicate using face-to-face meeting system'

17.5.3 Implementation of Information about Who —

Participants in a Genre/Genre System

The ''actor''attribute of an activity in the Process Handbook is intended to represent people
who take part in a process. Multiple actors can be included in this attribute, so both senders
and recipients of a communication can be included. If it is important to segregate senders
and recipients for analysis, new attributes can be added to the various activities to reflect this.
For example, the coordinator or facilitator sent the ballot questionnaire in the Common Lisp
project to the entire Common Lisp community.

The actors in a genre system are the same as those enacting the various genres within the
genre system. A genre repertoire consists of those genres and genre systems used by actors
within a community or organization. The genre taxonomy uses the specialization hierarchy
and the bundle '[Communicate using genre repertoire—examples]'to show how different
communities enact a set or repertoire of genres. For example, the genre repertoire identified
in the Common Lisp project (Orlikowski and Yates 1994) consists of four activities: 'Decide
using ballot system {Common Lisp Project}', 'Communicate using dialogue {Common Lisp
Project}', 'Communicate using memo {Common Lisp Project}', and 'Communicate using CL
proposal {Common Lisp Project}.

17.5.4 Implementation of Information about When — Timing

of a Genre/Genre System

The genre taxonomy uses the description field of the activity to represent the timing and
situation of use of a single genre. For example, a thank you note genre is sent at different
times in different cultures or for different situations. In the United States, the time within which
a thank you note should be sent depends on the number of gifts received. For one or a few
gifts, a couple of weeks would be typical. For a large number of gifts such as those received
for a wedding, a few months may be typical. In Japan, a thank you note for one or a large
number of gifts is typically sent earlier than in the United States, and would be more likely to
be sent within a month.

The genre taxonomy uses the Process Handbook's 'dependency diagram'capability to show
the sequence of the genre constituents within a genre system. It also represents the
dependencies between activities. For example, in the face-to-face meeting system, there are
often four elements: announce meeting, communicate using agenda, communicate in face-
to-face meeting, and communicate using minutes. The sequence of these activities may
vary. For example, if the meeting announcement genre were to also contain the agenda,
then the agenda itself must be developed before the announcement is sent.



17.5.5 Implementation of Information about Where —

Location of a Genre/Genre System

The genre taxonomy uses a special attribute called 'location'to represent the location of a
genre. This may be a physical location or a virtual location such as 'cyberspace'. Since a
genre system may use multiple locations, the aggregate of the component genres locations
make up the overall location for the genre system.

17.5.6 Implementation of Information about How — Form of

a Genre/Genre System

In the genre taxonomy the description field is used for representing the form of the genres
and genre systems. This description field is highly flexible and can include explanatory text,
graphic objects, or links to Web sites with more information.

17.5.7 Implementation of Information about the Evolution of
a Genre over Time

The specialization hierarchy, the decomposition hierarchy, and flow dependencies are used
to depict genre use over time. As mentioned in section 17.3.7, genre use over time involves a
process cycle.

Figure 17.7 is a dependency diagram from the Process Handbook where each activity in the
cycle is an activity and each relation between processes is represented by a flow
dependency. Note that it is usually only possible to identify the initial use of a genre
retrospectively, after its establishment as a genre within a community. If no one reinforces
the usage of a new 'proto-genre', it will not achieve the socially recognized status of a genre.
For example, the ballot questionnaire only became a genre after the Common Lisp
members responded to the ballot messages as requested and after further examples were
enacted within the group. Moreover, even when the initial use of a genre is retrospectively
identified, it may typically be characterized as a variation on a previously existing form (e.g.,
the ballot request commonly used in face-to-face meetings).

Figure 17.7: Dependency diagram of 'Genre use over time'

The specialization hierarchy and bundle are used to represent the relations between a
general genre and its specific variants enacted in an organization. Figure 17.8 shows an
example that uses a specialization hierarchy and a bundle named '[Communicate using
genres for offcial announcement—examples]'to represent the relations between the offcial
announcement genre and its variant genres such as the offcial announcement genre used in
the Acorn project. Detecting the differences among those genres may give us an initial
opportunity to consider the context of use of specific genres and employ that to explain why,



how, and when the differences emerged.

Figure 17.8: Specialization hierarchy example in the genre taxonomy

During the evolution of the electronic memo genre, the informal business letter genre was
elaborated from the formal business letter genre, the memo genre was elaborated from the
informal business letter genre, and the electronic memo genre was elaborated from the
memo genre. To represent this evolution in the Handbook, we use a decomposition
hierarchy. Each element of this decomposition is a specialization of 'Genre use over
time'activity. In order to represent evolution, 'Enact genre'activity is replaced by various
specializations of the activity, such as the activity 'Enact elaboration of genre'. Constituent
activities, such as 'Select genre', may also be replaced by a more specialized activity, such
as 'Enact genre'activity. This representation using process inheritance is a simple and
powerful feature of the Process Handbook. The genre taxonomy can represent the relation
between the chronological view and genre use over time effectively, and thus the genre
taxonomy enables users an historical review of genres with examples.

17.5.8 Representing Aspects of Genre Coordination

In addition to the 5W1H aspects described above, genres can also coordinate information
associated with the dependencies described in section 17.4. The genre taxonomy prototype
uses the dependency diagram functionality to represent this information. When a
dependency diagram includes activities in which the actors use genres for communicative
actions, the actors send and/or receive information, which is a resource of the dependency
connected to the activity. As discussed in section 17.4.1, a sharing dependency occurs when
the same resource is used by multiple activities. When this resource is associated with a
genre, the genre plays a role in coordinating the sharing of information for the activities that
use the resource. Similarly, when there is a fit dependency among activities with associated
genres, the genres play a role in coordinating the fit of information for these activities. Note
that when multiple actors perform one activity, a genre associated with this activity may play a
role in coordinating the fit of the information provided by the multiple actors. For example, the
'Communicate using the ballot results genre'activity is associated with the 'Respond using the
ballot response genre'activity whose actors are the many participants of the Common Lisp
project, and the ballot results genre is used to fit together the information carried by the
various instantiations of the ballot response genre.

In order to represent aspects of genre coordination related to resource usability, temporality,
and location, the genre taxonomy uses a specialization hierarchy and bundles in order to
classify the coordination aspects shown in section 17.4. The top activity named 'Coordinating
information using genres'is under the activity 'Manage dependency', whose subactivities are
other coordination mechanisms in the Process Handbook. Figure 17.9 illustrates a part of the
specialization hierarchy under the activity 'Coordinating information using genres'. If the
activity using genres can coordinate information in multiple ways, the activity is represented
under multiple activities. For example, as shown in figure 17.9, the activity 'Communicate
using the ballot questionnaire'is a subactivity of both the activity 'Coordinate divisibility of Info
using genres'and the activity 'Coordinate timing of information using genres'.



Figure 17.9: Genre coordinating aspects example: An excerpt of the specialization
hierarchy of 'Coordinate information using genres'

The specialization hierarchy and bundles of genre coordination mechanisms help us
understand how a genre coordinates activities involving information.

 



 

17.6 Work Process Analysis Using the Genre Taxonomy

Because communication is a critical activity in and across organizations, there are strong
relationships between work processes and communication. We illustrate how we can
analyze work processes using the genre taxonomy with an example from the Sloan MBA
application process (based on the research done by Orlikowski, Yates, and Fonstad 2001),
where an on-line application process has been deployed since 1998. In the following section,
we start with a summary of the Sloan Admissions process that involves the online
application. We then demonstrate how we analyzed the relationships between work
processes and genres and generated ideas for improving the work processes.

17.6.1 Summary of the Sloan Admissions Process

The Sloan School of Management at MIT was the first US business school to accept only on-
line applications for MBA students (Orlikowski, Yates, and Fonstad 2001). Late in 1997 the
Sloan School's Admissions offce decided for various business reasons to require on-line
application for the Class of 2001 MBA students who would apply to the school during the
spring of 1998. For comparison, we briefly describe the previous admission processes that
relied on paper applications and then contrast them with those used for on-line
applications.[5]

The Sloan Admissions Process with Paper-Based Applications The previous paper-
based Sloan Admissions process was similar to that at other business schools. First, an
applicant requested an application package via phone, postal mail, or a fax to the
Admissions offce. The Admissions offce sent the application package (which consisted of
two brochures and a paper application form) via postal mail to the applicant. The applicant
filled out the form, prepared a cover letter and resume, wrote essays, and requested that
others send recommendation letters, GMAT scores, and transcripts from previous schools.
After an applicant submitted his or her part of the application to the Sloan School via postal
mail and the external sources completed the application with the requested information, the
Admissions offce sent a notification of completion to the applicant, and gathered the various
parts of the application into a single paper file. Then the Sloan School determined whether to
admit, reject, or wait list each applicant. The Sloan Admissions offce notified each applicant
of this result by postal mail. Admitted students were asked to notify the school by a certain
date about whether or not they would accept their offer of admission to the school.
Applicants who were on a waiting list were also asked to notify the school whether or not they
wished to remain on the list. After the Admissions offce determined the set of incoming
students, they sent information packages to the students, and held events to help them
prepare to enter the school.

The Sloan Admissions Process with On-line Applications In changing to on-line
applications, the Sloan Admissions offce partnered with a firm, GradAdvantage, which had a
Web-based on-line application service for MBA and graduate school programs. The Sloan
Admissions offce also developed a Web site for interested potential applicants, as well as a
new site for coordinating subsequent activities with admitted students (the AddMIT Sloan
site). Applicants for the Class of 2001 requested brochures via the Sloan Web site or e-mail,
as well as via phone, postal mail, or a fax to the Admissions offce. In reply, the Admissions
offce sent two brochures and information about on-line applications via postal mail.
Applicants registered biographical information, essays, cover letters, resumes, and other
data via the GradAdvantage Web site, and GradAdvantage sent e-mails to applicants with
tracking numbers. Letters of recommendation and transcripts were sent directly to the
Admissions offce. The Admissions offce downloaded the application data from the
GradAdvantage database, and the Admissions offce sent notifications to each applicant via
e-mail when the application was complete. After the Sloan School determined each



applicant's status as in previous years, the Admissions offce sent results via e-mail and
postal mail. Admitted students received an e-mail first with an informal letter of admission,
and then received formal letters of admission via postal mail. Rejected applicants received
formal letters via postal mail. Applicants on a waiting list received formal letters, requests to
register on the waiting list, as well as FAQs via e-mail. After an admitted student accepted
the offer on the AddMIT Sloan site, the Admissions offce sent letters acknowledging the
acceptance via e-mail. These had been sent via postal mail in the past. The Admissions
offce had created the AddMIT site for incoming the Class of 2001 students with at least three
objectives: ''to market the Sloan School to incoming students, manage the matriculation
process by facilitating the processing of required forms quickly and accurately, and connect
admitted students with one another''(Orlikowski, Yates, and Fonstad 2001).

This site played an important amplifying role when several incoming students, having met in
a chat session on the site, created a virtual community of admitted students using Yahoo!
The size of the community grew significantly when the Admissions offce staff cooperated
with incoming students by linking the Yahoo! Club to the AddMIT Sloan site. Incoming
students used the virtual community to create social connections and exchange information
about preparing for their new life at Sloan. They used a chat room first once a week on
average and then three times a week. They also used a message board, on which they
posted 1,148 messages in total, and published several electronic newsletters. According to
the results of a survey conducted once the students had arrived at Sloan, most admitted
students read the message board, two-thirds of them read and/or contributed to newsletters,
and almost half joined the chat sessions. Using the virtual community, many incoming
students got to know each other in advance of their entrance to Sloan, and shared useful
information with their future colleagues.

17.6.2 Relationships among Genres and the Sloan
Admissions Work Processes

In this subsection we first illustrate the genres invoked in both the paper-based and the on-
line admission processes at the Sloan School. Then, using the genre taxonomy, we
demonstrate how to analyze relationships among the genres and the work processes in
terms of coordination of information coordination, and display the role of the genre taxonomy
in generating ideas for improving the work processes.

Table 17.1: Excerpt of genres relevant to Sloan Admissions process

Widely recognized
genre

Traditional Sloan
Admissions genre
(before Class of 2001)

Sloan Admissions genres
for Class of 2001

Brochure Sloan brochure Sloan brochure, Sloan e-
brochure

Application form Sloan application form Sloan e-application form

Form Sloan data form, Sloan
admission form, MIT
housing form

Sloan e-data form, Sloan e-
admission form, MIT e-
housing form

Business letter Cover letter for
application, business
letter for informing about
Sloan admission, . . .

e-Cover letter for application,
business letter for informing
about Sloan admission, e-
business letter for informing
about Sloan admission, . . .



Post card Sloan postcard for
waiting list

Sloan postcard for waiting list

Resume Resume e-Resume

Newsletter N/A Sloan e-newsletter

Genres Relevant to the Sloan Admissions Process Using data gathered by Orlikowski,
Yates, and Fonstad, we identified both paper-based and on-line genres in the Sloan
Admissions process (table 17.1). Genre names with the ''e-''prefix refer to genres with
electronic form, and genre names without the ''e-''prefix denote genres in paper form.

The Sloan Admissions processes involve various people such as the Sloan Admissions offce
staff and applicants from all over the world. Table 17.1 shows that the genres enacted by
Sloan applicants are variants of widely recognized genres such as the brochure genre and
the business letter genre.

Genre Coordination Roles in the Sloan Admissions Work Processes In the following,
we take the genres identified from the Sloan Admissions process for the Class of 2001 and
demonstrate details of the information coordination, using the genre taxonomy as an
analytical lens. Then we explore ideas for how genres could be used for further on-line
processes. Note that parenthesized representation, such as '(why)'and
'(accessibility)'describe what element of the 5W1H genre framework was addressed, or what
kind of characteristics of the genre coordination role was analyzed.

As table 17.1 shows, the Sloan brochure genre is used for advertising the Sloan School, and
the Sloan e-brochure genre is used both for advertising the school and for informing
applicants about the Sloan application process (why). The content (what) in the Sloan
brochure genre contains only general information about the school and the content in the
Sloan e-brochure genre includes specific information for Class of 2001 applicants. This
example shows that the genre plays a role in coordinating how the information is divided
(divisibility). As the Sloan e-brochure genre's medium (how) is a Web page, the genre can
inform applicants as well as other people such as those looking for appropriate business
schools (who). If the Sloan Admissions offce would like to advertise the school so that more
people would submit applications, it might be a good idea to put the information in the Sloan
paper brochure also on the Sloan Web site (place). Then everyone who can connect to the
Internet (concurrency) can access information in the Web page (accessibility).

All genres in the application genre system for the traditional Sloan Admissions were paper-
based media (how) sent by postal mail or express delivery. Most applicants sent an
application several days prior to the due date because they anticipated time lags for delivery
(when), and this lag for an applicant in Asia was much longer than the lag for an applicant in
Massachusetts. However, in using the GradAvantage Web site to submit applications, every
applicant can submit them on the due date (timing). (Of course, such tight timing requires a
robust server. On the first due date for the Class of 2001, the server crashed, requiring an
extension of the deadline.) If multiple schools were using the GradAdvantage system for
MBA application, an applicant could submit his or her resume and/or essays (if applicable to
more than one application) only once (share) and then reuse them for another school. If
Grad-Advantage gathered information about applicants'GMAT scores automatically (fit) and
provided it to the MBA schools (flow), applicants would only need to take the GMAT, and
would not need to contact Educational Testing Services to send their scores to various
schools. It is noteworthy that mediators such as Grad-Advantage must consider privacy
issues when they plan to flow private information automatically. In the case above,
GradAdvantage would need to have the applicant give permission to GradAdvantage to allow
them to provide GMAT scores to schools, perhaps by checking a box on the application.

Some constituent genres of the application genre system for the Class of 2001 were used for



selecting admitted students. In the Sloan Admissions process for the Class of 2001, the on-
line application information was converted into a Sloan Admissions database, and the Sloan
Admissions offce printed out the information and combined it with the paper-based letters of
recommendation and transcripts. If the Sloan Admissions offce could request letters of
recommendation and transcripts in electronic form (how), the reviewers could choose to
share application documents in the database (location) without printing. The Sloan
Admissions offce could send e-mails to reviewers in which they could provide access to the
applications they would need to review in the database (accessibility). To make such a
change would require social agreement both from schools with transcripts and from letter
writers. Since the latter group consists of an unbounded set of people, it might be diffcult to
achieve (especially for international students) in the short term. An intermediate step might
be to make electronic submissions of recommendation letters optional and to scan in any
paper-based recommendation letters.

The Sloan Admissions review has the purpose of choosing suitable students for the school
(why). While the details of the review process are necessarily confidential, the genre
taxonomy suggests some possible processes based on the review system's purpose—to
decide. The process specialization hierarchy suggests two alternative ideas for the current
review system: the ballot genre system and the bidding genre system. Both the Sloan
admissions review genre and the Common Lisp ballot genre system are under the
'decide'purpose category in the genre taxonomy. That similarity in purpose suggests the
substitution of the ballot genre system in which the Sloan Admissions director could be a
coordinator who issues ballots for deciding the status of applicants (flow), reviewers could
respond to the ballot, and the director could decide using ballot responses (fit). Similarly the
'decide'purpose category includes another potential review process based on the 'Choose
classes by bidding (Sloan)'activity. This is the Sloan class bidding genre system that the
Sloan students use each semester for choosing classes they wish to take. For admissions,
every reviewer could have a number of ''bids''and the reviewer could bid on multiple
applicants with his or her priority (divisibility), and the Sloan Admissions director would
choose admitted students from the bidding results (fit).

As shown in table 17.1, both paper-based and electronic genres identified in the Sloan
Admissions process for the Class of 2001 are included in the same widely recognized
category. For example, in the business letter genre category we identified genres in both
paper form and electronic form (how) for notifying the same Sloan Admissions results (why).
As described earlier, the Sloan Admissions offce first sent an e-mail (how) to all admitted
students for the Class of 2001 informing them about and congratulating them on their
admissions (why). Subsequently they sent formal paper-based business letters (how) to all
applicants for the Class of 2001 students, including admitted students. The Sloan
Admissions staff thought that every admitted student would like to know the result as soon as
possible, so they sent an e-mail because it reached admitted students faster than postal mail
(timing). However, when one admitted student received the e-mail, she was afraid that it
might be a hoax. A partial reason could be that she did not recognize the business letter
genre because of the e-mail medium, which is often associated with informality. If the Sloan
Admissions staff had previously endorsed this medium and announced that results would be
sent by e-mail, applicants might have more easily recognized the admittance e-mail
message as invoking a business letter genre and thus as legitimate.

The Sloan postcard genre, while now in electronic form, could be extended through
automation. For example, a software agent could send a notification to people who had not
registered by a due date. A software agent could also inform those on the waiting list using
the electronic business letter genre (flow). In addition people on the waiting list might be
given numbers and allowed to see how many people on the list were already admitted via a
Web page (concurrency). Those whose waiting number was much bigger than the current
number could use this information in their decisions to give up on Sloan and enter another
school (sequence).



In order to create social relationships and exchange information, the admitted students
created a Sloan Yahoo! Club where they used three electronic media: a message board, a
chat facility, and a Web site for electronic newsletters. In an analysis of messages posted to
the message board, Orlikowski, Yates, and Fonstad identified use of the dialogue genre
where admitted students asked questions and received responses about each other, the
Sloan School, and life in the Boston area. The Sloan Admissions staff gathered commonly
requested information and created an FAQ for next years'students (fit). The FAQ and the
message board might also be used to reduce the time the staff spends answering questions
via other media.

The fact that usage of the electronic genres in the Yahoo! Club ended once students arrived
at Sloan suggests that the geographic dispersion and desire to share information and get to
know each other combined to create support for those genres, but that geographic
concentration and change in interests obviated that desire (where).

In summary, analyzing the genres of the Sloan Admissions process through the lens of the
genre taxonomy allows us to generate various ideas for improving work processes related to
information coordination. It is important to note that these or other ideas might not work as
anticipated, since participants may not accept an attempted genre substitution or change,
instead drawing on other genres from their past experiences. A community must recognize
and enact a genre for it to become a legitimate part of that community's repertoire. Thus we
need to analyze genres not only in advance of their implementation but also during use,
because a critical component of improving work processes is to understand the continuously
changing social context of communication within a community.
[5]These descriptions are necessarily simpli?ed to focus on the basic elements integral to the
application process.

 



 

17.7 Conclusions

We believe that our proposed genre taxonomy, with its classification of different genres,
genre systems, and appropriate contexts of use, can serve as a particularly useful
knowledge repository within organizations. It can help managers, consultants, and
groupware designers learn communication processes and apply these more effectively to
diverse situations. For example, the views of genre use over time and the genre chronology
in the genre taxonomy can help people understand how use of a genre both shapes and is
shaped by a community's communicative actions over time.

By facilitating the deliberation of how genres can coordinate information, the genre taxonomy
offers a source for new ideas that may be useful in the design of new communication
processes, the redesign of existing communication processes, and in the resolution of
problems related to communicative actions. It may also be possible to anticipate potential
changes in a genre by examining any evolutionary histories of similar genres represented by
the chronology examples in the genre taxonomy. For example, when an organizational
change or technology implementation initiates an evolution of a similar genre, we could
anticipate (though never completely accurately) how the genre might evolve. We could also
plan to adapt the genre to the change by mimicking or modifying variations of the similar
genre as they occurred during its evolution.

The prototype of the genre taxonomy now contains only fifteen generally accepted genres
and several kinds of specific genres used in particular organizations. The set of genres is an
open set, so no repository can ever be 'finished'or 'complete'. As with all other knowledge
repositories, the more knowledge (in this case, genres) stored within it, the more benefits the
genre taxonomy can provide. It is obviously necessary to add more genres to the genre
taxonomy and to examine the communication practices in more organizations. However, we
believe that the prototype highlights the potential of the genre taxonomy to serve as a
valuable knowledge repository that could offer benefits to communities attempting to learn to
communicate well or to improve their work processes around communication.
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18.1 Introduction

In large software systems the identification and proper management of interconnection
relationships and constraints among various pieces of a system has become responsible for
an increasingly important part of the development effort. In many cases the design, testing,
and maintenance of protocols for managing communication, resource sharing,
synchronization, and other such interconnection relationships take far more time and effort
than the development of the core functional pieces of an application. In this chapter we use
the term dependencies to refer to interconnection relationships and constraints among
components of a software system.

As design moves closer to implementation, current design and programming tools
increasingly focus on components, leaving the description of interdependencies among
components implicit, and the implementation of protocols for managing them fragmented
and distributed in various parts of the system. At the implementation level, software systems
are sets of source and executable modules in one or more programming languages.
Although modules come under a variety of names (procedures, packages, objects, clusters,
etc.), they are all essentially abstractions for components.

Most programming languages directly support a small set of primitive interconnection
mechanisms, such as procedure calls, method invocation, and shared variables. Such
mechanisms are not suffcient for managing more complex dependencies that are
commonplace in today's software systems. Complex dependencies require the introduction
of more complex managing protocols, typically comprising several lines of code (e.g., the
existence of a shared resource dependency might require a distributed mutual exclusion
protocol). By failing to support separate abstractions for representing such complex
protocols, current programming languages force programmers to distribute and embed them
inside the interacting components (Shaw et al. 1994) (figure 18.1). Furthermore the lack of
means for representing dependencies and protocols for managing them has resulted in a
corresponding lack of theories and systematic taxonomies of interconnection relationships
and ways of managing them.

Figure 18.1: Implementation languages often force the distribution of coordination
protocols among several code modules. In this example the implementation code of a



pipe protocol for managing a single data flow dependency has been distributed among
three code modules.

This expressive shortcoming of current languages and tools is directly connected to a
number of practical problems in software design:

Discontinuity between architectural and implementation models. There is currently a gap
between architectural representations of software systems (sets of activities explicitly
connected through rich vocabularies of informal relationships) and implementation-level
descriptions of the same systems (sets of modules implicitly connected through
defines/uses relationships).

Diffculties in application maintenance. By not providing abstractions for localizing
information about dependencies, current languages force programmers to distribute the
protocols for managing them in a number of different places inside a program.
Therefore, in order to understand or modify a protocol, programmers have to look at
many places in the program.

Diffculties in component reuse. Components written in today's programming languages
inevitably contain some fragments of coordination protocols from their original
development environments. Such fragments act as undocumented assumptions about
the structure of the application where such components will be used. When attempting
to reuse such a component in a new environment, such assumptions might not match
the interdependency patterns of the target application. In order to ensure interoperability,
the original assumptions then have to be identified, and subsequently replaced or
bridged with the valid assumptions for the target application. In many cases this requires
extensive code modifications or the introduction of additional code around the
component.

As a response to these problems, we introduce the principles of our coordination perspective
on software system design. Following that, we describe SYNTHESIS,a prototype software
development environment that embodies the principles of the coordination perspective. We
present our experience with using SYNTHESIS to facilitate software reuse. We discuss
related work, describe some future directions of the project, and conclude with a summary of
our findings.

 



 

18.2 A Coordination Perspective on Software System
Design

The practical problems discussed in the previous section are rooted in the failure of most
current programming languages and methodologies to recognize the identification and
management of dependencies among software components as a design problem in its own
right. This shortcoming translates to inadequate support for making interconnection
assumptions embedded inside components more explicit, inability to localize information
about interconnection protocols, and a lack of theories and systematic taxonomies of
software interconnection relationships and ways of managing them.

As a response to this situation, this chapter proposes a new perspective for representing and
implementing software systems. Unlike current practice, this perspective emphasizes the
explicit representation and management of dependencies among software activities as
distinct entities.

The perspective is based on the ideas of coordination theory (Malone and Crowston 1994)
and the Process Handbook project (Dellarocas et al. 1994; Malone et al. 1993). In
accordance with Malone and Crowston (1994), we define coordination as the act of
managing dependencies among activities. In this case the activities we are concerned with
are software components. We will also use the term coordination process or protocol to
describe the additional code introduced into a software system as a result of managing some
dependency. These definitions lead to the principles of our coordination perspective on
software system design which can be stated as follows:

Explicitly represent software dependencies. Software systems should be described
using representations that clearly separate the core functional pieces of an application
from their interdependencies, providing distinct abstractions for each.

Build design handbooks of component integration. The field knowledge on component
integration should be organized in systematic taxonomies that provide guidance to
designers and facilitate the generation of new knowledge. Such taxonomies will catalog
the most common kinds of interconnection relationships encountered in practice. For
each relationship, they will contain sets of alternative coordination protocols for
managing it. In that way they can form the basis for design handbooks of component
integration, similar to the well-established handbooks that assist design in more mature
engineering disciplines.

The long-term goal of this research is to develop concrete software development tools and
methodologies based on the principles stated above, and to demonstrate that such
methodologies provide practical benefits in the initial development, maintenance, and reuse
of software systems. A crucial part of our efforts revolves around the definition of useful
taxonomies of dependencies and coordination protocols and the organization of that
knowledge in on-line repositories that can then assist or even automate the integration of the
different parts of a system into a coherent whole.

 



 

18.3 The SYNTHESIS Application Development Environment

The coordination perspective on software design introduced in the previous section has been
reduced to practice by building SYNTHESIS, a prototype application development
environment based on its principles. This section is devoted to a brief description of the
SYNTHESIS system. A more detailed description can be found in Dellarocas (1996).

The current implementation of SYNTHESIS runs under the Microsoft Windows 3.1 and
Windows 95 operating systems. SYNTHESIS itself has been implemented by composing a
set of components developed using different environments (Intellicorp's Kappa-PC,
Microsoft's Visual Basic, and Shapeware's Visio).

SYNTHESIS consists of three elements:

SYNOPSIS, a software architecture description language

An on-line ''design handbook''of dependencies and associated coordination protocols

A design assistant that generates executable applications by successive specializations
of their SYNOPSIS description

18.3.1 SYNTHESIS — A Software Architecture Description
Language

SYNOPSIS supports graphical descriptions of software application architectures at both the
specification and the implementation level. It provides separate language entities for
representing software activities and dependencies.SYNOPSIS language elements are
connected together through ports. Ports provide a general mechanism for representing
abstract component interfaces. All elements of the language can contain an arbitrary
number of attributes. Attributes encode additional properties of the element, as well as
compatibility criteria that constrain its connection to other elements. For example, figure 18.2
shows the SYNOPSIS description of a simple software system.

Figure 18.2: Representation of a simple file viewer application using SYNOPSIS

SYNOPSIS provides two mechanisms for abstraction: Decomposition allows new entities to
be defined as patterns of simpler ones. It enables the naming, storage, and reuse of designs
at the architectural level. Specialization allows new entities to be defined as variations of
other existing entities. Specialized entities inherit the decomposition and attributes of their
parents and can differentiate themselves by modifying any of those elements. Specialization
enables the incremental generation of new designs from existing ones, as well as the
organization of related designs in concise hierarchies. Finally, it enables the representation of



reusable software architectures at various levels of abstraction (from very generic to very
specific).

Activities Activities represent the main functional pieces of an application. They own a set of
ports, through which they interconnect with the rest of the system. Ports usually represent
interfaces through which resources are produced and consumed by various activities.
Activities are defined as sets of attributes that describe their core function and their
capabilities to interconnect with the rest of the system. Two activity attributes are most
important:

An (optional) decomposition. Decompositions are patterns of simpler activities and
dependencies that implement the functionality intended by the composite activity.

An (optional) component description. Component descriptions associate SYNOPSIS
activities with code-level components that implement their intended functionality.
Examples of code-level components include source code modules, executable
programs, and network servers, among their number.

SYNOPSIS provides a special notation for describing the properties of software components
associated with executable activities. Such properties include the component kind, the
provided and expected interfaces of the component, the source and object files needed by
the component, and so on (figure 18.3).

Figure 18.3: Example of an atomic activity and its associated code-level component
description

Depending on the values of the preceding two attributes, activities are distinguished as
follows:

Atomic or composite. Atomic activities have no decomposition. Composite activities are
associated with a decomposition into patterns of activities and dependencies.

Executable or generic. Executable activities are defined at a level precise enough to
allow their translation into executable code. Activities are executable either if they are
associated with a component description, or if they are composite and every element in
their decomposition is executable. Activities that are not executable are called generic.
To generate an executable implementation, all generic activities must be replaced by
appropriate executable specializations.

Dependencies Dependencies describe interconnection relationships and constraints among
activities. Like activities, dependencies are defined as sets of attributes. The most important
attributes are:



Figure 18.4: SYNOPSIS representation of a data flow dependency and its associated
pipe transfer coordination protocol

An (optional) decomposition into patterns of simpler dependencies. These collectively
specify the same relationship as the composite dependency.

An (optional) coordination protocol. Coordination protocols are patterns of simpler
dependencies and activities that describe a mechanism for managing the relationship or
constraint implied by the dependency (figure 18.4).

An (optional) association with a software connector. Connectors are low-level
mechanisms for interconnecting software components that are directly supported by
programming languages and operating systems. Examples include procedure calls,
method invocations, and shared memory.

In a manner similar to activities, dependencies are distinguished into atomic or composite,
executable or generic.

Specialization Object-oriented languages provide the mechanism of inheritance to facilitate
the incremental generation of new objects as specializations of existing ones, and also to
help organize and relate similar object classes. SYNOPSIS provides an analogous
mechanism called entity specialization. Specialization applies to all the elements of the
language, and allows new entities to be created as special cases of existing ones.
Specialized entities inherit the decomposition and other attributes of their parents. They can
differentiate themselves from their specialization parents by modifying their structure and
attributes using the operations described below. Entity specialization is based on the
mechanism of process specialization that was first introduced by the Process Handbook
project (Dellarocas 1994; Malone et al. 1993).

Figure 18.5: Hierarchy of prerequisite dependencies with increasingly specialized



associated coordination protocols

The mechanism of entity specialization enables the creation of specialization hierarchies for
activities, dependencies, ports, and coordination protocols. Such hierarchies are analogous
to the class hierarchies of object-oriented systems. In specialization hierarchies, generic
designs form the roots of specialization trees, consisting of increasingly specialized but
related designs. The leafs of specialization trees usually represent design elements that are
specific enough to be translated into executable code (figure 18.5).

18.3.2 A Design Handbook of Software Component
Interconnection

SYNTHESIS contains our initial version of a handbook of dependencies and coordination
protocols commonly encountered in software systems. The prototype handbook is stored on-
line as a hierarchy of increasingly specialized SYNOPSIS dependency entities. An entity
browser interface (similar to class browsers of object-oriented systems) is available for
navigation and selection of handbook entries.

An important decision in making a taxonomy of software interconnection is the choice of the
generic dependency types. If we are to treat software interconnection as an orthogonal
problem to that of designing the core functional components of an application, dependencies
among components should represent relationships that are also orthogonal to the functional
domain of an application. Fortunately this requirement is consistent with the nature of most
interconnection problems: whether our application is controlling inventory or driving a nuclear
submarine, most problems related to connecting its components together are related to a
relatively narrow set of concepts, such as resource flows, resource sharing, and timing
dependencies. The design of associated coordination protocols involves a similarly narrow
set of mechanisms such as shared events, invocation mechanisms, and communication
protocols.

The prototype handbook is based on the simple assumption that software component
interdependencies are explicitly or implicitly related to patterns of resource production and
usage. Beginning from this assumption, we have defined a number of useful dependency
families in a way independent of the application context where they might be used.
Dependency families represented in the handbook include:

Flow dependencies. Flow dependencies represent relationships between producers and
consumers of resources. They are specialized according to the kind of resource, the
number of producers, the number of consumers, and so on. Coordination protocols for
managing flows decompose into protocols, which ensure accessibility of the resource by
the consumers (usually by physically transporting it across a communication medium),
usability of the resource (usually by performing appropriate data format conversions), as
well as synchronization between producers and consumers.

Sharing dependencies. They encode relationships among consumers who use the
same resource. Sharing dependencies are specialized according to the sharing
properties of the resource in use (divisibility, consumability, concurrency). Coordination
protocols for sharing dependencies ensure proper enforcement of the sharing
properties, usually by dividing a resource among competing users or by enforcing
mutual exclusion protocols.

Timing dependencies. Timing dependencies express constraints on the relative flow of
control among a set of activities. Examples include prerequisite dependencies and
mutual exclusion dependencies. Timing dependencies are used to specify application-
specific cooperation patterns among activities that share the same resources. They are
also used in the decomposition of coordination protocols for flow and sharing



dependencies.

A detailed description of the contents of the prototype handbook can be found in Dellarocas
(1996).

Figure 18.6: Sketch of an algorithm used by SYNTHESIS to generate executable
applications by successive specializations of their SYNOPSIS descriptions

18.3.3 SYNTHESIS Design Assistant

The design methodology supported by SYNTHESIS uses SYNOPSIS descriptions in order to
both specify and implement software systems. SYNTHESIS supports a process for
generating executable systems by successive specialization of their SYNOPSIS descriptions.
The process is summarized in figure 18.6. As can be seen, the existence of on-line design
handbooks of activities and dependencies can assist, and often automate, parts of the
process.

The design process can be customized in a variety of ways. Designers can manually select
each new element to be managed, rather than follow the ordering of the to-do list. They can
optionally input an evaluation function that helps the system perform an automatic ranking
and selection of compatible candidates. Furthermore successive transformations of the
original application diagram (stored as composite activities) can optionally be stored as
successive specializations in the activity hierarchy. The system can thus keep a design
history, which allows designers to easily backtrack to a previous stage of the design and
choose a different design path. In that manner exploratory design and maintenance of
alternative implementations can be facilitated.



Figure 18.7: Configuration of SYNTHESIS windows during design mode

Figure 18.7 shows the layout of SYNTHESIS windows during design. The SYNOPSIS
decomposition editor (in the lower half of the screen) displays the current state of the
architectural diagram and updates it automatically whenever a new transformation
(replacement of activity or management of dependency) takes place. The entity browser (in
the upper left part of the screen) is used for displaying and selecting compatible
specializations for application design elements. Finally the design manager window (in the
upper right part of the screen) summarizes the status of the design process and allows users
to control its parameters.

 



 

18.4 Using SYNTHESIS to Facilitate Component-Based
Software Development

The first domain where we tested the practical advantages of our coordination perspective on
software system design is the development of new applications by integrating existing
software components. This section describes the experience gained by using SYNTHESIS to
facilitate the reuse of existing software components in new applications.

One of the important practical diffculties of building new systems by reusing existing parts lies
in the amount of effort required in order to bridge mismatches among components. In most
cases some additional ''glue code''needs to be added to integrate all the independently
written software pieces into a coherent application (Garlan et al. 1995). An application
development tool based on the principles of our coordination perspective on software design
has the potential of helping alleviate the diffculty of component integration by separating the
representation of activities and dependencies, localizing information related to coordination
protocols, and providing frameworks of common dependencies and coordination protocols.

To test this claim, we have used SYNTHESIS in order to build a set of test applications by
reusing independently written pieces of software. Each experiment consisted in:

Describing a test application as a SYNOPSIS diagram

Selecting a set of components exhibiting various mismatches to implement activities

Using SYNTHESIS and its repository of dependencies in order to integrate the selected
components into an executable system

Exploring alternative executable implementations based on the same set of components

The experiments are described in full detail in Dellarocas (1996). Table 18.1 provides a brief
summary.

Experiment 1 consisted in building a simple File Viewer application by combining a
commercial text editor and pieces of code written in C and Visual Basic. It demonstrated that
the system is able to resolve low-level problems of interoperability, such as incompatibilities
in programming languages, data types, procedure names, and control flow paradigms. It has
also shown how the system can facilitate the exploratory design of alternative component
organizations.

Experiment 2 investigated nine different ways of building an indexing system by various
combinations of server and UNIX filter components (table 18.2). It provided positive evidence
for the ability of the system to resolve architectural mismatches, that is, different assumptions
about the structure of the application in which they will be used. It also demonstrated that the
overall architecture of an application can be specified to a large extent independently of the
implementation of any individual component, by appropriate selection of coordination
processes.

Table 18.1: Summary of experiments of using SYNTHESIS to facilitate the
integration of existing software components in new applications



Experiment Description Components Results

File viewer A simple system
that retrieves and
displays the
contents of user-
selected files

User interface
component written
in C; filename
retrieval
component written
in Visual Basic; file
display component
implemented using
commercial text
editor

Synthesis integrated
components
suggesting two
alternative
organizations
(client/server,
implicit invocation);
all necessary
coordination code
was automatically
generated in both
cases

Key word in
context

A system that
produces a listing
of all circular shifts
of all input lines in
alphabetical order
(Parnas 1972)

Two alternative
implementations
for each
component (both
written in C): as a
server and as a
UNIX filter

Three different
combinations of
filter and server
implementations
were each
integrated in 3
different
organizations (see
table 18.2).
Synthesis
generated most
coordination code;
users had to
manually write 16
lines of code in 2
cases.

Interactive TEX A system that
integrates the
standard
components of the
TEX document
typesetting system
in a WYSIWYG
ensemble

Standard
executable
components of
TEX system

Target application
was completely
described in
Synopsis. Synthesis
was able to
generate
coordination code
automatically

Collaborative
editor

A system that
extends the
functionality of
existing single-user
editors with group
editing capabilities
(Knister and
Prakash 1990)

Micro-Emacs
source code was
used to implement
single-user editor
(Lawrence and
Straight 1989)

Same system
description was
specialized in two
different ways to
generate micro-
Emacs based group
editors for Windows
and UNIX

Experiment 3 combined the standard components of the TEX document typesetting system
in a WYSIWYG application. It tested the power of SYNOPSIS and our proposed vocabulary
of dependencies in expressing nontrivial application architectures.

Finally, experiment 4 attempted to build a collaborative editor by extending the functionality of
an existing text editor. It investigated the usefulness of the system in assisting the rapid
development of applications for multiple platforms. It demonstrated that different



implementations of the same application, suitable for different execution environments, can
be generated from the same, partially specialized SYNOPSIS system description, by
selecting different coordination processes for managing dependencies.

Table 18.2: Summary of the key word in context experiments

  Components Architecture Auto
lines[a]

Manual
lines[b]

1 Filters Pipes 34 0

2 Filters Main program/subroutine 30 0

3 Filters Implicit invocation 150 0

4 Servers Pipes 78 16

5 Servers Main program/subroutine 35 0

6 Servers Implicit invocation 95 0

7 Mixed Pipes 66 0

8 Mixed Main program/subroutine 56 0

9 Mixed Implicit invocation 131 16

[a] Lines of coordination code automatically generated by Synthesis

[b] Lines of coordination code manually added by user

Overall, our experiments provided positive evidence for the principal practical claims of the
approach. The evidence can be summarized as follows:

Support for code-level software reuse. SYNTHESIS was able to resolve a wide range of
interoperability and architectural mismatches and successfully integrate independently
developed components into all four test applications, with minimal or no need for user-
written coordination software.

Support for reuse of software architectures. SYNTHESIS was able to reuse a
configuration-independent SYNOPSIS description of a collaborative editor and the
source code of an existing single-user editor, in order to generate collaborative editor
executables for two different execution environments (UNIX and Windows).

Insight into alternative software architectures. SYNTHESIS was able to suggest a variety
of alternative overall architectures for integrating each test set of code-level components
into its corresponding application, thus helping designers explore alternative designs.

 



 

18.5 Related Work

The ideas expressed in this work are most closely related to research in coordination theory
and architecture description languages. Recent efforts to build open software architectures
are an interesting, but contrasting, approach for achieving many of the goals of our
coordination perspective on software system design. This section briefly discusses all three
research areas.

18.5.1 Coordination Theory

Coordination theory (Malone and Crowston 1994) focuses on the interdisciplinary study of
coordination. Research in this area uses and extends ideas about coordination from
disciplines such as computer science, organization theory, operations research, economics,
linguistics, and psychology. It defines coordination as the process of managing dependencies
among activities. Its research agenda includes characterizing different kinds of dependencies
and identifying the coordination protocols that can be used to manage them.

The present work can be viewed as an application and extension of coordination theory, in
that it views the process of developing applications as one of specifying architectures in
which patterns of dependencies among software activities are eventually managed by
coordination protocols. The project grew out of the Process Handbook project (Dellarocas et
al. 1994; Malone et al. 1993) which applies the ideas of coordination theory to the
representation and design of business processes. The goal of the Process Handbook project
is to provide a firmer theoretical and empirical foundation for such tasks as enterprise
modeling, enterprise integration, and process re-engineering. The project includes (1)
collecting examples of how different organizations perform similar processes and (2)
representing these examples in an on-line ''Process Handbook''that includes the relative
advantages of the alternatives.

The Process Handbook relies on a representation of business processes that distinguishes
between activities and dependencies and supports entity specialization. It builds repositories
of alternative ways of performing specific business functions, represented at various levels of
abstraction. SYNOPSIS has borrowed the ideas of separating activities from dependencies
and the notion of entity specialization from the Process Handbook. It is especially concerned
with (1) refining the process representation, so that it can describe software applications at a
level precise enough for code generation to take place, and (2) populating repositories of
dependencies and coordination protocols for the specialized domain of software systems.

18.5.2 Architecture Description Languages

Several Architecture Description Languages (ADLs) provide support for representing
software systems in terms of their components and their interconnections (Kogut and
Clements 1994). Different languages define interconnections in different ways. For example,
Rapide (Luckham and Vera 1995) connections are mappings from services required by one
component to services provided by another component. Unicon (Shaw et al. 1995)
connectors define protocols that are inserted into the system in order to integrate a set of
components. In that sense they are similar to the coordination protocols that manage
dependencies in SYNTHESIS. Like Unicon, SYNTHESIS views dependencies as
relationships among components that might require the introduction of additional
coordination code in order to be properly managed. Unlike Unicon, however, SYNTHESIS
dependencies are specifications that can then be managed (i.e., implemented) in a number
of different ways. The set of dependency types is not fixed. Coordination theory is a
framework that assists the discovery of additional dependency types and coordination
protocols. Finally, apart from simply supporting dependency representations, the work



reported in this chapter proposes the development of taxonomies of abstract dependency
relationships and coordination protocols for managing them as a key element in facilitating
component-based software development.

18.5.3 Open Software Architectures

Computer hardware has successfully moved away from monolithic, proprietary designs,
toward open architectures that enable components produced by a variety of vendors to be
combined in the same computer system. Open architectures are based on the development
of successful bus and interconnection protocol standards. A number of research and
commercial projects are currently attempting to create the equivalent of open architectures
for software components. Such approaches are based on standardizing some part of the
glue required to compose components. The most notable efforts in that direction include
object-oriented architecture standards, such as CORBA (Object Management Group 1991),
Microsoft's OLE (1994), and Apple's Open Scripting Architecture (1993), and application
frameworks such as X-Windows/Motif (OSF 1990; Scheifler et al. 1988) and Microsoft Visual
Basic (1993).

Open software architectures and our coordination perspective were both motivated by the
complexity of managing component interdependencies. However, the two approaches
represent very different philosophies. Open architectures take the stance that designers
should not have to deal with software dependencies. In essence they are ''hiding
interconnection protocols under the carpet''by limiting the kinds of allowed relationships and
by providing a standardized infrastructure for managing them. Our coordination perspective,
in contrast, is based on the belief that the identification and management of software
dependencies should be elevated to a design problem in its own right. Therefore
dependencies should not only be explicitly represented as distinct entities, but furthermore,
when deciding on a managing protocol, one should consider the full range of possibilities
with the help of design handbooks.

Successful software bus approaches can enable independently developed applications to
interoperate without the need to write additional coordination code. However, they have a
number of drawbacks. First, they can only be used in environments for which versions of the
software bus have been developed. For example, OLE can only be used to interconnect
components running under Microsoft Windows. Second, they can only be used to
interconnect components explicitly written for those architectures. Third, the standardized
interaction protocols might not be optimal for all applications.

In contrast, integrating a set of components using SYNTHESIS typically does require the
generation of additional coordination code, although most of that code is generated semi-
automatically. Components in SYNOPSIS architectures need not adhere to any standard
and can have arbitrary interfaces. Provided that the right coordination protocol exists in its
repository, SYNTHESIS will be able to interconnect them. Furthermore SYNTHESIS is able
to suggest several alternative ways of managing an interconnection relationship and thus
possibly generate more effcient implementations. Finally, open software architecture
protocols can be incorporated into SYNTHESIS repositories as special cases of coordination
protocols.

 



 

18.6 Future Research

The long-term goal of this research is to demonstrate the practical usefulness of a
coordination perspective on software system design and to develop superior software
development methodologies based on its principles. To that end, what follows describes
some immediate directions for future research suggested by our experience so far:

Classify composite dependency patterns. Our current taxonomy includes relatively low-
level dependency types, such as flows and prerequisites. In a sense our taxonomy
defines a vocabulary of software interconnection relationships. A particularly promising
path of research seems to be the classification of more complex dependency types as
patterns of more elementary dependencies.

Develop coordination process design rules. It will be interesting to develop design rules
that help automate the selection step by ranking candidate processes according to
various evaluation criteria such as their response time, their reliability, and their overall fit
with the rest of the application. For example, when managing a data flow dependency,
one possible design heuristic would be to use direct transfer of control (e.g., remote
procedure calls) when the size of the data that flows is small, and to use a separate
carrier resource, such as a file when the size of the data is large.

Develop guidelines for better reusable components. The idea of separating the design
of component functionality from the design of interconnection protocols has interesting
implications about the way reusable components should be designed in the future. At
best, components should contain minimal assumptions about their interconnection
patterns with other components embedded in them. More research is needed to
translate this abstract requirement to concrete design guidelines.

 



 

18.7 Conclusions

This work was motivated by the increasing variety and complexity of interdependencies
among components of large software systems. Most current programming languages and
tools were observed not to provide adequate support for identifying and representing such
dependencies, while the knowledge of managing them has not yet been systematically
codified. The initial results of this research provide positive evidence for supporting the claim
that software component integration can usefully be treated as a design problem in its own
right, orthogonal to the specification and implementation of the core functional pieces of an
application.

More specifically, software interconnection dependencies and coordination protocols for
managing them can be usefully represented as independent entities, separate from the
interdependent components.

Furthermore common dependency types and ways of managing them can be systematically
organized in a design handbook. Such a handbook, organized as an on-line repository, can
assist, or even automate, the process of transforming architectural descriptions of systems
into executable implementations by successive specializations.

Our experience with building SYNTHESIS, a prototype application development environment
based on these principles and using it as a tool for facilitating the reuse of existing
components in new applications, has demonstrated both the feasibility and the practical
usefulness of this approach. With our future research we plan to expand and refine the
contents of our design handbook of dependencies and coordination processes as well as
investigate the usefulness of our approach in larger-scale software systems.
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Chapter 19: The Product Workbench — An
Environment for the Mass-Customization of

Production Processes

Abraham Bernstein

An earlier version of this chapter appeared as A. Bernstein (1998), The product workbench:
An environment for the mass customization of production processes, Proceedings of the
Workshop for Information Technology and Systems, Helsinki, Finland.

19.1 Introduction — IT in an Economy of Perpetual Change

A variety of organizational observers (e.g., Argyris and Schön 1996; Boyton, Victor, and Pine
1993; Laubacher, Malone, and MIT Scenario Working Group 1997) predict new
organizational forms that are presumed to be highly flexible, continuously changing their
form, their product range, and their structure. Firms will evolve into more flexible forms in
which the interrelations between the organizational units are not organized by a hierarchical
information flow but much more by a network of communicative links (see Van Alstyne
1997). How can we support the enactment of highly flexible processes in such an
organization?

While rapid prototyping environments and CASE tools have been addressing the problems of
continuous change they usually produce solutions which are either not scaleable, require
highly specialized knowledge or are limited to a single, proprietary enactment environment
(e.g., a work flow system or a transaction monitor). This chapter reports on the
implementation of a prototype system to support the rapid development of new production
processes by end-users, which can then be enacted on a variety of execution platforms.
Building on ideas from the product development and innovation literature, it combines
concepts from rapid prototyping, component-based programming, object-oriented
programming, knowledge-based systems, and human-computer interface design to develop
a product workbench for business users.

The chapter is structured as follows: First, we analyze the requirements for a product
workbench using foundations from the literature. Second, we describe a prototype
implementation, which will be illustrated using a practical scenario from the financial services
industry. Finally, we evaluate the proposed solution and discuss future work.

 



 

19.2 Analysis of the Requirements and Theoretical
Foundations

Boyton, Victor, and Pine (1993) build a framework to explain new production paradigms. In
this framework they analyze production as varying on two dimensions: product change and
process change. In the mass-production setting, a product and its production process are
highly stable. In a research department both product and production process are highly
dynamic leading to high costs and low volumes. The question then arises as to whether it is
possible to reduce the costs and sell high volumes of customized products. The idea of
mass-customization, in which the product changes to fit specific demand and the production
is organized around ''loosely coupled networks of modular, flexible processing units''(ibid., p.
49), seems to allow such a production scheme. One of the scenarios by Laubacher, Malone,
and MIT Scenario Working Group (1997) proposes a similar structure for future
organizations. A network of loosely coupled specialists (in most cases one person firms),
who come together to produce a highly customized product (of batch size one) and then
reconfigure to meet the challenges of the next project. To support such an organization, an
IT support system will thus have to enable people to take flexible building blocks of a
production process and reassemble them to fit the specific needs of a particular case.

Unfortunately, end-users are usually not trained to reconfigure and reassemble existing
processes, a job that is usually performed by business analysts. We therefore need to
''unstick'' the process design knowledge (von Hippel 1996) and make it accessible to end-
users by encoding it in building blocks and consistency rules of a design environment. The
result would be a type of integrated CAD/CAM[1] tool for business processes. This is
consistent with von Hippel's (1996) observations in the ASIC's and the computer telephony
industry.

The component-based approach contains the problem of how to organize the large number
of components in order to make them accessible. Experience in AI has shown that it often
makes sense to construct some type of taxonomy of components in which similar
components can be found close together, leading to the development of frame inheritance
networks and object-type hierarchies (Brachman and Schmolze 1985). Furthermore the
usage of template (or prototype) hierarchies, a form of simplified frame inheritance networks,
has been observed to be useful in settings with end-user development (MacLean et al.
1990). Thus a template-oriented component hierarchy, which can also hold previously
completed cases as templates, seems to be advantageous in helping to solve our problem.
[1]Computer Aided Design/Computer Aided Manufacturing.

 



 

19.3 The Implementation

19.3.1 The Basis — Process Handbook

The architectural basis of the implementation is the Process Handbook process knowledge
base (see Malone et al. 1997; Bernstein et al. 1995). The goal of the Process Handbook
project at MIT, which has been under way for over six years, is to develop a process
repository and associated tools to allow users to quickly retrieve and effectively exploit the
process knowledge relevant to their current challenge. Two of the Process Handbook's
features are central to our endeavor: process inheritance and the distinction of processes
and their interdependencies. We will therefore explain them before we go on to other parts of
the implementation.

Process specialization takes features of frame inheritance networks and transfers them into
the process domain. It arranges processes in a hierarchy of 'types of'or 'ways of'doing things
that goes from very generic processes at one end to very specialized processes at the other
end (see figure 19.1). This specialization hierarchy offers the capabilities we need to store
cases, templates, and thus process components. We can use the more generalized
processes as templates and specialize them as we develop a new product. Past cases
would thus usually be leaves in the specialization hierarchy, which could also be used as
templates for new products. At some levels the hierarchy even has special objects (called
bundles), whose role it is to facilitate the classification of the specializations of a process by
offering a specific dimension by which the processes are compared (see figure 19.2).

The Process Handbook distinguishes dependencies from their coordination mechanisms in
accord with coordination science (see Malone and Crowston 1994). Dependencies represent
the flow of physical resources (e.g., trucks) or informational resources (e.g., signals)
between two activities. Alternatively, they can also represent the sharing of such a resource
(e.g., a meeting room), the fit thereof (e.g., two artists cooperating in the writing of a song), or
some combination of the types presented. Coordination processes are the activities that
manage those dependencies. This perspective can be extremely useful for solving our
problem of too much unstructured information, because we can hide all the coordination
mechanisms from the user of the product workbench, and thus reduce the complexity of the
product assembly task. In some specific instances, where the users of the product design
workbench are particularly interested in issues of coordination, they will want to highlight
coordination problems.

19.3.2 The Scenario

We will introduce the Product Workbench by a scenario that illustrates how an account
manager in a bank could use it to construct a new financial product. The account manager in
a commercial bank represents the customer's single point of access. Let us assume that a
customer wants an account, which automatically adjusts its structure depending on the
amount of money in it. If the account has a positive balance, then the sum should be invested
in a money market fund. In the case of an overdraft situation, the money should be
automatically drawn from the revolving loan (or from the money market fund if available).
This setting resembles a complex checking account with overdraft protection and an active
investment of the funds as opposed to a fixed low interest.



Figure 19.1: Specialization hierarchy for 'Sell .nancial service' (based on BankBoston
1998)

Figure 19.2: Trade-off matrix showing the alternative specializations of 'Sell credit
service'compared to 'Loan purpose'and 'Loan security'

In the classical banking world this request would be a disaster. It would involve the
implementation of a number of features in the bank's accounting systems—a time-
consuming project. Our account manager, on the other hand, knows that the general
building blocks for such a request are in her product workbench. She first starts up her
template/case browser (see figure 19.3 and figure 19.6, lower left) in order to find an
appropriate template for the requested product. The template/case browser offers a three-
pane (frame) view. On the left side it displays a hierarchical grouping of the possible choices.
When one of those choices is selected, the right side of the browser shows some additional
information about the chosen element. At the bottom of the right side is a detailed description
of the item and at the top is a comparison matrix, as in figure 19.2, of the possible choices.
This browser thus allows the account manager to navigate through the process knowledge
base specialization hierarchy stored in the process handbook and make decisions about the
appropriateness of processes by (1) offering detailed information about the process and (2)
comparing the different specializations. She can choose either a generic process or a
product constructed for another customer (a previous case) as a template for the new
product. In this example she chooses 'Sell combined financial product'as the template and
calls the process 'Sell combined product to Example Inc.'.

Figure 19.3: Template/case-browser



The integrity checker then takes the chosen process template and tests whether it is in an
enactable format (comparable to the first pass of a two-pass compiler). First, it replaces all
dependencies with their specified managing process. Second, it examines all processes
using a depth-first algorithm on the process decomposition tree.[2] When encountering a leaf
process, it checks whether all necessary references (e.g., to an executable program) are
well defined. Nodes are tested as soon as all their subactivities are examined by scrutinizing
the connections between its subprocesses. Finally the integrity checker points out failure of
those tests by directing the user to the problems in an appropriate browser (decomposition
browser for processes, dependency browser for dependencies) and highlighting the problem
areas (see figure 19.5).[3] By examining the problem areas with the case/template browser
as described above, the account manager will be able to find well-specified processes for
the problematic processes, to further refine the process design and then to reinitiate the
integrity checker (see figure 19.4).

Figure 19.4: Incremental and iterative refinement of the process 'Sell combined product
to Example Inc.'

In our case the next stage is to examine the problem areas as pointed out by the integrity
checker in a decomposition browser. (See figure 19.5, which offers a tree structure that can
be used to determine which parts have to be replaced with other components.) Using the
template/case browser, she will browse the specialization hierarchy of the nondetermined
processes, such as 'Sell credit service', and then replace each such process with one of its
well-defined specializations, such as 'Sell credit line'(see also figure 19.4, step 1). After one
more replacement (step 2 in figure 19.4) she can reinitiate the integrity checker. This leads to
the incremental refinement of the process by replacing all the underdefined components with
well-defined ones.

Figure 19.5: Integrity checker pointing out problems in the decomposition browser by
coloring the processes 'Analyze debit service'and 'Execute contract'in a darker color.
'Sell savings and investment services'and 'Sell combined product to Example Inc.'are
also colored dark because they contain nonenactable subprocesses.

Finally, when the integrity checker finds no problems in the process description, it passes it to
the code generator, which traverses the process description and generates the appropriate
scripts and programs. To surpass the limitation given by a single-process support system,
the product workbench can generate scripts or programs for multiple platforms,[4] which
interrelate as defined in the process map. For example, the process could be partly enacted
on an ERP and partly on a transaction-processing host, both of which are coordinated by a
work flow–management system (WFMS).[5] At last the code generator contacts the involved
systems and ensures that the scripts and programs are installed and ready for execution.
The account manager has accomplished the task of designing a new customized product
and could start the process to service her customer.



Figure 19.6: Overall product workbench architecture

So far all dependencies have been hidden from the account manager. She will never have to
deal with dependencies, provided that the interface of the underdefined process
placeholders and the determined replacing components (i.e., well-defined processes) are
compatible. When there is a problem with dependencies (e.g., the absence of a coordination
mechanism), then the integrity checker will point those out in the dependency editor, which
offers a flowchart like view of the process and its dependencies (see Ahmed 1998). Using
the case/template browser, the account manager can then further refine her product design
and by replacing a nondetermined dependency with one of its well-defined specializations.
The overall architecture of the Product Workbench, which supports this scenario, is
summarized in figure 19.6.
[2]Dellarocas (1996) describes in detail a similar algorithm operating on a comparable data-
structure.

[3]Figure 19.5 shows the result of the integrity checker if it were run after step 1 in ?gure 19.4.

[4]New enactment support systems can be added by writing an appropriate code generator.

[5]Currently the code generator supports the commercial WFMS StaffwareTM and an agent-
based research WFMS.

 



 

19.4 Discussion

19.4.1 Evaluation of the Solution

The proposed solution fulfills the requirements developed in the analysis section above: it
reduces the knowledge-transfer problem by 'unsticking'the process design knowledge and
providing high-level process-based operations, understandable to an end-user. Furthermore
it offers a repository of available high-level building blocks, which are structured in a
nonspecialist accessible fashion (in our implementation a template hierarchy). It thus
enables end-users to take flexible building blocks from the process handbook database and
flexibly reassemble them according to the needs of a particular customer. We therefore think
that it supports the rapid incremental development and mass-customization of production
processes. We also believe that it could consequently support the enactment of processes in
highly flexible organizations.

In some cases a production process may require strictly transactional behavior in one part of
its enactment, which can be supported by a transaction monitor. But in another part it may
also rely on a loosely coupled succession of activities, which are best supported by a
groupware discussion database as a coordination mechanism. Therefore we believe that our
system's ability to export to multiple enactment support environments will make it more
suitable for the support of mass-customization than work flow–management systems
(WFMS), which usually only support their own system as enactment support.

Furthermore our system proposes to close the gap between high-level concepts and low-
level program code generation by focusing on business processes and an inheritance
framework of components, which offer a better abstraction than traditional CASE tools.
Therefore we believe that the system will be usable by end-users and not only by specialists.

The Product Workbench does, however, forgo some of the flexibility of CASE systems and
WFMS by using a component-based approach, in which the end-users can only assemble
their production processes out of existing components. Developing good and useful product
components is a key success factor for such a system. This cannot be accomplished by
domain specialists alone, but must involve information systems specialists in order to
integrate the components with the back-end systems.[6]

19.4.2 Future Work

There are a variety of open questions in connection with the Product Workbench. The next
step is to compose a library of real-world components. This library, and an integration of the
Product Workbench into a standard corporate work environment, could be used to explore
the practicality of this tool in an actual setting.

A parallel avenue of investigation explores alternate uses of the enactment scripts. One
could, for example, use the script to estimate its cost and then price it. This estimate could be
improved by connecting the simulation engine to real-world pricing and scheduling
information about internal and external resources involved in the production process. Thus
an account manager could quote the price and a planned delivery date (using the scheduling
information) for a mass-customized product before the firm would have to invest in the
enactment of its production.
[6]The system will face the usual challenges of component-based systems like integration
problems with the transactional behavior of a collection of components, which may lead to
deadlocks. While there are extended transaction mechanisms to deal with complex nested
transaction schemes, component developers will have to document all potential side effects
(i.e., dependencies to other resources and activities) of their components to ensure the



correct application of those mechanisms.

 



 

19.5 Conclusion

In this chapter we have described a system called the Product Workbench. We believe that
its component-based design approach paired with its template-oriented repository of
components shows how systems can enable end-users to mass-customize production
processes. Furthermore we believe that this approach is likely to be especially suited to
supporting the novel organizational structures of the future.
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20.1 Introduction

Many researchers have commented on the increased pace of change in today's economy.
Increasingly groups and organizations have to adapt their processes to rapid changes arising
from new technologies, new customer demands, or new competitors. Current process-
support systems (e.g., ERP, work flow–management systems), however, are usually focused
on supporting fixed organizational processes. Typically they are too rigid to easily support
changing processes. They are mainly used for highly specified and highly routinized
organizational processes. As an alternative, many organizations use communications
support systems or Groupware (like e-mail or Lotus Notes) to support their rapidly changing,
nonroutine processes. But these systems typically require users to do a lot of work
themselves to keep track of and understand the ongoing processes: what has been done,
what needs to be done next, and so forth.

This dichotomy is paralleled by an old debate in the CSCW-literature about the nature of
collaborative work (e.g., see Schank and Abelson 1977; Winograd and Flores 1986;
Suchman 1987; Winograd 1994; Suchman 1994). Both sides in this ongoing debate present
some deeply rooted beliefs about how human actors perceive the world and decide to act.

One side follows the belief that human actors typically follow the cycle of problem analysis,
solution search or synthesis, and then the execution of that plan. The goal of a process-
oriented collaboration support system in this perspective is to increase the speed and
effciency of each step in the cycle as well as facilitate a seamless integration of the steps.
Work flow–management systems (WfMS) and other process support systems like enterprise
resource planning systems (ERP) are based on this research stream and have typically
focused on the execution of standardized, predefined organizational process (e.g., Hammer
et al. 1977; Zisman 1978; Mohan et al. 1995; Jablonski and Bussler 1996).

The other side sees plans as resources for action (Suchman 1987), which are used in
conjunction with the environment to articulate and reason about the next action steps
(Gasser 1986; Gerson and Star 1986; Suchman 1996). Following this perspective typical
WfMSs are too restrictive as they traditionally prescribe the work flow and do not allow users
to adapt the process to the local situation. Therefore researchers following this tradition have
often advocated using flexible communication support systems (e.g., e-mail and discussion
databases) or repositories (e.g., document management/imaging systems) to support
organizational processes. Those systems, however, have the disadvantage that an actor
typically is on his/her own in deciding what to do next.

To date, none of the approaches has offered a conclusive answer. I concur with others (e.g.,
Newell and Simon 1972; Keen and Scott Morton 1978; Rock, Ulrich, and Witt 1990) that
organizational activities often include a mix of both procedure and ad hoc parts. The



research presented in this chapter therefore argues in favor of bridging between both
perspectives by developing systems that will support the whole range of dynamic
organizational activity: from well-specified and routine (reacting to exceptions as they occur)
to highly unspecified and situated.

In this chapter, I will first ground this novel idea in a practical scenario and social science
theory. This will help explain the approach as well as facilitate the presentation of the proof of
concept prototype system. I will conclude with a brief survey of related work and a discussion
of the major lessons learned.

 



 

20.2 A Scenario — Heidi's Problem

It is Friday afternoon in Zurich, Switzerland, and Heidi, a local account manager for Zing
computers (pseudonym), a worldwide producer of computers, gets a phone call from the
Swiss stock exchange. They ask for delivery of a RT2000-server within 48 hours to Zurich,
since they need to replace an existing server that got damaged in a fire to recommence
trading on Monday morning. Heidi now faces the problem that the traditional order
entry/fulfillment system will not be able to accommodate this request, since the truckers in
the European Union (EU) are on strike and the major assembly plant for Europe is in
Rotterdam. The only other tools available to her are communication support systems like e-
mail, telephone or fax, which give her all the flexibility she needs. However, that also puts the
burden of contextual sense-making (i.e., understanding the context of the task) on whoever
gets her messages/faxes/phone calls.

 



 

20.3 The Conceptual Framework

The conceptual framework starts with the commonalties between the situated and the
procedural approaches. Both approaches appear to share some minimal assumptions about
human actors. First, human actors are boundedly rational and have only limited knowledge
about the future. Consequently plans (as well as process maps or work flow descriptions)
are often imperfect, for they typically cannot account for all possible circumstances. A
process support system will therefore have to allow for run-time changes to the original plan
and will have to provide contextual information about the running process to the actor as a
basis for reasoning about the possible next steps. Process maps, a representation of plans,
can serve as part of such contextual information (Suchman 1987; Weick 1979; Bardram
1997).

Second, as Newell and Simon (1972) point out, our environment includes well-structured
and less-well-structured problems. Consequently we have problems with well-defined
solution strategies and others, where the solutions strategy is rather unclear (Rock et al.
1990). The transparency of the solution strategy (which can be represented as a process
map) may change over time as our understanding of the problem changes. As an elusive
problem becomes, for example, better understood its solution strategy may become easier
to determine. Or a seemingly simple problem may become highly complex, as new facets of
the problem emerge during problem solving, rendering the original solution strategy
inapplicable.

20.3.1 The Specificity Frontier

The first consequence of this approach in regard to the enactment of activity is that the
specificity of process structure changes over time. Bernstein and Schucan (1998), for
example, provide a description of how the money-transfer process gained specificity over
time. Before the formalities of banking were established, this process started as a vaguely
specified process involving an ad hoc letter sent by a courier. With increasing maturity of the
banking industry, the specificity of the process increased significantly. Today a money
transfer is a fixed computer-based interbank clearing process with a fixed set of attributes.
This illustrates the major pillar of this conceptual framework: organizational processes lie on
a continuum from highly specified and routine processes at one extreme to highly
unspecified and dynamic processes at the other extreme. I call this continuum the specificity
frontier (see figure 20.1). A whole series of points on this frontier are possible, from a highly
specific to highly unspecific.

As figure 20.1 depicts the concept of a specificity frontier in some sense bridges the gap
between the structured WfMS and the unstructured communication systems. It allows for the
coexistence of well-specified and almost procedurally executed processes (traditionally
supported by WfMSs), and emergent situated processes (typically supported by
communication support systems). It also argues that those two types of processes are at the
extremes of a frontier of processes. It proposes that the whole range of processes, from
highly specified and routine to highly unspecified and dynamic should be supported.

Figure 20.1: Specificity frontier



Heidi's problem, for instance, starts out as having a reasonably well-specified solution
strategy (process). When she, however, realizes that the truckers in the EU are on strike, the
process suddenly becomes much more problematic: the known description is not applicable
anymore. Thus a support system that allows processes to start out as being well defined
(and supported by a WfMS-type technology), and lets the structure become flexible (and
supported by groupware technology) as soon as she finds out about the strike, would be
ideal for her.

Consequently a model of business processes should be able to capture a range of process
specificity (from well specified to highly unspecified). A process support system should be
able to interpret process models with varying degrees of specificity. Furthermore it should
support users when changing the specificity of the processes at run-time. In achieving those
goals, it can close the specificity gap (pictured as a question mark in figure 20.1) between
traditional process-support systems and communication support systems, and thus bridge
systems following the work flow tradition and the situated action tradition.

20.3.2 Emergent Activity Relies on Structure

The second consequence of those commonalties (i.e., bounded rationality and varying
specificity of tasks) is illustrated by Orlikowski (1996), who shows how change can be
understood as a series of improvisational embellishments to existing practice. In other words,
the actors attempt to solve the problem at hand following their interpretation of the structure
and the current context. This illustrates the second pillar of the conceptual framework: that
emergent activity relies on some form of structure and thus some form of specificity.
Emergent activity surfaces ''unpredictably from complex social interactions''(Markus and
Robey 1988, p. 588). However, we may be able to support it by supplying a fertile
environment for new solutions to emerge, ''much as does a supersaturated solution in the
moment it is disturbed''(Mintzberg and Waters 1985, p. 267). For example, jazz
improvisation, a type of emergent activity, depends on the actors ''having absorbed a broad
base of musical knowledge''(Berliner 1994, p. 492). Analogously, people in an organizational
context must have some foundational knowledge about the task at hand. In addition, as
Weick (1998) points out ''improvisation does not materialize out of thin air'' (p. 546). People
need something to improvise on. This explains the limited success of communications
support systems for business process support: from an improvisational standpoint, human
actors using those systems incur the overhead of having to understand the context of the
task at hand as a basis for improvisation. In the domain of organizational activity, a process
map with a low degree of specificity and information about the enactment context could help
actors in their sense-making, provide a basis to improvise on and thus a fertile environment
for emergent processes.

Consequently any system that plans to support emergent activity (which is what all activity is
to some degree following the situated action approach) should provide some structure as a
contextual basis for situated improvisation. Process maps (in analogy to geographical maps)
can provide such structure.

20.3.3 Other Requirements

Previous research (see Swenson 1993; Abbott and Sarin 1994; Ellis and Nutt 1996;
Krammer et al. 2000 among others) has shown that a process support system also should
allow for the change, composition, and execution at run-time as well as provide a means of
integration into an existing environment (e.g., using an open interface).

 



 

20.4 The Specificity Frontier Approach and Prototype
System

Now that I have explained the theoretical grounding for the prototype system, I will present
the major design ideas I have used. I will discuss the proof-of-concept prototype system that
served to clarify, illustrate, and evaluate those design ideas. Since some of the design ideas
can be abstract, I will walk through Heidi's problem as a practical example of the day-to-day
use of the prototype system as I introduce new concepts.

20.4.1 Key Ideas

The major obstacle in designing a process support system following my conceptual
framework is the need for an implementation approach that can handle process
specifications at multiple points of the specificity frontier as well as transformations of the
specificity of a process during execution. As figure 20.2 shows, I chose to divide the
specificity frontier into subspectra, each supported by its own interpretation logic. I decided to
use four subspectra, since existing process support technology (e-mail/ groupware,
constraint monitoring, constraint-based planning, and transaction processing) could be
categorized into four groups: providing context for enactment, monitoring constraints about
the task, providing/planning options to reach a goal, and guiding through a given script.

Figure 20.2: Different execution types

The second idea was to develop run-time transfer mappings between the subspectra. So
processes can be seamlessly moved to another subspectrum by increasing or decreasing
the specificity of the process definition during run-time.

20.4.2 Specifying and Interpreting Processes Models with
Varying Degrees of Specificity

Providing Context In the least specified of the subspectra (A, at the left in figure 20.2), the
support system does not have a lot of information about the process. Therefore its major
goal is to provide context for the user to be able to decide what to do next. Similar to the Task
Manager presented by Kreifelts, Hinrichs, and Woetzel (1993), the system helps the users to
share to-do lists and documents (resources) that are specific to the task context at hand. The
system also integrates with other communication techniques like e-mail, on-line discussions,
and on-line synchronous communication support, such as chat, to allow users to
communicate with their respective collaborators. The specificity of the task to the user may
vary depending on the information contained in the documents. The system's support,
however, will remain the same throughout this subspectrum, since the system cannot
decode any of the information in the documents.



Figure 20.3: Activity manager

This is exactly the type of support Heidi needs to start solving her delivery problem. Since
she has to collaborate with Marianne, a European logistics manager in Rotterdam, she
should be able to share information about the problem and collect information about the
tasks to be done (build the new server, arrange shipment and billing, etc.). As we can see in
figure 20.3, the system provides a hierarchical to-do list on the left, and shows the resources
associated with the task selected. Whenever Heidi writes a new document in the context of
this task (e.g., the highlighted message to George at the right in figure 20.3), it gets
automatically added to the resources connected to the task and complements the context.

From an implementation standpoint, the system should provide a shared distributed-
accessible, hierarchical to-do list that allows users to attach files (as resources) to each of
the to-do items. I chose to implement each to-do item as a software agent that manages
collections of other to-do items and of pointers to files in an object-oriented document
repository. As we will see, the choice of active software agents, rather than a passive data
structure, becomes advantageous when passing the boundary to the next subspectrum.

Monitoring Constraints When the user decides to add some machine-readable constraint
to a to-do item, the system provides constraint monitoring services. For instance, adding a
deadline to a to-do item could allow the system to prompt the user when the deadline is
imminent (similar to a project management system). The system's support in this
subspectrum is comparable to the support a map provides to a hiker. It shows the ravines
and the mountains in the area and may therefore help the user to reach his/her goal without
long detours by alerting him/her of an obstacle (i.e., a constraint). The more constraints are
specified by the user the more helpful the system can be in helping the user to reach his/her
goal. Summarizing, the system helps the user by managing constraints between tasks and
resources.

As Heidi and Marianne quickly discover, there are a series of constraints that they have to
keep track of: the deadline for delivery, the type of server, the facts about the strike, and so
on. When those constraints get specified, the system can help by reminding the user
whenever one of the constraints is about to be invalidated. If they were to become late at
arranging the shipment, for example, the system would alert them of the impending problem
of a late shipment. So Heidi and Marianne add the most relevant constraints (see figure
20.4) to the 'Provide RT2000'process.



Figure 20.4: Adding constraints

In this subspectrum the system offers the constraint monitoring services in addition to the
context provision services. Actors therefore still have the same context information on which
to decide what to do next. The boundary between the two sub-spectra is thus crossed as
soon as at least one formalized constraint is defined.

Users form the constraints on attributes of the activities/to-do items or resources in the
existing process models. Figure 20.4, for example, shows a constraint defined on the
attribute 'Elapsed time'of the 'Provide RT2000'process. I understand that users sometimes
experience diffculties using formalized specification languages, such as boolean
expressions. In the long run I hope to address this problem by (1) implementing a graphical
expression design tool (Spoerri 1993) and (2) providing typical constraints to the user as
templates to tailor (this was found to be useful in other situations (MacLean et al. 1990)).
Typical constraint types might include: time constraints (e.g., deadlines), budgetary limits
(e.g., headcount and funds available), external factors (e.g., no trucking in Europe),
specification of resources (e.g., types of processors/prefabricated servers in warehouse),
among other things.

Here is where we reap the benefit for using active software agents to represent the to-do
items. When the to-do agent detects the definition of a new formally defined constraint it
spawns a sentinel agent, an autonomous piece of code, to monitor the constraint. The
sentinel agent periodically checks for the validity of the constraints. When it detects the
invalidation of the constraint it guards, the sentinel agent raises an exception. Depending on
the constraint definition (by the user or template), the system will either handle the exception
itself (e.g., using an exception handling routine/engine) or alert the user. Similar to personal
schedulers, the users can choose how long before the actual invalidation of the constraints
they want to be warned (e.g., 10 minutes before the expiration of the deadline).

Planning Options Based on Constraints When the user specifies the goal, or
postcondition, of an activity in his/her to-do list (via the same mechanism used to define the
constraints), the system will try to propose to the user a series of possible approaches to
completing his/her work. The system achieves this by taking the constraints on the activities
provided by the user in the constraint-preservation sub-spectrum as well as the
goal/postcondition and using them as a problem specification for an Artificial Intelligence
planner (see (Weld 1994) for an introduction). The planner will search for a way to achieve
the goal while guarding all the constraints using activities that reside in a repository of
possible actions (see below). In the best case it may find one or multiple plans. The user can
then either choose a plan to follow or can decide that none of the plans is satisfactory. This
would typically indicate that there is some constraint about which the system does not know.
The user can choose to ignore the proposed solutions and act on his/her own or add the
additional constraint (if he/she can formulate it in a machine-readable way) and retry the
planner. In some cases the planner may not return a solution. This may either be due to an
incomplete repository of possible actions or due to an underspecification of the goal. In this
case the user can either choose to add more actions to the repository or just rely on the
more limited support functionality of the constraint monitoring subspectrum.



Using the hiking analogy this approach parallels giving a hiker a trail map of the area and
having him/her decide what trails he/she would like to take. Since the constraints are
specified, the map also contains the ravines and mountains, such that the user might be able
to decide that none of the proposed trails are feasible, and choose to take his/her own route.
Consequently in this subspectrum the system plans tasks and resources to achieve goals
and lets the user decide which of the possible paths to take.

Figure 20.5: Planner

Marianne realizes that the system might help her to solve the problem of how to ship the
server to Zurich in time. She therefore initiates the planner, which uses the constraints
defined for monitoring (in the last subspectrum) and the goal specification (i.e., RT2000
delivered to Swiss Stock Exchange) as a problem specification. It proposes three shipping
options (see figure 20.5). First, it proposes to airfreight the server from Rotterdam. Second, it
proposes to ship the server from the facility in Rotterdam using a train. Last, it suggests
airfreighting the server from an American facility in Boston. Marianne did not consider this
last option before, since deliveries to Europe typically come from Rotterdam. Given the
looming deadline and the EU trucker strike, she decides to explore all three possibilities. She
quickly discovers that given the strike, she can't even find a truck to bring the server from the
Rotterdam production facility out to the airport. Therefore, the first option, shipping the server
by plane from Rotterdam becomes implausible. To investigate the second possibility, using
the train, she goes into the repository and looks at the train-shipment process. She realizes
that since Switzerland is not part of the EU, the train will have to clear customs at the Swiss
border. During a phone call to the Swiss customs authority she learns that Swiss customs at
the port of entry (for the train) is closed all day Sunday, which would delay the shipment by
an additional 24 hours. Consequently, she chooses the only remaining option: shipping the
server from Boston.

This part of the interpreter was implemented as a simple translator to an existing AI-planner
(Weld, Anderson, and Smith 1998). The interpreting agent gathers all the constraints
relevant for a to-do item, information about the current state of the process (as defined by the
state of all the involved agents and datastructures) as well as a goal description (defined as a
logical expression derived from the postcondition/goal of the process) and then passes it as a
problem definition to the planner. In the scenario, for example, the agents gather the
constraints like 'elapsed time < 48 hours'and 'no trucks', the goal description 'having an
RT2000-server in Zurich', as well as the definition current state, including the knowledge that
the EU truckers are on strike, knowledge about Zing Computer's production facility and
information about the current time.

The planner attempts to find a set of actions in the repository that will lead from the current
state to the goal and pass the possible results to the interpreter, which translates them back
to the process representation used within the system and presents them to the user. The
repository contains a collection of possible actions, which are defined by their pre-
/postcondition and a description of how the transformation from precondition to postcondition



happens in detail.

In Marianne's situation, for example, the repository had to contain descriptions of all kinds of
transport mechanisms and their properties. It thus had to have a description of trucking a
good, including the property that it typically requires a truck (which are unavailable in our
scenario), airplane-shipping (which was incomplete, since it didn't take into account the need
for getting the good to the airport), as well as shipping by train.

Obviously the quality of the planner's results is limited by two factors. First, the quality of the
constraints entered (including the precision of the goal specification) has a major influence
on the ability of the planner to prune its search space. Since the users have entered them,
the quality of the specification of those constraints is highly dependent on the abilities of the
users. As mentioned above, I hope that the usage of expression design tools as well as the
provision of tailorable typical expressions and expression templates provided by process
specialists (e.g., residing in the repository) may alleviate this problem. Second, the quality of
the plans generated by the planner is dependent on the contents of the repository searched.
As with any knowledge-based approach there is a bootstrapping problem in filling the
repository with an adequate initial number of possible actions/processes. In most
environments, however, a good part of those actions have already been formalized and
defined in some system (WfMS, ERP, etc.). Furthermore the repository records past cases
as templates for future action. This 'case-based'-like (Kolodner, Simpson, and Sycara-
Cyranski 1985) approach can simplify some of the initial growing phase of the repository by
limiting the enormous setup costs.

Providing ''Imperative''Scripts/Directions System support in this last subspectrum can be
likened to a traditional WfMS (see Hammer et al. 1977; Zisman 1978; Jablonski and Bussler
1996). Since the process details are algorithmically well defined, the to-do item software
agent will direct each step leading to the result. Rather than guarding some constraints, the
imperative plan avoids them through direction. Thus the system directs the execution of
tasks using resources to achieve goals.

The boundary between the constraint-based planning subspectrum and the imperative
subspectrum is crossed as soon as one of the results returned by the planner is chosen for
enactment that is in an imperative form. The user can delegate the choice between the
options to the system by defining a utility function. As an alternative to using the results of the
planner, the user can directly browse the repository and compose a process manually
(Bernstein 1998), which can also result in an imperative script. The reverse transformation
happens when the interpreter executing a task in the imperative subspectrum encounters an
exception (which might be raised by a user!), stops its execution, and runs the planner to find
a number of alternatives to solve the current problem.

Using the hiker's analogy again this subspectrum can be best compared to giving a hiker a
specific set of directions. The directions are useful as long as he/she does not encounter a
problem (e.g., an avalanche has cut off an existing path). As soon as a problem is
encountered, the hiker has to use a more situated method to finding his/ her way to the goal
(i.e., he/she has to drop the specificity of the process specification and use the support
provided by the system in the other subspectra).

When Marianne chooses to airfreight the server from Boston by choosing to start that
process in her Activity Manager (figure 20.6) the system starts the underlying WfMS-like
shipment process of a new server from Boston to Zurich using airfreight in the last of the four
subspectra. Assuming no new exceptions the system will direct the shipment just like a
traditional order fulfillment system.

Division of Labor and Transfer Mappings in the Frontier It is important to note that this
system view relies on a cooperative understanding of the user system collaboration, where
the system attempts to provide as much help as it can. The more specific a task description



is, the more the system can support the user and relieve him/her of some part of the task.
The less specific the task is, the more the user will have to do. Consequently the specificity of
a process description guides the resulting type of division of labor between the human actor
and the system.

Figure 20.6: Starting a WfMS-like script

Another important point is the system's capability to seamlessly integrate between the
different spectra. The boundary between the context provision and the monitoring subspectra
is automatically crossed when some constraints are formalized in a machine-readable form.
The next boundary is traversed when the system can find a series of paths from the current
state to the goal (i.e., the planner can find an acceptable plan). Finally the provision of some
type of utility function by the user (either implicitly by choosing one of the options or explicitly
by defining some sort of sort criteria between the options) helps the system to cross to the
scripts subspectrum. From the user's point of view, the transfers between the subspectra
happen automatically as soon as the system can find the appropriate information. The user
does not need to explicitly tell the system to cross the boundaries between the spectra. He/
she does, however, need to enter the information (e.g., the constraint specification) that will
prompt the system to cross the boundary.

Providing Structure for Situated Improvisation The second requirement that the
conceptual framework puts on process support system is the provision of a context for
sense-making and the articulation of next steps. As we have seen, the prototype system
provides the user with ample contextual information (past activities in process context,
documents related to this process, other actors involved, etc.) in order to understand the
current state of the process.

Figure 20.7: Process model parts

In some stages, however, he/she might not exactly know what to do next. The possible
options of next actions can, for example, lie beyond his/her experience or an alternative,



novel course of action is needed. Malone et al. (chapter 1 in this volume) have described
how a repository of re-usable process components as well as past cases can be applied to
organizational processes and can be useful in a process-design and innovation setting. I
therefore believe that a process repository containing process fragments and past cases can
help users to articulate next steps and have included a repository, similar to the one
presented in chapter 1, in my prototype.

20.4.3 Implementation Details

Process Models The prototype system uses a process description, which is comparable to
the one used by the MIT Process Handbook (see chapter 1 in this volume, or figure 20.7 for
a meta-model). Activities are the central element of the model. Each activity can have an
arbitrary number of resources in its context (e.g., for providing the links for the documents
related to a task). An activity can also have subactivities (for functional decomposition) and
subdependencies. Dependencies represent constraints between activities. In order to ensure
the constraint represented by the dependency, it needs to be coordinated by an activity.
When two activities share a resource (i.e., a sharing dependency), for example, they can be
coordinated using a first-come–first-serve activity. Finally activities, resources, and
dependencies can all have an arbitrary number of constraints defined on their attributes and
parts. Furthermore all elements can participate in a type of specialization hierarchy. This
allows for a construction of an object-oriented-like hierarchy in the process and case
repository. The main difference from conventional object-oriented inheritance is the
possibility to 'disinherit'a feature from its parent. So when a person changes an inherited part
of an activity, it does not have loose its inheritance relations (see also chapter 1).

Figure 20.8: Example process

20.4.4 System Architecture and Implementation

The overall system consists of five major logical components: a repository, a process-model
interpreter, a planner, a user-interface, and an application-programming interface (API),
which is used by other programs to interact with the system. The repository stores all the
process models, process fragments, and past cases. It furthermore contains references to
all the resources (e.g., files) that are referenced by processes in the system and has some
information about all the actors/users of the system. Distribution of the process data is
accomplished through the services of an object request broker (ORB). Each object in the
repository is currently stored in a file that transparently gets loaded when needed. Figure
20.8 shows the graphical representation for the 'Sell server'process, as it is stored in the
repository. It consists of three parts, the 'Build server'and 'Set up server'processes as well as
the 'Ship'dependency. The interpreter is implemented using a software agent oriented
approach. Each active element of a process model is assigned to an agent. Collaborating
with the other agents in the process model the software agent attempts to provide as much
support as possible given the process specification. Thus for the 'Sell server'process, a
software agent is going to be started for 'Sell server', 'Build Server', 'Set up server', and



'Ship'. All those agents are going to interact using a speechact-based protocol (Searle 1969)
to achieve the goal of the task. If the process specification falls within the context-provision
spectrum, the agents ensure that all the resources referenced are accessible. When
constraints get defined (i.e., in the constraint-preservation subspectrum), the agents start
special sentinel agents, which regularly check the consistency of the constraint. When a
postcondition is specified, the agents pass the process definition to the planner (see below).
Finally, if the process model contains imperative features, they execute them analogous to a
traditional WfMS while still checking on the constraints (to find exceptions). In all cases the
agents maintain the relationships to other agents to which they have dependencies. This
integration of previously unconnected techniques provides the system its ability to support the
enactment of processes that move along the specificity frontier at run-time. Consequently it is
the heart of this system's support for dynamic, rapidly changing organizational processes.
Using the agent-based approach allowed me to build a dynamic interpreter, where local
variation in process specificity and composition is handled by single agents and global
changes are handled by the interplay between agents. This greatly reduced the complexity of
the interpreter.

As a planner I used sensory graph-plan (SGP), a LISP-based research prototype presented
by Weld, Anderson, and Smith (1998).

The interpreter agents translate the process model and the repository content to a problem
definition in the format understood by SGP. If the planner returns a result, then the interpreter
agents translate it back to the internal process specification format.

In our scenario all parts of the process other than the 'Ship'dependency (figure 20.8e are
relatively well defined. So, when Marianne initiated the planner (figure 20.5), the interpreter
collected all the constraints relevant to the problem (i.e., the constraints on 'Ship'directly,
including the fact that it is in relation with both 'Build server'and 'Set up server').

The user-interface (see figures 20.3 to 20.6) contains a mixture of a traditional work flow
management work list and a task-management user-interface (like the one presented in
Kreifelts, Hinrichs, and Woetzel 1993) as well as a process model editor. It provides a direct
manipulation interface to all the major functions in the system like a browser for the process
fragment/case repository, an activity-manager that provides a look at the activities a user is
presumed to complete, a process-editor to change the tasks, and some additional
maintenance editors. The API provides a bi-directional interface between the prototype
system and external tools such as email, discussion databases, and on-line chat programs.

 



 

20.5 Evaluation and Lessons Learned

I have chosen three routes to evaluate the validity of the work presented. First, I chose to
thoroughly ground my work in existing theory, previous work on requirements for supporting
dynamic organizational processes, and some direct exchange with potential users, which
provided me with some assurance that the approach would be helpful in a practical setting.
Second, I implemented a proof of concept system and used it myself.

I am now developing a number of detailed usage scenarios based on real-world occurrences
and am evaluating how those scenarios would play out in different types of support systems:
an e-mail/Lotus Notes type of system, a WfMS, and the prototype system presented. At the
time of writing, preliminary results support my assumptions about the advantages of a system
basing on the specificity frontier, given its guidance in more routine tasks as well as flexibility
where needed.

One interesting lesson learned was that the combination of previously unconnected
approaches could lead to extremely useful solutions, just as the combination of messaging,
database technology, security, and networking approaches led to a versatile tool like Lotus
Notes. In my case it led to a system with the capability to support rapidly changing processes.
However, I believe that this type of judicious integration could be extremely useful for many
problems.

Another insight was that the usage of agent-oriented techniques allowed me to simplify the
implementation of my multifaceted prototype system (given its multiple subspectra) by
avoiding code tangling, which complicates implementations. As Lopes and Kiczales (1997)
points out, code tangling typically happens when different concerns (or implementation
issues like synchronization and information exchange) have to be addressed within the same
piece of code. Using the agent-based approach, I was able keep the complex parts of the
implementation (e.g., the code handling the change in specificity for different types of objects
in my system) local to its effects and successfully avoid code tangling. This insight becomes
increasingly important for CSCW researchers, as the experimental systems we implement
become more complicated and integrated with more technologies (see previous insight).

 



 

20.6 Related Work

As explained in the introduction the approach presented here is closely related to systems in
the WfMS tradition as well as the Groupware tradition. In the WfMS domain a number of
projects have tried to address the issues of adaptiveness and flexibility (Kammer et al. 2000;
Norman et al. 1996; Agostini and De Michelis 2000; Ellis and Keddara 2000). However, all of
the approaches aim at completely specifying the process before it is started using some
formal method (e.g., Petri nets) and adapting them when exceptions occur. They typically do
not allow the execution of partially specified or abstractly specified process descriptions. At
the other end of the frontier, a number of CSCW projects and Groupware tools have
addressed the support for highly flexible processes.

Figure 20.9: Related work

The biggest problem of all related projects, however, is the impermeability of processes
across the specificity frontier. As can be seen in figure 20.9, processes that get started in one
category of support system are stuck in that type of support. Thus the support for an
emergent process, for example, stays trapped in an ad hoc system, though its process
structure may have emerged during a first part of its execution. Even systems basing on
event condition–action rules (ECA), which are typically used for constraint preservation or AI-
planning systems, do not allow for mobility across the specificity frontier.

I know of three exceptions: ProZessware (ONEstone 1998), Bramble (Blumenthal 1998),
and FreeFlow (Dourish et al. 1996). ProZessware allows embedding Lotus-Notes
discussions into well-specified work flows. However, these embedded discussions have to be
prespecified, and the actual process structure is fixed. Bramble divides activities into well
specified and unstructured. Similar to ProZessware it allows composing semistructured
activities from both well-specified and unstructured activities. In addition it provides a rich
mechanism for providing process context. Unlike the system presented here, though, it does
not seem to allow for run-time transformations of activities from well specified to
unstructured, and vice versa. FreeFlow provides a highly unspecified and dynamic and a
highly specified and routine mechanism to break the predefined constraints, which specify
the work flow. Once a constraint is broken, however, its guidance is lost for the process.
Thus the system only allows a one-time reduction of specificity of a process description
during run-time. The work presented here is set apart from other projects by proposing a
novel well-grounded approach to enabling the mobility of a process instance across the
specificity frontier during run-time.

 



 

20.7 Contributions and Conculsion

The primary contribution of this research project is twofold. First, it suggests a novel
approach to addressing the problem of support for dynamic organizational processes. The
proposition of using varying specificity as an approach to solving the problem of supporting
dynamic organizational processes is novel, nonobvious, promising, and supported by social
science theory. Second, the project shows the technical feasibility of this approach.
Combining previously separate process-support technologies from well specified and
routine, to highly unspecified and dynamic, into a seamlessly integrated system that
facilitates the mobility of processes across the specificity frontier during run-time using a
common process model is a nontrivial technical achievement. Although the primary focus of
this project was not to empirically test the usefulness of the system, it provides some
evidence to its plausibility. By developing detailed usage scenarios, based on empirical data,
I have shown that a system like the one I have developed could be usable and useful. The
preliminary results of the scenario analysis indicate that the variation of process specificity is
useful to support dynamic organizational activity. The overhead incurred by actors seems to
reduce when attempting to adapt existing (running) processes to changing circumstances
compared to traditional approaches. For final proof, however, we will have to wait for a
detailed empirical test of the usability and usefulness of such a system in a real-world
environment—a substantial research project in its own right.
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Part V: Conclusion

Chapter List

Appendix: Enabling Technology

Part Overview

We began this book with a vision—a vision of potentially huge repositories of knowledge
about business activities and software processes that could be used for many purposes.
These repositories could, for example, be used to advance research in organization theory in
the same way that analogous classification systems helped advance research in chemistry
and biology. They could be used to help managers, consultants, and business educators find
the most current literature and case examples in their areas of interest. They could be used
to help software developers significantly reduce the effort needed to create new programs
from existing components and to customize programs for use in specific organizations. And
they could be used to help invent new ideas about how to organize companies in the first
place.

We believe that the work we have done in the Process Handbook project over the past
decade demonstrates that this vision need not be just a fantasy. We believe that our work
has made significant progress in showing both the feasibility and the desirability of this vision.
We have developed a repository of moderate scale with many of the characteristics needed
for the vision to be realized, and we have demonstrated the usefulness of this repository in a
number of different applications.

But much more work is needed for this vision to become a reality. One area where we
believe there is significant opportunity for further research is in developing new user
interfaces to help people search and browse through densely (but systematically)
interconnected knowledge bases like ours, while still maintaining a sense of ''where''they are
within the whole network. Another promising direction for many kinds of research is in
applying the framework, software tools, and knowledge base to new problems like those
described in section IV of this volume.

But perhaps the most important challenge ahead is in developing more business content and
keeping it constantly updated. Our repository currently includes a little over 5,000 activities.
We believe that before even coming close to reaching the full potential of the vision, this
number could easily be multiplied by a factor of at least 100 to 1,000.

We don't believe that a single research group in a single academic institution is well suited to
even attempt an effort on the scale that is needed. Instead, we believe that the fulfillment of
this vision will require the efforts of many more people in many more academic and
commercial organizations. We are not yet sure what organizational structure and what
combination of scientific, educational, and economic incentives are appropriate for this effort.
But we hope that the publication of this volume will help stimulate discussions about this
question.

Most of all, we hope that the vision we have been pursuing for more than a decade will
someday become a reality from which we can all benefit.

 



 

Appendix: Enabling Technology

Overview

Early in the Process Handbook project, we realized that the power of a repository like the
Process Handbook would be significantly increased if it were possible to easily and
automatically transfer information between the repository and other software applications. In
order to do this, however, some common format for exchanging information is needed.

With this goal in mind, we created a working group, including people from a number of other
universities and companies, to define such a common format. This appendix describes the
results of that group's work. The format defined by the working group is called the Process
Interchange Format (PIF) (see ccs.mit.edu/pif ). This format defines common terminology
and representational conventions for many of the concepts that are needed whenever
representations of processes are exchanged.

One of the virtues of the approach taken here is that it also exploits the notion of
specialization of processes (see chapter 1) to simplify the creation of specialized extensions
to the format. These specialized extensions can be shared by subsets of people to
communicate detailed information, but the basic ''meaning''of the extensions is still
interpretable by other users who understand only the basic format.

The work described in this appendix is now being incorporated by the US National Institute of
Standards and Technology (NIST) into the definition of their Process Specification Language
(PSL) (see http://ats.nist.gov/psl/).
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A.1 Introduction

More and more companies today are attempting to improve their business by engaging in
some form of business process redesign (BPR). BPR focuses on a 'process view'of a
business and attempts to identify and describe an organization's business processes;
evaluate the processes to identify problem areas; select or design new processes, possibly
radically different from those currently in place; predict the effects of proposed process
changes; define additional processes that will allow the organization to more readily measure
its own effectiveness; and enact, manage, and monitor the new processes. The goal is a
leaner, more effective organization that has better insight into how it does business and how
its business processes affect the organization's health. Successful BPR projects involve the
cooperation of many people over extended time periods, including workplace analysts,
systems engineers, and workers at all levels of the organization.

Computer applications that support one or more aspects of BPR are becoming increasingly
common. Such applications include:

Modeling tools that help a workplace analyst identify and describe an organization's
processes

Process editors and planning aids to synthesize new processes or to modify existing
processes

Process library browsers that help organizations find new processes that might better
meet their needs

Process animators and simulators that help organizations visualize the effects of existing
processes or potential new processes

Work flow–management tools that help workers follow business processes

Outcomes analysis tools that help organizations monitor the effectiveness of their
processes

No single application supports all aspects of a BPR engagement, nor is it likely that such an
application will ever exist. Furthermore applications that do support more than one aspect
rarely do them all well. For example, a work flow tool may also provide some process
simulation capabilities, but those additional capabilities are unlikely to be on par with the best
dedicated simulation applications. This is to be expected—building an application that
supports even one of these aspects well requires a great deal of specialized knowledge and
experience.

Ideally, then, a BPR team would be able to pick a set of BPR-support applications that best
suits their needs: a process modeling tool from one vendor, a simulator from another, a work
flow manager from another, and so forth. Unfortunately, these applications currently have no
way to interoperate. Each application typically has its own process representation (often
undocumented), and many applications do not provide interfaces that would allow them to
be easily integrated with other tools.

Our goal with the PIF project is to support the exchange of process descriptions among
different process representations. The PIF project supports sharing process descriptions
through a description format called PIF (Process Interchange Format) that provides a bridge
across different process representations. Tools interoperate by translating between their
native format and PIF.[1]

Any process description format, including PIF, is unlikely to ever completely suit the needs of



all applications that make use of business process descriptions. Therefore, in addition to the
PIF format, we have defined a framework around PIF that accommodates extensions to the
standard PIF description classes. The framework includes a translation scheme called
Partially Shared Views that attempts to maximize information sharing among groups that
have extended PIF in different ways.

The PIF framework aims to support process translation such that:

Process descriptions can be automatically translated back and forth between PIF and
other process representations with as little loss of meaning as possible. If translation
cannot be done fully automatically, the human efforts needed to assist the translation
should be minimized.

If a translator cannot translate part of a PIF process description to its target format, it
should:

Translate as much of the description as possible (e.g., and not simply issue an
error message and give up)

1.

Represent any untranslatable parts as such and present them in a way that lets a
person understand the problem and complete the translation manually if desired

2.

Preserve any uninterpretable parts so that the translator can add them back to
the process description when it is translated back into PIF

3.

These requirements on the translators are very important. We believe that a completely
standardized process description format is premature and unrealistic at this point. Therefore,
as mentioned earlier, we have provided ways for groups to extend PIF to better meet their
individual needs. As a result we expect that PIF translators will often encounter process
descriptions written in PIF variants that they can only partially interpret. Translators must
adopt conventions that ensure that items they cannot interpret are available for human
inspection and are preserved for later use by other tools that are able to interpret them.
Section A.6 describes PIF's Partially Shared Views translation scheme, which we believe will
greatly increase the degree to which PIF process descriptions can be shared.
[1]A process specification in PIF is utilized in the context in which it is passed to a person, tool,
or system in such a way that the task to be performed on it is understood (e.g., analyze the
specifications for certain features, perform a simulation using the specification, execute a
process that meets the specification, avoid executing any process that meets the
specification, etc.). This imperative information about the task to be performed with a PIF
process specification is not represented in the specification itself, but should be considered
as the context within which the specification is used.

 



 

A.2 History and Current Status

The PIF project began in October 1993 as an outgrowth of the Process Handbook project
(Malone et al. 1993) at MIT and the desire to share process descriptions among a few
groups at MIT, Stanford, the University of Toronto, and Digital Equipment Corporation. The
Process Handbook project at the MIT Center for Coordination Science aims to create an
electronic handbook of process models, their relations, and their trade-offs. This handbook is
designed to help process designers analyze a given process and discover innovative
alternatives. The Spark project at Digital Equipment Corporation aims to create a tool for
creating, browsing, and searching libraries of business process models. The Virtual Design
Team (VDT) project at Stanford University aims to model, simulate, and evaluate process
and organization alternatives. The Enterprise Modeling project at the University of Toronto
aims to articulate well-defined representations for processes, time, resources, products,
quality, and organization. These representations support software tools for modeling various
aspects of enterprises in business process re-engineering and enterprise integration.

In one way or another, these groups were all concerned with process modeling and design.
Furthermore they stood to benefit from sharing process descriptions across the different
representations they used. For example, the Enterprise Modeling group might model an
existing enterprise, use the Process Handbook to analyze its trade-offs and explore its
alternatives, evaluate the different alternatives via VDT simulation, and then finally translate
the chosen alternative back into its own representation for implementation.

Over the past years, through a number of face-to-face, e-mail, and telephone meetings,
members from each of the groups have:

Articulated the requirements for PIF

Specified the core PIF process description classes

Specified the PIF syntax

Elaborated the Partially Shared View mechanism for supporting multiple, partially
overlapping class hierarchies

Created and maintained a database of the issues that arose concerning PIF's design
and the rationales for their resolutions

Implemented several translators, each of which translated example process
descriptions (such as a portion of the ISPW-6 Software Change Process) between PIF
and a group's own process representation

Based on this work, the PIF Document 1.0 was released in December 1994. Since then, we
have received a number of questions and comments on topics that range from individual PIF
constructs to how certain process descriptions can be represented in PIF. We have been
also assessing the adequacy of the PIF 1.0 by testing it against more complex process
descriptions than before. AIAI at the University of Edinburgh also joined the PIF Working
Group at this time bringing along their interests in planning, work flow, and enterprise
process modeling. The Edinburgh group is also providing a valuable service as a liaison
between the PIF group and the Workflow Management Coalition as well as the AI planning
community (in particular, the DARPA/ROME Laboratory Planning Initiative) which has been
concerned with the activity representation issues for a while.

The revised structure of PIF reflects the lessons extracted from these external and internal
input. In particular, two points emerged clearly. One is that the PIF-CORE has to be reduced
to the bare minimum to enable translation among those who cannot agree on anything else.



The other point is the importance of structuring PIF as a set of modules that build on one
another. This way groups with different expressive needs can share a subset of the modules,
rather than the whole monolithic set of constructs. As a result the PIF-CORE has been
reduced to the minimum that is necessary to translate the simplest process descriptions and
yet has built-in constructs for ''hanging-off''modules that extend the core in various ways.

 



 

A.3 PIF Overview

The PIF ontology has grown out of the efforts of the PIF Working Group to share process
descriptions among the group members'various tools. We have used the following guidelines
in developing this hierarchy:

Generality is preferred over computational effciency when there is a trade-off, for the
reason that PIF is an interchange language, not a programming language designed for
effcient execution.[2] Therefore the organization of the entity classes is not necessarily
well suited to performing any particular task such as work flow–management or process
simulation. Instead, our goal has been to define classes that can express a wide variety
of processes, and that can be readily translated into other formats that may be more
suitable for a particular application.

The PIF constructs should be able to express the constructs of some existing common
process representations such as IDEF (SADT) or Petri nets.

PIF should start with the minimal set of classes and then expand only as it needs to. The
minimal set was decided at the first PIF Workshop (October 1993) by examining those
constructs common to some major existing process representations and to the process
representations used by members of the PIF Working Group.

Additions to the standard PIF classes could be proposed by anybody, but the proposal
had to be accompanied by concrete examples illustrating the need for the additions. The
Working Group decided, through discussions and votes if necessary, whether to accept
the proposal. PIF allows groups to define local extensions at will (see section A.6), so
new classes or attributes should be added to the standard PIF classes only if they seem
to be of suffciently general usefulness.

A PIF process description consists of a set of frame definitions, which are typically contained
in a file. Each frame definition refers to an entity instance and is typed (e.g., ACTIVITY,
OBJECT, TIMEPOINT) and they form a class hierarchy (see figure A.1). A frame definition
has a particular set of attributes defined for it. Each of the attributes describes some aspect
of the entity. For example, a PERFORMS definition has an Actor and an Activity attributes
that specifies who is performing which activity. The instance of a frame definition has all the
attributes of all of its superclasses, in addition to its own attributes. For example, all the
instances of ACTIVITY have the Name attribute, since ENTITY, which is a superclass of
ACTIVITY, has the Name attribute.



Figure A.1: PIF class hierarchy

When an attribute of one frame has a value that refers to another frame, the attribute
represents a relationship between the two instances that the two frames refer to. For
example, if the Begin attribute of ACTIVITY-1 takes TIMEPOINT-32 as its value, then the
Begin attribute represents a relationship between the ACTIVITY-1 and TIMEPOINT-32
instances. The value of a given attribute in a PIF file holds independent of time. Figure A.2
depicts the relationships among the PIF classes. Section A.5 describes all of the current PIF
classes.

Figure A.2: Relationships among PIF classes

An attribute in a PIF entity can be filled with the following and only the following PIF
expressions: a literal value of a PIF primitive value type or an expression of a composite
value type. The PIF primitive value types consist of NUMBER, STRING, and SYMBOL:

NUMBER. A numeric value. The NUMBER type is subdivided into INTEGER and FLOAT
types.

STRING. A sequence of characters.



SYMBOL. Symbols are denoted by character sequences, but have somewhat different
properties than strings. PIF symbols are a much-simplified version of symbols in the Lisp
programming language (Steele 1990). In PIF, the main difference between strings and
symbols is that symbols are not case-sensitive unless specially quoted, but strings are
always case-sensitive.

The PIF composite value types consist of LIST and PIF-SENTENCE:

LIST. A list.

PIF-SENTENCE. A logical expression that evaluates to TRUE or FALSE.

An object variable is of the form, object-name[.slot-name]*, which refers to either the object
named or the object which is the value of the named slot (or, if there are more than one slot-
names specified, the object which is the value of the named slot of the object which is the
value of the next named slot, etc.)
[2]Although PIF is not an execution language, an execution language can be PIF-compliant.
That is, an execution language can be designed to include the PIF constructs and thus not to
require a translator to process a set of PIF speci?cations.

 



 

A.4 Rationales

The goal of PIF is to support maximal sharing of process descriptions across heterogeneous
process representations. To better serve this goal, PIF consists of not a monolithic set of
constructs but a partially ordered set of modules. A module can build on other modules in
that the constructs in a module are specializations of the constructs in the other modules.
One can adopt some modules but not others depending on one's expressive needs. Hence a
module typically contains a set of constructs that are useful for a particular domain or a type
of task. More details of this module structure is discussed in section A.6.

The PIF-CORE, on the other hand, consists of the minimal set of constructs necessary to
translate simple but nontrivial process descriptions. There is the usual trade-off between
simplicity and expressiveness. The PIF-CORE could have been chosen to contain only the
constructs necessary for describing the simplest process descriptions such as a precedence
network. Such a PIF-CORE then would not be able to translate many process descriptions.
On the other hand, the PIF-CORE could have contained constructs suffcient for expressing
the information contained in process descriptions of richer complexity. Such a PIF-CORE
then would contain many constructs that may not be needed for many simpler descriptions.
The PIF-CORE strikes a balance in this trade-off by first collecting process descriptions,
starting from the simplest and continuing with more complex until we have reasonably many
of them, and then by looking for a set of constructs that can translate the process
descriptions in this collection. The following paragraph describes the rationales for each of
the constructs in the PIF-CORE. The attributes of each of these constructs are described in
section A.5.

In PIF, everything is an ENTITY; that is, every PIF construct is a specialization of ENTITY.
There are four types of ENTITY: ACTIVITY, OBJECT, TIMEPOINT, and RELATION. These
four types are derived from the definition of process in PIF: a process is a set of ACTIVITIES
that stand in certain RELATIONS to one another and to OBJECTS over TIMEPOINTS.

The following discussion provides intuitive rationales for each of these four constructs. Their
precise semantics, however, are defined by the relations they have with other constructs (cf.
section A.5).

ACTIVITY represents anything that happens over time. DECISION, which represent
conditional activities, is the only special type of ACTIVITY that the PIF-CORE recognizes. In
particular, the PIF-CORE does not make any distinction among process, procedure, or
event. A TIMEPOINT represents a particular point in time, for example ''Oct. 2, 2.32 p.m.
1995''or ''the time at which the notice is received.''An OBJECT is intended to represent all the
types of entities involved in a process description beyond the other three primitive ones of
ACTIVITY, TIME-POINT, and RELATION. AGENT is a special type of OBJECT.

RELATION represents relations among the other constructs. The PIF-CORE offers the
following relations: BEFORE, SUCCESSOR, CREATES, USES, MODIFIES, and
PERFORMS.

BEFORE represents a temporal relation between TIMEPOINTS. SUCCESSOR (Activity-1,
Activity-2) is defined to be the relation between ACTIVITIES where BEFORE (Activity-1.End,
Activity-2.Begin) holds. It is provided as a shorthand for simple activity precedence relations.

CREATES, USES, and MODIFIES represent relations between ACTIVITY and OBJECT. In
these relations the object is assumed to be created, used, and modified at some
nondeterminate timepoint(s) in the duration of the activity (i.e., between its Begin and its End
timepoint inclusively). Hence the object would have been created, used, or modified by the
End timepoint, but no commitment is made as to when the object is actually created, used,



or modified. PERFORMS represents a relation between OBJECT (normally an AGENT
specialization) and ACTIVITY. In the PERFORMS relation, the actor is assumed to perform
the activity at some nondeterminate timepoint(s) in the duration of the activity (possibly for the
whole duration, but not necessarily). We understand that there are other possible
interpretations of these relations. For example, we might want to specify that a given actor is
the only one who performs the activity during the whole activity interval. Such a specification,
however, will require a PSV extension of the PIF-CORE (e.g., by introducing a relation such
as PERFORMS-EXCLUSIVELY; cf. section A.6).

SUCCESSOR in PIF may not correspond exactly to the notions of successor as used in
some work flow or enactment systems because it is common in these systems to bundle into
a single relationship a mixture of temporal, causal, and decomposition relationships among
activities. PIF provides precise, separate relationships for all three of these activities-to-
activity specifications. For example, the temporal relationship is specified with the BEFORE
relation, the causal relation with the Precondition and Postcondition attributes of ACTIVITY,
and the decomposition relation with the Component attribute. Its intention is to allow the exact
meaning to be communicated. Hence one might have to combine some of these constructs
to capture exactly the meaning of SUCCESSOR as used in one's own system.

The attribute value of a PIF-CORE object holds independent of time (i.e., no temporal scope
is associated with an attribute value in the PIF-CORE). Any property of an object that can
change over time should be represented by a RELATION that links the property to a
timepoint. An example of one such RELATION in the PIF-CORE is ACTIVITY-STATUS which
is used to represent the status (e.g., DELAYED, PENDING) of an ACTIVITY at different
times. The ACTIVITY-STATUS is provided in the PIF-CORE because it is the one example of
a dynamic property of those objects commonly used in process modeling and work flow
systems and modeled in the PIF-CORE. Other properties of those objects included in the
PIF-CORE are, for the most part, true for all time. As mentioned before, it is possible to
extend the PIF-CORE to express additional temporally scoped properties by introducing
additional RELATIONS. It is also possible to add temporally scoped version of the static
attributes already in the PIF-CORE. In this case, any such static attributes actually specified
in a PIF file holds true for all time.

The attribute value of a PIF object can be one of the PIF value types specified above. The
PIF primitive value types consist of NUMBER, STRING, and SYMBOL. The PIF composite
value types are LIST and PIF-SENTENCE. LIST is used for conveying structured information
that is not to be evaluated by a PIF interpreter, but simply passed along (e.g., as in the User-
Attribute attribute of ENTITY). PIF-SENTENCE is used to specify a condition that is either
true or false, as required, for example, for the Precondition and the Postcondition attributes
of ACTIVITY.

PIF-SENTENCE is a logical expression that may include variables, quantifiers, and the
boolean operators for expressing conditions or constraints. A PIFSENTENCE is used in the
Constraint slot of ENTITY, the Precondition and the Postcondition slots of ACTIVITY, and the
If slot of DECISION. A variable in a PIF-SENTENCE takes the following positions in the three
dimensions that define the possible usage:

The scope of the variable is the frame. That is, variables of the same name within a
frame definition are bound to the same object, whereas they are not necessarily so if
they occur in different frames.

1.

A variable is assumed to be bound by an implicit existential quantifier.2.

The constraints on variables in a frame definition are expressed in the Constraints slot
of that frame. These constraints are local to the frame.

3.

These positions are expected to be extended by some PSV modules. Some PSV modules
will extend the scope of a variable beyond a single object. Some will introduce explicit



existential and universal quantifiers. Yet others will allow global constraints to be stated,
possibly by providing an object where such global constraints that hold across all the objects
in a PIF file (e.g., 'All purchase order must be approved by the finance supervisor before sent
out').

Notable Absence We have decided not to include ROLE because a role may be defined
wherever an attribute is defined. For example, the concept of RESOURCE is a role defined
by the Resource attribute of the USE relation. Any object, we view, is a resource if it can be
USEd by an ACTIVITY. As a consequence we have decided not to include ROLE or any
construct that represents a role, such as RESOURCE. ACTOR is not included in PIF
because it is another role concept, one defined by the Actor attribute of the PERFORMS
relation. Any object, as long as it can fill the Actor attribute, can be viewed as an ACTOR.
Hence we resolved that explicit introduction of the constructs such as ACTOR or
RESOURCE is redundant and may lead to potential confusions. We should note, however,
that the PIF-CORE provides the construct AGENT, which is not defined by a role an entity
plays but by its inherent characteristic, namely its capability (e.g., of making intelligent
decisions in various domains).

 



 

A.5 Alphabetic Class Reference

ACTIVITY

Parent Classes ENTITY

Attribute Value type Multiple values allowed

Component ACTIVITY Yes

Precondition PIF-SENTENCE No

Postcondition PIF-SENTENCE No

Begin TIMEPOINT No

End TIMEPOINT No

Attribute Descriptions

Component. The subactivities of the activity. For example, if the activity is 'Develop
software', its Component may include 'Design software', 'Write code', and 'Debug
software'. The field is inherited from ENTITY, but here it is restricted so that its values
must all be ACTIVITY entities.

Precondition. The conditions that have to be satisfied at the Begin timepoint of the
activity before it can get executed. For example, a precondition of the activity 'Run
software'might state that the executable code must be available. Such conditions are
expressed using PIF-SENTENCES.

Postcondition. The conditions that are true at the End timepoint of the activity. For
example, a postcondition of the activity 'Run software'might be that a log file has been
updated. Such conditions are expressed using PIF-SENTENCES.

Begin. The TIMEPOINT at which the activity begins.

End. The TIMEPOINT at which the activity ends.

In the PIF-CORE, the condition in the Precondition is to be true before the Begin timepoint of
the ACTIVITY. Similarly, the condition in the Postcondition is to be true after the End
timepoint of the ACTIVITY. This requirement may be relaxed later in PSV modules (cf.
section A.6) to allow the precondition and the postcondition to be stated relative to other time
points.

Many preconditions and postconditions can be expressed in PIF without using the
Precondition and Postcondition attributes of ACTIVITY. For example, the USE relation
between an activity A and an object O implies that one of A's preconditions is that R is
available. In general, the Precondition and Postcondition attributes of ACTIVITY should only
be used to express conditions that cannot be expressed any other way in PIF. Doing so will
maximize the degree to which a process description can be shared with others.

ACTIVITY-STATUS

Parent Classes RELATION



Attribute Value type Multiple values allowed

Activity ACTIVITY Yes

Status SYMBOL Yes

When TIMEPOINT No

Attribute Descriptions

Activity. The activity whose status is being specified.

Status. The status being specified such as DELAYED and PENDING.

When. The timepoint at which the status of the activity is being specified.

AGENT

Parent Classes OBJECT   ENTITY

Attribute Value
type

Multiple values allowed

Capability SYMBOL Yes

Component AGENT Yes

Attribute Descriptions

Capability. Its possible values are SYMBOLS that represent the kinds of skills the agent
is capable of providing. The symbols are supplied by the source language and simply
preserved across translations by PIF. A PSV module may introduce a restricted set of
symbol values.

An AGENT represents a person, group, or other entity (e.g., a computer program) that
participates in a process. An AGENT is distinguished from other ENTITIES by what it is
capable of doing or its skills.

BEFORE

Parent Classes RELATION   ENTITY

Attribute Value type Multiple values allowed

Preceding-Timepoint TIMEPOINT No

Succeeding-Timepoint TIMEPOINT No

Attribute Descriptions

Preceding-Timepoint. The time point that is before the Succeeding Timepoint

Succeeding-Timepoint. The time point that is after the Preceding Timepoint.

BEFORE is a relation between TIMEPOINTS not between ACTIVITIES. A shorthand for a
common example of the BEFORE relation is available via the SUCCESSOR relation.

CREATES



Parent Classes RELATION   ENTITY

Attribute Value
type

Multiple values allowed

Activity ACTIVITY No

Object OBJECT Yes

Attribute Descriptions

Activity. The activity that creates the object. The object is assumed to be created at
some nondeterminate timepoint(s) between its Begin and its End timepoint inclusive.

Object. The object that the activity creates.

DECISION

Parent Classes ACTIVITY   ENTITY

Attribute Value type Multiple values allowed

If PIF-
SENTENCE

No

Then ACTIVITY Yes

Else ACTIVITY Yes

Attribute Descriptions

If. The condition being tested to decide which successor relations to follow. Such
conditions are expressed using PIF-SENTENCES.

Then. The activity to follow if the condition in the If field holds (i.e., if the PIF-SENTENCE
in the If field evaluates TRUE).

Else. The activity to follow if the condition in the If field does not hold (i.e., if the PIF-
SENTENCE in the If field evaluates to FALSE).

A DECISION is a special kind of activity that represents conditional branching. If the PIF-
SENTENCE in its If attribute is TRUE, the activity specified in its Then attribute follows. If not,
the activity in its Else attribute follows.

ENTITY

Parent Classes None. ENTITY is the root of the PIF class hierarchy.



Attribute Value type Multiple values allowed

Name STRING No

Documentation STRING No

Component ENTITY Yes

Constraint PIF-
SENTENCE

No

User-Attribute LIST Yes

Attribute Descriptions

Name. The entity's name.

Documentation. A description of the entity.

Component. This attribute is used to specify an homogeneous aggregate of the type
itself. For example, in an AGENT object, this attribute can be used to specify that the
agent is in fact a group of subagents. In an ACTIVITY object this attribute is used to
specify its subactivities that make up the activity. If one needs to specify a group of
objects of different types, then one can do so by going up to an object of their common
ancestor type and specify them in the Component attribute of this object. When
interpreted as a relation, this relation holds between the entity and each value, not
between the entity and the set of all the values.

Constraint. This attribute is used to specify any constraint that should be true of the
other attribute values in the current entity (e.g., constraints on the variables).

User-Attribute. This attribute is used to store additional ad hoc attributes of an entity
that are not part of its class definition. For example, a process modeling application
might allow users to specify additional attributes for AGENT entities that are not included
in AGENT's PIF definition—the user might want to add an attribute recording the
AGENT's age, for example. Such additional attributes can be stored in the User-Attribute
attribute, which all PIF entities inherit from ENTITY. Another common use is in the
Partially Shared Views translation scheme that we propose for interchanging PIF files
(see section A.6). Each value of User-Attribute is a list containing an attribute name and
its value(s). For example, an OBJECT entity might have (User-Attribute (Color RED
GREEN) (Weight 120)).

MODIFIES

Parent Classes RELATION   ENTITY

Attribute Value
type

Multiple values allowed

Activity ACTIVITY No

Object OBJECT Yes

Attribute Descriptions

Activity. The activity that modifies the object. The object is assumed to be modified at
some nondeterminate timepoint(s) between its Begin and its End timepoint inclusive.



Object. The object that the activity modifies.

OBJECT

Parent Classes ENTITY

Attribute Descriptions No attribute.

An OBJECT is an entity that can be used, created, modified, or used in other relationships to
an activity. This includes people (represented by the AGENT subclass in PIF), physical
materials, time, and so forth. The PIF Working Group has discussed adding OBJECT
attributes such as Consumable and Sharable, but so far no decision has been made on what
attributes are appropriate.

PERFORMS

Parent Classes RELATION   ENTITY

Attribute Value
type

Multiple values allowed

Actor OBJECT Yes

Activity ACTIVITY Yes

Attribute Descriptions

Actor. The object that performs the activity.

Activity. The activity that is performed. The actor is assumed to perform the activity at
some nondeterminate timepoint(s) between its Begin and its End timepoint inclusive.

RELATION

Parent Classes ENTITY

Attribute Descriptions No attribute.

RELATION entities have no attributes of their own. PIF uses it as an abstract parent class for
more specific relation classes such as USES and PERFORMS.

SUCCESSOR

Parent Classes RELATION   ENTITY

Attribute Value
type

Multiple values allowed

Preceding-Activity ACTIVITY No

Succeeding-Activity ACTIVITY Yes

Attribute Descriptions

Preceding-Activity. The preceding activity.

Succeeding-Activity. The succeeding activity.



SUCCESSOR with the Preceding-Activity ACTIVITY-1 and the Succeeding-Activity
ACTIVITY-2 is exactly the same as BEFORE with Preceding-Timepoint TP-1 and
Succeeding-Timepoint TP-2, where TP-1 is the Begin timepoint of ACTIVITY-2 and TP-2 is
the End timepoint of ACTIVITY-1. That is, the SUCCESSOR relation is true if the ACTIVITY-1
ends before the ACTIVITY-2 begins.

TIMEPOINT

Parent Classes ENTITY

Attribute Descriptions No attribute.

TIMEPOINT represents a point in time. In PIF-CORE, it is used, for example, to specify the
Begin and End times of an Activity or the Preceding and Succeeding time points of the
BEFORE relation.

USES

Parent Classes RELATION   ENTITY

Attribute Value
type

Multiple values allowed

Activity ACTIVITY No

Object OBJECT Yes

Attribute Descriptions

Activity. The activity that uses the object from its Begin timepoint to its End timepoint.
The USES relation is true from the Begin to the End timepoint of the activity. The object
is assumed to be used at some nondeterminate timepoint(s) between its Begin and its
End timepoint inclusive.

Object. The object that the activity uses.

 



 

A.6 Extending PIF

PIF provides a common language through which different process representations can be
translated. Because there will always be representational needs local to individual groups,
however, there must also be a way to allow local extensions to the description classes while
supporting as much sharing as possible among local extensions. The Partially Shared Views
(PSV) scheme has been developed for the purpose (Lee and Malone 1990). PSV integrates
different ways of translating between groups using different class hierarchies (e.g., pairwise
mapping, translation via external common language, translation via internal common
language) so as to exploit the benefits of each when most appropriate.

A PSV module is a declaration of PIF entities that specialize other entities in the PIF-CORE
or other PSV modules on which it builds. The class definitions in a PSV module cannot
delete or alter the existing definitions but can only add to them. Examples of PSV modules
are given at the end of this section. A group of users may adopt one or more PSV modules
as necessary for its task.

A group using a PSV module translates a PIF object X into their native format as follows:

If X's class (call it C ) is known to the group and the group has developed a method
that translates objects of class C into their native format, then apply that translation
method. C is known to the group if either C is defined in one of the PSV modules that
the group has adopted or the group has set up beforehand a translation rule between
C and a type defined in one of the PSV modules adopted.

1.

Otherwise, translate X as if it were an object of the nearest parent class of C for which
rule 1 applies (its parent class in the most specific PSV module that the group and the
sender group both share, i.e., have adopted).

This translation scheme allows groups to share information to some degree even if
they do not support identical class hierarchies. For example, suppose that group A
supports only the standard PIF AGENT class, and that group B in addition supports an
EMPLOYEE subclass. When group A receives a process description in group B's
variation on PIF, they can still translate any EMPLOYEE objects in the description as if
they were AGENT objects. What happens to any information that is in an EMPLOYEE
object that is not in a generic AGENT object? That will vary according to the
sophistication of the translator and the expressive power of the target process
representation. However, the translator will preserve the additional information so that
it can be viewed by users and reproduced if it is later translated back into PIF.

2.

For example, suppose that EMPLOYEE has a ''Medical-plan''attribute that is not part of the
AGENT object in the PIF-CORE. Then group A's translator would:

Translate any Medical-plan attributes into a form that the user could view in the target
system (even if it only as a textual comment)[3] AND

When the information is re-translated into PIF in the future (from group A's native
format), it is emitted as an EMPLOYEE object with the same value for the Medicalplan
attribute (and not simply as an AGENT object with no Medical-plan attribute). MIT
researchers are currently investigating this general problem of preserving as much
information as possible through ''round trips''from one representation to another and
back (Chan 1995).

Translators that can follow these conventions will minimize information loss when processes
are translated back and forth between different tools. The details of PSV can be found in
(Lee and Malone 1990). In the current version of PIF, each PIF file begins with a declaration



of the class hierarchy for the objects described in the file. PSV uses this class hierarchy to
translate objects of types that are unknown to a translator. To eliminate the need for PIF
translators to do any other inheritance operations, however, all PIF objects should contain all
of their attributes and values. For instance, even if the value of a given attribute is inherited
without change from a parent, the attribute and value are repeated in the child.

As the number of PSV modules grows large, we need a mechanism for registering and
coordinating them so as to prevent any potential conflict such as naming conflict. Although
the exact mechanism is yet to be worked out, we are envisioning a scenario like the
following: The user who needs to use PIF would first consult the indexed library of PSV
modules, which documents briefly the contents of each module and the information about
the other modules it presupposes. If an existing set of modules does not serve the user's
purpose and a new PSV module has to be created, then the information about the new
module and its relation to other modules is sent to a PSV registration server, which then
assigns to it a globally unique identifier and updates the indexed library. We foresee many
other issues to arise such as whether any proposed PSV module should be accepted, and
who decides this, and whether to distinguish an ad hoc module designed for temporary quick
translation between two local parties from a well-designed module intended for global use.
However, rather than addressing these issues in this chapter, we will address them in a
separate document as we gain more experience with PSV modules.

To date, two PSV modules have been specified: Temporal-Relation-1 and IDEF-0 modules.
The Temporal-Relation-1 module extends the core PIF by adding all possible temporal
relations that can hold between two activities (cf. figure A.3). The IDEF-0 module adds the
constructs necessary for translating between IDEF-0 descriptions and PIF. IDEF-0 is a
functional decomposition model, but it has historically been used widely as a process model
description language. IDEF-0 has been used in various ways with no single well-defined
semantics. Hence the IDEF-0 PSV module supports translation between PIF and one
particular version of IDEF-0. It introduces two additional relations, USES-AS-RESOURCE
and USES-AS-CONTROL, as specializations of the USES relation. They are meant to
capture the Control and Mechanism input of IDEF-0. The Input and Output relations of IDEF-
0 may be translated into PIF by using the Precondition and Postcondition attribute of
ACTIVITY. The mapping between IDEF and PIF is shown in figure A.4. These modules have
not been offcially registered. They are presented here only to provide examples of PSV
modules. We are soliciting further inputs before we register them.

Figure A.3: Possible temporal relations between two activities



Figure A.4: Mapping between IDEF-0 and PIF constructs

[3]If the target representation happens to be PIF (albeit group A's variant of it), the
uninterpretable attributes would be stored as text in the User-Attribute attribute, which all PIF
entities have.

 



 

A.7 Future Directions

Abbott, A. 1990. A primer on sequence methods. Organization Science 1: 375-92.

Following the release of PIF version 1.1, PIF developments are expected to take the
following course. First, we plan to coordinate further development of PIF with other
knowledge sharing projects so as to produce compatibility, if not convergence, among the
metamodels produced. We have started exchanging information with the International
Workflow Management Coalition (http://www.aiai.ed.ac.uk/WfMC ), whose goal is to produce
interoperability among work flow applications. We have been also talking to the people in the
Knowledge Sharing Initiatives (Neches et al. 1991), which has produced KIF (Knowledge
Interchange Format) described earlier, tools and protocols for sharing knowledge bases, and
Web-based ontology libraries among other things. We plan to intensify these coordination
efforts through more structured and active forms such as workshops and regular meetings.

Second, we plan to elaborate on the PIF extension mechanism. We need to discuss and
work out the details on such issues as who can propose and accept PSV modules in which
domain and how the modules should be named, registered, organized, and accessed. We
also need to carefully lay out the space of PSV modules by identifying an initial set of
generally useful ones extending the PIF-CORE. Again, this work will require close
interactions with the other knowledge sharing groups and experts in various domains. We
hope to pursue this objective as a part of pursuing the first objective of coordination with
other groups.

In order to use PIF to share process descriptions automatically, we need a PIF-translator for
each of the local process representations involved. For example, each of the groups
represented in the PIF Working Group built a translator for translating between PIF 1.0 and
its own representation. Building PIF-translators is ultimately the responsibility of individual
groups who want to use PIF.
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Bidding schemes, 51, 54, 60–61, 71, 74
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alternative (hiring case example), 391–92
decomposition of, 92
and dependencies, 21, 85–86, 87–88, 89–90, 104–107, 182, 337–38, 388, 407–408,
450, 475, 517
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Dependency-focused analysis, 352–54, 356–59

Dependency patterns, composite, 127



Dependency recombinator, 410, 412–14

Dependency types, vocabulary of, 291–92
''Descendants'' of generalizations, 33
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''Intellectual mercenaries,'' 68

Interconnection dependencies, 109, 112

Interconnection protocols, 118–19

Interconnections among software components, as design problem, 127, 291, 497–98, 514.
See also Generic model of resource flows

Interdependency, 23, 86. See also Dependencies and coordination, 81–82, 85

''Interesting Organizations Database,'' 421

International Benchmarking Clearinghouse (IBC), Process Classification Framework of,
240–41



International Workflow Management Coalition, 571

Internet, 465. See also Web site; World Wide Web
hiring via, 395, 397, 446
and location of genre system, 472–73
Sloan School admissions on, 486–92

Intuitive appeal, of MIT Business Activity Model, 234

''Inventing the Organizations of the 21st Century'' (MIT research initiative), 421

 



 

Index

J
Just-in-time inventory control or transfer, 13, 21, 55, 100, 388, 408, 425, 475–76

 



 

Index

K
Kearney, AT, consulting firm, 31, 32, 389

Knowledge, common, 62–63

Knowledge base. See also Database, Handbook; Databases
of coordination processes, 426
for Process Handbook project, 3, 435
and Process Recombinator, 419–20

Knowledge Interchange Format, 571

Knowledge management, 374

Knowledge (process) repository
of Phios, 443, 336
process redesign with, 379–80, 400–401

approach of (deep and surface structures), 381–89
case example for (hiring process), 389–400
evaluation of, 401–402
future efforts on, 402
and previous approaches, 380–81

for Process Recombinator, 403 (see also Process Recombinator)

Knowledge Sharing Initiatives, 571

Kotler, Philip, 242

 



 

Index

L
Landlord (business model archetype), 239

Language faculty, and organizations, 204–205

Lazy flows, 321

Lean Enterprise Manufacturing Model, 241

Learning organization, 13

Leeson, Nicholas, 434, 436, 438

Lexicon, 197
identification of, 207

Library science, audience from, 12

Linguistics, in analysis of group action, 69–70

Links between activities, 26

Linnaeus, Carolus, 5

Location
coordination aspects related to, 479
of genre/genre system, 482

Lockstep flows, 321

Lockstep prerequisites, 307, 311

Logging, and prerequisite violation (Barings Bank), 436–38

Logic of analysis, 209–10

London Business School, 244

Lotus Notes group conferencing system, 73
''MAG Services'' (fictional marketing services company), 339, 341–62, 364–65, 366

 



 

Index

M
Malone, Thomas W., 443, 446

Management science, audience from, 12

Managers, as audience, 3, 12

Managing of information flows, in computer science, 80
of producer-consumer relationships, 54–56, 60, 62
of shared resources, 52–54, 60
of simultaneity constraints, 56–57, 60
of task-subtask dependencies, 57–58, 60, 72

Market(s), and information technology, 65–69, 76

Marketing Management (Kotler), 242

Market research, for usability, 56

Market transactions, evaluation of, 65

Markov models, and syntactic models, 208

Marriott Hotels, 32, 244, 391, 446

Mass-customization, 516
production workbench for, 523, 524

Maximal execution set, for dataflow diagram, 168

Maximal execution set semantics, 134, 135, 156n, 162

Mechanism design theory, 81

Meets dependencies, 327

Memoryless events, 310, 312
''Mercenaries, intellectual,'' 68

MES conditions, 168

Meta-process, conflict management, 455–57, 458

Meta-process information, 448

Methodological considerations, of grammatical models, 206–11

Methodologies, 31

Michaelangelo, on creation as choice, 143

Microsoft Access, 25. 420

Microsoft's daily build, 21, 388, 408

Microsoft Windows, 25

MIL (Module Interconnection Languages), 125

Miller, George, 249

Minimal execution set semantics, 134, 156n, 157–58

MIT Business Activity Model (BAM), 231–35
deriving of, 235–38
and other models, 240

MIT Business Model Archetypes, 238–40

MIT Center for Coordination Science (CCS), 7, 124, 384, 404, 448, 466, 476



MIT conflict repository, 463. See also Design conflict management repository

MITD eBusiness Awards, finalists for, 384

MIT Process Handbook. See Process Handbook

MIT Process Handbook project. See Process Handbook Project

MIT Scenario Working Group, 516

MIT Sloan School of Management. See Sloan School of Management, MIT

Modeling design methods, 261. See also Design methods

Modeling languages, 157

Models
of business processes developed elsewhere, 240–43
of coordination processes, 243
verifying of (process description technique), 363

Models, generic. See Generic model of resource flows; Generic models of business activities

Module Interconnection Languages (MIL), 125

''Molecules'' (reusable systems dynamics components), 256

Monsanto, 391

Motorola, 33, 395, 397

Moves, in organizational action, 197

Multi-level research, problem of, 177–78

Multi-Media Handbook for Engineering Design,6–7

Multiple actors, 367

Multiple task or resource dependencies, 96–102

Multiple theories, 190

Mutual adjustment, for coordination, 82

Mutual exclusion dependencies, 114, 323, 326

 



 

Index

N
Naming conflict, 569

Naming conventions, for activities, 251

National Institute of Standards and Technology (NIST), 575

Navigation links, 26, 246

New Pig, 397

New Product Design (Eppinger), 242

Nierstrasz, O., 157

Nonshareable resources, 98–99

Normal Accidents (Perrow), 285–88

Notes group conferencing system, 73

 



 

Index

O
Object-oriented programming, 17

Objects, vs. activities, 42

Object specialization, 157–58
and deletion, 158–59

Object specialization hierarchies, and upward propagation, 160–61

OLE, 126, 512, 513

Onsale, 446

Ontologies, realist vs. nominalist, 182–83

OpenDoc, 126

Openness, and genres in electronic medium, 479

Open Scripting Architecture, 512

Open software architecture, 512–13

Operations research, and coordination, 60, 80–81

Orderings, alternative, 392

Order processing
dataflow diagram of, 144
for e-business (process specialization example), 149–55

Organization(s), and information technology, 65–69, 76

Organizational communication, genres of, 467–68. See also Genre taxonomy

Organizational design
coordination in, 22
and process specialization, 155

Organizational practice, improving of, 13–14

Organizational processes. See also Process(es)
grammar as model for, 192–93, 195–206, 214
methodological considerations in, 206–11
representation of, 14–15
specificity frontier of, 527–28
theory of, 189

Organizational research, on dependencies and coordination, 86–88

Organizational researchers, as audience, 3, 10, 11, 12

Organizational science, and multiple theories, 190

Organizational structure
of future, 515
and Product Workbench, 524

Organization theory
and coordination, 60, 81–82
and knowledge repositories, 547
and resource allocation, 53

Organization theory and design, 22–23

Organizing, definition of, 192



Organizing knowledge, vs. simulating performance, 23

Or-prerequisites, 117, 308

Oval system, 72

Overlap dependencies, 329

 



 

Index

P
Parallelism, in dataflow diagram, 167

Parallel processing in computer systems, 73–76

Parametric analysis, 63

Partially Shared Views (PSV) translation scheme, 550, 551, 567

Participatory design, for usability, 56

PCF (Process Classification Framework), 240–41

Peer synchronization, 117–18, 309, 310, 322

Performance, vs. competence, 205–206

Performance programs, and syntactic constituents, 198–99

Periodic Table of the Elements, 4–5

Perishable flows, 320

Perishable prerequisites, 307

Perrow, C., 261, 285–88

Persistent event protocols, 310

Persistent flows, 320

Persistent memoryless events, 312

Persistent prerequisites, 306, 311

PERT chart, 367

Petri nets, 70–71, 76, 161, 367, 419, 553

Phasic analysis, 208–209

Philosophy, in analysis of group action, 69–70

Phios Corporation, 8, 222–23, 244, 443

Phrase structure rules, 200

PIF. See Process Interchange Format

PIF. See Process Interchange Format

Planning, and composition dependency, 103

Plural Soar, 23

Polymer system, 71, 72

Pooled dependencies, 85, 87

Prerequisite constraints, 54–55, 99–100, 105–106

Prerequisite dependencies, 114, 117–18, 294, 306–308, 323, 326. See also Flow
dependencies

and Barings Bank, 435
in case study (MAG), 358
coordination mechanisms for, 21, 388, 408
managing of, 308–13

Prevention dependencies, 327

Princeton University, Cognitive Science

Laboratory at, 469



Process(es), 43, 336–37
active and inactive, 167
as activities and interdependencies, 180–83
alternative views of, 26, 27
classification of, 211–12
commitments in, 424, 432 (see also Exception analysis methodology)
components of, 179–80
in dataflow diagram, 145
as distinct entities, 35
generic, 28–29
and ICT research, 177
as organizational

grammar as model for, 192–93, 195–211, 214
representation of, 14–15
specificity frontier of, 527–28
theory of, 189

related (sample Handbook entry), 224
and research paradigms, 182–83
research and practice recommendations for, 188–90
and sentences, 199–200
service (restaurant example), 185–88
specialization of, 15–19 (see also Process specialization)
taxonomy of, 450–51
as unit of analysis, 189

Process analysis tools
design of, 368–69
improvement needed in, 36

Process attributes, 449

Process boundaries, setting of (process description technique), 342

Process-centered research framework, 183–84

Process class, refinement of, 163

Process Classification Framework (PCF), 240–41

Process Compass, 15, 17, 229, 251
for Dow Corning, 445

Process description
exchange of, 550 (see also Process Interchange Format)
verbal account as, 366

Process description technique (coordination-theory based), 339–42
in comparison to other process analysis techniques, 366–67
and dependency analysis, 364–65
and design of analysis tools, 368–69
evaluation of, 368
implications of for practitioners, 369–70
Step 1 of (Setting process boundaries), 342–44
Step 2 of (Collecting data), 344–45
Step 3 of (Identifying actors and resources), 345–46
Step 4 of (Identifying activities), 346–51
Step 5 of (Identifying dependencies), 351–63
Step 6 of (Verifying model), 363
and trade-off matrices, 365–66

Process Handbook, 4, 256, 384, 404, 448–49, 476, 516–17
as case-based reasoner, 24



challenge of, 547
as classification system, 4

for activities, 246–52
and biological classification, 5–6
and engineering handbooks, 6–7
and Human Genome Project, 6
and Periodic Table, 4–5

common exchange format for, 575
and conflict repository, 448, 451, 457–61, 463
contents of, 9, 221–23, 421

case examples, 243–45
comprehensive models of business processes developed elsewhere, 240–43
MIT Business Activity Model, 231–38, 240
MIT Business Model Archetypes, 238–40

coordination mechanisms in, 404 (see also Coordination; Coordination mechanisms)
and coordination perspective on software design, 511
coordination theory in, 475–76 (see also Coordination theory)
dependencies in, 253, 255, 404, 476 (see also at Dependencies)
exceptions in, 253, 256, 423, 432 (see also Exceptions analysis methodology)
field-testing of (case study), 31–32
future research on, 547
and genre taxonomy, 466, 479 (see also Genre taxonomy)
models of coordination processes in, 243
multiple versions of, 221–22
potential of, 258
primary elements of, 217
process description in, 538
and Process Recombinator, 403, 420–21 (see also Process Recombinator)

Process Handbook (cont.)
process specialization in, 404 (see also Process specialization)
as resource rather than prescription, 35
resources in, 253
sample entry in, 223–29
specialization in, 476 (see also Specialization)
and specialization hierarchy, 156
and SYNOPSIS, 511
syntax of, 480
systems dynamics elements in, 256, 257
theoretical foundations of, 8, 41

coordination, 41–42 (see also Coordination)
process, 43 (see also Process)
specialization, 42 (see also Specialization)

underlying concepts in, 449–51
uses of, 9–10, 14, 373 (see also Business process redesign; Knowledge management;
Software design and generation)
Web (on-line) version of, 223, 471

illustration, 458, 459

Process Handbook project, 3, 443, 551
and design handbook for software component integration, 124–25
history of, 7–8
and Process Interchange Format, 551
Web-based browser in, 420

Process improvement, dependency analyses as basis for, 364–65

Process Innovation: Reengineering Work through Information Technology (Davenport), 261



Process innovations, 13
of Davenport, 261–74
previous approaches to, 380–81

Process Interchange Format (PIF), 23, 26–27, 550–51, 553–56, 575
alphabetic class reference in, 559–67
extensions of, 567–71
future directions for, 571
history and current status of, 551–53
modular structure of, 556, 567–71
rationale for, 556–59

Process management tools, importance of, 443

Process models, 261, 538–39. See also Design methods
verifying of, 363

Process parts, for selling, 444

Process types, for selling, 444

Process Recombinator, 393, 403, 408–409, 460
in comparison to related process design tools, 419
deep structure identified, 409–10
different surface structures found, 410–17
evaluation of, 418
future efforts on, 419–20
implementation of, 420–21
new process designs compared, 417–18
sources of power of, 418

Process redesign. See Business process redesign

Process repository. See Knowledge repository

Process representations, 161

Process selection flow, in Hammer and Champy's business process reengineering, 279. See
also Flow dependencies

Process specialization, 15–19, 131–33, 161–62, 384–87, 404–407, 517
dataflow diagrams for, 143–49
by deletion, 158–60
e-business order processing example of, 149–55
and extension semantics, 134–35
frame of reference for, 135–36
and generating of new processes, 141, 143
and organizational design, 155
restaurant information system example of, 140–43
and specializing transformations, 136–38, 156
and state diagrams, 138–39

Process specialization hierarchy, 131–32
and Process Handbook, 156
for restaurant example, 141, 142, 143
and upward propagation, 160–61

Process Specification Language (PSL), 575

Process support systems, 525

Process support systems in dynamic contexts
and assumptions about human nature, 526–27
contributions of, 543
division of labor with user of, 536–37
evaluation of and lessons learned from, 540–41



implementation details of, 538–40
monitoring of constraints in, 531–33
other systems compared with, 541–42
planning of options in, 533–36
and re-usable process components, 538
scenario for (''Heidi's problem''), 526, 528, 531, 532, 534–35, 536, 540
scripts made imperative, 536
and specificity frontier, 527–28, 530, 542

division of, 530
integrating of different spectra of, 537, 543
and providing of context, 530–31

and structure for emergent activity, 528–29

Process synchronization, 292

Process theory, 178–79

Process thinking, 191

Process visions, 263

Producer-consumer dependency. See Flow dependencies

Producer-consumer relationships, managing of, 54–56, 60, 62
''Produce as a typical business'' specialization, 231, 233

Production (core) activities, 111

Product workbench, 515, 524
bank scenario for, 517–22
evaluation of, 522–23
future efforts on, 523–24
requirements for and theoretical foundations of, 515–16

Programming, object-oriented, 17

Programming languages, 109–10

Propagation, upward and downward (specialization hierarchies), 160–61

Prototypical uses, of design conflict management repository, 462–63

ProZessware, 542

 



 

Index

R
Race conditions, 314, 322

Rapid prototyping environments, 515

Reciprocal dependencies, 85, 87

Recombinator. See Process Recombinator

Reengineering. See Business process reengineering

Reengineering the Corporation (Hammer and Champ), 274

Refinement, 162–64
exhaustive process decomposition as, 168–73

Refining transformation, 137
for dataflow diagrams, 147–49, 168–73
for state diagrams, 139, 164–66

Rendezvous interprocess communication paradigm, 322

Replication of resources, 319

Repository of knowledge. See Knowledge repository

Research, multi-level, 177–78

Research agenda
on coordination, 76–78, 107–108
on grammatical models of organizational processes, 211–14

Research facilitation, and conflict repository, 457, 460–61

Research framework, process-centered, 183–84

Research paradigms, and processes, 182–83

Resource access, 298

Resource allocation
and coordination, 52–54, 94–95
and nonshareable resources, 98–99
''scientific communities'' for, 74–75

Resource allocation algorithms, analyzing stability properties of, 75

Resource flow graph
in Davenport's process innovation, 264–67, 268
in Hammer and Champy's business process reengineering, 275–79

Resource flows, generic model of, 300–302
accessibility dependencies in, 304–305
and flow dependencies, 319–23
prerequisite dependencies in, 306–13
sharing dependencies in, 314–19
timing dependencies in, 323–32
usability dependencies in, 302–304

Resource replication, 319

Resources
composition of, 106
and coordination, 91

and managing dependencies among multiple tasks and resources, 96–102



and managing of task-resource dependencies, 91–96
dependencies between, 102–103
identifying of (process description technique), 345–46
nonshareable, 98–99
as represented in Process Handbook, 253
shareable, 97–98
in software systems, 293
and tasks, 52
taxonomy of, 297–300

Resource sharing, 299–300

Resource sharing dependency, 294, 314

Resource transportability, 298

Resource usability. See Usability dependencies

Restaurant food service, grammar of, 193–94, 194, 212

Restaurant information system
as process specialization example, 140–43
as service-process example, 185–88

Restriction of access to resources, 315–18, 319

Reusability, 97, 478

Reusable components, for software system design, 127, 513–14

Role-Commitment-Violation analysis, 424

Rule-based grammar of organizing, 200–201

 



 

Index

S
Sample entry in Process Handbook, 223–29

SAP customization, and specializing transformation, 156

SAP system, and Dow Corning, 443

Scenario Working Group, MIT, 516
''Scientific communities,'' for information routing and resource allocation, 74–75

Scientific Community Metaphor (Ether system), 75

Scripts
and grammars, 194
''imperative'' (process support system), 536

Sealed-bid auction, 425–26

Segmenting and assigning tasks, in computer science, 80

Semantic domain, 347

Semantics
extension, 134–35
and process diagram manipulation, 161

Sensory graph-plan (SGP), 540

Sentences, and processes, 199–200

Sequencing constraints, prerequisite dependencies as, 306

Sequencing problems, 55

Sequential dependencies, 85, 87

Service processes, example of (restaurant comparison), 185–88

Shareability, 97

Shared cognitions, 183

Shared context, in Hammer and Champy's business process reengineering, 279

Shared resource dependencies, 181

Shared resources, managing of, 52–54, 60
in computer science, 79

Sharing dependencies, 20, 42, 96, 97–99, 105, 114, 236–37, 267, 314–15, 387, 388, 475,
505

and commitments, 428
and communication genres, 476
coordination mechanisms for, 21, 388, 407, 408
and genre coordination, 485
managing of, 315–19

Sharing of resources, 299–300
''Sibling,'' 401, 450

Simultaneity, between tasks, 102–103

Simultaneity constraints, managing of, 56–57, 60

Simultaneity dependency, 330

Simultaneous end dependency, 332

Sloan School of Management, MIT



on-line admissions process at, 480, 486–92
and Process Handbook, 443

Social grammar, 195. See also Grammar

Social insects, 82–83

Social systems, and distributed or parallel processing systems, 73–75

Soft Systems Methodology, 339

Software Architect's Assistant, 125

Software architecture. See Design handbook for software components integration

Software connector, 503

Software design, practical problems in, 110

Software design and generation, 374–75

Software developers
as audience, 3, 12
and knowledge repositories, 547

Software development, component-based, 109

SYNTHESIS system for, 124

Software engineering, audience from, 10

Software implementation, for Process Recombinator, 420–21

Software interconnection, as design problem, 127, 497–98, 514

Software system, coordination perspective for representing, 111–12

Software system design, coordination perspective on, 499–500, 504–505, 514. See also
Design

handbook for software components integration and Architecture Description Languages,
511–12
and coordination theory, 511
future research on, 513–14
and open software architecture, 512–13
and SYNTHESIS system, 500–10

Software tools, 4, 25–27

Spark project, 551

Specialization, 4, 22, 42, 131, 338–39
activity, 391
by delegation, 158, 159
and field study, 32–33
of objects, 157–58
and process description technique, 336
of processes, 15–19, 131–33, 161–62, 384–87, 404–407, 517

dataflow diagrams for, 143–49
by deletion, 158–60
e-business order processing example of, 149–55
and extension semantics, 134–35
frame of reference for, 135–36
and generating of new processes, 141, 143
and organizational design, 155
restaurant information system example of, 140–43
and specializing transformations, 136–38, 156
and state diagrams, 138–39

in sample Handbook entry, 224–25
and SYNOPSIS, 501



Specialization hierarchy(ies), 24, 29, 30, 34, 246, 338, 388, 404–405, 417, 476, 517
branching factor in, 250
for communication genres, 483, 485
and deep structure, 409
of prerequisite relationships, 308
process knowledge base, 519
for ''Sell financial service,'' 518
and SYNOPSIS, 503–504

Specialization taxonomies, 458

Specializing transformations, 136–38
completeness of, 164
for dataflow diagrams, 147–49
and process specialization, 136–38, 156
and SAP customization, 156
for state diagrams, 139–40, 166
uses of, 161

Specificity frontier, 527–28, 530, 542
division of, 530
integrating of different spectra of, 537, 543
and providing of context, 530–31

Speech act theory, 468–69

Standardization
for coordination, 82
for usability, 56

Stanford University, Virtual Design Team (VDT)
project at, 551

Starts dependency, 330

Starvation, as resource problem, 95

State diagrams, 138–39
refining/abstracting transformations for, 139, 164–66
specializing transformations for, 139–40, 166

STILE, 125

Stores, in dataflow diagram, 145

Structural questions, 207

Structured discussions, 461

Structures
coordination, 202
cultural, 202
and emergent activity, 528–29
institutional, 201
technological, 201–202

Subactivities, 15
in Davenport's process innovation, 263–64

Subactivity recombinator. 410–12

Subtyping, 158–59

SUN Hydraulics, 414

Supermarket
in analogy of grammar and organizational process, 196, 197–98, 199, 200, 201, 202–204
cultural norms in, 202
universal product code scanners in, 201–202



Supervision, direct, 82

Supply chain examples, in Process Handbook, 244

Supply chain management, data collection focused on, 27–28, 421

Supply Chain Operations Reference (SCOR)

Model, 241

Supply chain visualization, project on, 256

Support systems for dynamic group processes. See Process support systems in dynamic
contexts

Surface structures, 373, 380, 381
generating set of, 390–93
in Process Recombinator, 409
and process specialization, 384

Sybil (work tool), 70, 72

Symmetry, as modeling heuristic, 272

Synchronization, 57, 60
and dataflow diagrams, 145n
in interconnection protocol, 119
peer, 117–18, 309, 310, 322
process, 292
task, 98

SYNOPSIS Architecture Description Language, 122, 124, 125, 126, 292, 500–501, 502, 503,
504

and Process Handbook, 511
test application of, 508–509

Syntactic constituents, 214
identification of, 207
and performance programs, 198–99

Syntax of organizational processes, 192. See also Grammar

SYNTHESIS application development environment, 500–504

SYNTHESIS design assistant, 506–507

SYNTHESIS system, 111, 119–24, 125–26, 127, 514
for component-based software development, 507–10, 513
and design handbook of software component interconnection, 504–505

System commitment violations, 429

System resources, 298

Systems dynamics elements, in Process Handbook, 256, 257

 



 

Index

T
Task assignment, 21, 54, 59–61, 72

in computer science, 80

Task dependencies, 102–103

Task Manager, 530

Task-resource dependencies, managing of, 91–96, 105

Tasks
composition of, 106
and coordination, 90–91

and managing dependencies among multiple tasks and resources, 96–102
dependencies between, 102–103
as developing shared understanding, 107–108
and resources, 52

Task-subtask dependencies, managing of, 57–58, 60, 72

TAXIS (modeling language), 157

Taxonomy(ies)
of actions or verbs, 249–50
of commitment types, 428–29, 430
of components, 516
of conflict management meta-process, 457
of conflicts, 452–55
of coordination methods or mechanisms, 104, 106–107, 426–28

and design handbook of software interconnection, 122
of dependencies, 86, 104, 106, 113

and design handbook of software interconnection, 122
flow dependencies, 114–18

evaluation of, 107
of exception handlers, 432, 433
of exception types, 253, 256, 429, 431
genre, 466, 468–73, 492–93 (see also Genre taxonomy)
knowledge base in, 426
or order processes, 150

Taxonomy(ies) (cont.)
of organizational actions, 374
of organizations, 22
of processes, 450–51
of relationships, 88
of resources, 297–300
of software interconnection problems and solutions, 113–14
of specialization, 458

Team arrangements, 87

Team theory, 81

Technological structures, 201–202

Template-oriented component hierarchy, 516

Templates for describing activities, 26

Terminators, in dataflow diagram, 145



Textbook models, 242

Thank you note genre, 482

Theories, multiple, 190

Theory of organizational processes, development of, 189

Time, coordination aspects related to, 478–79

Time conflict management technique, 461

Timing, of genre/genre system, 482

Timing dependencies, 114, 294, 323–32, 505

Top-down approach, 31

Top-down goal decomposition, 57–58, 72

Total process aggregation, 147

Total quality management, 13, 285, 401–402

Total simulations, Boeing, 21, 388, 408

Trade-off matrix(ices), 18, 19, 365–66, 417

Trade-off table(s), 385, 387, 405, 406
in case example (business process redesign), 398
for [mockup how?] bundle, 451
in sample Handbook entry, 228–29

Trade Wave, 397

Transaction cost theory, 80
and resource allocation, 53

Transfer, management of, 55–56

Transfer dependencies, 182, 358

Transformations
abstracting, 137

for dataflow diagrams, 168–73
for state diagrams, 139

generalizing, 137, 161
process as, 179
refining, 137

for dataflow diagrams, 147–49, 168–73
for state diagrams, 139, 164–66

specializing, 136–38, 161
completeness of, 164
for dataflow diagrams, 147–49
and process specialization, 156
and SAP customization, 156
for state diagrams, 139–40, 166

Transient flows, 321

Transient memoryless events, 312

Transient prerequisites, 307, 311

Transportability of resources, 298

Transportation costs, effect of changes on, 66

Trust of information, and genres in electronic medium, 479

Typology. See Taxonomy(ies)

 



 

Index

U
Ulrich, Karl, 242

UML, 161

University of Edinburgh, AIAI at, 552

University of Toronto, Enterprise Modeling project at, 551–52

Unreliable actors, in computer science, 80

Upward propagation, 160–61

Usability constraints, 99, 105, 365

Usability dependencies, 115, 293, 302–303. See also Flow dependencies
in case study (MAG), 358
coordination aspects related to, 478
coordination mechanisms for, 21, 388, 408
managing of, 56, 118, 182, 303–304

User sharing dependency, 294

Uses, in sample Handbook entry, 225

 



 

Index

V
Variance models

and grammatical models, 192–93
vs. process thinking, 191

Variance theories, 178

Variation and distribution of processes, 212–13

Verbs, generic, 247–50

Virtual Design Team (VDT) project, Stanford University, 551

Visions, process, 263

Visual Basic programming language, 25, 118, 119, 420, 512

 



 

Index

W
Web interface, 26

Web site. See also Internet; World Wide Web
for MIT conflict repository, 463
for NIST, 575

Phios, 8, 446
for Process Handbook (both versions), 223, 458, 459, 471
for Sloan School admissions process, 487

Whirlpool, 32

Wild idea, 395

Womex, 397

Wordnet, 249

Words, and organizational moves, 197–98

Work
problems in representing, 336–37
technique for analysis of, 335–36 (see also Process description technique)

Workflow Management Coalition, 552

Work flow-management systems (WFMS), 521, 523, 525–26, 527, 541

Work process analysis, using genre taxonomy, 486–93

Work tools, cooperative, 69–73, 76

World Wide Web, 466. See also Internet; Web site
conflict repository on (screen illustration), 459
process repository on, 443

 



 

Index

X
Xerox Management Model, 242

X-Windows/Motif, 512

 



 

Index

Y
Yahoo!, and Sloan School students, 488, 492

 



 

List of Figures

Chapter 1: Tools for Inventing Organizations — Toward a
Handbook of Organizational Processes

Figure 1.1: Sample representations of three different sales processes. 'Sell by mail
order' and 'Sell by retail store', are specializations of the generic sales process 'Sell
something'. Subactivities that are changes are shadowed.

Figure 1.2: The 'Process compass'illustrates two dimensions for analyzing business
processes. The vertical dimension distinguishes different parts of a process; the
horizontal dimension distinguishes different types of a process.

Figure 1.3: Summary display showing specializations of the activity 'Sell something'.
Items in brackets (e.g., '[Sell how?]') are ''bundles''that group together sets of related
specializations. Items in bold have further specializations. (Note: The screen images
used in this and subsequent figures were created with the software tools described
below.)

Figure 1.4: A trade-off matrix showing typical advantages and disadvantages of different
specializations for the generic sales process. (Note that the values in this version of the
matrix are not intended to be definitive, merely suggestive.)

Figure 1.5: Three basic types of dependencies among activities (adapted from Zlotkin
1995)

Figure 1.6: Alternative views of the same sample process. The first view (a) shows a
''flow''dependency between two activities. The second view (b) shows the flow
dependency replaced by the coordination process that manages it. The third view (c)
shows the subactivities of the coordination process and the respective dependencies
among them. Users can easily switch back and forth among these different views of the
same process.

Figure 1.7: An outline view of the first two levels of the specialization hierarchy and
selected further specializations of the generic activity 'Move'

Chapter 3: A Taxonomy of Organizational Dependencies
and Coordination Mechanisms

Figure 3.1: Tasks use or produce resources

Figure 3.2: Dependencies between multiple tasks and resources.

Chapter 4: Toward a Design Handbook for Integrating
Software Components

Figure 4.1: Representing a software application as a set of activities interconnected
through dependencies

Figure 4.2: A simple software system

Figure 4.3: One protocol for managing the data .ow dependency of figure 4.2.



Figure 4.4: An alternative protocol for managing the dataflow dependency of figure 4.2.

Figure 4.5: A hierarchy of increasing specialized coordination protocols for managing
prerequisite dependencies

Chapter 5: Defining Specialization for Process Models

Figure 5.1: Which diagram is the specialization?

Figure 5.2: State diagram as a class of possible event sequences

Figure 5.3: State diagram for full service restaurant

Figure 5.4: Additional restaurant state diagrams

Figure 5.5: Generalized restaurant transaction

Figure 5.6: Initial specialization hierarchy for restaurant information system

Figure 5.7: Full service restaurant with buffet

Figure 5.8: Example of a dataflow diagram: Order processing

Figure 5.9: Taxonomy of order processes

Figure 5.10: Order processing abstracted from books to products

Figure 5.11: Order processing with pre-payment

Figure 5.12: Order processing without shipment

Figure 5.13: Order processing without order

Chapter 6: Process as Theory in Information Systems
Research

Figure 6.1: Relationship between ICT-induced changes in individual work and changes in
organizational and industrial structures and outcomes

Figure 6.2: Restaurant service process. Actors are shown down the left side, activities
performed by each are shown in order across the page. Activities performed jointly are
connected with dotted lines.

Figure 6.3: Flow of resources between activities and resulting dependencies in the
restaurant service process

Chapter 8: What Is in the Process Handbook?

Figure 8.1: Screen image of a sample entry in the Process Handbook

Figure 8.2: Excerpt of the ''related processes''shown for 'Sell': Other ways 'Sell'can be
done

Figure 8.3: Sample trade-off matrix for the 'Advertise how?'bundle

Figure 8.4: Specializations of 'Sell'shown with the compass explorer user interface

Figure 8.5: The top level of produce as a business in the MIT business activity model



Figure 8.6: The subparts of 'Buy'and 'Sell'in the MIT business activity model have an
intuitive correspondence with each other

Figure 8.7: One of the simplest possible views of the activities in a business

Figure 8.8: 'Buy'and 'Sell'activities are needed to manage the input flows and the output
flows, respectively

Figure 8.9: 'Design'activity is needed to manage the fit dependency between the different
activities that collectively produce the product a customer buys.

Figure 8.10: 'Manage'activity is needed to manage the sharing dependencies among all
the other activities.

Figure 8.11: MIT Business Models Archetypes (from Herman, Malone, and Weill 2003).
''Asset''can be physical, informational, or financial. ''None''means broker never takes
ownership of what is sold.

Figure 8.12: Sample case example describing the way Amazon.com distributes books
via the Internet

Figure 8.13: Generalizations of 'Sell'(shown in the compass explorer view). The
''Ancestors''part of the figure shows the direct and indirect generalizations of 'Sell'. The
''Family tree''part of the figure also shows some of the other relatives of 'Sell'in the
specialization hierarchy.

Figure 8.14: First-level specializations of 'Act'(shown in the compass explorer view). The
next two levels of specialization under 'Create'are also shown here.

Figure 8.15:  

Figure 8.16: Simplified map of the entire network of activities in the Process Handbook

Figure 8.17: Sample dependency diagram showing two .ow dependencies connecting
three activities in an example of a process to manufacture a product. (This .gure is from
the ''research'' version of the Process Handbook.)

Figure 8.18: Systems dynamics diagram. (This .gure is from the ''research'' version of the
Process Handbook.)

Chapter 9: Let a Thousand Gardeners Prune — Cultivating
Distributed Design in Complex Organizations

Figure 9.1: Steps in process innovation as described in Davenport (1993)

Figure 9.2: Resource flow diagram for process innovation

Figure 9.3: Simplification of process innovation

Figure 9.4: Design using solution strategies

Figure 9.5: Transforming a resource flow graph into a dependency diagram

Figure 9.6: First attempt at a dependency diagram

Figure 9.7: Symmetric dependency diagram

Figure 9.8: Identify activities and resources

Figure 9.9: Preliminary resource flow graph



Figure 9.10: Simplifying the resource flow graph

Figure 9.11: Simplification of reengineered business processes

Figure 9.12: First pass at a dependency diagram

Figure 9.13: Simplified dependency diagram

Figure 9.14: Design using classification

Figure 9.15: Design of high-risk systems

Chapter 10: A Coordination Perspective on Software
Architecture — Toward a Design Handbook for Integrating
Software Components

Figure 10.1: Example of cooperative resource use

Figure 10.2: Simple design space for selecting a data transportation mechanism

Figure 10.3: Taxonomy of resources

Figure 10.4: Generic model of resource .ow dependencies

Figure 10.5: Framework for managing usability dependencies

Figure 10.6: Framework for managing accessibility dependencies

Figure 10.7: Prerequisite dependency

Figure 10.8: Perishable prerequisites

Figure 10.9: Specialization relationships among different prerequisite dependency types

Figure 10.10: Generic processes for managing prerequisite dependencies

Figure 10.11: Generic processes for managing prerequisite dependencies using peer
event synchronization

Figure 10.12: Taxonomy and examples of event types

Figure 10.13: Framework for managing prerequisite dependencies

Figure 10.14: Framework for managing sharing dependencies

Figure 10.15: Sharing of divisible resources in a .ow dependency

Figure 10.16: Sharing by restricting access to resource

Figure 10.17: First two levels of design dimensions for flow dependencies

Figure 10.18: Specialization relationships among timing dependencies

Figure 10.19: Relationships between prevention and perishable prerequisite
dependencies

Figure 10.20: A simultaneity dependency can be transformed and managed as a
composite prerequisite. Before activities X and Y can begin execution, all four
prerequisite activites must occur. Then both X and Y can occur together.



Figure 10.21: Termination of the user-interface also requires termination of the database
and graphics servers

Chapter 11: A Coordination Theory Approach to Process
Description and Redesign

Figure 11.1: Basic work flow at MAG Services

Figure 11.2: High-level process decomposition view

Figure 11.3: Specializations illustrate process variety

Figure 11.4: MAG Services as a step in a value chain

Figure 11.5: Coordinating subdependencies within the 'Run job' process

Figure 11.6: Chapter flow and resources at MAG Services

Chapter 12: Inventing New Business Processes Using a
Process Repository

Figure 12.1: Surface structures of two different business processes with the same deep
structure. (Activities shown in unshadowed boxes are part of the coordination processes
for managing the .ow dependency.)

Figure 12.2: Sample representations of three different sales processes. The deep
structure of selling is represented by 'Sell product', and two alternative surface structures
are represented by its specializations:  'Sell by mail order' and 'Sell in retails store'.
Subactivities that are changed in the specializations are shadowed.

Figure 12.3: ''Process compass''illustrating two dimensions for analyzing business
processes. The vertical dimension distinguishes different parts of a process; the
horizontal dimension distinguishes different types of a process.

Figure 12.4: Basic types of dependencies among activities

Figure 12.5: Deep structure for 'Hire'. The arrows represent the flow dependency among
the components.

Figure 12.6: Subactivity recombinator user interface

Figure 12.7: Specialization tree generalizations for hiring process

Figure 12.8: Two alternative surface structures for the senior employee hire process

Figure 12.9: Trade-off table for 'Hire'process alternatives

Chapter 13: The Process Recombinator — A Tool for
Generating New Business Process Ideas

Figure 13.1: Example of inheritance in specialization hierarchy (changed subactivities are
shadowed)

Figure 13.2: Example of bundles in the specialization hierarchy

Figure 13.3: Example of a trade-off table (note that these particular values are for



illustrative purposes only)

Figure 13.4: Three basic types of dependencies among activities

Figure 13.5: The deep structure for 'Hire'

Figure 13.6: Subactivity recombinator user interface

Figure 13.7: Results of using the subactivity recombinator

Figure 13.8: Dependency recombinator user interface

Figure 13.9: Specialization sub-tree for 'Install employee'

Figure 13.10: Part of the design space for the 'Install employee'process (the cell marked
is the example described in the text)

Figure 13.11: Bundle recombinator user interface

Figure 13.12: Trade-off matrix for new process re-designs. (All values are for illustration
purposes only.)

Chapter 14: Designing Robust Business Processes

Figure 14.1: The sealed-bid task allocation auction

Figure 14.2: Portion of the coordination mechanism taxonomy

Figure 14.3: Portion of the commitment type taxonomy

Figure 14.4: Portion of the exception type taxonomy

Figure 14.5: Subset of the exception handler taxonomy

Figure 14.6: Summary of the exception analysis methodology

Figure 14.7: Barings futures trading process

Figure 14.8: Barings futures trading process with associated exceptions

Figure 14.9: Logging is a generic process for detecting prerequisite violations

Figure 14.10: Barings process properly instrumented with logging processes

Figure 14.11: Comparison between the ideal and the actual barings process

Chapter 15: A New Way to Manage Process Knowledge

Figure 15.1: Process parts

Figure 15.2: Process types

Figure 15.3: Dow Corning's process repository. Dow Corning is putting its process
repository on its corporate Intranet. Here, in a sample window, we see a portion of Dow's
requisition procedure. Employees can click on any process step for more detailed
information on policies and practices. The ''process compass'' in the upper left corner
makes navigating the repository easy.

Chapter 16: Toward a Systematic Repository of Knowledge



about Managing Collaborative Design Conflicts

Figure 16.1: Decomposition for the change memo process

Figure 16.2: Dependencies for the change memo process

Figure 16.3: Fragment of the process taxonomy for conflict detection

Figure 16.4: Fragment of the conflicts type taxonomy

Figure 16.5: Fragment of the collaborative design process hierarchy

Figure 16.6: Linkages to/from the conflict taxonomy

Figure 16.7: Subset of the conflict handling process taxonomy

Figure 16.8: Decomposition of the generic conflict management meta-process

Figure 16.9: Subset of the conflict management meta-process taxonomy

Figure 16.10: Screen snapshot of the Web-accessible version of the conflict repository

Figure 16.11: Snapshot of the process recombinator

Chapter 17: Genre Taxonomy — A Knowledge Repository of
Communicative Actions

Figure 17.1: Example of correspondences in the ballot genre system in the common lisp
project (excerpt)

Figure 17.2: Genre evolution example from business letter genre to electronic memo
genre

Figure 17.3: Flow, fit, and sharing dependencies

Figure 17.4: Process inheritance and specializations of the activity 'Sell product'

Figure 17.5: Excerpt of process categories in the genre taxonomy

Figure 17.6: Description of the activity 'Communicate using face-to-face meeting system'

Figure 17.7: Dependency diagram of 'Genre use over time'

Figure 17.8: Specialization hierarchy example in the genre taxonomy

Figure 17.9: Genre coordinating aspects example: An excerpt of the specialization
hierarchy of 'Coordinate information using genres'

Chapter 18: A Coordination Perspective on Software
System Design

Figure 18.1: Implementation languages often force the distribution of coordination
protocols among several code modules. In this example the implementation code of a
pipe protocol for managing a single data flow dependency has been distributed among
three code modules.

Figure 18.2: Representation of a simple file viewer application using SYNOPSIS



Figure 18.3: Example of an atomic activity and its associated code-level component
description

Figure 18.4: SYNOPSIS representation of a data flow dependency and its associated
pipe transfer coordination protocol

Figure 18.5: Hierarchy of prerequisite dependencies with increasingly specialized
associated coordination protocols

Figure 18.6: Sketch of an algorithm used by SYNTHESIS to generate executable
applications by successive specializations of their SYNOPSIS descriptions

Figure 18.7: Configuration of SYNTHESIS windows during design mode

Chapter 19: The Product Workbench — An Environment for
the Mass-Customization of Production Processes

Figure 19.1: Specialization hierarchy for 'Sell .nancial service' (based on BankBoston
1998)

Figure 19.2: Trade-off matrix showing the alternative specializations of 'Sell credit
service'compared to 'Loan purpose'and 'Loan security'

Figure 19.3: Template/case-browser

Figure 19.4: Incremental and iterative refinement of the process 'Sell combined product
to Example Inc.'

Figure 19.5: Integrity checker pointing out problems in the decomposition browser by
coloring the processes 'Analyze debit service'and 'Execute contract'in a darker color.
'Sell savings and investment services'and 'Sell combined product to Example Inc.'are
also colored dark because they contain nonenactable subprocesses.

Figure 19.6: Overall product workbench architecture

Chapter 20: How Can Cooperative Work Tools Support
Dynamic Group Processes? Bridging the Specificity
Frontier

Figure 20.1: Specificity frontier

Figure 20.2: Different execution types

Figure 20.3: Activity manager

Figure 20.4: Adding constraints

Figure 20.5: Planner

Figure 20.6: Starting a WfMS-like script

Figure 20.7: Process model parts

Figure 20.8: Example process

Figure 20.9: Related work



Appendix: Enabling Technology

Figure A.1: PIF class hierarchy

Figure A.2: Relationships among PIF classes

Figure A.3: Possible temporal relations between two activities

Figure A.4: Mapping between IDEF-0 and PIF constructs

 



List of Tables

Part I: Introduction

Table I.1: Primary disciplinary perspectives of different chapters in this volume

Chapter 1: Tools for Inventing Organizations — Toward a
Handbook of Organizational Processes

Table 1.1: Examples of elementary dependencies between activities and alternative
coordination mechanisms for managing them

Table 1.2: Summary of current contents of the Process Handbook database

Chapter 2: The Interdisciplinary Study of Coordination

Table 2.1: Examples of common dependencies between activities and alternative
coordination processes for managing them

Table 2.2: Examples of how different disciplines have analyzed coordination processes

Table 2.3: Taxonomy of cooperative work tools based on the processes they support

Table 2.4: Sample applications of a coordination perspective

Chapter 3: A Taxonomy of Organizational Dependencies
and Coordination Mechanisms

Table 3.1: Decompositions of different mechanisms for resource allocation

Table 3.2: Examples of resources classified by shareability and reusability

Table 3.3: Summary of dependencies and coordination mechanisms

Chapter 4: Toward a Design Handbook for Integrating
Software Components

Table 4.1: Design dimensions of usability coordination protocols

Table 4.2: Design dimensions of accessibility coordination protocols

Table 4.3: Examples of transport protocols for data resources

Table 4.4: Generic processes for managing prerequisite dependencies

Table 4.5: Examples of synchronizing events

Chapter 7: Grammatical Models of Organizational
Processes

Table 7.1: Mapping between grammar and organizational processes



Table 7.2: Generic phrase structure grammar for a trip to a suburban supermarket

Chapter 8: What Is in the Process Handbook?

Table 8.1: Summary of contents of the MIT Process Handbook (July 2002)

Table 8.2: Lower levels of 'Produce as a business'in the MIT Business Activity Model

Table 8.3: Second level of 'Produce as a typical business'in the MIT Business Activity
Model

Chapter 10: A Coordination Perspective on Software
Architecture — Toward a Design Handbook for Integrating
Software Components

Table 10.1: Divisibility of resources

Table 10.2: Consumability of resources

Table 10.3: Concurrency of resources

Table 10.4: Allen's taxonomy of relationships between time intervals

Table 10.5: Deriving timing dependency types from Allen's time interval relationships

Chapter 11: A Coordination Theory Approach to Process
Description and Redesign

Table 11.1: Actors in the MAG case

Table 11.2: Resources used in the MAG case

Table 11.3: Comparison of custom and noncustom work

Table 11.4: Summary of initial analysis

Table 11.5: Dependency-focused analysis-coordination activities

Table 11.6: Dependency-focused analysis-coordination strategies

Chapter 12: Inventing New Business Processes Using a
Process Repository

Table 12.1: Examples of dependencies and associated coordination mechanisms

Table 12.2: Siblings of the subactivities in the firm A's hire process

Table 12.3: Multicolumn table for hire process alternatives

Table 12.4: Selected interesting specializations of the 'Buy'process

Table 12.5: Selected interesting specializations of 'Sell'process

Table 12.6: Trade-off table for 'Identify candidates'activity along the 'where'dimension



Chapter 13: The Process Recombinator — A Tool for
Generating New Business Process Ideas

Table 13.1: Examples of dependencies and associated coordination mechanisms

Chapter 16: Toward a Systematic Repository of Knowledge
about Managing Collaborative Design Conflicts

Table 16.1: Trade-off table for the [mockup how?] bundle

Table 16.2: Example of conflict handler applicability conditions

Table 16.3: Conflict management meta-process for development-time conflict
management

Table 16.4: Conflict management meta-process for execution-time conflict management

Chapter 17: Genre Taxonomy — A Knowledge Repository of
Communicative Actions

Table 17.1: Excerpt of genres relevant to Sloan Admissions process

Chapter 18: A Coordination Perspective on Software
System Design

Table 18.1: Summary of experiments of using SYNTHESIS to facilitate the integration of
existing software components in new applications

Table 18.2: Summary of the key word in context experiments


	Table of Contents
	BackCover
	Organizing Business Knowledge - The MIT Process Handbook
	Part I: Introduction
	Chapter 1: Tools for Inventing Organizations - Toward a Handbook of Organizational Processes
	1.2 The Key Intellectual Challenge - How to Represent Organizational Processes?

	1.3 Results

	1.4 Discussion

	1.5 Conclusion
	Acknowledgments
	Part II: How Can We Represent Processes? Toward A Theory Of Process Representation
	Part IIA: Coordination as The Management Of Dependencies
	Chapter 2: The Interdisciplinary Study of Coordination

	2.2 A Framework for Studying Coordination
	2.3 Applying a Coordination Perspective
	2.4 Research Agenda
	2.5 Conclusions
	Acknowledgments
	Chapter 3: A Taxonomy of Organizational Dependencies and Coordination Mechanisms
	3.2 Dependencies and Coordination
	3.3 Managing Task-Resource Dependencies
	3.4 Managing Dependencies among Multiple Tasks and Resources
	3.5 Dependencies among Tasks or among Resources
	3.6 Conclusion
	Acknowledgment
	Chapter 4: Toward a Design Handbook for Integrating Software Components
	4.2 A Framework for Studying Software Component Interconnection
	4.3 The SYNTHESIS Application Development Environment
	4.4 Related Work
	4.5 Conclusions and Future Directions
	Part IIB: Specialization of Processes - Organizing Collections of Related Processes
	Chapter 5: Defining Specialization for Process Models
	5.2 Process Specialization
	5.3 State Diagrams
	5.4 Example - Restaurant Information System
	5.5 Dataflow Diagrams
	5.6 Example - Generating Order Processing Alternatives for E-Business
	5.7 Related Work
	5.8 Are There Two Kinds of Specialization?
	5.9 Conclusions
	Acknowledgments
	Part IIC: Different Views of Processes
	Chapter 6: Process as Theory in Information Systems Research
	6.2 The Problem of Multi-level Research
	6.3 Processes as Theory
	6.4 Illustrative Example - Service Processes in Two Restaurants
	6.5 Recommendations for Process Research and Practice
	6.6 Conclusion
	Acknowledgments
	Chapter 7: Grammatical Models of Organizational Processes
	7.2 What Is a Grammar?
	7.3 Grammar and Organizational Process
	7.4 Methodological Considerations of Grammatical Models
	7.5 A Grammatical Research Agenda
	7.6 Conclusion
	Acknowledgments
	Part III: Contents Of The Process Handbook
	Part IIIA: Overview of the Contents
	Chapter 8: What Is in the Process Handbook?

	8.2 Overview of the Process Handbook Contents
	8.3 A Sample Entry in the Process Handbook
	8.4 Generic Models of Business Activities
	8.5 The MIT Business Activity Model
	8.6 MIT Business Model Archetypes
	8.7 Comprehensive Models of Business Processes Developed Elsewhere
	8.8 Models of Coordination Processes
	8.9 Case Examples
	8.10 Classification Structure for Activities
	8.11 Other Kinds of Entries
	8.12 Conclusions
	Part IIIB: Examples of Specific Domain Content
	Chapter 9: Let a Thousand Gardeners Prune - Cultivating Distributed Design in Complex Organizations
	9.2 Example - Process Innovation (Davenport 1993)
	9.3 Example - Reengineering (Hammer and Champy 1993)
	9.4 Example - Normal Accidents (Perrow 1984)
	9.5 Summary
	Chapter 10: A Coordination Perspective on Software Architecture - Toward a Design Handbook for Integrating Software Components
	10.2 Motivation
	10.3 Overview of the Dependencies Space
	10.4 The Concept of a Design Space
	10.5 A Taxonomy of Resources
	10.6 A Generic Model of Resource Flows
	10.7 Timing Dependencies
	Part IIIC: Creating Process Descriptions
	Chapter 11: A Coordination Theory Approach to Process Description and Redesign
	11.2 Theoretical Basis - Processes, Dependencies, and Coordination
	11.3 A Coordination Theory Approach to Processes Description
	11.4 Discussion
	11.5 Conclusion
	Part IV: Process Repository Uses
	Part IVA: Business Process Redesign
	Chapter 12: Inventing New Business Processes Using a Process Repository

	12.2 Background - Previous Approaches to Process Innovation
	12.3 Our Approach - Analyzing Deep Structure, Then Generating Alternative Surface Structures
	12.4 Case Example - Generating Innovative Ideas for the Hiring Process
	12.5 Conclusion
	Acknowledgments
	Chapter 13: The Process Recombinator - A Tool for Generating New Business Process Ideas
	13.2 The Process Handbook
	13.3 The Process Recombinator
	13.4 Contributions of This Work
	13.5 Future Work
	Appendix - Implementation Overview
	Acknowledgments
	Chapter 14: Designing Robust Business Processes
	14.2 The Challenge
	14.3 Our Exception Analysis Methodology
	14.4 An Example - The Barings Bank Failure
	Acknowledgments
	Part IVB: Knowledge Management
	Chapter 15: A New Way to Manage Process Knowledge
	Chapter 16: Toward a Systematic Repository of Knowledge about Managing Collaborative Design Conflicts
	16.2 Our Approach
	16.3 Evaluation of the Contributions of This Work
	16.4 Future Work
	Acknowledgments
	Chapter 17: Genre Taxonomy - A Knowledge Repository of Communicative Actions
	17.2 Genres of Organizational Communication
	17.3 Genre Taxonomy
	17.4 Coordinating Information Using Genres
	17.5 Prototype of the Genre Taxonomy
	17.6 Work Process Analysis Using the Genre Taxonomy
	17.7 Conclusions
	Acknowledgment
	Part IVC: Software Design and Generation
	Chapter 18: A Coordination Perspective on Software System Design
	18.2 A Coordination Perspective on Software System Design
	18.3 The SYNTHESIS Application Development Environment
	18.4 Using Synthesis to Facilitate Component-Based Software Development
	18.5 Related Work
	18.6 Future Research
	18.7 Conclusions
	Acknowledgment
	Chapter 19: The Product Workbench - An Environment for the Mass-Customization of Production Processes
	19.2 Analysis of the Requirements and Theoretical Foundations
	19.3 The Implementation
	19.4 Discussion
	19.5 Conclusion
	Acknowledgments
	Chapter 20: How Can Cooperative Work Tools Support Dynamic Group Processes? Bridging the Specificity Frontier
	20.2 A Scenario - Heidi's Problem
	20.3 The Conceptual Framework
	20.4 The Specificity Frontier Approach and Prototype System
	20.5 Evaluation and Lessons Learned
	20.6 Related Work
	20.7 Contributions and Conculsion
	Acknowledgments

	Part V: Conclusion
	Appendix: Enabling Technology
	The PIF Process Interchange Format and Framework
	A.1 Introduction
	A.2 History and Current Status
	A.3 PIF Overview
	A.4 Rationales
	A.5 Alphabetic Class Reference
	A.6 Extending PIF
	A.7 Future Directions

	Consolidated References
	Index
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X
	Index_Y

	List of Figures
	List of Tables

